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A well-known, previously only 1D, algorithm using the Sparse Representation of Signals and an 

iterative Block Coordinate Descent method (the SparSpec-1D algorithm) has been further developed 

and tested in a 2D spatial domain to obtain the toroidal and poloidal periodicities of magnetic 

fluctuations in a tokamak. The tests are performed essentially using simulated data, because we know 

what the answer must be, and therefore it is straightforward to verify the accuracy of the algorithm. 

Two more examples using actual data from the JET and TCV tokamaks are considered to test the 

algorithm in real-life experiments; a further example using simulated data constructed from nominal 

test cases for the forthcoming ITER tokamak is also considered. The CPU run-time and the precision 

of the SparSpec-2D algorithm are studied as function of different analysis parameters. The stability 

of the algorithm is also tested via the introduction of random errors in the input signal. We find that 

the spatial-2D version of the baseline SparSpec-1D algorithm accurately finds the modes in the 2D 

toroidal and poloidal space, provided the set of magnetic sensors used for the analysis do not have a 

(quasi-)ignorable coordinate. The number of probes and their position are the key parameters that 

must be optimized for finding correct solutions. The main difficulty, as for the baseline SparSpec-1D 

algorithm, lies in dealing correctly with the intrinsic measurement uncertainties associated to the input 

magnetic fluctuation data, particularly the phase error, and this has been already separately reported 

in a companion work. However, the required CPU run-time for SparSpec-2D is significantly longer 

than that needed for 2x SparSpec-1D, and thus SparSpec-2D is effectively suitable for use only when 

the 2x 1D analyses cannot provide accurate results, which is the case when the set of measurements 

does not have an ignorable coordinate. 
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1. Introduction. 

Detecting the temporal periodicities in a time series is a routine task in many fields of science, the 

Fourier Transform (FT) being the standard tool when regular sampling is obtained. More problematic 

is the detection of these temporal frequencies when the time series is irregularly sampled. However, 

this is a rather common difficulty in astronomy and many algorithms have been devised for this task 

[1-13]. Following up from extensive previous work on tokamak plasmas, here we will consider the 

application of one of them, the SparSpec Algorithm (previously discussed at length in [1-3, 14, 15]) 

to the detection of 2D spatial periodicities in such plasmas. 

The SparSpec code is based on the theory of the Sparse Representation of Signals (SRS) (for further 

details see http://userpages.irap.omp.eu/~hcarfantan/SparSpec1.4/SparSpec_html.html). Its simplest 

version, dubbed SS-H2, and its application to the analysis of 1D spatial periodicities in tokamaks has 

been presented multiple times [3, 16-26]. In a companion work [1] we presented a first development 

of the baseline SparSpec algorithm SS-H2 as applied to the detection of spatial periodicities in 

tokamaks, namely using the measurement uncertainties to weight the data, the spectral window and 

thus the penalization criterion. This is the SS-V501 version of the SparSpec-1D algorithm. A second 

development [2] (the full SS-V5 version of the SparSpec-1D algorithm) aims at presenting the use of 

a memory with relaxation (MwR) scheme to provide better input constraints for the analysis and, 

therefore, speed up and achieve a higher accuracy in the real-time (RT) calculations. The third 

development, namely the extension of SS-H2 to a 2D spatial problem, is reported in this work. 

Magnetic fluctuations are a very common feature of thermonuclear fusion plasmas and, in addition 

to their frequency analysis, it is important to determine their spatial structure, namely (considering 

the specific case of a tokamak device) their decomposition in toroidal and poloidal harmonics. When 

the magnetic probes used for the measurement of these fluctuations are equi-spaced and arranged in 

arrays which have a constant toroidal or poloidal coordinate (this then being the ignorable coordinate, 

while the other is the coordinate along which the spatial analysis is performed, i.e. the non-ignorable 

coordinate), the system can be treated as the superposition of independent 1D equations. Note that 

the definition of an ignorable coordinate provided above strictly applies only in the very common 

situation of an idealized tokamak, i.e. completely axisymmetric. In the presence of long-lived and 

global modes (such as m=2/n=1 tearing modes, for instance), or error fields, or externally driven 

magnetic perturbations, then the equilibrium is no more axisymmetric. Therefore, truly ignorable 

coordinates do not exist any longer, hence a generalization to “quasi-ignorable” coordinates is needed. 

 
1The acronym SS-V50 is used here for consistency with the companion submissions presenting the results of including 
in SparSpec-1D first [1] solely the measurement uncertainties and the ensuing error weighting, and then [2] a memory 
with relaxation scheme:  is the parameter defining the primary memory scheme, and thus SS-V50 is the version of the 
SparSpec-V5 algorithm which uses the error weighting but runs without the memory, =0. 
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For systems with (quasi-)ignorable coordinates, the Nyquist criterion can then be used to obtain the 

spatial periodicities of the signals along the non-ignorable coordinate using a spatial Discrete Fourier 

Transform (DFT), with the limitation of the Nyquist value giving a maximum (toroidal, poloidal) 

mode number MaxMode{NN,MM} that can be detected. This is indeed the usual situation in many 

currently operating (tokamak) fusion devices. However, when such arrangements of magnetic sensors 

are not possible due to installation constraints, or have been lost due to sensors’ failures, then either: 

(a) the analysis is only performed using the surviving subset of equi-spaced sensors along the original 

non-ignorable coordinate, thus very likely reducing the value of MaxMode{NN,MM}, possibly 

significantly, with clear detrimental consequences on the results; or 

(b) a different set of sensors has to be used, for which both toroidal and poloidal coordinates may 

become concurrently non-ignorable and the DFT cannot be used as the sensors are no more equi-

spaced in such a 2D geometrical arrangement; note that this might also be the starting point for 

the device, before any loss of sensors, if equi-spaced arrangements of sensors with an ignorable 

coordinate cannot be installed. 

To tackle this problem, we now wish to adapt the SparSpec-1D algorithm, which was specifically 

developed to treat the case of non-uniformly spaced sensors with an ignorable coordinate, to a 2D 

spatial system, i.e. where both coordinates are by default concurrently non-ignorable. Specifically, 

we consider applications of the SparSpec-2D algorithm to the future ITER, DTT and DEMO 

tokamaks, particularly in view of their intended long-term operation, when sensors’ failure may 

become unavoidable, and stellarators, which are intrinsically characterised by a multi-dimensional 

spatial topology such that ignorable coordinates cannot generally be found. However, for simplicity 

we consider in this work only the application to currently operating tokamak fusion devices, such as 

JET and TCV, where SparSpec-1D is already routinely deployed for magnetic fluctuation analyses, 

both RT and post-pulse, and to ITER, where extensive analyses of simulated data using the SparSpec-

1D algorithm have already been performed [17, 27]. 

This paper is organised as follows. The mathematical foundations of the SRS and of the SparSpec-

1D code have been presented elsewhere multiple times, hence in Section-2 we will only very briefly 

review the main details needed for the following sections of this work. Section-3 will then present 

the mathematical approach taken to extend the baseline version of the SparSpec-1D algorithm (i.e. 

SS-H2) to a 2D spatial coordinate system, this version being dubbed SS-2D. Section-4 will then 

compare the results obtained with SS-2D for a few illustrative test cases based on simulated data. 

Section-5 then shows the application of SS-2D using actual data from the JET and TCV tokamaks, 

while in Section-6 we consider simulated data for the forthcoming ITER tokamak. Section-7 will then 

present our conclusions and a brief sketch of the currently envisaged further development of the 
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SparSpec algorithm, for application to other complex engineering and scientific systems such, as an 

example, quasi-RT data analysis for the ITER tokamak. 

 

2. The Sparse Representations of Signals and the SparSpec-1D algorithm: a 

(very) brief review. 

Since this is a follow-up contribution from a previous two-part work [1,2] by the same corresponding 

author, the Readers are referred to these two papers, to [3] and to the references therein for extensive 

details on SS-H2, while here we present essentially only a brief reminder for ease of reading. 

The SparSpec algorithm solves the penalized least-square criterion 

 2
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( )

2
J W R  x y x x , (1a) 

where [y]2 is the vector of measurements, [[W]] is the spectral window of the system, [x] are the 

pulsation modes,  is a relaxing parameter, and R(x) is the L1-norm of the penalization function 

[R(x)]. In eq.(1a) and following, the subscript ||…||k indicates the Lk-norm, namely L1 (for k=1) and 

L2 (for k=2). Many different [R(x)] have been employed to address the minimization procedure: the 

L1-norm is typically used by the SparSpec algorithm. Equation (1a) then reads: 

2

2 1

1
( )

2
J W   x y x x . (1b) 

The relaxing parameter  plays a major role in our discussion since it is related to the freedom that 

we allow in the criterion to choose how many components to pick: the higher the value of , the fewer 

components {x} we are allowing to fit [y] within the measurement constraints provided by [[W]]. 

Since the L1-norm is not-differentiable at zero, SparSpec uses a modified version of an iterative Block 

Coordinate Descent (BCD) method [28], which is based on subsequent scalar minimization steps for 

the complex-valued k-th component of the vector [x] and is combined with an Iterative Reweighted 

Least-Squares (IRLS) method to ensure that (a) J(x) does not grow over the different iterations, and 

(b) if a component of the spectrum is zero at the iteration t, it will also remain zero at the iteration 

t+1. One of the features of this procedure is the low computational cost of each iterative step. 

 

3. From SparSpec-1D to SparSpec-2D: definition of the input signal and of the 

spectral window. 

 
2Note that here for the in-line and un-numbered equations in the text (but not for those in separate and numbered boxes) 
we will always use the notation [x] to designate a vector x, the notation [[x]] to designate a matrix x and the notation {x} 
to designate an ensemble of elements x. 
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To carry out the analysis of the accuracy and numerical performance of the SS-2D algorithm, an 

adequate signal vector SIN must be built, to closely mimic the actual measurements made in a tokamak 

device. To this end, we consider a complex-valued signal3 measured by the magnetic probes at the 

coordinate {,}k where {,} are the toroidal and poloidal angular coordinates of the k-th sensor, 

respectively. In currently operating (JET, TCV), and future (ITER, DTT, DEMO) tokamak devices 

the total number of sensors is of the order of 1050. Finally, to the nominal/exact 1D (spatial) matrix4 

[y]=[[W]][x] appearing in eqs.(1a,1b) we need to add various sources of errors (here again we follow 

exactly the definitions presented in [1,2], to which the Readers are referred to for further details, in 

particular all ’s appearing here represent a relative error): 

1. the total instrumental error k, which can be up to 15% of the total signal; 

2. the time delay k between the local measurement made by the sensor and the corresponding value 

acquired and stored in the data system; 

3. the error n,m in the determination of the Fourier coefficients, which can also be up to 15% of the 

total signal. 

As a result, a final expression for the signal vector at the time point tp can be proposed as follows: 
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In eq.(2a) S0({,}k) is the nominal 2D input signal at the k-th sensor, not accounting for measurement 

uncertainties nor phase shifts, while SIN({,}k) appearing in eq.(2b) is the 2D signal as actually 

measured, which includes all sources of errors and a phase shift. We can now use this latter analytical 

form of SIN({,}k) to produce numerically a set of realistic input signals with which we can run our 

SS-2D simulations. 

To use the same algorithm as in SS-H2, the 2D problem cast from eq.(2b) has to be written in the 

same way as that cast in eq.(1b). If we have a set of signals yk that are located at different angles 

{,}k we can already express the vector [y] and we know the value of each {k,k} at each line (and 

column) of [[W2D]]=[[exp(in+im)]]. For convenience, from this point onward we now label 

 
3As we consider only the spatial decomposition, our input measured signal corresponds in fact to the temporal Fourier 
Transform, at any one specified frequency up to the Nyquist value fs=1/(2s), of the raw real-valued voltage signal that is 
actually acquired by the probes at the sampling time s. 
4It is clear what we want to achieve from a mathematical and theoretical point of view: if we can reformulate the 2D (,) 
problem exactly as a 1D () problem through some appropriate pre- and/or post-processing algebraic manipulations, then 
on the computational side we could run almost exactly the core module of SparSpec-1D (i.e. SS-H2) also for a 2D analysis. 
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{k,k}{}k, keeping however the {n,m} notation for clarity of presentation. We can then find an 

ordering in the overall 2D spatial periodicities, namely we can determine the subset of toroidal 

{i,p}{NMAX} and poloidal {j,q}{MMAX} indexes defining the spatial {ni,mj} modes such that 

ni
2+mj

2>np
2+mq

2. The resulting 2D spectral window [[W2D]] is no more a Toeplitz matrix, as for the 

1D case, but otherwise the SparSpec-1D algorithm (actually in any of its version, i.e. SS-H2 and also 

SS-V5) can be directly applied in 2D with a modified implementation of the BCD algorithm (and 

similarly for the error and the memory for SS-V5) that accounts for the above sorting of the {toroidal, 

poloidal} components. 

 

4. A few selected test cases for the SparSpec algorithms SS-2D. 

For clarity of presentation and ease of reading, in this Section we present a very limited number of 

selected test cases in order to illustrate the main features and the success vs. failures of the SS-2D 

algorithm. In the next section we will then focus on a thorough statistical analysis using an extensive 

number of simulated test cases. It is clear that multiple parameters need to be set to determine the 

accuracy and speed of SS-2D. 

First, the input signal SIN(k) must be generated, and this is determined by the number =NSENS 

(labelled K above) and the spatial distribution = {random, equi-spaced} of the sensors. The peculiarity 

of the 2D analyses lies on the role of the ignorable coordinate, therefore we can consider two generic 

2D arrangements of sensors which are differentiated by the presence or absence of a subset (and 

possibly the full set) of sensors for which one of the two coordinates {,} is alternatively ignorable. 

The first case is dubbed orthogonal sensors, i.e. a subset exists for which an ignorable coordinate can 

be found, while the second case corresponds to non-orthogonal sensors. The orthogonality condition 

is only valid within the installation tolerances, typically ~±3deg at the most5. Therefore, (as an 

example)  is the ignorable coordinate for the subset of sensors all located at =0±3deg but at a 

different poloidal position. 

To clarify what we intend by orthogonal sensors, fig1(a,b,c) shows three illustrative examples of the 

actual 2D positions of the high-frequency (HF) magnetic sensors in existing and forthcoming tokamak 

devices, namely in TCV (fig1a), in JET (fig1b) and as currently intended for ITER (fig1c). In TCV 

we have 38x Mirnov sensors each in four poloidal arrays separated by /2 toroidally; we then have 

 
5Since the positional error is a function of machine size at the wall, a ±3deg angular error would correspond to ~20cm in 
ITER, for instance, which is clearly unrealistically large. However, and as explained in previous SparSpec literature, this 
maximum ±3deg angular error also includes the positional error that corresponds to uncertainties in the end-to-end 
calibration of the acquisition line. Thus, this very large value for the angular error is used for consistency with previous 
literature, with the purpose of showing that even in this extreme case the accuracy of all variants of the SparSpec algorithm 
remains sufficient. 
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17x Mirnov sensors each in three toroidal arrays on the low-field-side (LFS), and 8x Mirnov sensors 

each, in three toroidal arrays on the high-field-side (HFS): the LFS and HFS toroidal arrays sit at 

three different vertical, hence poloidal, positions. For the LFS arrays, 16 sensors are exactly equi-

spaced by /8 toroidally, and the 17th sensors sits between two of them; for the HFS arrays the sensors 

are exactly equi-spaced by /4 toroidally. Unfortunately, in TCV none of these 10 arrays is such that 

both coordinates are not ignorable, and thus all the individual toroidal arrays are exactly orthogonal 

to all the individual poloidal arrays. As it will transpire later, this is a major drawback for 2D spatial 

analyses, for which the only effective solution is to combine subsets of toroidal and poloidal sensors 

from different arrays, with the problem that these sensors then might have a different intrinsic 

measurement error6 or be at a very different distance from the LCFS. The latter is a problem 

particularly important in TCV, where the wall is almost never conformal to the LCFS due to the large 

variety of possible plasma shapes, and which is usually further compounded by the strong ballooning 

physics (that is: a very strong variation of the poloidal mode amplitude on the LFS, see fig.20 in [29] 

for a specific example of this). In TCV we also have 3x LTCC-3D magnetic sensors [29], which sit 

at Z=-115mm in three not equi-spaced toroidal sectors, thus somewhat in between some of the Mirnov 

sensors on the LFS. The LTCC-3D data are acquired at a different frequency (2MHz compared to 

500kHz for the Mirnov sensors), and thus it is not straightforward to use them together with a suitably 

selected subset of Mirnov sensors. 

In JET (see fig1b), some of the HF magnetic sensors (the H-coils) are positioned very close to each 

other to form a high-resolution array: if all the 8x H-coils are used concurrently, there is no more an 

ignorable coordinate, and therefore this array becomes well suited for combined toroidal and poloidal 

analyses. Furthermore, since in JET the wall is typically conformal to the LCFS, ballooning physics 

plays a much less significant role. 

The ITER device (se fig1c) follow a mixed approach: most of the sensors are distributed in quasi-

exactly orthogonal arrays as in TCV (for instance, those highlighted by the red and blue contours in 

fig1c), but subsets of sensors can be found for which both coordinates are not-ignorable, as in JET 

(for instance, those highlighted with the green contours in fig1c). 

Second, we need to consider the number of sensors =NSENS and their spatial distribution. As we mostly 

use SparSpec for the analysis of magnetic fluctuations in JET, TCV and ITER, and the number of 

magnetic sensors available for any such analyses in these devices range from ~10 to ~50, which 

typically are not solely equi-spaced, we set a fixed NSENS=40 for simplicity and allows uniformly or 

randomly distributed sensors. In terms of the {,} angular coordinate of the sensors, we allow to 

 
6And then we will need to use SparSpec-V5(0) to account for this in a 2D operational space, which is our next, and most 
likely final, intended development of the SparSpec algorithm. 
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have them quasi-exactly orthogonal, i.e. half the sensors are at ={0,} with varying  (within the 

nominal installation tolerances of ~3deg, this would then be the classic 1D poloidal array), while the 

other half is at ={0,} with (similarly) varying  (the classic 1D toroidal array), or completely non-

orthogonal, i.e. both {,} angular coordinate vary. 

Third, we need to consider the number of non-zero input signal components ={N,M}COMP. Magnetic 

fluctuations can be spatially analysed starting from a time series, hence multiple signal components 

are present, or at individual mode frequencies (=Eigenmodes), hence typically only one component 

is present. Furthermore, and essentially due to the toroidal geometry, for any spatial component the 

toroidal mode number is a good quantum number, i.e. it is conserved throughout the radial cross-

section of the tokamak, while the poloidal harmonic content may significantly change, from one 

single harmonic at the mode resonant surface to multiple harmonics at the plasma edge, i.e. essentially 

where the magnetic sensors make the measurements. Therefore, we must consider the general case of 

NCOMP=15 with MCOMP=15 for each individual value of NCOMP. 

Fourth, we need to consider the value of {N,M}MAX: this is set to NMAX=15 and MMAX=35 to cover 

not only existing, but also the generic (toroidal, poloidal) case of future tokamaks such as ITER. 

Finally, we need to set (a) the (randomly chosen) values for the non-zero input components (namely 

the corresponding spatial mode numbers and amplitudes), thus determining the input set {x}; and (b) 

the randomly distributed phase shifts {k}[01] and the relative errors {k, l}[01]0.15. 

Then, we need to define the analysis parameters required by the SparSpec-2D algorithm, in addition 

to REL[01] such that =RELMAX, where MAX=max([[W]]H[y]): 

 The numerical set of atoms (namely: the set of functions that model {x}) used to find the solutions: 

this must be sparse, and it is practically limited to |FmaxS| only by RAM and CPU resources; 

following previous analyses, we set FmaxS{N,M}=5{N,M}MAX. 

 Since the solution set is sparse, it is possible that spurious, very-low amplitude elements are found 

due to the presence of noise in the input signal; these can be removed by defining a cut-off value 

below which the amplitude of these spurious solutions is set to =0; this cut-off value is linked to 

the overall measurement uncertainties TOT(k)=|SIN(k)-S0(k). 

 We set the total number of iterations allowed for convergence of the BCD algorithm  nIT=1000 and 

the relative tolerance threshold for checking the convergence conditions TRIT =110-5. 

 A we randomize many analysis parameters at each individual simulation, for each value of NCOMP 

we need to run the analysis NITER=O(104) and calculate the RMS and STD value of our output 

results so as to obtain a statistically significant performance analysis of the SS-2D algorithm. 

Our MATLAB routine randomly chooses K locations for the probes, the different spatial frequencies 
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(modes) and their amplitude to avoid any bias in the evaluation of the SS-2D algorithm. The data that 

will be compared to assess the accuracy and the speed of the SS-2D algorithm are the average elapsed 

time and the number of iterations needed to converge, the relative error on the input vs. output energy 

conservation, and the number of errors made in the result (hereafter, we will call them faults7). Note 

that the accounting of the faults is bi-directional, i.e. we consider both (a) the input components which 

are not correctly found in the output and also (b) the non-zero (within the measurement errors) output 

components that do not exist in the input. The required CPU run-time has been evaluated using the 

MATLAB function timeit, which returns the relative and system-dependent clock time taken by the 

computer to perform the calculations with different algorithms. 

As illustrative examples, fig2 and fig3 show two single test runs, always using NCOMP=3=MCOMP, 

REL=0.15 and NSENS=40 randomly spaced sensors. While in fig2 the sensors are quasi-orthogonally 

distributed, thus with one (quasi-)exactly ignorable coordinate, i.e. as the TCV and the most common 

arrangement in ITER, in fig3 the sensors are purely randomly distributed, similarly in a sense to 

randomly selecting a subset of the sensors in JET and ITER shown in fig1b and fig1c, respectively. 

In fig2 the quasi-exact orthogonality condition is implemented by setting NSENS/2=20 sensors at 

=±IT, and the other 20 sensors at =±IT, where IT=(3/180) is the nominal angular 

installation tolerance, randomly distributed between the relevant subset of sensors. 

Even in the non-optimal situation of quasi-orthogonal sensors illustrated by fig2, SS-2D detects rather 

well the input modes, with a minimal relative error on the overall energy conservation =0.22, but at 

the high computational cost 2D~26msec, corresponding to 29 iterations of the algorithm. Compare 

however the 2D with the 2x1D separate {toroidal, poloidal} results shown in fig2b: the accuracy is 

similar, but the computational time is much shorter, respectively 1D~0.09msec and 1D~0.08msec for 

a similar number of iteration (22 and 23 for the toroidal and poloidal analyses, respectively). From 

this single test run, it would seem absolutely clear that for (quasi-)orthogonal sensors SS-2D does not 

bring about any real advantage with respect to running separately twice SS-H2. 

Looking now at the optimal 2D case of non-orthogonal sensors illustrated by fig3, SS-2D does indeed 

very well in detecting the input modes, however at the significant computational cost 2D~20msec for 

10 iterations, while SS-H2 quite significantly fails, as expected, even if the computational cost is 

rather small and the amplitude of some of the input modes is at least partially correctly recovered. 

Solely from this single test run, one could conclude that SS-2D is very accurate, even if not very fast, 

 
7We choose to directly relate the accuracy (or lack of) to the number of faults that have been made by the minimization 
routine, the faults being the number of mismatching components between the true vector and the one resulting from the 
minimization procedure: clearly, the higher the number of mismatches in the components, the lower the accuracy. 
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for a truly 2D set of (magnetic) sensors and should be used preferentially to running twice SS-H2 for 

such an arrangement of sensors. 

The much longer CPU run-time for SS-2D is not at all surprising and has a practical reason to begin 

with: in a 1D case, at each iteration of the BCD algorithm the solution is sought scanning a set of 

atoms of length L1D=2FmaxS{N,M}+1, while in 2D we have to scan a much bigger set of length 

L2D=(2FmaxSN+1)(2FmaxSM+1)>>L1D. As a practical example, in the two test cases reported 

in fig2 and fig3, FmaxSN=25 and FmaxSM=75, thus L2D/L1D,TOR=151 and L2D/L1D,POL=51, while the 

ratio of the total CPU run times is in the range 2D/1D~60300 for around 1030 iterations of the 

BCD algorithm. Hence, when accounting for the initial overhead in allocating and storing the required 

memory, which has a different size in SS-H2 vs SS-2D, we find that for each iteration of the BCD 

algorithm 2D/1D is quite similar to L2D/L1D. 

The two test cases shown in Section-3 indicate that in some circumstances SS-2D is significantly 

more accurate than running twice SS-H2 (which we will call 2xSS-H2 for simplicity from now on), 

however a statistical analysis using simulated data, as we know what the results must be, is mandatory: 

the results of this work will be shown in the next Section. Before this statistical analysis, a number of 

initial tests is performed, so as to elucidate the most basic difficulties with the SparSpec-2D algorithm 

and to set-up fixed and optimized values for some of the multiple analysis parameters. 

 

3a. All the probes are aligned. 

If all the probes are aligned along one direction, either at = (i.e. a purely toroidal array) or at = 

(i.e. a purely poloidal array), it is very predictable that the algorithm will be unable to find the modes’ 

components along the other direction, which becomes an ignorable coordinate. As an example, a 

numerical experiment can be performed by positioning all the probes at = and creating an input 

signal first with a single (m1,n1)=(2,1) and then a single (m2,n2)=(3,2) component, always with 

amplitude A0=1. For actual tokamaks, this numerical experiment corresponds to the very well-known 

case of low-frequency tearing modes, that must be detected correctly as their onset and un-controlled 

evolution can be very detrimental for the survival of the plasma discharge [30]. In these two cases, 

the SS-2D algorithm finds a largely dominant output component first with (m1,n1)=(0,1) and then 

with (m2,n2)=(0,2), respectively. Without any information on the poloidal mode structure, since  is 

an ignorable coordinate in this measurement set-up, the SS-2D algorithm can only find a m=0 mode: 

as the corresponding poloidal variation of the complex mode amplitude simply becomes an additional 

but constant contribution to the randomized phase shift k at each sensor, which then contributes to 

the detection of spurious and much lower amplitude toroidal components. 
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3b. All the probes are exactly in a cross-like arrangement. 

Logically, putting other probes whose position vary with  can surely help in resolving the previous 

problem. But if the probes are exactly in a cross-like arrangement, some artefacts appear under 

certain input conditions. This is for instance visible by positioning NSENS/2 probes at = and the 

other NSENS/2 probes at =. If the signal is composed of two modes situated on a line crossing 

(n,m)=(0,0), for instance (n1,m1)=(1,2) and (n2,m2)=(-1,-2) , all with an amplitude A0=1, the SS-2D 

algorithm finds these input modes but also two spurious solutions at the symmetric mode numbers 

(n3,m3)=(1,-2) and (n4,m4)=(-1,2). It is therefore very important to avoid this arrangement of sensors. 

Hence it appears that there is an unintended benefit coming from the minor differences between the 

nominal and the actual position of the sensors as installed in vessel due to the installation tolerances. 

 

3c. The probes are positioned too closely to each other. 

If all the probes are really close to each other and do not cover a sufficient portion of all the available 

2D {,} geometrical space, it can be expected that some modes could be rather badly reconstructed. 

To test this hypothesis, 40 probes are randomly positioned along the contour of a square centered at 

(,)=(,) and with the half-length of the sides varying between R=[0]. As a numerical example, 

the input modes of the signal are (n1,m1)=(2,0), (n2,m2)=(2,4) and (n3,m3)=(3,-3), all with amplitude 

A0=1. The overall error is then defined as =(n.mAOUT(n,m)-A0(n,m))1/2, where AOUT(n,m) are the 

output mode components. Figure4 shows the main results of this analysis: the RMS and STD values 

of the overall error on the energy conservation, the number of iterations needed for the convergence 

of the BCD algorithm and the CPU run-time. It is clear that at least R/>0.4 is needed to recover 

correctly the input mode spectrum in a sufficiently short computational time, and that for R/0.65 

there is not much further improvement in the accuracy and speed of the calculations. 

 

3d. Can multiple poloidal components for the same toroidal mode number be detected? 

In the typical tokamak scenario, and specifically due to the toroidal geometry, in most cases multiple 

poloidal components exist at the plasma edge (i.e. the plasma location closest to the position of the 

magnetic sensors mounted on the wall) for a single toroidal mode number. Therefore, it is important 

to test whether this situation can be detected correctly using the SS-2D algorithm. Figure5 shows the 

results of an illustrative single test run, where NCOMP=3 and MCOMP=[3,2,1] were used, i.e. the first 

toroidal mode has three poloidal components, the second toroidal mode has two poloidal components, 

and the third toroidal mode has only one poloidal component. The results are quite satisfactory: only 

the lowest amplitude poloidal modes with input A0(m,n)<0.15 are not detected, and essentially no 

spurious solutions are found. 
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3e. How many sensors we need in total? 

As a numerical example, we consider the case of four input modes (n1,m1)=(2,0), (n2,m2)=(10,-4), 

(n3,m3)=(-2,14), and (n4,m4)=(-10,15), all with an amplitude A0=1, thus probing the detection of low 

and high toroidal and poloidal mode numbers. For these test runs we use NMAX=25, MMAX=50, and 

scan NSENS=[1070]. The results are shown in fig6: we need at least 25 sensors to recover correctly 

the input mode spectrum, but a much larger number >50 is counter-productive, as the (randomized in 

our test simulation) measurement errors start having a big impact on the accuracy of the results for 

too closely spaced sensors. 

 

3f. How many toroidal and poloidal atoms we need in total? 

We now check our hypothesis on the value of N,M==FmaxS{N,M}/{N,M}MAX by scanning 

[110] for the same input spectrum, We consider for this set of test runs five randomly chosen 

input toroidal modes and MCOMP=[3,1,2,4,1], NMAX=25, MMAX=358, NSENS=40 randomly spaced, 

repeating the analysis 100 times for each set of input toroidal modes. The results are plotted in fig7, 

where we show the RMS and STD values of the overall error on the energy conservation, the number 

of iterations needed for the convergence of the BCD algorithm and the CPU run-time. A rather 

characteristic bell-shape curve is obtained, with a minimum around =56 but already for =3 the 

relative error on the energy conservation E/E is close to the input {k, l}=0.15. It is clear that the 

use of the BCD algorithm can be optimized: too few atoms make the calculation faster but less 

accurate, while too many atoms increase the CPU run-time without improving much the performance 

of the algorithm. Therefore, the practical limit for the value of  (which in principle could be different 

for the toroidal and poloidal analyses) becomes also determined by the available RAM on the platform 

used for the SS-2D calculations. 

 

3g. Performance of SS-2D vs. 2xSS-H2 as function of the (simulated) measurement errors. 

Finally, we can now check the dependence of the SS-2D accuracy and speed on the measurement 

errors, simulated in this specific test case. We consider for this set of test runs five randomly chosen 

input toroidal modes with a fixed MCOMP=2 (randomized at each run) for each toroidal mode, 

NMAX=15, MMAX=25, =5, NSENS=40 randomly spaced and not-orthogonal, REL=0.15, and then scan 

randomly distributed {k, l}=[0.000.35], We repeat the analysis 100 times for each value of k 

and l: note that while we scan k we then always keep a fixed l=0.05 for simplicity of interpretation, 

 
8For this test we had to use a lower value for NMAX and MMAX as for >5 we run out of available RAM for the Matlab 
session on the laptop where the analyses are performed when using the usual values NMAX=35 and MMAX=50. 
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and the same when scanning l. The results are plotted in fig8, where we show the RMS and STD 

values of the overall error on the energy conservation, the number of iterations needed for the 

convergence of the BCD algorithm and the CPU run-time. As expected, and consistently with all the 

previously reported results for SS-H2 and SS-V5, the measurement performance decreases for 

increasing measurement errors, but we do not really find any threshold value in {k, l} above which 

the performance of SS-2D deteriorates excessively. Thus, we confirm our empirical and a-priori 

setting of a fixed maximum value for both {k, l}=0.15 for the ensuing analyses, essentially with 

the aim of reducing the overall computational costs while keeping realistic measurement errors which 

are in line with the typical ones for magnetic diagnostic systems in currently operating tokamaks. 

 

5. A statistical analysis of the performance of SS-2D. 

Having performed the initial set of simulations reported in Section-3a to 3g, we now need to define 

which of the many other input analysis parameters we would like to use so as to test the performance 

of SS-2D vs. 2SS-H2, namely accuracy and required computational time. 

First, it is well known from the extensive experience using SS-H2 (and also SS-V5) that setting a 

correct value for REL is essential for obtaining an accurate solution. For the 1D analyses, a scaling 

can be found empirically (by running numerical experiments on given datasets) to determine the 

nominal correct value for REL. We find that REL must decrease linearly for an increasing number of 

output physical components to be obtained for a given set of input components, from REL,MAX>0.85 

for 1 output mode to REL,MIN<0.15 for more than 5 output modes. It is then paramount to verify if a 

similar scaling is also valid for SS-2D, particularly finding the appropriate values for REL,MAX and 

REL,MIN. Therefore, this is the first statistical analysis that we will perform. 

Second, as it has already partially transpired from the one-off test cases presented in Section-3, the 

main advantage of SS-2D vs. 2xSS-H2 is when the sensors are not orthogonal. Therefore, the second 

statistical analysis is performed comparing orthogonal vs. non-orthogonal arrangements of sensors. 

For this set of tests, we always use sensors which have a random poloidal distribution, but also allow 

for an equi-spaced toroidal distribution. This choice comes from the arrangements in existing devices: 

poloidal sensors can essentially never be uniformly distributed, simply because their actual position 

with respect to the last closed flux surface (LCFS) is equilibrium-dependent (the so-called thetastar 

correction [31,32]), and thus this can never be always the same. Conversely, it is a common practice 

to attach toroidal sensors to the in-vessel poloidal rails joining the toroidal sectors of the machine, 

hence an equi-spaced arrangement can always be obtained first, which can then be altered by adding 
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additional and non-uniformly spaced sensors at some specific locations in-between these rails (as an 

example, see the ITER case, fig1c). 

Third, the very different accuracy and CPU run-time needed by SS-2D vs. 2xSS-H2 observed in the 

single test runs shown in Section-3 need to be checked more systematically against the number of 

input component, specifically with respect to the ratio MCOMP/NCOMP at a fixed value of NCOMP. 

To summarize, in our statistical analyses reported in this Section we will always use: 

 NSENS=40 sensors, NMAX=35 and MMAX=50, max({k, l})=0.15 (in relative units), {k}0.2, 

N,M=[3,3], nIT=1000 and TRIT=110-5; 

 scan-1, see Section-4a: for NCOMP=110 and at fixed MCOMP=NCOMP, we analyse the same input 

spectrum as acquired by non-orthogonal sensors, scanning REL=[0.050.95] for each value of 

NCOMP; this allows to determine the optimal value of REL(NCOMP) to be used in the next scans. 

 scan-2, see Section-4b: for NCOMP=15 and at fixed MCOMP=NCOMP, we analyse the same input 

spectrum as acquired by orthogonal vs. non-orthogonal sensors, always using the previously 

determined value of REL(NCOMP). 

 scan-3, see Section-4c: for NCOMP=15 and varying MCOMP=[15]NCOMP, we analyse the same 

input spectrum as acquired by non-orthogonal sensors, always using the previously determined 

value of REL(NCOMPMCOMP), extrapolating if needed from the results of the first scan. 

For each scan, a very large number of simulations NITER=10’000 will always be run to avoid possible 

bias in the analyses, which could be due to the different (and possibly randomized) sensors’ geometry 

and input spectrum used in each individual run. Conversely, when comparing orthogonal vs. non-

orthogonal sensors, the same input spectrum is used. Globally, we will compare the RMS and STD 

values of the total relative error on the input vs. output energy conservation (=E/E), the number of 

faults in correctly finding the input components, the number of iterations needed for the convergence 

of the BCD algorithm (=nITout) and the CPU run-time (=CPU), comparing the results of SS-2D vs. 

those of 2xSS-H2. Note that the number of faults is normalized with respect to the length L of the 

physical mode base, different for the 2D analysis, L2D=(2NMAX+1)(2MMAX+1) and the separate 

1D toroidal and poloidal analyses, respectively L1D,TOR=(2NMAX+1) and L1D,POL=(2MMAX+1). This 

accounts for the fact that it is more likely to find spurious output components within a much larger 

set of physical atoms. 

 

4a. Comparison between SS-2D vs. 2xSS-H2: varying REL. 

For this scan we vary REL=[0.05:0.15:0.95] and use NCOMP=110 at fixed MCOMP=NCOMP: the results 

are reported in fig9a for randomly spaced toroidal sensors, and in fig9b for equi-spaced toroidal 
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sensors, respectively. The number of faults is typically 6x lower for SS-2D than for 2xSS-H2, a clear 

improvement in the performance. The results are however more complex to interpret for the energy 

conservation: we find that for a sufficiently low number of components, up to NCOMP=3, SS-2D 

clearly out-performs 2xSS-H2 for all values of REL; however, for NCOMP>5 the SS-2D results are 

much less convincing, particularly for a higher set value for REL. Note in any case the significantly 

larger CPU run-time requirements for SS-2D: typically CPU is 260x (for randomly spaced toroidal 

sensors) to 320x (for equi-spaced toroidal sensors) longer for SS-2D than for 2xSS-H2, due to a 

significantly larger value of nITout. 

 

4b. Comparison between SS-2D vs. 2xSS-H2: orthogonal vs. non-orthogonal sensors. 

Using the results of the REL-scan shown in Section-4a, we now set a fixed value REL=0.15 and 

compare the results of SS-2D vs. 2xSS-H2 when using orthogonal vs. non-orthogonal sensors. The 

results of this analysis are shown in fig10: we now find a clear improvement from SS-2D when using 

an optimal value for REL and up to NCOMP=5 toroidal and poloidal components, specifically when 

non-orthogonal sensors are used. The computational cost is however very high: CPU is typically 

~330x times longer for SS-2D than for 2xSS-H2, again due to a significantly larger value of nITout. 

As shown in fig11 for comparison purpose, using an even smaller REL=0.05 does not bring about 

any significant improvement in the performance of SS-2D, and therefore for all further analyses we 

now keep only the optimized value REL=0.15. 

 

4c. Comparison between SS-2D vs. 2xSS-H2: varying MCOMP/NCOMP. 

Next, we test the accuracy and the computational cost of SS-2D vs. 2xSS-H2 as function of the 

number of poloidal components for each toroidal mode, using only randomly distributed and non-

orthogonal sensors. The results of these analyses are shown in fig12, and it is very clear that SS-2D 

definitively out-performs 2xSS-H2 in terms of accuracy when multiple poloidal components exist for 

a single toroidal mode, which is the typical experimental situation in tokamaks. Due to limitations in 

the available RAM in the laptop used for these simulations, only a fixed =3 could be used, and this 

is likely to become sub-optimal when NCOMPMCOMP>10. Also note that the initial value of REL=0.15 

is only valid up to NCOMPMCOMP=10: for a larger value of components we then further reduce it 

linearly towards REL=0.05 at the maximum value NCOMPMCOMP=25. Both these numerical settings 

are likely to be sub-optimal and this explains the clear deterioration of the performance of SS-2D for 

NCOMPMCOMP>12. 
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4d. Summary of the results of the statistical analyses. 

Summarising the results obtained in Section-4a to 4c, it appears that: 

1. SS-2D is accurate and thus useful essentially for a low number of input components, at the most 

up to NCOMPMCOMP=1012, practically irrespectively of the arrangement of toroidal sensors, i.e. 

be these randomly or uniformly distributed; 

2. a rather low value of REL0.15 need to be set for SS-2D even for such a relatively low number 

of input components, which is lower than that needed for the 1D analyses using SS-H2; 

3. the best arrangement of toroidal vs. poloidal sensors for use by SS-2D is the non-orthogonal 

installation setup; 

4. finally, the computational cost of SS-2D is very high, typically ~300x longer than that required 

by 2xSS-H2, and also the RAM consumption becomes prohibitive when a very large dictionary 

of atoms needs to be used. 

 

6. An actual test case from the JET tokamak. 

We now consider an actual test case from the JET tokamak, using the 8x high resolution toroidal and 

poloidal H30N sensors, whose position is shown in fig1b. This set of HF magnetic sensors has had 

quite a troubled history in JET [33], and the last time most of them have been working correctly is 

the early 2000, unfortunately, when only H308 was not operational. Therefore, for this test case we 

consider the rather old JET shots #49384 and #55604, which were used to identify the occurrence of 

Alfvén Cascades (ACs) in plasmas with a non-monotonic profile for the safety factor [34]. 

In #49384 only Ion Cyclotron Resonance Frequency (ICRF) heating was used during the ohmic 

current ramp-up phase, thus the safety factor (q-) profile was monotonic with q0<1 in the plasma core, 

and the usual fast ion driven Toroidal Alfvén Eigenmodes (TAEs) were found at frequencies in the 

TAE gap, see fig13a, namely between 80kHz and 150kHz during the current ramp-up phase. Note 

that dfTAE/dtB/ne0/qRES, where {B, ne0} are the toroidal magnetic field and the central electron 

density, respectively, while qRES=(2mTAE+1)/2nTAE is the value of the safety factor at the mode 

resonant position, where mTAE and nTAE are the toroidal and poloidal mode number of this mode, 

respectively. Therefore, at sufficiently constant plasma density and fixed toroidal magnetic field 

dfTAE/dtIp, where Ip is the (purely ohmic in this case) plasma current, thus the TAE mode frequency 

essentially increases linearly during the initial (ohmic) current ramp-up phase. Theoretical modelling 

indicates that TAEs have typically multiple poloidal harmonics for a given single toroidal mode 

number, such that the mPOL measured by magnetic sensors can reach values up to mTAEqLCFS, where 

qLCFS is the value of the safety factor at the LCFS. 
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In #55604 Lower Hybrid Current Drive (LHCD) was applied together with ICRF early and this 

increased the plasma conductivity off-axis through direct heating of the electrons, which then 

prevented the ohmic current from penetrating to the plasma core, in turn producing a non-monotonic 

safety factor profile, with the minimum value qMIN towards mid-radius and q0>1. In #55604 we thus 

observed modes with a characteristically slow upward frequency sweep, see fig13b, for which 

dfTAE/dt is not directly correlated with Ip. The highest frequency of these modes was just reaching the 

bottom of the TAE gap at around 100kHz, with a characteristic hockey-stick pattern at these 

frequencies. Therefore, these modes could not be TAEs: theoretically modelling [34, 35, 36] 

demonstrated that these are still modes driven by energetic particles (EPMs) whose upward frequency 

sweep tracks the evolution of the minimum in the safety factor profile qMIN(t). These EPMs are often 

called Alfvén Cascades and/or Reverse Shear Alfvén Eigenmodes and a necessary condition for their 

existence is that the pair of toroidal and poloidal mode numbers nAC and mAC can only appear at the 

time =t0 if mAC-nACqMIN(t)=0, i.e. (a) qMIN(t0) must pass through the relevant rational value mAC/nAC, 

and (b) only one single poloidal component exist for a single toroidal mode. Note that the temporal 

derivative of the AC mode frequency is proportional to the toroidal mode number, dfAC/dtnAC at 

fixed plasma density and magnetic field. 

It is therefore very interesting to test whether these results can be found using SS-2D for a concurrent 

toroidal and poloidal mode number analysis: fig13(a,b) shows the spectrograms (i.e. the analysis was 

performed on the Fourier Transform of the input time series) for the measured poloidal mode numbers 

(=mMEAS) for these two discharges. These spectrograms were produced at the time of the experiment 

and show mMEAS as calculated using the only analysis method available at the time, namely the 

classical linear phase fit method: POL=c0+mMEAS. Here POL is the phase of the signal at the 

specific time (=t0) and frequency (f0) in the spectrogram, and c0 is an arbitrary constant. With this 

method, mMEAS=(mAPOL
2)/APOL

2N, i.e. it is a weighted sum over all poloidal harmonics and 

thus is generally NOT an integer. Table1 and Table2 show a summary of the data for the toroidal and 

poloidal mode numbers from the linear phase fit method and from 2xSS-H2 and SS-2D, as computed 

today, for #49284 and #55604 respectively. The SparSpec analyses were performed using NMAX=10, 

MMAX=60~qLCFSNMAX, N,M=[3,3], REL=0.15, nIT=1000 and TRIT=110-5. The spectrograms are 

also annotated with some of the SS-2D data. 

For the TAEs in #49384 (fig13a) we find that multiple poloidal harmonics exist for each one of the 

toroidal mode numbers nTAE=35 for the measured modes. Conversely, for the ACs in #55604 

(fig13b) we essentially find one largely dominant poloidal mode number. These results are clearly 

consistent with our theoretical understanding of these modes; however they cannot be further verified 

as internal fluctuation measurements that could help in identifying the modes’ resonant position, and 
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thus confirm the value of m from that of n and {qRES, qMIN}, were not available for these discharges. 

Essentially as a numerical test, the analyses were repeated using the currently surviving set of H30N 

magnetic sensors, which includes only the four sensors [H302, H303, H304, H305]. In this case the 

toroidal mode number can still be detected correctly, but the poloidal mode number cannot. Finally, 

the computational costs for the SS-2D analyses are onerous, typically ~300msec for each individual 

pair of time and frequency points {t0, f0} in the spectrogram. 

Note that the H30N sensors cover a small range in {,} spanning 36deg toroidally over 5 sensors 

and ~30deg poloidally over 4 sensors. A question springs immediately to mind: why SS-2D does so 

well even with such a reduced set of sensors and spatial coverage, which seems contrary to most of 

our previous simulation results? The reason is essentially that at any {t0, f0} these modes have only 

one toroidal mode number and either one or multiple poloidal mode numbers with intermediate and 

close-by values. In this case (a) the corresponding total phase shift on the FT signal is detectable by 

and recognisable with the H30N sensors, and (b) the poloidal mode amplitude does not show any 

ballooning effect since the D-shaped JET wall is conformal to the LCFS and the H30N sensors cover 

a rather small span in poloidal angle. Conversely, the accuracy of the SS-2D results would NOT have 

been the same had we been looking at (a) multiple and very different mode numbers in a time series 

(i.e., not on the FT of the signal), which is the case for our simulations, see also the results for one of 

the ITER test cases, shown in Section-7, and (b) cases where the ballooning effect on the poloidal 

mode amplitude is very important in the FT spectrum, which is NOT considered in our simulations, 

see also the results for the TCV test cases, shown in Section-6. 

Looking now in details at the results shown in Table1 and Table2, the estimated error on the toroidal 

and poloidal mode numbers calculated using the Linear Phase Fit (LPF) method (={n,m}LPF) is linked 

to the propagation of errors on the reconstructed fit of the mode phase; for the corresponding values 

{n,m}H2 and {n,m}2D we also provide the mode amplitude (=A) for all components above the 

estimated S/N ratio ~0.10, in normalized units such that the input vs. output energy A2 is conserved 

in the Parseval sense. For these two JET discharges, we find that the 2xSS-H2 analyses already allow 

to recognise the multiple poloidal components of TAEs vs. the essentially single poloidal component 

for the ACs. We cannot find any clear advantage in using SS-2D vs 2xSS-H2 for these analyses using 

the H30N sensors, particularly those currently surviving. 

It remains to be seen, however, and this is beyond the scope of this work, whether for current analyses 

SS-2D becomes more useful in terms of accuracy, even if at a much higher computational cost, than 

2xSS-H2 when adding all, or most of, the other toroidal and poloidal sensors to the surviving set of 

H30N sensors. Currently, it is unclear whether the different arrays of JET magnetic sensors can be 

efficiently combined as they are characterized by a very different frequency-dependent transfer 
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function, and thus are likely to have very different intrinsic, frequency-dependent measurement 

errors. Precisely this problem has prompted the development of the different versions of the SS-V5 

algorithm [1,2] for the 1D analyses, and our next step is exactly that of extending SS-V5 to the 2D 

analyses, specifically SS-V50 to track correctly the propagation of errors on the analysis results. 

 

7. An actual test case from the TCV tokamak. 

We can now consider an actual test case from the TCV tokamak, and for this analysis we consider 

#70281, a shot with Neutral Beam Injection (NBI) which provides the source of fast ions driving the 

so-called sawbones [37,38], i.e. the variant of the well-known fishbones [39] that occurs with quasi-

tangential NBI and inevitably causes a sawtooth crash. Figure14 shows the time trace for one of the 

magnetic signals on the LFS and HFS midplane over the time window of interest, together with the 

main background plasma parameters. This data, particularly for the electron density and temperature, 

are plotted on the coarse time resolution of the equilibrium reconstruction, which does not allow to 

see the characteristic sudden crash associated to each individual sawtooth. 

The sawbones are well-known to be m=1/n=1 modes, however the fully processed magnetic traces at 

the frequency of interest give a value for the poloidal mode number mMEAS~qLCFS, i.e. close to the 

value of the safety factor at the LCFS. This surprising result can be understood by calculating the 

poloidal structure of the mode using the KINX code [40]. Figure15 shows the results obtained at 

t=0.6208sec, i.e. the closest equilibrium time point to that of the onset of the sawbone at t=0.6213sec. 

It is very evident from these analyses that indeed the sawbone is a mRES=1/n=1 mode at its 

corresponding resonant q-surface, however due to the Alfvén law of flux conservation and overall 

conservation of the mode’s helicity9 the poloidal mode structure at the LCFS shows all poloidal 

harmonics up to m=nfix(qLCFS), i.e. the closest integer (from below) to qLCFS. The harmonics-

weighted value of mKINX from KINX is ~2.8 at the LCFS, quite close to the measured value 

mMEAS~3.30.1 estimated using a linear phase fit of the Fourier Transform of the poloidal signals for 

the sensors on the LFS (more on this later …). In general, mMEAS estimated with this approach is quite 

close to the ansatz mMEAS~mRESqLCFS/qRES for TCV plasmas. 

The FT of the processed magnetic signals shows that the sawbone has multiple harmonics, and for 

these analyses we just focus on the fundamental, namely the one calculated with KINX: the data are 

 
9Empirically, if an internal mode, i.e. resonant at a q-surface rather far away from the LCFS, does not have the same 
helicity as that of the background plasma, it is heavily stabilized by the magnetic shear, therefore due to toroidicity effects 
across the poloidal cross-section additional poloidal harmonics must have appeared if the mode has been picked-up by 
magnetic sensors at the wall. Therefore, mMEAS depends on where the measurement is made, while n is the same across 
the poloidal cross-section for axisymmetric plasmas, and locally the dominant poloidal harmonics are such that 
mMEAS/nRES~q(), i.e. the mode helicity is conserved. 
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shown in fig16 for the toroidal and poloidal decomposition, respectively. The magnetic measurements 

are compared at four poloidal sectors separated by /2 and for six toroidal arrays located on the LFS 

and HFS at Z=0 (the MID array), Z=+345mm (the TOP array) and Z=-345mm (the BOT array). Since 

the plasmas sits at ZMAG~30mm and has positive triangularity, the toroidal {LFS, HFS}-{MID,TOP} 

arrays provide the more sensitive measurements. The difference between the corresponding sets of 

data on the LFS vs. the HFS indicates the possible ballooning structure of the mode, i.e. the role of 

the pressure gradient vs. the curvature of the magnetic field for the mode stability. 

Due to toroidal axisymmetry, we expect the measurements from the four poloidal arrays to be very 

similar, which is the case; however, the variation of the poloidal mode amplitude A(*) over the 

poloidal angle * in the field-aligned (thetastar) coordinate system at the LCFS is problematic for the 

analysis. In fact, the main assumption of the SparSpec algorithm is that the variation of the signal 

over the angular coordinate is solely due to a dependence on the mode number: for the poloidal 

analyses, this means Am(*)=A0,mcos(m*). Conversely, in the TCV case the measured poloidal 

variation is also due to the different distance (=dW, calculated along the normal to the LCFS) between 

the LCFS and the magnetic sensors at the wall, thus Am(*)=A0,m(dW(*),*)cos(m*). Hence, we 

always only use the liner phase fit method to determine the apparent mMEAS, and then considering 

only the poloidal sensors on the LFS (namely, the sensors 16 to 24 as shown in fig1a, for a total of 9) 

due to the possible ballooning structure of the mode. Such a procedure, however, does not allow to 

determine if the poloidal mode structure has multiple components, and this is precisely why we now 

attempt to use SparSpec-2D after a renormalization of the poloidal mode amplitude as function of dW. 

For this, we assume a WKB model for the decay of the wavefield in the vacuum region between the 

LCFS and the wall: AWALL=ALCFSexp(-kdW). Here k is the perpendicular wavenumber in this 

region and for it we take the proxy k=2(|mMEAS|+1)/LMAG, where LMAG is the magnetic field 

connection length, so that AWALL and ALCFS are the mode amplitudes at the wall (namely, that directly 

measured by the magnetic sensors) and reconstructed at the LCFS, respectively. 

For the SS-2D analyses, and for testing purposes, we combine the data from the LFS-MID array, 

which has two sensors (out of a total of 17) slightly displaced poloidally, or from the LFS-TOP array, 

for which all the sensors are exactly at the same poloidal position, with all LFS poloidal sensors in 

any of the four toroidal sectors fully equipped. For illustrative and consistency purposes, we consider 

all 28 sawbones that appear in #70281 before the large crash at t=0.87sec, thus intrinsically assuming 

that the same physics applies for understanding the results from the KINX code. The FT data are 

computed over the time window centred at the time of the sawbone crash 128sec (the acquisition 

frequency is 500kHz, so the FT time window encompasses a power-of-2 number of time points, which 

improves the FT accuracy as it avoids zero-padding). 
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Figure17(a,b) show the results of the detailed analyses performed with SS-2D vs. those performed 

with SS-H2 for the sawbone at t=0.6213sec, using the data from the LFS-MID and the POL-011 

arrays. The SparSpec analyses are performed using NMAX=6, MMAX=15, N,M=[3,3], REL=0.15, 

nIT=1000, TRIT=110-5. Comparing the experimental results with the modelling from KINX, we find 

that indeed SS-2D can resolve the multiple poloidal components of the mode, while SS-H2 clearly 

misses some components and allows spurious ones. The greater accuracy provided by SS-2D comes 

however with a significantly higher computational cost, around 65msec compared to less than 1msec 

for the SS-H2 analyses. Note that the excellent results by SparSpec-{1D,2D} for the poloidal 

decomposition are clearly conditional on having modelled correctly the decay of the mode amplitude 

as function of the distance from the LCFS. It is then reasonable to ask ourselves if applying SparSpec 

to TCV analyses is actually worth the effort, due to the quasi-orthogonal positioning of the sensors, 

with one ignorable coordinate for most, if not all, of them. The toroidal sensors are essentially equi-

spaced, hence a standard Fourier decomposition already works very well, and an ad-hoc functional is 

absolutely needed to (at least partially) compensate for the ballooning structure of the modes, while 

a linear phase fit already works well for the poloidal analyses, even if it does not allow to distinguish 

between different components. The ITER test analyses reported in Section-7 will show that there are 

indeed useful applications of SS-2D, but not really for TCV analyses. 

 

8. A set of simulated test cases for the ITER tokamak. 

While the TCV test case has demonstrated that SS-2D does not bring about much advantage, we now 

look at the ITER tokamak to check whether for a more generic arrangement of sensors SS-2D brings 

about any benefits. This is precisely the case of ITER for the two groups of sensors highlighted in 

green in fig1c, which are very closely spaced (as the H30N sensors in JET), but for which one 

coordinate is not ignorable. Our analyses use the algorithm for signal generation developed in [29], 

comparing the results obtained with the sensors highlighted in red and blue in fig1c, used by SS-H2, 

with those highlighted in green, used by SS-2D. 

The ITER measurement specifications [41, 42] demand that modes up to |n|=20 be correctly detected, 

i.e. within a 0.5 accuracy, and that the corresponding poloidal mode numbers are also correctly 

detected, within a 0.5 accuracy, without however specifying a measurement range: we then assume 

that this has to apply up to |m|=30. The subset of equi-spaced toroidal red sensors at the same vertical 

position (for instance extracted from those sitting around GEOM=30deg, i.e. the top toroidal red array 

in fig1c) only allows detecting |n|9 as they are exactly equi-spaced by /18. Adding (some of) the 

red sensors at a different vertical position allows to remove the Nyquist limitation, at the expense 

however of introducing errors through the dependence on the poloidal mode numbers. Similarly, for 
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the poloidal analyses the blue sensors are not all at the same toroidal angle, and this introduces errors 

particularly for high toroidal mode numbers, and correspondingly high poloidal mode numbers. Thus, 

there is a clear potential for concurrent 2D toroidal and poloidal analyses, and the two groups of green 

sensors are particularly suited for this task. 

The potential for a concurrent 2D analysis in ITER is also linked to the intended long-term (~30 

years) operation of these in-vessel magnetic sensors without maintenance nor replacement. It is 

inevitable that some of these sensors will fail due to irradiation and neutronics damage, and thus to 

maintain the same measurement performance it is correspondingly inevitable that sets of sensors 

without one ignorable coordinate will have to be used at some point during the life-time of ITER. 

Following from the description presented in [29], we construct a set of time traces for the measured 

voltage VMEAS,k(t)=NAEFF,kdB(t)/dt+k(s) for all the red and green sensors, hence simulating the 

measurements at the sensors’ position. Here NAEFF,k and k(s) are the effective area and the intrinsic 

measurement error in the Laplace domain, for each sensor. For these analyses the analogue vs. digital 

transfer functions are not used, as their role is not directly linked to the use of SparSpec. ITER plasmas 

are foreseen to have a LCFS essentially conformal to the wall, thus exp(-kdW) is the same for all 

sensor, therefore there is no need to rescale the mode amplitudes as for the TCV analyses, which 

greatly simplifies the overall understanding. Each time trace includes the same modes (=Eigenmodes) 

at various frequencies and with different toroidal and poloidal mode numbers, and each mode has a 

time-varying frequency and amplitude. This signal is then polluted with a background continuum 

component following a power-law spectrum and random (thus individualized for each sensor) noise 

with a characteristic colour. We then perform a Power Spectral Density (PSD) and an ensuing Fast 

Fourier Transform (FFT) analysis, dubbed PSD+FFT for simplicity, on each time trace and then apply 

SS-H2 and SS-2D, evaluating the overall score of the simulation results. As explained in details in 

[29], such score [01] accounts for the accuracy of the analysis in recovering the known input 

modes, namely their frequency10, amplitude and toroidal and poloidal mode numbers. Our simulations 

consider the case where at any frequency there is only one toroidal component, and single or multiple 

poloidal components depending on the physics of that Eigenmode. For illustrative purposes, fig18 

shows the time trace and the frequency spectrum for one simulation and for one of the sensors 

considered in our analyses. 

Each simulation is run only 100 times for statistical purposes, as it takes ~6hr of CPU time to generate 

the input signal over the entire set of red, blue and green sensors over a time window of ~35msec at 

 
10Since the analogue vs. digital calibration is not considered here, and the Eigenmodes have all a large amplitude with 
respect to the continuum background spectrum, the mode frequency is always found essentially exactly, i.e. the output 
mode frequency and its half-width at half-prominence (HWHP) from the PSD analysis always contains the input value. 
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a sampling frequency =2MHz, and then perform the analysis of the toroidal and poloidal mode 

numbers with the different algorithms considered here. Thirty-two individual time windows of 

1.024msec each can be analysed for each simulation (the edges of the simulation are always removed 

to avoid numerical problems with the integration (and the possible calibration) of the input signal). 

The 100x runs for each simulation are generated by randomizing the colour and intensity of the noise, 

set to be in the range max(k)=0.15, the power-law scaling for the continuum background spectrum 

around the Kolmogorov value =-5/3, namely from =-4/3 to =-6/3, and the relative amplitude of 

the different poloidal components, always using a single mode frequency with a unique toroidal mode 

number and keeping fixed the number of poloidal components. Multiple Eigenmodes are used for 

each simulation, with well-separated frequencies to avoid errors not specifically linked to the use of 

SparSpec. For the statistical SparSpec analyses reported in this Section, we have always used 

NMAX=20 and MMAX=30 as per the ITER measurement specifications, N,M=[3,3], REL=0.15, 

nIT=1000, TRIT=110-5. 

For the toroidal-1D analyses, we use the full set of red sensors at GEOM~30deg and we compare the 

results from the LPF method with those obtained with SS-H2, where we obtain the harmonic-

averaged toroidal mode number <nOUTH2>=knkAk
2/kAk

2, k being the index of all non-zero modes 

found with SS-H2 (we also constrain for simplicity and consistency kAk
2=1). Therefore, <nOUTH2> 

can then easily be checked against nOUTLF. For the poloidal-1D analyses, we use the two sets of blue 

sensors, and we compare mOUTLF with the similarly constructed harmonic-averaged poloidal mode 

number <mOUTH2>=kmkAk
2/kAk

2, For the {toroidal + poloidal} 2D analyses we use both sets of 

green sensors and again we obtain the harmonic-averaged value of the toroidal and poloidal mode 

numbers. Finally, we also consider the overall score of the simulation and the CPU run-time, noting 

however that the CPU run-time for SS-2D includes the concurrent {toroidal + poloidal} analyses, 

therefore it cannot be directly compared with the CPU run-time for the LPF and SS-H2 analyses, 

which includes only the toroidal and/or the poloidal analyses separately. 

Further to the description given in [29], the simulation score is computed as follows, separately for 

the toroidal and poloidal analyses11. The score is set to be =1.00 for perfect detection, and is penalized 

for each Eigenmode accordingly to the joint probability function of obtaining the output results, with 

their intrinsic scatter over the 100x simulations, within the input values with their intrinsic expected 

measurement accuracy IN. For SparSpec, the score is further penalized proportionally to the number 

of missed components, i.e. input components that are NOT found in the output. Note that it is not 

 
11As it will transpire later, the high toroidal mode numbers are typically AEs, which have multiple poloidal components, 
with successive and high poloidal mode numbers with similar amplitudes, a situation where it is essentially impossible to 
exactly determine each component. Thus, an overall score for the combined {toroidal + poloidal} analyses would indeed 
be heavily penalized by the latter, completely masking the fact that the former could be essentially correct … 
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possible to do the same for the LPF method, which is thus always favorably (and unfairly, in a sense) 

compared to the SparSpec methods. Since multiple poloidal mode numbers are accepted as input, and 

their amplitude can be chosen to be randomized, then <mIN> is also defined as the average value of 

m over all the 100x simulations run for each toroidal mode. 
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Considering now as a practical example the case of correctly detecting the variable yININ, with 

yOUTOUT being the corresponding output value, the score is then simply given by eq.(6). Note that 

IN is array-dependent (due to the number and positioning of the sensors) and also, most importantly, 

method-dependent, as the LPF method uses only the phase of the magnetic signals, while the 

SparSpec methods also use the amplitude of the magnetic signals. Thus, and perhaps counter-

intuitively, the intrinsic measurement accuracy for mode number detection using the SparSpec 

methods is always slightly larger than that for the LPF analyses. 

The values for IN are in principle frequency-dependent and are generated by polluting the exact 

complex {amplitude, phase} FT signals for each mode number with a randomly generated error signal 

accounting for all frequency-dependent measurement uncertainties for all the sensors belonging to 

the selected array. These equivalent FT measurements are then analysed with the selected method 

and this procedure is repeated 1’000 times for statistics. Figure19 shows the expected uncertainties 

for the toroidal and poloidal mode numbers used in the simulated ITER cases considered here, where 

we use the frequency-independent nominal values {max(k)=0.15, 10deg} for the amplitude and 

phase measurement uncertainties, respectively. The SS-2D method out-performs the 1D methods for 

higher toroidal mode numbers: for the selected groups of sensors there is not an ignorable coordinate, 

thus the phase differences along the coordinate orthogonal to the intended measurement can only be 

correctly dealt with by a 2D method. 

The simulations are performed using a first set of test cases with only low-n/low-m modes, n=1/m=1, 

n=1/m=2 and n=3/m=5, which correspond to TMs with a single dominant poloidal component at the 

resonant q-surface. Assuming a value of qLCFS=5 and the ansatz max(mLCFS)~mRESqLCFS/qRES, a 

second set of test cases is generated keeping the same low-n modes but now using multiple poloidal 

components with fixed or randomized amplitudes, i.e. considering the effect of toroidicity as for the 

TCV sawbones. Next, we consider TAEs with n={5,8,12,15,20}, i.e. up to the maximum value given 

by the ITER measurement specifications. These modes have two dominant poloidal harmonics {mRES, 
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mRES+1) at the resonant q-surface qRES=(2mRES+1)/2n. The third set of test cases considers only these 

two poloidal components for the TAEs, while the fourth (and last) set considers the toroidicity effects 

to get multiple poloidal components up to max(mLCFS), again with fixed or randomized amplitudes. 

Figure20 shows the results of these analyses, and the exact correspondence between simulation # and 

test case is reported in Table3. The toroidal mode numbers are generally correctly determined for all 

methods and all sensors’ arrangements (see the bottom subplot), namely the absolute difference 

rms(|ntorOUT-ntorIN|)<0.2 most often, but the scatter is significantly larger for the 1D methods when 

applied to sensors’ arrangements without an ignorable coordinate for higher ntorIN and/or when 

multiple poloidal components are  present in the input signal. Essentially the same result is obtained 

for the poloidal mode numbers (see the 2nd subplot from the bottom of the figure), but now the 

poloidal components can be badly reconstructed (a very large scatter) even for low-ntorIN modes 

when there are multiple poloidal harmonics. The CPU run-time for SS-2D is essentially the same for 

all simulations (see the middle subplot), while it rapidly increases for 2xSS-H2 for higher toroidal 

modes with multiple poloidal components. However, around 500msec are needed for each calculation 

(namely: for each mode frequency in each time interval) with SS-2D, and in absolute terms this is 

simply too much, and thus unattractive for routine analyses, even off-line. Regarding the simulation 

score for the toroidal analyses (see the second subplot from the top), this remains sufficiently high in 

all cases, as it is to be expected: we note however the increasing scatter for higher ntorIN and when 

multiple poloidal components are present. Regarding the simulation score for the poloidal analyses 

(see the top subplot), this clearly drops for higher ntorIN and, consequently, higher (and multiple) 

poloidal components. We note however that for the intermediate ntorIN that are most interesting for 

ITER, SS-2D consistently out-performs 2xSS-H2, due to a higher score with a smaller scatter around 

its rms value. 

In summary, we find that the SS-2D method clearly out-performs 2xSS-H2 (for the separate toroidal 

and poloidal analyses) in terms of accuracy for higher toroidal mode numbers, and as soon as there 

are multiple poloidal components with comparable amplitudes: the overall simulation score is higher 

and the scatter on the detected mode number is lower. This is simply due to having had to use arrays 

which cannot have any more an ignorable coordinate if the Nyquist limitation (toroidal analysis) and 

high-mode number detection with sufficiently good accuracy (the ITER measurement specifications 

for toroidal and poloidal analyses) have to be overcome. The computational cost of SS-2D vs. 2xSS-

H2 is however typically at least 10x higher. 

 

9. Summary, conclusions and an outlook to future work. 
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Up to this work, the main limitation of the SparSpec algorithm, in all its variants, was that it could be 

deployed only for 1D analyses, and most preferably using arrays with a (quasi-)exactly ignorable 

coordinate. Here we have extended the baseline version of SparSpec-1D, known as SS-H2, to allow 

for a concurrent 2D spatial analysis, comparing results from purely numerical simulations and 

multiple test cases from TCV and JET (real data) and ITER (simulated data but based on a clear and 

adequate physical model). 

For arrays which do not have a (quasi-)exactly ignorable coordinate, we find that SS-2D out-performs 

2xSS-H2 in terms of detection accuracy essentially for higher toroidal mode numbers, and as soon as 

there are multiple poloidal components with comparable amplitudes. This is indeed the general case 

of the ITER HF magnetic diagnostic system if the measurement requirements for toroidal and poloidal 

mode number analyses have to be satisfied. For ITER, the use of SS-2D may also become even more 

relevant when one considers the inevitable loss of in-vessel sensors due to failures and ageing of 

components under the extreme neutron and radiation fluxes. Conversely, there is essentially no use 

for SS-2D in TCV, where the toroidal and poloidal arrays are exactly orthogonal, nor in JET, due to 

the extremely limited number of available sensors, which are furthermore too sparsely distributed. 

The computational cost of SS-2D vs. 2xSS-H2 is however typically at least 10x higher if not more, 

and this makes it currently impossible to deploy SS-2D in real-time, contrary to the foreseen use of 

2xSS-H2 for ITER analyses and makes it rather un-attractive for off-line routine analyses. The reason 

for the much higher computational requirements for SS-2D is straightforward. All 1D versions of the 

SparSpec algorithm (SS-H2 and the two variants of SS-V5) are based on the BCD algorithm, 

combined with the IRLS method. We could not find in the literature any approach that would allow 

us to adapt the 1D BCD and IRLS algorithms into numerically efficient 2D methods suited to the 

specific requirements of our measurement problem. Therefore, the practical solution was to transform 

our 2D problem into a 1D problem. This worked numerically at the expense however of having to 

use much larger matrices, with the ensuing much higher CPU and RAM requirements even for a very 

advanced and optimized language such as Matlab. If a suitably optimized and adapted 2D version of 

the BCD+IRLS algorithm could be obtained, then we would expect the CPU run-time for SS-2D to 

massively decrease. 

Our final steps in the development of SparSpec are now that of implementing the error weighting of 

the penalization criterion (as per SS-V50) and then a memory and relaxation scheme (as per SS-V5) 

to improve the overall performance of the SS-2D algorithm. Based on our previous experience with 

the development from SS-H2 to SS-V5, we expect that these two steps could reduce the overall CPU 

run-time of SS-2D by a factor 3 to 5: SS-2D will still not be competitive with 2xSS-V5 (as this also 
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runs ~3-5 faster than SS-H2), but with a significantly reduced CPU run-time we expect that SS-2D 

will become more attractive for routine analyses, at least in the off-line environment. 
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Figure1a, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure1a. A schematic layout of the distribution of the HF magnetic sensors in the TCV tokamak. 

In TCV we have 38x Mirnov sensors each in four poloidal arrays, 17x sensors each in the three 

toroidal arrays on the low-field-side, and 8x sensors each in the three toroidal arrays on the high-

field-side. Additionally, we also have 3x LTCC-3D sensors, acquired at a higher frequency.  In the 

plot on the left, the blue dots are the Mirnov sensors, the red diamonds are the LTCC-3D sensors. 

The poloidal angle is determined using the geometrical centre of the machine (R0. Z0) and is 

oriented clock-wise, so that the values ={0,} correspond to the midplane (Z=Z0) on the HFS and 

on the LFS, respectively. The value =0 corresponds to the weld attaching the first toroidal sector 

#1 to the last toroidal sector #16. In the plot on the right, the actual equilibrium for the TCV shot 

#70281 at t=0.6208sec is used: the main equilibrium parameters are B0=-1.43T, Ip=-230kA, 

qEDGE=4.15, EDGE=1.32, TOP,EDGE=0.23 and BOT,EDGE=0.29. The little red squares on the TCV 

wall show the poloidal position, with the corresponding labelling, of the 38x Mirnov sensors in the 

four toroidal sectors-{003,007,011,015}, i.e. those equipped with the full poloidal complement of 

magnetic sensors. The big blue diamond indicating the poloidal position of the LTCC-3D sensors 

has been slightly displaced outwards for clarity of plotting, as otherwise it would exactly overlap 

poloidally with the Mirnov sensor #21. 
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Figure1b, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure1b. A schematic layout of the distribution of the HF magnetic sensors in the JET tokamak, 

i.e. those later used for the analyses reported in this and its two companion papers [1,2], together 

with a 3D folded view of the inner and the outer vessel structure. Different sets of HF magnetic 

sensors exist, for purely toroidal (the T-coils, the poloidal coordinate being the same for all of them, 

thus becoming ignorable) and purely poloidal (the PP-coils, the toroidal coordinate being the same 

for all of them, thus becoming ignorable) analyses, sitting on the inner (just a few, the purely 

poloidal I-coils) and the outer (most of them) vessel walls. Some of these sensors are positioned 

very close to each other to form a high-resolution array (the H-coils) with 8 sensors: when all the 

H-coils are used concurrently, there is no more an ignorable coordinate, and therefore this array 

could become suitable for combined toroidal and poloidal analyses. 
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Figure1c, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure1c. A schematic layout of the intended (i.e. as currently designed) distribution of the HF 

magnetic sensors in the ITER tokamak. As in TCV, most of the different poloidal and toroidal 

arrays are almost exactly orthogonal (for instance, those highlighted by the red and blue contours), 

but a subset of high-resolution sensors can be found for which both coordinates are not-ignorable 

(for instance, those highlighted with the green contours), as in JET. Highlighted in red and blue are 

the four groups of sensors that are currently intended to be used for the 1D toroidal (2x red) and 

poloidal (2x blue) analyses, respectively. The main difference between the two sets of the same 

colour is that one has NOT, while the other HAS, high-resolution (i.e. tightly spaced) sensors. The 

bottom red toroidal array sits at the nominal GEOM=-30deg (i.e. determined using the geometric 

centre of the machine) and has 41 non equi-spaced sensors not all sitting exactly at the same GEOM. 

The top red toroidal array sits at the nominal GEOM=+30deg and has 30 non equi-spaced sensors, 

without high-resolution ones. In both red arrays there is a subset of 18 equi-spaced ones sitting at 

the same GEOM. The blue poloidal array sitting at ~-120deg has 24 sensors, including some high-

resolution ones. The blue poloidal array sitting at ~-80deg has 19 sensors, without high-resolution 

ones. For both poloidal arrays the sensors do not sit all exactly at the same . Finally, the two 

groups of green sensors are those selected for the 2D analyses, have 37 and 24 sensors each, and 

both include two sets of high-resolution sensors; the main geometrical difference between them is 

that one covers a larger toroidal extent, ~120deg compared to ~30deg. 
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Figure2a, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure2a. An illustrative example of a single test run for SparSpec-2D using NSENS=40 randomly 

distributed and (quasi-)orthogonal sensors (thus with a (quasi-)ignorable coordinate). For this test 

run we have used NCOMP=3=MCOMP, REL=0.15, max({k/, k, l})=0.15, NMAX=5, MMAX=15 and 

FmaxS{N,M}=5{N,M}MAX. The bottom frame shows the spatial distribution of the sensors, the 

middle frame the relative difference in the input vs. output 2D signal mapping. The top frame shows 

the input components with red filled circles, whose size is proportional to the mode amplitude, 

while the background image shows the output signal components, whose amplitude is color-coded 

by the colorbar. For this test run, all input components are correctly detected, thus producing a 

rather small error on the overall energy conservation, but the computational cost is high. 
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Figure2b, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure2b. The same analysis as in fig2a but now using two separate runs of SS-H2, for the toroidal 

and poloidal 1D analyses, respectively. The two bottom frames show the results of the poloidal 

analyses, respectively the sensors distribution and the output vs. input mode amplitudes. The two 

top frames show the corresponding results for the toroidal analyses. The accuracy of the results is 

excellent considering that the (toroidal, poloidal) sensors are not exactly aligned at {=0, =0}: the 

relative error on the energy conservation and on the output vs. input mode amplitudes is essentially 

due to not respecting this condition of exact orthogonality. Note the much shorter computational 

time of SS-H2 with respect to SS-2D, a fraction of a millisecond compared to >25msec. 
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Figure3a, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure3a. An illustrative example of a single test run for SparSpec-2D using NSENS=40 randomly 

spaced and no-orthogonal sensors, with NCOMP=3=MCOMP, REL=0.15, max({k/, k, l})=0.15, 

NMAX=5, MMAX=15 and FmaxS{N,M}=5{N,M}MAX. The same plotting format as in fig2a is used. 

The SparSpec-2D algorithm does indeed very well in detecting the input modes, however at the 

rather significant computational cost ~20msec for 10 iterations. 
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Figure3b, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure3b. The same analysis as in fig3a but now using two separate runs of SS-H2, for the toroidal 

and poloidal 1D analyses, respectively; the plotting format is the same as in fig2b. Now there is a 

large discrepancy in the output vs. the input mode amplitudes, for both the poloidal and toroidal 

components, but the mode number is still correctly detected for all the toroidal and poloidal 

components. The computational cost is still very low, a fraction of a millisecond for ~20 iterations 

for each SS-H2 analyses compared to ~20msec for 10 iterations for the SS-2D analysis. Therefore, 

it is clear that only when needing to correctly detecting the mode amplitudes, and not solely the 

mode numbers, SS-2D does a much better job than 2xSS-1D, and thus should be preferably used. 
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Figure4, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure4. An illustrative example of the SS-2D results for a specific sensor arrangement: a square 

of varying half-length for each side. This analysis was performed for a single set of test modes: 

(n1,m1)=(2,0), (n2,m2)=(2,4) and (n3,m3)=(3,-3), all with amplitude A0=1, always using NSENS=40 

randomly spaced sensors. For this test run NCOMP=3=MCOMP, REL=0.15 and max({k, l})=0.15 

randomized at each run, and NMAX=6 MMAX=15, FmaxS{N,M}=5{N,M}MAX were used. Finally, 

100 iterations were run for each value of the radius. It is clear that for this specific test case at least 

R/>0.4 is needed to obtain sufficiently accurate results in a sufficiently short computational time, 

and that going beyond R/>0.65 does not bring much further improvements in the accuracy and 

speed of the calculations. 
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Figure5, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure5. An illustrative example of the SS-2D results for a specific input signal, with multiple 

poloidal components for each toroidal component. The results are quite satisfactory: only the 

lowest poloidal amplitude modes with A0(m,n)<0.15 are not detected, and essentially no spurious 

components are found. For this test run we used NSENS=40 randomly spaced and not-orthogonal 

sensors, with NCOMP=3, MCOMP=[3,2,1], REL=0.15, {k, l}=0.15, NMAX=6, MMAX=15, 

FmaxS{N,M}=5{N,M}MAX. The same plotting format as in fig2a is used. 
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Figure6, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure6. An illustrative example of the SS-2D results for a specific input signal, assessing the 

speed and accuracy of the results as function of the number of sensors. This analysis was performed 

for a single set of test modes: (n1,m1)=(2,0), (n2,m2)=(10,-4), (n3,m3)=(-2,14), and (n4,m4)=(-10,15), 

all with an amplitude A0=1; for this test run NCOMP=4=MCOMP, REL=0.15 and {k, l}=0.15, 

NMAX=35, MMAX=50, and FmaxS{N,M}=5{N,M}MAX were used. Finally, 100 iterations were run 

for each value of the number of sensors. It is clear that at least 25 to 30 sensors are needed as a 

minimum, but a much larger number >50 is also counter-productive, as the (randomized in our test 

simulation) measurement errors start having a big impact on the accuracy of the results for very 

closely spaced sensors. 
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Figure7, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure7. Testing the accuracy and the computational cost of SparSpec-2D vs. the number of atoms 

used by the BCD algorithm. This analysis was performed always using five randomly chosen input 

toroidal modes, with MCOMP=[3,1,2,4,1], NMAX=25, MMAX=35, NSENS=40 randomly spaced, {k, 

l}=0.15 and REL=0.15, repeating the analysis 100 times for each set of input toroidal modes. The 

number of atoms was scanned as FmaxS{N,M}={N,M}MAX. A rather characteristic bell-shape 

curve is obtained, with a minimum around =5, but already for =3 the relative error on the energy 

conservation E/E is close to the input {k, l}=0.15. 
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Figure8, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure8. Testing the accuracy and the computational cost of SparSpec-2D vs. the measurement 

errors, simulated in this case. This analysis was performed always using five randomly chosen 

input toroidal modes, with MCOMP=2 randomized at each run, NMAX=15, MMAX=25, =5, NSENS=40 

randomly spaced and not-orthogonal, REL=0.15, repeating the analysis 100 times for each value 

of k and l. As expected, the measurement performance decreases for increasing measurement 

errors. We notice that the results as function of l are (a) typically not as good as and (b) more 

scattered than those as function of k, probably because (a+b) the relatively low number of tests 

does not allow for a sufficiently good statistical analysis, while quite reasonably (a) it is more 

problematic to detect correctly more poorly defined input mode amplitudes. 
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Figure9a, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure9a. Testing the accuracy and the computational cost of SS-2D vs. 2xSS-H2 as function of 

REL for NCOMP=110 at fixed MCOMP=NCOMP. For this run we have used NSENS=40 randomly 

distributed toroidal sensors, NMAX=35 and MMAX=50, max({k, l})=0.15 (in relative units), 

{k}0.2, FmaxS{N,M}=3{N,M}MAX, nIT=1000 and TRIT=110-5. The results presented here 

are the RMS and STD values over 10’000 runs for each value of {NCOMP, REL}. The number of 

faults is typically 6x lower for SS-2D than for 2xSS-H2, a clear improvement in the performance. 

The results are more complex to interpret for the energy conservation: we find that for a sufficiently 

low number of components, up to NCOMP=3, SS-2D clearly out-performs 2xSS-H2 for all values of 

REL; however, for NCOMP>5 the SS-2D results are much less convincing. Note in any case the 

significantly larger CPU run-time requirements for SS-2D. 
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Figure9b, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure9b. As in fig9a but now using NSENS=40 equi-spaced toroidal sensors: the results are quite 

similar, which again points to SS-2D being useful essentially for a low number of input components 

up to NCOMP=5 at the most, practically irrespectively of the arrangement of toroidal sensors. The 

only clear difference in the SS-2D performance between using randomly vs. equi-spaced toroidal 

sensors is the CPU run-time, significantly longer in the latter case. 

 
 
  



45 

Figure10, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure10. Testing the accuracy and the computational cost of SS-2D vs. 2xSS-H2 as function of 

different arrangement of sensors: orthogonal vs. non-orthogonal, randomly vs. uniformly 

distributed in the toroidal direction. For these analyses we use REL=0.15: we now find a clear 

improvement from SS-2D up to NCOMP=5 toroidal and poloidal components, specifically when non-

orthogonal sensors are used. The computational cost is however very high: CPU is typically ~330x 

times longer for SS-2D than for 2xSS-H2. 
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Figure11, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure11. As in fig10 but now using a lower value REL=0.05: this does not bring about any 

significant further improvement in the performance of SS-2D, and actually CPU is typically much 

longer than for REL=0.15, due to the significantly larger value for nITout needed for convergence. 
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Figure12, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure12. Testing the accuracy and the computational cost of SS-2D vs. 2xSS-H2 as function of 

the number of poloidal components for each toroidal mode, using only randomly distributed and 

non-orthogonal sensors. Now it is very clear where the main advantage of SS-2D is with respect to 

2xSS-H2: in tokamaks we typically have multiple poloidal components for a single toroidal mode, 

and SS-2D definitively out-performs 2xSS-H2 for the analyses of this experimental situation. The 

computational cost is however very high, but the accuracy is significantly improved with the SS-

2D analyses. The deterioration of the performance of SS-2D for NCOMP>3 and MCOMP>3 is probably 

due to RAM limitations in the laptop used for these simulations, so that only =3 could be used. 
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Figure13(a,b), D.Testa, J.Charrière, paper SparSpec2D-V1 

  

Figure13(a,b). The spectrograms, annotated for clarity of interpretation, for the poloidal mode 

number for the JET shots #49384 (fig13a) and #55604 (fig13b), obtained using SS-2D and the 

H30N high resolution toroidal and poloidal sensors. For the TAEs in #49384 (fig13a) the value of 

the measured apparent poloidal mode number is scaled in the annotation through qLCFS to provide 

an estimate of mTAE at qRES. We find that multiple poloidal harmonics exist for each one of the 

toroidal mode numbers nTAE=35 for the measured modes, and the resulting weighted value 

mTAE=(mPOLAPOL
2)/APOL

2 annotated in the spectrogram is rather far away from an integer. This 

can somewhat also be seen directly in the spectrogram, as the colour coding for the mode changes 

with time, indicating that different poloidal harmonics become dominant as the discharge evolves, 

due to the evolution of the current profile, hence qLCFS. Conversely, for the ACs in #55604 (fig13b) 

we essentially find one largely dominant poloidal mode number, and thus (a) the weighted average 

is much closer to an integer, and (b) the colour coding for the modes does not really change with 

time, consistently with (a). 
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Figure14, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure14. The main background plasma parameters and two illustrative magnetic traces for the 

TCV shot #70281, showing the characteristic bursting behaviour of the sawbones. The frequency 

spectrum and the toroidal and poloidal mode structure of the sawbone starting at t=0.6213sec is 

then analysed in more details in fig16. The amplitude of the sawbones on the time trace is typically 

~15G-peak on the LFS vs. ~5G-peak on the HFS, which indicates that these are pressure-driven 

modes stabilized by the curvature of the magnetic field. The major event at t=0.87sec is a partial 

disruption deliberately triggered via the notch in the NBH power for RT control purposes. 
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Figure15, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure15. The poloidal mode structure for the n=1 mode, calculated using the KINX code at 

t=0.6208sec, which is the equilibrium time point closest to the onset of the sawbone at t=0.6213sec. 

While the dominant poloidal harmonic at the resonant q-surface is mRES=1, as naturally expected, 

the poloidal mode structure changes appreciably over the poloidal cross-section. At the plasma 

edge the dominant poloidal harmonics are m=2 and m=3. with an approximately equal amplitude, 

and there is still a significant m=1 component. It is therefore only natural, although very often 

misunderstood as an error in the analyses, that the magnetic sensors located at the wall will measure 

an apparent poloidal mode number mMEAS different from the resonant one mRES. 

[KINX analyses and figure courtesy of Dr. Matteo Vallar, SPC-EPFL]. 
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Figure16, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure16. The frequency spectrum and the toroidal and poloidal mode structure of the sawbone 

starting at t=0.6213sec128sec is analysed in more details. For clarity of illustration, the position 

of the magnetic sensors has been slightly shifted between the different measurement arrays. While 

the toroidal mode amplitude is essentially invariant over , thus clearly indicating a single toroidal 

component, the poloidal mode amplitude depends on * at the LCFS. The poloidal mode numbers 

can only be calculated using a linear phase fit of the signal acquired by the poloidal LFS sensors 

(namely, the sensors 16 to 24 as shown in fig1a), for which the phase indeed changes linearly. 
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Figure17a, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure17a. The results of the SS-2D analyses for the sawbone starting at t=0.6213sec128sec, 

performed using the LFS-MID array and the LFS sensors from the POL-011 array. Only the 

toroidal component n=-1 is found, as expected, while the poloidal components m=[2,3,4] are all 

recovered from the dataset, which is consistent with a value of the safety factor at the LCFS qLCFS~4 

and the KINX analyses. The poloidal angular coordinate is determined from the geometrical 

projection of the {R,Z} probe’s position onto the LCFS along the normal direction. Moreover, the 

FT amplitude for these poloidal sensors is rescaled by exp(kdW) to at least attempt to remove the 

dominant dependence of the signal amplitude on the distance between the probes and the LCFS. 
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Figure17b, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure17b. The results of the SS-1D analyses for the sawbone starting at t=0.6213sec128sec, 

performed using the LFS-MID array and the LFS sensors from the POL-011 array using the same 

poloidal angular coordinate and rescaling of the FT poloidal amplitude as in fig17a. SS-H2 finds 

only the n=-1 mode and the 2 dominant poloidal components are m={2,3} which is also consistent 

with the results from KINX and already provides an indication of the multi-harmonic poloidal 

structure of this mode. The greater accuracy in the poloidal analyses by SS-2D is paid with a much 

higher computation cost, ~65msec for SS-2D vs. less than 1msec for SS-H2: is SS-2D really worth 

the effort in TCV then? 
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Figure18, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure18. The time trace and the frequency spectrum for one simulation and for one of the sensors 

considered in our ITER analyses. The input signal sigTT includes the poloidal equilibrium field 

B0, that is assumed to have been rectified by the vessel at 30Hz, and the 1kHz chopping frequency 

used by the DAQ to separate the slow acquisition (used for equilibrium analyses and RT control) 

from the fast acquisition at 2MHz (used for MHD analyses, both on-line and off-line). Following 

the nomenclature in [29], a background continuum Kolmogorov power spectrum, i.e. such that 

powerfrequency-5/3, and pink noise are used to pollute sigTT. There are three input modes, all 

with slowly varying frequency and amplitude over the ~35mec time window of this simulation. 

The traces in red show the (frequency analysis of the) detrended sigTT, i.e. after software removal 

of B0. For the frequency analysis, and for illustrative purposes, we compare the FFT vs. the PSD 

spectrum evaluated over the entire time window of the simulation. The latter is evidently much 

cleaner and therefore more suitable to identify the individual frequency components, some of which 

are indeed the input Eigenmodes. 
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Figure19, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure19. The expected detection uncertainties for the toroidal and poloidal mode numbers used 

in the simulated ITER cases considered here, where we use the frequency-independent nominal 

values {max(k)=0.15, 10deg} for the amplitude and phase measurement errors, respectively. 

These are nominal minimum values, namely each method cannot determine the mode numbers to 

better than the accuracy reported in this graph given the measurement uncertainties on the input 

(calibrated) magnetic data. The analysis is performed running 1’000 simulations with randomly 

generated amplitude and phase errors, always using for simplicity the pair of mode numbers {m,n} 

such that m=nqRES, with qRES=2 in this case. We note that SS-2D out-performs the 1D methods 

for higher toroidal mode numbers, simply because for the selected groups of sensors there is not an 

ignorable coordinate, thus the phase differences along the coordinate orthogonal to the intended 

measurement axis can only be correctly dealt with by a 2D method. 
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Figure20, D.Testa, J.Charrière, paper SparSpec2D-V1 

Figure20. The relative error, overall CPU run-time and simulation score for toroidal and poloidal 

mode number detection using the selected sets of magnetic sensors in ITER. The toroidal array at 

=+30deg and the poloidal array at =-70deg do not have high-resolution sensors, and are thus 

combined to give the LowRes results for the estimation of the overall CPU run-time, while the 

toroidal array at =-30deg and the poloidal array at =-120deg have high-resolution sensors and 

are then combined to give the HighRes results. The 23 test cases for which the results are reported 

here are labelled by the input toroidal mode number in the simulations, and for the same ntorIN a 

different poloidal spectrum is used: the exact correspondence between is reported in Table3. The 

variable plotted is the rms value over all the 100x simulations performed for each test case, with 

the error bar representing the scatter (estimated by the standard deviation) around the central result. 
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Table1, D.Testa, J.Charrière, paper SparSpec2D-V1 

shot t0[sec] f0[kHz] nLF nH2 n2D mLF mH2 m2D 

49384 2.65 83.25 3.07±0.10 3, A=0.85 3, A=0.83 5.43±0.27 

5, A=0.63 5, A=0.52 

6, A=0.57 6, A=0.69 

7, A=0.33 7, A=0.23 

8, A=0.25 8, A=0.29 

49384 2.65 88.37 4.12±0.08 4, A=0.82 4, A=0.85 6.78±0.42 

6, A=0.61 5, A=0.50 

7, A=0.48 6, A=0.49 

8, A=0.54 7, A=0.51 

 8, A=0.27 
 9, A=0.81 

49384 2.65 92.85 4.96±0.12 5, A=0.87 5, A=0.79 8.27±0.45 

8, A=0.65 8, A=0.81 

9, A=0.56 9, A=0.41 

10, A=0.40 10, A=0.23 

49384 2.65 92.85 4.96±0.12 5, A=0.83 5, A=0.85 8.27±0.45 

0, A=0.65 0, A=0.59 

4, A=0.49 4, A=0.50 

8, A=0.29 13, A=0.35 

17, A=0.38 23, A=0.27 
 25, A=0.29 

49384 2.85 101.27 3.05±0.08 3, A=0.88 3, A0.78 5.66±0.54 

5, A=0.54 5, A=0.50 

6, A=0.59 6, A=0.64 

7, A=0.38 7, A=0.31 

8, A=0.31 8, A=0.36 

49384 2.85 106.04 4.15±0.15 4, A=0.92 4, A=0.84 7.12±0.48 

6, A=0.25 7, A=0.77 

7, A=0.57 8, A=0.36 

8, A=0.62 9, A=0.37 

9, A=0.34 10, A=0.17 

49384 2.85 112.45 5.06±0.08 5, A=0.77 5, A=0.82 8.35±0.37 

8, A=0.54 8, A=0.39 

9, A=0.66 9, A=0.45 

10, A=0.27 10, A=0.54 

11, A=0.29 11, A=0.43 
 12, A=0.22 

49384 3.25 110.23 3.13±0.13 3, A=0.82 3, A=0.83 5.43±0.54 

6, A=0.67 5, A=0.27 

7, A=0.44 6, A=0.50 

8, A=0.50 7, A=0.53 
 8, A=0.51 

49384 3.25 117.45 4.06±0.09 4, A=0.78 4, A=0.84 6.77±0.37 

7, A=0.31 7, A=0.40 

8, A=0.40 8, A=0.50 

9, A=0.52 9, A=0.46 

10, A=0.60 10, A=0.52 

49384 3.25 124.87 5.14±0.06 5, A=0.82 5, A=0.75 8.49±0.40 

8, A=0.49 8, A=0.53 

9, A=0.49 9, A=0.59 

10, A=0.39 10, A=0.44 

11, A=0.35 11, A=0.25 

12, A=0.37 12, A=0.17 
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Table2, D.Testa, J.Charrière, paper SparSpec2D-V1 

shot 
time 
[sec] 

freq. 
[kHz] 

n 
lin. fit 

n 
SS-H2 

n 
SS-2D 

m 
lin. fit 

m 
SS-H2 

m 
SS-2D 

55604 3.55 47.23 4.05±0.07 4, A=0.88 4, A=0.83 8.12±0.35 
8, A=0.72 8, A=0.79 

9, A=0.62 9, A=0.60 

55604 3.60 60.12 4.12±0.05 4, A=0.78 4, A=0.83 8.09±0.29 

7, A=0.62 8, A=0.74 

8, A=0.47 9, A=0.58 

9, A=0.53 10, A=0.43 

55604 3.65 74.76 4.07±0.0.12 4, A=0.82 4, A=0.87 8.23±0.48 8, A=0.86 
8, A=0.68 

9, A=0.65 

55604 3.90 50.23 3.12±0.12 3, A=0.87 3, A=0.85 6.07±0.54 

5, A=0.67 5, A=0.58 

6, A=0.69 6, A=0.63 
 7, A=0.40 

55604 4.00 75.23 2.98±0.13 3, A=0.82 3, A=0.84 6.23±0.49 

5, A=0.57 6, A=0.70 

6, A=0.54 7, A=0.64 

7, A=0.49 8, A=0.57 

55604 4.05 87.54 3.15±0.05 3, A=0.78 3, A=0.88 6.14±0.32 

6, A=0.72 5, A=0.54 

7, A=0.58 6, A=0.52 
 7, A=0.53 

55604 4.10 93.37 3.08±0.05 3, A=0.81 3, A=0.82 6.23±0.45 

5, A=0.67 6, A=0.62 

6, A=0.45 7, A=0.70 

7, A=0.42 8, A=0.62 

55604 4.20 51.12 2.87±0.27 2, A=0.79 2, A=0.75 4.12±0.36 

4, A=0.67 4, A=0.62 

5, A=0.64 5, A=0.54 
 6, A=0.36 

55604 4.30 65.35 2.49±0.23 2, A=0.81 2, A=0.78 4.15±0.40 

4, A=0.48 4, A=0.59 

5, A=0.63 5, A=0.54 

6, A=0.54 6, A=0.44 

55604 4.40 85.38 2.15±0.13 2, A=0.83 2, A=0.87 4.23±0.42 

4, A=0.67 4, A=0.75 

5, A=0.67 5, A=0.59 
 6, A=0.45 

55604 4.50 91.23 2.05±0.15 2, A=0.75 2, A=0.82 4.12±0.43 

4, A=0.50 4, A=0.79 

5, A=0.52 5, A=0.53 

6, A=0.59 6, A=0.43 

55604 4.50 91.23 2.05±0.15 2, A=0.75 2, A=0.82 4.12±0.52 

0, A=0.70 0, A=0.73 

3, A=0.32 2, A=0.17 

11, A=0.27 4, A=0.28 

35, A=0.32 18, A=0.25 

37, A=0.14 25, A=0.32 
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Legend for Table1 and Table2, D.Testa, J.Charrière, paper SparSpec2D-V1 

Table1. The toroidal and poloidal mode numbers calculated separately using the linear phase fit 

method (={n,m}LF) and 2xSS-H2 (={n,m}H2) vs. concurrently using SS-2D ({n,m}2D). For the 

separate toroidal and poloidal analyses, the subset of sensors [H301, H302, H303, H304, H305] 

and [H304, H305, H306, H307] were separately used, respectively. Note that for the TAE modes 

in #49384 the poloidal mode number is always scaled by the nearest (towards zero) integer to the 

value of qLCFS. In italic one example of the results of the 2xSS-H2 and SS-2D analyses performed 

using the currently surviving set of H30N magnetic sensors [H302, H303, H304, H305]. While it 

is clear that SS-2D provides results which are consistent with our theoretical understanding of TAE 

modes, in this particular instance these are not necessarily more accurate than those from 2xSS-

H2, but they need a much more intensive CPU and RAM usage. When using the currently available 

reduced subset of H30N sensors, the toroidal mode numbers are correctly detected by SS-H2 and 

SS-2D, but the poloidal mode numbers are most definitively wrong. 

 
 
Table2. As in Table1 but for #55064. Note that here the poloidal mode number is NOT scaled by 

the nearest (towards zero) integer to the value of qLCFS. The result are essentials the same: it is clear 

that while TAEs have multiple poloidal harmonics, and are subject to toroidicity effects since are 

more localised modes, ACs are global modes characterised by a single dominant poloidal harmonic, 

and thus are much less sensitive to the toroidicity effects that would make the poloidal mode content 

at the wall, i.e. as measured by the magnetic sensors, different from that at the resonant q-surface: 

qRES=m/n=qMIN for ACs, while qRES=(2m+1)/2n for TAEs. 
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Table3, D.Testa, J.Charrière, paper SparSpec2D-V1 

ntorIN mpolIN A(au) <mpolIN> max. IN for ntorIN max. IN for mpolIN 
1 1 1 1.00 0.35 0.35 
1 2 1 2.00 0.35 0.38 
1 1 to 4 0.10;0.25;0.35;0.30 3.00 0.35 0.49 
1 3;4;5 0.15;0.70;0.15 4.00 0.35 0.62 
3 5 1 5.00 0.35 0.75 
3 10;11;12 0.10;0.70;0.20 11.10 0.35 1.58 
3 10;11;12 0.30;0.35;0.35 11.00 0.35 1.58 
3 11 to 15 rand: >0.10 & <0.30 11.96 0.35 1.72 
5 10;11 0.50;0.50 10.50 0.38 1.50 
5 21 to 25 0.20 (each) 23.00 0.38 3.20 
5 21 to 25 rand: >0.10 & <0.30 22.53 0.38 3.20 
8 16;17 0.50;0.50 16.50 0.59 2.25 
8 36 to 40 0.20 (each) 38.00 0.59 5.45 
8 36 to 40 rand: >0.10 & <0.30 37.97 0.59 5.45 

12 24;25 0.50;0.50 24.50 0.86 3.54 
12 51 to 55 0.20 (each) 53.00 0.86 7.50 
12 51 to 55 rand: >0.10 & <0.30 53.26 0.86 7.50 
15 30;31 0.50;0.50 30.50 1.07 4.35 
15 66 to 70 0.20 (each) 68.00 1.07 9.80 
15 66 to 70 rand: >0.10 & <0.30 67.56 1.07 8.80 
20 40;41 0.50;0.50 40.50 1.42 5.70 
20 86 to 90 0.20 (each) 88.00 1.42 12.50 
20 86 to 90 rand: >0.10 & <0.30 87.65 1.42 12.50 

Table3. The input parameters for the simulations used to determine the {toroidal, poloidal} mode 

number detection score for the SS-2D vs. SS-H2 vs. the LPF methods for the selected groups of 

ITER magnetic sensors. Here A is the relative mode amplitude for each poloidal component for the 

single toroidal mode, normalized such that kAk
2=1, and <mpolIN> is the average value of mpolIN 

over all the 20x simulations run for each toroidal mode, <mpolIN>=kmpolINkkAk
2/kAk

2. 

 
 
 


