
Generalization Properties of NAS under Activation
and Skip Connection Search

Zhenyu Zhu, Fanghui Liu, Grigorios G Chrysos, Volkan Cevher

EPFL, Switzerland
{[first name].[surname]}@epfl.ch

Abstract

Neural Architecture Search (NAS) has fostered the automatic discovery of state-
of-the-art neural architectures. Despite the progress achieved with NAS, so far
there is little attention to theoretical guarantees on NAS. In this work, we study
the generalization properties of NAS under a unifying framework enabling (deep)
layer skip connection search and activation function search. To this end, we
derive the lower (and upper) bounds of the minimum eigenvalue of the Neural
Tangent Kernel (NTK) under the (in)finite-width regime using a certain search
space including mixed activation functions, fully connected, and residual neural
networks. We use the minimum eigenvalue to establish generalization error bounds
of NAS in the stochastic gradient descent training. Importantly, we theoretically
and experimentally show how the derived results can guide NAS to select the
top-performing architectures, even in the case without training, leading to a train-
free algorithm based on our theory. Accordingly, our numerical validation shed
light on the design of computationally efficient methods for NAS. Our analysis is
non-trivial due to the coupling of various architectures and activation functions
under the unifying framework and has its own interest in providing the lower bound
of the minimum eigenvalue of NTK in deep learning theory.

1 Introduction
Neural Architecture Search (NAS) [Zoph and Le, 2017] is a powerful technique that enables the
automatic design of neural architectures. NAS defines a set of operations (referred to as the search
space), that include various activation functions and layer types, or potential connections among
layers [Elsken et al., 2019, Ren et al., 2021]. Optimization over the search space returns the optimal
architecture as a subset of the possible combinations of operations. NAS1 obtains state-of-the-art
results in image recognition [Liu et al., 2019a, Ding et al., 2020, Zhang et al., 2019, Chen et al., 2019]
or can be used to further improve architectures defined by a human expert [Tan and Le, 2019]. The
spectacular results obtained by NAS have led to a significant interest in the community to further
improve the NAS algorithms, the search space etc. However, to date little focus has been provided
in the following question: Can NAS 1 achieve generalization guarantees similar to a typical neural
network?

Neural tangent kernel (NTK)-based analysis [Jacot et al., 2018] is a powerful method for analyzing
the optimization and the generalization of deep networks [Allen-Zhu et al., 2019, Cao and Gu, 2019,
Chen et al., 2020a, Arora et al., 2019a]. The minimum eigenvalue of NTK has been used in previous
work to demonstrate the global convergence of gradient descent, such as two-layer networks [Du
et al., 2019b], and deep networks with polynomially wide layers [Allen-Zhu et al., 2019]. Besides,
the minimum eigenvalue of NTK is also used to prove generalization bounds [Arora et al., 2019a] and

1 In the sequel, we interchangeably refer to NAS as the “architecture obtained from NAS” or the framework
to design the neural architecture.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

memorization [Montanari and Zhong, 2020]. However, previous work mainly focuses on a limited
set of architectures, e.g., fully-connected (FC) neural networks [Allen-Zhu et al., 2018, Bartlett et al.,
2017] or residual neural networks [He et al., 2016, Huang et al., 2020], in which a single activation
function is used throughout the network. These off-the-shelf theoretical results cannot be directly
applied to analyze the rich search space (of NAS) that is covering various/mixed architectures and
parameters. That makes the non-trivial analysis on NAS worth of study on its own right.

The recent work of Oymak et al. [2021] is the first work to provide generalization guarantees on
a related problem, i.e., activation functions search. The study provides generalization results on
two-layer networks relying on the minimum eigenvalue with a strictly larger than zero assumption,
i.e., λmin(K) > 0 for the NTK matrix K.

In this work, we introduce the first theoretical guarantees for multilayer NAS where the search space
includes activation functions and skip connections. We study the upper/lower bound of the minimum
eigenvalue of NTK (in the (in)finite regime) under mixed activation functions and architectures which
evade the minimum eigenvalue assumption of Oymak et al. [2021]. Then, we provide optimization
and generalization guarantees of deep neural networks (DNNs) equipped with NAS. Our results
indicate that the minimum eigenvalue estimation can act as a powerful metric for NAS. This method,
called Eigen-NAS, is train-free, but still effective with experimental validation when compared to
recent promising algorithms [Xu et al., 2021, Chen et al., 2021, Mellor et al., 2021]. Formally, our
main contribution and findings are summarized below:

i) We build a general theoretical framework based on NTK for NAS with search on popular activation
functions in each layer, fully-connected, and skip connections. We derive the NTK formula of these
architectures in the (in)finite-width regime under the unifying framework.

ii) We derive the upper and lower bounds of the minimum eigenvalue of the NTK under the (in)finite-
width regime for the considered architectures. We introduce a new technique to ensure the probability
of concentration inequality remains positive. Our analysis highlights how the upper and lower bounds
differs under activation function search and skip connection search and can guide NAS.

iii) We establish a connection between the minimum eigenvalue and generalization of the searched
DNN trained by stochastic gradient descent (SGD). Our theoretical results show that the generalization
performance largely depends on the minimum eigenvalue of NTK for NAS, which provides theoretical
guarantees for the searched architecture.

iv) Our theoretical results are supported by thorough experimental validations with the following
findings: 1) our upper and lower bounds on the minimum eigenvalue largely depend on the activation
function in the first layer rather than the activation functions in deeper layers. 2) The applied NAS
algorithm always picks up ReLU (Rectified Linear Unit) and LeakyReLU in the optimal architecture,
which coincides with our theory that predicts ReLU and LeakyReLU achieve the largest minimum
eigenvalues. 3) The skip connections are required in each layer under our not very large DNNs.
Furthermore, our experimental evidence on Eigen-NAS indicates that the minimum eigenvalue is a
promising metric to guide NAS (without training) as suggested by our theory.

Technical challenges. The technical challenges of this paper mainly focus on how to analyze ac-
tivation functions with different properties and skip connections under a unifying framework. This
work is non-trivial; previous works mainly focus on the ReLU activation function [Nguyen et al.,
2021, Cao and Gu, 2019, Allen-Zhu et al., 2019] in optimization and generalization of a single fully-
connected neural network. Their proofs heavily depend on the properties of ReLU, e.g., homogeneity
and ReLU(x) = xReLU′(x) which are invalid when other commonly-used activation functions,
e.g., Tanh, Sigmoid, and Swish, are used. This problem becomes harder when mixed activation
functions and residual connections are considered. To tackle these technical challenges, we develop
the following techniques: a) to handle the non-homogeneous property of Tanh, Sigmoid, and Swish,
we develop a new integral estimation approach for the minimal eigenvalue estimation. b) To establish
the connection between the minimum eigenvalues of NTK and generalization errors, we use the
Lipschitz continuity to avoid the special property of ReLU. More importantly, we introduce a new tech-
nique [Yaskov, 2014] to replace Gershgorin circle theorem for minimum eigenvalue estimation, which
avoids concentration inequalities with negative probability in some certain cases [Nguyen et al., 2021].

2

2 Related work
Network architecture search (NAS): The idea of NAS stems from Zoph and Le [2017], while the
idea of cell search, i.e., searching core building blocks and composing them together, emerged in
Zoph et al. [2018]. The earlier literature used discrete optimization techniques for obtaining the
architecture. DARTS [Liu et al., 2019b] considers NAS as a continuous bi-level optimization task.
Recent variants of DARTS [Xu et al., 2019, Wu et al., 2019] and several train-free methods [Mellor
et al., 2021, Chen et al., 2021, Xu et al., 2021] have demonstrated success in reducing the search
time or improving the search algorithm. However, the aforementioned works have not provided
generalization guarantees for the optimal architecture.

Optimization and generalization of DNNs via NTK: In the NTK framework [Jacot et al., 2018, Du
et al., 2019a, Chen et al., 2020b], the training dynamics of (in)finite-width networks can be exactly
characterized by kernel tools. Leveraging NTK facilitates studies on the global convergence of
GD Allen-Zhu et al. [2019], Du et al. [2019a], Nguyen [2021] in DNNs via the minimum eigenvalue
of NTK. In fact, it also controls the generalization performance of DNNs [Du et al., 2019b, Cao and
Gu, 2019, Allen-Zhu et al., 2018], which is further studied in Bietti and Bach [2021].

3 Problem Settings
In this section we introduce the problem setting of our NAS framework based on the search space
and algorithm (search strategy) for our paper.

Let X ⊆ Rd be a compact metric space and Y ⊆ R. We assume that the training set Dtr =
{(xi, yi)}Ni=1 is drawn from a probability measure D on X × Y , with its marginal data distribution
denoted by DX . The goal of a supervised learning task is to find a hypothesis (i.e., a neural network
used in this work) f : X → Y such that f(x;W) parameterized by W is a good approximation of
the label y ∈ Y corresponding to a new sample x ∈ X . In this paper, we consider the classification
task, evaluated by minimizing the expected risk

min
W

ℓD(W) := E(x,y)∼D ℓ[yf(x;W)] ,

where ℓ[yf(x;W)] is the classification loss ℓ(·) as a surrogate of the expected 0-1 loss ℓ0−1
D (W) :=

E(x,y)∼D[1 {yf(x;W) < 0}]. In this paper, we employ the cross-entropy loss, which is defined as
ℓ(z) = log[1 + exp(−z)].

Notation: For an integer L, we use the shorthand [L] = {1, 2, . . . , L}. The multivariate standard
Gaussian distribution is N (0, Id) with the zero-mean vector 0 and the identity-variance matrix Id.
We denote the direct sum by ⊕. We follow the standard Bachmann–Landau notation in complexity
theory e.g., O, o, Ω, and Θ for order notation.

3.1 Neural Networks and Search Space

In this work, we consider a particular parametrization of f as a deep neural network (DNN) with
depth L (L ≥ 3)2 which includes the fully-connected (FC) neural networks setting and the residual
neural networks setting, and various activation functions in each layer. This enables a quite general
NAS setting. Formally, we define a single-output DNN with the output fl(x) in each layer

fl(x)=

x l = 0 ,

σ1(W1x) l = 1 ,
σl(⟨Wl,fl−1(x)⟩)+αl−1fl−1(x) 2≤ l≤L−1,

⟨WL,fL−1(x)⟩ l = L ,

(1)

where the weights of the neural networks are W1 ∈ Rm×d, Wl ∈ Rm×m, l = 2, . . . , L − 1 and
WL ∈ Rm. The binary parameter αl is for layer search, and the activation function is σl(·). The
neural network output is f(x;W) = fL(x).

Architecture search: A binary vector α = [α1, α2, · · · , αL−2]
⊤ represents the skip connections,

where the αl ∈ {0, 1} in Eq. (1) indicates whether there is a skip connection in the l-th layer. Notice
that we unify FC and residual neural networks under the same framework.

2Our results hold for the L = 2 setting corresponding to one-hidden layer neural network with slight
modifications on notation, so we focus on L ≥ 3 for simplicity.

3

Table 1: Formula of different activation functions, definitions of relevant constants
and some intermediate results.

σl ReLU LeakyReLU Sigmoid[1] Tanh[2] Swish

Formula max(0, x) max(ηx, x), η ∈ (0, 1) 1
1+e−x − 1

2
ex−e−x

ex+e−x
x

1+e−x

β1(σl) 1 1 + η2 1/8 2 1
β2(σl) 1 1 + η2 1/8 2 1.22
β3(σl) 1 1 + η2 fS(t) fT (t) 1/2

[1] We consider the integral fS(y) =
∫∞
−∞

2√
2πy

e
− x2

2y f ′
Sigmoid(x)

2dx. We add −1/2 in
Sigmoid to ensure fSigmoid(0) = 0 facilitates our theoretical analysis. The parameter is
t := 3(1 + η2)(2 + η2)L−3.

[2] The definition of fT is similar to fS by using the Tanh function.

Activation function search: We select five representative activation functions defined by Fσ =
{ReLU,LeaklyReLU,Sigmoid,Tanh,Swish} used in Eq. (1), that can be bounded, unbounded,
smooth, non-smooth, monotonic, or non-monotonic, as reported in Table 1. We define σ =
[σ1, σ2, · · · , σL−1]

⊤ with σl ∈ Fσ for any l ∈ [L − 1] as the indicator to show which activa-
tion function is selected in each layer. Our NAS framework allows for a different activation function
in each layer, which enlarges the search space.

In our setting, we conduct the architecture search and the skip connection search independently, and
accordingly, our search space is defined as the direct sum of them

W := RL−2 ⊕FL−1
σ ⊕ {Rm×d × (Rm×m)L−2 × Rm} , (2)

where W := (α,σ,W1, . . . ,WL) ∈ W represents the collection of weight matrices and indicator
for skips and selected activation functions for all layers.

3.2 Algorithm (Search Strategy)

The search strategy is the core part in NAS to pick up the optimal architecture from the search space.
Here we build a general Algorithm 1 combining the search strategy for NAS (the first part) and the
subsequent neural network training by SGD (the second part).

We firstly utilize a typical NAS algorithm, e.g., random search WS [Li and Talwalkar, 2020] or
DARTS3, to search skip connections and activation functions independently, which results in the
optimal architecture {(σ∗

i)
L−1
i=1 , (α∗

i)
L−2
i=1 } with the max probability, see sec. 5.1 for details. In

particular, Algorithm 1 also allows for the guidance of NAS in a train-free strategy via some specific
metrics, e.g., the minimum eigenvalue of NTK (and its variant), see our Eigen-NAS method in sec. 5.2.

Then, we conduct neural network training on the selected architecture by SGD. For ease of theoretical
analysis, we employ the constant step-size SGD with one epoch and randomly choose the weight
parameters during all the iterations, which is commonly used in deep learning theory [Cao and Gu,
2019, Zou et al., 2019].

4 Main result
In this section, we state the main theoretical results. We present the assumptions used in our proof
in sec. 4.1. Then in sec. 4.2 we provide the recursive form of NTK for DNNs defined by Eq. (1)
with mixed activation functions and skip connections. The upper and lower bounds of the minimum
eigenvalue of NTK in the infinite and finite-width setting is given in sec. 4.3 and 4.4, respectively.
Finally, in sec. 4.5, we connect the minimum eigenvalue of NTK and the generalization error bound
of DNNs under these search schemes. The proofs of our theoretical results presented in this section
are deferred to Appendix B, C, and D, respectively.

4.1 Assumptions
We make the following assumptions on data and activation functions. Our assumptions are frequently
employed in the literature as we highlight below.
Assumption 1. We assume that the data satisfy ∥x∥2 = 1.

3This algorithm directly outputs the final optimal architecture and optimal parameters.

4

Algorithm 1: SGD for training DNNs by NAS

Input: search space S, data Dtr = {(xi, yi)Ni=1}, step size γ and
Flagmethod ∈ {EigenNAS, DARTS, · · · }.
// conduct NAS algorithms
if FlagGuideNAS = EigenNAS then

Guide NAS from S by our Eigen-NAS algorithm.
else if FlagGuideNAS = DARTS then

Search neural network architectures from S using the DARTS algorithm.
end if
Output the optimal architecture {(σ∗

i)
L−1
i=1 , (α∗

i)
L−2
i=1 } ∈ S with max probability.

// do neural network training via SGD

Gaussian initialization: W (1)
l ∼ N (0, 1/m), l ∈ [L]

Construct the neural network f(x;W
(1)
l) based on {(σ∗

i)
L−1
i=1 , (α∗

i)
L−2
i=1 }

for i = 1 to N do
W (i+1) = W (i) − γ · ∇W ℓ

(
f(xi;W

(i))yi
)
.

end for
Output Randomly choose Ŵ uniformly from

{
W (1), . . . ,W (N)

}
.

Assumption 2. The activation function σ : R → R satisfies σ ∈ L2(R, e−x2/2/
√
2π), where

L2(R, g) denotes the square integrable function.

Assumption 3. We further assume that x is isotropic. i.e. E[xx⊤] = Id/d, where the coefficient 1/d
is to satisfy Assumption 1 at the same time.

Remark: The first assumption on normalized data is commonly used in practice and theory on over-
parameterized neural networks [Du et al., 2019b,a, Allen-Zhu et al., 2019, Oymak and Soltanolkotabi,
2020, Malach et al., 2020]. The second assumption is general as the studied activation functions in
Table 1 satisfy it. The third assumption is standard in statistics and machine learning [Vershynin, 2018,
Hastie et al., 2022, Klimovsky, 2012, Yaskov, 2014]. It covers Gaussian data, and data uniformly
spread on the sphere, commonly used in deep learning theory [Mei et al., 2021, Ghosh et al., 2022].

4.2 Recursive NTK for DNNs defined by Eq. (1)
Recall that NTK [Jacot et al., 2018] under the infinite-width setting (m → ∞) is:

K(L)(x, x̃) := EW

〈
∂f(x;W)

∂W
,
∂f(x̃;W)

∂W

〉
,

where the NTK matrix for residual networks is derived by the following regular chain rule.
Lemma 1. For any l ∈ [3, L] and s ∈ [2, L], denote

G(1) = XX⊤ , A(2) = G(2) = 2Ew∼N (0,Id)[σ1(Xw)σ1(Xw)⊤] ,

G(l) = 2Ew∼N (0,IN)[σl−1(
√
A(l−1)w)σl−1(

√
A(l−1)w)⊤] , A(l) = G(l) + αl−2A

(l−1) ,

Ġ(s) = 2Ew∼N (0,IN)[σ
′
s−1(

√
A(s−1)w)σ′

s−1(
√
A(s−1)w)⊤] .

Then the NTK for residual networks defined in Eq. (1) can be written as

K(L) = G(L) +

L−1∑
l=1

G(l) ◦ Ġ(l+1) ◦ (Ġ(l+2) + αl1N×N) ◦ · · · ◦ (Ġ(L) + αL−21N×N) .

Remark: (i) Our NTK formula of ResNet differs from the one of Tirer et al. [2022], Huang et al.
[2020], Belfer et al. [2021] in two critical ways: 1) each skip-layer in our model skips one fully-
connected layer and one activation function, as opposed to the two-layer skip of previous works, 2)
our formulation does not require every layer to have a parallel skip connection, which increases the
flexibility of the network. Those differences also result in a different NTK matrix.
(ii) Our NTK formulation covers different activation functions, and we adopt the same initialization
(coefficient) on them to ensure fair/equal search in our NAS framework .

5

Lemma 1 covers both FC and residual neural networks, which facilitates the analysis of minimum
eigenvalue of NTK under the unifying framework. If αl = 0 for l ∈ [L− 1], our NTK formulation
for residual neural networks degenerates to that of a fully-connected neural network, and Al and Gl

become equal.

4.3 Minimum Eigenvalue of NTK for infinite-width

We are now ready to state the main result on the infinite-width neural network. We provide the upper
and lower bounds of minimum eigenvalue of NTK for infinite-width neural network mixed with
five different activation functions. The main differences between different activation functions are
illustrated in Table 1.
Theorem 1. For a DNN defined by Eq. (1) and a not very large L, let K(L) be the limiting NTK
recursively defined in Lemma 1. Then, under Assumptions 1 and 3, when N ≥ Ω(d4), with probability
at least 1− e−d, we have

λmin(K
(L)) ≥ 2µ1(σ1)

2Θ(N/d)

L∏
p=3

(
β3(σp−1) + αp−2

)
,

λmin(K
(L)) ≤ N

d

L∑
l=1

(
β1(σl−1)

l−1∏
p=2

(
β1(σp−1) + αp−2)

) L∏
p=l+1

(β2(σp−1) + αp−2)

)
,

where µ1(σ1) is the 1-st Hermite coefficient of the first layer activation function, and β1, β2, β3 are
three constants on various activation functions defined in Table 1.

Remark: A not very large depth, e.g., L ≤ 10, is often sufficient for the search phase in practical
implementations [Liu et al., 2018, Dong et al., 2021]. In addition, existing NAS algorithms such as
DARTS tend to have architectures with wide and shallow cell structure as suggested by Shu et al.
[2020]. Theorem 1 shows the upper and lower bounds of the minimum eigenvalue of NTK under the
mix of activation functions and skip connections. The following conclusions can be drawn from our
result:

1. The bounds of the minimum eigenvalue depend significantly on the depth of the network L, the
skip connections via αp, that makes the minimum eigenvalue increasing fast as L and the number
of skip connections increase. Besides, the minimum eigenvalue is also effected by activation
functions via β1, β2, β3. Nevertheless, the lower bound is independent of β1 and β2.

2. Different activation functions lead to different tendency (increase or decrease) on λmin(K
(L)).

As the depth increases, the lower bound λmin(K
(L)) under ReLU remains unchanged, increases

under LeakyReLU, and decreases when Sigmoid, Tanh or Swish applied, which brings in new
findings when compared to the ReLU-network analysis of Nguyen et al. [2021]. For the upper
bound for λmin(K

(L)), we can see our results are positively correlated with the depth L.
3. One can see that µ1(σ1) is only related to the activation function of the first layer, which implies

that the activation function in the first layer is very important as λmin(K
(L)) largely depends on it.

4.4 Minimum Eigenvalue of NTK for finite-width

To study the finite-width, we firstly introduce the Jacobian of the network. Let
F = [f(x1), . . . , f(xN)]T . Then, the Jacobian J of F with respect to W is J =[

∂F
∂vec(W1)

, . . . , ∂F
∂vec(WL)

]
, where J have dimension R(((L−2)×m+d+1)×m×N . The empirical Neural

Tangent Kernel (NTK) matrix can be defined as K̄(L) = JJ⊤ =
∑L
l=1

[
∂F

∂vec(Wl)

] [
∂F

∂vec(Wl)

]⊤
.

Accordingly, we generalize Theorem 1 from the infinite-width to finite-width setting below.
Theorem 2. For an L-layer network defined by Eq. (1), let K(L) = JJ⊤ be the NTK matrix, and the
weights of the network be initialized as [Wl]i,j ∼ N (0, 1/m), for all l ∈ [L]. Under Assumptions 1
and 3, when N ≥ Ω(d4), then λmin(JJ

⊤) can be bounded by

Θ

(
N

d

L−1∏
i=2

(β3(σi) + αi−1)

)
≤ λmin(JJ

⊤) ≤ N

d

L−1∑
k=0

Θ

(
L−1∏
i=k+2

(β2(σi) + αi−1)

)
,

6

where the first inequality (lower bound) holds with probability at least 1 − e−d −∑L−1
l=1 exp(−Ω(m)) − exp(−Ω(1)) and the second inequality (upper bound) holds with proba-

bility at least 1−
∑L−1
l=1 exp(−Ω(m))− exp(−Ω(1)). The definitions of β2, and β3 are the same as

those in Theorem 1.

Remark: Theorem 2 achieves a similar result as Theorem 1 if the width m is large.

4.5 Connection to Generalization Error Bound

Based on the aforementioned upper and lower bounds of the minimum eigenvalue of NTK under
different settings, here we establish its relationship with the generalization error of DNNs. We provide
a bound on the expected 0-1 error obtained by Algorithm 1.

Theorem 3. Given a DNN defined by Eq. (1) with y = (y1, . . . , yN)⊤ determined by Algorithm 1
with the step size of SGD γ = κC1 ·

√
y⊤(K(L))−1y/(m

√
N) for some small enough absolute

constant κ. Under Assumptions 1, 2 and 3, for any δ ∈
(
0, e−1

]
and a not very large L, if the width

m ≥ m̂, where m̂ depends on λmin(K
(L)), δ,N , and L, then with probability at least 1− δ over the

randomness of W (1), we obtain the following high probability bound:

E[ℓ0−1D (Ŵ)] ≤ Õ

(
C2

√
y⊤y

λmin(K(L))N

)
+O

(√
log(1/δ)

N

)
,

where C1 =
√
L/(3Lipmax + 1)L−1 and C2 =

√
L(3Lipmax + 1)L−1 are two constants depending

only on L and Lipmax is the maximum value of the Lipschitz constants of the all activation functions.

Remark: Theorem 3 gives an algorithm-dependent generalization error bound of DNNs defined
by Eq. (1) trained with SGD with different activation functions and skip connections. If m is large
enough, the learning rate is infinitesimal, which means the generalization error bound mainly depends
on the NTK matrix, similarly to Cao and Gu [2019], Du et al. [2019a]. Admittedly, our result is in an
exponential increasing order of the depth. However, in practice, the depth L during the search phrase
is smaller than 20, or even 10 [Liu et al., 2018, Dong et al., 2021]. Under this setting our results are
better than the previous results, which are discussed in details in Appendix E.

According to Theorem 3, the generalization performance of DNNs is controlled by the minimum
eigenvalue of the NTK matrix, which is in turn affected by different activation functions and skip
connections, as discussed in Theorem 1. Apart from the NTK matrix itself, the condition m ≥ m̂
is also effected by different activation functions, which implies that the required minimum width is
different in these cases.

4.6 Proof sketch

Our work extends the proofs of Nguyen and Mondelli [2020], Cao and Gu [2019] beyond ReLU,
which is critical for enabling search across activations. The extension to other activation functions
and skip connections is non-trivial due to non-linearity, inhomogeneity and nonmonotonicity.

To derive the upper and lower bounds on the minimum eigenvalue, we start from Lemma 1 on the
NTK formula under the mixed activation functions and skip connections, and we transform the
minimum eigenvalue estimation to the computation (estimation) of the bound G, Ġ (λmin(G)). The
infinite-width and finite-width are included in Appendix B and C respectively. For the upper bound,
we estimate the diagonal elements of G and use the property that the minimum eigenvalue is less
than the mean of the diagonal elements of a matrix to proof. For the lower bound, we use Hermite
expansion and [Yaskov, 2014, Corollary 3.1]. Combining these results concludes the proof.

To derive the generalization error bounds, we need a series of lemmas (see Appendix D). If the input
weights are close, the output of each neuron with any activation function does not change too much
(see Lemma 7). If the initilizations are close, the neural network output f(x;W) is almost linear
in W (see Lemma 8), and the loss function ℓ[yif(xi;W)] is almost a convex function of W for
any i ∈ [N] (see Lemma 9). Accordingly, the gradient and loss of the neural network can be upper
bounded by Lemmas 10 and 11, respectively, which concludes the proof when combined with some
relevant results [Cao and Gu, 2019, Allen-Zhu et al., 2019]. Further discussion on the differences is
deferred to Appendix E.

7

1 2 3 4 5 6 7 8 9 10
Layer

R
eL

U
Ta

nh
Si

gm
oi

d
Le

ak
yR

eL
U

Sw
is

h
Ac

tiv
at

io
n

fu
nc

tio
n

0.31 0.22 0.22 0.21 0.21 0.21 0.21 0.21 0.2 0.2

0.14 0.19 0.19 0.19 0.2 0.2 0.2 0.2 0.2 0.2

0.099 0.18 0.18 0.19 0.19 0.19 0.19 0.2 0.2 0.2

0.3 0.22 0.22 0.21 0.21 0.21 0.21 0.21 0.2 0.2

0.15 0.19 0.19 0.19 0.2 0.2 0.2 0.2 0.2 0.2

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

(a) activation functions σ

2 3 4 5 6 7 8 9 10
Layer

0.65

0.70

0.75

0.80

0.85

Pr
ob

ab
ilit

y

(b) skip connections α

Figure 1: Architecture search results on activation functions indicated by the probability of σ in (a)
and skip connections indicated by α in (b). We notice that for each layer, ReLU and LeakyReLU are
selected a the higher probability.

5 Numerical Validation
To validate our theoretical results, we conduct a series of experiments on NAS. Firstly, we simulate
the NTK matrices under different depths in Appendix F.4 to verify the relationship between the
minimum eigenvalue of NTK and the network depth L in Theorem 1. In sec. 5.1 we use the DARTS
algorithm [Liu et al., 2019b] to conduct experiments on activation function search and skip connection
search under the search space of Eq. (1). Finally, we use the minimum eigenvalue of NTK to guide
the training of NAS on the benchmark NAS-Bench-201 [Dong and Yang, 2020], with a comparison of
recent NAS algorithms. Additional experiments on NAS-Bench-101 [Ying et al., 2019] and transfer
learning are deferred to Appendix F.5 and F.6.

5.1 DARTS experiment

In this section we employ a typical NAS algorithm, DARTS Liu et al. [2019b], to assess our theoretical
results on activation functions and skip connections. We select Fashion-MNIST [Xiao et al., 2017] as
a standard benchmark. Details about Fashion-MNIST are shared in Appendix F.1.

Search space and search strategy: Our search space is defined by Eq. (2) on skip connections,
activation functions, and weight parameters. We follow the search strategy of Liu et al. [2019b] in a
two-level scheme, one level is for weight parameter search W and the other level is for architecture
search {α,σ}, which results in the final optimal architecture {α∗,σ∗,W ∗}. Different from Liu et al.
[2019b], the activation function search and the skip connection search in our setting is independent.
To obtain σ∗, we use the softmax function to normalize the weights and choose the specific activation
function with the highest probability in each layer. To obtain α∗, we initialize each entry αl = 1/2
(l ∈ [L− 2]), constrain it to [0, 1] during training, and retain the skip connection when α∗

l > 1/2.

NAS Results: We conduct the experiment via DARTS on a feedforward neural network with L = 10
and m = 1024, with 5 runs. After training, the probability of these activation functions and skip
connections in each layer is reported in Figure 1(a) and 1(b), respectively. We have the following
findings: Firstly, after the search process, LeakyReLU and ReLU are selected as the activations
with the highest probability in each layer. This coincides with our theoretical results in Theorem 1.
One minor difference is that the probability of LeakyReLU is slightly inferior to ReLU in practice.
The reason behind this could be the sparsity of ReLU [de Dios and Bruna, 2020]. Secondly, in
the first layer, we observe the largest difference on the probability of various activation functions.
As the network becomes deeper, such difference pales in importance until there is no difference
among these activation functions in the last layer. This phenomenon matches our theory well. To be
specific, in Theorem 1, our result on the minimum eigenvalue largely depend on the first layer and
its Hermite coefficient. Besides, this result also provides a justification on omitting the high-order
terms while retaining the first layer activation terms. Thirdly, for the skip search result, we find that
the skip connections are required in each layer when L ≤ 10, as suggested by our theoretical results
in Theorem 1. It also verifies the results of Zhou et al. [2020]. We expect that the skip connections
might not be required in each layer for deep neural networks, since their capacity can already be
enough [He et al., 2016]; but we defer the related study to a future work.

8

Table 2: Results on CIFAR-10, CIFAR-100 and ImageNet-16 as part of NAS-Bench-201. The best
performance is highlighted by bold. The results of NASWOT, TE-NAS and KNAS are reported
from the corresponding papers. The results of ResNet, NAS-RL and DARTS are reported in [Xu
et al., 2021]. The results illustrate that Eigen-NAS outperforms the prior art in CIFAR-100 and
Imagenet-16.In particular, Eigen-NAS outperforms KNAS in all three cases when the same number
of top-k architectures are selected, i.e., k = 20, and still achieves promising performance when
smaller k = 5 used, which we attribute to the more precise minimum eigenvalue estimation.

Type Model/Algorithm CIFAR-10 (%) CIFAR-100 (%) ImageNet-16 (%)
w/o Search ResNet [He et al., 2016] 93.97 70.86 42.63
Search NAS-RL [Zoph and Le, 2017] 92.83 70.71 44.10
Gradient DARTS [Liu et al., 2019b] 88.32 67.34 33.04
Train-free NASWOT [Mellor et al., 2021] 92.96 70.03 44.43
Train-free TE-NAS [Chen et al., 2021] 93.90 71.24 42.38
Train-free KNAS [Xu et al., 2021] (k = 20) 93.38 70.78 44.63
Train-free NASI (T) [Shu et al., 2022] 93.08± 0.24 69.51± 0.59 40.87± 0.85
Train-free NASI (4T) [Shu et al., 2022] 93.55± 0.10 71.20± 0.14 44.84± 1.41
Train-free Eigen-NAS (k = 20) 93.46± 0.01 71.42± 0.63 45.54± 0.04
Train-free Eigen-NAS (k = 5) 93.43± 0.08 69.92± 1.82 45.53± 0.06

Interestingly, the search strategy favors the activation functions and the skip connections with larger
minimum eigenvalue of NTK, which enjoy better generalization performance. This result also
motivates us to study the following question: can the minimum eigenvalue of NTK guide the search
process in NAS? We provide an affirmative answer in the next section with experimental validations.

5.2 NAS-Bench-201 Experiment
In this experiment, we use the minimum eigenvalue to guide NAS on NAS-Bench-201 [Dong and
Yang, 2020]. Each experiment is repeated 5 times, while it can run on a single GPU in a few hours.

Benchmark and baselines: NAS-Bench-201 [Dong and Yang, 2020] is a commonly used benchmark
for NAS algorithm evaluation, which includes three datasets: a) CIFAR-10 [Krizhevsky et al., 2014],
b) CIFAR-100 [Krizhevsky et al., 2014] and c) ImageNet-16 [Chrabaszcz et al., 2017] for image
classification. Details on the datasets exist in Appendix F.1. Apart from that, we evaluate the proposed
approach with some baselines including ResNet, DARTS, RL based algorithm and some train-free
algorithms.

Algorithm procedure: Our algorithm, called Eigen-NAS, also belongs in the train-free category.
Eigen-NAS follows KNAS, which leverages the minimum eigenvalue of NTK to guide NAS.
However, due to the O(N3) time complexity of computing these eigenvalues, KNAS instead
computes ∥K∥F. However, from the expression λmin(K) ≤ 1

d

∑N
i=1 Kii ≤ ∥K∥F we utilize the

first inequality in Eigen-NAS to obtain a tighter (and more computationally efficient) bound to
λmin. The computation cost of our method is O(N), which is less than computing the Frobenius
norm (O(N2)). Sequentially, the top-k best candidates architectures are chosen in KNAS and our
Eigen-NAS, and then the best architecture is chosen by the validation error. Please refer to the results
in Table 2. Due to the page limit, the algorithm is located in Appendix F.

Results: The experimental results in Table 2 verify that Eigen-NAS guided by the proposed metric
above achieves the best performance on both the CIFAR-100 and ImageNet-16 datasets, and com-
petitive performance on CIFAR-10, outperforming KNAS in all three cases when k = 20 for both
methods. Even when we consider a smaller k = 5, Eigen-NAS can outperform KNAS, which we
attribute to the more precise minimum eigenvalue estimation.

6 Conclusion
In this work, we explore the relationship between the minimum eigenvalue of NTK and neural
architecture search. We derive upper and lower bounds on the minimum eigenvalues of NTK for
(in)finite residual networks under different mixtures of activation functions, and establish a connection
between the minimum eigenvalues and the generalization properties of the special search space:
activation function and skip connection search of NAS. Our theoretical results on various activation
functions and mixed activation cases can also be a tool for deep learning theory researchers to prove
generic results rather than studying a single architecture, e.g., ReLU networks. In addition, we use

9

the minimum eigenvalue as a guide for the training of NAS in a train-free method, which greatly
exceeds the efficiency of the classic NAS algorithm. When compared with existing train-free methods,
our algorithm, called Eigen-NAS, achieves a higher accuracy. We posit that this will be useful for
studying computationally efficient methods on NAS.

A core limitation is whether our proof framework can cover more general structures in NAS, such as
the most commonly used convolutional neural networks (CNNs). Even though this seems possible,
this is non-trivial due to the tensors that emerge. To be specific, it requires the element-recursive
form of NTK matrices in Arora et al. [2019b] to be transformed into a global-recursive form (similar
to Lemma 1), then analyze its minimum eigenvalue. Besides, the contraction operation of tensors, the
locality and boundary effects of convolutional layer in CNNs make the analysis difficult. Therefore,
we believe this is a topic on its own right. Another limitation of our work is that it does not analyze
the various algorithms proposed for searching through the search space. We believe that a deeper
understanding of such algorithms, such as DARTS can provide further insights into how to design
improved search spaces.

Acknowledgements

We are also thankful to the reviewers for providing constructive feedback. Research was sponsored
by the Army Research Office and was accomplished under Grant Number W911NF-19-1-0404.
This work was supported by Hasler Foundation Program: Hasler Responsible AI (project number
21043). This work was supported by SNF project – Deep Optimisation of the Swiss National
Science Foundation (SNSF) under grant number 200021 205011. This work was supported by Zeiss.
This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement n° 725594 - time-data).
Corresponding authors: Fanghui Liu and Zhenyu Zhu.

10

References
Z. Allen-Zhu, Y. Li, and Y. Liang. Learning and generalization in overparameterized neural networks,

going beyond two layers. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via over-parameterization.
In International Conference on Machine Learning (ICML), 2019.

S. Arora, S. Du, W. Hu, Z. Li, and R. Wang. Fine-grained analysis of optimization and generaliza-
tion for overparameterized two-layer neural networks. In International Conference on Machine
Learning (ICML), 2019a.

S. Arora, S. S. Du, W. Hu, Z. Li, R. R. Salakhutdinov, and R. Wang. On exact computation with
an infinitely wide neural net. In Advances in Neural Information Processing Systems (NeurIPS),
2019b.

P. Bartlett, D. J. Foster, and M. Telgarsky. Spectrally-normalized margin bounds for neural networks.
In Advances in Neural Information Processing Systems (NeurIPS), 2017.

Y. Belfer, A. Geifman, M. Galun, and R. Basri. Spectral analysis of the neural tangent kernel for
deep residual networks, 2021.

A. Bietti and F. Bach. Deep equals shallow for relu networks in kernel regimes. In International
Conference on Learning Representations (ICLR), 2021.

Y. Cao and Q. Gu. Generalization bounds of stochastic gradient descent for wide and deep neural
networks. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

W. Chen, X. Gong, and Z. Wang. Neural architecture search on imagenet in four gpu hours: A
theoretically inspired perspective. In International Conference on Learning Representations
(ICLR), 2021.

Y. Chen, T. Yang, X. Zhang, G. Meng, X. Xiao, and J. Sun. Detnas: Backbone search for object
detection. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Z. Chen, Y. Cao, Q. Gu, and T. Zhang. A generalized neural tangent kernel analysis for two-layer
neural networks. In Advances in Neural Information Processing Systems (NeurIPS), 2020a.

Z. Chen, Y. Cao, D. Zou, and Q. Gu. How much over-parameterization is sufficient to learn deep
ReLU networks? In International Conference on Learning Representations (ICLR), 2020b.

P. Chrabaszcz, I. Loshchilov, and F. Hutter. A downsampled variant of imagenet as an alternative to
the cifar datasets, 2017.

J. de Dios and J. Bruna. On sparsity in overparametrised shallow relu networks, 2020.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Conference on Computer Vision and Pattern Recognition (CVPR), 2009.

S. Ding, T. Chen, X. Gong, W. Zha, and Z. Wang. Autospeech: Neural architecture search for speaker
recognition, 2020.

X. Dong and Y. Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search. In International Conference on Learning Representations (ICLR), 2020.

X. Dong, L. Liu, K. Musial, and B. Gabrys. Nats-bench: Benchmarking nas algorithms for architecture
topology and size. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI),
2021.

S. Du, J. Lee, H. Li, L. Wang, and X. Zhai. Gradient descent finds global minima of deep neural
networks. In International Conference on Machine Learning (ICML), 2019a.

S. S. Du, X. Zhai, B. Poczos, and A. Singh. Gradient descent provably optimizes over-parameterized
neural networks. In International Conference on Learning Representations (ICLR), 2019b.

11

T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search: A survey. Journal of Machine
Learning Research, 2019.

N. Ghosh, S. Mei, and B. Yu. The three stages of learning dynamics in high-dimensional kernel
methods. In International Conference on Learning Representations (ICLR), 2022.

G. H. Golub and C. F. Van Loan. Matrix Computations (3rd Ed.). 1996.

T. Hastie, A. Montanari, S. Rosset, and R. J. Tibshirani. Surprises in high-dimensional ridgeless least
squares interpolation. Annals of Statistics, 2022.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

K. Huang, Y. Wang, M. Tao, and T. Zhao. Why do deep residual networks generalize better than deep
feedforward networks? – a neural tangent kernel perspective. In Advances in Neural Information
Processing Systems (NeurIPS), 2020.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural
networks. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

A. Klimovsky. High-dimensional gaussian fields with isotropic increments seen through spin glasses.
Electronic Communications in Probability, 2012.

A. Krizhevsky, V. Nair, and G. Hinton. The cifar-10 dataset. online: http://www. cs. toronto.
edu/kriz/cifar. html, 2014.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 1998.

L. Li and A. Talwalkar. Random search and reproducibility for neural architecture search. In
Uncertainty in Artificial Intelligence, 2020.

C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. L. Yuille, and L. Fei-Fei. Auto-deeplab:
Hierarchical neural architecture search for semantic image segmentation. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2019a.

H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu. Hierarchical representations for
efficient architecture search. In International Conference on Learning Representations (ICLR),
2018.

H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture search. In International
Conference on Learning Representations (ICLR), 2019b.

E. Malach, G. Yehudai, S. Shalev-Schwartz, and O. Shamir. Proving the lottery ticket hypothesis:
Pruning is all you need. In International Conference on Machine Learning (ICML), 2020.

S. Mei, T. Misiakiewicz, and A. Montanari. Learning with invariances in random features and kernel
models. In Conference on Learning Theory (COLT), 2021.

J. Mellor, J. Turner, A. Storkey, and E. J. Crowley. Neural architecture search without training. In
International Conference on Machine Learning (ICML), 2021.

A. Montanari and Y. Zhong. The interpolation phase transition in neural networks: Memorization
and generalization under lazy training, 2020.

Q. Nguyen. On the proof of global convergence of gradient descent for deep relu networks with
linear widths. In International Conference on Machine Learning (ICML), 2021.

Q. Nguyen, M. Mondelli, and G. F. Montufar. Tight bounds on the smallest eigenvalue of the neural
tangent kernel for deep relu networks. In International Conference on Machine Learning (ICML),
2021.

Q. N. Nguyen and M. Mondelli. Global convergence of deep networks with one wide layer followed
by pyramidal topology. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

12

S. Oymak and M. Soltanolkotabi. Toward moderate overparameterization: Global convergence
guarantees for training shallow neural networks. IEEE Journal on Selected Areas in Information
Theory, 2020.

S. Oymak, M. Li, and M. Soltanolkotabi. Generalization guarantees for neural architecture search
with train-validation split. In International Conference on Machine Learning (ICML), 2021.

I. Radosavovic, J. Johnson, S. Xie, W.-Y. Lo, and P. Dollár. On network design spaces for visual
recognition. In International Conference on Computer Vision (ICCV), 2019.

P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang. A comprehensive survey of
neural architecture search: Challenges and solutions. ACM Computing Surveys (CSUR), 2021.

J. Schur. Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich vielen
veränderlichen. Journal für die reine und angewandte Mathematik, 1911.

Y. Shu, W. Wang, and S. Cai. Understanding architectures learnt by cell-based neural architecture
search. In International Conference on Learning Representations (ICLR), 2020.

Y. Shu, S. Cai, Z. Dai, B. C. Ooi, and B. K. H. Low. NASI: Label- and data-agnostic neural
architecture search at initialization. In International Conference on Learning Representations
(ICLR), 2022.

M. Tan and Q. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In
International Conference on Machine Learning (ICML), 2019.

T. Tirer, J. Bruna, and R. Giryes. Kernel-based smoothness analysis of residual networks. In
Mathematical and Scientific Machine Learning, 2022.

R. Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science.
2018.

B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia, and K. Keutzer.
Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine
learning algorithms, 2017.

J. Xu, L. Zhao, J. Lin, R. Gao, X. Sun, and H. Yang. Knas: Green neural architecture search. In
International Conference on Machine Learning (ICML), 2021.

Y. Xu, L. Xie, X. Zhang, X. Chen, G.-J. Qi, Q. Tian, and H. Xiong. Pc-darts: Partial channel
connections for memory-efficient architecture search. In International Conference on Learning
Representations (ICLR), 2019.

P. Yaskov. Lower bounds on the smallest eigenvalue of a sample covariance matrix. Electronic
Communications in Probability, 2014.

P. Ye, B. Li, Y. Li, T. Chen, J. Fan, and W. Ouyang. β-darts: Beta-decay regularization for
differentiable architecture search. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2022.

C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter. Nas-bench-101: Towards
reproducible neural architecture search. In International Conference on Machine Learning (ICML),
2019.

Y. Zhang, Z. Qiu, J. Liu, T. Yao, D. Liu, and T. Mei. Customizable architecture search for semantic
segmentation. In Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

P. Zhou, C. Xiong, R. Socher, and S. C. Hoi. Theory-inspired path-regularized differential network
architecture search. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations (ICLR), 2017.

13

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures for scalable
image recognition. In Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

D. Zou, Y. Cao, D. Zhou, and Q. Gu. Gradient descent optimizes over-parameterized deep relu
networks. Machine Learning, 2019.

14

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] We clearly discuss the limitation

of this work in the conclusion section.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] We clearly

discuss the societal impact of this work in the Appendix G.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] All of the
assumptions are clearly stated and are well discussed.

(b) Did you include complete proofs of all theoretical results? [Yes] All of the proofs can
be found in the Appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No] The datasets we
use in this work are all in the public domain and standard for image-related tasks. Thus,
our setup can be reproduced by interested practitioners. The code will be open-sourced
upon the acceptance of the paper.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] The data splits and our comparisons follow previous works, e.g.
the experiment on sec. 5 follows KNAS code.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] All our experiments are conducted
on a single GPU in our internal cluster.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite all the

corresponding papers that provide the benchmarks/assets we use.
(b) Did you mention the license of the assets? [Yes] All the datasets used in this work are

publicly available datasets; in addition, they are quite popular benchmarks for diverse
tasks. All the datasets enable their use for research purposes.

(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] The datasets we utilize are publicly available and contain tens of
thousands of images. We refer to the authors original papers describing the datasets.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] The datasets used do not contain offensive
content or personally identifiable information.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

Appendix introduction

The Appendix is organized as follows:

• In Appendix A, we state the introductory notations and definitions.
• We prove Theorem 1 in Appendix B. We also provide the result when the residual network

only has the same activation function.
• In Appendix C, we extend the results of infinitely width to finite-width and provide the proof

for them.
• In Appendix D, we prove Theorem 3.
• In Appendix E, we discussion some key points of the proof and the motivation of the

analysis.
• In Appendix F, we detail our experimental settings, our Eigen-NAS algorithm as used

in sec. 5.2. We conduct additional numerical validations.
• Finally, in Appendix G, we discuss the societal impact of this work.

A Background

A.1 Symbols and Notation

In the paper, vectors are indicated with bold small letters, matrices with bold capital letters. To
facilitate the understanding of our work, we include the some core symbols and notation in Table 3.

Table 3: Core symbols and notations used in this project.

Symbol Dimension(s) Definition

N (µ, σ) - Gaussian distribution of mean µ and variance σ
1 {A} - Indicator function for event A
[L] - Shorthand of {1, 2, . . . , L}
⊕ - Direct sum

O, o, Ω and Θ - Standard Bachmann–Landau order notation
◦ - Element-wise hadamard product

∥v∥2 - Euclidean norms of vectors v
∥M∥2 - Spectral norms of matrices M
∥M∥F - Frobenius norms of matrices M
∥M∥∗ - Nuclear norms of matrices M
λ(M) - Eigenvalues of matrices M
M [l] - l-th row of matrices M
Mi,j - (i, j)-th element of matrices M

N - Size of the dataset
d - Input size of the network
L - Depth of the network
m - Width of intermediate layer
αl R A binary variable measures whether there is a skip connection in the l-th layer
σl - The activation function of l-th layer

β1, β2, β3 R,R,R Three constants defined in Table 1
µi(σ) R The i-th Hermite coefficient of the activation function σ

xi Rd The i-th data point
yi R The i-th target vector
W1 Rm×d Weight matrix for the input layer
Wl Rm×m Weight matrix for the l-th hidden layer
WL R1×m Weight matrix for the output layer

A.1.1 Feature map

Here we define the core notation about feature maps that are required in the proof. Firstly, we define
ω-neighborhood to describe the difference between two matrices.

16

For any W ∈ W , we define its ω-neighborhood as follows:
Definition 1 (ω-neighborhood).

B(W , ω) := {W ′ ∈ W : ∥W ′
l −Wl∥F ≤ ω,α′ = α,σ′ = σ, l ∈ [L]} .

Then we define (Dl)k,k = σl
′((Wlfl−1)k) as the back-propagation matrix of the activation func-

tion. We use the notation W̃ ∈ B(W , ω) to describe the relationship of the two matrices have
ω-neighborhood relationship.

In addition, we define the feature map of network and its perturbing matrix as follows:
Definition 2.

g̃i,1 = W̃1xi , gi,1 = W1xi , for i ∈ [N],

f̃i,1 = σ1(W̃1xi) , fi,1 = σ1(W1xi) , for i ∈ [N],

g̃i,l = W̃lf̃i,l−1 , gi,l = Wlfi,l−1 , for i ∈ [N] and l=2, . . . , L− 1,

f̃i,l = σl(W̃lf̃i,l−1) + αl−1f̃i,l−1 , fi,l = σl(Wlfi,l−1) + αl−1fi,l−1 , for i ∈ [N] and l=2, . . . , L− 1 .

Let us define diagonal matrices D̃i,l ∈ Rm×m and Di,l ∈ Rm×m by letting (D̃i,l)k,k = σl
′((g̃i,l)k)

and (Di,l)k,k = σl
′((gi,l)k), ∀k ∈ [m]. Accordingly, we let ĝi,l = g̃i,l − gi,l, f̂i,l = f̃i,l − fi,l and

diagonal matrix D̂i,l = D̃i,l −Di,l.

A.1.2 Other notations

For the Hadamard product of the matrices X1,X2, · · · ,Xr that share the same dimensions, we use
the following abbreviation:

⃝r
i=1(Xi) = X1 ◦X2 ◦ · · · ◦Xr .

B The bound of the minimum eigenvalues of NTK for infinite-width

We present the details of our results on sec. 4.3 in this section. Firstly, we provide the proof
of Theorem 1 in Appendix B.2. Then in Appendix B.3 we provide the result when several activation
functions exist alone.

B.1 Proof of Lemma 1

Our proof mainly follows the results of Huang et al. [2020], but due to the different network structures,
the proof process and results are slightly different. Moreover, we provide a matrix version results,
which Huang et al. [2020] does not contain. For self-completeness, we include the proof here.

Proof. By Huang et al. [2020, Proposition 3], written as matrix form,we have:

A(1) = XX⊤ ,

A(2) = 2Ew∼N (0,Id)[σ1(Xw)σ1(Xw)⊤] ,

A(l) = 2Ew∼N (0,IN)[σl−1(
√

A(l−1)w)σl−1(
√

A(l−1)w)⊤] + αl−2A
(l−1) .

Note that, it is slightly different from the original result because the network structure is slightly
different.

Let G(1) = A(1), G(2) = A(2) and G(l) = 2Ew∼N (0,IN)[σl−1(
√
A(l−1)w)σl−1(

√
A(l−1)w)⊤],

then we have:

A(1) = G(1) = XX⊤ ,

A(2) = G(2) = 2Ew∼N (0,Id)[σ1(Xw)σ1(Xw)⊤] ,

G(l) = 2Ew∼N (0,IN)[σl−1(
√
A(l−1)w)σl−1(

√
A(l−1)w)⊤] ,

A(l) = G(l) + αl−2A
(l−1) .

17

According to Huang et al. [2020, Proposition 4], written as matrix form,we have:

K(L) =

L∑
l=1

G(l) ◦ Ġ(l+1) ◦ (Ġ(l+2) + αl1N×N) ◦ · · · ◦ (Ġ(L) + αL−21N×N) ,

where the Ġ(s) satisfy that Ġ(s) = 2Ew∼N (0,IN)[σ
′
s−1(

√
A(s−1)w)σ′

s−1(
√
A(s−1)w)⊤]. Combin-

ing the above results, we finish the proof.

B.2 Proof of Theorem 1

In this part, we present the proof of Theorem 1. Differently from Oymak and Soltanolkotabi [2020],
our result allows for activation functions search in each layer.

Before we prove Theorem 1, we provide some propositions that are helpful to our proof. To facilitate
the writing of the proof, let α0 := 0.
Proposition 1. When σ1 is Tanh, the remaining layers are with LeakyReLU and for l ∈ [L − 2],
αl = 1, the quantity G

(l)
ii has the largest upper bound:

G
(l)
ii ≤

{
1 if l = 1

2(2 + η2)l−2 if l ≥ 2 .
(3)

We set Gmax = 2(2 + η2)L−2 as the upper bound of G(L)
ii .

Proof. To prove our result, we need bound G(l) under different activation functions. We summarize
them as below.

When σl−1 is ReLU:

G
(l)
ii = 2E

w∼N (0,A
(l−1)
ii)

[σl−1(w)
2] =

∫ ∞

−∞

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii max(0, x)2dx

=

∫ ∞

0

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii x2dx

= A
(l−1)
ii .

(4)

When σl−1 is LeakyReLU:

G
(l)
ii = 2E

w∼N (0,A
(l−1)
ii)

[σl−1(w)
2] =

∫ ∞

−∞

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii max(ηx, x)2dx

=

∫ ∞

0

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii x2dx+

∫ 0

−∞

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii η2x2dx

= (1 + η2)A
(l−1)
ii .

(5)

When σl−1 is Sigmoid:

G
(l)
ii = 2E

w∼N (0,A
(l−1)
ii)

[σl−1(w)
2] =

∫ ∞

−∞

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii fSigmoid(x)

2dx

≤
∫ ∞

−∞

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii (

1

2
)2dx

=
1

2
.

(6)

18

σl−1 ReLU LeakyReLU Sigmoid Tanh Swish
Upper bound 1 1 + η2 1

8 2 1
Lower bound 1 1 + η2 (12 − 1

2
√

1+Gmax
4

) 1
Gmax

(2− 2√
1+Gmax

) 1
Gmax

1
2

Table 4: Upper and lower bounds for A(l)
ii /A

(l−1)
ii − αl−2 for different activation functions σl−1 and

the binary variable αl−2 ∈ {0, 1} indicates whether (l − 1)-th layer has a skip connection or not.

When σl−1 is Tanh:

G
(l)
ii = 2E

w∼N (0,A
(l−1)
ii)

[σl−1(w)
2] =

∫ ∞

−∞

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii fTanh(x)

2dx

≤
∫ ∞

−∞

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii dx

= 2 .

(7)

When σl−1 is Swish:

G
(l)
ii = 2E

w∼N (0,A
(l−1)
ii)

[σl−1(w)2] =

∫ ∞

−∞

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii fSwish(x)

2dx

=

∫ ∞

−∞

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii

x2

(1 + e−x)2
dx

=

∫ ∞

0

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii x2 ×

(
1

(1 + e−x)2
+

1

(1 + ex)2

)
dx

≤
∫ ∞

0

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii x2dx

= A
(l−1)
ii .

(8)

Combining Eqs. (4), (5), (6), (7) and (8) with Lemma 1 we draw the conclusion and finish the
proof.

Proposition 2. The relationship between A
(l)
ii and A

(l−1)
ii for different activation functions can be

summarized as Table 4 according to the difference of σl−1.

Proof. To prove our result, we need to bound the ratio A
(l)
ii /A

(l−1)
ii for different activation functions.

We illustrate how this is achieved in different cases below:

For l ≥ 2:

When σl−1 is ReLU by Eq. (4) we have:

A
(l)
ii = G

(l)
ii + αl−2A

(l−1)
ii = (1 + αl−2)A

(l−1)
ii . (9)

When σl−1 is LeakyReLU by Eq. (5) we have:

A
(l)
ii = G

(l)
ii + αl−2A

(l−1)
ii = (1 + αl−2 + η2)A

(l−1)
ii . (10)

When σl−1 is Swish, G(l)
ii can be upper by Eq. (8) and lower bounded by:

19

G
(l)
ii = 2E

w∼N (0,A
(l−1)
ii)

[σl−1(w)2] =

∫ ∞

−∞

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii fSwish(x)

2dx

=

∫ ∞

−∞

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii

x2

(1 + e−x)2
dx

=

∫ ∞

0

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii x2 ×

(
1

(1 + e−x)2
+

1

(1 + ex)2

)
dx

≥
∫ ∞

0

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii x2 × 1

2
dx

=
1

2
A

(l−1)
ii ,

(11)

which implies: (
1

2
+ αl−2

)
A

(l−1)
ii ≤ A

(l)
ii ≤ (1 + αl−2)A

(l−1)
ii . (12)

When σl−1 is Sigmoid, G(l)
ii can be upper by:

G
(l)
ii = 2E

w∼N (0,A
(l−1)
ii)

[σl−1(w)
2] =

∫ ∞

−∞

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii fSigmoid(x)

2dx

≤
∫ ∞

−∞

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii

(
1

4
− e−

x2

4

)
dx =

1

2
− 1

2

√
1 +

A
(l−1)
ii

2

≤ A
(l−1)
ii

8
, holds for x ≥ 0 .

(13)

Then G
(l)
ii can be lower bounded by:

G
(l)
ii = 2E

w∼N (0,A
(l−1)
ii)

[σl−1(w)
2] =

∫ ∞

−∞

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii fSigmoid(x)

2dx

≥
∫ ∞

−∞

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii

(
1

4
− e−

x2

8

)
dx

=
1

2
− 1

2

√
1 +

A
(l−1)
ii

4

≥

1

2
− 1

2
√
1 + Gmax

4

 A
(l−1)
ii

Gmax
,

(14)

where we use the fact that the penultimate line is a concave function with respect to A
(l−1)
ii . When

A
(l−1)
ii = 0, the function value is 0. That means G(l)

ii /A
(l−1)
ii obtains the minimum value at G(l)

ii =
Gmax. Combined with Eq. (3), we get the last inequality.

Then, we have:1
2
− 1

2
√
1 + Gmax

4

 1

Gmax
+ αl−2

A
(l−1)
ii ≤ A

(l)
ii ≤

(
1

8
+ αl−2

)
A

(l−1)
ii . (15)

20

σl−1 ReLU LeakyReLU Sigmoid Tanh Swish
Upper bound for Ġ(l)

ii 1 1 + η2 1/8 2 1.22

Lower bound for Ġ(l)
ii 1 1 + η2 fS(Gmax) fT(Gmax) 1/2

Table 5: Upper and lower bounds for Ġ(l)
ii for different activation function σl−1.

When σl−1 is Tanh, G(l)
ii can be upper bounded by:

G
(l)
ii = 2E

w∼N (0,A
(l−1)
ii)

[σl−1(w)
2] =

∫ ∞

−∞

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii fTanh(x)

2dx

≤
∫ ∞

−∞

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii (1− e−x

2

)dx = 2− 2√
1 + 2A

(l−1)
ii

≤ 2A
(l−1)
ii , holds for x ≥ 0 .

(16)

The lower bound is:

G
(l)
ii = 2E

w∼N (0,A
(l−1)
ii)

[σl−1(w)
2] =

∫ ∞

−∞

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii fTanh(x)

2dx

≥
∫ ∞

−∞

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii (1− e−

x2

2)dx

= 2− 2√
1 +A

(l−1)
ii

≥
(
2− 2√

1 +Gmax

)
A

(l−1)
ii

Gmax
.

(17)

Similar to the Sigmoid, the penultimate line is an concave function with respect to A
(l−1)
ii . When

A
(l−1)
ii = 0, the function value is 0. That means G(l)

ii /A
(l−1)
ii obtains the minimum value at G(l)

ii =
Gmax. Combined with Eq. (3), we get the last inequality.

Then, we have:([
2− 2√

1 +Gmax

]
1

Gmax
+ αl−2

)
A

(l−1)
ii ≤ A

(l)
ii ≤ (2 + αl−2)A

(l−1)
ii . (18)

According to Eqs. (9), (10), (12), (15) and (18), we can summarized the results about bound of
A

(l)
ii /A

(l−1)
ii in Table 4.

Proposition 3. The bound of Ġ(l)
ii with respect to different activation function σl−1 can be summarized

in Table 5.

Proof. To prove our result, we need to bound Ġ
(l)
ii with respect to different activation function σl−1

as follows.

When σl−1 is ReLU:

Ġ
(l)
ii = 2E

w∼N (0,A
(l−1)
ii)

[σ′
l−1(w)

2] =

∫ ∞

0

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii dx

= 1 .

(19)

21

When σl−1 is LeakyReLU:

Ġ
(l)
ii = 2E

w∼N (0,A
(l−1)
ii)

[σ′
l−1(w)

2]

=

∫ ∞

0

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii dx+

∫ 0

−∞

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii η2dx

= 1 + η2 .

(20)

When σl−1 is Sigmoid, according to the monotonicity of the fS, we have:

fS(Gmax) ≤ Ġ
(l)
ii = 2E

w∼N (0,A
(l−1)
ii)

[σ′
l−1(w)

2] = fS(A
(l−1)
ii) ≤ fS(0) ≤

1

8
. (21)

When σl−1 is Tanh, according to the monotonicity of the fT, we have:

fT(Gmax) ≤ Ġ
(l)
ii = 2E

w∼N (0,A
(l−1)
ii)

[σ′
l−1(w)

2] = fT(A
(l−1)
ii) ≤ fT(0) ≤ 2 . (22)

When σl−1 is Swish, The quantity Ġ
(l)
ii can be upper bounded by:

Ġ
(l)
ii = 2E

w∼N (0,A
(l−1)
ii)

[σ′
l−1(w)

2] =

∫ ∞

−∞

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii f ′

Swish(x)
2dx

≤
∫ ∞

0

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii

(
sup
x

f ′
Swish(x)

)2

dx

+

∫ 0

−∞

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii

(
inf
x

f ′
Swish(x)

)2

dx

=

(
inf
x

f ′
Swish(x)

)2

+

(
sup
x

f ′
Swish(x)

)2

≤ 1.22 ,

(23)

where the last inequality holds by 1.099 < supx f
′
Swish(x) < 1.1 and −0.1 < infx f

′
Swish(x) <

−0.099.

Then the quantity Ġ
(l)
ii can be lower bounded by:

Ġ
(l)
ii = 2E

w∼N (0,A
(l−1)
ii)

[σ′
l−1(w)

2] =

∫ ∞

−∞

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii f ′

Swish(x)
2dx

=

∫ ∞

0

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii

(
f ′
Swish(x)

2 + f ′
Swish(−x)2

)
dx

≥
∫ ∞

0

2√
2πA

(l−1)
ii

e
− x2

2A
(l−1)
ii

1

2
dx

=
1

2
.

(24)

Combining Eqs. (19), (20), (21), (22), (23) to (24), we can summarize the results about bound of
Ġ

(l)
ii in Table 5.

Proposition 4. Let X ∈ RN×d be an matrix that every row xi sampled from data distribution DX .
when N ≥ Ω(d4), with probability at least 1− e−d, we have

λmin(X
⊤X) ≥ N

d
− 9N2/3d1/3 = Θ(N/d) .

22

Proof. Firstly, we can compute that, for any α ∈ (0, 2],

sup
∥v∥2=1

E
∣∣∣〈√dxi,v

〉∣∣∣2+α =
∥∥∥√dxi

∥∥∥2+α
2

= d(2+α)/2 < ∞ .

Then from Assumption 3, we have
√
dxi is an isotropic random vector in Rd.

According to Yaskov [2014, Corollary 3.1], if we choose α = 1, then with probability at least 1−e−d

we have:

λmin(
d

N
X⊤X) ≥ 1− Cα(

d

N
)1/3

= 1− 9(Lp(α))
2/(2+α)(

d

N
)1/3

= 1− 9(d(2+α)/2)2/(2+α)(
d

N
)1/3

= 1− 9d4/3

N1/3
.

That is, with probability at least 1− e−d we have:

λmin(X
⊤X) ≥ N

d
− 9N2/3d1/3 = Θ(N/d) .

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Now we are ready to present the estimation on λmin(K
(L)) as below.

From Lemma 1, we have the NTK formulation for residual neural networks:

K(L) = G(L) +

L−1∑
l=1

G(l) ◦ (Ġ(l+1) + αl1N×N) ◦ · · · ◦ (Ġ(L) + αL−11N×N) .

K(L) = G(L) +

L−1∑
l=1

G(l) ◦ Ġ(l+1) ◦ (Ġ(l+2) + αl1N×N) ◦ · · · ◦ (Ġ(L) + αL−21N×N) .

It is clear that all the matrices G(l), Ġ(l) are positive semi-definite (PSD), then (Ġ(l+1) +
αl1N×N) are also PSD. For two PSD matrices P ,Q ∈ RN×N , it holds λmin(P ◦ Q) ≥
λmin(P)mini∈[N] Qii [Schur, 1911] . Accordingly, we have:

λmin(K
(L)) ≥

L∑
l=1

λmin(G
(l)) min

i∈[N]

L∏
p=l+1

(
Ġ

(p)
ii + αp−2

)
.

Then we bound λmin(G
(2)):

λmin(G
(2)) = λmin

(
2Ew∼N (0,Id)[σ1(Xw)σ1(Xw)⊤]

)
= 2λmin

(∞∑
s=0

µs(σ1)
2 ⃝s

i=1 (XX⊤)

)
[Nguyen et al., 2021, Lemma D.3]

≥ 2µ1(σ1)
2λmin(XX⊤) .

As a reminder, the symbol ⃝ denotes the Hadamard product, which is defined in Appendix A.1.2.

23

We know that when N > d, XX⊤ and X⊤X have the same non-zero eigenvalues. Then according
to Proposition 4, with probability at least 1− e−d we have:

λmin(G
(2)) ≥ 2µ1(σ1)

2(
N

d
− 9N2/3d1/3) = 2µ1(σ1)

2Θ(N/d) .

That means, with probability at least 1− e−d we have the lower bound of λmin(K
(L)):

λmin(K
(L)) ≥

L∑
l=1

λmin(G
(l)) min

i∈[N]

L∏
p=l+1

(Ġ
(p)
ii + αp−2) ≥ λmin(G

(2)) min
i∈[N]

L∏
p=3

(Ġ
(p)
ii + αp−2)

≥ 2µ1(σ1)
2Θ(N/d) min

i∈[N]

L∏
p=3

(Ġ
(p)
ii + αp−2) .

(25)

According to Table 1 and Table 5, we have:

L∏
p=l+1

(Ġ
(p)
ii + αp−2) ≤

L∏
p=l+1

(
β2(σp−1) + αp−2

)
, (26)

L∏
p=3

(Ġ
(p)
ii + αp−2) ≥

L∏
p=3

(
β3(σp−1) + αp−2

)
. (27)

According to the previous analysis, we know that K(L) has d non-zero eigenvalues. Their sum is
equal to the trace of K(L). The upper bound of λmin(K

(L)) is directly given by:

λmin(K
(L)) ≤ 1

d

N∑
i=1

L∑
l=1

(G
(l)
ii)

L∏
p=l+1

(Ġ
(p)
ii + αp−2) . (28)

Final result - upper bound
For G(l)

ii we have the following bound:

G
(l)
ii = β1(σl−1)A

(l−1)
ii ≤ β1(σl−1)

l−1∏
p=3

(
β1(σp−1) + αp−2

)
A

(2)
ii ≤ β1(σl−1)

l−1∏
p=2

(
β1(σp−1) + αp−2

)
.

(29)

By Eqs. (26), (28) and (29), we have:

λmin(K
(L)) ≤ N

d

L∑
l=1

(
β1(σl−1)

l−1∏
p=2

[
β1(σp−1) + αp−2

] L∏
p=l+1

[
β2(σp−1) + αp−2

])
. (30)

Final result - lower bound
By Eq. (25) and Eq. (27), with probability at least 1− e−d, we have:

λmin(K
(L)) ≥ 2µ1(σ1)

2Θ(N/d)

L∏
p=3

(
β3(σp−1) + αp−2

)
.

24

B.3 Special cases

To provide further insights into our proofs of mixed activation functions as provided in the previous
sections, we now consider the special case of a single activation function in each layer.

Corollary 4. Under Assumption 1, 3, for a deep fully-connected ResNet with the same activation
functions in every layer and for a not very large L, let K(L) be the limiting NTK recursively defined
in Lemma 1. Then, with probability at least 1− e−d, we have:

For ReLU:

2µ1(σ1)
2Θ(N/d)

L∏
p=3

(1 + αp−2) ≤ λmin(K
(L)) ≤ N

d

L∑
l=1

(∏L
p=2(1 + αp−2)

1 + αl−2

)
.

For LeakyReLU:

2µ1(σ1)
2Θ(N/d)

L∏
p=3

(1+η2+αp−2) ≤ λmin(K
(L)) ≤ N

d
(1+η2)

L∑
l=1

(∏L
p=2(1 + η2 + αp−2)

1 + η2 + αl−2

)
.

For Sigmoid:

2µ1(σ1)
2Θ(N/d)

L∏
p=3

(fS(
1

2
) + αp−2) ≤ λmin(K

(L)) ≤ N

8d

L∑
l=1

(∏L
p=2(

1
8 + αp−2)

1
8 + αl−2

)
. (31)

For Tanh:

2µ1(σ1)
2Θ(N/d)

L∏
p=3

(fT(2) + αp−2) ≤ λmin(K
(L)) ≤ 2N

d

L∑
l=1

(∏L
p=2(2 + αp−2)

2 + αl−2

)
. (32)

For Swish:

2µ1(σ1)
2Θ(N/d)

L∏
p=3

(
1

2
+αp−2) ≤ λmin(K

(L)) ≤ N

d

L∑
l=1

(l−1∏
p=2

(1+αp−2)

L∏
p=l+1

(1.22+αp−2)

)
.

The µ1(σ1) is 1-st Hermite coefficient of the activation function.

Proof. By, Table 1, Eqs. (25) and (30). we can have this result.

It should be noted that for Sigmoid network (all of activation functions are Sigmoid) and Tanh (all of
activation functions are Tanh) network , the upper bound of Gmax will change. By Eq. (6) and Eq. (7)
we have for Sigmoid Gmax = 1

2 , For Tanh Gmax = 2. That means fS(Gmax) in the Theorem 1 is
replaced by fS(

1
2) in Eq. (31) and fT(Gmax) in the Theorem 1 is replaced by fT(2) in Eq. (32).

C The bound of the minimum eigenvalues of NTK for finite-width

We present the details of our results on sec. 4.4 in this section. Firstly, we introduce the specific
expression form for NTK of finite-width network in Appendix C.1. Then, we introduce some lemmas
in Appendix C.2 to facilitate the proof of theorems, after that we provide the results of multiple
activation functions are mixed in one network in Appendix C.3 directly, finally we discuss the results.

C.1 Neural Tangent Kernel for finite-width

K̄(L) = JJ⊤ =

L∑
l=1

[
∂F

∂vec(Wl)

][
∂F

∂vec(Wl)

]⊤
.

25

Let Fk = [fk(x1), . . . ,fk(xN)]T , by chain rule and some standard calculation, we have,

JJ⊤ =

L−1∑
k=0

FkF
⊤
k ◦Bk+1B

⊤
k+1 ,

where Bk ∈ RN×m is a matrix of which the i-th row is given by

(Bk)i: =

Di,k

∏L−1
l=k+1(WlDi,l + αl−1Im×m)WL, k ∈ [L− 2] ,

Di,L−1WL, k = L− 1 ,
1, k = L .

C.2 Relevant Lemmas

Lemma 2. Fix any k ∈ [0, L − 1] and x ∼ PX , then for ReLU, LeakyReLU, Sigmoid, Tanh and
Swish we have

∥fk(x)∥22 = Θ(1) ,

with probability at least 1−
∑k
l=1 exp(−Ω(m)) over (Wl)

k
l=1 and x. Moreover,

Ex ∥fk(x)∥22 = Θ(1) ,

with probability at least 1−
∑k−1
l=1 exp(−Ω(m)) over (Wl)

k
l=1.

Proof. We prove this by induction.

The result holds for k = 0 due to Assumption 1 and Assumption 3.

Assume that the lemma holds for some k − 1, i.e.

∥fk−1(x)∥22 = Θ(1) ,

with probability at least 1−
∑k−1
l=1 exp(−Ω(m)) over (Wl)

k
l=1 and x.

Let us condition on this event of (Wl)
k−1
l=1 and study probability bounds over Wk: Let Wk =

[w1, · · · ,wm]
⊤ where wj ∼ N (0, Im/m) and f

[j]
k represents the j-th element of fk. Note that:

∥fk(x)∥22 =

m∑
j=1

f
[j]
k (x)2 . (33)

26

Then we have:

EWk
∥fk(x)∥22 =

m∑
j=1

Ewj
[f

[j]
k (x)2]

=

m∑
j=1

Ewj

([
σk

(
⟨wj ,fk−1(x)⟩

)
+ αk−1f

[j]
k−1(x)

]2)
Eq. (1)

=

m∑
j=1

(
Ewj

[(
σk(⟨wj ,fk−1(x)⟩

)2]
+ Ewj

(
α2
k−1f

[j]
k−1(x)

2

)

+ Ewj

[
2σk

(
⟨wj ,fk−1(x)⟩

)
αk−1f

[j]
k−1(x)

])
= mEw∼N (0,∥fk−1(x)∥2

2/m)(σk(w)
2) +

m∑
j=1

α2
k−1Ewj

(
f
[j]
k−1(x)

2

)

+ 2

m∑
j=1

αk−1Ewj

(
σk

[
⟨wj ,fk−1(x)⟩

])
Ewj

(
f
[j]
k−1(x)

)
= mEw∼N (0,∥fk−1(x)∥2

2/m)(σk(w)
2) + α2

k−1 ∥fk−1(x)∥22

+ 2αk−1Ew∼N (0,∥fk−1(x)∥2
2/m)(σk(w))

m∑
j=1

f
[j]
k−1(x) .

(34)

According to Eqs. (4), (5), (8), (11), (13), (14), (16) and (17), we know that when σk−1 are in ReLU,
LeakyReLU, Sigmoid, Tanh and Swish we have:

mEw∼N (0,∥fk−1(x)∥2
2/m)(σk(w)

2) = mΘ

(
∥fk−1(x)∥22

m

)
= Θ(∥fk−1(x)∥22) . (35)

When σk−1 is ReLU, LeakyReLU or Swish, Eq. (35) can be written as:

1

2
∥fk−1(x)∥22 ≤ mEw∼N (0,∥fk−1(x)∥2

2/m)(σk(w)
2) ≤ (1 + η2) ∥fk−1(x)∥22 ,

0 < Ew∼N (0,∥fk−1(x)∥2
2/m)(σk(w)) ≤ Ew∼N (0,∥fk−1(x)∥2

2/m)(fReLU(w)) =
2 ∥fk−1(x)∥2

5
√
m

.

According to the relationship between the vectors 1-norm and 2-norm, we have:

−
√
m ∥fk−1(x)∥2 ≤

m∑
j=1

f
[j]
k−1(x) ≤

√
m ∥fk−1(x)∥2 .

Then:

−
2 ∥fk−1(x)∥22

5
≤ 2αk−1Ew∼N (0,∥fk−1(x)∥2

2/m)(σk(w))

m∑
j=1

f
[j]
k−1(x) ≤

2 ∥fk−1(x)∥22
5

.

If we substitute into Eq. (34), we have upper bound and lower bound for EWk
∥fk(x)∥22:

EWk
∥fk(x)∥22 = mEw∼N (0,∥fk−1(x)∥2

2/m)(σk(w)
2) + α2

k−1 ∥fk−1(x)∥22

+ 2αk−1Ew∼N (0,∥fk−1(x)∥2
2/m)(σk(w))

m∑
j=1

f
[j]
k−1(x)

≤
(
1 + η2 + αk−1 +

2

5

)
∥fk−1(x)∥22

≤
(
η2 +

12

5

)
Θ(1) ,

27

EWk
∥fk(x)∥22 = mEw∼N (0,∥fk−1(x)∥2

2/m)(σk(w)
2) + α2

k−1 ∥fk−1(x)∥22

+ 2αk−1Ew∼N (0,∥fk−1(x)∥2
2/m)(σk(w))

m∑
j=1

f
[j]
k−1(x)

≥
(
1

2
+ αk−1 −

2

5

)
∥fk−1(x)∥22

≥ 1

10
Θ(1) .

That means, when σk−1 is ReLU, LeakyReLU or Swish we have:

EWk
∥fk(x)∥22 = Θ(1) . (36)

When σk−1 is Sigmoid or Tanh, according to symmetry we have:

Ew∼N (0,∥fk−1(x)∥2
2/m)[σk(w)] = 0 .

Then:

EWk
∥fk(x)∥22 = Θ(∥fk−1(x)∥22) + α2

k−1 ∥fk−1(x)∥22
= Θ(∥fk−1(x)∥22) .

(37)

By Eq. (36) and Eq. (37) when σk−1 is ReLU, LeakyReLU, Sigmoid, Tanh or Swish we have:

EWk
∥fk(x)∥22 = Θ(1).

Thus, by applying Bernstein’s inequality to the sum of i.i.d. random variables in Eq. (33), we have:

1

2
EWk

∥fk(x)∥22 ≤ ∥fk(x)∥22 ≤ 3

2
EWk

∥fk(x)∥22 ,

with probability at least 1− exp(−Ω(m)). i.e.:

∥fk(x)∥22 = Θ(1) ,

with probability at least 1−
∑k
l=1 exp(−Ω(m)).

The proof for Ex ∥fk(x)∥22 can be done by following similar passages and using that∥∥∥Ex[f
[j]
k (x)2]

∥∥∥
ψ1

≤ Ex

∥∥∥f [j]
k (x)2

∥∥∥
ψ1

.

Lemma 3. Fix any layer k ∈ [L − 1], and x ∼ PX . Then, we have that ∥Dk∥2F = Θ(m) with
probability at least 1−

∑k
l=1 exp(−Ω(m)) over (Wl)

k
l=1 and x.

Proof. By Lemma 2, we have fk−1(x) ̸= 0 with probability at least 1−
∑k
l=1 exp(−Ω(m)) over

(Wl)
k
l=1 and x. Let us condition on this event and derive probability bounds over Wk. Let Wk =

[w1, · · · ,wnk
]. Then, ∥Dk∥2F =

∑m
j=1 σ

′
k
2
(⟨fk−1(x),wj⟩). Thus:

EWk
∥Dk∥2F = mEw1

[σ′
k
2
(⟨fk−1(x),w1⟩)] = mEw∼N (0,∥fk−1(x)∥2

2/m)[σ
′
k
2
(w)] .

By Eqs. (19), (20), (21), (22), (23) and (24), we know that when σk are in ReLU, LeakyReLU,
Sigmoid, Tanh and Swish we have:

28

EWk
∥Dk∥2F = mΘ(1) = Θ(m) .

By Hoeffding’s inequality on bounded random variables, we have:

P
(∣∣∣∥Dk∥2F − EWk

∥Dk∥2F
∣∣∣ > t

)
≤ 2 exp

(
−2t2

m

)
.

Picking t := 0.01m concludes the proof.

Lemma 4. For any k ∈ [L− 1], k ≤ p ≤ L− 1 and x ∼ PX , we have that:

Θ

(
m

p∏
i=k+1

(β3(σi)+αi−1)

)
≤

∥∥∥∥∥Dk

p∏
l=k+1

(
WlDl + αl−1Im×m

)∥∥∥∥∥
2

F

≤ Θ

(
m

p∏
i=k+1

(β2(σi)+αi−1)

)
,

with probability at least 1−
∑p
l=k+1 exp(−Ω(m)) over (Wl)

p
l=k+1 and x.

Proof. We prove this by induction on p.

Lemma 3 implies that the statement holds for p = k.

Suppose it holds for some p − 1. Let Sp = Dk

∏p
l=k+1(WlDl + αl−1Im×m). Then,Sp =

Sp−1(WpDp + αp−1Im×m) = Sp−1WpDp + αp−1Sp−1. Let Wp = [w1, . . . ,wnp]. Then:

∥Sp∥2F =

m∑
j=1

∥Sp−1wj∥22 σ
′
p(⟨fp−1(x),wj⟩)2 + αp−1 ∥Sp−1∥2F .

Then we have:

EWp
∥Sp∥2F = mEw∼N (0,Im/m) ∥Sp−1wj∥22 σ

′
p(⟨fp−1(x),wj⟩)2 + αp−1 ∥Sp−1∥2F

= mEw∼N (0,Im/m) ∥Sp−1wj∥22 Ew∼N (0,Im/m)σ
′
p(⟨fp−1(x),wj⟩)2 + αp−1 ∥Sp−1∥2F

= ∥Sp−1∥2F Ew∼N (0,∥fp−1(x)∥2
2/m)σ

′
p(w)

2 + αp−1 ∥Sp−1∥2F .

From the previous result Eqs. (19), (20), (21), (22), (23) and (24) we have:

β3(σp) ≤ Ew∼N (0,∥fp−1(x)∥2
2/m)σ

′
p(w)

2 ≤ β2(σp) .

That is:

(β3(σp) + αp−1) ∥Sp−1∥2F ≤ EWp
∥Sp∥2F ≤ (β2(σp) + αp−1) ∥Sp−1∥2F .

Moreover: ∥∥∥∥Sp−1wj∥22 σ
′
p(⟨fp−1(x),wj⟩)2

∥∥∥
ψ1

≤
∥∥∥Sp−1wj∥2

∥∥2
ψ2

≤ c

m
∥Sp−1∥2F .

By Bernstein’s inequality [Vershynin, 2018], we have:

1

2
EWp

∥Sp∥2F ≤ ∥Sp∥2F ≤ 3

2
EWp

∥Sp∥2F ,

with probability at least 1− exp(−Ω(m)). Finally, taking the intersection of all the events finishes
the proof.

29

Lemma 5. For any layer k ∈ [L− 2] and x ∼ PX , we have:

Θ

(L−1∏
i=k+1

(β3(σi)+αi−1)

)
≤

∥∥∥∥∥Dk

L−1∏
l=k+1

(
WlDl + αl−1Im×m

)
WL

∥∥∥∥∥
2

2

≤ Θ

(L−1∏
i=k+1

(β2(σi)+αi−1)

)
,

with probability at least 1−
∑L−1
l=k+1 exp(−Ω(m))− exp(−Ω(1)).

Proof. Let B = Dk

∏L−1
l=k+1(WlDl + αl−1Im×m).

By Lemma 4, we have:

Θ

(
m

L−1∏
i=k+1

(β3(σi) + αi−1)

)
≤ ∥B∥2F ≤ Θ

(
m

L−1∏
i=k+1

(β2(σi) + αi−1)

)
, (38)

with probability at least 1−
∑L−1
l=k+1 exp(−Ω(m)).

Then, by Hanson-Wright inequality [Vershynin, 2018], we have:

1

2m
∥B∥2F =

1

2
EWL

∥BWL∥22 ≤ ∥BWL∥22 ≤ 3

2
EWL

∥BWL∥22 =
3

2m
∥B∥2F , (39)

with probability at least 1− exp(−Ω(∥B∥2F / ∥B∥22)) ≥ 1− exp(−Ω(1)) over WL.

According to Eq. (38) and Eq. (39) we can get the result.

C.3 Results for mixed activation functions under the finite-width setting (Proof of Theorem 2)

Proof. We firstly present the lower bound of the minimal eigenvalue of JJ⊤ and then derive its
upper bound.

Lower bound
For PSD matrices P ,Q ∈ RN×N , it holds λmin(P ◦ Q) ≥ λmin(P)mini∈[N] Qii. Then,

by Theorem 1 and Theorem 5.1 of Nguyen et al. [2021]:

λmin(JJ
⊤) ≥

L−1∑
k=0

λmin(FkF
⊤
k) min

i∈[N]
∥(Bk+1)i:∥22

≥ λmin(F0F
⊤
0) min

i∈[N]
∥(B1)i:∥22

≥ Θ

(
N

d

L−1∏
i=2

(β3(σi) + αi−1)

)
,

with probability at least 1 − e−d −
∑L−1
l=1 exp(−Ω(m)) − exp(−Ω(1)). where the last inequality

hold by Lemma 5 and Proposition 4.

Upper bound
For ReLU, LeakyReLU and Swish we have:

λmin(JJ
⊤) ≤

N∑
i=0

(JJ⊤)ii/d =
1

d

N∑
i=0

L−1∑
k=0

∥(Fk)1:∥22 ∥(Bk+1)1:∥22

=
1

d

N∑
i=0

L−1∑
k=0

∥fk(x1)∥22 ∥(Bk+1)1:∥22 .

30

By Lemma 2 and Lemma 5 we have:

λmin(JJ
⊤) ≤ N

d

L−1∑
k=0

Θ

(L−1∏
i=k+2

(β2(σi) + αi−1)

)
,

with probability at least 1−
∑L−1
l=1 exp(−Ω(m))− exp(−Ω(1)).

D Generalization error via the minimum eigenvalue of NTK

In this section, firstly, we provide some useful lemmas in Appendix D.1,then present the proof
of Theorem 3 in Appendix D.2.

D.1 Relevant Lemmas

Lemma 6. (Vershynin [2018, Theorem 4.4.5]) Let A be an N × n matrix whose entries are
independent standard normal random variables. Then for every t ≥ 0, with probability at least
1− 2 exp(−t2/2), one has:

s(A)max ≤
√
N +

√
n+ t .

We need the following lemma to show that the output of each neuron with any activation function
does not change too much if the input weights are close.
Lemma 7. Let W ∈ Rm×m be the random Gaussian matrix with Wi,j ∼ N (0, 1/m), Lipmax be
the maximum value of the Lipschitz constants of the all activation functions, with ω = O((3Lipmax +

1)−(L−1)) , assuming W̃ ∈ B(W , ω), for any l ∈ [L], it holds that
∥∥∥f̂i,l∥∥∥

2
= O(1) with probability

at least 1− 2l exp(−m/2)− l exp(−Ω(m)).

Proof. We provide the estimation on f̂i,1 and f̂i,l (l = 2, 3, · · · , L) in Definition 2, respectively.
Firstly, f̂i,1 admits: ∥∥∥f̂i,1∥∥∥

2
=
∥∥∥f̃i,1 − fi,1

∥∥∥
2
=
∥∥∥σ1(W̃1xi)− σ1(W1xi)

∥∥∥
2

≤ Lipσ1

∥∥∥W̃1 −W1

∥∥∥
2
∥xi∥2 ≤ ωLipσ1

= O(1) .

For f̂i,l with l = 2, 3, . . . , L, we have:∥∥∥f̂i,l

∥∥∥
2
=

∥∥∥f̃i,l − fi,l

∥∥∥
2

=
∥∥∥σl(W̃lf̃i,l−1) + αl−1f̃i,l−1 − σl(Wlfi,l−1)− αl−1fi,l−1

∥∥∥
2

≤
∥∥∥σl(W̃lf̃i,l−1)− σl(Wlfi,l−1)

∥∥∥
2
+ αl−1

∥∥∥f̂i,l−1

∥∥∥
2

≤ Lipσl

∥∥∥W̃lf̃i,l−1 −Wlfi,l−1

∥∥∥
2
+

∥∥∥f̂i,l−1

∥∥∥
2

[Lipschitz continuity of σl]

= Lipσl

∥∥∥Wl(f̃i,l−1 − fi,l−1) + (W̃l −Wl)f̃i,l−1

∥∥∥
2
+

∥∥∥f̂i,l−1

∥∥∥
2

≤ Lipσl

{∥∥∥Wl(f̃i,l−1 − fi,l−1)
∥∥∥
2
+

∥∥∥(W̃l −Wl)f̃i,l−1

∥∥∥
2

}
+

∥∥∥f̂i,l−1

∥∥∥
2

≤ Lipσl

{
∥Wl∥2

∥∥∥f̃i,l−1 − fi,l−1

∥∥∥
2
+

∥∥∥W̃l −Wl

∥∥∥
2

∥∥∥f̃i,l−1

∥∥∥
2

}
+

∥∥∥f̂i,l−1

∥∥∥
2

≤ (Lipσl
∥Wl∥2 + 1)

∥∥∥f̂i,l−1

∥∥∥
2
+ Lipσl

ω

(∥∥∥f̃i,l−1 − fi,l−1

∥∥∥
2
+ ∥fi,l−1∥2

)
=

{
Lipσl

(∥Wl∥2 + ω) + 1
}∥∥∥f̂i,l−1

∥∥∥
2
+ Lipσl

ω ∥fi,l−1∥2 .

(40)

31

By Lemma 6, choosing t =
√
m, with probability at least 1− 2 exp(−m/2), we have:

∥Wl∥2 = s(Wl)max ≤
√
m+

√
m+

√
m√

m
= 3 .

Then, ∥f̂i,l∥2 in Eq. (40) can be further upper bounded with probability at least 1− 2l exp(−m/2)−
l exp(−Ω(m)):∥∥∥f̂i,l∥∥∥

2
≤
(
(3 + ω)Lipmax + 1

)∥∥∥f̂i,l−1

∥∥∥
2
+ Lipmaxω ∥fi,l−1∥2

≤
(
[(3 + ω)Lipmax + 1]l−1 − 1

)(
Lipσ1

ω +
Lipmaxω ∥fi,l−1∥2
(3 + ω)Lipmax

)
+ Lipσ1

ω

≤ (3Lipmax + 1)L−1Θ(1)ω + Lipσ1
ω

= O(1)Θ(1) +O(1)

= O(1) ,

where the second inequality holds by the recursion which conclude the proof.

We also need the following lemma, demonstrating that the neural network function is almost linear in
terms of its weights if the initializations are close to each other.

Lemma 8. Let W ,W ′ ∈ B(W (0), ω) with ω = O((3Lipmax + 1)−(L−1)) , for any i ∈ [N], with
probability at least 1− 2(L− 1) exp(−m/2)− L exp(−Ω(m))− 2/m, we have:

|f(xi;W ′)− f(xi;W)− ⟨∇f(xi;W),W ′ −W ⟩| = O(1) .

Proof. We have the following expression:∣∣f(xi;W
′)− f(xi;W)−

〈
∇f(xi;W),W ′ −W

〉∣∣
=

∣∣∣∣∣
L−1∑
l=1

WL

L−1∏
r=l+1

(Di,rWr + αr−1Im×m)Di,l(W
′
l −Wl)fi,l−1 +W ′

L(f
′
i,L−1 − fi,L−1)

∣∣∣∣∣
≤

L−1∑
l=1

∣∣∣∣∣WL

L−1∏
r=l+1

(Di,rWr + αr−1Im×m)Di,l(W
′
l −Wl)fi,l−1

∣∣∣∣∣+ ∣∣W ′
L(f

′
i,L−1 − fi,L−1)

∣∣
≤

L−1∑
l=1

∥WL∥2

∥∥∥∥∥
L−1∏

r=l+1

(Di,rWr + αr−1Im×m)Di,l(W
′
l −Wl)fi,l−1

∥∥∥∥∥
2

+
∥∥W ′

L

∥∥
2

∥∥f ′
i,L−1 − fi,L−1

∥∥
2

≤
L−1∑
l=1

∥WL∥2
L−1∏

r=l+1

(∥Di,r∥2 ∥Wr∥2 + αr−1) ∥Di,l∥2
∥∥W ′

l −Wl

∥∥
2
∥fi,l−1∥2 +

∥∥W ′
L

∥∥
2

∥∥f ′
i,L−1 − fi,L−1

∥∥
2
.

(41)

Here we require the derivative of the activation function σ′ is bound, i.e., ∥D∥2 ≤ Lipmax. The
considered activation functions in this paper satisfy this condition.

By Lemma 6, Lemma 7 and Lemma 2 with probability at least 1 − 2(L − 1) exp(−m/2) −
L exp(−Ω(m)), we have

∥∥f ′
i,L−1 − fi,L−1

∥∥
2
≤ O(1), ∥fi,l−1∥2 = Θ(1) and ∥Wr∥2 ≤ 3 ∀r ∈

[L− 1].

Moreover, m ∥WL∥22 is a random Variables obey chi-square distribution with m degrees of freedom.
That means E(m ∥WL∥22) = m and V(m ∥WL∥22) = 2m. By Chebyshev’s Inequality we have
P (|m ∥WL∥22 −m| ≥ m) ≤ 2m/m2. i.e.:

∥WL∥2 ≤
√
2 ,

32

with probability at least 1− 2/m.

Accordingly, Equation (41) can be further upper bounded by:

|f(xi;W ′)− f(xi;W)− ⟨∇f(xi;W),W ′ −W ⟩|

≤
L−1∑
l=1

(3Lipmax + 1)L−l−1ω
√
2LipmaxΘ(1) + (

√
2 + ω)O(1)

=
(3Lipmax + 1)L−1 − 1

3Lipmax

ω
√
2LipmaxΘ(1) + (

√
2 + ω)O(1)

= O(1) .

We define Li(W) = ℓ[yif(xi;W)], then the following lemma shows that, Li(W) is almost a
convex function of W for any i ∈ [N] if the initilizations are close.

Lemma 9. Let W ,W ′ ∈ B(W (0), ω) with ω = O((3Lipmax + 1)−(L−1)) , for any i ∈ [N], it
holds that:

Li(W
′) ≥ Li(W) + ⟨∇WLi(W),W ′ −W ⟩ − O(1) ,

with probability at least 1− 2(L− 1) exp(−m/2)− L exp(−Ω(m))− 2/m.

Proof. By the convexity of ℓ(z), we have:

Li(W
′)−Li(W) = ℓ[yif(xi;W

′)]−ℓ[yif(xi;W)] ≥ ℓ′[yif(xi;W)]·yi·[f(xi;W ′)−f(xi;W)] .

Using the chain rule leads to:

L∑
l=1

⟨∇Wl
Li(W),W ′

l −Wl⟩ = ℓ′[yif(xi;W)] · yi · ⟨∇f(xi;W),W ′ −W ⟩ .

Combining the above two equations, by triangle inequality, we have:

ℓ′[yif(xi;W)] · yi · [f(xi;W
′)− f(xi;W)] ≥ ℓ′[yif(xi;W)] · yi ·

〈
∇f(xi;W),W ′ −W

〉
− ε

=
∑L

l=1 ⟨∇WlLi(W),W ′
l −Wl⟩ − ε ,

where ε := |ℓ′[yif(xi;W)] · yi · [f(xi;W ′) − f(xi;W) − ⟨∇f(xi;W),W ′ −W ⟩]|. Then by
upper-bounding ε with Lemma 8 and the fact that |ℓ′[yif(xi;W)] · yi| ≤ 1, we have:

Li(W
′)− Li(W) ≥

L∑
l=1

⟨∇Wl
Li(W),W ′

l −Wl⟩ − ε

=

L∑
l=1

⟨∇Wl
Li(W),W ′

l −Wl⟩ − O(1) .

We need the following lemma to show that, the gradient of the neural network function can be upper
bounded under near initialization.

Lemma 10. Let W ∈ B(W (0), ω) with ω = O((3Lipmax + 1)−(L−1)) , for any i ∈ [N], with
probability at least 1− 2(L− l) exp(−m/2)− l exp(−Ω(m))− 2/m, it holds that:

∥∇Wl
f(xi;W)∥2 , ∥∇Wl

Li(W)∥2 ≤ Θ(3Lipmax + 1)L−l .

Proof. According to the triangle inequality and definition of operator norm, we have:

33

∥∇Wl
f(xi;W)∥2 =

∥∥∥∥∥fi,l−1WL

L−1∏
r=l+1

(Di,rWr + αr−1Im×m)Di,l

∥∥∥∥∥
2

≤ ∥fi,l−1∥2

∥∥∥∥∥WL

L−1∏
r=l+1

(Di,rWr + αr−1Im×m)Di,l

∥∥∥∥∥
2

≤ ∥fi,l−1∥2 ∥WL∥2
L−1∏
r=l+1

(∥Di,r∥2 ∥Wr∥2 + αr−1) ∥Di,l∥2 .

By Lemma 2 and Lemma 6, with probability at least 1−2(L− l−1) exp(−m/2)− l exp(−Ω(m))−
2/m we have ∥fi,l−1∥2 = Θ(1),

∥∥∥W (0)
i

∥∥∥
2
≤ 3 for i = l + 1, · · · , L − 1,

∥∥∥W (0)
L

∥∥∥
2
≤

√
2 and

∥D∥2 ≤ Lipmax due to σ′ is bounded, then we have:

∥∇Wl
f(xi;W)∥2 ≤ Θ(1)(3Lipmax + 1)L−l−1

√
2Lipmax = Θ(3Lipmax + 1)L−l−1 ,

which implies:

∥∇Wl
Li(W)∥2 ≤ |ℓ′[yi · f(xi;W)] · yi|·∥∇Wl

f(xi;W)∥2 ≤ ∥∇Wl
f(xi;W)∥2 ≤ Θ(3Lipmax+1)L−l−1 ,

where we use the fact that |ℓ′[yif(xi;W)] · yi| ≤ 1.

We need the following lemma to show that, the cumulative loss can be upper bounded under small
changes on the parameters (i.e., weights).

Lemma 11. For any ϵ, δ, R > 0, there exists:

m⋆ =
(3Lipmax + 1)4L−4L2R4

4ε2
,

such that if m ≥ m∗(ϵ, δ, R, L), then with probability at least 1 − δ over the randomness of
W (1), for any W ∗ ∈ B(W (1), Rm−1/2), Algorithm 1 with γ = ε/[m(3Lipmax + 1)2L−2], N =
LR2(3Lipmax + 1)2L−2/(2ε2), the cumulative loss can be upper bounded by:

N∑
i=1

Li(W
(i)) ≤

N∑
i=1

Li(W
∗) + 3Nϵ .

Remark: Discussion on the required width m refer to Appendix E.

Proof. Set ω = 1/(3Lipmax + 1)L−1 such that the conditions on ω given in Lemmas 7, 8, 9 and 10
hold. It is easy to see that as long as m ≥ R2(3Lipmax + 1)2L−2, we have W ∗ ∈ B(W (1), ω). We
now show that under our parameter choice, W (1), . . . ,W (N) are inside B(W (1), ω) as well.

This result follows by simple induction. Clearly we have W (1) ∈ B(W (1), ω). Suppose that
W (1), . . . ,W (i) ∈ B(W (1), ω). Then by Lemma 10, for l ∈ [L], we have ∥∇Wl

Li(W
(i))∥2 ≤

Θ(3Lipmax + 1)L−l−1.

Therefore:∥∥W (i+1)
l −W

(1)
l

∥∥
2
≤

i∑
j=1

∥∥W (j+1)
l −W

(j)
l

∥∥
2
≤ Θ((3Lipmax + 1)L−l−1γN) .

Plugging in our parameter choice γ = ε/[m(3Lipmax+1)2L−2], N = LR2(3Lipmax+1)2L−2/(2ε2)
for some small enough absolute constant ν provides:∥∥W (i+1)

l −W
(1)
l

∥∥
F
≤ Θ

(√
m(3Lipmax + 1)L−l−1LR

2

2mε

)
≤ ω ,

34

where the last inequality holds as long as m ≥ (3Lipmax + 1)4L−4L2R4/(4ε2). Therefore by
induction we see that W (1), . . . ,W (N) ∈ B(W (1), ω). As a result, the conditions of Lemmas. 7, 8, 9
and 10 are satisfied for W ∗ and W (1), . . . ,W (N).

In the following, we utilize the results of Lemmas 7, 8, 9 and 10 to prove the bound of cumulative
loss. First of all, by Lemma 9, we have:

Li(W
(i))− Li(W

∗) ≤
〈
∇WLi(W

(i)),W (i) −W ∗
〉
+ ϵ

=

L∑
l=1

〈
W

(i)
l −W

(i+1)
l ,W

(i)
l −W ∗

l

〉
γ

+ ϵ .

Note that for the matrix inner product we have the equality 2 ⟨A,B⟩ = ∥A∥2F+∥B∥2F−∥A−B∥2F.
Applying this equality to the right hand side above provides:

Li(W
(i))− Li(W

∗) ≤
L∑
l=1

∥W (i)
l −W

(i+1)
l ∥2F + ∥W (i)

l −W ∗
l ∥2F − ∥W (i+1)

l −W ∗
l ∥2F

2γ
+ ϵ .

By Lemma 10, for l ∈ [L] we have ∥W (i)
l − W

(i+1)
l ∥F ≤ γ

√
m∥∇Wl

Li(W
(i))∥2 ≤

Θ(γ
√
m(3Lipmax + 1)L−l−1).

Therefore:

Li(W
(i))− Li(W

∗) ≤
L∑
l=1

∥W (i)
l −W ∗

l ∥2F − ∥W (i+1)
l −W ∗

l ∥2F
2γ

+Θ((3Lipmax + 1)2L−2γm) + ϵ .

Telescoping over i = 1, . . . , N , we obtain:

1

N

N∑
i=1

Li(W
(i)) ≤ 1

N

N∑
i=1

Li(W
∗) +

L∑
l=1

∥W (1)
l −W ∗

l ∥2F
2Nγ

+Θ((3Lipmax + 1)2L−2γm) + ϵ

≤ 1

N

N∑
i=1

Li(W
∗) +

LR2

2γmN
+Θ((3Lipmax + 1)2L−2γm) + ϵ ,

where in the first inequality we simply remove the term −∥W (N+1)
l −W ∗

l ∥2F/(2γ) to obtain an upper
bound, the second inequality follows by the assumption that W ∗ ∈ B(W (1), Rm−1/2). Plugging in
the parameter choice γ = ε/[m(3Lipmax + 1)2L−2], N = LR2(3Lipmax + 1)2L−2/(2ε2), then:

1

N

N∑
i=1

Li(W
(i)) ≤ 1

N

N∑
i=1

Li(W
∗) + 3ϵ ,

which finishes the proof.

D.2 Proof of Theorem 3

Proof. By Lemmas 8, Lemma 11 and Theorem 3.3, Lemma 4.4, Corollary 3.10 in [Cao and Gu,
2019], let C1(L) =

√
L/(3Lipmax+1)L−1 and C2(L) =

√
L(3Lipmax+1)L−1, bring in our γ and

N with a not very large L, we have:

E[ℓ0−1D (Ŵ)]≤Õ

(
C2

√
y⊤(K(L))−1y

N

)
+O

(√
log(1/δ)

N

)
.

According to the courant minimax principle [Golub and Van Loan, 1996]: 1
λmin(K(L))

=

λmax((K
(L))−1) = max y⊤(K(L))−1)y

y⊤y
, that means y⊤((K(L))−1)y ≤ y⊤y

λmin(K(L))
, then we have

the final bound:

35

E[ℓ0−1D (Ŵ)]≤Õ

(
C2

√
y⊤y

λmin(K(L))N

)
+O

(√
log(1/δ)

N

)
.

E Discussion on the key points and the motivation of the NTK analysis

In this section, we discuss the motivation and few key points in the proof of this paper and we also
explain how the proof differs from previous results.

The motivation for studying the minimum eigenvalue of NTK:

To make this clearer, we provide an illustrative example on the significance of the minimum eigenvalue.
Let us consider the square loss Φ(θ) = 1

2

∑n
i=1 ∥f(xi)− yi∥2. A simple calculation shows that

Φ(θ) ≤ [∇Φ(θ)]2

2λmin(K) . Thus if the minimum eigenvalue of NTK is strictly greater than 0, then minimizing
the gradient on the LHS will drive the loss to zero. The larger the minimum eigenvalue, the smaller
the loss.

Therefore, in this work, we are using the minimum eigenvalue to derive the generalization bound of
NAS.

Key points in the proof:

• Minimum eigenvalue: Our proof framework is motivated by Nguyen et al. [2021] on minimal
eigenvalue of NTK of ReLU neural networks. However, our proofs differ from them in
two aspects. Firstly, as we discussed in sec. 1, extension to mixed activation functions is
non-trivial due to the special properties of ReLU. More importantly, we remark that the
lower bound of the minimal eigenvalue of NTK in [Nguyen et al., 2021, Theorem 3.2] holds

with probability at least 1−Ne−Ω(d) −N2e
−Ω

(
dN

− 2
r−0.5

)
, where r ≥ 2 is some constant.

It can be found that, this concentration probability decreases as the number of training data
increases. Thus, it could be negative for a large N . This is due to the use of Gershgorin
circle theorem leading to a loose probability estimation. Instead, in this paper, we do not
use this theorem, and we develop a tighter estimation based on Yaskov [2014] under the
assumption of isotropic data distribution. Accordingly, we achieve the reasonable 1− e−d

probability, c.f. Theorem 1.

• Generalization: Our proof framework is based on Cao and Gu [2019] for generalization
guarantees of deep ReLU neural networks requiring m = Ω(L56) . Their results cannot be
directly extended to other activation functions as the nice homogeneity and the derivative
property of ReLU are used in their proof. To make our result feasible to various activation
functions, we employ Lipschitz continuous properties of all activation functions, and achieve
the generalization guarantees with m = Ω(44L), c.f. Theorem 3 and Lemma 11. Admittedly,
our result is in an exponential increasing order of the depth. However, in practice, the depth
of neural networks in NAS is usually smaller than 20, or even 10 [Liu et al., 2018, Dong
et al., 2021], which leads to 44L ≪ L56 in this case when compared to their result. This
result makes our theory reasonable and fair for NAS.

F Auxiliary numerical validations

F.1 Dataset details and algorithm

We describe here the datasets that we have used for the numerical validation of our theory. Those are
the following five datasets:

1. Fashion-MNIST [Xiao et al., 2017] includes grayscale images of clothing. The training set
consists of 60, 000 examples and the test set of 10, 000 examples. The resolution of each
image is 28× 28, with each image belonging to one of the 10 classes.

36

2. MNIST [Lecun et al., 1998] includes handwritten digits images. MNIST has a training set
of 60, 000 examples and a test set of 10, 000 examples. The resolution of each image is
28× 28.

3. CIFAR-10 and CIFAR-100 [Krizhevsky et al., 2014] depicts images of natural scenes.
CIFAR-100 has a training set of 50, 000 examples and a test set of 10, 000 examples. The
resolution of each RGB image is 32× 32.

4. ImageNet-16 [Chrabaszcz et al., 2017] is the down-sampled version of ImageNet [Deng
et al., 2009] with image size 16× 16 on 120 classes.

Our Eigen-NAS algorithm used in sec. 5.2 is summarized as below.

Algorithm 2: Eigen-NAS Algorithm

Require: Search space S , training data Dtr = {(xi, yi)Ni=1}, validation data Dval = {(xj , yj)Nv
j=1}.

Initialize max iteration = M
Initialize candidate set C = []
for search iteration in 1, 2, . . . ,max iteration do

Randomly sample architecture s from search space S.
Compute Eigen := minimum eigenvalue of NTK.
C.append(s, Eigen)
update C to kept top-K best architectures

end for
s⋆ = bests(C,Dtr,Dval) # Choose the best architecture based on validation error after training 20
epochs.
Output s⋆

F.2 Compared algorithms

We provide a thorough comparison with the following baselines:

1. Classical network: ResNet [He et al., 2016], which is the default baseline used widely in image-
related tasks.

2. Reinforcement learning based algorithm: NAS-RL [Zoph and Le, 2017] with the validation
accuracy as a reward, which is an classical and representative NAS Algorithm.

3. Differentiable algorithm: DARTS [Liu et al., 2019b]4, which is the earliest and basic gradient-based
NAS algorithm.

4. Train-free algorithms using metrics to guide NAS: A new type of NAS algorithm, they use some
special metrics to pick models directly from candidate models. Common Train-free algorithms are:
NASWOT [Mellor et al., 2021] using the output of ReLU; TE-NAS [Chen et al., 2021] leveraging
the spectrum of NTK and linear partition of the input space; KNAS [Xu et al., 2021] employing
the Frobenius norm of NTK. Our Eigen-NAS algorithm also belongs to this type.

F.3 Training/test accuracy of DNNs by NAS

Here we evaluate the classification results with 5 runs of the obtained architecture by DARTS under
varying widths m ∈ {64, 128, 256, 512, 1024} and depths L ∈ {5, 10} on Fashion-MNIST. Figure 2
shows that nearly 90% accuracy is achieved on the test set under different depth and width settings.
The result is competitive on FC/residual networks within 10 layers and without training tricks, e.g.,
data augmentation, batch norm and drop out. We find that when compared to the depth, the network
width also contributes on test accuracy. As suggested by Eq. (2), the amount of parameters in the
neural network is approximately proportional to the depth, but squared to the width.

F.4 Simulation of minimum eigenvalues of NTK

We calculate the minimum eigenvalue of each NTK matrix under different architectures with activation
functions, skip connections and depths, according to Lemma 1. We consider four special cases on skip
connections: a) no skip connections with α = 0, i.e., fully connected neural network in Figure 3(a);

4We directly use the results from Xu et al. [2021].

37

64 128 256 512 1024
Width (m)

86

88

90

92

94

96

98

100

Ac
cu

ra
cy

 (%
)

train acc L=10
test acc L=10
train acc L=5
test acc L=5

Figure 2: The accuracy of neural networks by NAS under different widths and depths.

b) skip connections between all consecutive layers with α = 1, in Figure 3(b); c) the alpha of the
first half (of the network) is 1 and the alpha of the second half is 0 shown in Figure 4(a); d) The alpha
of the first half is 0 and the alpha of the second half is 1. The results are shown in Figure 4(b).

Figure 3(a) indicates that as the network depth increases, the minimum eigenvalue of NTK will
become larger when LeakyReLU, ReLU, Swish and Tanh employed, but Sigmoid leads to a decreasing
minimum eigenvalue, which is consistent with the upper bound shown in Theorem 1. The LeakyReLU,
ReLU and Swish generate the fastest increasing rate of depth, while Tanh and Sigmoid are slow,
which coincides with the derived lower bound in Theorem 1 and previous work Bietti and Bach
[2021]. Figure 3(b) shows that, under the skip connection, the tendency of the minimum eigenvalue
of NTK is similar to that of FC neural networks when various activation functions are employed.
However, the specific values and the growth rate are significantly larger than FC neural networks.
This result is consistent with the conclusion we state in Theorem 1 about skip layers leading to the
increase of minimum eigenvalue of NTK with respect to the depth. Moreover, Figure 4 show similar
growth speed.

Then, we plot the comparison figure of NTK under above two settings and two settings in main paper
for the same activation function in Figure 5. In addition to reconfirming the order between different
activation functions, we can also see that the effect of adding an activation layer in the second half
of the 10-layer neural network is better than the first half of the neural network. This verifies the
experimental results in Figure 1(b).

F.5 Additional experiments on NAS-Bench-101 and ranking correlations

In this section, we conduct more experiments on two new benchmarks NAS-Bench-101 [Ying et al.,
2019] and Network Design Spaces (NDS) [Radosavovic et al., 2019] using the same setting as sec. 5.2.

Table 6 provides a comparison of the accuracy of Eigen-NAS, KNAS and NASWOT on four new
search spaces. For all of four search spaces, our method achieves the best results with 1% − 2%
accuracy improvement.

Moreover, we conduct more detailed experiments using the CIFAR-10 dataset on NAS-Bench-
101. Table 7 provides the running time and Kendall rank correlation coefficient between minimum
eigenvalues and accuracy for the above three train-free NAS algorithm. We can see that our Eigen-
NAS method can get the best rank correlation coefficient with the fastest speed among three methods.

38

2 3 4 5 6 7 8 9 10
Depth (L)

0

20

40

60

80

100

M
in

im
um

 e
ig

en
va

lu
e ReLU

Sigmoid
Tanh
leakyReLU
Swish

(a) no skip connections

2 3 4 5 6 7 8 9 10
Depth (L)

0

2000

4000

6000

8000

10000 ReLU
Sigmoid
Tanh
leakyReLU
Swish

(b) skip connections
Figure 3: Minimum eigenvalue of NTK vs. depth (L) under various activation functions with/without
skip connections in each layer.

2 3 4 5 6 7 8 9 10
Depth (L)

0

250

500

750

1000

1250

1500

1750

M
in

im
um

 e
ig

en
va

lu
e

ReLU
Sigmoid
Tanh
leakyReLU
Swish

(a) the first half has a skip layer

2 3 4 5 6 7 8 9 10
Depth (L)

0

1000

2000

3000

4000

5000

M
in

im
um

 e
ig

en
va

lu
e

ReLU
Sigmoid
Tanh
leakyReLU
Swish

(b) the second half has a skip layer
Figure 4: Minimum eigenvalue of NTK vs. depth (L) under various activation functions with/without
skip connections in each layer.

The scatter plot of the relationship between the minimum eigenvalue and the accuracy is shown
in Figure 6.

F.6 Transfer learning experiment

Here we evaluate the proposed NAS framework on transfer learning. The algorithm from sec. 5.1 is
employed for this experiment, e.g., the same search space and search strategy. The experiment setting
is the following: we train the model on FashionMNIST for 20 epochs, then we use the pretrained
weights and fine-tune them for 5 epochs on MNIST, with repeated three times.

Table 8 show that, after the fine-tuning for just 2 epochs, the method obtains up to 95% accuracy
and after fine-tuning for 5 epochs it obtains up to 97% accuracy. This verifies our intuition that the
proposed NAS framework can obtain architectures that generalize well beyond the dataset they were
optimized on.

Table 6: New results on NAS-Benchmark-101, NDS-DARTS and NDS-PNAS using CIFAR-10 and
ImageNette2, a subset of ImageNet.

Benchmark NAS-Bench-101 NDS-DARTS NDS-PNAS NDS-PNAS
Dataset CIFAR-10 CIFAR-10 CIFAR-10 ImageNette2
Eigen-NAS (k = 20) 92.7% 92.6% 93.8% 69.2%
KNAS (k = 20) 91.7% 90.1% 91.7% 67.3%
NASWOT 91.3% 90.6% 93.3% 68.4%

39

2 3 4 5 6 7 8 9 10
Depth (L)

0

2000

4000

6000

8000
M

in
im

um
 e

ig
en

va
lu

e

No skip
Full skip
First half skip
Second half skip

(a) ReLU

2 3 4 5 6 7 8 9 10
Depth (L)

0

2000

4000

6000

8000

10000

M
in

im
um

 e
ig

en
va

lu
e

No skip
Full skip
First half skip
Second half skip

(b) LeakyReLU

2 3 4 5 6 7 8 9 10
Depth (L)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
in

im
um

 e
ig

en
va

lu
e

No skip
Full skip
First half skip
Second half skip

(c) Sigmoid

2 3 4 5 6 7 8 9 10
Depth (L)

0

10

20

30

40

50

60

70

M
in

im
um

 e
ig

en
va

lu
e

No skip
Full skip
First half skip
Second half skip

(d) Tanh

2 3 4 5 6 7 8 9 10
Depth (L)

0
1000
2000
3000
4000
5000
6000
7000

M
in

im
um

 e
ig

en
va

lu
e

No skip
Full skip
First half skip
Second half skip

(e) Swish
Figure 5: Minimum eigenvalue of NTK for different activation function. The red line have skip
connections in each layer, green line does not contain any skip connections, the blue line represents
the skip connections in the first half and the cyan line represents the skip connections in the second
half.

Table 7: Running time (in Second) and the Kendall rank correlation coefficient on NAS-Bench-101,
CIFAR-10 (the larger the absolute value of Rank correlation, the stronger the correlation between the
guide used by the algorithm and the network accuracy).

Method Eigen-NAS (k = 20) KNAS (k = 20) NASWOT
Running time 1136 1967 1468
Rank correlation −0.355 0.309 −0.313

F.7 DARTS experiment on CNN

Our theory relies on fully-connected matrices and we have indeed verified experimentally the validity
of our theoretical findings. To scrutinize our method even further, we attempt to extend our results
to the popular convolutional neural networks. We believe this will provide some further insights
on future extensions of our theory. In particular, we use DARTS (similarly with the experiment in
sec. 5.1) with convolutional layers. The standard dataset of CIFAR-10 is selected; the details of the
dataset are shared in Appendix F.1. The search space and search strategy follow sec. 5.1 with one
differentiating point: we use convolutional layers instead of fully connected layers in Eq. (2).

We select DARTS on a Convolutional Neural Network with L = 10 and m = 1024, while we
repeat the experiment for 5 times. After training, the probability of these activation functions and
skip connections in each layer are reported in Figure 7(a) and 7(b), respectively. Compared with
the Figure 1, the activation function search exhibits similar characteristics with the results of the fully
connected network. Namely: (1) ReLU and LeakyReLU have the highest probability to be selected,
(2) the difference of probability between different activation functions in the first layer is the largest.

Table 8: Transfer learning result of our network for different width (m) which training in FashionM-
NIST (domain dataset) for 20 epochs and then training in MNIST (target dataset) for 2 or 5 epochs.
(the accuracy in the table are displayed in percentages)

Epochs m = 64 m = 128 m = 256 m = 512 m = 1024
20 + 2 94.13± 0.64 95.18± 0.25 94.73± 0.22 94.40± 0.80 95.41± 0.03
20 + 5 95.73± 0.28 96.12± 0.32 96.73± 0.29 96.73± 0.11 96.96± 0.22

40

0.75 0.8 0.85 0.9 0.95
Accuracy

2

4

6

8

10

12

14

M
in

im
um

 E
ig

en
va

lu
e

Figure 6: The standard scatter plot on the kendall rank correlation coefficient.

1 2 3 4 5 6 7 8 9 10
Layer

R
eL

U
Ta

nh
Si

gm
oi

d
Le

ak
yR

eL
U

Sw
is

h
Ac

tiv
at

io
n

fu
nc

tio
n

0.24 0.21 0.2 0.2 0.2 0.2 0.2 0.2 0.21 0.21

0.22 0.16 0.18 0.2 0.2 0.2 0.19 0.19 0.18 0.17

0.13 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.21

0.24 0.21 0.2 0.2 0.2 0.2 0.2 0.2 0.21 0.21

0.18 0.22 0.21 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.14

0.16

0.18

0.20

0.22

(a) activation functions σ

2 3 4 5 6 7 8 9 10
Layer

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

(b) skip connections α

Figure 7: Architecture search results on activation functions indicated by the probability of σ in (a)
and skip connections indicated by α in (b). We notice that for each layer, ReLU and LeakyReLU are
selected with the higher probability.

But for skip layer search, CNN exhibits the opposite results with fully connected network, that is,
almost all of the skip connections have a probability of being selected less than 50%.

Based on the above results, our theory can still explain some of the phenomena observed in CNNs,
e.g., activation functions search. Nevertheless, our theory on skip connections search on CNNs
mismatches with experimental demonstration in practice to some extent, which motivates us to
conduct a refined analysis on CNNs for NAS.

F.8 β-DARTS experiment on MLP

In this section, we use an improved DARTS-based algorithm, β-DARTS [Ye et al., 2022], for doing the
activation function search. Our experiments are performed on a 5-layers MLP and the experimental
results are presented in Figure 8. Compared with the results of DARTS in Figure 1, the experimental
results of β-DARTS indicate that the probability difference between different activation functions is
smaller, which may verify that DART is more easily to overfit . This is also the advantage mentioned
in the β-DARTS paper.

41

1 2 3 4 5
Layer

R
eL

U
Ta

nh
Si

gm
oi

d
Le

ak
yR

eL
U

Sw
is

h
Ac

tiv
at

io
n

fu
nc

tio
n

0.24 0.24 0.24 0.23 0.23

0.13 0.13 0.13 0.12 0.12

0.16 0.18 0.18 0.19 0.21

0.24 0.24 0.24 0.23 0.23

0.23 0.22 0.22 0.21 0.21
0.14

0.16

0.18

0.20

0.22

0.24

Figure 8: Architecture search results using β-DARTS on activation functions indicated by the
probability of σ. We notice that for each layer, ReLU and LeakyReLU are selected with the higher
probability.

G Societal impact

This is a theoretical work that derived generalization bounds for the architectures obtained by NAS.
As such, we do not expect our work to have negative societal bias, as we do not focus on obtaining
state-of-the-art results in a particular task. On the contrary, our work can have various benefits for the
community:

• We provide the first generalization bounds for the class of NAS architectures, which is
expected to have a positive impact on the understanding and the application of such architec-
tures.

• As we illustrate in sec. 5, we can use the minimum eigenvalue as a promising metric to
guide NAS. This can lead to further investigation on techniques for efficient evaluation of
NAS by avoiding solving the intensive bi-level optimization of NAS explicitly.

Nevertheless, we encourage researchers to further investigate the impact of different architectures
and their inductive biases on the society.

42

	Introduction
	Related work
	Problem Settings
	Neural Networks and Search Space
	Algorithm (Search Strategy)

	Main result
	Assumptions
	Recursive NTK for DNNs defined by Eq. (1)
	Minimum Eigenvalue of NTK for infinite-width
	Minimum Eigenvalue of NTK for finite-width
	Connection to Generalization Error Bound
	Proof sketch

	Numerical Validation
	DARTS experiment
	NAS-Bench-201 Experiment

	Conclusion
	Background
	Symbols and Notation
	Feature map
	Other notations

	The bound of the minimum eigenvalues of NTK for infinite-width
	Proof of Lemma 1
	Proof of thm:lambdamininfmixed
	Special cases

	The bound of the minimum eigenvalues of NTK for finite-width
	Neural Tangent Kernel for finite-width
	Relevant Lemmas
	Results for mixed activation functions under the finite-width setting (Proof of thm:lambdaminfinite)

	Generalization error via the minimum eigenvalue of NTK
	Relevant Lemmas
	Proof of thm:NTKGeneralization

	Discussion on the key points and the motivation of the NTK analysis
	Auxiliary numerical validations
	Dataset details and algorithm
	Compared algorithms
	Training/test accuracy of DNNs by NAS
	Simulation of minimum eigenvalues of NTK
	Additional experiments on NAS-Bench-101 and ranking correlations
	Transfer learning experiment
	DARTS experiment on CNN
	-DARTS experiment on MLP

	Societal impact

