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A B S T R A C T

The evaluation of the signal frequency and Rate of Change of Frequency (RoCoF) from voltage or current
waveforms is used for critical grid control, monitoring and protection applications. However, when step
changes in the amplitude or phase of the signal occur, conventional frequency and RoCoF estimation methods,
typically based on phasor models, are highly unreliable and can yield large frequency errors. To address
this issue, this paper proposes a technique that uses dictionaries based on common signal dynamic models to
identify and track amplitude and/or phase steps in AC signals. Additional signal dynamics including amplitude
modulations, frequency ramps and harmonic tones are also characterized. Distinct from a previous iteration
of this method developed by the authors, the proposed Step Change Detection (SCD) technique separates the
envelope and angle of the signal’s analytic form for independent analysis of these components. For numerical
validation the method is applied to synthetically generated signals with challenging combinations of signal
dynamics. The technique is shown to greatly improve frequency and RoCoF approximations as compared to
state-of-the-art phasor estimation methods.
1. Introduction

In modern power grids, the presence of step changes in the ampli-
tude and/or phase of AC voltage or current waveforms is challenging
for conventional measurement algorithms and protection schemes rely-
ing on phasors. Commonly caused by network reconfigurations, circuit
breaker operations or faults, steps can be misinterpreted as large de-
viations in the frequency or Rate of Change of Frequency (RoCoF).
In distribution systems, this can lead to false triggering of Loss-of-
Mains (LOM) protection and errors in synthetic inertia calculations [1].
For transmission systems, as discussed in [2], frequency and RoCoF
are typically used to determine load shedding quantities to reduce
the chance of cascading blackouts, generation loss or grid separation.
Errors in the estimation of these measurements due to the presence
of phase/amplitude steps can result in inappropriate Under-Frequency
Load Shedding (UFLS) actions [2].

To exemplify the risks posed by misinterpreting measurements with
phase or amplitude steps, when a fault on the transmission circuit in
the California grid in 2017 resulted in a series of phase steps, the
inverters connecting a number of solar power plants were tripped
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due to erroneous instantaneous frequency estimates and 700 MW of
generation was lost [3]. Separately, a study of LOM triggered events in
the Bornholm Island grid in the Baltic Sea, a grid characterized by high
penetration of wind generation, found a number of false RoCoF triggers
were due to phase shifts in the waveforms rather than underlying
frequency dynamics [4].

The IEEE Std. C37.118 [5] specifies performance requirements for
Phasor Measurement Units (PMUs) during dynamic conditions and
distinguishes between P (Protection) and M (Measurement) class algo-
rithms. Briefly, P class PMUs prioritize response time at the expense
of accuracy in order to adapt to rapidly varying conditions. M class
PMUs offer better accuracy and robustness to inter-harmonics but are
slow to respond to dynamic changes. Fundamentally, these trade-offs
acknowledge that the phasor model poorly represents waveforms with
transients, particularly fast variations like step changes. As investigated
in [1,6–8], the narrowband phasor model is inherently unqualified
to capture broadband signal dynamics since the spectrum of these
time-varying waveforms is no longer concentrated at a single fre-
quency component. Abrupt transitions of phase and amplitude can
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result in misleading synchrophasor estimations and inappropriate con-
trol actions [7]. Indeed, during the grid event in California, the syn-
chrophasors reported by a PMU during this event failed to capture the
true nature of the waveforms and, instead, reported large frequencies
deviations [3].

Recent literature has proposed various signal processing techniques
to better analyze waveform measurements involving transient behavior.
Significant research has been conducted on dynamic phasor methods
based on Taylor series expansions or Taylor–Fourier series which can
capture higher order phasor derivatives for improved dynamic rep-
resentation [9,10]. Alternatively, many proposed methods focus on
detecting step transitions in order to flag the phasor estimations as
invalid. In [11], a step detection algorithm is based on the instanta-
neous amplitude and frequency of the analytic signal, using threshold
and median operators. However, the method only identifies the step
location and provides a rough approximation of the underlying fre-
quency but does not characterize the full signal dynamic. In [12], the
authors employ a Kalman Filter and compare the predicted waveform
to the true input in order to detect sudden transients. The performance
of the method on slower dynamics (e.g., frequency ramps, amplitude
modulations) and identification of the type of discontinuity (e.g., phase
or amplitude steps) is not discussed. In [13], wavelet analysis is used
to first identify the location of discontinuities in the waveform. Next, an
adaptive windowing technique is applied to fit a quadratic polynomial
signal model to the pre- and post-event data. Despite promising results,
the adequacy of this fitting method in the presence of multiple steps
or additional harmonics is still to be investigated. In [14], a nonlinear
least-squares estimator and a model of the step are used in order to
accurately capture the signal dynamic, a method that is expanded
on in [15]. However, these techniques are not practical for real-time
applications and may be invalid in the presence of additional signal
dynamics like amplitude modulations or frequency ramps.

Adding to this research, this paper proposes a method for the
detection and identification of amplitude and phase steps in voltage or
current waveforms. Building off of the study in [16], which presents the
Functional Basis Analysis (FBA) algorithm for the characterization of
signal dynamics, the proposed Step Change Detection (SCD) technique
employs a dictionary of parameterized signal models in order to iden-
tify the location and magnitude of step dynamics as well as characterize
other modulations in the signal (e.g., frequency ramps, amplitude
modulations, interfering tones). The SCD technique has reduced compu-
tational cost and improved flexibility as compared to the original FBA
method, making it more suited for eventual implementation in Field-
Programmable Gate Array (FPGA) devices for real-time applications.
As compared to the other dynamic signal processing techniques dis-
cussed above which attempt to remove, minimize or ignore the impact
of step changes, the proposed method aims to obtain a model that
incorporates these disturbances and is therefore better representative
of the true signal dynamic. The parameters of the identified steps and
the improved RoCoF estimation could be potentially incorporated into
automated decision making strategies for the control and protection of
modern power grids.

The paper is organized as follows: Section 2 explores the theory
behind analytic signals and models of common signal dynamics in
power grids. In Section 3, we present the SCD algorithm for analysis of
the signal envelope and frequency, as well as discuss the computational
complexity of the method. Section 4 provides the numerical valida-
tion of the SCD technique by applying it to various signal dynamic
combinations. The results are compared to both static and dynamic
phasor estimation methods. Finally, Section 5 concludes the paper
with a discussion of the potential applications of the method and the
2

additional research required to make it practical. 𝑥
2. Theory and mathematical background

The objective of this paper is to identify and characterize step
dynamics in power system signals for improved frequency and RoCoF
analysis. The conventional phasor model assumes a fixed amplitude,
phase and frequency for the duration of the observation window. For
steady-state or slowly transitioning waveforms (i.e., quasi-steady state
where the amplitude and frequency change gradually), a phasor is
sufficient to approximate the signal parameters. However, this model
is inherently incapable of capturing fast signal dynamics, often result-
ing in extremely inaccurate approximations of the underlying signal
parameters.

As discussed, phasors are narrowband signal models where the
energy content is concentrated around a single frequency component,
as seen in Fig. 1. In contrast, the frequency spectrum of waveforms
containing amplitude (AS) or phase steps (PS) is broadband and con-
tinuous. Consequently, phasor extraction algorithms that involve direct
analysis of the frequency spectrum and assume a narrowband spec-
trum (e.g., interpolated discrete Fourier Transform techniques) are
significantly biased by these disturbances.

To address these problems, we propose to adapt the signal model
to incorporate step discontinuities for improved signal analysis in the
presence of fast dynamics. Power system signals can be generically
modeled as:

𝑥(𝑡) = 𝐴0(1 + 𝑔𝐴(𝑡))𝑐𝑜𝑠(2𝜋𝑓0𝑡 + 𝑔𝜙(𝑡)) (1)

here 𝐴0, 𝑓0 and 𝜙0 represent the fundamental amplitude, frequency
nd phase, respectively, and 𝑔𝐴 and 𝑔𝜙 incorporate variations in the
mplitude and phase.

Similar to how phasors are often represented as complex exponen-
ials, (1) can be transformed into its analytic signal counterpart using
he Hilbert Transform (HT). As is known, the HT is a linear operator
hat, for a generic time-varying signal 𝑥(𝑡), is defined as [17]:

[𝑥(𝑡)] = 1
𝜋 ∫

+∞

−∞

𝑥(𝜏)
𝑡 − 𝜏

𝑑𝜏 = 1
𝜋𝑡

∗ 𝑥(𝑡) (2)

where ∗ indicates convolution. Combining the HT [𝑥(𝑡)] with the orig-
inal function yields the analytic signal 𝑥̂(𝑡) which, due to the symmetry
f the spectrum, contains only positive frequency components [17]:

̂(𝑡) = 𝑥(𝑡) + 𝒋(𝑥(𝑡)). (3)

Applying Euler’s formula, the analytic form (3) allows for the rep-
esentation of a real time-domain signal (1) as a complex exponential
unction:

̂(𝑡) = 𝐴0(1 + 𝑔𝐴(𝑡))𝑒
𝑗(2𝜋𝑓0𝑡+𝑔𝜙(𝑡)) (4)

hich contains information on the signal envelope 𝑥𝐴(𝑡) and phase 𝑥𝜙(𝑡)
here:

𝐴(𝑡) =|𝑥̂(𝑡)| (5)

𝑥𝜙(𝑡) =∠𝑥̂(𝑡). (6)

he instantaneous frequency of the signal is defined as:

𝑓 (𝑡) =
1
2𝜋

𝑑𝑥𝜙(𝑡)
𝑑𝑡

. (7)

The separation of the envelope and phase/frequency of the signal
allows for independent analysis of these components, as discussed in
the next section.

Along with AS and PS, power grids are likely to experience ampli-
tude modulations (AM) and frequency ramps (FR). For reference, the
analytic model for each of these dynamics can be formulated as [18]:

̂𝐴𝑆 (𝑡) = 𝐴0(1 + 𝑘𝑠ℎ(𝑡 − 𝑡𝑠))𝑒𝑗(2𝜋𝑓0𝑡) (8)

̂ (𝑡) = 𝐴 𝑒𝑗(2𝜋𝑓0𝑡+𝑘𝑝ℎ(𝑡−𝑡𝑝)) (9)
𝑃𝑆 0
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Fig. 1. Time domain waveform and frequency spectrum of 200 ms signals at 50 Hz in steady state (black), with an amplitude step 𝑘𝑠 = −62% (red) or a phase step 𝑘𝑝 = −3𝜋∕18
(blue).
𝑥̂𝐴𝑀 (𝑡) = 𝐴0(1 + 𝑘𝑚𝑐𝑜𝑠(2 ∗ 𝜋𝑓𝑚𝑡 + 𝜑𝑚))𝑒𝑗(2𝜋𝑓0𝑡) (10)

𝑥̂𝐹𝑅(𝑡) = 𝐴0𝑒
𝑗(2𝜋𝑓0𝑡+𝑅𝜋𝑡2) (11)

where ℎ(𝑡) is the Heaviside function, 𝑘𝑠 and 𝑘𝑝 are the step depths,
𝑡𝑠 and 𝑡𝑝 are the step locations within the window, 𝑘𝑚, 𝑓𝑚 and 𝜑𝑚
represent the AM depth, frequency and phase, respectively, and 𝑅 is
the ramp rate in Hz/s. Eqs. (8)–(11) are derived using the property
that the HT of the product of two signals with non-overlapping spectra
is equal to the product of the low-frequency term and the HT of the
high-frequency term (see [18] for further details).

3. Signal analysis

For the identification and characterization of signal dynamics using
the models previously discussed, we turn to the field of Compressed
Sensing where dictionaries of functions are used to characterize input
signals. Fundamentally, dictionary analysis involves projection of the
input vector (i.e., a sampled, windowed signal) onto a functional basis
of vectors defined by parameterized signal models. The kernel that best
matches the input signal is identified and its corresponding parameters
and model are used to reconstruct the input signal.

The proposed algorithm exploits this concept of parameterized dic-
tionaries to characterize the input waveform. As detailed in Algorithms
1 and 2, the envelope and instantaneous frequency of the input analytic
signal are analyzed separately. These signal components are projected
onto relevant dictionaries (e.g., the signal envelope is projected onto
AM and AS dictionaries) and the closest matching dictionary kernel
is identified with its corresponding model parameters. Note that the
analytic form of the input waveform must first be approximated by a
proper Hilbert-type filter, the definition of which is beyond the scope of
this paper. For this reason synthetic analytic signals are used for testing
in Section 4.
3

3.1. Envelope analysis

The signal envelope can be approximated by modulations or steps
in the amplitude and is therefore modeled as

AM: 𝑥𝐴(𝑡) = 𝐴0(1 + 𝑘𝑚𝑐𝑜𝑠(2𝜋𝑓𝑚𝑡 + 𝜑𝑚)) (12)

AS: 𝑥𝐴(𝑡) = 𝐴0(1 + 𝑘𝑠ℎ(𝑡𝑠)). (13)

As shown in Algorithm 1, two dictionaries (AM and AS) are applied
in parallel to analyze the signal envelope.

The AM dictionary is defined for all combinations of the frequency
𝑓𝑚 and phase 𝜑𝑚 parameters:

𝑑𝑖,𝐴𝑀 (𝑓𝑚, 𝜑𝑚) = 𝑎𝑖𝐷𝐹𝑇 [𝑐𝑜𝑠(2𝜋𝑓𝑚𝑡 + 𝜑𝑚)] (14)

where 𝑎𝑖 is a coefficient that normalizes the kernel and DFT indicates
the Discrete Fourier Transform. DFT coefficients for bins 𝑘 = 0...𝐾 − 1
are defined as:

𝑋(𝑘) = 𝐷𝐹𝑇 [𝑥(𝑡𝑙)] =
𝐿−1
∑

𝑙=0
𝑥(𝑡𝑙)𝑊 𝑘𝑙

𝐿 (15)

where 𝑊 𝑘
𝐿 = 𝑒−𝒋2𝜋𝑘∕𝐿 is the 𝑘th root of unity modulo 𝐿. Each kernel is

then fully determined by the parameter set 𝛾(𝑓𝑚, 𝜑𝑚) and signal model
of the envelope for a sampled window 𝑡𝑙 where 𝑙 = 0...𝐿 − 1.

Similarly, the AS dictionary is composed of kernels 𝑑𝑖 at different
step locations 𝑡𝑠:

𝑑𝑖,𝐴𝑆 (𝑡𝑠) = 𝑎𝑖𝐷𝐹𝑇 [ℎ(𝑡𝑙 − 𝑡𝑠)]. (16)

The parameter sets 𝛾𝐴𝑆 = [𝑡𝑠] and 𝛾𝐴𝑀 = [𝑓𝑚, 𝜑𝑚] are selected to best
capture common signal dynamics in power grids (e.g., 𝑓𝑚 ∈ [0, 5] Hz).
The parameter set resolutions are also user-defined and depend on
performance requirements and the computational cost of the algorithm.
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Note that the DFT of the envelope is used rather than the time-
domain waveform since this allows for the compression of the signal
into a reduced set of Fourier coefficients. Examination of these coef-
ficients allows for the extraction of the remaining model parameters,
such as the scaling factor of the dynamic (i.e., 𝐴0𝑘𝑠 or 𝐴0𝑘𝑚) and the DC
shift (i.e., 𝐴0). For this reason, kernels in the AS and AM dictionaries are
defined for frequency ranges that exclude the DC component (i.e., 𝑘 =
1...𝐾 − 1).

The analysis of the signal envelope is detailed in Algorithm 1 where
the frequency spectrum of the signal envelope is first computed and
curtailed to the appropriate frequency range (e.g., 0 to 100 Hz). This
range is user-defined and selected to best capture the signal dynamics
of interest. In lines 3–5, the DC component is separated (𝑋𝐴,𝐷𝐶 ) while
the remaining frequency bins are normalized by either the length of the
window 𝐿 or the norm of the vector (i.e., 𝑎 = ‖𝑋𝑓𝑢𝑙𝑙(𝑘 = 1...𝐾 − 1)‖−12 )
to yield 𝑋𝐴 and 𝑋̄𝐴, respectively. The latter is then projected onto all
kernels in the envelope dictionaries and the kernel that minimizes the
objective function ‖𝐝𝐻𝑖,𝑗𝑋̄𝐴𝐝𝑖,𝑗 − 𝑋̂‖2 is identified. The corresponding
parameter sets for AM and AS dynamics are identified in lines 6 and
14, respectively.

In lines 7–8 and 15–16, the parameter sets 𝛾∗𝐴𝑀 and 𝛾∗𝐴𝑆 and the
frequency vector 𝑋𝐴 are used to calculate the combined scaling factors,
𝑐𝐴𝑆 = 𝑘𝑠𝐴0 and 𝑐𝐴𝑀 = 𝑘𝑚𝐴0. 𝐴0 is then computed in lines 9–10 and
17–18 by removing the spectral leakage due to the presumed dynamic
(𝑋2(𝑘 = 0)) from the DC component 𝑋𝐴,𝐷𝐶 . With 𝐴0, the combined
scaling factors, 𝑐𝐴𝑀 and 𝑐𝐴𝑆 , can be used to identify 𝑘𝑚 and 𝑘𝑠 in lines
11 and 19, respectively.

The envelopes are then reconstructed in lines 12 and 20 and com-
pared to the original envelope using the Time-Domain Error (TDE)
metric:

𝑇𝐷𝐸(𝑥∗, 𝑥) =
‖𝑥∗(𝑡𝑙) − 𝑥(𝑡𝑙)‖2
∑𝐿−1

𝑙=0 𝑥(𝑡𝑙)2
, (17)

The envelope with the smaller TDE is reported as the most likely
amplitude dynamic (i.e., amplitude modulation or amplitude step).
Thresholds on the minimum magnitude (i.e., 𝑘𝑚, 𝑘𝑠) and location 𝑡𝑠 of
the respective signal dynamics can be set by the user to avoid reporting
insignificant variations. In steady-state conditions, for instance, the
‘‘detected’’ AS dynamic may have a very small magnitude or a step
located at 𝑡𝑠 = 0 or 𝑡𝑠 = 𝑇𝑤.

3.2. Frequency analysis

Any underlying frequency dynamics are analyzed in Algorithm 2 us-
ing the analytic signal and the instantaneous frequency defined in (7).
Phase steps correspond to a large spike in the instantaneous frequency
of the signal. The location of the peak is first identified in lines 4 and
5 by applying a detection threshold (e.g., 𝑓𝑙𝑏 = 30 Hz, 𝑓𝑢𝑏 = 70 Hz).

For PS identification, a dictionary is pre-defined for parameter sets
𝛾𝑃𝑆 = [𝑓0, 𝑘𝑝, 𝑡𝑝]:

𝐝𝑖,𝑃𝑆 (𝑓0, 𝑘𝑝, 𝑡𝑝) = 𝑎𝑖𝐷𝐹𝑇 [𝑒𝑥𝑝(𝑗(2𝜋𝑓0𝑡𝑙 + 𝑘𝑝ℎ(𝑡𝑙 − 𝑡𝑝)))] (18)

While this dictionary is quite large due to the high resolution of the
𝑡𝑝 parameter set, the step location identified in line 5 allows for a slice
of the dictionary to be used, 𝛾𝑃𝑆 = [𝑓0, 𝑘𝑝]𝑡∗𝑝 The frequency spectrum
of the analytic signal 𝑋̂ is then projected onto this subset of the PS
dictionary. Once the phase step is fully characterized, it is removed
in line 7, leaving the instantaneous frequency 𝑥𝑓 (𝑡𝑙) unaffected. The
DFT of the instantaneous frequency is then computed, normalized and
projected onto a FR dictionary with kernels defined for different ramp
rates:

𝐝𝑖,𝐹𝑅(𝑅) = 𝑎𝑖𝐷𝐹𝑇 [𝑅𝑡𝑙] (19)

The best matching ramp rate (found in line 11) together with
the DC shift (i.e., the magnitude of the DC component in line 10)
are used to find the fundamental frequency at the beginning of the
4

Algorithm 1 Envelope Analysis
1: Input: Signal envelope 𝑥𝐴(𝑡𝑙),

Envelope dictionaries D𝐴𝑆 , D𝐴𝑀
2: 𝑋𝐴,𝑓𝑢𝑙𝑙 = 𝐷𝐹𝑇 [𝑥𝐴(𝑡𝑙)]
3: 𝑋𝐴 = 𝑋𝐴,𝑓𝑢𝑙𝑙(𝑘 = 1...𝐾 − 1)∕𝐿
4: 𝑋̄𝐴 = 𝑎𝑋𝑓𝑢𝑙𝑙(𝑘 = 1...𝐾 − 1)
5: 𝑋𝐴,𝐷𝐶 = 𝑋𝑓𝑢𝑙𝑙(𝑘 = 0)∕𝐿

AM DETECTION:
Project onto kernels d𝑖,𝑗 in dictionary D𝐴𝑀

6: [𝑖∗, 𝑗∗] = argmin𝑖,𝑗 [||d𝐻𝑖,𝑗𝑋̄𝐴d𝑖,𝑗 − 𝑋̂||2]
→ 𝛾∗𝐴𝑀 = [𝑓𝑚(𝑖∗), 𝜑𝑚(𝑗∗)],
Calculate scaling factor (𝑘𝑚𝐴0)

7: 𝑋𝐴𝑀,1 = 𝐷𝐹𝑇 [𝑠𝑖𝑛(2𝜋𝑓 ∗
𝑚𝑡𝑙 + 𝜑∗

𝑚)]∕𝐿
8: 𝑐𝐴𝑀 = |𝑋𝐻

𝐴𝑀,1𝑋𝐴|

Calculate DC shift (𝐴0)
9: 𝑋𝐴𝑀,2 = 𝐷𝐹𝑇 [𝑐𝐴𝑀𝑠𝑖𝑛(2𝜋𝑓 ∗

𝑚𝑡𝑙 + 𝜑∗
𝑚)]∕𝐿

10: 𝐴∗
0 = 𝑋𝐴,𝐷𝐶 −𝑋𝐴𝑀,2(𝑘 = 0)

1: 𝑘∗𝑚 = 𝑐𝐴𝑀∕𝐴∗
0

2: 𝑥∗𝐴𝑀 = 𝐴∗
0(1 + 𝑘∗𝑚𝑠𝑖𝑛(2𝜋𝑓

∗
𝑚𝑡𝑙 + 𝜑∗

𝑚))
13: Compute 𝑇𝐷𝐸(𝑥∗𝐴𝑀 , 𝑥𝐴)

AS DETECTION:
Project onto kernels d𝑖 in dictionary D𝐴𝑆

14: [𝑖∗] = argmin𝑖[||d𝐻𝑖 𝑋̄𝐴d𝑖 − 𝑋̂||2]
→ 𝛾∗𝐴𝑆 = [𝑡𝑠(𝑖∗)],
Calculate scaling factor (𝑘𝑠𝐴0)

15: 𝑋𝐴𝑆,1 = 𝐷𝐹𝑇 [ℎ(𝑡𝑙 − 𝑡∗𝑠 )]∕𝐿
6: 𝑐𝐴𝑆 = |𝑋𝐻

𝐴𝑆,1𝑋𝐴|

Calculate DC shift (𝐴0)
7: 𝑋𝐴𝑆,2 = 𝐷𝐹𝑇 [𝑐𝐴𝑆ℎ(𝑡𝑙 − 𝑡∗𝑠 ]∕𝐿
8: 𝐴∗

0 = 𝑋𝐴,𝐷𝐶 −𝑋𝐴𝑆,2(𝑘 = 0)
9: 𝑘∗𝑠 = 𝑐𝐴𝑆∕𝐴∗

0
0: 𝑥∗𝐴𝑆 = 𝐴∗

0(1 + 𝑘∗𝑠ℎ(𝑡𝑙 − 𝑡∗𝑠 ))
1: Compute 𝑇𝐷𝐸(𝑥∗𝐴𝑆 , 𝑥𝐴)
2: TDE comparison.

window, as shown in line 12. The reconstructed analytic signal and
its frequency spectrum are then computed in line 15, incorporating the
estimated amplitude envelope from Algorithm 1, any identified PS and
the underlying FR. Finally, the initial phase of this signal is the angle of
the coefficient found by projecting the spectrum of this reconstructed
signal onto the spectrum of the original analytic signal (line 14). In
line 16, the TDE is computed to indicate how well the resulting signal
model matches the input waveform.

3.3. DC offset and harmonics

Additional signal components that might appear in power system
waveforms include DC offsets and harmonics. The former proves prob-
lematic when converting the signal to its analytic form. The DC offset
shifts only the real part of the signal since the HT of a constant is
0. Consequently, the offset introduces artificial oscillations into the
extracted envelope and instantaneous frequency. To avoid this, the DC
offset should be removed in the pre-processing stage by either a notch
filter or other detrending techniques.

The impact of harmonics on the SCD method is also examined. Since
the FR dictionary based on the instantaneous frequency is highly sen-
sitive to these additional disturbances, an iterative method to identify
and remove these dynamics is as follows:

(1) Algorithms 1 and 2 provide a first approximation of the under-
lying analytic signal 𝑥̂𝑒𝑠𝑡(𝑡𝑙)
(2) The remaining interfering tones are isolated 𝑥̂𝑟(𝑡𝑙) = 𝑥̂(𝑡𝑙)−𝑥̂𝑒𝑠𝑡(𝑡𝑙)
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Algorithm 2 Frequency Analysis
1: Input: analytic signal 𝑥𝑙(𝑡), signal frequency 𝑥𝑓 (𝑡𝑙),

Dictionaries D𝐹𝑅 and D𝑃𝑆
2: 𝑋̂𝑓𝑢𝑙𝑙 = 𝐷𝐹𝑇 [𝑥̂(𝑡𝑙)]
3: 𝑋̂ = 𝑋̂𝑓𝑢𝑙𝑙(𝑘 = 0...𝐾 − 1)

PS DETECTION:
Identify step location

4: 𝑗∗ = 𝑙𝑜𝑐[𝑥𝑓 < 𝑓𝑙𝑏 or 𝑥𝑓 > 𝑓𝑢𝑏]
5: 𝑡∗𝑝 = 𝑡𝑙=𝑗∗
Project onto kernels d𝑖(𝑓0, 𝑘𝑝)𝑡∗𝑝 in slice 𝑡∗𝑝 of dictionary D𝑃𝑆

6: [𝑖∗] = argmin𝑖[||𝑑𝐻𝑖 𝑋̂𝑑𝑖 − 𝑋̂||2]
→ 𝛾∗𝑃𝑆 = [𝑓0(𝑖∗), 𝑘𝑝(𝑖∗)],
Remove PS from instantaneous frequency

7: 𝑥𝑓 (𝑗) = 𝑥𝑓 (𝑗 − 1)

FR DETECTION
8: 𝑋𝑓𝑢𝑙𝑙 = 𝐷𝐹𝑇 [𝑥𝑓 (𝑡𝑙)]∕(𝐿 − 1)
9: 𝑋𝑓 = 𝑋𝑓𝑢𝑙𝑙(𝑘 = 1...𝐾 − 1)
0: 𝑋𝑓,𝐷𝐶 = 𝑋𝑓𝑢𝑙𝑙(𝑘 = 0)
Project onto kernels d𝑖 in dictionary D𝐹𝑅

1: [𝑖∗] = argmin𝑖[||d𝑖 −𝑋𝑓 ||2]
→ 𝛾∗𝐹𝑅 = [𝑅(𝑖∗)],
Calculate DC shift

12: 𝑓 ∗
0 = 𝑋𝑓,𝐷𝐶 − 𝑅∗𝑡𝐿∕2

13: 𝑋𝑒𝑠𝑡 = 𝐷𝐹𝑇 [𝑥∗𝐴(𝑡𝑙)𝑒
𝑗(2𝜋𝑓∗

0 𝑡𝑙+𝑅
∗𝜋𝑡2𝑙 +𝑘

∗
𝑝ℎ(𝑡𝑙−𝑡

∗
𝑝 ))]∕𝐿

Calculate phase shift
14: 𝜑∗

0 = ∠(𝑋𝐻
𝑒𝑠𝑡𝑋̂)

Reconstruct full signal
15: 𝑥𝑒𝑠𝑡 = 𝑥∗𝐴(𝑡𝑙)𝑐𝑜𝑠(2𝜋𝑓

∗
0 𝑡𝑙 + 𝑅∗𝜋𝑡2𝑙 + 𝑘∗𝑝ℎ(𝑡𝑙 − 𝑡∗𝑝) + 𝜑∗

0)
16: Compute 𝑇𝐷𝐸(𝑥𝑒𝑠𝑡,(𝑥̂(𝑡𝑙)))

(3) The largest interfering tone is identified via 2-point interpolated
DFT (IpDFT) analysis: 𝑥̂ℎ(𝑡𝑙) = 𝐴ℎ𝑒𝑗(2𝜋𝑓ℎ𝑡𝑙+𝜑ℎ)

(4) The identified tone is removed from the original signal: 𝑥̄(𝑡) =
𝑥̂(𝑡𝑙) − 𝑥̂ℎ(𝑡𝑙)

(5) Lines 8–15 from Algorithm 2 are repeated for an improved
estimation of the instantaneous frequency.

(6) These steps (2-5) are repeated to improve estimation of the
interfering tone or to identify additional tones.

As an example, we analyze the signal shown in Fig. 2. The waveform
has an initial fundamental frequency of 47.87 Hz with 5th and 7th
harmonics at relative magnitudes of 6% and 5%, respectively.1 Fur-
hermore, a frequency ramp of 3.82 Hz/s is present and an amplitude
nd phase step occur at 42 ms with magnitudes of 𝑘𝑠 = −0.1842

and 𝑘𝑝 = −0.8642 rad, respectively. As shown in Table 1, the initial
guess correctly identifies the AS and PS dynamics, but yields a large
ROCOF error of 1.02 Hz/s. When the two harmonic tones are identified
and removed, the resulting frequency error is 10.4 mHz and RFE is
0.03 Hz/s.

3.4. Computational complexity

The complexity of the algorithm, as presented in Table 2, depends
on the following variables: the number of kernels 𝑁 in each dictionary,
the number of samples in the signal 𝐿, and the number of frequency
bins analyzed 𝐾. Calculating the frequency spectrum depends on the
method used (e.g., FFT, DFT) and therefore the computational com-
plexity of this step is represented as 𝜁 . The most computationally

1 The total harmonic distortion (THD) of 7.8% is within the limit specified
y the 50 160 Standard [19].
5

Table 1
Example of parameter errors during the detection of harmonic tones.

Parameter error Estimation

Initial 2nd 3rd

𝑓0 (mHz) 6.5 87.3 10.4
𝑅 (Hz/s) 1.02 1.08 0.03
𝑘𝑝 (%) −2.3
𝑘𝑠 (%) −1.9
𝑡𝑝 , 𝑡𝑠 (ms) 0.4
𝐴5 (%) 2.7
𝑓5 (Hz) 0.23
𝐴7 (%) 2.4
𝑓7 (Hz) 0.45

Fig. 2. SCD analysis of a signal with AS/PS/FR dynamics and 5th and 7th harmonics.

Table 2
Computational complexity of SCD steps presented in Algorithms 1 and 2.

Dynamic Operation Complexity Time (ms) Dictionary size (N)

AM
Projection (𝐾𝑁) 15 870
Scaling factor (𝐿 + 𝜁 +𝐾) 1
DC shift (𝐿 + 𝜁 ) 1

AS
Projection (𝐾𝑁) 3 150
Scaling factor (𝐿 + 𝜁 +𝐾) 2
DC shift (𝐿 + 𝜁 ) 1

PS Projection (𝐾𝑁) 90 7272

FR Projection (𝐾𝑁) 1.5 200

burdensome step involves projection of the input spectrum onto AM,
AS, PS and FR dictionaries. The analysis of most of these dynamics is
independent and can therefore be performed in parallel. Examples of
dictionary sizes and the computation time reported in MATLAB are also
included in Table 2.

4. Numerical validation

To evaluate the performance of the algorithm, we apply it to sig-
nals with various combinations of underlying dynamics and phase/
amplitude steps and compare the results to both static and dynamic
phasor estimation methods. For the former, we selected a 3-point it-
erative Interpolated DFT (i-IpDFT) algorithm with a Hann window and
negative spectrum compensation which is compliant with P and M class
requirements [20]. For dynamic phasor analysis, we used the Com-
pressed Sensing Taylor–Fourier multifrequency (CSTFM) method [10]
which captures the 1st and 2nd order derivatives of the phasor. For
these reference methods, the RoCoF of the signal is computed by com-
paring frequency estimations for consecutive windows. The proposed
SCD method uses AS, AM, FR and PS dictionaries defined by the
parameter sets in Table 3.

The test waveforms are generated using the analytic models de-
scribed in Section 2 in order to have better control and knowledge of
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Table 3
Parameter sets for SCD dictionaries.

Dictionary Parameter Resolution Range

PS
𝑓0 (Hz) 0.07 [47.5,52.5]
𝑘𝑝 (rad) 0.014 ±[𝜋∕18, 5𝜋∕18]
𝑡𝑝 (ms) 0.4 [0, 𝑇𝑤]

FR R (Hz/s) 0.05 [−5,5]

AS 𝑡𝑠 (ms) 0.4 [0, 𝑇𝑤]

AM 𝑓𝑚 (Hz) 0.165 [0.2, 5]
𝜑𝑚 (rad) 0.216 [0, 2𝜋]

the signals examined (i.e., the ground truth). 200 test signals are gener-
ated with 60 dB of white Gaussian noise for a duration of 500 ms using
model parameters which are selected randomly from the following
parameter ranges:

• 𝑓0 ∈ [47.5, 52.5] Hz
• (AM) 𝑘𝑚 ∈ [0.1, 0.7], 𝑓𝑚 ∈ [0.2, 5] Hz, 𝜙𝑚 ∈ [0, 2𝜋].
• (FR) 𝑅 ∈ [−5, 5] Hz/s.
• (AS) 𝑘𝑠 ∈ ±[0.1, 0.8], 𝑡𝑠 ∈ [0, 200] ms.
• (PS) 𝑘𝑝 ∈ ±[𝜋∕18, 5𝜋∕18], 𝑡𝑝 ∈ [0, 200] ms.

For all tests, sliding windows of 60 ms are used with a reporting
ate of 50 fps. Each signal is processed by the SCD, i-IpDFT and CSTFM
lgorithms, and the maximum of the following metrics are recorded:

• Time-domain error (TDE)
• Parameter error for the step components
• Frequency error (FE)
• RoCoF error (RFE)

FE and RFE represent the deviation of the estimated frequency
nd RoCoF from the true instantaneous frequency and RoCoF at the
eporting time, conventionally located at the center of the window, as
etailed in [5]. The common phasor-based metric, Total Vector Error, is
ot reported as it does not provide a clear indication on how good the
stimation is when analyzing dynamic signals, as discussed in [8,18].

An example test is presented in Fig. 3 where a signal containing
frequency ramp of 3.92 Hz/s, and a phase and amplitude step at

.073 s is analyzed by the proposed SCD method, the static phasor
stimation method and the dynamic phasor method. When the step
nters the window, the frequency values estimated by the reference
echniques are highly erroneous. The maximum FE and RFE is 0.005 Hz
nd 0.443 Hz/s (SCD), 1.2 Hz and 110 Hz/s (static phasor) and 1.1 Hz
nd 102 Hz/s (dynamic phasor), respectively.

While the dynamic tests presented in the IEEE Standard [5] involve
nalysis of single signal dynamics, the complex signals tested here were
elected to better reflect real world variations typical of power systems
ollowing grid events. Indeed, analysis of combined signal dynamics,
ike AS/PS/FR, is far more relevant for the LOM and UFLS applications
iscussed in Section 1.

The complete set of test results are presented in Table 4, showing the
ax and mean error for each metric. It is clear that the static and dy-
amic phasor analysis methods are incapable of processing signals with
tep changes, resulting in large frequency and RoCoF errors. The pro-
osed algorithm, in contrast, can accurately characterized and track the
tep and provide a good estimate of the underlying frequency dynamic.

The SCD technique reliably identifies the location of the step to
ithin 0.3 ms and provides an excellent estimate of the amplitude/
hase step magnitude. Furthermore, when a step is present, the RFE
nd FE are at least one (often two) orders of magnitude smaller than
he traditional static and dynamic phasor methods. Even in some of
he most challenging scenarios where a phase step is combined with
M/FR, the frequency dynamic and step parameters are accurately

dentified. In fact, the parameter, frequency and RoCoF errors for
6

ombined dynamics are similar to the errors when a single dynamic E
Fig. 3. Signal (top), FE (middle) and RFE (bottom) results for an AS/PS/FR signal
(𝑘𝑝 = −0.45, 𝑘𝑠 = −0.55, 𝑅 = 3.92 Hz/s).

s analyzed. Finally, since the SCD technique includes the detected
ynamic components in the reconstructed signal, the TDE is generally
ne order of magnitude smaller than for the other methods.

. Conclusion

In this paper, we present a technique for the identification and
haracterization of signal dynamics in power grids with the specific
oal of providing valid frequency and RoCoF estimates during ampli-
ude and/or phase steps as well as frequency variations and harmonic
nterference. The proposed SCD technique exploits properties of the
nalytic signal and dictionaries modeling common signal dynamics to
roperly capture a variety of complicated signal dynamics. The method
s compared with static and dynamic phasor estimation techniques and
emonstrates orders of magnitude improvements in FE, RFE and time-
omain reconstruction error. A critical element of the SCD method is
n excellent Hilbert filter that allows for a precise approximation of
he analytic form of an input signal. The development of such a filter
s beyond the scope of this paper but will be the focus of upcoming
esearch. Together with a proper Hilbert filter, the SCD method could
e a powerful and flexible signal analysis method for grid monitoring
nd control. The SCD’s ability to identify underlying frequency trends
n the presence of step disturbances shows its potential for UFLS and
OM protection applications.
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Table 4
Parameter, frequency, RoCoF and time-domain error for signal dynamic tests for the SCD technique and the static (IpDFT) and dynamic (CSTFM) phasor estimation methods.

Dynamics Parameter error FE (mHz) RFE (Hz/s) TDE

𝑘𝑠 (%) 𝑘𝑝 (%) 𝑡𝑠 , 𝑡𝑝 (ms) SCD Static Dynamic SCD Static Dynamic SCD Static Dynamic

FR Max 9 4 24 0.30 0.24 0.23 1.00E−04 4.70E−04 1.40E−04
Mean 4 2 4 0.12 0.12 0.08 9.50E−05 2.50E−04 8.80E−05

AS Max 7.3 0.2 14 920 853 0.40 70 48 1.40E−02 9.80E−02 6.00E−02
Mean 1.2 0.1 4 180 159 0.14 16 10.3 1.60E−03 2.10E−02 1.00E−02

PS Max 11.6 0.2 15 7020 3917 1.20 343 153 3.00E−03 3.80E−02 1.70E−02
Mean 2.5 0.1 7 2042 2113 0.38 161 78 1.00E−03 1.60E−02 1.00E−02

AM Max 12 107 297 0.30 5 8 9.00E−04 5.30E−02 3.50E−03
Mean 4 14 36 0.14 0.48 0.83 1.00E−04 1.10E−02 4.00E−04

AS/FR Max 7.1 0.2 18 932 1121 0.30 66 62 1.40E−02 9.90E−02 5.90E−02
Mean 1.2 0.1 5 182 163 0.16 15 11 1.60E−03 2.00E−02 1.00E−02

PS/FR Max 12 0.2 15 6991 3922 1.20 344 152 2.70E−03 3.60E−02 1.70E−02
Mean 3.6 0.1 7 3042 2022 0.36 150 78 1.30E−03 1.50E−02 9.00E−03

AS/PS/FR Max 7.2 10.2 0.2 19 6726 5488 1.57 226 289 2.40E−02 1.00E−01 7.20E−02
Mean 1.2 5.2 0.1 8 3122 2276 0.42 154 105 2.90E−03 2.70E−02 1.50E−02

AM/PS/FR Max 22 0.2 16 6867 3916 1.34 336 167 1.10E−02 7.90E−02 4.00E−02
Mean 3.7 0.1 7 3247 2140 0.35 160 84 2.00E−03 2.20E−02 1.10E−02
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