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Abstract—This paper proposes a decentralized adjustable
robust operation model achieving the coordinated operation
between an active distribution network (ADN) and microgrids
(MGs). Thanks to the autonomous characteristic and heterogene-
ity of the individual agents in ADNs with multi-MGs, we develop
a tailored alternating direction method of multipliers (ADMM)-
based fully decentralized framework. The linear decision rules
are utilized to reformulate the microgrid two-stage adjustable
robust operation problem as a computationally tractable so-
lution such that the proposed adjustable robust extension of
decentralized ADMM is capable of handling renewable energy
uncertainties. The numerical results illustrate the effectiveness of
the proposed model.

Index Terms—Multi-microgrids, adjustable robust optimiza-
tion, decentralized optimization

NOMENCLATURE

Indices and Sets
G Subset of nodes with controllable DGs
M Set of MGs
N Set of nodes
T Set of periods
U Set of polyhedral uncertainty
Parameters
ε Maximum deviation of voltage
ηC /ηD Charging/discharging efficiency of ESS
κ Uncertainty budget
P
ex

/Q
ex

Exchanged active/reactive power limit between main
grid and ADN

P
DN

i Exchanged active power limit between ADN and
MG at node i

P
C

t /P
D

t Maximum charging/discharging rate of ESS at time
t
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P
W

t /P
P

t Predicted output of WT/PV at time t
Si Transmission capacity limit from nodes i to i+ 1
E/E Mimimum/maximum capacity of ESS
V i/V i Mimimum/maximum voltage magnitude of node i
ai/bi/ci Fuel cost coefficients of controllable DG i
cC /cD Charging/discharging cost of ESS
cbt /c

s
t Buying/selling price from/to main grid at time t

PLi,t Load demand of node i at time t
ri/xi Line resistance/reactance between nodes i and i+ 1
RDi /RUi Ramp-up/down limit of controllable DG i
V0,t Voltage of substation, normally 1 p.u.
Variables
Et Actual output of ESS at time t
P bt /P st Active power deficiency/surplus of ADN at time t
PCt /PDt Charging/discharging power of ESS at time t
PEt Actual output of ESS at time t
PWt /PPt Actual output of WT/PV at time t
PMG
t /PDNi,t Active power injected to MG/flowing from ADN

at node i in time t
P1,t/Q1,t Exchanged active/reactive power between main

grid and ADN at time t
Pi,t/Qi,t Active/reactive power from nodes i to i+ 1 at time

t
PGi,t/Q

G
i,t Active/reactive power of controllable DG at node i

in time t
Vi,t Voltage magnitude of node i at time t

Boldface lower case and upper case letters represent vectors
and matrices, respectively.

I. INTRODUCTION

Restructuring power systems and the integration of renew-
able energy have transformed traditional distribution networks
into active distribution networks (ADNs). The next step in this
trend is to decentralize ADNs to microgrids (MGs), which are
regarded as an effective way to improve the penetration rate
of renewable energy and can provide powerful support for
ADNs [1].



Recently, many studies have investigated the coordinated
operation problem for ADN with multi-microgrids (MMG).
In [2], a game theory based method that simulates the potential
cooperative behaviors of MMG is proposed to achieve higher
energy efficiency and operation economy. In [3], a two-stage
collaborative operation model for a residential MMG is con-
structed while the interactive energy dispatch model between
DN and residential MMG is addressed in [4]. However, these
studies [2]–[4] all followed a centralized implementation. In
practice, distribution system operator (DNO) and each micro-
grid operator (MGO) are respectively managed by different
entities such that centralized optimization always leads to tech-
nical and political challenges. To this end, the decentralized
framework becomes favorable as it does not require pooling
all the local information as for a centralized operation.

The general distributed optimization algorithms can be
classified into three types: 1) the augmented Lagrangian
relaxation-based approaches such as the analytical target cas-
cading (ATC) [5], alternating direction method of multipliers
(ADMM) [6]–[8] and auxiliary problem principle (APP) [9];
2) the Karush–Kuhn–Tucker conditions-based approaches such
as the heterogeneous decomposition (HD) algorithm [10] and
the optimality condition decomposition (OCD) algorithm [11];
and 3) the Benders’ decomposition (BD) algorithm [12].
Among the augmented Lagrangian relaxation-based methods,
ADMM has shown its superiority in convergence properties
that has been adopted to the multi-area optimal power flow [6],
energy market clearing [7], and energy Internet [8] problems.

Another challenge for the operation of multi-microgrid
distribution networks is how to hedge uncertainties on re-
newable energy. Recently, stochastic optimization (SO) [13]
and robust optimization (RO) [14]–[18] have attracted much
attention. However, the exact probability distribution in SO
is hard to obtain in practical applications. As a promising
method, RO models characterize uncertain parameters through
uncertainty sets and only need their constrained perturbations
to find a solution optimized for the worst-case realization.
Unlike the decomposition-based robust approach [14], [15],
the linear decision rules (LDRs) [16]–[18] model can provide
a slightly conservative yet single tractable solution to the
robust adjustable formulation. Since the robust counterpart
of the LDRs-based adjustable approach usually results in a
tractable convex problem, the LDRs model is more suitable
for decentralized optimization.

To achieve the synergistic yet independent operation of
multiple entities, a fully decentralized operation framework
is developed based on a tailored ADMM algorithm. This fully
decentralized operation model can be solved in a parallel
manner, achieving the synergistic yet independent operation of
multiple entities. Then, the two-stage adjustable robust exten-
sion of decentralized ADMM capable of handling renewable
energy uncertainties is proposed. The LDRs are utilized to
solve the robust adjustable problems directly without decom-
position, reducing the computational burden of every ADMM
iteration and guaranteeing the convergence of ADMM.

II. SEPARABLE FORMULATION OF DETERMINISTIC
OPERATION MODEL

Fig. 1. Topology of distribution system with multi-microgrids

A typical topology of the multi-microgrids distribution
system is shown in Fig.1. The MG organically combines the
photovoltaic (PV), wind turbine (WT), and energy storage
system (ESS) to meet local load demand.

A. Operation Problem of ADN

The optimization objective of ADN is to minimize the
operation costs of controllable DGs as well as the power
transaction costs including electricity purchasing costs or
selling benefits from the main grid.

min
∑
t∈T

∑
i∈G

[
ai
(
PGi,t
)2

+ biP
G
i,t + ci

]
(1a)

+
∑
t∈T

(
cbtP

b
t − cstP st

)
s.t. Pi+1,t = Pi,t + PGi+1,t (1b)

− PLi+1,t − PDNi+1,t, i ∈ N , t ∈ T

Qi+1,t = Qi,t +QGi+1,t −QLi+1,t, i ∈ N , t ∈ T (1c)

Vi+1,t = Vi,t −
riPi,t + xiQi,t

V0,t
, i ∈ N , t ∈ T (1d)

P1,t = P bt − P st , P bt ≥ 0, P st ≥ 0, t ∈ T (1e)

− P ex ≤ P1,t ≤ P
ex
, t ∈ T (1f)

−Qex ≤ Q1,t ≤ Q
ex
, t ∈ T (1g)

P 2
i,t +Q2

i,t ≤ S
2

i , i ∈ N , t ∈ T (1h)

1− ε ≤ Vi,t ≤ 1 + ε, i ∈ N , t ∈ T (1i)

− PDNi ≤ PDNi,t ≤ P
DN

i , i ∈M, t ∈ T (1j)

PGi ≤ PGi,t ≤ P
G

i , i ∈ G, t ∈ T (1k)

−RDi ≤ PGi,t − PGi,t−1 ≤ RUi , i ∈ G, t ∈ T (1l)

QG
i
≤ QGi,t ≤ Q

G

i , i ∈ G, t ∈ T . (1m)

Constraints (1b)–(1d) are the linearized distribution load flow
(Dist-Flow) equations. Constraints (1e)-(1g) represent the re-
lationship between the power flow from the main grid to
the ADN. Constraints (1h) denotes the branch capacity limit,
which can be approximated by a number of linear constraints.
Constraint (1i) ensures the voltage magnitude of each node is
kept within the allowed maximum deviation from the nominal



value. Constraint (1j) denotes the power flow limits transferred
from ADN to MGs. Constraints (1k)-(1m) are the generation
limits on controllable DGs.

B. Operation Problem of MG

The operation model of the k-th microgrid (omitting the
subscript k to simplify the notation) is written as:

min
∑
t∈T

(
cCPCt + cDPDt

)
(2a)

s.t. PWt + PPt + PDt − PCt + PMG
t = PLt , t ∈ T (2b)

− PDN ≤ PMG
t ≤ PDN , t ∈ T (2c)

0 ≤ PWt ≤ P
W

t , t ∈ T (2d)

0 ≤ PPt ≤ P
P

t , t ∈ T (2e)

0 ≤ PCt ≤ P
C
, t ∈ T (2f)

0 ≤ PDt ≤ P
D
, t ∈ T (2g)

Et = Et−1 + ηCPCt − PDt /ηD, t ∈ T (2h)

E ≤ Et ≤ E, t ∈ T (2i)
E0 = ET . (2j)

Constraint (2b) represents the power balance of MG while
constraint (2c) denotes the power flow limits transferred from
the MG to the ADN. Constraints (2d) and (2e) are the power
production limit for WT and PV, respectively. Constraints
(2f)-(2g) denote the charging/discharging rate limits of ESS.
Constraint (2h) represents the energy balance of ESS. Con-
straint (2i) keeps the energy of ESS within its capacity limits.
Constraint (2j) specifies the initial and final level of ESS.

C. Coupling of ADN and MGs

While implementing the decentralized optimization, it is
necessary that the output power from the ADN should be equal
to the input power to the MG.

PDNk,t = PMG
k,t , k ∈M, t ∈ T . (3)

III. COMPACT LDRS-BASED MICROGRID ADJUSTABLE
ROBUST OPERATION MODEL

The adjustable robust model includes two stages, i.e., “here-
and-now” and “wait-and-see”. For the sake of presentation, we
write the deterministic operation model of each MG into the
following compact epigraph form:

min
x,y

Φ (x,y) (4a)

s.t. A · x+B · y +C · ξ̂ + e = 0, (4b)

D · x+E · y + F · ξ̂ + f ≤ 0 (4c)

with coefficient matrices A, B, C, D, E, and F in appropri-
ate dimension, e,f denote the requirement vectors, x denotes
the “here-and-now” variables made before the realization of
uncertainty, variables y can take “wait-and-see” recourse de-
cisions, function Φ(·, ·) denotes the compact linear objective,
ξ̂ denotes a forecast value of the uncertainty of renewable
energy denoted by vector ξ.

In this paper, the uncertain parameter ξ is restricted by being
in a polyhedral uncertainty set given by

U = {ξ ≥ 0, K · ξ − g ≤ 0} . (5)

The robustness level can be controlled using a parameter
denominated as the budget of uncertainty. The robust form
of (4c) can be thus, written as the following semi-infinite form:

∀ ξ ∈ U , D · x+E · y + F · ξ + f ≤ 0, (6)

The decision variable y is replaced by an LDR including
two parts,

y = yN + yA · ξ, (7)

where non-adjustable variable yN is the “here-and-now” part
made before the realization of uncertainty while adjustable
variable yA is the “wait-and-see” part made after the uncertain
parameters are revealed.

Thus, (6) can be further rewritten as

∀ ξ ∈ U , D · x+E ·
(
yN + yA · ξ

)
+ F · ξ + f ≤ 0. (8)

The constraint (8) is feasible for any realization of the un-
certain parameters if it is feasible for the worst-case realization
of the uncertain parameters such that (8) is equivalent to

max
ξ∈U

{
E ·

(
yN + yA · ξ

)
+ F · ξ

}
+D · x+ f ≤ 0. (9)

The worst-case constraint (9) can be further simplified by
using duality theory [19] to eliminate the max operator such
that the robust form of (4) is given by

min
x,yN,yA,Λ,Π

Φ
(
x,yN,yA,Λ

)
(10a)

s.t. A · y +B · yN +C · ξ̂ + e = 0 (10b)

D · y +E · yN + Π> · g + f ≤ 0 (10c)

Π> ·K ≥ E · yA + F (10d)
Λ, Π ≥ 0 (10e)

with associated dual variable Λ and Π. Here, the reformulation
of the worst-case objective is the same as the reformulation of
constraints (9) by using the duality theory such that Φ is also
linear [20].

IV. FULLY DECENTRALIZED ADJUSTABLE ROBUST
OPERATION FRAMEWORK

We stack by χa the local decision variables such that the
adjustable robust operation model for ADN with MMG can
be summarized into an affine-coupled separable form

min
x

∑
a∈R

Ψa(χa) (11a)

s.t. Γa,bχa = Γb,aχb , (a, b) ∈ V (11b)
χa ∈ Xa , a ∈ R (11c)

with local objective Ψa, and local constraint set Xa, a ∈ R
collects all decoupled constraints and their associated robust
tractable reformulation introduced in Section II and III for the
ADN and each MMG. Here, R denotes the index of local



systems including the ADN and MMGs, the coupled affine
equality constraint (11b) summarizes constraints (3) for all
(a, b) ∈ V , where V ⊆ R×R denotes the pair of neighboring
local systems.

In order to solve (11) using ADMM in a fully decentralized
manner, we introduce consensus variables ζ with the following
affine equalities

Γa,bχa = ζa,b , Γb,aχb = ζa,b , (a, b) ∈ V (12)

where ζa,b includes the elements of ζ w.r.t. the coupling
between local system a and b. Then, we stack all local
consensus variables into the compact form

Γaχa = ζa , a ∈ R . (13)

In a result, the augmented Lagrangian is written as

L(χ, ζ,λ) :=∑
a∈R

{
Ψa(χa) + λ>a (Γaχa − ζa) +

ρa
2
‖Γaχa − ζa‖22

}
,

where λa denotes the Lagrangian multipliers of (13). The
synchronous ADMM iteration is thus, given by

χ`+1
a = argmin

χa∈Xa

Ψa(χa) + λ`a
> (

Γaχa − ζ`a
)

(14a)

+
ρa
2

∥∥Γaxa − ζ`a∥∥22 , a ∈ R
λ`+1
a = λ`a + ρa(Γaχ

`+1
a − ζ`a) , a ∈ R (14b)

ζ`+1
a,b = argmin

ζa,b

(Γa,bχ
`+1
a − ζa,b)>λ`+1

a,b (14c)

+
ρa
2

∥∥Γa,bχ`+1
a − ζa,b

∥∥2
2

+ (Γb,ax
`+1
b − ζa,b)>λ`+1

b,a

+
ρb
2

∥∥Γb,aχ`+1
b − ζa,b

∥∥2
2

=
Γb,aχ

`+1
b + Γa,bχ

`+1
a − λ`+1

a,b − λ
`+1
b,a

ρa + ρb
, (a, b) ∈ V.

Here, ` denotes a global iteration counter. The local primal
update (14a) and dual update (14b) can be employed in parallel
while the consensus update (14c) can be proceed either by
local system a or b.

V. NUMERICAL RESULTS

To evaluate the algorithm, numerical simulations were
performed on the modified IEEE-69 bus system [21] with
four MGs located at nodes 27, 46, 50, and 65. The day-
ahead electricity market price, the operating characteristics of
controllable DGs and ESSs, the day-ahead output of PVs and
WTs, and other detailed parameters can be found at [22]. The
initial values of coupling variables and multipliers are all set
to 0. To simplify the analysis, the uncertainty budgets of each
MG are assumed the same. The case study is implemented in
Matlab R2016a on an Intel Core i7-8700, 3.2 GHz, 16 GB
RAM computer, solved by Gurobi 9.0.

A. Comparison of Different Variation Ranges
Three different robust cases with different variation ranges

for PVs and WTs are considered here: Case 1 (10%), Case 2
(20%), and Case 3 (30%). The following observations can be
obtained:

1) For budget κ = 0, the operation costs of all cases are
identical. This is because when the uncertainty budget is zero,
no uncertain parameters can deviate from their forecasts. Thus,
budget κ = 0 leads to the deterministic model, which yields
the same results for different variation ranges.

2) For a specific variation range, by increasing budget κ,
the solution becomes more robust at the expense of higher
operation costs. As shown in Table I, we can see that as budget
κ increases, the total operation costs monotonically increase
until κ = 0.25. In other words, κ = 0.25 is the point with the
maximum robustness level in which all uncertain parameters
have adopted their worst-case realizations.

3) For a specific value of uncertainty budget, the operation
costs increase by increasing the variation range. This is be-
cause a greater variation range allows the uncertain renewable
energies to deviate more from their forecasts, which leads to
a worse worst-case realization.

4) The computational burden of the proposed LDR-based
two-stage adjustable RO model is very low, which facilitates
its application to the real-life applications.

TABLE I
COMPARISON OF DIFFERENT UNCERTAINTY BUDGETS

κ
Total operation cost ($)

Average time (s)
Case 1 Case 2 Case 3

0 1980.41 1980.41 1980.41 3.62

0.05 2046.82 2121.59 2200.92 4.71

0.1 2068.42 2171.38 2284.02 4.66

0.15 2075.24 2185.97 2307.81 4.70

0.2 2080.97 2197.69 2325.86 4.68

0.25 2085.74 2207.26 2340.33 4.54
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Fig. 2. Convergence of tie-line power flow
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Fig. 3. Convergence of maximum primal and dual residue

B. Convergence Performance and Solution Quality

Taking hour 4 in Case 2 as an example and assuming that the
uncertainty budgets of MGs are all 0.2, the iteration process
of the ADMM algorithm on the tie-line power is depicted in
Fig. 2. The convergence of the maximum primal and dual
residue over the scheduling cycle is shown in Fig. 3. The
tailored ADMM algorithm converges after 35 iterations with
all the primal and dual residues smaller than the thresholds.
The tailored ADMM-based decentralized optimization scheme
is compared with the centralized scheme to demonstrate its
solution quality, summarized in Table II. The converged op-
eration cost found by the decentralized ADMM algorithm is
nearly the same as that identified by the centralized method.
The solution gap is 0.0005%, which is fairly small.

TABLE II
COMPARISON OF DIFFERENT ALGORITHMS

Algorithm Iterations Total operation cost ($) Solution gap

Centralized - 2197.69 -

Decentralized 35 2197.70 0.0005%

VI. CONCLUSIONS

This paper proposes the fully decentralized adjustable robust
operation model for active distribution system with multi-
microgrids. The decomposed microgrid operation problem
is formulated as a LDRs-based two-stage adjustable robust
model, which models both “here-and-now” and “wait-and-see”
decision variables and provides robustness against renewable
energy uncertainties. The proposed fully decentralized oper-
ation framework can preserve the information privacy and

the decision independency of both distribution network and
microgrids.
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