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“... all models are approximations. Essentially, all models are wrong… 

The practical question is how wrong do they have to be to not be useful.” 

 

— George E.P. Box  

  



4 
 

 

  



5 
 

Acknowledgements 
 

Firstly, I would like to express my sincere gratitude to Prof. Karen Scrivener, my thesis supervisor, 
who gave me the opportunity to join the LMC team and be part of this very unique lab. This thesis 
was part of the ERICA consortium funded by the European Union under the Horizon 2020 – Marie 
Skłodowska-Curie – Innovative Training Network (ITN) programme. All my thanks to the programme 
for the funding and the support. Many thanks also to the members of the jury for their time and 
feedback. 

Doing a PhD can be a very lonely journey at times... And while I remain deeply grateful for the 
introspective experience (both personal and intellectual) that I went through during the thesis, I 
always felt that I could count on the support and help of my co-supervisors. I owe a debt of gratitude 
to Fabien for his insight, valuable advice and all the fruitful discussions throughout the last four 
years. Also a big thank you to Prof. Paul Bowen for his guidance and for organizing all those 
interesting workshops.  

Being part of the ERICA project was a great opportunity to travel all over the continent but mainly 
to meet a group of great people which made this special journey even more so. A special thought to 
all the ESRs: Alex, Maya, Rémi, Miryea, Nabor, Monisha, Magda, Anastasia, Petr, Ors, Arifah and, last 
but not least, Masood. 

I feel particularly honored and so privileged for being a member of the LMC family. Thanks to all 
the PhD students, postdocs and staff (the rookies and the veterans) for the conversations, the 
laughter, the kindness and all the memories shared! My gratitude to Mira and Marie-Alix (for the 
good humor and all the logistic help), Andrea (for all the funny/crazy moments), Diana (for the salsa 
classes), Wiola (for the raclette/cinema evenings), Silas (for the Tuesday aperos), the kind Shiyu, 
François, Elise, Solène, Emmanuelle, Jean, John, Mahsa, Qiao, Mai, Jinfeng, William, Yu Yan, Gabi, 
Anna, Ziga, Bea, Hisham and to all those who might have slipped my mind, thank you! 

My deep appreciation for those with whom I had the chance to share more personal time. A 
special thought for Sarra (the foody) and Yosra (the princess) for all those moments we spent talking, 
laughing or travelling together… I look forward to sharing many more adventures in the future. To 
the irreplaceable Thai band: thanks to Franco for his dark humour and all the embarrassing 
moments, Fabien (again) for being my daddou and Erng for the good food, the kindness and the 
memorable trip to the “Land of White Elephants”. 

The LMC would not also be as fabulous without Lionel and Maude. A big thank you to Lionel for 
his help, energy, joy and unique sense of humor and to Maude for being the guardian angel of the 
lab. 

Prior to the pandemic and the era of telecommuting, I had the great pleasure of sharing my office 
with a duo of trouble makers that fast became very good friends of mine. Thanks to Julien for your 
unique IT skills, the veggies, the hikes, the games, the SF conversations and Alex for your bloody 
humor, the financial advices and all the great evenings that we spent in your cosy hobbit hole in 
Epesses. 

All my love and gratitude to Joy, Léon and Oscar (and all the colocs: Mursal, Francesco, Ahmed…) 
for being a second family here in Lausanne. I took immense pleasure sharing your lives for the last 3 



6 
 

years and half. Thank you for the precious moments spent together; sharing a good meal, playing 
social games or discussing music, life, love… Our shared summer stay in Champéry shall remain one 
of my favorite memories.    

During my stay in Lausanne, I have also had the pleasure of meeting many interesting people 
which I am happy to call friends. To all the international homies; Mathilde (aka lapinou), Xisca, Sheila, 
Patricia, Purva and Elena, I am thankful for our adventures, the trips, the hilarious situations and I 
wish for many more to come. To my local swiss friends: Laetitia, Marie, Sacha, Sam, Jon, Olia… 
Thanks for all those Wednesday apéros (which I have been missing lately…) and all the pleasant 
moments. 

Finally, I would like to thank my family for their unwavering support and unconditional love. I 
dedicate this thesis to my parents; Hallouma Hemadi and Tahar Ferjaoui, to whom I owe everything, 
and to my little brother Khaled. 

 

 

 

Lausanne, le 19/09/2022  

 

  



7 
 

Abstract 
 

To reduce the CO2 footprint of construction materials, concrete producers blend their cement 
with Supplementary Cementitious Materials (SCMs). SCMs such as fly ash or blast furnace slag are 
mostly the byproducts of other industries. And while SCMs are chosen to match the properties of the 
common Ordinary Portland cement (OPC), their addition to the cement recipe may alter the 
chemistry of the system. These changes can potentially lead to different mechanical and transport 
properties of the cement-based structure which may, in turn, affect its long-term resistance to 
harmful external agents. Therefore, understanding the relationship between cement’s 
microstructure and the degradation mechanisms is key for optimizing the design of new 
cementitious materials 

In this context, chloride attack is the most common reason for steel rebars to corrode especially 
when exposed to external chloride (seawater, deicer salts…). At low w/c ratios (typically <0.4), it was 
found that the majority of the saturated pores, which contribute to ionic transport, are interhydrate 
and C-S-H (calcium-silicate-hydrate) gel pores of 10nm size and below. The C-S-H gel, which 
constitutes over 50% of the cement paste, is a complex nearly amorphous material characterized by 
a high specific surface area. In contact with the highly alkaline (pH>13) pore solution, the C-S-H 
surface develops a negative surface charge density. Electrostatic interactions between the surface 
and the ions in the pore solution result in a redistribution of the ionic species in two layers of charge 
at the interface of the solid i.e. the Electrical double layer (EDL). In nanoscopic pores, the EDL is 
dominated by atomic phenomena which are thought to interfere with the mobility of ions and 
chloride in particular.  

In order to understand and quantify the surface effects and their influence on ionic transport, we 
firstly propose an atomistic model of the EDL formation based on the use of the Metropolis Monte 
Carlo algorithm. This model is used to compute the ionic distributions and electrochemical potentials 
of electrolytes at equilibrium in nanoscopic pores. These quantities constitute the main driving forces 
of ionic transport at the pore scale. The microstructure parameters including the surface charge 
density of C-S-H, the ionic strength (and pH) of the pore solution and the pore size are equally 
investigated and their effect on chloride’s behavior quantified. Among the other parameters, the 
model also provides quantitative information on the effect of calcium ions which are thought to play 
a major role in the binding of chloride on C-S-H.  

The next step consists in using the calculated atomic scale properties of the EDL in order to 
resolve the transport problem at the pore scale and compute microscopic diffusivities of chloride. 
This is achieved by using the molecular computations from the Monte Carlo (MC) engine in order to 
implement a modified version of the classical Poisson-Boltzmann system. The method is compared to 
the classical Finite element analysis of the Poisson-Nernst-Planck (PNP) equations and the data are 
discussed in the light of established experimental results in the literature. 

 

 

Keywords: Cement, chloride ingress, C-S-H, electrical double layer, atomic simulation, ionic transport 
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Résumé 
 

En vue de réduire l'empreinte CO2 des matériaux de construction, les producteurs de béton 
mélangent leur ciment avec des matériaux cimentaires de substitution (SCM). Ces matériaux, tels 
que les cendres volantes ou le laitier de haut fourneau, sont pour la plupart des sous-produits 
d'autres industries. Bien que ces matériaux de subtitution soient choisis pour correspondre aux 
propriétés du ciment Portland (OPC), leur ajout à la recette du ciment peut modifier la chimie du 
système. Ces changements peuvent éventuellement conduire à des propriétés mécaniques et/ou de 
transports différents de la structure qui peuvent, à leur tour, affecter sa résistance à long terme aux 
agents externes nuisibles. Il est donc essentiel de comprendre la relation entre la microstructure de 
la pâte de ciment et les mécanismes de dégradation afin d’optimiser la conception de nouveaux 
matériaux cimentaires. 

Dans ce contexte, la dégradation du béton par les chlorures est probablement la cause la plus 
courante de corrosion des barres d'armature en acier, en particulier lorsqu'elles sont exposées à des 
chlorures externes (eau de mer, sels de déverglaçage...). Pour de faibles rapports eau/ciment 
(typiquement e/c < 0,4), il a été constaté que la majorité des pores saturés, qui contribuent au 
transport ionique, sont les pores du gel de C-S-H (silicate de calcium hydraté) dont la taille reste de 
l’ordre des 10 nm et moins. Le gel de C-S-H, qui constitue plus de 50% de la pâte de ciment, est un 
matériau complexe nanocristallin caractérisé par une surface spécifique élevée. En contact avec la 
solution de pores hautement alcaline (pH>13), la surface du C-S-H développe une densité de charge 
de surface négative. Les interactions électrostatiques entre la surface et les ions de la solution des 
pores entraînent une redistribution des espèces ioniques selon deux couches de charge à l'interface 
du solide, d’où la formation de la double couche électrique (EDL). Dans les pores nanoscopiques, la 
double couche est dominée par des phénomènes atomiques dont on pense qu'ils interfèrent avec la 
mobilité des ions, en général, et celle des ions chlorure en particulier.  

Afin de comprendre et de quantifier les effets de surface et leur influence sur le transport ionique, 
nous proposons tout d'abord un modèle moléculaire de la formation de l'EDL basé sur l'utilisation de 
l'algorithme de Metropolis-Hastings (Monte Carlo). Ce modèle est utilisé pour calculer les 
distributions ioniques et les potentiels électrochimiques des électrolytes à l'équilibre dans les pores 
nanoscopiques. Ces quantités constituent les principales forces motrices du transport ionique à 
l'échelle du pore. Les paramètres de microstructure incluant la densité de charge de surface du        
C-S-H, la force ionique (et le pH) de la solution de pore et la taille du pore sont également étudiés et 
leur effet sur le comportement du chlorure quantifié. Parmi les autres paramètres, le modèle fournit 
également des informations quantitatives sur l'effet des ions calcium qui sont généralement 
supposés jouer un rôle majeur dans la fixation du chlorure sur les C-S-H.  

L'étape suivante consiste à utiliser les propriétés calculées à l'échelle atomique de l'EDL afin de 
résoudre le problème de transport à l'échelle du pore et de calculer les diffusivités microscopiques 
du chlorure. Ceci est réalisé en utilisant les calculs moléculaires de l’algorithme de Monte Carlo (MC) 
afin d'implémenter une version modifiée de l’équation classique de Poisson-Boltzmann. La méthode 
est comparée à l'analyse classique par éléments finis du système d’équations de Poisson-Nernst-
Planck (PNP). Les prédictions du modèle sont, finalement, discutées à la lumière des résultats 
expérimentaux établis dans la littérature. 
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Glossary 
 
Cement shorthand notation 

C: CaO (CalciumOxide)  
S: SiO2 (Silicon dioxide)  
A: Al2O3 (Aluminium oxide) 
F: Fe2O3 (Iron oxide)  
H: H2O (Water)  
 
Abbreviation of materials and phases 

OPC: Ordinary Portland cement 
PC: Plain cement 
SCM: Supplementary cementitious materials  
LC3: Limestone calcined clay cement 
C-S-H: Calcium silicate hydrate 
Ip C-S-H: Inner product C-S-H 
Op C-S-H: Outer product C-S-H 
C-A-S-H:  Calcium aluminate silicate hydrate 
CH: Calcium hydroxide (portlandite) 
AFm: Aluminate ferrite mono 
AFt: Aluminate ferrite tri 
LDH: Layered double hydroxide 
 
Abbreviations of techniques 
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NMR: Nuclear Magnetic Resonance 
MIP: Mercury intrusion porosimetry 
SEM: Scanning electron microscopy 
TEM: Transmission electron microscopy 
EDS: Energy dispersive X-Ray spectroscopy 
EXAFS: Extended X-ray absorption fine structure  
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pH: Potential of hydrogen 
BC: Boundary condition 
w/c: Water to cement ratio (in mass) 
Ca/Si: Calcium to silicon ratio 
Ca-Si: Calcium occupancy ratio of ionized silanol sites 
EDL: Electrical double layer 
DL: Diffuse layer 
SL: Stern layer 
OHP: Outer Helmholtz plan 
IHP: Inner Helmholtz plan 
GC: Gouy-Chapman 
GCS: Gouy-Chapman-Stern 



24 
 

PB: Poisson-Boltzmann 
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NH: Nosé-Hoover 
SVR: Stochastic velocity reschaling 
MC: Monte Carlo 
GCMC: Grand Canonical Monte Carlo 
FEM: Finite element method 
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Chapter 1 Introduction 
 

 

 

 

 

 

 

 

Due to the growing necessity of developing more sustainable construction materials, the 
construction industry is presently undergoing deep changes. This chapter aims to put the present 
thesis into context of the key research issues in the field of cement chemistry. The main focus of this 
work is presented along with the objectives to achieve. Lastly, the structure of the thesis is explained. 
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I. Context 
Concrete is a composite made of aggregates, cement, water and air. It is also the most widespread 
construction material. Producing cement requires CO2-intensive industrial processes such as the 
calcination of raw materials and high-temperature phase formation. In practice, concrete remains a 
relatively good material in terms of greenhouse gases emission. It is, however, the most produced 
material in the world [Ashby2012] and the second most used resource after water. Worldwide, it is 
the production of over 30 billion tons of cementitious materials per year that makes the cement 
industry responsible of 6 to 8% of the world CO2 emissions [IPCC2014, And2018] i.e. half of the 
contribution of the transportation sector. Given the population and economic growth of many 
developing countries such as China or India, the need for construction materials is most likely to rise 
dramatically. 

As concrete is practically irreplaceable on a global scale, many manufacturers have worked to 
improve the energy efficiency of the cement production by modifying their cement mixes to reduce 
CO2 production. To achieve this, concrete producers replace part of the Ordinary Portland Cement 
(OPC) with Supplementary Cementitious Materials (SCMs) which are usually byproducts of other 
industrial processes. Among these materials, we count limestone, calcined clay, the residual fly ash 
from the coal combustion or condensed silica fume; a byproduct of the semiconductor industry…  

Although the manufacture of blended systems is eco-friendlier than OPC, these cements can only be 
used if they comply with the expected performance standards. SCMs are, in fact, likely to alter the 
chemistry of the cementitious systems which may eventually lead to different long-term mechanical 
and transport properties [Wilson2022]. Given the wide range of possible SCMs to use, the 
experimental testing of each formulation under different conditions is not possible. Models can, 
however, provide insight and help refine our choices to the most promising formulations. In this 
context, chloride ingress is the most common problem for the long-term durability of reinforced 
concrete. Understanding and predicting the mechanisms of chloride diffusion in cement paste is a 
vital issue for optimizing the design of new cementitious materials. 

II. Chloride attack 

A. Brief introduction to cement chemistry 
The most common type of cement is Ordinary Portland Cement (OPC). It is a multicomponent system 
which contains, in its anhydrous (no water) form, 4 types of minerals: alite (C3S), belite (C2S), calcium 
aluminate (C3A) and a calcium aluminoferrite phase (C4AF)♣,♠. The reaction of non-hydrated cement 
with water is termed, in cement chemistry, hydration [Taylor1997]. And when mixed with water, the 
hydration reaction leads to mainly four products: C-S-H, Portlandite (Ca(OH)2), AFm and AFt phases. 

                                                            
♣ A stands for Al2O3, C for CaO, F for Fe2O3, S for SiO2 and H for H2O 
♠ Ferrite can also be written as C2(A/F) as it is a solid solution where the A/F ratio is variable. 
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Fig.1.1. Proportions of hydration products in a mature paste [Taylor1997, ScrvCourse] 

 

Calcium silicate hydrate is the main reaction product (Fig.1.1). It is usually abbreviated to C-S-H, the 
dashes indicating that there is no strict stoichiometry i.e. the ratio SiO2/CaO is variable. C-S-H is also 
the main percolating phase in cement paste [Bentz1991]. It means that all macroscopic properties, 
including ionic transport and mechanical strength, are tightly linked to the properties of C-S-H. 

B. Statement of the problem and objectives 
In reinforced concrete made structures, concrete is usually what provides a physical and chemical 
protection to the reinforcing steel bars. The chemical environment in cement paste is usually 
characterized by a high alkalinity that provides steel with a protective film on its surface, hence, 
improving its resistance to corrosion. Nonetheless, when chloride concentration at the rebars surface 
reaches a threshold, chloride ions act as catalysts to corrosion by breaking down the protective layer 
on the steel. The corrosion of the reinforcement bars greatly damages the cement-based structure 
by inducing cracks in the concrete and reducing its mechanical properties which can eventually cause 
the whole structure to fail [Broom2003]. 

For the purposes of developing more sustainable cement formulations without over-engineering, it is 
necessary to be able to predict the resistivity of reinforced concrete to chloride attack. Building 
consistent transport models is critical for the optimization of a cement recipe which would fulfill both 
strength and durability requirements. Nonetheless, chloride ingress mechanisms are not fully 
understood for both OPC and blended systems [Sui2019]. In fact, the transport of chloride in the 
pore network of cementitious materials is a complex process which is mainly affected by three 
underlying parameters:  

i. The chemical reactivity between the solid phases and the pore solution 
ii. The morphology of the porous network in the percolating phases. 

iii. The influence of the C-S-H surface on the ionic mobility  

Although there remains a lot to do on all three subjects, experimental techniques and 
thermodynamic models have provided cement scientists with some idea on the contribution of 
points (i) and (ii). However, we are still in the dark when it comes to identifying the mechanisms 
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behind the interactions between the surfaces and the ions in the solution or whether these effects 
are of any significance. As most of the interfacial phenomena take place at the atomic level, 
experimental investigation becomes too intricate to stern1924theorie extract data at such small 
scales and the governing phenomena too complex for the mean field models to predict.  

As the main percolating phase, C-S-H is expected to play a prime role in transport properties. The 
study of the structure of C-S-H through 29Si NMR spectroscopy [Lipp1982, Cong1996, Brun2004] 
showed that C-S-H is a construction of calcium planes bordered on each side by silicate chains. 
Within the high pH cement environment, it was found the silanol groups (Si-OH) present at the 
surface tend to engage in acid-base reaction which resulted in their deprotonation and the 
development of negative charges (Si-O-). In this context, the theory of the electrical double layer, 
firstly discovered by Helmholtz [Helm1879] and then developed by Gouy [Gouy1910], Chapman 
[Chap1913], Stern [Ste1924], Grahame [Gra1947] and others, would ascribe the interactions 
between chloride and C-S-H to electrostatic correlations between the ions present in the pore 
solution and the ionized C-S-H surface. We usually speak of the “physical binding” of chloride. The 
specificity of physical binding is that the ion is assumed to adsorb on the surface of solid phases 
without actually getting trapped in covalent bonds. Therefore, a relevant question would be: Since 
the "physically bound" chloride are not chemically bound which means they are still part of the pore 
solution, does the physical binding stop or at least delay the chloride ingress? 

In order to answer this question, it is important to downscale to the atomic level where the 
fundamental interactions arise. Therefore, the object of this thesis is twofold:  

• To present a consistent atomistic model that correctly predicts the forming of the EDL in 
agreement with measurements of the electric potential in C-S-H suspensions 

• To quantify the influence of these surface effects on the mobility of ions at the pore scale, 
and specifically on the diffusion of chloride as the main species of interest. 

III. Structure of the thesis 
Chapter 2 is a literature review on chloride ingress in cementitious materials. It summarizes our 
current understanding of the microstructure of cement paste which plays a vital part on chloride 
diffusion. The existing empirical and theoretical models to describe the mechanisms of chloride 
transport are also discussed. 
 
Chapter 3 presents an overview of the computational methods (Monte Carlo, molecular dynamics…) 
that were implemented or used through the whole thesis.   
 
Chapter 4 focuses on the development of an atomistic model of the electrical double layer (EDL) 
formation in a monovalent solution. The limitations of the classical Poisson-Boltzmann theory are 
first discussed. Atomistic results obtained by Monte Carlo calculations are then validated with 
published experimental and numerical results. Finally, the model is extended to the case of an EDL 
forming in a slit pore.  
 
Chapter 5 aims to extend the model developed in chapter 4 to the case of a more realistic pore 
solution model where the presence of calcium ions is considered and its effect discussed. 
 
Chapter 6 presents the resolution of the equations of ionic transport at the scale of nanopores in the 
C-S-H gel. The microscopic diffusivities of ions, in particular of chloride, are quantified. Finally, the 
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significance of the surface effects in the context of cement resistance to chloride attack is discussed 
in the light of established experimental results in the literature 
 
Chapter 7 is the conclusion of the thesis. It summarizes the main findings from this work and 
discusses the possible ways to explore the remaining open questions on the subject. 
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Chapter 2 Literature review 
 

 

This chapter is an overview of the current state of the art understanding of chloride ingress in 
cementitious materials. It starts with presenting the degradation mechanisms resulting from chloride 
attack. Secondly, the chloride binding capacity of concrete is discussed by introducing the two main 
binding mechanisms responsible of mitigating chloride ingress. Then follows an account of the 
empirical models commonly used to quantify the resistance of OPC and blended cements to 
chlorides exposure. The theoretical and experimental work on the microstructure of cement paste, 
being a vital factor in the binding and transport properties of concrete, is also reviewed. Finally, in 
the optic of developing more insightful models, our current understanding of the atomic-scale 
phenomena is summarized. 
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I. Chloride ingress : A major threat to reinforced concrete  
Reinforced concrete is a composite material made of a concrete matrix in which are embedded steel 
reinforcing bars (rebars). It has not only high resistance to compressive stresses but also good 
performance in tension mainly due to the presence of the steel reinforcement. For this reason, 
reinforced concrete is a very reliable construction material that is extensively used in buildings, 
bridges and more. These structures are often exposed to aggressive environments that can 
deteriorate the mechanical performances of the concrete and ultimately threaten the integrity of the 
whole structure.  

Steel is a thermodynamically unstable metal that, like most metals, is prone to corrosion in presence 
of water or oxygen under normal atmospheric conditions. Concrete is, however, an alkaline 
environment with pHs between 12.5 to 13.8 [Loth2010, Sui2019(2)]. At high pH, a 
thermodynamically stable oxide layer forms on the steel (Fig.2.1). It is called steel passivation. This 
protective passivity layer does not actually stop corrosion but significantly slows down its progress. 
The corrosion rate of passive steel in concrete is approximately 0.1 µm per year. Without the passive 
film, the steel would corrode at rates at least 1000 times higher [Glass1997].  

 

 
Fig.2.1. Protective passivation layer around embedded steel rebars in concrete 

 

Exposure to chloride is the primary cause of premature corrosion of reinforcement rebars. This can 
be caused, for example, by de-icing salts or when in contact with sea water in marine environments. 
Verbeck [Verb1975] described chloride ions as “a specific and unique destroyer”. The mechanisms by 
which chloride promotes corrosion remain only partly understood but here is a brief description of 
the corrosion phenomenon [Nev1995]. 

Corrosion is an electrochemical process involving the flow of charges (electrons and ions). In 
reinforced concrete, the rebar may have many separate areas at different electrical potentials which 
creates anodic and cathodic regions. Pore solution acts as the electrolyte, and the metallic 
connection is provided by the rebar itself. At active sites on the bar, called anodes, iron atoms lose 
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electrons and pass into the surrounding electrolyte as ferrous ions Fe2+. This process is called the 
anodic reaction and can be written as follows: 
 

Fe → Fe2+ + 2e-   (2.1) 
 

The free electrons remain in the metal and flow to sites called cathodes, where they combine with 
water and oxygen in the concrete to form hydroxyl ions OH-. The reaction at the cathode is called a 
cathodic reaction or a reduction reaction and it can be written as follows: 
 

2H2O + O2 + 4e- → 4OH-  (2.2) 
 

To maintain electrical neutrality, the ferrous ions migrate through the pore solution to these cathodic 
sites where they combine to form ferric hydroxides which is converted by further oxidation to rust: 
 

Fe2+ + 2OH- → Fe(OH)2    (ferrous hydroxide)   (2.3) 

4Fe(OH)2 + 2H2O + O2  → 4Fe(OH)3  (ferric hydroxide)  (2.4) 
 

But for the corrosion to be actually initiated, the passive layer has to be penetrated. The action of 
chloride ions is to break down this protective film which they do by converting the steel into an 
anode and the passivated surface into the cathode:  
 

 Fe2+ + 2Cl- → FeCl2    (2.5) 

FeCl2 + 2H2O → Fe(OH)2 + 2HCl  (2.6) 
 

The previous reactions translate into a drop in the pH. Chloride ions continue to regenerate since 
they only form iron chloride at an intermediate stage (2.5) but eventually revert back to their ionic 
form (2.6).  

 

 
Fig.2.2. Corrosion of a steel rebar in contact with pore solution 
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It is important though to mention that chloride corrosion initiates only when a certain minimum 
concentration of chloride reaches the steel surface. Fixing a threshold is not obvious as it depends on 
a multitude of parameters (presence of chloride in the original mix, non uniform distribution of 
chloride in the paste, etc) that are not yet fully understood [Glass1997]. Moreover, a number of 
chlorides can find themselves chemically bound, adsorb on hydrates surfaces or even be 
incorporated in some of the cement hydration products. So it is not the total amount of chloride 
present in the system that matters but rather the so-called free chlorides♣.  

The usually mentioned consequence of steel corrosion is the volume increase of the corrosion 
products that leads to internal stress within the hardened concrete causing cracking and spalling. A 
second effect is the reduction of the steel cross-section due to the progress of the corrosion reaction 
which ultimately reduces the load-carrying capacity of the rebars [Nev1995]. 

II. Binding mechanisms of chloride in cementitious materials 
As previously mentioned, cementitious systems have the capacity to trap chloride ions by so-called 
binding mechanisms. Chloride binding has an important effect on the initiation of steel corrosion. By 
decreasing the amount of free ions, binding chloride does not only reduce the rate at which chloride 
ions diffuse through concrete but it also decreases the amount of mobile chlorides accumulating at 
the steel surface. Binding mechanisms of chloride in cementitious materials are twofold: chemical 
and physical. 

A. The chemical binding 
Cement hydration results in many products among which are AFm (aluminate ferrite mono) and 
hydrotalcite phases [Bernard2022]. These hydration products classify as layered double hydroxides 
(LDHs). They are a class of ionic solids and their general formula is [M2+

1-xN3+
x(OH−)2]x+ [(An−)x/n ]· mH2O 

where [M2+
1-xN3+

x(OH−)2]x+ are the main double layers and [(An−)x/n ] is the intercalated anion (or 
anions with total charge x-). 

In the case of AFm, a representative formula is [(Ca2+)2(Al3+,Fe3+)(OH-)6]+1· A−1 ·mH2O where a third of 
the divalent cations Ca2+ [M2+

1-x in the general formula] have been replaced by trivalent Al3+ or Fe3+ 
cations. It results in a positively charged layers that is compensated by an intercalated anion [(An−)x/n ] 
such as SO4

2- or Cl- in the interlayer. Thanks to their structure, AFms efficiently bind chloride by 
forming stable products [Dam1994] such as Friedel's salt [Bir1998] and Kuzel’s salt.  Through this 
chemical binding, AFms permanently trap ions and act as a sink for chloride ions hence retarding 
their diffusion. Estimating the amount of chemically bound chlorides in the AFm phases is challenging 
but possible through various experimental methods. The two main techniques that are usually 
applied are TGA and XRD-Rietveld analyses. 

                                                            
♣ The amount of free chlorides is usually estimated from the total porosity by assuming that, at 
equilibrium, the chloride concentration in the pore solution is equal to the concentration in the 
exposure solution [Wilson2022] 
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B. The physical binding 
Experimental work on chemically bound chloride has shed some light on the contribution of Friedel’s 
salt and the amount and location of chlorides in AFm phases. It has also proved that a non-
negligeable proportion of the bound chloride (non free chloride) resides in other hydrates and 
principally C-S-H as it is the main hydration product. This is the so-called physically bound chloride. It 
can be calculated by (i) subtracting free chlorides (obtained by isopropanol extraction) and 
chemically bound chlorides from the total chloride (measured by titrating the ground samples) or (ii) 
measured with EDS point analysis to identify the composition of C-S-H. 

The panel of techniques used to measure physically bound chloride is limited and results are usually 
quite approximate. It is assumed that the physical binding occurs through the adsorption of chlorides 
on the C-S-H surface. The electrical double layer (EDL) theory, which describes the interaction 
between ions in the pore solution with the C-S-H interface, predicts that chlorides reside in the 
diffuse layer. It is an area where chlorides are under the electrostatic influence of the surface without 
forming actual chemical bounds. Thus, it is reasonable to assume that physically bound chloride 
enjoy some degree mobility which allow them to eventually diffuse. However, many questions arise 
about the residency time of adsorbed chlorides and to what extent does the physical binding affect 
chlorides ingress in cementitious materials.  

In order to push our understanding of chlorides adsorption but not only, cement scientists have 
spent over 60 years investigating the complex structure of C-S-H. But to properly understand the 
forces in action between C-S-H’s interface and the pore solution, it has become clear that we have to 
go down to the microscopic scale where the mechanisms operating are less well understood. A lot of 
promising work has been achieved during the last couple decades but many areas of the domain 
remain poorly understood.  

The physical binding of chloride, which is the main subject of the present thesis, will be discussed in 
more detail in section V after the introduction of some key concepts in section IV about the 
microstructure properties of cement paste and the prominent role that C-S-H plays. 

III. Standard approach for the quantification of chloride ingress 

A. Empirical modelling of chloride ingress and limitations 
In order to study and quantify the transport of chloride in hydrated cement, the conditions of sea 
water immersion are simulated in the laboratory. One way to do this consists in conducting bulk 
diffusion experiments [ASTM]. This experiment consists in leaving mortar or concrete in a known 
NaCl solution for a certain period of time (6 months to a few years). After drilling, powder grinding 
and finally chloride titration of samples obtained at different depths, profile of total chloride content 
can be plotted as a function of depth. Such work has recently been conducted on a variety of 
blended systems by Sui et al. [Sui2019] with results represented in Fig.2.3. 
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Fig.2.3. Chloride profile for OPC and blended systems with different SCMs: CClay=Calcined Clay, 
LS=Limestone, FA=Fly Ash; after 1 year exposure to a 0.5 M NaCl solution. Taken from [Sui2019(2)] 

 

Given the profiles on Fig.2.3, it seems that we can, through observation, rank the resistivity of the 
different systems to the chloride ingress. Nonetheless, before any qualitative predictions, a main 
question remains: how can we quantitatively classify these systems? 

A first empirical modelling approach would rely on the fact that the chloride content curves (Fig.2.3.) 
look like diffusion profiles. Therefore, a way to quantify the transport is to fit experimental data on a 
diffusion equation such as the macroscopic Fick’s second law of diffusion [Chatterji1995]: 

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷𝑎𝑎  𝜕𝜕²𝐶𝐶
𝜕𝜕²𝑥𝑥

      (2.7) 

 
If we fix the boundary conditions (BC) to (2.7) and we assume a constant and homogeneous diffusion 
coefficient Da [m²s-1], the partial differential equation can be solved analytically, and the solution is 
the following: 

𝐶𝐶(𝑥𝑥, 𝑡𝑡) =  𝐶𝐶𝐵𝐵𝐵𝐵  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � 𝑥𝑥
2�𝐷𝐷𝑎𝑎𝑡𝑡

�  (2.8) 

 

Hence, the apparent diffusion coefficients Da are back calculated for each of the systems by fitting 
the solution (2.8) to the different chloride profiles in Fig.2.3. The computed apparent diffusion 
coefficient does not, however, represent the real diffusion of physical species. It could be interpreted 
as the diffusion of the penetration depth. Moreover, due its oversimplified representation (i.e. 
important processes not considered), Fick’s law actually amalgamates matter diffusion and binding 
mechanisms of chemical species with solid phases. 
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For a more physical interpretation, Sui et al. [Sui2019(2)] tried to connect transport to microstructure 
by looking at the relation between the apparent diffusion coefficient and the pore structure 
parameters; total porosity and critical pore diameter (Fig.2.4): 

 

 
 

Fig.2.4. Relationship between the apparent diffusion coefficient and porosity, critical pore size of 
different blended systems: CClay=Calcined Clay, LS=Limestone, FA=Fly Ash. Taken from [Sui2019(2)] 

 

Looking at the Fig.2.4, it seems there is no clear correlation between Da and porosity. This may, in 
fact, indicate that Da does not have a consistent physical meaning or rather imply that the use of the 
porosity parameter is ill-defined. In reality, the apparent diffusion coefficient englobes a multitude of 
parameters including the contribution of binding, porosity (total porosity, pore classes…), pore 
solution properties such as pH and even the water saturation degree of the paste…  And while the 
hypothesis Da = f(Porosity) usually does make sense once studying simple PC systems, it is not very 
helpful in the investigation of blended systems. In order to classify inherently different systems and 
ultimately being able to determine the best cement formulations, it is important to decouple the 
various parameters lumped in Da and measure separately the contribution of each variable.  

Another modelling alternative is to use reactive transport models [Huet2010, Jens2015, Georg2017, 
Tran2018] where chloride content evolves (i) through the contribution of the mass transport and (ii) 
a “retardation” term which plays the role of a sink/source term representing the binding processes 
i.e. both chemical binding and adsorption on solid phases: 

 
𝜕𝜕[𝐶𝐶𝐶𝐶−]
𝜕𝜕𝜕𝜕

= −∇ ∙ (𝐷𝐷𝑒𝑒∇[𝐶𝐶𝐶𝐶−]) −  𝜕𝜕𝑠𝑠𝐶𝐶𝐶𝐶−([𝐶𝐶𝐶𝐶−])
𝜕𝜕𝜕𝜕

  (2.9) 

 

Where [Cl-] in [mol L-1] is the concentration of chloride in the solution as function of time, sCl-[Cl-] in 
[mol L-1] is the chloride bound in solid phases and De in [m²s-1] is the effective diffusion coefficient. 
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In this context, migration tests under moderate electric potential difference [Cast1999, Yang2003, 
Yang2006, Yuan2009, Wilson2021] are conducted as an “accelerated” alternative to the bulk 
diffusion experiment and result into the measure of the flux [mol m-2 s-1] as a function of time. The 
chloride effective diffusion coefficient is therefore back calculated by resolving the diffusion equation 
(2.9). This approach has obviously the merit of de-convoluting mass transport and chemical reaction. 
However, results are usually qualitative and the computation of diffusion coefficients remains quite 
far from accurate quantitative predictions. In fact, such a complex model requires a lot of parameters 
(initial composition, initial porosity…). Moreover, for reactive transport models, these parameters are 
functions of the advancement of the chemical reactions. Thus, the calibration and validation of the 
model requires a large set of consistent experimental data [Georg2017]. 

B. Characterisation of blended systems: Need for a fundamental 
understanding of the small scales 
Measuring transport properties (typically ionic diffusion coefficients) is usually long and uncertain 
[Mcgrath1999, Yang2005, Stanish2001]. And even when experimental data are thoroughly obtained, 
most of the used models are not predictive and often interpretation dependent, since they 
essentially rely on fitting. In the case of blended systems, the application of standard transport 
models, such as previously discussed, provides very little insight on the mechanisms that are at the 
origin of ionic adsorption. In fact, the incorporation of different SCMs in the cement recipe usually 
results in deep alterations of the chemical processes that control the formation of cement paste’s 
microstructure and its features at different scales. So in order to understand the change in the 
macroscopic properties for a wide range of blended cements, the understanding of the chemo-
physical processes at smaller scales is necessary. 

Since ionic diffusion, specifically of chloride, is what we are interested in, the interactions of ions in 
the solution and with their environment (solid phases and mainly C-S-H) cannot be neglected. 
Fundamental understanding of atomistic phenomena and proper quantification of their effects on 
diffusion of ions is important. In order to compare with experimental data, bridging such nanoscopic 
contributions to the bigger scales is necessary. However, consistent transport models at different 
scales are generally missing in cement science. 

IV. The microstructure of cement paste: A key parameter in the study 
of  ionic transport 
 

Concrete is a constantly changing material (not in thermodynamic equilibrium) gradually shifting 
towards a (meta-) stable state. A simple proof of this statement lies in all the possible deterioration 
mechanisms that can touch concrete-made structures. Exposure to an aggressive chemical 
environment, such as seawater, can generate corrosion of rebars induced by chloride ingress or the 
disintegration of concrete due to sulfate attack. Destructive weathering factors, such as freezing and 
thawing, can cause expansion of the paste in saturated concrete and cracking. Therefore, concrete 
constantly reacts to its environment. 
Hydrates also continue to form with time i.e. the microstructure of cement paste “never” stops 
evolving. This equally applies to the transport properties which are microstructure dependent 
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[Neith2010]. It means that ionic effective diffusivities are function of porosity, pore size distribution, 
pore classes which in turn are function of w/c, the hydration degree, initial particle size distribution… 
Hence, a representative model of the microstructure of cement paste is critical for the understanding 
and the prediction of ionic transport. And among all the microstructure variables, ionic transport 
(and specifically chloride’s) requires an even deeper understanding of three system-dependent 
parameters: (i) The structure of C-S-H, which as the major phase of cement paste, greatly influences 
transport properties, (ii) pore structure which depicts the size distribution of pores at different ages 
of the cement paste and (iii) the pore solution that contains chloride but also other species that can 
strongly affect the mobility of all ions and the surface properties of the hydrates.       

A. Pore structure 
Porosity is one, if not the most, important feature of the microstructure of cement paste. It affects 
major properties such as mechanical strength and permeability. And not only does the total porosity 
influence mechanical and transport properties of cement paste, but so does the structure (size, 
shape, connectivity…) of these pores. It has been shown for example that keeping a constant total 
porosity while changing pore structure through processing ends up in a change of the material’s 
properties [Lange1991]. Pore structure is, however, challenging to assess experimentally since direct 
measurements are particularly difficult to perform and can easily alter the original structure. For this 
matter, indirect methods such as Mercury intrusion porosimetry (MIP) or Nitrogen adsorption 
method have been used instead to characterize pore structure. However, the interpretation of data 
obtained through such techniques usually relies on making assumptions on the geometry of pores 
that prove to be rather rough and non-representative. To faithfully represent the microstructure of 
cement paste, previous methods have been accompanied with other characterization techniques 
such as SEM (Scanning Electron Microscopy) or NMR (Nuclear magnetic resonance) to get a more 
accurate description of the pore structure [Prom2009, Gallucci2007]. 1H NMR experiments, on the 
other hand, provide information on the location and the exchange of water between the different 
pores [McDon2005, Valori2013]. 
 
Thanks to these observation techniques, it has been established that cement paste has a hierarchical 
pore structure. In fact, it is possible to classify pores accordingly to their size as it follows: 

• Air voids: 10 μm to 1mm 
• Capillary pores: 50 nm to 10 μm 
• Inter hydrate pores: ~8-20 nm 
• Gel pores: 1 to 10 nm 

 

Berodier et al. [Berod2015] used MIP measurements to track down the evolution of the pore 
structure in PC and blended systems. MIP curves of the PC paste at different ages (Fig.2.5.) show 
basically that the volume and the critical radius of pores penetrated by mercury decrease as a 
function of the curing time. As the sample ages, hydrates fill the space and the porosity refines. The 
maximum pore entry radius went from sizes up to 100nm, at 1 day age, down to a population 
dominated by pores below 10nm of diameter after 14 days and beyond. 
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Fig.2.5. Cumulative (a) and derivative (b) curve of the pore structure from MIP measurements on 

Portland cement paste samples (w/c = 0.4). Taken from [Berod2015] 

 

Nonetheless, pore structure information is more than merely identifying the pore size distribution of 
a cement paste sample. As we are interested in chloride diffusion, it is equally important to 
investigate the location of water in the pores as diffusion of ions only occurs through saturated 
pores.  In this regard, 1H NMR is the ideal tool to probe water molecules. It is a non-invasive 
technique (for example no drying necessary) that provides detailed data on the state of water in 
pores of various sizes. 

 
In their paper [Muller2013], Muller et al. performed 1H NMR measurements on a cement paste with 
w/c = 0.4 and showed the evolution of the NMR signal of different water populations as function of 
the hydration time. In sum, Fig.2.6 shows that the signal corresponding to capillary water (in big 
pores) drops with time (especially the first 48h) while the signal attributed the C-S-H gel pore water 
firstly increases and then reaches a plateau signal (also after 48h). In simple words, as the hydration 
reaction is going on, water is basically filling up the smaller pores. Beyond the structural data, these 
measurements actually provide evidence that, in cement pastes of low w/c ratios (~0.4), C-S-H is the 
main percolating phase. In fact, the C-S-H gel porosity substitutes to the capillary pore network 
(which dominates at higher w/c ratios ~0.7) to become the major pathway for water and ions to 
diffuse. Quantifying the effect of the pore size (<10nm) on ionic mobility is, therefore, of vital 
importance to understand chloride diffusion.   
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Fig.2.6. Evolution of the different NMR signal fractions with hydration time (w/c = 0.40). Blue circles 
are free water, becoming interhydrate water (empty black circles) beyond 2 days of hydration. The 
estimated error is ±2%. Taken from [Muller2014, p.56] 

B. Pore solution 
Pore solution may be simply defined as the electrolytic alkaline solution that resides within the 
saturated pores in the cement paste. It is characterized by a pH ranging from 13 to 13.8 due to the 
presence of alkali, mainly sodium and potassium. Given the low concentration of Ca2+ (usually a few 
mmols), calcium doesn’t contribute much to the alkalinity. However, portlandite (Ca(OH)2) that forms 
during hydration plays the role of an alkali reserve and buffers pH at approximately 12.6. An example 
of the composition of the pore solution in a PC paste (w/c = 0.4) at 69 days of hydration is presented 
in Tab.2.1.  
 

Pressure 
(MPa) 

Li 
(mM) 

Na 
(mM) 

K 
(mM) 

Ca 
(mM) 

Sr 
(mM) 

Al 
(mM) 

Si 
(mM) 

S 
(mM) 

OH 
(mM)a 

pH C.B.b 
(%) 

60 – 120 0.69 46 450 1.8 0.046 0.09 0.21 8.2 490 13.6 0 

120 – 150 0.69 49 480 2.0 0.050 0.09 0.21 9.2 490 13.6 5 

150 – 180 0.69 49 480 2.0 0.050 0.09 0.23 10 490 13.6 5 

180 – 270 0.69 50 490 2.0 0.050 0.09 0.24 12 490 13.6 7 

270 – 330 0.63 50 480 1.9 0.050 0.09 0.26 13 500 13.6 1 
 

Table.2.1. Concentrations of different species present in the pore solution of a PC paste (w/c = 0.4) at 
69 days of hydration. Measurements have been obtained through pore solution extraction at 
pressures going from 60 MPa up to 330 MPa. Taken from [Loth2010]  

                                                            
a The values of OH- refer to free concentrations, all other values represent total concentrations. 
b The charge balance error C.B. gives the surplus of cations (cations – anions), relative to the total charge 
caused theoretically by cations (i.e. [Na+] + [K+] + 2[Ca2+]). 
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As part of the same underlying chemical transformations, the pore structure, along with the pore 
solution, evolves through time. Its composition also greatly depends on the system so that trends 
that have been established for PC might radically change once SCMs are added [Voll2016]. Hence, 
the study of the pore solution in blended systems and its evolution are essential, given that it may 
strongly impact the system’s durability, in general, and its resistivity to chloride ingress in our 
particular case. The correlation between ionic diffusion and pore solution remains poorly understood 
though and is, up to this day, an ongoing subject of research [Nguy2006, Elaknes2009, 
Barbarulo2000, Tang1999]. Nonetheless, despite the limited understanding that experimental work 
and macroscopic models provide, it was possible to unravel some features of the strong link between 
ionic transport and pore solution.  

Sui et al. [Sui2019(2)] compared the apparent diffusion coefficient to the content of alkali in the 
solutions as another parameter of the microstructure: 

 

 
Fig.2.7. Evolution of the apparent diffusion coefficient with respect to the alkali content in the pore 

solution. Taken from [Sui2019(2)] 

 

In Fig.2.7, we do observe the increase of the apparent diffusion coefficient with the alkali content. 
However, the phenomena explaining such a trend are not obvious. To unravel all the mechanisms, it 
would require a more fundamental understanding of how the alkali content interacts with chloride 
and its environment. In spite of the multitude of parameters in action, three main phenomena seem 
to dominate: the conservation of electroneutrality, the non-ideality of the solution and the surface 
effects.  

Due to their specific radii and valences, ions normally have different effective diffusion coefficients. 
According to the local conservation of electroneutrality, faster ions are slowed down while slower 
counterions are accelerated. The Nernst-Planck equation is commonly used to model such an effect 
[Zhang1996]. Still, the complexity of the pore solution [Yone1988, Sare2002, Goni1990] generally 
makes it difficult to predict the extent of these effects on chloride diffusion.  
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Secondly, cement paste’s pore solution is a strongly non ideal electrolyte. As a result, the driving 
forces of diffusion are the gradients of chemical potential, which account for finite ionic size, and no 
more simplify to the usual concentration gradient [Barbarulo2000]. In most cementitious systems, 
the pore solution has an ionic strength typically around 0.5M (mol/L) (example in a PC paste in 
Tab.2.1). In this range of high concentrations and high pH, most mean field models fail [Beth2022]. 
Therefore, to understand the effects of ionic strength in these systems, further studies on the 
microscopic scale are needed.  

As for surface effects, C-S-H has a high specific surface area (~200-300 m²g-1) [Kantro1959, 
Brun1973]. This literally means that a large part of the pore solution is in contact with C-S-H. The 
composition of the solution could influence the surface properties [Viallis2001]. For example, the 
presence of alkali may affect the adsorption of chloride [DeWeerdt2015]. However, the influence of 
the surface and its effect on chlorides or alkalis is still not fully understood. 

C. C-S-H 
 Calcium Silicate Hydrate, also called C-S-H, is usually known as the main product of the hydration 
reaction of cement. It is also important to remind, given that transport is the main focus here, that C-
S-H is also the main percolating phase. In other words, understanding the mechanisms of chloride 
diffusion and quantifying it within the C-S-H phase would allow us to transpose that knowledge to all 
cementitious systems where C-S-H is the dominant phase.  

An extensive amount of experimental work has been conducted through the years in order to 
determine the C-S-H atomistic structure. X-Ray diffraction analysis has showed that C-S-H is a poorly 
crystalline mineral that displays some degree of order [Ren2009(1), Ren2009(2), Skin2010] thus the 
use of the terminology “nanocrystalline”. Moreover, C-S-H has a variable stoichiometry with a 
chemical composition that may possibly vary within the same unique sample. Through X-ray 
spectroscopy (EDS), It was possible to characterize it by the Ca/Si (or CaO/SiO2) ratio which, 
according to [Rich1993], varies from 1.2 to 2.2 which translates into an average value of 
<Ca/Si>=1.75. 29Si NMR spectroscopy became later on the tool of predilection to study the 
arrangement of silicate in C-S-H [Lipp1982, Cong1996, Brun2004] making it possible to locate and 
distinguish the different Si n-mers (Qn) such as the Si monomers (Q0), the end chain Si (Q1) or the 
connecting Si (Q2). It was eventually these observations on the silicate chain lengths which lead to 
assume that “the chains are formed of dimers which are linked with bridging Si tetrahedral” what is 
also known as the “dreierketten” structure.   

i) Atomistic modelling of C-S-H 

Since 1952, the C-S-H structure has been approached by the tobermorite [Bernal1952]. More 
specifically, 14 Å tobermorite (𝐶𝐶𝐶𝐶5𝑆𝑆𝑆𝑆6𝑂𝑂16(𝑂𝑂𝑂𝑂)2 ∙7𝐻𝐻2𝑂𝑂) is a layer-structured calcium-silicate crystal 
that contains water in its interlayer spaces. It is characterized by a Ca/Si ratio of 0.83, an interlayer 
distance of 14 Å and molar water content of 42 % [Bonac2005] and, similarly to C-S-H, it presents a 
“dreierketten” structure (Fig.2.8.)  
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Fig.2.8.The layered structure of tobermorite is composed of a calcium plane (red dots) bordered by 
two silicate planes (blue chains) and separated by the interlayer space containing water molecules, 
hydroxyl groups and some calcium ions. The silicate planes are composed of silicate chains with a 
specific three-unit repetition (“dreierketten”): two silicate tetrahedra, noted as Q2, are coordinated 
by calcium planes (red dots) whereas the third silicate (called the bridging tetrahedron and noted as 
Q2p or Q2i) is not. The end-chain tetrahedra are noted Q1. The tetrahedra linking two silicate chains in 
the interlayer space are noted Q3 whereas the sites Q2 next to Q3 are named Q2v. The calcium ions 
belonging to the main plane are noted CaMP whereas those in the interlayer are noted CaIL. Taken 
from [Brun2004] 

 
Further studies have then showed that for C-S-H samples with Ca/Si ratios higher than 1.0, structure 
was closer to a jennite-like crystal [Kirk1997]. Jennite, which chemical formula writes as 
𝐶𝐶𝐶𝐶9𝑆𝑆𝑆𝑆6𝑂𝑂18(𝑂𝑂𝑂𝑂)6 ∙8𝐻𝐻2𝑂𝑂 [Bonac2004], also displays an infinite linear “dreierketten” silicate chains but 
with a Ca/Si ratio of 1.5 and a molar water content of 42 %.  On the same way, C-S-H has been 
approached by many other sheet-like minerals such as jaffeite, metajennite or other minerals 
[Rich2008].  
 
Most experimental evidence seems to indicate that, for C-S-H structures with low Ca/Si ratios 
typically below 1.5, the 14 Å tobermorite would be the closest model structure [Kirk1997, Rich2004]. 
On the other hand, for higher Ca/Si ratios (> 1.5), most opinions split between some that would        
(i) stand by 14 Å tobermorite as a good enough model that covers the wide range of C-S-H structures 
[Non2004, Rich2004] and others that (ii) would rather consider a model that mixes tobermorite and 
jennite structures as a better representation [Tay1986]. Later, it was found that the jennite theory 
was no longer tenable [Kumar2017]. More recently, it has been suggested that C-S-H conforms to a 
14 Å tobermorite structure with a significant amount of defects and a low degree of silicon 
polymerization. From there, more questions have risen essentially about the homogeneity of C-S-H at 
the nanometric scale and, hence, about the distribution of these defects. Kunhi et al. [Kunhi2018] 
suggested an atomistic model of “a defective, nanocrystalline tobermorite structure with missing 
bridging silicate tetrahedra, leading to a decreased silicate chain length, and deprotonated silanol 
groups, the charge of which is compensated by additional calcium ions in the water-interlayer and 
with additional Ca-OH groups” (Fig.2.9.). 
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Fig.2.9. A proposed atomic structure of C-S-H with a stoichiometry (𝐶𝐶𝐶𝐶𝐶𝐶)1.75(𝑆𝑆𝑆𝑆𝑆𝑆2)1.0(𝐻𝐻2𝑂𝑂)1.86 with 
percentages of Q1= 78.3 % , Q2b = 7.25 % and Q2p=14.5%. Atomic color code used are calcium - 
turquoise, silicon - dark blue, oxygen – red, hydroxyl oxygen – purple, hydrogen - white. Taken from 
[KunhiPhd2018] 

 
 
Despite the fact that most models have been developed considering only synthetic C-S-H, huge 
advances in the understanding of the structure of C-(A)-S-H have been accomplished during the last 
80 years or so. However, there still is a lot to do. One of the main challenges that modelers are facing 
is the need to incorporate more ions such as aluminum, sodium and potassium in the existing models 
in order to approach the actual C-(A)-S-H structure that develops upon the hydration of blended 
cements for instance. Another critical issue, which immediately relates to our study of ionic 
transport, is the lack of consistent surface models. In fact, C-S-H has a high surface area and it is 
almost certain that all the significant interactions with the pore solution (water molecules and ionic 
species) are happening at this interface. Most elaborate models [Kunhi2018] are now able to create 
realistic bulk constructions of C-S-H. However, defects at the surface are often randomly distributed 
[Andro2017]. 

ii) Morphology and microstructure models of C-S-H  

During the hydration of alite (C3S), portlandite (CH) forms along with two morphologically distinct    
C-S-H gels [Grov1986(1), Grov1986(2)]. We distinguish between calcium silicate hydrates as being 
either "inner" (Ip) or "outer" (Op) product. The Ip C-S-H forms within the boundary of the original 
cement grain before hydration while the Op C S-H is usually observed in the water-filled space in the 
originally unhydrated microstructure.  
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Transmission electron micrographs obtained by Richardson et al. [Rich1993] have showed that the 
morphology of the outer product (Op) varies, inter alia, as a function of the space constraint. In large 
pore spaces, Op C-S-H shows a fibrillar and directional aspect reaching up to 100nm of diameter, 
while in smaller spaces, although exhibiting a directional character, it adapts its shape to the limited 
available space. Through the last decades, cement researchers have tried to faithfully describe the 
Op C-S-H morphology, relying on imaging techniques, taking into account a multitude of parameters: 
time and rate of formation, space availability, Ca/Si ratio, degree of polymerization... Different 
wordings have been used, covering a wide range of shapes, from fibrous particles, rolled sheets 
[Bernal1952, Diam1976], thin flakes, crumpled foils or tapered needles [Jennings1981, Scriv1984] to 
foil-like [Rich1999] and even, more recently, directly as needles [Ouzia2019] (Fig.2.10.). 
 
 

 
Fig.2.10. (a) Transmission electron micrograph and (b) schematic diagram showing an inner/outer 
product interface region in a paste hydrated for 3 months (w/c = 0.4 at 20 °C) (Taken from 
[Rich1993]) (c) SEM polished section of a w/c = 0.7 paste at 28 days. Sections of C-S-H “needles” are 
observed (points) in different areas, in particular in the bottom right. Etch pits are visible on the 
anhydrous white core. Taken from [Ouzia2019] 
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On the other hand, Ip C-S-H is commonly observed as a compact, fine-scaled and homogeneous 
phase [Rich1993, Rich2004]. In SEM images, Ip C-S-H is often characterized by lighter shades of grey 
compared to the Op C-S-H which appears darker due to its lower density. In fact, the porosity in Ip C-
S-H is typically more refined than Op C-S-H with sizes around 10nm and below.    

Relying on the previously mentioned experimental observations, many microstructural models have 
been developed to provide a complete spatial representation of the C-S-H at the microscopic scale 
(1-100nm scale). Among the first microstructural representations, there is the Feldman and Sereda 
model [Feld70] where the authors favored a sheet-like morphology of C-S-H that accounted for its 
layered atomistic structure and aligned with experimental data on the irreversible changes upon 
drying and rewetting of cement samples. Johnson and Jennings [Jennings1986] first presented the 
idea of modelling cement hydration as nucleation and growth of spherical particles in three-
dimensional space. Bishnoi et al. [Bish2009] developed a "space filling" growth model implemented 
in the open-source modelling platform “μic” (pronounced Mike as in MICrostructure). The software 
also managed to remedy limitations of other models on the number of particles handled. 
Nonetheless, many of the microstructural models at the time did not match with SEM observations 
of the needle-like or foil-like shape of C-S-H. They also failed to correctly reproduce the C-S-H 
nanoporosity which was a key feature in the very high specific surface area of the hydrate. In the 
context of transport, Patel et al. [Patel2018] showed that, in the absence of micro-cracks, the 
gel/inter-hydrates porosities form the main pathway for ions to diffuse. Therefore, more C-S-H 
models accounting for the nano-porosity have been developed: Colloidal models [Jennings2000, 
Jennings2008, Ioan2016], disk packing models [Yu2016] or sheet-based models [Etzold2014] 
(Fig.2.11.). 
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Fig.2.11. (A) Packing of globules showing small gel pores (SGP) (Taken from [Jennings2008])              
(B) Configuration of the coarse-grained C-S-H model, after equilibration, where three featured 
structures can be found (Taken from [Yu2016]) (C)  Example of structures generated with the sheet 
growth algorithm using different growth parameters. Taken from [Etzold2014] 
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V. Ionic adsorption/diffusion at the atomic scale 

A. Surface charging of C-S-H 
As most minerals, C-S-H develops a charge at its surface when put in contact with an electrolytic 
solution.  The stoichiometry and structure of these C−S−H surfaces is thought to be a strong function 
of the synthesis path as well as the composition of the pore solution at equilibrium [Non2004]. Once 
in contact with water, the surface (SiO4)4− sites are hydroxylated [Dam1995] and C-S-H surface 
develops a silanol (Si-OH) surface density. These silanol (Si-OH) groups can, more or less, ionize 
depending on the pH value of the solution through acid-base reactions which can be summarized by 
the following equations: 
 

Si-OH + H+ ⇌ Si-OH2
+ (protonation)  (2.10) 

 
Si-OH  ⇌ Si-O- + H+ (deprotonation)  (2.11) 

 
As C-S-H dissolves for values of pH < 10 and since pore solution has usually pH values above 12.5 
(typically between 13 and 13.8), the deprotonation (2.11) of silanol groups of the C-S-H occurs. 
Moreover, the degree of deprotonation of the surface goes up as pH increases, thus charging 
negatively the surface of the C-S-H [Lab2006, Lab2011, Chu2014].  

B. The classical theory of the electrical double layer (EDL)  
In 1853, Helmholtz [Helm1853] was the first to discover the forming of a layered structure which 
forms around a charged solid surface when it interacts with a liquid. Due to the excess charge at the 
surface, the mobile ions distribute inhomogeneously around the surface. In proportion to the charge 
at the surface, ions with opposite charges (counterions) accumulate near the interface to neutralise 
the surface charge while ions with the same charge (co-ions) are depleted in this region due to ion-
ion correlations and Columbian repulsion from the surface. It is the cumulative result of all these 
phenomena that lead to the formation of the electrical double layer (EDL) around the C-S-H. 
 
The first model of a double layer has been suggested by Helmholtz [Helm1879] studying a metal in 
contact with an electrolyte and was built on the assumption that a compact layer of ions existed at 
the interface of the charged metal (Fig.2.12.(a)). Based on the dielectric constant of the electrolyte 
(εH) and the thickness of the double layer d, this early model projected a constant differential 

capacitance CH=𝜀𝜀𝐻𝐻
𝑑𝑑

 independent of charge density. This theory, however, did not account, for 

instance, for the dispersion/diffusion of ions due to their thermal energy. To remedy the 
shortcomings of Helmholtz’s approach, the Gouy [Gouy1910] and Chapman [Chap1913] model 
features a diffuse layer (DL) where (i) the potential is obtained by resolving the Poisson equation and 
in which (ii) the accumulating ions extend to some distance from the solid surface according to the 
Boltzmann distribution (Fig.2.12.(b)). The usual system of equations for a multi-species system writes 
as the following: 
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�
ΔΨ = − 𝜌𝜌

𝜖𝜖0𝜖𝜖𝑟𝑟

𝜌𝜌 = 𝑒𝑒𝑁𝑁𝐴𝐴� 𝑧𝑧𝑖𝑖𝐶𝐶𝑏𝑏,𝑖𝑖exp (−𝑧𝑧𝑖𝑖𝑒𝑒Ψ
𝑘𝑘𝐵𝐵𝑇𝑇

)
𝑖𝑖

      (2.12) 

 

Where ε0 is the permittivity of free space [C V-1 m-1], ε is the dielectric constant of the solution [-],     
ρ the charge distribution [C m-3], e is the elementary electrostatic charge [C], NA is Avogadro’s 
number [mol-1], zi the valence of the species i [-], Cb,i is the concentration in the bulk pore solution of 
the species i [mol m-3] and kB is the Boltzmann constant [J K-1]. 

In consecutive developments, Stern [Ste1924] proposed to combine the compact layer of Helmholtz 
and the diffuse layer of Gouy-Chapman and Grahame [Gra1947] improved the model by introducing 
the concept of “specific adsorption”. In this paradigm, two planes are often associated with the 
compact layer of the Helmholtz model. Firstly, there is the inner Helmholtz plane (IHP) that goes 
across the centers of ions that have been “specifically” adsorbed. The second plane, known as the 
outer Helmholtz plane (OHP), runs through the centers of the hydrated ions in contact with the 
surface. The electric potentials associated with the IHP and OHP are often denoted, respectively, as 
Ψ1 and Ψ2 (Fig.2.12.(c)). Beyond of the OHP, the diffuse layer forms. 

 

 
Fig.2.12. Schematic of the main EDL models (a) Helmholtz model (b) Gouy-Chapman model 

(c) Grahame model. Taken from [Fried2008] 

 

In 1955 and 1963, Parsons [Pars1955] and Bockris [Bock1963] have, respectively, taken into account 
the effect of the solvent in their research. As the solvent molecules reach high concentrations in the 
confined electrolytes (e.g. around 55.5 M for water), it became clear that the interaction of dipoles 
(in dipolar solvents like water) with a charged surface were too noticeable to be neglected. As a 
consequence, Parsons showed, in the case of metal surfaces, that the dielectric constant of the 
solvent in the compact area of adsorbed molecules is much lower compared to the outer diffuse 
layer. 
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In most EDL applications [Abdi2022, Sarno2020, Alt2018], electrolytes are confined within pores or 
structures which sizes are, at most, a couple orders of magnitude of the actual size of ions. Transport 
in cementitious materials being no exception, it is the EDLs forming within the gel pores that are 
primarily assumed to be responsible of the decrease of chloride diffusivity by at least an order of 
magnitude (compared to diffusion in free water) so that chloride appears as “permanently" 
physically bound [Fried2008, Maraghechi2018]. 

The classical theory, often used to describe the forming of the EDL, is widely based on the Gouy-
Chapman model and described by the Poisson-Boltzmann formalism (2.12). This approach anticipates 
that the EDL properties (for e.g. the ionic distributions or the mean electric potential) are expressed 
as functions of a decaying exponential term exp(−κDz) where z is the distance from the surface 
and κD is a decay constant. The referential potential is usually taken as null in the bulk solution. 

The inverse of the decay constant is usually referred to as the screening length and more commonly 
known as the Debye length denoted by κD

-1. It is a system-dependent distance that assesses the 
range over which the perturbation due to a double layer extends. Mathematically speaking, the 

Debye length represents the distance at which the electric potential drops by a factor of 1
𝑒𝑒
 . In the 

classical Gouy−Chapman theory, the screening length is given by the formula 

 

𝜅𝜅𝐷𝐷−1 = ( 𝜖𝜖0𝜖𝜖𝑟𝑟𝑘𝑘B𝑇𝑇

𝑒𝑒2� 𝑧𝑧𝑖𝑖
2𝐶𝐶𝑏𝑏,𝑖𝑖

𝑁𝑁

𝑖𝑖=1

)1/2   (2.13) 

C. The necessity of atomistic models 

i) Limitations of the classical theory 

The validity of the classical theory has been well established in the simple case of monovalent 
electrolytes at relatively low concentrations (<0.5 M) [Torrie1982]. Nonetheless, one common 
mistake consists in mistaking the screening length with the effective thickness of the electrical 
double layer. A number of studies [Chatterji1992, Koho2000, Tad2002, Elaknes2009(2)] imply that 
the Debye length may not adequately capture the decay length in multivalent and/or asymmetric 
electrolytes. Torrie and Valleau [Torrie1982] have also showed how, in the presence of divalent 
counterions, the classical theory overestimates the surface potential even at relatively low surface 
charges (<30 μC.cm-2 or 1.9 e.nm-2). In practice, it is actually a compromising hypothesis to solely 
assume the existence of monovalent counterions. For example, the physical binding of chloride in 
cement paste is supposedly happening thanks to the charge reversal due to the accumulation of 
calcium cations Ca2+ [Viallis2001] on the negatively charged C-S-H. 

From a modelling standpoint, the main challenge to every EDL model is ultimately to find out what 
the charge density function looks like. In that light, some of the assumptions, upon which relies the 
mean field Poisson-Boltzmann theory, have to be revisited: 

(i) Ions are depicted as point charges i.e. steric effects of non ideality, such as effect of 
ionic radii, are not accounted for. 

(ii) All ion-ion correlations such as short range interactions (e.g. the attractive dispersion 
force or the exclusion volumetric effects) are neglected 
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(iii) Non-continuum effects, such as the interaction of solvent molecules with the surface 
or the ions, are overridden.  

In contrast to the classical theory, molecular modeling techniques account for ion-size, ion-ion and 
ion-solvent interactions which provide better insights into the EDL structure within nanostructures. 
In molecular dynamics (MD) (ref. chapter 3 section II), the dynamics of the whole system is simulated 
and the charge density function is derived as a function of particle positions, contrarily to the 
Boltzmann distribution that uses particles potential energy to describe the distribution.  

Given the lack of atomistic models of the C-S-H surface, the Grand Canonical Monte Carlo (GCMC) is 
sometimes preferred to Molecular dynamics as a better compromise between accuracy and 
complexity. After convergence, the Monte Carlo algorithm reaches an equilibrated distribution 
CiGCMC of the different present species. These ionic density functions are plugged in the Poisson 
equation, the resolution of which delivers the electrostatic potentials nearby the C-S-H surface in a 
steady-state configuration: 

 

�
ΨGCMC(𝑥𝑥) = − 1

𝜖𝜖0𝜖𝜖
∫ (𝑡𝑡 − 𝑥𝑥)𝜌𝜌(𝑡𝑡)𝑑𝑑𝑑𝑑∞
𝑥𝑥

𝜌𝜌 = 𝑒𝑒𝑁𝑁𝐴𝐴� 𝑧𝑧𝑖𝑖𝐶𝐶𝑖𝑖GCMC
𝑖𝑖

    (2.14) 

 

Equation (2.14) can also prove useful for having a theoretical estimate of the Zeta potential (ζ). 

ii) Experimental investigation of surface properties: The Zeta potential (ζ) 

In a given suspension of particles, the Zeta potential is a characteristic value of the electric potential 
that basically estimates the potential difference between the dispersion medium (beyond the diffuse 
layer) and the stern layer of attached particles to the charged surface. Zeta potential measurements 
are probably the most common way to experimentally characterize the properties of the electrical 
double layer in a colloidal dispersion.  To perform these measurements, instrumentation techniques 
usually rely on the assessment of the occurring electrokinetic phenomena. The motion of particles 
under influence of electric field observed in 1807 by Reuss [Reuss1807] was at the origin of the 
development of Zeta potential measurements by electrophoresis. It consists in applying a 
constant electric field E across the suspension and measure the resulting velocity of the particles Vp. 
The ratio between the velocity Vp and the applied electric field E is called electrophoretic mobility 

and writes μe = 𝑉𝑉𝑝𝑝
𝐸𝐸

. In 1903, Smoluchowski [Smol1903] developed an electrokinetic theory that 

allowed the calculation of the Zeta potential knowing the electrophoretic mobility. The well-known 
Smoluchowski relation writes as: 

 

𝜁𝜁 = 𝜇𝜇𝑒𝑒𝜂𝜂
𝜀𝜀𝑟𝑟𝜀𝜀0

     (2.15) 

 

where η is the dynamic viscosity of the solvent, εr the relative dielectric constant of the solvent and 
ε0 the permittivity of free space. This value of ζ is supposedly measured at the shear plane also called 
zeta plane or slipping plane. The precise position of the zeta plane remains, however, unknown. But 
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it is usually assumed to be at a distance of two to three water molecule diameters, so up to 6 Å, from 
the surface. 

Despite the limited validity of the equation (2.15), where for e.g. the Debye length is typically 
assumed negligible compared to the particle size, the theory of Smoluchowski has contributed 
through the last century to gain invaluable insight into the study of electrokinetic phenomena. 
Applications obviously include the study of surface properties of C-S-H. In their paper, Viallis-Terrisse 
et al. [Viallis2001] investigated the interaction between alkaline cations and calcium silicate hydrates 
in the optics of proposing a consistent C-S-H surface complexation model. 

Besides electrophoresis, other experimental techniques have been developed; namely the widely 
used acoustophoresis. More generally, electroacoustic techniques rely on different electrokinetic 
effects (then electrophoresis) such as the colloid vibration current: it is the fact that under the 
influence of ultrasounds, particles in motion generate an electric current. In the context of studying 
the effect of the aluminum uptake on C-S-H, Barzgar et al. [Barz2020] used an acoustophoresis 
electroacoustic method that computes the zeta potential from the frequency‐dependent “dynamic 
mobility” introduced by O'Brien [OBri1990]. 

iii) Modelling of ionic transport at the atomic scale 

For the resolution of the transport problem, the implementation of the mean field theory is usually 
preferred to the costly atomic simulations (MD, Brownian dynamics…). However, molecular 
modelling techniques can still be employed in order to consider non-continuum effects in classical 
ionic transport equations. In a recent work, Yang et al. [Yang2019] have coupled Monte Carlo 
simulations to define a more general form of the Poisson-Nernst-Planck (PNP) equations where steric 
effects are considered.  In the case of a non-ideal electrolyte, as it is the case of the pore solution in 
cement paste, the authors define the driving forces of ionic diffusion as three: (i) the matter diffusion 
term, as in most Fickian processes, written as the gradient of ionic concentrations ∇Ci, (ii) the non-
uniform profile of the electric potential or migration term expressed as ∇ψ and (iii) the contribution 
of previously mentioned steric effects of non-ideality computed by the excess part of the chemical 
potential and its gradient ∇μi

ex. The modified PNP is ultimately written as: 
 

�
∂𝐶𝐶𝑖𝑖
∂𝑡𝑡

+ ∇ ⋅ J𝒊𝒊 = 0

J𝒊𝒊 = −𝐷𝐷𝑖𝑖,0∇𝐶𝐶𝑖𝑖 − 𝐷𝐷𝑖𝑖,0
𝑧𝑧𝑖𝑖𝑒𝑒𝐶𝐶𝑖𝑖
𝑘𝑘𝐵𝐵𝑇𝑇

∇Ψ− 𝐷𝐷𝑖𝑖,0
𝐶𝐶𝑖𝑖
𝑘𝑘𝐵𝐵𝑇𝑇

∇𝜇𝜇𝑖𝑖𝑒𝑒𝑒𝑒
    (2.16) 

 

Where Ji, Ci, Di,0 and zi denote the diffusion flux [mol m-2 s-1], the aqueous concentration [mol m-3], 
diffusion coefficient in free water [m2 s-1] and valence of the ith species, respectively. t represents the 
time [s], e the absolute charge of electron [C], kB the Boltzmann constant [J K-1] and T the absolute 
temperature [K].  

The resolution of the equation with lattice Boltzmann led the authors to the conclusion that EDL 
surface effects were quite negligible. The upscaling of the transport equation by defining an REV 
showed that it was rather the geometrical effects due to the tortuosity of the pore network that 
were delaying chloride diffusion. In the literature, this work stands out as one of the few attempts to 
link the different scales in order to explain the mechanisms of chloride ingress. However, a few 
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limitations arise. In fact, the authors have considered Fick’s law as the homogenized transport 
equation while we know that diffusion processes in cement paste are anomalous. Although 
predictions provided some insight on the geometrical effects, results can only be considered 
qualitatively. The presence of calcium in the pore solution was also not discussed as we know that, 
unlike sodium or potassium, calcium has a very low solubility and is more likely to be absent in 
solution especially at high pHs.  

Relying on the same simplistic assumptions (on calcium content), Zhou et al. [Zhou2018] used 
molecular dynamics simulations to simulate chloride adsorption in nanopores of 11 Å tobermorite. 
Results in the paper have shown the increase of the adsorption and residency time of chloride with 
high calcium concentration. Still from a molecular perspective, Kalinichev et al. were among the first 
that conducted an exhaustive study on the behavior of ions at interfaces (mainly portlandite and 
tobermorite 9Å) [Kalinichev2002]. In their work, the authors identified different types of 
“adsorption” where some ions were more or less “incorporated” within the structure of the solid 
surface (inner-sphere occupancy) and others remained separated from the solid by one molecular 
layer (outer-sphere) or more (in the Diffuse layer). 

VI. Conclusion 
In reality, the EDL formation in cementitious materials remains partially understood and not a widely 
spread subject in the community despite its importance. Due to the challenging experimental 
investigation of surface effects at the smallest scales, Zeta potential measurement is the most 
popular way to characterize C-S-H surfaces. However, surface potentials in suspensions are most 
likely to differ from potentials within confined pores due the pore size effect. Also, the lack of 
consistent surface models of C-S-H (when Ca/Si>1) consists of one of the main impediments to the 
development of more realistic EDL models. It stays, nonetheless, crucial to pursue a better 
understanding of the very atomic features that tune the macroscopic properties of our materials. 
And the main objective of the present work is to provide a multi-parameter study of the EDL effects 
which we believe is missing in the current state of the art.  
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Chapter 3 Computational methods 
 
 
 
This chapter summarizes the computational methods used throughout the thesis. Firstly, the 
different elements of the employed force field are briefly depicted. Then comes the description of 
each one of the implemented atomic modeling techniques including Molecular dynamics, the Widom 
insertion method and the Metropolis Monte Carlo. The principle and mathematical framework of 
each method are presented and their pertinence in this work discussed. Finally, we recall the main 
outlines of the Finite element method as the tool to choice to resolve partial different equations, and 
in particular the equations of ionic transport.     
 
 
 
Chapter 3 Computational methods ........................................................................................................ 69 

I. Force Fields ............................................................................................................................ 71 

A. Interatomic potentials ...................................................................................................... 71 

B. Long range interactions .................................................................................................... 72 

II. Molecular Dynamics ............................................................................................................... 74 

A. The algorithm .................................................................................................................... 74 

B. Thermostats ...................................................................................................................... 76 

i) The Nosé-Hoover thermostat ............................................................................................. 76 

ii) The velocity rescaling thermostat ...................................................................................... 76 

C. Application case: Relaxation of a Lennard-Jones fluid between pushing walls ............... 77 

III. Free energy calculations ........................................................................................................ 78 

A. The chemical potential ..................................................................................................... 78 

B. The Widom insertion algorithm ........................................................................................ 80 

C. Application case: Excess chemical potential of a non-homogeneous LJ liquid ................ 80 

D. Extension to electrolytic fluids .......................................................................................... 81 

IV. Metropolis Monte Carlo ........................................................................................................ 82 

A. Principle ............................................................................................................................ 82 

B. The Grand Canonical Monte Carlo (GCMC) ...................................................................... 84 

V. Finite element method .......................................................................................................... 86 

A. Principle ............................................................................................................................ 86 

B. The variational formulation: Case of the Poisson-Nernst-Planck (PNP) equations .......... 86 

i) Weak form of the Nernst-Planck equations ....................................................................... 87 

ii) Weak form of the Poisson equation .................................................................................. 88 

VI. References ............................................................................................................................. 89 

 



70 
 

 

  



71 
 

I. Force Fields 
Within the framework of molecular modelling, the simulated systems are typically composed of 
atoms in interaction with their environment. To best estimate these particle-particle correlations, 
computational methods such as classical molecular dynamics or Monte Carlo algorithms rely on force 
fields (FF). A force field usually consists in a set of analytical functions, using empirical parameters, 
that represent the interatomic potentials from which derive the acting forces that, ultimately, 
determine the energy landscape of the atomistic system. 

The interactions between atoms can be of various forms depending on the nature of the system of 
interest. Atoms can be, in fact, part of a given molecule within a solid bulk or rather acquire a charge 
and take an aqueous form to interact with other ions or molecules. A general formulation of the 
configurational potential energy of a system made of N atoms is 

 

UTot(x𝟏𝟏, x𝟐𝟐, . . . , x𝑵𝑵) = �U𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(x𝒊𝒊, x𝒋𝒋)
𝑖𝑖,𝑗𝑗

+ �U𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(x𝒊𝒊, x𝒋𝒋)
𝑖𝑖𝑖𝑖

+ �U𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(x𝒊𝒊, x𝒋𝒋, x𝒌𝒌) 
𝑖𝑖𝑖𝑖𝑖𝑖

 

+� U𝑑𝑑𝑑𝑑ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(x𝒊𝒊, x𝒋𝒋, x𝒌𝒌, x𝒍𝒍)
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

+ � U𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(x𝒊𝒊)𝑖𝑖     (3.1) 

 

where Upair usually refers to the nonbonding interactions between atomic pairs. The terms Ubond, 

Uangle and Udihedral represent, respectively, interactions between bonded pairs, triplets forming an 

angle and quadruplets of atoms. The last term Uconstraint accounts for possible constraints on the 
atoms of the system such as ions interacting with a charged wall. 

A. Interatomic potentials 
In the context of studying electrolytes, ionic species are usually correlated though pairwise 
interactions which express as the following sum 

 

U𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(x𝒊𝒊, x𝒋𝒋) = UCoulomb(x𝒊𝒊, x𝒋𝒋) + ULJ(x𝒊𝒊, x𝒋𝒋)   (3.2) 

 

where UCoulomb is the electrostatic potential between two charges qi and qj separated by a distance 
dij : 

UCoulomb(x𝒊𝒊, x𝒋𝒋) = 1
4𝜋𝜋𝜋𝜋

𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗
𝑑𝑑𝑖𝑖𝑖𝑖

     (3.3) 

 

and ULJ the Lennard-Jones potential accounting for the Van der Waals repulsion-attraction forces 

 

ULJ(x𝒊𝒊, x𝒋𝒋) = 4𝜀𝜀𝑖𝑖𝑖𝑖[(𝜎𝜎𝑖𝑖𝑖𝑖
𝑑𝑑𝑖𝑖𝑖𝑖

)12 − (𝜎𝜎𝑖𝑖𝑖𝑖
𝑑𝑑𝑖𝑖𝑖𝑖

)6]     (3.4) 

With εij the potential well and σij the zero-crossing distance of the potential. 
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As pH is among the important parameters within the study of alkaline solutions, hydroxide ions will 
be considered in this work. Hydroxide is a diatomic anion where oxygen and hydrogen form a 
covalent bond which can be modeled by a harmonic potential 

 

U𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(x𝐢𝐢, x𝐣𝐣) = K𝑖𝑖𝑖𝑖(𝑙𝑙𝑖𝑖𝑖𝑖 − 𝑙𝑙0,𝑖𝑖𝑖𝑖)2   (3.5) 

 

Where K is the force constant (including the factor ½), lij the bond length and l0,ij the bond length at 
rest (no forces applied). 

 

The interaction parameters used in this thesis are mostly based on the CLAYFF force field that was 
developed for the simulation of clays phases, hydrated minerals and their interfaces with aqueous 
solutions. All the implemented values for the pairwise interactions ((3.3) and (3.4)) along with the 
bond parameters for the harmonic potential ((3.5)) are summarized in the tables below:  

 

Species Symbol Charge (e) ε (eV) σ (Å) Reference 

Hydroxide hydrogen Ho +0.35 0 0 [Vacha2007] 

Hydroxide oxygen Oh -1.35 0.006488 3.840 [Vacha2007] 

Aqueous sodium ion Na+ +1 0.005641671 2.6378 [Cygan2004] 

Aqueous calcium ion Ca2+ +2 0.004336412 2.872 [Cygan2004] 

Aqueous chloride ion Cl- -1 0.004340748 4.4 [Cygan2004] 
 

Table.3.1. Non bond parameters for the studied ionic species 

 

 

Bond stretch  

K𝒊𝒊𝒊𝒊 (eV/Å2) 
 

𝒍𝒍𝟎𝟎,𝒊𝒊𝒊𝒊 (Å) Species i Species j 

Oh Ho 23.6493 0.97 
 

Table.3.2. Bond parameters for the oxygen and hydrogen atoms of the hydroxide ion [CHARMM] 

 

B. Long range interactions 
In the context of studying the formation of electrical double layers in confined electrolytes, the 
accurate calculation of ionic distribution around charged surfaces is needed. In this regard, the long 
range interactions are expected to yield a non negligible effect that will greatly affect distributions at 
equilibrium. However, the computation of these forces becomes quite challenging when the 
periodicity of the simulation box in all directions is not respected. In the specific case of ionic fluids 
within slit pores, Torrie and Valleau [Torrie1980] explain that the Ewald summation, which is the 
usually employed method to efficiently assess long range interactions, cannot be used due to the 
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non-periodicity of the system. The authors provide an alternative approach based on the nearest 
images convention. In order to determine the ionic distribution at a charged interface, Torrie and 
Valleau used the Monte Carlo method in the grand canonical ensemble (ref. section IV). The slit pore 
was modeled as a rectangular cuboid with period conditions applied in parallel to the two hard walls 
(in the x and y directions) that constraint the box in the direction z of its width (Fig.3.1.(a))  

 
                         (a)                                                                         (b)   

 Fig.3.1. (a) Cross section of the infinite simulation cell in the direction x and y and (b) Representation 
of the mean charge density perpendicular to the charged walls as a set of infinite and equally spaced 
walls each having a different but uniform surface charge density. Taken from [Torrie1980] 

Firstly, the pairwise interactions Upair are computed for all the ionic pairs present in the central box. 
Secondly, the mean charge distribution in the central box is computed over a number of 
configurations until equilibration. The averaged distribution obtained is approximated by a set of 
infinite, equally separated and uniformly charged planes. The long range correlations ULR are, then, 
computed through ions interacting with all the planes. However, as the short range electrostatic 
potentials USR between ions in the central box have already been included in the term Upair, this 

redundant part is subtracted from ULR hence the holes at the center of the sheets in Fig.3.1.(b). 
Finally, the overall potential of the system can be written as it follows 

 

UTot = � U𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(x𝒊𝒊, x𝒋𝒋)
𝑖𝑖,𝑗𝑗≤𝑖𝑖−1

+ U𝐿𝐿𝐿𝐿 − U𝑆𝑆𝑆𝑆     (3.6) 

 

where the long range term ULR is the sum of the interactions between all the charges qi and the 
electric potential Up of the planes such as  

U𝐿𝐿𝐿𝐿 = � q𝑖𝑖U𝑝𝑝(x𝒊𝒊)
𝑖𝑖,𝑝𝑝

    (3.7) 
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And the short range electrostatic interactions USR in the central box express as 

 

U𝑆𝑆𝑆𝑆 = � q𝑖𝑖Uℎ(x𝒊𝒊)
𝑖𝑖,ℎ

    (3.8) 

 

where Uh represents the electric potential of the rectangular holes. 

Further details on the computations based on the paper of Torrie and Valleau [Torrie1980] can be 
found in [Galmarini2013]. The method has been implemented in LAMMPS [Plimpton1995] by Sandra 
Galmarini in the context of her thesis at EPFL.  

II. Molecular Dynamics 
Molecular dynamics (MD) is a computational simulation technique that relies on the resolution of 
Newton’s equation of motions [Newton1833] to describe the evolution of the dynamics of a system 
of N interacting particles. The second law of Newton writes as 

 

𝑚𝑚𝑖𝑖
𝑑𝑑2x𝒊𝒊(t)
𝑑𝑑t2

= F𝒊𝒊    (3.9) 

 

where t is the time, mi, xi  the mass and the position vector of the particle i and Fi the exerted forces. 
In this work, we chose to conduct MD computations using the LAMMPS software [Plimpton1995]. 

A. The algorithm 
The algorithm of any Molecular Dynamics simulation is based on a number of operations that can be 
summarized as it follows: 

Step 1: Definition of the input parameters such as the temperature T of the system, the 
number of particles N, the volume V or the density. An important parameter to set is the 
time step (Δt). For a good sampling of the particles trajectories, the time step has to be 
chosen according to the fastest moving particle in the system. In cementitious systems, the 
hydrogen atom, being the lightest particle, is assumed not to exceed a distance of 1/50 of a 
typical inter-atomic distance (dO-H ~1Å) at each step [Aschauer2008]. At T=300 K, a 
reasonable time step is 0.7 fs [Galmarini2013]. 

Step 2: The initialization of the system. This usually refers to the assignment of initial 
positions and velocities to the particles. One of the important criteria for an acceptable initial 
configuration is to avoid any overlapping between the positioned particles. This can be 
achieved by placing the particles on a lattice. Another option, in case of a random insertion of 
the atoms, is to perform a pre-equilibration energy minimization run in order to relax the 
system i.e. find its minimum configurational energy. 
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Step 3: The computation of the acting forces on each particle. For a conservative system, the 
force vector can be rewritten as gradients of the inter-atomic potential Ui (ref. section I.A) 

 

F𝒊𝒊 = −∇x𝒊𝒊U𝑖𝑖    (3.10) 

 

This step is usually the most expensive in terms of computational time especially in dense 
systems where long-range interactions are of significant importance. To reduce the 
complexity of the algorithm from the usual O(N²), numerical techniques such as the Particle 
mesh Ewald (PME) method [Ewald1921] or the Fast Multipole Method (FMM) [Green1987] 
are necessary. 

 

Step 4: Once the forces computed at an instant t, the equations of motions are numerically 
integrated to move the system toward its new state at t+Δt. Many algorithms have been 
developed to do this. Among these, we chose to use the velocity Verlet algorithm 
[Swope1982] which derives from the classical Verlet integration [Verlet1967]. In this method, 
the particles coordinates are updated by using positions and velocities computed at equal 
instants: 

 

x𝒊𝒊(t + Δt) = x𝒊𝒊(t) + v𝒊𝒊(t)Δt + F𝒊𝒊(t)
2m𝑖𝑖

Δt2   (3.11) 

 
Then, the new velocities are computed using the previously updated positions and the 
ensuing new forces that derive from those: 

 

v𝒊𝒊(t + Δt) = v𝒊𝒊(t) + F𝑖𝑖(t+Δt)+F𝑖𝑖(t)
2m𝑖𝑖

Δt     (3.12) 

 
This integration scheme offers the possibility of directly computing the total energy of the 
system (kinetic and potential energies) at each time step. 

 

Step 5: Finally, the previous step is repeated until reaching equilibrium i.e. when the 
properties of the system no longer vary with time. 

 

 

In a configuration where the integration of the equations of motion is performed under conserved 
total energy (E), volume (V) and number of particles (N), it is said that the MD simulation is 
conducted in the microcanonical ensemble (NVE).  It is possible, however, to run simulations in other 
thermodynamic ensembles. Two ensembles are of particular interest in this work: The canonical 
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ensemble (NVT) and the Grand Canonical ensemble (μVT). The latter will be further detailed in the 
section on the Monte Carlo algorithm (ref. section IV). In the next paragraph, we focus on the 
definition of Molecular dynamics at constant temperature i.e. in the NVT ensemble. 

B. Thermostats  
As it is the case for real experiments, it is possible to virtually put our simulated system in contact 
with a large heat bath in order to keep the temperature constant i.e. this is thermostatting. The idea 
behind this procedure is to control the velocity of the particles in the system. There are many 
methods to achieve this but we will only present the two techniques that have been tested and used 
in this work: The Nosé-Hoover thermostat [Nose1984] and the stochastic velocity rescaling 
thermostat [Bussi2007]. 

i) The Nosé-Hoover thermostat 

In the Nosé-Hoover thermostat, the particles velocity is controlled through the introduction of a 
friction term γ(t) that varies with time. The equations of motion are, hence, modified and rewrite as 
it follows 

 

⎩
⎪
⎨

⎪
⎧

𝑑𝑑x𝒊𝒊(t)
𝑑𝑑t

= v𝒊𝒊(t)
𝑑𝑑v𝒊𝒊(t)
𝑑𝑑t

= F𝒊𝒊(t)
m𝑖𝑖

− 𝛾𝛾(t)v𝒊𝒊(t)
𝑑𝑑𝑑𝑑(t)
𝑑𝑑t

= 1
𝜏𝜏𝑑𝑑
2

T(t)−T0
T0

    (3.13) 

 

Where τd is the damping time that controls the rapidity at which the temperature is pushed back to 
the target value T0. For a good functioning of the thermostat, the time parameter τd has to be 
carefully chosen in order to avoid large fluctuations of the temperature (τd too small) or an 
excessively long equilibration time (τd too big). In LAMMPS, it is advised to set τd equal to 100Δt. 
Further details on the implementation of the thermostat can be found in the LAMMPS manual 
[LAMMPS2022]. 

ii) The velocity rescaling thermostat 

The velocity rescaling thermostat is among the first methods that have been designed to prohibit any 
temperature changes in the simulated system [Wood1971]. It consists in preventing any temperature 
fluctuations by multiplying the particles velocities, at a predetermined frequency, by a factor α: 

𝛼𝛼 = � T0
T(t)

    (3.14) 

where T(t) is the temperature as calculated from the velocities at a given instant t and T0 the 
targeted temperature. Although very intuitive, the use of a constant factor for all particles was found 
to yield some discrepancies in small systems or where the observables of interest rather depend on 
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fluctuations and not averages. To adjust these limitations, Bussi et al. extended the validity of the 
method by using properly chosen random rescaling factors [Bussi2007] hence the “stochastic” 
velocity rescaling thermostat.  

C. Application case: Relaxation of a Lennard-Jones fluid between pushing walls 
In order to ensure the proper setting of the MD engine for the upcoming simulations in the present 
thesis, we validate our methodology with results from [Perego2018]. 

In the considered test case, the aim is to simulate the relaxation of a Lennard-Jones (LJ) fluid under 
the constraint of pushing walls. In line with the simulation set up in the paper, we consider two 
density values of the fluid;  of a low density configuration with a number of particles N equal to 720 
and a high density case with N=920. All the fluid quantities are expressed in LJ units i.e. distance x* is 

expressed in function of σ [𝑥𝑥∗ = 𝑥𝑥
𝜎𝜎

], energies in ε [E∗ = E
ε
] (ref. section I.A), reduced temperature 

T* writes as  
𝑇𝑇𝑘𝑘𝐵𝐵
𝜀𝜀

 and the reduced time  𝑡𝑡∗ = 𝑡𝑡� 𝜀𝜀
𝑚𝑚𝜎𝜎2

 . Particle-particle interactions are defined via a 

LJ potential truncated and shifted at a cutoff distance equal to 2.5. The temperature is set at T*= 0.7. 

For the simulation box, we consider a cell of dimensions with walls defined in the x and y directions 
with a size of 10x10. The walls are separated in the z dimension with a distance 𝐿𝐿𝑧𝑧∗ =11.762. Periodic 
boundary conditions are imposed along the walls. Each wall interacts with the atoms in the box with 
an LJ potential denoted U(z) shifted to 0 at z* = Lz* with 𝜀𝜀𝑤𝑤∗  = 1 and 𝜎𝜎𝑤𝑤∗   = 1. The overall potential of 
the walls writes as: 

 

𝑈𝑈𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑧𝑧∗)  =  𝑈𝑈(𝑧𝑧∗)  +  𝑈𝑈(𝐿𝐿𝑧𝑧∗ − 𝑧𝑧∗)   (3.15) 

 

For a time step equal to 10-3, the system reaches equilibrium after 109 steps in the NVT ensemble. In 
[Perego2018], the authors chose to use the Velocity rescaling thermostat. We compare the paper 
results with MD simulations on LAMMPS with both the Nosé-Hover and the stochastic velocity 
rescaling scheme from [Bussi2007].  

 



78 
 

 
                                         (a)                                                                                         (b)   

Fig.3.2. Density profile as function of the position in a confined LJ liquid with a particle number N 
equal to (a) 720 and (b) 920; Adapted from [Perego2018] 

 

In Fig.3.2.(a), one can see, on the reference curve (blue), that the walls induce a non-homogeneous 
distribution. Oscillations appear through the box and tend to amortize at the center. Our simulations 
manage to reproduce the effect induced by the confining walls. At a higher density, the predictions in 
Fig.3.2.(b) show the same features than the lower density case with more pronounced oscillations at 
the sides and a good agreement with the paper’s calculations. Although this remains a relatively 
simple test case, two main steps were determining in ensuring a good relaxation of the system: (i) a 
good choice of the time step with a sufficiently long simulation time and (b) the necessity of pre-
minimization run on the system prior to the main equilibration (production) run.  

III. Free energy calculations 

A. The chemical potential 
In the context of studying the forming of EDLs within saturated pores, we examine non-ideal systems 
where the present ionic species display various size-ratios (asymmetric electrolytes) and interact with 
different potentials. Quantifying these effects comes down to calculating the chemical potential of 
the pore solution. The chemical potential of a species is defined as the change in free energy upon 
adding a particle of this given species to the system. In the simple case of a one-component system, 
the chemical potential of the species writes as the derivative of the Helmholtz free energy F with 
respect to the number N of particles 

 

𝜇𝜇 = (∂F
∂N

)V,T ≈ F(N + 1,V,T) − F(N,V,T)    (3.16) 
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The Helmholtz free energy F of the N-particle system expresses as 

 

F(N, V, T) = −𝛽𝛽−1ln (Z𝑁𝑁)    (3.17) 

 

Where β = 1/(kBT) is the inverse thermal energy and ZN the configurational partition function of the 
system in three dimensions, at constant volume V and temperature T, given by  

 

Z𝑁𝑁 = 𝑉𝑉𝑁𝑁

Λ3𝑁𝑁N!
∫ exp[ − 𝛽𝛽U𝑁𝑁(x𝑵𝑵)]𝑑𝑑x𝑵𝑵    (3.18) 

 

with Λ the thermal Broglie wavelength, UN the potential energy at N particles and xN the atomic 
coordinates. One can then rewrite the chemical potential in (3.16) as the sum of an ideal part and an 
excess part: 

 

𝜇𝜇 = 𝜇𝜇id + 𝜇𝜇ex    (3.19) 

 

The ideal contribution depicts the solution as a system with non-interacting particles. It takes into 
account the effect pressure for gases or density and mass for liquids: 

 

𝜇𝜇id = −𝛽𝛽−1ln (V/Λ3

N+1
)    (3.20) 

 

The excess term, which is the non-trivial part, accounts for the inter-atomic interactions between the 

different species. It expresses as  

 

𝜇𝜇ex = −𝛽𝛽−1ln [∫ exp[−𝛽𝛽U𝑁𝑁+1(x𝑵𝑵+𝟏𝟏)]𝑑𝑑x𝑵𝑵+𝟏𝟏

∫ exp[−𝛽𝛽U𝑁𝑁(x𝑵𝑵)]𝑑𝑑x𝑵𝑵
] = −𝛽𝛽−1ln ⟨exp [−𝛽𝛽Δ𝑈𝑈+]⟩𝑁𝑁     (3.21) 

 

where <.>N denotes the average over the configuration space of N-particle systems in the canonical 
ensemble and ΔU+ is the energy shift due to the insertion of a (N+1)th particle in the N-particle 
system. In order to compute the ΔU+ term, we use the so called Widom insertion method. 
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B. The Widom insertion algorithm 
The Widom insertion method is a statistical algorithm derived by B. Widom in 1963 [Widom1963] for 
the calculation of the excess chemical potential of a species in a mixture. It consists in operating 
fictitious insertion moves at random positions and, thus, computing the insertion energy ΔU+. The 
operation is repeated and the term <exp[-βΔU+]> in (3.21) is obtained by averaging upon a 
sufficiently large number of insertions.    

 
Fig.3.3. Schematic of the insertion moves performed at each step of the Widom algorithm. In green, 
we represent an accepted virtual move. In red, the move is rejected due to the overlapping with 
particles of the system.  

 

The Widom method is also known for being a computationally efficient method that carries excellent 
results in the case of low to moderately high densities (few molars). Although highly alkaline, the 
pore solution in cement paste has a pH usually of the order of 13.6 [Loth2010] and an overall ionic 
strength typically below 1M. This qualifies the Widom insertion algorithm as a good tool to compute 
excess chemical potential of ionic species in cement systems 

In this thesis, all simulations were conducted with the implemented Widom algorithm in the 
LAMMPS distribution. The paper of Perego et al. 2018 [Perego2018] has been used as a reference for 
the validation step. 

C. Application case: Excess chemical potential of a non-homogeneous LJ liquid 
This section is actually the continuation of the MD relaxation simulations in section II.C. After having 
ensured the equilibration of a Lennard-Jones (LJ) liquid constrained in a slit pore between two 
pushing walls, we aim at computing the average excess chemical potential of the system. As 
previously mentioned (section II.C), two configurations of the fluid are considered i.e.  Low and high 
density cases with a total number of atoms equal to, respectively, 720 and 920 LJ particles. The 
Widom algorithm is run in each case for a total of 5 105 iterations with 27000 particle insertions each 
500 iterations. The reference simulations in the article were carried out using Well-Tempered 
Metadynamics which is a highly accurate sampling technique, well suited for highly concentrated 
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systems. The Metadynamics simulations were conducted twice by changing the number of insertion 
trials from 512 (denoted Metadynamics I) down to 64 (denoted Metadynamics II) each 500 timestep. 
The comparison of the methods is presented in Fig.3.4.  
 

 
                                           (a)                                                                                         (b)   

Fig.3.4. Evolution of the excess chemical potential as function of the simulation time. Results are 
presented in the cases of (a) a low density Lennard-Jones liquid with N=720 and (b) a higher density 
configuration with N=920. In blue are presented the predictions of the Widom algorithm used in this 
work with 27000 particle insertions each 500 iterations. In red and orange, the computations 
achieved with Well-Tempered (WT) Metadynamics using, respectively, 512 (Meta I) and 64 (Meta II) 
particle insertions each 500 time steps. Adapted from [Perego2018] 

 

Considering the low density case in Fig.3.4.(a), one can see that the convergence of the Widom 
method is very efficient. On the other hand, the enhanced sampling of the Metadynamics ensures 
that all the local minima are visited before reaching the final value of -3.24 (in ε units). In this case, 
the predictions of the Widom scheme are in very good agreement with the paper results with an 
error below 0.2%. For the higher density fluid (Fig.3.4.(b)), the Widom convergence is slowed down 
but remains faster than its homologue.  Additionally, due to the higher amount of rejected moves the 
deviation between the two techniques is higher (i.e. 1% error) mainly due to the poorer sampling of 
our method. So if the Widom method provides us with a very powerful tool, it is, in reality, limited to 
the case of moderately dense systems. 

D. Extension to electrolytic fluids 
As Widom's method relies on insertion moves, it appears obvious that inserting a single ion in the 
system will unbalance the total charge and violate electroneutrality. In order to compensate the 
inserted charge, Sloth et al. introduced a background charge which neutralizes the charge of the 
inserted ion [Sloth1990]. This translates into adding a correction term to the equation (3.21). The 
expression of μex becomes:  
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𝛽𝛽𝜇𝜇𝑒𝑒𝑒𝑒𝑖𝑖 = −𝛽𝛽
𝑞𝑞𝑖𝑖(𝑞𝑞𝑖𝑖+2� 𝑁𝑁𝑗𝑗𝑞𝑞𝑗𝑗

𝑗𝑗
)𝐾𝐾

32𝜋𝜋𝜋𝜋𝜋𝜋
− ln ⟨exp [−𝛽𝛽Δ𝑈𝑈+]⟩     (3.22) 

 

where 𝐾𝐾 = 2[6ln (2 + √3) − 𝜋𝜋], qi designates the charge of the inserted species, Nj is the number of 
particles of the present species j (including i) and L the side length of the cubic box. Further details on 
the mathematical development are available in [Sloth1990]. 

IV. Metropolis Monte Carlo 

A. Principle 
The Monte Carlo (MC) methods are a family of computational algorithms that use randomness as a 
main ingredient. In 1949, N. Metropolis and U. Stanislaw [Metropolis1949] were the first to 
introduce the method in detail. Since then, the MC algorithm has been intensively used in statistical 
physics for the computation of integrals that represent the average values of certain properties of 
interest in a physical system.  

If we were, for example, to compute the integral If of a function f(x) between a and b, the most 

intuitive way would be to compute the average of the function f(x) in a large number N of uniformly 

distributed x values such as 

 

I𝑓𝑓 = ∫ f(x)𝑑𝑑x𝑏𝑏
𝑎𝑎 = 𝑙𝑙𝑙𝑙𝑙𝑙

𝑁𝑁→+∞

b−a
𝑁𝑁
� f(x𝑖𝑖)

𝑁𝑁
𝑖𝑖=1 = 𝑙𝑙𝑙𝑙𝑙𝑙

𝑁𝑁→+∞
⟨f(x𝑖𝑖)⟩     (3.23) 

 

For a limited number N of evaluation points, the accuracy of the integral can actually be significantly 
improved if the sampling points where chosen according to a non-uniform distribution λ(x) that 
provides a better sampling of regions where the integral is more important i.e. the importance 
sampling.  In this case, the integral can be rewritten as  

 

I𝑓𝑓 = � 𝜆𝜆(x) f(x)
𝜆𝜆(x)

𝑑𝑑x
𝑏𝑏

𝑎𝑎
= 𝑙𝑙𝑙𝑙𝑙𝑙

𝑁𝑁→+∞
⟨ f(x𝑖𝑖)
𝜆𝜆(x𝑖𝑖)

⟩     (3.24) 

 

In statistical physics, the objective is usually to compute the average value of an observable A that 
follows a Boltzmann distribution. The integral is calculated on the integrity of the phase space and 
writes as  

 

⟨A⟩ = ∫ Γ(x)A(x)𝑑𝑑x = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑁𝑁→+∞

⟨A(x𝒊𝒊)⟩     (3.25) 
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Where xi are the sampling configurations and Γ(x) the probability density function defined as  

 

Γ(x) = exp[−𝛽𝛽U(x)]
Z

      (3.26) 

 

with Z the partition function:  

 

Z = ∫ exp[−𝛽𝛽U(x)]𝑑𝑑x     (3.27) 

 

But how can we generate the xi sampling configurations in order to compute < A >?  

Unlike MD calculations where the successive states of the system are derived from the temporal 
resolution of Newton’s equation, the Metropolis Monte Carlo relies on the construction of a Markov 
chain for the sample generation. A Markov chain consists in a finite set of N states where the 
probability of each state xi only depends from the previous state xi-1. The order of succession of the 
states does not have necessary a physical meaning. It is then possible to define a transition matrix Π 
that describes the probability Πij of moving from a configuration xi to a configuration xj . Although 
we do not know the elements of the matrix, we do know the limit distribution of the Markov chain. It 
is a vector Γ which elements are 

 

Γ𝑖𝑖 = 𝚪𝚪(x𝑖𝑖) = exp[−𝛽𝛽U(x𝑖𝑖)]
Z

     (3.28) 

 

As a distribution of probabilities, the transition matrix has to be stochastic i.e. 

 

� Π𝑖𝑖𝑖𝑖
𝑁𝑁

𝑗𝑗=1
= 1     (3.29) 

 

Assuming that we do not want to destroy equilibrium once reached, we have to be able to reach any 
state xi from any other state xj i.e. the matrix is ergodic. To achieve ergodicity, we usually ensure a 
stronger condition which is the condition of micro-reversibility (or the detailed balance) that can be 
written as  

 

Γ𝑖𝑖Π𝑖𝑖𝑖𝑖 = Γ𝑗𝑗Π𝑗𝑗𝑗𝑗      (3.30) 

 

Now, the probability of passage Πij is the result of two steps. First, a random displacement is 
performed with a trial probability θij which defines a trial matrix θ. Secondly, the move has to be 
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either accepted or rejected. The acceptance probability is noted αij. In sum, the transition probability 
can be rewritten as the product of the trial and the acceptance probabilities: 

 

Π𝑖𝑖𝑖𝑖 = 𝜃𝜃𝑖𝑖𝑖𝑖𝛼𝛼𝑖𝑖𝑖𝑖      (3.31) 

 

By choosing the matrix θ symmetric (θij= θji), the detailed balance condition (3.30) provides a direct 

relation between the probabilities αij and the probability vector Γ: 

 
 

𝛼𝛼𝑖𝑖𝑖𝑖
𝛼𝛼𝑗𝑗𝑗𝑗

=
Γ𝑗𝑗
Γ𝑖𝑖

= exp[−𝛽𝛽U(x𝒋𝒋)]
exp[−𝛽𝛽U(x𝒊𝒊)]

= exp[ − 𝛽𝛽(U(x𝒋𝒋) − U(x𝒊𝒊))]     (3.32) 

 

Interestingly, the relation is independent of Z. 
Finally, the acceptance probabilities are defined by Metropolis as it follows: 

 

𝛼𝛼𝑖𝑖𝑖𝑖 = min(1,exp[ − 𝛽𝛽(U(x𝒋𝒋) − U(x𝒊𝒊))])     (3.33) 

 

For most adsorption studies, the grand canonical ensemble is the natural statistical ensemble to use. 

B. The Grand Canonical Monte Carlo (GCMC) 
In the grand canonical ensemble, the temperature T, volume V and chemical potential μ are fixed. 
During the simulation, only the number of particles is allowed to fluctuate. In the equivalent 
experimental setup, the system is put in contact with a reservoir and it is said to have reached 
equilibrium on the condition that its temperature and chemical potential relax to the ones of the 
reservoir. For our study of ionic adsorption on charged surfaces, we used the GCMC class 
implemented in LAMMPS. The algorithm of the Grand Canonical Monte Carlo applied to electrolytes 
has been inspired from the work of Valleau et al. [Valleau1980]. 

 

Step 1: Set the values of the temperature T, volume V and chemical potential μ. The latter is 
separately computed using the previously discussed Widom insertion method. Other parameters 
such as total number of iterations NMC or the acceptance ratio of the Monte Carlo moves can be 
chosen at this point. 

 

Step 2: Generate an initial configuration with N0 number of particles in respect with the electro-
neutrality of the system. As the initial configuration is randomly set, it is usually an energetically 
improbable distribution. An energy minimization run or an NVT simulation may prevent any 
overlapping of the atoms prior to the actual production run.  
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Step 3: Run the Metropolis algorithm for a number NMC of iteration steps. Given a random number 
between 0 and 1, trial moves are performed. In a grand canonical simulation, acceptable trial moves 
are: 

• Displacement of particles: An ion is selected randomly and translated by a displacement 
vector. The move is accepted with a probability  
 

𝑎𝑎𝑎𝑎𝑎𝑎(𝒔𝒔 → 𝒔𝒔′) = 𝑚𝑚𝑚𝑚𝑚𝑚(1, 𝑒𝑒𝑒𝑒𝑒𝑒{−𝛽𝛽[𝑈𝑈(𝒔𝒔′) − 𝑈𝑈(𝒔𝒔)]})     (3.34) 
 

Where s and s' are respectively the old and new positions, 𝛽𝛽 = 1
𝑘𝑘𝐵𝐵𝑇𝑇

 and U the 

configurational energy of the system. 

• Insertion and removal of particles: An electroneutral set of ν ions (ν+ cations and ν- anions) is 
randomly selected and either added or deleted in a single. In a trial addition, each of the ν 
particles, is inserted anywhere in the box with equal probability. The creation of the set of ν 
ions is accepted with probability      
 

𝑎𝑎𝑎𝑎𝑎𝑎(𝑁𝑁 → 𝑁𝑁 +  𝜈𝜈) = 𝑚𝑚𝑚𝑚𝑚𝑚[1, (𝑁𝑁𝑠𝑠)𝜈𝜈

Λ+3𝜈𝜈
+Λ−3𝜈𝜈

−
(𝑁𝑁𝑖𝑖

+)!(𝑁𝑁𝑖𝑖
−)!

(𝑁𝑁𝑗𝑗
+)!(𝑁𝑁𝑗𝑗

−)!
exp{𝛽𝛽𝛽𝛽 − 𝛽𝛽(U𝑗𝑗 − U𝑖𝑖)}]     (3.35) 

 

Considering that the simulation box is discretized into an Ns number of available discrete 

sites, 𝜇𝜇 = 𝜈𝜈+𝜇𝜇+ + 𝜈𝜈−𝜇𝜇− the chemical potential of the electrolyte, 𝛬𝛬± = ℎ
�2𝜋𝜋𝑚𝑚±𝑘𝑘𝐵𝐵𝑇𝑇

, Uj is 

the configurational energy of the state j where there is a total of Nj = Ni + ν particles              

(with N+j = N+i + ν+ and N-j = N-i + ν-) and Ui is the energy of the configuration before any 
additions. In a deletion trial, a set of ν ions is deleted. The move is accepted with probability 

 

𝑎𝑎𝑎𝑎𝑎𝑎(𝑁𝑁 → 𝑁𝑁 −  𝜈𝜈) = 𝑚𝑚𝑚𝑚𝑚𝑚[1, Λ+
3𝜈𝜈+Λ−3𝜈𝜈

−

(𝑁𝑁𝑠𝑠)𝜈𝜈
(𝑁𝑁𝑗𝑗

+)!(𝑁𝑁𝑗𝑗
−)!

(𝑁𝑁𝑖𝑖
+)!(𝑁𝑁𝑖𝑖

−)!
exp{−𝛽𝛽𝛽𝛽 + 𝛽𝛽(U𝑗𝑗 − U𝑖𝑖)}]   (3.36) 

 

Step 4: Algorithm stops and ionic distributions at equilibrium are reached.  
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V. Finite element method 

A. Principle 
The Finite element method (FEM) is a mathematical method for the numerical resolution of partial 
differential equations. The FEM relies on the idea of subdividing the problem system into a discrete 
set of smaller pieces (or subdomains) called finite elements. To achieve this, the domain is discretized 
via a mesh formed by elements which are, in turn, comprised of nodes. Approximations are 
introduced over each element of the space domain to approach the behavior of the unknown 
functions.  

The finite element analysis of a given problem usually decomposes into 4 main steps: 

Step 1: Definition of the variational formulation also known as the weak form of the 
boundary value problem 
 

Step 2: The definition of a discretization method which consists in choosing the shape of the 
finite elements (rectangles, triangles…) and the base of reference functions (Lagrange or 
Hermite polynomial functions) 
 

Step 3: At this point, the partial different equation has been converted into a matrix form 
problem.  A numerical resolution algorithm is necessary to reverse the matrices and obtain 
the solution vectors. The choice usually comes down to either direct methods (such as the LU 
factorization) or iterative solvers (such as Newton’s method) that gradually converge toward 
the solution and offer the possibility to adjust the convergence tolerance [Demmel1997, 
Golub2013]. 
 

Step 4: Finally, the post-processing procedure for the error estimation and the extraction of 
the converged solution.  

In this thesis, the FEM method was used for the resolution of the Poisson-Nernst-Planck (PNP) 
equations in the context of studying ionic diffusion in nanoscopic pores (ref. chapter 6 section II.A.). 

The numerical analysis was carried out using COMSOL Multiphysics® [COMSOL]. The full 
development of the FEM theory is a heavy subject which deviates from the scope and the objectives 
of this work. We will, however, present the variational formulation for the resolution of the PNP 
system as it is the basic step for the finite element resolution of the transport problem. Only the 
spatial discretization is developed here. 

B. The variational formulation: Case of the Poisson-Nernst-Planck (PNP) 
equations 
In order to derive the weak formulation, one usually starts from the “strong” formulation which is 
the usual closed-form partial differential equation. In the case of a monovalent solution, the PNP 
system writes as the combination of the Nernst-Planck (NP) equations for cations (+) and anions (-): 

 
𝜕𝜕𝒞𝒞𝑖𝑖
𝜕𝜕𝜕𝜕
− 𝐷𝐷Δ𝒞𝒞𝑖𝑖 − 𝛼𝛼𝑖𝑖𝛻𝛻 ⋅ (𝒞𝒞𝑖𝑖𝛻𝛻Ψ) = 0  where  𝑖𝑖 = {+,−}    (3.37) 
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And Gauss’s law of electrostatics (for a monovalent salt) 

 

−ΔΨ − 𝛽𝛽(𝒞𝒞+ − 𝒞𝒞−) = 0     (3.38) 

 

Where the physical constants are defined as it follows 

 

�
𝛼𝛼+ = −𝛼𝛼− = 𝐷𝐷 𝑒𝑒

𝑘𝑘𝐵𝐵𝑇𝑇

𝛽𝛽 = 𝑒𝑒𝑁𝑁𝐴𝐴
𝜖𝜖

      (3.39) 

 

For the Nernst-Planck equation (3.37), the no-flux condition is applied at the boundaries to insure 
the insulation of the system i.e.  

 

−𝐷𝐷 ∂𝒞𝒞𝑖𝑖
∂𝑛𝑛
− 𝛼𝛼𝑖𝑖𝒞𝒞𝑖𝑖

∂Ψ
∂𝑛𝑛

= 0    (3.40) 

 

The choice for the boundary conditions for the Poisson equation can, however, vary from Dirichlet 

(ψ= constant) to Neumann conditions (𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= constant where n denotes the normal direction) 

depending on the experiment we want to mimic.  

i) Weak form of the Nernst-Planck equations 

The weak form of the Nernst-Planck equation is obtained by operating the scalar product between 
the equations (3.37) and test functions vi with i={+,-} defined in the space domain Ω: 

 

� [∂𝒞𝒞𝑖𝑖
∂𝑡𝑡
− 𝐷𝐷Δ𝒞𝒞𝑖𝑖 − 𝛼𝛼𝑖𝑖∇ ⋅ (𝒞𝒞𝑖𝑖∇Ψ)]

Ω
𝑣𝑣𝑖𝑖𝑑𝑑x = 0     (3.41) 

 

Firstly, the divergence term (∇.) is expanded which brings a second lagrangian operator (Δ) applied to 
the electric potential function ψ: 

 

� ∂𝒞𝒞𝑖𝑖
∂𝑡𝑡
𝑣𝑣𝑖𝑖𝑑𝑑x

Ω
− 𝐷𝐷 ∫ Δ𝒞𝒞𝑖𝑖𝑣𝑣𝑖𝑖𝑑𝑑xΩ − 𝛼𝛼𝑖𝑖 ∫ ∇𝒞𝒞𝑖𝑖∇Ψ𝑣𝑣𝑖𝑖𝑑𝑑xΩ − 𝛼𝛼𝑖𝑖 ∫ 𝒞𝒞𝑖𝑖ΔΨ𝑣𝑣𝑖𝑖𝑑𝑑xΩ = 0    (3.42) 

 

By using Green’s first identity on the colored terms in (3.42), each volume integral separates in two 
terms, one of them being a surface integral over the boundary 𝜕𝜕Ω of the domain: 
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�
∂𝒞𝒞𝑖𝑖
∂𝑡𝑡

𝑣𝑣𝑖𝑖𝑑𝑑x
Ω

+ 𝐷𝐷�∇𝒞𝒞𝑖𝑖∇𝑣𝑣𝑖𝑖𝑑𝑑x
Ω

− 𝛼𝛼𝑖𝑖 �∇𝒞𝒞𝑖𝑖∇Ψ𝑣𝑣𝑖𝑖𝑑𝑑x
Ω

+ 𝛼𝛼𝑖𝑖 �∇(𝒞𝒞𝑖𝑖𝑣𝑣𝑖𝑖)∇Ψ𝑑𝑑x
Ω

 

−𝐷𝐷� 𝜕𝜕𝒞𝒞𝑖𝑖
𝜕𝜕𝜕𝜕
𝑣𝑣𝑖𝑖𝑑𝑑s

𝜕𝜕Ω
− 𝛼𝛼𝑖𝑖 �

𝜕𝜕Ψ
𝜕𝜕𝜕𝜕
𝒞𝒞𝑖𝑖𝑣𝑣𝑖𝑖𝑑𝑑s

𝜕𝜕Ω
= 0     (3.43) 

 

Given the no-flux boundary condition (3.40), the sum of the surface integrals is zero. The remaining 
non-linear term is further expanded as  

 

𝛼𝛼𝑖𝑖 ∫ ∇(𝒞𝒞𝑖𝑖𝑣𝑣𝑖𝑖)∇Ψ𝑑𝑑𝐱𝐱Ω = 𝛼𝛼𝑖𝑖 ∫ ∇𝒞𝒞𝑖𝑖∇Ψ𝑣𝑣𝑖𝑖𝑑𝑑𝐱𝐱Ω + 𝛼𝛼𝑖𝑖 ∫ 𝒞𝒞𝑖𝑖(∇Ψ ⋅ ∇𝑣𝑣𝑖𝑖)𝑑𝑑𝐱𝐱Ω    (3.44) 

 
And the final variational formulation of the NP equations is: 

 

� ∂𝒞𝒞𝑖𝑖
∂𝑡𝑡
𝑣𝑣𝑖𝑖𝑑𝑑x

Ω
+ 𝐷𝐷 ∫ ∇𝒞𝒞𝑖𝑖∇𝑣𝑣𝑖𝑖𝑑𝑑xΩ + 𝛼𝛼𝑖𝑖 ∫ 𝒞𝒞𝑖𝑖(∇Ψ ⋅ ∇𝑣𝑣𝑖𝑖)𝑑𝑑xΩ = 0     (3.45) 

ii) Weak form of the Poisson equation 

In a very similar manner, the weak form of the Poisson equation is obtained by using a different test 
function w as it follows: 

 

−∫ ΔΨ𝑤𝑤𝑤𝑤xΩ − ∫ 𝛽𝛽(𝒞𝒞+ − 𝒞𝒞−)𝑤𝑤𝑤𝑤xΩ = 0    (3.46) 

 

The Green identity is used to expand the Lagrangian term and make the surface integral term appear: 

 

∫ ∇Ψ∇𝑤𝑤𝑤𝑤xΩ − ∫ 𝛽𝛽(𝒞𝒞+ − 𝒞𝒞−)𝑤𝑤𝑤𝑤xΩ − � ∂Ψ
∂𝑛𝑛
𝑤𝑤𝑤𝑤s

∂Ω
= 0    (3.47) 

 

Depending on the fixed boundary conditions, the last term yields different values. In the case where 

the boundaries are electrically insulated (𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0), the last term cancels out and the weak form is 

simplified. 
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Chapter 4  Modelling the formation of electrical 
double layers around C-S-H surfaces in Na-systems 
 

 

In this chapter, the ionic distributions at a Calcium Silicate Hydrate-solution interface are computed 
in monovalent electrolytic systems using the Metropolis Monte Carlo algorithm in the Grand 
Canonical ensemble (GCMC). 
 

In the first section, the GCMC computations are compared to the Poisson-Boltzmann resolution 
within the validity scope of the classical Gouy-Chapman theory. The limitations of the classical 
approach are, thereafter, demonstrated as the assumptions of the mean field theory break down. 
The study is conducted on electrical double layers (EDL) forming at a single wall solution 
configuration. The electrostatic of the EDL are firstly determined with respect to the properties of the 
C-S-H surface, namely its surface charge density. Then, the effect of the ionic strength of the solution 
is assessed upon varying the molarity of the solution and the valence of the present ionic species. 
Finally, the model is validated with some published work on the topic 
 

The second section of the chapter aims to extend the model to the case of slit pores to better 
approach the real problem of EDLs forming in C-S-H gel pores. To the previously mentioned 
parameters, the effect of the pore size and the solution alkalinity are included in the study. 
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I. Limitations of the classical theory: The atomistic modelling of the 
EDL 

A. The Poisson-Boltzmann equation 
Models of the electrical double layer have been a subject of research, for over a century, since the 
first developments of Helmholtz in 1853 until now (ref. chapter 2 section V.B). And despite all the 
advances, the combination of the Gouy–Chapman model and the Stern layer model is still considered 
to be reasonable. The Gouy-Chapman-Stern (GCS) model is usually referenced at as the “classical 
theory” as opposed to the atomistic models. Its mathematical background relies on the Poisson-
Boltzmann (PB) system [Fix1979, Vall1982, Outh1983, Old2008, Lopez2011] which is a non-linear 
equation that results from combining Gauss’s law for conservation of charge (also known as the 
Poisson equation) and the Boltzmann equation. The distribution of ions around a charged surface 
following Boltzmann statistics is an important result that offers a simple formalism to describe the 
formation of the electrical double layer. However, it is also important to understand that the 
Boltzmann distribution of ions is actually the particular solution of the Nernst-Planck equations (4.1) 
under steady-state conditions: 
 

J𝒊𝒊 = −𝐷𝐷𝑖𝑖,0∇𝐶𝐶𝑖𝑖 − 𝐷𝐷𝑖𝑖,0
𝑧𝑧𝑖𝑖𝑒𝑒𝐶𝐶𝑖𝑖
𝑘𝑘𝐵𝐵𝑇𝑇

∇Ψ     (4.1) 

 
For steady-state conditions, the ionic fluxes Ji are null and the Nernst–Planck equation can be solved 
for the ion concentrations Ci in terms of the bulk molarity Cb,i and the electric potential ψ: 

 

𝐶𝐶𝑖𝑖 = 𝐶𝐶𝑏𝑏,𝑖𝑖exp (−𝑧𝑧𝑖𝑖𝑒𝑒Ψ
𝑘𝑘𝐵𝐵𝑇𝑇

)     (4.2) 

 
Hence, the Poisson-Boltzmann equation rewrites as: 

 

ΔΨ = − 𝜌𝜌
𝜖𝜖0𝜖𝜖𝑟𝑟

  where   𝜌𝜌 = 𝑒𝑒𝑁𝑁𝐴𝐴� 𝑧𝑧𝑖𝑖𝐶𝐶𝑏𝑏,𝑖𝑖exp (−𝑧𝑧𝑖𝑖𝑒𝑒Ψ
𝑘𝑘𝐵𝐵𝑇𝑇

)
𝑖𝑖

   (4.3) 

 

In the case of a symmetric z:z electrolyte, the partial differential equation can be analytically solved 
and the solution ψ, in one-dimension, expresses in function of x the direction normal to the surface 
as: 

 

Ψ(𝑥𝑥) = 2 𝑘𝑘𝐵𝐵𝑇𝑇
𝑒𝑒𝑒𝑒
𝑙𝑙𝑙𝑙 (

1+𝑒𝑒𝑒𝑒𝑒𝑒 (−x𝜅𝜅𝐷𝐷)𝑡𝑡𝑡𝑡𝑡𝑡ℎ 𝑒𝑒𝑒𝑒Ψ
OHP

4𝑘𝑘𝐵𝐵𝑇𝑇

1−𝑒𝑒𝑒𝑒𝑒𝑒 (−x𝜅𝜅𝐷𝐷)𝑡𝑡𝑡𝑡𝑡𝑡ℎ 𝑒𝑒𝑒𝑒Ψ
OHP

4𝑘𝑘𝐵𝐵𝑇𝑇

)     (4.4) 
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ΨOHP
 represents here the potential at the closest approach plane or the outer Helmholtz plane (ref. 

chapter 2 section V.B). In the development of his kinetic theory of the electrical double layer, 
Grahame introduced in 1947 [Gra1947] the relation between the electric potential ΨOHP

 and the 
“stored” amount of charge surface the diffuse layer (DL) expressed as charge density per unit of 
surface σd : 
 

𝜎𝜎𝑑𝑑 = �8𝜖𝜖𝑟𝑟𝜖𝜖0𝐶𝐶𝑏𝑏𝑁𝑁𝐴𝐴𝑘𝑘𝐵𝐵𝑇𝑇sinh 𝑒𝑒𝑒𝑒Ψ
OHP

2𝑘𝑘𝐵𝐵𝑇𝑇
     (4.5)  

 
 The parameter 1/κD in (4.4) represents the Debye length which writes as: 

 

𝜅𝜅𝐷𝐷−1 = ( 𝜖𝜖0𝜖𝜖𝑟𝑟𝑘𝑘B𝑇𝑇

𝑒𝑒2� 𝑧𝑧𝑖𝑖
2𝐶𝐶𝑏𝑏,𝑖𝑖

𝑁𝑁
𝑖𝑖=1

)1/2     (4.6) 

 

The mathematical formalism of the classical theory is very practical but its validity remains limited. As 
we approach to the surface at distances below the outer Helmholtz plane, the inherent assumptions 
(ref. chapter 2 section V.B) upon which the founding equation (4.3) rests break down. As a 
consequence, the PB resolution can only be used for the description of the liquid beyond the OHP, 
namely the diffuse layer and the bulk area of the solution.  

B. The study of the EDL: A multi-parameter problem 
The characterization of the diffuse double layers in real cementitious systems is a complex task. As 
cement-based materials evolve in time, the properties of their hydrates and the composition of the 
pore solution can accordingly vary due to inner chemical processes or as a response to external 
factors. In the study of chloride ingress, the physical binding of chloride within the diffuse layer is 
expected to change as a function of these parameters which can be fairly summarized by the three 
following factors: 

(i) The surface properties of the hydrates (mainly C-S-H) 
(ii) The ionic strength of the solution (concentration, valence, pH…) 
(iii) The pore network (pore size distribution, tortuosity, connectivity…) 

All these factors are highly coupled and system-dependent. However, in order to assess the 
relevance of each variable, we will conduct simulations by varying one parameter at a time while 
reasonably attenuating the effect of the others. As a first approach, we will study a single wall 
solution where the EDL is modeled around a C-S-H wall surrounded by an infinite supernatant 
(electrolyte). Hence, the pore size effects (related to point (iii) above) will be dismissed, in this 
section, and further developed in section II which rather focuses on slit pores.  



95 
 

 
Fig.4.1. Schematic of the implemented Gouy-Chapman-Stern model of EDL formation in a single-wall 
solution under different conditions: (a) A moderately concentrated monovalent NaCl salt in contact 
with a highly charged surface (b) A highly concentrated solution (NaCl) at the edge of a moderately 
charged surface and (c) The effect of calcium divalence (at moderate concentration) on the electric 
properties of the EDL. The solvent (water) is implicit but ions are explicitly described. The considered 
ionic species are, respectively, sodium Na+ (red), chloride Cl- (blue) and calcium Ca2+ (green). 
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As represented in the above schematic of the simulations flow, we first measure the effect of the 
surface charge density on the ionic distributions and other properties of the EDL (Fig.4.1.(a)). Later, it 
is the ionic concentration that is enhanced at a moderate surface charge density to study the effect 
of the molarity increase (Fig.4.1.(b)). Finally, we include the presence of calcium ions (Fig.4.1.(c)) that 
are assumed to play a prime role in the binding capacity of chloride on C-S-H.  

In order to test the classical theory within its claimed validity scope (ref. section I.A), we discount the 
study of the Stern layer and we confound the OHP and the surface/liquid interface i.e. we assume 
that ψ0=ψOHP in Fig.4.1. As our anchoring method, the results obtained by classical resolution of the 
PB will be confronted to Monte Carlo simulations in the Grand Canonical ensemble (GCMC).  

i) Effect of the surface charge density 

Prior to presenting simulation results, we will briefly discuss, in the next paragraph, how we chose to 
model the C-S-H surface in this study.  

• Choice of the C-S-H surface charge density 
 

Given its crystalline structure and its C-S-H-like chemical composition, 14 Å tobermorite has been 
used since 1952 [Bernal1952] as a model for C-S-H. It is characterized by an infinite mean chain 
length (MCL), a Ca/Si stoichiometric ratio of 0.86 (ref. chapter 2 section IV.C.(i)) and a surface Silanol 
Site density (SSD) of 4.8 sites.nm-2. In actual cementitious materials, the MCL of the C-S-H is not 
infinite and decreases with a diminishing SSD as the Ca/Si goes up [Puertas2011]. So in order to best 
represent real cement-based systems, an intensive amount of experimental and modelling work has 
been conducted on synthetic C-S-H [Lab2006, Lab2011, Chu2014, Haas2015, Harris2022] for the 
purpose of eventually expanding our understanding to the more complex C-(A)-S-H. In the case of 
low Ca/Si synthetic C-S-H, Labbez et al. [Lab2011] predict that the proportion of the deprotonated 
sites (so-called ionization degree denoted α) depends on two mains factors: (i) the pH and (ii) the 
presence of multivalent ions in the pore solution. Unfortunately, given the lack of consistent 
atomistic models of C-S-H/solution interfaces, no predictive model correlating the ionization degree 
α and the pH has been developed for realistic C-S-H surfaces at our knowledge. However, the authors 
in [Lab2011] managed to estimate the evolution of the surface charge as function of the pH of the 
solution in the two cases of (i) a NaOH and (ii) a Ca(OH)2 electrolyte (Fig.4.2.) 
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Fig.4.2. Simulated (GCMC) surface charge density, σ vs pH for a bulk solution containing either 2 mM 
calcium (solid lines) or 2mM sodium (dotted lines) for increasing surface site density: 0.8 (no 
symbols), 2.8 (empty circles), and 4.8 sites.nm-2 (filled circles). Taken from [Lab2011] 

 
GCMC simulations have been run for three different values of SSD (0.8; 2.8 and 4.8 sites.nm-2) in the 
optic of covering a reasonable range of C-S-H surfaces with a wide range of Ca/Si ratios.  As the study 
of the C-S-H surfaces stands beyond the scope of this thesis, we will cautiously rely on the data 
presented in Fig.4.2 as it follows: 

o For monovalent systems (NaCl-like) (dotted lines in Fig.4.2.), we will take values of 
σC-S-H that range from a lower bound of -0.12 e.nm-2 (α=2.5%) and upper bound of 
approximately -2.4 e.nm-2 (α=50%) for pHs between 10 and 14, where the C-S-H does 
not dissolve. 

o For calcium containing systems, we will consider that surfaces are totally ionized for 
pH>13 as the ionization degree seems to reach almost 100% independently of the 
SSD (solid lines in Fig.4.2.) 

In all the presented simulations of this chapter, the C-S-H surface is modeled as an implicit plane 
exclusively characterized by one input parameter: a homogeneous surface charge density σC-S-H. 

• Results and discussion 
 

The simulated system is a NaCl symmetric and monovalent electrolyte of concentration CNaCl put in 
contact with a charged C-S-H surface defined by a surface charge density σC-S-H.  As a first basis of 
comparison between PB and MC results, we present results for a 0.01M NaCl interacting with two 
surfaces having different surfaces charge densities (i) -0.48 e.nm-2 and (ii) -2.4 e.nm-2. The first case 
study (i) is a good example of a system that complies with the validity conditions of the classical 
theory i.e. low concentrations (< 0.1 M) and low surface charges (|σ|< 30 μC.cm-2 i.e. 1.9 e.nm-2) 
[Torrie1982]. Conversely, the second example (low concentration, high surface charge) presents a 
typical case where the mean field theory supposedly fails to capture the atomistic phenomena 
happening at the surface. 
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The Monte Carlo simulations rely on the Metropolis algorithm applied in the Grand Canonical 
ensemble (ref. chapter 3 section IV.B). The size of the simulation boxes has been adapted to each 
case of the concentration CNaCl and the surface charge density values σC-S-H such as the box contains 
a minimum of 1000 particles. For example, in the case of a 0.01M NaCl solution interacting with a 
surface of -0.48 e.nm-2, the box was a rectangular cuboid of size 36 x 36 x 32 nm (where 36nm are 
the dimensions of the walls and 32 nm the width of the box) containing 871 Na+ and 249 Cl- for a 
total of 1120 particles. Periodic boundary conditions were applied in the direction of the long 
dimensions of the box (infinite walls). In the direction of the smallest dimension, the system was 
terminated on one side by a charged wall and on the other side by a hard wall with no surface 
charge. The charged wall interacts with all species in the box through long range electrostatic 
potentials covering the whole box space (ref. chapter 3 section I.B). The hard wall is a reflective wall 
that does not allow particles to move outside the box. All ions are modeled explicitly. They interact 
with each other’s through electrostatic and Lennard-Jones potentials (ref. chapter 3 section I.A) with 
a cutoff of 30 Å. The water was only considered implicitly via a dielectric constant of 78.5 (at 25°C). 
The acceptance ratio of the Monte Carlo moves are set to 50% with a number of moves performed 
equal to the total number of present ions (on average one move per particle each iteration). The 
volume V and the temperature T are fixed (unchanged through the simulation) and the chemical 
potential μ of the reservoir is computed separately with a modified version of the Widom algorithm 
(ref. chapter 3 section III.B). An energy minimization run is performed before the “production” steps 
to resolve any overlapping of atoms and minimize the configurational energy of the randomly 
inserted ions. Afterwards, 105 MC iterations are run and data was collected from the last 104 
iterations. Final ionic distributions are computed after averaging over 103 configurations. 
 
The final ionic distributions are presented in Fig.4.3. In the PB results shown in Fig.4.3.(a), as a result 
of electrostatic interactions, sodium cations (Na+) stick to the negative surface while the chloride 
anions (Cl-) are repelled from it. In both cases, it is possible to observe the decaying exponential 
shape of the Na+ curves (respectively increasing for the Cl-), typical of the Boltzmann distribution. In 
the high surface charge configuration (-2.4 e.nm-2), the concentration of the counterions at the 
surface is higher due to stronger Coulombic interactions between Na+ and the ionized silanol sites at 
the surface. In a respective way, chloride’s depletion is stronger for the same reasons. Globally, for 
different values of σC-S-H, the curves of a same species split for a distance below 3 nm from the 
surface. Beyond 3nm, the classical theory predicts that increasing σC-S-H by fivefold (-2.4 = 5 x -0.48) 
has basically no effect since all curves in Fig.4.3.(a) seem to reach the bulk concentration of 0.01M 
simultaneously at around 15nm off the surface. This observation comes with no surprise once we 
look at the equation (4.6) where the Debye length λD = 1/κD only varies as function of the ionic 
strength and not of any parameters related to the charged surface. 
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          (a)                                                                   (b)  

Fig.4.3. Ionic distribution of ions in a NaCl 0.01M salt in contact with surfaces with different surface 
charge densities respectively -0.48 and -2.4 e.nm-2. Plot (a) presents distributions of Na+ and Cl- from 
PB resolution. Plot (b) presents a comparison between Na+ distributions from PB and from MC 
calculations. 

 
 
In Fig.4.3.(b), PB results are compared to MC computations. Focusing on the Na+ profiles, it is clear 
that for the low surface charge (-0.48 e.nm-2), the MC curve (pink) and the PB (grey dots) are quasi 
superposed which confirms that, for low concentrations low surface charge, non-ideality effects like 
the ionic size turn out not to be an important consideration. Comparing profiles for the high surface 
charge (σ = -2.4 e.nm-2), the MC curve (red) splits from the PB solution (black dots) at around 2 Å 
from the surface with a stronger depletion but equilibrates at 0.01 M at roughly the same distance 
~15nm. Fluctuations in the MC plot are inherent to the statistical nature of the results and may 
appear oversized (around 0.01 M) due to the logarithmic scale on the y axis. 
 
Part of understanding the mechanisms behind the shape of the EDLs and their effects, specifically on 
ionic mobility, is also being able to predict their range of action i.e. their thickness that we will note 
as ΔEDL. As mentioned in chapter 2 section IV.A, the main pathway of ionic diffusion in the C-S-H is 
constituted by gel pores of sizes below 10 nm. Therefore, determining the EDL thickness will indicate 
the extent of its effects within those nanopores. 
 
To better quantify the effect of the surface charge on the thickness of the double layer, more 
simulations were run at different values of σC-S-H. The concentration is rather changed to a more 
representative value of cement paste’s pore solution and fixed at 0.1M. To put things in context, the 
C-S-H surface is described as an implicit tobermorite-like surface (4.8 Si-sites/nm²) with different 
deprotonation degrees α varying between 2,5 % and 50 %, respectively equivalent to σC-S-H =-0.12 
and -2.4 e.nm-2, hence covering a wide range of surfaces. Results for ionic distributions around two 
surfaces of charges -0.24 and -2.4 e.nm-2 are presented below: 
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         (a)                                                                                                   (b) 

Fig.4.4. Ionic distributions in a NaCl 0.1M for (a) σC-S-H = -0.24 e.nm-2 and (b) σC-S-H = -2.4 e.nm-2 
according to Poisson-Boltzmann (PB) computations and Monte Carlo (MC) simulations where x=0 
represents the OHP. 

 

At low surface charge density (Fig.4.4.(a)), the non-ideality effects at the interface are minor. In this 
case, the predictions of the classical theory are in good agreement with the atomistic simulations. As 
σC-S-H increases in absolute value, the non-continuum effects at the interface dominate and we see a 
clear deviationc in Fig.4.4.(b) between the two methods with a stronger depletion of ions around the 
surface for the MC computations. Another important feature is that, independently of the surface 
charge magnitude, the EDL seems to vanish at around 5nm and ionic species retrieve their bulk 
molarities of 0.1 M. In other terms, the solution in a 5nm-radius gel pore would be completely 
covered by diffuse layers of the C-S-H walls.  

For a better assessment of the electric properties of the solution, the corresponding charge densities 
(charge per unit of volume) and electrostatic potentials are computed. Using MC data, the 
electrostatic potential, denoted as ψMC, is obtained by integrating the Poisson equation. In our case, 
where the charged surface interacts with an infinitely wide solution (semi-infinite configuration), the 
usual integral writes as a convolution: 

 

�
ΨMC(𝑥𝑥) = − 1

𝜖𝜖0𝜖𝜖
∫ (𝑡𝑡 − 𝑥𝑥)𝜌𝜌MC(𝑡𝑡)𝑑𝑑𝑑𝑑∞
𝑥𝑥

𝜌𝜌MC = 𝑒𝑒𝑁𝑁𝐴𝐴� 𝑧𝑧𝑖𝑖𝐶𝐶𝑖𝑖MC
𝑖𝑖

      (4.7) 

 

                                                            
c with more than 25% difference in the concentration values at a distance below 1nm from the surface. 
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Where CiMC are the ionic distributions predicted by MC calculations and x the direction perpendicular 
to the surface. In (4.7), the boundary condition is set infinitely far from the electrode (x → ∞, where 
the potential and the electric field are zero).  As the contribution of the Stern layer is neglected in the 
PB equation (4.3), the computation of ψMC, as defined in (4.7), is carried away so that, at x=0, the 
potential represents the value at the OHP. 
 

 
            (a)                                                                                                  (b) 

Fig.4.5. Charge densities (a) and potential profiles (b) in a NaCl 0.1M solution with σC-S-H =-0.24 and    
-2.4 e.nm-2 according to Poisson-Boltzmann (PB) computations and Monte Carlo (MC) simulations. 

 

In Fig.4.5.(a), the effective charge density of the closest column of liquid reaches 0.36 and 26 e.nm-3 
for, respectively, -0.24 e.nm-2 and -2.4 e.nm-2. These values, which are well predicted by PB, translate 
the increase of the sodium Na+ concentration proportionally to the charge density at the C-S-H 
surface. Equivalently, as Na+ accumulate to compensate the negative charge at the interface, the 
potential at the OHP increases (less negative). At low surface charge, both methods predict a 
potential of approximately -46 mV at the OHP (Fig.4.5.(b)). At a higher surface charge, the potential 
ψOHP increases and reaches roughly -156 mV and -123 mV for, respectively, PB and MC simulations. 
This indicates that, with a lower depletion, the PB solution tends to underestimate the ion-ion 
correlations at the interface and with it the screening power of counter-ions at a high surface 
density. Nonetheless, and still in accordance with ionic distributions in Fig.4.4., the charge density 
and the potential jointly reach zero charge and zero potential at approximately 5nm i.e. ΔEDL = 5 nm. 
This suggests that the thickness of the diffuse layer does not change as function of the surface charge 
density. So in order to more accurately measure the effects of the surface on the diffuse layer, two 
quantities are computed and studied as function of σC-S-H. 

1) The potential ψOHP at the OHP 
2) The screening distance also known as the Debye length λD. 
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Concerning the screening length, the Debye length λD is, traditionally, measured as the distance at 

which the potential ψ drops by a factor of  1
𝑒𝑒
 : 

 

 𝜓𝜓(𝜆𝜆𝐷𝐷) = 𝜓𝜓𝑂𝑂𝑂𝑂𝑂𝑂

𝑒𝑒
 ≈  0.37𝜓𝜓𝑂𝑂𝑂𝑂𝑂𝑂   (4.8) 

 
This result, which is often mistaken for a definition, is actually obtained from the more general form 

of ψ in (4.4) for the case where the |𝜓𝜓𝑂𝑂𝑂𝑂𝑂𝑂| << 4ψT (~100 mV) where ψT = 
𝑘𝑘𝐵𝐵 𝑇𝑇
𝑧𝑧0 𝑒𝑒

  (~25mV for a 

monovalent electrolyte) is the thermal voltage. In other words, the relation (4.8) is only valid for 
small values of the surface charge density. To give an idea, a surface potential of -10 mV is equivalent 
to less than 1% of ionized silanols on a tobermorite surface in contact with a monovalent salt of 
0.1M. 
 
For the sake of comparison, the Debye length λD is computed from MC distributions using the two 
definitions: 
 

• As defined in equation (4.8) and denoted as λD MC, small 
• As the value of ψ corresponding to x.κD=1 in (4.4) and denoted λD MC 

 

 
            (a)                                                                                                 (b) 

Fig.4.6. Evolution of the Debye length λD (a) and the potential drop in the DL (b)  for a 0.1M NaCl 
solution as a function of the absolute value of the surface charge density σC-S-H for MC and PB 
computations 

 

As expected, the classical theory does not account for any variations of the screening effect of the 
counter-ions with respect to the surface charge magnitude. At a constant concentration of 0.1 M, the 
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Debye length λDPB, as computed in (4.6), remains at a constant value of 9.6 Å (Fig.4.6.(a)). On the 
other hand, the GCMC predicts a clear decay of the screening distance as the surface charge density 
increases. Although there is a common trend, the way the Debye length is defined seems to result in 
some discrepancy as the surface charge goes up. For a surface of -2.4 e.nm-2, the calculations with 
equation (4.4) predicts a value of λD

MC = 7 Å (almost 30% lower than λD
PB) against λD

MC, small = 4.7 Å 
from equation (4.8) i.e. the error is 33%. In reality, using the mean field theory (Poisson equation) to 
accurately predict the screening effect of ionic charges can only be of approximate precision and 
even more so at high surface charges. In [Torrie1982], the authors explored the limitations of the 
classical GC model and have set |σ|= 1.9 e.nm-2 as a reasonable threshold for the validity of the PB 
equations at moderately high concentrations (~0.2M). However, the deviation from the Monte Carlo 
simulation can be explained by a stronger hold of the highly ionized surface over the counter-ions 
nearby due to stronger short-range Coulombic forces and intermolecular ion-ion pairs correlations 
(LJ).  

In a more practical way, the predictions of MC and PB remain of the same order of magnitude of 5 to 
10 Å. In terms of porosity in C-S-H, a gel pore would typically be of sizes up to 10 nm width which is 
basically within ten times the Debye length. In effect, the EDL thickness ΔEDL, previously estimated to 
5nm, appears to be some system-dependent multiple of the screening distance. In agreement with 
our estimations for a NaCl 0.1M, the authors in [Chatterji1992, Elaknes2009(2)] affirm that the 
“electrical potential in the double layer vanishes at a distance five times of the Debye length”.  

In Fig.4.6.(b), it is the evolution of the potential at the OHP that is plotted as a function of the surface 
charge density. As the Stern layer is not accounted for with the PB formalism, the ψOHP actually 
represents the drop of the potential through the diffuse layer from the OHP to the bulk area where 
the potential is null. The general tendency is that as the surface charge density builds up, the OHP 
potential proportionally increases (more negative) and with it the potential drop through the diffuse 
layer. At surface charges below -0.48, the agreement between both solutions is best. At higher 
values, the underestimated depletion of the effective charge density (Fig.4.5.(a)) results into a slower 
decrease of the potential from the actual C-S-H interface and, hence, a higher value of ψOHP. 

The implications on actual cementitious systems of the presently discussed change in the ionization 
degree are summarized in the next section along with the effect of the solution concentration. 

ii) Effect of the concentration 

In this section, we study the influence of the solution density. For this matter, a NaCl solution is 
considered in interaction with a charged C-S-H wall. In order to mitigate the influence of the surface 
charge density, σC-S-H is fixed, in a first step, at a constant value of -0.24 and the molarity is varied 
from 0.01M to 1M to assess the properties of the EDL for a wide range of pore solution 
concentrations.  
 

• Results and discussion  
After equilibration, we see that, at a low surface charge density and low concentration (Fig.4.7.(a)), 
the PB calculations match best with atomistic simulations. As the distance from the charge walls 
increases, the solution slowly retrieves its bulk concentration of 0.01 M at roughly 15 nm. 
Conversely, at higher molarity (Fig.4.7.(b)), the PB seems to overestimate Na+ and Cl- concentrations 
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at the OHP. This is due to an exceeding close packing of the point-like ions. By augmenting the bulk 
concentration by 2 orders of magnitude, the EDL thickness has actually dropped by a factor of 10 
with ΔEDL ~1.5 nm.  

 

 
  (a)                       (b) 

Fig.4.7. Ionic distributions in a NaCl around a surface with σC-S-H = -0.24 e.nm-2 at concentrations of 
(a) 0.01M and (b) 1M. 

 
Following the same methodology as the previous part, the charge densities and the ensuing 
electrostatic potentials were computed. In Fig.4.8. are presented the resulting computations of the 
Debye length and the OHP potentials as a function of the concentration. The Debye length, in this 
part, is solely computed by using the equation (4.4) as previously explained and denoted in a similar 
way as λDMC. In this case of a 1:1 electrolyte, the EDL width ΔEDL displays a decrease by a factor of 
nearly 3 as the concentration jumps by 1 order of magnitude (Fig.4.8.(a)). In a very similar manner, 
the Debye length also decreases monotonically with increasing ionic concentrations due to the 
effective screening of charges over short distances. For the case of surface charge σC-S-H = -0.24, λDMC 
reduces from 27 Å (0.01M) to 9 Å (0.1M) and finally 2.7 Å (1M). In terms of the potential drops 
between the OHP and the bulk, the increase of the concentration systematically results into a higher 
screening of the surface and consequently a less negative “apparent” charge at the OHP (Fig.4.8.(b)). 
As expected, at low surface charge where steric effects at the interface can be omitted, the Poisson-
Boltzmann successfully matches Monte Carlo results even when the concentration reaches 1M. For 
cementitious systems, where the most alkaline pore solution reaches a pH of 13.8, the ionic 
concentrations rarely exceed 0.6-0.7M. 
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           (a)                                                                                                  (b) 

Fig.4.8. Evolution of (a) the Debye length λD and (b) the potential drop in the DL for a 0.1M NaCl 
solution as a function of the concentration for MC and PB computations 

 
 
In order to deviate from the mean field assumptions, the same system is simulated through the same 
range of concentrations but at a surface charge density 10-fold higher i.e. σC-S-H = -2.4 e.nm-2. As a 
result, the EDL thickness remained unchanged while the Debye length has steadily decreased as we 
were lowering the concentration by roughly 30% i.e. 21.5 Å (0.01M) and 7 Å (0.1M) (Fig.4.8.(a)). 
However, it did almost no further regress, for 1M, and slightly decreased to 2.6 Å which is actually 
close enough to a sodium diameter (2.32 Å [Shan1976]) as set in the simulations. Looking at the 
potentials for σ = -2.4 e.nm-2 (Fig.4.8.(b)), we notice a sizable increase in the potential drop. In this 
case, the PB overestimates the MC results and the shift appears to be near constant and equal to 
approximately 30mV. In spite of the enhanced screening of sodium at higher concentrations, the 
potential ψOHPMC actually increased, respectively, by factors of 2, 3 and 5 hence reaching respective 
values of -184 mV (0.01M), -123 mV (0.1M) and -73 mV (1M) compared to the weakly charged 
surface. 
 

• Concluding remarks and implications for cementitious 
systems 

 
Ultimately, it seems that the classical theory shows clear limitations at high surface charge densities. 
Still, the PB results at moderate concentrations (<1M) remained reasonably close to MC results, 
mainly, due to neglecting long-range electrostatic forces between the ions. Also relying on the 
previous analysis, it appears that it is the concentration of the solution, or more generally the ionic 
strength, that controls the reach of the EDL. Indeed, increasing the surface charge density by a factor 
of 10 (from -0.24 to -2.4), only resulted in a moderate drop of 30% of the decay length λD. At high 
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surface charge and high concentration, the magnitude of the potential difference through the diffuse 
layer is, however, the outcome of two antagonist phenomena: 
 

• The boosting influence of high surface voltages. 
• The hindering of increased screening effects due to higher ionic strengths. 

 
In cementitious systems, the alkalinity of the pore solution varies with hydroxide concentrations 
ranging from 0.1M (ph~13) to 0.7M (pH~13.8) [Loth2010, Sui2019(2)]. Within this interval, the Debye 
length for monovalent salts varies between 2 Å and 10 Å with diffuse layers extending up to 5nm of 
width. At this lengthscale, the DL width compares to the size of gel pores or small inter-hydrate 
pores. But beyond its spatial reach, the actual influence of the electrical double layer is a direct 
function of the developed surface potential and, equivalently, the magnitude of the charge at the 
surface of the C-S-H. At high pH, the silanol groups at the C-S-H interface display a relatively high 
ionization degree [Lab2011]. This deprotonation ratio is a system-dependent parameter which 
greatly depends on the pore solution (pH, ionic strength…) but, equally so, on the silanol site density 
(SSD). A high SSD is usually correlated to a low Ca/Si ratio of the C-S-H. And if the increase of the 
Si/Ca ratio may intuitively indicate stronger surface effects, experimental work on synthetic C-S-H has 
showed that a decline of the Ca/Si was found to mitigate the binding capacity of 
chloride [Beaud1990, Elaknes2010, Yosh2022]. This has been imputed to the increased ionization 
of silanols and, hence, the decrease of available calcium. Due to its double valence, Ca2+ adsorbs 
stronger on the negatively charged C-S-H and even builds up to form a net positive charge which is 
thought to favor chloride binding. So to better model real cement paste, the effect of the calcium on 
the properties of the EDL is investigated in the next subsection. 
 

iii) Effect of multivalent ions: The case of Ca2+ 

An important parameter in the physical adsorption of chloride Cl- on C-S-H surfaces is presumably the 
presence of multivalent species typically calcium ions Ca2+. However, the quantification and 
prediction of the effects of divalence on ionic transport remains a challenge. This is particularly true 
in cement science where most empirical models rely on mean field models which fail to capture 
atomistic features due to neglecting the finite size of ions and the effects of non-ideality within highly 
alkaline and asymmetric cement pore solutions.  
 
To evaluate the predictions from the classical theory, the results of MC calculations of ionic 
distributions in a CaCl2 0.05 M solution in contact with a C-S-H surface of σ = -2.4 e.nm-2 are shown in 
Fig.4.9.  The MC simulation box, with periodic boundary conditions in the surface directions (y and z 
as opposed to x the direction of the surface normal), has a size of 20 x 20 x 20 nm containing 720 
Ca2+ and 481 Cl- for a total of 1201 ions. In Fig.4.9.(a), the ionic distributions in the divalent 
electrolyte are compared to previously presented MC results of NaCl 0.1M (as we keep a constant Cl- 
concentration of 0.1 M). The Ca2+ curve depletes much faster than the Na+ distribution. In fact, it 
reaches an equilibrium concentration close to the bulk value of 0.05 M at around a distance below 3 
nm while Na+ only equilibrates at 5nm. Distributions of Cl- are also drastically different within the first 
1nm around the surface. In the CaCl2 salt, it seems that due to the higher valence of calcium, chloride 
builds up to compensate the accumulation of Ca2+ in the liquid column around the plane of closest 
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approach which causes it to reach a peak value of 0.3M (3 times its bulk molarity). Conversely, Cl- in 
NaCl follows a typical exponential evolution toward its equilibrium concentration. 
 

 
           (a)                                                                                                  (b) 

Fig.4.9. Comparison between ionic distributions (a) and electric potential profiles (b) in a CaCl2 0.05M 
and NaCl 0.1M electrolytes at a C-S-H surface of σC-S-H = -2.4 e.nm-2 for MC calculations. 

 
Electric potential profiles in Fig.4.9.(b) confirm observations on the ionic distributions. The thickness 
of the EDL in the presence of Ca2+ reduces at approximately 3 nm as opposed to a thickness of 5 nm 
for the monovalent solution. The potential at the OHP has a value of -15 mV, respectively -122 mV 
for NaCl which shows a higher screening effect of calcium compared to sodium. The potential then 
reaches a peak of 13 mV at a distance of 2 Å, respectively -69 mV for NaCl. Using results from MC as a 
reference, predictions of the classical theory are presented below in Fig.4.10. In this case of an 
asymmetric CaCl2 electrolyte, the PB analytical solution for monovalent electrolyte in Eq.(4.4) is no 
more valid. Therefore, a full numerical resolution of the Poisson-Nernst-Planck (PNP) equation, via 
finite element analysis, was achieved. 
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           (a)                                                                                          (b) 

Fig.4.10. Comparison between chloride distributions (a) and electric potential profiles (b) in a CaCl2 
0.05M and NaCl 0.1M electrolytes at a C-S-H surface of σC-S-H =-2.4 e.nm-2 for MC and PB calculations. 

 
In Fig.4.10.(a), the results from the PNP resolution show that the classical theory partly accounts for 
the effect of ionic valences. The Cl- profile for the asymmetric salt (dark blue circles) depletes much 
faster than its homologue in the NaCl solution (light blue circles). In other words, two sodium ions 
are not equivalent to one single calcium. Due to its higher ionic strength i.e. ICaCl2 = 1.5 INaCl (at a 
constant Cl- molarity), the mean filed calculations predict a Debye length (Eq.(4.6)) of 7.9 Å for the 
CaCl2 0.05M in contrast with a value of 9.6 Å for NaCl 0.1M. Nonetheless, the ion-ion correlations at 
the surface remain utterly overlooked. In opposition to MC predictions, there is no observable 
overcompensation of Cl- (Fig.4.10.(a)) at the surface and, consequently, no charge reversal 
(Fig.4.10.(b)) of the potential.  
 

C. Computational validation: Zeta potential (ζ) at a C-S-H surface with Ca/Si <1 
In order to validate our atomistic model of the EDL formation, we use the experimental and 
simulation results in [Lab2011] as a reference. In this paper, the authors have prepared a C-S-H with 
a Ca/Si of 0.66 on which they conducted a titration experiment with NaOH, in order to determine the 
evolution of the surface ionization degree α as a function of the pH. Afterwards, the Zeta potential of 
the C-S-H suspension was measured by electrophoresis (ref. chapter 2 section V.C.(ii)). Results of the 
titration simulations (Fig.4.11.(a)) and the corresponding experimental validation (Fig.4.11.(b)) are 
presented in the figure below: 
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(a)                                                                                           (b) 

Fig.4.11. (a) Simulated ionization fraction, α, versus pH for various bulk conditions: dotted line and 
squares Ca(OH)2 salt solution; dotted line and filled circles NaOH salt solution.The ideal curve (solid 
line) is given for comparison (b) Comparison between experimental (points) and simulated (line) net 
increase of the ionization fraction (Δα) as a function of the pH for C-S-H nano-particles dispersed in 
solution containing a low bulk calcium concentration (below 20 mM). Taken from [Lab2011]. 

 
The objective in this part was to compute Zeta potentials of the C-S-H0.66 sample when titrated with 
a Ca(OH)2 solution. The only input parameter is the surface charge density of the C-S-H which is 
deduced from values of α in Fig.4.11.(a) for a tobermorite-like surface of SSD 4.8 sites.nm-2.  
Following the same methodology, the MC algorithm in the Grand Canonical ensemble delivers ionic 
distributions which are converted to a charge density function ρ that is injected in the Poisson 
equation (4.3) then integrated. The computations are done for different values of the Ca(OH)2 
concentration. The simulation parameters are summarized in the table below: 
 
Ca(OH)2 (mM) pH α σ (e.nm-2) LBOX (Å) Ca2+ OH- NTOT 

2 11.6 68% -3.2 280 1280 52 1332 

5 12 83% -4.0 280 1634 132 1766 

10 12.3 90% -4.3 280 1817 264 2081 

20 12.6 96% -4.6 280 2067 528 2595 

 
Table.4.1. Simulation box for Ca(OH)2 in contact with C-S-H surface at different values of the pH 

 
In line with the assumptions made in [Lab2011], the zeta plane is taken at a distance of one and half 
ionic diameter (3 radii). In our case, we measured the Zeta potential at two locations: x=6 Å and 
x=3.4 Å. The latter value is calculated by taking 3 times the Ca2+ ionic radius (1.14 Å [Shan1976]). The 
former is the value that was chosen in the paper by considering all ions of the same radius 2 Å.  
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In Fig.4.12 are presented results of the electric potentials for configurations in Tab.4.1 and the 
corresponding Zeta measurements are plotted and compared to the values in the paper:  
 

 
        (a)                                                          (b)  

 
           (c) 

 
Fig.4.12. (a) Electric potential around C-S-H surfaces at different concentrations of Ca(OH)2 (b) a 
focus on the first 6 Å with two zeta planes: 3.4 Å (blue) and 6 Å (red) and (c) the evolution of the Zeta 
potential as function of the concentration. Adapted from [Lab2011] 
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Given that the potential profiles evolve slowly in the region 3.4-6 Å, the choice of the Zeta plane 
position was not crucial and the simulations in this study remain in close agreement with 
experimental and simulations results of [Lab2011]. 
 
 As predicted by zeta measurements, the adsorption of calcium does not only neutralize the negative 
silanol groups, but shifts the potential to a net positive value. Due to this reversal of charge, chloride 
ions are thought to form strong ionic pairs with the adsorbed calcium. So with the increasing 
presence of calcium in the cementitious system, the amount of physically bound chloride would, in 
principle, be enhanced. In fact, this is in great part responsible for the ordinary Portland cement 
(OPC) having a higher binding capacity in its C-S-H with Ca/Si around 2 compared to LC3 cement 
where Ca/Si ratios vary more around 1.5 to 1.75 [Avet2018]. Still, this difference in the measured 
amount of physically bound chloride does not explain the better chloride resistivity of LC3 compared 
to OPC [Maraghechi2018]. In their paper, Maragechi et al. showed the difficulty to correlate the 
amount of bound chloride with tangible transport properties. The authors managed, however, to find 
a link between the critical pore size and the apparent diffusion coefficient of each cement paste. 
More than that, the correlation showed that the chloride diffusion through the more refined pore 
structure of LC3 was 1 to 2 orders of magnitude lower than through OPC samples. Therefore, it 
appears that neglecting the pore size and reducing the EDL properties exclusively to the surface and 
pore solution properties can be misleading. In the porous C-S-H gel, the flow of mobile ions transits 
through the interconnected pore network. At low water to cement (w/c) ratios, it has been found 
[Patel2018] that gel porosity is the main pathway for ionic diffusion as it connects the big capillaries. 
In order to eventually quantify the effect of EDLs on the ionic transport, we will address in the 
following section the case of electrical double layers forming in slit pores and study the effect of the 
pore size, along with the other surface and solution variables, on the C-S-H/liquid interactions.    
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II. Electrical double layers in slit pores 
Experimental measurements to quantify atomistic effects are usually challenging to design and to 
conduct. The formation of the EDL at the interface of C-S-H surfaces is a good example of a complex 
multivariable problem driven by nanoscopic phenomena. And to fathom these effects, Zeta potential 
measurements have proven to be a significant characterization technique to evaluate electrokinetic 
potentials in colloidal systems i.e. by estimating the surface charges (ref. chapter 2 section V.C.(ii)). 
Such experimental procedures are, however, conducted on colloidal suspensions where the 
electrolyte (or supernatant) is not confined and only interacts with the colloidal interface at its 
vicinity. In other words, these experiments are not representative of electrolytes in real cementitious 
systems. As a matter of fact, in the porous C-S-H gel, the cement pore solution is, by definition, 
constrained in a pore. And since most saturated pores are only a few nanometers in width, the EDL is 
predicted to extend through the whole pore space. Moreover, the surface effects are likely to 
multiply as ions in the confined solution will interact with as many surfaces as they “see”.  
 
In this section, the objective is to extend the atomistic model of the EDL to a more complex 
configuration of a slit pore where transport related parameters, such as the pore size or the pH 
value, are explicitly accounted for. Given the limitations of the classical theory and in order to 
establish quantitative results, only Monte Carlo (MC) results will be presented for the rest of the 
chapter.  
 

A. Effect of the pore size 

We consider a NaCl 0.1M solution confined in a box of size 32 nm x 32 nm x LX. LX is the distance 
separating two identical charged walls each characterized by a constant surface charge density σC-S-H 
equal to -0.24 e.nm-2.  The surface charge is chosen moderately low in attempt to identify whether 
pore size effects are of relevance. The system is simulated for three values of the pore width LX equal 
to 4nm, 8nm and 16nm. 

i) Numerical results 

To compare ionic distributions at different pore sizes, the profiles of Na+ and Cl- are shown, in 
Fig.4.13.(a), as function of the normalized position X/Lx where X varies between –Lx/2 and Lx/2 with 
Lx the pore diameter. Looking at the distributions in the 16nm pore, we retrieve a similar trend that 
what has been established previously in section I:   
 

• The Na+ ions (pink) adsorb on the negatively charged surfaces and deplete as the distance 
from the walls increases to reach the equilibrium bulk concentration at approximately       
x/Lx ~ -0.3 and 0.3 which corresponds to approximately a 4.8 nm distance from the walls.  

• The Cl- (light blue) are repelled from the charged surfaces and follow two symmetrical 
exponential-like branches that reach bulk molarity at approximately the same position than 
the Na+. 

• Beyond 5nm distance from each wall, the concentrations of the species reach a constant 
“plateau” value that is characteristic of the bulk area where the EDL effects vanish.    
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As the pore size reduces, the density of the Na+ within the liquid column of closest approach 
increases gradually reaching ~0.62M in the 8 nm pore (red squares) and ~0.67M in the 4 nm (dark 
red dots). For the Cl- which is repelled from the surfaces, the concentration at the interface is 
practically zero and does not seem to be notably affected by the decrease of pore radius. Around the 
center of the pores, we notice a clear separation of the curves. In opposition to the big pore (16 nm), 
Na+ deplete in the 8 nm (red sqares) without reaching a clear plateau and equilibrate at a value of 
approximately 0.14M higher than the bulk concentration (0.1M). The same happens in the smallest 
pore (4 nm) with an even more marked difference i.e. parabolic profile with no plateau and a 
minimum of 0.2M at the center. Due to the Coulombic exclusion forces, chloride ions in the pores 
below 8nm rather increase, in a very similar trend to Na+, to a maximum of roughly 0.13M which also 
exceeds the bulk molarity.  
 
Ionic distributions in slit pores are indeed notably affected by the size of the pore. Moreover, as the 
pore size decreases, the bulk area gradually vanishes. Below a certain pore width, the surface effects 
seem to take over and the diffuse layer basically expands to cover the totality of the pore space.  

 

 
          (a)                                                                                     (b)  

Fig.4.13. Ionic distributions (a) and effective charge densities (b) as function of the normalized 
distance from the pore center in a NaCl 0.1M electrolyte within pores of various diameters Lx. 

 
In Fig.4.13.(b), the data are converted in terms of the volumetric charge density in the pore. With 
respect to the principle of global electroneutrality, the net balance of the charge, which is the sum of 
the charge of the ions in the solution and the charge of the surface sites, is zero. Nonetheless, the 
accumulation of Na+ at the surfaces, and even in the center of small pores, translates into a locally 
charged pore solution. In order to quantify these electrostatic effects, the electric potential in the 
pore is computed by resolving the Poisson equation. The convolution integral (4.7) is, however, no 
more practical as it is only valid for isolated double layers where the reference potential is taken in 
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the bulk region. In a slit pore, the pore solution does neither infinitely extend nor necessarily displays 
a bulk area acting as ground potential (0 V). Hence, a different integration scheme is adopted. 
 
Given the invariance of the system in the directions of the walls (y and z), the electric potential is 
only function of x the direction normal to the charged walls. Thus, the Poisson equation reduces to 
its one-dimensional form: 
 

𝑑𝑑2Ψ
𝑑𝑑𝑥𝑥2

= − 1
𝜖𝜖𝜖𝜖0

𝜌𝜌Tot     (4.9) 

 
Where the effective charge density ρTOT contains all charges in the system including both of the 
surface charges σ1 = σ2 = -0.24 e.nm-2 (located at x1= 0 and x2=LX) and the ionic charge density ρ(x): 
  

𝜌𝜌Tot(𝑥𝑥) = 𝜌𝜌(𝑥𝑥) + � 𝜎𝜎𝑖𝑖𝛿𝛿(𝑥𝑥 − 𝑥𝑥𝑖𝑖)𝑖𝑖     (4.10) 

 

Firstly, the electric field E(x) = - 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 is determined by a first integral 

 

𝑑𝑑Ψ(x)
𝑑𝑑𝑑𝑑

= − 1
𝜖𝜖𝜖𝜖0

∫ 𝜌𝜌Tot(t)dt𝑥𝑥
−∞ + K1    (4.11)  

 

Given the symmetry of the pore and since E is anti-symmetric i.e. E(-x)=-E(x), the constant K1 is 
determined such as E is null at the center i.e. E(LX/2) = 0. Then, the equation (4.11) is once more 
integrated to obtain the potential ψ(x) which writes as 

 

Ψ(x) = − 1
𝜖𝜖𝜖𝜖0

� [∫ 𝜌𝜌Tot(t)dt𝑠𝑠
−∞ ]

𝑥𝑥

−∞
ds + K2    (4.12) 

 
Unlike K1, determining the constant K2 can be more delicate. As previously mentioned, the potential 
would have traditionally be set to zero in the bulk as in experimental measurements the reference 
electrode is somewhere in the bulk and the other at the surface. But in slit pores, the bulk area only 
exists once the pore is large enough so that ionic profiles rest in a plateau at the center of the pore. 
Therefore, the value of K2, assumed independent of the pore size, is determined, for a given σ, by 
shifting the potential to zero in a “big enough” pore (typically the pore of 16 nm in Fig.4.13). 
Equivalently, a value of the potential ψD (D for Diffuse layer) is determined at the plane containing 
the center of the ions. It is this same value that is used to shift the potential profiles in smaller pores 
(the pores of 4 and 8 nm). Also, in order to account for the ionic size and since we assume that the 
charge of an ion is located at its center; the effective charge density is set to zero below a distance of 
one ionic radius that we consider equal to 1 Å. This will extend the computed potential down to the 
plane containing the ionized silanols where the potential value is denoted ψo. 
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Implicitly, this methodology of determining the constant K2 within the pores assumes that, for a 
fixed surface density σ, the corresponding surface potential is not affected by the pore size. In 
practice, this hypothesis is good as long as the pore radius does not fall below the screening length so 
that surfaces do not interact directly with each other. At a moderate concentration equal to 0.1 M, 
MC calculations on NaCl (ref. section I.B.(ii)) predict a Debye length λDMC within the span of 7 to 9 
angstroms. As the vast majority of the C-S-H gel pore population ranges between 4 and 10 nm width, 
the approximation is considered valid. The results of the computations of ψ(x) at different steps (Eq. 
(4.10), (4.11) and (4.12)) are presented in Fig.4.14: 
 

 
         (a)  

 
         (b) 

 
         (c) 

Fig.4.14. (a) Effective charge distribution, (b) the electric field and (c) the electrochemical potential 
computed from MC data in pores of sizes 4 nm (blue), 8 nm (red) and 16 nm (yellow) for a NaCl 0.1M 
solution and σC-S-H = -0.24 e.nm-2 
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As expected, the electric potential in the 16nm-pore displays a plateau characteristic of the bulk 
area. As the solution is electroneutral at the center, the potential is, therefore, constant and set to 
zero. As a consequence, the surface potential ψ0 at both facing walls is set at a value of -48 mV. Since 
we are dealing with pores that are at least 5 times the screening length (~7 to 9 Å) , the potential at 
the C-S-H surfaces is assumed unchanged as the pore radius reduces i.e. smaller pores have the same 
value of ψ0. However, the potential at the pore center gradually builds up as the diameter decreases 
to 8 and then 4nm and, respectively, reaches approximately -3.8mV and -12.6mV. In order to directly 

correlate the pore radius to the electrostatic effects, the average potential 𝜓𝜓� = 1
𝐿𝐿𝑥𝑥

 ∫ 𝜓𝜓(𝑥𝑥) 𝑑𝑑𝑑𝑑𝐿𝐿𝑥𝑥
0  has 

also been computed for each pore. Ultimately, it is the smallest pore that stands out as the most 
“negatively charged” pore with an overall average of -21.8 mV as opposed to -11.9 mV and -4.9 mV, 
respectively, for 8 nm and 16 nm.  

ii)  About slit pores in cement paste 

In conclusion, it seems that the electric properties of the EDL are greatly enhanced or attenuated due 
to the effect of the slit width. In cement paste, the pores of 10 nm and beyond are identified as the 
space between the formed C-S-H foils. In these “inter-hydrate” pores, which can reach up to 50nm 
size, the diffuse layers at the C-S-H/liquid interface are too localized to overlap. The pore solution is 
then dominated by the bulk area where the potential gradients normal to the surface are practically 
null once we get far enough from the hydrate/liquid interfaces. As a result, the diffusing ions 
predominantly escape the surface effects and their mobility is thereby weakly disturbed. For a given 
cement paste, the pore size distribution is a result of the mix design and the nature of the binders 
that are used♦. In binary or ternary systems, the addition of supplementary cementitious materials, 
such as calcined clay; slag or silica fume, was found to effectively refine the pore structure 
[Gjørv1979, Gjørv1994, Maraghechi2018]. As the pore size reduces, the electrical double layers are 
predicted to progressively overlap disrupting local electroneutrality and further charging the pores. 
For negatively charged pores, we can intuitively imagine a stronger repulsion of anions. In fact, this is 
probably one of the main reasons for the increased resistance to chloride in blended cements. 
Nonetheless, as explained in the previous section (ref. section I), the intensity and the extent of the 
EDL effects are function of many parameters, namely the C-S-H ionization degree, the solution 
concentration and surely its alkalinity. The influence of these properties is addressed in the next 
subsections for the case of a slit pore.    

B. Interactions at the surface: Influence of σC-S-H 
In order to cover a wide range of C-S-H surfaces with various Ca/Si ratios, the surface charge density 
σC-S-H is varied from -0.12 to -1.44 e.nm-2. We keep the same system; namely NaCl 0.1M solution 
simulated in slit pores of 4nm, 8nm and 16nm size. Following the same methodology, the GCMC 
algorithm delivers ionic distributions CiMC(x) which are converted, for each configuration, to a charge 
density function (4.10) that is injected in (4.9) then integrated into a potential function ψ(x) (4.12) 

and finally averaged to 𝜓𝜓�  over the cross-section of the pore.  

                                                            
♦ The relative humidity (RH) and saturation degree are also critical as only pores containing water can 
transport ions.  This will actually be the main effect limiting the effective pore size for transport. 
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           (a)                                                                                     (b)  

Fig.4.15. (a) Average potential as function of the pore size and (b) evolution of the potential value at 
the surface (ψo), the OHP (ψD) and the center (ψC) plane in pores of 4, 8 and 16 nm of size. 

 
 
In Fig.4.15.(a), one can clearly see that the increase of the surface charge categorically translates into 
an overall more negative potential. However, it is the combined contribution of the surface charge 
and the reduced pore size that displays the highest effect. In effect, large pores show a mitigated 
effect of the EDL and increasing the charge at the surface by a factor of 10 has very little impact. In 
the 8nm slit, the effect is increased but seems to quickly saturate as the Debye length is reducing 
(with the increasing surface charge) and the ionic cloud is more effectively screening the ionized sites 
at the surface. By further reducing the size, the potential at the center of the pore gradually 
increases hence diminishing the potential drop through the diffuse layer. In order to measure the 
potential drop through the diffuse layer, the potential is computed, as function of |σC-S-H|, at 
different locations within the pores; namely at the silanol surface ψo (x=0), ψD (at x=1 Å) and at the 
center of the pores, respectively noted ψC4nm, ψC8nm and ψC16nm (Fig.4.15.(b)). As the potential at the 
plane of closest approach ψD is assumed unaltered with the shrinking of the pore, the overlapping of 
the diffuse layers only results into a higher potential at the center which further deviates from the 
bulk value as ions are accumulating and locally charging the pore space. In electronics, where it is 
common to view the EDL as a capacitor, the reduction of the potential drop for a same amount of 
“stored” charges would translate in an increased capacitance of our EDL i.e. a higher “interception” 
of the flowing ions. In terms of transport, the magnitude and the sign of the pore potential has been 
proved to significantly enhance or mitigate the flux of the ions depending on their valence 
[Fried2008]. For that matter, the repercussions of the EDL properties on chloride’s diffusivity are 
studied in the next chapter.   
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C. Effect of the concentration 
In the case of exposure to seawater chloride, where the molarity is around 0.5M, the concentration 
gradients tend to move chlorides, among other species, toward the steel reinforcement within the 
structure. To assess the effect of the chloride concentration rise, we simulate the formation of the 
EDL around a -0.24 e.nm-2 C-S-H surface in contact with 0.1M and 0.5M NaCl salt.    
 

 
                 (a)                                                                                        (b)  

Fig.4.16. (a) Electrochemical potentials as function of the position in a 4 nm pore and (b) the 
evolution of the potential average as function of the pore size for NaCl solutions of 0.1M (dark blue) 
and 0.5M (light blue) 

 

After equilibration, one can see that the electrochemical potentials at high concentration are notably 
hindered. The potential at the surface in a 4 nm pore (Fig.4.16.(a)) has dropped (in absolute value) 
from roughly -48 mV (0.1M) to -21.7 mV (0.5M) due to the higher screening of the surfaces. In fact as 
the concentration of the reservoir rises, the GCMC accordingly adjusts the chemical potential at the 
surfaces which ultimately determines the amount of adsorbed ions.  At 0.5M, the EDL thickness is 
greatly reduces and seems to localize within the first nanometer so that, even within the 4 nm pore, 
the overlapping is barely happening. In the critical situation where chloride would have reached 0.5M 
in the pore solution, the pores will be very weakly charged (Fig.4.16.(b)) and the EDL would have a 
minor effect on the ionic flux and chloride’s ingress. In a real cement paste, the influx of chlorides in 
the concrete would require the hydroxide to leach out in respect with the electroneutrality of the 
pore solution. For very long exposure periods (decades), the pH drop below a certain point can be 
very harmful and irreversibly trigger the corrosion of the reinforcements which would eventually 
cause the failure of the cement-based structure. The study of the effect of pH (at a constant surface 
charge) is presented in the following paragraph. 
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D. Explicit OH- in simulation boxes 
Pore solution in cement paste is a highly alkaline electrolyte with values of pH usually beyond 13 
[Loth2010, Voll2016]. This alkalinity constitutes a natural protection for rebars in reinforced concrete 
which find themselves coated with a passivation layer (ref. chapter 2 section I). It also plays a critical 
role in the study of the EDL as it directly links to the deprotonation degree α of the silanol groups at 
the C-S-H surface. Given the lack of consistent atomistic models of C-S-H/solution interfaces, it 
remains difficult to construct predictive models capable of correlating the ionization α to the pH. It is, 
however, possible to make simulations of pore solution more realistic by explicitly accounting for OH- 
ions.  
 
For the sake of comparison with previous results on NaCl solutions, a {NaCl 0.1M + NaOH} system 
was simulated. The concentration of NaCl is kept at 0.1M, so that the chloride content remains 
unchanged, and it is the value of the fixed pH that determines the molarity of the added NaOH salt. 
To ensure that pH values are consistent with data from real systems [Ander1989, Loth2010, 
Voll2016, Plus2017, Sui2019(2)], simulations are run for pHs equal to 13, 13.3 and 13.5 i.e. NaOH at 
0.1M, 0.2M and 0.3M, respectively. The computational details are defined as in the homologue NaCl 
case. Electrostatic and Lennard-Jones potentials for oxygen and hydrogen of the hydroxide ion are 
added [Vacha2007] (ref. chapter 3 section I). In this simplified configuration, we consider a fixed 
surface charge density, independent of the pH change, set at a value of -0.24 e.nm-². Ionic 
distributions and their corresponding potential are obtained using the GCMC algorithm. Firstly, we 
mitigate the pore size effects by looking at the big 12 nm pore in Fig.4.17.(a).  
 

 
                                        (a)                                                                                                  (b)   
Fig.4.17 Ionic distributions in pores of (a) 12 nm and (b) 4 nm [For simplicity, only distributions at pH 

values of 13 and 13.5 are shown]. 
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At a pH=13 (light colors), Na+ and Cl- reach their respective bulk concentrations of 0.2M and 0.1M at 
roughly 3nm (vertical dotted lines) i.e. roughly the thickness of the EDL. Despite averaging on a 
number of simulations (10²), the hydroxide distribution (OH-) displays noticeable oscillations through 
the box but remains very close to the Cl- behavior as they both share the same valence. At a higher 
pH of 13.5 (dark colors), but constant chloride content, only Na+ and OH- bulk densities, respectively, 
increase to 0.4M and 0.3M. In this new configuration, the ionic strength of the solution literally 
doubles. As a consequence, the EDL thickness is diminished. A good indicator is the Na+ which 
equilibrates at roughly 1nm from the surface. As the pore reduces to a size of 4nm (Fig.4.17.(b)), the 
bulk area vanishes. Only the Na+ at a pH of 13.5 reaches a pseudo-plateau but its concentration 
remains 25% higher than its bulk molarity. Also, the fluctuations of the OH- distributions are sizably 
attenuated. So in the absence of chemical reactions at the C-S-H surface (no titration), the increase 
of pH has a very similar effect to the increase of the ionic strength i.e. a reduction of the EDL 
thickness accompanied with a stronger depletion of ions at the surface (so a shorter Debye length) 
(ref. section I). 
 

 
           (a)                                                                                          (b)   

Fig.4.18. (a) Electrochemical potentials as function of the position in a 4nm pore and (b) the 
evolution of the potential average as function of the pore size for NaCl+NaOH solutions of pH 13 
(triangles), 13.3 (Circles) and 13.5 (dotted lines) 

 
 
As presented in Fig.4.18, the average pore potentials (Fig.4.18.(b)) suggest that a decrease of the 
alkalinity results in a boosted influence of the surfaces on the ions. At high pH values, the EDL 
thickness shortens down to a few nanometers; typically below 3 nm for pH>13. Hence, the surface 
effects are only of noticeable effect in the 4 nm pore where the diffuse layers do overlap. As pH 
reduces, the ionic strength of the solution drops and, with it, the screening of the negative surface. 
This results in a higher absolute value of the average potential which denotes a lower potential drop 
in the DL and a higher “capacitance” of the EDL. 
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In a more realistic configuration, the previous observations would only apply if the silanol groups at 
the C-S-H surface are assumed to have reached a saturation of their ionization degree at a certain 
threshold, denoted pH0, that we implicitly set at 13 (also pH0=13 in Ca(OH)2 salt as in Fig.4.11.(a) 
[Lab2011]). For values below pH0, a further decrease of pH may result into a change of the 
deprotonation ratio of silanols and, consequently, a change in the surface charge density which 
would invalidate our assumption of a constant σC-S-H. In terms of physical binding, the noted similar 
behavior of hydroxides and chlorides (Fig.4.17) will make both species compete upon forming ionic 
pairs with the adsorbed cations [Plus2016]. Experimental investigation on PC pastes has, in fact, 
showed that the higher the pH of the pore solution, the lower the amount of bound chloride was 
measured [Tri1989]. This ultimately indicates that the physical binding of chloride in general, and 
specifically on C-S-H, tends to increase as pH drops. In more recent work, it has also been found that 
while chloride binding increases with lowering pH from a value of 13 to 12 (mainly attributed to 
adsorption on AFm phases), a further decrease of the alkalinity resulted into dissolution of the 
hydrates and, thus, a consequent collapse of the binding capacity [DeWeerdt2015]. In reality, the 
decrease of pH is a great deal more complex than it seems as it literally changes the chemistry of the 
system. The increase of the solution acidity and its effects are actually intimately linked to the 
present alkali in the solution.  
 
To better model the behavior of actual cement pastes, the next chapter focuses on the study of the 
EDL formation in calcium containing systems and the ensuing implications on the physical binding of 
ions.  

III. Summary  
In this chapter, Monte Carlo calculations were compared to results from the Poisson-Boltzmann. It 
was found that the agreement between the two methods was best at moderate surface charges and 
moderate ionic concentrations.  Beyond a certain value of the surface charge density, the PB clearly 
overestimated concentrations around the interface due to an excessive packing of the point-like ions. 
Upon the addition of calcium cations, as an example of a multivalent species, the classical resolution 
failed to predict the overcompensation of the negative surface and the reversal of charge due to the 
Calcium adsorption on the C-S-H. The computations of the model were then successfully validated 
with computational results and Zeta potential measurements published in [Lab2011].   

Once considering the case of a slit pore, it was shown that electrostatic properties of the EDLs were 
sizably affected by the pore radius. The decrease of the pore size resulted into a stronger overlapping 
of the developed EDLs and a disturbance of the local electroneutrality in the pore solution. The 
increase of the surface charge density equally showed stronger interactions at the surface with a 
higher value of the electrochemical potential at the C-S-H/liquid interface. However, the increase in 
the ionic strength was followed by a reduction of the EDL thickness, due to the higher screening of 
adsorbing cations, and consequently an attenuation of its influence over the surrounding ions.   
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Chapter 5 Insight on the EDL formation in Ca-
containing systems 

 
In the context of studying chloride binding in cementitious materials, it was shown in the previous 
chapter that the electrical double layer formation is the result of atomistic phenomena affected by 
the properties of the C-S-H surface and the pore solution surrounding it. To first validate our 
approach, the focus was narrowed to the case of monovalent electrolytes where the only counter-
ion was sodium. The use of atomistic modelling techniques brought valuable insight on the 
correlation between the EDL properties and a variety of system-dependent parameters namely the 
pore size, the ionization degree of C-S-H and the ionic strength of the solution (concentration and 
pH). In the simulations conducted, we attempted to decouple these variables and, hence, gained 
insight into the pertinence of each of them.  
 
In this chapter, the objective is to extend the EDL model to a more realistic representation of actual 
cement paste. In this respect, calcium ions are thought to have a major role in the binding of chloride 
on C-S-H. However, the characterization of the surface via Zeta potential measurements (ref. chapter 
4 section I.C) showed that Ca-containing systems behaved differently from symmetric salts. First, the 
adopted C-S-H surface is characterized and its properties discussed. Secondly, a more representative 
pore solution model is formulated based on thermodynamic data collected from actual cement 
paste. Finally, we run the developed atomistic model of the EDL on the new C-S-H interface/pore 
solution configuration to best approach the physical binding of chloride in real cementitious 
materials. 
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I. Choice of the C-S-H surface 

A. A more realistic surface charge density 
 
The properties of the C-S-H gel including its composition, atomistic structure and its morphology 
remain among the most puzzling themes in cement science even after over 70 years of research 
[Bernal1952]. In this area, the most accepted and commonly used empirical model of C-S-H is 
Taylor’s tobermorite-like structure [Tay1986]. Relying on this representation, a family of models 
adopting a “defective tobermorite” structure has been developed since the late 2000s [Pellenq2009, 
Kovac2015, Kunhi2018]. Although these bulk models have proved to be very good at describing low 
Ca/Si ratios (typically <1), they do not align with experimental results once the Ca/Si ratio exceeds 1. 
The Ca/Si of C-(A)-S-H gel in real cement paste is usually above 1.5; for e.g. Ca/Si around 2 for OPC 
and between 1.5 and 1.75 for LC3 cement [Avet2018]. There is still a lot that is left to do. In 
[Duque2022], the authors have collected a substantial amount of data representing how the mean 
chain length (MCL) of the silicate chains (ref. chapter 2 section IV.C.) decreases as function of the 
increasing Ca/Si of the C-S-H but never falls below a value of 2 (MCL = Infinity for Tobermorite). 
Based on the brick model [Kunhi2018] of C-S-H bulk, Casar et al. extend the model to the surface and 
predict that for C-S-H with Ca/Si ~1.7, the silanol site density (SSD) has a maximum value of 
1.2sites.nm-2 [Casar2022] with ionization degrees depending on the titrating solution and its 
concentration. 

For our simulations of the EDL forming around a realistic C-S-H surface charge density, we set the 
value of -1.2 e.nm-2 as an absolute maximum for the considered σC-S-H. 

B. Zeta potential calculation: Titration of a C-S-H suspension in a Ca(OH)2 
solution  
 
Prior to simulating the formation of the EDL in confined spaces, we first characterize the C-S-H 
surface electrostatic properties. Experimentally, this is usually done by Zeta potential measurements 
(ref. chapter 2 section V.C.(ii)). From a computational perspective, the evolution of the electrostatic 
potential around a charged surface can be carried out through the simulation of a single 
wall/electrolyte configuration. In a very similar way to actual measurements on colloidal systems, the 
surface charge interacts with an unconstrained infinitely wide electrolytic solution. As the value of 
1.2 sites.nm-2 was previously set as an upper bound for the SSD on C-S-H1.7, we assume a 100% 
ionization degree of the surface (i.e. σC-S-H =-1.2 e.nm-2). In order to portray surface effects in a Ca-
containing system, the C-S-H is “virtually” titrated with a Ca(OH)2 solution at different 
concentrations. By taking into account the mentioned inputs, the GCMC algorithm was run following 
the methodology depicted in the previous chapter (ref. chapter 4 section I). After equilibration of the 
system, the electrostatic potential perpendicularly to the surface is computed using the convolution 
integral of the Poisson equation (Eq.(4.7) ). 
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Fig.5.1. Electric potential around C-S-H with σC-S-H = -1.2 e.nm-2 at different concentrations of Ca(OH)2 

  
 
In Fig.5.1, one can see that on addition of calcium in the system, the electrostatic potential becomes 
more and more positive. As the concentration goes up, the surface potential, takes respectively 
values of -43, -34, -26 and -19mV for 10, 20, 50 and 100mM. Between 10 and 20mM concentration, 
there is a clear shift of the potential moving from strictly negative values to actual positive potentials. 
The measurement of the Zeta potential remains approximate given there is no clear consensus on 
the actual location of the ζ-plane. At the usually considered location (~6 Å from surface), the zeta 
potential, in our case (Fig.5.1), ranges from approximately -10 to 10mV for concentrations between 
10mM and 100mM. This so-called reversal of charge is usually attributed to the higher screening 
capacity of calcium (compared to Na+ for example) due to its divalence [Lab2011]. A similar trend has 
previously been demonstrated in the case of C-S-H0.66 (ref. chapter 4 section I.C) where the reversal 
of charge occurred around 5mM of Ca2+ concentration at a surface charge density close to -4 e.nm-2.  
It seems that the threshold Ca2+ concentration for which the potential shift occurs is closely related 
to the charge density of the surface of interest. The higher the surface charge, the lower Ca is needed 
to reverse the ζ potential. 
 
An important point to stress, in our simulations, is that the C-S-H surface charge density has been 
kept unchanged while adding Ca2+ in the solution. As the number of available ionized silanols was 
constant, the maximum number of adsorbed Ca2+ occupying these sites also remained unchanged. In 
other words, it was rather the accumulation of the calcium in the diffuse layer that was most likely 
responsible for the observed reversal of charge. However, the definition of Ca2+ adsorption on the C-
S-H and the actual location of calcium at the interface remains a topic of discussion. Due to the sheet 
structure of C-S-H and its varying calcium to silicon ratio, the surface of C-S-H can be viewed in two 
ways. 
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Fig.5.2. Schematic of the C-S-H silicate chains with two ways to define calcium adsorption on the C-S-
H surface. In the surface (1), Ca2+ (green balls) are adsorbed in the Stern layer and the surface is 
defined by the silicate chains with the silanols ionization dependent on pH. In the definition (2) of the 
surface, the Ca2+ ions are incorporated in the structure. Image inspired from [Viallis2000] 

 
The first approach (surface (1) in Fig.5.2.) consists in considering that the calcium ions are located in 
the Stern layer where they are specifically adsorbed [Gra1947] on the ionized silanol sites of the C-S-
H. From this point of view, the surface is then defined by the position of the silicate chains. The 
calcium layer at the surface would occupy equivalent sites to the calcium atoms in the C-S-H 
interlayer. The other option (surface (2) in Fig.5.2.) is to consider that calcium is a constituent ion of 
the structure. The surface of C-S-H then contains both the silanol sites and the calcium ions 
associated with them. In this situation, a change in the concentration of calcium ions in the solution 
would result into a different surface charge and a different Ca/Si ratio [Viallis2000]. In our case, as 
the surface is described as an implicit plane, this is only a matter of definition. Additionally, given that 
the solvent is seen as an implicit medium, it is considered that all ions are “specifically” adsorbed (no 
water salvation shell) with their centers of mass located at the plane of closest approach (the IHP in 
Grahame’s theory which confounds with the OHP in the absence of explicit solvent) (ref. Fig.2.12). In 
reality, the actual position of calcium at the C-S-H interface is a key issue. Depending on whether the 
Ca2+ form ion pairs with the Si-O- or are rather more strongly bound to the structure, the apparent 
mobility of calcium may be significantly impacted. As the morphology of the solid surface is 
considered planar and perfectly even, Ca2+ ions are viewed in our model as part of the Stern layer. 
This actually confers them a mobility which, although reduced compared to the bulk, is not null. 
 
Now, after the C-S-H surface with σC-S-H =-1.2 e.nm-2 has been defined, the next step consists of 
extending the study of the EDL formation to real cement paste. In that respect, we model the 
presence of Ca in the pore solution under realistic thermodynamic conditions. 
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II. Modelling the pore solution in cement paste 
As the presence of multivalent ions has been proved to significantly deviate from symmetric 
monovalent electrolytes, the objective of this section is to quantify the concentration of calcium in the 
highly alkaline pore solution environment.  
 
The use of supplementary cementitious materials (SCMs) in addition to the ordinary Portland cement 
(OPC) has been found to affect the kinetics and the mechanisms of the chemical reactions in blended 
systems. These effects are reflected in the composition of the pore solution which bears is the result 
of the hydration process. So if the pore solution analysis is of paramount importance in the 
construction of thermodynamic models to predict the composition of liquid and solid phases, it is 
also equally critical to understand harmful reactions linked to durability problems [Hooton2010]. 
Pore solution extraction from a hardened paste using a high pressure device is probably the most 
common way to obtain these data. Among the main species are hydroxide, sodium, potassium, 
calcium, sulfate, aluminum and silicon. In real C-(A)-S-H, the aluminates content varies as a function 
of the used SCMs and this can have a sizable effect on chloride binding. In chloride ingress, all the 
species have to some extent a certain effect. However, our aim is, first and foremost, to understand 
the dominant mechanisms behind the physical binding of chloride. With this in mind, we only retain 
the most important factors and discount the rest so that the model deals with a manageable level of 
complexity. The considered ions are, therefore, hydroxides, chlorides, sodium (which behaves 
similarly to potassium♠) and calcium.        
 
In real cement paste, it was found that varying the alkalinity of the pore solution had implications on 
the thermodynamic stability of present species. Namely, at a certain pH, the Ca2+ concentration in 
the solution is adjusted with respect to the portlandite precipitation/dissolution reactions: 
 

Ca(OH)2   ⇌  Ca2+ + 2OH-    (5.1) 
 
In order to avoid supersaturation and formation of portlandite, the equilibrium constant K of the 
reaction (5.1) is determined. The standard Gibbs free energy of reaction ΔrG° is computed using 
thermodynamic data on the reactants and products from [Loth2018, Thoenen2014]: 
 
                        ΔrG° = Σ niΔGf°(products) - Σ njΔGf°(reactants)  
                             =ΔGf°(Ca2+) + 2ΔGf°(OH-) - ΔGf°(Ca(OH)2)= 30301 J/mol 
 
Knowing that the constant K is a function of the ΔrG°, we make the calculations using the following 
relation: 

ln K = −Δ𝑟𝑟G0

𝑅𝑅𝑅𝑅
    (5.2) 

where R is the universal gas constant and T the temperature (Kelvin). We obtain K=10-5.2 ~ 6.31x10-6 
at T=298 K and P=1 bar. 
 
                                                            
♠ However, the sodium and potassium concentrations in pore solution are usually quite different (ref. Tab.2.1) 
[Loth2018] 
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Given that our simulator does not account for reactions occurring, it is important that concentrations 
of Ca2+, at a defined pH, remain close to equilibrium, but slightly undersaturated. Also, in order to 
vary the concentrations of Ca2+ and OH- independently, the polyelectrolyte chosen to simulate the 
pore solution is an aqueous solution of {NaCl+NaOH+CaCl2}. At a fixed chloride concentration of 
0.1M, the pH is varied through the whole range of experimental values (12.7-13.8) and, for each 
case; the corresponding limit Ca2+ concentration is computed as follows: 
 

[Ca2+ ]lim [OH-]² = K     (5.3) 
 
Concentrations are calculated under the assumption of a diluted (ideal) solution and assuming that 
the ions are not involved in any other equilibrium: 
 

pH NaOH (M) [Ca2+]lim (mM) CaCl2 (mM) NaCl (M) Na/Ca 

(in solution) 

12.7 0.05 2.5 2.5 0.095 58 

13 0.1 1 1 0.098 198 

13.3 0.3 <0.2 ~ 0 ~ 0.1 >2000 

13.8 0.63 <0.02 >35000 

 
Table.5.1. Concentration of ionic species in the pore solution model at different values of the pH 

 
In reality, the pore solution should contain slightly higher calcium concentrations due to neglecting 
the non-ideality of the solution in the computations but also possibly due to oversaturation or 
overlapping of equilibria. Still, Tritthart [Tri1989] predicts that calcium content will be always below 
100 ppm (parts-per-million). In summary, calcium is poorly soluble in the range of pH we are working 
at and any rise of its concentration results instantaneously in precipitation. So, if not in the solution, 
the calcium ions must be adsorbed on the surfaces. 

III. Calcium adsorbed surfaces in C-S-H 

A. Effect of calcium adsorption in slit pores 
The main objective of this section is to extend the EDL model developed on Na-systems (chapter 4) 
by including Ca for a better representation of actual cementitious materials. For the computations, 
the C-S-H gel porosity is modeled as nanoscopic slit pores with ionized surfaces of charge densities 
equal to -1.2 e.nm-2 (Si-terminated surface). The pH of the pore solution is set to a value of 13    
(NaOH ~ 0.1M). The chloride content is fixed at a concentration of 0.1M and the CaCl2 is added within 
respect of the thermodynamic conditions specified in section II. As shown in Tab.5.1, the presence of 
Ca2+ in solution is negligible (roughly 100 times lower than Na+). So to study the effect of the physical 
binding of Ca2+ on C-S-H, we set the amount of Ca2+ in the solution at the limit of the under saturation 
(i.e. 1mM for pH=13) and we choose to exchange part of the neutralizing Na+ by Ca2+ and keep the pH 
and the Cl- content unchanged. 
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The way of simulating Ca2+ adsorption consists of initially running the GCMC for a {NaOH 0.1M + NaCl 
98mM + CaCl2 1mM} electrolyte in a similar way to the previous chapter (ref. chapter 4) i.e. compute 
the chemical potential using the Widom algorithm and run the Metropolis Monte Carlo in the grand 
canonical ensemble (μ,V,T) until equilibration. Once the system has relaxed, we account for the 
global number of sodium atoms in the box and we set a new simulation where the neutralizing Na+ 
(equal to the number of ionized sites on the surfaces) are progressively replaced by Ca2+. In sum, the 
substitution of Na+ is operated in terms of charge replacement as sketched in the below figure 
(Fig.5.3). 

 

 
Fig.5.3. Schematic of the Ca2+ charge replacement ratio at values of 0%, 25% and 50% 

 
In principle, this way of substituting 2Na+ with one single Ca2+ is in agreement with the fact that Ca 
can, indeed, adsorb at a bridging site between two Si-O- [Casar2022]. The case of each Ca2+ occupying 
one single site is also energetically plausible; however, the affinity of one type of adsorption or the 
other has not yet been established. Moreover, the addition of calcium in these proportions aims 
primarily to maintain the global electroneutrality of the system while disturbing the bulk 
concentrations of Na+ and Ca2+ as little as possible. Afterwards, the newly set system is relaxed using 
the Monte Carlo in the canonical ensemble (N,V,T) where the total number of ions remains constant 
and only translation moves are attempted. Below is presented the simulation box, in a 12 nm pore, 
for charge replacement ratios varying from 0% up to 100%.   

 

 

 

 

 



133 
 

pH Width 
(Å) 

Walls 

(Å x Å) 

Cl- OH- Ca2+ charge 
replacement 

ratios 

Ca2+ Na+ Ca2+/Na+ 

(x 100) 

 

 

 

13 

 

 

 

120 

 

 

 

160 x 160 

 

 

 

185 

 

 

 

184 

0% 2 979* 0.2 

25% 79 825 9.6 

35% 110 763 14.4 

50% 156 671 23.3 

65% 202 579 34.9 

75% 233 517 45.1 

85% 263 457 57.6 

100% 309 365 84.7 

 
Table.5.2. Simulation box for a pore solution modeled as {NaOH 0.1M + NaCl 98mM + CaCl2 1mM} in 
a 12nm-pore with C-S-H surfaces neutralized with Na+ and Ca2+ ions at various replacement ratios. 
The surface charge density is set at σC-S-H = -1.2 e.nm-2 

 
The first step is to ensure convergence of the simulations. As Ca2+ and Na+ content are fluctuating 
with the varying replacement ratios, we choose to use the anionic distributions, whose molarities are 
the only constant input (along with the surface charge density), as a reference. Once the system has 
reached equilibrium, the electrochemical potentials are computed through integration of the Poisson 
equation as detailed in chapter 4 section II.A.(i).  

 
(a)                                                                                             (b)   

Fig.5.4. Evolution of (a) the anionic distribution and (b) the electrochemical potential in the 12nm 
pore at different charge replacement ratios of 0%, 50%, 65% and 100% 

 
                                                            
∗ Among which, we count 614 Na+ to neutralize the 614 silanols on the walls. This is the Na+ population that is gradually 
replaced. 
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At equilibrium, one can see, as expected, that the summed distributions of chloride and hydroxide 
reach a plateau at the center of the pore. Additionally, one can see that upon addition of Ca, the 
anionic distribution has slowly evolved from a PB-like exponential profile at 0% (green line) toward 
the characteristic “shoulder” profile typical of the reversal of charge in Ca electrolytes (ref. chapter 4 
section I.C). Given that the total number of ions is a constant, the concentration of anions at the 
center of the box falls below the bulk molarity of both species i.e. 0.2M (Fig.5.4.(a)). This is due to the 
accumulation of Cl- and OH- close to the surfaces in response to the stronger Coulombic attraction of 
Ca2+. The case of 100% replacement ratio is probably the most obvious to observe (turquoise line). In 
Fig.5.4.(b), the potential shift is clearly visible at the highest replacement ratio of 100%. At lower 
ratios, the reversal of charge is less obvious but it is possible to observe the increasing adsorption of 
Ca2+ on the surface through the increasing screening of the surface. Along with the increasing 
number of added Ca, one can clearly notice the surface potential (at the plane containing the ionized 
silanols) steadily moving from a value of nearly -92mV with nearly 100% Na+ on the surface (0% Ca2+), 
up to -66mV (50% Ca2+) then -57mV (65% Ca2+) and finally -40mV (100% Ca2+). Nonetheless, as we 
have previously seen (ref. chapter 4 section I.C), the potential reversal can only occur upon sufficient 
accumulation of Calcium in the diffuse layer. In fact, in the case of C-S-H with a surface charge equal 
to -1.2 e.nm-2 (section I.B),  it was found that Calcium had to build up to a concentration between 10 
and 20mM to effectively measure a positive zeta potential. A question then arises: where exactly are 
the added calcium ions located?  

As a matter of fact, unlike the GCMC, MC simulations in the canonical ensemble aim to reach the 
most energetically stable configuration (at zero temperature). So to ensure that the added calcium is 
effectively adsorbing on the surfaces rather than equilibrating in the bulk, we compute the Ca 
occupancy ratio of the available silanols and compare it to the replacement ratio. Given that the       
C-S-H interface is viewed as a smooth planar wall, Ca2+ is considered to be adsorbed in the Stern layer 
and, hence, technically part of the solution. The Stern layer thickness is set to be equal to a ionic 
radius i.e. ~1 Å. Therefore, the Ca-Si occupancy ratio is computed as the number of Ca2+ ions within a 
distance of 1 Å off the surface normalized by the total number of present ions in that area.    

 
(a)                                                                                          (b)   

Fig.5.5. Evolution of (a) the Ca occupancy of the available ionized sites and (b) the Ca2+ distributions 
in the pore of as function of the charge replacement ratio. 
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The plot in Fig.5.5.(a) shows that, as part of the initially adsorbed Na is progressively replaced by Ca2+ 
ions, the exchange is almost ideal up to 50% of charge replacement ratio. Meaning that once we 
have exchanged up to 50% of the residing Na+ on the Si-O- sites, the added Ca2+ have completely 
occupied these discharged sites. This can also be observed on Fig.5.5.(b) where the concentration of 
Ca2+ for ratios between 0 and 50% varies between 1mM and 3mM, which remains within a 
reasonable range to assume that we are still under saturation (ref. last paragraph of section II). 
However, once the replacement ratio goes beyond 50%, a clear deviation from the line of ideal 
adsorption is noted (Fig.5.5.(a)). In other words, although the adsorption of Ca2+ is still increasing, it 
seems that part of the added calcium does not adsorb directly on the surface and prefers to reside in 
the lower energy bulk region. In accordance with this observation, we note an increase of the bulk 
concentration of calcium once the charge replacement ratio moves to 65% (Fig.5.5.(b)). Also, it is 
interesting to note that upon this increase, the bulk concentration of Ca2+ raises within the range of 
concentrations (between 10 and 20mM) where the reversal of charge is expected to occur for a 
surface charge density of -1.2 e.nm-2 (section I.B). In order to measure the consequence of this 
increase of Ca2+ content in the bulk, we compute the evolution of both (i) the zeta potential of the 
surface and (ii) the average potential of the pore as function of the replacement ratios. 

 
Fig.5.6. Evolution of zeta potential of the surface and the potential average in the 12 nm pore as 

function of the charge replacement ratio. 

 

As shown in Fig.5.4.(b) where the surface potential was further screened at higher calcium content, 
one can see that the Zeta potential (Fig.5.6) is equally increasing as the charge replacement ratio is 
going up. As the potential shift occurred between 7 and 8 Å for the ratio of 100%, the ζ-plane has 
been chosen, for convenience, at 8 Å which remains a physically acceptable value [Zhang2017]. In 
any case, this choice has very little effect on the veracity of the observations, as potential profiles in 
Fig.5.4.(b) varied very slowly at distances around 10 Å off the surface. The jump of potential (black 
arrow in Fig.5.6) is, indeed, most noticeable once we move from a Na-system (ζ8A = -21mV) to a 
system where calcium has been added (ζ8A > -14 mV). These values remain within the range of the 
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usually measured Zeta potentials. In a recent study [Barzgar2020], Barzgar et al. measured negative 
Zeta potentials varying between -30 and 0mV for C-S-H of Ca/Si between 0.6 and 1.4 in a NaOH 
solution of pH up to 13. For the same range of Ca/Si, Haas and Nonat found that the titration with 
Ca(OH)2 of increasing molarity lead the ζ-potential to eventually reverse its sign and go from -10mV 
(~1mM) up to 20mV (~25mM) [Haas2015]. In a similar fashion, Elakneswaran et al. showed that the 
increase of chloride concentration in a solution of {Ca(OH)2 + NaCl} increased the negativity of the 
zeta potential down to -10mV for a chloride concentration of 40mM and a pH up to 12.5 [Elak2009].  

Unlike the Zeta potential, the evolution of the average potentials 𝜓𝜓� (Fig.5.6) with the increasing 
charge replacement ratio is less straightforward: two different regimes seem to take place. As the 
replacement ratio progressively moves from 25 to 35 then 50%, the average potential of the pore is 
steadily growing more negative. This is explained by the decrease of the Na+ solution due to its 
substitution with Ca2+ ions (Fig.5.7.(a)). In fact, the decrease of the Na+ concentration seems to be the 
potential determining mechanism as it affects the ionic strength faster than the increase in Ca2+ does. 
In Fig.5.7.(b), one can see the slower depletion of the potential at a charge replacement ratio of 50% 
compared to the ratio of 25%. It is this increase of the Debye length, and consequently of the EDL 
thickness, that is at the origin of the more negative potential of the pore.   

 
         (a)                                                                                                   (b)   

Fig.5.7. Evolution of (a) the Na+ distributions and (b) the electrostatic potential in a 12 nm pore for 
charge replacement ratios of 25% and 50%. 

 
Once the charge replacement ratio moves to 65% (Fig.5.6), the trend is reversed and the average 
potential, though still negative, gradually decreases in absolute value. As the adsorption of Ca2+ is still 
increasing between ratios of 50% and 65% (Fig.5.5.(a)), the main disrupter appears to be the increase 
of Ca2+ concentration (Fig.5.5.(b)) within the area where the reversal of charge was predicted to 
happen (i.e. [Ca2+] between 10mM and 20mM). According to Tab.5.2, this jump actually occurs once 
the Ca/Na ratio in the whole box exceeds 23% i.e. roughly 1Ca2+ for 4Na+ in the pore. 
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B. The pore size effect 
As we introduced Ca into the mix, atomistic simulations showed that Ca-containing electrolytes 
behaved quite differently from Na-only systems. In this regard, it is imperative to assess the validity 
of the previously established correlations (namely for NaCl salts) in a more realistic configuration 
where Ca2+ ions are considered. For this part, it is the effect of the pore size that is investigated. 

Computations in the case of a 12nm pore have already been conducted in the last paragraph. Hence, 
the same procedure is applied to smaller pores of diameters 8 and 4 nm. The considered electrolyte 
is the same as in the previous section i.e. {NaOH 0.1M + NaCl 98mM + CaCl2 1mM}. The surface 
charged density is set at -1.2 e.nm-2. At fixed pore size, the charge replacement ratios are varied 
through the same range of values as in Tab.5.2. 

 
           (a)                                                                                         (b)   

Fig.5.8. Evolution of (a) the Ca occupancy of the available ionized sites and (b) the Ca2+ distributions 
in 4nm pore at charge replacement ratios of 0%, 50% and 65%. The red area denotes the interval of 
Ca2+ concentration where the reversal of charge happens. 

 

The evaluation of the Ca-Si occupancy in Fig.5.8.(a) shows an increase of the adsorbed Ca2+ as the 
pore is reducing in size. Although still beneath the ideal curve, the Ca occupancy in the smaller pores 
(4 and 8 nm) was the highest with, e.g., 80%, 85% and 90% of Ca-Si occupancy in, respectively, the 
12, 8 and 4 nm pores at a charge replacement ratio of 100%. In fact, along with the reduction of the 
pore radius, the EDL overlapping occurs and the bulk area increasingly vanishes. The Ca2+ ions 
experience stronger interactions with the surface and find themselves within the diffuse layer. 
However, as the adsorption of the added Ca2+ is not ideal, the concentration of the Ca2+ in solution 
continues to build up (Fig.5.8.(b)). In the smallest pore of 4nm, once the replacement ratio goes 
beyond 50%, the jump in the Ca content is clear and the concentration reaches approximately 20mM 
i.e. in the area of reversal of charge (red in Fig.5.8.(b)). 
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In Fig.5.9.(a), one can clearly see, in the pore of 8 nm size, that the increase of Ca2+ adsorption, due 
to higher charge replacement ratios, favors the accumulation of Cl- close to the surface. In reality, the 
chloride profiles for replacement ratios below 50% remain quite similar. At a charge replacement 
ratio of 100%, the reversal of charge happens and chloride displays the characteristic shoulder-like 
profile. As the pore size reduces to 4nm (Fig.5.9.(b)), the difference between the distributions at 
various replacement ratios is more noticeable. As the amount of adsorbing Ca2+ is going up, the 
depletion of the chloride distribution is more and more pronounced. Nonetheless, the profiles 
corresponding to replacements below 50% show the typical Donnan effect observed in monovalent 
electrolytes where the local electroneutrality is disturbed due to the vanishing of the bulk area. 
Conversely, in the case of charge replacement of 100%, two interesting features appear. Firstly, we 
note that the concentration in the center is fairly close to a plateau which denotes the decrease of 
the EDL thickness due to the Ca2+ screening. Secondly, the previously observed (Fig.5.9.(a)) 
accumulation of Cl- due to the overcompensation of Ca2+ ions seems noticeably hindered. This 
behavior is attributed to the compact size of the 4nm pore which seems to prevent the chloride from 
exhibiting the previously called “shoulder” profile.  

 

 
            (a)                                                                                      (b)   

Fig.5.9. Chloride distribution profiles in pores of (a) 8nm and (b) 4nm of diameter. The charge 
replacement ratios are varied through the whole range with values at 0%, 50% and 100%.  
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Fig.5.10. Evolution of the potential average as function of the replacement ratio in pores of 4, 8 and 

12nm of size 

 

In terms of the electrostatic properties of the EDL, the average potential (Fig.5.10) globally increases 
in negativity as the pore size goes down and the EDLs become more strongly overlapping. 
Nonetheless, the reduced pore radius does not seem to prevent the increase of the potential once 
the Ca2+ has accumulated in sufficient amount (replacement ratio > 50% for all pore sizes). Moreover, 
once the threshold of concentration passed, the reversal of charge seems to accelerate the rate at 
which the average potential is dropping (in negativity). The reason being that with a higher 
adsorption and a higher accumulation of Ca2+ in the diffuse layer, the silanols are completely 
screened within a very short distance. In other words, as the Ca2+ content goes up in the solution, the 
Debye length is effectively reducing and the system is further deviating from the initial configuration 
with Ca2+ ultimately exceeding by over an order of magnitude (~20mM) its under saturation 
threshold with respect to Portlandite  (1mM).   

In a similar fashion to monovalent salts, and despite the more complex behavior of Ca-containing 
systems, it appears clear that the pore size has a sizable influence on the EDL properties in realistic 
pore solutions, in particular on the adsorption of Ca2+ and Cl-. Nevertheless, the EDL formation in Na-
systems was also found to be greatly affected by two additional factors, namely the surface charge 
density of C-S-H and the variation of the pH. In order to make the text and material easier to read and 
more relatable, the details of the study of the mentioned parameters is detailed in the Appendix A of 
the present chapter. 
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C. Case of the full calcium occupancy of the ionized C-S-H surface (Ca-Si 
occupancy ratio equal to 100%) 
Through the simulation of Ca2+ adsorption in the presence of Na+ ions, Monte Carlo results suggest 
that the Ca-Si occupancy is partial and that sodium is able to compete despite its lower valence. 
However, as the assumed C-S-H surface was implicit and solely characterized by a surface charge 
density, we may consider that Ca interactions with the surface were simplified. In practice, the 
competition between Na+ and Ca2+ for the adsorption on the ionized sites remains an open question. 
Still, the case of full calcium occupancy of the surface is possible [Casar2022]. Here, the implications 
of this assumption are investigated. 

 
Fig.5.11. Schematic of a fully calcium-covered C-S-H surface. Two adsorption mechanism are 
suggested: (a) Each ionizes site Si-O- is occupied by a Ca2+ ion (Type I) (b) Each pair of ionized sites 
(2Si-O-) can attract either 2Ca2+ (Type I) or 1Ca2+ (Type II) 

 
Considering a C-S-H surface with a silanol site density of 1.2 sites.nm-2, the full deprotonation of the 
surface implies a surface charge of -1.2 e.nm-2. In Fig.5.11, we present two representations of the C-
S-H surface being completely and exclusively occupied by Ca2+ ions. First, each Ca2+ ion is assumed to 
occupy individually a Si-O- site (Fig.5.11.(a)) in which case the charge of each pair of ionized sites (i.e. 
2x(Si-O-)) is reversed from a value of-2e to an apparent charge of +2e. In sum, the apparent surface 
charge density of the surface, post-adsorption, shifts to a positive value of +1.2 e.nm-2. In Fig.5.11.(b), 
we consider a second type of adsorption in which one Ca2+ may possibly occupy two sites on its own. 
In order to measure the effect of such eventuality, we assume, in a second stage, that the two 
adsorption types are equiprobable (50% Type I + 50% Type II). In other words, half of the pair sites 
are neutralized by a single calcium ion. As a result, the apparent surface charge is reversed but 
reduced, in comparison with the first case, with a density of +0.6 e.nm-2. In principle, both adsorption 
types are possible. However, the frequency of one or the other remains a subject of active research. 
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For a pore solution modeled as a {NaOH 0.1M + NaCl 98mM + CaCl2 1mM}, the GCMC algorithm is 
run for both adsorption cases in pores of sizes 4, 8 and 12 nm. In the below figure (Fig.5.12) are 
plotted the chloride distributions around C-S-H for the pores of 4 and 12 nm. 

 

 
 

Fig.5.12. Chloride distribution profiles around C-S-H surfaces of charge densities +0.6 and +1.2 e.nm-2 
in pores of 4 and 12 nm size 

 

At a higher Ca-Si occupancy (case of Fig.5.11.(a)), one can see that the accumulation of chloride 
(Fig.5.12) at the surfaces is higher due to the apparently more positive C-S-H charge density. In the 
12nm pore, chloride ions relax to the bulk value of 0.1M at a fairly similar distance from the walls 
indicating the EDL thickness is independent of the assumed adsorption mechanism. In the pore of 
4nm, the overlapping of the diffuse layers is at the origin of the vanishing of the concentration 
plateau at the center. In definitive, the chloride distribution displays an utterly reversed profile to the 
case of negative surfaces.  
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             (a)                                                                                       (b)   

Fig.5.13. (a) Electrochemical potentials as function of the position in a 12nm pore and (b) evolution 
of the potential average as function of the pore size. The surface charge densities are +0.6 and      
+1.2 e.nm-2 representing, respectively, the high (Fig.5.11.(a)) and low (Fig.5.11.(b)) Ca-Si occupancy 
cases.  

 
In a slit pore of 12nm width, the computed electrochemical potential (Fig.5.13.(a)) shows the usual 
layering of the pore solution between a locally negatively charged diffuse layer and an electroneutral 
bulk area. Depending on the Ca-Si occupancy, the surface♦ potential varies from 49mV, at lower 
occupancy, to approximately 88mV in the case of a full reversal of charge of each pair of sites. The 
reduction of the pore size does also enhance the average potential of the pore which grows more 
and more positive  
 
From a practical point of view, the veracity of these “theoretical” cases can be, in part, evaluated 
through comparison with Zeta potential values. The calculated values of the surface potential seem 
to be quite high for C-S-H with Ca/Si ratios beyond 1. Labbez et al. did, indeed, find a value close to 
40mV but only for a C-S-H with Ca/Si ratio of 0.66 [Lab2011] For a Ca/Si ratio up to 1.5, Haas and 
Nonat measured a maximum value of 20mV [Haas2015]. And despite that the zeta potential is a 
valuable measure of electrokinetic phenomena; combining electrostatics and dynamics of the 
interfacial liquid, it remains difficult to have accurate values of surface potential when the surface 
itself remains poorly defined. Moreover, ζ potential measurements on C-S-H suspension can only be 
partially illustrative of electric properties of confined solutions. Another possible route is to measure 
the Ca/Si ratio of washed and unwashed C-S-H samples. Using the mixed Ca and Si terminated C-S-H 
surface developed by Casar et al. [Casar2022], the model for a C-S-H with Ca/Si of 1.7 (in the bulk) 
predicted a global Ca/Si ratio of a C-S-H particle (bulk+surface) equal to 1.58 when Ca2+ adsorption is 
null. Once we adsorb 1Ca2+ on each pair of silanols 2[Si-O-] (i.e. Type II adsorption Fig.5.11.(b)), the 

                                                            
♦ Assuming that the potential of the surface is measured at the plane of adsorption of the Ca2+ would be more 
coherent once considering calcium as part of the structure and not only residing in the Stern layer. 
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ionized sites are neutralized (i.e. (2[Si-O]-)=Ca2+ resulting in an apparent charge of 0e) and the global 
Ca/Si ratio goes up to 1.62. Considering the adsorption of Type I (Fig.5.11.(a)) where each 
deprotonated silanol is reversed (i.e. Si-O-Ca+), the Ca/Si ratio further increase to 1.66. Finally, by 
occupying the bridging sites, we approach the bulk value of Ca/Si = 1.7   

IV. Conclusions  
The application of the EDL model in presence of Ca2+ ions in the C-S-H gel pores was discussed. The 
chemistry of the cementitious system showed a non-negligible influence on the stability of the 
present ions in the pore solution. At pH values typically beyond 13, calcium ions displayed a very low 
solubility. It was, hence, concluded that their presence was predominantly within the Stern layer of 
the ionized C-S-H surface.  
 
In order to increase the amount of Ca on the surfaces without disrupting the system (too much), 
Monte Carlo simulations were conducted at constant pH constant chloride content where part of the 
neutralizing Na+ were progressively substituted by Ca2+ (within the respect of  electroneutrality). The 
numerical results revealed two-regimes of behavior of Ca2+ in solution: 
 

• At charge replacement ratios below 50%, the Ca2+ showed an affinity to predominantly 
adsorb on the negatively charged C-S-H surface or at least remain within the diffuse layer 
without further migration to the bulk area. This behavior was noticeably emphasized as the 
EDL effect was growing i.e. in smaller pores (overlapping), at high surface charge densities 
and low pH values. Although mitigated by the higher screening capacity of Ca, very similar 
trends to the Na-system were globally observed. As Ca2+ content also stayed below the 
threshold of portlandite precipitation, this regime was found to best depict surface effects in 
gel pores despite its limited scope. 
 

• Beyond the limit of 50% charge replacement ratio, the reversal of charge of the surface 
potential was noted. Given that the model did not account of speciation, Ca2+ was allowed to 
build up in the solution beyond the undersaturation threshold. Within this regime, the multi-
parametric study of the EDL showed that Ca was the potential determining factor. In the 
extreme case where the Ca-Si occupancy reaches 100%, it was found the surface potential 
shifted to positive values and that the adsorption of chloride was enhanced. 

 
To date, Ca adsorbed surfaces are poorly understood. In fact, the exact location of Ca on C-S-H 
remains an unknown. As a consequence, it is very delicate to affirm if a present Ca on the surface is 
whether incorporated to the C-S-H structure or belongs to the pore solution (just adsorbed). This 
constitutes probably among the most challenging and yet urging matters to decipher for a better 
understanding of C-S-H. Among the interesting directions, 43𝐶𝐶𝐶𝐶 NMR spectroscopy is one of the 
possible methods that may help in the endeavor. It remains, however, a complex procedure due to 
the low natural abundance of the nuclide 43𝐶𝐶𝐶𝐶 and its low resonance frequency. Although most 
successes were achieved through solid-state spectroscopy, developments are running their course 
for solution 43𝐶𝐶𝐶𝐶 NMR especially in the study of calcium-binding bio-molecules where promising work 
is in progress [Bryce2010]. 
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V. Appendix A: Multi-parameter study of the EDL in Ca-containing 
environments 

A. Effect of the ionization degree 
Among the characteristics that change with the Ca/Si ratio in C-S-H is the silanol site density (SSD). At 
different pH values, the C-S-H interface experiences variations in its ionization degrees and displays a 
different surface charge density according to the properties of the surrounding solution. In pore 
solutions where Na+ is the only counter-ion, it was found that the increase of the surface charge 
density translated into an increase of the average potential of a pore regardless of its size. The 
reduction of the pore contributed, however, to the enhancement of the effect due to the 
overlapping of the forming diffuse layers. Unlike sodium, Ca2+ is a potential determining ion i.e. its 
amount controls the potential around the surface (Zeta potential) as much as the ionization degree. 
To investigate the effect of the ionization degree in Ca-containing environment, the surface charge 
density is decreased from -1.2 down to -0.48 e.nm-2.  

 

pH Width 
(Å) 

Walls 

(Å x Å) 

Cl- OH- Ca2+ charge 
replacement 

ratios 

Ca2+ Na+ Ca2+/Na+ 

(x 100) 

 

 

13 

 

 

120 

 

 

180 x 180 

 

 

234 

 

 

234 

0% 2 774* 0.26 

25% 41 696 5.9 

50% 80 618 13 

65% 103 572 18 

85% 134 510 26.3 

100% 157 464 33.8 

 
Table.A.1. Simulation box for a pore solution modeled as {NaOH 0.1M + NaCl 98mM + CaCl2 1mM} in 
a 12nm-pore with C-S-H surfaces neutralized with Na+ and Ca2+ ions at various replacement ratios. 
The surface charge density is set at σC-S-H =-0.48 e.nm-2 

 

The equilibration of the system is ensured by looking at the anionic distribution (Fig.A.1.(a)) which 
rests at a concentration of 0.2M in the bulk area (in a large enough pore; here 12 nm). After 
relaxation, the Ca2+ distribution is studied.  Very similarly to the higher ionization case (ref. section 
III.A), the calcium profile displays the characteristic “shoulder” like profile (or W shape) once the 
addition of the Ca2+ exceeds a charge substitution ratio of 50% (red profiles in Fig.A.1.(b)).   

                                                            
∗ Among which, we count 310 Na+ to neutralize the 310 silanol sites on the walls. This is the Na+ population that is gradually 
replaced. 



146 
 

 
           (a)                                                                                                   (b)   

Fig.A.1. Evolution of (a) the anionic distribution and (b) the Ca2+ distribution in a 12 nm pore with 
surface charge density of -0.48 e.nm-2 at charge replacement ratios of 25%, 50%, 65% and 100%. 

 

In comparison with the high surface charge density case (Tab.5.2), it is important to note that for a 
same replacement ratio, the Ca2+/Na+ ratio for σC-S-H =-0.48 e.nm-2 (Tab.A.1) is lower. As a result, one 
can note that the adsorption of Ca2+ falls below the line of ideal occupancy (Fig.A.2.(a)) even at low 
replacement ratios. As the pore radius goes down and the diffuse layer covers more of the pore 
space, the Ca2+ occupies more available sites on the surface i.e. roughly 70% of the silanols in the 
4nm-pore at a replacement ratio of 100% (or a Ca2+/Na+ ratio of nearly 1/3). It is unlikely that this 
decay of the Ca-Si occupancy, compared to the case of -1.2 e.nm-2, is due to the Na+ competition as 
Ca2+ have proved to have a much higher affinity to adsorb. It is probably the result of the weaker 
potential at the surface and the lowering of the steric effects around it making the solution behave 
more like an ideal electrolyte (ref. chapter 4 section I.A).  

In Fig.A.2.(b), the computation of the average potential shows the persistence of a two-regime 
behavior (regardless of the surface charge). At substitution ratios below 50%, the average potential 
of the pores is higher (in absolute value) as the surface charge density is bigger. As expected, the 
potential is most negative in the smallest pore. Beyond 50% replacement, the sudden drop of the 
pore potential appears to be less significant at a lower ionization degree. The effect of Ca2+ addition 
appears to be noticeably mitigated upon decrease of the surface charge magnitude which, in fact, 
agrees with its lower interaction with the surface (Fig.A.2.(a)). 
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    (a)                                                                                                      (b) 

Fig.A.2. (a) Evolution of the Ca-Si occupancy as function of the replacement ratio at σC-S-H equal to      
-0.48 e.nm-2 and (b) Comparison of the evolution of the potential average as function of the charge 
replacement ratio with σC-S-H varying between -0.48 and -1.2 e.nm-2. Results are presented for pores 
of 4, 8 and 12 nm. 

 

In comparison with pure Na-systems, it seems that the variation of the surface ionization degree has 
a very similar behavior in Ca-systems as long as the Ca2+ content remains low enough to prevent any 
reversal of the potential. Despite the appreciable decrease in the surface charge, the limiting 
substitution ratio remained between 50 and 65% for both -0.48 and -1.2 e.nm-2. The reason being 
that the Ca2+ concentration necessary to cause the reversal of charge of the -0.48 e.nm-2 must be in 
the order of 20mM (Fig.A.1.(b)) so relatively close to the 10-20mM interval for the -1.2 e.nm-2. As a 
matter of fact, the necessary Ca2+ content that generates the non-linear regime of the charge 
reversal appears to vary within a very small window of concentrations of generally few millimoles for 
a wide range of surface charge densities (~5mM for σ = -4 e.nm-2 (ref. chapter 4 section I.C)  up to 
~20mM for -0.48 e.nm-2). Nonetheless, given the low solubility of Ca2+ in real thermodynamic 
conditions, this potential shift is unlikely to occur in actual cement pore solution (ref. section II). 

 

 

 

 

 

 

 



148 
 

B. Effect of pH decrease 
In the same spirit, the effect of pH variation is implemented in the presence of Ca in the system. The 
same methodology is applied. The surface charge density is once more set at -1.2 e.nm-2. As the 
decrease of pH allows a higher solubility of Ca2+ and given the partial adsorption of the added Ca2+ in 
the previous computations, it was chosen to rather decrease the pH to 12.7 so that simulation results 
best represented the behavior of cement paste pore solution under realistic thermodynamic 
conditions. 
 

   (a)                                                                                                   (b) 
Fig.A.3. (a) Evolution of the Ca occupancy of the available ionized sites as function of the 
replacement ratio in pores of 12 and 4 nm pore at pH equal to 12.7 and 13. (b) Ca2+ distribution in 
pores of 12 and 4 nm at charge replacement ratios of 50 and 65% for pH=12.7. 

 
In Fig.A.3.(a), one can see the increase of adsorbed Ca2+ on the surface with the increasing 
substitution ratio. At lower pH, the width of the EDL expands in the pores due to the decrease of the 
ionic strength and Ca2+ ions are involved in stronger interactions with the surface. Due to the 
overlapping of the diffuse layers, the Ca-Si occupancy reaches its maximum rate in the smaller pores 
at lower pH i.e. in the 4nm-pore, Ca-Si occupancy is quasi-ideal up to a ratio of 65% and further 
increased to, respectively, 80% and 90% at pH = 13 and 12.7 for a replacement ratio of 100%. Still, a 
portion of the added Ca2+ relaxed in the diffuse layer and further down in the bulk area as the ratio 
exceeds 50% (Fig.A.3.(b)). For 50% replacement and below (green curves), the concentration 
remained very close to the undersaturation concentration of 2.5mM (Tab.5.1). Despite the 
overlapping of the EDLs in the pore of 4nm, the increase of the concentration at the center of the 
pore remained small (and relatively close to undersaturation). In fact, the limiting ratio prior to 
charge reversal (red curves) stayed constantly between 50 and 65% and seemed unaffected by the 
pH value as it was not by neither the pore size nor the ionization degree.  
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Fig.A.4. Evolution of the potential average as function of the charge replacement ratio in pores of 4, 8 

and 12 nm at pH equal to 12.7 and 13 

 

At low Ca2+ content (ratio < 50%), the average potential of the pores (Fig.A.4) increases in negativity 
with the decreasing pH. This behavior is very similar to monovalent systems. The influence of pH is, 
however, hindered as the Ca2+ concentration the potential to drop. In fact, due to its high screening 
capacity, the divalent ion induces the decrease of the Debye length and with it the thickness of the 
EDL which seems to cancel out the effect of the alkaline decrease. 
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Chapter 6 Diffusion of chloride ions in the nanoscopic 
C-S-H gel pores 
 

This chapter starts with a presentation of the governing equations of ionic transport at the pore 
scale. The numerical resolution is conducted in two ways. Firstly, a finite element analysis (FEA) was 
carried out on the usual Poisson-Nernst-Planck (PNP) equations within the scope of the theory of 
dilute solutions. Thereafter, a second approach, combining the Poisson-Boltzmann formalism with 
Monte Carlo calculations of the non-ideal electrochemical potential, is developed. The results of the 
two approaches are presented and compared in the cases of monovalent electrolytes. Finally, the 
resolution is extended to the case of Ca-containing pore solutions and the simulation results 
discussed in the light of experimental work done to characterize the chloride resistance of different 
blended cements. 
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I. Introduction 

A. Definition of the nanoscopic transport problem and objectives 
Given today’s imperative to reduce the carbon footprint of manufactured cements, the question of 
the long-term durability of blended systems, and in particular their resistance to harmful ions such as 
chloride, is more crucial than ever. Despite decades of research, the mechanisms that control the 
diffusion of ions at the nanoscale remain vaguely understood.  To quantify the transport properties 
of a given material, we measure “a” diffusion coefficient. However, it is possible to define a 
multitude of diffusion coefficients, at different scales, when it comes to cement-based materials. The 
reason being that cement paste is a composite that contains liquid, solid and gaseous phases with 
pores and heterogeneities covering a wide range of length scales. From an experimental perspective, 
it is usual to refer to an “apparent” diffusion coefficient, Da, (ref. chapter 2 section III). For a 
saturated cement paste, Atkinson et al. [Atk1984] defined Da, assuming Fick’s law of diffusion, as the 
diffusivity that correlates the average flux to the average concentration gradient. 

 

⟨J𝑖𝑖,𝑥𝑥⟩ = −D𝑎𝑎
∂⟨𝐶𝐶𝑖𝑖⟩
∂𝑥𝑥

     (6.1) 

 

Where x is the longitudinal (axial) direction in the pore and <.> is the average over the whole medium 
(in both liquid and solid phases). Once considering the microstructure of cement paste, it is also 
possible to define a macroscopic effective diffusivity DeffMacro that encapsulates a number of system-
dependent variables. A simple way to explicit these parameters is to write DeffMacro as function of D0; 
the diffusivity in free water: 

 

D𝑒𝑒𝑒𝑒𝑒𝑒
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = D0

𝛿𝛿
𝜏𝜏2

𝜖𝜖
𝛼𝛼

     (6.2) 

 

where δ and τ are, respectively, the constrictivity and the tortuosity of the pore network. The 
parameter ε represents the volume fraction of porosity and α is a term that accounts for the 
adsorption on the solid phases. In reality the averaging process of transport in multi-phase systems is 
not so obvious. In 1979, Hassanizadeh and Gray [Hassan1979(1), Hassan1979(2)] were the first to 
fully develop the homogenization equations of ionic transport in cement paste. It was shown that the 
up-scaled ionic flux could be obtained by averaging the microscopic equation as it follows: 

 

⟨J𝒊𝒊⟩ = −𝐷𝐷𝑖𝑖,𝑒𝑒∇⟨𝑎𝑎𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚⟩ − 𝐹𝐹𝑧𝑧𝑖𝑖𝐷𝐷𝑖𝑖,𝑒𝑒⟨𝐶𝐶𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚⟩

𝑅𝑅𝑅𝑅
∇⟨Ψ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚⟩     (6.3) 

 

Where Di,e is a microscopic effective diffusion coefficient for each species i. The variables aimicro, 
cimicro and ψmicro are, respectively, the activities, concentrations and the potential at the pore scale. A 
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subtle detail to note is the difference of the averaging operator <.> in Eq.(6.1) and Eq.(6.3). In the 
latter, the homogenization is conducted over a well-defined representative volume element (RVE). 
Given the wide range of heterogeneities in cement paste going from gel pores (3nm) up to 
aggregates (1cm), one can see the difficulty of constructing a satisfactory RVE. But, an even more 
troublesome issue is the mischaracterization of the microscopic terms aimicro (includes cimicro) and 
ψmicro.  

In this chapter, we will use the previously developed EDL model to rigorously compute the 
microscopic driving forces and resolve the transport equation at the pore scale. In order to solely 
consider the surface effects in the C-S-H gel pores, we dismiss all the micro-structural parameters 
depicted in Eq.(6.2). In our case, the nanoscale ionic transport will be fully determined through the 
computation of the microscopic effective diffusion coefficients of flowing ions denoted as Di,e. 

B. Choice of the resolution method 
To compute microscopic transport properties, two main options are open to us: 

1. Explicit or atomistic methods such as Molecular dynamics or Brownian dynamics. Although 
very accurate, these methods usually require computationally time-consuming simulations to 
determine the dynamic properties of the particles in a system or obtain representative 
averages of the observables of interest. They can also prove quite inflexible, often spending a 
huge computational effort to characterize quasi-uniform regions of the system such as bulk 
solutions in the EDL adsorption problems.   
 

2. Implicit or continuum methods rely by definition on a continuous description of the system 
components i.e. the solvent, the ions, the surfaces... They usually consist in the numerical 
resolution of a closed-form partial differential equation (PDE). They offer a great flexibility in 
the choice of the resolution. Also, the boundary value problem of these PDEs offers a very 
faithful representation of the experiment such as electro-migration measurements. 

Given the computational cost, the atomistic models are, in fact, quite unpopular especially in the 
resolution of diffusion related problems. In cement science, the inexistence of realistic C-S-H 
atomistic surface models makes it even less worthwhile. While it seems clear that the continuum 
methods are a better alternative, the actual choice of a good enough model is less straightforward. 
The most obvious approach is with no doubt the Fickian law of transport. Although very intuitive, the 
limitations of the equation are common knowledge. For the usually concentrated and asymmetric 
pore solution in cement paste, Zhang and Gjorv [Zhang1996] showed the importance to account for 
steric effects. It was essentially demonstrated that, due to the non-ideality of the electrolyte, ions 
interactions reduced the chemical potential and, with it, the driving forces of ionic fluxes. The EDL 
formation and the effects of its overlapping were also shown (ref. chapters 4 and 5) to significantly 
alter the electrochemical properties of the solution which is expected to interfere with the mobility 
of ions depending on their size and valence. Fick’s law stems, however, from a simplified version of 
the more general Poisson-Nernst-Planck (PNP) equations. The PNP system is, indeed, the natural set 
of equations to describe the motion of ionic species in a fluid under the effect of electrostatic 
gradients. There also exists a variety of formulations of these equations that account for the finite 
size of ions with the main challenge being the numerical implementation and resolution of these 
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more complicated versions. The appropriate choice of the model within a manageable level of 
sophistication is paramount. 

In the next section, we firstly set the initial and boundary value problems for the finite element 
method resolution of the conventional PNP equations. Second, we propose a novel methodology to 
resolve the PNP equations using the Poisson-Boltzmann theory in combination with computations of 
the ionic concentrations by the Metropolis Monte Carlo in the Grand Canonical ensemble. 

II. The governing equations of ionic transport in saturated cement 
paste 
The Poisson-Nernst-Planck equations are a system of partial differential equations that describe the 
motion of ionic species in a fluid. At the pore scale, the driving forces of ionic diffusion include both 
atomistic and continuum effects and the ionic flux Ji [mol/(m².s)] writes as a sum of a number of 
contributing terms [Fen2021]:  

 

J𝒊𝒊 = J𝒊𝒊
𝑫𝑫 + J𝒊𝒊

𝑨𝑨 + J𝒊𝒊
𝑬𝑬 + J𝒊𝒊

𝑪𝑪,𝑻𝑻   (6.4) 

 

with JiD the ideal matter diffusion term, JiA  the advection flux due to the velocity of water in the 
pore, JiE the migration flux due electrostatic gradients and JIC,T

 the flux due to gradients of 
temperature and non ideal diffusion. These terms can be expressed as it follows  

 

⎩
⎪
⎨

⎪
⎧ J𝒊𝒊

𝑫𝑫 = −𝐷𝐷𝑖𝑖,0∇𝐶𝐶𝑖𝑖
J𝒊𝒊
𝑨𝑨 = 𝐶𝐶𝑖𝑖v

J𝒊𝒊
𝑬𝑬 = −𝐷𝐷𝑖𝑖,0

𝑧𝑧𝑖𝑖𝑒𝑒𝐶𝐶𝑖𝑖
𝑘𝑘𝐵𝐵𝑇𝑇

∇Ψ

J𝒊𝒊
𝑪𝑪,𝑻𝑻 = −𝐷𝐷𝑖𝑖,0𝐶𝐶𝑖𝑖[

∇𝛾𝛾𝑖𝑖
𝛾𝛾𝑖𝑖

+ ln (𝑎𝑎𝑖𝑖)
∇𝑇𝑇
𝑇𝑇

]

     (6.5) 

 

Where Di,0 [m² s-1] is the diffusion coefficient in free water, Ci [mol m-3]the concentration, v [m s-1] 
the advection velocity, e [C] the absolute charge of electron, kB [J K-1] the Boltzmann constant, ψ [V] 
the electrostatic potential, γi [m3 kg-1] the chemical coefficient , ai [-] the chemical activity and T [K] 
the temperature.  

In the context of studying the long-term durability of cement, we assume chemical equilibrium 
achieved and chemical reactions negligible. In that case, sink terms are dismissed and the equation of 
transport finally writes as 

 

∂𝐶𝐶𝑖𝑖
∂𝑡𝑡

+ ∇ ⋅ J𝒊𝒊 = 0     (6.6) 
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To quantify the EDL effects on ionic diffusion, the equation (6.6) is resolved in the two cases of ideal 
and non-ideal pore solutions. 

A. Case of an ideal solution: The classical Poisson-Nernst-Planck (PNP) 
equations  
In this section, we aim to present the boundary value problem for the finite element resolution of 
the classical Poisson-Nernst-Planck (PNP) equations for ideal solutions. In the case of ideal 
electrolytes, the chemical potential simplifies into its ideal term (ref. chapter 3 section III.A) where 
the activity coefficient γi is equal to 1 and the ionic concentrations are confounded with the 
activities. By assuming a constant temperature of the pore, the chemical and thermal flux is set to 
zero i.e. JIC,T = 0 in (6.5). In sum, the chemical potential gradient simplifies to the usual matter 
diffusion gradient ∇Ci.  

i) The governing equations 

The first equation of the ideal PNP system is Gauss’s law of charge conservation, also known as the 
Poisson equation, which correlates the volumetric charge distribution ρ with the resulting electric 
field E. The differential form of the law can be written as 

 

∇ ⋅ 𝐄𝐄 = 𝜌𝜌
𝜀𝜀0𝜀𝜀𝑟𝑟

     (6.7) 

where ∇.E is the divergence of E. As we assume the medium to be isotropic with a constant relative 
permittivity εr and since the electric field is a conservative vector field, it writes as the gradient of a 
scalar potential ψ representing the electrostatic potential in volts: 

 

𝐄𝐄 = −∇Ψ       (6.8) 

Secondly, the ionic fluxes Ji are expressed as function of the considered driving forces E (-∇ψ) and 
∇ai. As convection in the pore solution is neglected (JIA =0 in (6.5)), the Nernst-Planck equations 
simplifies to 

 

J𝒊𝒊 = −𝐷𝐷𝑖𝑖,0∇𝐶𝐶𝑖𝑖 − 𝐷𝐷𝑖𝑖,0
𝑧𝑧𝑖𝑖𝑒𝑒𝐶𝐶𝑖𝑖
𝑘𝑘𝐵𝐵𝑇𝑇

∇Ψ    (6.9) 

Finally, the law of conservation of mass can be written as  

 

∂𝐶𝐶𝑖𝑖
∂𝑡𝑡

= ∇ ⋅ (𝐷𝐷𝑖𝑖,0∇𝐶𝐶𝑖𝑖 + 𝐷𝐷𝑖𝑖,0
𝑧𝑧𝑖𝑖𝑒𝑒𝐶𝐶𝑖𝑖
𝑘𝑘𝐵𝐵𝑇𝑇

∇Ψ)     (6.10) 
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ii) Initial and boundary conditions 

The pore is represented by a rectangular domain a length L representing the length of the walls in 
the longitudinal direction x and a width W that represents the width of the slit in the transversal 
direction y (Fig.6.1). The ratio L/W is set to 5 for different values of the pore size. The initial 
conditions are 

 

�
∀(𝑥𝑥,𝑦𝑦) ∈]0, 𝐿𝐿[×]0,𝑊𝑊[
Ψ(x,y, 𝑡𝑡 = 0) = 0
𝐶𝐶𝑖𝑖(x,y, 𝑡𝑡 = 0) =  𝐶𝐶𝑏𝑏,𝑖𝑖

    (6.11) 

 

Boundaries conditions are also imposed at the edges of the box. Firstly, the conditions on the C-S-H 
charged walls at y=0 (bottom wall) and y=W (the upper wall) are 

 

�
𝐧𝐧 ⋅ (𝐄𝐄𝑖𝑖𝑖𝑖 − 𝐄𝐄𝑜𝑜𝑜𝑜𝑜𝑜) = 𝜎𝜎𝑠𝑠

𝜖𝜖0
∂𝐶𝐶𝑖𝑖
∂𝑦𝑦

|𝑦𝑦=0,𝑊𝑊 = 0
        (6.12) 

 

where σs represents the surface charge density and n the normal vector to the walls  with Ein – Eout 
the discontinuity of the electric field through the surface separating the interior media (electrolyte) 
from the outside (reference value). On the same walls, the condition of no flux is imposed on the 
concentration of all species. Secondly, the boundary conditions at the pore’s entry (x=0) and exit 
(x=L) are summarized as below 

 

�
Ψ(x = 0,L) = 0

𝐶𝐶𝑖𝑖(x = 0) = 1.05 𝐶𝐶𝑏𝑏,𝑖𝑖
𝐶𝐶𝑖𝑖(x = 𝐿𝐿) = 0.95 𝐶𝐶𝑏𝑏,𝑖𝑖

     (6.13) 

 

such as only a concentration gradient is imposed at the pore sides with a mean concentration 
difference of ΔCi equal to 10% of Cb,i [Yang2019]. Hence, an increased inlet concentration of        
Cinlet = 1.05 Cb,i (+5% Cb,i) and a reduced concentration at the outlet Coutlet = 0.95 Cb,i (-5% Cb,i). The 
meshing of the domain (Fig.6.1) is refined at the surfaces with a maximum cell size of λD/100 where 
λD is the Debye length i.e. a maximum size of 0.1 Å for a 0.1M NaCl electrolyte. For computational 
efficiency, the refinement is gradually diminished as one approaches the center of the pore with a 
growth rate of 1.13. 
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Fig.6.1.Capture of the finite element mesh of the pore space used for the simulation of the electrical 

double layer formation in a slit pore with a focus on different regions of the domain. 

 

For the rest of the chapter, all the results obtained by this approach will be referred to by the 
notation PNP.  

B. Extension to non-ideal electrolytes: the modified Poisson-Boltzmann (MPB) 

In this approach, the idea is to resolve the non-ideal PNP (∇γi ≠ 𝟎𝟎 in (6.5)) by keeping the 
advantageous PB formalism and modify it in order to account for surface effects predicted by the 
GCMC in the resolution of the transport problem. As mentioned in the previous chapter (ref. chapter 
4 section I), the PB equation is a steady state reformulation of the conventional PNP (6.10). It 
assumes a Boltzmann distribution where ions distribute, around a given charged surface, in function 
of their thermal and electrostatic energies. Mathematically, this translates into concentration profiles 
that write as decaying exponential functions. In the case of monovalent salts, GCMC computations 
have provided better insight on the non-ideality effects of the interfacial solution but, ultimately, also 
resulted in similar exponential-like distributions. So to find a convenient formulation of the ionic 
fluxes in the diffuse layer (DL) of the EDL, we assume that ionic concentrations at equilibrium write as 
follows 

𝐶𝐶𝑖𝑖(y) = 𝐶𝐶𝑏𝑏,𝑖𝑖exp (−𝑧𝑧𝑖𝑖𝑒𝑒Ψ(y)
𝑘𝑘𝐵𝐵𝑇𝑇

)     (6.14) 

where y is the normal direction to the charged surfaces. Once we insert the distributions (6.14) in the 
Nernst-Planck equations (6.9), the equation becomes 

 

J𝒊𝒊 = −𝐷𝐷𝑖𝑖,0∇[𝐶𝐶𝑏𝑏,𝑖𝑖exp (−𝑧𝑧𝑖𝑖𝑒𝑒Ψ(y)
𝑘𝑘𝐵𝐵𝑇𝑇

)] − 𝐷𝐷𝑖𝑖,0
𝑧𝑧𝑖𝑖𝑒𝑒𝐶𝐶𝑏𝑏,𝑖𝑖
𝑘𝑘𝐵𝐵𝑇𝑇

exp (−𝑧𝑧𝑖𝑖𝑒𝑒Ψ(y)
𝑘𝑘𝐵𝐵𝑇𝑇

)∇Ψ     (6.15) 
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Assuming the invariance of distributions in the direction x (normal to the cross section and parallel to 
the walls), the longitudinal ionic fluxes Ji rewrite as function of the flux in the bulk area Jb,i  as it 
follows 

 

J𝒊𝒊 = exp (−𝑧𝑧𝑖𝑖𝑒𝑒Ψ(y)
𝑘𝑘𝐵𝐵𝑇𝑇

)J𝒃𝒃,𝒊𝒊     (6.16) 

With 

J𝒃𝒃,𝒊𝒊 = −𝐷𝐷𝑖𝑖,0∇𝐶𝐶𝑏𝑏,𝑖𝑖 − 𝐷𝐷𝑖𝑖,0
𝑧𝑧𝑖𝑖𝑒𝑒𝐶𝐶𝑏𝑏,𝑖𝑖
𝑘𝑘𝐵𝐵𝑇𝑇

∇Ψ𝑏𝑏       (6.17) 

Where ∇Cb,i and ∇ψb , respectively, represent the concentration gradient and the imposed 
difference of potential  between the pore’s entry and its exit (in the direction x). As the bulk solution 

is out of the EDL area, we consider there are no transversal fluxes i.e. Jb,i . y = 0 

By averaging the fluxes in (6.16) over the cross-section of the pore of width W, we obtain non-
dimensional values Ki that represent the ratios between the ionic fluxes in the EDL and the flux in the 
bulk area [Fried2008] i.e.   

 

⎩
⎪
⎨

⎪
⎧ J𝒊𝒊 = 𝐾𝐾𝑖𝑖J𝒃𝒃,𝒊𝒊

𝐾𝐾𝑖𝑖 = 1
W
� 𝑒𝑒

−𝑧𝑧𝑖𝑖𝑒𝑒Ψ(𝑦𝑦)
𝑘𝑘𝐵𝐵𝑇𝑇 𝑑𝑑𝑑𝑑

W

0

        (6.18) 

In terms of transport, it is usually the diffusion coefficient that we measure to characterize the 
mobility of an ion. As developed in [Yang2019], the effective ionic diffusivities Di,e can ultimately be 
expressed as  

 

𝐷𝐷𝑖𝑖,𝑒𝑒 = ∫ J𝒊𝒊𝑑𝑑𝑑𝑑
𝑆𝑆

⋅ 𝐿𝐿
Δ𝐶𝐶𝑖𝑖

    (6.19) 

Where ∬
𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽
𝑆𝑆

 is the species flux per unit cross-section in the steady state, L the medium length and 

ΔCi the mean concentration difference between the two boundaries of the medium. As a 
consequence, the ratios Ki actually represent the net contribution of the surface effects on the ions 
diffusion such as  

 

𝐷𝐷𝑖𝑖,𝑒𝑒 = 𝐾𝐾𝑖𝑖𝐷𝐷𝑖𝑖,𝑏𝑏      (6.20) 
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Where Di,b is the diffusivity in the bulk assumed close to the diffusivity Di,0 in free water (Tab.6.1.) as 
EDL overlapping is minor in the bulk area.  

 

Species Di,0 (10-9 m2 s-1) 

Na+ 1.334 

Ca2+ 0.792 

OH- 5.273 

Cl- 2.032 

 

Table.6.1. Ionic diffusion coefficients in water at infinite dilution at 25°C [Lide1994] 

 

This approach represents a significant simplification from the usually necessary finite element 
analysis of the Eq.(6.6). Determining the diffusion coefficients as presented in (6.20) also allows to 
implicitly account for non-ideality effects by using, in (6.16), the electrochemical potential ψGCMC 
obtained from the GCMC simulations rather than of the usual PB solution ψPB (ref. Eq.(4.4)). In 
Monte Carlo simulations, the resulting potential ψGCMC is a compound of two effects: 

(i) The electrostatic interactions between the surface and the ions calculated through 
Coulombic short range potentials. 

(ii) The steric effects of non-ideal solutions which are accounted for by the very nature of 
the insertion moves in the MC algorithm. The excess chemical potential μex is the 
physical quantity that measures, in simple terms, “the packing” of the system at a 
certain location (ref. chapter 3 section III.B). 
 

To compute ψGCMC, the same methodology of the previous chapter (ref. chapter 4 section II.A.) is 
followed through integration of the modified Poisson equation as presented below: 

 

�
𝛥𝛥ΨGCMC = −𝜌𝜌GCMC

𝜖𝜖0𝜖𝜖𝑟𝑟

𝜌𝜌GCMC = 𝑒𝑒𝑁𝑁𝐴𝐴� 𝑧𝑧𝑖𝑖𝐶𝐶𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖

    (6.21) 

Despite its mathematical appeal, the previous developments are only rigorously valid under the 
assumption that ions are in quasi-thermal equilibrium with a Boltzmann-like distribution. As the 

surface electric potential arises above the thermal voltage ψT = 
𝑘𝑘𝐵𝐵𝑇𝑇
𝑧𝑧0𝑒𝑒

 (~25mV for a 1:1 electrolyte at 

25°C), the non-linearity in the Poisson-Boltzmann proportionally increases to invalidate the 
assumptions of an ideal solution. Nonetheless, in the context of studying steric effects in the 
dynamics of electrolytes submitted to large applied voltages, Bazant et al. [Bazant2004, Kilic2007] 
discovered what they called a “weakly non-linear regime” of potentials within the interval of          
25–200mV, where Boltzmann-like statistics (6.14) remains applicable. In order to remain within the 
validity scope of the PB equations, the C-S-H surface potential is limited to a value of -92mV                 
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(corresponds to -1.2 e.nm-2 which is also a good physical assumption), the concentration to an upper 
bound of 0.2M and the pH to a value of 13 i.e. NaCl 0.1M + NaOH 0.1M (ref. chapters 4 and 5).  

Results obtained by this approach will be referred to by the notation MPB (Modified Poisson-
Boltzmann) as the method combines MC results of the electrochemical potentials along with the PB 
formalism.  

III. Results and discussion 
In this section, the equations of ionic transport are solved using the two methodologies previously 
presented. The objective is to quantify the diffusivity of ions through nanoscopic pores as a 
representation of gel pores in the C-S-H gel. In the first instance, the pore solution is modeled as a 
simple monovalent salt where Na+ is the only counter-ion. Afterward, calcium ions Ca2+ are added for 
a better representation of the system and their effects investigated. As the electrical double layer 
was demonstrated to be very intimately correlated to the characteristics of the pore network, the 
ionic diffusivities of the present species are computed for different pore radii within the range of gel 
pores entry sizes i.e. from 16 nm down to 4 nm. In order to assess the sensitivity of the diffusion 
process to the properties of the C-S-H surface and the surrounding electrolyte, two main parameters 
are varied through the study: 

(i) The ionization degree of the C-S-H surface 
(ii) The pH of the pore solution at constant surface charge density 

In the first set of simulations, the pore solution is approached as a simple NaCl salt. Firstly, the 
surface charge density, indicative of the ionization degree, is varied and its effects quantified. Then, 
hydroxides (OH-) are explicitly accounted for to better fathom the effect of alkalinity on the 
diffusivity of chloride ions. 

In the second part of the section, the resolution is extended to the case of the pore solution model 
that was developed in Chapter 4 section II and the effect of the adsorbed calcium is discussed. 

A. Transport in symmetric monovalent electrolytes  

i) Effect of the surface charge density  

As developed in the cases of single-wall and slit pore solutions, the ionization degree of the C-S-H 
surface has been shown to have a sizable effect on the electrostatic properties of the electrolytic 
solution in saturated pores. The choice of the range of values can cover a wide interval depending on 
the stoichiometric Calcium to silicon ratio. If the 14 Å tobermorite provides a good model for C-S-H 
having Ca/Si ratios below 1 with silanol sites densities (SSD) going up to 4.8 sites.nm-2 [Tay1986, 
Lab2006, Lab2011], it is not the case when the Ca/Si ratio goes beyond 1. Unfortunately, the C-S-H in 
real cement paste is usually characterized with Ca/Si ratios above 1.5 for example approaching 2 for 
OPC and varying between 1.5 and 1.6 for the LC3 blend depending on the calcined kaolinite content 
[Avet2018]. Very recent studies on the atomistic structure of pure C-SH suggest that the SSD 
decreases as the Ca/Si ratio increases to reach values around 0.9 to 1.2 sites.nm-2 for calcium to 
silicon ratios, respectively, between 2 and 1.75. Hence, we will fix the value of -1.2 e.nm-2 as an 
absolute maximum for the range of values that will be chosen for the simulations. From a modelling 
point of view, it will also be showed that, within the defined range of values, we will remain within 
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the “weakly non-linear regime” of low voltages where the assumptions of the Poisson-Boltzmann 
theory remain acceptable.  
 
The simulated system is a NaCl solution of 0.1M confined in a C-S-H slit pore with surfaces of charge 
densities varying between -0.12 and -1.2 e.nm-2. For the sake of comparison, the resolution of the 
transport equation is conducted in the ideal and non-ideals cases, respectively, using the approaches 
explained in sections II.A and II.B.  
 

(a)                                                                                            (b) 
Fig.6.2. Evolution of the average x-component of ionic fluxes (diffusive, electrophoretic (migration) 
and total) of sodium Na+ and chloride Cl- in a 0.1M NaCl pore solution as function of the pore size 
around C-S-H surfaces of charge densities σC-S-H equal to (a) -0.24 and (b) -0.48 e.nm-2.  

 
 
In Fig.6.2.(a), one can see that for a fixed surface charge density equal to -0.24 e.nm-2, the 
longitudinal x-component of the total flux, for both sodium and chloride ions, is increasing in average 
as the pore size is reducing. This is mainly due to the increase of the diffusive flux <JxDiff> resulting 
from the matter diffusion term ∇ai at the edges of the channel (which usually simplifies to ∇Ci 
(Eq.(6.9)) for the case of moderately concentrated solutions). Concerning the electrophoretic (or 
migration) term, it seems that although the value of the flux <JxMig> increases in absolute value for 
both species, its contribution to the total flux depends on the charge of the considered ion. In fact, 
while the sodium migration flux <Jx,NaMig>  is oriented in the x direction (positive) pushing the Na+ 
ions toward the outlet, the chloride flux <Jx,ClMig>  grows more and more negative for smaller pores 
hence impeding it progression in the same direction. Nonetheless, we see that, in accordance with 
the law of charge conservation (Eq.(6.7)), the total fluxes of chloride and sodium are equal i.e. 
<Jx,NaTot> = <Jx,ClTot> which translates into a flux of charge  <Jx,NaTot - Jx,ClTot> equal to zero, thus 
ensuring the electroneutrality of the system. In the case of σC-S-H= -0.48 e.nm-2 (Fig.6.2.(b)), all the 
trends are conserved although enhanced due to the higher surface charge density of the C-S-H. 
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 (a)                                                                                            (b) 

Fig.6.3. Normalized diffusivity of (a) sodium Na+ and (b) chloride Cl- in a 0.1M NaCl pore solution as 
function of the pore size around C-S-H surfaces of charge densities σC-S-H equal to -0.12, -0.48 and       
-0.96 e.nm-2. PNP calculations represent results for the ideal case and MPB computations account for 
non-ideality of the solution. 

 

In a global view, we see in Fig.6.3 that, for a negatively charged C-S-H surface, the diffusivity of Na+ is 
boosted (Fig.6.3.(a)) while the flux of Cl- is diminished (Fig.6.3.(b)). This stems from the fluxes 
expression in (6.16) where, with respect to bulk fluxes, the counter-ions current is enhanced 

(
−𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧
𝑘𝑘𝐵𝐵𝑇𝑇

>0) while co-ions are slowed down (
−𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧
𝑘𝑘𝐵𝐵𝑇𝑇

<0). This trend is retrieved for both PNP and MPB 

resolutions. Also both methods are in very good agreement at low surface charge density i.e.          
σ=-0.12 e.nm-2. As the surface charge density is rising, the assumption of non-ideality breaks down as 
one gets closer to the surfaces. In that regard, and due to neglecting ionic sizes or ion-ion 
correlations, the classical PNP underestimates the screening of the surfaces and results in pores 
which are seemingly more negatively charged. As a consequence, the diffusivity of chloride is further 
lowered (Fig.6.3.(b)) while the flux of sodium is increasingly overestimated (Fig.6.3.(a)). As the pore 
size reduces, the EDLs gradually overlap, the diffuse layers cover the integrality of the pore space and 
the effect of the surface on the solution is increased i.e. Na+ diffuse even faster (Fig.6.3.(a)) and 
chloride slower (Fig.6.3.(b)). It is when the deprotonation degree of C-S-H is at its highest that the 
chloride diffusion is most mitigated. In fact, at σ equal to -0.96 e.nm-2, the MPB solution (Fig.6.3.(b)) 
predicts that while the chloride anions diffuse at 83% of their bulk flux in the 16nm pore, the ratio KCl 
progressively decreases and falls to a value of 0.28 for a pore width of 4nm (MPB). The only porosity 
parameter that was accounted for was, indeed, the pore size. And without consideration of any 
further properties of the pore network (such as the tortuosity of the path or the connectivity of the 
pores), it is found that solely the ion-surface electric interactions reduced the effective diffusion 
coefficient of chloride by up to a factor of 3.  

In this case where the concentration was kept at a value of 0.1M, it is important to stress that the 
thickness of the EDL was unchanged for the whole range of ionization degrees. In fact, both PB and 
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MC computations (ref. chapter 4) estimate the thickness of the EDL to be around 5 nm. Hence, the 
drop of chloride diffusivity, in the above configuration, is uniquely due to the increasingly more 
negative average potential of the pore; the latter being, here, only function of the pore radius and 
the magnitude of the surface potential.    

Another point of interest is actually the rate at which the diffusivity of chloride is decreasing as the 
pore reduces. At fixed surface charge of -0.96 e.nm-2, one can notice (Fig.6.3.(b)) that by reducing the 
pore width by moving from 16 to 8 nm, the normalized diffusivity falls from 0.83 down to 0.56 i.e. a 
decrease of 33%. In the interval of pore sizes >10nm, we have previously showed (ref. chapter 4) 
that, given the weak overlapping of the EDLs, the surface effects are of relatively small importance 
(depending on the surface charge density). As the pore radius falls below the EDL thickness, the 
decrease rate almost doubles once passing from a pore of 8 to 4nm, with KCl going from 0.56 to 0.28 
i.e. a factor of 2.  

From an experimental perspective, it is very hard to isolate surface effects when measuring the 
diffusion coefficient of ionic species. In cement science, the standardized approach to evaluate the 
mobility of ions is to compute apparent diffusion coefficients. These empirical diffusivities (ref. 
chapter 2 section III) can be seen as the averaged contribution of a number of microstructure 
parameters including adsorption phenomena. In the case of blended systems, recent studies on LC3 
cements have showed that there was no obvious correlation between the apparent diffusivity of 
chloride and the binding capacity of C-S-H [Maraghechi2018]. However, Sui et al. [Sui2019(2)] found 
that the apparent diffusion coefficient increased with the alkali ions content (namely sodium Na+ and 
potassium K+) in the pore solution (ref. Fig.2.7) of binary and ternary blends. In the next section, we 
investigate the effects of ionic strength on the effective diffusivity of present species. 

ii) Effect of the ionic strength 

• Effect of the concentration 

In the study of the electrostatic properties of confined pore solutions in slit pores, it was shown how 
the increase of the ionic concentration resulted in the decrease of the average electrochemical 
potential of the pore (ref. chapter 4 section II.C). This has been attributed to the increase of the 
screening capacity of the counter-ions to shield the negative surface along with the decrease of the 
thickness of the electrical double layer as the ionic strength increased. In order to measure the 
implication of these effects as function of the ionic molarity, we assume that the ionization degree of 
the C-S-H does not change with respect to the concentration of chloride in the pore solution. The 
surface charge density is set at a moderate value of -0.24 e.nm-2. The concentration of the pore 
solution modelled as a symmetric NaCl salt is varied from 0.1M to 0.5M (roughly the average 
concentration of chloride in seawater). The evolution of the normalized effective diffusivity as 
function of the pore size is represented in Fig.6.4 for the present sodium (Fig.6.4.(a)) and chloride 
(Fig.6.4.(b)) species.  

 



167 
 

 
    (a)                                                                                            (b) 

Fig.6.4. Normalized diffusivity of (a) sodium Na+ and (b) chloride Cl- as function of the pore size in 
NaCl solutions of concentrations 0.1M, 0.3M and 0.5M around C-S-H surfaces of charge density equal 
to -0.24 e.nm-2. PNP calculations represent results for the ideal case and MPB computations account 
for non-ideality of the solution. 

 

As steric effects and ionic sizes are neglected, the PNP overestimates the diffusivity of sodium 
(Fig.6.4.(a)) and, equivalently, underestimates the chloride effective diffusivity (Fig.6.4.(b)). This is 
most noticeable in the case of highest concentration i.e. 0.5 M. As the concentration is increasing, 
the negative potential of the pore decreases in absolute value (ref. chapter 4 section II.C). Hence, the 
general trend in which sodium is transiting faster than chloride is maintained. It is, however, 
noticeably mitigated as the concentration is building up. In the high concentration case (0.5 M), MC 
computations of the electrostatic profile (ref. chapter 4 section II.C) reveal that the bulk area is 
retrieved within 1 nm distance off the surfaces i.e. high screening and very short Debye length. At 
such ionic strength, the overlapping of the EDLs does not occur and the surfaces predominantly 
interact with the nearby ions which are mainly sodium cations. As a result, the diffusion coefficient of 
chloride does not fall below 85% of its bulk value even within the smallest pores i.e. at 0.5M in a 4nm 
pore (MPB in Fig.6.4.(b)). In real cementitious structures, once the concentration of chloride reaches 
such a deleterious amount, it usually accompanied by a depassivation of the steel and a start of the 
corrosion reaction. Nonetheless, the correlation between pH and transport or binding is not an 
obvious one. Indeed, De Weerdt et al. have shown in [DeWeerdt2015] that within a certain interval 
of values, normally beyond 12, the decrease of the alkalinity could result in an enhanced binding 
capacity of the hydrates and, hence, a better resistance to chloride diffusion. The relationship 
between pH (at constant surface potential) and diffusion is studied in the following section.  
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• Effect of pH at constant surface charge density 
The values of pH along with the chloride content at the vicinity of reinforcement steel rebars are key 
parameters in the initiation of corrosion reactions. And if alkalinity is one of the important 
characteristics of the pore solution of cement paste, it also has great influence on the surface 
properties of the formed hydrates and particularly C-S-H.  

In the optic of comparing the chloride resistivity of different cement blends, the experimental studies 
are typically conducted at high pH (for example at pH=13.3 with NaOH = 0.3M in [Wilson2021]). 
Within this range of pH values (>13), we assume silanols ionization to have reached a saturation 
degree and that, consequently, the surface charge density remains constant. In order to isolate the 
effect of pH, we set a low value of the C-S-H surface charge density fixed at -0.24 e.nm-2.  The 
numerical resolution of the transport equations is twofold. Firstly, we resolve the classical PNP 
equation under the assumptions of an ideal pore solution. Then, the steric effects are included and 
the transport problem is resolved using the MPB formalism. For the latter resolution method, the pH 
is explicitly accounted for by modelling the pore solution as a {NaCl 0.1M + NaOH} electrolyte. To 
cover a reasonable range of experimental values, the pH is set at values of 13, 13.3 and 13.5 which 
approximately correspond to NaOH of concentrations, respectively, 0.1, 0.2 and 0.3M. In the case of 
the PNP resolution, the pH is implicit and as the model depicts ions as point charges only 
characterized by their valences, there is no difference between chloride and hydroxide ions in terms 
of ion-ion interactions. However, the mean concentration difference of OH- between the pore 
boundaries is set to zero (i.e. COHinlet = COHoutlet = COHbulk), while the concentration gradient for 
chloride and sodium at the boundaries of the pore is implemented as explained in section II.A.(ii). 

 

   (a)                                                                                            (b) 

Fig.6.5. Normalized diffusivity of (a) sodium Na+ and (b) chloride Cl- as function of the pore size in 
NaCl solutions of pH values at 13, 13.3 and 13.5 around C-S-H surfaces of charge density equal to        
-0.24 e.nm-2. PNP calculations represent results for the ideal case and MPB computations account for 
non-ideality of the solution. 

As expected, one can see that due to the negative surface potential of C-S-H, the chloride (Fig.6.5.(b)) 
diffuses more slowly in the EDL than in the bulk area while it is the opposite for sodium (Fig.6.5.(a)). 
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The PNP solution overestimates the diffusivity of sodium due to the underestimation of the surface 
screening and neglecting the intermolecular ion pairs correlations. For chloride (Fig.6.5.(b)), it 
appears that the decrease of pH attenuates the flux of chlorides. These results are in good 
agreement with MC predictions of the EDL formation (ref. chapter 4 section II.D) where the increase 
of pH, at constant surface charge density σ, had a very similar effect to the increase of ionic strength 
i.e. enhanced screening of the surface along with a reduction of the Debye length and a shortening of 
the diffuse layer thickness. Additionally, it is interesting to note that the mismatch between the PNP 
and the MPB in Fig.6.5.(b), although relatively small, does not follow an obvious pattern. In fact, at a 
pH of 13, the diffusivity of chloride from MPB is initially lower than its PNP homologue. As the 
hydroxyl content increases to 0.3M (pH =13.5), it seems that this is reversed and it is the PNP values 
that rather fall below the Monte Carlo predictions. This is partly due to the difference in the force 
fields between chloride and hydroxide ions in the MC computations. Another reason for that is 
probably the increasing competition of the enhanced presence of hydroxide ions with chlorides for 
the adsorption on the limited number of available ionized sites. As a matter of fact, that would not 
only explain, in part, the mismatch of the two solutions but also the general tendency of the binding 
capacity of C-S-H to fall at higher pH values [Plus2016, Tri1989]. 

iii) First conclusions: The nanoscopic diffusion of chloride in monovalent systems 

The surface effects that generate the EDL structure around C-S-H have a sizable effect on ionic 
transport. The magnitude of these effects is measured through the normalized diffusion coefficient 
i.e. Kcounter for the counter-ions (Na+) and Kco for the co-ions (essentially Cl-). The negative electrical 
potential of the pore translated in an attenuation of the chloride flux (KCl <1) and an amplification of 
that of Na+ (KNa >1). As the EDL overlapped stronger within smaller pores, the disruption of the local 
electroneutrality of the pores resulted in a disappearance of the bulk area and an overall increase of 
the negativity of the pore, hence, an increase of KNa and a reduction of KCl. 

Through the investigation of a wide range of system-related parameters, it was equally shown that, 
along with the pore size, the ionization degree of the C-S-H and the ionic strength of the solution 
greatly influenced the diffusivity of ions. The increase of the surface charge density was found to 
significantly alter the ideality of the electrolyte especially at the interface. It resulted in stronger 
correlations between the ionized silanols and the adsorbed sodium which indirectly reduced the 
chloride mobility. On the other hand, the increase of the ionic concentration favored a higher 
screening of the negatively charged surface which, in turn, decreased the Debye length and with it 
the extent of the diffuse layer. At a constant surface charge density, it also appeared that the 
lowering of the system alkalinity hindered chloride diffusion. Experimental work on the effects of the 
pH drop showed that with a lower presence of hydroxides, chloride binding was less inhibited by the 
competition of OH-. That not only resulted in an enhanced binding capacity of the hydrates but, 
eventually, to an improved chloride resistance of the cement sample. 

In cement science, one can actually speak of the semi-permeable character of cementitious materials 
with respect to the ionic flows [Goto1981]. As the connectivity of the capillary pores is assured by 
nanopores, the C-S-H gel pores (<10nm) appear to form a major obstacle to chloride ingress. Still, the 
pore network remains one factor that does not explain all the aspects of the EDL phenomenon. In 
fact, the sensitivity study conducted has proved that, the pore solution, as much as the surface 
deprotonation plays a part. Given the remaining knowledge gap on C-S-H interfaces, it was chosen to 
model the surface as simply as possible i.e. a 2D wall with an implicit homogeneous surface charge 
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density. It is, however, possible to reach a better understanding of the role the pore solution plays in 
chloride diffusion by including Ca2+ ions in the simulation box.  

B. Transport in a more realistic model of the cement paste 
In this section, the equations of ionic transport are resolved by accounting for Ca in the system. 
Given the low solubility of Ca2+ at high pHs (> 12.5), the presence of calcium in the pore solution is 
negligible.  Hence, Ca2+ ions are only considered as adsorbed species on C-S-H. See section III in 
previous chapter for further detail. To measure the effect of the Ca content on the ionic transport,   
C-S-H surfaces with various ratios of adsorbed Ca2+ are considered.  

i) Ca-adsorbed surfaces 

• Validity of the transport model  

Following the developments on the Ca adsorption on ionized C-S-H surfaces (ref. chapter 5), Monte 
Carlo simulations showed that, in presence of Na+ ions, it was possible to reach a Calcium-Silanols 
occupancy ratio of 50% while keeping Ca2+ concentration in the bulk at under saturation i.e. without 
precipitation of portlandite (Ca(OH)2). Beyond a ratio of 50%, it was found that, without a speciation 
model where chemical reactions were accounted for, the Ca2+ concentration in the pore solution 
continued to build up and simulations failed to generate realistic configurations that respected the 
thermodynamics of the real system. So to best model the problem of chloride ingress in real cement 
paste, we will restrain Ca content to the case where Ca-Si occupancy varied between 0% and 50%. As 
a reminder, a ratio of 0% means that no adsorbed sodium is replaced i.e. almost 100% of adsorbed 
counter-ions on C-S-H are Na+ ions. The other cases represent the situation where 25% and 50% of 
the adsorbed Na+ are replaced by Ca2+ while keeping the charge constant (ref. chapter 5 section III).  

In practice, the absence of Ca2+ in the bulk area and forbidding its accumulation in the diffuse layer 
means an exclusive presence of monovalent ions in the solution. Within the considered range of 
concentrations (<0.2M) and moderate ionization degrees (|σC-S-H | < 1.2 e.nm-2 equivalent to a 
surface potentials below 92 mV at pH of 13 (ref. chapter 5 section III), one can assume, also according 
to developments by Bazant et al. [Bazant2004, Kilic2007], that assumptions of ideality remain 
reasonably valid. Hence, the use of Boltzmann-like distributions in the resolution of the transport 
problem (ref. section II.B).   

As a first step, we compare results of ionic diffusivities calculated through the two implemented 
methods i.e. (i) the PNP equation and (ii) the MPB with an increasing Ca2+ content. With respect to 
the thermodynamic data on real pore solutions (ref. chapter 5 section II), the solution is modeled as a 
{NaCl 98mM + CaCl2 1mM + NaOH 0.1M}. The pH is equal to 13. The surface charge density is set at a 
value of -1.2 e.nm-2 (100% ionization degree). As Ca2+ is essentially adsorbed, chloride and sodium are 
assumed to be the main diffusing species. The boundary value problem is accordingly defined 
following the steps in section II.A. 
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  (a)                                                                                             (b) 

Fig.6.6. Normalized diffusivity of (a) sodium Na+ and (b) chloride Cl- as function of the pore size. The 
pore solution is modeled as a {NaCl 98mM + CaCl2 1mM + NaOH 0.1M} with a pH of 13. The surface 
charge density of C-S-H (σC-S-H) is set at -1.2 e.nm-2. PNP calculations represent results for the ideal 
case and MPB computations account for non-ideality of the solution at charge replacement ratios of 
0, 25 and 50%. 

For the case where no replacement of Na+ (Ca 0%) is considered, the PNP (green squares) seems to 
overestimate sodium mobility (Fig.6.6.(a)) and underestimate chloride’s diffusion (Fig.6.6.(b)) in 
comparison with the MPB (respectively dark red squares (Fig.6.6.(a)) and dark blue squares 
(Fig.6.6.(b)) ). This behavior was previously witnessed in the Na-systems. Yang et al. [Yang2019] have 
also noted the same error once completely neglecting steric effects at the surface. The authors have 
implemented a non-ideal version of the PNP accounting for the chemical potential as a main driving 
force for diffusion. The numerical resolution through the Lattice–Boltzmann method showed the 
general tendency of the classical PNP to deviate from atomistic computations. However, the results 
in the paper rather predicted an increase of the diffusivity of chloride and a decrease in sodium 
mobility for pore ranges between 10 and 4 nm i.e. the opposite of Fig.6.6. This divergence in the 
results may be due to the fact that Yang et al. did not only include a porosity factor in their 
computation but also did not (at least not explicitly) account for the undersaturation limit of Ca2+. As 
it was shown in chapter 5 section III, the accumulation of Ca2+ in the diffusion layer is a contributing 
factor for the reversal of charge at the C-S-H surface and the decrease of the pore negativity. 

Considering now the case of Ca adsorption on the C-S-H, one can note, in Fig.6.6.(b), that passing 
from 25% (turquoise circles) to 50% (blue triangles) calcium occupancy of the ionized silanols results 
in a reduction of chloride diffusivity. As a matter of fact, the EDL study (ref. chapter 5) showed that a 
high Ca adsorption along with a low bulk molarity (typically below the necessary concentration for 
the potential shift to occur) leads to an increase of the negativity of the potential average of the 
pore. In perspective with experimental work on different cement samples, it has been shown that 
the ordinary Portland cement (OPC) has a higher chloride binding in its C-S-H compared to LC3 
cements. A major difference between the two pastes is the Ca/Si ratio (indicative of both Ca content 
and the Silanols site density (SSD)) which approaches 2 for OPC and varies between 1.5 and 1.75 for 
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LC3 [Avet2018]. This difference in the measured amount of physically bound chloride does not, 
however, explain the lower chloride diffusive fluxes in LC3 compared to OPC. MIP (Mercury intrusion 
porosimetry) measurements indicate that the pore size distribution in the LC3 is significantly more 
refined than the OPC reference [Maraghechi2018]. The connected porosity in LC3 is predominantly 
constituted of pores of around 3 to 5 nm while in OPC (and LC3 with low kaolinite content) the size is 
more around 10nm. In a parallel representation, chloride diffusion in Fig.6.6.(b) appears to be further 
affected by the pore size as the diffusivity at a substitution ratio of 25% in a 4nm-pore remains lower 
than at a higher adsorption (50%) in a larger pore (8nm for example). However, as mentioned, the 
difference in Ca/Si of the C-S-H does also impact the SSD and, eventually, the ionization degree of the 
silanol groups. In the next section, the effect of the surface charge density is investigated in presence 
of Ca. For the rest of the chapter, we will essentially consider results from the MPB given its 
versatility with respect to the Ca content. 

• Effect of the surface charge density  

In this part, we choose to keep the pore solution unchanged i.e. a {NaCl 98mM + CaCl2 1mM + NaOH 
0.1M} solution with a pH equal to 13. Only the C-S-H surface is modified and the surface charge 
density is varied between -0.48 and -1.2 e.nm-2. In the context of comparing transport in different 
blended systems, the simulations approach a situation where two distinct surfaces (with different 
SSD), at the same ionization degree, develop surface charges of different magnitudes. 

 

   (a)                                                                                            (b) 

Fig.6.7. Normalized diffusivity of (a) sodium Na+ and (b) chloride Cl- as function of the pore size. The 
pore solution is modeled as a {NaCl 98mM + CaCl2 1mM + NaOH 0.1M} with a pH of 13. The effect of 
the surface charge density of C-S-H (σC-S-H) is investigated and varied between -0.48 and -1.2 e.nm-2. 
MPB computations account for non-ideality of the solution at charge replacement ratios of 0%, 25% 
and 50%. 
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Focusing on chloride ions (Fig.6.7.(b)), one can see that, for a given Ca2+ charge replacement ratio,  
the increase of the surface charge density, from -0.48 to -1.2 e.nm-2, systematically resulted in a 
decrease of the diffusivity of chloride i.e. DCl,-1.2 < DCl,-0.48. At a constant surface charge density      
(for e.g. -1.2 e.nm-2), a clear hierarchy emerges between the different systems with the Na-system 
(0% Ca2+) showing lower chloride diffusive fluxes than the “Ca-doped” cases. This is mainly due to the 
lower screening of the negative surface in the absence of Ca in the system (squares). Less obviously, 
the increase in Ca2+ adsorption, from 25% to 50%, led to the decrease of chloride diffusion. In fact, 
the increased Ca occupancy of the Si-O- sites does result in a higher screening of the surface charge. 
However, the substitution of a portion of the neutralizing Na+ at the surface by Ca2+ was found (ref. 
chapter 5 section III.A) to move part of the sodium from the bulk to “preferentially” accumulate in 
the diffuse layer. The consequence was a decrease of the Na+ bulk molarity and, hence, of the ionic 
strength of the solution. The computation of the electrochemical potential (ref. chapter 5 section 
III.A Fig.5.6) revealed that the average potential of the pore increased in negativity. In other words, 
the ionic strength of the solution decreased faster (with the migration of Na+ toward the surface) 
than the surface screening was increasing due to the higher amount of adsorbed Ca. This behavior 
was, however, only observed within the range of replacement ratios between 25% and 50% where 
no reversal of charge was noted. At a lower surface charge (-0.48 e.nm-2), the trend is conserved with 
the same ranking of the systems in terms of chloride resistance. Still, the interactions between the 
surface and the ions have weakened which sizably diminished steric effects at the interface. Also, 
given the lower number of ionized silanol sites at the surface, the number of added Ca2+, for a same 
substitution ratio, was significantly lower than for the -1.2 e.nm-2 case. In sum, the lower addition of 
Ca2+ reflected less on the ideality of the solution which explains a smaller deviation between the 
cases of 0%, 25% and 50% Ca2+ ratios for the weaker surface charge (-0.48).    

• Effect of the pH at constant surface charge density 

In the context of studying the EDL formation and its effects on ionic transport, it has been shown that 
the increase of pH at a constant surface charge density had a very similar effect than concentration 
(ref. section III.A.(ii)). Hence, we will limit our investigation to the effect of pH as a major indicator of 
the ionic strength of the solution. The Ca2+ solubility was also found to be a direct function of the 
concentration of hydroxides. Hydroxide ions are, in fact, the explicit manifestation of the solution 
alkalinity and they showed an affinity, at high pH, to form covalent bonds with Ca2+ and precipitate 
into calcium hydroxide (portlandite). MC simulations have provided valuable insight on the EDL 
structure in Ca environments but their applicability to describe realistic systems showed to be of a 
limited scope in the absence of a speciation model. In order to extent the validity of atomistic results, 
it was chosen to study the decrease of pH on ionic transport. As the solubility of Ca2+ increases with 
the pH drop, the precipitation threshold of Ca(OH)2 is increased and a higher Ca2+ concentration in 
the solution is realistically possible. 

For a pH value of 12.7, it was determined that the limiting Ca2+ molarity in solution increased to 
2.5mM compared to 1mM for pH equal to 13 (ref. Tab.5.1). The pore solution is, hence, modeled as 
{NaCl 95mM + CaCl2 2.5mM + NaOH 50mM}. The surface charge density is fixed at -1.2 e.nm-2. 
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        (a)                                                                                              (b) 

Fig.6.8. Normalized diffusivity of (a) sodium Na+ and (b) chloride Cl- as function of the pore size. The 
pore solution is modeled as a {NaCl + CaCl2 + NaOH}. The effect of pH is investigated and, hence, 
varied between 12.7 and 13. The surface charge density of C-S-H (σC-S-H) is set at -1.2 e.nm-2. MPB 
computations account for non-ideality of the solution at charge replacement ratios of 0, 25 and 50%. 

Obviously, a decrease in pH means, in our case, a lower ionic strength of the electrolyte. It also 
means an increase of the EDL thickness and a stronger overlapping of the diffuse layers in smaller 
pores which showed, for both Na-systems and Ca-adsorbed surfaces, a rise in the negativity of the 
electrochemical potential of the pore. The most noticeable case is, as expected, the pore of 4 nm. At 
a substitution ratio of 0% (squares in Fig.6.8.(b)), the decrease of pH from 13 to 12.7 resulted in a 
drop of the normalized diffusivity KCl from 0.36 to 0.25 i.e. by factors of, respectively, 1/3 and 1/4.  
Upon the adsorption of Ca, the interface/solution correlation is hindered due to the screening. 
However, the increasing amount of adsorption between 25 % (circles) and 50 % (triangles) mitigates 
the effect of the screening with a higher binding capacity through stronger interactions between the 
adsorbed Ca2+ and the migrating Cl- in the diffuse layer. These Ca2+-Cl- pair interactions appear to be 
equally boosted by the decrease of pH. 

In this regard, Machner et al. [Mach2018] have found that, for PC pastes, a moderate leaching of 
hydroxyle with a pH lowering within a range of 12.2 to 13.2 lead to an increase of the binding 
capacity. This was explained by (i) a reduced presence of the competing hydroxyls in the diffuse layer 
of C-S-H and (ii) a slight increase of the Ca/Si. In the case of blended systems, the LC3-50 mix which 
contains only 50% of clinker (with alkalis) was found to have an excellent chloride resistance (i.e. 
slower diffusive fluxes), in part, due to its low alkali content [Wilson2021]. In the same paper, Wilson 
et al. have attempted to correlate the pore solution properties of different blends to diffusivity 
measurements via mini-migration experiments. It was revealed that not only is there no obvious 
correlations could be observed but that some measurements actually led to contradictory trends 
(most likely because geometrical effects are still important). For instance, the increase of the 
conductivity of pore solution, which is indicative of high ionic concentration, showed a decrease of 
the measured effective diffusivities while it was expected to promote the ingress of external 
chlorides due to higher exchange with hydroxide ions (electroneutrality). This not only shows the 
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challenge that it is to experimentally bridge the atomistic phenomena with their macroscopic 
manifestation but it equally means the difficulty to validate molecular models.  

ii) Fully Ca-occupied C-S-H surface: case of a positive surface charge density 

In the previous chapter (ref. chapter 5 section III.C), we also considered the case where the totality of 
the ionized sites at the interface was occupied solely by Ca2+ ions. Two types of Ca adsorption were 
assumed, both leading to the complete reversal of the surface charge density to a positive value. And 
while in both cases the Ca-Si occupancy was 100%, the tendency of Ca to occupy one or two ionized 
sites clearly reflected on the magnitude of the surface charge. For an ionized C-S-H surface of surface 
charge -1.2 e.nm-2 (pre-adsorption), we assumed that upon adsorption of calcium, the surface charge 
density could vary, in theory, from 0 to +1.2 e.nm-2. To measure the effect on chloride diffusivity, we 
consider two values: +0.6 e.nm-2 and +1.2 e.nm-2. The pore solution is once more modeled as a   
{NaCl 98mM + CaCl2 1mM + NaOH 0.1M} with a pH roughly equal to 13. 

 

 
         (a)                                                                                           (b) 

Fig.6.9. Normalized diffusivity of (a) sodium Na+ and (b) chloride Cl- as function of the pore size. The 
pore solution is modeled as a {NaCl 98mM + CaCl2 1mM + NaOH 0.1M}. Due to the high Ca2+ 
adsorption, we consider two positive surface charge densities: +0.6 and 1.2 e.nm-2. MPB 
computations account for the non-ideality of the solution. 

 

In Fig.6.9, one can note that the trends previously established for negative surfaces are completely 
reversed i.e. Na+ are slowed down while Cl- are now accelerated. In reality, the positive potential at 
the surfaces induces a globally positively charged pore which repels co-ions (Na+ in this case) from 
diffusing through the pore while facilitating the passage of counter-ions; this is the consequence of 
the Donnan effect [Donnan1924]. As expected, the effect is more accentuated when the pore size is 
smaller and the EDL overlapping. In reality, the acceleration of chloride due to such electrostatic 
surface effects may presuppose a high binding of calcium the nature of which remains uncertain. 
Also the zeta potential values that would ensue for considering such positive surface are of the order 
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of 50 and 90mV, respectively, for +0.6 and +1.2 e.nm-2 (ref. chapter 5 section III.C). These numbers 
have not been recorded for C-S-H suspensions of Ca/Si>1 where the usual order of magnitude is 
more around 20mV for pure Ca(OH)2 titration solutions [Haas2015]. At constant Ca2+ concentration, 
Elakneswaran et al. also found that the increase of chloride concentration in the solution decreases 
the ζ value to increasingly more negative values [Elak2009].   

iii)  Implications for real cementitious systems 

All the previously discussed results have implications for the ionic transport through cementitious 
materials. 

A first outcome from investigating the effects of the pore solution at the interface of ionized C-S-H 
surfaces is that Ca-containing systems behave very similarly to Na-systems as long as Ca remains 
adsorbed on the surface and does not accumulate in the solution. The high alkalinity of cement paste 
acts, in reality, as a sink that prevents Ca content from building up outside of the Stern layer. So in 
practice, it seems very unlikely that the reversal of charge that usually characterizes divalent 
electrolytes in Zeta potential measurements occurs. Unlike unconfined C-S-H suspensions, the 
chemistry of real cementitious systems along with the confinement of the solution within nanometric 
pores proves to significantly hinder the dominance of the electrolytic effects.  No matter how close 
Na and Ca systems may appear, a clear ranking in terms of chloride resistivity was still noted. Due to 
the lower screening of the surfaces in monovalent solutions, the more negatively charged pore 
creates a repulsion barrier that impedes chloride diffusion. This effect was lowered in the presence 
of adsorbed Ca2+. A very similar ranking was actually established by Zhang and Gjørv [Zhang1996] 
within the study of chloride diffusion in cement pastes exposed to different external salts:            
DNaCl < DKCl < DCaCl2. This trend was demonstrated for low concentration of salts (up to 0.1M) in good 
agreement with experimental data [Ushiyama1974, Gjorv1987]. The authors argued that due to 
higher ionic interactions with the charged surfaces, the chemical potential and, hence, the diffusing 
driving forces were noticeably hindered for Ca-systems. It was also shown that sodium had a higher 
dragging force than that of calcium which resulted in a reduction of the chloride diffusion with up to 
a factor of 2 (very close to the deviations in Fig.6.8.(b) between the cases of Ca2+ at 0% and 50% ). 

A second important result was to establish the determining role of the pore size on the double layer 
effects over ionic diffusion. Within small pores of 4nm of diameter, it was found that the diffusivity of 
chloride experienced the highest drop from its bulk mobility. The difficulty remained, however, to 
confront the results with atomic-scale experiments. So the validation was carried out indirectly by 
comparison to “macroscopically” measured diffusion coefficients. In the context of comparing 
chloride resistivity of cement pastes, Maraghechi et al. [Maraghechi2018] found that the apparent 
diffusion coefficient of chloride was much lower for LC3 samples compared to OPC. This difference in 
the chloride resistivity was attributed to the refined pore structure of the LC3 blend as Mercury 
Intrusion porosimetry (MIP) indicates in Fig.6.10.(a). 
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           (a)                                                                                           (b) 

Fig.6.10. (a) Porosity distribution of PC and LC3-50 (with increasing kaolinite content) paste samples 
after 6-month exposure to water or 2M NaCl solution and (b) Correlation between the bound 
chloride, the critical pore entry radius with the apparent chloride diffusion coefficient. Taken from 
[Maraghechi2018] 

 
The apparent diffusion coefficients in Fig.6.10.(b) were obtained through bulk diffusion experiments 
(chloride ponding tests). They show, in fact, a sizable drop of the diffusivity of at least one order of 
magnitude once the pore entry size decreased from 10 to 4 nm. In small pores of 4 nm, it was found 
that the EDL overlapping in small pores has a non negligible contribution reducing the diffusivity of 
chloride by up to a factor of 3 to 4 (Fig.6.8.(b)). It remains; nonetheless, clear that geometrical effects 
such as the tortuosity of the pore network also contributed to lengthen the average diffusion path of 
chlorides. As a matter of fact, it is important to remember that, unlike the microscopic effective 
diffusivities Ki that were computed through the chapter, apparent diffusivities are empirically fitted 
coefficients where microstructure parameters are lumped together on top of the surface effects. 
Results in Fig.6.10.(b) also show a decrease by a factor of 10 as the pore size goes from around 14 nm 
to 10 nm. At this length scale, the EDL overlapping was proved to be minor (especially at high pHs) 
and only the geometry of the pore network could explain such a drop. However, the error on the 
measured pore size entries by MIP was, unfortunately, not discussed in the paper which forces 
caution when interpreting the results.   

Finally, it was found that reversing the surface charge density to positive values, presumably due to 
high Ca-Si occupancy, lead to an increase of the chloride diffusivity. For a solution of pH=13, the 
normalized diffusion coefficient increased by a factor of approximately 2 and 1.5 for surface charges, 
respectively, +0.6 e.nm-2 and +1.2 e.nm-2 once the pore size reduced from 12 to 4nm of width. A very 
similar behavior was noted by Yang et al. which for a similar chloride content (NaCl at 0.1M) at a pH 
of 12.5 registered an increase of chloride diffusivity by a factor of roughly 1.4 once the channel width 
went from 11 nm to 4 nm [Yang2019]. Although there is no conclusive experimental validation of 
these results, the question on the location of Ca and the mechanisms of its adsorption on C-S-H 
appear to be a decisive factor which regulates the binding and transport of chloride. 
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IV. Summary 
In this chapter, the numerical resolution of the equations of ionic transport was carried out through 
the implementation of two methods: 

• The first approach consists in conducting a finite element analysis of the conventional ideal 
Poisson-Nernst-Planck equations (PNP) 

• The second method relied on the combination of the Poisson-Boltzmann formalism with 
Monte Carlo calculations of the ionic concentrations and electric potential at equilibrium 
(MPB) 

The two implementations were, first, applied to the case of monovalent electrolytes (NaCl and 
NaCl+NaOH) and, then, extended to Ca-containing pore solutions. Under the assumptions of ideality, 
the PNP results showed an underestimation of chloride diffusivity due to neglecting the finite ionic 
size and the contribution of the Stern layer. On the other hand, the MPB solution offered a better 
quantification of the steric effects on the mobility of ions. It also showed that, up to a 50% Ca 
occupancy of ionized silanol sites, the Ca-containing pore solution behaved in a very similar manner 
to monovalent salts where Na+ is the only counter-ion. In sum, it was found that chloride diffusivity 
was further lowered as: 

1. The pore size was reduced 
2. The ionization of the C-S-H was higher and the surface was more negatively charged 
3. The ionic strength was lower i.e. lower Cl- concentration and/or lower pH (down to 12.7) 

In the case where Ca2+ ions occupied the integrity of available ionized silanol sites, a clear deviation 
between Na-systems and Ca-systems was marked. And while the pore size reduction still enhanced 
the effect of the double layer, the electrochemical potential of the pore was rather determined by 
the Ca content. At the highest calcium-silanol (Ca-Si) occupancy, the pore displayed an overall 
positive potential than seemed to boost the chloride mobility.  

Finally, we compared the predictions of our model with experimental and computational results in 
the literature which seemed to indicate that calcium occupancy of the C-S-H surface is partial and 
possibly shared with sodium. If the surface potential of C-S-H remained negative that, along with the 
pore size and other discussed factors, might explain the high chloride resistance of some blended 
cementitious systems.  
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Chapter 7 Summary and Outlook 
 

 

 

In the context of studying the resistance of cement-based materials to chloride ingress, two main 
themes were investigated in this thesis: 

(i) The mechanisms of adsorption of chloride ions on the surface of the C-S-H gel i.e. the 
so-called physical binding of chloride in the electrical double layer.  

(ii) The effects of the binding on ionic transport in general and specifically on the 
mobility of the harmful chloride ions at the pore scale.  

In this chapter, we summarize the contributions of the thesis on these matters and discuss the future 
prospects on both theoretical and experimental grounds to answer the most urgent questions raised 
by this work. 
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I. Physical binding of chloride: The electrical double layer 

A. Methodology 

The first objective of this thesis was to construct a model that would improve the understanding of 
the mechanisms of ionic adsorption on cement hydrates. Relying on experimental data, the study 
was conducted on the C-S-H “gel” as it was the main hydration phase and the major contributor to 
ionic diffusion in concrete. Interhydrate and gel porosity (<10nm of diameter) was also considered as 
the determining structure at which atomistic effects were the most noticeable. At such a scale, two 
main phenomena arise: 

• Surface effects due to the negative charge density that develops on the C-S-H surface upon 
ionization of the silanol groups at high pH values (>12.5)  

• Steric effects that dominate the strongly non-ideal pore solution of cement paste. They 
encapsulate all the ion-ion correlations due to short-range pairwise potentials and the finite 
size of ionic species. 

These atomic effects were considered to be at the origin of the electrical double layer. The atomistic 
modelling of the electrical double layer is a well-known problem in the field of colloidal and 
interfacial physics. In cement science, however, one main impediment to the full characterization of 
interfacial phenomena is the poorly understood C-S-H structure. Given that the study of C-S-H/liquid 
interfaces falls outside the scope of our investigation, we describe the C-S-H surface as an implicit 
plane entirely characterized by its homogeneous surface charge density.   

B. Contribution 

The novelty of the present work lies in the quantification of the many mechanisms in actions behind 
the EDL formation in cement paste which is limited in the current literature. Through Monte Carlo 
simulations, we conducted a multi-parameter study to depict all of (i) the pore size effect, (ii) the 
influence of the C-S-H surface and of (iii) the pore solution on the development of the EDL. The 
considered variables were: 

1. The pore size 
2. The ionization degree of the silanol groups i.e. the C-S-H surface charge density 
3. The ionic strength of the pore solution (concentration, ionic valences) 
4.  The pH 

First, the developed model was compared to the classical Gouy-Chapman-Stern theory. The 
limitations of the latter were shown, in accordance with verified results (both experimental and 
theoretical) in the literature, and the necessity of using atomistic techniques was established. The 
study of the EDL was carried out on two pore solution models: 

a) The simpler case was to consider a monovalent pore solution which was firstly modeled as a 
NaCl salt and, then, extended to a multispecies salt modelled by a mix of NaCl and NaOH 
solutions (ref. chapter 4). In this case study, it was established that when the pore diameter 
is within the order of a few Debye lengths, the overlapping of the diffuse layers occurs and 
leads to the disruption of the local electroneutrality of the pore solution. As the pore size 
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reduces, the average electrochemical potential within the pore grows more negative. The 
increase of the surface charge density of C-S-H was also shown to increase the electrostatic 
interactions with the ions in the solution and resulted in a higher adsorption of the counter-
ions. Conversely, the increase of either the ionic concentration or the pH (at constant 
surface charge density) of the solution translated into a stronger shielding of the surface due 
to a higher accumulation of the counter-ions. As a result, the Debye length decreased and 
with it the EDL thickness within the pore i.e. no sizable overlapping even in small pores 
below 5 nm of size. 
 

b) For a more realistic representation of cement paste, Ca2+ ions were added in the solution 
(ref. chapter 5). Unlike Na+, Ca2+ has a very low concentration in high pH environments 
(pH>13). It was, hence, concluded that the present calcium ions were essentially adsorbed 
on the C-S-H surface. The subsequent study showed that the amount of adsorbed Ca2+ on 
the available Si-O- sites had a determining effect on the nature of the interactions between 
chloride and the C-S-H surface. Two main regimes were identified: 

 
i. Ca-Si occupancy < 50% where Ca2+ ions only occupy up to half the ionized silanol 

groups; the rest of the sites being occupied by Na+ ions. Within this interval, Ca-
containing systems displayed a very similar behavior to pure Na-systems and the 
parametric study lead to the same effects of the solution and the surface properties 
as previously depicted in (a). 
 

ii. Ca-Si occupancy > 50%: At such Ca content, the surface is not only shielded but the 
Zeta potential at its vicinity is reversed to positive values due to the divalence of 
Ca2+. Along with the accumulation of Ca2+ at the surface, the electrochemical 
potential of the pore grows less and less negative. At 100% Ca-Si occupancy, the 
apparent surface potential of C-S-H is positive. Depending whether Ca2+ ions occupy 
one or two sites, the pore turns more or less positive in charge. In brief, in this 
regime, Ca2+ is the potential determining species independently of the ionization 
degree of the silanols, the bulk concentration or the pH value. 

 

To sum up, the developed model of the EDL predicts that depending on the Ca-Si occupancy, the 
global electric potential of the pore could turn from negative to positive values. In practice, 
simulations in the NVT ensemble show that it is more likely that Ca2+, despite their affinity to adsorb, 
will tend to share the occupancy of the ionized sites with Na+ (or even K+ in real systems) ions. 
However, the interpretation of the results can only be limited given the obvious shortage in 
experimental data at the atomic scale. 
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C. Outlook 

i) Experimental 

Experimental investigation is without doubt the natural step forward. A primary validation step of 
the previously discussed results can be the measurement and the comparison of Ca/Si ratios of C-S-H 
when exposed to different solutions (for e.g. containing Na+ and/or K+ ions) as a first quantification of 
the different amounts of adsorbed cations. Another urgent and yet challenging question remains the 
location of Ca at the C-S-H/liquid interface. To this day, it is still unclear whether the interfacial 
calcium atoms are an integrated part of the C-S-H structure or, rather, specifically adsorbed ions 
located at the Stern layer. The affinity of Ca2+ ions to occupy one or multiple ionized sites is an 
equally important facet of the question. In this regard, Extended X-ray absorption fine structure 
(EXAFS) spectroscopy is a powerful technique that provides valuable insight on the chemical 
environment of a particular element. If applied to Ca in C-S-H, it may allow the determination of 
atomic-scale information such as the type of the neighboring atoms and their number. Additionally, 
EXAFS analysis is well adapted to amorphous materials as it only requires a short-range order i.e. up 
to 1nm around the element of interest [Teo2012]. Likewise, 43𝐶𝐶𝐶𝐶 NMR spectroscopy remains a 
promising alternative, although quite challenging to apply to binding problems in solutions 
[Bryce2010].   

The experimental investigation of the amount of bound chloride on C-S-H (or more generally C-A-S-H) 
remains equally challenging. In many studies [DeWeerdt2015, Machner2018, Maraghechi2018], the 
physically bound chloride on C-A-S-H is indirectly measured by subtracting the chemically trapped 
chloride (in Friedel’s salt) from the total amount of bound chloride. Direct measurement methods do 
however exist, in particular, through the image analysis of hypermaps obtained by scanning electron 
microscopy with energy dispersive spectroscopy (SEM-EDS) [DeWeerdt2014, Sui2019, Georget2021, 
Wilson2022]. The difficulty of the SEM-EDS lies, in fact, in the preparation step of the polished 
samples, at which precipitation of chloride may occur and induce errors on the determined Cl/Ca, 
Cl/Si or Cl/(Si+Al) ratios. 

ii) Theoretical 

As the main focus of this work is interfacial phenomena, the most urgent matter remains the 
construction of a consistent C-S-H surface model. Atomistic models based on the 14 Å tobermorite 
structure have significantly helped in the understanding of C-S-H structure with low Ca/Si ratios (<1). 
These same models, however, showed clear limitations when confronted to experimental 
observations over C-S-H samples with Ca/Si>1 mostly due to the undervaluation of the Ca/Si ratio 
and the overestimation of the main chain length (MCL) [Duque2022, Moh2022]. A very recent study 
shows, in fact, that C-S-H surfaces are essentially calcium terminated and not silicate terminated as 
usually assumed [Casar2022]. The authors show that the mix model of silicon-calcium terminated 
surfaces agrees best with 1H and 29Si NMR data. In fact, more representative models of both C-S-H 
bulk and surfaces would constitute a big leap in the development of thermodynamic models to 
predict the variation of C-S-H composition in different blended systems.  

Given these latest advances [Casar2022], it becomes interesting to use Molecular Dynamics 
simulation for a better representation of the surface morphology. A more realistic distribution of the 
surface silanol sites also allows a more accurate study of the ionization process and the development 
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of the surface charge density. Another key perquisite is the choice of a well constructed and 
validated Force Field. Ongoing work is in progress with the ERICA FF, a force field primarily developed 
for the simulation of cementitious materials [Valavi2022]. Promising results were demonstrated for 
the simulation of portlandite and tobermorite systems. The extension to C-S-H is the next logical 
step.           
 
Furthermore, moving toward all-atom explicit models can offer a better description of the water 
molecules at the interface of the solid but also in very small pores (around 3nm and below) where 
the solvent density may play a role in ionic diffusion. At high surface charge density, it is expected 
that the dielectric constant of the solvent would be different in the Stern layer compared to its value 
in the bulk solution. The restructuring of water molecules due to the high electric field at the 
interface [Ker2005] will not only influence the ion-ion pair interactions but equally so the needed 
work to bring a given ion from the interior of the solution to a point within the EDL (and equivalently 
the necessary energy to push a solvent from a given point toward the bulk solution). In other terms, 
the electric potential profile in the pore may be significantly altered. MD simulations corroborated 
with atomic force microscopy on calcite surfaces showed that the thickness of the Stern layer is 
function of the involved ions and that non-continuum effects dominated at least within the first 10 Å 
around the surface [Ricci2013]. The same trend was established once comparing sodium (Na+) and 
strontium (Sr2+) distributions at a quartz-water interface obtained by MD with an explicit water 
description [Kroutil2015] with Monte Carlo computations in an implicit solvent (Fig.7.1.) 

 
   (a)             (b) 

Fig.7.1. (a) Representation of the simulation setup and the considered Quartz surface of charge 
density -0.12 C/m² where the green line defines the zero plane. (b) Ionic distributions of sodium (Na+) 
and strontium (Sr2+) ions, respectively, in NaCl 0.38M and SrCl2 0.38L solutions. MD results from the 
paper are compared to GCMC predictions from the present work. Adapted from [Kroutil2015].  
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II. Diffusion of chloride in the nanoporous C-S-H gel 

A. Contribution 

In order to resolve the transport problem at the pore scale, we relied on a novel approach which 
allied Monte Carlo computations of the electrochemical potential and the appealing formalism of the 
Poisson-Boltzmann equation. The comparison and validation of the method with the conventional 
finite element analysis of the Poisson-Nernst-Planck equations system was conducted. The 
agreement between the two methods was best when the pore solution was modellled as an ideal 
electrolyte. In the case of pure Na-systems, the surface effects due to the overlapping of EDLs in 
pores of 3 to 5 nm size mitigated the diffusion of chloride by a factor of 2 up to 4 compared to pores 
of 10nm diameter and more. The same trends, although hindered due to calcium adsorption, were 
equally predicted for Ca-containing systems but only when Ca-Si occupancy remained below 50%. 
These results explained, in part, why cement pastes with refined pore structure (such as LC3 blends) 
had a better resistance to chloride ingress than OPC.  However, the model also predicted that, in the 
case where Ca2+ occupied the totality of the ionized sites, the mobility of chloride may rather be 
increased. And while atomistic simulations (MC in the canonical ensemble) incline towards a more 
Na-like pattern, such a behavior where chlorides are accelerated was also anticipated in the 
literature [Yang2019].  

B. Outlook 

Once more, the structure of the C-S-H surface and the nature of its interactions with the surrounding 
species appears to be the inescapable riddle that needs to be cracked. In a nutshell, by elucidating 
the residency of the different cations on C-S-H, it will follow whether it is the surface interactions or 
the geometrical effects of the pore network that constitute the major obstacle to chloride ingress 
(and possibly other harmful agents such as sulfates…)     

i) Experimental 

More specifically on the question of transport, there is a lot that remains to be done on the 
experimental front. The usual set of experiments such as the electromigration test or the bulk 
diffusion experiments have provided valuable insight but only on the macroscopic properties of 
cement paste. But when it comes to extracting data at the atomistic scale, it is a different kettle of 
fish. 

Similarly to the case of calcium atoms, chloride (35Cl and 37Cl) NMR spectroscopy remains a potential 
route to identify the presence of chloride ions in a cement sample [Cano2002]. The technique relies 
on the detection of energy transitions of nuclei (with a non zero nuclear spin) as a response to 
electromagnetic radiation. In theory, it is possible to determine chloride concentration with it. In the 
context of tracking diffusing species, in situ NMR is best. However, given the limited power of the 
magnets (up to 1T) in embedded NMR devices and the volume constraint on the sample size, Yun et 
al. conclude that in situ NMR is not practical [Yun2004]. The alternative would be to conduct an 
inside-out procedure by irradiating a sufficiently concentrated sample over a long enough period of 
time to be able to compute averages and, hence, extract an exploitable signal. 
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ii) Theoretical 

In continuity which the theoretical perspectives on the EDL study, explicit ion methods can also bring 
insight on the mechanisms of ionic diffusion, although great care should be taken in the choice of the 
system of interest. An example of a bad set-up would be the simulation of ions diffusing in large 
pores where the solution is quasi-uniform and no sizable surface effects are in action. On the other 
hand, ionic diffusion in pores of 1 or 2 nm width can be interesting to address with Molecular 
dynamics or Brownian dynamics. Such techniques can also be a power tool to study cycles of ionic 
adsorption/desorption and quantify the residency time of the different species at the surface of 
cement hydrates. However, the atomic-scale validation of such models with experiments remains 
one of the inherent pitfalls of this methodology. 

Yet, it still remains that the majority of experimental measurements lead to macroscopic diffusion 
coefficients that enclose all of the micro structural, chemical and physical processes within the 
material. It therefore follows that the upscaling of microscopic models is the way toward 
experimental validation. In this regard, Hassanizadeh and Gray have developed since 1979 a rigorous 
averaging procedure to derive macroscopic multiphase transport equations from microscopic 
balance laws for mass, momentum, energy, and entropy [Hass1979]. The homogenization procedure 
relied, in fact, on the existence of a representative element of volume REV (and a representative 
element area REA), although not explicitly developed. As a matter of fact, the construction of a 
mesoscopic REV that describes the heterogeneities within cementitious materials through a 
representative length range is one of the challenges that still lie ahead. The difficulty being that the 
characteristic sizes of interest cover a wide range of scales from gel pores (~3nm) or portlandite 
crystals (~10μm) up to aggregates (~1cm). So far, the existing studies that aim to compute 
macroscopic effective diffusion coefficients rely, for the most part, on descriptive models where 
macroscopic transport equations are derived from intuitively adjusted single-phase relations i.e. 
typically Fick’s law [Yang2019] and Poisson-Nernst-Planck equations [Samson2007, Hosok2011, 
Elak2012].      

III. Closing words 

In definitive, the use of atomic-scale simulation methods allowed a better understanding of surface 
effects at the C-S-H/solution interface. The electrical double layer (EDL) was proved to have a non-
negligible influence on both the adsorption mechanisms and the diffusion properties of ions, 
especially in gel pores of few nanometers size. And while the most recent advances on the modelling 
of C-S-H surfaces will allow the development of more realistic EDL models, experimental validation of 
the full panoply of existing theoretical results remains, without question, the most urgent matter.    
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