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A B S T R A C T

This paper presents a combined framework for power distribution network expansion planning (DNEP) and
energy storage systems (ESSs) allocation in active distribution networks (ADNs) hosting large amount of
photovoltaic (PV) generations and loads. The proposed DNEP ensures the reliable operation of the targeted
ADN with the objective of achieving its dispatchability while minimizing grid losses by determining the optimal
grid expansion to connect new nodes, the reinforcement of existing lines, and the ESS allocation. The allocated
ESSs compensate for the stochastic power flows caused by the stochastic loads and generation, allowing ADNs
to follow a pre-defined power schedule at the grid connection point. The grid constraints are modeled by
using a modified augmented relaxed optimal power flow (AR-OPF) model that convexifies the classical AC-
OPF providing the global optimal and the exact solution of the OPF problem for radial networks. The DNEP
problem’s complexity is handled by employing a sequential algorithm where new nodes are added one by
one, following the priorities determined by the user. In each stage of the sequential planning, the Benders
decomposition algorithm determines the optimal solution for investments and ADN operation iteratively.
Moreover, the siting and sizing problems associated with the ESSs and line investment are solved separately
to enhance the convergence speed. Simulations are conducted on a real 55-node Swiss ADN hosting sizeable
stochastic photovoltaic generation.
1. Introduction

To meet global decarbonization objectives, conventional power gen-
eration is progressively displaced by renewable energy resources (RES)
such as Photovoltaic (PV) plants. However, the such energy transition
has increased the stochasticity of the power generation mix, which
impacts the planning and operational practices of both distribution and
transmission networks. On the one hand, it causes difficulties securing
a distribution network’s stable and reliable operation, such as degra-
dation in the quality of supply mainly associated with voltage control,
as well as lines and transformers congestions [1]. On the other hand,
the stochastic nature of the RES generation increases the prediction
uncertainties of the active distribution networks (ADNs) prosumption,
making the grid connecting point (GCP) power flow more difficult
to comply with a pre-defined power schedule. This results in higher
scheduling and activation of spinning reserves and larger expenses for
grid ancillary services [2]. Several studies have suggested transmission
system operator (TSO)-distribution system operator (DSO) coordina-
tion to mitigate the power imbalance within the whole system [3].
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Furthermore, the authors of [4] proposed a contractual framework
to delegate system balancing responsibility from TSOs to DSOs. In
this regard, [5,6] proposed to integrate energy storage system (ESS)
assets with renewable generation units such that the ESSs compen-
sate for the prediction uncertainty of stochastic generation, rendering
the renewable generation a dispatchable resource. Furthermore, [7,8]
showed how ESSs can support the dispatchable operation of ADNs.
More specifically, the control strategy to achieve dispatchability-by-
design was introduced in [8] with experimental validation on a real
Swiss distribution feeder. The control strategy consisted of a two-stage
process following the conventional structure of system operation: day-
ahead operation and real-time operation. During the day-ahead operation,
a day-ahead power schedule at GCP, or dispatch plan, is determined
based on the prosumption forecast before the beginning of the actual
operation. Then, during real-time operation, the ESS power dispatch
is controlled to compensate for the inevitable dispatch errors (i.e.the
tracking error between the day-ahead power schedule and realized
power at the GCP). In [9], the significance of ADN dispatchability is
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verified through its capability to reduce bulk power systems’ spinning
reserve requirement. In this regard, for utilities and DSOs, it is worth
exploring a proper distribution network expansion planning (DNEP)
strategy accounting for ADN dispatchability as well as secure operation
of the local grid to seamlessly integrate RESs while minimizing the
impact on ADNs planning costs.

However, according to [10], conventional DNEP is inefficient in
handling the challenges mentioned above as active elements’ role in
managing the network’s operation is limited. In the existing literature,
DNEP problems are often proposed to size and site ESSs (e.g., [11–16]),
distributed generation units (e.g., [13,17]), voltage regulators [18],
static var compensators, and on-load-tap-changers [19]. These prob-
lems are solved with various objectives, such as minimizing power
losses [11–17], assuring the reliability of power supply [11–16], im-
proving the quality of power supply (e.g., voltage) [17], and reducing
peration costs [16,18,19].

However, to the best of the authors’ knowledge, none of those
tudies mentioned above treated a planning strategy that improves the
erformance of the power dispatch of ADNs by tackling the prosump-
ion stochasticity. Regarding the ADN’s dispatch problem, in [8], the
ay-ahead operation problem is formulated as a robust optimization
roblem such that the possible realization of prediction error (includ-
ng the worst-case scenario) can be compensated by maximizing the
xploitation of given ESS assets located at the GCP. Inevitably, such
study on the control strategy of ESSs raises another crucial research

uestion regarding how the ESS site and size should be determined to
chieve ADN’s dispatchability. In this context, in the authors’ previ-
us work [20], a planning strategy is proposed to allocate ESSs with
particular focus on enhancing the dispatchability of ADNs while

omplying with network constraints such as nodal voltages and line
mpacity limits. In contrast to [8], the prosumption uncertainty is
onsidered by formulating a stochastic optimization problem for the
ispatching problem. The stochastic optimization problem can avoid
ver-investment compared to the robust one because it aims to achieve
he economically optimal investment solution with a slight increase in
isk.

In [21], the planning tool proposed in [20] was extended to con-
ider line reinforcement on top of the ESS allocation in order to
dentify a better optimal investment solution even in binding opera-
ional conditions due to growing PV generation capacity within the
istribution network. The co-optimization of line reinforcement and
SS allocation assured the feasible operation of the network by up-
ating the line ampacity, while the allocated ESS compensated for the
ncreased stochasticity stemming from the PV injection. Finally, this
tudy extends the method proposed in [20,21] to a DNEP strategy
o host newly integrated PV resources and customers, i.e.it takes into
ccount the distribution network expansion as a decision variable. The
roposed tool co-optimizes the investment in new line installations, line
einforcement, and ESSs allocation to achieve ADNs dispatchability.

The DNEP problem is non-linear and non-convex due to the power
low equations and the presence of binary decision variables. Due
o its non-convexity, this type of problem is often solved by meta-
euristic algorithms [17,22,23]. However, these solution techniques do
ot guarantee optimality or even feasibility with respect to the ADN op-
ration. Other studies used convexification schemes on the OPF model,
uch as linear approximation [11,16,24] or second-order cone (SOC)
elaxation [19,25]. For example, the multi-stage expansion planning
ool developed in [11] evaluates the operation through a probabilistic
inear OPF model while embedding the ESS daily schedule identified by
ynamic programming. The main drawback of the linear OPF model is
hat the approximation of the power flow may not be accurate enough
o ensure physically feasible operation. Alternatively, the second-order
one programming (SOCP) model [19,25] can improve the modeling
ccuracy of the load flow, but at the cost of higher computation time
ompared to the linear OPF. In [19], the DNEP problem is modeled
2

s a mixed-integer SOCP problem. The system operation is formu-
ated as a SOCP relaxed OPF model while maneuvering a demand
anagement scheme through the optimal load-shedding direction. Yet,

he utilized OPF model did not consider the shunt element of lines.
oreover, the exactness of its solution cannot be guaranteed in the

ase of over-voltages and binding ampacity limits [26]. In [27], the
uthors investigated the solution inexactness of the general SOCP re-
axation depending on different operational objectives, from which
hey observed the possible incompatibility between the identification
f an exact solution and the efficient operation of the ADN with high
enetration of distributed resources. The authors proposed to tighten
he relaxation by introducing an iterative algorithm that increasingly
dds cutting planes to a SOCP-relaxed OPF model. However, the for-
ulation of operation based on such an iterative approach may not

e computationally efficient to be utilized as the core algorithm of the
arge-scale optimization problem for ADN planning. Instead, in [28],
o guarantee the exactness of the solution obtained from the SOCP
odel, augmented bounds are built upon the grid constraints in the

o-called augmented relaxed OPF (AR-OPF) model. Furthermore, the
uthors proved and numerically verified the superiority of the AR-OPF
odel over the SOCP relaxed model proposed in [29] in terms of the

xactness of the operational solution. In this regard, the ESS allocation
trategy proposed in [20] was developed based on the AR-OPF model,
here the model was appropriately modified to tackle the specific
roblem of ADNs dispatchability achieved by the ESSs. In [20], the op-
rational solution’s exactness within the system configuration defined
y the optimal investment solution was compared to the standard SOCP
elaxed model regarding statistically assessed errors’ distribution of
ranch currents. The numerical result verified that the MAR-OPF model
s superior to the standard SOCP-OPF model in obtaining an exact
olution. Hereafter, the modified AR-OPF is referred to as MAR-OPF.

The DNEP methodology proposed in this paper likewise relies on a
cenario-based stochastic MAR-OPF model. However, in contrast to the
SS allocation problem, including the network investment option in the
NEP strategy requires fundamental modification of power flow equa-

ions and operating constraints associated with changes in topology and
etwork adjacency matrix. By employing the big-M method, the power
low equations and grid constraints are selectively activated only when
he optimal connection among candidate lines is chosen, such that the
ystem operation under the optimal connection to the new node is
valuated. The admittance matrix is adjusted along with the change of
ine ampacities of new line and the line to be reinforced, following the
elation between the line parameters and the line ampacity presented
n [21].

Moreover, the increased problem complexity caused by the simul-
aneous management of ESSs and lines investment may necessitate a
hange in the solution approach to improve the tractability of the
lanning problem. To cope with the computational complexity of the
roposed planning framework, in [21], the reformulation of the plan-
ing problem is proposed to determine the investment decisions re-
arding the sites and sizes of assets in separate sub-stages. In both
ub-stages, a suitably modified Benders decomposition was employed.
he reformulated planning problem showed faster convergence of the
enders decomposition in the performance comparison with the orig-

nal problem. In view of its advantage, particularly important when
olving a planning problem consisting of numerous binary variables,
he reformulation technique is fittingly applied to the DNEP problem.
oreover, a sequential algorithm is introduced to add new nodes to

he existing network, making the proposed DNEP strategy capable of
andling the scalability issue raised by the increasing number of new
odes. In summary, the contributions of the paper are threefold:

• The DNEP strategy relying on a scenario-based stochastic pro-
gramming approach is proposed to ensure sufficient hosting ca-
pacity and achieve ADNs dispatchability when increasing stochas-

tic renewable generation and demand.
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• The ESSs and lines investment decisions are optimized based
on the accurate evaluation of ADN operation via the MAR-OPF
model, appropriately converted to consider the change of network
topology and adjacency matrix associated with assets investment.

• The computational burden of the DNEP problem is mitigated by
employing a specific sequential algorithm that consists of two sub-
stages: the 1st sub-stage sequentially integrates new nodes while
determining lines for reinforcement and nodes for ESS allocation,
and the 2nd sub-stage determines the capacity of lines and ESSs.

The paper is organized as follows: Section 2 introduces the structure
f the optimization problem and explains the key parts in detail.
n Section 3, the proposed problem and the associated solution are
escribed and discussed. Section 4 contains a detailed application
xample referring to the DNEP considering ESSs on real ADNs. Finally,
ection 5 concludes the paper by discussing the main findings.

. System description

The goal of the DNEP problem is to determine (i) the optimal
outing to new nodes hosting additional stochastic resources (consump-
ion/renewable generation), (ii) the reinforcement of existing lines, and
iii) the allocation of ESSs1 to maintain a feasible and dispatchable

operation of the network, while minimizing the total investment and
operating costs. The inputs to the DNEP problem include characteristics
of the existing networks and the new assets (ESSs and lines), locations
and capacities of newly integrated load and PV generation units, the
existing candidate nodes that can be connected to new nodes, and the
ESS candidate nodes. The time-series prosumption profile is assumed to
be known by the modeler, while its seasonal variability and prediction
uncertainty is represented by operating scenarios.

The DNEP is applied to a MV distribution network with a radial
topology, where 𝑙 ∈ (|| = 𝐿) is the generic line, 𝑖 ∈  (| | =
𝐿+1) is the generic node, and 𝑛′ ∈  ′(| ′

| = 𝑁 ′) is the new node.
The network is considered three-phase balanced without any coupling
between the phases. The set of candidate nodes that can be connected
to a new node are defined for each new node 𝑛′ and indicated as
(𝑛′). Its element is indexed as 𝑘 ∈ (𝑛′). The binary variable for line
reinforcement is denoted by 𝑋𝑙 ∈ {0, 1},∀𝑙 ∈ . The decision variable
associated to the ampacity of the generic reinforced line is denoted
by 𝐴𝑙 ,∀𝑙 ∈ . The installation of the line connecting node 𝑘 ∈ (𝑛′)
and new node 𝑛′ ∈  ′ is denoted by the variable 𝑋′

𝑘 ∈ {0, 1},∀𝑘 ∈
(𝑛′),∀𝑛′ ∈  ′, whereas line ampacities of the candidates for the new
line are denoted by 𝐴′

𝑘,∀𝑘 ∈ (𝑛′),∀𝑛′ ∈  ′. Line ampacities 𝐴𝑙 and
𝐴′
𝑘 are determined for the lines where the line investment take place

(i.e., 𝑋𝑙 = 1,∀𝑙 ∈ , and 𝑋′
𝑘 = 1,∀𝑘 ∈ (𝑛′),∀𝑛′ ∈  ′). Another set

of binary variables is defined for each node 𝑖 ∈  to determine the
ESS allocation (while ESS candidate nodes can be given by the user)
and its array is denoted as 𝑈𝑖 ∈ {0, 1}, ∀𝑖 ∈  . The energy reservoir
(𝐶𝑖) and power rating (𝑅𝑖) are determined at the node where the ESS
is allocated (𝑈𝑖 = 1,∀𝑖 ∈  ).

Each node in the ADN has a non-dispatchable complex power
prosumption. The prosumption profiles are classified into a group of
several typical day-types indexed with 𝑑, ∀𝑑 ∈ , representing their
seasonal variations. Over the planning horizon 𝑌 , the load consumption
of year 𝑦 ∈ {0, 1,… , 𝑌−1} =  is increased with the annual rate of 𝑟𝑖
from the previous year. The stochasticity of each day-type prosumption
is modeled by a set of scenarios (𝑠𝑖𝜙𝑡 = 𝑝𝑖𝜙𝑡 + 𝑗𝑞𝑖𝜙𝑡,∀𝜙 ∈ 𝛷𝑑𝑦),
which is defined for ∀𝑑 ∈  and ∀𝑦 ∈  . The probability of each
scenario is given by 𝜆𝜙, ∀𝜙 ∈ 𝛷𝑑𝑦. The dispatching problem considering
prosumption uncertainty is modeled as a scenario-based stochastic

1 The considered planning problem does not consider hybrid PV-ESS sys-
ems since their behavior is user-defined and hard to predict. Future research
as to focus on integrating these systems in the proposed planning tool.
3

s

problem. The main operational objective is to achieve optimal ADN
dispatchability considering the trade-off between the ESS investment
cost and the penalty cost caused by the tracking error concerning
the pre-defined power schedule set at the GCP. On each day, a daily
dispatch plan (𝐷𝑃𝑡𝑑𝑦,∀𝑡 ∈ {1,… , 𝑇 } =  ) is derived day-ahead based on
the aggregated prosumption prediction,2 and the active power through
GCP of the ADN (assigned with the node number 𝑖 = 1) is dispatched
in real-time to follow the dispatch plan. The active power of the
ESS allocated at node 𝑖 (𝑝𝐸𝑖𝜙𝑡) is dispatched to enhance the tracking
accuracy by minimizing the observed active dispatch error and, thus,
the corresponding imbalance penalty. Meanwhile, ESS reactive power
𝑞𝐸𝑖𝜙𝑡 supports the reactive power flows to maintain the desired operating
condition.

In summary, the DNEP problem is structured as a two-stage decision
process: (1) the first stage determines the binary decision variables of
the ESS location (𝑈𝑖), the line to be newly constructed (𝑋′

𝑘), the existing
lines to be reinforced (𝑋𝑙), and the continuous decision variables on the
ESS energy capacity (𝐶𝑖), their power rating (𝑅𝑖), the line ampacity of
the new line (𝐴′

𝑘) and the reinforced lines (𝐴𝑙); and (2) the second stage
deals with the daily operation problem, where the decision variables
on the ESSs active and reactive power are determined for all operating
scenarios and the power state variables accordingly.

3. Problem formulation

The complexity of the considered DNEP problem stems mainly
from three points: (i) the numerous possible connections between
the existing and new nodes that introduce numerous binary decision
variables; (ii) the two-layered decision-making process on planning and
operation; (iii) the simultaneous decision on siting and sizing of lines
and ESSs.

Regarding (i), although considering all the possible connections
of new nodes at once can provide optimal investment solutions, it
results in an intractable problem as the number of new nodes increases.
Therefore, it is computationally more efficient to consider a sequential
approach for connecting the new nodes, while sacrificing the solution’s
global optimality. Moreover, given that the integration of loads and dis-
tributed generation units is spread over a long-term horizon following
the pre-established targets set by DSO and customers, the sequential
approach following the priority order of new nodes is in accordance
with the standard planning process adopted by DSOs.

(ii) can be tackled by employing the Benders decomposition algo-
rithm [30], which is widely applied for solving large-scale optimization
problems. The planning problem is decomposed into an investment
decision stage (master problem) and parallel operation decision stages
(subproblems). After solving the master problem, the values of the
investment decision variables are fixed temporarily in the following
subproblems, such that the given problem is reduced to an operational
problem parameterized by the value of the investment decision vari-
ables vector. Then, the optimal value of this vector is updated by a
cutting-plane approach.

(iii) is related to the decision variables of different natures (contin-
uous and binary) constituting the investment options. The Benders cuts
are generated based on the dual values associated with the continuous
investment variables. They are often not efficient enough to narrow
down the mixed-integer solution space. In other words, including nu-
merous binary investment variables makes the planning algorithm even
more burdensome to converge to an optimal investment solution since
each solution value of binary variables has to be checked with vari-
ous combinations of the continuous investment variables’ values. The
excessive number of Benders iterations caused by inefficient Benders
cuts increases the master problem’s size and slows the convergence.

2 We assume a suitable forecasting tool to be available with known
tatistical distributions of prediction uncertainties.
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Therefore, in the proposed method, the planning problem employing
the Benders decomposition is reformulated into two sub-stages (each
employing Benders decomposition) such that siting and sizing decisions
of ESSs and lines are made in a decoupled way. The Benders cut for the
siting problem is strengthened by calculating the optimal sizes achieved
at each possible siting solution while solving parallel operation prob-
lems. When the optimal siting solution is obtained, siting solution is
fixed such that the master problem of the sizing problem is reduced to
a continuous programming problem.

Aside from the computational complexity issues, the last point to
be addressed concerns the accurate modeling of ADN operation. The
AR-OPF model is employed to model the ADN operation. However,
one of the pre-requisite conditions to guarantee the exactness of the
solution is to have the AR-OPF objective strictly increasing with the
grid losses. Given this, the random nature of dispatch error cannot
make the objective term related to the minimization of the dispatch
error (which is the main operational objective of interest in this paper)
comply with the necessary condition. Therefore, the exactness of the
AR-OPF solution cannot be guaranteed if the objective value that cor-
responds to the dispatch error is significant compared to the objective
term regarding the total grid losses. We propose to decompose the
problem into two blocks, each consisting of an OPF problem. In this
way, the dispatchability level is obtained by solving another, linearly
approximated, OPF problem (the so-called 1st block problem) based
on the ESSs investment cost and the penalty cost of dispatch error.
Then the dispatchability level is imposed as operating constraints in
the AR-OPF model-based operation problem of the 2nd block.

To summarize, the DNEP problem is solved by a sequential approach
comprising several rounds of the planning problem, each tackling the
addition of a single new node to the existing grid in a sequential priority
order defined by the user. Each planning problem is decomposed into
two blocks. In the 1st block, the economic benefits/penalties associated
with the network dispatchability are obtained considering the prosump-
tion of the new node by quantifying the optimal trade-off between
the ESS allocation costs and the avoidance of the power dispatch
imbalance penalties. In the 2nd block, the new lines, the reinforcement
of the existing lines, and the ESSs allocation are determined to comply
with the dispatch error level (obtained from the 1st block) and with
the network operating constraints. The reader is referred to [20] for
more details regarding the two-block structure. Compared to [20], [21]
proposes to decompose the 2nd block problem into two sub-stages:
1st sub-stage where the binary investment decisions are determined,
and 2nd sub-stage where values of the continuous investment vari-
ables are obtained. The Benders decomposition technique is applied
to both sub-stages to tackle the computational complexity. It assigns
investment-related variables in a master problem and operation-related
variables in parallel subproblems representing daily dispatch problems.
In each Benders iteration, the master problem optimally updates the
investment solution based on evaluating the subproblem costs for the
investment solutions given by all the previous iterations. The optimal
planning solution is determined through a finite number of Benders
iterations as the difference between the upper and lower bounds on
the planning costs becomes smaller than a pre-defined threshold.

The whole algorithm of the proposed approach is illustrated in Fig. 1
and described step by step in Alg. 1. We start the planning algorithm
by selecting the first new node 𝑛′ = 1 from the pool of new 𝑁 ′ nodes
ccordingly to the priority defined by the user. First, the 1st block
roblem is solved to determine the optimal level of dispatchability
hen node 𝑛′ is added to the existing network. Then, candidate nodes
(𝑛′) are chosen based on the modeler’s criteria. In this study, we

elected the candidate nodes based on their distance from the new
ode. After solving the 1st sub-stage of the 2nd block problem, the
ptimal allocation of a new line connecting the new node is determined
long with the possible reinforcement of existing lines and the ESSs
llocation. The grid is thus expanded by having one more line (i.e.,

∗ ∗
4

← 𝐿 + 1, ←  ∪ 𝑘 , where 𝑘 indicates the optimally determined
Fig. 1. Full algorithm of the proposed method.

Algorithm 1 Full algorithm of the proposed expansion planning
method
Input : Existing network (), prosumption (𝑠 = 𝑝 + 𝑗𝑞), ESS candidate
nodes (𝐸), new nodes ( ′)
1: Initialization : 𝑛′ ← 1;
2: while 𝑛′ ≤ 𝑁 ′ do
3: Consider Node 𝑛′ as a new node
4: Solve 1st block problem to determine the optimal level of

dispatchability with node 𝑛′ added to the existing network
5: Select candidate nodes (𝑛′) for connecting the existing nodes to

the new node according to the modeler’s criteria
6: Solve 1st sub-stage of 2nd block problem to determine 𝑈∗

𝑖 ,∀𝑖 ∈
 (ESS site), 𝑋′∗

𝑘 ,∀𝑘 ∈ (𝑛′) (connection to the new node),
𝑋∗

𝑙 ,∀𝑙 ∈  (line to be reinforced)
7: 𝐿←𝐿+1,←∪𝑘∗, 𝑁←𝑁+1,←∪𝑛′ {Update the network to

include the new node}
8: 𝑛′ ← 𝑛′ + 1
9: end while
0: return  ,, 𝑈∗, 𝑋∗

1: Solve 2nd sub-stage of 2nd block problem to determine ESS size
(𝑅∗

𝑖 , 𝐶
∗
𝑖 ,∀𝑖 ∈ 𝐸), line ampacities of new lines and lines to be

reinforced (𝐴∗
𝑙 ,∀𝑙 ∈ )

2: return 𝑅∗, 𝐶∗, 𝐴∗

candidate for the connection to the new node) and node (i.e., 𝑁 ←
𝑁 + 1, ←  ∪ 𝑛′). Then, the determined line candidate’s fixed cost
parameter (𝑐

𝑘∗ ) becomes the cost parameter of line 𝐿 (𝑟
𝐿). The node

next in the queue (i.e., 𝑛′ = 2) is tackled in the next iteration of the
planning problem. Once all new nodes are connected to the existing
grid through this procedure, the 2nd sub-stage of the 2nd block problem
is solved to determine the ESS sizes and the optimal line ampacities.

3.1. 1st block problem

The 1st block problem determines the optimal ESS allocation and
the grid dispatchability level by evaluating the dispatch operation for
all operating scenarios with the PV generation and load consump-
tion of a new node integrated into the existing grid. The formulation
of the 1st block problem is the same as the one already proposed
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in [20]. The planning problem is modeled as a mixed-integer linear
programming (MILP) with the objective of minimizing the investment
and total imbalance penalty costs over the planning horizon, and the
set of constraints associated with the investment conditions and the
linear Distflow OPF model. Shunt elements of the distribution lines are
considered to appropriately model their reactive power generation and
the impact on the nodal voltage profiles. In contrast, grid losses and
the lines’ ampacity constraints are neglected. Instead, they are suitably
considered in the 2nd block problem.

3.1.1. Modeling of the ESS investment and operation
Eqs. (1a)–(1c) model the possible investment range for the ESS

allocation. Power ratings and energy capacity ranges are given by
(1a) and (1b). 𝑖/𝑖 is the minimum/maximum possible ESS energy
reservoir capacity at node 𝑖; 𝑖/𝑖 represents minimum/maximum
possible ESS power rating capacity at node 𝑖; and 𝐶𝑅 represents the
limit of the rate at which the ESS is discharged with respect to its
maximum energy capacity. The power rating and energy reservoir
are determined according to (1c). 𝑒 represents the ESS investment
cost defined by (1d). 𝑓

𝑖 , 𝑝, and 𝑒 are cost parameters for the ESS
installation fixed cost at node 𝑖, power rating, and energy reservoir,
respectively. All variables with subscript 𝑖 are defined for 𝑖 ∈  .

𝑖𝑈𝑖 ≤ 𝑅𝑖 ≤ 𝑖𝑈𝑖,∀𝑖 (1a)

𝑖𝑈𝑖 ≤ 𝐶𝑖 ≤ 𝑖𝑈𝑖,∀𝑖 (1b)

𝛥𝑡𝑅𝑖 ≤
𝐶𝑖
𝐶𝑅

,∀𝑖 (1c)

𝑒 =
∑

𝑖∈
(𝑓

𝑖 𝑈𝑖+𝑝𝑅𝑖+𝑒𝐶𝑖) (1d)

The ESSs operational characteristics are given by (2a)–(2c) assum-
ing their behavior being ideal in the 1st block problem. The circular
capability curve defined by the maximum complex power of the given
ESS is piecewise-linearized by the array of coefficient parameters 𝛼𝑖,
𝛽𝑖, 𝜅𝑖 associated with ESS active power, reactive power, and the power
rating, respectively. 𝐸𝐸

𝑖𝜙𝑡 represents state-of-energy (SoE) of ESS in-
stalled at node 𝑖 for time 𝑡 of scenario 𝜙, which is governed by the
SOE lower/upper bound (𝐸/𝐸), as shown in (2c). The SoE changes as
the ESS (dis)charges by 𝑝𝐸𝑖𝜙𝑡 at each time interval 𝑡 of scenario 𝜙, as
described in (2b). As given in (2d), the ESS is operated such that the
final SoE is within ±𝜈% of margin from the given initial SoE to make
the continuous operation over consecutive days feasible.

𝛼𝑖𝑝
𝐸
𝑖𝜙𝑡 + 𝛽𝑖𝑞

𝐸
𝑖𝜙𝑡 ⩽ 𝜅𝑖𝑅𝑖, ∀𝑖,∀𝜙,∀𝑡 (2a)

𝐸𝐸
𝑖𝜙(𝑡+1) = 𝐸𝐸

𝑖𝜙𝑡+𝛥𝑡 ⋅ 𝑝
𝐸
𝑖𝜙𝑡, ∀𝑖,∀𝜙,∀𝑡 (2b)

𝐸𝐶𝑖 ≤ 𝐸𝐸
𝑖𝜙𝑡 ≤ 𝐸𝐶𝑖, ∀𝑖,∀𝜙,∀𝑡 (2c)

𝐸𝐸
𝑖𝜙(1) − 𝜈𝐶𝑖 ≤ 𝐸𝐸

𝑖𝜙(𝑇+1) ≤ 𝐸𝐸
𝑖𝜙(1) + 𝜈𝐶𝑖, ∀𝑖,∀𝜙,∀𝑡 (2d)

(2a)–(2d) are collectively referred to as 𝛯(𝜂) ≥ 0 where 𝜂 ∶=
{𝑝𝐸 , 𝑞𝐸 , 𝐸𝐸 , 𝑅, 𝐶} is the set of variables. The notation without subscript
corresponds to the vectors of variables and parameters for all nodes, all
timesteps, and all scenarios.

3.1.2. Modeling the ADN operation
As the ESS investment and the optimal dispatchability level are the

planning objectives of the 1st block problem, we assume that the new
node 𝑛′ may be connected to any existing node among the candidate
nodes.

The set of all nodes including the new node is denoted by 
(i.e.,  =  ∪ {𝑛′}). The line connected upstream to node 𝑖 is also
indexed by 𝑖. 𝑝𝑖𝜙𝑡 and 𝑞𝑖𝜙𝑡 are active and reactive prosumption for
node 𝑖 ∈ , scenario 𝜙 ∈ 𝛷𝑑𝑦, and time 𝑡 ∈  . 𝑝̃𝑖𝑡𝑑𝑦 is the active
prosumption prediction for node 𝑖 ∈ , time 𝑡 ∈  , day 𝑑 ∈ ,
and year 𝑦 ∈  . The prosumption scenarios are generated based on
5

Fig. 2. Illustration of the adopted nomenclature with respect to the classic two-port II
model of a transmission line adopted from [28].

the assumption that the prosumption follows a normal distribution.3
Therefore, the prosumption prediction at node 𝑖 (𝑝̃𝑖𝑡𝑑𝑦) is given as the
average prosumption over the scenario set. The dispatch plan (𝐷𝑃𝑡𝑑𝑦)
is equivalent to the aggregated prosumption prediction, as shown in
(3a). Eq. (3b) states that the gap between the aggregated prosumption
scenario and the dispatch plan is reduced by the sum of ESS active
power. The resulting leftover prediction error at node 𝑖, scenario 𝜙, and
time 𝑡 is indicated by 𝜖𝑖𝜙𝑡. The algebraic sum of errors over all nodes
is equivalent to the observed dispatch error at GCP, which we aim to
minimize (see (4a).)

The power flow equations are derived by applying the Kirchhoff’s
law to the two-port II branch model shown in Fig. 2. The node con-
nected upstream of node 𝑖 is denoted by 𝑢𝑝(𝑖). Take any connection
among the candidate connections to the new node 𝑛′ as the new line
to node 𝑛′. Then, the network with the new connected node becomes
a radial system where only single line is connected upstream to each
node. Therefore, node 𝑖 and line connected upstream of it are both
denoted by index 𝑖 ∈ . 𝐆 is the network adjacency matrix, where
𝐆𝑘𝑖 is defined for 𝑘, 𝑖 ∈  and 𝐆𝑘𝑖 = 1 if 𝑘 = 𝑢𝑝(𝑖), or 𝐆𝑘𝑖 = 0
otherwise. 𝑆𝑡

𝑖𝜙𝑡 = 𝑃 𝑡
𝑖𝜙𝑡 + 𝑗𝑄𝑡

𝑖𝜙𝑡/𝑆
𝑏
𝑖𝜙𝑡 = 𝑃 𝑏

𝑖𝜙𝑡 + 𝑗𝑄𝑏
𝑖𝜙𝑡 are the complex power

injected from node 𝑢𝑝(𝑖) to line 𝑖 /from line 𝑖 to node 𝑖, respectively.
𝑧𝑖 is longitudinal impedance of line 𝑖, while 𝑧̄ represents the complex
conjugate of 𝑧. 𝑏𝑖 is the shunt susceptance of line 𝑖. R(.) represents the
real parts of a complex number. The active power balance equations at
the upper and lower sides of line 𝑖 is given by (3c), while the reactive
power balance equations at the upper and lower sides of line 𝑖 is given
by (3d) and (3e). Squared nodal voltages of upperstream/lowerstream
nodes (𝑣𝑢𝑝(𝑖)𝜙𝑡∕𝑣𝑖𝜙𝑡) of line 𝑖 are calculated based on (3f), while being
constrained by squared voltage upper limit (𝑣𝑀 ) and lower limit (𝑣𝑚)
(see (3g).) All the variables with index 𝑖 are defined for 𝑖 ∈ .

𝐷𝑃𝑡𝑑𝑦 =
∑

𝑖∈
𝑝̃𝑖𝑡𝑑𝑦,∀𝑡,∀𝑑,∀𝑦 (3a)

𝐷𝑃𝑡𝑑𝑦−
∑

𝑖∈
𝑝𝑖𝜙𝑡 =

∑

𝑖∈
(𝜖𝑖𝜙𝑡+𝑝𝐸𝑖𝜙𝑡),∀𝜙,∀𝑡,∀𝑑,∀𝑦 (3b)

𝑃 𝑡
𝑖𝜙𝑡=𝑃

𝑏
𝑖𝜙𝑡=𝑝𝑖𝜙𝑡+𝑝

𝐸
𝑖𝜙𝑡+

∑

𝑚∈
𝐆𝑖𝑚 𝑃 𝑡

𝑖𝜙𝑡,∀𝑖,∀𝜙,∀𝑡 (3c)

𝑄𝑡
𝑖𝜙𝑡 = 𝑞𝑖𝜙𝑡+𝑞𝐸𝑖𝜙𝑡+

∑

𝑚∈
𝐆𝑖𝑚 𝑄𝑡

𝑖𝜙𝑡−(𝑣𝑢𝑝(𝑖)𝜙𝑡+𝑣𝑖𝜙𝑡)𝑏𝑖,∀𝑖,∀𝜙,∀𝑡 (3d)

𝑄𝑏
𝑖𝜙𝑡 = 𝑞𝑖𝜙𝑡+𝑞𝐸𝑖𝜙𝑡+

∑

𝑚∈
𝐆𝑖𝑚𝑄

𝑡
𝑖𝜙𝑡,∀𝑖,∀𝜙,∀𝑡 (3e)

𝑣𝑖𝜙𝑡 = 𝑣𝑢𝑝(𝑖)𝜙𝑡−2R
(

𝑧̄𝑖(𝑆𝑡
𝑖𝜙𝑡+𝑗𝑣𝑢𝑝(𝑖)𝜙𝑡𝑏𝑖)

)

,∀𝑖,∀𝜙,∀𝑡 (3f)

𝑣𝑚 ≤ 𝑣𝑖𝜙𝑡 ≤ 𝑣𝑀 ,∀𝑖,∀𝜙,∀𝑡 (3g)

The objective is to minimize the ESS investment cost (𝑒) and the
total penalty cost of the dispatch error over the planning horizon. 𝜔𝐷
is the weight coefficient for the imbalance penalty while 𝑁𝑑𝑦 stands

3 The user can, however, generate these scenarios according to other
parametric or non-parametric prosumption models that maybe available.
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for the number of days in year 𝑦 classified in the group of typical day-
ype 𝑑. 𝑟𝑑 is the discount rate. 𝛺1 and 𝛺2 represent the set of control

variables in the first and second stage decision process, respectively.

min
𝛺1 ,𝛺2

𝑒+
∑

𝑦∈

∑

𝑑∈

∑

𝑡∈

∑

𝜙∈𝛷𝑑𝑦

∑

𝑖∈

1
(1+𝑟𝑑 )𝑦

𝑁𝑑𝑦𝑤𝐷𝜆𝜙|𝜖𝑖𝜙𝑡| (4a)

subject to: (1), (3),

𝛯𝑑𝑦(𝜂) ≥ 0,∀𝑑,∀𝑦 (4b)

By solving the above optimization problem, the optimal ESS allocation
is determined, along with the optimal dispatchability level which is
quantified by ‘‘leftover dispatch error rate’’ (LDER). LDER (𝜃𝜙𝑡) is
defined for each scenario 𝜙 and time-step 𝑡 and computed as the ratio
of the optimal dispatch error and original aggregated prosumption
prediction error.

𝜃𝜙𝑡 =
|

∑

𝑖∈ 𝜖∗𝑖𝜙𝑡|

|

∑

𝑖∈ 𝛥𝑝𝑖𝜙𝑡|
,∀𝑡,∀𝜙 (5)

Then, the optimally defined LDER is incorporated into the 2nd block
problem as a parameter for defining dispatchability level constraints.

3.2. 2nd block problem

The objective of the 2nd block problem is to determine the optimal
connection between the existing network and node 𝑛′, line reinforce-
ment, and ESS allocation to minimize the grid losses and load curtail-
ment while satisfying LDER constraints. The investment cost consists
of the construction cost of the new line, the reinforced lines, and
the ESSs allocation cost (6). The new line investment and the line
reinforcement cost consist of two parts: fixed cost, which is invariant
with the ampacity of the line and accounts for the construction, labor,
etc., and the line conductor cost, which varies with line ampacity. 𝑐

𝑘
denotes the fixed cost parameter of the new line investment for line
candidate 𝑘 ∈ (𝑛′), whereas 𝑟

𝑙 is the fixed cost parameter of the line
reinforcement for line 𝑙. 𝜌𝑙 is the length of line 𝑙. The conductor cost
is linearly dependent on the line length. Based on the line cost data
from [31], we fit a quadratic curve to the conductor cost as a function
of line ampacity, where 𝛿2, 𝛿1, 𝛿0 are the coefficients for the squared,
linear and constant terms of the quadratic curve.

 = 𝑒+
∑

𝑘∈(𝑛′)
𝑐
𝑘𝑋

′
𝑘+

∑

𝑙∈
𝑟
𝑙𝑋𝑙

+
∑

𝑘∈(𝑛′)
𝜌𝑘(𝛿2(𝐴′

𝑘)
2+𝛿1𝐴′

𝑘+𝛿0𝑋
′
𝑘)

+
∑

𝑙∈
𝜌𝑙(𝛿2(𝐴𝑙)2+𝛿1𝐴𝑙+𝛿0𝑋𝑙)

(6)

The system state during the operation horizon with each investment
decision set is evaluated by solving the daily convexified AC-OPF prob-
lem, named the MAR-OPF problem. Therefore, the 2nd block problem
is formulated as a MISOCP problem. Regarding the investment deci-
sions, we have binary (𝑈,𝑋,𝑋′) and continuous investment decisions
(𝑅,𝐶,𝐴,𝐴′) separately in the 1st and the 2nd sub-stage problems,
making them MISOCP problem and SOCP problem, respectively. The
structure of the 2nd block problem is illustrated by the diagram shown
in Fig. 3. We apply the Benders decomposition technique to solve both
sub-stage problems.

In the 1st sub-stage, the Benders master problem determines the
route connecting the existing network and the new node, the line for
reinforcement, and the site of the ESSs. Then, each subproblem, which
solves a daily OPF modeled by the AR-OPF model, determines the ESSs
capacity and the line ampacity of the new and the reinforced lines for
each day-type and year to minimize the unserved load and comply
with the dispatchability constraint. The change of network topology
associated with the choice of the new line is modeled by employing
6

the big-M method [32], as it enables the selective activation of power m
Fig. 3. Full structure of the 2nd block problem.

flow equations and the network constraints depending on the choice of
the new line. The unserved load takes value to ensure the feasibility of
the subproblem regardless of the investment. When the convergence of
the Benders decomposition is reached, the binary solutions regarding
the site of ESSs and lines investment are determined. The 1st sub-
stage problem of the 2nd block (along with the 1st block) is solved
repetitively till all the connections to the new nodes are decided. Then,
the siting solutions are passed to the 2nd sub-stage problem. In the
2nd sub-stage problem, the master problem considers the ESS capacity
and the line ampacity for the nodes and lines to be invested. The
subproblem evaluates the fitness of the determined allocations in terms
of the same operational requirements and objectives as the 1st sub-stage
subproblem.

3.2.1. Modified augmented relaxed optimal power flow
3.2.1.1. AR-OPF model. In this section, the AR-OPF model, including
ESS assets, is described. As only a summary of power flow equations
is provided, readers are referred to [28]. All variables and parameters
shared between the Distflow and AR-OPF models have been previously
defined in Section 3.1.2. In a radial network, line 𝑙 and the node
onnected downstream of the line 𝑙 can be both denoted by index
∈ .4 The node connected upstream of node 𝑙 is denoted by 𝑢𝑝(𝑙).
he power flow equations are derived based on the two-port II branch
odel shown in Fig. 4.

One essential difference between the AR-OPF model and the linear
odel used in the 1st block problem (see Section 3.1.2) is the modeling

f current and line losses. Let 𝑓𝑙 be the square of the longitudinal
urrent through line 𝑙, which produces grid losses through the line
ongitudinal impedance 𝑧𝑙 = 𝑟𝑙+𝑗𝑥𝑙. 𝐼 𝑡𝑙 and 𝐼𝑏𝑙 represent the square
f the line current injected from the sending and the receiving end
f line 𝑙, respectively. Moreover, the AR-OPF model employs auxiliary
tate variables that correspond to upper-bound/lower-bound line power
lows at the sending end (𝑆̄𝑡

𝑙=𝑃
𝑡
𝑙 +𝑗𝑄̄

𝑡
𝑙 ∕ 𝑆̂𝑡

𝑙=𝑃
𝑡
𝑙 +𝑗𝑄̂

𝑡
𝑙) and the receiving

nd (𝑆̄𝑏
𝑙 =𝑃

𝑏
𝑙 +𝑗𝑄̄

𝑏
𝑙 ∕ 𝑆̂𝑏

𝑙 =𝑃
𝑏
𝑙 +𝑗𝑄̂

𝑏
𝑙 ), upper-bound squared longitudinal

urrent (𝑓𝑙), upper-bound squared line current from the sending end

4 In a radial network, the line can be also denoted following the index of
ode which is connected downstream of it (i.e., both the line and the node are
enoted by index 𝑖 ∈  ) as described in Section 3.1.2 and illustrated in Fig. 2.
owever, the notation according to line index is preferred in this section to
etter describe the consideration of different line candidates in the AR-OPF

odel.
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Fig. 4. Illustration of the adopted nomenclature with respect to the classic two-port II
model of a transmission line adopted from [28].

and the receiving end of line 𝑙 (𝐼 𝑡𝑙 and 𝐼𝑏𝑙 ) and, upper-bound squared
nodal voltage (𝑣̄𝑢𝑝(𝑙), 𝑣̄𝑙). The power flow equations and grid constraints
employing these auxiliary variables impose conservative bounds on
voltage limits and line ampacities for the nodal voltages and line
currents.

𝑠′𝑙 = 𝑝′𝑙 + 𝑗𝑞′𝑙 = (𝑝𝑙+𝑢𝑝+𝑙 −𝑢𝑝
−
𝑙 ) + 𝑗(𝑞𝑙+𝑢𝑞+𝑙 −𝑢𝑞

−
𝑙 ), ∀𝑙 (7a)

𝑆𝑡
𝑙 = 𝑠′𝑙+𝑠

𝐸
𝑙 +

∑

𝑚∈
𝐆𝑙𝑚𝑆

𝑡
𝑙+𝑧𝑙𝑓𝑙−𝑗(𝑣𝑢𝑝(𝑙)+𝑣𝑙)𝑏𝑙 ,∀𝑙 (7b)

𝑆𝑏
𝑙 = 𝑠′𝑙+𝑠

𝐸
𝑙 +

∑

𝑚∈
𝐆𝑙𝑚𝑆

𝑡
𝑙 ,∀𝑙 (7c)

𝑣𝑙 = 𝑣𝑢𝑝(𝑙)−2R
(

𝑧̄𝑙
(

𝑆𝑡
𝑙+𝑗𝑣𝑢𝑝(𝑙)𝑏𝑙

)

)

+|𝑧𝑙|
2𝑓𝑙 ,∀𝑙 (7d)

𝑓𝑙𝑣𝑢𝑝(𝑙) ≥ |𝑆𝑡
𝑙+𝑗𝑣𝑢𝑝(𝑙)𝑏𝑙|

2,∀𝑙 (7e)

Eqs. (7b), (7c), and (7d) represent the power balance at the sending
end and the receiving end of line 𝑙 (in the presence of ESSs) and the
nodal voltage equation, respectively. Note that the complex prosump-
tion of each node is indicated by (7a) by introducing variables related
to active/reactive unserved load on both positive and negative sides
(𝑢𝑝+∕𝑢𝑞+ and 𝑢𝑝−∕𝑢𝑞−). We aim to reduce the values of these variables
to ensure the feasibility of the ADN operation. As shown in (7e), the
equation defining the squared longitudinal line current is relaxed to a
SOC constraint.

𝑆̄𝑡
𝑙 = 𝑠′𝑙+𝑠

𝐸
𝑙 +

∑

𝑚∈
𝐆𝑙𝑚𝑆̄

𝑡
𝑙+𝑧𝑙𝑓𝑙−𝑗(𝑣𝑢𝑝(𝑙)+𝑣𝑙)𝑏𝑙 ,∀𝑙 (7f)

𝑆̄𝑏
𝑙 = 𝑠′𝑙+𝑠

𝐸
𝑙 +

∑

𝑚∈
𝐆𝑙𝑚𝑆̄

𝑡
𝑙 ,∀𝑙 (7g)

𝑆̂𝑡
𝑙 = 𝑠′𝑙+𝑠

𝐸
𝑙 +

∑

𝑚∈
𝐆𝑙𝑚𝑆̂

𝑡
𝑙−𝑗(𝑣̄𝑢𝑝(𝑙)+𝑣̄𝑙)𝑏𝑙 ,∀𝑙 (7h)

𝑆̂𝑏
𝑙 = 𝑠′𝑙+𝑠

𝐸
𝑙 +

∑

𝑚∈
𝐆𝑙𝑚𝑆̂

𝑡
𝑙 ,∀𝑙 (7i)

𝑣̄𝑙 = 𝑣̄𝑢𝑝(𝑙)−2R
(

𝑧̄𝑙(𝑆̂𝑡
𝑙+𝑗𝑣̄𝑢𝑝(𝑙)𝑏𝑙)

)

,∀𝑙 (7j)

𝑣𝑚 ≤ 𝑣𝑙 , 𝑣̄𝑙 ≤ 𝑣𝑀 ,∀𝑙 (7k)

𝑃 𝑡
𝑙 ≤ 𝑃𝑀

𝑙 , 𝑄̄𝑡
𝑙 ≤ 𝑄𝑀

𝑙 ,∀𝑙 (7l)

𝑓𝑙𝑣𝑢𝑝(𝑙) ≥ |max
{

|𝑃 𝑡
𝑙 |, |𝑃

𝑡
𝑙 |
}

|

2+|max
{

|𝑄̂𝑡
𝑙+𝑗𝑣̄𝑢𝑝(𝑙)𝑏𝑙|, |𝑄̄

𝑡
𝑙+𝑗𝑣𝑢𝑝(𝑙)𝑏𝑙|

}

|

2,∀𝑙
(7m)

𝑓𝑙𝑣𝑙 ≥ |max
{

|𝑃 𝑏
𝑙 |, |𝑃

𝑏
𝑙 |
}

|

2+|max
{

|𝑄̂𝑏
𝑙−𝑗𝑣̄𝑙𝑏𝑙|, |𝑄̄

𝑏
𝑙−𝑗𝑣𝑙𝑏𝑙|

}

|

2,∀𝑙 (7n)

𝐼 𝑡𝑙𝑣𝑢𝑝(𝑙) ≥ |max
{

|𝑃 𝑡
𝑙 |, |𝑃

𝑡
𝑙 |
}

|

2+|max
{

|𝑄̂𝑡
𝑙|, |𝑄̄

𝑡
𝑙|
}

|

2,∀𝑙 (7o)

𝐼𝑏𝑙 𝑣𝑙 ≥ |max
{

|𝑃 𝑏
𝑙 |, |𝑃

𝑏
𝑙 |
}

|

2+|max
{

|𝑄̂𝑏
𝑙 |, |𝑄̄

𝑏
𝑙 |
}

|

2,∀𝑙 (7p)

𝐼 𝑡𝑙 ≤ (𝐼𝑀𝑙 )2, 𝐼𝑏𝑙 ≤ (𝐼𝑀𝑙 )2,∀𝑙 (7q)

The same set of power balance equations are given for the upper-
/lower-bound power flow variables ((7f),(7g)/(7h),(7i)). The nodal
voltage equation using the upper-bound squared voltage variable is
(7j). The squared voltage and upper-bound squared voltage variables
are bounded by squared voltage lower limit (𝑣𝑚) and squared volt-
age upper limit (𝑣𝑀 ), respectively, as in (7k). The upper-bound ac-
7

tive/reactive power flow variables are respectively bounded by the
active/reactive power flow limits defined for line 𝑙 as given by (7l). As
given in (7m)–(7p), the squared longitudinal current and the squared
line current of sending/receiving end are defined by SOC constraints by
employing the maximum value among upper-bound and lower-bound
power flow variables. The line ampacity limits given by (7q), where 𝐼𝑀𝑙
is the line ampacity of line 𝑙.

3.2.1.2. Definition of the dispatch error. The active prosumption (in-
cluding the unserved load) at node 𝑙, and the longitudinal line losses
of line 𝑙 are expressed by their predicted values (𝑝′𝑙𝑡 and 𝑟𝑙𝑓𝑙𝑡) and
the deviation from each prediction point (𝛥𝑝′𝑙𝜙𝑡, 𝑟𝑙𝛥𝑓𝑙𝜙𝑡) as shown in
(8a) and (8b). The aggregated deviation of both prosumption and the
losses over all lines (left-hand side of (8c)) is compensated by the
ESSs active power. The residual dispatch error observed at the GCP
is denoted as ∑

𝑙 𝜖𝑙𝜙𝑡, and it should be smaller than, or equal to, the
optimal dispatch error defined by multiplying LDER by the aggregated
prosumption deviation (see (8e)). Two slack variables (𝛾𝑠𝜙𝑡 and 𝜁 𝑠𝜙𝑡) are
introduced as shown in (8c) and (8d) to approximate the grid losses
deviation accurately through an iterative algorithm proposed in [20].
The two values are updated at each iteration of solving the modified
AR-OPF until 𝛾𝑠𝜙𝑡 becomes smaller than predefined tolerance after 𝑠

iterations.5

𝑝′𝑙𝜙𝑡 = 𝑝′𝑙𝑡−𝛥𝑝′𝑙𝜙𝑡,∀𝑙,∀𝜙,∀𝑡 (8a)

𝑟𝑙𝑓𝑙𝜙𝑡 = 𝑟𝑙𝑓𝑙𝑡−𝑟𝑙𝛥𝑓𝑙𝜙𝑡,∀𝑙,∀𝜙,∀𝑡 (8b)
∑

𝑙∈
(𝛥𝑝′𝑙𝜙𝑡+𝑟𝑙𝛥𝑓𝑙𝜙𝑡) =

∑

𝑙∈
(𝜖𝑙𝜙𝑡+𝑝𝐸𝑙𝜙𝑡)+𝜁

𝑠
𝜙𝑡, ∀𝜙,∀𝑡 (8c)

∑

𝑙∈
𝛥𝑝′𝑙𝜙𝑡+(𝛾

𝑠
𝜙𝑡+𝜁

∗𝑠−1
𝜙𝑡 ) =

∑

𝑙∈
(𝜖𝑙𝜙𝑡+𝑝𝐸𝑙𝜙𝑡), ∀𝜙,∀𝑡 (8d)

|

∑

𝑙∈
𝜖𝑙𝜙𝑡| ≤ 𝜃𝜙𝑡|

∑

𝑙∈
𝛥𝑝𝑙𝜙𝑡|, ∀𝜙,∀𝑡 (8e)

Eqs. (7) and (8) compose the MAR-OPF model. For the sake of
readability, they are collectively denoted by 𝛩(𝜑) ≥ 0 where 𝜑 ∶=
{𝑆𝑡, 𝑣, 𝑓 , 𝑆̂𝑡, 𝑣̄, 𝑓 , 𝑆̄𝑡, 𝑠, 𝑠𝐸 , 𝜖, 𝑢𝑝+, 𝑢𝑝−, 𝑢𝑞+, 𝑢𝑞−} is the set of variables. The
notation without subscript corresponds to the vector of variables for all
nodes/lines.

3.2.2. Use of the big-m method into the MAR-OPF model
The big-M method is employed to selectively activate the OPF

constraints for the new line and node only when a new line is chosen
among the candidates. In this regard, let arrays 𝛱 and 𝐴′′ be the
investment status of existing lines and the candidate routes represented
by binary variables, and line ampacities, respectively. 𝛹 represents the
connection status of existing lines and the candidate routes. The size of
 is increased by adding the new node/line, and thus 𝑋,𝐴 in the array
𝛱 and 𝐴′′.

𝛱 = [𝑋⊤ 𝑋′⊤]⊤, 𝐴′′ = [𝐴⊤ 𝐴′⊤]⊤, 𝛹 = [1⊤
|| 𝑋

′⊤]⊤ (9)

All the power flow variables of nodes and lines take values only
when the corresponding nodes and lines are connected within the
system. In other words, when a line from 𝑘 ∈ (𝑛′) is not connected to
the new node 𝑛′, the state variables of the new node and the line are
fixed to zero. Otherwise, the state variables are imposed by the given
operating constraints. In the following equations, all the variables with
index 𝑗 and 𝑖 are defined for 𝑗 ∈ ( ∪ {𝑘 | 𝑘 ∈ (𝑛′)}) and 𝑖 ∈ , re-
spectively. 𝑃𝑀

𝑗 , 𝑄𝑀
𝑗 , and 𝐼𝑀𝑗 take a value of maximum active/reactive

power flow and line current, respectively. By employing the big-M
method, (10a) and (10b) replace (7l) to redefine the ranges for the
upper-bound power flow variables at line 𝑗 to updated value when
line 𝑗 is determined to be invested (both for line reinforcement and
for new line installation.) Likewise, (10c) imposes the possible ranges
on the values of squared longitudinal current, its upper-bound variable,

5 Further explanation on the formulation can be found in [20].
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and squared currents at sending/receiving end of line 𝑗 considering the
investment status of line 𝑗.

0 ≤ 𝑃 𝑡
𝑗 ≤ 𝑃𝑀

𝑗 ⋅ (1 −𝛱𝑗 ) + 𝐴′′
𝑗

√

𝑣𝑀∕2, ∀𝑗 (10a)

≤ 𝑄̄𝑡
𝑗 ≤ 𝑄𝑀

𝑗 ⋅ (1 −𝛱𝑗 ) + 𝐴′′
𝑗

√

𝑣𝑀∕2, ∀𝑗 (10b)

≤
{

𝑓𝑗 , 𝑓𝑗 , 𝐼
𝑡
𝑗 , 𝐼

𝑏
𝑗

}

≤ (𝐼𝑀𝑗 )2 ⋅ (1 −𝛱𝑗 ) + (𝐴′′
𝑗 )2, ∀𝑗 (10c)

The formulation of the branch power flow equations for both power
low variables and auxiliary bound variables does not change from
7b)–(7g) due to the equations above that selectively activate the
ariables according to the investment status of the lines. The voltage
quations (7d) and (7j) are replaced by (11a) and (11b) by employing
he big-M method. The voltages of the nodes connected to line 𝑗 take

values only when line 𝑗 is connected.
|

|

|

−𝑣𝑗+𝑣𝑢𝑝(𝑗)−2R(𝑧̄𝑗 (𝑆̂𝑡
𝑗+𝑗𝑣𝑢𝑝(𝑗)𝑏𝑗 ))+|𝑧𝑗 |

2𝑓𝑗
|

|

|

≤ 𝑀(1−𝛹𝑗 ), ∀𝑗 (11a)
|

|

|

−𝑣̄𝑗+𝑣̄𝑢𝑝(𝑗)−2R(𝑧̄𝑗 (𝑆̂𝑡
𝑗+𝑗𝑣̄𝑢𝑝(𝑗)𝑏𝑗 ))

|

|

|

≤ 𝑀(1−𝛹𝑗 ), ∀𝑗 (11b)

For the sake of readability, the equations regarding the MAR-OPF
employing the big-M method are grouped as 𝛩𝐵(𝜑𝐵) ≥ 0, where
𝜑𝐵 ∶= {𝑆𝑡, 𝑣, 𝑓 , 𝑆̂𝑡, 𝑣̄, 𝑓 , 𝑆̄𝑡, 𝑠, 𝑠𝐸 , 𝜖,𝛱,𝐴′′, 𝛹} is the set of variables. The
notation without subscript corresponds to the vector of variables for all
buses/lines.

3.2.3. 1st sub-stage—Determination of the site

Algorithm 2 1st sub-stage of the 2nd block problem
Input : Existing network (), prosumption (𝑠𝑖=𝑝𝑖+𝑗𝑞𝑖,∀𝑖∈∪𝑛′),
ESS candidate nodes, new node (𝑛′), candidate nodes (𝑛′)
1: Initialization : 𝐿𝐵1 ← 0, 𝑛 ← 1
2: Solve master problem (MP1)
3: 𝐿𝐵1 ← 1𝑠𝑡∗

4: Update 𝑈∗, 𝑋′∗, 𝑋∗ to feed the solution to subproblems
5: Solve parallel subproblems (SP1)
6: 𝑈𝐵1 ←

∑

𝑖 𝑐
𝑖 𝑈

∗
𝑖 +

∑

𝑙(𝑟
𝑙+𝜌𝑙𝛿0)𝑋

∗
𝑙 +

∑

𝑘(𝑛
𝑘+𝜌𝑘𝛿0)𝑋

′∗
𝑘 +

∑

𝑦
∑

𝑑 
1𝑠𝑡∗
𝑑𝑦

7: Update the dual values (𝜏, 𝜉)
8: if |𝑈𝐵1 − 𝐿𝐵1| ≤ 𝜖 then
9: return 𝑈∗, 𝑋′∗, 𝑋∗

10: else
11: 𝑛 ← 𝑛 + 1
12: Update Benders cut with dual values
13: Go to step 2
14: end if

The problem structure of the 1st sub-stage problem is illustrated by
he left-hand side of Fig. 3 and Alg. 2. The new line that connects the
ew node to the existing node, the nodes for ESS, and the lines for
einforcement are determined in the master problem. The optimal ESS
izes, line ampacity for the invested lines specific to each day type, and
esulting operational benefit are evaluated within each subproblem. As
his stage aims to determine the best solution for the binary variables,
he sizes of different ESSs and conductors determined for each day type
re not the final optimal solutions. The Benders iteration terminates
hen the upper-bound and the lower-bound of the total cost become

ufficiently close to each other. As the new line connecting to the new
ode is determined at the end of the Benders iteration, the adjacency
atrix and the array of line parameters get modified considering the
ew line.

.2.3.1. Master problem. The formulation of the master problem is
iven in (12). Its objective is the sum of the fixed investment cost
or ESS installation, new line installation, line reinforcement, and the
onstant part of the conductor cost for both of the new lines and
he reinforced lines. In addition, the lower approximation of the total
8

expected subproblem cost is added. As the targeted networks are sup-
posed to operate with a radial configuration, only a single line must
be connected to the new node (see (12b).) Eq. (12c) indicates that if
any new node is already added to the existing grid (i.e., 𝑛′ ≥ 2), the
nvestment statuses for the added lines are 1 to update their required
ine ampacity while determining a new connection.

𝛼𝑑𝑦 stands for the lower approximation of the subproblem cost as-
ociated to the investment solution determined by the master problem.
tarting from the lower-bound for the operation cost (𝛼), as shown in

(12d), 𝛼𝑑𝑦 gets updated by the set of Benders cut corresponding to all
day-types and years accumulated in each iteration indexed by 𝑛 ∈ 1,
as given in (12e) (see (14) for the formulation of the cuts). The lower-
bound of the total cost 𝐿𝐵1 is the optimal objective value of the master
problem (i.e., 𝐿𝐵1 = 1𝑠𝑡∗).

min
𝑈,𝛱,𝛼

∶ 1𝑠𝑡 =
∑

𝑖∈
𝑓
𝑖 𝑈𝑖+

∑

𝑘∈(𝑛′)
(𝑐

𝑘 + 𝜌𝑘𝛿0)𝑋′
𝑘

+
∑

𝑙∈
(𝑟

𝑙 + 𝜌𝑙𝛿0)𝑋𝑙 +
∑

∈

∑

𝑑∈
𝛼𝑑𝑦

(12a)

ubject to:
∑

𝑘∈(𝑛′)
𝑋′

𝑘 = 1 (12b)

𝑋(𝐿−𝑛′+1)∶𝐿 = 1,∀𝑛′ ≥ 2 (12c)

𝛼𝑑𝑦 ≥ 𝛼,∀𝑑,∀𝑦 (12d)

𝛼𝑑𝑦 ≥ 𝛤1(𝑛)𝑑𝑦 ,∀𝑑,∀𝑦,∀𝑛, (12e)

3.2.3.2. Subproblem. In the subproblem associated with day-type 𝑑 and
year 𝑦, a daily MAR-OPF model employing the big-M method sizes the
ESS capacity and line ampacity based on the investment constraints,
and evaluates its operational advantages on the system conditions. The
line ampacities are optimally sized not only for the new line candidates
(connecting the grid to the new node 𝑛′) but also for the lines added
by the previous rounds of 1st sub-stage optimization problem and for
the existing to-be-reinforced lines. The problem is modeled based on
the MAR-OPF with the big-M method as discussed in Section 3.2.2.
Moreover, the equations modeling the investment constraints on the
conductor size range and the ESSs capacity range are included. Con-
ductor’s possible ampacity range is modeled by (13b), where 𝐴𝑚∕𝐴𝑀

represent minimum/maximum possible line ampacity, respectively.
By incorporating the constraints related to the line ampacity range

and the ESS investment and operation-related constraints (see (1) and
(13d)) into the OPF constraints explained in Section 3.2.2, the subprob-
lem of the 1st sub-stage is defined as follows. The objective function
of the subproblem is the combination of the capacity cost of the ESSs
energy reservoir, power rating, the conductor cost for new lines and
the to-be-reinforced lines, as well as the operational cost, given by
(13a). The operational cost consists of grid losses and unserved energy
costs. Eqs. (13e) and (13f) show that the ESS location and the lines
to be invested are fixed to the optimal solution values of the master
problem. 𝜏𝑖𝑑𝑦 and 𝜒𝑗𝑑𝑦 are the duals of constraints related to the fixed
ESS location and the line for investment.

min
∀𝜑𝐵 ,𝜂

∶ 1𝑠𝑡
𝑑𝑦 = 𝑁𝑑

(1+𝑟𝑑 )𝑦
∑

𝑡∈

∑

𝜙∈𝛷𝑑𝑦

𝜆𝜙(𝑤𝑙
∑

𝑗
𝑟𝑗𝑓𝑗𝜙𝑡

+𝑤𝑢
∑

𝑗
(𝑢𝑝+𝑗𝜙𝑡+𝑢𝑝

−
𝑗𝜙𝑡+𝑢𝑞

+
𝑗𝜙𝑡+𝑢𝑞

−
𝑗𝜙𝑡))

+ 𝑁𝑑
365∗𝑌

∑

𝑖
(𝑒𝐶𝑖+𝑝𝑅𝑖)

+
𝑁𝑑

365 ∗ 𝑌
∑

𝑗
𝜌𝑗 (𝛿2(𝐴′′

𝑗 )
2+𝛿1𝐴′′

𝑗 )

(13a)

ubject to: (1), (8),

𝐴𝑚𝛱𝑗 ≤ 𝐴′′
𝑗 ≤ 𝐴𝑀𝛱𝑗 (13b)

𝛩𝐵(𝜑𝐵 ) ≥ 0,∀𝑡,∀𝜙 (13c)
𝜙𝑡



Applied Energy 326 (2022) 119942J.H. Yi et al.

𝑤
u

𝛤

p
t

3

a
t
s
t

t
i

∀

s

s
d

v

𝛯(𝜂𝜙𝑡) ≥ 0,∀𝑡,∀𝜙 (13d)

𝑈𝑖𝑑𝑦 = 𝑈∗
𝑖 ∶ 𝜏𝑖𝑑𝑦, ∀𝑖,∀𝑑,∀𝑦 (13e)

𝛱𝑗𝑑𝑦 = 𝛱∗
𝑗 ∶ 𝜒𝑗𝑑𝑦, ∀𝑗,∀𝑑,∀𝑦 (13f)

𝑙 and 𝑤𝑢 are the weight coefficients associated with grid losses and
nserved load, respectively.

1(𝑛)𝑑𝑦 =
[

1𝑠𝑡∗
𝑑𝑦 −

∑

𝑖
(𝜏𝑖𝑑𝑦(𝑈𝑖−𝑈∗

𝑖 ))

−
∑

𝑗
(𝜒𝑗𝑑𝑦(𝛱𝑗−𝛱∗

𝑗 ))
]

,∀𝑑,∀𝑦,∀𝑛
(14)

As shown in (14), the bound used for the Benders cut is obtained
for each day-type and year by employing the dual values linked to the
location of ESS and line investment. The upper-bound (𝑈𝐵1) of the
lanning cost is the sum of the fixed cost from the master problem and
he total subproblem cost.

.2.4. 2nd sub-stage—Determination of ESSs and lines sizes

Algorithm 3 2nd sub-stage of the 2nd block problem
Input : Expanded network (), prosumption (𝑠 = 𝑝 + 𝑗𝑞), ESS location
(𝑈∗), Line for investment (𝑋′∗, 𝑋∗)
1: Initialization : 𝐿𝐵2 ← 0, 𝑛 ← 1
2: Solve master problem (MP2)
3: 𝐿𝐵2 ← 2𝑛𝑑∗

4: Update 𝑅∗, 𝐶∗, 𝐴∗ to feed the solution to subproblems
5: Solve parallel subproblems (SP2)
6: 𝑈𝐵2 ←

∑

𝑙(𝑐𝐶∗
𝑙 +

𝑟𝑅∗
𝑙 )+

∑

𝑙 𝜌𝑙(𝛿2(𝛥𝐴
∗
𝑙 )

2+(2𝛿2𝐼𝑀𝑙 +𝛿1)𝛥𝐴∗
𝑙 )+

∑

𝑦
∑

𝑑 
2𝑛𝑑∗
𝑑𝑦

7: Update the dual values (𝜇, 𝜗, 𝜄)
8: if |𝑈𝐵2 − 𝐿𝐵2| ≤ 𝜖 then
9: return 𝑅∗, 𝐶∗, 𝐴∗

10: else
11: 𝑛 ← 𝑛 + 1
12: Update Benders cut with dual values
13: Go to step 2
14: end if

As all the new nodes are connected after the 𝑁 ′ runs of the 1st sub-
stage problem, the lines for reinforcement and the nodes for hosting
ESSs are also determined. The binary solutions are passed to the 2nd
sub-stage, where the size decisions take place. In the 2nd sub-stage,
the set and the number of existing lines (i.e.,  and 𝐿, respectively)
re equivalent to the set and the number of lines in the network with
he new nodes connected after solving the final round of the 1st sub-
tage problem. Therefore, lines (both existing and new lines determined
o invest in the 1st sub-stage problems) are indicated with index 𝑙 ∈
. Moreover, given that the network of interest is radial, the node
(both existing and new nodes connected in the 1st sub-stage problems)
connected downstream of line 𝑙 is also indexed as 𝑙. The 2nd sub-
stage problem is solved by employing the Benders decomposition as
described in the right side of Fig. 3 and Alg. 3. It should be noted
that the formulation of 2nd sub-stage problem is identical to the 2nd
sub-stage problem developed in [21].

3.2.4.1. Master problem. The ESSs energy reservoirs and power rat-
ings, ampacities for the lines to be reinforced and the new line are
determined in this problem, while the ESSs locations and the lines
for investment are all fixed to the optimal binary solution given by
the 1st sub-stage. Among the total investment cost (see (6)), we take
only the variable cost regarding the ESSs sizes and lines ampacities.
Particularly, the conductor cost is split into the cost related to the
original line ampacity and the required change (𝐴𝑙 = 𝐼𝑀𝑙 +𝛥𝐴𝑙). Note
that the original ampacities for the newly connected lines are 0. In
this way, the variable part of the investment cost is included in the
9

b

objective function of the master problem, as shown in (15a). The
lower approximation of the subproblem cost is represented by 𝛽𝑑𝑦. The
approximated value starts from the lower-bound subproblem cost value
𝛽
𝑑𝑦

, and it is updated at each Benders iteration by accumulated Benders
cut over the iterations (∀𝑛 ∈ 2) (15c). The problem takes into account
he possible range of changes of conductor’s sizes (15b). Moreover, the
nvestment conditions for the ESSs are also included as constraints.
min

𝐶,𝑅,𝛥𝐴,𝛽
∶ 2𝑛𝑑 =

∑

𝑙∈
(𝑒𝐶𝑙+𝑝𝑅𝑙)

+
∑

𝑙∈
𝜌𝑙(𝛿2(𝛥𝐴𝑙)2+(2𝛿2𝐼𝑀𝑙 +𝛿1)𝛥𝐴𝑙)

+
∑

𝑦

∑

𝑑
𝛽𝑑𝑦

(15a)

ubject to: (1a) − (1c),

0 ≤ 𝛥𝐴𝑙 ≤ 𝛥𝐴𝑀 (15b)

𝛽𝑑𝑦 ≥ 𝛽, 𝛽𝑑𝑦 ≥ 𝛤2(𝑛)𝑑𝑦 ,∀𝑑,∀𝑦,∀𝑛 (15c)

3.2.4.2. Subproblem. The subproblem of the 2nd sub-stage evaluates
the system operational condition for each investment choice made in
the master problem. The operational objective is identical to that of
the subproblem in the 1st sub-stage (16a). As the grid topology is
already fixed, the modified AR-OPF model described in Section 3.2.1
is employed (16b). The ampacity limits take into account the changed
ampacity values (16d). Moreover, the parameters in the admittance
matrix, such as line resistance, reactance, and susceptance, are adjusted
according to the change of line ampacity to enhance the accuracy of the
operation model.6 The power flow through ESS, which was considered
as an ideal battery in the subproblem of the 1st sub-stage problem,
is modeled in a realistic way based on the internal-resistance model
introduced in [33]. The set of virtual nodes added to the network for
modeling the ESS power injection is defined as 𝐸 . Note that the
ESS operational constraints (16c) are only imposed on the ESS power
injections from/to virtual nodes ∀𝑖 ∈ 𝐸 . The ESSs power ratings,
energy reservoirs, and the changes of lines ampacities are fixed by the
master problem solution (16e). The corresponding dual variables are
𝜇𝑙𝑑𝑦, 𝜗𝑙𝑑𝑦, 𝜄𝑙𝑑𝑦. The Benders cut at 𝑛th iteration is constructed in the
ame way of the 1st sub-stage, using the subproblem objective cost and
ual values. The upper-bound of the 2nd sub-stage problem, 𝑈𝐵2, is

calculated by summing the variable investment cost and subproblem
costs.

min
∀𝜑,𝜂

∶ 2𝑛𝑑
𝑑𝑦 = 𝑁𝑑

(1+𝑟𝑑 )𝑦
∑

𝑡∈

∑

𝜙∈𝛷𝑑𝑦

∑

𝑙∈
𝜆𝜙(𝑤𝑙𝑟𝑙𝑓𝑙𝜙𝑡

+𝑤𝑢
∑

𝑙∈
(𝑢𝑝+𝑙𝜙𝑡+𝑢𝑝

−
𝑙𝜙𝑡+𝑢𝑞

+
𝑙𝜙𝑡+𝑢𝑞

−
𝑙𝜙𝑡))

(16a)

subject to: (8), (13d),

𝛩(𝜑𝜙𝑡) ≥ 0, ∀𝑡,∀𝜙 (16b)

𝛯(𝜂𝜙𝑡) ≥ 0,∀𝑡,∀𝜙 (16c)

0 ≤

{

𝐼 𝑡𝑙 , 𝐼
𝑏
𝑙

}

≤ (𝐼𝑀𝑙 )2+2𝐼𝑀𝑙 𝛥𝐴𝑙+(𝛥𝐴𝑙)2, ∀𝑙 (16d)

𝑅𝑙𝑑𝑦 = 𝑅∗
𝑙 ∶ 𝜇𝑙𝑑𝑦, 𝐶𝑙𝑑𝑦 = 𝐶∗

𝑙 ∶ 𝜗𝑙𝑑𝑦,

𝛥𝐴𝑙𝑑𝑦 = 𝛥𝐴∗
𝑙 ∶ 𝜄𝑙𝑑𝑦,∀𝑙,∀𝑑,∀𝑦

(16e)

𝛤2(𝑛)𝑑𝑦 =
[

2𝑛𝑑∗
𝑑𝑦 −

∑

𝑖∈
(𝜇𝑙𝑑𝑦(𝑅𝑙−𝑅∗

𝑙 )−𝜗𝑙𝑑𝑦(𝐶𝑙−𝐶∗
𝑙 ))

+
∑

𝑙∈
(𝜄𝑙𝑑𝑦(𝛥𝐴𝑙−𝛥𝐴∗

𝑙 ))
]

,∀𝑑,∀𝑦,∀𝑛
(17)

6 Based on the line data available in industry, the reactance and susceptance
alues are fitted to a linear model. In contrast, the line resistance showed a
etter fit to a hyperbolic model.
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Table 1
ESS parameter and candidate nodes.

Max. power
rating

10 MVA Max. energy
reservoir

10 MWh

Cost for
power rating

$200/kVA Cost for
energy reservoir

$300/kWh

Capital investment cost $0.1 M

ESS candidate nodes 4, 16, 27, 41, 45

Table 2
Parameters related to line investment.

New line installation Line reinforcement

Fixed cost
(OL)

$0.2 M/km Fixed cost
(OL)

$0.12 M/km

Fixed cost
(UC)

$0.8 M/km Fixed cost
(UC)

$0.4 8 M/km

Coefficients for conductor cost function 𝛿2 ∶ 0.011, 𝛿1 ∶ 0.065, 𝛿0 ∶ 95.22

4. Simulations

4.1. The simulation setup

The proposed DNEP is tested on a real Swiss 21 kV distribution
network with 55 nodes (see Fig. 5(a)). Initially, 2.7 MWp of PV gener-
ation and 805 kVA of hydropower generation are installed. The initial
network topology and parameters can be found in [34]. The planning
horizon is set at 10 years, and the annual load consumption growth
is set at 7% (i.e., 𝑟𝑖 = 0.07). The ESS cost parameters and possible
anges of energy reservoirs and power ratings are shown in Table 1. The
andidate nodes for ESS installation are set according to the indications
f the operator of this specific grid. The new nodes are given on the grid
opology with their indices indicating their priorities for integration.
oth load consumption and 1MWp PV system are located on each new
ode. Each new node can be connected to the ones of the existing
rid among 4 candidates given by the user. In Table 2, the fixed
osts associated with the line investment are given depending on the
ype of investment and connection. The estimated cost for constructing
nderground cables (UC) is set four times higher than the one for
verhead lines (OL), considering the cost range reported in [35]. The
oefficient values for the conductor cost function’s quadratic, linear,
nd constant terms are given in Table 2 (see Section 3.2.) The penalty
ost for the dispatch error is assumed as $897/MWh, which corresponds
o the 99.9th percentile of the actual imbalance price settled from 2018
o 2019 in the Swiss energy market [36]. The chosen price coefficient
s notably higher than a typical price settled in the energy markets to
ecure a sufficient level of ADN dispatchability.

The operating scenarios for the planning problem are generated
o model the prediction uncertainty following the scenario generation
lgorithm described in Alg. 4 in Appendix. 1000 prosumption scenarios
re generated with equal probabilities based on the assumption that
oth the load and PV irradiation follow the normal distribution [8].
hen, the number of operating scenarios for each day type is reduced
o 10 by the K-medoids clustering technique [37].

The simulations are carried out on a laptop PC with an Intel®
Core(TM) i7-8750H CPU at 2.2 GHz and a physical system memory of
32 GB.

4.2. Grid expansion assessment on a real Swiss power distribution grid

This subsection shows the solution of the planning problem using
the determined set of operating scenarios to achieve the optimal level
of dispatchability of the targeted ADNs by allocating ESSs. Moreover,
the line investment regarding new line installation and existing line
reinforcement is co-optimized to minimize the grid losses and the
10
Table 3
Investment result.

ESS
Node # Energy reservoir (kWh) Power rating (kVA)

16 4657 1196

27 5733 1431

Line

Investment type Line # Ampacity (A)

Reinforcement 3–10 134

New lines

10–56 51
35–57 38
56–58 34
43–59 35
16–60 34
14–61 51
61–62 43
28–63 39

Table 4
Cost and operational benefits.

Investment cost ($ Million) 6.86
Dispatch error penalty cost ($ Million) 3.49
Grid losses (GWh) 2.16
EENS (kWh) 14.99
Total energy served (GWh) 241.2

expected energy not served (EENS) while complying with the grid
constraints regarding nodal voltage and line ampacity.

Fig. 5(a) illustrates the grid topology with 8 new nodes (green
circle) and the candidate nodes for ESS allocation (purple circle). The
new nodes are integrated into the grid in ascending order of the node
index number. In Fig. 5(b), the line candidates to the new nodes are
indicated (green dotted line). Fig. 5(c) shows the result in terms of the
location of the new lines (green line), the line to be reinforced (thick
red line), and the nodes to host ESSs (orange circle) determined by the
proposed planning tool. Table 3 shows the capacities of ESSs and the
invested lines’ ampacities.

The connection to each new node is optimally determined based
on the conductor cost (which relies on the line length and the type
of line installation) and the evaluation of the system operation. For
example, the optimal connecting node for Node 56 is decided to be
Node 10, considering the relatively low fixed cost for overhead lines
and the shorter distance to Node 56 than other candidate nodes. In
this way, Node 58 is connected to Node 56, making the two new nodes
connected in series to Node 10. The line ampacity between Node 56 and
58 is optimally decided to host the prosumption injection from Node
58. The ampacity of Line 10–56 is larger than Line 56–58 to host the
total prosumption of Nodes 56 and 58. 5 new nodes are determined
to be connected downstream of Node 10. These connections result in
investment in upgrading the line between Node 10 and Node 3 because
its initial line ampacity (90 A) was insufficient to host the additional
PV injection from the 5 new nodes. The line is replaced to have an
ampacity of 134 A. The ESS was installed at Node 27 with a 4.66 MWh
energy reservoir and 1.20 MVA power rating to compensate for the
increased prosumption uncertainty from the 5 new nodes. Another ESS
is installed at Node 16 to mainly compensate for the uncertainty of the
additional PV injection of Node 60 and the existing PV generation at
Node 16 (as it hosts the biggest PV plant of 1.6 MWp).

Fig. 6(a) shows the aggregated prosumption scenarios along with
the aggregated prosumption prediction, whereas Fig. 6(b) represents
the dispatch result after investment on ESS and lines. Thanks to the
proposed planning strategy, the dispatch result shows that the power
flow at the GCP of all scenarios follows the dispatch plan with the
dispatch error determined by the optimal dispatchability level of ADN.
Furthermore, Fig. 7 illustrates the optimal ESSs investment and the
resulting dispatch error penalty cost determined from the 1st block
problem. ‘EO’ and ‘EX’ represent the case with and without the ESS

allocation. The ‘EO’ graphs show the increase in ESSs investment cost
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Fig. 5. Grid topology with: (a) candidate nodes for ESS allocation and new nodes, (b) with line candidates, (c) with ESSs, new lines and line reinforcement.
with the integration of new nodes hosting PV generation and load. The
resulting benefit concerning the imbalance penalty cost corresponds to
an 82% reduction of dispatch error compared to the case without ESS.

The total planning cost, consisting of investment and operational
objectives costs, is shown in Table 4, along with total grid losses and
active power served in the grid for the planning horizon (10 years).
The final penalty cost for 10 years regarding the dispatch error is $3.49
Million (which corresponds to 3.89 GWh). The total investment cost is
$6.86 Million, where the ESS investment cost is $3.85 Million, and the
line investment cost is $3.01 Million. The EENS is only 15 kWh, which
is negligible enough to conclude that the planning result successfully
assures the reliability of the power supply. Table 5 shows the compu-
tation time of the 1st block problem, 1st and 2nd sub-stages, and the
total time for solving the given planning problem. Note that there are
11
8 rounds of the 1st block problem and the 1st sub-stage of the 2nd
block problem. The 2nd block problem takes more computation time
than the 1st block problem due to its exact system operation evaluation
based on the modified AR-OPF model (subproblem of the 2nd block,
which is indicated as ‘SP’ in the table). Based on the reported total
computation time for solving master problems (indicated as ‘MP’) and
subproblems along with the number of Benders iterations (indicated as
‘BI’), the average computation times of MP and SP (4 (day-types) × 10
(years) parallel subproblems) per each iteration are calculated as 7.78
s and 2541 s, respectively. It is observed that the computation times
for determining the connection to each new node are within the same
order of magnitude, implying that the running time of the proposed
framework increases linearly with the size of the new nodes. Lastly, the
master problem and subproblem computation time of 2nd sub-stage are
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Fig. 6. Example of dispatch result for Day-type 4, year 10: (a) Aggregated prosumption
scenarios and prosumption prediction, (b) Power flow through GCP of scenarios,
prosumption prediction and dispatch plan (DP).

Fig. 7. The 1st block cost result.

Table 5
Computation time (seconds) and the number of Benders iterations.

Sub-stage New
Node ID

MP SP BI#

1st

56 8.47 2484 48
57 8.86 2478 54
58 6.54 2836 44
59 9.44 2563 53
60 8.46 2704 49
61 7.11 2816 42
62 9.26 2945 51
63 6.40 2964 37

2nd 2.66 2300 25

Total 1.08E+6 (≈300 h)

shown. Thanks to the fixed binary investment decision obtained in the
1st sub-stage, the 2nd sub-stage problem converges swiftly to the final
investment solution in 25 Benders iterations.

4.3. Scalability analysis regarding varying investment candidates

In this section, we analyze the computation time for solving a
planning problem considering various candidates for ESS nodes and
connections to a new node from the existing grid. We tested the
proposed planning framework on a 28-node benchmark distribution
network [38,39]. We solved the planning problem for 16 cases ac-
counting for the numbers of candidate nodes for ESS allocation and
12
Fig. 8. Computation time with different number of candidates.

Table 6
Computation time (hours) with various number of candidates (28-node system).

New lines # ESSs #

2 4 6 8

2 1.18 1.84 2.25 2.92
4 2.13 2.96 3.75 6.86
6 7.05 10.83 14.02 14.69
8 8.09 11.15 19.13 29.50

candidate connections to a new node ranging from 2 to 8 as shown
in Table 6. The number of considered operating scenarios for each
day type was 10, while the number of day types was 4. The local
consumption and generation are considered fixed over the planning
horizon. Fig. 8 illustrates the trend of computation times associated
with the number of candidate nodes for ESS (indicated as ‘ESSs #’ in
Table 6) and the number of candidates of new lines (indicated as ‘New
lines #’ in Table 6), which ranges from 1.18 h to 29.50 h. Regarding
the given system, the computation time increases more rapidly with the
increase of the number of new line candidates than the number of ESS
candidates.

4.4. Scalability analysis regarding varying system size

The planning methodology is also tested on distribution systems
of different sizes ranging from 13 nodes to 123 nodes (13-node and
28-node systems are from [38,39], 55-node system is from [34], and
123-node IEEE benchmark system can be found in [40]). 5 candidate
nodes for ESS allocation and the 4 candidate connections for a new
node are considered, while the number of scenarios, day-types and the
growth of prosumption is set to be the same as in the previous analysis.
Table 7 reports the average computation time for the master problem
and the subproblem for 1st and 2nd sub-stage problems. Note that only
the computation times for the 2nd block problems are reported in this
table. It is observed that the subproblems (i.e., operation problem) take
most of the total computation time. Its computation time increases with
the system size, suggesting that the subproblem size is determined by
the number of constraints and variables varying with the system size.
Solving the planning problem for the system with 28 nodes takes 1.8
times longer than the 13-node system. However, the 55-node system
took a shorter computation time than the 28-node system despite the
longer computation time for the subproblems thanks to the smaller
number of Benders iterations. The lower average computation time to
solve the master problem for the 55-node system implies a smaller
number of accumulated Benders cuts in the master problem. On the
other hand, the total computation time for solving the case of the
123-node system was more than 20 times higher than that of the 55-
node system, significantly exceeding the proportion of the subproblem
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Table 7
Computation time (seconds) of the 2nd block with respect to system size.
System size
(Number of nodes)

Average
1st MP

Average
1st SP

Average
2nd MP

Average
2nd SP

Total

13 1.7 72.5 0.5 31.6 7579
28 1.3 74.8 1.3 158.9 13 488
55 0.9 98.4 0.7 172.5 13 299
123 7.2 816.7 2.1 425.0 297 000
h

computation time for the 123-node system compared to the case of the
55-node system. It suggests that the convergence speed of the proposed
method depends not only on the size of the network but also on how
the Benders cuts pin down the solution space to identify the optimal
solution. This optimal solution is affected mainly by the structure of the
solution space, which is subjected to the network’s operation condition.

5. Conclusion

This study presents a DNEP tool for ADNs to achieve their dispatch-
ability. The connections to the new nodes and line reinforcement are
determined based on a proper evaluation of the network operation
modeled employing the AR-OPF model. ESSs are employed to com-
pensate for the prosumption uncertainty such that the realized power
flow at the GCP can track a day-ahead computed dispatch plan. The
proposed DNEP utilizes a sequential algorithm to add the new nodes
according to the pre-defined priorities. We decompose each planning
problem integrating a new node into two blocks. In the 1st block, the
allocation of ESS is determined along with the corresponding LDER by
implementing the linearly approximated OPF model. In the 2nd block,
the modified AR-OPF model is used to check the compatibility of the
allocated ESS capacity for the feasible operation of ADNs to satisfy the
LDER. This block determines the optimal locations and sizes of the ESSs,
the new line to connect the new node, the lines for reinforcement,
and their ampacities to minimize the unserved energy and the grid
losses while satisfying the LDER. We tested the proposed method on
a real Swiss ADN with 8 new nodes hosting 8 MWp PV capacity. The
results show that the DNEP can successfully determine the optimal level
of dispatchability while securing the required hosting capacity of the
ADN under increasing stochastic prosumption. Moreover, the extended
computation time analysis for solving the planning problem indicates
that the running time of the proposed method increases linearly with
the number of new nodes, avoiding a scalability issue associated with
the size of network expansion. The scalability analysis on various can-
didates and different system sizes is also carried out to demonstrate that
the proposed planning strategy can apply to distribution networks with
generic sizes considering multiple investment options. The post-analysis
of the planning problem’s objective values with different operating
scenarios shows the trade-off between the computation time and the
reliability of the planning solutions, providing helpful insight into the
choice of an operating scenario set to the modeler.

Future studies may not only address the ESS allocation but also the
configuration of hybrid ESS integrated to PV systems. The modeling of
these hybrid PV-ESS installations is not trivial; thus its integration into
the DNEP tool requires a dedicated study to be carried out by future
research.
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Appendix. Scenario generation

The scenarios used in this work are generated by following Alg.
4. First, we classified the historical load data at each node based on
the season and weekdays/weekends, which grouped them into different
day-types representing the seasonal variability of the prosumption. The
mean and standard deviation values of the magnitude of prosumptions
at each timestep are extracted from the consumption profiles classified
in each day type. A similar process is conducted for PV generation, and
the historic PV irradiation data is grouped by seasons and separated
into sunny/cloudy days. With the extracted mean and standard devia-
tion value of the load and PV irradiation, 1000 prosumption scenarios
are generated with equal probabilities to model the prediction uncer-
tainty based on the assumption that both the load and PV irradiation
follow the normal distribution [8]. Then, the number of operating
scenarios for each day type is reduced through the K-medoids clustering
technique [37].

It should be noted that the adopted scenario generation process has
some limitations in modeling accurate prosumption profiles. Firstly,
using representative day types instead of complete 8760-h operation
profiles may not be enough to picture the total variation of the pro-
sumption profiles over a year. Therefore, the number of day-types
should be chosen carefully, considering the trade-off between the com-
putation burden and the accuracy of seasonal variability modeling.
The criteria for categorizing day-types can largely affect the number
of day-types as well as the reliability of the planning solution. More-
over, operating scenarios are modeled as discontinuous representative
days. Therefore, continuous ESS operation over consecutive days is not
modeled7 Secondly, the prosumption scenarios are generated while the
prosumption day-ahead prediction uncertainty is modeled as a uni-
dimensional normal distribution. The user can, however, generate these
scenarios according to other parametric or non-parametric prosumption
models that may be available. Moreover, one can improve the quality
of prosumption modeling by considering of temporal auto-correlation
of prosumption uncertainty. Given that the ESS investment decisions
are influenced by how accurately the scenarios model the prosumption
uncertainty, in practice, the modeler should have a reliable forecasting

7 Instead, the final SoE of each representative day is constrained to be 10%
igher or lower than the initial SOE of each representative day to ensure the
easibility of consecutive day operation.
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1

Fig. A.9. (a) CDF of initial scenario set and reduced scenario sets with different number of reduced scenarios regarding the value of a single random variable (PV irradiation
value at timestep 75, day-type 1, and year 1), (b) Boxplot of objective values of planning problem with different number of prosumption scenarios.
and scenario generation tool. It is finally worth pointing out that the
modeling of prosumption uncertainty is beyond the scope of this paper.

Algorithm 4 Scenario generation
1: Group the historical load data at each node based on the seasons

and weekdays/weekends.
2: Calculate the mean and standard deviation value of the historical

load profiles in each group
3: Group the historical solar irradiation data based on the seasons and

sunny/cloudy days.
4: Calculate the mean and standard deviation values of the historical

solar irradiation profiles in each group
5: Generate 1000 prosumption scenarios (𝛷𝑑𝑦) assuming that the

prosumption follows the normal distribution.
6: Set the number of desired clusters (i.e., the number of reduced

scenarios) for scenario reduction.
7: Run the K-medoids clustering function.
8: The members within each cluster are counted to calculate the

probability set (𝜆𝛷) of the reduced scenario set.
9: Save the medoids as the reduced scenario set 𝛷′

𝑑𝑦
0: return 𝛷′

𝑑𝑦, 𝜆𝛷𝑑𝑦
, 𝑑 ∈ , 𝑦 ∈ 

A.1. Statistic analysis on varying number of operating scenarios

We analyzed the relationship between the number of operating sce-
narios and the trade-off between the computation time and the solution
quality. Note that the operating scenario set considered for the planning
problem is the outcome of the K-medoids clustering technique (see
Alg. 4 in Section 4.1) applied to the initial scenario set. Therefore, the
number of clusters (i.e., operating scenarios to be used in the planning
problem) determines how the reduced scenario subset can represent the
stochastic characteristic of the initial scenario set. Fig. A.9.(a) shows the
cumulative distribution function (CDF) of the initial scenario set and
different reduced scenario sets regarding the value of a single random
variable (PV irradiation value at timestep 15, day-type 1, and year 1).
It is evident that the stochastic similarity between the reduced scenario
set and the initial scenario set improves with the number of operating
scenarios, as shown in Fig. A.9.(a).

In this regard, it is worthwhile a-posteriori investigating the impact
of the number of operating scenarios on the computation time and
the optimal solution quality of the planning problem by observing the
distribution of the objective values throughout the repetitive runs of
planning exercises with the different number of operating scenarios.
100 runs of simulation are conducted for each case considering 10,
40, 70, and 100 reduced scenarios, respectively, to observe the av-
erage computation time, the average expected objective value, and
14

the normalized standard deviation as shown in Table A.8. Fig. A.9.(b)
Table A.8
Post analysis with respect to different number of scenarios (tested on 13-node system,
4 day-types, 24 timesteps, 2 ESS node candidates, 1 new line candidate).

Number of
scenarios

Average
Computation time
(h)

Average
objective value

Normalized
standard deviation

10 0.29 2124.7 0.0810
40 1.08 2130.6 0.0454
70 4.02 2180.6 0.0413
100 6.15 2158.7 0.0375

indicates the median of the objective values and the 25% and 75%
percentile of the objective value, along with outliers (shown as red ‘x’s).
The number of reduced scenarios 40 is obtained from the algorithm
introduced in [20], which determines the number of reduced scenarios
by evaluating the statistical similarities between the initial and reduced
scenarios set. The reader can find the details about the algorithm
in [20]. The cases with 70 and 100 scenarios are chosen as the reference
cases to compare the solution quality with the 10 and 40 scenarios
cases.

All the metrics (i.e., the average expected objective value, the
normalized standard deviation values, and the range between 25%–
75% percentile) show a relatively small difference between the case
with 40 scenarios and those with a larger number of scenarios in
contrast to the significant gap in the average computation time between
the 40 scenarios case and other cases. The result demonstrates that 40
scenarios can yield acceptable solution reliability while maintaining a
reasonable computation time. Then, the solution’s reliability in the case
of 10 operating scenarios (used for the previous simulation exercises)
is evaluated with reference to the 40 scenarios case. While the average
computation time for the 10 scenarios case is nearly a quarter of the
time for solving the 40 scenarios case, the average expected objective
value difference is merely 0.3%. The difference in the average objective
value of the 10 scenarios case with other cases (the 40, 70, and 100
scenarios cases) is at a maximum of 2.6%, which is an acceptable
magnitude of error considering the merit of the 10 scenarios case in
terms of significantly short computation time. However, the normal-
ized standard deviation, and the 25%–75% percentile interval remain
larger compared to the other number of scenarios cases. Given this,
the modeler can choose to consider 40 scenarios to improve solution
reliability in realistic planning practices, but at the cost of significantly
higher computation time.
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