
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Predicting in Uncertain Environments: Methods for
Robust Machine Learning

Paul Thierry Yves ROLLAND

Thèse n° 9118

2022

Présentée le 14 octobre 2022

Prof. M. Jaggi, président du jury
Prof. V. Cevher, directeur de thèse
Prof. G. Peyré, rapporteur
Prof. P. Ravikumar, rapporteur
Prof. N. Flammarion, rapporteur

Faculté des sciences et techniques de l’ingénieur
Laboratoire de systèmes d’information et d’inférence
Programme doctoral en informatique et communications

Essentially all models are wrong,

but some are useful.

— George Box

Acknowledgements
This thesis is the result of several collaborations involving many people. To begin with, I would

like to express my gratitude to the primary instigator of this great adventure, which is my

supervisor Volkan Cevher. I thank you for your encouragements, your contagious motivation

and optimism, your creativity in finding algorithm names, your humour, your ability to gather

people and create connections. This last quality was particularly important to me, since it

allowed me to work with a myriad of wonderful people.

I was honored to have Gabriel Peyré, Nicolas Flammarion, Pradeep Ravimukar and Martin

Jaggi as members of my thesis defense comittee. I am thankful for their time and the interest

they had in my work. Special thanks to Gabriel Peyré for hosting me at ENS Paris for three

months, and introduced me to the field of Optimal Transport. While no publication has

emerged from this short collaboration, it still inspired one of Gabriel’s famous Twitter posts,

which is priceless.

I thank Francesco Locatello for hosting me at Amazon Tübingen. I spent four great months

there, discovering the field of causality, and I had the opportunity to interact with one of the

world leaders of this field, namely, Bernhard Schölkopf.

What gave all the flavour to this adventure is certainly the people I have been fortunate

to collaborate with at LIONS. The team at LIONS is very diverse, in terms of knowledge,

nationalities and personalities, and I quickly realized everything I could gain from interacting

with all these people. I would like to thank Thomas Pethick for his infinite kindness, his crazy

ability to always find something positive in every aspect of life. I am thankful to everything he

brought me into, such as planting trees, cook a lentilles dahl or swimming in the lake. I am

also thankful for being a great climbing partner, and being consistently motivated for doing

crazy things, such as the Lausanne triathlon under the storm. I thank Leello for everything he

is. He is very good at asking disturbing questions making one rethink our whole conception of

things. This ranges from philosophical questions, with his “fifty francs on the floor” dilemma,

to technical questions in Machine Learning. He also knows the best riddles, one of them still

begin unsolved. I thank Igor Krawczuk for being a model of dedication and rigour, for the deep

political debates while performing pull-ups and push-ups at 7am in the rain. It is impressive

to have that much energy while I literally never saw him eat. Thank you also for your help on

improving my hand-stand and for introducing me to the acroyoga Lausanne association.

I always had a great time hanging out with all the people from the lab. Huge thanks to the

team members that started the PhD at the same time as me: Thomas Sanchez for being a loyal

i

Acknowledgements

mate for all these years at EPFL and the tidiest person I know, Ali Kavis for his great laugh and

jokes, Mehmet Fatih for his peaceful personality and Fabian Latorre for begin an amazing

collaborator, able to explain anything and make it look trivial right away, even to Reviewer #2.

I thank the people that were already at LIONS when I started: Ilija Bogunovic and Jonathan

Scarlett, which were the first persons I worked with at LIONS, during my Master thesis, and

made me do my first steps in the academic world. Ya-Ping Hsieh, whose qualitative description

would be as long as incomprehensible if you never interacted with him. But behind his

complexity lies a truly inspiring person. Ahmet Alacaoglu for his great advices on gaining

weight, which can be summarized as: “Eat food!”. And Kamalaruban Parameswaran for his

warm smile every time I would come to ask a question.

And I thank the people that joined LIONS during my PhD: Luca Viano for his eternal enthousi-

asm, Pedro Abranches for his teasing, Fanghui for is valuable and limited time, Stratis Skoulakis

(or Souvlakis?) for his high fives and warm huges, Kimon Antonakopoulos for being the boss,

Grigorios Chrysos for his pragmatism in life and Ali Ramezani for keeping us up-to-date on

the best Twitter posts in Machine Learning, Yurii Malitsky for his smart and funny personality,

and his great tutorial on Variational Inequalities, and Nadav Hallak for his look when watching

the snow for the first time in Switzerland in the middle of a meeting and screaming “Wow, I

need to call my wife!”

Warm thanks to Gosia Baltaian, our secretary, for her efficiency in organizing all the meeting,

booking, conferences for such a big lab with perfect reliability.

Thanks also to all my friends. I would not dare making a list, being too scared to forget anyone.

Thank you to Elina, my girlfriend for all these years, who supported me, and nodded in a very

convincing way every time I would speak about my work.

Last but surely not least, I express my gratitude to my family. In particular to my parents Gilles

and Virginie, for giving me the complete freedom to study anything I wanted, and always

encouraging me in everything I do.

Lausanne, September 30, 2022 P. R.

ii

Abstract
One of the main goal of Artificial Intelligence (AI) is to develop models capable of providing

valuable predictions in real-world environments. In particular, Machine Learning (ML) seeks

to design such models by learning from examples coming from this same environment.

However, the real world is often not static, and the environment in which the model is used

can differ from the one in which it is trained. It is hence desirable to design models that are

robust to changes of environments. This encapsulates a large family of topics in ML, such as

adversarial robustness, meta-learning, domain adaptation and others, depending on the way

the environment is perturbed.

In this dissertation, we focus on methods for training models whose performance does not

drastically degrade when applied to environments differing from the one the model has been

trained in. Various types of environmental changes will be treated, differing in their structure

or magnitude. Each setup defines a certain kind of robustness to certain environmental

changes, and leads to a certain optimization problem to be solved. We consider 3 different

setups, and propose algorithms for solving each associated problem using 3 different types

of methods, namely, min-max optimization (Chapter 2), regularization (Chapter 3) and

variable selection (Chapter 4).

Leveraging the framework of distributionally robust optimization, which phrases the problem

of robust training as a min-max optimization problem, we first aim to train robust models by

directly solving the associated min-max problem. This is done by exploiting recent work on

game theory as well as first-order sampling algorithms based on the Langevin dynamics. Using

this approach, we propose a method for training robust agents in the scope of Reinforcement

Learning.

We then treat the case of adversarial robustness, i.e., robustness to small arbitrary perturbation

of the model’s input. It is known that neural networks trained using classical optimization

methods are particularly sensitive to this type of perturbations. The adversarial robustness of

a model is tightly connected to its smoothness, which is quantified by its so-called Lipschitz

constant. This constant measures how much the model’s output changes upon any bounded

input perturbation. We hence develop a method to estimate an upper bound on the Lipschitz

constant of neural networks via polynomial optimization, which can serve as a robustness

certificate against adversarial attacks. We then propose to penalize the Lipschitz constant

during training by minimizing the 1-path-norm of the neural network, and we develop an

algorithm for solving the resulting regularized problem by efficiently computing the proximal

iii

Abstract

operator of the 1-path-norm term, which is non-smooth and non-convex.

Finally, we consider a scenario where the environmental changes can be arbitrary large (as

opposed to adversarial robustness), but need to preserve a certain causal structure. Recent

works have demonstrated interesting connections between robustness and the use of causal

variables. Assuming that certain mechanisms remain invariant under some change of the

environment, it has been shown that knowing the underlying causal structure of the data

at hand allows to train models that are invariant to such changes. Unfortunately, in many

cases, the causal structure is unknown. We thus propose a causal discovery algorithm from

observational data in the case of non-linear additive models.

We emphasize that, while we make the relation to robustness explicit in each chapter, the

focus in this thesis is put on the tools involved in the different algorithms rather than the

resulting method itself. Hence the scope of this work extends to other fields of research than

robust ML, such as first-order sampling methods, generalization and causal discovery.

iv

Résumé
Un des objectifs principaux en Intelligence Artificielle est de développer des modèles capables

de fournir des prédictions valides dans des environnements réels. En particulier, l’apprentis-

sage automatique (ou Machine Learning) cherche à construire de tels modèles en apprenant

à partir de données provenant de ce même environnement. Cependant, le monde réel n’est

la plupart du temps pas statique, et l’environnement dans lequel le modèle sera utilisé peut

varier par rapport à celui dans lequel il a été entrainé. Il est donc nécéssaire de développer

des modèles qui sont robustes à ces changements d’environnement. Ce problème englobe

une vaste classes de sujets en Machine Learning, telles que la robustesse antagoniste, le meta-

learning, ou l’adaptation de domaine, dépendamment de la manière dont l’environnement

est perturbé.

Cette thèse traite de méthodes pour entrainer des modèles dont la performance ne se dé-

grade pas drastiquement lorsque ceux-ci sont appliqués dans des environnement différents

de l’environnement d’entrainement. Nous considérerons plusieurs types de changements

d’environnements, différant en terme de structure et de magnitude. Nous traitons 3 différents

types de robustesse, et proposons des algorithmes capables d’entrainer des modèles satis-

faisant chacun de ces types de robustesse. Ces algorithmes sont basés sur des techniques

très différentes pour chaque scénario : l’optimisation min-max (Chapter 2), la regularisation

(Chapter 3) et la sélection de variables (Chapter 4).

Dans un premier temps, nous proposons en méthode d’entrainement robuste en introduisant

un adversaire perturbant le modèle durant l’entrainement, afin de le rendre moins sensible aux

possibles modifications de l’environnement. Cette tâche peut s’exprimer comme un problème

min-max, dans lequel un modèle est entrainé de sorte à minimiser une fonction de coût et un

adversaire est entrainé simultanément afin de maximiser ce coût. À l’aide de récents travaux

sur la théorie des jeux, ainsi que sur les algorithmes d’échantillonnage via la dynamique de

Langevin, nous proposons un algorithme permettant d’entrainer des agents robustes dans le

cadre de l’apprentissage par renforcement.

Nous traitons ensuite le cas de la robustesse aux petites perturbations de l’entrée. Les réseaux

de neurones entrainés avec des méthodes d’optimisation classiques sont particulièrement

sensibles à ce genre de perturbations. Ce type de robustesse est fortement lié à la régularité

du modèle, caractérisée par sa constante de Lipschitz. Cette constante mesure jusqu’à quel

point la sortie du modèle peut varier lorsque l’on modifie son entrée. Nous proposons donc

une méthode permettant d’estimer cette quantité dans le cas de modèles paramétrés par

v

Résumé

des réseaux de neurones. Cela permet notamment d’obtenir un certificat de robustesse aux

perturbations de l’éntrée. Nous proposons ensuite une méthode pénalisant la constante de

Lipschitz durant la phase d’entrainement, en minimisant une certaine norme (la norme 1-

path) servant de proxy à la constante de Lipschitz. Nous développons ensuite un algorithme

pour résoudre le problème associé en utilisant la méthode du gradient proximal. Pour ce faire,

nous proposons une méthode efficace pour calculer l’opérateur proximal de la norme 1-path,

qui est non-régulière et non-convexe.

Enfin, nous considérons le scénario où les changements de l’environnement préservent une

certaine structure causale. En supposant que certains mécanismes causaux restent invariants

entre l’environnement d’entrainement et l’environnement de test, il a été démontré que

connaître la structure causale des variables étudiées permet d’entrainer des modèles qui

restent invariants à ce type de changement. Malheureusement, dans de nombreux cas, cette

structure causale est inconnue. Nous proposons donc un algorithme d’inférence de la structure

causale à partir de données observationnelles dans le cas de modèles additifs non-linéaires.

Nous appuyons sur le fait que, bien que nous explicitons la relation à la robustesse dans

chaque chapitre, cette thèse se concentre principalement sur les outils développés dans les

différents algorithmes plutôt que sur la méthode résultante elle même. La portée de cette

dissertation s’étend donc à des domaines autres que la robustesse en Machine Learning, tels

que les méthodes d’échantillonnage, la généralisation et la découverte de structures causales.

vi

Bibliographic Note
This dissertation is based on the following publications:

• Paul Rolland, Armin Eftekhari, Ali Kavis, Volkan Cevher. “Double-loop Unadjusted

Langevin Algorithm.” International Conference on Machine Learning (ICML), 2020.

• Parameswaran Kamalaruban, Yu-Ting Huang, Ya-Ping Hsieh, Paul Rolland, Cheng Shi,

Volkan Cevher. “Robust reinforcement learning via adversarial training with Langevin

dynamics.” Advances in Neural Information Processing Systems (NeurIPS), 2020.

• Fabian Latorre, Paul Rolland, Volkan Cevher. “Lipschitz constant estimation of neural

networks via sparse polynomial optimization.” International Conference on Learning

Representation (ICLR), 2020.

• Fabian Latorre,∗ Paul Rolland,∗ Nadav Hallak,∗ Volkan Cevher. “Efficient Proximal Map-

ping of the 1-path-norm of Shallow Networks.” International Conference on Machine

Learning (ICML), 2020.

• Nadav Hallak∗, Paul Rolland∗, Fabian Latorre∗, Volkan Cevher. “Efficient Proximal

Mapping of the 1-path-norm Regularizer of unit-width Deep Neural Networks.” Work in

progress.

• Paul Rolland, Volkan Cevher, Matthäus Kleindessner, Chris Russel, Bernhard Schölkopf,

Dominik Janzing, Francesco Locatello. “Score matching enables causal discovery of

nonlinear additive noise models.” International Conference on Machine Learning

(ICML), 2022.

Bibliographic notes are added at the end of some sections to specify my own contributions. If

no note appears, it means that I contributed to all the results within the section.

Here are my other publications that I worked on during my PhD, but which are not included

in this dissertation:

• Paul Rolland, Jonathan Scarlett, Ilija Bogunovic, Volkan Cevher. “High-dimensional

Bayesian optimization via additive models with overlapping groups.” International

conference on artificial intelligence and statistics (AISTATS), 2018.

• Paul Rolland, Ali Kavis, Alexander Immer, Adish Singla, Volkan Cevher. “Efficient learn-

ing of smooth probability functions from Bernoulli tests with guarantees.” International

Conference on Machine Learning (ICML), 2019.

vii

Résumé

• Ya-Ping Hsieh, Ali Kavis, Paul Rolland, Volkan Cevher. “Mirrored Langevin dynamics.”

Advances in Neural Information Processing Systems (NeurIPS), 2018.

• Fabian Latorre, Leello Tadesse Dadi, Paul Rolland, Volkan Cevher. “The Effect of the

Intrinsic Dimension on the Generalization of Quadratic Classifiers.” Advances in Neural

Information Processing Systems (NeurIPS), 2021.

• Paul Rolland, Luca Viano, Norman Schuerhoff, Boris Nikolov, Volkan Cevher. “Identifi-

ability and generalizability from multiple experts in Inverse Reinforcement Learning.”

Advances in Neural Information Processing Systems (NeurIPS), 2022.

viii

Contents
Acknowledgements i

Abstract (English/Français) iii

1 Introduction 1

2 Robustness to distribution shift using min-max optimization 7

2.1 Preliminaries . 7

2.1.1 Min-max optimization . 7

2.1.2 Finding mixed Nash equilibria . 8

2.2 Double-loop unadjusted Langevin algorithm . 10

2.2.1 Introduction . 10

2.2.2 Related work . 12

2.2.3 Preliminaries . 13

2.2.4 DL-ULA for unconstrained sampling . 16

2.2.5 DL-MYULA for constrained sampling . 22

2.3 Robust Reinforcement Learning via adversarial training with Langevin dynamics 25

2.3.1 Introduction . 25

2.3.2 Preliminaries: Markov decision problems and deterministic policy gradi-

ent . 26

2.3.3 Robust training with two players Markov games 27

2.3.4 Experiments . 28

2.4 Bibliographic notes . 29

3 Robustness to adversarial perturbation using regularization 33

3.1 Lipschitz constant estimation of neural networks via sparse polynomial opti-

mization . 33

3.1.1 Introduction . 34

3.1.2 Polynomial optimization formulation . 35

3.1.3 Solving the POP using polynomial positivity certificate 37

3.1.4 Reducing the number of variables . 38

3.1.5 Relation to Shor’s relaxation and Sum-Of-Squares hierarchy 41

3.1.6 Experiments . 42

3.2 1-path-norm Regularization using Proximal Gradient Method 45

ix

Contents

3.2.1 Introduction . 45

3.2.2 Problem setup and preliminaries . 47

3.2.3 Path norm regularization of shallow neural networks 49

3.2.4 Path norm regularization of deep neural networks 55

3.2.5 Experiments . 62

3.3 Bibliographic notes . 67

4 Robustness to structured environmental changes using causal feature selection 69

4.1 Preliminaries: Causality and robustness . 69

4.1.1 Causality and structural equation models 69

4.1.2 Robustness via causal features selection 71

4.2 Causal discovery for non-linear additive models 72

4.2.1 Introduction . 72

4.2.2 Related Work . 74

4.2.3 Preliminaries . 75

4.2.4 Causal discovery via score matching . 77

4.2.5 Experiments . 82

5 Conclusion and future work 89

5.1 Summary of the thesis . 89

5.2 Directions for future work . 90

5.2.1 Further analysis of DL-ULA . 90

5.2.2 Analysis of stochastic prox method for 1-path norm regularization 90

5.2.3 Extension of SCORE to other identifiable models 91

A Appendix for Chapter 2 93

A.1 Proofs of Section 2.2 . 93

A.1.1 Proof of Lemma 9 . 93

A.1.2 Proof of Lemma 10 . 95

A.1.3 Proof of Theorem 11 . 96

A.1.4 Proof of Lemma A.1.4 . 97

A.1.5 Proof of Theorem 14 . 99

A.2 Appendix for Section 2.3 . 103

B Appendix for Chapter 3 107

B.1 Proofs of Section 3.1 . 107

B.1.1 Proof of Theorem 15 . 107

B.1.2 Proof of Proposition 22 . 108

B.2 Appendix for Section 3.2: Proximal operator in the multi-output setting 109

B.3 Proofs of Section 3.2 . 119

B.3.1 Proof of Theorem 23 . 119

B.3.2 Proof of Theorem 24 . 120

x

Contents

B.3.3 Proof of Lemma 26 . 121

B.3.4 Proof of Lemma 27 . 122

B.3.5 Proof of Lemma 30 . 122

B.3.6 Proof of Corollary 31 . 124

B.3.7 Proof of Lemma 32 . 124

B.3.8 Proof of Lemma 34 . 125

B.3.9 Proof of Lemma 38 . 126

B.3.10 Proof of Lemma 42 . 127

B.3.11 Proof of Theorem 43 . 127

C Appendix for Chapter 4 129

C.1 Appendix for Section 4.2: Additional experiments 129

Bibliography 131

xi

1 Introduction

In recent years, powerful models able to predict input/output relationships in complex envi-

ronments with tremendous accuracy have been developed, in particular thanks to the success

of Machine Learning (ML), i.e., by learning from training data. Examples of such models

include image classification, Reinforcement Learning (RL), or self-driving cars to name a

few. The models developed for these tasks are trained using examples, e.g., already classified

images in the context of image classification. Thanks to the increasing amount of available

data, such methods have shown impressive results in a wide variety of tasks, performing even

better than human predictions: CoAtNet-7 obtained 90.88% accuracy on ImageNet (Dai et al.,

2021), alphaZero defeated the Go world champion (Silver et al., 2018), and self-driving cars

are safer and more reliable than humans in certain contexts (Badue et al., 2021). These great

successes made such models omnipresent in our modern world. We indeed regularly interact

with them, and often do no doubt the correctness of their predictions.

This increasing trust in these models raises questions about the reliability and robustness

of these predictions. ML models expected to perform predictions in a certain environment

are trained using data acquired from this same environment. While the trained models show

impressive success when tested on the same environment as the one on which there are

trained, a slight change in the test environment can lead to catastrophic decrease of the

accuracy. Indeed, without appropriate training, image classification algorithms are usually

very sensitive to adversarial perturbations, in the sense that small perturbations of the input,

almost imperceptible to the human eye, can heavily degrade the accuracy of the prediction

(Dong et al., 2020). Similarly, RL agents trained to perform well in a given environment can be

severely perturbed by small modifications of this environment (Morimoto and Doya, 2005).

Finally, while self-driving cars are safe and reliable in classical scenarios, they have failure

cases and may fail to detect unusual obstacle or interpret unusual signs. In 2016, the first fatal

case of self-driving cars occurred in Florida. The accident was cause by the Tesla’s autopilot

misdetecting a white truck because of its similar color with the sky. This discrepancy between

the classical test accuracy and the robust accuracy triggered the development of methods for

training robust models that are not too sensitive to changes in the environment.

1

Chapter 1. Introduction

A rather general template describing the problem of training robust models is given as follows

Input: X = {(xi , yi)}N
i=1 ∼ pdata

Goal: min
f ∈F

max
ptest∈P

E(x,y)∼ptest [`(f (x), y)],
(ROB)

where pdata denotes the training distribution that we get samples from, F is a class of models,

` is a loss function, P is a class of test distributions and EX∼µ denotes the expectation operator

over the distribution µ. The vectors xi ∈ Rd denote a set of observable features, and the

associated values yi ∈R denote the quantity that we aim to predict. This problem template is

known as Distributionally Robust Optimization (Neumann, 1928). The parameter specifying

the robustness of problem (ROB) is the choice of the space P which describes how different

we think the test environment will be from the training one. If P = {pdata}, then we assume no

difference between pdata and ptest, and (ROB) reduces to a classical non-robust supervised

learning problem. For (ROB) to yield an interesting solution, we need P to only contain

distributions that are not too different from pdata, i.e., that are close to pdata in some way, or

that share a certain structure. If P is too large, it becomes impossible for the trained model to

learn anything.

As a motivating example, consider an image classification task, where the input image x can

be modified at test time by changing the pixels up to a certain budget. This problem can be

written as

min
f ∈F

max
‖δi ‖≤ε

N∑
i=1

`(f (xi +δi), yi) (1.1)

where the test distribution deviation is limited by bounding the norm of the injected perturba-

tions ‖δi‖ ≤ ε for some ε> 0 and norm ‖ · ‖ to be chosen. We can see that problem (1.1) fits

into the framework (2.1). Indeed, letting P = {ν : ν= (g × Id)#pdata,‖g (x)−x‖ ≤ ε ∀x} where

denotes the push-forward operator,1 problem (2.1) boils down to (1.1) (after replacing the

expectation by the empirical average).

Several approaches have been developed for training robust models, which can roughly be

classified in three categories:

• Solving the min-max problem (ROB) directly: In the case where we are able to obtain

samples from the distributions within P , it is possible to approximately solve prob-

lem (ROB) by exploiting recent works on min-max optimization, which has known an

increase of interest, in particular with the popularity of Generative Adversarial Networks

(Creswell et al., 2018). Even when we do not have direct access to distributions in P , we

can mimic the changes between the train and test distributions by directly perturbing

the model, the data or the environment during training, in order to make sure that

1More precisely, (g × Id)#pdata denotes the distribution obtained by sampling (x, y) from pdata, and then
applying g to x (Hsieh et al., 2018).

2

the trained model’s accuracy is not severely affected by some small changes. These

perturbations can take various forms, leading to different practical algorithms, such

as dropout (Hinton et al., 2012) or adversarial training (Ganin et al., 2016). One way to

design those perturbations is to simultaneously train a second model that perturbs the

learning model in a way that harms the model’s accuracy the most, under some budget

constraint, also leading to a min-max formulation serving as a proxy for (ROB).

• Regularize the model: Another possibility is to directly penalize the sensitivity of the

trained model to small changes in the input. As mentioned previously, non-robustly

trained models can make very different predictions after a slight perturbation of the

input. This is unacceptable for most practical tasks, especially in computer vision. This

sensitivity of the model’s output to change in the input is precisely characterized by the

so-called Lipschitz constant, which is defined as the maximal possible ratio between the

output difference and the input difference. Methods have hence been designed both to

estimate this constant for various models, e.g., neural networks, which can serve as a

robustness certificate against adversarial attacks, and to penalize it during training.

• Carefully select the input variables: Finally, it is believed that the non-robustness of

classically trained models is partially due to the high-dimensionality of the input data,

yielding the emergence of non-robust features with high predictive power which are

exploited by the trained model (Ilyas et al., 2019). Therefore, reducing the number of

input variables generally leads to more robust models. On the other hand, we do not

want to loose too much predictive power, and hence we need to identify which variables

are necessary for the prediction task at hand. Several variable selection techniques have

been designed, improving the robustness and interpretability of the resulting model

(Andersen and Bro, 2010).

This dissertation is separated in 3 chapters, each targeting a certain type of robustness, as-

sociated with a choice of P in (ROB), and featuring an algorithm in one of the categories

described above.

Chapter 2: Robustness to distribution shift using min-max optimization

In this chapter, we study the case where we have access to the distributions within P , and we

aim to solve (ROB) directly, by exploiting an existing approach for nonconvex-nonconcave

min-max problems (Hsieh et al., 2019). This algorithm requires to iteratively sample from

certain distributions whose normalization constants are unknown. We hence need a method

to efficiently perform these sampling tasks.

A popular method for sampling from distributions known up to a normalization constant is

the Unadjusted Langevin Algorithm (ULA). This method works by applying Gradient Descent

to the negative log density, and adding a certain amount of Gaussian noise at each iterations.

Convergence properties of this method have been studied in various settings (Ahn et al., 2012;

Cheng and Bartlett, 2017; Dalalyan and Karagulyan, 2017; Durmus et al., 2017, 2018a; Welling

3

Chapter 1. Introduction

and Teh, 2011). In this dissertation, we present one work analysing the convergence properties

of the ULA for both unconstrained and constrained sampling in the log-concave setting.

We show that, by exploiting a certain multi-stage step size schedule, we obtain improved

convergence guarantees in certain cases.

We then turn our attention to the training of robust models in the scope of Reinforcement

Learning (RL), i.e., we want to train an agent in a certain environment so that the agent

still performs well in different environments where the transition dynamics is modified to

some extend. However, we consider that we do not have direct access to these modified

environments, and we instead involve an adversary that perturbs the agent’s action during

training. Exploiting recent advances on policy gradient methods (Sutton et al., 2000; Silver

et al., 2014; Schulman et al., 2015, 2017), this problem can be phrased as a continuous min-

max optimization problem with access to stochastic gradients. Hence, we apply the method

of (Hsieh et al., 2019) and demonstrate improved performance over state-of-the-art algorithms.

Chapter 3: Robustness to adversarial perturbation using regularization

In this next chapter, we focus on training models which are robust to adversarial attacks, i.e.,

to small perturbations of the input fed to the model at test time. This can be achieved by

constraining or regularizing the Lipschitz constant of the model. However, computing the

Lipschitz constant for most models, e.g., neural networks, is a computationally hard task. We

hence start by proposing a method estimating an upper bound on the Lipschitz constant of

feed-forward neural networks. The estimated value hence provides a robustness certificate to

adversarial attacks for trained neural networks.

Directly regularizing the Lipschitz constant during training turns out to be quite computation-

ally inefficient. Instead, we propose to regularize a proxy for the Lipschitz constant known

as the 1-path-norm of the network. We show that this quantity provides a general upper

bound on the Lipschitz constant, and we develop an efficient algorithm to solve the resulting

optimization problem by efficiently computing the proximal mapping of the non-smooth and

non-convex path-norm term.

Chapter 4: Robustness to structured environmental changes using causal feature selection

Finally, we consider training robust models by limiting the number of input variables based

on the notion of Causality. Coming back to our problem definition of training a robust

model (ROB), recall that the main difficulty comes from the difference pdata 6= ptest ∈P . This

difference is enhanced by the high dimensionality of the input data. For example, suppose

that the distribution of each input variable is allowed to change within a certain budget. Then,

the difference between pdata and ptest in Wasserstein (W2) distance would generally scale as

W2(pdata,ptest) =O (
p

d), so we can expect the distributions to be more and more different as

the dimension grows. Therefore, limiting the input dimension is in general an efficient way to

improve robustness.

4

A recent trend of works towards developing robust models has emerged using the framework

of Causality (Pearl, 2009), showing optimal robustness properties in cases where we are able to

identify the causal variables (Bühlmann, 2020). Indeed, certain variables can be more or less

prone to variability when changing the environment, and certain relations between variables

can sometimes hardly be modified. Taking a closer look at the way the input data have been

generated in a first place can allow to identify certain causal relations among variables: This is

known as Causal Discovery.

In this last chapter, we start by introducing the framework of Causality and its relation to

robustness, based on the work of Bühlmann (2020). It has been shown that, if we restrict

P in (ROB) to the set of distributions having a similar causal structure as pdata, (see the

invariance of causal mechanisms Assumption 44), then, the accuracy of any model trained

only using the appropriate causal variables remains unchanged under any ptest ∈ P . In

particular, in the case of linear classification with quadratic loss, it leads to the solution

of (ROB). This assumption on P contrasts with the two previous chapters, which assumed

small but unstructured changes between pdata and ptest, rather than arbitrarily large but

structured ones here.

This connection motivates the search for causal structure, since causal relations are generally

not known a priori. Hence, the main part of this chapter focuses on Causal Discovery from

observational data. We propose an efficient algorithm for estimating the causal graph from

data in the case of non-linear additive noise models.

Notation. R denotes the space of real numbers, ‖ ·‖2 :Rd → denotes the Euclidean norm. The

symbol O denotes an asymptotic upper bound, i.e., for two functions f , g :R→R, we say that

f (x) =O (g (x)) if there exist constants C ,R > 0 such that | f (x)| ≤C g (x) for all x such that x ≥ R .

The symbol Õ is the same as O but hides logarithmic terms, i.e., f (x) = Õ (g (x)) ⇔ f (x) =
O (g (x) logn(x)) for some integer n. We use the symbol . to denote functional inequalities that

hide possible multiplicative constant, i.e., f (x). g (x) ∀x ⇔∃c > 0, f (x) ≤ cg (x) ∀x where c is

a constant independent of x. We write X ∼N (µ,Σ) to indicate that the random variable X

follows a Gaussian distribution with mean µ and covariance matrix Σ.

5

2 Robustness to distribution shift using
min-max optimization

Our chosen notion of robustness (ROB) features a min-max formulation, where the max part

characterizes the possible distribution shift at test time compared to the training distribution.

In this section, we propose to solve this problem directly using a min-max optimization

method. To this end, we introduce an adversary perturbing the learning model, whose goal is

to simulate potential situations that can possibly arise at test time due to the distribution shift.

The adversary is trained together with the learning model, so as to increase the loss value as

most as possible. We hence expect the model to adapt to these perturbation and thus be more

robust.

In this chapter, we start with a preliminary section introducing a framework, based on a recent

work (Hsieh et al., 2019), for solving min-max problems. The algorithm requires the use of a

sampling algorithm, and the authors in (Hsieh et al., 2019) propose to use a method based

on Langevin dynamics. We hence present a work analysing the convergence property of the

Unadjusted Langevin Algorithm in the log-concave setting. Finally, we apply this framework

to the training of robust Reinforcement Learning agents under changes of the environment,

by introducing an adversary perturbing the learning agent’s actions.

2.1 Preliminaries

2.1.1 Min-max optimization

In its most generic form, a min-max problem, or Saddle Point problem (SPP), can be phrased

as follows:

min
θ∈Θ

max
ω∈Ω

f (θ,ω). (2.1)

where Θ ⊆ Rn , Ω ⊆ Rm . The function f (θ,ω) represents the training loss when the model

makes a guess based on a model parameterized by θ, which is perturbed according to an

adversary parametrized by ω.

7

Chapter 2. Robustness to distribution shift using min-max optimization

Solving (2.1) requires finding a point (θ?,ω?) such that

f (θ,ω?) ≤ f (θ?,ω?) ≤ f (θ?,ω), ∀θ ∈Rn ,ω ∈Rm . (2.2)

In the language of game theory, we say that (θ?,ω?) is a pure Nash Equilibrium (pure NE). If

(2.2) holds only locally, we say that (θ?,ω?) is a local pure NE.

When the function f is convex-concave, i.e., f (·,y) is convex for all y, and f (x, ·) is concave

for all x, existence of such a pair is guaranteed to exist provided that the constraint set is

compact (Neumann, 1928; Rosen, 1965), and computing such a solution can be reduced to

solve a convex program.

However, when f is not convex-concave, such a solution is not guaranteed to exist, and various

hardness results have been proved. In particular, deciding whether an approximate local Nash

equilibrium exists is NP-hard, and finding such a point, even when guaranteed to exist, is

PPAD-complete (Daskalakis et al., 2021).

2.1.2 Finding mixed Nash equilibria

In this section, we present an existing framework (Hsieh et al., 2019) for solving problems

of the form (2.1). The goal of this section is to present the main ideas of the procedure, and

technical details will be omitted. For a more formal treatment of the algorithm’s design, please

refer to the original paper.

It seems from the previous section that the solution concept of pure Nash equilibrium is not

satisfactory in the general case where the objective function f is not convex-concave, since

such a solution may not exist, or can be very hard to find. As a possible solution, Hsieh et al.

(2019) propose to relax problem (2.1) by introducing stochastic strategies, i.e., they consider

the following two players game:

min
µ∈P (Θ)

max
ν∈P (Ω)

Eθ∼µ
[
Eω∼ν

[
f (θ,ω)

]]
, (2.3)

where P (Z) denotes the space of probability distributions over Z . A pair
(
µ?,ν?

)
achieving

the min-max value in (2.3) is called a mixed Nash Equilibrium (mixed NE).

Although the problem becomes infinite dimensional, due to the optimization over the space

of probability measures, it also becomes bilinear thanks to the linearity of the expectation,

which guarantees the existence of a mixed Nash equilibrium. Moreover, by mimicking the

Entropic Mirror Descent algorithm for finite-dimensional bilinear games, Hsieh et al. (2019)

propose Algorithm 1 to find such a solution of (2.3). Denoting by F (Z) the space of functions

over Z , the operators G : P (Θ) →F (Ω) and its adjoint G† : P (Ω) →F (Θ) in Algorithm 1 are

8

2.1. Preliminaries

Algorithm 1 Infinite-dimensional Entropic MD

1: Input: Initial distributions µ1,ν1, learning rate η.
2: for t = 1,2, . . . ,T −1 do
3: µt+1 ← MDη(µt ,G†νt)
4: νt+1 ← MDη(νt ,−Gµt)

5: Return µ̄T = 1
T

∑T
t=1µt and ν̄T = 1

T

∑T
t=1νt .

Algorithm 2 Infinite-dimensional Entropic MD

1: Input: θ1,ω1 ← random initialization, step sizes {γt }T
t=1, thermal noises {εt }T

t=1, warm-up
steps {Kt }T−1

t=1 , damping factor β.
2: for t = 1,2, . . . ,T −1 do
3: θ̄t ,θ(1) ← θ1, ω̄t ,ω(1) ←ω

4: for k = 1,2, . . . ,Kt do
5: θk+1

t ← θk
t −γt∇θ f (θ(k)

t ,ωt)+√
2γtεtξ, where ξ∼N (0, I)

6: ωk+1
t ←ωk

t +γt∇ω f (θt ,ω(k)
t)+√

2γtεtξ
′, where ξ′ ∼N (0, I)

7: θ̄t ← (1−β)θ̄t +βθ(k+1)
t , ω̄t ← (1−β)ω̄t +βω(k+1)

t

8: θt+1 ← (1−β)θt +βθ̄t , ωt +1 ← (1−β)ωt +βω̄t

9: Return θT ,ωT .

defined as follows:

Gµ(ω) ≡ Eθ∼µ[f (θ,ω)]

G†ν(θ) ≡ Eω∼ν[f (θ,ω)]

The Mirror Descent operator MD can be defined as follows: Let µ be an arbitrary probability

distribution and h a regular enough function. Then, for η> 0, the distribution µ+ = MDη(µ,h)

is defined as

dµ+ = e−ηh dµ∫
e−ηh dµ

.

It is shown in (Hsieh et al., 2019) that, with a proper choice of learning rate η, Algorithm 1

achieves a O (T −1/2)-NE, i.e., maxµ,ν
[
Eθ∼µT

[
Eω∼ν

[
f (θ,ω)

]]−Eθ∼µ [
Eω∼νT

[
f (θ,ω)

]]]=O (T −1/2).

However, a significant issue with Algorithm 1 is that it is not implementable, since it requires

to iteratively sample from certain distributions. Hence, the authors propose an implementable

version by approximating each sampling step using Langevin dynamics, which will be the

topic of the next section. This gives rise to Algorithm 2 whose goal is to sample a pair θT ,ωT

approximately following the respective distributions µT ,νT as defined in Algorithm 1.

9

Chapter 2. Robustness to distribution shift using min-max optimization

2.2 Double-loop unadjusted Langevin algorithm

In order to understand the transition from Algorithm 1 to its implementable version (Algo-

rithm 2), we now introduce a sampling algorithm know as the Unadjusted Langevin Algorithm

(ULA). ULA is a first order sampling algorithm which can be seen as the sampling counter-part

of Gradient Descent in optimization. In this section, we analyse the convergence properties of

ULA in the case where the target distribution is (weakly) log-concave, and propose a specific

step size schedule that allows to obtain an improved convergence rate in certain regimes.

This section is adapted from the paper (Rolland et al., 2020) published at ICML 2020.

2.2.1 Introduction

Let dµ∗(x) ∝ e− f (x) dx be a probability measure overRd , where f :Rd →R is a convex function

with Lipschitz continuous gradient. In order to sample from such distributions, first-order

sampling schemes based on the discretization of Langevin dynamics and, in particular the

Unadjusted Langevin Algorithm (ULA), have found widespread success in various applica-

tions (Welling and Teh, 2011; Li et al., 2016b; Patterson and Teh, 2013; Li et al., 2016a). An

ever-growing body of literature has been devoted solely to the study of ULA and its varia-

tions (Ahn et al., 2012; Chen et al., 2015; Cheng and Bartlett, 2017; Cheng et al., 2017a; Dalalyan

and Karagulyan, 2017; Durmus et al., 2017, 2018a; Dwivedi et al., 2018; Luu et al., 2017; Welling

and Teh, 2011; Ma et al., 2015).

The ULA iterates are given as

xk+1 = xk −γk+1∇ f (xk)+√
2γk+1ξk , (2.4)

where ∇ f denotes the gradient of f , {γk }k≥0 is a non-increasing sequence of positive step-

sizes, and the entries of ξk ∈Rd are zero-mean and unit-variance Gaussian random variables,

independent from each another and everything else. In its standard form (2.4), ULA can

provably sample from any log-concave and smooth probability measure (Durmus et al., 2017,

2018a).

The recent analysis of Durmus et al. (2018a) studies ULA through the lens of convex optimiza-

tion. Their analysis shows strong resemblance with the convergence analysis of stochastic

gradient descent (SGD) algorithm for minimizing a convex continuously differentiable func-

tion f :Rd →R. Starting from x0 ∈Rd , SGD iterates similarly as (2.4):

xk+1 = xk −γk+1∇ f (xk)+γk+1Θ(xk),

where Θ : Rd → Rd is a stochastic perturbation to ∇ f . One way of proving convergence

guarantees for SGD is to show the following inequality (Beck and Teboulle, 2009):

2γk+1(E[f (xk+1)]− f (x∗)) ≤ E[‖xk −x∗‖2
2

]−E[‖xk+1 −x∗‖2
2

]+Cγ2
k+1, (2.5)

10

2.2. Double-loop unadjusted Langevin algorithm

for some constant C ≥ 0, ∀k ≥ 0 and x∗ ∈ argminx∈Rd f (x). From this inequality, and using step

size γk ∝ 1p
k

, it is then possible to show convergence, in expectation, of the average iterate

x̄T = 1
T

∑T−1
t=0 xt to the optimal value, i.e., E[f (x̄T)]− f (x∗) =O

(
1p
T

)
.

In their paper, Durmus et al. (2018a) showed a similar descent Lemma as (2.5) for the sequence

of generated measures {µk }k≥0 denoting the distributions of the iterates {xk }k≥0 in (2.4), in

which the objective gap E[f (xk)]− f (x∗) is replaced with the Kullback-Leibler divergence

KL(µk ;µ∗), and the Euclidean distance ‖xk −x∗‖2 is replaced with the 2-Wasserstein distance

W2(µk ,µ∗), i.e., they showed

2γk+1 KL(µk ;µ∗) ≤ W2
2(µk ,µ∗)−W2

2(µk+1,µ∗)+2Ldγ2
k+1, (2.6)

where L is the Lipschitz constant of the gradient of f . Then again, using γk ∝ 1p
k

, it is possible

to show convergence of the average sample distribution µ̄T = 1
T

∑T
t=0µt to µ∗ in KL divergence,

with rate O
(

d 3p
T

)
.

In this work, we build upon the work of Durmus et al. (2018a), and introduce a new multi-

stage decaying step size schedule, which proceeds in a double loop fashion by geometrically

decreasing the step-size after a certain number of iterations, and that we call Double-loop

ULA (DL-ULA). By properly choosing the step size decay and the number of iterations per step

size, we can prove new convergence guarantees, that improves the state-of-the-art in a certain

range of accuracy ε and dimension d , in TV distance and KL divergence.

To the best of our knowledge, all existing convergence proof for ULA use either constant, or

polynomially decaying step sizes, i.e. of the form γk = k−α for some α ≥ 0, and this is the

first work introducing a multistage decaying step size for a sampling algorithm. Interestingly,

there is precedence to support our approach in that such step decay schedule can improve

convergence of optimization algorithms (Ge et al., 2019; Aybat et al., 2019).

In our analysis, we prove and exploit a new bound that relates the W2 distance and the KL

divergence between any two log-concave distributions (Lemma 10). This inequality serves as

an alternative to the powerful T2 inequality (Gozlan and Léonard, 2010), the latter requiring

stronger assumptions on the distributions. The literature on Langevin dynamics commonly

proves the convergence of an algorithm in KL divergence and then extends it to the total

variation (TV) distance using the famous Pinsker’s inequality (Pinsker, 1960; Cheng and

Bartlett, 2017; Durmus et al., 2018a). Our new inequality enables to do the same for extending

convergence results to W2 distance in the case of general log-concave distributions.

Finally, we apply this multistage strategy to the constrained sampling algorithm MYULA

(Brosse et al., 2017), which allows us to obtain improved convergence guarantees, both in terms

of rate and dimension dependence. This approach provides state-of-the-art convergence

guarantees for sampling from a log-concave distribution over a general convex set.

We summarize our contributions as follows:

11

Chapter 2. Robustness to distribution shift using min-max optimization

• We introduce a variant of the Unadjusted Langevin Algorithm, using a new multistage

decaying step-size schedule as well as a normalization step. Our new approach, called

DL-ULA, yields new convergence guarantees, that are not covered by existing con-

vergence results (i.e., either better convergence rate or better dimension dependence

compared to state-of-the-art results).

• We apply our new step-size schedule to an existing Langevin-based constrained sam-

pling algorithm, called MYULA (Brosse et al., 2017), and improve its convergence both

in terms of iteration and dimension dependences.

• We introduce a new bound relating the 2-Wasserstein and the TV distance between any

two log-concave distributions.

A summary of our convergence rates can be found in Tables 2.1 and 2.2.

2.2.2 Related work

Unconstrained sampling. Sampling algorithms based on Langevin dynamics have been

widely studied (Ahn et al., 2012; Chen et al., 2015; Cheng and Bartlett, 2017; Cheng et al., 2017a;

Dalalyan and Karagulyan, 2017; Durmus et al., 2018a; Dwivedi et al., 2018; Durmus et al., 2017;

Luu et al., 2017; Welling and Teh, 2011). Most convergence rates have been established in the

strongly log-concave setting, or under log-Sobolev inequality (LSI). In this work, we focus on

the general log-concave setting, and we wish in particular to allow for distributions whose tail

decay as e−‖x‖2 for which LSI does not hold. Because of their fatter tails, the complexity for

sampling from such distributions in particular exhibits larger dimension dependences.

Convergence guarantees for ULA applied to a general unconstrained log-concave distribu-

tion have been successively improved over the years (see Table 2.1). Various works feature

different variants of ULA, such as averaging (Durmus et al., 2018a), strongly convex regulariza-

tion (Dalalyan et al., 2019), or underdamping (Zou et al., 2018). In this work, we also include a

small modification by involving a normalization step.

We are particularly careful in characterizing the dimension dependence in our convergence

guarantees. Various works include the Poincaré constant CPI inside their convergence guar-

antees (Chewi et al., 2021; Lehec, 2021). However, this constant can include dimension

dependence. For distribution with tail decaying as e−‖x‖2 , we have CPI =O (d), which should

be taken into consideration when reading Table 2.1.

Constrained sampling. Extensions of ULA have been designed in order to sample from

constrained distributions (Bubeck et al., 2018; Brosse et al., 2017; Hsieh et al., 2018; Patterson

and Teh, 2013). In (Bubeck et al., 2018), the authors propose to apply ULA, and project the

sample onto the constraint at each iteration. They show a convergence rate of O (d 12ε−12) in

TV distance for log-concave distributions.

12

2.2. Double-loop unadjusted Langevin algorithm

In (Brosse et al., 2017), the authors propose to smooth the constraint using its Moreau-Yoshida

envelope, and obtain a convergence rate of O (d 5ε−6) in TV distance when the objective

distribution is log-concave. To do so, they penalize the domain outside the constraint via its

Moreau-Yoshida envelop, and sample from the penalized unconstrained distribution using a

penalty parameter depending on the desired accuracy.

The analysis of MYULA in (Brosse et al., 2017) only holds when the penalty parameter is fixed

and chosen in advance, leading to a natural saturation after a certain number of iterations. In

this work, we extend this procedure using ourmulti-stage approach. This allows us to obtain

improved convergence both in terms of rate and dimension dependence, i.e., O (d 3.5ε−5) in TV

distance, and to ensure asymptotic convergence of the algorithm since the penalty is allowed

to vary along the iterations.

In a different paper (Hsieh et al., 2018), which is not presented in details here, we also solve

the special case of sampling from the simplex, i.e., {x ∈Rd :
∑d

i=1 xi ≤ 1, xi ≥ 0}, by introducing

Mirrored Langevin Dynamics (MLD). Our work relies on finding a mirror map for the given

constrained domain, and then performing ULA in the dual space. This method yields the best

known convergence rates for constrained sampling, matching the complexity of unconstrained

sampling. However, this method requires log-concavity of the distribution in the dual space,

which is not straightforward to ensure in general. Moreover, finding a suitable mirror map for

a general convex set is not an easy task.

2.2.3 Preliminaries

Various measures between distributions

Let us recall classical distances/divergences between probability measures which will be used

in this section. The Kullback–Leibler (KL) divergence between two probability measures µ,ν

on Rd is defined as

KL(µ;ν) = Eµ log(dµ/dν), (2.7)

assuming that µ is dominated by ν. Their Total Variation (TV) distance is defined as

‖µ−ν‖TV = sup
S⊆Rd

|µ(S)−ν(S)|, (2.8)

where the supremum is over all measurable subsets S of Rd .

Finally, the 2-Wasserstein distance (W2) between µ and ν is defined as

W2
2(µ,ν) = inf

γ∈Φ(µ,ν)

∫
Rd×Rd

‖x−y‖2
2dγ(x,y), (2.9)

whereΦ(µ,ν) denotes the set of all joint probability measures γ on R2d that marginalize to µ

13

Chapter 2. Robustness to distribution shift using min-max optimization

and ν, namely, such that for all measurable sets A,B ⊆Rd , γ(A×Rd) =µ(A) and γ(Rd ×B) =
ν(B).

The main difference between W2 and TV distances is that W2 associates a higher cost when

the difference between the distributions occurs at points that are further appart (in terms of

Euclidean distance). Due to this property, errors occurring at the tail of the distributions (i.e.,

when ‖x‖2 →∞) can have a small impact in terms of TV distance, but a major impact in terms

of W2 distance.

Log-concave distributions and tail properties

We now recall the basic properties that we will assume on the probability measure. We will

then present some known results about this class of measures which will be exploited in the

convergence analysis of our algorithm.

Definition 1. We say that a function f :Rd →R has L-Lipschitz continuous gradient for L ≥ 0 if

∀x,y ∈Rd ,

‖∇ f (x)−∇ f (y)‖2 ≤ L‖x−y‖2.

Definition 2. We say a function f :Rd →R is convex if ∀0 ≤ t ≤ 1 and ∀x,y ∈Rd ,

f (tx+ (1− t)y) ≤ t f (x)+ (1− t) f (y).

Definition 3. We say that probability measure µ ∝ e− f (x) dx is log-concave if f is convex.

Moreover, we say that µ is L-smooth if f has a L-Lipschitz continuous gradient.

As mentioned previously, bounding the Wasserstein distance between two probability mea-

sures requires controlling the error at the tail of the distributions. In order to deal with such a

distance without injecting large dimension dependence, we make the following assumption

on the tail of the target distribution, which is quite standard when working with unconstrained

non-strongly log-concave distributions (Durmus et al., 2018a, 2017):

Assumption 4. There exists η> 0, Mη > 0 such that for all x ∈Rd such that ‖x‖2 ≥ Mη,

f (x)− f (x?) ≥ η‖x−x?‖2,

where x? = argminx∈Rd f (x). For simplicity, we will also assume x? = 0 and f (x?) = 0.

Note that in the case of a distribution constrained to a setΩ⊂Rd , this assumption is naturally

satisfied with η arbitrary, and Mη = diam(Ω) where diam(Ω) is the diameter ofΩ.

In order to see how this assumption transfers into a constraint on the tail of the distribution,

we recall two following results shown in (Durmus et al., 2018a) and (Lovász and Vempala,

2007), respectively.

14

2.2. Double-loop unadjusted Langevin algorithm

Lemma 5 (Durmus et al. (2018a)). Let X ∈Rd be a random vector from a log-concave distribu-

tion µ satisfying Assumption 4. Then, it holds that

EX∼µ
[‖X ‖2

2

]≤ 2d(d +1)

η2 +M 2
η .

Lemma 6 (Lovász and Vempala (2007)). Let X ∈ Rd be a random vector from a log-concave

distribution µ such that E
[‖X ‖2

2

]≤C 2. Then, for any R > 1, we have that

Pr(‖X ‖2 > RC) < e−R+1. (2.10)

It is thus possible to combine both Lemmata to show that any distribution satisfying As-

sumption 4 necessarily has a sub-exponential tail. This property will allow us to control the

Wasserstein distance in terms of the Total Variation distance.

Lemma 7. Let X be a random vector from a log-concave distribution µ satisfying Assumption 4.

Then, ∀R > 1, we have that

Pr

(
‖X ‖2 > R

√
2d(d +1)

η2 +Mη

)
< e−R+1. (2.11)

Unadjusted Langevin Algorithm

Finally, we recall the standard Unadjusted Langevin Algorithm as well as a very useful in-

equality bounding the KL divergence between the target distribution and the k-th iterate

distribution.

Consider the probability space (Rd ,B,µ∗), where B is the Borel sigma algebra and µ∗ is the

target distribution. Suppose that µ∗ is log-concave and is dominated by the Lebesgue measure

on Rd , namely,

dµ∗(x) =Ce− f (x) dx, ∀x ∈ S, (2.12)

where C is an unknown normalizing constant and the function f :Rd →R is convex and has

L-Lipschitz continuous gradient.

A well-known scheme for sampling for such a distribution without calculating its normalizing

constant C is called ULA. Initialized at x0 ∈ Rd , the ULA constructs a random sequence of

iterates as defined in equation (2.4).

Let µk be the probability measure associated to iterate xk , ∀k ≥ 0. It is well-known that ULA

15

Chapter 2. Robustness to distribution shift using min-max optimization

converges to the target measure in KL divergence. More specifically, for n ≥ nε =O (d 3Lε−2)

iterations, we reach KL(µn ;µ∗) ≤ ε, where µn = 1
n

∑n
k=1µk is the average of the probability mea-

sures associated to the iterates {xk }n
k=0 (Durmus et al., 2018a). The averaging sum 1

n

∑n
k=1µk is

to be understood in the sense of measures, i.e., sampling from the µ̄n is equivalent to choosing

an index k uniformly at random among {1, ...,n}, and then sampling from µk .

To prove this result, the authors showed the following useful inequality that we will exploit in

our analysis:

Lemma 8 (Durmus et al. (2018a)). Suppose that we apply ULA (2.4) for sampling from a L-

smooth log-concave distribution µ∗ ∝ e− f (x) dx with constant step-size 0 < γ< 1
L , starting from

x0 ∼µ0. Then, ∀n > 0, it holds that

KL(µ̄n ;µ∗) ≤ W2
2(µ0,µ∗)

2γn
+Ldγ. (2.13)

2.2.4 DL-ULA for unconstrained sampling

In this section, we present a modified version of the standard ULA for sampling from an

unconstrained distribution and provide convergence guarantees. This modified version of

ULA involves a new step size schedule as well as a projection step.

DL-ULA algorithm

We consider the problem of sampling from a smooth and unconstrained probability measure

µ∗ ∝ e− f (x) dx, where f : Rd → R is differentiable and convex. To this end, we apply the

standard ULA in a double-loop fashion, and decrease the step size only between each inner

loop. Moreover, each inner loop is followed by a projection step onto some Euclidean ball.

The procedure is summarized in Algorithm 3.

The projection step appears to be crucial in our analysis in order to control the tail of the

sample distribution, which is necessary for bounding its Wasserstein distance to the target

distribution.

In the following sections, we derive the convergence rate for Algorithms 3. The global idea is to

use the inequality (2.13) recursively between each successive outer loop. We denote as µ̄k the

average distribution associated with the iterates of outer iteration k just before the projection

step. Similarly, we denote as µ̂k the same distribution after the projection step.

Each outer iteration k uses as a starting point a sample from the previous outer iteration

xk,0 ∼ µ̂k−1. Therefore, we can apply the inequality (2.13) to the outer iteration k to obtain

KL(µ̄k ;µ∗) ≤ W2
2(µ̂k−1,µ∗)

2γk nk
+Ldγk . (2.14)

16

2.2. Double-loop unadjusted Langevin algorithm

Algorithm 3 Double-loop Unadjusted Langevin Algorithm (DL-ULA)

1: Input: Smooth unconstrained probability measure µ∗, step sizes {γk }k≥0, number of
(inner) iterations {nk }k≥0, thresholds {τk }k≥1. and initial probability measure µ0 on Rd .

2: Initialization: Draw a sample x0 from the probability measure µ0.
3: for k = 0, . . . do
4: xk,0 ← xk

5: Draw Nk uniformly from {1, · · · ,nk }.
6: for n = 0, . . . , Nk −1 do
7: xk,n+1 ← xk,n −γk∇ f (xk,n)+√

2γkξk,n , where ξk,n ∼N (0, Id).

8: xk+1 ← xk,Nk .
9: if ‖xk+1‖2 > τk+1 then

10: xk+1 ← τk+1xk+1/‖xk+1‖2.

In order to unfold the recursion, we must have a bound on W2
2(µ̂k−1,µ∗) in terms of KL(µ̄k−1,µ∗).

Using the tail property of log-concave distributions (Lemma 7), it is easy to obtain a bound

between W2
2(µ̂k−1,µ∗) and W2

2(µ̄k−1,µ∗). However, it is not clear how to bound W2
2(µ̄k−1,µ∗)

by KL(µ̄k−1,µ∗).

As an intermediate step in the convergence analysis, we derive in the next section a bound

between the W2-distance and the TV-distance between two general log-concave probability

measures, which can then be extended to a W2-KL bound using Pinsker’s inequality.

Relation Between W2- and TV-Distances

The Total Variation distance can be seen as a Wasserstein distance, where the Euclidean

distance is replaced with an indicator function. Indeed, we can write (Gibbs and Su, 2002)

‖µ−ν‖TV = inf
γ∈Φ(µ,ν)

E(X ,Y)∼γ[1X 6=Y].

The challenge for bounding W2 with TV distance is that the former can associate arbitrary

large cost when the error occurs at the tail of the distribution, i.e., when ‖x‖ becomes very

large. For any distributions µ and ν compactly supported on an Euclidean ball of diameter D ,

the cost involved in W2 can be bounded, and we hence have W2(µ,ν) ≤ D
√‖µ−ν‖TV (Gibbs

and Su, 2002).

When µ and ν are not compactly supported, the transportation cost can be arbitrary large,

especially when transporting mass from/to the set B̄R = {x ∈Rd : ‖x‖2 ≥ R}. However, if both µ

and ν are log-concave, we can exploit their tail property (Lemma 7) to ensure that the mass

of B̄R under both distributions decreases exponentially with R, hence inducing the following

bound:

Lemma 9. Let µ,ν be distributions both satisfying the following inequality, for some c,C > 0

17

Chapter 2. Robustness to distribution shift using min-max optimization

and R ≥C :

Pr(‖X ‖2 ≥ t) ≤ ce−
t
C , ∀t ≥ R. (2.15)

Then, it holds that

W2
2(µ,ν).R2‖µ−ν‖TV +R2e−

R
C . (2.16)

Note that Lemma 9 does not require the distributions to be log-concave, but only to have sub-

exponential tails. This will be useful in our convergence proof, since the iterate distributions

of ULA (using finite step size) are in general not log-concave. Finally, since log-concave

distributions, under Assumption 4, satisfy equation (2.15) with C =
√

2d(d+1)
η2 +Mη (Lemma 7),

we can show the following bound between W2 and TV distances:

Lemma 10 (W2-TV distances inequality). Let µ,ν be log-concave probability measures on Rd

satisfying Assumption 4 with (η, Mη). Then, we have that

W2(µ,ν).

√
2d(d +1)

η2 +Mηmax

(
log

(
1

‖µ−ν‖TV

)
,1

)√‖µ−ν‖TV. (2.17)

In a sense, (2.17) is an alternative to the powerful T2 inequality which does not hold generally

in our setting (Gozlan and Léonard, 2010). Indeed, for Cµ > 0, recall that a probability measure

µ satisfies Talagrand’s T2(Cµ) transportation inequality if we have

W2(µ,ν) ≤Cµ

√
KL(µ;ν), (2.18)

for any probability measure ν. Above, Cµ depends only onµ and, in particular, ifµ is κ-strongly

log-concave,1 then (2.18) holds with Cµ =O (1/
p
κ) (Gozlan and Léonard, 2010). In this work,

the target measure that we consider is not necessarily strongly log-concave measures, leaving

us in need for a replacement to (2.18).

In the case where the difference between the mean of the two distributions can be controlled,

using Pinsker’s inequality (Pinsker, 1960) on (2.17) yields

W2(µ,ν) = Õ (KL(µ;ν)
1
4), (2.19)

which can serve as a replacement for (2.18). Equation (2.17) is of interest in its own right,

especially when working with non-strongly log-concave measures.

Convergence Analysis of DL-ULA

Now that we have covered the necessary technical tools above, we turn our attention to the

convergence analysis of Algorithm 3, summarized in Theorem 11. We provide here the main

lines of the analysis, and postpone the detailed proof to Appendix A.1.3.

1If dµ∝ e− f dx, then we say that µ is κ is strongly log-concave if f is κ-strongly convex.

18

2.2. Double-loop unadjusted Langevin algorithm

Literature W2 TV KL

Durmus et al. (2018a) - Õ
(
Ld 3ε−4

)
Õ

(
Ld 3ε−2

)
Durmus et al. (2017) - Õ

(
L2d 5ε−2

)
-

Zou et al. (2018) Õ
(
L2d 10.5ε−6

)∗
- -

Dalalyan et al. (2019) Õ
(
Ld 9ε−6

)\
- -

Chewi et al. (2021) - Õ (L2d 2C 2
PI ε

−2)? Õ (L2d 2C 2
PI ε

−1)?

Lehec (2021) Õ
(
L2

f d 4C 3
PI ε

−4
)#

- -

Our work Õ
(
Ld 9ε−6

)
Õ

(
Ld 3ε−3

)
Õ

(
Ld 3ε−

3
2

)
Table 2.1 – Complexity of sampling from a smooth and log-concave probability distribution
when using different variants of ULA. For each metric, the entry corresponds to the total
number of iterations to use in order to reach an ε accuracy in the specified metric.
∗ Zou et al. (2018) make the assumption that EX∼µ

[‖X ‖4
2

]≤ Ū d 2 for some scalar Ū . For com-
parison purpose, we extended the proof in Zou et al. (2018) in the case where the distribution
satisfies the weaker Assumption 4.
\ Dalalyan et al. (2019) analyse a variant of ULA, called α-LMC, which runs ULA on the regu-
larized distribution dµ∗

α(x) ∝ e− f (x)−α‖x‖2
for small enough α so as to leverage convergence

results on strongly log-concave distributions.
? CPI denotes the Poincaré constant of the target distribution (Bobkov, 1999; Bakry et al., 2008).
This constant can be dimension dependent, especially for weakly log-concave distribution.
Under Assumption 4, we have the bound CPI =O (d).
In (Lehec, 2021), the function f is assumed to be L f -Lipschitz continuous instead of gradient
Lipschitz.

Recall that µ̄k denotes the iterate distribution after k outer steps of Algorithm 3 just before the

projection step, i.e., the distribution of xk in line 8, and µ̂k denotes the same distribution after

the projection, which is used as initialisation for the next outer iteration. Hence, after running

nk iterations of ULA (equation 2.4) starting with a sample from µ̂k−1, we obtain a sample from

µ̄k .

Hence, starting from equality (2.14) and using Pinsker inequality, we have for all k ≥ 1

‖µ̄k+1 −µ∗‖TV ≤√
2KL(µ̄k+1;µ∗)

≤
√

W 2
2 (µ̂k ,µ∗)

γk nk
+2Ldγk

≤ W2(µ̂k ,µ∗)p
γk nk

+
√

2Ldγk . (2.20)

To obtain a recursion formula, we hence need to bound W2(µ̂k ,µ∗) by ‖µ̄k −µ∗‖TV. To this

end, we first bound W2(µ̂k ,µ∗) using ‖µ̂k −µ∗‖TV as allowed by Lemma 9.

Thanks to the log-concavity of µ∗, Lemma 7 implies that µ∗ satisfies the condition (2.15)

with C = Cη ≡
√

2d(d+1)
η2 +Mη. Moreover, the projected distribution µ̂k naturally satisfies

19

Chapter 2. Robustness to distribution shift using min-max optimization

condition (2.15) as long as R ≥ τk since PrX∼µ̂k (‖X ‖2 > τk) = 0. Hence, by applying Lemma 7

with C =Cη and R = τk , and choosing τk ≡Cηk, we obtain

W2
2(µ̂k ,µ∗).C 2

ηk2‖µ̂k −µ∗‖TV +C 2
ηk2e−k . (2.21)

We now need to bound ‖µ̂k −µ∗‖TV with ‖µ̄k −µ∗‖TV. Using the triangle inequality, and

recalling that µ̂k is the projected version of µ̄k onto a ball of radius τk =Cηk, we have

‖µ̂k −µ∗‖TV ≤ ‖µ̂k − µ̄k‖TV +‖µ̄k −µ∗‖TV

≤ Pr
X∼µ̄k

(‖X ‖2 >Cηk)+‖µ̄k −µ∗‖TV.

Then, using the fact that ‖µ̄k −µ∗‖TV ≥ |PrX∼µ̄k (‖X ‖2 > Cηk) − PrX∼µ∗(‖X ‖2 > Cηk)| and

PrX∼µ∗(‖X ‖2 >Cηk). e−k , we obtain

‖µ̂k −µ∗‖TV . 2‖µ̄k −µ∗‖TV +e−k . (2.22)

Hence, putting equations (2.20), (2.21) and (2.23) together, we obtain

‖µ̄k+1 −µ∗‖TV .
kCη

√‖µ̄k −µ∗‖TV +kCηe−k/2

p
γk nk

+
√

2Ldγk . (2.23)

It is then a matter of properly choosing the sequences {γk }k≥0 and {nk }k≥0 in order to obtain

the best possible rate. Let us choose γk = 1
Ld e−2k and nk = LdC 2

ηk2e3k . Plugging these values

in (2.23), we have that

‖µ̄k+1 −µ∗‖TV . e−k/2
√‖µ̄k −µ∗‖TV +e−k . (2.24)

It is easy to show that, from this recursive inequality, it follows ‖µ̄k −µ∗‖TV . e−k ∀k ≥ 1

(Lemma 48). Hence, for ε> 0, running Algorithm 3 for K = log(1/ε) outer iteration ensures

that ‖µ̄K −µ∗‖TV ≤ ε. This corresponds to a total number of ULA iterations of

N =
K∑

k=1
nk =

K∑
k=1

LdC 2
ηk2e3k ∝ LdC 2

ηK 2e3K = LdC 2
η log2(1/ε)ε−3. (2.25)

Since C = O (d), we hence obtain an iteration complexity in TV distance of Õ (Ld 3ε−3). The

corresponding convergence rates in KL divergence and W2 distance can be similarly derived,

and are summarized in the following Theorem:

20

2.2. Double-loop unadjusted Langevin algorithm

Theorem 11 (Iteration complexity of DL-ULA). Let µ∗ be a L-smooth log-concave distribution

satisfying Assumption 4 with parameters η, Mη. For every k ≥ 0, let

nk = LdC 2
ηk2e3k , (2.26)

γk = 1

Ld
e−2k , (2.27)

τk =Cηk. (2.28)

Let µ̄k be the average distribution associated with the iterates of outer iteration k of DL-ULA

(Algorithm 3) using the parameters above, just before the projection step. Then, ∀ε > 0, the

following hold:

• After N KL = Õ (Ld 3ε−
3
2) total iterations, we obtain KL(µ̄k ;µ∗) ≤ ε.

• After N TV = Õ (Ld 3ε−3) total iterations, we obtain ‖µ̄k −µ∗‖TV ≤ ε.

• After N W2 = Õ (Ld 9ε−6) total iterations, we obtain W2(µ̄k ,µ∗) ≤ ε log(1/ε).

A few remarks about Theorem 11 are in order.

Geometric sequences. Theorem 11 prescribes a geometric sequence for the choice of {γk }k≥0

and {nk }k≥0. As the outer iteration counter k increases, more and more ULA (inner) iterations

are performed with the constant step-size γk . Asymptotically, we observe that the step size

decreases at a rate n− 2
3 where n is the total number of ULA iterations. This decaying rate is

faster than the more classical decaying rate of n− 1
2 for ULA (Durmus et al., 2018a).

In contrast to convex optimization where a global optimum can provably be reached with

constant step-size, running ULA with constant step size γ yields a stationary distribution

µγ 6=µ∗, which converges to µ∗ only when γ→ 0. There is hence an intrinsic limitation to the

sampling accuracy controlled by the magnitude of the step size. It is thus intuitively desirable

to use a fast decaying step size.

Projection step. Even when assuming that the initial and target distributions are both log-

concave, and thus have a sub-exponential tail, the sample distributions µ̄k are generally not

log-concave, and it is not clear how to characterize their sub-exponential tail properties. This

question is related to bounding the Poincaré constant of the ULA distribution iterates in the

log-concave setting (Gromov and Milman, 1983; Gozlan, 2010), which is, to the best of our

knowledge, still an open problem. Instead, we rely on the projection step at the end of each

outer iteration as a way to enforce the tail property (2.15). Note that, since limk→∞τk =∞, the

projection step is applied less and less often.

21

Chapter 2. Robustness to distribution shift using min-max optimization

Convergence rate comparison. Table 2.1 summarizes various convergence rates of Langevin

dynamics based methods applied to general log-concave distributions. Compared to Durmus

et al. (2017), the convergence rate in TV distance is worse in terms of accuracy ε but enjoys

much better dimension dependence, and is also better in terms of Lipschitz constant depen-

dence. Dalalyan et al. (2019) showed the same convergence guarantees in W2 distance. The

convergence bounds derived by Chewi et al. (2021) also outperforms ours in terms of accuracy

ε. However, due to possible dimension dependence of the Poincaré constant, their guarantees

can be worse in terms of dimension, and in terms of Lipschitz constant L. Finally, by assuming

Lipschitz continuity of the potential f instead of its gradient, Lehec (2021) obtained the best

known convergence guarantees in W2 distance in term of accuracy.

2.2.5 DL-MYULA for constrained sampling

We now apply the same multistage idea to an existing constrained sampling algorithm, and

show that it allows both to obtain an asymptotic convergence and improved convergence

guarantees.

DL-MYULA algorithm

Consider sampling from a log-concave distribution over a convex setΩ⊂Rd , i.e.,

µ∗(x) =
e− f (x)/

∫
Ω e− f (x ′)d x ′ x ∈Ω

0 x ∉Ω.
(2.29)

In Durmus et al. (2018b); Brosse et al. (2017), the authors propose to reduce this problem

to an unconstrained sampling problem by penalizing the domain outside Ω directly inside

the probability measure using its Moreau-Yoshida envelop. More precisely, they propose

to sample from the following unconstrained probability measure dµλ(x) ∝ e− fλ(x) dx where

fλ :Rd →R is defined as:

fλ(x) = f (x)+ 1

2λ
‖x−projΩ(x)‖2

2, ∀x ∈Rd , (2.30)

where projΩ : Rd → Ω is the standard projection operator onto Ω defined as projΩ(x) =
argminy∈Ω ‖x−y‖2. Note that this penalty is easily differentiable as soon as the projection

ontoΩ can be computed since ∇ fλ(x) =∇ f (x)+ 1
λ (x−projΩ(x)).

By bounding the TV distance between µλ and µ∗, they showed that, by sampling from µλ with

λ small enough, it is possible to sample from µ∗ with arbitrary precision. This algorithm is

called Moreau-Yoshida ULA (MYULA).

Building on this approach, we apply our double loop algorithm, by modifying both the step

22

2.2. Double-loop unadjusted Langevin algorithm

Algorithm 4 DL-MYULA

1: Input: Smooth constrained probability measure µ∗, step sizes {γk }k≥0, penalty parameters
{λk }k≥1, number of (inner) iterations {nk }k≥0, thresholds {τk }k≥1 and initial probability
measure µ0 on Rd .

2: Initialization: Draw a sample x0 from the probability measure µ0.
3: for k = 0, . . . do
4: xk,0 ← xk

5: Draw Nk uniformly from {1, · · · ,nk }.
6: for n = 0, . . . , Nk −1 do
7: xk,n+1 ← xk,n −γk (∇ f (xk,n)+ 1

λk+1
(xk,n −projΩ(xk,n)))+√

2γkξk,n , ξk,n ∼N (0, Id).

8: xk+1 ← xk,Nk .
9: if ‖xk+1‖2 > τk+1 then

10: xk+1 ← τk+1xk+1/‖xk+1‖2.

size as well as the penalty parameter λ between each inner loop (Algorithm 4).

In addition to providing improved rate, as we will show later, our algorithm also has the

advantage to use a decreasing penalty parameter λ so as to guarantee asymptotic convergence

of the algorithm to the target distribution. On the other hand, MYULA uses constant penalty

λ, and thus saturates after a certain number of iterations. Although this looks like a trivial

extension, using a varying penalty parameter makes the analysis more challenging since the

target distribution of the algorithm is changing.

Convergence analysis of DL-MYULA

We now analyze the convergence of DL-MYULA. In Algorithm 4, both the step-size γ and the

penalty parameter λ are decreased after each outer iteration. Therefore, at each outer iteration

k, we aim to sample from the unconstrained penalized distribution dµλk (x) ∝ e− fλk
(x) dx

where fλk is defined in equation (2.30).

Similarly as for DL-ULA, we use Lemma 2.13 after each outer iteration, where the target

distribution µ∗ is replaced by µλk . Due to the strongly convex regularizer, the smoothness

constant Lk of µλk increases as Lk = L+ 1
λk

. We hence have the following:

KL(µ̄k+1;µλk+1) ≤ W2
2(µ̂k ,µλk+1)

2γk nk
+Lk+1dγk ,

where again, µ̄k denotes the average iterate distribution of outer iteration k just before the

projection step, and µ̂k is the one just after the projection step.

In order to use a similar recursion argument as previously, we need to bound W2(µ̂k ,µλk+1) by

23

Chapter 2. Robustness to distribution shift using min-max optimization

W2(µ̂k ,µλk). Using the triangle inequality for W2, we have

W2(µ̂k ,µλk+1) ≤W2(µ̂k ,µλk)+W2(µλk ,µ∗)+W2(µλk+1 ,µ∗).

Brosse et al. (2017) showed a bound for ‖µλ−µ∗‖TV in terms of λ> 0, and it is easy to extend

their proof to obtain a bound for W2(µλ,µ∗) (Lemma A.1.4).

In order to prove our result, we make the same assumptions on the constraint set Ω as in

(Brosse et al., 2017):

Assumption 12. There exist r,R,∆1 > 0 such that

1. B(0,r) ⊂Ω⊂ B(0,D) where B(0,r0) = {y ∈Rd : ‖x−y‖2 ≤ r0} ∀r0 > 0,

2. e infΩc (f)−maxΩ(f) ≥∆1, whereΩc =Rd \Ω.

Lemma 13. LetΩ⊂Rd satisfy Assumption 12. Then, ∀λ< r 2

8d 2 , it holds that

W2
2(µλ,µ∗) ≤C 2

Ωd
p
λ (2.31)

for some scalar CΩ > 0 depending on D,r and ∆1.

Using these results, the convergence proof is then very similar as for DL-ULA, and is summa-

rized in Theorem 14.

Theorem 14 (Iteration complexity of DL-MYULA). Let Ω ⊂ Rd be a convex set satisfying As-

sumption 12 and µ∗ be a log-concave distribution given by (2.29) where f has a L-Lipschitz

continuous gradient. For every k ≥ 0, let

λk = 1
8d 2

r 2 +de2k
, (2.32)

nk = Ldk2e5k , (2.33)

γk = 1

Ld
e−4k , (2.34)

τk = Dk, (2.35)

Let µ̄k be the average distribution associated with the iterates of outer iteration k of DL-MYULA

(Algorithm 4) using the parameters above, just before the projection step. Then, ∀ε > 0, the

following hold:

• After N TV =O
(
d 3.5ε−5

)
total iterations, we obtain ‖µ̄K −µ∗‖TV ≤ ε.

24

2.3. Robust Reinforcement Learning via adversarial training with Langevin dynamics

Algorithm TV Literature

PLMC d 12Õ
(
ε−12

)
Bubeck et al. (2018)

MYULA d 5Õ
(
ε−6

)
Brosse et al. (2017)

DL-MYULA d 3.5Õ
(
ε−5

)
Rolland et al. (2020)

Table 2.2 – Upper bounds on the number of iterations required in order to guarantee an error
smaller than ε in TV distance for various constrained sampling algorithms for log-concave
distributions.

• After N W2 = Õ
(
d 3.5ε−10

)
total iterations, we obtain W2(µ̄K ,µ∗). ε.

Smoothness of µλk .One can notice that the number of iterations in the inner loops of DL-

MYULA increases faster than in DL-ULA. In order to explain this choice, first observe that the

smoothness constant associated with the penalized distribution µλ grows as O
(1
λ

)
as λ goes

to 0. As k increases and λk decreases, µλk becomes less and less smooth. Since sampling from

less smooth distributions requires to use a smaller step size and more iterations, this explains

the fact that γk must decrease even faster than for DL-ULA.

We note that the choice for λk ensures that λk < r 2

8d 2 as required for Lemma A.1.4 to be

applicable.

Convergence rate comparison. Table 2.2 summarizes convergence rates in TV distance for

various first-order constrained sampling algorithms. We can see that DL-MYULA outperforms

existing approaches, both in terms of rate and dimension dependence. Note that, similarly as

in (Bubeck et al., 2018) and (Brosse et al., 2017), we omitted the dependence on the volume

and the diameter of the constraint set, which are thus assumed to be dimension independent,

in order to make a fair comparison.

2.3 Robust Reinforcement Learning via adversarial training with

Langevin dynamics

Now that we have gained more insight about the sampling algorithms involved in the Infinite-

dimensional Entropic Mirror Descent (Algorithm 2), we demonstrate one particular applica-

tion of this method, related to the training of robust models via Reinforcement Learning.

2.3.1 Introduction

Reinforcement learning aims to train an agent evolving in a given environment so as to

maximize a certain reward function. To this end, we can simulate any agent evolving in this

environment, and observe the obtained reward, enabling us to improve the agent’s policy. By

properly parameterizing the agent’s strategy, or policy, it becomes possible, by evaluating the

25

Chapter 2. Robustness to distribution shift using min-max optimization

agent’s performance in the environment, to compute the gradient of the expected reward with

respect to the policy parameters. This is known as the Policy Gradient method. Hence, RL can

be seen as a continuous optimization problem with access to first-order information.

Despite the success of deep RL in many automation tasks with beyond-human performance

(Mnih et al., 2015; Silver et al., 2017; Lillicrap et al., 2015; Levine et al., 2016), trained RL

agent are usually brittle when it comes to testing on environments differing from the training

environment, seriously questioning their applicability in real-life applications involving safety

and security issues.

A powerful framework to learning robust policies is to interpret the changing of the environ-

ment as an adversarial perturbation. This notion naturally lends itself to a two-player max-min

problem involving a pair of agents, a protagonist and an adversary, where the protagonist

learns to fulfill the original task goals while being robust to the disruptions generated by its

adversary. Two prominent examples along this research vein, differing in how they model the

adversary, are the Robust Adversarial Reinforcement Learning (RARL) (Pinto et al., 2017) and

Noisy Robust Markov Decision Process (NR-MDP) (Tessler et al., 2019).

Despite the impressive empirical progress, the training of the robust RL objectives remains

an open and critical challenge. In particular, Tessler et al. (2019) prove that it is in fact strictly

suboptimal to directly apply (deterministic) policy gradient steps to their NR-MDP max-min

objectives. Owing to the lack of a better algorithm, the policy gradient is nonetheless still

employed in their experiments; similar comments also apply to (Pinto et al., 2017).

In this work, we aim to solve the resulting min-max problem using Entropic Mirror Descent

(Algorithm 2), exploiting existing policy gradient methods for RL, namely DDPG.

2.3.2 Preliminaries: Markov decision problems and deterministic policy gradi-
ent

Classical RL deals with the training of a single agent evolving in an environment. This envi-

ronment is characterised by a Markov Decision Process (MDP) M = {S ,A ,T,γ,R,P0}, where

S ,A are the sets of states and actions respectively, T : S ×A ×S → [0,1] is the state transition

probability, i.e., T (s′|s, a) denotes the probability of landing in state s′ by taking action a in

state s. R : S ×A →R denotes the reward function, γ the discount factor and P0 is the initial

state distribution. At each time step t , the agent observes the current state st ∈S and takes an

action at =µ(st) ∈A where µ is the agent’s policy. The agent gets a reward rt = R(st , at) and

transitions to a new state st+1 sampled according to the transition probability T . The goal is to

maximize the cumulative sum of discounted rewards over the agent’s policy

max
µ

J (µ) ≡ E
[∞∑

t=1
γt−1rt

∣∣∣∣M]
(2.36)

26

2.3. Robust Reinforcement Learning via adversarial training with Langevin dynamics

Problem (2.36) looks difficult, since the way the objective function depends on the policy µ

is quite intricate, and it is not clear intuitively how to make progress in order to improve the

policy. Luckily, if we parametrize the policy µθ in a differentiable way, then the gradient of the

function J (θ) ≡ J (µθ) is given by

∇θ J (θ) = Est∼ρµθ
[∇aQµθ (s, a)|s=st ,a=µ(st)∇θµθ(st)

]
, (2.37)

where Qµ(st , at) ≡ Eri−1,si ,ai=µ(si),i>t [
∑∞

i=t γ
i−t ri] is the so-called Q-function, and ρµ denotes

the (discounted) state-visitation distribution under policy µ. Hence, by simulating an agent

with policy µθ, we can both learn the function Qµθ , and obtain samples st from ρµθ . We

can thus compute MCMC estimates of ∇θ J(θ) thanks to (2.37). Problem (2.36) can thus be

approximately solved using some form of stochastic gradient descent. This approach is called

Deterministic Policy Gradient.

Since the stochastic gradient estimates are very noisy, and can be biased depending on the Q

function parametrization, various techniques have been developed to stabilise the training.

However, we will not enter into too much details here. The algorithm we will use is called Deep

Deterministic Policy Gradient (Lillicrap et al., 2015). The Q functions and policy µθ in DDPG

are both parametrized using neural networks. Moreover, two pairs of Q function and policy are

trained simultaneously, one representing the actual trained models, and the other one being a

time-delayed version of the first pair, used when computing the stochastic gradients (2.37),

and is introduced in order to stabilize the training.

2.3.3 Robust training with two players Markov games

By maximizing the function J , we want to make sure that the policy performs well within the

environment described by the MDP M . However, robust policy training requires that the

agent also performs well in the case where the environment undergoes some small changes.

To this end, we introduce a second adversarial agent, whose goal is to perturbe the original

agent during training.

More concretely, consider a two-player zero-sum Markov game (Littman, 1994; Perolat et al.,

2015), where at each step of the game, both players simultaneously choose an action. The

reward each player gets after one step depends on the state and the joint action of both players.

Furthermore, the transition dynamics of the game is controlled jointly by both players.

This game can be described by a 2-players MDP M2 =
(
S ,A ,A ′,T2,γ,R2,P0

)
, where A and

A ′ are the continuous set of actions the players can take, T2 : S ×A ×A ′×S → R is the

state transition probability, and R2 : S ×A ×A ′ →R is the reward for both players. Consider

an agent executing a policy µ : S → A , and an adversary executing a policy ν : S → A ′ in

the environment M . At each time step t , both players observe the state st and take actions

at = µ (st) and a′
t = ν (st). In the zero-sum game, the agent gets a reward rt = R2

(
st , at , a′

t

)
while the adversary gets a negative reward −rt .

27

Chapter 2. Robustness to distribution shift using min-max optimization

This two-player zero-sum Markov game formulation has been used to model the following

robust RL settings:

• Robust Adversarial Reinforcement Learning (RARL) (Pinto et al., 2017), where the power

of the adversary is limited by its action space A ′.

• Noisy Robust Markov Decision Process (NR-MDP) (Tessler et al., 2019), where A ′ =A ,

T2
(
st+1 | st , at , a′

t

)= T1 (st+1 | st , āt), and R2
(
st , at , a′

t

)= R1 (st , āt), with āt = (1−δ)at +
δa′

t , for a chosen δ ∈ (0,1), which limits the adversary.

In our adversarial game, we consider the following performance objective:

J
(
µ,ν

) = E

[∞∑
t=1

γt−1rt

∣∣∣∣ µ,ν,M2

]
,

where
∑∞

t=1γ
t−1rt is the random cumulative return. In particular, we consider the param-

eterized policies
{
µθ : θ ∈Θ}

, and {νω :ω ∈Ω}. By an abuse of notation, we denote J (θ,ω) =
J
(
µθ,νω

)
. We consider the following objective:

max
θ∈Θ

min
ω∈Ω

J (θ,ω) . (2.38)

Note that J is neither convex in θ nor concave in ω. Instead of solving (2.38) directly, we

focus on the mixed strategy formulation of (2.38). In other words, we consider the set of all

probability distributions overΘ andΩ, and we search for the optimal distribution that solves

the following program:

max
p∈P (Θ)

min
q∈P (Ω)

f
(
p, q

)
:= Eθ∼p

[
Eω∼q [J (θ,ω)]

]
. (2.39)

Similarly as in the single player case, it possible to compute estimates of∇θ J ,∇ω J by simulating

the agents in the environment and evaluating the obtained rewards, as shown in (Tessler et al.,

2019, Proposition 5). Hence, we can use the techniques from Section 2.1.2 to solve the above

problem. By adapting DDPG (Lillicrap et al., 2015) to this mixed strategy 2-players game, we

obtain Algorithm 14. Note that, while two policy networks are trained, one for each player, we

only train a single network for learning the Q function of the joint policy.

2.3.4 Experiments

In this section, we demonstrate the effectiveness of using the MixedNE-LD framework to

solve the robust RL problem. We consider NR-MDP setting with δ= 0.1 (as recommended in

Section 6.3 of (Tessler et al., 2019)). We compare the solution given by solving the mixed formu-

lation (2.39) using MixedNE-LD (Algorithm 14) and the one given by solving the pure strategy

formulation (2.38) using classical min-max algorithm, namely Gradient-Ascent-Descent (GAD)

28

2.4. Bibliographic notes

as proposed in (Tessler et al., 2019) and Extra-Gradient (EG) Gidel et al. (2018). These two

latter methods are summarized in Algorithm 15.

The comparison is performed on classical RL tasks available on OpenAI Gym Brockman

et al. (2016) utilizing the MuJoCo environment Todorov et al. (2012). We consider 8 differ-

ent tasks, namely Walker, Hopper, Half-Cheetah, Ant, Swimmer, Reacher, Humanoid, and

InvertedPendulum (see Brockman et al. (2016) for more details about these environments).

All parameterized functions, i.e., the agent’s and adversary’s policies as well as the Q function

are represented using two-hidden layers feed-forward neural networks with 64 neurons per

layer and tanh activation function. The algorithms’ hyperparameters are described in Table A.1.

For exploration-related hyperparameters, the table specifies a set of values, meaning that

the corresponding hyperparameter has been optimized using grid search over this set for

each algorithm-environment pair, and are given in Table A.2. Each algorithm is trained on

0.5M samples, i.e., 0.5M time steps in the environment. For each environment, we run each

algorithm with 5 different seeds. The exploration noise is turned off for evaluation.

In order to test the robustness of the learnt policies, we evaluate the obtained cumulative re-

ward in modified environments, by changing the mass of the agent and the friction parameter

(which are common parameters in all environments) but without the adversarial perturbation

that was present during training (Figures 2.1 and 2.2). We observe that the policies learnt using

MixedNE-LD (Algorithm 14) outperform the one trained using the baselines (Algorithm 15).

We emphasize in particular the superior performance for InvertedPendulum, which was a

failure case in (Tessler et al., 2019).

For further experimental evaluations and more detailed ablation study of the algorithms,

please refer to the original paper Kamalaruban et al. (2020).

2.4 Bibliographic notes

The RL experiments in the last section have been performed by Yu-Ting Huang.

29

Chapter 2. Robustness to distribution shift using min-max optimization

Figure 2.1 – Average performance (over 5 seeds) of Algorithm 14, and Algorithm 15 (with
GAD and Extra-Adam), under the NR-MDP setting with δ= 0.1. The evaluation is performed
without adversarial perturbations, on a range of mass values not encountered during training.

30

2.4. Bibliographic notes

Figure 2.2 – Average performance (over 5 seeds) of Algorithm 14, and Algorithm 15 (with GAD
and Extra-Adam), under the NR-MDP setting withδ= 0.1. The evaluation is performed without
adversarial perturbations, on a range of friction values not encountered during training.

31

3 Robustness to adversarial perturba-
tion using regularization

In the previous chapter, we saw how to train a robust model by involving an adversary per-

turbing the model during the training phase. However, nonconvex-nonconcave minimax

optimization is a challenging problem and convergence properties of practical algorithms for

solving such a task are not fully understood. Moreover, it is not exactly clear what model is

trained using this method, i.e., what are the specific properties of the model that we favour

when including a perturbing adversary.

In this chapter, we propose to train a single model while penalizing a certain quantity during

training that is meant to improve its robustness. Most of the models that are used in practice

are over-parameterized, meaning that we optimize much more parameters than necessary in

order to solve the task. This implies that many different models can perfectly fit the training

data, i.e., achieve a training loss of 0. However, not all of these models may have the same

robustness properties.

In order to further specify what model we want to train among all the ones achieving low

training loss, one method is to add another term in the objective, in addition to the training

loss. This method is called regularization. We will argue that using the Lipschitz constant

of the model as regularizer seems reasonable, since it is closely related to the adversarial

robustness of the model.

In the first part of this chapter, we propose an algorithm for estimating the Lipschitz constant

of neural networks, allowing one to certify the robustness of a given network. Then, as a proxy

to the Lipschitz constant, we propose to penalize the 1-path norm of the network, and develop

a proximal gradient algorithm for solving the associated regularized problem.

3.1 Lipschitz constant estimation of neural networks via sparse poly-

nomial optimization

This section is based on the paper (Latorre et al., 2020a) published at ICLR 2020.

33

Chapter 3. Robustness to adversarial perturbation using regularization

3.1.1 Introduction

Let f :Rn →R be an arbitrary function. We say that f is Lipschitz continuous if there exists a

constant L f > 0 such that for all x, y ∈Rn , we have

| f (x)− f (y)| ≤ L f ‖x − y‖, (3.1)

where ‖ · ‖ is a norm in Rn to be specified. The minimum over all such values satisfying this

inequality condition is called the Lipschitz constant of f , and is denoted by L(f).

The Lipschitz constant of a function is linked to various of its properties. In particular, we see

from equation (3.1) that L(f) quantifies the deviation in the output given a certain perturbation

in the input. Indeed, suppose that we evaluate f at two close points x, y such that ‖x − y‖ ≤ ε.

Then, the Lipschitz continuity implies that | f (x)− f (y)| ≤ Lε. Hence, the smaller the Lipschitz

constant, the less the function changes given any input perturbation. This is of particular

interest in the scope of adversarial robustness, where we wish to train a model that is not too

much perturbed given a small perturbation of the input. An upper bound on the Lipschitz

constant hence provides a robustness certificate of a model against adversarial perturbation

at any given point.

In this work, we focus on estimating the Lipschitz constant of a scalar-valued neural network

fd with depth d defined by recursion as

f1(x) :=W1x fi (x) :=Wi σ(fi−1(x)), i = 2, . . . ,d (3.2)

where the weight matrices Wi ∈Rni×ni+1 (i.e., n0,nd+1 denote the input and output dimensions

respectively), and σ denotes the activation function applied element-wise. In this work, for

simplicity, we only treat the case of single output networks, i.e., with nd+1 = 1. However,

bounds for the multi-output case can be obtained in a similar manner.

While trivial upper bounds can easily be obtained, i.e., be computing the product of the

layer-wise Lipschitz constants, these are often overly pessimistic. There is hence a growing

need for methods that provide tighter upper bounds on L(fd), even at the cost of increased

computational expenses. For example Raghunathan et al. (2018a); Jin and Lavaei (2018);

Fazlyab et al. (2019) derive upper bounds based on semidefinite programming (SDP). While

expensive to compute, these type of certificates are in practice surprisingly tight.

In this section, we present a general approach, called LiPopt, for upper bounding the Lips-

chitz constant of a given neural network via polynomial optimization. We start by showing

that the problem of computing the Lipschitz constant can be phrased as an optimization

problem, which can itself be relaxed as a polynomial optimization problem (POP) (Lasserre,

2015). Hence, solving the relaxed POP provides an upper bound on the Lipschitz constant.

Moreoever, while the initial problem related to exactly estimating the Lipschitz constant is

NP-hard (Virmaux and Scaman, 2018), the relaxed problem (which remains NP-hard to solve

34

3.1. Lipschitz constant estimation of neural networks via sparse polynomial optimization

exactly) can be efficiently approximated by exploiting existing methods from polynomial

optimization.

We extend this approach to the case where the neural network is sparse, hence improving

the computational complexity of our method. While our approach covers both `2− and `∞−
Lipschitz constant estimations, we solely focus on the `∞− Lipschitz constant, for which we

experiment on networks with random weights as well as networks trained on MNIST (Lecun

et al., 1998). We show that the proposed method can provide tighter upper bounds on the

Lipschitz constant than existing approaches.

Related work. Virmaux and Scaman (2018); Combettes and Pesquet (2019); Fazlyab et al.

(2019); Jin and Lavaei (2018) worked on estimations of L(fd) with respect to the `2−norm.

The method SeqLip (Virmaux and Scaman, 2018) attemps to estimate the Lipschitz constant

instead of providing a proper upper bound, and hence cannot be used for robustness certifica-

tion. On the other hand, LipSDP (Fazlyab et al., 2019) provides true upper bounds on L(fd).

However, its formulation is restricted to the `2-norm Lipschitz constant. While it is possible

to extend it to `∞-norm Lipschitz constant by multiplying the obtained bound by the square

root of the input dimension, this often results in rather loose bounds, which is confirmed

empirically in our experiments (see Section 3.1.6).

Notation. We denote by ni the number of columns of the matrix Wi in the definition (3.2) of

the network. This corresponds to the size of the i -th layer, where we identify the input as the

first layer. We let n = n1 + . . .+nd be the total number of neurons in the network. For a vector

x, Diag(x) denotes the square matrix with x in its diagonal and zeros everywhere else. For an

array X , vec(X) is the flattened array. The support of a sequence supp(α) is defined as the

set of indices j such that α j is nonzero. For x = [x1, . . . , xn] and a sequence of nonnegative

integers γ= [γ1, . . . ,γn] we denote by xγ the monomial xγ1

1 xγ2

2 . . . xγn
n .

3.1.2 Polynomial optimization formulation

In this section, we start by showing that the computation of the Lipschitz constant can be cast

as an optimization problem. When applied to the a neural network given by (3.2), we show

that this optimization problem takes a specific form that can be relaxed as a POP. We start with

the following equivalent characterization of the Lipschitz constant:

Theorem 15. Let f be a differentiable and Lipschitz continuous function on an open, convex

subset X of an Euclidean space. Let ‖·‖∗ be the dual norm defined as ‖x‖∗ ≡ sup‖t‖≤1 tT x. The

Lipschitz constant of f is given by

L(f) = sup
x∈X

∥∥∇ f (x)
∥∥∗ . (3.3)

This theorems only applies to functions f that are differentiable. In order to apply it to

neural networks, we hence require the activation function to be Lipschitz continuous and

35

Chapter 3. Robustness to adversarial perturbation using regularization

differentiable, ruling out the common ReLU activation function σ(x) = max(0, x). However,

this assumption remains true for other standard choices of activation functions such as the

Exponential Linear Unit (ELU) (Clevert et al., 2015) or softplus.

We hence observe that the Lipschitz constant is closely tied to the gradient of the function. In

order to specify this result to the case of neural networks, let us compute explicitly the gradient

of fd in (3.2) using the chain rule:

∇ fd (x) =W T
1

d−1∏
i=1

Diag(σ′(fi (x)))W T
i+1 (3.4)

Using the definition of a dual norm, i.e., ‖x‖∗ = sup‖t‖≤1 t T x, the Lipschitz constant of fd can

be written as

L(fd) = sup
x∈Rn1 ,‖t‖≤1

t T W T
1

d−1∏
i=1

Diag(σ′(fi (x)))W T
i+1. (3.5)

We now observe that, for common differentiable activation functions such as ELU or softplus,

their derivative is bounded between 0 and 1. Therefore, by introducing new variables si =
σ′(fi (x)) ∈ Rni+1 , i = 1, . . . ,d −1, we can relax the formulation (3.5) to obtain the following

upper bound:

L(fd) ≤ max

{
t T W T

1

d−1∏
i=1

Diag(si)W T
i+1 : 0 ≤ si ≤ 1,‖t‖ ≤ 1

}
. (3.6)

We can see that the objective in (3.6) is a polynomial in t , {si }i=1,...,d−1.We will refer to this

polynomial objective as the norm-gradient polynomial, i.e.,

p(s1, . . . ,sd−1, t) = t T W T
1

d−1∏
i=1

Diag(si)W T
i+1. (3.7)

Moreover, for any positive integer q (or q =∞), the constraint ‖t‖q ≤ 1 can be expressed as a

polynomial constraint. In the rest of this work, we will focus on the `∞-norm constraint, i.e.,

‖t‖∞ ≤ 1 which is equivalent to −1 ≤ ti ≤ 1 for i = 1, . . . ,n1. Hence, problem (3.6) boils down

to maximizing a polynomial objective under polynomial constraints, and is hence a POP.

To motivate the use of the `∞-norm, we note that this is the most commonly used norms to

assess robustness in the adversarial examples literature. Moreover, it has been shown that,

in practice, `∞-norm robust networks are also robust in other more plausible measures of

perceptibility, like the Wasserstein distance (Wong et al., 2019).

36

3.1. Lipschitz constant estimation of neural networks via sparse polynomial optimization

3.1.3 Solving the POP using polynomial positivity certificate

We now focus on solving the relaxed POP (3.6) using classical techniques in polynomial

optimization. First note that, by defining s0 ≡ (t +1)/2, and denoting by p the norm-gradient

polynomial, the POP (3.6) can be written as

max
x∈[0,1]n

p(x)

where x = vec([s0, . . . ,sd−1]) is the concatenation of all variables.

The central idea in polynomial optimization is that maximizing a polynomial p over a domain

X is equivalent to finding the smallest value λ such that λ− p is positive over X . This

positivity constraint can be ensured by writing the polynomial λ−p in such a way that makes

it clear that this polynomial is non-negative over [0,1]n , e.g., by writing it as a sum of squared

polynomials. In this work, we use the so-called Krivine’s positivity certificate (also known as

Krivine’s Positivstellensatz) which, adapted to our setting, reads as follows:

Theorem 16. (Adapted from Krivine (1964); Stengle (1974); Handelman (1988)) If the polyno-

mial λ−p is strictly positive on [0,1]n , then there exist finitely many positive weights cαβ ∈R+
such that

λ−p = ∑
(α,β)∈N2n

cαβhαβ, hαβ(x) :=
n∏

j=1
x
α j

j (1−x j)β j (3.8)

Example 17. Consider the polynomial q(x1, x2, x3) = 1.1 − x3 − x1x2 + x1x3. A priori, it is

not trivial to guess whether q is strictly positive over [0,1]3. However, writing q as q(x) =
0.1+x1(1−x2)+ (1−x1)(1−x3) provides us with a certificate that q is indeed strictly positive on

[0,1]3.

Note that the degree of the certificate sometimes needs to be higher than that of the resulting

polynomial. Take for example the degree 2 polynomial q(x) = 1.1−x1 −x2 −x3 +x1x2 +x1x3 +
x2x3. Then, its smallest degree Krivine certificate is given by q(x) = 0.1+x1x2x3 + (1−x1)(1−
x2)(1−x3) which is of degree 3.

Hence, one issue with this certificate is that the maximum degree of the polynomials hαβ
potentially needs to be larger (and sometimes much larger) than that of p, thus the number of

terms required in the decomposition (3.8) can be very large.

In order for this certificate to be usable, we need to truncate the degree of the polynomial in-

volved in the decomposition (3.8), leading to the following hierarchy of LP problems (Lasserre,

2015, Section 9):

θk := min
c≥0,λ

λ :λ−p = ∑
(α,β)∈N2n

k

cαβhαβ

 (3.9)

where N2n
k is the set of nonnegative integer sequences of length 2n adding up to at most k.

37

Chapter 3. Robustness to adversarial perturbation using regularization

For each k, problem (3.9) is clearly an LP, since the objective function is simply λ, and the

constraint λ−p =∑
(α,β)∈N2n

k
cαβhαβ can be equivalently written by equating the coefficients

of each polynomial in the canonical basis, giving rise to a set of linear constraints in λ and c.

For this constraint to be feasible, we need the degree k of the certificate to be greater or equal

to the degree of the norm-gradient polynomial p, i.e., k ≥ d .

The sequence {θk }∞k=1 is non-incresing and converges to the maximum of the upper bound

(3.6) thanks to Theorem 16. Note that for any level of the hierarchy, the solution of the LP (3.9)

provides a valid upper bound on L(fd).

On remaining issue is that the size of the LP for θk grows rapidly with k. Indeed, the dimension

of the variable c in (3.9) is

|N2n
k | =O (nk), (3.10)

corresponding to the size of the monomial canonical basis of degree k in dimension n. For

instance, if we consider the MNIST dataset and a one-hidden-layer network with 100 neurons,

we have
∣∣N2n

2

∣∣ ≈ 1.5×106 while
∣∣N2n

3

∣∣ ≈ 9.3×108. To make this approach more scalable, we

exploit in the next section the sparsity of the polynomial p to find LPs of drastically smaller

size than (3.9), but with similar approximation properties.

3.1.4 Reducing the number of variables

In many practical cases, trained neural networks involve sparse weight matrices. These sparsity

patterns can either come from the use of convolutional layers, or from network pruning, since

it has been empirically observed that up to 90% of network weights can be set to zero without

harming the accuracy (Frankle and Carbin, 2019). In this case, the norm-gradient polynomial

inherits this sparsity pattern, which can be used to reduce the search space when decomposing

it using Krivine’s positivity certificate (3.8).

The question is hence the following: Can we exploit the structure of the polynomial p to

decompose in order to restrict the set of functions {hαβ}(α,β)∈N2n required to construct the

Krivine certificate (3.8)?

Consider for example a positive polynomial q : [0,1]n → R that can be written as q(x) =∑m
i=1 qi (xIi), where Ii ⊆ {1, . . . ,n}, Ii ∩ I j =; for i 6= j , and qi is a polynomial only depending

on variables {x j : j ∈ Ii }. When searching for a positivity certificate for q , it makes sense

to decompose each qi separately, and hence not to include polynomials hαβ involving in-

teracting variables from different sets Ii and I j . In this case, the number of possible de-

compositions drastically reduces, since we would only consider polynomials hαβ such that

supp(α)∩ supp(β) ⊆ Ii for some i ∈ {1, . . . ,m}.

However, when the sets {Ii }m
i=1 overlap, this strategy does not always work, and we may not

find a certificate with the same structure as q . Nonetheless, it can be shown that this method

applies if the sets {Ii }m
i=1 satisfy a valid sparsity pattern, which we define as follows:

38

3.1. Lipschitz constant estimation of neural networks via sparse polynomial optimization

Definition 18. Let I = {1, . . . ,n} and p be a polynomial with variable x ∈ Rn . A valid sparsity

pattern of p is a sequence {Ii }m
i=1 of subsets of I , called cliques, such that

⋃m
i=1 Ii = I and

• p =∑m
i=1 pi where pi is a polynomial that depends only on the variables {x j : j ∈ Ii },

• for all i = 1, . . . ,m −1 there is an l ≤ i such that (Ii+1 ∩⋃i
r=1 Ir) ⊆ Il .

In the case where the objective polynomial of a POP is known to have a valid sparsity pattern,

we can provide further characterizations of the decomposition involved in the Krivine’s certifi-

cate. The following result is a consequence of (Weisser et al., 2018), and is referred to as the

sparse Krivine’s certificate:

Theorem 19 (Adapted from Weisser et al. (2018)). Let a polynomial p have a valid sparsity

pattern {Ii }m
i=1. Define Ni as the set of sequences (α,β) ∈N2n where the support of both α and β

is contained in Ii . If λ−p is strictly positive over K = [0,1]n , there exist finitely many positive

weights cαβ such that

λ−p =
m∑

i=1
hi , hi =

∑
(α,β)∈Ni

cαβhαβ (3.11)

where the polynomials hαβ are defined as in (3.8).

Depending on the sparsity pattern, sparse Krivine’s certificate can drastically reduce the search

space when looking for a positivity certificate.

It turns out that the norm-gradient polynomial has a natural sparsity pattern given by its

construction. Indeed, variables si j in the gradient-norm polynomial p in (3.7) correspond

to the neurons in the neural networks. By definition of p, we know that the gradient-norm

polynomial does not involve monomials containing several variables associated with the same

layer. Actually, it only contains monomials of the form t s1,i1 s2,i2 . . . sd−1,id−1 for i j ∈ 1, . . . ,n j+1.

Moreover, the sparsity pattern of p also depends on the inner sparsity of its weight matrices.

In order to characterize the induced sparsity pattern of norm-gradient polynomials, we first

introduce a graph that depends on the network fd .

Definition 20. Let fd be a neural network with weights {Wi }d
i=1. Define a directed graph

Gd = (V ,E) as follows:

V = {
si , j : 0 ≤ i ≤ d −1, 1 ≤ j ≤ ni

}
,

E = {
(si , j , si+1,k) : 0 ≤ i ≤ d −2,[Wi]k, j 6= 0

}
,

(3.12)

which we call the computational graph of the network fd .

The graph Gd is intuitively composed of all neurons of the neural network denoted by {si , j }, and

constructed by connecting each neuron to the one of the next layer for which the associated

weight is non-zero.

39

Chapter 3. Robustness to adversarial perturbation using regularization

Figure 3.1 – Induced sparsity pattern for a
network of depth three.

Figure 3.2 – Structure of the induced sparsity
pattern for a network with 2D convolutional
layers with 3×3 filters.

Definition 21. Let fd be a neural network with associated graph Gd defined as in Definition 20.

We define the sparsity pattern {Ii }nd

i=1 induced by Gd as

Ii := {
s(d−1,i)

}∪{
s(j ,k) : there exists a directed path from s(j ,k) to s(d−1,i) in Gd

}
. (3.13)

An example of induced sparsity pattern is depicted in Figure 3.1. However, while, for fully

connected graphs, the induced sparsity pattern is indeed a valid sparsity pattern, it may not

be the case for sparse networks, since the second condition (3.13) in Definition 21 might not

hold. In that case, we loose the guarantee that the values of the corresponding LPs converge to

the maximum of the POP (3.19). Nevertheless, it still provides a valid positivity certificate that

we can use to upper bound L(fd). In Section 2.3.4 we show that in practice it provides upper

bounds of good enough quality, while significantly accelerating the computations.

We now quantify how much using a certain sparsity pattern {Ii }m
i=1 when searching for a

Krivine decomposition reduces the size of the associated LP. Let s = maxi=1,...,m |Ii |, and let

Ni ,k be the subset of Ni (defined in Theorem 19) composed of sequences summing up to k.

The number of different polynomials hαβ involved in the k-th LP of the hierarchy given by the

sparse Krivine’s certificate can be bounded as follows:∣∣∣∣∣ m⋃
i=1

Ni ,k

∣∣∣∣∣≤ m∑
i=1

(
2 |Ii |+k

k

)
=O

(
msk

)
. (3.14)

We immediately see that the dependence on the number of subsets m is really mild (linear) but

the size of the associated subsets Ii as well as the degree of the hierarchy can greatly impact

the size of the optimization problem. Note that this upper bound can be quite loose since

polynomials hαβ that depend only on variables in the intersection of two or more subsets are

counted more than once.

In the case of sparsity pattern induced by a neural network, as defined in Definition 21, the

number of subsets m corresponds to the size of the last hidden layer nd , and the subsets Ii

depend on the inner sparsity of the network. In the following, we describe various sparsity

40

3.1. Lipschitz constant estimation of neural networks via sparse polynomial optimization

patterns induced by networks with different architectures.

Fully connected networks. In this case, all subsets Ii have the same size |Ii | = n1+. . .+nd−1+1.

Hence, using the bound of (3.14), the total number of variables in the LP for computing θk (3.9)

is O (nd (n1 + . . .+nd−1 +1)k−1), improving upon the full size (3.10) when nd > 1. Moreover, the

resulting pattern is a valid sparsity pattern (Proposition 22).

Proposition 22. Let fd be a dense network (all weights are nonzero). Then, the sparsity pattern

induced by the network’s graph is a valid sparsity pattern for the norm-gradient polynomial of

fd .

Unstructured sparsity. In the case of networks obtained by pruning (Hanson and Pratt, 1989)

or generated randomly from a distribution over graphs (Xie et al., 2019), the sparsity pattern

can be arbitrary. In this case the size of the resulting LPs varies at runtime. Under the layer-

wise assumption that any neuron is connected to at most r neurons in the previous layer,

the size of the subsets of the induced sparsity pattern is bounded as s =O (r d). This estimate

has an exponential dependency on the depth but ignores that many neurons might share

connections to the same inputs in the previous layer, thus being potentially loose. The bound

(3.14) implies that the number of different polynomials is O (nd r dk).

2D Convolutional networks. The sparsity in the weight matrices of convolutional layers

has a certain local structure; neurons are connected to contiguous inputs in the previous

layer. Adjacent neurons also have many input pixels in common (see Figure 3.2). Assuming a

constant number of channels per layer, the size of the cliques in (3.13) is O (d 3). Intuitively,

such number is proportional to the volume of the pyramid depicted in Figure 3.2 where

each dimension depends linearly on d . Using (3.14) we get that there are O (nd d 3k) different

polynomials in the sparse Krivine’s certificate. This is a drastic decrease in complexity when

compared to the unstructured sparsity case.

The general procedure for upper bounding the Lipschitz constant, given a sparsity pattern

and a hierarchy degree k, is described in Algorithm 5.

Algorithm 5 LipOpt for ELU activations

Input: matrices {Wi }d
i=1, sparsity pattern {Ii }m

i=1, hierarchy degree k.

1: p ← (2s0 −1)T W T
1

∏d−1
i=1 Diag(si)W T

i+1 . compute norm-gradient polynomial
2: for i = 1, . . . ,m do
3: Ni ,k ← {(α,β) ∈N2n

k : supp(α)∩ supp(β) ⊆ Ii }

4: Nk ←∪m
i=1Ni ,k

5: return min{λ :λ−p =∑
(α,β)∈Nk

cαβhαβ,cαβ ≥ 0} . solve LP

3.1.5 Relation to Shor’s relaxation and Sum-Of-Squares hierarchy

Shor’s relaxation. Any POP can be written as a quadratically constrained quadratic program

(QCQP) by introducing extra variables representing higher order interactions. This procedure

41

Chapter 3. Robustness to adversarial perturbation using regularization

is described in (Park and Boyd, 2017, Section 2.1). While QCQPs are NP-hard to solve in general

(since, e.g., MAX-CUT can be phrased as a QCQP), there exists a relaxation of such problems

to an SDP known as the Shor’s relaxation (Park and Boyd, 2017, Section 3.3). The idea behind

Shor’s relaxation is to introduce a matrix X = xxT representing the quadratic interactions in

the QCQP, and then relax the non-convex constraint X = xxT by the semi-definite one X º 0,

hence removing the constraint that rank(X) = 1.

One drawback of this approach is that it includes a further relaxation step from (3.6), thus

being fundamentally limited in how tightly it can upper bound the value of L(fd). Moreover

when compared to LP solvers, off-the-shelf semidefinite programming solvers are, in general,

much more limited in the number of variables they can efficiently handle.

Sum-Of-Squares hierarchy. The main idea we used for maximizing a polynomial p is to

minimize a lower bound λ for p, i.e., such that λ−p(x) ≥ 0 ∀x ∈ [0,1]n . We then used Krivine

decomposition to certify this constraint. However, other positivity certificates can be used. A

well-known certificate is the sum-of-squares (SOS) decompositions, which involves squared

polynomials which are obviously non-negative. For certifying non-negativity over [0,1] using

SOS certificate, we would look for a decomposition of the form

λ−p(x) = s0(x)+
n∑

i=1
(si (x)xi + s′i (x)(1−xi)),

where si , s′i are squared polynomials. Similarly as Krivine decomposition, this gives rise to a

hierarchy of decompositions, by constraining the degrees of the polynomials si , s′i .

Solving the resulting optimization problem using the SOS certificate requires dealing with

the sum of squares constraint for the polynomials si , s′i , which can be cast as a semi-definite

constraint. Hence, using this certificate requires solving an SDP. Actually, the first degree of

the SOS hierarchy, i.e., restricting the polynomials si , s′i to be of degree 2, is equivalent to the

Shor’s relaxation (Lasserre, 2000).

3.1.6 Experiments

We consider the following bounds on L(fd) with respect to the `∞-norm:

42

3.1. Lipschitz constant estimation of neural networks via sparse polynomial optimization

Name Description

SDP Upper bound arising from the solution of the Shor’s relaxation de-

scribed in Section 3.1.5.

LipOpt-k Upper bound arising from the k-th degree of the LP hierarchy (3.9)

based on the sparse Krivine Positivstellenstatz.

LipSDP Upper bound from Fazlyab et al. (2019) multiplied
p

n1, where n1 is

the input dimension of the network.

UBP Upper bound determined by the product of the layer-wise Lipschitz

constants with `∞− metric.

LBS Lower bound obtained by sampling 50000 random points around zero,

and evaluating the dual norm of the gradient.

Experiments on random networks

We compare the bounds obtained by the algorithms described above on networks with random

weights and either one or two hidden layers. We define the sparsity level of a network as the

maximum number of neurons any neuron in one layer is connected to in the next layer. For

example, the network represented on Figure 3.1 has sparsity 2. The non-zero weights of

network’s i -th layer are sampled uniformly in [− 1p
ni

, 1p
ni

] where ni is the number of neurons

in layer i .

For different configurations of width and sparsity, we generate 10 random networks and

average the obtained Lipschitz bounds. For better comparison, we plot the relative error. Since

we do not know the true Lipschitz constant, we cannot compute the true relative error. Instead,

we take as reference the lower bound given by LBS. Figures 3.3 and 3.5 show the relative error,

i.e., (L̂−LLBS)/LLBS where LLBS is the lower bound computed by LBS and L̂ is the estimated

upper bound.

When the chosen degree for LiPopt-k is the smallest as possible, i.e., equal to the depth of the

network, we observe that the method is already competitive with the SDP method, especially in

the case of 2 hidden layers. When we increment the degree by 1, LiPopt-k becomes uniformly

better than SDP over all tested configurations. We remark that the upper bounds given by

UBP are too large to be shown in the plots. Similarly, for 1-hidden layer networks, the bounds

from LipSDP are too large to be plotted.

Finally, we measure the computation time of the different methods on each tested network

(Figures 3.4 and 3.6). We observe that the computation time for LiPopt-k heavily depends on

the network sparsity, which reflects the fact that such a structure is exploited in the algorithm.

In contrast, the time required for SDP does not depend on the sparsity, but only on the size of

the network. Therefore, as the network size grows (with fixed sparsity level), LipOpt-k obtains

a better upper bound and runs faster. Also, with our method, we see that it is possible to

increase the computation power in order to compute tighter bounds when required, making it

more flexible than SDP in terms of computation/accuracy tradeoff. LipOpt-k uses the Gurobi

43

Chapter 3. Robustness to adversarial perturbation using regularization

LP solver, while SDP uses Mosek. All methods run on a single machine with Core i7 2.8Ghz

quad-core processor and 16Gb of RAM.

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Sparsity

0.2

0.4

0.6

0.8

1.0

Lip
sc

hi
tz

 e
rro

r

LiPopt_2
LiPopt_3
SDP

(a) 40×40

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Sparsity

0.2

0.4

0.6

0.8

1.0

1.2

Lip
sc

hi
tz

 e
rro

r

(b) 80×80

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Sparsity

0.2

0.4

0.6

0.8

1.0

1.2

Lip
sc

hi
tz

 e
rro

r

(c) 160×160

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Sparsity

0.2

0.4

0.6

0.8

1.0

1.2

Lip
sc

hi
tz

 e
rro

r

(d) 320×320

Figure 3.3 – Lipschitz approximated relative error for 1-hidden layer networks

4 6 8 10 12 14
Sparsity

0.0

0.1

0.2

0.3

0.4

Co
m

pu
ta

tio
n

tim
e

LiPopt_2
LiPopt_3
SDP

(a) 40×40

4 6 8 10 12 14
Sparsity

0.0

0.2

0.4

0.6

0.8

Co
m

pu
ta

tio
n

tim
e

(b) 80×80

4 6 8 10 12 14
Sparsity

0.0

0.5

1.0

1.5

Co
m

pu
ta

tio
n

tim
e

(c) 160×160

4 6 8 10 12 14
Sparsity

0

2

4

6

8

10

Co
m

pu
ta

tio
n

tim
e

(d) 320×320

Figure 3.4 – Computation times for 1-hidden layer networks (seconds)

4 6 8 10 12 14
Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

Lip
sc

hi
tz

 e
rro

r

LiPopt_3
LiPopt_4
SDP
LipSDP

(a) 5×5×10

4 6 8 10 12 14
Sparsity

0.0

0.2

0.4

0.6

0.8

Lip
sc

hi
tz

 e
rro

r

(b) 10×10×10

4 6 8 10 12 14
Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

Lip
sc

hi
tz

 e
rro

r

(c) 20×20×10

4 6 8 10 12 14
Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

Lip
sc

hi
tz

 e
rro

r

(d) 40×40×10

Figure 3.5 – Lipschitz approximated relative error for 2-hidden layer networks

4 6 8 10 12 14
Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

Co
m

pu
ta

tio
n

tim
e

LiPopt_3
LiPopt_4
SDP

(a) 5×5×10

4 6 8 10 12 14
Sparsity

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Co
m

pu
ta

tio
n

tim
e

(b) 10×10×10

4 6 8 10 12 14
Sparsity

0

5

10

15

20

Co
m

pu
ta

tio
n

tim
e

(c) 20×20×10

4 6 8 10 12 14
Sparsity

0

20

40

60

Co
m

pu
ta

tio
n

tim
e

(d) 40×40×10

Figure 3.6 – Computation times for 2-hidden layer networks (seconds)

Experiments on trained networks

Similarly, we compare these methods on networks trained on MNIST. The architecture we use

is a fully connected network with two hidden layers with 300 and 100 neurons respectively,

and with one-hot output of size 10. Since the output is multi-dimensional, we restrict the

network to a single output, and estimate the Lipschitz constant with respect to label 8. We

44

3.2. 1-path-norm Regularization using Proximal Gradient Method

chose this label because it is the one which is most sensitive to adversarial attacks, since it can

be easily changed to a 3, a 6, a 9 or a 0 only using small perturbations.

We train the network using the pruning strategy described in Han et al. (2015)1. After training

the full network using standard techniques, the weights of smallest magnitude are set to zero.

Then, the network is trained for additional iterations, only updating the nonzero parameters.

Doing so, we were able to remove 95% of the weights, while preserving the same test accuracy.

We recorded the Lipschitz bounds for various methods in Table 3.1.6. We observe a clear

improvement of the Lipschitz bound obtained from LiPopt-k compared to SDP method, even

when using the smallest allowed value k = 3 (since the network is of depth 3). Also note that

the input dimension is too large for the method Lip-SDP to provide competitive bound, since

it requires multiplying the obtained bound by the square root of the image size, i.e.,
p

784.

Algorithm LBS LiPopt-4 LiPopt-3 SDP UBP

Lipschitz bound 84.2 88.3 94.6 98.8 691.5

3.2 1-path-norm Regularization using Proximal Gradient Method

We now turn our attention to the training of robust networks. While the previous section

describes a method for estimating an upper bound on the Lipschitz constant, extending

it to an algorithm for training neural networks would yield an algorithm with rather large

per iteration complexity. Instead, we consider in this section a surrogate quantity related

to the Lipschitz constant, and propose an efficient algorithm for approximately solving the

associated regularized optimization problem.

This section is based on the paper (Latorre et al., 2020c) published at ICML 2020.

3.2.1 Introduction

The use of the Lipschitz constant as a regularizer has shown desirable properties in terms of

robustness and generalization both in theory and practice (Raghunathan et al., 2018b; Cisse

et al., 2017; Jiang* et al., 2020). However, its direct use as a regularizer leads to quite a complex

optimization problem to solve. Therefore, there is a need for designing upper bounds on the

Lipschitz constant whose associated regularized problem can be efficiently solved. An ideal

bound would achieve a balance between two properties: It should provide a good estimate of

the constant while being fast and easy to minimize with iterative first-order algorithms.

Recently, the path-norm of the network (Neyshabur et al., 2015) has emerged as a complexity

measure that is highly-correlated with generalization (Jiang* et al., 2020). Thus, its use as a

regularizer holds an increasing interest for researchers in the field.

1For training we used the code from this reference. It is publicly available in https://github.com/
mightydeveloper/Deep-Compression-PyTorch

45

https://github.com/mightydeveloper/Deep-Compression-PyTorch
https://github.com/mightydeveloper/Deep-Compression-PyTorch

Chapter 3. Robustness to adversarial perturbation using regularization

However, our understanding of the optimization aspects of the path-norm-regularized ob-

jective is lacking. Jiang* et al. (2020) refrained from using automatic-differentiation methods

in this case because, as they argue, the optimization could fail, thus providing no conclusion

about its qualities.

It is then natural to ask: How do we properly optimize the path-norm-regularized objective with

theoretical guarantees? What conclusions can we draw about the robustness and sparsity of

path-norm-regularized networks? We focus on the 1-path-norm and provide partial answers to

those questions, further advancing our understanding of this measure. We treat the problem

separately between the case of 1-hidden layer neural networks, for which we develop a method

for computing the proximal mapping exactly and efficiently (Section 3.2.3), and the general

case of deep networks for which we need to resolve to approximations of the proximal mapping

(Section 3.2.4). Let us summarize our main contributions:

• In the case of 1-hidden layer networks, we show the following properties:

– Despite its non-convexity, the 1-path norm of 1-hidden layer neural networks

admits an efficient proximal mapping (Algorithm 16), allowing the use of proximal-

gradient type methods which are, as of now, the only first-order optimization

algorithms to provide guarantees of convergence for composite non-smooth and

non-convex problems (Bolte et al., 2013).

– The 1-path norm provides an upper bound on the (`∞,`1)-Lipschitz constant,

which is always tighter than the naive product of spectral norms bound.

– Neural network regularization schemes promoting sparsity in a principled way

are of great interest in the growing field of compression in Deep Learning (Han

et al., 2016; Cheng et al., 2017b). Our analysis provides a formula (cf. Lemma 29)

for choosing the strength of the regularization, which enforces a desired bound

on the sparsity level of the iterates generated by the proximal gradient method.

This is a suprising, yet intuitive, result, as the sparsity-inducing properties of non-

smooth regularizers have been observed before in convex optimization and signal

processing literature, see e.g., (Bach et al., 2012; Eldar and Kutyniok, 2012).

• For deeper networks,

– We derive a tractable procedure (8) to compute the non-convex non-smooth

proximal mapping operator with respect to the 1-path-norm, restricted to a single

path of a network with arbitrary depth, i.e., a unit-width network.

– For the general case of a deep network of arbitrary width, we propose two practical

heuristical methods (Algorithms 9 and 11) that try to bypass the implementation

limitations of an exact proximal gradient scheme.

• We illustrate the benefits of our proposed algorithms in a variety of experimental setups.

First, in synthetic scenarios where it is possible to derive the full proximal map, we show

46

3.2. 1-path-norm Regularization using Proximal Gradient Method

that the proposed approach outperforms Adam (Kingma and Ba, 2015) and SGD in

iteration complexity. Finally in experiments on FashionMNIST Xiao et al. (2017a) and

CIFAR10 Krizhevsky (2009) where we employ our proposed heuristics, we observe they

outperform SGD and compare favorably to Adam when the network size is sufficiently

large.

3.2.2 Problem setup and preliminaries

For a d-layers feedforward neural network (3.2) with weight matrices W ≡ [W1, . . . ,Wd] which

we now denote as fW to emphasize the dependence on the weights, its 1-path-norm can be

defined in two equivalent ways:

P1(W) ≡ 1T |WL | |WL−1| · · · |W1|1

= ∑
s∈S

d∏
i=1

|Wi (si+1, si)|
(3.15)

where S ≡ [n1]×·· ·×[nd+1] with [ni] ≡ {0,1, . . . ,ni −1}, |Wi | is the matrix obtained by entry-wise

application of the absolute value function, the symbol 1 denotes an all-ones column vector

with dimension inferred by the context, and Wi (j ,k) denotes the j ,k-th entry of a matrix Wi .

To understand the definition (3.15), notice that an element of the set S, say s = (s1, . . . , sd+1),

can be understood as a choice of one neuron per layer: the s1-th neuron in the 1-st layer (input

layer), the s2-th neuron in the 2-nd layer and so on. This sequence of neurons forms a path in

the network, from input to output layer. For the i -th edge in this path, we associate the value

Wi (si+1, si), which is precisely the parameter in Wi that connects the chosen neurons in the

computational graph.

With this terminology, we can describe the 1-path-norm of a network (3.15) as the sum of the

absolute value of the product of the weights along each path from input to output layer. From

now on we will refer to any such choice of one neuron per layer as one path. The following

is the 1-path-norm regularized empirical risk minimization problem on N labeled training

samples (xi , yi) ∈Rn1 ×Rnd+1 , loss function L and regularization parameter λ≥ 0:

min
W

1

N

N∑
i=1

L
(

fW(xi), yi
)+λP1(W). (3.16)

When L ≥ 2, common choices of loss function L , such as the cross-entropy loss, lead to a

composite optimization objective in (3.16) that is non-convex and non-smooth with a non-

convex non-smooth regularizer due to the presence of absolute values and products. Evidently,

such a non-convex model cannot be solved globally unless more restrictive assumptions are

imposed.

Thus, instead of global optimality, we rather consider developing algorithms with non-asymptotic

47

Chapter 3. Robustness to adversarial perturbation using regularization

rates of convergence to first-order stationarity via the proximal gradient approach. For the type

of problem in consideration, this still constitutes a highly challenging task since computing

the proximal mapping requires solving a non-convex non-smooth problem as-well.

The Prox-GD Method

The proximal gradient method aims to solve optimization problems of the form

min
x∈Rn

F (x) ≡ f (x)+ g (x)

where f : Rn → R is a differentiable function with L-Lipschitz continuous gradient, and

g : Rn → R is non-smooth, but admits a computable proximal operator as defined in equa-

tion (3.17).

proxg (x) = argmin
y∈Rn

g (y)+ 1

2
‖x − y‖2

2. (3.17)

The Prox-GD method is described by Algorithm 6. Since g is nonconvex, the operator in (3.17)

can be a set of solutions. Any element of this set can then be chosen in the algorithm.

Algorithm 6 Prox-GD

Input: z0 ∈Rn , {ηk }k≥0.

1: for k ≥ 1 do

2: Compute Gk−1 =∇ f (zk−1)

3: zk ← proxηk−1g (zk−1 −ηk−1Gk−1)

4: return {zk }k≥0

Theoretical guarantees for the Prox-GD method with respect to a nonconvex regularizer were

established by Bolte et al. (2013) (for a more general proximal-gradient type scheme).

Theorem 23 (Convergence guarantees). Let {zk }k≥0 be a sequence generated by Algorithm 6

with {ηk }k≥0 ⊆ (0,1/L). Then, the following hold:

1. Any accumulation point of {zk }k≥0 is a critical point of f + g .

2. If f satisfies the Kurdyka-Lojasiewicz (KL) property (Attouch et al., 2010), then {zk }k≥0

converges to a critical point.

3. Suppose that ηk is chosen such that there exists c > 0 such that
∑K

k=0
1
ηk

≥ cK for any

integer K > 0. Then

min
k=0,...,K

‖zk+1 − zk‖2 ≤
√

2(F (z0)−F∗)

(c −L)K
,

where F∗ ≡ minx∈Rn F (x).

48

3.2. 1-path-norm Regularization using Proximal Gradient Method

Point 2 of Theorem 23 states that Algorithm 6 is globally convergent under the Kurdyka–Lojasiewicz

(KL) property Attouch et al. (2010). The broad classes of semi-algebraic and subanalytic func-

tions, widely used in optimization, satisfy the KL property (see e.g. (Bolte et al., 2013, Section

5)), and in particular, most convex functions encountered in finite dimensional applications

satisfy it (see (Bolte et al., 2013, Section 5.1)). We refer the reader to the works Attouch et al.

(2010, 2011); Bolte et al. (2013), in particular to (Bolte et al., 2013, Sections 3.2-3.5) for addi-

tional information and results.

3.2.3 Path norm regularization of shallow neural networks

We first consider the special case of 1-hidden layer neural networks, e.g., L = 2, which we

re-write

fV ,W (x) =V Tσ(W x)

where V ∈Rn×p ,W ∈Rn×m ; m, p denote the input and output dimensions respectively, and n

the number of neurons in the hidden layer of the network.

Relation to the Lipschitz constant

Since one of the goal of 1-path norm regularization is to improve the robustness of the model,

we show how it relates to the Lipschitz constant. It provides an upper bound on the Lipschitz

constant when using the `∞ norm for the input space and the `1 norm for the input space,

i.e., we define LV ,W as the smallest scalar L ∈R such that

‖ fV ,W (y)− fV ,W (x)‖1 ≤ L‖y −x‖∞ ∀x, y ∈Rm . (3.18)

A naive upper bound on LV ,W is the product ‖V T ‖∞,1‖W ‖∞, where ‖W ‖∞ is the operator

norm of a matrix W with respect to the `∞ norm for both input and output space, which is

equal to the maximum `1-norm of its rows, and ‖V ‖∞,1 is the operator norm of the matrix V

with respect to the `∞ norm in input space and `1-norm in output space, which is equal to

the sum of the `1 norm of its columns. However, this bound can be quite loose, and we show

that the 1-path norm always provide a tighter upper bound on LV ,W .

Theorem 24. Let fV ,W (x) =V Tσ(W x) be a network such that the derivative of the activation

σ is globally bounded between zero and one, and let P1(V ,W) =∑n
i=1

∑m
j=1

∑p
k=1 |Wi j Vi k | be its

1-path norm. The Lipschitz constant LV ,W of the network is bounded as follows:

LV ,W ≤ P1(V ,W) ≤ ‖V T ‖∞,1‖W ‖∞. (3.19)

Notice that although the path-norm and layer wise product bounds can be equal, this only

happens in the special case where, for the weight matrix in the first layer, the 1-norm of every

rows are equal. Thus, in practice the bounds can differ drastically.

49

Chapter 3. Robustness to adversarial perturbation using regularization

Computing the proximal mapping

We now turn our attention to the task of solving the path nom regularized risk minimization

problem (3.16) in the 1-hidden layer case, i.e.,

min
V ∈Rn×p ,W ∈Rn×m

1

n

n∑
i=1

L
(

fV ,W (xi), yi
)+λP1(V ,W), (3.20)

using the proximal gradient method (Algorithm 6). To this end, it is necessary to design an

efficient way to compute the proximal mapping of P1, i.e., to solve for any X ∈Rn×p ,Y ∈Rn×m

proxλP1
(X ,Y) ≡ argmin

V ,W
λP1(V ,W)+ 1

2
(‖V −X ‖2

F +‖W −Y ‖2
F) (3.21)

where ‖·‖F denotes the Frobenius norm. We first notice that the objective in (3.21) is coercive

and lower bounded, implying that there exists an optimal solution (Beck, 2014, Thm. 2.32).

Lemma 25 (Well-posedness of (3.21)). For any λ≥ 0 and any (X ,Y), the problem (3.21) has a

global optimal solution.

In this section, we assume for simplicity that the neural network fV ,W has a single output,

i.e., p = 1. The multi-output setting uses similar arguments, but its analysis requires a more

delicate treatment which is deferred to Appendix B.2.

The problem (3.21) can hence be written for x ∈Rn ,Y ∈Rn×m as

proxλP1
(x,Y) ≡ argmin

v,W
λ

n∑
i=1

m∑
j=1

|Wi j vi |+ 1

2
(‖v−x‖2 +‖W −Y ‖2

F) (3.22)

= argmin
v,W

n∑
i=1

(
λ

m∑
j=1

|Wi j vi |+ 1

2
(vi −xi)2 +

m∑
j=1

(Wi j −Yi j)2)

)
. (3.23)

We can see that the problem (3.23) is separable, in the sense that it involves minimizing a

sum of terms that depend on separate sets of variables. Therefore, it suffices to solve the

optimization problem for each term separately and then combine the results. We hence

further simplify the problem and aim to solve for any x ∈R,y ∈Rm

argmin
v,w∈R×Rm

λ|v |
m∑

j=1
|w j |+ 1

2
(v −x)2 + 1

2

m∑
j=1

(w j − y j)2. (3.24)

We next observe that the signs of the variables v,w solving (3.24) are determined by the signs

of x,y. Since the sign of v,w does not impact the value of the term |v |∑m
j=1 |w j |, it should be

chosen so as to minimize the rest of the terms 1
2 (v −x)2 + 1

2

∑m
j=1(w j − y j)2. The best choice is

hence to choose the signs of v,w to be the same as the one of x,y. Therefore, by an appropriate

50

3.2. 1-path-norm Regularization using Proximal Gradient Method

change of variable, it suffices to solve

argmin
v,w∈R+×Rm+

λv
m∑

j=1
w j + 1

2
(v −|x|)2 + 1

2

m∑
j=1

(w j −|y j |)2. (3.25)

Lemma 26. Let (v∗,w∗) ∈R+×R+n be an optimal solution of (3.25). Then (sign(x)·v∗,sign(y)◦
w∗) is an optimal solution of problem (3.24).

Let us denote

hλ(v,w; x,y) =λv
m∑

j=1
w j + 1

2
(v −|x|)2 + 1

2

m∑
j=1

(w j −|y j |)2.

Although hλ is nonconvex, we will show that a global optimum to (3.25) can be obtained

efficiently by utilizing several tools, the first being the first-order optimality conditions of

(3.25) (Beck, 2014, Ch. 9) given below.

Lemma 27 (Stationarity conditions). Let (v∗,w∗) ∈R+×R+m be an optimal solution of (3.25)

for a given (x,y) ∈R×Rm . Then

w∗
j = max

{
0, |y j |−λv∗}

for any j = 1,2, . . . ,m, (3.26)

v∗ = max

{
0, |x|−λ

m∑
j=1

w∗
j

}
. (3.27)

Remark 1. The special case where v∗ = 0, w∗
j = |y j | yields a trivial solution where the path

norm is 0. In the following, we aim to find candidate non-trivial solution, i.e., satisfying v∗ > 0.

At the end of the procedure, it is however necessary to compare the candidate solutions with the

trivial one, and output the one achieving the smallest objective value hλ.

A key insight following Lemma 27 is that the elements of w∗ solving (3.25) satisfy a monotonic

relation in magnitude, correlated with the magnitude of the elements of y; this is formulated

by the next Corollary.

Corollary 28. Let (v∗,w∗) ∈R+×Rm+ be an optimal solution of (3.25) for a given (x,y) ∈R×Rm .

Then, we have the following:

1. The vector w∗ satisfies that for any j , l ∈ {1,2, . . . ,m} it holds that w∗
j ≥ w∗

l if only if

|y j | ≥ |yl |.

2. Let ȳ be the sorted vector of y in descending magnitude order. Suppose that v∗ > 0 and let

s = |{ j : w∗
j > 0}|. Then,

v∗ = 1

1− sλ2

(
|x|−λ

s∑
j=1

|ȳ j |
)

, (3.28)

where we use the convention that
∑0

j=1 |ȳ j | = 0.

51

Chapter 3. Robustness to adversarial perturbation using regularization

Proof. The first part follows trivially from the stationarity conditions on w∗ given in Lemma

27.

Suppose that w∗ contains precisely s non-zero entries. From the first order condition (3.26) of

Lemma 27 and the observation of point 1, the non-zero entries must be the one associated

with the y j with largest magnitude, i.e., {w j∗, j = 1, . . . ,m : w j∗> 0} = {ȳ j , j = 1, . . . , s}. Hence,

we have
m∑

j=1
w∗

j =
s∑

j=1
|ȳ j |−λsv∗.

By plugging the latter in the stationarity condition (3.27) and assuming that v∗ > 0, we obtain

v∗ = |x|−λ
s∑

j=1
|ȳ j |+λ2sv∗,

which implies the result (3.28) after solving for v∗.

Without loss of generality, we assume hereafter that the vector y is already sorted in decreas-

ing magnitude order, such that the s non-zero entries of w∗ are always the first s entries. To

supplement the results above, we now show that we can actually upper-bound the sparsity

level of the prox-grad output by adjusting the value of λ.

Lemma 29 (Sparsity bound). Let (v∗,w∗) ∈R+×Rm+ be an optimal solution of (3.25) for a given

(x,y) ∈R×Rm . Suppose that v∗ > 0, and denote S = { j : w∗
j > 0}. Then |S| ≤λ−2.

Proof. Since (v∗,w∗) is an optimal solution of (3.25) and the objective function in (3.25) is

twice continuously differentiable, (v∗,w∗) satisfies the second order necessary optimality

conditions (Bertsekas, 1999, Ex. 2.1.10). That is, for any d ∈R×Rm satisfying that (v∗,w∗)+d ∈
R+×Rm+ and d T ∇hλ(v∗,w∗; x,y) = 0 it holds that

d T ∇2hλ(v∗,w∗; x,y)d = d T


1 λ · · · λ

λ 1 0 0
... 0

. . . 0

λ 0 0 1

d ≥ 0,

where the first row/column corresponds to v and the others correspond to w . Noting that

for any j ∈ S it holds that ∂hλ

∂w j
(v∗w∗; x,y) = 0, we have that the submatrix of ∇2hλ(v∗,w∗; x,y)

containing the rows and columns corresponding to the positive coordinates in (v∗,w∗) must

be positive semidefinite.

Since the the minimal eigenvalue of this submatrix equals 1−λp|S|, we have thatλ−2 ≥ |S|.

Combining the previous results, we conclude that we can restrict the solution of (3.25) to the

52

3.2. 1-path-norm Regularization using Proximal Gradient Method

one of the form

v (s) = 1

1− sλ2

(
|x|−λ

s∑
j=1

|y j |
)

w (s)
j = |y j |−λv (s) for j ∈ [s], and w (s)

j = 0 otherwise.

(3.29)

for any s ∈ {0, . . . , s̄} where s̄ = min(bλ−2c,m). Moreover, the function hλ is monotonically

decreasing in the sparsity level s, which implies that instead of exhaustively checking the value

of hλ for any sparsity level, we can perform a binary search.

Lemma 30. Let s̄ = min(bλ−2c,m). For all integer s ∈ {2,3, . . . , s̄}, we have that

hλ(v (s),w(s); x,y) < hλ(v (s−1),w(s−1); x,y). (3.30)

At this point, since the value of hλ decreases with the sparsity level s, we may be tempted

to compute the maximal allowed value s̄ = min(bλ−2c,m) and return the associated pair

(v (s̄),w(s̄)) as defined in (3.29). However, recall that the solution to (3.25) must satisfy the

non-negativity constraint v,w ∈R+×Rm+ . Since this constraint is not ensured by the definition

of (v (s),w(s)) in (3.29), it must be additionally imposed to the choice of the optimal sparsity

level s∗.

Corollary 31. Suppose that there exists a non-trivial optimal solution of (3.25). Denote s̄ =
min(bλ−2c,m) and let

s∗ = max
{

s ∈ {0, . . . , s̄} : v (s), w (s)
s > 0

}
. (3.31)

Then (v (s∗), w (s∗)) is an optimal solution of (3.25).

Note that since, by definition, the s first entries of the vector w(s) are ordered in decreasing

order, the constrained w (s)
s > 0 ensures that the full vector w(s) has exactly s nonzero entries,

which are all strictly positive.

The final ingredient required for designing an efficient algorithm is the following monotone

property of the positivity criterion in problem (3.31):

Lemma 32. For any k ∈ [s̄], we have

v (k) > 0,w(k) > 0 ⇒ v (i) > 0,w(i) > 0, ∀i < k.

This property implies that the optimal sparsity parameter s∗ can be efficiently found using a

binary search approach.

We conclude this section by combining all the ingredients above to develop Algorithm 7, and

to prove that it yields a solution to (3.24).

Theorem 33 (Prox computation). Let (v∗,w∗) be the output of Algorithm 7 with input x,y,λ,

assuming that y is sorted in decreasing magnitude order. Then (v∗,w∗) is a solution to (3.24).

53

Chapter 3. Robustness to adversarial perturbation using regularization

Algorithm 7 Single-output robust-sparse proximal mapping

Input: x ∈R, y ∈Rm sorted in decreasing magnitude order, λ> 0.

1: v∗ = 0,w∗ = |y|
2: slb ← 0, sub ← min(bλ−2c,m), s ←d(slb + sub)/2e
3: while slb 6= sub do

4: v (s) = 1

1− sλ2

(
|x|−λ∑s

j=1 |y j |
)

5: w (s)
j = |y j |−λv (s), j ∈ [s] and w (s)

j = 0 otherwise
6: if v > 0, ws > 0 then
7: slb ← s, s ←d(slb + sub)/2e
8: (v∗,w∗) ← (v,w)
9: else if v < 0 then sub ← s, s ←d(slb + sub)/2e

10: else slb ← s, s ←d(slb + sub)/2e
11: return (sign(x) · v∗, sign(y)◦w∗)

Proof. We will show that (v∗,w∗) is an optimal solution to (3.24) by arguing that Algorithm 7

chooses the point with the smallest hλ value out of a feasible set of solutions containing an

optimal solution of (3.24).

By Lemma 26 it is sufficient to prove that (|v∗|, |w∗|) is an optimal solution of (3.25), as this will

imply the optimality of (v∗, w∗); Recall that Lemma 25 establishes that there exists an optimal

solution to (3.25).

If the trivial solution is the only optimal solution to (3.25), then obviously it will be the output

of Algorithm 7. Otherwise, the point described in Corollary 31 is an optimal solution. Assume

that Algorithm 7 returned the point (v (sout),w(sout)) for some sout ∈ [s̄], meaning in particular

that (v (sout),w(sout)) > 0. By definition, s∗ ≥ sout. If sout < s∗, then at some s < s∗ we had that

v (s) < 0. Since the value of v (i) is monotonic decreasing in the sparsity level, this implies that

v (s∗) < 0, which is a contradiction.

Hence, if Algorithm 7 did not return the trivial solution, then (v∗,w∗) = (v (s∗),w(s∗)), meaning

that (sign(x) · v∗, sign(y)◦w∗) is a solution to (3.24).

Time complexity of Algorithm 7. In the worst case where m ≤ λ−2, the number of searches

for finding s∗ is at most log2(m). Each step of the binary search requires to compute v (s), and

in particular
∑s

j=1 |y j |, as well as w (s)
j , j = 1, . . . , s, each taking O (s) steps. Thus, the overall loop

complexity is O (m logm).

Moreover, this algorithm assumes that the input vector y is already sorted in decreasing

magnitude order. This can easily be achieved by a sorting procedure in time O (m logm).

54

3.2. 1-path-norm Regularization using Proximal Gradient Method

3.2.4 Path norm regularization of deep neural networks

We now treat the more general case of deep neural networks. Similarly, we will attempt

to design an efficient procedure to compute the proximal operator of P1 defined in (3.15).

However, this task turns out to be quite complicated due to the exponential number of terms

involved in the path norm.

Therefore, we first develop an efficient procedure for estimating the proximal operator of

the path norm associated with a single path of arbitrary length, i.e., corresponding to a

network with unit width and of arbitrary depth. Then, we propose two heuristic methods to

approximate the proximal operator of the path-norm in the general case.

The Proximal Mapping of a Single Path

The proximal mapping of the 1-path norm associated with a unit-width neural network with

depth d is defined as follows:

proxλP1
(z) = argmin

w∈Rd

1

2
‖w−z‖2 +λ

d∏
i=1

|wi | . (3.32)

Similarly as for the previous single layer case, since the solution w∗ tends to minimize both

the `2 distance to z and the symmetric term
∏d

i=1 |wi |, w∗
i must have the same sign as zi (or

be 0). Hence, we only need to solve for the magnitude of wi , i.e., solve

argmin
w∈Rm+

1

2

m∑
i=1

(wi −|zi |)2 +λw1 · · ·wd , (3.33)

Moreover, since the regularizer in (3.33) is symmetric, the order of the elements with respect

to their magnitudes is maintained by the optimal solution.

Lemma 34. Suppose that |z1| ≥ |z2| ≥ · · · ≥ |zd |, and let w∗ be an optimal solution of (3.33).

Then

w∗
1 ≥ w∗

2 ≥ ·· · ≥ w∗
d . (3.34)

It is not hard to derive from (3.33) that if one weight is set to zero, then the regularizer has no

influence on the solution, and thus the solution is trivial. From Lemma 34, the zero element

must be the one corresponding to the smallest zi .

Corollary 35. If there exists an optimal solution w∗ of (3.32) with w∗
i = 0 for some i . Then

|zi | = min j |z j |, and the optimal solution satisfies that w∗
j = |z j | for all j 6= i .

Similarly as in the single layer analysis, let us make the following conventions until the end of

this section:

55

Chapter 3. Robustness to adversarial perturbation using regularization

A. Order: It holds that |z1| ≥ |z2| ≥ · · · ≥ |zd |;

B. Nontrivial Solution: There exists a nontrivial solution w∗ of (3.33), that is, satisfying

that w∗
i > 0 for all i = 1,2, . . . ,d .

We will now solve (3.33) under the assumptions above and we will regard any solution as

positive, i.e., w > 0. Once the possible solution satisfying w > 0 is found, it must be compared

to the trivial possible solution of Corollary 35 in terms of the objective value in (3.32). The one

achieving the smallest objective value must then be the solution.

Lemma 36 (First-order optimality conditions). Let w∗ be an optimal solution of (3.33). Then,

we have:

w∗
i −|zi |+λ

w∗
1 ·w∗

2 · · ·w∗
d

w∗
i

= 0, i = 1,2, . . . ,d . (3.35)

Proof. This set of equations is obtained by setting the gradient of the objective of (3.33) to

0.

The optimality conditions imply the following useful result.

Corollary 37. Let w∗ be an optimal solution of (3.33). Then, we have:

w∗
i (|zi |−w∗

i) = w∗
j (|z j |−w∗

j), ∀i , j = 1,2, . . . ,d . (3.36)

By fixing the value of w∗
1 and solving the quadratic equation (3.36) for w∗

i , i = 2, . . . ,d , we find

that

w∗
i = 1

2

(
|zi |±

√
|zi |2 −4w∗

1 (|z1|−w∗
1)

)
. (3.37)

For i = 2, . . . ,d −1, we will argue that the + sign is the only possibility in equation (3.37). For

i = d , the choice of sign is not clear, and we instead write

w∗
d = |zd |−λw∗

1 ·w∗
2 · · ·w∗

d−1 (3.38)

as given by equation (3.35) with i = d . Hence, solution variables w∗
i , i = 2, . . . ,d can all be

expressed only in term of the solution variable w∗
1 . The problem hence boils down to finding

w∗
1 . To this end, we again use equation (3.35) using i = 1 so that w∗

1 is a solution of the

following nonlinear equation

w∗
1 = |z1|−λw∗

2 (w∗
1) ·w∗

3 (w∗
1) · · ·w∗

d (w∗
1), (3.39)

where for i = 2, . . . ,d , w∗
i (w∗

1) is the value of w∗
i given w∗

1 as given in equations (3.37) and (3.38).

We now formulate all of this discussion properly.

Lemma 38 (Properties of solutions for (3.33)). Let w∗ be an optimal solution of (3.33) (such

that w∗ > 0). Then, the following hold:

56

3.2. 1-path-norm Regularization using Proximal Gradient Method

1. For any i = 1,2, . . . ,d −1, the element w∗
i satisfies that

1

2
|zi |+ 1

2

√
|zi |2 −|zd |2 ≤ w∗

i ≤ |zi |. (3.40)

2. For any i = 2, . . . ,d −1, the element w∗
i satisfies that

w∗
i = 1

2

(
|zi |+

√
|zi |2 −4w∗

1 (|z1|−w∗
1)

)
,

and

w∗
d = |zd |−λw∗

1 ·w∗
2 · · ·w∗

d−1.

3. It holds that

w∗
1 = |z1|− λ

2d−2

(
|zd |−

λ

2d−2
w∗

1

d−1∏
i=2

(
|zi |+

√
|zi |2 −4w∗

1 (|z1|−w∗
1)

))

·
d−1∏
i=2

(
|zi |+

√
|zi |2 −4w∗

1 (|z1|−w∗
1)

)
.

(3.41)

Lemma 38 suggests that candidates for an optimal solution of (3.33) can be found by finding

solutions w∗
1 of the nonlinear univariate equation (3.41) over a specific bounded interval

1
2 |z1| + 1

2

√
|z1|2 −|zd |2 ≤ w∗

1 ≤ |z1| (equation (3.40)). This is considered an easy task in op-

timization, e.g., using grid-search. Algorithm 8 is thus obtained by making the change of

variable β= w∗
1 − |z1|

2 .

Complexity of Algorithm 8: The first step in the procedure involves sorting the weights along

the path, and has complexity O (d logd). Although we do not theoretically bound the number

of solutions of equation (3.42), we empirically observe that this equation has a finite number

of solutions (at most 4 in practice), independently of the path’s depth. Since evaluating the

RHS of equation (3.42) takes time O (d), and since grid search can be trivially parallelized on

GPU, applying grid search over a bounded domain has the same complexity O (d). Overall, we

thus conclude that the total complexity of Algorithm 8 is O (d logd).

Heuristic extension to the general case: Stochastic regularization

We now leverage the single-path proximal mapping procedure derived in the previous section

to try to solve the general problem (3.15). We point out two crucial facts:

First, recalling equation (3.15), the regularizer has a finite sum structure,

P1(W) = ∑
s∈S

g (W [s]), g (w1, w2, . . . , wd) ≡
d∏

i=1
|wi | (3.43)

57

Chapter 3. Robustness to adversarial perturbation using regularization

Algorithm 8 Single path proximal operator

Input: Weights along the path z = (z1, . . . , zd) ∈Rd , regularization parameter λ≥ 0.
Output: proxλP1

(z)

1: π← argsort(|z|) in decreasing order.
2: z̃i ←|z|π(i)

3: Define fλ(z̃,β) ≡ 22−dλ
∏d−1

i=2

(
z̃i +

√
4β2 + z̃2

i − z̃2
1

)
4: Find the set B of values β satisfying:

β= z̃1

2
− z̃d fλ(z̃,β)− (2β+ z̃1) f 2

λ (z̃,β) (3.42)

subject to 1
2

√
z̃2

1 − z̃2
d ≤β≤ 1

2 z̃1

5: For each value of β, compute:

• wβ
1 ←β+ z̃1

2

• wβ

i ← 1
2 (z̃i +

√
z̃2

i −4wβ
1 (z̃1 −wβ

1)), i = 2, . . . ,d

• wβ← sign(z)¯π−1(wβ), where ¯ stands for element-wise multiplication

6: Compute the trivial candidate solution w0
i = 0 for i = argmink |zk |, w0

j = z j for j 6= i

7: Return w ∈ {wβ :β ∈ B}∪ {w0} achieving the smallest objective value in (3.32)

where for a path s = [s1, s2, . . . , sd+1], W [s] ≡ [W1(s2, s1),W2(s3, s2), . . . ,Wd (sd+1, sd)]. Hence,

even though there are exponentially many terms in the sum, it is possible to obtain a stochastic

estimate by sampling a random subset of paths.

Second, if two paths s, s′ do not share any variable we can compute the proximal mapping of

their sum g (W [s])+ g (W [s′]). This is achieved by applying the single-path proximal operator

independently for s and s′. This is valid for any number of paths not sharing any weight due to

the following known result.

Lemma 39. Let z(i) ∈ Rni and let z = [z(1), . . . ,z(k)] ∈ Rn1+···+nk . Suppose that f (z) = ∑
i fi (z(i))

for some functions fi :Rni →R. Then, prox f (z) = [prox f1
(z(1)), . . . ,prox fk

(z(k))].

This motivates the search for a stochastic estimator of the 1-path-norm, that is composed

of paths that do not share any variables. Such estimator would allow the application of the

single-path prox over multiple paths in the network. We hence need a distribution T over sets

of paths satisfying the following properties:

Assumption 40. Let T be a distribution over sets paths in S. Assume that

1. Unbiased estimation of the regularizer: T covers the set of paths evenly, in the sense that

for any two paths s, s′ ∈ S and T ∼T , p(s ∈ T) = p(s′ ∈ T). This implies that estimating

P1 stochastically using paths generated using T yields an unbiased estimator, i.e.,

P T
1 (W) ≡ |S|

|T |
∑
s∈T

g (W [s]) (3.44)

58

3.2. 1-path-norm Regularization using Proximal Gradient Method

is such that ET∼T P T
1 (W) = P1(W).

2. Non-overlapping paths: T only generates sets of independent paths, i.e., for any T ∼T ,

any two paths s, s′ ∈ T satisfy s ∩ s′ =;, meaning that they do not share any variable.

3. Constant size: T only generates sets of path with the same cardinality, i.e., ∃k ∈N∗ such

that T ∈P (Sk).

The third assumption is made to simplify the algorithm. To substantiate the above, let us

consider the following trivial example.

Example 41 (single-path sampler). Define the trivial sampler T0 ≡ Unif(S), i.e., it generates

sets of cardinality 1 containing a single path taken uniformly at random from S. It is easy to see

that this sampler satisfies all conditions of Assumption 40.

Obviously, we would like to use a sampler that generates as largest sets as possible. Before

developing an efficient path sampler T , let us describe the proposed optimization proce-

dure for solving (3.16) (Algorithm 9). The idea is to use the stochastic proximal gradient

descent, by replacing at each iteration the path-norm regularizer with a stochastic unbiased

estimate P T
1 , T ∼ T . A stochastic gradient update is then performed on the smooth term

1
N

∑N
i=1 L

(
fW(xi), yi

)
, and a proximal step is performed on the estimate of the non smooth

term λP1(W). The latter step is done by repeatedly using Algorithm 8 over the paths in the set

T . We call this algorithm Stochastic Gradient with Stochastic Prox (SGSP) and the pseudo-code

is presented in Algorithm 9.

Algorithm 9 SGSP

Input: Initial weight matrices W0, step size η> 0, regularization parameter λ> 0, path sampler

T satisfying Assumption 40

1: for k ≥ 1 do

2: Sample a Stochastic Gradient G̃k−1 of 1
N

∑N
i=1 L

(
fW(xi), yi

)
at W = Wk−1.

3: Wk− 1
2 ← Wk−1 −ηG̃k−1

4: Sample non-overlapping paths Tk ∼T

5: Wk ← prox
ληP

Tk
1

(Wk− 1
2)

This way of sampling paths avoids the situation where two or more paths share weights. In

such cases, the proximal mapping requires solving an optimization problem whose solution is

currently out of reach due to the complexity of the first-order conditions and the non-convexity

of the path-norm.

Intuitively, the use of a stochastic regularizer in Algorithm 9, and the use of stochastic gradients

in SGD, are solutions to a similar problem: the complexity of minimizing a sum with a large

number of terms. Algorithm 9 simultaneously avoids the complexity of computing the full

59

Chapter 3. Robustness to adversarial perturbation using regularization

gradient and the full proximal operator by using unbiased stochastic estimators using batches

smaller size.

Our stochastic regularization approach is also similar to randomized proximal coordinate

descent schemes (e.g., Lin et al. (2014); Fercoq and Richtárik (2015)), only that in our case,

there are no predetermined blocks (they change at each iteration according to the set Tk). In

this way, it is closely related to randomized Proximal Coordinate Descent schemes (e.g., Lin

et al. (2014); Fercoq and Richtárik (2015)).

We now turn to the task of providing a sampling mechanism to sample a large number of

non-overlapping paths satisfying Assumption 40, as obviously, the procedure in Example 41

would yield a poor estimator with large variance.

Sampling a large number of non-overlapping paths: This is crucial for the performance of

our training algorithm: (i) It determines the amount of weights that are regularized at each

iteration; and more importantly, (ii) It significantly affects the variance of the path-norm

estimator.

We first establish the maximal number of concurrent non-overlapping paths that can be

sampled. Here we identify a path with a sequence of integers corresponding to the indices of

the neurons that are traversed by the path.

Lemma 42. Two paths (s1, . . . , sd+1) and (s′1, . . . , s′d+1) are called non-overlapping if for all

0 ≤ i ≤ d, si = s′i implies si+1 6= s′i+1. Let T be a set of non-overlapping paths in a network

with layer sizes n1, . . . ,nd+1. It holds that |T | ≤ k? ≡ mind
i=1 ni ni+1.

In Algorithm 10, we implement a low-complexity procedure yielding a distribution Tmax

satisfying Assumption 40 generating sets of paths paths of maximum possible size k? (Theo-

rem 43). We only require that the set in line 7 of Algorithm 10 is non-empty, which can always

be achieved in practice by slightly increasing the layer sizes.

In summary, Algorithm 10 samples a uniform set of neurons at each layer in an indepen-

dent fashion, and connects them in a way that ensures the non-overlapping condition while

achieving the largest possible number of paths.

The complexity of Algorithm 10 is Õ (dk?). This is at most the complexity of a forward-pass

through the network and hence, can be called at each iteration of the training loop without

increasing the overall complexity. However, note that the main for loop can be executed in

parallel which can make the algorithm Õ (k?) in practice, if enough cores are available.

Theorem 43. Let Tmax denote the distribution over sets of paths generated by Algorithm 10.

Then, Tmax satisfies Assumption 40, and generates sets of paths with maximal cardinality

k? ≡ mini ni ni+1.

While appealing, we emphasize the heuristic nature of this approach. Although, recently,

60

3.2. 1-path-norm Regularization using Proximal Gradient Method

Algorithm 10 Maximal non-overlapping path sampler

Input: Layer sizes (n1, . . . ,nd+1), k? = mini ni ni+1

Output: A set of paths T ∼Tmax in the form of a matrix of dimensions (k?,d +1)

1: i?← argmin{ni ni+1 : i = 1, . . . ,d}
2: for i = 0, . . . , L do
3: if i ≡ i? (mod2) then
4: a ← ni?+1,b ← ni?

5: else
6: a ← ni? ,b ← ni?+1

7: r ← Uniform{U ⊆ [ni+1] : |U | = a} . uniformly random ordered subset
8: for 0 ≤ k ≤ b −1,0 ≤ j ≤ a −1 do
9: if i ≡ i? (mod2) then

10: M(j b +k, i) ← r j

11: else
12: M(ka + j , i) ← r j

Return M

some significant advances have been made in this regard (Xu et al., 2019a; Davis and Drusvy-

atskiy, 2019; Xu et al., 2019b; Metel and Takeda, 2019; Hallak et al., 2021; Tran-Dinh et al.,

2021), the stochastic Prox-Grad approach with the 1-path-norm regularizer is still without any

controllable guarantees.

Heuristic extension to the general case: Layer-wise proximal estimation

SGSP still suffers from the fact that not all weights in the network are regularized at each itera-

tion, given that only a few paths are sampled. We propose an alternative heuristic approach

for approximating the proximal operator of the full 1-path-norm regularizer P1. Recall that

the proximal operator of λP1 is given by

proxλP1
(Z) = argmin

W1,...,Wd

1

2

d∑
i=1

‖Wi −Zi‖2
F +λ1T |Wd ||Wd−1| · · · |W1|1. (3.45)

For some layer i , let us now fix the value of variables W j , j 6= i to W j = Z j , for all weights but

the i -th layer, and solve (3.45) only for Wi , i.e., denote

Φλi (Z) ≡ argmin
Wi

1

2
‖Wi −Zi‖2

F +λ1T |Zd | · · · |Zi+1||Wi ||Zi−1| · · · |Z1|1. (3.46)

The problem now becomes an easy convex problem with a closed form solution. Indeed,

the right term can be written as λTr(Mi |Wi |) where Mi := |Zi−1| · · · |Z1|11T |Zd | · · · |Zi+1|. Solv-

ing (3.46) is thus equivalent to solving a weighted `1-norm proximal operator, and its solution

is therefore given by the soft-thresholding operator:

Φλi (Z) = sign(Zi)¯max(|Zi |−λM T
i ,0). (3.47)

61

Chapter 3. Robustness to adversarial perturbation using regularization

where ¯ denotes element-wise multiplication. The structure of the regularizer makes it

possible to compute these values for each layer in a sequential manner, and the complexity is

equivalent to that of a forward-backward pass through the network.

Hence, the overall complexity of the training procedure given by Algorithm 11, named Heuristic

Layer-wise Proximal (HLP), remains the same as the automatic differentiation approach.

Complexity of Algorithms 9 and 11: In Algorithm 9, the complexity of each proximal step is

Õ (dk?), which is in general smaller than the complexity of computing one stochastic gradient

(even with batch-size 1). In Algorithm 11, computing the approximate proximal update can be

done efficiently with one additional forward pass over the network. Thus, it also enjoys the

same complexity as the gradient step. This makes the iterations of such algorithms comparable

to those of SGD/Adam, despite small speed differences that arise in practice due to a non-

optimized/non-compiled implementation on a high-level programming language (such as

Python).

Algorithm 11 HLP

Input: Initial weight matrices W0, step size η> 0, regularization parameter λ> 0

for k ≥ 1 do

Sample Stochastic Gradient ∇̃H(Wk−1)

Wk− 1
2 ← Wk−1 −η∇̃H(Wk−1)

for i = 1, . . . ,d do

Wk
i ←Φ

ηλ

i (Wk− 1
2)

3.2.5 Experiments

We now evaluate the empirical performance of using the 1-path norm proximal operator for

solving 1-path norm regularized problem. We first treat the case of 1-hidden layer networks,

for which the proximal operator can be exactly computed, and then proceed to the general

case of deep networks using the two proposed heuristics.

1-path norm regularization for shallow networks

The goals in this section are two-fold: (i) First, we empirically demonstrate that using proximal

updates yields a better optimizer than using auto-differentiation and (ii) We show that 1-path

norm regularization yields more robust models compared to the more classical `1-norm

regularization.

Experimental setup. Our benchmark datasets are MNIST (LeCun and Cortes, 2010), Fashion-

MNIST (Xiao et al., 2017b) and Kuzushiji-MNIST (Clanuwat et al., 2018). We train models on

these tasks by solving problem (3.20) using the cross-entropy loss. We compare the following

two optimizers: SGD, i.e., using the Pytorch auto-differentiation module on the non-smooth

62

3.2. 1-path-norm Regularization using Proximal Gradient Method

1-path norm term, and Prox-SGD (Algorithm 6). Both SGD and Prox-SGD are ran for 20

epochs using constant learning rate and with batch size set to 100. For each combination

of parameters, we train 6 single-layer networks with 100 hidden neurons using the default

random initialization.

In addition to the 1-path norm regularized problem, we introduce two baseline algorithms for

solving the classification task:

• Layer-wise regularization (Parseval Networks). We minimize the cross-entropy loss

with a hard constrain on the `∞-operator-norm of the weight matrices i.e., ‖W ‖∞ ≤
λ−1 and ‖V ‖∞ ≤ λ−1, as described by Cisse et al. (2017). The projection on such a

set is achieved by projecting each row of the matrices onto an `1-ball using efficient

algorithms (Duchi et al., 2008; Condat, 2016). This approach is meant to control the

product bound on the right hand side of equation (3.19), which also yields an upper

bound on the Lipschitz constant, although less tight than the 1-path norm.

• `1-regularization. We penalize the `1-norm of the parameters of the network, i.e.,

g (V ,W) = ‖vec(V)‖1+‖vec(W)‖1 and use the Prox-SGD method, given that the proximal

operator of the `1 norm is simply given by soft-thresholding. The `1-norm regularizer

provides an upper boud on the already loose product bound (Neyshabur et al., 2015, Eq.

(4)), which makes it less attractive as a regularizer for penalizing the Lipschitz constant.

Convergence of SGD vs Proximal-SGD. We first examine the ability of the optimizers to mini-

mize the regularized empirical loss. Due to the non-differentiability of the `1- and path-norm

regularizers, we expect Prox-SGD to converge faster, and to lower values of the regularized loss,

when compared to SGD. This is examined in Figure 3.7, where we plot the value of the loss

function across iterations. For both SGD and Prox-SGD, the loss function decays rapidly in the

first few epochs. We then enter a second regime where SGD suffers from slow convergence,

whereas Prox-SGD continues to reduce the loss at a fast rate. At the end of the 20-epochs,

Prox-SGD consistently achieves a lower value of the loss compared to SGD.

Robustness-Sparsity trade-off. Another advantage of Proximal-SGD over plain SGD is that

the proximal mappings of both the `1- and path-norm regularizers can set many weights to

exactly zero. In Figure 3.8 we plot the average error and robust test error obtained, as functions

of the sparsity of the network. Compared to `1 regularization, the sparsity pattern induced by

the 1-path-norm correlates with the robustness to a higher degree. As a drawback, it appears

that in more difficult datasets like KMNIST, the 1-path-norm struggles to obtain good accuracy

and sparsity simultaneously.

Robustness-Accuracy trade-off. Next, we examine the robustness-accuracy trade-off achieved

by 1-path norm regularization, and compare it with that achieved by `1-norm and layer-wise

regularizations. Any training procedure which promotes robustness of a classifier may de-

crease its accuracy, and this effect is consistently observed in practice (Tsipras et al., 2019).

63

Chapter 3. Robustness to adversarial perturbation using regularization

Figure 3.7 – value of regularized cross-entropy loss across iterations.

Figure 3.8 – Misclassification test error (left) and robust test error (right) as a function of the
percentage of nonzero weights.

Figure 3.9 – Misclassification test error (left) and robust test error (right) on the test set, as a
function of the regularization parameter λ.

Hence, the merits of a regularizer should be measured by how efficiently it can trade-off

accuracy for robustness.

Figure 3.9 shows the misclassification error on clean and adversarial examples as a function

of λ, and corresponds to the learning rate minimizing the error on clean samples. The

adversarial perturbations were obtained by PGD (Madry et al., 2018). We observe that for all

three regularization schemes, there exists choices of λ that attain the best possible error on

clean samples.

The error obtained by the `1 regularization degrades significantly. The layer-wise and 1-path-

norm regularization achieve a noticeably low error on adversarial examples. Comparing

the latter schemes, the 1-path-norm regularization shows only a slight advantage over the

layer-wise method.

1-path norm regularization for deep networks

We now turn to evaluating the performance of Prox-SGD for training deeper neural networks

with 1-path norm regularization.

Proximal Point Algorithm vs. Automatic Differentiation. We assess the benefits of a proximal-

64

3.2. 1-path-norm Regularization using Proximal Gradient Method

10
15

10
10

10
5

10
0

va
lu

e
step = 0.01 | depth = 3 step = 0.01 | depth = 4 step = 0.01 | depth = 5 step = 0.01 | depth = 6

10
1

10
3

iteration

10
15

10
10

10
5

10
0

va
lu

e

step = 0.1 | depth = 3

10
1

10
3

iteration

step = 0.1 | depth = 4

10
1

10
3

iteration

step = 0.1 | depth = 5

10
1

10
3

iteration

step = 0.1 | depth = 6

optimizer
SGD-const
SGD-decr
prox
Adam

Figure 3.10 – Value of the 1-path-norm of a single path as a function of iteration, for differ-
ent values of depth. Two step sizes and four different optimizers are considered, SGD with
either constant or decreasing step-size, Adam and the proximal point algorithm based on 8
(prox). 1000 repeated runs with random initialization were performed for each parameter
combination.

gradient approach in a synthetic scenario of a neural network with a single path fw(x) =
wdσ(· · ·σ(w1x)) with weights w = (w1, . . . , wd) ∈Rd . The loss function is set to be identically

zero i.e., L (fW(x), y) = 0, which allows us to test the effectiveness of our method in minimiz-

ing the non-convex non-smooth regularizer in isolation. In this setup, the proximal-gradient

scheme (Algorithm 9) with constant step-size η> 0 boils down to a non-convex version of the

proximal point algorithm:

w(k+1) = proxηP1
(w(k)). (3.48)

For different values of depth and step-size, we compare this algorithm against the auto-

differentiation alternative, using either SGD (with constant or decreasing step-size) or Adam (Kingma

and Ba, 2014). We observe that not only the proximal point iterations in (3.48) can achieve

the global minimum, equal to zero in this case, but they consistently outperform both SGD

and Adam (Figure 3.10). After a large number of iterations, SGD has still not converged and

achieves a suboptimal value. Adam is able to get to the global minimum but with orders of

magnitude more iterations compared to the proximal method.

Performance on networks composed of independent paths. We generate a synthetic dataset

with 100 elements (xi , yi) ∈R2 sampled as yi
i .i .d .∼ N (0,0.1), xi

i .i .d .∼ Unif[0,1]. We consider the

regression problem with quadratic loss, i.e., L (a,b) = (a−b)2 and 1-path-norm regularization,

as in (3.16). We use a neural network architecture composed of multiple non-ovelapping paths

and ELU activations. This architecture corresponds to an ensemble of models of the form

fw(x) = wdσ(· · ·σ(w1x)) with w ∈Rd .

In this setting SGSP (Algorithm 9) is precisely the Prox-SGD algorithm, given that we can

compute the true proximal operator by applying Algorithm 8 independently over each path.

65

Chapter 3. Robustness to adversarial perturbation using regularization

101 103

iteration
10 4

10 2

100

102

ob
je

ct
iv

e
va

lu
e

0 = 1e+01 | npaths = 1

101 103

iteration

0 = 1e+01 | npaths = 10

101 103

iteration

0 = 1e+01 | npaths = 20

101 103

iteration

0 = 1e+01 | npaths = 30

optimizer
Adam
prox
SGD

101 103

iteration

10 4

10 2

100

102

er
ro

r

0 = 1e+01 | npaths = 1

101 103

iteration

0 = 1e+01 | npaths = 10

101 103

iteration

0 = 1e+01 | npaths = 20

101 103

iteration

0 = 1e+01 | npaths = 30

optimizer
Adam
prox
SGD

Figure 3.11 – Mean Squared Error per iteration (`2-Regression) using a neural network archi-
tecture composed of npaths non-overlapping paths using different optimizers: Adam (blue,
solid), SGD (green, dotted) and 9 (SGSP) here labelled prox (orange, dashed). We plot the

results for the dataset yi
i .i .d .∼ N (0,0.1), xi

i .i .d .∼ Unif[0,1]. The top row shows the training error
while the bottom row shows the test error.

This scenario helps us illustrate the expected performance of the proximal approach in the

idealistic case where we have access to the full proximal operator of the network. We divide

the regularization parameter by the total number of paths in the network i.e., λ=λ0/
∏d+1

i=1 ni .

This way, a fixed value of the regularization parameter λ0 can be easily compared for varying

sizes of networks, as it effectively corresponds to regularizing the average 1-path-norm.

We plot the objective as a function of iteration in Figure 3.11. The proposed SGSP (here called

prox) outperforms SGD and Adam, and the difference is larger as we increase the size of

the network. It is also remarkable that the improvement in convergence speed is not only

appreciated for the training loss, but the test loss is also minimized faster using SGSP (bottom

row of Figure 3.11).

Performance on real datasets. We train 1-path-norm regularized neural networks on the

FashionMNIST Xiao et al. (2017a) and CIFAR10 Krizhevsky (2009) datasets, using SGSP (Algo-

rithm 9) and HLP (Algorithm 11) as well as automatic differentiation (SGD and Adam). We use

the cross-entropy loss, ELU activations, batch-size of 200 and train for 700K iterations.

Figure 3.12 summarizes the results. Both SGD/Adam and HLP show a slow speed of conver-

gence, and appear to get stuck at suboptimal values. In contrast, SGSP can attain much lower

values of the objective function for an appropriate choice of step size. The momentum/adap-

tivity of Adam are not useful in this case, i.e., automatic differentiation might not succeed for

1-path-norm regularization. We remark that larger stepsizes than those shown in the figure

resulted in divergence. The fact that HLP does not perform as well as SGSP, serves the purpose

of showing the hardness of coming up with good heuristics that workaround the lack of a

66

3.3. Bibliographic notes

full proximal operator.

101 103 105

iteration

102

104

106

ob
je

ct
iv

e
va

lu
e

0 = 1e+03 | lr = 1e-07

101 103 105

iteration

0 = 1e+03 | lr = 5e-07

101 103 105

iteration

0 = 1e+03 | lr = 1e-06

101 103 105

iteration

0 = 1e+03 | lr = 2e-06

optimizer
adam
SGSP
HLP
SGD

101 103 105

iteration

102

104

106

108

ob
je

ct
iv

e
va

lu
e

0 = 1e+03 | lr = 1e-07

101 103 105

iteration

0 = 1e+03 | lr = 2e-07

101 103 105

iteration

0 = 1e+03 | lr = 1e-06

101 103 105

iteration

0 = 1e+03 | lr = 5e-06

optimizer
adam
SGSP
HLP
SGD

Figure 3.12 – Comparing SGD (red-dashed/dot), Adam (blue-solid), 9 (SGSP, orange-dashed)
and 11 (HLP, green-dotted): Value of cross-entropy with average 1-path-norm regularization
(λ0 = 103), as a function of iteration, for different values of learning rate; larger learning rates
than that of the last column result in divergence. Six repeated runs with different random
splits of the training set were performed for each parameter combination. Architecture chosen
is a Fully Connected Network with 6 layers. FMNIST dataset (top) corresponds to a network
with layer sizes (28×28, 1000, 784, 1000, 784, 10). CIFAR10 (bottom) corresponds to a network
with layer sizes (3×32×32, 1000, 1536, 1000, 1536, 10).

Time per iteration. In Figure 3.12 we plot the error per iteration. As we showed, the complex-

ity per iteration of SGSP is equivalent to that of Adam/SGD. However, there might be slight

differences due to implementation or constants hidden by the asymptotic complexity analysis.

We compute the iterations-per-second of the algorithms: SGD: 6.92, Adam: 5.01, SGSP: 7.07,

HLP: 6.24. This shows that our algorithms are competitive, and that the plots on Figure 3.12

would only vary slightly if we change the x-axis to wall-clock time.

3.3 Bibliographic notes

In the work “Lipschitz Constant Estimation of Neural Networks via Sparse Polynomial Opti-

mization” (Section 3.1), the idea of expressing the Lipschitz constant computation as a POP

comes from Fabian Latorre. The candidate’s contribution to this work was the scaling of the

algorithm in the case of sparse networks (Section 3.1.4) as well as the numerical experiments.

In the part on 1-path norm regularization, the candidate contributed to all the results, in

collaboration with Nadav Hallak and Fabian Latorre.

67

4 Robustness to structured environ-
mental changes using causal feature
selection
In the two previous chapters, we developed robust methods by focusing on the trained model

itself. This was achieved by either perturbing the learner during training, or using explicit

regularization. In this chapter, we do not focus on the model training procedure, but rather on

the choice of variables that are used by the model in order to solve the desired task.

In the first part of this chapter, we introduce the framework of Causality, as well as its relation

to robustness based on the work of Bühlmann (2020). This motivates the importance of

knowing the right causal structure underlying the data generation. In the second part, we

propose an algorithm inferring the causal graph from observational data, in the case of non-

linear additive noise models.

4.1 Preliminaries: Causality and robustness

4.1.1 Causality and structural equation models

In classical Machine Learning tasks, we wish to answer questions such as: “If I observe X = x,

what do I expect the distribution of Y to be?” Such question can be answered by estimating the

conditional probability distribution Y |X = x. In Causality, we aim to answer different kinds

of questions, such as “If I observe (X ,Y) = (x, y) and that I change the value of X to x ′, what

do I expect the new distribution of Y to be?” Such question cannot be answered by simply

knowing the distribution Y |X , but requires to know more about the process underlying the

data generation.

Let us mention a concrete toy example, taken from (Peters et al., 2017). Suppose that we

observe the altitude A and temperature T of various cities. It is clear that these two variables

are correlated, and it is possible to infer from data the conditional distributions A|T as well as

T |A so that it becomes possible to approximately predict the temperature given the altitude

and vice versa (Figure 4.1). However, a more causal question would be “If the altitude of a city

was modified, what would happen to the temperature?” or similarly, “If the temperature of a

69

Chapter 4. Robustness to structured environmental changes using causal feature
selection

Figure 4.1 – Altitude vs temperature of different cities (Peters et al., 2017).

city was modified, what would happen to its altitude?” Such question requires us to describe

the origin of the correlation between A and T .

From physical insights, it is clear that a modification of the altitude would change the temper-

ature, and not vice versa. We hence say that A causes T . However, it is not clear how to arrive

to such conclusion only by looking at the data of Figure 4.1. Breaking the causal asymmetry

between variables is the topic of Causal Discovery, and will be discussed in the second part of

this chapter.

In order to characterize the causal relations among all variables, we need to understand how

the observed data have been generated in a first place. This is classically done by introducing

a so-called Structural Equation Model (SEM), which sequentially describes how each variable

is generated based on the already generated one:

Xi ← fi (pai (X),εi), (SEM)

where fi ’s are arbitrary functions, εi ’s are independent random variables and pai (X) selects

the coordinates of X which are parents of the node i in some graph. The corresponding

directed graph is called the causal graph, and describes what information is needed in order

to generate each variable. By construction, since the variables are generated sequentially, and

only once, the causal graph must be acyclic, and is hence a Directed Acyclic Graph (DAG).

The sign ← in (SEM) is to be understood as an assignment, so that the SEM describes a way

to generate data by sequentially assigning values to each variable. Each function fi hence

characterizes the distribution Xi |pai (X) which is to be understood as the causal mechanisms

relating the causes to the effect. In particular, if one would intervene on the value of a certain

variable Xi , then the SEM also describes the effect of such an intervention on the descendant

of the node i in the causal graph. On the other hand, the variables which are not descendent

70

4.1. Preliminaries: Causality and robustness

of the node i would not be affected by any intervention on Xi .

Going back to our example about the altitude and the temperature of cities, the corresponding

SEM would look like

A ← εA ,

T ← fT (A,εT),

and the causal graph would simply be A → T . The function fT (·,εT) describes the way altitude

affects the temperature.

4.1.2 Robustness via causal features selection

It turns out that knowing the causal relations between input and output variables can greatly

help in developing robust models. In this section, we present a connection between causal

feature selection and robustness, based on the work of Bühlmann (2020).

Recall that feasibility of problem (ROB) requires some similarity assumption between pdata and

ptest. In Chapter 2, we assumed that an adversary could perturb the environment within some

limited budget, while in Chapter 3 we considered that the input data could be directly modified

within some ball with limited radius. In this Chapter, we will assume that the distributions

share the same causal mechanisms.

Let S data and S test denote the Structural Equation Models associated with pdata and ptest

respectively. Each model describes the generation of the pair of variables (X ,Y) ∈Rd+1 in their

respective environment. Note that Y need not be an effect of variables in X , but can also be a

cause, in the sense that Y can be involved in the generation of some variables Xi in the SEMs.

At this point, the distributions pdata and ptest could be arbitrarily different. We now describe

the set P involved in (ROB) by making the following assumption on the similarity between

pdata and ptest:

Assumption 44. The structural equation for generating Y from paY (X) are the same in S data

and S test. That means, the causal graphs associated with S data and S test share the same edges

pointing towards Y , and the structural equation for generating Y

Y ← fY (paY (X),εY)

is the same in both models, i.e., the function fY and the random variable εY are the same.

Assumption 44 is known as the invariance of causal mechanisms. Instead of assuming small

unstructured deviation between pdata and ptest as was done in the previous chapters, we

instead assume here arbitrary large but structured differences. Under this assumption, we can

draw an interesting connection between causality and the solution of the associated robust

71

Chapter 4. Robustness to structured environmental changes using causal feature
selection

problem (ROB). Suppose that we perform linear regression using the quadratic loss. Let P inv

be the space of distribution ptest satisfying Assumption 44 with respect to pdata. Then, we have

b∗ = argmin
b∈Rd

max
ptest∈P inv

E(X ,Y)∼ptest [|Y −X b|2] = causal parameters,

meaning that supp(b∗) = paY (X). Hence, when performing linear regression with quadratic

loss, only using the causal parameters for Y leads to the most robust classifier in the worst-case

sense.

In the more general case, it can be shown that, under Assumption 44, we have

Y data|X data
Scausal

l aw= Y test|X test
Scausal

(4.1)

where the set of causal variables Scausal ≡ paY , and X
l aw= Y means that the random variables

X and Y follow the same distribution. Therefore, if we perfectly predict Y from XScausal in the

training environment, the prediction should perfectly translate into the test environment.

Note that the set of parameters Scausal may not be the only one satisfying the invariance

property (4.1). However, in cases where we know the causal graph, this gives a systematic way

to find a set of parameters satisfying such a property.

4.2 Causal discovery for non-linear additive models

In the previous section, we motivated the usefulness of knowing the process underlying the

data generation, as opposed to just knowing the joint probability distribution. It allows to pick

specific variables to be used for predictions, yielding strong robust properties. However, in

practice, we only have access to data sampled from a certain distribution, and we do not have

direct access to the causal graph. Therefore, we need a method for estimating the causal graph

underlying a certain distribution from samples.

This section is based on the paper Rolland et al. (2022) published at ICML 2022.

4.2.1 Introduction

We focus on causal discovery from purely observational data, i.e., finding a causal Directed

Acyclic Graph (DAG) underlying a distribution given samples from this distribution, i.e., from

observational data. In general, the problem of causal discovery from observational data is

ill-posed, since there may be several generative models SEM with various causal structures

that yield the same data distribution. Therefore, in order to make the problem well-posed, we

need to rely on extra assumptions on the generative process. A popular solution is to assume

that the noise injected during the generation of each variable is additive (see equation (4.2)). If,

in addition, the link functions are non-linear, it has been shown that such model is identifiable

from purely observational data (Peters et al., 2014).

72

4.2. Causal discovery for non-linear additive models

Many causal discovery algorithms maximize a suitable loss function over the set of DAGs. Un-

fortunately, solving such problem using classical loss functions is known to be NP-hard (Chick-

ering, 1996). Therefore, recent methods focused on heuristic approximations, e.g., 1) by

using a greedy approach (PC, FCI (Spirtes et al., 2000; Zhang, 2008), GES (Chickering, 2002),

CAM (Bühlmann et al., 2014) and others (Teyssier and Koller, 2012; Larranaga et al., 1996;

Singh and Valtorta, 1993; Cooper and Herskovits, 1992; Bouckaert, 1992)), 2) by expressing

the problem as a continuous non-convex optimization problem and applying first-order op-

timization methods (GraNDAG (Lachapelle et al., 2019), NOTEARS (Zheng et al., 2018)), or

3) by using Reinforcement Learning methods (RL-BIC (Zhu et al., 2019), CORL (Wang et al.,

2021)).

There are two distinct aspects that make the search over DAGs difficult: the size of the set

of DAGs, which grows super-exponentially with the number of nodes, and the acyclicity

constraint. In order to reduce the impact of these two difficulties, approaches called order-

based methods (Teyssier and Koller, 2012) tackle the problem in two phases. First, we find a

certain topological ordering of the nodes, such that a node in the ordering can be a parent only

of the nodes appearing after it in this ordering. This constrains the DAG to be a subgraph of

the fully connected DAG having such a topological order. Then, the graph is pruned in order to

remove spurious edges, e.g., by using sparse regression (Bühlmann et al., 2014). While the first

step still requires to solve a combinatorial problem, the set of permutations is much smaller

than the set of DAGs. Moreover, once a topological order is fixed, the acyclicity constraint is

naturally enforced, making the pruning step easier to solve.

The algorithm that we propose is an order-based method, where the topological order is

estimated based on an approximation of the score of the data distribution. The score of a

distribution with a differentiable probability density p(x) is defined as the map ∇ log p(x).1

We show that for a non-linear additive Gaussian noise model, it is possible to identify leaves of

the causal graph by analysing the score of the associated data distribution. By sequentially

identifying the leaves of the causal graph, and removing the identified leaf variables, one can

obtain a complete topological order, since any reverted sequence of leaves gives a topological

order. Classical pruning techniques can then be used in order to obtain the final graph. While

the proposed algorithm is designed for additive Gaussian noise models, we show that the

main required ingredient for our method to work is the additive structure of the model, rather

than the noise type. Hence, we expect similar methods to also be applicable to other types of

noise (i.e, non-Gaussian).

In order to approximate the score of the data distribution from a sample, we exploit and extend

recent work on score matching and density gradient estimation (Li and Turner, 2017). Score

approximation methods from observational data have shown success in general machine

learning tasks such as generative (Song and Ermon, 2019) and discriminative models (Zimmer-

1The term score has been used in the causality literature with a different meaning. Classical works (Chickering,
2002) use this term referring to the objective of an optimization problem yielding the causal structure as solution.
In the present work, the term score means ∇ log p(x) as in the statistics literature (Wilks, 1962).

73

Chapter 4. Robustness to structured environmental changes using causal feature
selection

mann et al., 2021), leading to increased interest in developing scalable and efficient solutions.

In particular, score-based generative models have shown state-of-the-art performance for im-

age generation (Song and Ermon, 2019; Song et al., 2020b,a; Song and Ermon, 2020). As much

of the prior work on causal discovery approaches has focused on leveraging machine/deep

learning (Lachapelle et al., 2019; Zheng et al., 2018; Zhu et al., 2019; Wang et al., 2021) to

provide a tractable approximation to an NP-hard problem, our work is especially relevant to

bridge the gap between provably identifying the causal structure and leveraging advances in

deep generative models to scale to large sample sizes and high dimensions.

Hereafter, we summarize our contributions:

• We start by showing that, in the case of non-linear additive Gaussian noise model,

knowing the distribution’s score function is sufficient to recover the full causal graph,

and we provide a method for doing so. To the best of our knowledge, the link between

the score function and the causal graph structure established in Lemmata 45 and 46 is

not only useful, but also novel.

• We propose a method for estimating the score’s Jacobian over a set of observations,

exploiting and extending an existing method based on Stein’s identity, which can be

of independent interest. This method is then used to design a practical algorithm for

estimating the causal topological order.

• We finally evaluate our proposed algorithm on both synthetic and real world data and

show competitive results compared to state-of-the-art methods, while being signifi-

cantly faster (10× faster than CAM (Bühlmann et al., 2014) on 20 nodes graphs and 5×
faster than GraN-DAG (Lachapelle et al., 2019) on 50 nodes). We also show that our

method is robust to noise misspecification and works well when the additive noise is

non-Gaussian.

4.2.2 Related Work

Causal discovery for non-linear additive models. Many algorithms have been proposed in

the past few years for the specific problem studied in this work. GraN-DAG (Lachapelle et al.,

2019) aims to maximise the likelihood of the observed data under this model, and uses a

continous contraint for the acyclicity of the causal graph, proposed in (Zheng et al., 2018), in

order to use a continuous optimization method to find a first order stationary point of the

problem. CAM (Bühlmann et al., 2014) further assumes that the link functions fi in (4.2) also

have an additive structure. They first estimate a topological order by greedily maximizing the

data likelihood, and then prune the DAG using sparse regression techniques.

In the scope of linear additive models, (Ghoshal and Honorio, 2018) first proposed an approach

to provably recover, under some hypothesis on the noise variances, the causal graph in

polynomial time and sample complexity. Their approach can be seen as an order-based

method, where the ordering is estimated by sequentially identifying leaves based on an

74

4.2. Causal discovery for non-linear additive models

estimation of the precision matrix. In spirit, their method is closely related to ours. For

instance, if the link functions fi in (4.2) are all linear, then the score of the joint distribution of

X is given by s(x) =−Θx, whereΘ is the precision matrix. Hence, the score’s Jacobian, which is

used in our algorithm to identify the causal graph, can be seen as a non-linear generalization

of the precision matrix, which has shown success for identifying causal relations in linear

settings (Loh and Bühlmann, 2014).

While our work focuses on the identifiable non-linear additive Gaussian noise model, other

works target more general non-parametric model, but must then rely on different kinds

of assumptions such as faithfulness, restricted faithfulness or sparsest Markov representa-

tion (Spirtes et al., 2000; Raskutti and Uhler, 2018; Solus et al., 2021). These works apply

conditional independence tests, and learn a graph that matches the identified conditional

independence relations (Spirtes et al., 2000; Zhang, 2008).

Score estimation. In the scope of generative modelling (Song and Ermon, 2019), the score

function is learned by fitting a neural network minimizing the empirical Fisher divergence (Hyväri-

nen and Dayan, 2005). While performing well in practice, such method is quite computation-

ally expensive and requires tuning of several training parameters.

For our purpose, we chose to instead minimize the kernelized Stein discrepancy, since this

approach provides a close form solution, allowing fast estimation at all observations. In

practice, such method performs similarly as score matching while being much faster to

compute. Asymptotic consistency of the Stein gradient estimator, and its relation to score

matching were analyzed in (Barp et al., 2019) and (Zhou et al., 2020).

4.2.3 Preliminaries

Causal discovery for non-linear additive Gaussian noise models

Assume that a random variable X ∈Rd is generated using the following special case of (SEM):

Xi = fi (pai (X))+εi , (4.2)

i = 1, . . . ,d . The noise variables εi ∼ N (0,σ2
i) are jointly independent. The functions f j are

assumed to be twice continuously differentiable and non-linear in every component. That is,

if we denote the parents pa j (X) of X j by Xk1 , Xk2 , . . . , Xkl , then, for all a = 1, . . . , l , the function

f j (xk1 , . . . , xka−1 , ·, xka+1 , . . . , xkl) is assumed to be nonlinear for some xk1 , . . . , xka−1 , xka+1 , . . . , xkl ∈
Rl−1.

This model is known to be identifiable from observational data (Peters et al., 2014), meaning

that it is possible to recover the DAG underlying the generative model (4.2) from the knowledge

of the joint probability distribution of X . We aim to identify the causal graph from the score

function ∇ log p(x), which has a one-to-one correspondence with p(x). Hence, any model

identifiable from observational data will be identifiable from the knowledge of the data score

75

Chapter 4. Robustness to structured environmental changes using causal feature
selection

function.

Score matching

The goal of score matching is to learn the score function s(x) ≡ ∇ log p(x) of a distribution

with density p(x) given a sample {xk }k=1,...,n from p. We present here a method developed

by Li and Turner (2017) for estimating the score at the sample points, i.e., approximating

G ≡ (∇ log p(x1), . . . ,∇ log p(xn))T ∈Rn×d .

This estimator is based on the well known Stein identity (Stein, 1972), which states that for any

test function h :Rd →Rd ′
such that limx→∞ h(x)p(x) = 0, we have

Ep [h(x)∇ log p(x)T +∇h(x)] = 0, (4.3)

where ∇h(x) ≡ (∇h1(x), . . . ,∇hd ′(x))T ∈Rd ′×d .

By approximating the expectation in (4.3) with the empirical average, we obtain

− 1

n

n∑
k=1

h(xk)∇ log p(xk)T +err = 1

n

n∑
k=1

∇h(xk), (4.4)

where err is a random error term with mean zero, and which vanishes as n →∞ almost surely.

By denoting H = (h(x1), . . . ,h(xn)) ∈Rd ′×n and ∇h = 1
n

∑n
k=1∇h(xk), equation (4.4) reads

− 1

n
HG+err =∇h.

Hence, by using ridge regression and using the kernel trick, the Stein gradient estimator is

defined as:

Ĝ
Stein ≡ argmin

Ĝ

‖∇h+ 1

n
HĜ‖2

F + η

n2 ‖Ĝ‖2
F (4.5)

=−(K+ηI)−1〈∇,K〉, (4.6)

where K ≡ HT H, Ki j = κ(xi ,x j) ≡ h(xi)T h(x j), 〈∇,K〉 = nHT ∇h, 〈∇,K〉i j = ∑n
k=1∇xk

j
κ(xi ,xk)

and η≥ 0 is a regularization parameter. The estimator (4.6) hence gives an efficient way to

estimate the score function at every sample point. It requires the choice of a kernel κ that

satisfies Stein’s identity, such as the RBF kernel as shown in (Liu et al., 2016).

In the following section, we will exploit and extend this approach in order to obtain estimates of

the score’s Jacobian over the observations, which will be used in order to estimate a topological

order for the causal DAG.

76

4.2. Causal discovery for non-linear additive models

4.2.4 Causal discovery via score matching

We now show how to recover the causal graph from the score function ∇ log p(x) for a non-

linear additive model (4.2). We design our method in the case where the additive noise is

Gaussian, and then discuss extensions to other types of noise.

Deduce the causal graph from the score of the data distribution

Suppose that we have access to enough observational data coming from an additive Gaussian

noise model (4.2) so that we can accurately approximate the score function of the underlying

data distribution. In order to extract information about the graph structure from the score

function, let us write it in closed form for a model of the form (4.2). The associated probability

distribution is given by

p(x) =
d∏

i=1
p(xi |pai (x))

log p(x) =
d∑

i=1
log p(xi |pai (x))

=−1

2

d∑
i=1

(
xi − fi (pai (x))

σi

)2

− 1

2

d∑
i=1

log(2πσ2
i).

Thus, the score function s(x) ≡∇ log p(x) reads

s j (x) =−
x j − f j (pa j (x))

σ2
j

+ ∑
i∈children(j)

∂ fi

∂x j
(pai (x))

xi − fi (pai (x))

σ2
i

. (4.7)

An immediate observation from equation (4.7) is that, if j is a leaf, i.e., children(j) =;, then

s j (x) = − x j− f j (pa j (x))

σ2
j

. Since j ∉ pa j (x), we have that
∂s j (x)
∂x j

= − 1
σ2

j
, and hence, it holds that

VarX

(
∂s j (X)
∂x j

)
= 0. The following Lemma shows that this condition is also sufficient for j to be a

leaf, providing a way to provably identify a leaf of the graph from the knowledge of the Jacobian

of the score function.

Lemma 45. Let p be the probability density function of a random variable X defined via a

non-linear additive Gaussian noise model (4.2), and let s(x) =∇ log p(x) be the associated score

function. Then, ∀ j ∈ {1, . . . ,d}, we have:

1. j is a leaf ⇔∀x,
∂s j (x)
∂x j

= c, with c ∈R independent of x, i.e., VarX

[
∂s j (X)
∂x j

]
= 0.

2. If j is a leaf, i is a parent of j ⇔ s j (x) depends on xi , i.e., VarX

[
∂s j (X)
∂xi

]
6= 0.

Proof. (1) Equation (4.7) implies the "⇒" direction as described above.

77

Chapter 4. Robustness to structured environmental changes using causal feature
selection

We prove the other direction by contradiction. Suppose that j is not a leaf and that
∂s j (x)
∂x j

= c

∀x. We can thus write:

s j (x) = cx j + g (x− j),

where g (x− j) can depend on any variable but x j . By plugging equation (4.7) in s j , we get

f j (pa j (x))

σ2
j

+ ∑
i∈children(j)

∂ fi

∂x j
(pai (x))

xi − fi (pai (x))

σ2
i

=
(

c + 1

σ2
j

)
x j + g (x− j).

Let ic be a child of node j such that ∀i ∈ children(j), ic ∉ pai . Such a node always exist since j

is not a leaf, and it suffices to pick a child of j appearing at last in some topological order. We

then have

∂ fic

∂x j
(paic

(x))
xic − fic (paic

(x))

σ2
ic

− g (x− j) =
(

c + 1

σ2
j

)
x j −

f j (pa j (x))

σ2
j

− ∑
i∈children(j),i 6=ic

∂ fi

∂x j
(pai (x))

xi − fi (pai (x))

σ2
i

.

(4.8)

Now, due to the specific choice of ic , we have that the RHS of (4.8) does not depend on xic

(note that we are here speaking about functional dependence on variables, not statistical

dependence on a random variable). Hence, we have

∂

∂xic

(
∂ fic

∂x j
(paic

(x))
xic − fic (paic

(x))

σ2
ic

− g (x− j)

)
= 0 ⇒ ∂ fic

∂x j
=σ2

ic

∂g (x− j)

∂xic

.

Since g does not depend on x j , this means that
∂ fic
∂x j

does not depend on x j neither, implying

that fic is linear in x j , contradicting the non-linearity assumption.

(2) If j is a leaf, then, by equation (4.7), we have

s j (x) =−
x j − f j (pa j (x))

σ2
j

.

If i is not a parent of j , then
∂s j

∂xi
≡ 0, and hence we have VarX

[
∂s j (X)
∂xi

]
= 0. On the other hand,

if i is a parent of j , then we have
∂s j

∂xi
(x) = 1

σ2
j

∂ f j

∂xi
(pa j (x)). Moreover, since f j cannot be linear in

xi ,
∂ f j

∂xi
(pa j (x)) cannot be a constant, and hence VarX

[
∂s j (X)
∂xi

]
6= 0.

Lemma 45 shows that, for non-linear additive Gaussian noise models, leaf nodes (and only

leaf nodes) have the property that the associated diagonal element in the score’s Jacobian is a

78

4.2. Causal discovery for non-linear additive models

constant. This hence provides a way to identify a leaf of the causal graph from the knowledge

of the variance of the score’s Jacobian diagonal elements. By repeating this method and always

removing the identified leaves, we can estimate a full topological order. This procedure is

summarized in Algorithm 12. In the following section, we present a new approach, exploiting

Stein identities, to compute estimates of the score’s Jacobian over a set of samples.

Note that the use of empirical variance to identify identically 0 function
∂s j

∂x j
is not necessary.

However, we did not find any empirical benefit when using other deviation measures, such as

the average distance to the median for example.

DAG pruning. Once a topological order is estimated, the DAG becomes constrained to be

a sub-graph of a certain fully connected DAG. However, it is necessary to prune this fully

connected DAG to remove spurious edges. In theory, it would be possible to make use of the

learnt score for this purpose, by using property (2) of Lemma 45. However, more classical

methods such as CAM appears to perform better in practice. The idea behind CAM is to

assume that the link functions fi in (4.2) have an additive structure. We then fit a generalized

additive model (Hastie and Tibshirani, 1987) on each component and use hypothesis testing

for additive models (Marra and Wood, 2011) to decide upon existence of edges. For further

details about this pruning technique, please refer to the original paper (Bühlmann et al., 2014).

Algorithm 12 SCORE-matching causal order search

1: Input: Data matrix X ∈Rn×d .
2: Initialize π= [], nodes = {1, . . . ,d}
3: for k = 1, . . . ,d do
4: Estimate the diagonal part of the Jacobian of the score function snodes =∇ log pnodes

(e.g., using Algorithm 13).

5: Estimate V j = VarXnodes

[
∂s j (X)
∂x j

]
.

6: l ← nodes[argmin j V j]
7: π← [l ,π]
8: nodes ← nodes− {l }
9: Remove l-th column of X

10: Get the final DAG by pruning the full DAG associated with the topological order π.

Approximation of the score’s Jacobian

The Stein gradient estimator Ĝ
Stein

enables us to estimate the score function point-wise at

each of our sample points. However, in order to implement Algorithm 12, we need an estimate

of the Jacobian of the score at all samples, in order to estimate its variance. Since we do not

have a functional approximation of the score, we cannot use tricks such as auto-differentiation

in order to obtain higher order derivative approximations. In this section, we extend the idea

of Stein based estimator to obtain estimates for the score’s Jacobian.

For this purpose, we will use the second-order Stein identity (Diaconis et al., 2004; Zhu, 2021).

79

Chapter 4. Robustness to structured environmental changes using causal feature
selection

Assuming that p is twice differentiable, for any q :Rd →R such that limx→∞ q(x)p(x) = 0 and

such that E[∇2q(x)] exists, the second-order Stein identity states that

E[q(x)p(x)−1∇2p(x)] = E[∇2q(x)], (4.9)

which can be rewritten as

E[q(x)∇2 log p(x)] = E[∇2q(x)−q(x)∇ log p(x)∇ log p(x)T]. (4.10)

Recall that, in order to identify a leaf of the causal graph, we are only interested in estimating

the diagonal elements of the score’s Jacobian at the sample points, i.e.,

J ≡ (diag(∇2 log p(x1)), . . . ,diag(∇2 log p(xn)))T ∈ Rn×d . Using the diagonal part of the matrix

equation (4.10) for various test functions gathered in h :Rd →Rd ′
, we can write

E[h(x)diag(∇2 log p(x))T] = E[∇2
diagh(x)−h(x)diag((∇ log p(x)∇ log p(x)T))], (4.11)

where (∇2
diagh(x))i j = ∂2hi (x)

∂x2
j

. By approximating the expectations by empirical averages, we

obtain, similarly as in (4.4),

1

n

n∑
k=1

h(xk)diag(∇2 log p(xk))T +err = 1

n

n∑
k=1

(
∇2

diagh(xk)−h(xk)diag
(
∇ log p(xk)∇ log p(xk)T

))
(4.12)

with err
n→∞−→ 0 almost surely.

By denoting H = (h(x1), . . . ,h(xn)) ∈ Rd ′×n and ∇2
diagh ≡ 1

n

∑n
k=1∇2

diagh(xk), equation (4.12)

reads
1

n
HJ+err =∇2

diagh− 1

n
Hdiag(GGT).

By using the Stein gradient estimator for G, we define the Stein Hessian estimator as the ridge

regression solution of the previous equation, i.e.,

Ĵ
Stein ≡ argmin

Ĵ

∥∥∥∥ 1

n
HĴ+ 1

n
Hdiag

(
Ĝ

Stein
(
Ĝ

Stein
)T

)
−∇2

diagh

∥∥∥∥2

F
+ η

n2 ‖Ĵ‖2
F

=−diag

(
Ĝ

Stein
(
Ĝ

Stein
)T

)
+ (K+ηI)−1〈∇2

diag,K〉, (4.13)

where Ki j = κ(xi ,x j) ≡ h(xi)T h(x j), 〈∇2
diag,K〉 = nHT ∇2

diagh, 〈∇2
diag,K〉i j = ∑n

i=1
∂2κ(xi ,xk)
∂(xk

j)2 and

Ĝ
Stein

is defined in (4.6). The regularization parameter η lifts the eigenvalues of the same

80

4.2. Causal discovery for non-linear additive models

matrix K as in the Stein gradient estimator Ĝ
Stein

. We hence decide to use the same parameter

for both ridge regression problems.

Choice of kernel. Estimating the score’s Jacobian with the method above requires a choice of

kernel κ. A widely used kernel is the RBF kernel κs(x,y) = e−
‖x−y‖2

2
2s2 , which has one parameter

s called the bandwidth. This parameter can be estimated from the data to be fitted, using

the commonly used median heuristic, i.e., choosing s to be the median of the pairwise dis-

tances between vectors in X . This bandwidth estimation procedure even enjoys theoretical

convergence properties (Garreau et al., 2017). Note that, when using Algorithm 13 for causal

discovery in Algorithm 12, the kernel bandwidth is re-computed each time a node is removed

from the data matrix X .

Algorithm 13 Estimating the Jacobian of the score

1: Input: Data matrix X ∈Rn×d , regularisation parameter η> 0.
2: s ← median({‖xi −x j‖2 : i , j = 1, . . . ,n, xk = X [k, :]}).

3: Compute Ĵ
Stein

using RBF kernel κs , regularisation parameter η and data matrix X based
on (4.13).

Algorithm complexity. Estimating the topological order requires inverting d times an n ×n

kernel matrix, hence the complexity is O (dn3) (but could be improved using, e.g., Strassen’s

algorithm (Strassen, 1969)). Including the pruning step, the final complexity is hence O (dn3 +
dr (n,d)) where r (n,d) is the complexity of fitting a generalized additive model (Hastie and

Tibshirani, 1987) using n data points in d dimensions. In comparison, the complexity of CAM is

O (d 2r (n,d)). The total computational complexity of GraNDAG is not discussed in (Lachapelle

et al., 2019); it is difficult to specify it since it depends on the number of iterations used in the

Augmented Lagrangian method, which may depend on the dimension and number of samples.

However, GraNDAG is particularly slow due the computation of the acyclicity constraint at

each iteration, which requires computing the exponential of a d ×d matrix, taking O (d 3)

operations.

In practice, in our method, the time for estimating the topological order is much smaller than

the time for pruning it (30% of the total time for (d ,n) = (20,1000) and 5% of the total time for

(d ,n) = (50,1000)). In comparison, CAM spends most of the time estimating the topological

order (more than 95% of the total time in all tested scenari). Hence, we expect the dominant

term in SCORE’s time complexity to be dr (n,d), thus improving upon CAM’s complexity by

a factor of d . Moreover, in the case where n becomes very large, it is possible to use kernel

approximation methods to reduce the time complexity of our method (Si et al., 2014).

Extension to non-Gaussian additive noise models

In the previous section, we exploited the structure of the additive Gaussian noise model to

deduce the causal graph from the score function (4.2). Actually, the main ingredient required

in our analysis is the additive structure. Indeed, for any additive noise model (including

81

Chapter 4. Robustness to structured environmental changes using causal feature
selection

non-Gaussian noise), the score function has a similar structure as in (4.7).

Lemma 46. Suppose that the random variable X is generated from (4.2) where the noise vari-

ables εi are i.i.d. with smooth probability distribution function pε. Then, the score function s of

X is given by

s j (x) = d log pε

d x
(x j − f j (pa j (x)))− ∑

i∈children(j)

∂ fi

∂x j
(pai (x))

d log pε

d x
(xi − fi (pai (x))). (4.14)

Proof. The proof follows exactly the same lines as for showing the score decomposition (4.7)

for the Gaussian noise model.

The decomposition of the score’s components j into a common term d log pε

d x (x j − f j (pa j (x)))

and a term involving only the parents of the node j is hence characteristic of additive noise

models. Recall that our method identifies leaves by identifying non-linearity in the compo-

nents of the score. When the common term is linear in x j , as it is the case with Gaussian

noise, the second term is the only one carrying non-linearities, and the leaves can hence be

perfectly identified with this method (see Lemma 45). However, intuitively speaking, even

when the noise is non-Gaussian, i.e., when the common term carries non-linearities, the

second term still carries non-linearities proportionally to the number of parents of node j .

Hence, we may expect that the proposed algorithm can work in the more general case of

additive models, even when the noise is non-Gaussian. While this does not provide a formal

identifiability statement, we will show in the experimental section that SCORE outperforms

other state-of-the-art algorithms on non-Gaussian additive models.

4.2.5 Experiments

We now apply Algorithm 12 with Algorithm 13 as score estimator to synthetic and real-world

datasets and compare its performance to state-of-the-art methods, such as CAM (Bühlmann

et al., 2014), GraNDAG (Lachapelle et al., 2019), SELF (Cai et al., 2018) and GES (Chickering,

2002). Some other methods such as NOTEARS, PC or FCI are omitted since they perform

much worse (Bühlmann et al., 2014; Lachapelle et al., 2019).

Recent work (Reisach et al., 2021) warned about the fact that simulated data sometimes lead

to scenari where a topological order can simply be estimated by sorting the nodes variances.

In order to defend ourselves against this, we randomly generate the noise variances in the

generative model, and show that the estimated order when sorting the variance is much

worse than the one estimated by Algorithm 12. The code can be found in https://github.com/

paulrolland1307/SCORE/.

82

https://github.com/paulrolland1307/SCORE/
https://github.com/paulrolland1307/SCORE/

4.2. Causal discovery for non-linear additive models

2D toy example

Before we present the results on high dimensional data, let us first analyze how SCORE is

applied to a 2D toy problem. Consider the following simple example:

X1 ← ξ1

X2 ← f (X1)+ξ2,
(4.15)

where ξ1,ξ2
i .i .d∼ N (0,1) and f (x) = sin(x). The ground truth causal graph is hence X1 → X2.

We sample 1000 data points from this generative model, and obtain the dataset shown in

Figure (4.2). Since the model is given analytically, we can compute the score function and its

Jacobian exactly:

s(x) =
(
−x1 +cos(x1)(x2 − sin(x1))

−x2 + sin(x1)

)

∇s(x) =
(
−1− sin(x1)(x2 − sin(x1))+cos2(x1) cos(x1)

−x2 + sin(x1) −1

)

Notice the value −1 on the lower-right part of the Jacobian ∇s. This means that s2(x) is linear

in x2, which is a sign of X2 being a leaf that we want to identify in SCORE.

We can then estimate the score function from the data, using our Stein estimator, or other

ones. The estimator on the right of Figure (4.2) is actually obtained using the Score Matching

method of Hyvärinen and Dayan (2005), since it also provides out-of-samples estimates and

hence allows to nicely plot the estimator over the full domain.

Figure 4.2 – Left: 1000 samples from generative model (4.15). Middle: True data distribution
score function s. Right: Estimated score from the data s̃.

We can then compute Var(∇s(X)) both theoretically and empirically:

Var(∇s(X)) =
(

0.54 0.22

0.22 0

)
˜Var(∇s̃(X)) =

(
0.57 0.26

0.26 0.07

)
(4.16)

83

Chapter 4. Robustness to structured environmental changes using causal feature
selection

where ˜Var denotes the empirical estimator for the variance. While the estimated value for

Var
(
∂s2(x)
∂x2

)
is not exactly 0, it is still much smaller that Var

(
∂s1(x)
∂x1

)
. Hence, SCORE picks X2

as the first leaf, and thus outputs (1,2) as topological order. Then, applying CAM pruning

procedure, we fit a generalized additive model to predict X2 from X1, and we find that X1 is a

parent of X2. We hence recover the correct causal graph X1 → X2.

Synthetic data

We test our algorithm on synthetic data generated from a non-linear additive Gaussian noise

model (4.2). Mimicking (Lachapelle et al., 2019; Zhu et al., 2019), we generate the link functions

fi by sampling Gaussian processes with a unit bandwidth RBF kernel. The noise variances

σ2
i are independently sampled uniformly in [0.4,0.8]. The causal graph is generated using

the Erdös-Rényi model (Erdös and Rényi, 2011). For a fixed number of nodes d , we vary the

sparsity of the sampled graph by setting the average number of edges to be either d (ER1) or 4d

(ER4). Moreover, to test the robustness of the algorithm against noise type misspecification, we

also generate data with Laplace noise instead of Gaussian noise. Additional experiments, using

Gumbel noise and scale free graphs (Barabási and Albert, 1999) can be found in Appendix C.1.

For each method, we compute the structural Hamming distance (SHD) between the output

and the true causal graph, which counts the number of missing, falsely detected or reversed

edges, as well as the structural intervention distance (SID) (Peters and Bühlmann, 2015) which

counts the number of interventional distribution which would be miscalculated using the

chosen causal graph.

For all order-based causal discovery methods, we always apply the same pruning procedure,

i.e., CAM with the same cutoff parameter of 0.001. Moreover, we compute a quantity measuring

how well the topological order is estimated. For an ordering π, and a target adjacency matrix

A, we define the topological order divergence D top (π, A) as

D top (π, A) =
d∑

i=1

∑
j :πi>π j

Ai j .

If π is a correct topological order for A, then D top (π, A) = 0. Otherwise, D top (π, A) counts

the number of edges that cannot be recovered due to the choice of topological order. It

hence provides a lower bound on the SHD of the final algorithm (irrespective of the pruning

method). The results of the synthetic experiments are shown in Tables 4.1 to 4.6. The computed

quantities are averages over 10 independent runs.

We can see that, for sparser graphs (ER1), our method performs similarly as the best method

CAM. However, for denser graphs (ER4), our method performs better, and in particular seems

to estimate a better topological order, since the D top value is smaller. For 50 nodes graphs,

the two best methods are CAM and ours, which both perform similarly. Note that, in order to

run it within a reasonable time frame, we had to restrict the maximum number of neighbours,

84

4.2. Causal discovery for non-linear additive models

hence providing a sparsity prior to the algorithm, which fits the correct graph in this situation,

since sparse Erdös-Renyi graphs usually do not contain high degree nodes. Since we restricted

the number of neighbours in the graph, the order search in CAM does not yield a single

topological order, hence we could not compute D top in this setting. We also observe that the

topological ordering resulting from sorting the variances (VarSort) is much worse than using

the order-based methods (either CAM or SCORE), showing that finding a topological order for

the generated datasets is not a trivial task. Finally, we observe that our method is quite robust

to noise misspecification, since the accuracy remains very similar for Laplace noise.

In terms of running time (Table 4.7), we see that our method is significantly faster compared

to the other competitive algorithms CAM and GraN-DAG. Actually, in SCORE, most of the time

(95% for d = 50) is spent on pruning the final DAG.

Table 4.1 – Synthetic experiment for d = 10 with Gaussian noise

ER1 ER4
SHD SID D top (π, A) SHD SID D top (π, A)

SCORE (ours) 1.1±0.9 4.5±5.3 0.4±0.6 19.5±2.9 35.0±9.1 0.3±0.3
CAM 1.7±1.0 6.4±4.2 0.4±0.5 24.4±3.1 45.2±10.2 4.4±3.2

GraN-DAG 1.5±1.4 6.5±7.2 − 22.2±2.6 42.0±6.2 −
SELF 8.4±1.6 32.5±7.6 − 37.2±2.1 83.0±5.2 −
GES 7.8±2.7 32.5±13.6 − 34.3±3.0 78.9±6.0 −

VarSort − − 1.9±1.1 − − 9.7±3.1

Table 4.2 – Synthetic experiment for d = 20 with Gaussian noise

ER1 ER4
SHD SID D top (π, A) SHD SID D top (π, A)

SCORE (ours) 2.6±1.9 9.9±8.5 1.2±1.7 47.5±4.5 177.5±11.6 3.1±1.5
CAM 3.5±1.6 14.3±9.8 0.8±1.0 54.2±5.4 201.9±29.0 13.6±6.9

GraN-DAG 7.6±4.2 31.6±22.7 − 49.3±4.5 211.4±36.6 −
SELF 16.6±2.1 89.9±31.2 − 75.5±1.6 336.8±31.2 −
GES 17.7±3.8 77.3±30.5 − 67.4±6.1 322.9±21.7 −

VarSort − − 3.7±1.6 − − 18.3±6.7

Table 4.3 – Synthetic experiment for d = 50 with Gaussian noise

ER1 ER4
SHD SID D top (π, A) SHD SID D top (π, A)

SCORE (ours) 10.4±3.9 50.9±32.9 3.9±2.4 131.5±7.5 1262±110 16.3±6.1
CAM 8.3±2.9 53.7±31.9 − 140.8±5.5 1337±94 −

GraN-DAG 20.2±6.1 135.3±45.9 − 140.8±9.5 1432±110 −
SELF 45.4±3.5 326.6±74.3 − 192.7±3.2 2097±103 −
GES 50.5±4.2 233.5±60.8 − 182.9±7.3 2003±105 −

VarSort − − 8.8±3.0 − − 43.3±9.7

85

Chapter 4. Robustness to structured environmental changes using causal feature
selection

Table 4.4 – Synthetic experiment for d = 10 with Laplace noise

ER1 ER4
SHD SID D top (π, A) SHD SID D top (π, A)

SCORE (ours) 1.4±0.8 4.5±4.7 0.8±0.7 19.6±2.5 31.9±7.9 0.2±0.4
CAM 1.5±1.3 6.1±6.5 0.5±0.5 24.4±1.5 44.4±8.1 1.5±1.6

GraN-DAG 1.3±1.4 4.4±4.9 − 20.3±2.7 39.3±13.0 −
SELF 9.7±2.5 33.4±10.8 − 38.2±1.8 86.9±4.3 −
GES 8.9±2.2 28.3±12.0 − 33.7±2.3 78.9±7.4 −

VarSort − − 1.6±1.3 − − 7.2±2.3

Table 4.5 – Synthetic experiment for d = 20 with Laplace noise

ER1 ER4
SHD SID D top (π, A) SHD SID D top (π, A)

SCORE (ours) 1.6±1.2 6.8±11.4 0.5±0.9 48.0±4.0 199.8±21.4 4.9±1.8
CAM 2.3±1.4 10.0±7.0 0.3±0.5 52.4±3.9 208.7±17.5 11.6±7.9

GraN-DAG 4.9±2.1 27.5±13.2 − 48.2±3.8 198.3±42.8 −
SELF 16.4±3.6 87.5±32.3 − 77.4±2.2 349.5±19.0 −
GES 17.7±6.8 72.6±25.5 − 69.7±7.1 325.5±28.3 −

VarSort − − 3.4±2.0 − − 20.8±4.5

Table 4.6 – Synthetic experiment for d = 50 with Laplace noise

ER1 ER4
SHD SID D top (π, A) SHD SID D top (π, A)

SCORE (ours) 11.0±4.5 71.8±50.2 4.0±2.5 128.1±7.9 1384±131 19.8±3.5
CAM 10.1±3.4 66.1±47.9 − 134.6±7.2 1361±136 −

GraN-DAG 21.9±3.9 165.7±46.2 − 138.3±8.8 1603±166 −
SELF 42.4±2.9 361.4±112.5 − 191.4±2.9 2053±110 −
GES 52.4±7.7 292.2±105.9 − 182.5±7.2 2028±120 −

VarSort − − 8.1±4.2 − − 47.3±8.7

Table 4.7 – Run time (in seconds) comparison of the algorithms on ER1. The first row corre-
sponds to the time spent for finding the topological order in our method. (∗) In order to run
CAM on 50 nodes within a reasonable time, we had to use preliminary neighbour search while
restricting the maximum number of neighbours to 20 (Bühlmann et al., 2014).

d = 10 d = 20 d = 50
SCORE order 3.3±0.1 8.5±0.8 31±2.9

SCORE 6.3±0.2 32.7±6.7 257±17
CAM 30.1±3.7 313±80 1143±79(∗)

GraN-DAG 185±26 357±47 1410±73

Real data

We now compare the algorithms on a popular real-world dataset for causal discovery (Sachs

et al., 2005) (11 nodes, 17 edges and 853 observations), as well as the pseudo-real dataset

86

4.2. Causal discovery for non-linear additive models

sampled from SynTReN generator (Van den Bulcke et al., 2006) (Table 4.8). We can see that

on Sachs, our method matches the SHD of CAM while improving the SID. On the SynTReN

datasets, GraN-DAG seems to perform best, although the confidence intervals overlap.

Table 4.8 – Comparison of several algorithms on the real world dataset Sachs and 10 datasets
sampled from SynTReN.

Sachs SynTReN
SHD SID SHD SID

SCORE 12 45 36.2±4.7 193.4±60.2
CAM 12 55 40.5±6.8 152.3±48.0

GraN-DAG 13 47 34.0±8.5 161.7±53.4

87

5 Conclusion and future work

5.1 Summary of the thesis

In this dissertation, we focused on the training of robust models, i.e., models whose perfor-

mance do not drastically degrade when applied to environments differing from the one they

where trained in. The choice of method for a given task mainly depends on the two following

aspects:

• The desired robustness property: Robustness generally comes with a price on the

accuracy on the trained environment. This price usually increases with the number of

environments we wish to generalize to. Hence, it is important to wisely choose the space

P of test environments so that the resulting model still performs well in the training

environment.

• The available information to us for training. In addition to training data, we saw that

additional elements, such as knowledge of the causal structure, or access to different

environments or adversary, can help us in the training of robust models.

In each chapter, we study a specific robustness setup, and provide a method for solving the

resulting optimization problem (ROB).

Chapter 2 The first setup we study is the case where we have access to samples from the

distributions in P . In this setting, we propose to solve the min-max problem (ROB) directly

using a recent method for finding the mixed Nash equilibrium. This method relies on iterative

sampling steps that are implemented using the Unadjusted Langevin Algorithm, and we

provide an analysis of ULA in the log-concave scenario. We thus apply this method to the

training of a Reinforcement Learning agent, where the access to different test environments is

mimicked by introducing an adversarial agent perturbing the learner’s actions.

Chapter 3 We then consider the setup of adversarial robustness, i.e., we wish to train models

that are robust to any small change of the input. To this end, we identify a quantity, namely the

89

Chapter 5. Conclusion and future work

Lipschitz constant of the model, which quantifies how robust the model is to any adversarial

perturbation. We hence propose a method to upper bound this quantity for neural networks,

leading to a certificate for adversarial robustness. Then, for the purpose of training adver-

sarially robust neural networks, we propose to regularize the network using its 1-path-norm,

serving as a proxy for its Lipschitz constant. In order to solve the resulting regularized problem,

we provide a method for computing (or estimating in the case of deep networks) the proximal

mapping of the 1-path-norm.

Chapter 4 Finally, we motivate the use of causal features for training robust models. Indeed, it

has been shown that models using causal features only are robust to changes of environments

sharing the same causal structure and causal mechanisms. Therefore, identifying the causal

relations between the variables at hand seems of great importance for developing robust

models. We hence present an algorithm for identifying causal graphs in additive non-linear

Gaussian noise models from observational data, based on the approximation of the score of

the data distribution.

5.2 Directions for future work

5.2.1 Further analysis of DL-ULA

In DL-ULA (Algorithm 3), we use a projection step in order to control the sub-exponentiality

constant. It is an interesting question whether this step is actually required. What is needed in

the proof is a bound on the tail of the iterate distributions as in (2.11), so that we can apply

Lemma 9 as done in equation (2.21). Such a tail property can be obtained by bounding the

Poincaré constant of the iterate distributions. However, controlling the Poincaré constant of

the ULA iterates in the non-strongly log-concave setting appears to remain an open problem.

Moreover, DL-ULA mainly differs form the classical ULA by its choice of a multistage step size

decay. In particular, the step size in DL-ULA for unconstrained sampling (Algorithm 3) decays

as O (t−2/3), i.e., more rapidly than O (t−1/2) as commonly used in this setting. By applying a

similar analysis as Durmus et al. (2018a) to this new choice of step-size decay, we obtained

improved convergence guarantees compared to the same analysis using O (t−1/2) step size

decay. An interesting future direction is hence to extend other analyses of ULA using this

modified step size schedule to see whether we can obtain similar improvements.

5.2.2 Analysis of stochastic prox method for 1-path norm regularization

In the single hidden layer case, we developed an efficient method for computing the exact

proximal operator of the 1-path norm. However, in the case of deep networks, it seems that

computing the exact proximal mapping of the full 1-path norm is quite hard, and we instead

propose to compute the exact proximal mapping of an unbiased stochastic estimator of the

1-path norm. However, while intuitive, this method is not theoretically grounded, and a

90

5.2. Directions for future work

convergence analysis of such a method is still missing.

5.2.3 Extension of SCORE to other identifiable models

In theory, for any identifiable model, it is possible to recover the causal graph from the

knowledge of the data score function. In the case of non-linear additive Gaussian noise

models, we identified a simple condition to read the causal graph (or at least informations

about the leaves) from the score function (Lemma 45). In order to extend this approach to

other models, we need to design ways to link the score function to the causal graph associated

with the studied model. In particular, for additive non-Gaussian noise models, the score

decomposes in a similar way as for the additive Gaussian noise model (Lemma 46). Hence,

if we know the noise type, we should be able to find conditions for identifying the leaves,

similarly as in SCORE. Other extensions should include the use of interventional data, and

deal with the presence of hidden confounders, i.e., unobserved causal variables.

The main novelty of this work is that it links causal discovery with score estimation, which

became very popular recently due to the emergence and the great performance of score-

based generative models. Hence, several methods have been developed, and continue to

be improved, for estimating the score function of a distribution from data. The most used

algorithm for this task is Score Matching, together with several variants, which showed great

performance, even for very high dimensional data, e.g., high resolution images. We expect

this method to outperform our Stein estimator, especially in very high dimensions, where

kernel methods usually perform rather poorly. However, naively applying Score Matching to

our problem requires training d different neural networks, which would drastically affect the

scalability of the method. Nonetheless, the fitting problems to be solved are not completely

independent, since the score function of a distribution after removing a variable (a leaf in the

case of SCORE), shares some similarities with the score function of the original distributions.

Hence, we do not need to retrain a network from scratch after each leaf removal. There is

hence hope for applying Score Matching to our causal discovery method in a scalable way.

91

A Appendix for Chapter 2

A.1 Proofs of Section 2.2

A.1.1 Proof of Lemma 9

Before proving Lemma 9, we first prove some intermediate Lemmata.

Lemma 47. Let µ,ν be any two distributions. Then, ∀R > 0, we have

W2
2(µ,ν) ≤4R2‖µ−ν‖TV +2EX∼µ

[‖X ‖2
21{‖X ‖2>R}

]+2R2EX∼µ
[
1{‖X ‖2>R}

]
+2EY ∼ν

[‖Y ‖2
21{‖Y ‖2>R}

]+2R2EY ∼ν
[
1{‖Y ‖2>R}

]
,

where 1{‖X ‖2>R} is the indicator function of the set B(0,R)c = {x ∈Rd : ‖x‖2 > R}.

Proof. Let X ∼µ,Y ∼ ν. Recall that the W2-distance between probability measures µ and ν is

defined as

W2
2(µ,ν) = inf

γ∈Φ(µ,ν)
E(X ,Y)∼γ‖X −Y ‖2

2, (A.1)

where the minimization is over all probability measures γ that marginalize to µ,ν, namely,

γ(A×Rd) =µ(A), γ(Rd ×B) = ν(B), (A.2)

for any measurable sets A,B ⊆Rd . For a fixed such couplingγ, let us decompose the right-hand

side of (A.1) as

E‖X −Y ‖2
2 = E

[‖X −Y ‖2
21ER

]+E[
‖X −Y ‖2

21E c
R

]
, (A.3)

where 1ER stands for the indicator of the event ER = {‖X ‖2 ≤ R, ‖Y ‖2 ≤ R}. Above, E c
R is the

93

Appendix A. Appendix for Chapter 2

complement of ER . For the first expectation on the right-hand side above, we write that

E
[‖X −Y ‖2

21ER

]≤ 4R2E
[
1X 6=Y 1ER

]
≤ 4R2E[1X 6=Y]. (A.4)

For the second expectation on the right-hand side of (A.3), we write that

E
[
‖X −Y ‖2

21E c
R

]
≤ 2E

[
‖X ‖2

21E c
R

]
+2E

[
‖Y ‖2

21E c
R

]
. ((a +b)2 ≤ 2a2 +2b2) (A.5)

Let us in turn focus on, say, the first expectation on the right-hand side of (A.5). Since

1E c
R
= 1{‖X ‖2>R} +1{‖X ‖2≤R}1{‖Y ‖2>R},

we can write that

E
[
‖X ‖2

21E c
R

]
= E[‖X ‖2

21{‖X ‖2>R}
]+E[‖X ‖2

21{‖X ‖2≤R}1{‖Y ‖2>R}
]

≤ E[‖X ‖2
21{‖X ‖2>R}

]+R2E
[
1{‖Y ‖2>R}

]
. (A.6)

Bounding E
[
‖Y ‖2

21E c
R

]
similarly, we finally obtain

E‖X −Y ‖2
2 ≤4R2E[1X 6=Y]+2EX∼µ

[‖X ‖2
21{‖X ‖2>R}

]+2R2EX∼µ
[
1{‖X ‖2>R}

]
+2EY ∼ν

[‖Y ‖2
21{‖Y ‖2>R}

]+2R2EY ∼ν
[
1{‖Y ‖2>R}

]
We now use the fact that ‖µ−ν‖TV = minγ∈Φ(µ,ν)E(X ,Y)∼γ[1X 6=Y] (Gibbs and Su, 2002). Hence,

using γ∗ = argminγ∈Φ(µ,ν)E(X ,Y)∼γ[1X 6=Y], we have

W2
2(µ,]nu) ≤ E(X ,Y)∼γ∗‖X −Y ‖2

2

≤ 4R2‖µ−ν‖TV +2EX∼µ
[‖X ‖2

21{‖X ‖2>R}
]+2R2EX∼µ

[
1{‖X ‖2>R}

]
+2EY ∼ν

[‖Y ‖2
21{‖Y ‖2>R}

]+2R2EY ∼ν
[
1{‖Y ‖2>R}

]

Lemma. Let µ,ν be distributions both satisfying, for some c,C > 0 and R ≥C :

Pr(‖X ‖2 ≥ t) ≤ ce−
t
C , ∀t ≥ R. (A.7)

Then,

W2
2(µ,ν).R2‖µ−ν‖TV +R2e−

R
C . (A.8)

Proof. We start from the result of Lemma 47. The goal is then to bound the each term on the

94

A.1. Proofs of Section 2.2

right hand side using the tail property of log-concave distributions (Lemma 6).

First notice that ∫
‖x‖2>R

∫ ∞

0
1{‖x‖2≥z}zd zdµ(x) =

∫
‖x‖2>R

∫ ‖x‖2

0
zd zdµ(x)

= 1

2

∫
‖x‖2>R

‖x‖2
2dµ(x)

= 1

2
EX∼µ

[‖X ‖2
21{{‖X ‖2≥R}

]
.

We hence have

EX∼µ
[‖X ‖2

21{‖X ‖2>R}
]= 2

∫
‖x‖2>R

∫
z∈R

1{‖x‖2≥z}zd zdµ(x)

= 2
∫

z∈R
zd z

∫
‖x‖2≥max(R,z)

dµ(x)

= 2
∫

z∈R
z Pr[‖X ‖2 ≥ max(R, z)]d z

= 2Pr[‖X ‖2 ≥ R]
∫ R

0
zd z +2

∫ ∞

R
z Pr[‖X ‖2 ≥ z]d z

≤ cR2e−
R
C +2c

∫ ∞

R
ze−

z
C d z (see (A.7))

≤ c
(
R2 +2C R +2C 2)e−

R
C . (A.9)

As a direct consequence of (A.7), we also have

E[1{‖X ‖2>R}] = Pr[‖X ‖2 > R] ≤ ce−
R
C . (A.10)

Doing the same calculation for Y and replacing the terms in Lemma 47 provides the result.

A.1.2 Proof of Lemma 10

Lemma (W2-TV distances inequality). Let µ,ν be log-concave probability measures on Rd

satisfying Assumption 4 with (η, Mη). Then,

W2(µ,ν).

√
2d(d +1)

η2 +Mηmax

(
log

(
1

‖µ−ν‖TV

)
,1

)√‖µ−ν‖TV. (A.11)

Proof. Let us apply Lemma 9 using

R =C max

(
log

(
1

‖µ−ν‖TV

)
,1

)
.

95

Appendix A. Appendix for Chapter 2

With this choice of R, we have

e−
R
C ≤ ‖µ−ν‖TV. (A.12)

Thus, Lemma 9 gives

W2
2(µ,ν).C 2 max

(
log2

(
1

‖µ−ν‖TV

)
,1

)
‖µ−ν‖TV +C 2

(
1+max

(
log

(
1

‖µ−ν‖TV

)
,1

))2

‖µ−ν‖TV

.C 2 max

(
log2

(
1

‖µ−ν‖TV

)
,1

)
‖µ−ν‖TV. (A.13)

The result then follows from taking the square root of (A.13) and using C 2 = d(d+1)
η2 + Mη

according to Lemma 5.

A.1.3 Proof of Theorem 11

Theorem. Let µ∗ be a L-smooth log-concave distribution satisfying Assumption 4 with param-

eters η, Mη. For every k ≥ 0, let

nk = LdC 2
ηk2e3k (A.14)

γk = 1

Ld
e−2k (A.15)

τk =Cηk. (A.16)

Let µ̄k be the average distribution associated with the iterates of outer iteration k of DL-ULA

(Algorithm 3) using the parameters above, just before the projection step. Then, ∀ε> 0, we have:

• After N KL = Õ (Ld 3ε−
3
2) total iterations, we obtain KL(µ̄k ;µ∗) ≤ ε.

• After N TV = Õ (Ld 3ε−3) total iterations, we obtain ‖µ̄k −µ∗‖TV ≤ ε.

• After N W2 = Õ (Ld 9ε−6) total iterations, we obtain W2(µ̄k ,µ∗) ≤ ε log(1/ε).

Proof. The proof of convergence in TV distance is explained is Section 2.2.4. For KL divergence,

we use, as in Section 2.2.4, equation (2.14) and Lemma 9 to obtain

KL(µ̄k ;µ∗) ≤ W2
2(µ̂k−1,µ∗)

2γk nk
+Ldγk ≤ 2TV((µ̂k−1,µ∗))e−k +e−2k . e−2k .

96

A.1. Proofs of Section 2.2

Hence, after K KL = 1
2 log(1/ε) outer iterations, we obtain KL(µ̄k ;µ∗) . ε. Repeating the com-

putaiton of equation (2.25), this corresponds to a total number of iterations of N KL = Õ (Ld 3ε−
3
2).

Note that we bound KL(µ̄k ;µ∗) and not KL(µ̄k ;µ∗) because the projection step makes the KL

divergence blow up.

Finally, for W2 distance, we use equation (2.21) and obtain

W2
2(µ̂k ,µ∗).C 2

ηk2‖µ̂k −µ∗‖TV +C 2
ηk2e−k .C 2

ηk2e−k ,

i.e., W2(µ̂k ,µ∗).Cηke−k/2. Hence, after K W2 = 2log(Cη/ε) outer iterations, we obtain W(µ̄k ;µ∗).

ε log(1/ε). This corresponds to a total number of iterations of N W2 = Õ

(
Ld 3

(
Cη

ε

)6
)
= Õ

(
Ld 9ε−6

)
.

Lemma 48. Let {uk }k≥0 be a real sequence satisfying

uk+1 ≤C
(p

uk e−k/2 +e−k
)

for some constant C > 0, and u0 ≤ 1. Then, uk ≤ C ′e−k ∀k ≥ 0 for some constant C ′ > 0

depending only on C .

Proof. Define the sequence {vk }k≥0 as vk = ek−1uk for all k ≥ 0. We hence have

vk+1 = ek uk+1 ≤Cek/2puk +C =C
p

evk +C . (A.17)

Since the function f (x) = C
p

ex +C is strictly increasing, we have that vk ≤ wk where the

sequence {wk }k≥0 is defined as wk+1 =C
p

ewk +C . It is then easy to see that wk ≤W where

W is the only fixed point solution to the equation x =C
p

ex +C given by W = 1
2 (2C +C 2pe +√

(2C +C 2
p

e)−4C 2), and assuming that W ≥ 1.

We hence have

uk = e−k+1vk ≤ e−k+1wk ≤ e−k+1W =C ′e−k

for C ′ ≡ eW .

A.1.4 Proof of Lemma A.1.4

Lemma. LetΩ⊂Rd satisfy Assumption 12. Then ∀λ< r 2

8d 2 ,

W2
2(µλ,µ∗) ≤C 2

Ωd
p
λ (A.18)

for some scalar CΩ > 0 depending on D,r and ∆1.

97

Appendix A. Appendix for Chapter 2

Proof. A similar result has been shown in Brosse et al. (2017) (Proposition 5) for W1 distance,

and it is only a matter of trivial technicalities to extend their result to W2 distance. Since the

full proof requires to introduce several concepts that are out of the scope of this paper, we only

present the required modifications that allow us to extend the result from W1- to W2-distance.

Using Villani (2009), Theorem 6.15, we have:

W 2
2 (µλ,µ∗) ≤ 2

∫
Rd

‖x‖2
2|µ∗(x)−µλ(x)|d x = A+B (A.19)

where

A =
∫

K c
‖x‖2

2µλ(x)d x , B =
(

1−
∫

K e− f∫
Rd e− fλ

)∫
K
‖x‖2

2µ
∗(x)d x (A.20)

Following very closely the proof in Brosse et al. (2017) (equations 48 to 51), we can easily

obtain:

A ≤∆−1
1

d−1∑
i=0

d

r

√
πλ

2

d−i (
R2 +2R

√
λ(d − i +2)+λ(d − i +2)

)
. (A.21)

Therefore, for λ≤ r 2

2πd 2 ,

A ≤∆−1
1

p
2πλdr−1

(
R2 +2Rr

√
3

2dπ
+ r 2 3

2dπ

)
. (A.22)

Moreover, it is also shown in Brosse et al. (2017) (equations 17, 30, 42) that

(
1−

∫
K e− f∫
Rd e− fλ

)
≤

∆−1
1 2πλdr−1, which implies:

B ≤∆−1
1

p
2πλdr−1R2 (A.23)

We thus showed that W2(µλ,µ∗) ≤C
p

dλ
1
4 for some C > 0 depending on D,r,∆1.

98

A.1. Proofs of Section 2.2

A.1.5 Proof of Theorem 14

Theorem (Iteration complexity of DL-MYULA). Let Ω ⊂ Rd be a convex set satisfying As-

sumption 12 and µ∗ be a log-concave distribution given by (2.29) where f has a L-Lipschitz

continuous gradient. For every k ≥ 0, let

λk = 1
8d 2

r 2 +de2k
(A.24)

nk = Ldk2e5k (A.25)

γk = 1

Ld
e−4k (A.26)

τk = Dk (A.27)

Then, ∀ε> 0, we have:

• After N TV =O
(
d 3.5ε−5

)
total iterations, we obtain ‖µ̂K −µ∗‖TV ≤ ε.

• After N W2 = Õ
(
d 3.5ε−10

)
total iterations, we obtain W2(µ̂K ,µ∗). ε.

The proof of Theorem 14 is very similar to the one for DL-ULA. Before presenting it, we will

need an auxiliary Lemma, showing the light tail property of the distributions µλ.

Lemma 49. For λ≤ r 2

8d 2 , the distribution µλ as defined in equation (2.30) satisfies

PrX∼µλ(‖X ‖2 ≥ R) ≤σe−
R
D

for some scalar σ> 0 and any R > 0, where D is the diameter of the constraint setΩ.

Proof. Suppose first that R ≥ 2D . Then,

99

Appendix A. Appendix for Chapter 2

Pr
X∼µλ

[‖X ‖2 ≥ R] =
∫

B(0,R)c e− f (x)− 1
2λ ‖x−projΩ(x)‖2

2 dx∫
Ω e− f (x) dx+∫

Ωc e− f (x)− 1
2λ ‖x−projΩ(x)‖2

2 dx

≤∆1

∫
B(0,R)c e−

1
2λ (‖x‖2−D)2

dx

Vol(Ω)

≤∆1Vol(Ω)−1
∫ ∞

R
ud−1e−

1
2λ (u−D)2

du

=∆1Vol(Ω)−1dVol(B(0,1))
∫ ∞

R
ud−1e−

1
2λ (u−D)2

du

≤∆1d
Vol(B(0,1))

Vol(B(0,r))
Dd−1

∫ ∞

R−D
(u +D)d−1e−

1
2λu2

du

≤∆1d
1

r d

∫ ∞

R−D
(2u)d−1e−

1
2λu2

du since u ≥ R −D ≥ D

≤∆1d
1

r d
2d−1

∫ ∞
1

2λ (R−D)2
(2vλ)

d−1
2 e−v

√
λ

2v
du (v = 1

2λ
u2)

≤∆1d
2

3
2 d−3λ

d
2

r d
Γ

(
d

2
;

1

2λ
(R −D)2

)
where Γ(s; x) is the incomplete Gamma function

≤∆1d
2−3

d d

d

2

(
1

2λ
(R −D)2

) d
2

e−
1

2λ (R−D)2
since for x ≥ s, Γ(s; x) ≤ sxse−x , λ≤ r 2

8d 2

≤
(
∆

1
d2

1 2
−4
d2 d

2
d2

(
(R −D)2

2λd 2

) 1
2d

e−
1

2λd2 (R−D)2

)d 2

≤
(
cd e−

1p
2λd

(R−D)
)d 2

since xe−x2 ≤ e−x ∀x ≥ 0 and
1

2λd 2 (R −D)2 ≥ 1

where in the last line, cd =∆
1

d2

1 2
−4
d2 d

2
d2 . If cd e−

p
1

2λ
d (R−D) ≥ 1, then, this does not provide a useful

bound, and we can always write PrX∼µλ [‖X ‖2 ≥ R] ≤ 1 ≤ cd e−
p

1
2λ

d (R−D). On the other hand, if

cd e−
p

1
2λ

d (R−D) ≤ 1, then we have PrX∼µλ [‖X ‖2 ≥ R] ≤
(

cd e−
p

1
2λ

d (R−D)

)d 2

≤ cd e−
p

1
2λ

d (R−D).

Therefore, we can write:

Pr
X∼µλ

[‖X ‖2 ≥ R] ≤ cd e−
p

1
2λ

d (R−D)

≤ cd e−2(R
D −1) since λ≤ r 2

8d 2 ≤ D2

8d 2

≤ max(1,cd)e2e−
R
D .

Moreover, in the case R ≤ 2D, we have max(1,cd)e2e−
R
D ≥ 1 ≥ PrX∼µλ [‖X ‖2 ≥ R]. We thus

showed the result with σ= max(1,cd)e2. Note that although cd depends on d , it is bounded

100

A.1. Proofs of Section 2.2

and converges to 1 as d →∞, thus it does not involve any asymptotic dependence in d .

Using this Lemma, we can now prove our convergence result for DL-MYULA (Theorem 14).

Proof of Theorem 14. Let us denote µk ≡µλk the target distributions of the ULA iterations at

outer iteration k ≥ 1, and µi ni t the initial distribution. It is straightforward to show that the

distributions µk are Lk -smooth with Lk = L+ 1
λk

.

The proof then goes exactly the same way as for Theorem 11. We will show a similar recursive

inequality for ‖µ̄k −µk‖TV as in (2.24).

For any k ≥ 1, we have:

‖µ̄k+1 −µk+1‖TV ≤√
2KL(µ̄k+1;µk+1) (Pinsker’s inequality)

≤
√

W 2
2 (µ̂k ,µk+1)

γk nk
+2Lk+1dγk

≤ W2(µ̂k ,µk+1)p
γk nk

+
√

2Lk+1dγk

≤ W2(µ̂k ,µk)p
γk nk

+ W2(µk ,µ∗)p
γk nk

+ W2(µk+1,µ∗)p
γk nk

+
√

2Lk+1dγk (A.28)

For the second and third term, we use Lemma A.1.4 and the fact that λk ≤ d−1e−2k to show

that ∀k ≥ 1,

W2(µk ,µ∗) ≤CΩd
1
4 e−

k
2 (A.29)

For the first term, we use the fact that PrX∼µ̂k−1 (‖X ‖2 ≥ Dk) = 0 thanks to the projection step,

and Lemma 49 to apply Lemma 9 with R = Dk. We hence obtain

W 2
2 (µ̂k ,µk).D2k2‖µ̂k−1 −µk−1‖TV +D2k2e−k . (A.30)

Moreover, similarly as for DL-ULA, we use Lemma 49 to show that

‖µ̂k −µk‖TV . 2‖µ̄k −µk‖TV +e−k (A.31)

By replacing (A.29), (A.30) and (A.31) in (A.28), we obtain the following recursive inequality:

‖µ̄k+1 −µk+1‖TV .
√‖µ̄k −µk‖TVe−k/2 +

√
Lk+1dγk (A.32)

Using the definitions of nk ,γk ,λk , and noting that Lk+1dγk =
(
1+ 8d 2

Lr 2

)
e−4k + d

L e−2k , we hence

101

Appendix A. Appendix for Chapter 2

obtain

‖µ̄k+1 −µk+1‖TV .
√‖µ̄k −µk‖TVe−k/2 +

√
d

L
e−k +

√
1+ 8d 2

Lr 2 e−2k (A.33)

Using Lemma 50, this sequence hence satisfies

‖µ̄k+1 −µk+1‖TV .
p

de−k +de−2k .

Using the result from (Brosse et al., 2017) that ‖µλ−µ∗‖TV . d
p
λ, and using the triangle

inequality for the TV distance, we have

‖µ̄k+1 −µ∗‖TV .
p

de−k +de−2k .

since
p
λ≤ d−1e−2k . Hence, for ε> 0, after K = log(

p
d/ε) outer iteration of DL-MYULA, we

have ‖µ̄k −µ∗‖TV . ε. This corresponds to a total number of iterations of

N TV =
K∑

k=1
nk =

K∑
k=1

Ldk2e5k ∝ LdK 2e5K = Ld 3.5 log2(
p

d/ε)ε−5. (A.34)

The complexity can equivalently be computed for W2.

Lemma 50. Let {uk }k≥0 be a real sequence satisfying

uk+1 ≤C
(p

uk e−k/2 +
p

de−k +de−2k
)

(A.35)

for some constants C ,d > 0, and u0 ≤ 1. Then, uk+1 ≤ C ′(
p

de−k +de−2k) ∀k ≥ 0 for some

constant C ′ > 0 depending only on C .

Proof. We prove this result by induction. Let us pick a constant C ′ satisfying C (1+
p

2e2C ′) ≤C ′,
i.e., C ′ = O (C 2). We show by induction on k that uk+1 ≤ C ′(

p
de−k +de−2k). Suppose that

uk ≤C ′(
p

de−k+1 +de−2k+2). Then, applying equation (A.35), we have

102

A.2. Appendix for Section 2.3

uk+1 ≤C
(p

uk e−k/2 +
p

de−k +de−2k
)

≤C

(√
C ′(

p
de−k+1 +de−2k+2)e−k/2 +

p
de−k +de−2k

)
=C

(√
C ′(

p
de +de−k+2)e−k +

p
de−k +de−2k

)
≤C

(p
d(1+

√
2e2C ′)e−k +de−2k

)
≤C ′(

p
de−k +de−2k).

The property naturally holds for k = 0 since u0 ≤ 1 <C ′.

A.2 Appendix for Section 2.3

Table A.1 – Common hyperparameters for Algorithm 14 and Algorithm 15, where most of the
values are chosen from Dhariwal et al. (2017).

Hyperparameter Value

critic optimizer Adam
critic learning rate 10−3

target update rate τ 0.999
mini-batch size N 128
discount factor γ 0.99
damping factor β 0.9
replay buffer size 106

action noise parameter σ {0,0.01,0.1,0.2,0.3,0.4}
RMSProp parameter α 0.999
RMSProp parameter ε 10−8

RMSProp parameter η 10−4

thermal noise σt (Algorithm 14) σ0 × (1−5×10−5)t , where σ0 ∈
{
10−2,10−3,10−4,10−5

}
warmup steps Kt (Algorithm 14) min{15,b(1+10−5)t c}

103

Appendix A. Appendix for Chapter 2

Table A.2 – Exploration-related hyperparameters for Algorithm 14 and Algorithm 15 chosen
via grid search (for NR-MDP setting with δ= 0.1).

Alg. 14: (σ0,σ) Alg. 15 (with GAD): σ Alg. 15 (with Extra-Adam): σ

Walker-v2 (10−2,0.01) 0 0.3
HalfCheetah-v2 (10−2,0) 0.2 0.01
Hopper-v2 (10−3,0.2) 0.2 0.3
Ant-v2 (10−4,0.2) 0.4 0.01
Swimmer-v2 (10−5,0.4) 0.4 0.4
Reacher-v2 (10−3,0.2) 0.4 0.2
Humanoid-v2 (10−4,0.01) 0 0.01
InvertedPendulum-v2 (10−3,0.01) 0.1 0.01

104

A.2. Appendix for Section 2.3

Algorithm 14 DDPG with MixedNE-LD (pre-conditioner = RMSProp)

Hyperparameters: see Table A.1
Initialize (randomly) policy parameters ω1,θ1, and Q-function parameter φ.
Initialize the target network parameters ωtarg ←ω1, θtarg ← θ1, and φtarg ←φ.
Initialize replay buffer D.
Initialize m ← 0 ; m′ ← 0.
t ← 1.
repeat

Observe state s, and select actions a =µθt (s)+ξ ; a′ = νωt (s)+ξ′, where ξ,ξ′ ∼N (0,σI)
Execute the action ā = (1−δ)a +δa′ in the environment.
Observe reward r , next state s′, and done signal d to indicate whether s′ is terminal.
Store

(
s, ā,r, s′,d

)
in replay buffer D.

If s′ is terminal, reset the environment state.
if it’s time to update then

for however many updates do
ω̄t ,ω(1)

t ←ωt ; θ̄t ,θ(1)
t ← θt

for k = 1,2, . . . ,Kt do
Sample a random minibatch of N transitions B = {(

s, ā,r, s′,d
)}

from D.

Compute targets y
(
r, s′,d

)= r +γ (1−d)Qφtarg

(
s′, (1−δ)µθtarg

(
s′

)+δνωtarg

(
s′

))
.

Update critic by one step of (preconditioned) gradient descent using ∇φL
(
φ

)
,

where

L
(
φ

) = 1

N

∑
(s,ā,r,s′,d)∈B

(
y

(
r, s′,d

)−Qφ (s, ā)
)2 .

Compute the (agent and adversary) policy gradient estimates:

á∇θ J (θ,ωt) = 1−δ
N

∑
s∈D

∇θµθ (s)∇āQφ (s, ā) |ā=(1−δ)µθ(s)+δνωt (s)

á∇ω J (θt ,ω) = δ

N

∑
s∈D

∇ωνω (s)∇āQφ (s, ā) |ā=(1−δ)µθt (s)+δνω(s).

g ←
[á∇θ J (θ,ωt)

]
θ=θ(k)

t

; m ←αm + (1−α) g ¯ g ; C ← diag
(p

m +ε)
θ(k+1)

t ← θ(k)
t +ηC−1g +√

2ησtC− 1
2 ξ, where ξ∼N (0, I)

g ′ ←
[á∇ω J (θt ,ω)

]
ω=ω(k)

t

; m′ ←αm′+ (1−α) g ′¯ g ′ ; D ← diag
(p

m′+ε
)

ω(k+1)
t ←ω(k)

t −ηD−1g ′+√
2ησt D− 1

2 ξ′, where ξ′ ∼N (0, I)

ω̄t ←
(
1−β)

ω̄t +βω(k+1)
t ; θ̄t ←

(
1−β)

θ̄t +βθ(k+1)
t

Update the target networks:

φtarg ← τφtarg + (1−τ)φ

θtarg ← τθtarg + (1−τ)θ(k+1)
t

ωtarg ← τωtarg + (1−τ)ω(k+1)
t

ωt+1 ←
(
1−β)

ωt +βω̄t ; θt+1 ←
(
1−β)

θt +βθ̄t

t ← t +1.
until convergence
Output: ωT , θT .

105

Appendix A. Appendix for Chapter 2

Algorithm 15 DDPG with GAD (pre-conditioner = RMSProp) / Extra-Adam

Hyperparameters: see Table A.1
Initialize (randomly) policy parameters ω1,θ1, and Q-function parameter φ.
Initialize the target network parameters ωtarg ←ω1, θtarg ← θ1, and φtarg ←φ.
Initialize replay buffer D.
Initialize m ← 0 ; m′ ← 0.
t ← 1.
repeat

Observe state s, and select actions a =µθt (s)+ξ ; a′ = νωt (s)+ξ′, where ξ,ξ′ ∼N (0,σI)
Execute the action ā = (1−δ)a +δa′ in the environment.
Observe reward r , next state s′, and done signal d to indicate whether s′ is terminal.
Store

(
s, ā,r, s′,d

)
in replay buffer D.

If s′ is terminal, reset the environment state.
if it’s time to update then

for however many updates do
Sample a random minibatch of N transitions B = {(

s, ā,r, s′,d
)}

from D.

Compute targets y
(
r, s′,d

)= r +γ (1−d)Qφtarg

(
s′, (1−δ)µθtarg

(
s′

)+δνωtarg

(
s′

))
.

Update critic by one step of (preconditioned) gradient descent using ∇φL
(
φ

)
,

where

L
(
φ

) = 1

N

∑
(s,ā,r,s′,d)∈B

(
y
(
r, s′,d

)−Qφ (s, ā)
)2 .

Compute the (agent and adversary) policy gradient estimates:

á∇θ J (θ,ωt) = 1−δ
N

∑
s∈D

∇θµθ (s)∇āQφ (s, ā) |ā=(1−δ)µθ(s)+δνωt (s)

á∇ω J (θt ,ω) = δ

N

∑
s∈D

∇ωνω (s)∇āQφ (s, ā) |ā=(1−δ)µθt (s)+δνω(s).

GAD (pre-conditioner = RMSProp):

g ←
[á∇θ J (θ,ωt)

]
θ=θt

; m ←αm + (1−α) g ¯ g ; C ← diag
(p

m +ε)
θt+1 ← θt +ηC−1g

g ′ ←
[á∇ω J (θt ,ω)

]
ω=ωt

; m′ ←αm′+ (1−α) g ′¯ g ′ ; D ← diag
(p

m′+ε
)

ωt+1 ←ωt −ηD−1g ′

Extra-Adam: use Algorithm 4 from Gidel et al. (2018).
Update the target networks:

φtarg ← τφtarg + (1−τ)φ

θtarg ← τθtarg + (1−τ)θt+1

ωtarg ← τωtarg + (1−τ)ωt+1

t ← t +1.
until convergence
Output: ωT , θT .

106

B Appendix for Chapter 3

B.1 Proofs of Section 3.1

B.1.1 Proof of Theorem 15

Theorem. Let f be a differentiable and Lipschitz continuous function on an open, convex

subset X of a Euclidean space. Let ‖ ·‖ be the dual norm. The Lipschitz constant of f is given by

L(f) = sup
x∈X

∥∥∇ f (x)
∥∥∗

Proof. First we show that L(f) ≤ supx∈X

∥∥∇ f (x)
∥∥∗.

∣∣ f (y)− f (x)
∣∣= ∣∣∣∣∫ 1

0
∇ f ((1− t)x + t y)T (y −x)d t

∣∣∣∣
≤

∫ 1

0

∣∣∇ f ((1− t)x + t y)T (y −x)
∣∣ d t

≤
∫ 1

0
‖∇ f ((1− t)x + t y)‖∗ d t ‖y −x‖

≤ sup
x∈X

‖∇ f (x)‖∗‖y −x‖

were we have used the convexity of X .

Now we show the reverse inequality L(f) ≥ supx∈X ‖∇ f (x)‖∗. To this end, we show that for

any positive ε, we have that L(f) ≥ supx∈X ‖∇ f (x)‖∗−ε.

Let z ∈ X be such that ‖∇ f (z)‖∗ ≥ supx∈X ‖∇ f (x)‖∗− ε. Because X is open, there exists a

sequence {hk }∞k=1 with the following properties:

1. 〈hk ,∇ f (z)〉 = ‖hk‖‖∇ f (z)‖∗

2. z +hk ∈X

107

Appendix B. Appendix for Chapter 3

3. limk→∞ hk = 0.

By definition of the gradient, there exists a function δ such that limh→0δ(h) = 0 and the

following holds:

f (z +h) = f (z)+〈h,∇ f (z)〉+δ(h)‖h‖.

For our previously defined iterates hk we then have

⇒ ∣∣ f (z +hk)− f (z)
∣∣= ∣∣‖hk‖‖∇ f (z)‖∗+δ(hk)‖hk‖

∣∣
Dividing both sides by ‖hk‖ and using the definition of L(f) we finally get

⇒ L(f) ≥
∣∣∣∣ f (z +hk)− f (z)

‖hk‖
∣∣∣∣= ∣∣‖∇ f (z)‖∗+δ(hk)

∣∣
⇒ L(f) ≥ lim

k→∞
∣∣‖ f (z)‖∗+δ(hk)

∣∣= ‖∇ f (z)‖∗
⇒ L(f) ≥ sup

x∈X
‖∇ f (x)‖∗−ε.

B.1.2 Proof of Proposition 22

Proposition. Let fd be a dense network (all weights are nonzero). Then, the sparsity pattern

induced by the network’s graph is a valid sparsity pattern for the norm-gradient polynomial of

fd .

Proof. First we show that ∪m
i=1Ii = I . This comes from the fact that any neuron in the network

is connected to at least one neuron in the last layer. Otherwise such neuron could be removed

from the network altogether.

Now we show the second property of a valid sparsity pattern. Note that the norm-gradient

polynomial is composed of monomials corresponding to the product of variables in a path

from input to a final neuron. This imples that if we let pi be the sum of all the terms that

involve the neuron s(d−1,i) we have that p =∑
i pi , and pi only depends on the variables in Ii .

We now show the last property of the valid sparsity pattern. This is the only part where we use

that the network is dense. For any network architecture the first two conditions hold. We will

use the fact that the maximal cliques of a chordal graph form a valid sparsity pattern (see for

example Lasserre (2006)).

Because the network is dense, we see that the clique Ii is composed of the neuron in the

last layer s(d−1,i) and all neurons in the previous layers. Now, consider the extension of the

108

B.2. Appendix for Section 3.2: Proximal operator in the multi-output setting

computational graph Ĝd = (V , Ê) where

Ê = E ∪ {(s j ,k , sl ,m) : j , l ≤ d −2)},

which consists of adding all the edges between the neurons that are not in the last layer.

We show that this graph is chordal. Let (a1, . . . , ar , a1) be a cycle of length at least 4 (r ≥ 4).

notice that because neurons in the last layer are not connected between them in Ĝ , no two

consecutive neurons in this cycle belong to the last layer. This implies that in the subsequence

(a1, a2, a3, a4, a5) at most three belong to the last layer. A simple analysis of all cases implies

that it contains at least two nonconsecutive neurons not in the last layer. Neurons not in the

last layer are always connected in Ĝ . This constitutes a chord. This shows that Ĝd is a chordal

graph. Its maximal cliques correspond exactly to the sets in the proposition.

B.2 Appendix for Section 3.2: Proximal operator in the multi-output

setting

In this section, we generalize the computation of the proximal mapping we derived for the

single-output scenario to the multi-output case. When the network has multiple-output, the

proximal operator proxλP1
(X ,Y) can be written as the solution set of

proxλP1
(X ,Y) = argmin

V ∈Rn×p ,W ∈Rn×m
λ

n∑
i=1

m∑
j=1

p∑
k=1

|Wi j Vi k |+
1

2
‖V −X ‖2

F + 1

2
‖W −Y ‖2

F

= argmin
V ∈Rn×p ,W ∈Rn×m

n∑
i=1

(
λ

m∑
j=1

p∑
k=1

|Wi j Vi k |+
1

2

p∑
k=1

(Vi k −Xi k)2 + 1

2

m∑
j=1

(Wi j −Yi j)2

)
.

(B.1)

As in the single-output case, we observe that the proximal mapping (B.1) is separable with

respect to the i -th rows of the matrices V and W , and that the signs of the decision variables

are determined by the signs of (X ,Y). Therefore, it is enough to solve, for any x ∈Rp ,y ∈Rm ,

min
v∈Rp

+,w∈Rm+
hλ(v,w;x,y) ≡λ

p∑
k=1

vk

m∑
j=1

w j + 1

2

p∑
k=1

(vk −|xk |)2 + 1

2

m∑
j=1

(w j −|y j |)2, (B.2)

where v,w,x,y represent one particular row of V ,W, X ,Y respectively. To improve readability,

we will just write hλ(v,w), assuming that (x,y) is understood from context.

Similarly as in the single-output case, let us write the first order stationary condition of

problem (B.2). The proof is the same as in the single output case.

Lemma 51 (Stationarity conditions). Let (v∗,w∗) ∈Rp
+×Rm+ be an optimal solution of (B.2) for

109

Appendix B. Appendix for Chapter 3

a given (x,y) ∈Rp ×Rm . Then

w∗
j = max

{
0, |y j |−λ

p∑
k=1

v∗
k

}
for any j = 1,2, . . . ,m,

v∗
k = max

{
0, |xk |−λ

m∑
j=1

w∗
j

}
for any k = 1,2, . . . , p.

The following Lemma expands on the monotonic relation in magnitude originally established

for single-output networks in Corollary 28.

Corollary 52. Let (v∗,w∗) ∈Rp
+×Rm+ be an optimal solution of (B.2) for a given (x,y) ∈Rp ×Rm .

1. The vector w∗ satisfies that for any j , l ∈ {1,2, . . . ,m} it holds that w∗
j ≥ w∗

l only if |y j | ≥
|yl |.

2. The vector v∗ satisfies that for any k, l ∈ {1,2, . . . , p} it holds that v∗
k ≥ v∗

l only if |xk | ≥ |xl |.

3. Let x̄, ȳ be the sorted vector of x and y respectively in descending magnitude order. Let

sv = |{k : v∗
k > 0}| and sw = |{ j : w∗

j > 0}|. Suppose that sv , sw > 0. Then, for all k, j such

that v∗
k > 0, w∗

j > 0, we have

v∗
k = |xk |+

1

1− sv swλ2

(
λ2sw

sv∑
l=1

|x̄l |−λ
sw∑

j=1
|ȳ j |

)
, (B.3)

w∗
j = |y j |+ 1

1− sv swλ2

(
λ2sv

sw∑
l=1

|ȳl |−λ
sv∑

k=1
|x̄k |

)
. (B.4)

Proof. The two first points are direct applications of the stationary conditions of Lemma 51.

From the conditions in Lemma 51 we have that

m∑
j=1

w∗
j =

sw∑
j=1

|ȳ j |−λsw

p∑
k=1

v∗
k

p∑
k=1

v∗
k =

sv∑
k=1

|x̄k |−λsv

m∑
j=1

w∗
j

=
sv∑

k=1
|x̄k |−λsv

sw∑
j=1

|ȳ j |+λ2sv sw

p∑
k=1

v∗
k

= 1

1−λ2sv sw

(
sv∑

k=1
|x̄k |−λsv

sw∑
j=1

|ȳ j |
)

.

Plugging this equality in the stationarity condition for w∗ (Lemma 51) gives the result for w∗.

110

B.2. Appendix for Section 3.2: Proximal operator in the multi-output setting

We also have

m∑
j=1

w∗
j =

sw∑
j=1

|ȳ j |− λsw

1−λ2sv sw

(
sv∑

k=1
|x̄k |−λsv

sw∑
j=1

|ȳ j |
)

= 1

1−λ2sv sw

(
−λsw

sv∑
k=1

|x̄k |+
sw∑

j=1
|ȳ j |

)
.

Plugging the latter to the stationarity condition for v∗ ((Lemma 51) gives the result for v∗.

We now show that the second order stationarity condition constraints the ranges of sparsities

of v∗ and w∗.

Lemma 53 (Sparsity bound). Let (v∗,w∗) ∈ Rp
+×Rm+ be an optimal solution of (B.2). Denote

sv = |{ j : w∗
j > 0}| and sw = |{ j : w∗

j > 0}|. Then sv sw ≤λ−2.

Proof. Since (v∗,w∗) is an optimal solution of (B.2) and the objective function in (B.2) is twice

continuously differentiable, (v∗,w∗) satisfies the second order necessary optimality conditions.

That is, for any d ∈ Rp ×Rm satisfying that (v∗,w∗)+d ∈ Rp
+×Rm+ and d T ∇hλ(v∗,w∗) = 0 it

holds that

d T ∇2hλ(v∗,w∗)d = d T

(
Ip×p Λp×m

Λm×p Im×m

)
d ≥ 0,

where the first row/column corresponds to v and the others correspond to w, I denotes

the identity matrix and Λ denotes a matrix completely filled with λ. Similarly as in the

single output case, we require that the submatrix of ∇2hλ(v∗,w∗) containing the rows and

columns corresponding to the positive coordinates in (v∗,w∗) is positive semidefinite. Since

the minimal eigenvalue of this submatrix equals 1−λp|Sv ||Sw |, we have that

λ−2 ≥ |Sv ||Sw |.

Without loss of generality, we assume hereafter that the vectors x,y are already sorted in

decreasing order of magnitude. Corollary 52 shows that for each pair (sv , sw), sv = 1, . . . , p,

sw = 1, . . . ,m, there exists a stationary point (v(sv ,sw),w(sv ,sw)) of hλ(·, ·) such that |{k : v (sv ,sw)
k >

0}| = sv , |{ j : w (sv ,sw)
j > 0}| = sw , given by

v (sv ,sw)
k = |xk |+

1

1− sv swλ2

(
λ2sw

sv∑
l=1

|xl |−λ
sw∑

j=1
|y j |

)
for k = 1,2, . . . , sv , and v (sv ,sw)

k = 0 otherwise

w (sv ,sw)
j = |y j |+ 1

1− sv swλ2

(
λ2sv

sw∑
l=1

|yl |−λ
sv∑

k=1
|xk |

)
for j = 1,2, . . . , sw , and w (sv ,sw)

j = 0 otherwise.

(B.5)

111

Appendix B. Appendix for Chapter 3

Finding a non-trivial solution (i.e., such that sv , sw 6= 0) to Problem (B.2) hence boils down to

solving

min
sv∈{1,...,p},sw∈{1,...,m}

hλ(v(sv ,sw),w(sv ,sw))

such that sv sw ≤λ−2,v(sv ,sw) ≥ 0,w(sv ,sw) ≥ 0
(B.6)

A possible way of solving problem (B.6) would be to exhaustively compute the value of hλ for

each stationary point associated with sparsities sv = 1, . . . , p, sw = 1, . . . ,m such that sv sw ≤
λ−2 and w(sv ,sw) ≥ 0,w(sv ,sw) ≥ 0. However, trying all possible pairs of sparsities (sv , sw) is

computationally costly. Similarly as is the single output case, we can exploit some structure of

the objective function hλ in order to reduce the candidate optimal pairs of sparsities.

Lemma 54. Given (x,y) ∈Rp ×Rm , for all sv , sw ∈ {0, . . . , p}×{0, . . . ,m} satisfying sv sw <λ−2, we

have

hλ(v(sv ,sw),w(sv ,sw)) < hλ(v(sv ,sw−1),w(sv ,sw−1)),

hλ(v(sv ,sw),w(sv ,sw)) < hλ(v(sv−1,sw),w(sv−1,sw)).

Proof. The proof follows the same lines as in the single output case. Plugging the definitions

112

B.2. Appendix for Section 3.2: Proximal operator in the multi-output setting

from equation (B.5), we have

hλ
(
v(sv ,sw),w(sv ,sw))= sv

2

(
1

1−λ2sv sw

(
λ2sw

sv∑
k=1

|xk |−λ
sw∑

j=1
|y j |

))2

+ 1

2

p∑
k=sv+1

x2
k

+ sw

2

(
1

1−λ2sv sw

(
λ2sv

sw∑
j=1

|y j |−λ
sv∑

k=1
|xk |

))2

+ 1

2

m∑
j=sw+1

y2
j

+ λ

(1−λ2sv sw)2

(
sv∑

k=1
|xk |−λsv

sw∑
j=1

|y j |
)(

−λsw

sv∑
k=1

|xk |+
sw∑

j=1
|y j |

)

= 1

2(1−λ2sv sw)2

((
sv∑

k=1
|xk |

)2

(λ4sv s2
w +λ2sw −2λ2sw)+

(
sw∑

j=1
|y j |

)2

(λ2sv +λ4s2
v sw −2λ2sv)(

sv∑
k=1

|xk |
)(

sw∑
j=1

|y j |
)

(−2λ3sv sw −2λ3sv sw +2λ+2λ3sv sw)

)
+ 1

2

p∑
k=sv+1

x2
k +

1

2

m∑
j=sw+1

y2
j

= 1

2(1−λ2sv sw)

(
−λ2sw

(
sv∑

k=1
|xk |

)2

−λ2sv

(
sw∑

j=1
|y j |

)2

+2λ

(
sv∑

k=1
|xk |

)(
sw∑

j=1
|y j |

))
+ 1

2

p∑
k=sv+1

x2
k +

1

2

m∑
j=sw+1

y2
j

(B.7)

=
(
1+ λ2sv

1−λ2sv sw

)
1

2(1−λ2sv (sw −1))

(
−λ2(sw −1)

(
sv∑

k=1
|xk |

)2

−λ2

(
sv∑

k=1
|xk |

)2

−λ2sv

((
sw−1∑
j=1

|y j |
)2

+2λ|ysw |
sw−1∑
j=1

|y j |+ y2
sw

)
+2λ

sv∑
k=1

|xk |
(

sw−1∑
j=1

|y j |+ |ysw |
))

(B.8)

+ 1

2

p∑
k=sv+1

x2
k +

1

2

m∑
j=sw−1+1

y2
j −

1

2
y2

sw
. (B.9)

By applying equation (B.7) at sv , sw −1, we can express the right hand side of equation (B.8) in

terms of hλ
(
v (sv ,sw−1), w (sv ,sw−1)

)
as:

hλ
(
v (sv ,sw), w (sv ,sw))= hλ

(
v (sv ,sw−1), w (sv ,sw−1))+ 1

2(1−λ2sv (sw −1))

(
−λ2

(
sv∑

k=1
|xk |

)2

−λ2sv |ysw |
(

2
sw−1∑
j=1

|y j |+ |ysw |
)
+2λ|ysw |

sv∑
k=1

|xk |
)
+ λ2sv

2(1−λ2sv sw)(1−λ2sv (sw −1))

(
−λ2sw

(
sv∑

k=1
|xk |

)2

−λ2sv

(
sw∑

j=1
|y j |

)2

−2λ

(
sv∑

k=1
|xk |

)(
sw∑

j=1
|y j |

))
− 1

2
y2

sw
.

113

Appendix B. Appendix for Chapter 3

Therefore:

hλ
(
v (sv ,sw), w (sv ,sw))−hλ

(
v (sv ,sw−1), w (sv ,sw−1))

=− 1

2(1−λ2sv (sw −1))

(
−2λ|ysw |

(
sv∑

k=1
|xk |−λsv

sw∑
j=1

|y j |
)
−λ2sv |ysw |2 +λ2

(
sv∑

k=1
|xk |

)2

+ λ2sv

1−λ2sv sw

(
λ2sw

(
sv∑

k=1
|xk |

)2

+λ2sv

(
sw∑

j=1
|y j |

)2

−2λ

(
sv∑

k=1
|xk |

)(
sw∑

j=1
|y j |

))
+ (1−λ2sv sw +λ2sv)|ysw |

)

=− 1

2(1−λ2sv (sw −1))

(
(1−λ2sv sw)y2

sw
−2λ|ysw |(1−λ2sv sw)

sv∑
k=1

v (sv ,sw)
k + λ2

1−λ2sv sw

(
sv∑

k=1
|xk |−λsv

sw∑
j=1

|y j |
)2)

=− 1−λ2sv sw

2(1−λ2sv (sw −1))

(
|ysw |−λ

sv∑
k=1

v (sv ,sw)
k

)2

< 0.

The second result is obtain directly by symmetry between v and w.

Moreover, the feasibility conditions v(sv ,sw) ≥ 0,w(sv ,sw) ≥ 0 in (B.6) also have a monotonic

property:

Lemma 55. Let (k, l) ∈ [p]× [m] be such that kl ≤λ−2.

If v(k,l) ≥ 0 and w(k,l) ≥ 0, then, v(i , j) ≥ 0 and w(i , j) ≥ 0 ∀i = 1, . . . ,k and ∀ j = 1, . . . , l .

Proof. Since the first k entries of v(k,l) are ordered in decreasing order, we have that v(k,l) ≥ 0 if

and only if v (k,l)
k ≥ 0. Similarly, w(k,l) ≥ 0 if and only if w (k,l)

l ≥ 0.

Suppose that v(k,l) ≥ 0 and w(k,l) ≥ 0. By induction, in order to prove the result, it is sufficient

to prove that v (k−1,l)
k−1 ≥ 0, v (k,l−1)

k ≥ 0, w (k−1,l)
l ≥ 0 and w (k,l−1)

l−1 ≥ 0. We only prove the result for

v, as the proof for w is identical.

Using equation (B.5), we have that

(1−klλ2)v (k,l)
k = (1−klλ2)|xk |+λ2l

k∑
i=1

|xi |−λ
l∑

j=1
|y j | (B.10)

= (1−klλ2)|xk |+ (1− (k −1)lλ2)|xk−1|− (1− (k −1)lλ2)|xk−1|+λ2l
k−1∑
i=1

|xi |+λ2l |xk |λ
l∑

j=1
|y j |

= (1− (k −1)lλ2)v (k−1,l)
k−1 + (1− (k −1)lλ2)(|xk |− |xk−1|).

Therefore:

v (k−1,l)
k−1 = 1− (k −1)lλ2

1−klλ2 v (k,l)
k +|xk−1|− |xk | ≥ 0,

since the vector x is ordered in decreasing order of magnitude, and thus |xk−1|− |xk | ≥ 0.

114

B.2. Appendix for Section 3.2: Proximal operator in the multi-output setting

Using again equation (B.10), we have that

(1−klλ2)v (k,l)
k = (1−klλ2)|xk |+ (1−k(l −1)λ2)|xk |− (1−k(l −1)λ2)|xk |

+λ2(l −1)
k∑

i=1
|xi |+λ2

k∑
i=1

|xi |−λ
l−1∑
j=1

|y j |−λ|yl |

= (1−k(l −1)λ2)v (k,l−1)
k −kλ2|xk |+λ2

k∑
i=1

|xi |−λ|yl |,

where the last equality follows from equation (B.10) for v (k,l−1)
k . Thus,

(1−k(l −1)λ2)v (k,l−1)
k = (1−klλ2)v (k,l)

k +kλ2|xk |−λ2
k∑

i=1
|xi |+λ|yl |. (B.11)

From the definition of v (k,l)
k (equation (B.5)), we have that v (k,l)

k ≥ 0 is equivalent to the condi-

tion:

|xk | ≥
λ

∑l
j=1 |y j |− lλ2 ∑k

i=1 |xi |
1−klλ2 .

Plugging this inequality in equation (B.11), we obtain:

(1−k(l −1)λ2)v (k,l−1)
k ≥ (1−klλ2)v (k,l)

k + kλ2

1−klλ2

(
λ

l∑
j=1

|y j |− lλ2
k∑

i=1
|xi |

)
+λ|yl |−λ2

k∑
i=1

|xi |

= (1−klλ2)v (k,l)
k + λ

1−klλ2

(
kλ2

l∑
j=1

|y j |−klλ3
k∑

i=1
|xi |+ (1−klλ2)|yl |−λ(1−klλ2)

k∑
i=1

|xi |
)

= (1−klλ2)v (k,l)
k + λ

1−klλ2

(
kλ2

l∑
j=1

|y j |+ (1−klλ2)|yl |−λ
k∑

i=1
|xi |

)
. (B.12)

From the definition of w (k,l)
l (equation (B.5)), we have that w (k,l)

l ≥ 0 is equivalent to the

condition:

(1−klλ2)|yl |+kλ2
l∑

j=1
|y j |−λ

k∑
i=1

|xi | ≥ 0. (B.13)

Since the expression of equation (B.13) is exactly the same as the one inside the parentheses

of equation (B.12), plugging this relation to (B.11) thus shows that (1−k(l −1)λ2)v (k,l−1)
k ≥ 0,

i.e. v (k,l−1)
k ≥ 0.

To properly address the complications arising from handling two intertwining sparsity levels

at the same time, we introduce the notion of maximal feasibility boundary (MFB) which acts a

frontier of possible sparsity levels.

115

Appendix B. Appendix for Chapter 3

Definition 56 (Maximal feasibility boundary). We say that a sparsity pair (sv , sw) ∈ {0, . . . , p}×
{0, . . . ,m} is on the maximal feasibility boundary (MFB) if incrementing either sv or sw results

with a non-stationary point. That is, if both of the following conditions hold:

• v (sv+1,sw)
sv+1 < 0 or w (sv+1,sw)

sw
< 0 or (sv +1)sw >λ−2,

• v (sv ,sw+1)
sv

< 0 or w (sv ,sw+1)
sw+1 < 0 or sv (sw +1) >λ−2.

The efficient computation of the multi-output robust-sparse proximal mapping is based on the

fact that we only need to compute the value of hλ for sparsity levels that are on the MFB. This

allows us to find the optimal sparsity in time O (p+m), improving upon the O (pm) complexity

of the exhaustive search. Algorithm 16 implements the above by employing a binary search

type procedure defined in Algorithm 17 to calculate the MFB.

Theorem 57 (Multi-output prox computation). Let (V ∗
:,i ,W ∗

i ,:) be the output of Algorithm 16

with input X :,i ,Yi ,:,λ, where each X :,i , Yi ,: are sorted in decreasing magnitude order. Then

(V ∗,W ∗) is a solution to (3.17).

Algorithm 16 Multi-output robust-sparse proximal mapping

Input: x ∈Rp , y ∈Rm ordered in decreasing magnitude order, λ> 0.

1: Employ Algorithm 17: Find the set of sparsity pairs S = {(sv , sw)} that are on the MFB
2: hopt ←∞
3: for (sv , sw) ∈ S do
4: Compute v (sv ,sw) and w (sv ,sw) as given in equation (B.5)
5: if hλ(v(sv ,sw),w(sv ,sw);x,y) < hopt then
6: hopt = hλ(v(sv ,sw),w(sv ,sw);x,y)
7: v∗ ← v(sv ,sw), w∗ ← w(sv ,sw)

8: return (sign(x)◦v∗, sign(y)◦w∗)

Time complexity of Algorithm 16. It is easy to see that the maximal feasibility boundary

contains at most min(m, p) pairs, and Algorithm 17 finds them all in time O (m +p). Then, for

each such pair (sv , sw), we must compute v(sv ,sw) and w(sv ,sw) and hλ(v(sv ,sw),w(sv ,sw)), which

takes time O (m+p). The total complexity of Algorithm 16 is thus O (min(m, p)(m+p)). In most

practical application, the output layer size p can be considered O (1), so that the complexity

of computing this proximal mapping is comparable to the complexity of computing one

stochastic gradient.

Lemma 58. The set S returned by Algorithm 17 contains all, and only, the sparsity pairs that

are on the maximal feasibility boundary.

Proof. First recall that the MFB is defined as all pairs (sv , sw) ∈ {0, . . . , p}× {0, . . . ,m} satisfying

the conditions:

1. v (sv ,sw)
sv

> 0 and w (sv ,sw)
sw

> 0 and sv sw ≤λ−2,

116

B.2. Appendix for Section 3.2: Proximal operator in the multi-output setting

Algorithm 17 Finding sparsity pairs on the maximal feasibility boundary

Input: x ∈Rp , y ∈Rm ordered in decreasing magnitude order, λ> 0.

1: sv ← 0, sw ← m
2: S ←;
3: maxi mal ← Tr ue
4: while sv ≤ p and sw ≥ 0 do
5: Compute v (sv ,sw)

sv
and w (sv ,sw)

sw
as shown in equation (B.5)

6: if v (sv ,sw)
sv

< 0 or w (sv ,sw)
sw

< 0 or sv sw ≥λ−2 then
7: if maxi mal then
8: S ← S ∪ {(sv −1, sw)}
9: maxi mal ← F al se

10: sw ← sw −1
11: else
12: sv ← sv +1
13: maxi mal ← Tr ue
14: if sv == p +1 then
15: S ← S ∪ {(sv −1, sw)}

16: return S

2. v (sv+1,sw)
sv+1 ≤ 0 or w (sv+1,sw)

sw
≤ 0 or (sv +1)sw >λ−2 or sv = p,

3. v (sv ,sw+1)
sv

≤ 0 or w (sv ,sw+1)
sw+1 ≤ 0 or sv (sw +1) >λ−2 or sw = m.

Algorithm 17 plays on the properties of feasibility-infeasibility of the sparsity levels to build

the MFB. We say that a pair of the sparsity pair (i , j) ∈ {0, . . . , p}×{0, . . . ,m} is feasible if v (i , j)
i ≥ 0,

w (i , j)
j ≥ 0 and i j <λ−2, and denote this by the property P (i , j), i.e.

(i , j) is feasible ⇔ P (i , j).

Our claim can be read as: Let (i , j) ∈ {0, . . . , p}× {0, . . . ,m}, then (i , j) is added to S by Algo-

rithm 17 if and only if (i , j) belongs to the MFB, i.e.,

(i , j) ∈ MFB ⇔ (i , j) ∈ S.

Obviously, only feasible sparsity pairs belong to the MFB, and it is quite easy to see that

only feasible sparsity pairs will belong to an output S of Algorithm 17. Indeed, Algorithm 17

monotonically decrements sw starting from sw = m and increments sv starting from sv = 0.

For each value of sw , it increases sv while the current pair (sv , sw) is feasible (lines 12−15).

Once it reaches an infeasible point (i , sw), and in the case where sv has been increased at least

once for this particular value of sw , it adds to S the pair encountered just before, i.e., (i −1, sw),

and then decrements sw (lines 6−11).

We first prove the ⇒ statement. Suppose that some pair (i , j) belongs to the MFB. Let us first

leave aside the corner cases, and assume that i < p and j < m.

117

Appendix B. Appendix for Chapter 3

Suppose first that sw reaches j before sv reaches i , i.e., sv < i . Since the pair (i , j) is feasible,

and due to the monotonicity property of the feasibility condition (Lemma 54), all pairs (k, sw)

with k ≤ i must be feasible. Therefore, sv will be increased until reaching i +1. By definition

of the MFB, the pair (i +1, j) must be infeasible. Since sv has necessarily been increased at

least once for this value of sw = j , and so the pair (i +1−1, j) = (i , j) will be added to S before

decrementing sw .

In the special case where i = p, no infeasible point will be found. The loop will thus finish with

sw = j and sv = p +1. The condition at line 17 will thus hold, and the pair (p, j) will be added

to S.

Suppose now that sv reaches i before sw reaches j , i.e., sw > j . Since (i , j) is in the MFB, then

the pair (i , j +1) must be infeasible. Thanks to the monotonicity property of the feasibility

condition (Lemma 54), all pairs (sv ,k) with k ≥ i must also be infeasible. Therefore, sw will be

decreased until reaching sw = j . Then, similarly as in the previous case, since (i , j) is feasible,

sv will be increased, and the pair (i , j) added to S.

We now prove the ⇐ statement. We show that if (i , j) is added to S, then it must belong to the

MFB, i.e., it satisfies all three properties recalled in the beginning of the proof.

Let us first show that for each pair (sv , sw) encountered during the algorithm, the pair (sv−1, sw)

is always feasible (or sv = 0). We can show that this property is conserved each time the

algorithm either increases sv or decreases sw . First note that the pair (0,m) is always feasible.

The algorithm will then necessarily first goes to the pair (1,m) and P (1,m) is true. Then

suppose that P (sv , sw) is true for some pair (sv , sw) encountered during the algorithm. Then,

if sv is increases, it means that the pair (sv , sw) is feasible. The next encountered pair is then

(sv +1, sw) and P (sv +1, sw) is true. On the other hand, suppose that sw is decreased. The

next encountered pair is thus (sv , sw −1). Since P (sv , sw) is true, it means that (sv −1, sw) is

feasible. By Lemma 54, it implies that (sv −1, sw −1) is also feasible, and thus P (sv , sw −1)

is true. We thus proved that P (sv , sw) is true for any pair (sv , sw) encountered during the

algorithm. Therefore, since any pair added to S is of the form (sv −1, sw) for some pair (sv , sw)

encountered during the algorithm, then any pair added to S must be feasible.

The second property of the MFB is straightforward to show. Indeed, if (i −1, j) is added to S, it

means that the pair (i , j) is infeasible due to condition on line 6.

Finally, the third property follows from the fact that, when reaching sw = j , sv must be in-

creased at least once for adding a pair of the form (i , j) to S. Let s(j)
v be the value of sv when

the algorithm reaches sw = j . We necessarily have s(j)
v ≤ i . This implies that the pair (s(j)

v , j +1)

is infeasible, otherwise sv would have been increased to a greater value at the previous value

sw = j +1. By Lemma 54, and since s(j)
v ≤ i this implies that the pair (i , j +1) is also infeasible,

hence the result.

118

B.3. Proofs of Section 3.2

B.3 Proofs of Section 3.2

B.3.1 Proof of Theorem 23

Theorem. Let {zk }k≥0 be a sequence generated by Algorithm 6 with {ηk }k≥0 ⊆ (0,1/L). Then

1. Any accumulation point of {zk }k≥0 is a critical point of f + g .

2. If f satisfies the Kurdyka-Lojasiewicz (KL) property (Attouch et al., 2010), then {zk }k≥0

converges to a critical point.

3. Suppose that ηk is chosen such that there exists c > 0 such that
∑K

k=0
1
ηk

≥ cK for any

integer K > 0. Then

min
k=0,...,K

‖zk+1 − zk‖2 ≤
√

2(F (z0)−F∗)

(c −L)K
,

where F∗ ≡ minx∈Rd F (x).

Proof. The first and second parts follow from the results established by Bolte et al. (2013). For

the third point, we will rely on the following Sufficient Decrease property from Bolte et al.

(2013).

Lemma 59 (Sufficient decrease property (Bolte et al., 2013, Lemma 2)). Let Ψ :n→ be a con-

tinuously differentiable function with gradient assumed LΨ-Lipschitz continuous, and let

σ :n→ (−∞,∞] be a proper lower semi-continuous function satisfying that infσ>−∞. Fix any

t ∈ (0,1/LΨ). Then, for any u ∈n and any u+ ∈n defined by

u+ ∈ proxσt (u− t∇Ψ(u))

we have

Ψ(u)+σ(u)−Ψ(u+)−σ(u) ≥ 1− tLΨ
2t

‖u+−u‖2.

By Lemma 59 we have that

F (zk)−F (zk+1) = f (zk)+λg (zk)− f (zk+1)−λg (zk+1)) ≥ 1−Lηk

2ηk
‖zk+1 − zk‖2. (B.14)

Hence { f (zk)+λg (zk)}k≥0 is a non-increasing sequence that strictly decreasing unless a critical

point is obtained in a finite number of steps. By summing (B.14) over k = 0,1, . . . ,K and using

the fact that { f (zk)+λg (zk)}k≥0 is non-increasing and is bounded below by F∗, we obtain

that

F (z0)−F∗ ≥
K∑

k=0

1−Lηk

2ηk
‖zk+1 − zk‖2

≥ 1

2
(c −L)K min

k=0,...,K
‖zk+1 − zk‖2

2.

119

Appendix B. Appendix for Chapter 3

Consequently,

min
k=0,...,K

‖zk+1 − zk‖2 ≤
√

2(F (z0)−F∗)

(c −L)K
.

B.3.2 Proof of Theorem 24

Theorem. Let fV ,W (x) = V Tσ(W x) be a network such that the derivative of the activation σ

is globally bounded between zero and one, and let P1(V ,W) = ∑n
i=1

∑m
j=1

∑p
k=1 |Wi j Vi k | be its

1-path norm. The Lipschitz constant LV ,W of the network is bounded as follows:

LV ,W ≤ P1(V ,W) ≤ ‖V T ‖∞,1‖W ‖∞.

Proof. We prove the result in the single-output case, which is trivially extended to the general

case. Because the output space is R, the `1-norm is just the absolute value of the output. In

this case the Lipschitz constant of the single-output function fV ,W is equal to the supremum

of the `1-norm of its gradient, over its domain (c.f., Latorre et al. (2020b, Theorem 1)).

LV ,W = sup
x

‖∇ fV ,W (x)‖1

= sup
x

sup
‖t‖∞≤1

t T ∇hV ,W (x)

= sup
x

sup
‖t‖∞≤1

t T W Tσ′(W x)V

≤ sup
0≤s≤1

sup
‖t‖∞≤1

t T W T Diag(s)V

= sup
0≤s≤1

sup
‖t‖∞≤1

n∑
i=1

m∑
j=1

ti (W T Diag(V))i , j s j

≤
n∑

i=1

m∑
j=1

sup
0≤s j≤1

sup
−1≤ti≤1

ti (W T Diag(V))i , j s j

=
n∑

i=1

m∑
j=1

|W T Diag(V)|i , j =
n∑

i=1

m∑
j=1

|Wi , j Vi ,1|

This shows the first inequality. We now show the second inequality. Denote the i -th row of the

120

B.3. Proofs of Section 3.2

matrix W as wi :

n∑
i=1

m∑
j=1

|Wi , j Vi ,1| =
n∑

i=1
|Vi ,1|

m∑
j=1

|Wi , j |

=
n∑

i=1
|Vi ,1|‖wi‖1

≤
n∑

i=1
|Vi ,1| max

j=1,...,m
‖w j‖1

=
n∑

i=1
|Vi ,1|‖W ‖∞

= ‖V ‖1‖W ‖∞

In the fourth line we have used the fact that the `∞ operator norm of a matrix is equal to the

maximum `1-norm of the rows.

B.3.3 Proof of Lemma 26

Lemma. Let (v∗,w∗) ∈R+×Rn+ be an optimal solution of (3.25). Then (sign(x) ·v∗,sign(y)◦w∗)

is an optimal solution of problem (3.24).

Proof. Let h̃λ(v,w; x,y) denote the objective function of problem (3.24). We have that

h̃λ(v,w; x,y) ≡ 1

2
(v −x)2 + 1

2

m∑
j=1

(w j − y j)2 +λ|v |
m∑

j=1
|w j |

= 1

2
(sign(x)v −|x|)2 + 1

2

m∑
j=1

(sign(y j)w j −|y j |)2 +λ|v |
m∑

j=1
|w j |

≥ 1

2
(|v |− |x|)2 + 1

2

m∑
j=1

(|w j |− |y j |)2 +λv
m∑

j=1
w j

≥ hλ(v∗,w∗; x,y),

where the last inequality follows from the fact that (v∗, w∗) is an optimal solution of (3.25).

Since equality with the lower bound is attained by setting (v,w) = (sign(x) · v∗, sign(y)◦w∗),

we conclude that (sign(x) · v∗, sign(y)◦w∗) is an optimal solution of (3.24).

121

Appendix B. Appendix for Chapter 3

B.3.4 Proof of Lemma 27

Lemma. Let (v∗,w∗) ∈ R+×Rm+ be an optimal solution of (3.25) for a given (x,y) ∈ R×Rm .

Then

w∗
j = max

{
0, |y j |−λv∗}

for any j = 1,2, . . . ,m,

v∗ = max

{
0, |x|−λ

m∑
j=1

w∗
j

}
.

Proof. The stationarity (first-order) conditions of (3.25) (cf. (Beck, 2014, Ch. 9.1)) state that

∂hλ
∂v

(v∗,w∗; x,y)

= 0, v∗ > 0,

≥ 0, v∗ = 0,
and

∂hλ
∂w j

(v∗,w∗; x,y)

= 0, w∗
j > 0,

≥ 0, w∗
j = 0,

which translates to

v∗−|x|+λ
m∑

j=1
w∗

j

= 0, v∗ > 0,

≥ 0, v∗ = 0,
and w∗

j −|y j |+λv∗
= 0, w∗

j > 0,

≥ 0, w∗
j = 0,

and the required follows.

B.3.5 Proof of Lemma 30

Lemma. Let s̄ = min(bλ−2c,m). For all integer s ∈ {2,3, . . . , s̄}, we have that

hλ(v (s),w(s); x,y) < hλ(v (s−1),w(s−1); x,y).

Proof. Recall that hλ(v,w; x,y) := 1
2 (v−|x|)2+ 1

2

∑m
j=1(w j −|y j |)2+λv

∑m
j=1 w j . By plugging w(s)

defined in (3.29) in hλ we obtain

hλ(v (s),w(s); x,y) = 1

2
(v (s) −|x|)2 + 1

2

s∑
i=1

(|yi |− (|yi |−λv (s)))2 + 1

2

m∑
i=s+1

|yi |2 +λv (s)
s∑

i=1
(|yi |−λv (s))

= 1

2
(v (s) −|x|)2 + λ2

2
s(v (s))2 + 1

2
‖y‖2

2 −
1

2

s∑
i=1

|yi |2 +λv (s)
s∑

i=1
|yi |−λ2s(v (s))2.

122

B.3. Proofs of Section 3.2

Consequently, plugging v (s), defined in (3.29), yields

hλ(v (s),w(s); x,y) = 1

2

(
λ2s

1−λ2s
|x|− λ

1−λ2s

s∑
i=1

|yi |
)2

− λ2s

2(1−λ2s)2

(
|x|−λ

s∑
i=1

|yi |
)2

+ λ

1−λ2s

s∑
i=1

|yi |
(
|x|−λ

s∑
i=1

|yi |
)
− 1

2

s∑
i=1

|yi |2 + 1

2
‖y‖2

2

= λ2s

2(1−λ2s)2 x2(λ2s −1)+ λ2

2(1−λ2s)2

(
s∑

i=1
|yi |

)2

(1−λ2s −2(1−λ2s))

+|x|
s∑

i=1
|yi |

(
− λ3s

(1−λ2s)2 + λ3s

(1−λ2s)2 + λ

1−λ2s

)
− 1

2

s∑
i=1

|yi |2 + 1

2
‖y‖2

2

= 1

2(1−λ2s)

(
−λ2sx2 −

(
|x|−λ

s∑
i=1

|yi |
)2

+x2

)
− 1

2

s∑
i=1

|yi |2 + 1

2
‖y‖2

2

=− 1

2(1−λ2s)

(
|x|−λ

s∑
i=1

|yi |
)2

+ 1

2
‖x‖2

2 −
1

2

s∑
i=1

|yi |2 + 1

2
‖y‖2

2

=−
(
1+ λ2

1−λ2s

)
1

2(1−λ2(s −1))

(
|x|−λ

s−1∑
i=1

|yi |−λ|ys |
)2

+ 1

2
‖x‖2

2 −
1

2

s∑
i=1

|yi |2 + 1

2
‖y‖2

2

= hλ(v (s−1), w (s−1); x, y)− 1

2(1−λ2s +λ2)

(
−2λ|ys |

(
|x|−λ

s−1∑
i=1

|yi |
)
+λ2|ys |2

)

− λ2

2(1−λ2s)(1−λ2s +λ2)

(
|x|−λ

s∑
i=1

|yi |
)2

− 1

2
|ys |2.

Therefore,

hλ(v (s),w(s); x,y)−hλ(v (s−1), w (s−1); x, y)

=− 1

2(1−λ2s +λ2)

(
−2λ|ys |

(
|x|−λ

s∑
i=1

|yi |
)
−λ2|ys |2 + λ2

1−λ2s

(
|x|−λ

s∑
i=1

|yi |
)2

+ (1−λ2s +λ2)|ys |2
)

=− 1

2(1−λ2s +λ2)

(
(1−λ2s)|ys |2 −2λ|ys |

(
|x|−λ

s∑
i=1

|yi |
)
+ λ2

1−λ2s

(
|x|−λ

s∑
i=1

|yi |
)2)

=− 1−λ2s

2(1−λ2s +λ2)

(|ys |2 −2λ|ys |v (s) +λ2(v (s))2)
=− 1−λ2s

2(1−λ2s +λ2)

(|ys |−λv (s))2 ≤ 0,

meaning that

hλ(v (s),w(s); x,y) ≤ hλ(v (s−1),w(s−1); x,y).

123

Appendix B. Appendix for Chapter 3

B.3.6 Proof of Corollary 31

Corollary. Suppose that there exists a non-trivial optimal solution of (3.25). Denote s̄ =
min(bλ−2c,m) and let

s∗ = max
{

s ∈ {0, . . . , s̄} : v (s), w (s)
s > 0

}
.

Then (v (s∗),w(s∗)) is an optimal solution of (3.25).

Proof. By Lemma 27, (v (s∗),w(s∗)) is a stationary point of (3.25). Moreover, according to Corol-

lary 28 and Lemma 29, (v (s∗),w(s∗)) belongs to the set of s̄ stationary points that are candidates

to be optimal solutions of (3.25). Invoking Lemma 30, we have that

hλ(v (s∗),w(s∗); x,y) < hλ(v (j),w(j); x,y), ∀s∗ > j . (B.15)

Hence, (v (j),w(j)) is not an optimal solution for any j < s∗.

Let us now consider the complementary case. By Lemma 29, for any i > s̄ the pair (v (i),w(i))

does not satisfy the second-order optimality conditions, and therefore is not an optimal

solution. On the other hand, by the definition of s∗, for any s̄ > i > s∗ the pair (v (i), w (i)) is not

a feasible solution , and subsequently not a stationary point. To conclude, hλ(v (s∗),w(s∗); x,y) <
hλ(v (j),w(j); x,y) holds for any j 6= s∗ such that (v (j),w(j)) is a stationary point, meaning that

(v (s∗),w(s∗)) is an optimal solution of (3.25).

B.3.7 Proof of Lemma 32

Lemma. For any k ∈ [s̄], we have

v (k) > 0,w(k) > 0 ⇒ v (i) > 0,w(i) > 0, ∀i < k.

Proof. Suppose that (v (k),w(k)) > 0 for some k ∈ {2, . . . , s̄}. By induction principle, it is sufficient

to show that (v (k−1),w(k−1)) is feasible in order to prove the result.

By (3.29), we have:

(1−kλ2)v (k) = |x|−λ
k∑

j=1
|y j | = (1−kλ2 +λ2)v (k−1) −|yk |.

which implies

v (k−1) = 1

(1−kλ2 +λ2)
((1−kλ2)v (k) +|yk |) ≥ 0.

For w(k), it is easy to see from (3.29) that, since the vector y is sorted in decreasing order of

magnitude, the vector w(k) is also sorted in decreasing order, and thus w(k) > 0 if and only if

124

B.3. Proofs of Section 3.2

w (k)
k > 0.

(1−kλ2)w (k)
k = (1−kλ2)|yk |−λ|x|+λ2

k∑
j=1

|y j |

= −λ|x|+ (1− (k −1)λ2)|yk−1|+λ2
k−1∑
j=1

|y j |+λ2|yk |+ (1−kλ2)|yk |− (1− (k −1)λ2)|yk−1|

= (1− (k −1)λ2)w (k−1)
k−1 + (1−kλ2 +λ2)(|yk |− |yk−1|),

where the last line uses the identity of the first line for k −1. We thus have:

w (k−1)
k−1 = 1

(1− (k −1)λ2)
(1−kλ2)w (k)

k +|yk−1|− |yk | > 0,

since |yk−1| ≥ |yk | and k <λ−2.

B.3.8 Proof of Lemma 34

Lemma. Suppose that |z1| ≥ |z2| ≥ · · · ≥ |zd |, and let w∗ be an optimal solution of (3.33). Then

w∗
1 ≥ w∗

2 ≥ ·· · ≥ w∗
d . (B.16)

Proof. Assume the contrary, that there exist an optimal solution of (3.33) such that (3.33) does

not hold. Without loss of generality, suppose that w∗
1 < w∗

2 , and consider the solution w̃ given

by

w̃i =


w∗

i , i = 3,4, . . . ,L,

w∗
1 , i = 2,

w∗
2 , i = 1.

Then by the optimality of w∗, and our assumptions that |z1| ≥ |z2| and w∗
1 < w∗

2 , we obtain

0 ≥ 1

2

d∑
i=1

(w∗
i −|zi |)2 +λw∗

1 ·w∗
2 · · ·w∗

d − 1

2

l∑
i=1

(w̃i −|zi |)2 −λw̃1 · w̃2 · · · w̃d

= 1

2

[
(w∗

1 −|z1|)2 + (w∗
2 −|z2|)2 − (w̃1 −|z1|)2 − (w̃2 −|z2|)2]

= 1

2

[
(w∗

1 −|z1|)2 + (w∗
2 −|z2|)2 − (w∗

2 −|z1|)2 − (w∗
1 −|z2|)2]

= (|z1|− |z2|)(w∗
2 −w∗

1) > 0,

which is a contradiction.

125

Appendix B. Appendix for Chapter 3

B.3.9 Proof of Lemma 38

Lemma. Let w∗ be an optimal solution of (3.33) (such that w∗ > 0). Then:

1. For any i = 1,2, . . . ,d −1, the element w∗
i satisfies that

1

2
|zi |+ 1

2

√
|zi |2 −|zd |2 ≤ w∗

i ≤ |zi |

2. For any i = 2, . . . ,d −1, the element w∗
i satisfies that

w∗
i = 1

2

(
|zi |+

√
|zi |2 −4w∗

1 (|z1|−w∗
1)

)
,

and

w∗
d = |zL |−λw∗

1 ·w∗
2 · · ·w∗

d−1.

3. It holds that

w∗
1 = |z1|− λ

2d−2

(
|zd |−

λ

2d−2
w∗

1

d−1∏
i=2

(
|zi |+

√
|zi |2 −4w∗

1 (|z1|−w∗
1)

))

·
d−1∏
i=2

(
|zi |+

√
|zi |2 −4w∗

1 (|z1|−w∗
1)

)
.

Proof. 1. First, it is obvious that w∗
i ≤ |zi | for any i = 1,2, . . . ,d . For the lower bound, notice

that, thanks to Corollary 37, it holds that for any i = 1,2, . . . ,d −1,

w∗
i (|zi |−w∗

i) = w∗
d (|zd |−w∗

d) ≤ |zd |2
4

which implies that:

w∗
i ≤ 1

2

(
|zi |−

√
|zi |2 −|zd |2

)
or w∗

i ≥ 1

2

(
|zi |+

√
|zi |2 −|zd |2

)
. (B.17)

We now argue that for i = 1, . . . ,d −1, we have w∗
i ≥ |zi |

2 , and hence, the right inequality

of (B.17) must hold. To this end, for some i = 1, . . . ,d −1, define α as the value achieving

w∗
i (|zi |−w∗

i) = w∗
d (|zd |−w∗

d) =α.

By solving the above quadratic equations, we have

w∗
i = 1

2

(
|zi |±

√
z2

i −4α
)

w∗
d = 1

2

(
|zd |±

√
z2

d −4α
)

.

Consider the solution w∗
i = 1

2

(
|zi |−

√
z2

i −4α
)
. Whatever the solution for w∗

d , we see

126

B.3. Proofs of Section 3.2

that w∗
d ≥ 1

2

(
|zd |−

√
z2

d −4α
)
. Hence,

2(w∗
i −w∗

d) ≤ |zi |− |zd |+
√

z2
d −4α−

√
z2

i −4α

= |zi |− |zd |+
z2

d − z2
i√

z2
i −4α+

√
z2

d −4α

= (|zi |− |zd |)

1− |zi |+ |zd |√
z2

i −4α+
√

z2
d −4α

< 0

since |zi | > |zd | by assumption. Hence, we have w∗
i < w∗

d , which contradicts the ordering

property given by Lemma 32. Therefore, we must have w∗
i = 1

2

(
|zi |+

√
z2

i −4α
)
≥ |zi |

2 as

desired.

2. The equalities for i = 1, . . . ,d −1 follows from Corollary 37 by finding roots of the order

two polynomial together with the fact that w∗
i ≥ |zi |

2 (from point 1.) which excludes one

of the two solutions. The equality for w∗
d trivially follows from Lemma 36.

3. By Lemma 36, we have that

|z1| = w∗
1 +λw∗

2 ·w∗
3 · · ·w∗

d .

The result follows by plugging the expressions of wi , i = 2, . . . ,d in terms of w∗
1 obtained

in part 2.

B.3.10 Proof of Lemma 42

Lemma. Two paths (s1, . . . , sd+1) and (s′1, . . . , s′d+1) are called non-overlapping if for all 0 ≤ i ≤ d,

si = s′i implies si+1 6= s′i+1. Let T be a set of non-overlapping paths in a network with layer sizes

n1, . . . ,nd+1. It holds that |T | ≤ k? ≡ mind
i=1 ni ni+1.

Proof. In essence, Lemma 42 states that we can sample a number of non-overlapping paths

at most equal to the size of the smallest weight matrix in the network. Consider for each

i = 1, . . . ,d the map ψi : T → [ni]× [ni+1] defined as ψi (s1, . . . , sd+1) = (si , si+1). The non-

overlapping property implies that all such maps are injective. Thus, |T | ≤ ni ni+1 for each

i = 1, . . . ,d which implies that |T | ≤ mini=1,...,d ni ni+1.

B.3.11 Proof of Theorem 43

Theorem. Let Tmax denote the distribution over sets of paths generated by Algorithm 10.

Then, Tmax satisfies Assumption 40, and generates sets of paths with maximal cardinality

127

Appendix B. Appendix for Chapter 3

k? = mind
i=1 ni ni+1.

Proof. We only prove the unbiased estimation property of the sampler. Let M be the matrix

output by Algorithm 10. We need to show that for any path (s1, . . . , sd+1),

Prob{(s1, . . . , sd+1) ∈ M } = di?di?+1∏d+1
i=1 ni

(B.18)

where recall that i? = argmind
i=1 ni ni+1 and we abuse the notation and write that (s1, . . . , sd+1) ∈

M if the path (s1, . . . , sd+1) appears as one of the rows of the matrix M .

We will show that (B.18) holds by induction on the length d of the path. We will denote as

M [d] as the matrix obtained from M by taking only its first d +1 columns. Note that we will

do induction on d while keeping the value of di? fixed.

Denote by Ui the sets of vertices sampled uniformly in line 7 of Algorithm 10. Without loss

of generality we will assume that i? is even. By this assumption we have that |Ui | = ni? if i is

even and |Ui | = ni?+1 if i is odd.

For the base case when d = 1 we have that

Prob{(s1, s2) ∈ M [1]} = Prob(s1 ∈U1)Prob(s2 ∈U2) = ni?ni?+1

n1n2
(B.19)

where in the first equality we have used the independence of the random sets U1,U2, as well as

the fact that our algorithm connects all neurons sampled in the input layer and those sampled

in the next layer. Now we proceed by induction as follows

Prob{(s1, . . . , sd+1) ∈ M [d]} = Prob{(s1, . . . , sd) ∈ M [d −1]} ·Ψ(sd+1) (B.20)

whereΨ(sd+1) := Prob{sd+1 ∈Ud+1 and it gets assigned next to (s1, . . . , sd) in line 10} (B.21)

where the equality is due again to independence of the sampling at each layer. We need only

compute Ψ(sd+1). Assume that d +1 is even, the other case is analogous. The probability

that sd+1 ∈Ud+1 is ni?/nd+1 and then it gets assigned uniformly at random in the block of ni?

paths that end in sd . Hence, the probability that it gets assigned at a particular row is 1/ni? ,

and we have that Ψ(sd+1) = ni?/(nd+1ni?) = 1/nd+1. Plugging this value in (B.20) yields the

desired result (B.18).

128

C Appendix for Chapter 4

C.1 Appendix for Section 4.2: Additional experiments

We show here additional synthetic experiments. Tables C.1, C.2 and C.3 show the results for

additive noise model with Gumbel noise on Erdös-Renyi graphs. Tables C.4, C.5 and C.5 show

the results for Gaussian noise with Scale-free graphs.

Table C.1 – Synthetic experiment for d = 10 with Gumbel noise

ER1 ER4
SHD SID D top (π, A) SHD SID D top (π, A)

SCORE (ours) 1.1±1.2 4.5±5.0 0.4±0.5 21.7±2.9 35.3±7.4 0.3±0.4
CAM 2.0±1.5 6.1±5.8 1.6±0.8 27.2±1.8 48.9±9.0 3.8±2.5

GraN-DAG 2.1±1.9 9.7±10.4 22.9±3.2 43.2±11.7
SELF 8.8±2.7 37.0±8.9 − 38.9±1.2 85.9±5.0 −
GES 7.6±2.4 29.6±11.5 − 34.9±3.5 81.9±5.3 −

VarSort 1.9±0.8 8.2±3.0

Table C.2 – Synthetic experiment for d = 20 with Gumbel noise

ER1 ER4
SHD SID D top (π, A) SHD SID D top (π, A)

SCORE (ours) 3.3±2.6 12.0±11.5 0.7±0.9 52.9±4.4 205.5±35.5 5.1±1.6
CAM 5.8±1.5 24.6±13.0 3.0±2.0 57.1±4.2 230.0±39.3 10.7±5.8

GraN-DAG 7.4±2.5 29.2±11.3 54.9±4.3 239.5±43.6
SELF 19.2±2.1 96.2±27.9 − 77.7±1.4 342.9±15.2 −
GES 19.0±3.9 84.0±32.7 − 72.7±4.2 323.2±28.5 −

VarSort 3.8±1.7 20.8±6.6

129

Appendix C. Appendix for Chapter 4

Table C.3 – Synthetic experiment for d = 50 with Gumbel noise

ER1 ER4
SHD SID D top (π, A) SHD SID D top (π, A)

SCORE (ours) 11.3±4.6 68.2±45.1 4.1±2.5 132.6±8.0 1390±132 19.7±3.4
CAM 11.0±3.7 69.7±48.8 − 141.1±6.7 1350±137 −

GraN-DAG 22.5±4.2 167.1±47.3 − 139.9±7.0 1552±143 −
SELF 46.3±3.7 306.5±41.1 − 193.3±3.1 2100±102 −
GES 51.0±5.1 273.0±57.9 − 182.1±3.2 2012±105 −

VarSort − − 8.8±1.6 − − 45.5±8.0

Table C.4 – Synthetic experiment for d = 10 with Gaussian noise on scale free graphs

SF1 SF4
SHD SID D top (π, A) SHD SID D top (π, A)

SCORE (ours) 0.3±0.6 2.7±5.8 0.1±0.3 4.6±1.7 21.5±9.6 0.5±0.9
CAM 0.4±0.5 2.8±3.6 0.3±0.3 9.6±2.0 40.4±11.4 4.1±1.6

GraN-DAG 1.4±1.0 12.5±9.7 − 4.7±1.8 23.0±7.3 −
SELF 10.4±2.7 60.2±16.2 − 26.8±1.4 84.6±3.6 −
GES 12.5±3.3 57.2±15.2 − 22.7±4.1 76.6±7.2 −

VarSort − − 2.8±1.7 − − 7.0±3.2

Table C.5 – Synthetic experiment for d = 20 with Gaussian noise on scale free graphs

SF1 SF4
SHD SID D top (π, A) SHD SID D top (π, A)

SCORE (ours) 0.9±0.9 13.8±12.6 0.7±0.6 17.5±3.5 179.2±23.8 3.6±1.4
CAM 0.9±0.9 12.9±14.0 0.5±0.4 26.4±3.9 253.7±28.8 4.6±3.2

GraN-DAG 3.2±1.9 25.5±15.6 − 14.7±4.0 168.0±39.2 −
SELF 18.9±2.9 245.7±28.2 − 65.9±2.6 369.2±7.8 −
GES 23.6±3.6 166.4±47.6 − 60.0±4.0 345.7±11.4 −

VarSort − − 7.4±2.5 − − 20.2±7.2

Table C.6 – Synthetic experiment for d = 50 with Gaussian noise on scale free graphs

SF1 SF4
SHD SID D top (π, A) SHD SID D top (π, A)

SCORE (ours) 4.6±2.4 132.6±75.8 4.0±1.0 68.3±3.6 1724±109 21.8±5.0
CAM 3.6±1.9 115.4±72.6 − 85.3±4.2 1935±99 −

GraN-DAG 9.2±3.3 281.8±129.8 − 63.8±9.7 1677±118 −
SELF 57.6±6.6 1780±150 − 176.0±4.0 2424±16 −
GES 81.3±8.8 1049±174 − 167.6±9.2 2289±49 −

VarSort − − 21.0±4.0 − − 73.0±10.6

130

Bibliography

Ahn, S., Korattikara, A., and Welling, M. (2012). Bayesian posterior sampling via stochastic

gradient fisher scoring. arXiv preprint arXiv:1206.6380.

Andersen, C. M. and Bro, R. (2010). Variable selection in regression—a tutorial. Journal of

chemometrics, 24(11-12):728–737.

Attouch, H., Bolte, J., Redont, P., and Soubeyran, A. (2010). Proximal alternating minimization

and projection methods for nonconvex problems: An approach based on the kurdyka-

lojasiewicz inequality. Mathematics of Operations Research, 35(2):438–457.

Attouch, H., Bolte, J., and Svaiter, B. F. (2011). Convergence of descent methods for semi-

algebraic and tame problems: proximal algorithms, forward–backward splitting, and regu-

larized gauss–seidel methods. Mathematical Programming, 137(1-2):91–129.

Aybat, N. S., Fallah, A., Gurbuzbalaban, M., and Ozdaglar, A. (2019). A universally optimal

multistage accelerated stochastic gradient method. arXiv preprint arXiv:1901.08022.

Bach, F., Jenatton, R., Mairal, J., and Obozinski, G. (2012). Optimization with sparsity-inducing

penalties. Found. Trends Mach. Learn., 4(1):1–106.

Badue, C., Guidolini, R., Carneiro, R. V., Azevedo, P., Cardoso, V. B., Forechi, A., Jesus, L., Berriel,

R., Paixao, T. M., Mutz, F., et al. (2021). Self-driving cars: A survey. Expert Systems with

Applications, 165:113816.

Bakry, D., Barthe, F., Cattiaux, P., and Guillin, A. (2008). A simple proof of the poincaré inequality

for a large class of probability measures. Electronic Communications in Probability, 13:60–

66.

Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. science,

286(5439):509–512.

Barp, A., Briol, F.-X., Duncan, A. B., Girolami, M., and Mackey, L. (2019). Minimum stein

discrepancy estimators. arXiv preprint arXiv:1906.08283.

Beck, A. (2014). Introduction to nonlinear optimization, volume 19 of MOS-SIAM Series on

Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

131

Bibliography

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear

inverse problems. SIAM journal on imaging sciences, 2(1):183–202.

Bertsekas, D. P. (1999). Nonlinear programming. Athena scientific Belmont.

Bobkov, S. G. (1999). Isoperimetric and analytic inequalities for log-concave probability

measures. The Annals of Probability, 27(4):1903–1921.

Bolte, J., Sabach, S., and Teboulle, M. (2013). Proximal alternating linearized minimization for

nonconvex and nonsmooth problems. Mathematical Programming, 146(1-2):459–494.

Bouckaert, R. R. (1992). Optimizing causal orderings for generating dags from data. In

Uncertainty in Artificial Intelligence, pages 9–16. Elsevier.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.

(2016). Openai gym. arXiv preprint arXiv:1606.01540.

Brosse, N., Durmus, A., Moulines, É., and Pereyra, M. (2017). Sampling from a log-concave

distribution with compact support with proximal langevin monte carlo. arXiv preprint

arXiv:1705.08964.

Bubeck, S., Eldan, R., and Lehec, J. (2018). Sampling from a log-concave distribution with

projected langevin monte carlo. Discrete & Computational Geometry, 59(4):757–783.

Bühlmann, P. (2020). Invariance, causality and robustness. Statistical Science, 35(3):404–426.

Bühlmann, P., Peters, J., and Ernest, J. (2014). Cam: Causal additive models, high-dimensional

order search and penalized regression. The Annals of Statistics, 42(6):2526–2556.

Cai, R., Qiao, J., Zhang, Z., and Hao, Z. (2018). Self: structural equational likelihood frame-

work for causal discovery. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 32.

Chen, C., Ding, N., and Carin, L. (2015). On the convergence of stochastic gradient mcmc

algorithms with high-order integrators. In Advances in Neural Information Processing

Systems, pages 2278–2286.

Cheng, X. and Bartlett, P. (2017). Convergence of langevin mcmc in kl-divergence. arXiv

preprint arXiv:1705.09048.

Cheng, X., Chatterji, N. S., Bartlett, P. L., and Jordan, M. I. (2017a). Underdamped langevin

mcmc: A non-asymptotic analysis. arXiv preprint arXiv:1707.03663.

Cheng, Y., Wang, D., Zhou, P., and Zhang, T. (2017b). A survey of model compression and

acceleration for deep neural networks.

Chewi, S., Erdogdu, M. A., Li, M. B., Shen, R., and Zhang, M. (2021). Analysis of langevin monte

carlo from poincar\’e to log-sobolev. arXiv preprint arXiv:2112.12662.

132

Bibliography

Chickering, D. M. (1996). Learning bayesian networks is np-complete. In Learning from data,

pages 121–130. Springer.

Chickering, D. M. (2002). Optimal structure identification with greedy search. Journal of

machine learning research, 3(Nov):507–554.

Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y., and Usunier, N. (2017). Parseval networks:

Improving robustness to adversarial examples. In Proceedings of the 34th International

Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,

pages 854–863, International Convention Centre, Sydney, Australia. PMLR.

Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., and Ha, D. (2018). Deep

learning for classical japanese literature.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2015). Fast and Accurate Deep Network

Learning by Exponential Linear Units (ELUs). arXiv e-prints, page arXiv:1511.07289.

Combettes, P. L. and Pesquet, J.-C. (2019). Lipschitz Certificates for Neural Network Structures

Driven by Averaged Activation Operators. arXiv e-prints, page arXiv:1903.01014.

Condat, L. (2016). Fast projection onto the simplex and the l1 ball. Math. Program.,

158(1–2):575–585.

Cooper, G. F. and Herskovits, E. (1992). A bayesian method for the induction of probabilistic

networks from data. Machine learning, 9(4):309–347.

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., and Bharath, A. A. (2018).

Generative adversarial networks: An overview. IEEE signal processing magazine, 35(1):53–65.

Dai, Z., Liu, H., Le, Q. V., and Tan, M. (2021). Coatnet: Marrying convolution and attention for

all data sizes. Advances in Neural Information Processing Systems, 34:3965–3977.

Dalalyan, A. S., Karagulyan, A., and Riou-Durand, L. (2019). Bounding the error of discretized

langevin algorithms for non-strongly log-concave targets. arXiv preprint arXiv:1906.08530.

Dalalyan, A. S. and Karagulyan, A. G. (2017). User-friendly guarantees for the langevin monte

carlo with inaccurate gradient. arXiv preprint arXiv:1710.00095.

Daskalakis, C., Skoulakis, S., and Zampetakis, M. (2021). The complexity of constrained min-

max optimization. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of

Computing, pages 1466–1478.

Davis, D. and Drusvyatskiy, D. (2019). Stochastic model-based minimization of weakly convex

functions. SIAM Journal on Optimization, 29(1):207–239.

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schulman, J., Sidor, S.,

Wu, Y., and Zhokhov, P. (2017). Openai baselines. https://github.com/openai/baselines.

133

https://github.com/openai/baselines

Bibliography

Diaconis, P., Stein, C., Holmes, S., and Reinert, G. (2004). Use of exchangeable pairs in the

analysis of simulations. In Stein’s Method, pages 1–25. Institute of Mathematical Statistics.

Dong, Y., Fu, Q.-A., Yang, X., Pang, T., Su, H., Xiao, Z., and Zhu, J. (2020). Benchmarking

adversarial robustness on image classification. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 321–331.

Duchi, J., Shalev-Shwartz, S., Singer, Y., and Chandra, T. (2008). Efficient projections onto the l1-

ball for learning in high dimensions. In Proceedings of the 25th International Conference on

Machine Learning, ICML 2008, page 272–279, New York, NY, USA. Association for Computing

Machinery.

Durmus, A., Majewski, S., and Miasojedow, B. (2018a). Analysis of langevin monte carlo via

convex optimization. arXiv preprint arXiv:1802.09188.

Durmus, A., Moulines, E., et al. (2017). Nonasymptotic convergence analysis for the unadjusted

langevin algorithm. The Annals of Applied Probability, 27(3):1551–1587.

Durmus, A., Moulines, E., and Pereyra, M. (2018b). Efficient bayesian computation by proximal

markov chain monte carlo: when langevin meets moreau. SIAM Journal on Imaging Sciences,

11(1):473–506.

Dwivedi, R., Chen, Y., Wainwright, M. J., and Yu, B. (2018). Log-concave sampling: Metropolis-

hastings algorithms are fast! arXiv preprint arXiv:1801.02309.

Eldar, Y. C. and Kutyniok, G. (2012). Compressed sensing: theory and applications. Cambridge

university press.

Erdös, P. and Rényi, A. (2011). On the evolution of random graphs, pages 38–82. Princeton

University Press.

Fazlyab, M., Robey, A., Hassani, H., Morari, M., and Pappas, G. J. (2019). Efficient and Ac-

curate Estimation of Lipschitz Constants for Deep Neural Networks. arXiv e-prints, page

arXiv:1906.04893.

Fercoq, O. and Richtárik, P. (2015). Accelerated, parallel, and proximal coordinate descent.

SIAM Journal on Optimization, 25(4):1997–2023.

Frankle, J. and Carbin, M. (2019). The lottery ticket hypothesis: Finding sparse, trainable

neural networks. In International Conference on Learning Representations.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M.,

and Lempitsky, V. (2016). Domain-adversarial training of neural networks. The journal of

machine learning research, 17(1):2096–2030.

Garreau, D., Jitkrittum, W., and Kanagawa, M. (2017). Large sample analysis of the median

heuristic. arXiv preprint arXiv:1707.07269.

134

Bibliography

Ge, R., Kakade, S. M., Kidambi, R., and Netrapalli, P. (2019). The step decay schedule: A near

optimal, geometrically decaying learning rate procedure. arXiv preprint arXiv:1904.12838.

Ghoshal, A. and Honorio, J. (2018). Learning linear structural equation models in polynomial

time and sample complexity. In International Conference on Artificial Intelligence and

Statistics, pages 1466–1475. PMLR.

Gibbs, A. L. and Su, F. E. (2002). On choosing and bounding probability metrics. International

statistical review, 70(3):419–435.

Gidel, G., Berard, H., Vignoud, G., Vincent, P., and Lacoste-Julien, S. (2018). A variational

inequality perspective on generative adversarial networks. arXiv preprint arXiv:1802.10551.

Gozlan, N. (2010). Poincaré inequalities and dimension free concentration of measure. In

Annales de l’IHP Probabilités et statistiques, volume 46, pages 708–739.

Gozlan, N. and Léonard, C. (2010). Transport inequalities. a survey. arXiv preprint

arXiv:1003.3852.

Gromov, M. and Milman, V. D. (1983). A topological application of the isoperimetric inequality.

American Journal of Mathematics, 105(4):843–854.

Hallak, N., Mertikopoulos, P., and Cevher, V. (2021). Regret minimization in stochastic non-

convex learning via a proximal-gradient approach. In To appear in Proceedings of the 38th

International Conference on Machine Learning. PMLR.

Han, S., Mao, H., and Dally, W. J. (2015). Deep compression: Compressing deep neu-

ral networks with pruning, trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149.

Han, S., Mao, H., and Dally, W. J. (2016). Deep compression: Compressing deep neural

network with pruning, trained quantization and huffman coding. International Conference

on Learning Representations, abs/1510.00149.

Handelman, D. (1988). Representing polynomials by positive linear functions on compact

convex polyhedra. Pacific J. Math., 132(1):35–62.

Hanson, S. J. and Pratt, L. Y. (1989). Comparing biases for minimal network construction with

back-propagation. In Advances in Neural Information Processing Systems 1, pages 177–185.

Morgan-Kaufmann.

Hastie, T. and Tibshirani, R. (1987). Generalized additive models: some applications. Journal

of the American Statistical Association, 82(398):371–386.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R. (2012).

Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint

arXiv:1207.0580.

135

Bibliography

Hsieh, Y.-P., Kavis, A., Rolland, P., and Cevher, V. (2018). Mirrored langevin dynamics. In

Advances in Neural Information Processing Systems, pages 2883–2892.

Hsieh, Y.-P., Liu, C., and Cevher, V. (2019). Finding mixed nash equilibria of generative adver-

sarial networks. In International Conference on Machine Learning, pages 2810–2819.

Hyvärinen, A. and Dayan, P. (2005). Estimation of non-normalized statistical models by score

matching. Journal of Machine Learning Research, 6(4).

Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., and Madry, A. (2019). Adversarial

examples are not bugs, they are features. Advances in neural information processing systems,

32.

Jiang*, Y., Neyshabur*, B., Krishnan, D., Mobahi, H., and Bengio, S. (2020). Fantastic gen-

eralization measures and where to find them. In International Conference on Learning

Representations.

Jin, M. and Lavaei, J. (2018). Stability-certified reinforcement learning: A control-theoretic

perspective. arXiv e-prints, page arXiv:1810.11505.

Kamalaruban, P., Huang, Y.-T., Hsieh, Y.-P., Rolland, P., Shi, C., and Cevher, V. (2020). Robust

reinforcement learning via adversarial training with langevin dynamics. Advances in Neural

Information Processing Systems, 33:8127–8138.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Bengio, Y. and

LeCun, Y., editors, 3rd International Conference on Learning Representations, ICLR 2015,

San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Krivine, J.-L. (1964). Anneaux préordonnés. Journal d’analyse mathématique, 12:p. 307–326.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Technical report.

Lachapelle, S., Brouillard, P., Deleu, T., and Lacoste-Julien, S. (2019). Gradient-based neural

dag learning. arXiv preprint arXiv:1906.02226.

Larranaga, P., Kuijpers, C. M., Murga, R. H., and Yurramendi, Y. (1996). Learning bayesian net-

work structures by searching for the best ordering with genetic algorithms. IEEE transactions

on systems, man, and cybernetics-part A: systems and humans, 26(4):487–493.

Lasserre, J. B. (2000). Convergent lmi relaxations for nonconvex quadratic programs. In

Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187),

volume 5, pages 5041–5046 vol.5.

Lasserre, J. B. (2006). Convergent sdp-relaxations in polynomial optimization with sparsity.

SIAM Journal on Optimization, 17(3):822–843.

136

Bibliography

Lasserre, J. B. (2015). An Introduction to Polynomial and Semi-Algebraic Optimization. Cam-

bridge Texts in Applied Mathematics. Cambridge University Press.

Latorre, F., Rolland, P., and Cevher, V. (2020a). Lipschitz constant estimation of neural networks

via sparse polynomial optimization. arXiv preprint arXiv:2004.08688.

Latorre, F., Rolland, P., and Cevher, V. (2020b). Lipschitz constant estimation of neural networks

via sparse polynomial optimization. In International Conference on Learning Representa-

tions.

Latorre, F., Rolland, P., Hallak, N., and Cevher, V. (2020c). Efficient proximal mapping of the

1-path-norm of shallow networks. In International Conference on Machine Learning, pages

5651–5661. PMLR.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324.

LeCun, Y. and Cortes, C. (2010). MNIST handwritten digit database.

Lehec, J. (2021). The langevin monte carlo algorithm in the non-smooth log-concave case.

arXiv preprint arXiv:2101.10695.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of deep visuomotor

policies. The Journal of Machine Learning Research, 17(1):1334–1373.

Li, C., Chen, C., Carlson, D., and Carin, L. (2016a). Preconditioned stochastic gradient langevin

dynamics for deep neural networks. In Thirtieth AAAI Conference on Artificial Intelligence.

Li, W., Ahn, S., and Welling, M. (2016b). Scalable mcmc for mixed membership stochastic

blockmodels. In Artificial Intelligence and Statistics, pages 723–731.

Li, Y. and Turner, R. E. (2017). Gradient estimators for implicit models. arXiv preprint

arXiv:1705.07107.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wier-

stra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint

arXiv:1509.02971.

Lin, Q., Lu, Z., and Xiao, L. (2014). An accelerated proximal coordinate gradient method. In

Proceedings of the 27th International Conference on Neural Information Processing Systems -

Volume 2, NIPS’14, page 3059–3067, Cambridge, MA, USA. MIT Press.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning.

In Machine Learning Proceedings. Elsevier.

Liu, Q., Lee, J., and Jordan, M. (2016). A kernelized stein discrepancy for goodness-of-fit tests.

In International conference on machine learning, pages 276–284. PMLR.

137

Bibliography

Loh, P.-L. and Bühlmann, P. (2014). High-dimensional learning of linear causal networks via

inverse covariance estimation. The Journal of Machine Learning Research, 15(1):3065–3105.

Lovász, L. and Vempala, S. (2007). The geometry of logconcave functions and sampling

algorithms. Random Structures & Algorithms, 30(3):307–358.

Luu, T., Fadili, J., and Chesneau, C. (2017). Sampling from non-smooth distribution through

langevin diffusion.

Ma, Y.-A., Chen, T., and Fox, E. (2015). A complete recipe for stochastic gradient mcmc. In

Advances in Neural Information Processing Systems, pages 2917–2925.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2018). Towards deep learning

models resistant to adversarial attacks. In International Conference on Learning Representa-

tions.

Marra, G. and Wood, S. N. (2011). Practical variable selection for generalized additive models.

Computational Statistics & Data Analysis, 55(7):2372–2387.

Metel, M. and Takeda, A. (2019). Simple stochastic gradient methods for non-smooth non-

convex regularized optimization. In International Conference on Machine Learning, pages

4537–4545.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,

Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through

deep reinforcement learning. Nature, 518(7540):529.

Morimoto, J. and Doya, K. (2005). Robust reinforcement learning. Neural computation,

17(2):335–359.

Neumann, J. v. (1928). Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1):295–

320.

Neyshabur, B., Tomioka, R., and Srebro, N. (2015). Norm-based capacity control in neural net-

works. In Proceedings of The 28th Conference on Learning Theory, volume 40 of Proceedings

of Machine Learning Research, pages 1376–1401, Paris, France. PMLR.

Park, J. and Boyd, S. (2017). General heuristics for nonconvex quadratically constrained

quadratic programming. arXiv preprint arXiv:1703.07870.

Patterson, S. and Teh, Y. W. (2013). Stochastic gradient riemannian langevin dynamics on the

probability simplex. In Advances in neural information processing systems, pages 3102–3110.

Pearl, J. (2009). Causality. Cambridge university press.

Perolat, J., Scherrer, B., Piot, B., and Pietquin, O. (2015). Approximate dynamic programming

for two-player zero-sum Markov games. In International Conference on Machine Learning.

138

Bibliography

Peters, J. and Bühlmann, P. (2015). Structural intervention distance for evaluating causal

graphs. Neural computation, 27(3):771–799.

Peters, J., Janzing, D., and Schölkopf, B. (2017). Elements of causal inference: foundations and

learning algorithms. The MIT Press.

Peters, J., Mooij, J. M., Janzing, D., and Schölkopf, B. (2014). Causal discovery with continuous

additive noise models.

Pinsker, M. S. (1960). Information and information stability of random variables and processes.

Pinto, L., Davidson, J., Sukthankar, R., and Gupta, A. (2017). Robust adversarial reinforcement

learning. In International Conference on Machine Learning.

Raghunathan, A., Steinhardt, J., and Liang, P. (2018a). Certified defenses against adversarial

examples. In International Conference on Learning Representations.

Raghunathan, A., Steinhardt, J., and Liang, P. (2018b). Certified defenses against adversarial

examples. In International Conference on Learning Representations.

Raskutti, G. and Uhler, C. (2018). Learning directed acyclic graph models based on sparsest

permutations. Stat, 7(1):e183.

Reisach, A. G., Seiler, C., and Weichwald, S. (2021). Beware of the simulated dag! varsortability

in additive noise models. NeurIPS.

Rolland, P., Cevher, V., Kleindessner, M., Russel, C., Schölkopf, B., Janzing, D., and Locatello, F.

(2022). Score matching enables causal discovery of nonlinear additive noise models. arXiv

preprint arXiv:2203.04413.

Rolland, P., Eftekhari, A., Kavis, A., and Cevher, V. (2020). Double-loop unadjusted langevin

algorithm. In International Conference on Machine Learning, pages 8169–8177. PMLR.

Rosen, J. B. (1965). Existence and uniqueness of equilibrium points for concave n-person

games. Econometrica: Journal of the Econometric Society, pages 520–534.

Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., and Nolan, G. P. (2005). Causal protein-

signaling networks derived from multiparameter single-cell data. Science, 308(5721):523–

529.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region policy

optimization. In International Conference on Machine Learning, pages 1889–1897.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy

optimization algorithms. arXiv preprint arXiv:1707.06347.

Si, S., Hsieh, C.-J., and Dhillon, I. (2014). Memory efficient kernel approximation. In Interna-

tional Conference on Machine Learning, pages 701–709. PMLR.

139

Bibliography

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L.,

Kumaran, D., Graepel, T., et al. (2018). A general reinforcement learning algorithm that

masters chess, shogi, and go through self-play. Science, 362(6419):1140–1144.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014). Deterministic

policy gradient algorithms. In ICML.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker,

L., Lai, M., Bolton, A., et al. (2017). Mastering the game of go without human knowledge.

Nature, 550(7676):354.

Singh, M. and Valtorta, M. (1993). An algorithm for the construction of bayesian network

structures from data. In Uncertainty in Artificial Intelligence, pages 259–265. Elsevier.

Solus, L., Wang, Y., and Uhler, C. (2021). Consistency guarantees for greedy permutation-based

causal inference algorithms. Biometrika, 108(4):795–814.

Song, Y. and Ermon, S. (2019). Generative modeling by estimating gradients of the data

distribution. In Advances in Neural Information Processing Systems, pages 11918–11930.

Song, Y. and Ermon, S. (2020). Improved techniques for training score-based generative

models. arXiv preprint arXiv:2006.09011.

Song, Y., Garg, S., Shi, J., and Ermon, S. (2020a). Sliced score matching: A scalable approach to

density and score estimation. In Uncertainty in Artificial Intelligence, pages 574–584. PMLR.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. (2020b).

Score-based generative modeling through stochastic differential equations. arXiv preprint

arXiv:2011.13456.

Spirtes, P., Glymour, C. N., Scheines, R., and Heckerman, D. (2000). Causation, prediction, and

search. MIT press.

Stein, C. (1972). A bound for the error in the normal approximation to the distribution of

a sum of dependent random variables. In Proceedings of the sixth Berkeley symposium

on mathematical statistics and probability, volume 2: Probability theory, volume 6, pages

583–603. University of California Press.

Stengle, G. (1974). A nullstellensatz and a positivstellensatz in semialgebraic geometry. Math-

ematische Annalen, 207(2):87–97.

Strassen, V. (1969). Gaussian elimination is not optimal. Numerische mathematik, 13(4):354–

356.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (2000). Policy gradient methods for

reinforcement learning with function approximation. In Advances in neural information

processing systems, pages 1057–1063.

140

Bibliography

Tessler, C., Efroni, Y., and Mannor, S. (2019). Action robust reinforcement learning and

applications in continuous control. arXiv preprint arXiv:1901.09184.

Teyssier, M. and Koller, D. (2012). Ordering-based search: A simple and effective algorithm for

learning bayesian networks. arXiv preprint arXiv:1207.1429.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based control.

In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages

5026–5033. IEEE.

Tran-Dinh, Q., Pham, N. H., Phan, D. T., and Nguyen, L. M. (2021). A hybrid stochastic opti-

mization framework for composite nonconvex optimization. Mathematical Programming,

pages 1–67.

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and Madry, A. (2019). Robustness may be at

odds with accuracy. In International Conference on Learning Representations.

Van den Bulcke, T., Van Leemput, K., Naudts, B., van Remortel, P., Ma, H., Verschoren, A.,

De Moor, B., and Marchal, K. (2006). Syntren: a generator of synthetic gene expression data

for design and analysis of structure learning algorithms. BMC bioinformatics, 7(1):1–12.

Villani, C. (2009). Optimal transport–old and new, volume 338 of a series of comprehensive

studies in mathematics.

Virmaux, A. and Scaman, K. (2018). Lipschitz regularity of deep neural networks: analysis

and efficient estimation. In Advances in Neural Information Processing Systems 31, pages

3835–3844. Curran Associates, Inc.

Wang, X., Du, Y., Zhu, S., Ke, L., Chen, Z., Hao, J., and Wang, J. (2021). Ordering-based causal

discovery with reinforcement learning. arXiv preprint arXiv:2105.06631.

Weisser, T., Lasserre, J. B., and Toh, K.-C. (2018). Sparse-bsos: a bounded degree sos hier-

archy for large scale polynomial optimization with sparsity. Mathematical Programming

Computation, 10(1):1–32.

Welling, M. and Teh, Y. W. (2011). Bayesian learning via stochastic gradient langevin dynamics.

In Proceedings of the 28th international conference on machine learning (ICML-11), pages

681–688.

Wilks, S. S. (1962). Mathematical statistics.

Wong, E., Schmidt, F., and Kolter, Z. (2019). Wasserstein adversarial examples via projected

Sinkhorn iterations. In Proceedings of the 36th International Conference on Machine Learn-

ing, volume 97 of Proceedings of Machine Learning Research, pages 6808–6817, Long Beach,

California, USA. PMLR.

Xiao, H., Rasul, K., and Vollgraf, R. (2017a). Fashion-mnist: a novel image dataset for bench-

marking machine learning algorithms.

141

Bibliography

Xiao, H., Rasul, K., and Vollgraf, R. (2017b). Fashion-mnist: a novel image dataset for bench-

marking machine learning algorithms. CoRR, abs/1708.07747.

Xie, S., Kirillov, A., Girshick, R., and He, K. (2019). Exploring Randomly Wired Neural Networks

for Image Recognition. International Conference on Computer Vision.

Xu, Y., Jin, R., and Yang, T. (2019a). Non-asymptotic analysis of stochastic methods for non-

smooth non-convex regularized problems. In Wallach, H., Larochelle, H., Beygelzimer, A.,

d Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing

Systems, volume 32. Curran Associates, Inc.

Xu, Y., Qi, Q., Lin, Q., Jin, R., and Yang, T. (2019b). Stochastic optimization for DC functions and

non-smooth non-convex regularizers with non-asymptotic convergence. In Chaudhuri, K.

and Salakhutdinov, R., editors, Proceedings of the 36th International Conference on Machine

Learning, volume 97 of Proceedings of Machine Learning Research, pages 6942–6951. PMLR.

Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence

of latent confounders and selection bias. Artificial Intelligence, 172(16-17):1873–1896.

Zheng, X., Aragam, B., Ravikumar, P., and Xing, E. P. (2018). Dags with no tears: Continuous

optimization for structure learning. arXiv preprint arXiv:1803.01422.

Zhou, Y., Shi, J., and Zhu, J. (2020). Nonparametric score estimators. In International Confer-

ence on Machine Learning, pages 11513–11522. PMLR.

Zhu, J. (2021). Hessian estimation via stein’s identity in black-box problems. arXiv preprint

arXiv:2104.01317.

Zhu, S., Ng, I., and Chen, Z. (2019). Causal discovery with reinforcement learning. arXiv

preprint arXiv:1906.04477.

Zimmermann, R. S., Schott, L., Song, Y., Dunn, B. A., and Klindt, D. A. (2021). Score-based

generative classifiers. arXiv preprint arXiv:2110.00473.

Zou, D., Xu, P., and Gu, Q. (2018). Stochastic variance-reduced hamilton monte carlo methods.

arXiv preprint arXiv:1802.04791.

142

	Acknowledgements
	Abstract (English/Français)
	Contents
	Introduction
	Robustness to distribution shift using min-max optimization
	Preliminaries
	Min-max optimization
	Finding mixed Nash equilibria

	Double-loop unadjusted Langevin algorithm
	Introduction
	Related work
	Preliminaries
	DL-ULA for unconstrained sampling
	DL-MYULA for constrained sampling

	Robust Reinforcement Learning via adversarial training with Langevin dynamics
	Introduction
	Preliminaries: Markov decision problems and deterministic policy gradient
	Robust training with two players Markov games
	Experiments

	Bibliographic notes

	Robustness to adversarial perturbation using regularization
	Lipschitz constant estimation of neural networks via sparse polynomial optimization
	Introduction
	Polynomial optimization formulation
	Solving the POP using polynomial positivity certificate
	Reducing the number of variables
	Relation to Shor's relaxation and Sum-Of-Squares hierarchy
	Experiments

	1-path-norm Regularization using Proximal Gradient Method
	Introduction
	Problem setup and preliminaries
	Path norm regularization of shallow neural networks
	Path norm regularization of deep neural networks
	Experiments

	Bibliographic notes

	Robustness to structured environmental changes using causal feature selection
	Preliminaries: Causality and robustness
	Causality and structural equation models
	Robustness via causal features selection

	Causal discovery for non-linear additive models
	Introduction
	Related Work
	Preliminaries
	Causal discovery via score matching
	Experiments

	Conclusion and future work
	Summary of the thesis
	Directions for future work
	Further analysis of DL-ULA
	Analysis of stochastic prox method for 1-path norm regularization
	Extension of SCORE to other identifiable models

	Appendix for Chapter 2
	Proofs of Section 2.2
	Proof of Lemma 9
	Proof of Lemma 10
	Proof of Theorem 11
	Proof of Lemma A.1.4
	Proof of Theorem 14

	Appendix for Section 2.3

	Appendix for Chapter 3
	Proofs of Section 3.1
	Proof of Theorem 15
	Proof of Proposition 22

	Appendix for Section 3.2: Proximal operator in the multi-output setting
	Proofs of Section 3.2
	Proof of Theorem 23
	Proof of Theorem 24
	Proof of Lemma 26
	Proof of Lemma 27
	Proof of Lemma 30
	Proof of Corollary 31
	Proof of Lemma 32
	Proof of Lemma 34
	Proof of Lemma 38
	Proof of Lemma 42
	Proof of Theorem 43

	Appendix for Chapter 4
	Appendix for Section 4.2: Additional experiments

	Bibliography

