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Cancer progression is associated with metabolic reprogramming and causes significant intracellular stress; however, the
mechanisms that link cellular stress and growth signalling are not fully understood. Here, we identified a mechanism that couples
the mitochondrial stress response (MSR) with tumour progression. We demonstrated that the MSR is activated in a significant
proportion of human thyroid cancers via the upregulation of heat shock protein D family members and the mitokine, growth
differentiation factor 15. Our study also revealed that MSR triggered AKT/S6K signalling by activating mTORC2 via activating
transcription factor 4/sestrin 2 activation whilst promoting leucine transporter and nutrient-induced mTORC1 activation.
Importantly, we found that an increase in mtDNA played an essential role in MSR-induced mTOR activation and that crosstalk
between MYC and MSR potentiated mTOR activation. Together, these findings suggest that the MSR could be a predictive marker
for aggressive human thyroid cancer as well as a useful therapeutic target.
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INTRODUCTION
Metabolic reprogramming is a hallmark of cancer that facilitates
macromolecule synthesis and supports increased energy
demands, cellular survival, and tumour proliferation [1]. Increased
glycolysis and the suppression of mitochondrial oxidative
phosphorylation (OXPHOS) were thought to be an essential
feature of tumour cell metabolism, as postulated by Warburg [2].
However, cancer cells display metabolic flexibility that allows them
to adapt to different metabolic conditions [3–6] via mechanisms
that mediate changes in glucose utilization as well as amino acid
and lipid metabolism [7]. This metabolic flexibility can also trigger
the mitochondrial stress response (MSR), suggesting that the
adaptive mechanisms associated with mitochondrial stress, which
rely on efficient mito-nuclear communication, are conserved in
cancer cells [8–11].
The mitochondrial unfolded protein response (mtUPR) is an

important mitochondrial stress pathway that has been investi-
gated extensively in invertebrates such as Drosophila melanogaster
and Caenorhabditis elegans [12]. In these invertebrates, the mtUPR
is activated by mitochondrial proteotoxic stresses, such as
unfolded protein accumulation, impaired protein quality control,
and OXPHOS inhibition. These stressors co-ordinately induce the
transcription of genes encoding chaperones, proteases, and
metabolic enzymes that restore mitochondrial function and

induce cellular adaptation [12–15]. The mechanisms via which
the mtUPR is activated and integrated with other autonomous or
non-autonomous cellular stress responses in vertebrates are
currently under intensive research [9].
The integrated stress response (ISR) is a highly conserved

intracellular stress pathway that regulates global protein synthesis
[16] and can be activated by oxidative, endoplasmic reticulum
(ER), mitochondrial, and nutritional stresses [9, 17, 18]. The ISR is
initiated by the phosphorylation of the α-subunit of eukaryotic
translation initiation factor 2 (eIF2α) by kinases including general
control non-derepressible 2 (GCN2) and PKR-like ER kinase (PERK).
Phosphorylated eIF2α then suppresses global protein synthesis
while specifically promoting the expression of stress-response
genes, such as activating transcription factor 4 (ATF4), thereby
inducing various stress proteins that restore cellular homoeostasis
[18–20]. However, cell-based experiments have been unable to
provide a clear mechanistic link between the MSR and autono-
mous proliferative signalling, which is a hallmark of cancer [21, 22].
Mechanistic target of rapamycin (mTOR) is a master kinase

regulator of metabolic signalling that integrates environmental
cues for cellular growth and stimulates the de novo synthesis of
cellular building blocks [23]. Previous studies have shown that
mitochondrial stress rapidly inhibits the mTOR signalling pathway,
thereby reducing cytosolic protein translation and cell
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proliferation [24, 25]. However, the mTOR pathway is activated in
animal models of mitochondrial disease [26, 27] and aberrant
mTOR signalling is a feature of the MSR during senescence and
aging [28, 29]. In cancer cells, genetic and genomic alterations are
thought to govern PI3K/AKT/mTOR signalling regardless of
mitochondrial stress; however, The Cancer Genome Atlas (TCGA)
has suggested that genetic and genomic alterations in this
pathway occur at a lower frequency than expected [30–33]. Thus,
maintaining metabolic flexibility in cancer cells may require
dynamic interactions between signalling molecules rather than
fixed genetic alterations.
Unfortunately, it has been difficult to identify dynamic non-

genomic alterations in signalling pathways using clinical tissue
samples due to confounding variables like diverse driver gene
mutations and concomitant genomic instability within an already
complex signalling system [34–36]. To overcome this problem, we
analysed the role of MSR and the mechanism coupling the MSR to
mTOR signalling in a cohort of patients from The Cancer Genome
Atlas Thyroid Cancer (TCGA-THCA), since thyroid cancers harbour
homogenous driver mutations and have a lower somatic mutation
and genetic alteration burden than other solid tumours
[33, 37, 38]. Together, our findings suggest that the MSR could
be a predictive marker for aggressive human thyroid cancer as
well as a useful therapeutic target.

RESULTS
Mitochondrial DNA (mtDNA) copy number is linked to mtUPR
and mTOR signalling in human thyroid cancer
Aerobic glycolysis is a key feature of cancer cells that induces
mitochondrial stress [39]. The compensatory response of cancer
cells to this mitochondrial stress can facilitate their invasion,
metastasis, and drug resistance [40, 41]. A subset of thyroid
cancers contains oxyphil cells with an increased number of
mitochondria, also known as Hurthle or Askanazy cells. Human
papillary thyroid carcinoma (PTC) with >70% oxyphil cells is
defined as oncocytic type PTC (ovPTC) and has a poor prognosis.
Here, we found that the number of mitochondria was increased in
a subset of cancers, resulting in oxyphil cells with many
mitochondria (Fig. 1a). Although not as extensive as in ovPTC,
there were some cases with focal oxyphil changes and focal
increases in the number of mitochondria, as reflected by an
increased mtDNA copy number (Fig. 1b, c). Furthermore, cancer
cells had more mtDNA than matched normal cells (Fig. 1d), even
though no oxyphil changes were observed. A high mtDNA copy
number was also associated with poor prognosis in our non-ovPTC
and TCGA-THCA cohorts (Tables 1 and 2, Supplementary Tables 1
and 2). As this increase in mtDNA might induce mito-nuclear
imbalance in protein translation leading to mtUPR, the expressions
of genes related to mtUPR, including six chaperone genes, six
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Fig. 1 mtDNA copy number, mtUPR, and mTOR signalling in thyroid cancer. a Microscopic findings of classical PTC (upper) and ovPTC
(lower). Scale bar = 25 μm. Magnification = ×30,000 for electron microscopy. b Comparison of mtDNA/nDNA ratio according to oxyphil cell
number. No = no oxyphil cell (n= 99). Focal ≤ 70 % oxyphil cells (n= 98). OV ≥ 70% oxyphil cells (n= 11). c Relationship between
mtDNA/nDNA ratio and oxyphil cell number in focal tumours (n= 98). d Comparison of mtDNA/nDNA ratio between PTC and NL from the same
patients (n= 53). PTC showed no oxyphil cells. e Relationship between mtDNA copy number and HSPD1 mRNA expression (transcripts per
million) in TCGA-THCA (PTC, n= 100). f Representative results of western blotting analysis using tissue samples from patients with non-ovPTC.
N indicates paired normal thyroid tissues while T indicates tumour tissues. g Representative IHC-P staining images of tissue samples from PTC
with high or low mtDNA/nDNA ratios. TOM40, a component of the mitochondrial outer membrane, was used as a mitochondrial marker.
h Enriched Hallmark and KEGG genes (p < 0.05, FDR q < 0.25) in high mtDNA copy number tumours from TCGA-THCA. ***p < 0.001,
****p < 0.0001. Data represent the mean ± SD. PTC papillary thyroid cancer, mtDNA mitochondrial DNA, nDNA nuclear DNA, OV oncocytic
variant, NL matched normal tissues, TM tumour, HSPD1 heat shock protein family D member 1 (HSP60), TOM40 translocase of outer
mitochondrial membrane 40, IHC-P immunohistochemistry-paraffin-embedded tissues.
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proteases, four mitokines, and nine other related genes, were
compared between normal and tumour tissues using TCGA-THCA
[42]. As shown in Supplementary Fig. 1, many genes related to
mtUPR such as heat shock protein family D (Hsp60) member 1
(HSPD1), TNF receptor associated protein 1 (TRAP1), prohibitin 1
(PHB1), prohibitin 2 (PHB2), caseinolytic mitochondrial matrix
peptidase proteolytic subunit (CLPP), lon peptidase 1, mitochon-
drial (LONP1), lon peptidase 2, peroxisomal (LONP2), OMA1 zinc
metallopeptidase (OMA1), and growth differentiation factor 15
(GDF15) were upregulated. To select a representative marker
related to mtDNA copy number among those genes related to
mtUPR, multiple correlation analyses were performed. We

Table 1. Clinicopathological characteristics in non-ovPTC according to
mtDNA/nDNA ratio (n= 197).

mtDNA/nDNA ratio P value

Lower third
(<2.56)
(n= 64) (%)

Upper third
(>2.96)
(n= 72) (%)

mtDNA/nDNA
ratio, log10
(IQR)††

2.33 (2.11–2.45) 3.24 (3.05–3.46) <0.001*

Age (years),
median (IQR)

38 (28–56) 48 (36–59) 0.010*

BMI (kg/m2),
median (IQR)

22.7 (20.0–25.6) 24.3 (22.2–27.3) 0.006*

Gender (female) 48 (75.0) 51 (70.8) 0.586†

Tumour size (cm),
median (IQR)

1.5 (1.1–2.1) 1.7 (1.2–2.3) 0.241*

MACIS score,
median (IQR)

4.2 (3.6–5.1) 4.9 (4.4–6.7) 0.002*

Histological subtype

Follicular
variant

13 (20.3) 17 (23.6) 0.253†

Conventional 51 (79.7) 51 (70.8)

Solid variant 0 (0.0) 2 (2.8)

Tall cell variant 0 (0.0) 2 (2.8)

Bilaterality

Negative 46 (71.9) 53 (73.6) 0.820†

Positive 18 (28.1) 19 (26.4)

Extrathyroidal extension

No 36 (56.3) 21 (29.2) 0.001†

Yes 28 (43.8) 51 (70.8)

T stage

T1 31 (48.4) 19 (26.4) 0.066†

T2 3 (4.7) 4 (5.6)

T3 25 (39.1) 40 (55.6)

T4 5 (7.8) 9 (12.5)

N stage

N0 17 (26.6) 24 (33.3) 0.390†

N1 47 (73.4) 48 (66.7)

M stage

M0 62 (96.9) 72 (100.0) 0.131†

M1 2 (3.1) 0 (0.0)

TNM stage∫

I/II 48 (75.0) 35 (48.6) 0.002†

III/IV 16 (25.0) 37 (51.4)

BRAFV600E mutation

Absent 31 (48.4) 16 (22.2) 0.001†

Present 33 (51.6) 56 (77.8)

TERT promoter mutation

Absent 63 (98.4) 69 (95.8) 0.370†

Present 1 (1.6) 3 (4.2)

MACIS distant Metastasis, patient Age, Completeness of resection, local
Invasion, and tumour Size.
*p values calculated using an independent t-test or Mann–Whitney U test.
Data are expressed as the mean (IQR).
†p values calculated using a χ2 test or linear-by-linear association.
††IQR interquartile range.
∫T-, N-, M-, TNM- stage according to the AJCC TNM staging system 7e.

Table 2. Multivariate analysis of the association of high third mtDNA
copy number with high-risk clinicopathological and molecular
parameters in non-ovPTC.

mtDNA copy number (upper third)

Odds ratio 95% CI P value

Age (≥45)

Model A 2.337 1.172–4.662 0.016

Model B 2.506 1.243–5.052 0.010

Model C 2.542 1.241–5.204 0.011

Model D 2.431 1.157–5.110 0.019

Model E 2.114 0.985–4.538 0.055

BRAFV600E mutation (present)

Model F 2.962 1.392–6.304 0.005

Model G 2.846 1.328–6.097 0.007

Model H 2.855 1.332–6.122 0.007

Model I 2.840 1.292–6.242 0.009

Model J 2.478 1.103–5.568 0.028

Extrathyroidal extension (present)

Model F 2.955 1.430–6.107 0.003

Model G 2.827 1.359–5.879 0.005

Model H 2.857 1.370–5.961 0.005

Model K 2.799 1.325–5.912 0.007

Model L 2.806 1.307–6.023 0.008

TNM stage (stage III/IV)

Model A 3.167 1.524–6.580 0.002

Model B 2.983 1.424–6.246 0.004

Model C 3.137 1.454–6.767 0.004

Model D 3.050 1.383–6.729 0.006

Model E 2.458 1.084–5.574 0.031

Model A: Adjusted for gender.
Model B: Adjusted for gender and BMI (≥25).
Model C: Adjusted for gender, BMI, and MACIS score (≥7).
Model D: Adjusted for gender, BMI, MACIS score, and extrathyroidal
extension.
Model E: Adjusted for gender, BMI, MACIS score, extrathyroidal extension,
and BRAFV600E mutation.
Model F: Adjusted for age at diagnosis and gender.
Model G: Adjusted for age at diagnosis, gender, and BMI.
Model H: Adjusted for age at diagnosis, gender, BMI, and MACIS score.
Model I: Adjusted for age at diagnosis, gender, BMI, MACIS score, and
extrathyroidal extension.
Model J: Adjusted for age at diagnosis, gender, BMI, MACIS score,
extrathyroidal extension, and TNM stage.
Model K: Adjusted for age at diagnosis, gender, BMI, MACIS score, and
TNM stage.
Model L: Adjusted for age at diagnosis, gender, BMI, MACIS score, TNM
stage, and BRAFV600E mutation.
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observed that 18 out of 25 genes showed positive correlations
with mtDNA copy number and of these, 11 were statistically
significant (Fig. 1e and Supplementary Fig. 2). Among these 11
genes, HSPD1 and TRAP1 had the highest correlation. HSPD1 was
selected as the representative mtUPR marker because HSPD1 has
higher expression value (transcripts per million) and has been
widely used in experiments [15]. This finding was confirmed by
the western blotting analysis using tissue samples (Fig. 1f) and
immunohistochemical (IHC) staining of paraffin-embedded tissue
samples (IHC-P; Fig. 1g, Supplementary Fig. 3a–e). In addition,
gene set enrichment analysis (GSEA) was conducted to confirm
the representativeness of HSPD1 as a mtUPR marker. The
expression of other mtUPR markers was also enriched in PTC
samples with high HSPD1 expression, indicating that HSPD1 could
be a marker of mtUPR (Supplementary Fig. 3f).
To understand the molecular features of PTC with a high mtDNA

copy number, we divided PTC samples into groups with high and
low mtDNA copy numbers compared to matched normal tissues. In
PTC with a high mtDNA copy number, Hallmark gene sets related
to MYC targets, protein secretion, OXPHOS, and mTOR signalling
were highly enriched, as were KEGG gene sets related to amino
acid metabolism (Fig. 1h, Supplementary Tables 3 and 4). Gene set
enrichment analysis (GSEA) of our transcriptomic data according
to HSPD1 expression also indicated the enrichment of MYC
targets, protein secretion, OXPHOS, mTOR signalling, and UPR

Hallmark gene sets (Supplementary Fig. 4a, Supplementary Table
5). GSEA also revealed the enrichment of KEGG gene sets related
to aminoacyl tRNA biosynthesis, ribosomes, and thyroid cancer
(Supplementary Fig. 4b, Supplementary Table 6). Consistently,
GSEA of TCGA-THCA revealed that the upregulated gene sets were
similar to those in our transcriptome data (Supplementary Fig. 4c,
d, Supplementary Tables 7 and 8). Together, these results suggest
that mitochondrial stress pathways and genes related to the MSR
may be co-ordinately upregulated in PTC with high mtDNA copy
number. Moreover, the MSR may be linked to mTOR signalling and
amino acid metabolism.

ATF4/SESN2 upregulation by mitochondrial stress
To verify the biological function of MSR induced by a high mtDNA
copy number, we treated human thyroid cancer cell lines, such as
BCPAP, TPC1, C643, and 8505C, with doxycycline, which induces
mtUPR and inhibits mitochondrial translation [15]. Consistent with
previous reports [43], doxycycline downregulated MTCO1, upre-
gulated HSPD1, and increased the secretion of growth differentia-
tion factor 15 (GDF15), a stress-inducible mitokine, in HeLa cells
(Supplementary Fig. 5a). The same effects were observed in 8505C
thyroid cancer cells treated with doxycycline, but not amoxicillin
(Supplementary Fig. 5b). In addition, doxycycline increased the
expression of mitochondrial matrix peptidase proteolytic subunit
(CLPP) and mitochondrial lon peptidase 1 (LONP1; Fig. 2a), while
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Fig. 2 mtUPR is closely related to the integrated stress response for mTOR signalling activation. a OXPHOS, mtUPR marker, and mTOR
signalling protein expression and phosphorylation in doxycycline-treated 8505C cells. b Transcriptome analysis of doxycycline-treated 8505C
cells showing significantly enriched GO, KEGG, Reactome (REAC), and transcription factor (TF) terms. c Doxycycline and FCCP induce the
integrated stress response, ATF4, and SESN2 in 8505C cells. d ATF4 silencing affects SESN2 induction by doxycycline and rotenone.
Immunoblots represent at least three independent experiments. e ATF4/SESN2 activation in FCCP- or rotenone-induced mitochondrial stress
or in doxorubicin-induced genotoxic stress in TPC1 and 8505C cells. Immunoblots represent at least three independent experiments. OXPHOS
oxidative phosphorylation, ATP5A ATP synthase F1 subunit alpha, UQCRC2 ubiquinol-cytochrome C reductase core protein 2, MTCO1
mitochondrially encoded cytochrome C oxidase I, HSPD1 heat shock protein family D member 1, CLPP mitochondrial matrix peptidase
proteolytic subunit, LONP mitochondrial lon peptidase 1, TOM40 translocase of outer mitochondrial membrane 40, S6K ribosomal protein S6
kinase, PERK PKR-like ER kinase (eukaryotic translation initiation factor 2 alpha kinase 3, EIF2AK3), eIF2α α-subunit of eukaryotic translation
initiation factor 2, ATF4 activating transcription factor 4, SESN2 sestrin 2, CTL control, FCCP carbonyl cyanide-4-(trifluoromethoxy)
phenylhydrazone.
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increasing mTOR, AKT, and S6K phosphorylation, suggesting AKT-
mTOR signalling activation (Fig. 2a).
To clarify the mechanistic link between mtUPR and mTOR, we

performed transcriptome analysis using doxycycline-treated
8505C cells, finding that doxycycline induced ATF4 transactivation
and increased amino acid metabolism (Fig. 2b). Consistent with
previous data [18], these findings suggest that mtUPR is closely
associated with the ISR, as evidenced by increased PERK and eIF2α
phosphorylation with ATF4 and SESN2 induction (Fig. 2c). SESN2, a
known ATF4 target under mitochondrial dysfunction, has dual
actions as a leucine (Leu)-dependent mTORC1 inhibitor and
mTORC2 activator through direct interaction with GATOR2-
mTORC2 [44–46]. By silencing ATF4 in 8505 C cells treated with
doxycycline and rotenone, a mitochondrial complex I inhibitor
that can also be used as a mitochondrial stress inducer, we
revealed that SESN2 induction was dependent on ATF4 (Fig. 2d). In
BCPAP (B-Raf Proto-Oncogene, Serine/Threonine Kinase
(BRAF)V600E positive PTC) cells, doxycycline concomitantly induced
ATF4 and SESN2 (Supplementary Fig. 5c), while rotenone induced
ATF4/SESN2 in TPC1 PTC cells (Supplementary Fig. 5c). FCCP, a
mitochondrial OXPHOS uncoupling agent used as a mitochondrial
stress inducer, also activated the ISR (Supplementary Fig. 5d, left
panel) and increased AKT and S6K phosphorylation before
appearance of cleaved caspase and poly(ADP-ribose) polymerase
(PARP), indicating cellular apoptosis (Supplementary Fig. 5d, right
panel). These data suggest that the mtUPR is coupled with ISR

induction and mTOR signalling via ATF4/SESN2. Notably, doxor-
ubicin also induced SESN2 without ATF4 induction in TPC1 cells,
but not in 8505C cells which harbour a p53 mutation (Fig. 2e),
suggesting that SESN2 is also induced by genotoxic stress via a
p53-dependent pathway. Thus, SESN2 upregulation by genotoxic
stress requires p53, but that induced by mitochondrial stress
requires ATF4. Taken together, these data demonstrate that
mitochondrial stress is linked to signalling pathways related to
biosynthesis and cell proliferation, potentially via ATF4/SESN2.

Amino acid metabolism is closely linked to the MSR
Since SESN2 is a Leu sensor that can inhibit mTORC1 activation by
interacting with the GATOR2 complex [47, 48], the MSR could
negatively affect cancer cell proliferation. Although TCGA-THCA
revealed significant SESN2 upregulation, SESN3 was downregu-
lated (Supplementary Fig. 6a). Consistent with an association
between the mtUPR and ATF4-SESN2, we found that SESN2
expression correlated positively with HSPD1 and ATF4 (Supple-
mentary Fig. 6b, c) and that HSPD1, ATF4, and SESN2 had similar
IHC staining patterns (Supplementary Fig. 6d). In addition, we
found a strong positive correlation between HSPD1, ATF4, SESN2,
and GDF15 (Supplementary Fig. 7a). Therefore, we removed Leu
from the culture medium of 8505C cells to determine whether
SESN2 inhibited mTORC1 (Fig. 3a). Increased eIF2α and decreased
S6K phosphorylation suggested nutritional stress and mTORC1
inactivation, respectively; however, adding Leu to the medium

b

LAT1
LARS

β-ACTIN

0 5 7 10 152
Dose

(μg/mL)
Doxycycline

8505C

ATF4
SESN2

d

0

Doxycycline 10 μg/mL
ISRIB (nM)

ATF4
SESN2

β-ACTIN

eIF2alpha

p-AKT (Ser473)
AKT

8505C
50 5 10 20 500 70 100

p-eIF2alpha (Ser51)

p-AKT (Ser473)
AKT

β-ACTIN

ATF4
SESN2

8505C

0 5 102
Doxycycline 

(μg/mL)

CRISPR-CTL

0 5 102 0 5 102

#1 #2

CRISPR-SESN2e

p-S6K
Total S6K

f

p-AKT (Ser473)
AKT

p-S6K (Thr389)
S6K

β-ACTIN

ATF4
SESN2

Raptor
Rictor

si
C

TL

Doxycycline 
5 μg/mL

sI
C

TL
si

R
ap

to
r

si
R

ap
to

r

si
C

TL

Doxycycline 
5 μg/mL

sI
C

TL
si

R
ic

to
r

si
R

ic
to

r

8505C

CTL

SESN2 KO

g

6%

0%

ID/g

CTL SESN2 KO

SU
Vm

ax

3

2

1

0

4

**

18F-FDG-PET

h
CTL SESN2 KO

p-AKT (Ser473)
AKT

p-S6K 
S6K

β-ACTIN

ATF4
SESN2

TOM40

Thyroid orthotopic tum
ros

a

eIF2alpha

ATF4

SESN2
pS6K (Thr389)

S6K

β-ACTIN

p-eIF2alpha (Ser51)
0 2 4 8 161 2 4 8Leucine deprivation (h)

Leu(+) c

TCGA THCA

NES = -1.789425
Nominal p-value < 0.0001
FDR q-value < 0.0001

Low SESN2 High SESN2
SLC3A2 
SLC43A1 
SLC7A6 
CTNS 
SLC25A15 
SLC1A1 
SLC1A4 
UNC13B 
SLC38A2 
SLC38A1 
SLC38A7 
SLC6A9 
SLC7A11 
SLC7A5 
SLC7A1

Low SESN2 High SESN2

GO  Amino acid transport

8505C

Fig. 3 Dual mechanism via which MSR maintains mTOR activity. a Effect of leucine supplementation on ATF4/SESN2 expression and S6K
(Thr389) phosphorylation in leucine-deprived 8505C cells. Immunoblots represent at least three independent experiments. b Coordinated
enrichment of amino acid transport-related genes in tumours with high SESN2 expression. c LARS and LAT1 protein expression in doxycycline-
treated 8505C cells. d ISRIB affects ATF4/SESN2 and AKT (Ser473) phosphorylation induced by doxycycline in 8505C cells. e SESN2 knockout
affects AKT (Ser473) and S6K (Thr389) phosphorylation induced by doxycycline. f Raptor or Rictor silencing affect AKT (Ser473) and S6K
(Thr389) phosphorylation induced by doxycycline in 8505C cells. g Representative image of orthotopic thyroid tumours, corresponding 18F-
FDG-PET results, and SUVmax between CRISPR-CTL and CRISPR-SESN2-KO tumours (n= 7/group) of the right and left thyroid of the same
mouse (arrows). p values calculated using Wilcoxon matched-pairs signed rank tests. h ATF4 and SESN2 expression and AKT (Ser473) and S6K
(Thr389) phosphorylation in CRISPR-CTL and CRISPR-SESN2-KO orthotopic tumours. Immunoblots represent at least three independent
experiments. **p < 0.01. Data represent the mean ± SD. LARS leucyl-tRNA synthetase, LAT1 L-type amino acid transporter 1, ISRIB integrated
stress response inhibitor, SUVmax maximum standardised uptake value, CTL control, KO knockout.

W.K.L. Doolittle et al.

4897

Oncogene (2022) 41:4893 – 4904



abolished eIF2α phosphorylation and restored S6K phosphoryla-
tion, even in the presence of SESN2 (Fig. 3a). Thus, SESN2 does not
appear to inhibit mTORC1 under Leu-rich conditions.
Since the GSEA of doxycycline-treated 8505C cells indicated

that the MSR is linked to amino acid metabolism (Fig. 2b) and
correlation analysis revealed that the MSR is related to cellular
amino acid biosynthesis rather than amino acid catabolism
(Supplementary Fig. 7b, c), we investigated whether cancer cells
generate Leu-rich conditions during the MSR. Doxycycline
activated the MSR by inducing leucyl-tRNA synthetase 1 (LARS)
and L-type amino acid transporter 1 (LAT1), which regulates the
cellular uptake of large neutral amino acids (leucine, methionine,
and valine; Fig. 3b). Consistently, LARS and methionyl-tRNA
synthetase 1 (MARS) were upregulated in tumours with high
HSPD1 expression (Supplementary Fig. 7d, e). Our correlation
analysis also indicated that MSR is related to cellular amino acid
transporters (Supplementary Fig. 8a). GSEA indicated that genes
related to amino acid transport were upregulated in tumours with
high SESN2 expression (PTC-hiSESN2) (Fig. 3c), suggesting the
involvement of amino acid transporters. Indeed, the expression of
SLC7A5 and SLC3A2, which encode L-type amino acid transporter 1
(LAT1), was significantly higher in tumour samples (Supplemen-
tary Fig. 8b) and correlated positively with SESN2 expression
(Supplementary Fig. 8c). Although SESN2 is thought to inhibit
mTORC1, our data suggest that the upregulation of amino acid
transporters and biosynthesis following the MSR may disable this
effect. Considering the positive correlation between SESN2, LARS,
SLC7A5, and SLC3A2 in TCGA-THCA, we examined whether the
MSR upregulates these genes via ATF4/SESN2; however, silencing
ATF4 did not affect LAT1 and LARS upregulation by the MSR,
suggesting that LAT1 and LARS induction do not require ATF4/
SESN2 (Supplementary Fig. 8d).

MSR activates mTOR through ISR-ATF4/SESN2 signalling
Our in silico analyses also indicated a relationship between the
MSR and cell growth signalling. The PI3K/AKT/mTOR pathway
plays a major role in thyroid carcinogenesis by facilitating
aggressive tumour behaviour [49–52]. GSEA of Hallmark gene
sets indicated that mTORC1 and PI3K-AKT-mTOR signalling was
co-ordinately upregulated in PTC-hiSESN2 (Supplementary Fig. 9a,
Supplementary Table 9). Consistently, HSPD1, ATF4, and SESN2
expression correlated positively with PI3K-AKT signalling-related
genes (Supplementary Fig. 9b). As SESN2 also showed positive
correlation with the genes of interest in this study and pS6K(T389)
(Supplementary Fig. 9c), we performed in vitro and in vivo
experiments to investigate the effect of SESN2 on tumour
behaviour. SESN2 overexpression in 8505C and TPC1 cells
increased cell proliferation and AKT (Ser473) phosphorylation,
providing direct evidence for the role of SESN2 in cancer
proliferation (Supplementary Fig. 10a, b). Interestingly, we also
found that ISRIB inhibited doxycycline-induced AKT (Ser473)
phosphorylation (Fig. 3d), indicating that the ISR is required for
AKT phosphorylation by the MSR as ISRIB is a known small-
molecule integrated stress response (ISR) inhibitor that reverses
the effects of eIF2α phosphorylation, which is an initiating event of
ISR [53].
To determine whether AKT (Ser473) phosphorylation by the

MSR involves SESN2, we generated two CRISPR-SESN2 knockout
8505C cell lines (CRISPR-SESN2-KO #1 and #2). Although
doxycycline did not increase AKT (Ser473) phosphorylation in
CRISPR-SESN2 #1 and #2 cells, it did increase AKT phosphorylation
in the CRISPR-CTL cell line (Fig. 3e). Since mTORC2 phosphorylates
AKT at Ser473 [23], we examined whether MSR-mediated AKT
(Ser473) phosphorylation was increased in an mTORC2-dependent
manner. Doxycycline-induced AKT (Ser473) phosphorylation was
not reduced by silencing Raptor, a core component of mTORC1,
but was abrogated by silencing Rictor, a core component of
mTORC2 (Fig. 3f). Silencing Raptor or Rictor downregulated p-S6K

(Thr389), indicating that p-S6K (Thr389) requires mTORC1 for MSR-
induced mTORC2/AKT activation. Reducing mTORC1-induced S6K
(Thr389) phosphorylation by silencing Raptor slightly increased
p-AKT (Ser473) phosphorylation, potentially by alleviating the
negative feedback effect of p-S6K on insulin receptor substrate 1
(IRS1) [54, 55]. Due to the complex crosstalk between mTORC2,
AKT, mTORC1, and S6K, we examined the regulatory effects of the
MSR on p-S6K (Thr389) via the mTORC2-AKT axis. Treating 8505C
cells with doxycycline and A6730, an AKT inhibitor, downregulated
MSR-mediated AKT (Ser473) and S6K (Thr389) phosphorylation
(Supplementary Fig. 10c), suggesting that the MSR may induce
mTORC2/AKT activation and S6K phosphorylation through a
SESN2-dependent mechanism. mTORC2/AKT and mTORC1/S6K
may also be synergistically activated via the MSR-induced
upregulation of amino acid transporters.

The MSR-mTOR axis regulates tumour growth and
aggressiveness in vivo
To validate the effect of the MSR on thyroid carcinogenesis in vivo,
we created an orthotopic mouse model of thyroid cancer using
CRISPR-SESN2-CTL and CRISPR-SESN2-KO cells. Consistent with our
in vitro findings, orthotopic tumours were smaller in CRISPR-
SESN2-KO mice than in CRISPR-SESN2-CTL mice (Fig. 3g,
Supplementary Fig. 10d). Positron emission tomography with 2-
deoxy-2-[fluorine-18] fluoro-D-glucose integrated with computed
tomography (18F-FDG PET/CT) revealed decreased glucose
metabolism in CRISPR-SESN2-KO tumours (Fig. 3g). In addition,
p-AKT (Ser473) and p-S6K (Thr389) were downregulated in CRISPR-
SESN2-KO tumours (Fig. 3h); however, PET/CT revealed no
significant difference in 11C-methionine uptake between the
CRISPR-SESN2-KO and CRISPR-SESN2-CTL mice (Supplementary
Fig. 10e), indicating that SESN2 plays no direct role in the uptake
of large neutral amino acids.
We further validated the clinical significance of the MSR-mTOR-

S6K axis by analysing TCGA-THCA-reverse phase protein array
(RPPA) data divided into low and high p-S6K (Thr389) groups.
GSEA of KEGG or Hallmark gene sets revealed that high S6K
phosphorylation was associated with biosynthetic processes and
cell proliferation-related pathways such as aminoacyl tRNA
biosynthesis, DNA replication, and mTORC1 signalling (Supple-
mentary Fig. 11a, b, Supplementary Tables 10 and 11). Conversely,
high S6K (Thr389) phosphorylation was closely related to
mitochondrial gene sets (Supplementary Fig. 11c, Supplementary
Table 12). HSPD1, ATF4, SESN2, GDF15, SLC7A5, and LARS
expression correlated positively with p-S6K (Thr389) but not total
S6K, while p-AKT(S473) and p-AKT(T308) correlated positively with
p-S6K (Thr389) (Supplementary Fig. 11d). We further examined the
effect of high p-S6K (Thr389) on tumour aggressiveness using
clinical data, finding that patients in the high p-S6K group was
significantly older (Supplementary Fig. 12a) and that high p-S6K
(Thr389) expression was related to aggressive clinicopathological
features (Supplementary Fig. 12b–h) and a lower disease-free
survival (Supplementary Fig. 12i). Collectively, these data suggest
that the MSR-mTOR-S6K axis is important for the growth and
aggressiveness of human thyroid cancer.

ISR-related ER stress is dependent on mtDNA
Thapsigargin, a non-competitive inhibitor of sarco/endoplasmic
reticulum Ca ATPase (SERCA) induced ATF4/SESN2 like doxycy-
cline (Fig. 4a). Moreover, the ER stressor tunicamycin increased
mTOR, AKT, and S6K phosphorylation (Fig. 4b) and upregulated
genes related to the MSR and the ER stress response, whereas
doxycycline only induced MSR-related genes (Fig. 4c–e). Since ER
stressors also induce the MSR, we examined the role of the MSR in
ER stress-induced ISR by treating 8505C cells with ethidium
bromide (EtBr) to deplete mtDNA (Supplementary Fig. 13a, b), as
EtBr has been known to cause mtDNA depletion in a reproducible
and dose-dependent manner in mammalian cells [56, 57]. After
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5 days, doxycycline was unable to trigger mTOR phosphorylation
or induce LAT1 and LARS1 (Fig. 5a). Increasing EtBr concentrations
progressively decreased the expression of mtDNA-encoded genes
(MTCO1) and reduced doxycycline-induced mTOR phosphoryla-
tion (Fig. 5b). mTOR phosphorylation and LARS1 induction by
tunicamycin were also reversed in 8505C cells treated with EtBr
(Fig. 5c), suggesting that ER stress-induced ISR requires mtDNA.
Since EtBr may induce the MSR, we classified thyroid cancer cell

lines according to mtDNA copy number, finding that C643 cells
had the lowest mtDNA copy number (Supplementary Fig. 13c).
Interestingly, doxycycline failed to induce ATF4/SESN2, LAT1, or
LARS1 in these cells (Supplementary Fig. 13d, e), whereas TPC1
and 8505 C cells (similar mtDNA copy numbers) responded
similarly to doxycycline (Supplementary Fig. 13f, g). In TCGA-
THCA, mtDNA copy number correlated significantly with the MSR
and AKT-mTOR signalling (Supplementary Fig. 14a) and ER stress
markers were downregulated in most PTC samples (Supplemen-
tary Fig. 14b). Thus, we postulated that the MSR is clinically
relevant and that mtDNA is essential in mitochondria- and ER-
induced ISR.

BRAFV600E-induced MYC activation requires mtDNA to amplify
the MSR
Since mtDNA is crucial for the ISR, we investigated the underlying
regulatory mechanism. First, we tested whether the BRAFV600E

mutation, the most common driver mutation in PTC, could directly
induce the MSR as a mitochondrial stress inducer. Notably,
oncogenes such as RAS proto-oncogene, GTPase (RAS), AKT/PKB,
hypoxia-inducible factor (HIF), and BRAFV600E have been known to
inhibit mitochondrial respiration and promote glycolysis, thereby
generating aerobic glycolysis, a phenomenon termed “the

Warburg effect” [58, 59]. Moreover, BRAFV600E was more
frequently detected in non-ovPTC harbouring high mtDNA/nDNA
ratio (Table 1). Infecting immortalized normal thyroid follicular
cells (Nthy-ori 3–1) with mutant BRAF (BRAFV600E) lentivirus
increased the mtDNA copy number compared to wild-type BRAF
(BRAFWT; Fig. 5d). This effect was synergistic with MYC, as
identified by GSEA of PTC with high mtDNA copy number (Fig.
1h). BRAFV600E and ERK phosphorylation decreased MTCO1 and
induced the MSR, which was reversed by PLX4032 (BRAFV600E

inhibitor) and SCH772984 (ERK inhibitor; Fig. 5e, Supplementary
Fig. 15a). Since ISRIB reversed all aspects of doxycycline-induced
MSR except for mtDNA-encoded genes (Fig. 5f), we evaluated
whether ISRIB affected mtDNA copy number. ISRIB countered the
effects of doxycycline-induced MSR on amino acid metabolism,
mTOR signalling, and UPR (PERK signalling, ATF and MYC
transactivation; Fig. 6a). Consistently, SCH772984 and ISRIB
significantly decreased mtDNA copy number upregulation by
BRAFV600E (Fig. 6b). However, SCH772984 and ISRIB did not affect
mtDNA copy number upregulation by MYC (Supplementary Fig.
15b), even when co-transfected with BRAFV600E (Fig. 6c), indicating
that MYC is the final effector of increased mtDNA copy number.
Indeed, MYC silencing (shMYC) abolished the increase in mtDNA
copy number induced by BRAFV600E or doxycycline (Fig. 6d).
Doxycycline-induced MSR increased MYC expression in a similar
manner to BRAFV600E and MYC silencing almost abolished the
expression and phosphorylation of major MSR components (Fig.
6e, Supplementary Fig. 15c), indicating that MSR and MYC are co-
dependent. Accordingly, MYC expression and eIF2α and mTOR
phosphorylation were decreased in Rho0 cells generated using
mitochondrial uracil-DNA glycosylase (UNG1; Supplementary Fig.
15d, Fig. 6f). Taken together, our data indicate that oncogenic
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BRAFV600E induces MSR via an ERK and mtDNA-dependent
mechanism and that MYC transactivation may increase mtDNA
copy number to amplify the MSR (Fig. 6g).

DISCUSSION
Metabolic remodelling is an essential process that provides energy
to support cancer cell growth and division. Decades ago, cancer
cells were found to ferment glucose even in the presence of
oxygen, suggesting that mitochondrial respiration defects under-
lie cancer development [60, 61]. However, more recent studies
have demonstrated that the genetic events that promote aerobic
glycolysis do not impair mitochondrial gene expression [58] and
that mitochondrial biogenesis and quality control are often
upregulated in cancer and coupled with mitochondrial stress
[62]. Consistently, OXPHOS protein expression does not decrease
uniformly in PTC. In fact, we postulated that an increased mtDNA
copy number could proportionally unbalance mtDNA and nDNA,
triggering the mtUPR. Cross-sectional analyses from this study
revealed a relationship between mtDNA copy number and the
expression of mitochondrial stress-related genes, such as HSPD1,
LONP1, and GDF15. Moreover, our analyses suggested that
tumour cells may experience more stress than normal cells and
thus require a more robust retrograde mechanism to regulate
mitochondrial stress and maintain metabolic homoeostasis.
Although we focused on the regulation of mtUPR by oncogenic

signalling in this study, diverse mitochondrial stressors (oxidative

stress, complex inhibition) may also be linked to the ISR and mTOR
signalling. Multi-omics approaches have recently indicated that
compounds that alter mitochondrial function activate the ISR,
allowing the main effector, ATF4, to promote the expression of
specific cytoprotective genes that reprogramme cellular metabo-
lism toward the synthesis of key metabolites [18]. Here, we found
that the MSR induced by doxycycline, FCCP, or rotenone
consistently upregulated ATF4, leading to SESN2 accumulation in
cancer cells. SESN2 contains an ATF4 binding motif, suggesting
that SESN2 is induced by MSR-mediated ATF4 transactivation [46].
Although SESN2 can exert tumour-suppressive effects by inhibiting
mTORC1 to restrict protein synthesis upon amino acid deprivation
or unfolded protein accumulation, thereby protecting cells from
nutrient crisis or ER stress, SESNs are highly expressed in many
cancers [63]; however, their molecular mechanism in tumour
progression remain largely unclear [64–66]. Here, we demonstrated
that SESN2 plays an essential role in MSR-induced AKT phosphor-
ylation. mtDNA is an essential component of mitochondrial and ER-
induced ISR, as confirmed in our experiments using Rho0 cells.
Interestingly, the oncogene BRAFV600E increased mtDNA copy
number via the downstream transcription factor, MYC, suggesting
that oncogenic signalling can induce the ISR. Similarly, the
mitochondrial stress inducer, doxycycline, increased MYC expres-
sion and mtDNA copy number in an ISR-dependent manner. Since
cancer cells experience many types of metabolic stress (hypoxia,
oxidative stress, nutrient deprivation), this bi-directional loop may
be an important mitochondrial survival strategy [11].
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The MSR stimulates the synthesis of specific mitochondrial
proteins by counteracting the effect of mitochondrial stress on
cellular homoeostasis [13, 15]. In C. elegans and D. melanogaster,
mitochondrial proteotoxic stress activates the mtUPR, a typical
feature of the MSR that promotes the transcription of proteases,
chaperones, and metabolic enzymes which restore mitochondrial
function and cellular homoeostasis [12–15]. In tumour cells, the
MSR is not limited to mitochondrial quality control and restora-
tion. Here, GSEA of high mtDNA copy number and HSPD1 showed
a consistent increase in overall amino acid metabolism, MYC
targets, and mTOR signalling, suggesting that tumour cells exploit
evolutionarily conserved mechanisms to overcome mitochondrial
stress, stimulate protein synthesis, and sustain tumour growth. In
addition, the MSR modulated amino acid metabolism in cancer
cells. Previous studies have shown that SESNs inhibit Rag GTPases
that are essential for mTORC1 activity by inhibiting GATOR2
[67, 68], which is disrupted by Leu [47, 48]. GSEA indicated that the
MSR was related to amino acid biosynthesis, transporters, and
aminoacyl tRNA biosynthesis. In particular, the MSR was important
for LAT1 and LARS induction in Leu metabolism and may
reprogram amino acid metabolism to avoid SESN2-mediated
mTORC1 inhibition. Furthermore, increased Leu uptake could
promote MSR-mediated mTORC1 activation. The MSR also directly
activates mTORC2-AKT signalling and thereby increases S6K
(Thr389) phosphorylation. AKT is a key oncogenic signalling
molecule that is activated in most cancers, including thyroid

cancer, and integrates growth factor responses with cell survival,
proliferation, and bioenergetics [69]. In addition, AKT is involved in
tumour adaptation to hypoxia [70] and nutrient depletion [44].
Here, we revealed that mitochondrial stress, as a cell-autonomous
stress response, regulates cancer progression by activating AKT in
the absence of canonical genetic or genomic alterations, thereby
facilitating S6K phosphorylation. These adaptive processes were
critical for tumour cell growth in our orthotopic mouse model of
thyroid cancer and correlated with aggressive tumour behaviour,
poor clinical risk scores, and a shorter DFS. Consequently, this
mechanism could be used to predict poor prognosis in patients
with thyroid cancer.
In conclusion, we demonstrated that mitochondrial stress drives

tumour progression via the MSR-mediated reprogramming of
amino acid metabolism and activation of SESN2-mTORC2-AKT/S6K
signalling. We also validated the clinical significance of this cell-
autonomous regulatory mechanism on unfavourable outcomes in
patients with thyroid cancer. Thus, major components of this
pathway could be promising diagnostic biomarkers for aggressive
thyroid cancer and ISRIB, a potent ISR inhibitor, could be a
potential therapeutic agent.

MATERIALS/SUBJECTS AND METHODS
Detailed information for key resources and methods are provided
in Supplementary Information.
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Experimental design
To investigate the role of mitochondrial stress response in cancer
cell biology such as growth signalling and amino acid metabolism,
we collected formalin fixed paraffin-embedded tissues of human
papillary thyroid cancer (n= 208) with paired normal tissues
including oncocytic variant papillary thyroid cancer (n= 11)
according to their histologic diagnosis. Sample size was deter-
mined by tissue availability. Identifying the relationship of
mtDNA/nDNA ratio with mitochondrial stress response, gene set
enrichment analysis using TCGA-THCA and our own transcriptome
data (n= 292) was performed.
To verify the signal propagation generated by mitochondrial

stress response, 8505C cells with or without doxycycline and a
small-molecule ISR inhibitor (ISRIB), were subjected to RNA
sequencing. Diverse mitochondrial stress inducers such as
carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP),
and rotenone and various cancer cell lines such as BCPAP, TPC1,
FTC133, SW1736, CAL62, HTH83, and C643 were used for the
validation experiments.
To prove the direct regulation of SESN2 on mTOR signalling,

CRISPR/Cas9 genetically modified cells targeting SESN2 were
generated and used for orthotopic xenograft mouse models.
Sample size varied depending on animal availability; however,
seven mice were analysed for 18F-FDG-PET and ten mice were
subjected to 11C-Methionine-PET.
To investigate the relationship of mitochondrial stress on mTOR

and amino acid metabolism, we performed extensive correlative
analyses and conducted qRT-PCR and western blot analysis to
prove the identified correlation. Using EtBr and mutant Y147A
human uracil-DNA glycosylases (mtUNG1) by lentiviral transduc-
tion, we generated Rho0 cells, which are devoid of mtDNA. For
cell-based assays, at least three biological replicates per group
were studied.

Patients and specimens
Human thyroid cancer and matched contralateral normal fresh
tissue samples were obtained from patients who underwent
thyroidectomy for papillary thyroid cancer (PTC) at Yonsei Cancer
Center (Seoul, South Korea) between April 2014 and December
2017. All samples were frozen in liquid nitrogen and stored at
−80 °C prior to analysis. All patients provided written informed
consent. The study protocols were approved by the Institutional
Review Board of Severance Medical Center (Seoul, Korea).

Orthotopic xenograft mouse model
Five-week-old male athymic nude BALB/c mice were obtained
from Orientbio (Seongnam-si, Korea). The left and right thyroid
glands were injected orthotopically with CRISPR-SESN2 and
CRISPR-CTL cells (1 × 105 cells in 5 μL phosphate-buffered saline,
PBS, #P3813, Sigma-Aldrich), respectively, using a 25 μL syringe
(Hamilton, Reno, NV, USA). 18F-FDG and 11C-MET were synthesised
in-house using a Cyclone 18/9 cyclotron (IBA - Radiopharma
Solutions, Reston, VA). Dynamic 18F-FDG or 11C-MET PET were
performed using an InveonTM Dedicated Micro PET (SIEMENS
Medical Systems, Erlangen, Germany) for 1 h, with intravenous
injections of 200 μCi/0.1 mL 18F-FDG or 400 μCi/0.2 mL 11C-MET.
CT was performed using an NFR Polaris G90 Micro CT (Nano Focus
Ray, Jeonju-si, South Korea). Before FDG PET/CT, mice were fasted
for a minimum of 12 h. Short-acting isoflurane anaesthesia (2%
isoflurane, 98% air) was used throughout the study. After imaging,
the mice were sacrificed and tumour tissues extracted for western
blot analysis.
All images were analysed using Amide’s Medical Image Data

Examiner (AMIDE, http://amide.sourceforge.net/index.html). PET
data were arranged into sinograms with Fourier 2D rebinning and
reconstructed to generate 3D DICOM images using the Ordered
Subset Expectation Maximization (OSEM3D) algorithm. After
qualitative assessment, the region of interest was drawn manually

to cover the entire tumour within the tomographic planes.
Tumour tracer uptake (standardised uptake value; SUV) was
assessed as follows: SUV= tissue activity concentration (Bq/mL)/
injected dose (Bq)/body weight (g). PET and CT images were fused
using MIM v6.6.7 (MIM Software, Cleveland, OH, USA). All animal
experiments were approved by the Committee for Ethics in
Animal Experiments of Yonsei University College of Medicine. All
mice were handled according to the care and use of laboratory
animal guidelines of the Department of Laboratory Animal
Resources, Yonsei University College of Medicine.

DATA AVAILABILITY
The datasets generated during and/or analysed during this study are available from
the corresponding author on reasonable request.
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