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Abstract

Vehicle trajectory prediction is nowadays a fundamen-
tal pillar of self-driving cars. Both the industry and re-
search communities have acknowledged the need for such a
pillar by providing public benchmarks. While state-of-the-
art methods are impressive, i.e., they have no off-road pre-
diction, their generalization to cities outside of the bench-
mark remains unexplored. In this work, we show that those
methods do not generalize to new scenes. We present a
method that automatically generates realistic scenes caus-
ing state-of-the-art models to go off-road. We frame the
problem through the lens of adversarial scene generation.
The method is a simple yet effective generative model based
on atomic scene generation functions along with physical
constraints. Our experiments show that more than 60% of
existing scenes from the current benchmarks can be modi-
fied in a way to make prediction methods fail (i.e., predict-
ing off-road). We further show that the generated scenes (i)
are realistic since they do exist in the real world, and (ii)
can be used to make existing models more robust, yielding
30− 40% reductions in the off-road rate. The code is avail-
able online: https://s-attack.github.io/.

1. Introduction

Vehicle trajectory prediction is one of the main building
blocks of a self-driving car, which forecasts how the future
might unfold based on the road structure (i.e., the scene)
and the traffic participants. State-of-the-art models are com-
monly trained and evaluated on datasets collected from a
few cities [14, 19, 23]. While their evaluation has shown
impressive performance, i.e., almost no off-road prediction,
their generalization to other types of possible scenes e.g.,
other cities, remains unknown. Figure 1 shows a real-world
example where a state-of-the-art model reaching zero off-
road in the known benchmark [19] failed in South St, New

∗ Equal contribution as the first authors.

Figure 1. A real-world place (location) in New York where the
trajectory prediction model (here [32]) fails. We find this place
by retrieving real-world locations which resemble our conditional
generated scenes for the prediction model.

York, USA. Since collecting and annotating data of all real-
world scenes is not a viable and affordable solution, we
present a method that automatically investigates the robust-
ness of vehicle trajectory prediction to the scene. We tackle
the problem through the lens of realistic adversarial scene
generation.

Given an observed scene, we want to generate a realis-
tic modification of it such that the prediction models fail in.
Having an off-road prediction is a clear indication of a fail-
ure in the the model’s scene reasoning and has been used
in some previous works [8, 16, 36, 38]. To find a realistic
example where the models go off-road, the huge space of
possible scenes should be explored. One solution is data-
driven generative models that mimic the distribution of a
dataset [35]. Yet, they do not essentially produce realistic
scenes due to the possible artifacts. Moreover, they will
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represent a portion of real-world scenes as they cannot gen-
erate scenes beyond what they have observed in the dataset
(cannot extrapolate). We therefore suggest a simple yet effi-
cient alternative. We show that it is possible to use a limited
number of simple functions for transforming the scene into
new realistic but challenging ones. Our method can explic-
itly extrapolate to new scenes.

We introduce atomic scene generation functions where
given a scene in the dataset, the functions generate multi-
ple new ones. These functions are chosen such that they
can cover a range of realistic scenes. We then choose the
scenes where the prediction model produces an off-road
trajectory. Using three state-of-the-art trajectory predic-
tion models trained on Argoverse public dataset [19], we
demonstrate that more than 60% of the existing scenes in
the dataset can be modified in such a way that it will make
state-of-the-art methods fail (i.e., predict off-road). We con-
firm that the generated scenes are realistic by finding real-
world locations that partially resemble the generated scenes.
We also demonstrate off-road predictions of the models in
those locations. To this end, we extract appropriate fea-
tures from each scene and use image retrieval techniques to
search public maps [1]. We finally show that these gener-
ated scenes can be used to improve the robustness of the
models.

Our contributions are fourfold:

• we highlight the need for a more in-depth evaluation of
the robustness of vehicle trajectory prediction models;

• our work proposes an open-source evaluation frame-
work through the lens of realistic adversarial scene
generation by promoting an effective generative model
based on atomic scene generation functions;

• we demonstrate that our generated scenes are realistic
by finding similar real-world locations where the mod-
els fail;

• we show that we can leverage our generated scenes to
make the models more robust.

2. Related work
Vehicle trajectory prediction. The scene plays an im-
portant role in vehicle trajectory prediction as it constrains
the future positions of the agents. Therefore, modeling the
scene is common in spite of some human trajectory pre-
diction models [13, 39]. In order to reason over the scene
in the predictions, some suggested using a semantic seg-
mented map to build circular distributions and outputting
the most probable regions [21]. Another solution is rea-
soning over raw scene images using convolutional neural
networks (CNN) [31]. Many follow-up works represented
scenes in the segmented image format and used the learn-
ing capability of CNNs over images to account for the

scene [10, 17, 18, 25, 40]. Carnet [45] used attention mech-
anism to determine the scene regions that were attended
more, leading to an interpretable solution. Some recent
work showed that scene can be represented by vector for-
mat instead of images [7,24,32,47]. To further improve the
reasoning of the model and generate predictions admissible
with respect to the scene, use of symmetric cross-entropy
loss [38, 41], off-road loss [8], and REINFORCE loss [16]
have been proposed. Despite all these efforts, there has been
limited attention to assess the performance of trajectory pre-
diction models on new scenes. Our work proposes a frame-
work for such assessments.
Evaluating self-driving systems. Self-driving cars deal
with dynamic agents nearby and the static environment
around. Several works studied the robustness of self-driving
car modules with respect to the status of dynamic agents on
the road, e.g., other vehicles. Some previous works change
the behavior of other agents in the road to act as attack-
ers and evaluate the model’s performance with regards to
the interaction with other agents [3, 4, 20, 26, 28, 30, 43, 52].
Others directly modify the raw sensory inputs to change the
status of the agents in an adversarial way [15, 49, 51, 53].

In addition to the dynamic agents, driving is highly de-
pendant on the static scene around the vehicle. The scene
understanding of the models can be assessed by modifying
the input scene. Previous works modify the raw sensory in-
put by changing weather conditions [33, 50, 54], generating
adversarial drive-by billboards [29, 55], and adding care-
fully crafted patches/lines to the road [12,46]. These works
have not changed the shape of the scene, i.e., the structure of
the road. In contrast, we propose a conditional scene gen-
eration method to assess the scene reasoning capability of
trajectory prediction models. Also our approach is differ-
ent from data-driven scene generation based on graph [35]
or semantic maps [44]. Data-driven generative models are
prone to have artifacts and cannot extrapolate beyond the
training data. Ours is an adversarial one which can extrap-
olate to new scenes.

3. Realistic scene generation

In this section, we explain in detail our approach for gen-
erating realistic scenes. After introducing the notations in
Section 3.1, we show how we generate each scene in Sec-
tion 3.2 and satisfy physical constraints in Section 3.3. Fi-
nally, we introduce our search method in Section 3.4.

3.1. Problem setup

The vehicle trajectory prediction task is usually defined
as predicting the future trajectory of a vehicle z given its
observation trajectory h, status of surrounding vehicles a,
and scene S. For the sake of brevity, we assume S is in
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the vector representation format [19]1 . Specifically, S is a
matrix of stacked 2d coordinates of all lanes’ points in x-
y coordinate space where each row represents a point s =
(sx, sy). Formally, the output trajectory z of the predictor g
is:

z = g(h, S, a). (1)

Given a scene S, our goal is to create challenging realistic
scene S∗ as we will explain in Section 3.2.

3.2. Conditional scene generation

Our controllable scene generation method generates di-
verse scenes conditioned on existing scenes. Specifically,
we opt for a set of atomic functions which represent turn
as a typical road topology. To this end, we normalize the
scene (i.e., translation and rotation with respect to h), ap-
ply the transformation functions, and finally denormalize to
return the generated scene to the original view. Note that
every transformation of S is followed by the same transfor-
mations on h and a.

We define transformations on each scene point in the fol-
lowing form:

s̃ = (sx, sy + f(sx − b)) (2)

where s̃ is the transformed point, f is a single-variable
transformation function, and b is the border parameter that
determines the region of applying the transformation. In
other words, we define f(< 0) = 0 so the areas where
sx < b are not modified. This confines the changes to the
regions containing the prediction. One example is shown in
Figure 2. The new scene is named S̃, a matrix of stacked s̃.
We propose three interpretable analytical functions for the
choice of f .
Smooth-turn: this function represents different types of
single turns in the road.

fst,α(sx) =


0, sx < 0

qα(sx), 0 ≤ sx ≤ α1

(sx − α1)q
′
α(α1) + qα(α1) α1 < sx

,

qα(sx) = α2s
α3
x ,

α = (α1, α2, α3),

(3)

where α1 determines the length of the turn, α2, α3 control
its sharpness, and q′α indicates the derivative of the defined
auxiliary function qα. Note that according to the definition,
fst,α is continuously differentiable and makes a smooth
turn. One such turn is depicted in Figure 2b.

1 We show in the appendix that our method is seamlessly applicable
when S is in image representation.

Double-turn: these functions represent two consecutive
turns with opposite directions. Also, there is a variable in-
dicating the distance between them:

fdt,β(sx) = fst,β1
(sx)− fst,β1

(sx − β2),

β = (β11, β12, β13, β2),

β1 = (β11, β12, β13),

(4)

where β1 is the set of parameters of each turn described in
Equation (3) and β2 is the distance between two turns. One
example is shown in Figure 2c.
Ripple-road: one type of scene that can be challenging for
the prediction model is ripple road:

frr,γ(sx) =

{
0, sx < 0

γ1(1− cos(2πγ2 sx)), sx ≥ 0
,

γ = (γ1, γ2),

(5)

where γ1 determines the turn curvatures and γ2 determines
the sharpness of the turns. One such turn is depicted in
Figure 2d.

3.3. Physical constraints

Every scenario consists of a scene and vehicle trajecto-
ries in it. The generated scenarios must be feasible, other-
wise, they cannot represent possible real-world cases. We
consider a scenario as feasible if a human driver can pass it
safely. This means that the physical constraints – i.e., the
Newton’s law – should not be violated. The Newton’s law
indicates a maximum feasible speed for each road based on
its curvature [22]:

vmax =
√
µgR, (6)

where R is the radius of the road, µ is the friction coefficient
and g is the gravity. To consider the most conservative sit-
uation, we pick the maximum curvature (minimum radius)
existing in the generated road. Then, we slow down the his-
tory trajectory when the speed is higher than the maximum
feasible speed, and we name it h̃. Note that this conserva-
tive speed scaling ensures a feasible acceleration too. We
will show in Section 4 that a model with hard-coded physi-
cal constraints successfully predicts the future trajectory for
the generated scenes, which indicates that our constraints
are enough.

3.4. Scene search method

In the previous sections, we defined a realistic control-
lable scene generation method. Now, we introduce a search
method to find a challenging scene specific to each trajec-
tory prediction model.

We define m as a function of z and S measuring the per-
centage of prediction points that are off-road obtained us-
ing a binary mask of the drivable area. We aim to solve the
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(a) Before transformation

10m

b

Other Vehicles
Observation
Ground Truth

(b) Single-turn

10m

b

Other Vehicles
Observation
Ground Truth

(c) Double-turn

10m

b

Other Vehicles
Observation
Ground Truth

(d) Ripple-road

Figure 2. Visualization of different transformation functions. The scene before transformation will be followed by three different
transformations. Here, α = (10, 0.002, 3) for the single-turn, β = (10, 0.002, 3, 10) for the double-turn and γ = (6, 0.017) for the
ripple-road. b is the border parameter and set to 5 meters in all figures.

following problem to find a scene in which the prediction
model fails in:

S∗ = argmin
S̃

l(z̃, S̃),

l(z̃, S̃) =
(
1−m(z̃, S̃)

)2

,

(7)

where S̃ is a modification of S according to Equation (2) us-
ing one of the transformation functions Equation (3), Equa-
tion (4), or Equation (5). Moreover, z̃ = g(h̃, S̃, ã) is the
model’s predicted trajectory given the modified scene and
the modified history trajectories.The optimization problem
finds the corresponding parameters to obtain S∗ that gives
the highest number of off-road prediction points. Equa-
tion (7) can be optimized using any black-box optimization
technique. We have studied Bayesian optimization [42,48],
Genetic algorithms [5, 34], Tree-structured Parzen Estima-
tor Approach (TPE) [9] and brute-force. The overall algo-
rithm is described in the appendix.

4. Experiments
We conduct experiments to answer the following ques-

tions: 1) How is the performance of the prediction models
on our generated scenes? 2) Are the generated scenes real-
istic and possibly similar to the real-world scenes? 3) Are
we able to leverage the generated scenes to improve the ro-
bustness of the model?

4.1. Experimental setup

4.1.1 Baselines and datasets

We conduct our experiments on the baselines with differ-
ent scene reasoning approaches (lane-graph attention [32],
symmetric cross entropy [38], and counterfactual reason-
ing [27]), which are among the top-performing models and
are open-source.
LaneGCN [32]. It constructs a lane graph from vector-
ized scene and uses self-attention to learn the predictions.
This method was among the top methods in Argoverse Fore-
casting Challenge 2020 [2]. It is a multi-modal prediction

model which also provides the probability of each mode.
Therefore, in our experiments, we consider the mode with
the highest probability.
DATF [38]. It is a flow-based method which uses a sym-
metric cross-entropy loss to encourage producing on-road
predictions. This multi-modal prediction model does not
provide the probability of each mode. We therefore con-
sider the mode which is closest to the ground truth.
WIMP [27]. They employ a scene attention module and a
dynamic interaction graph to capture geometric and social
relationships. Since they do not provide probabilities for
each mode of their multi-modal predictions, we consider
the one which is closest to the ground truth.
MPC [6, 56]. We report the performance of a rule-based
model with satisfied kinematic constraints. We used a
well-known rule-based model which follows center of the
lanes [56]. While many approaches can be used to satisfy
kinematic constraints in trajectory prediction, similar to [6],
we used Model Predictive Control (MPC) with a bicycle
dynamic model.

We leveraged Argoverse dataset [19], the same dataset
our baselines were trained on. Given the 2 seconds obser-
vation trajectory, the goal is to predict the next 3 seconds
as the future motion of the vehicle. It is a large scale vehi-
cle trajectory dataset. The dataset covers parts of Pittsburgh
and Miami with total size of 290 kilometers of lanes.

4.1.2 Metrics

Hard Off-road Rate (HOR): in order to measure the per-
centage of samples with an inadmissible prediction with re-
gards to the scene, we define HOR as the percentage of sce-
narios that at least one off-road happens in the prediction
trajectory points. It is rounded to the nearest integer.
Soft Off-road Rate (SOR): to measure the performance in
each scenario more thoroughly, we measure the percentage
of off-road prediction points over all prediction points and
the average over all scenarios is reported. The reported val-
ues are rounded to the nearest integer.
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4.1.3 Implementation details

We set the number of iterations to 60, the friction coefficient
µ to 0.7 [11] and b equal to 5 for all experiments. For the
choice of the black-box algorithm, as the search space of
parameters is small in our case, we opt for the brute-force
algorithm. We developed our model using a 32GB V100
NVIDIA GPU.

4.2. Results

We first provide the quantitative results of applying our
method to the baselines in Table 1. The last column (All)
represents the results of the search method described in Sec-
tion 3.3. We also reported the performance of considering
only one category of scene generation functions in the opti-
mization problem Equation (7) in the other columns of the
table. The results indicate a substantial increase in SOR
and HOR across all baselines in different categories of the
generated scenes. This shows that the generated scenes are
difficult for the models to handle. LaneGCN and WIMP
have competitive performances, but WIMP run-time is 50
times slower than LaneGCN. Hence, we use LaneGCN to
conduct our remaining experiments.

Figure 3 visualizes the performance of the baselines in
our generated scenes. We observe that all models are chal-
lenged with the generated scenes. More cases are provided
in the appendix.

In Table 1, we observe that SOR is less than or equal
to 1% for all methods in the original scenes. Our explo-
ration shows that more than 90% of these off-road cases are
due to the annotation noise in the drivable area maps of the
dataset and the models are almost error-free with respect
to the scene. Some figures are provided in the appendix.
While this might lead to the conclusion that the models are
flawless, results on the generated scenes question this con-
clusion. We confirm our claim in the next section by retriev-
ing the real-world scenes where the model fails.

Feasibility of a scenario is an important feature for gen-
erated scenes. As mentioned in Section 3.3, we added phys-
ical constraints to guarantee the physical feasibility of the
scenes. Table 1 indicates that MPC as a rule-based model
predicts almost without any off-road in the generated sce-
narios. It approves that the scenes are feasible with the
given history trajectory. In order to study the importance
of added constraints, we relax the constraints for the gen-
erated scenes. We report the performance of the baseline
and MPC on the cases where the maximum speed in their
h is higher than vmax. In Table 2, we observe that without
those feasibility-assurance constraints, there are more cases
where MPC is unable to follow the road and has 3× more
off-road. We conclude that those constraints are necessary
to make the scene feasible. We keep the constraints in all of
our experiments to generate feasible scenarios.

4.3. Real-world retrieval

So far, we have shown that the generated scenes along
with the constraints are feasible/realistic scenes. Next, we
want to study the plausibility/existence of the generated
scenes. Inspired by image retrieval methods [37], we de-
velop a retrieval method to find similar roads in the real-
world. First, we extract data of 4 arbitrary cities (New
York, Paris, Hong Kong, and New Mexico) using OSM [1].
Then, 20, 000 random samples of 200×200 meters are col-
lected from each city. Note that it is the same view size
as in Argoverse samples. Then, a feature extractor is re-
quired to obtain a feature vector for each scene. We used
the scene feature extractor of LaneGCN named MapNet to
obtain some 128 dimensional feature vectors for each sam-
ple. We then use the well-known image retrieval method
K-tree algorithm [37]. It first uses K-Means algorithm mul-
tiple times to cluster the feature vectors of all scenes into
a predefined number of clusters (in our case 1000). Then,
given a generated scene as the query, it sorts real scenes
based on the similarity with the query scene and retrieves
10 closest scenes to the query. Finally, we test the predic-
tion model in these examples. Some examples are provided
in Figure 4. More scenes can be found in the appendix.

4.4. Robustness

Here, we study if we can make the models robust against
new generated scenes. To this end, we fine-tune the trained
model using a combination of the original training data and
the generated examples by our method for 10 epochs.

We report the performance of these models in the gener-
ated scenes with different transformation power. Transfor-
mation power is determined by α2 × 3000, β12 × 3000 and
γ1 for Equation (3), Equation (4), and Equation (5), respec-
tively. It represents the amount of curvature in the scene.
Table 3 indicates that without losing the performance in the
original accuracy metrics, the fine-tuned model is less vul-
nerable to the generated scenes by predicting 40% less SOR
and 30% less HOR in the Full setting. While the results
show improvements in all transformation powers, the gains
in extreme cases are higher, i.e., the model can handle them
better after fine-tuning.

In Figure 5, the prediction of the original model is com-
pared with the prediction of the robust model. The original
model cannot predict without off-road while the fine-tuned
model is able to predict reasonable and without any off-road
point.

4.5. Discussions

In this section, we perform experiments and bring spec-
ulations to shed light on the weaknesses of the models.

1. We study the ability to transfer the generated scenes to
new models, i.e., how models perform on the scenes
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Model
Original Generated (Ours)

Smooth-turn Double-turn Ripple-road All
SOR / HOR SOR / HOR SOR / HOR SOR / HOR SOR / HOR

DATF [38] 1 / 2 37 / 77 36 / 76 42 / 80 43 / 82
WIMP [27] 0 / 1 13 / 46 14 / 50 20 / 58 22 / 63
LaneGCN [32] 0 / 1 8 / 40 19 / 60 21 / 62 23 / 66
MPC [56] 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0

Table 1. Comparing the performance of different baselines in the original dataset scenes and our generated scenes. SOR and HOR
are reported in percent and the lower represent a better reasoning on the scenes by the model. MPC as a rule-based model always has
on-road predictions both in original and our generated scenes.

(a) DATF (b) WIMP (c) LaneGCN

Figure 3. The predictions of different models in some generated scenes. All models are challenged by the generated scenes and failed
in predicting in the drivable area.

Model w/ phys w/o phys
SOR / HOR SOR / HOR

LaneGCN 33 / 85 47 / 92
MPC 0 / 1 0 / 3

Table 2. Impact of the physical constraints. We report the per-
formance with and without the physical constraints explained in
Section 3.3. The numbers are reported on samples of data with
speed higher than vmax in their h.

generated for other models. We conduct this exper-
iment by storing the generated scenes for a source
model which lead to an off-road prediction, and eval-
uate the performance of target models on the stored
scenes. Table 4 shows that the transferred scenes are
still difficult cases for other models.

2. We study how models perform with smoothly chang-
ing the transformation functions parameters. To this
end, we smoothly change the transformation parame-
ters for 100 random scenes and visualize the heatmap
of HOR for the generated scenes. Figure 6 demon-
strates that models are more vulnerable to larger trans-

formation parameters, i.e., sharper turns. Also, it
shows more off-road in the left turns compared with
the right ones which could be due to the biases in the
dataset [36]. A clear improvement is visible in the ro-
bust model.

3. Our experiments showed that while the model has al-
most zero off-road rate in the original scenes, it suf-
fers from over 60% off-road rate in the generated ones.
In order to hypothesize the causes of this gap, we ex-
plored the training data. We observed that in most sam-
ples, the history h has enough information about the
future trajectory which reduces the need for the scene
reasoning. However, our scene generation approach
changes the scene such that h includes almost no in-
formation about the future trajectory. This essentially
makes a situation which requires scene reasoning. We
speculate that this feature is one factor which makes
the generated scenes challenging. Note that this does
not contradict with the ablations in [32] as their perfor-
mance measure is accuracy. Figure 7a shows a failure
of the model where the prediction is only based on h
instead of reasoning over the scene. However, the ro-
bust model learned to reason over the scene, as shown
in Figure 7b. While our discussion is an observational
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(a) Paris location (b) Hong Kong location (c) New Mexico location

Figure 4. Retrieving some real-world locations similar to the generated scenes using our real-world retrieval algorithm. We observe
that the model fails in Paris (a), Hong Kong (b) and New Mexico (c).

Model Pow=1 Pow=3 Pow=5 Pow=7 Pow=9 (Full)
SOR/HOR SOR/HOR SOR/HOR SOR/HOR SOR/HOR

LaneGCN 2 / 8 12 / 35 19 / 49 22 / 58 23 / 66
LaneGCN w/ aug 1 / 7 6 / 21 10 / 30 13 / 38 14 / 46

Table 3. Comparing the original model and the fine-tuned model with data augmentation of the generated scenes. The performance is
reported on generated scenes with different transformation power (Pow). Transformation power is determined by α2×3, 000, β12×3, 000
and γ1 for Equation (3), Equation (4), and Equation (5), respectively which represents the amount of curvature in the scene. The average /
final displacement errors on original scenes are equal to 1.35/2.98m for both original and fine-tuned models.

Figure 5. The output of the original model (the left) vs the ro-
bust model (the right) in a generated scene. While the original
model has a trajectory in non-drivable area, the robust model pre-
dicts without any off-road.

hypothesis, we leave further studies for future works.

4. In some cases, our generated scene could not lead to
an off-road prediction. One such example is depicted
in Figure 8a.

5. While our method offers a new approach for assess-
ing trajectory prediction models, it has some limita-
tions. First, our transformation functions are limited,

Source models Target models
LaneGCN DATF WIMP

LaneGCN 34 / 100 37 / 82 20 / 61
DATF 11 / 44 52 / 100 13 / 46
WIMP 20 / 63 40 / 82 36 / 100

Table 4. Studying the transferability of the generated scenes.
We generate scenes for source model and keep the ones that
have off-road prediction by the source model. The target mod-
els are evaluated using those scenes. The reported numbers are
SOR/HOR values. Numbers are rounded to the nearest integer.

and they cannot cover all real-world cases. We how-
ever propose a general methodology that can be ex-
panded by adding other types of transformations. To
demonstrate it, we add lane merging to the framework,
which causes 14% HOR. Second, in addition to the off-
road criterion, there exist other failure criteria. For in-
stance, collision with other agents or abnormal behav-
iors like sudden lane changes. By choosing collision
with other agents as criterion, HOR becomes 1.68% in
the generated scenes while it is 0.55% in original data.

17129

https://www.google.com/maps/@48.9267618,2.2944925,19z
https://www.google.com/maps/@22.2332883,114.1992906,20.25z
https://www.google.com/maps/@48.8905404,2.2268305,19.25z


X- spatial coordinates

Y-
sp

at
ia

l c
oo

rd
in

at
es
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Figure 6. The qualitative results of baselines for different transformation functions. The red color indicates more off-road prediction
in those scenes and the green indicates higher admissible ones. Usually the models fail in turns with high curvature. We could successfully
make the LaneGCN model more robust by fine-tuning.

10m

Other Vehicles
Observation
Ground Truth
Prediction

(a) Before robustness (b) After robustness

Figure 7. The output of the model before and after the robust-
ness in a sample which requires reasoning over the scene. We
observe that the model before robustness mainly uses h to predict
instead of reasoning over the scene. However, after robustness, it
reasons more over the scene.

Moreover, Figure 8b shows one scenario in which the
predictions of the model are in the drivable area but the
sudden lane change is abnormal.

5. Conclusion
In this work, we presented a conditional scene generation

method. We showed that several state-of-the-art trajectory
prediction models fail in our generated scenes. Notably,
they have high off-road rate in their predictions. Next, lever-
aging image retrieval techniques, we retrieved real-world

10m

Other Vehicles
Observation
Ground Truth
Prediction

(a)

10m

Other Vehicles
Observation
Ground Truth
Prediction

(b)

Figure 8. Some successful cases of the prediction model. In (a),
the model follows the road and predicts without any off-road. In
(b), while the model predicts on-road, it suddenly changes its lane.

locations which partially resemble the generated scenes and
demonstrate their failure in those locations. We made the
model robust against the generated scenes. We hope that
this framework helps to better evaluate the prediction mod-
els which are involved in the autonomous driving systems.
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