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Abstract

It is widely believed that the success of deep networks lies in their ability to learn a
meaningful representation of the features of the data. Yet, understanding when and
how this feature learning improves performance remains a challenge: for example,
it is beneficial for modern architectures trained to classify images, whereas it is
detrimental for fully-connected networks trained on the same data. Here we propose
an explanation for this puzzle, by showing that feature learning can perform worse
than lazy training (via random feature kernel or the NTK) as the former can lead
to a sparser neural representation. Although sparsity is known to be essential for
learning anisotropic data, it is detrimental when the target function is constant or
smooth along certain directions of input space. We illustrate this phenomenon in
two settings: (i) regression of Gaussian random functions on the d-dimensional unit
sphere and (ii) classification of benchmark datasets of images. For (i), we compute
the scaling of the generalization error with the number of training points and show
that methods that do not learn features generalize better, even when the dimension
of the input space is large. For (ii), we show empirically that learning features
can indeed lead to sparse and thereby less smooth representations of the image
predictors. This fact is plausibly responsible for deteriorating the performance,
which is known to be correlated with smoothness along diffeomorphisms.

1 Introduction

Neural networks are responsible for a technological revolution in a variety of machine learning tasks.
Many such tasks require learning functions of high-dimensional inputs from a finite set of examples,
thus should be generically hard due to the curse of dimensionality [1, 2]: the exponent that controls
the scaling of the generalization error with the number of training examples is inversely proportional
to the input dimension d. For instance, for standard image classification tasks with d ranging in
103÷ 105, such exponent should be practically vanishing, contrary to what is observed in practice [3].
In this respect, understanding the success of neural networks is still an open question. A popular
explanation is that, during training, neurons adapt to features in the data that are relevant for the
task [4], effectively reducing the input dimension and making the problem tractable [5–7]. However,
understanding quantitatively if this intuition is true and how it depends on the structure of the task
remains a challenge.
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Figure 1: Feature vs. Lazy in image classification. Generalization error as a function of the training-
set size n for infinite-width fully-connected networks (FCNs) trained in the feature (blue) and lazy
regime (orange). In the latter case the limit is taken exactly by training an SVC algorithm with the
analytical NTK [23]. In the former case, the infinite-width limit can be accurately approximated for
these datasets by considering very wide nets (H = 103), and performing ensemble averaging on
different initial conditions of the parameters as shown in [24, 25]. Panels correspond to different
benchmark image datasets [26–28]. Results are averaged over 10 different initializations of the
networks and datasets.

Recently much progress was made in characterizing the conditions which lead to features learning, in
the overparameterized setting where networks generally perform best. When the initialization scale
of the network parameters is large [8] one encounters the lazy training regime, where neural networks
behave as kernel methods [9, 10] (coined Neural Tangent Kernel or NTK) and features are not learned.
By contrast, when the initialization scale is small, a feature learning regime is found [11–13] where
the network parameters evolve significantly during training. This limit is much less understood apart
from very simple architectures, where it can be shown to lead to sparse representations where a
limited number of neurons are active after training [14]. Such sparse representations can also be
obtained by regularizing the weights during training [2, 15].

In terms of performance, most theoretical works have focused on fully-connected networks. For
these architectures, feature learning was shown to significantly outperform lazy training [16–19, 11]
for certain tasks, including approximating a function which depends only on a subset or a linear
combination of the input variables. However, when such primitive networks are trained on image
datasets, learning features is detrimental [20, 21], as illustrated in Fig. 1 (see [19, Fig. 3] for the
analogous plot in the case of a target function depending on just one of the input variables, where
learning features is beneficial). A similar result was observed in simple models of data [22]. These
facts are unexplained, yet central to understanding the implicit bias of the feature learning regime.

1.1 Our contribution

Our main contribution is to provide an account of the drawbacks of learning sparse representations
based on the following set of ideas. Consider, for concreteness, an image classification problem: (i)
images class varies little along smooth deformations of the image; (ii) due to that, tasks like image
classification require a continuous distribution of neurons to be represented; (iii) thus, requiring
sparsity can be detrimental for performance. We build our argument as follows.

• In order to find a quantitative description of the phenomenon, we start from the problem of
regression of a random target function of controlled smoothness on the d-dimensional unit
sphere, and study the property of the minimizers of the empirical loss with n observations,
both in the lazy and the feature learning regimes. More specifically, we consider two extreme
limits—the NTK limit and mean-field limit—as representatives of lazy and feature regimes,
respectively (section 2). Both these limits admit a simple formulation that allows us to
predict generalization performances. In particular, our results on feature learning rely on
solutions having an atomic support. This property can be justified for one-hidden-layer
neural networks with ReLU activations and weight decay. Yet, we also find such a sparsity
empirically using gradient descent in the absence of regularization, if weights are initialized
to be small enough.

• We find that lazy training leads to smoother predictors than feature learning. As a result, lazy
training outperforms feature learning when the target function is also sufficiently smooth.
Otherwise, the performances of the two methods are comparable, in the sense that they
display the same asymptotic decay of generalization error with the number of training
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examples. Our predictions are obtained from asymptotic arguments that we systematically
back up with numerical studies.

• For image datasets, it is believed that diffeomorphisms of images are key transformations
along which the predictor function should only mildly vary to obtain good performance [29].
From the results above, a natural explanation as to why lazy beats feature for fully connected
networks is that it leads to predictors with smaller variations along diffeomorphisms. We
confirm that this is indeed the case empirically on benchmark datasets.

Numerical experiments are performed in PyTorch [30], and the code for reproducing experiments is
available online at github.com/pcsl-epfl/regressionsphere.

1.2 Related Work

The property that training ReLU networks in the feature regime leads to a sparse representation was
observed empirically [31]. This property can be justified for one-hidden-layer networks by casting
training as a L1 minimization problem [32, 2], then using a representer theorem [33, 15, 34]. This is
analogous to what is commonly done in predictive sparse coding [35–38].

Many works have investigated the benefits of learning sparse representations in neural networks.
[2, 16–19, 39, 40] study cases in which the true function only depends on a linear subspace of
input space, and show that feature learning profitably capture such property. Even for more general
problems, sparse representations of the data might emerge naturally during deep network training—a
phenomenon coined neural collapse [41]. Similar sparsification phenomena, for instance, have been
found to allow for learning convolutional layers from scratch [42, 43]. Our work builds on this body
of literature by pointing out that learning sparse features can be detrimental, if the task does not allow
for it.

There is currently no general framework to predict rigorously the learning curve exponent β defined
as ϵ(n) = O(n−β) for kernels. Some of our asymptotic arguments can be obtained by other
approximations, such as assuming that data points lie on a lattice in Rd [44], or by using the non-
rigorous replica method of statistical physics [45–47]. In the case d = 2, we provide a more explicit
mathematical formulation of our results, which leads to analytical results for certain kernels. We
systematically back up our predictions with numerical tests as d varies.

Finally, in the context of image classification, the connection between performance and ‘stability’ or
smoothness toward small diffeomorphisms of the inputs has been conjectured by [29, 48]. Empirically,
a strong correlation between these two quantities was shown to hold across various architectures for
real datasets [49]. In that reference, it was found that fully connected networks lose their stability
over training: here we show that this effect is much less pronounced in the lazy regime.

2 Problem and notation

Task We consider a supervised learning scenario with n training points {xi}ni=1 uniformly drawn
on the d-dimensional unit sphere Sd−1. We assume that the target function f∗ is an isotropic Gaussian
random process on Sd−1 and control its statistics via the spectrum: by introducing the decomposition
of f∗ into spherical harmonics (see App. A for definitions),

f∗(x) =
∑

k≥0

Nk,d∑

ℓ=1

f∗k,ℓYk,ℓ(x) with E
[
f∗k,ℓ
]
= 0, E

[
f∗k,ℓf

∗
k′,ℓ′

]
= ckδk,k′δℓ,ℓ′ . (2.1)

We assume that all the ck with k odd vanish apart from c1: this is required to guarantee that f∗ can be
approximated as well as desired with a one-hidden-layer ReLU network with no biases, as discussed
in App. A. We also assume that the non-zero ck decay as a power of k for k ≫ 1, ck ∼ k−2νt−(d−1).
The exponent νt> 0 controls the (weak) differentiability of f∗ on the sphere (see App. A) and also
the statistics of f∗ in real space:

E
[
|f∗(x)− f∗(y)|2

]
= O

(
|x− y|2νt

)
= O ((1− x · y)νt) as x → y. (2.2)

Examples of such a target function for d = 3 and different values of νt are reported in Fig. 2.
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xi,c → → 〈wc, h(xi,c)〉 + bc· · ·

hi,c = h(xi,c)

W = {w1, · · · , wC}

Stripe Model Images

Input Space Rd Rn×n×ch

Invariant manifold x⊥ ∈ Rd−1 τx for small ‖∇ξ‖ and x ∈ D
(linear subspace) (manifold of diffeo, locally around data-points)

Isotropic Noise η ∈ Rd η ∈ Rn×n×ch

Invariant Noise ν ∈ Rd−1 τx − x ∈ Mdiffeo ⊂ Rn×n×ch

Compression Ratio R ∼ 1/p ?

Table 1: Comparison: Stripe Model vs. real data.

ψl→m(σl) =
1

Zl→m

∑

σi,σj ,σk

ψi→l(σi)ψj→l(σj)ψk→l(σk) e−β[δσi,σl
+δσk,σl

+δσk,σl
]

=
1

Zl→m

∏

i∈∂l\m

∑

σi

ψi→l(σi) e−β δσi,σl

=
1

Zl→m

∏

i∈∂l\m


ψi→l(σl) e−β +

∑

σi:σi �=σl

ψi→l(σi)




=
1

Zl→m

∏

i∈∂l\m

[
ψi→l(σl) e−β + 1 − ψi→l(σl)

]

=
1

Zl→m

∏

i∈∂l\m

[
1 − (1 − e−β)ψi→l(σl)

]

d = 3, νt = 1/2

d = 3, νt = 4
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Numerical experiments are performed in PyTorch [29], and the code for reproducing experiments is
available online at github.com/pcsl-epfl/regressionsphere.

1.2 Related Work

The property that training ReLU networks in the feature regime leads to a sparse representation was
observed empirically [30]. This property can be justified for one-hidden-layer networks by casting
training as a L1 minimization problem [31, 2], then using a representer theorem [32, 14, 33].

There is currently no general framework to predict rigorously the learning curve exponent β defined
as ε(n) = O(n−β) for kernels. Some of our asymptotic arguments for can be obtained by other
approximations, such as assuming that data points lie on a lattice in Rd [34], or by using the non-
rigorous replica method of statistical physics [35–37]. In the case d = 2, we provide a more explicit
mathematical formulation of our results, which leads to analytical results for certain kernels. We
systematically back up our predictions with numerical tests as d varies.

Finally, in the context of image classification, the connection between performance and ‘stability’ or
smoothness toward small diffeomorphisms of the inputs has been conjectured by [28, 38]. Empirically,
a strong correlation between these two quantities was shown to hold across various architectures
for deep networks and real datasets [39]. In that reference, it was found that during training fully
connected networks lose their stability. Here we show that this effect is much less pronounced in the
lazy regime.

2 Problem and notation

Task We consider a supervised learning scenario with n training points {xi}n
i=1 uniformly drawn

on the d-dimensional unit sphere Sd−1. We assume that the target function f∗ is an isotropic Gaussian
random process on Sd−1 and control its statistics via the spectrum: by introducing the decomposition
of f∗ into spherical harmonics (see App. A for definitions),

f∗(x) =
∑

k≥0

Nk,d∑

�=1

f∗
k,�Yk,�(x) with E

[
f∗

k,�

]
= 0, E

[
f∗

k,�f
∗
k′,�′

]
= ckδk,k′δ�,�′ . (2.1)

We assume that all the ck with k odd vanish apart from c1: this is required to guarantee that f∗ can be
approximated as well as desired with a one-hidden-layer ReLU network with no biases, as discussed
in App. A. We also assume that the non-zero ck decay as a power of k for k � 1, ck ∼ k−2νt−(d−1).
The exponent νt > 0 controls the (weak) differentiability of f∗ on the sphere (see App. A) and also
the statistics of f∗ in real space:

E
[
|f∗(x) − f∗(y)|2

]
= O

(
|x − y|2νt

)
= O ((1 − x · y)

νt) as x → y. (2.2)

Neural network representations We consider a one-hidden-layer neural network of width H ,

fξ
H(x) =

1

H1−ξ/2

H∑

h=1

(
whσ(θh · x) − ξw0

hσ(θ0
h · x)

)
, (2.3)

where {θh}H
h=1 (the features) and {wh}H

h=1 (the weights) are the network parameters to be optimized,{
θ0

h

}H

h=1
and

{
w0

h

}H

h=1
are their values at initialization, ξ is a parameters fixed to ξ = 0 for feature

learning and ξ = 1 for lazy training, and σ(x) denotes the ReLU function, σ(x) = max {0, x}. We
assume that

{
θ0

h, w0
h

}H

h=1
are drawn independently from a distribution µ0 with the properties that: all

moments of µ0 exist; µ0 is absolutely continuous with respect to the Hausdorff measure on Sd−1 ×R;
and µ0 is centered, i.e.

∫
Sd−1×R θdµ0(θ, w) = 0 and

∫
Sd−1×R wdµ0(θ, w) = 0.

Feature Regime (ξ = 0) If we assume that {θh, wh}H
h=1 are independently drawn from a prob-

ability measure µ on Sd−1 × R such that the Radon measure γ =
∫
R wµ(·, dw) exists, then as

H → ∞
lim

H→∞
fξ=0

H (x) =

∫

Sd−1

σ(θ,x)dγ(θ) a.e. on Sd−1. (2.4)
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Figure 2: Gaussian random process on the sphere. We show here two samples of the task introduced
in section 2 when the target function f∗(x) is defined on the 3−dimensional unit sphere. (a) and (b)
show samples of large and small smoothness coefficient νt, respectively.

Neural network representation in the feature regime In this regime we aim to approximate the
target function f∗(x) via a one-hidden-layer neural network of width H ,

fH(x) =
1

H

H∑

h=1

whσ(θh · x), (2.3)

where {θh}Hh=1 (the features) and {wh}Hh=1 (the weights) are the network parameters to be optimized,
and σ(x) denotes the ReLU function, σ(x)=max {0, x}. If we assume that {θh, wh}Hh=1 are
independently drawn from a probability measure µ on Sd−1 × R such that the Radon measure
γ =

∫
R wµ(·, dw) exists, then as H → ∞,

lim
H→∞

fH(x) =

∫

Sd−1

σ(θ · x)dγ(θ) a.e. on Sd−1. (2.4)

This is the so-called mean-field limit [11, 12], and it is then natural to determine the optimal γ via

γ∗ = argmin
γ

∫

Sd−1

|dγ(θ)| subject to:
∫

Sd−1

σ(θ · xi)dγ(θ)=f
∗(xi) ∀i = 1, . . . , n. (2.5)

In practice, we can approximate this minimization problem by using a network with large but finite
width, constraining the feature to be on the sphere |θh| = 1, and minimizing the following empirical
loss with L1 regularization on the weights,

min
{wh,θh}H

h=1

|θh|=1

1

2n

n∑

i=1

(
f∗(xi)−

1

H

H∑

h=1

whσ(θh · xi)

)2

+
λ

H

H∑

h=1

|wh|. (2.6)

This minimization problem leads to (2.5) when H → ∞ and λ → 0. Note that, by homogeneity
of ReLU, (2.6) can be shown to be equivalent to imposing a regularization on the L2 norm of all
parameters [32, Thm. 10], i.e. the usual weight decay.

To proceed we will make the following assumption about the minimizer γ∗:
Assumption 1. The minimizer γ∗ of (2.5) is unique and atomic, with nA ≤ n atoms, i.e. there exists
{w∗

i ,θ
∗
i }nA

i=1 such that

γ∗ =

nA∑

i=1

w∗
i δθ∗

i
. (2.7)

The main component of the assumption is the uniqueness of γ∗; if it holds the sparsity of γ∗ follows
from the representer theorem, see e.g. [33]. Both the uniqueness and sparsity of the minimizer can be
justified as holding generically using asymptotic arguments involving recasting the L1 minimization
problem 2.5 as a linear programming one: these arguments are standard (see e.g. [50]) and are
presented in App. B for the reader convenience. In our arguments below to deduce the scaling of
the generalization error we will mainly use that nA = O(n)—we shall confirm this fact numerically
even in the absence of regularization, if the weights are initialized to be small enough. Notice that
from Assumption 1 it follows that the predictor in the feature regime corresponding to the minimizer
γ∗ takes the following form

fFEATURE(x) =

nA∑

i=1

w∗
i σ(θ

∗
i · x). (2.8)
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Neural network representation in the lazy regime. In this regime we approximate the target
function f∗(x) via

fNTK(x) =

n∑

i=1

giK
NTK(xi · x), (2.9)

where the weights {gi}ni=1 solve

f∗(xj) =

n∑

i=1

giK
NTK(xi · xj), j = 1, . . . , n. (2.10)

and KNTK(x · y) is the Neural Tangent Kernel (NTK) [9]

KNTK(x · y) =
∫

Sd−1×R

(
σ(θ · x)σ(θ · y) + w2 x · y σ′(θ · x)σ′(θ · y)

)
dµ0(θ, w). (2.11)

Here µ0 is a fixed probability distribution which, in the NTK training regime [9], is the distribution
of the features and weights at initialization. It is well-known [51] that the solution to kernel ridge
regression problem can also be expressed via the kernel trick as

fNTK(x) =

∫

Sd−1×R
(gw(θ, w)σ(θ · x) + wx · gθ(θ, w)σ′(θ · x)) dµ0(θ, w) (2.12)

where gθ and gw are the solutions of

min
gw,gθ

∫

Sd−1×R

(
g2w(w,θ) + |gθ(w,θ)|2

)
dµ0(θ, w)

subject to:
∫

Sd−1×R
(gw(w,θ)σ(θ · xi) + wxi · gθ(w,θ)σ′(θ · xi)) dµ0(θ, w) = f∗(xi)

∀i = 1, . . . , n.

(2.13)

Another lazy limit can be obtained equivalently by training only the weights while keeping the
features to their initialization value. This is equivalent to forcing gθ(θ, w) to vanish in Eq. 2.13,
resulting again in a kernel method. The kernel, in this case, is called Random Feature Kernel (KRFK),
and can be obtained from Eq. 2.11 by setting dµ0(θ, w) = δw=0dµ̃0(θ). The minimizer can then be
written as in Eq. 2.9 with KNTK replaced by KRFK.

3 Asymptotic analysis of generalization

In this section, we characterize the asymptotic decay of the generalization error ϵ(n) averaged over
several realizations of the target function f∗. Denoting with dτd−1(x) the uniform measure on Sd−1,

ϵ(n) = Ef∗

[∫
dτd−1(x) (fn(x)− f∗(x))2

]
= Adn

−β + o(n−β), (3.1)

for some constant Ad which might depend on d but not on n. Both for the lazy (see Eq. 2.9) and
feature regimes (see Eq. 2.8) the predictor can be written as a sum of O(n) terms:

fn(x) =

O(n)∑

j=1

gjφ(x · yj) :=

∫

Sd−1

gn(y)φ(x · y)dτ(y). (3.2)

In the feature regime, the gj’s (yj) coincide with the optimal weights w∗
j (features θ∗

j ), φ with
the activation function σ. In the lazy regime, the yj are the training points xj , φ is the neural
tangent or random feature kernel the gj’s are the weights solving Eq. 2. We have defined the density
gn(x) =

∑
j |Sd−1|gjδ(x− yj) so as to cast the predictor as a convolution on the sphere. Therefore,

the projections of fn onto spherical harmonics Yk,ℓ read fnk,ℓ = gnk,ℓφk, where gnk,ℓ is the projection
of gn(x) and φk that of φ(x · y). For ReLU neurons one has (as shown in App. A)

φLAZY
k ∼ k−(d−1)−2ν with ν = 1/2 (NTK), 3/2 (RFK), φFEATURE

k ∼ k−
d−1
2 −3/2. (3.3)
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Figure 3: Feature vs. Lazy Predictor. Predictor of the lazy (left) and feature (right) regime when
learning the constant function on the ring with 8 uniformly-sampled training points.

Main Result Consider a target function f∗ with smoothness exponent νt as defined above, with
data lying on Sd−1. If f∗ is learnt with a one-hidden-layer network with ReLU neurons in the regimes
specified above, then the generalization error follows ϵ(n) ∼ n−β with:

βLAZY =
min {2(d− 1) + 4ν, 2νt}

d− 1
with ν =

{
1/2 for NTK,
3/2 for RFK,

, (3.4a)

βFEATURE =
min {(d− 1) + 3, 2νt}

d− 1
. (3.4b)

This is our central result. It implies that if the target function is a smooth isotropic Gaussian field
(realized for large νt), then lazy beats feature, in the sense that training the network in the lazy regime
leads to a better scaling of the generalization performance with the number of training points.

Strategy There is no general framework for a rigorous derivation of the generalization error in the
ridgeless limit λ → 0: predictions such as that of Eq. 3.4 can be obtained by either assuming that
training points (for Eq. 3.4a) and neurons (for Eq. 3.4b) lie on a periodic lattice [44], or (for Eq. 3.4a)
using the replica method from physics [45] as shown in App. F. Here we follow a different route, by
first characterizing the form of the predictor for d=2 (proof in App. C). This property alone allows
us to determine the asymptotic scaling of the generalization error. We use it to analytically obtain the
generalization error in the NTK case with a slightly simplified function φ (details in App. D). This
calculation motivates a simple ansatz for the form of gn(x) entering Eq. 3.2 and its projections onto
spherical harmonics, which extends naturally to arbitrary dimension. We confirm the predictions
resulting from this ansatz systematically in numerical experiments.

Properties of the predictor in d = 2 On the unit circle S1 all points are identified by a polar angle
x ∈ [0, 2π). Hence both target function and estimated predictor are functions of the angle, and all
functions of a scalar product are in fact functions of the difference in angle. In particular, introducing
φ̃(x) = φ(cos(x)),

fn(x) =
∑

j

gjφ̃(x− xj) ≡
∫ 2π

0

dy

2π
gn(y)φ̃(x− y), (3.5)

where we defined

gn(x) =

n∑

j=1

(2πgj)δ(y − xj). (3.6)

Both for feature regime and NTK limit, the first derivative of φ̃(x) is continuous except for two
values of x (0 and π for lazy, −π/2 and π/2 for feature), so that φ̃(x)′′ has a singular part consisting
of two Dirac delta functions.

As a result, the second derivative of the predictor (fn)′′ has a singular part consisting of many Dirac
deltas. If we denote with (fn)′′r the regular part, obtained by subtracting all the delta functions, we
can show that (see App. C):
Proposition 1. (informal) As n→ ∞, (fn)′′r converges to a function having finite second moment,
i.e.

lim
n→∞

Ef∗ [(fn)′′r (x)]
2 = const. <∞. (3.7)
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In the large n limit, the predictor displays a singular second derivative at O(n) points. Proposition 1
implies that outside of these singular points the second derivative is well defined. Thus, as n gets
large and the singular points approach each other, the predictor can be approximated by a chain of
parabolas, as highlighted in Fig. 3 and noticed in [47] for a Laplace kernel. This property alone
allows to determine the asymptotic scaling of the error in d=2. In simple terms, Prop. 1 follows from
the convergence of gn to the function satisfying f∗(x)=

∫
dy
2π g(y)φ̃r(x− y), which is guaranteed

under our assumptions on the target function—a detailed proof is given in App. C.

Decay of the error in d=2 (sketch) The full calculation is in App. D. Consider a slightly
simplified problem where φ̃ has a single discontinuity in its derivative, located at x = 0. In this case,
fn(x) is singular if and only if x is a data point. Consider then the interval x ∈ [xi, xi+1] and set
δi = xi+1 − xi, xi+1/2 = (xi+1 + xi)/2. If the target function is smooth enough (νt> 2), then a
Taylor expansion implies |f∗(xi+1/2)− fn(xi+1/2)| ∼ δ2i . Since the distances δi between adjacent
singular points are random variables with mean of order 1/n and finite moments, it is straightforward
to obtain that ϵ(n) ∼ ∑

i(f
∗(xi+1/2) − fn(xi+1/2))

2 ∼ ∑
i δ

4
i ∼ n−4. By contrast if f∗ is not

sufficiently smooth (νt ≤ 2), then |f∗(xi+1/2)− fn(xi+1/2)| ∼ δ2νt
i , leading to ϵ(n) ∼ n−2νt . Note

that for this asymptotic argument to apply to the feature learning regime, one must ensure that the
distribution of the rescaled distance between adjacent singularities nδi has a finite fourth moment.
This is obvious in the lazy regime, where the δi’s are controlled by the position of the training points,
but not in the feature regime, where the distribution of singular points is determined by that of the
neuron’s features. Nevertheless, we show that it must be the case in our setup in App. D.

Interpretation in terms of spectral bias From the discussion above it is evident that there is a
length scale δ of order 1/n such that fn(x) is a good approximation of f∗(x) over scales larger
than δ. In terms of Fourier modes2, one has: i) f̂n(k) matches f̂n(k) at long wavelengths, i.e. for
k ≪ kc ∼ 1/n. ii) In addition, since the phases exp(ikxj) become effectively random phases for
k ≫ kc, ĝn(k)=

∑
j gj exp(ikxj) becomes a Gaussian random variable with zero mean and fixed

variance and thus iii) f̂n(k)= ĝn(k)̂̃φ(k) decorrelates from f∗ for k ≫ kc. Therefore

ϵ(n) ∼
∑

|k|>kc

Ef∗

[(
ĝn(k)̂̃φ(k)− f̂n(k)

)2]
∼
∑

|k|≥kc

Ef∗
[
(ĝn(k))2

] ̂̃φ(k)2 + Ef∗

[
(f̂n(k))2

]
.

(3.8)
For νt> 2, one has

∑
j g

2
j ∼ n−1 limn→∞

∫
gn(x)2dx ∼ n−1. It follows (see App. E for details)

that the sum is dominated by the first term, hence entirely controlled by the Fourier coefficients of
f̂n(k) at large k. A smoother predictor corresponds to a faster decay of f̂n(k) with k, thus a faster
decay of the error with n. Plugging the relevant decays yields ϵ ∼ n−4 for feature regime and lazy
regime with the NTK, and n−6 for lazy regime with the RFK (which is smoother than the NTK). For
νt ≤ 2, the two terms have comparable magnitude (see App. E), thus ϵ ∼ n−2νt .

Generalization to higher dimensions The argument above can be generalized for any d by
replacing Fourier modes with projections onto spherical harmonics. The characteristic distance
between training points scales as n−1/(d−1), thus kc ∼ n−1/(d−1). Our ansatz is that, as in d=2:
i) for k ≪ kc, the predictor modes coincide with those of the target function, fnk,l ≈ f∗k,l (this
corresponds to the spectral bias result of kernel methods, stating that the predictor reproduces the
first O(n) projections of the target in the kernel eigenbasis [45]); ii) For k ≫ kc, gnk,l is a sum of
uncorrelated terms, thus a Gaussian variable with zero mean and fixed variance; iii) fnk,ℓ = gnk,ℓφ̃k

decorrelates from f∗k,ℓ for k ≫ kc. i), ii) and iii) imply that:

ϵ(n) ∼
∑

k≥kc

Nk,d∑

l=1

Ef∗

[(
fnk,l − f∗k,l

)2] ∼
∑

k≥kc

Nk,d∑

l=1

Ef∗
[
(gnk,l)

2
]
φ2
k + k−2νt−(d−1). (3.9)

As shown in App. E, from this expression it is straightforward to obtain Eq. 3.4. Notice again that
when the target is sufficiently smooth so that the predictor-dependent term dominates, the error is
determined by the smoothness of the predictor. In particular, as d> 2, the predictor of feature learning
is less smooth than both the NTK and RFK ones, due to the slower decay of the corresponding φk.

2The Fourier transform of a function f(x) is indicated by the hat, f̂(k).
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4 Numerical tests of the theory

We test successfully our predictions by computing the learning curves of both lazy and feature
regimes when (i) the target function is constant on the sphere for varying d, see Fig. 4, and (ii)
the target is a Gaussian random field with varying smoothness νt, as shown in Fig. G.1 of App. G.
For the lazy regime, we perform kernel regression using the analytical expression of the NTK [52]
(see also Eq. A.19). For the feature regime, we find that our predictions hold when having a small
regularization, although it takes unreachable times for gradient descent to exactly recover the minimal-
norm solution—a more in-depth discussion can be found in App. G. An example of the atomic
distribution of neurons found after training, which contrasts with the initial distribution, is displayed
in Fig. 5a, left panel.

Another way to obtain sparse features is to initialize the network with very small weights [14], as
proposed in [8]. As in the presence of an infinitesimal weights decay, this scheme also leads to
sparse solutions with nA = O(n) – an asymptotic dependence confirmed in Fig. G.3 of App. G. This
observation implies that our predictions must apply in that case too, as we confirm in Fig. G.3.
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Figure 4: Generalization error for a constant function f∗(x) = 1. Generalization error as a
function of the training set size n for a network trained in the feature regime with L1 regularization
(blue) and kernel regression corresponding to the infinite-width lazy regime (orange). Numerical
results (full lines) and the exponents predicted by the theory (dashed) are plotted. Panels correspond
to different input-space dimensions (d = 2, 3, 5). Results are averaged over 10 different initializations
of the networks and datasets. For d = 2 and large n, the gap between experiments and prediction for
the feature regime is due to the finite training time t. Indeed our predictions become more accurate as
t increases, as illustrated in the left.

5 Evidence for overfitting along diffeomorphisms in image datasets

For fully-connected networks, the feature regime is well-adapted to learn anisotropic tasks [16]: if
the target function does not depend on a certain linear subspace of input space, e.g. the pixels at
the corner of an image, then neurons align perpendicularly to these directions [19]. By contrast, our
results highlight a drawback of this regime when the target function is constant or smooth along
directions in input space that require a continuous distribution of neurons to be represented. In
such a case, the adaptation of the weights to the training points leads to a predictor with a sparse
representation. Such a predictor would be less smooth than in the lazy regime and thus underperform.

Does this view hold for images, and explain why learning their features is detrimental for fully-
connected networks? The first positive empirical evidence is that the neurons’ distribution of networks
trained on image data becomes indeed sparse in the feature regime, as illustrated in Fig. 5a, right,
for CIFAR10 [28]. This observation raises the question of which are the directions in input space
i) along which the target should vary smoothly, and ii) that are not easily represented by a discrete
set of neurons. An example of such directions are global translations, which conserve the norm of
the input and do not change the image class: the lazy regime predictor is indeed smoother than the
feature one with respect to translations of the input (see App. H). Yet, these transformations live in a
space of dimension 2, which is small in comparison with the full dimensionality d of the data and
thus may play a negligible role.

A much larger class of transformations believed to have little effect on the target are small diffeomor-
phisms [29]. A diffeomorphism τ acting on an image is illustrated in Fig. 5b, which highlights that
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(a) Features sparsification. 1stPanel: Distribution of neuron’s feature for the task of
learning a constant function on the sphere in 2D. Arrows represent a subset of the
network features {θh}Hh=1 after training in the lazy and feature regimes. Training is
performed on n = 8 data-points (black dots). 2ndPanel: FCN trained on CIFAR10.
On the axes the first two principal components of the features {θh}Hh=1 after training
on n = 32 points in the feature (blue) and lazy (orange) regimes. Similarly to what
is observed when learning a constant function, the θh angular distribution becomes
sparse with training in the feature regime.
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morphism. Sample of
a max-entropy deforma-
tion τ [49] when applied
to a natural image, illus-
trating that it does not
change the image class
for the human brain.

Figure 5: Features sparsification and example of a diffeomorphism.

our brain still perceives the content of the transformed image as in the original one. Near-invariance
of the task to these transformations is believed to play a key role in the success of deep learning,
and in explaining how neural networks beat the curse of dimensionality [48]. Indeed, if modern
architectures can become insensitive to these transformations, then the dimensionality of the problem
is considerably reduced. In fact, it was found that the architectures displaying the best performance
are precisely those which learn to vary smoothly along such transformations [49].

Small diffeomorphisms are likely the directions we are looking for. To test this hypothesis, follow-
ing [49], we characterize the smoothness of a function along such diffeomorphisms, relative to that
of random directions in input space. Specifically, we use the relative sensitivity:

Rf =
Ex,τ∥f(τx)− f(x)∥2

Ex,η∥f(x+ η)− f(x)∥2 . (5.1)

In the numerator, the average is made over the test set and over an ensemble of diffeomorphisms,
reviewed in App. I. The magnitude of the diffeomorphisms is chosen so that each pixel is shifted
by one on average. In the denominator, the average runs over the test set and the vectors η sampled
uniformly on the sphere of radius ∥η∥ = Ex,τ∥τx− x∥, and this fixes the transformations magnitude.

We measure Rf as a function of n for three benchmark datasets of images, as shown in Fig. 6.
We indeed find that Rf is consistently smaller in the lazy training regime, where features are not
learned. Overall, this observation supports the view that learning sparse features is detrimental
when data present (near) invariance to transformations that cannot be represented sparsely by the
architecture considered. Fig. 1 supports the idea that—for benchmark image datasets—this negative
effect overcomes well-known positive effects of learning features, e.g. becoming insensitive to pixels
on the edge of images (see App. H for evidence of this effect).

6 Conclusion

Our central result is that learning sparse features can be detrimental if the task presents invariance
or smooth variations along transformations that are not adequately captured by the neural network
architecture. For fully-connected networks, these transformations can be rotations of the input, but
also continuous translations and diffeomorphisms.

9



Overfitting in Feature Learning

102 103 104

trainset size, n

101

d
ef

o
rm

a
ti

o
n

re
l.

st
ab

il
it

y,
R
f

MNISTMNIST

Feature

Lazy

102 103 104

trainset size, n

101

2× 100

3× 100

4× 100

6× 100

F-MNISTF-MNIST

Feature

Lazy

102 103 104

trainset size, n

101
CIFAR10CIFAR10

Feature

Lazy

Figure 6: Sensitivity to diffeomorphisms vs number of training points. Relative sensitivity of the
predictor to small diffeomorphisms of the input images, in the two regimes, for varying number of
training points n and different image datasets. Smaller values correspond to a smoother predictor, on
average. Results are computed using the same predictors as in Fig. 1.

Our analysis relies on the sparsity of the features learned by a shallow fully-connected architecture:
even in the infinite width limit, when trained in the feature learning regime such networks behave as
O(n) neurons. The asymptotic analysis we perform for random Gaussian fields on the sphere leads
to predictions for the learning curve exponent β in different training regimes, which we verify. Such
kind of results is scarce in the literature.

Note that our analysis focuses on ReLU neurons because (i) these are very often used in practice
and (ii) in that case, β will depend on the training regime, allowing for stringent numerical tests.
If smooth activations (e.g. softplus) are considered, we expect that learning features will still be
detrimental for generalization. Yet, the difference will not appear in the exponent β, but in other
aspects of the learning curves (including numerical coefficients and pre-asymptotic effects) that are
harder to predict.

Most fundamentally, our results underline that the success of feature learning for modern architectures
still lacks a sufficient explanation. Indeed, most of the theoretical studies that previously emphasized
the benefits of learning features have been considering fully-connected networks, for which learning
features can be in practice a drawback. It is tempting to argue that in modern architectures, learning
features is not at a disadvantage because smoothness along diffeomorphisms can be enforced from
the start—due to the locally connected, convolutional, and pooling layers [53, 29]. Yet the best
architectures often do not perform pooling and are not stable toward diffeomorphisms at initialization.
During training, learning features leads to more stable and smoother solutions along diffeomorphisms
[54, 49]. Understanding why building sparse features enhances stability in these architectures may
ultimately explain the magical feat of deep CNNs: learning tasks in high dimensions.
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A Quick recap of spherical harmonics

Spherical harmonics This appendix collects some introductory background on spherical harmonics
and dot-product kernels on the sphere [55]. See [56, 57] for an expanded treatment. Spherical
harmonics are homogeneous polynomials on the sphere Sd−1 = {x ∈ Rd | ∥x∥=1}, with ∥.∥
denoting the L2 norm. Given the polynomial degree k ∈ N, there are Nk,s linearly independent
spherical harmonics of degree k on Ss−1, with

Nk,d =
2k + d− 2

k

(
d+ k − 3

k − 1

)
,

{
N0,d = 1 ∀d,
Nk,d ≍ Adk

d−2 for k ≫ 1,
(A.1)

where ≍ means logarithmic equivalence for k → ∞ and Ad =
√

2/π(d − 2)
3
2−ded−2. Thus, we

can introduce a set of Nk,d spherical harmonics Yk,ℓ for each k, with ℓ ranging in 1, . . . ,Nk,d, which
are orthonormal with respect to the uniform measure on the sphere dτ(x),

{Yk,ℓ}k≥0,ℓ=1,...,Nk,d
, ⟨Yk,ℓ, Yk,ℓ′⟩Sd−1 :=

∫

Sd−1

Yk,ℓ(x)Yk,ℓ′(x) dτ(x) = δℓ,ℓ′ . (A.2)

Because of the orthogonality of homogeneous polynomials with different degree, the set is a com-
plete orthonormal basis for the space of square-integrable functions on Sd−1. For any function
f : Sd−1 → R, then

f(x) =
∑

k≥0

Nk,d∑

ℓ=1

fk,ℓYk,ℓ(x), fk,ℓ =

∫

Sd−1

f(x)Yk,ℓ(x)dτ(x). (A.3)

Furthermore, spherical harmonics are eigenfunctions of the Laplace-Beltrami operator ∆, which is
nothing but the restriction of the standard Laplace operator to Sd−1,

∆Yk,ℓ = −k(k + d− 2)Yk,ℓ. (A.4)

Legendre polynomials By fixing a direction y in Sd−1 one can select, for each k, the only spherical
harmonic of degree k which is invariant for rotations that leave y unchanged. This particular spherical
harmonic is, in fact, a function of x ·y and is called the Legendre polynomial of degree k, Pk,d(x ·y)
(also referred to as Gegenbauer polynomial). Legendre polynomials can be written as a combination
of the orthonormal spherical harmonics Yk,ℓ via the addition theorem [56, Thm. 2.9],

Pk,d(x · y) = 1

Nk,d

Nk,d∑

ℓ=1

Yk,ℓ(x)Yk,ℓ(y). (A.5)

Alternatively, Pk,d is given explicitly as a function of t=x · y ∈ [−1, 1] via the Rodrigues’ for-
mula [56, Thm. 2.23],

Pk,d(t) =

(
−1

2

)k Γ
(
d−1
2

)

Γ
(
k + d−1

2

) (1− t2
) 3−d

2
dk

dtk
(
1− t2

)k+ d−3
2 . (A.6)

Here Γ denotes the Gamma function, Γ(z)=
∫∞
0
xz−1e−x dx. Legendre polynomials are orthogonal

on [−1, 1] with respect to the measure with density (1− t2)(d−3)/2, which is the probability density
function of the scalar product between to points on Sd−1.

∫ +1

−1

Pk,d(t)Pk′,d(t)
(
1− t2

) d−3
2 dt =

|Sd−1|
|Sd−2|

δk,k′

Nk,s
. (A.7)

Here |Sd−1|=2π
d
2 /Γ(d2 ) denotes the surface area of the d-dimensional unit sphere (|S0|=2 by

definition).

To sum up, given x,y ∈ Sd−1, functions of x or y can be expressed as a sum of projections on the
orthonormal spherical harmonics, whereas functions of x ·y can be expressed as a sum of projections
on the Legendre polynomials. The relationship between the two expansions is elucidated in the
Funk-Hecke formula [56, Thm. 2.22],
∫

Sd−1

f(x · y)Yk,ℓ(y) dτ(y) = Yk,ℓ(x)
|Sd−2|
|Sd−1|

∫ +1

−1

f(t)Pk,d(t)
(
1− t2

) d−3
2 dt := fkYk,ℓ(x).

(A.8)
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A.1 Expansion of ReLU and combinations thereof

We can apply Eq. A.8 to have an expansion of neurons σ (θ · x) in terms of spherical harmonics [2,
Appendix D]. After defining

φk :=
|Sd−2|
|Sd−1|

∫ +1

−1

σ(t)Pk,d(t)
(
1− t2

) d−3
2 dt, (A.9)

one has

σ (θ · x) =
∑

k≥0

Nk,dφkPk,d (θ · x) =
∑

k≥0

φk

Nk,d∑

ℓ=1

Yk,ℓ(θ)Yk,ℓ(x). (A.10)

For ReLU activations, in particular, σ(t)=max(0, t), thus

φReLU
k =

|Sd−2|
|Sd−1|

∫ +1

0

tPk,d(t)
(
1− t2

) d−3
2 dt. (A.11)

Notice that when k is odd Pk,d is an odd function of t, thus the integrand tPk,d(t)(1− t2)
d−3
2 is an

even function of t. As a result the integral on the right-hand side of Eq. A.11 coincides with half the
integral over the full domain [−1, 1],

∫ +1

0

tPk,d(t)
(
1− t2

) d−3
2 dt =

1

2

∫ +1

−1

tPk,d(t)
(
1− t2

) d−3
2 dt = 0 for k > 1, (A.12)

because, due to Eq. A.7, Pk,d is orthogonal to all polynomials with degree strictly lower than k. For
even k we can use Eq. A.6 and get [2] (see Eq. 3.3, main text)
∫ +1

0

tPk,d(t)
(
1− t2

) d−3
2 dt =

(
−1

2

)k Γ
(
d−1
2

)

Γ
(
k + d−1

2

)
∫ 1

0

t
dk

dtk
(
1− t2

)k+ d−3
2 dt

= −
(
−1

2

)k Γ
(
d−1
2

)

Γ
(
k + d−1

2

) dk−2

dtk−2

(
1− t2

)k+ d−3
2

∣∣∣∣
t=1

t=0

⇒ φReLU
k ∼ k−

d−1
2 − 3

2 for k ≫ 1 and even.

(A.13)

Because all φReLU
k with k > 1 and odd vanish, even summing an infinite amount of neurons σ(θ · x)

with varying θ does not allow to approximate any function on Sd−1, but only those which have
vanishing projections on all the spherical harmonics Yk,ℓ with k > 1 and odd. This is why we set the
odd coefficients of the target function spectrum to zero in Eq. 2.1.

A.2 Dot-product kernels on the sphere

Also general dot-product kernels on the sphere admit an expansion such as Eq. A.10,

C (x · y) =
∑

k≥0

Nk,dckPk,d (θ · x) =
∑

k≥0

ck

Nk,d∑

ℓ=1

Yk,ℓ(θ)Yk,ℓ(x), (A.14)

with

ck =
|Sd−2|
|Sd|

∫ 1

−1

C(t)Pk,d(t)
(
1− t2

) d−3
2 dt. (A.15)

The asymptotic decay of ck for large k is controlled by the behaviour of C(t) near t= ±1, [58]. More
precisely [58, Thm. 1], if C is infinitely differentiable in (−1, 1) and has the following expansion
around ±1, {C(t) = p1(1− t) + c1(1− t)ν + o ((1− t)ν) near t = +1;

C(t) = p−1(−1 + t) + c−1(−1 + t)ν + o ((−1 + t)ν) near t = −1,
(A.16)

where p±1 are polynomials and ν is not an integer, then

k even: ck ∼ (c1 + c−1)k
−2ν−(d−1);

k odd: ck ∼ (c1 − c−1)k
−2ν−(d−1),

(A.17)

The result above implies that that if c1 = c−1 (c1 = − c−1), then the eigenvalues with k odd (even)
decay faster than k−2ν−(d−2). Moreover, if C is infinitely differentiable in [−1, 1] then ck decays
faster than any polynomial.
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NTK and RFK of one-hidden-layer ReLU networks Let Eθ denote expectation over a multivari-
ate normal distribution with zero mean and unitary covariance matrix. For any x, y ∈ Sd−1, the RFK
of a one-hidden-layer ReLU network Eq. 2.3 with all parameters initialised as independent Gaussian
random numbers with zero mean and unit variance reads

KRFK(x · y) = Eθ [σ(θ · x)σ(θ · y)]

=
(π − arccos (t))t+

√
1− t2

2π
, with t = x · y.

(A.18)

The NTK of the same network reads, with σ′ denoting the derivative of ReLU or Heaviside function,

KNTK(x · y) = Eθ [σ(θ · x)σ(θ · y)] + (x · y)Eθ [σ
′(θ · x)σ′(θ · y)]

=
2(π − arccos (t))t+

√
1− t2

2π
, with t = x · y.

(A.19)

As functions of a dot-product on the sphere, both NTK and RFK admit a decomposition in terms of
spherical harmonics as Eq. A.15. For dot-product kernels, this expansion coincides with the Mercer’s
decomposition of the kernel [55], that is the coefficients of the expansion are the eigenvalues of the
kernel. The asymptotic decay of the eigenvalues of such kernels φNTK

k and φRFK
k can be obtained

by applying Eq. A.16 [58, Thm. 1]. Equivalently, one can notice that KRFK is proportional to the
convolution on the sphere of ReLU with itself, therefore φRFK

k =(φReLU
k )2. Similarly, the asymptotic

decay of φNTK
k can be related to that of the coefficients of σ′, derivative of ReLU: φk(σ

′) ∼ kφ(σ),
thus φNTK

k ∼ k2(φReLU
k )2. Both methods lead to Eq. 3.3 of the main text.

Gaussian random fields and Eq. 2.2 Consider a Gaussian random field f∗ on the sphere with
covariance kernel C(x · y),

E [f∗(x)] = 0, E [f∗(x)f∗(y)] = C(x · y), ∀x,y ∈ Sd−1. (A.20)

f∗ can be equivalently specified via the statistics of the coefficients f∗k,ℓ,

E
[
f∗k,ℓ
]
= 0, E

[
f∗k,ℓf

∗
k′,ℓ′

]
= ckδk,k′δℓ,ℓ′ , (A.21)

with ck denoting the eigenvalues of C in Eq. A.15. Notice that the eigenvalues are degenerate with
respect to ℓ because the covariance kernel is a function x · y: as a result, the random function f∗ is
isotropic in law.

If ck decays as a power of k, then such power controls the weak differentiability (in the mean-squared
sense) of the random field f∗. In fact, from Eq. A.4,

∥∥∥∆m/2f∗
∥∥∥ =

∑

k≥0

∑

ℓ

(−k(k + d− 2))
m (

f∗k,ℓ
)2
. (A.22)

Upon averaging over f∗ one gets

E
[∥∥∥∆m/2f∗

∥∥∥
]
=
∑

k≥0

(−k(k + d− 2))
m
∑

ℓ

E
[(
f∗k,ℓ
)2]

=
∑

k≥0

(−k(k + d− 2))
m Nk,dck.

(A.23)
From Eq. A.16 [58, Thm. 1], if C(t) ∼ (1−t)νt for t→ 1 and/or C(t) ∼ (−1+t)νt for t→ −1, then
ck ∼ k−2νt−(d−1) for k ≫ 1. In addition, for finite but arbitrary d, (−k(k + d− 2))

m ∼ k2m and
Nk,s ∼ kd−2 (see Eq. A.1). Hence the summand in the right-hand side of Eq. A.23 is ∼ k2(m−νt)−1,
thus

E
[∥∥∥∆m/2f∗

∥∥∥
]
<∞ ∀m < νt. (A.24)

Alternatively, one can think of νt as controlling the scaling of the difference δf∗ over inputs separated
by a distance δ. From Eq. A.20,

E
[
|f∗(x)− f∗(y)|2

]
= 2C(1)− 2C(x · y) = 2C(1) +O((1− x · y)νt)

= 2C(1) +O(|x− y|2νt)
(A.25)
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B Uniqueness and Sparsity of the L1 minimizer

Recall that we want to find the γ∗ that solves

γ∗ = argmin
γ

∫

Sd−1

|dγ(θ)| subject to
∫

Sd−1

σ(θ · xi)dγ(θ)=f
∗(xi) ∀i = 1, . . . , n. (B.1)

In this appendix, we argue that the uniqueness of γ∗ which implies that it is atomic with at most
n atoms is a natural assumption. We start by discretizing the measure γ into H atoms, with H
arbitrarily large. Then the problem Eq. B.1 can be rewritten as

w∗ = argmin
w

∥w∥1, subject to Φw = y, (B.2)

with Φ ∈ RH×n, Φh,i = σ(θh · xi) and yi = f∗(xi).

Given w ∈ RH , let u = max(w, 0) ≥ 0 and v = −max(−w, 0) ≥ 0 so that w = u − v. It is
well-known (see e.g. [50]) that the minimization problem in (B.2) can be recast in terms of u and v
into a linear programming problem. That is, w∗ = u∗ − v∗ with

(u∗,v∗) = argmin
u,v

eT (u+ v), subject to Φu−Φv = y, u ≥ 0, v ≥ 0 (B.3)

where e = [1, 1, . . . , 1]T . Assuming that this problem is feasible (i.e. there is at least one solution to
Φu−Φv = y such that u ≥ 0, v ≥ 0), it is known that it admits extremal solution, i.e. solutions
such that at most n entries of (u∗,v∗) (and hence w∗) are non-zero. The issue is whether such
an extremal solution is unique. Assume that there are two, say (u∗

1,v
∗
1) and (u∗

2,v
∗
2). Then, by

convexity,
(u∗

t ,v
∗
t ) = (u∗

1,v
∗
1)t+ (u∗

2,v
∗
2)(1− t) (B.4)

is also a minimizer of (B.3) for all t ∈ [0, 1], with the same minimum value u∗
t + v∗

t = u∗
1 + v∗

1 =
u∗
2 + v∗

2 . Generalizing this argument to the case of more than two extremal solutions, we conclude
that all minimizers are global, with the same minimum value, and they live on the simplex where
eT (u+ v) = eT (u1 + v1). Therefore, nonuniqueness requires that that this simplex has a nontrivial
intersection with the feasible set where Φu−Φv = y with u ≥ 0, v ≥ 0. We argue that, generically,
this will not be the case, i.e. the intersection will be trivial, and the extremal solution unique. In
particular, since in our case we are in fact interested in the problem (B.1), we can always perturb
slightly the discretization into H atoms of γ to guarantee that the extremal solution is unique. Since
this is true no matter how large H is, and any Radon measure can be approached to arbitrary precision
using such discretization, we conclude that the minimizer of (B.1) should be unique as well, with at
most n atoms.

C Proof of Proposition 1

In this section, we provide the formal statement and proof of Proposition 1. Let us recall the general
form of the predictor for both lazy and feature regimes in d=2. From Eq. 3.6,

fn(x) =

n∑

j=1

gjφ̃(x− xj) =

∫
dy

2π
gn(y)φ̃(x− y). (C.1)

where n is the number of training points for the lazy regime and the number of atoms for the feature
regime and, for x ∈ (−π, π],

φ̃(x) =





max {0, cos (x)} (feature regime),
2(π − |x|) cos(x) + sin(|x|)

2π
(lazy regime, NTK),

(π − |x|) cos(x) + sin(|x|)
2π

(lazy regime, RFK).

(C.2)

All these functions φ̃ have jump discontinuities on some derivative: the first for feature and NTK, the
third for RFK. If the l-th derivative has jump discontinuities, the l+1-th only exists in a distributional
sense and it can be generically written as a sum of a regular function and a sequence of Dirac masses

19



Overfitting in Feature Learning

located at the discontinuities. With m denoting the number of such discontinuities and {xj}j their
locations, f (l) denoting the l-th derivative of f , for some cj ∈ R,

f (l+1)(x) = f (l+1)
r (x) +

m∑

j=1

cjδ(x− xj), (C.3)

where fr denotes the regular part of f .
Proposition 2. Consider a random target function f∗ satisfying Eq. 2.1 and the predictor fn obtained
by training a one-hidden-layer ReLU network on n samples (xi, f∗(xi)) in the feature or in the lazy
regime (Eq. C.1). Then, with f̂(k) denoting the Fourier transform of f(x), one has

lim
|k|→∞

lim
n→∞

(̂fn)′′r (k)

f̂∗(k)
= c, (C.4)

where c is a constant (different for every regime). This result implies that as n→ ∞, (fn)′′(x)
converges to a function having finite second moment, i.e.

lim
n→∞

Ef∗ [(fn)′′r (x)]
2
= lim

n→∞
Ef∗

[∫
dx ((fn)′′r )

2
(x)

]

= lim
n→∞

Ef∗

[∑

k

(̂fn)′′r
2
(k)

]
= const. <∞,

(C.5)

using the fact that Ef∗ [(fn)′′r (x)]
2 does not depend on x and Ef∗ [

∑
k (̂f

∗)
2
(k)] = const.

Proof: Because our target functions are random fields that are in L2 with probability one, and the
RKHS of our kernels are dense in that space, we know that the test error vanishes as n→ ∞ [59].
As a result

f∗(x) = lim
n→∞

fn(x) = lim
n→∞

∫
dy

2π
gn(y)φ̃(x− y). (C.6)

Consider first the feature regime and the NTK lazy regime. In both cases φ̃ has two jump discontinu-
ities in the first derivative, located at x=0, π for the NTK and at x= ± π/2, therefore we can write
the second derivative as the sum of a regular function and two Dirac masses,

(φ̃FEATURE)′′ = −max {0, cos (x)}+ δ(x− π/2) + δ(x+ π/2),

(φ̃NTK)′′ =
−2(π − |x|) cos(x) + 3 sin(|x|)

2π
− 1

2π
δ(x) +

1

2π
δ(x− π).

(C.7)

As a result, the second derivative of the predictor can be written as the sum of a regular part (fn)′′r
and a sequence of 2n Dirac masses. After subtracting the Dirac masses, both sides of Eq. C.1 can be
differentiated twice and yield

(fn)′′r (x) =
∫

dy

2π
gn(y)φ̃′′

r (x− y). (C.8)

Hence in the Fourier representation we have

(̂fn)′′r (k) = ĝn(k)(−k2 ̂̃φr(k)) (C.9)

where we defined

̂̃φ(k) =
∫ π

−π

dx√
2π
eikxφ̃(x), ̂̃φr(k) =

∫ π

−π

dx√
2π
eikxφ̃r(x). (C.10)

and used ̂̃φ′′
r (k) = −k2̂̃φr(k). By universal approximation we have

f̂∗(k) =
∫ π

−π

dx√
2π
eikxf∗(x) = lim

n→∞
ĝn(k)̂̃φ(k) ⇒ lim

n→∞
ĝn(k) =

f̂∗(k)
̂̃φ(k)

. (C.11)

As a result by combining Eq. C.9 and Eq. C.11 we deduce

lim
n→∞

(̂fn)′′r (k) = −k
2 ̂̃φr(k)

̂̃φ(k)
f̂∗(k). (C.12)
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To complete the proof using this result it remains to estimate the scaling of ̂̃φr(k) and ̂̃φ(k) in the
large |k| limit.

For the feature regime, a direct calculation shows that φ̃′′
r = − φ̃, implying that ̂̃φr(k) = −̂̃φ(k).

This proves that Eq. C.4 is satisfied with c= − 1.

For the NTK lazy regime φ̃′′
r and −φ̃ are different but they have similar singular expansions near x=0

and π. Therefore their Fourier coefficients display the same asymptotic decay. More specifically,
with t= cos(x) (or x= arccos(t)), so that φ̃(x)=φ(t), one has





φNTK(t) = t− 1√
2π

(1− t)1/2 +O
(
(1− t)3/2

)
near t = +1;

φNTK(t) = − 1√
2π

(−1 + t)1/2 +O
(
(−1 + t)3/2

)
near t = −1,

(C.13)

and 



(φNTK)′′r (t) = −t+ 5√
2π

(1− t)1/2 +O
(
(1− t)3/2

)
near t = +1;

(φNTK)′′r (t) = +
5√
2π

(−1 + t)1/2 +O
(
(−1 + t)3/2

)
near t = −1.

(C.14)

Therefore, due to Eq. A.17, Eq. C.4 is satisfied with c= − 5. The same procedure can be applied to
the RFK lazy regime, with the exception that it is the fourth derivative of φ̃RFK which can be written
as a regular part plus Dirac masses, but one can still obtain the Fourier coefficients of the second
derivative’s regular part by dividing those of the fourth derivative’s regular part by k2.

D Asymptotics of generalization in d=2

In this section we compute the decay of generalization error ϵ with the number of samples n in the
following 2-dimensional setting:

fn(x) =

n∑

j=1

gjφ̃(x− xj), (D.1)

where the xj’s are the training points (like in the NTK case) and φ has a single discontinuity on the
first derivative in 0.

Let us order the training points clockwise on the ring, such that x1 =0 and xi+1 > xi for all
i=1, . . . , n, with xn+1 := 2π. On each of the xi the predictor coincides with the target,

fn(xi) = f∗(xi) ∀ i = 1, . . . , n. (D.2)

For large enough n, the difference xi+1 − xi is small enough such that, within (xi, xi+1), fn(x) can
be replaced with its Taylor series expansion up to the second order. In practice, the predictors appear
like the cable of a suspension bridge with the pillars located on the training points. In particular, we
can consider an expansion around x+i :=xi + ϵ for any ϵ> 0 and then let ϵ→ 0 from above:

fn(x) = fn(x+i ) + (x− x+i )f
n′(x+i ) +

(x− x+i )
2

2
(fn)′′(x+i ) +O

(
(x− x+i )

3
)
. (D.3)

By differentiability of fn in (xi, xi+1) the second derivative can be computed at any point inside
(xi, xi+1) without changing the order of approximation in Eq. D.3, in particular we can replace
(fn)′′(x+i ) with ci, the mean curvature of fn in (xi, xi+1). Moreover, as ϵ→ 0, fn(x+i ) → f∗(xi)
and fn(x−i+1) → f∗(xi+1). By introducing the limiting slope m+

i := limx→0+ f
n′(xi + x), we can

write

fn(x) = f∗(xi) + (x− xi)m
+
i +

(x− xi)
2

2
ci +O

(
(x− x+i )

3
)

(D.4)

Computing Eq. D.4 at x=xi+1 yields a closed form for the limiting slope m+
i as a function of the

mean curvature ci, the interval length δi := (xi+1 − xi) and ∆fi := f∗(xi+1)− f∗(xi). Specifically,

m+
i =

∆fi
δi

− δi
2
ci. (D.5)
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The generalization error can then be split into contributions from all the intervals. If νt > 2, A Taylor
expansion leads to:

ϵ(n) =

∫ 2π

0

dx

2π
(fn(x)− f∗(x))2

=

n∑

i=1

∫ xi+1

xi

dx

2π

[
(x− xi)

(
m+

i − (f∗)′(xi)
)
+

(x− xi)
2

2
(ci − (f∗)′′(xi)) + o

(
(x− x+i )

2
)]2

=

n∑

i=1

∫ δi

0

dδ

2π

[
δ
(
m+

i − (f∗)′(xi)
)
+
δ2

2
(ci − (f∗)′′(xi)) + o

(
δ2
)]2

=

n∑

i=1

1

2π

[
δ3i
3

(
m+

i − (f∗)′(xi)
)2

+
δ5i
20

(ci − (f∗)′′(xi))
2

+
δ4i
4

(
m+

i − (f∗)′(xi)
)
(ci − (f∗)′′(xi)) + o(δ5i )

]
.

(D.6)
In addition, as ∆fi =(f∗)′(xi)δi + (f∗)′′(xi)δ2i /2 +O(δ3i ),

m+
i − (f∗)′(xi) =

δi
2
((f∗)′′(xi)− ci) + o(δi)

2, (D.7)

thus

ϵ(n) =
1

2π

n∑

i=1

[
δ5i
120

(ci − (f∗)′′(xi))
2
+ o(δ5i )

]
. (D.8)

implying:

ϵ(n) =
n−4

(
n−1

∑n
i=1(nδi)

5
)

240π
lim

n→∞

∫
Ef∗

[
((fn)′′(x)− (f∗)′′(x))

2
]
dx+ o(n−4) ∼ 1

n4
(D.9)

where we used that (i) the integral converges to some finite value, due to proposition 2. From App. C,
this integral can be estimated as

∑
k Ef∗

[(
cf∗(k)− k2f∗(k)

)2]
, that indeed converges for νt > 2.

(ii)
(
n−1

∑n
i=1(nδi)

5
)

has a deterministic limit for large n. It is clear for the lazy regime since the
distance between adjacent singularities δi follows an exponential distribution of mean ∼ 1

n . We
expect this result to be also true for the feature regime in our set-up. Indeed, in the limit n → ∞,
the predictor approaches a parabola between singular points, which generically cannot fit more than
three random points. There must thus be a singularity at least every two data-points with a probability
approaching unity as n → ∞, which implies that

(
n−1

∑n
i=1(nδi)

5
)

converges to a constant for
large n.

Finally, for νt < 2, the same decomposition in intervals applies, but a Taylor expansion to second
order does not hold. The error is then dominated by the fluctuations of f∗ on the scale of the intervals,
as indicated in the main text.

E Asymptotic of generalization via the spectral bias ansatz

According to the spectral bias ansatz, the first n modes of the predictor fnk,ℓ coincide with the modes
of the target function f∗k,ℓ. Therefore, the asymptotic scaling of the error with n is entirely controlled
by the remaining modes,

ϵ(n) ∼
∑

k≥kc

Nk,d∑

ℓ=1

(
fnk,ℓ − f∗k,ℓ

)2
with

∑

k≤kc

Nk,d ∼ n. (E.1)

Since Nk,d ∼ kd−2 for k ≫ 1, one has that, for large n, kc ∼ n
1

d−1 . After averaging the error over
target functions we get

ϵ(n) ∼
∑

k≥kc

Nk,d∑

ℓ=1

{
Ef∗

[(
fnk,ℓ
)2]

+ Ef∗

[(
f∗k,ℓ
)2]− 2Ef∗

[(
fnk,ℓf

∗
k,ℓ

)]}
. (E.2)
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Let us recall that, with the predictor having the general form in Eq. 3.2, then

fnk,ℓ = gnk,ℓφk with gnk,ℓ =

n∑

j=1

gjYk,ℓ(yj), (E.3)

where the yj’s denote the training points for the lazy regime and the neuron features for the feature
regime. For k≪ kc, where fnk,ℓ = f∗k,ℓ, g

n
k,ℓ = f∗k,ℓ/φk. For k≫ kc, due to the highly oscillating

nature of Yk,ℓ, the factors Yk,ℓ(yj) are essentially decorrelated random numbers with zero mean and
finite variance, since the values of (Yk,ℓ(yj))

2 are limited by the addition theorem Eq. A.5. Let us
denote the variance with σY . By the central limit theorem, gnk,ℓ converges to a Gaussian random
variable with zero mean and finite variance σ2

Y

∑n
j=1 g

2
j . As a result,

ϵ(n) ∼
∑

k≥kc

Nk,d∑

ℓ=1








n∑

j=1

g2j


φ2

k + Ef∗

[(
f∗k,ℓ
)2]




=




n∑

j=1

g2j


 ∑

k≥kc

Nk,dφ
2
k +

∑

k≥kc

Nk,dck,

(E.4)

where we have used the definition of f∗ (Eq. 2.1) to set the expectation of (f∗k,ℓ)
2 to ck.

Large νt case When f∗ is smooth enough the error is controlled by the predictor term proportional
to
∑n

j=1 g
2
j . More specifically, if

∑

k≥0

Nk,d∑

ℓ=1

ck
φ2
k

< +∞, (E.5)

then the function gn(x) converges to the square-summable function g∗(x) such that
f∗(x)=

∫
g∗(y)φ(x · y) dτ(y). With ck ∼ k−2νt−(d−1) and Nk,d ∼ kd−2, in the lazy regime

φk ∼ k−(d−1)−2ν Eq. E.5 is satisfied when 2νt> 2(d− 1) + 4ν (ν=1/2 for the NTK and 3/2 for
the RFK). In the feature regime φk ∼ k−(d−1)/2−3/2, Eq. E.5 is satisfied when 2νt> (d− 1) + 3. If
gn(x) converges to a square-summable function, then

n∑

j=1

g2j =
1

n

∫
gn(x)2 dτ(x) + o(n−1) =

1

n

∑

k≥0

Nk,d
ck
φ2
k

+ o(n−1), (E.6)

which is proportional to n−1. In addition, since Nk,d ∼ kd−2 and kc ∼ n
1

d−1 , one has

n−1
∑

k≥kc

Nk,dφk ∼





n−1kd−1k−2(d−1)−4ν
∣∣∣
k=n

1
d−1

∼ n−2− 4ν
d−1 (Lazy),

n−1kd−1k−(d−1)−3
∣∣∣
k=n

1
d−1

∼ n−1− 3
d−1 (Feature),

(E.7)

and ∑

k≥kc

Nk,dck ∼ kd−1k−2νt−(d−1)
∣∣∣
k=n

1
d−1

∼ n−
2νt
d−1 . (E.8)

Hence, if νt is large enough so that Eq. E.5 is satisfied, the asymptotic decay of the error is given
by Eq. E.7.

Small νt case If Eq. E.7 does not hold then gn(x) is not square-summable in the limit n → ∞.
However, for large but finite n only the modes up to the kc-th are correctly reconstructed, therefore

n∑

j=1

g2j ∼ 1

n

∑

k≤kc

Nk,d
ck
φ2
k

∼





n−1k−2νtk2(d−1)+4ν
∣∣∣
k=n

1
d−1

∼ n−
2νt
d−1n1+

4ν
d−1 (Lazy),

n−1k−2νtk(d−1)+3
∣∣∣
k=n

1
d−1

∼ n−
2νt
d−1n

3
d−1 (Feature),

(E.9)

Both for feature and lazy, multiplying the term above by
∑

k≥kc
Nk,dφk from Eq. E.7 yields

∼ n−2νt/(d−1). This is also the scaling of the target function term Eq. E.8, implying that for small νt
one has

ϵ(n) ∼ n−
2νt
d−1 (E.10)

both in the feature and in the lazy regimes.
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F Spectral bias via the replica calculation

Due to the equivalence with kernel methods, the asymptotic decay of the test error in the lazy regime
can be computed with the formalism of [45], which also provides a non-rigorous justification for
the spectral bias ansatz. By ranking the eigenvalues from the biggest to the smallest, such that φρ

denotes the ρ-th eigenvalue and denoting with cρ the variance of the projections of the target onto the
ρ-th eigenfunction, one has

ϵ(n) =
∑

ρ

ϵρ(n), ϵρ(n) =
κ(n)2

(φρ + κ(n))2
cρ, κ(n) =

1

n

∑

ρ

φρκ(n)

φρ + κ(n)
. (F.1)

It is convenient to introduce the eigenvalue density,

D(φ) :=
∑

k≥0

Nk,d∑

l=1

δ(φ− φk) =
∑

k≥0

Nk,dδ(φ− φk) ∼
∫ ∞

0

kd−2δ(φ− k−(d−1)−2ν) for k ≫ 1.

(F.2)
After changing variables in the delta function, one finds

D(φ) ∼ φ− 2(d−1)+2ν
(d−1)+2ν for φ≪ 1. (F.3)

This can be used for inferring the asymptotics of κ(n),

κ(n) =
1

n

∑

ρ

φρκ(n)

φρ + κ(n)
∼ 1

n

∫
dφD(φ)

φκ(n)

φ+ κ(n)

∼ 1

n

∫ κ(n)

0

dφD(φ)φ+
κ(n)

n

∫ φ0

κ(n)

dφD(φ)

∼ 1

n
κ(n)1−

(d−1)
(d−1)+2ν ⇒ κ(n) ∼ n−1− 2ν

d−1 .

(F.4)

Once the scaling of κ(n) has been determined, the modal contributions to the error can be split
according to whether φρ ≪ κ(n) or φρ ≫ κ(n). The scaling of φρ with the rank ρ is determined
self-consistently,

ρ ∼
∫ φ1

φρ

dφD(φ) ∼ φ
− d−1

(d−1)+2ν
ρ ⇒ φρ ∼ ρ−1− 2ν

d−1 ⇒ φρ ≫ (≪)κ(n) ⇔ ρ≪ (≫)n. (F.5)

Therefore
ϵ(n) ∼ κ(n)2

∑

ρ≪n

cρ
φ2
ρ

+
∑

ρ≫n

cρ. (F.6)

Notice that κ(n)2 scales as n−1
∑

k≥kc
Nk,sφk in Eq. E.7, whereas

∑
ρ≪n cρ/φ

2
ρ corresponds to

n
∑

j g
2
j in Eq. E.9, so that the first term on the right-hand side of Eq. F.6 matches that of Eq. E.4.

The same matching is found for the second term on the right-hand side of Eq. F.6, so that the replica
calculation justifies the spectral bias ansatz.

G Training wide neural networks: does gradient descent (GD) find the
minimal-norm solution?

In the main text we provided predictions for the asymptotics of the test error of the minimal norm
solution that fits all the training data. Does the prediction hold when solution of Eq. 2.5 and Eq. 2.13
is approximately found by GD? More specifically, is the solution found by GD the minimal-norm
one?

Feature Learning We answer these questions by performing full-batch gradient descent in two
settings (further details about the trainings are provided in the code repository, experiments.md
file),
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1. Min-L1. Here we update weights and features of Eq. 2.3, with ξ = 0, by following the
negative gradient of

LMin-L1 =
1

2n

n∑

i=1

(f∗(xi)− f(xi))
2
+
λ

H

H∑

h=1

|wh|, (G.1)

with λ → 0+. The weights wh are initialized to zero and the features are initialized
uniformly and constrained to be on the unit sphere.

2. α-trick. Following [8], here we minimize

Lα-trick =
1

2nα

n∑

i=1

(f∗(xi)− αf(xi))
2
, (G.2)

with α → 0. This trick allows to be far from the lazy regime by forcing the weights to
evolve to O(1/α), when fitting a target of order 1.

In both cases, the solution found by GD is sparse, in the sense that is supported on a finite number of
neurons – in other words, the measure γ(θ) becomes atomic, satisfying Assumption 1. Furthermore,
we find that

1. For Min-L1, the generalization error prediction holds (Fig. 4 and Fig. G.1) as the the
minimal norm solution if effectively recovered, see Fig. G.2. Such clean results in terms of
features position are difficult to achieve for large n because the training dynamics becomes
very slow and reaching convergence becomes computationally infeasible. Still, we observe
the test error to plateau and reach its infinite-time limit much earlier than the parameters,
which allows for the scaling predictions to hold.

2. α-trick, however, does not recover the minimal-norm solution, Fig. G.2. Still, the solution
found is of the type (2.7) as it is sparse and supported on a number of atoms that scales lin-
early with n, Fig. G.3, left. For this reason, we find that our predictions for the generalization
error hold also in this case, see Fig. G.3, right.

Lazy Learning In this case, the correspondence between the solution found by gradient descent
and the minimal-norm one is well established [9]. Therefore, numerical experiments are performed
here via kernel regression and the analytical NTK Eq. A.19: given a dataset {xi, yi = f∗(xi)}ni=1,
we define the gram matrix K ∈ Rn×n with elements Kij = K(xi,xj) and the vector of target labels
y = [y1, y2, . . . , yn]. The qi’s in Eq. 2.9 can be easily recovered by solving the linear system

y = 1
nKq. (G.3)

Experiments Numerical experiments are run with PyTorch on GPUs NVIDIA V100 (univer-
sity internal cluster). Details for reproducing experiments are provided in the code repository,
experiments.md file. Individual trainings are run in 1 minute to 1 hour of wall time. We estimate
a total of a thousand hours of computing time for running the preliminary and actual experiments
present in this work.
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Figure G.1: Gen. error decay vs. target smoothness and training regime. Here, data-points are
sampled uniformly from the spherical surface in d = 5 and the target function is an infinite-width
FCN with activation function σ(·) = | · |νt−1/2, corresponding to a Gaussian random process of
smoothness νt. 1strow: gen. error decay exponent as a function of the target smoothness νt. The
three curves correspond to the target contribution to the generalization error (black) and the predictor
contribution in either feature (blue) or lazy (orange) regime. Full lines highlight the dominating
contributions to the gen. error. 2ndrow: agreement between predictions and experiments in the feature
regime for a non-smooth (left) and smooth (right) target. In the first case, the error is dominated by
the target f∗, in the second by the predictor fn – predicted exponents β are indicated in the legends.
3rdrow: analogous of the previous row for the lazy regime.
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Figure G.2: Comparing solutions. Solutions to the spherically symmetric task in d = 2 for n = 4
(left) and n = 8 (right) training points. In red the minimal norm solution (Eq. 2.5) as found by
Basis Pursuit [50]. Solutions found by GD in the Min-L1 and α-trick setting are respectively shown
in blue and orange. Dots correspond to single neurons in the network. The x-axis reports their
angular position while the y-axis reports their norm: |wh|∥θh∥2. The total norm of the solutions,
α
H

∑H
h=1 |wh|∥θh∥2, is indicated in the legend.
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Figure G.3: Solution found by the α-trick. We consider here the case of approximating the constant
target function on Sd−1 with an FCN. Training is performed starting from small initialization through
the α-trick. Left: Number of atoms nA as a function of the number of training points n. Neurons that
are active on the same subset of the training set are grouped together and we consider each group a
distinct atom for the counting. Right: Generalization error in the same setting (full), together with
the theoretical predictions (dashed). Different colors correspond to different input dimensions. The
case of d = 2 and large n suffers from the same finite time effects discussed in Fig. 4. Results are
averaged over 10 different initializations of the networks and datasets.

H Sensitivity of the predictor to transformations other than diffeomorphisms

This section reports experiments to integrate the discussion of section 5. In particular, we: (i) show
that the lazy regime predictor is less sensitive to image translations than the feature regime one (as
is the case for deformations, from Fig. 6); (ii) provide evidence of the positive effects of learning
features in image classifications, namely becoming invariant to pixels at the border of images which
are unrelated to the task.

To prove the above points we consider, as in Fig. 6, the relative sensitivity of the predictors of lazy
and feature regime with respect to global translations for point (i) and corruption of the boundary
pixels for point (ii). The relative sensitivity to translations is obtained from Eq. 5.1 after replacing
the transformation τ with a one-pixel translation of the image in a random direction. For the relative
sensitivity to boundary corruption, the transformation consists in adding zero-mean and unit-variance
Gaussian numbers to the boundary pixels. Both relative sensitivities are plotted in Fig. H.1, with
translations on the left and boundary pixels corruption on the right.

In section 5 we then argue that differences in performance between the two training regimes can
be explained by gaps in sensitivities with respect to input transformations that do not change the
label. For (i), the gap is similar to the one observed for diffeomorphisms (Fig. 6). Still, the space of
translations has negligible size with respect to input space, hence we expect the diffeomorphisms
to have a more prominent effect. In case (ii), the feature regime is less sensitive with respect to
irrelevant pixels corruption and this would give it an advantage over the lazy regime. The fact that the
performance difference is in favor of the lazy regime instead, means that these transformations only
play a minor role.
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Figure H.1: Sensitivity to input transformations vs number of training points. Relative sensitivity
of the predictor to (left) random 1-pixel translations and (right) white noise added at the boundary of
the input images, in the two regimes, for varying number of training points n and when training on
FashionMNIST. Smaller values correspond to a smoother predictor, on average. Results are computed
using the same predictors as in Fig. 1. Left: For small translations, the behavior is the same compared
to applying diffeomorphisms. Right: The lazy regime does not distinguish between noise added at
the boundary or on the whole image (Rf = 1), while the feature regime gets more insensitive to the
former.

I Maximum-entropy model of diffeomorphisms

We briefly review here the maximum-entropy model of diffeomorphisms as introduced in [49].

An image can be thought of as a function x(s) describing intensity in position s = (u, v) ∈ [0, 1]2,
where u and v are the horizontal and vertical (pixel) coordinates. Denote τx the image deformed by
τ , i.e. [τx](s) = x(s− τ(s)). [49] propose an ensemble of diffeomorphisms τ(s) = (τu, τv) with
i.i.d. τu and τv defined as

τu =
∑

i,j∈N+

Cij sin(iπu) sin(jπv) (I.1)

where the Cij’s are Gaussian variables of zero mean and variance T/(i2 + j2) and T is a parameter
controlling the deformation magnitude. Once τ is generated, pixels are displaced to random positions.
See Fig. 5b for an example of such transformation.
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