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Abstract

This dissertation introduces traffic forecasting methods for different network configurations

and data availability. Chapter 2 focuses on single freeway cases. Although its topology is simple,

the non-linearity of traffic features makes this prediction still a challenging task. We propose

the dynamic linear model (DLM) to approximate the non-linear traffic features. Unlike a static

linear regression model, the DLM assumes that its parameters change over time. We design the

DLM with time-dependent model parameters to describe the spatiotemporal characteristics of

time-series traffic data. Based on our DLM and its model parameters analytically trained using

historical data, we suggest the optimal linear predictor in the minimum mean square error

(MMSE) sense. We compare our prediction accuracy by estimating expected travel time based

on the traffic prediction for freeways in California (I210-E and I5-S) under highly congested

traffic conditions with other methods: the instantaneous travel time, k-nearest neighbor,

support vector regression, and artificial neural network. We show significant improvements in

accuracy, especially for short-term prediction.

Chapter 3 aims to generalize the DLM to extensive freeway networks with more complex

topologies. Most resources would be consumed to estimate unnecessary spatiotemporal

correlations if the DLM was directly used for a large-scale network. Defining features on

graphs relaxes such issues by cutting unnecessary connections in advance based on predefined

topology information. Exploiting the graph signal processing, we represent traffic dynamics

over freeway networks using multiple graph heat diffusion kernels and integrate the kernels

into DLM with Bayes’ rule. We optimize the model parameters using Bayesian inference to

minimize the prediction errors and, consequently, determine the mixing ratio of the two

models (heat diffusion kernels and DLM). Such mixing ratio strongly depends on training

data size and data anomalies, which typically correspond to the peak hours for traffic data.

The proposed model demonstrates prediction accuracy comparable to state-of-the-art deep

neural networks with lower computational effort. It notably achieves excellent performance

for long-term prediction through the inheritance of periodicity modeling in DLM.

Chapter 4 proposes a deep neural network model to predict traffic features on large-scale

freeway networks. These days, deep learning methods have heavily tackled traffic forecasting

problems of freeway networks because they are outstanding to learn highly complex corre-

lations between variables both in time and space, which the linear models might be limited
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to. Adopting a graph convolutional network (GCN) becomes a standard to extract spatial

correlations; therefore, most works have achieved great prediction accuracy by implanting

it into their architecture. However, the conventional GCN has the drawback that receptive

field size should be small, i.e., barely refers to traffic features of remote sensors, resulting in

inaccurate long-term prediction. We suggest a forecasting model called two-level resolutions

deep neural network (TwoResNet) that overcomes the limitation. It consists of two resolution

blocks: The low-resolution block predicts traffic on a macroscopic scale, such as regional

traffic changes. On the other hand, the high-resolution block predicts traffic on a microscopic

scale by using GCN to extract spatial correlations, referring to the regional changes produced

by the low-resolution block. This process allows the GCN to refer to the traffic features from

remote sensors. As a result, TwoResNet achieves competitive prediction accuracy compared to

state-of-the-art methods, especially showing excellent performance for long-term predictions.

Key words: Traffic forecasting, multivariate time series forecasting, dynamic linear model,

graph heat diffusion, Bayesian inference, two-level resolution network.
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Résumé

Cette thèse présente des méthodes de prévision du trafic routier pour différentes configu-

rations de réseau à l’aide de données de disponibilité variable. Le chapitre 2 se concentre

particulièrement sur les cas avec une seule autoroute. En dépit de la simplicité de cette to-

pologie examinée, la difficulté de la prédiction réside dans les caractéristiques non linéaires

du trafic. Nous proposons ainsi le modèle linéaire dynamique (DLM) pour approximer ces

caractéristiques. Contrairement à un modèle de régression linéaire statique, le DLM considère

que les paramètres varient dans le temps. Ainsi, dans le but de décrire les caractéristiques

spatio-temporelles des données de trafic des séries chronologiques, nous considérons les pa-

ramètres du DLM comme dépendant du temps. En se basant sur le DLM et sur ses paramètres

résultant de l’entraînement analytique du modèle à l’aide des données historiques, nous

suggérons le prédicteur linéaire optimal qui minimise l’erreur quadratique moyenne (MMSE).

Nous utilisons cette méthode pour estimer le temps de trajet prévu sur la base des prévisions

de trafic pour les autoroutes de Californie (I210-E et I5-S) se trouvant dans des conditions très

encombrées, et nous comparons les résultats de nos prévisions avec ceux obtenus par d’autres

méthodes : le temps de trajet instantané, le k-plus proche voisin, la régression du vecteur de

support, et le réseau de neurones artificiels. Nous montrons des améliorations significatives

dans la précision, notamment pour les prévisions à court terme.

Le chapitre 3 vise à généraliser le DLM à des réseaux autoroutiers étendus avec des topolo-

gies plus complexes. Si nous utilisons le DLM directement dans un réseau à grande échelle,

nous risquons de consommer la plupart des ressources pour estimer des corrélations spatio-

temporelles inutiles. En définissant les caractéristiques des graphiques représentant nos

réseaux, nous atténuons ces problèmes en supprimant les connexions inutiles à l’avance sur

la base de données topologiques prédéfinies. À travers l’exploitation graphique du signal,

nous représentons la dynamique du trafic sur les réseaux autoroutiers à l’aide de plusieurs

noyaux de diffusion de chaleur de graphes, et nous intégrons ensuite ces noyaux dans le DLM

en se fondant sur la règle de Bayes. Nous optimisons les paramètres du modèle en utilisant

l’inférence bayésienne pour minimiser les erreurs de prédiction et nous déterminons par

conséquent le rapport de mélange des deux modèles (noyaux de diffusion de chaleur et DLM).

Un tel rapport de mélange dépend largement de la taille des données d’entraînement et des

anomalies de données. Celles-ci correspondent généralement aux heures de pointe dans

les données de trafic. Le modèle proposé démontre une précision prédictive comparable
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aux réseaux de neurones profonds avancés, mais avec un effort de calcul inférieur. Il réalise

notamment d’excellentes performances de prédiction à long terme grâce à l’héritage de la

modélisation de périodicité du DLM.

Le chapitre 4 propose un modèle de réseau neuronal profond permettant de prévoir les carac-

téristiques du trafic sur les réseaux autoroutiers à grande échelle. De nos jours, les modèles

d’apprentissage en profondeur se sont fortement attaqués aux problèmes de prévision du

trafic des réseaux autoroutiers vu leur capacité remarquable pour apprendre des corrélations

très complexes entre des variables à la fois dans le temps et dans l’espace. Quant aux modèles

linéaires, ils pourraient être limités à cet égard. L’adoption d’un réseau convolutif pour graphe

(GCN) devient ainsi une norme pour l’extraction de corrélations spatiales. De ce fait, la plupart

des œuvres ont obtenu une grande précision prédictive en l’implantant dans leur architecture.

Toutefois, l’inconvénient du GCN conventionnel est que la taille du champ récepteur doit

être petite, ce qui signifie qu’il renvoie à peine aux caractéristiques de trafic des capteurs à

distance. Ceci entraîne une prédiction à long terme inexacte. Nous proposons un modèle

de prévision appelé réseau de neurones profonds à résolution à deux niveaux (TwoResNet)

qui surmonte cette limitation. Il se compose de deux blocs de résolution : D’une part, le bloc

à basse résolution prévoit le trafic à une échelle macroscopique, tels que les changements

dans le trafic régional. D’autre part, le bloc à haute résolution prévoit le trafic à l’échelle

microscopique à l’aide de GCN pour extraire les corrélations spatiales en se référant aux

changements régionaux produits par le bloc à basse résolution. Ce processus permet au GCN

de se reporter aux caractéristiques du trafic provenant de capteurs à distance. En conséquence,

TwoResNet atteint une précision de prédiction concurrentielle par rapport aux méthodes

avancées, présentant en particulier d’excellentes performances pour les prévisions à long

terme.

Mots clefs : prévision de trafic, prévision de séries temporelles multivariées, modèle linéaire

dynamique, diffusion de chaleur par graphe, inférence bayésienne, réseau de résolution à

deux niveaux.
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1 Introduction

1.1 Background and motivation

Traffic forecasting is one of the essential elements in intelligent transportation systems (ITS).

Accurate prediction enables traffic operators to control road traffic precisely, ultimately provid-

ing optimal traffic flow in road networks. It also benefits individuals to estimate the expected

travel time for their trips.

Adequate infrastructure and data acquisition frameworks must be in place beforehand for

successful traffic forecasting. Installing cameras or sensors on road networks is a common

approach to collecting traffic data. Although it requires a significant investment in building

sensor networks, it allows consistent data acquisition once established. On the other hand,

with low-cost and widespread electronic devices, large-scale data can also be obtained from

drivers’ GPS information. However, in case of the GPS information, a significant noise in the

data can complicate its pre-processing. Furthermore, many difficulties exist in regularizing

sporadic data using map-matching algorithms [1] as well as challenges in data acquisition due

to high uncertainty.

Once the data-collection infrastructure is established, extracting maximal information from

data should follow. Extracting temporal correlations from traffic data is one of the essentials

for successful forecasting. In general, traffic features collected from a sensor has a smooth

pattern and strong periodicity. In other words, the traffic state after some time is closely related

to the current traffic state (smoothness). We also expect similar patterns on daily and weekly

bases (periodicity).

How to combine these two features appropriately is one of the key challenges in designing

a traffic predictor. Two naive predictors can be easily introduced, considering either the

smoothness or the periodicity: An instantaneous predictor forecasts future traffic based on

the traffic at the current time. On the other hand, a k-nearest neighbor predictor picks k-

similar patterns from the current traffic and predicts by averaging the patterns. These two

simple predictors are often used as baselines since they achieve decent accuracy for short
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Chapter 1 Introduction

and long-term predictions, respectively. As representative models that properly combine

these two assumptions, autoregressive (AR)-based models [2], which are mathematically

rigorously defined, predict traffic states by giving more weight to smoothness than periodicity.

On the other hand, heuristic models are more optimized for predicting traffic volume and

have excellent performance, but the model’s flexibility is limited due to the ad-hoc design.

The spatial correlation of traffic is another puzzle to solve for successful prediction. For

instance, a shock wave theory explains that congestion spreads and disappears through a

network, rather than staying at the origin and disappearing. Therefore, when a sensor detects

a traffic change, another nearby sensor detects the shock wave of the traffic change with a

time lag. This means that the values of surrounding sensors can be an essential clue when

predicting the future value.

Extracting spatial correlation itself is challenging when the number of correlations is large. The

difficulty is proportional to the size of the freeway network since the number of correlations

exponentially increases with the number of sensors. In the case of a single freeway, as a result,

satisfactory prediction performance can be obtained even by simply using an AR model with

vectorized input without unique spatial modeling [3]. On the other hand, spatial correlations

should be extracted more carefully for complex networks; otherwise, unnecessary correlations

consume most resources. Most studies often start by assuming that the topology of a freeway

network is significantly related to the spatial correlation of its sensors. For example, traffic

flows at two different points in the city center closely influence each other. But at the same

time, flow or density in a very distant suburb may not be correlated much. Based on the

assumption, the topology of a network is exploited as a priori information independent of

actual traffic characteristics.

A graph is a mathematical expression for defining a selective spatial correlation. Defining a

freeway network as a graph can improve the prediction accuracy using rigorous theories such

as a graph theory and graph signal processing [4]. For example, the diffusion model of graph

signals generalizes a link-level shock wave theory to the whole network level. More precisely, it

describes the solution of a differential equation that expresses the temporal change of a graph

signal as a spatial difference from neighboring signals. As a result, this diffusion model can

precisely approximate traffic volume changes over time in freeway networks.

Although the changes in traffic volume have been successfully approximated through diffusion

models, we also need to integrate these data-independent models with data-driven models

as a next challenge. For example, they can be fused by using Bayes’ theorem with some

parameters. After that, these parameters are estimated probabilistically using historical data

through a methodology called Bayesian inference [5]. The Bayesian inference has a unique

feature: it infers all the parameters optimally, while many machine learning models estimate

them through time-consuming algorithms.

Recently, many studies have implemented neural networks to extract spatiotemporal correla-

tions. Although a neural network is much more complex than all the models above, an easy
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access to data and the rapid development of deep learning techniques brings a surge in their

usage. Neural networks have made great strides for the following reasons: (1) Any arbitrary

functions can be theoretically expressed even with elementary modeling. (2) Synthesizing non-

linear functions with a neural network architecture makes it possible to numerically estimate

model parameters. (3) Although this numerical process is demanding, it can be overcome with

proper approximation and dramatically increased computing power. (4) Most mathematical

steps are automatized by great standard libraries.

Most neural network-based traffic forecasters consist of separate blocks that extract temporal

and spatial correlations and concatenate them to extract complex spatiotemporal correlations.

Temporal correlations are mainly extracted using a recurrent neural network [6], a temporal

convolutional network [7], or an attention network [8]. In contrast, spatial correlations are

extracted by modeling them with message-passing graph neural network (GNN) variations [9],

such as graph convolutional and graph attention networks [10]. Although neural network-

based forecasters have achieved state-of-the-art prediction accuracy, there is still a room for

improvements since the GNN is incomplete to extract latent spatial correlations. A well-known

challenge to extracting spatial correlations with conventional GNN is the limited range of

correlations each node can refer to [11], resulting in a degradation of long-term prediction

accuracy: Since congestion takes time to propagate from one point to another, referring to

traffic features from a remote sensor where congestion is detected is necessary to capture such

congestion.

1.2 Objectives

The overarching objective of this thesis is to build optimal traffic forecasters for freeway net-

works, tackling the challenges mentioned above. The objectives fall into two main categories:

(1) Designing a predictor for simple freeway networks (more precisely, a single freeway). (2)

Extending the design for complex freeway networks. The detailed objectives of each category

according to dissertation structure are listed as follows:

1. Designing a predictor for simple freeway networks

(a) To design a model that explicitly expresses smoothness and periodicity of traffic.

(b) To make the model simple enough to derive all the estimation process in a closed

form.

(c) To provide accurate prediction results compared to the two baselines.

2. Extending the design for complex freeway networks

(a) To generalize the simple model, making it works for extensive freeway networks.

(b) To develop a neural network model that learns more complex spatiotemporal

correlations, expecting excellent long-term prediction performance.

3
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1.3 Contributions

The main contributions of this dissertation are summarized hereafter.

Designing a predictor for simple freeway networks: The main contribution in this part is to

propose a piecewise linear model called the dynamic linear model (DLM) that effectively

represents nonlinear traffic dynamics, explicitly implying the strong periodicity of traffic

in the model. This piecewise linear model shows excellent predictive performance,

resulting in accurate estimation for travel time. By exploiting the simplicity of the linear

model, we estimate the model’s parameters in a closed form with historical data giving

more importance to the latest data. In addition, we also derive a method to update the

analytic solution with new data in a mathematically rigorous way.

Extending the design for complex freeway networks: One of the main contributions in this

part is to generalize the DLM into more extensive freeway networks. We propose a novel

method that successfully integrates topological information into the DLM. We model

the propagation of congestion by decomposing it with different propagation speeds:

We suggest a parameterized mixture of diffusion kernels whose each kernel expresses a

different propagation speed of the congestion on the predefined topology. After that,

we fuse the topology-based congestion modeling with DLM, which is a data-driven

congestion modeling by Bayes’ theorem. We also derive an inference method for hy-

perparameters, exploiting Bayesian inference. The training time required for inference

is minimal since we successfully derive the majority of inference steps analytically. As

a result, the proposed model shows a great prediction accuracy on extensive freeway

networks together with sufficient interpretability. In other words, the trained model is

straightforward to analyze, unlike other deep neural network-based models. We propose

a neural network architecture that captures spatiotemporal correlations at different

scales as another main contribution: The proposed model captures spatiotemporal cor-

relations at a macroscopic level with the low-resolution block, while the high-resolution

block captures them at a microscopic level. We introduce a clustering method to divide

complex freeway networks into subgraphs to get regional trends, considering proximity

and correlations simultaneously. As a result, the proposed model achieves a competitive

prediction accuracy compared to reliable state-of-the-art works. For the long-term

predictions, we obtained remarkable improvements compared to a neural network that

learns road connectivity directly from data.

1.4 Thesis structure

This dissertation consists of 5 chapters. The main chapters are organized into two parts. The

first part is chapter 2, which focuses on developing a traffic forecasting model for simple free-

way networks. The second part includes chapters 3 and 4, suggesting forecasting models for

extensive freeway networks. Each chapter starts with detailed literature reviews corresponding
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to the contents of the chapter.

Chapter 2 introduces the dynamic linear model (DLM) for simple freeway networks to model

nonlinear traffic dynamics. An estimation method of the model parameter is suggested. After

that, a method is introduced to predict future traffic and the expected travel time based on

the DLM with estimated parameters. The results and analysis of the prediction accuracy are

followed. Chapter 2 is a stand-alone article published as:

• Kwak, Semin, and Nikolas Geroliminis. “Travel time prediction for congested freeways

with a dynamic linear model." IEEE Transactions on Intelligent Transportation Systems

22.12 (2020): 7667-7677.

Chapter 3 introduces a generalization method of the DLM into extensive freeway networks.

Essential mathematical definitions are introduced at first, and a method is explained to model

congestion propagation with graph diffusion kernels only with topological information. A

method to integrate the topology-dependent congestion propagation model into the DLM is

explained. It is described to infer all the necessary parameters by Bayesian inference and a

method to predict future traffic. Detailed analyses of the prediction results follows. Chapter 3

is a stand-alone article published as:

• Kwak, Semin, Nikolas Geroliminis, and Pascal Frossard. “Traffic signal prediction on

transportation networks using spatio-temporal correlations on graphs." IEEE Transac-

tions on Signal and Information Processing over Networks 7 (2021): 648-659.

Chapter 4 proposes a neural network architecture that predicts future traffic on extensive

freeway networks. The model architecture is introduced in a top-down approach. First, the low-

resolution block is introduced, which predicts future traffic at a macroscopic level, followed by

explanations of the interior components of the blocks. After that, the high-resolution block is

explained that forecasts upcoming traffic at a microscopic level, then the necessary details of

the block are explained. Test results on benchmark datasets and ablation study are presented.

Chapter 4 is based on a preliminary result:

• Semin Kwak, Danya Li and Nikolas Geroliminis. "TwoResNet: Two-level resolution

neural network for traffic forecasting of freeway networks". In: (Macau, China, Otc. 8-12,

2022). IEEE ITSC 2022 - 25th IEEE International Conference on Intelligent Transporta-

tion Systems, 2022 (submitted).

Chapter 5 explains the conclusion of the dissertation and future research.
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2 Traffic forecasting with Dynamic lin-
ear model

This chapter is written with its own notations, and the content of this chapter is avail-

able as a published paper:

Kwak, Semin, and Nikolas Geroliminis. "Travel time prediction for congested

freeways with a dynamic linear model." IEEE Transactions on Intelligent

Transportation Systems 22.12 (2020): 7667-7677.

2.1 Introduction

Travel time prediction is one of the essential features to support successful Intelligent Trans-

portation Systems (ITS). An accurate prediction of travel time not only helps travelers to make

decisions about their trips but also enables traffic operators to develop successful control

strategies. This necessity has engaged many researchers on the topic of travel time forecasting

despite the vast amount of already existing literature.

The methods for predicting travel time can be categorized into model-based and data-driven

approaches [12]. The model-based methods predict future traffic parameters (e.g., occupancy,

flow, or speed) by building a traffic model, such as the Cell Transmission Model [13], [14], the

queuing theory [13], [15], [16], or macroscopic traffic flow model [17]. These model-based

methods provide a straightforward interpretation of the predicted results because of their

physical intuition, such as flow dynamics.

The data-driven methods, on the other hand, predict travel time by extracting specific fea-

tures from traffic data. Common data-driven methods include Linear Regression [18], [19],

Autoregressive models [20]–[23], Kalman Filtering [24]–[27] and Bayesian inference [28], [29].

These methods predict travel time by assuming that all the data satisfies a certain probabilistic

distribution.
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Furthermore, the increased accessibility to traffic data and the improved computing power

in these days allow researchers to develop more sophisticated data-driven algorithms, such

as Support vector regression (SVR) [30]–[32], Artificial neural networks (ANN) [33]–[40], Long

Short-Term Memory Network [41], [42] and Ensemble learning [43]–[45].

Conversely, the travel time predictors can also be categorized into direct and indirect methods.

Direct methods contain a straightforward approach to minimize the error in predicted travel

time [18]–[23], [25]–[36], [40], [41], [44]. The main advantage of the direct methods lies in

their simplicity since they take into account only the travel time as an output. However, the

prediction performance can also be degraded as all the complex traffic characteristics are

assumed to be reflected in travel time. Another limitation of these methods is that they require

separate models for different circumstances; for example, when the departure time or the

origin location change a new model has to be trained for that exact setting.

In contrast, the indirect methods estimate travel time by predicting future traffics first, such

as velocity or occupancy field. Then they use the predicted traffic states to estimate travel

time [24], [43], [46], [47]. By definition, the predicted traffic states can also be re-used to

predict those for the next horizon. Contrarily to the direct methods, predicting future traffic

parameters allows the model to estimate a travel time for any scheduled departure time or

space, which makes the indirect method more versatile.

In this chapter, we suggest a method based on a dynamic linear model to predict the velocity

field and therefore travel time, which falls into the intersection of the indirect method and

the data-driven approach. Using historical data, we analytically find the model parameters in

the least-squares sense. We compare the proposed method with four other predictors that

are used in the literature: the instantaneous travel time, the k-nearest neighbor [46], artificial

neural networks [33], and the support vector regression [30]. Our comparison shows that the

proposed method has a great potential to improve the short-term prediction accuracy as well

as to become a versatile tool in various traffic situations with this stand-alone model.

2.2 Method

2.2.1 Dynamic linear model

We suggest a dynamic linear model for speed and travel time prediction. The dynamic charac-

teristics allow the model to extract temporal features of the parameters of interest (velocity

fields in our case). The model describes a linear relationship between velocities at a specific

time tk and the next step time tk+1 using the following equation:

vd
k+1 = Hk vd

k +nd
k , ∀d , ∀k ∈ {0, . . . ,K −1}. (2.1)
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Here the vector vd
k refers to a velocity vector at time tk on day d , which can be expressed as

follows:

vd
k =


vd (x1, tk )

...

vd (xM , tk )

 ∈RM×1, (2.2)

where the constant M represents the number of measured velocities on different locations on

a freeway of interest, for example with data from loop detectors. We define a velocity field as a

scalar function of time t and position x:

vd (x, t ) ∈R, (2.3)

where each point of the velocity field represents a measured velocity value.

In Eq. (2.1), the second vector nd
k on the right-hand side refers to a noise vector which

we assume to follow a Gaussian distribution with a zero mean and a variance σ2 under

independent and identically distributed (i.i.d.) conditions, i.e.:

nd
k ∼N

(
0M ,σ2IM

)
, ∀k ∈ {0, . . . ,K −1}, (2.4)

where 0M and IM are the vectors with all zero entities and the identity matrix of size M ,

respectively.

Matrix Hk in Eq. (2.1) is a transition matrix, which represents a linear relationship between the

two velocity vectors vd
k and vd

k+1 according to the time tk and tk+1. In particular, the diagonal

elements of Hk describe a direct temporal relationship at each specific location, whereas the

off-diagonal terms of Hk contain the spatio-temporal relationship between two consecutive

velocity fields. The first aim of this chapter is to find an analytical solution of the transition

matrix Hk for every possible time tk so that we build a dynamic transition matrix.

The model presented in Eq. (2.1) suggests three important factors. First, the velocity vector

vd
k is linearly transformed to the vector vd

k+1 with an additive Gaussian noise. The linearity

and the Gaussian noise assumption allow the transition matrices Hk for every k to be trained

analytically, which will be discussed in the next section. Secondly, the transition matrix is

defined at each time unit such that the model captures a non-linear traffic flow over time even

though it is based on a linear regression model for a given period. Lastly, the transformation

matrix of two consecutive time steps k and k +1 is set regardless of different traffic profiles,

which means that the matrix Hk does not depend on, for example, the days of a week. We will

show later that this framework captures well traffic conditions of different days.
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2.2.2 Estimation of model parameters

We shall estimate the transition matrices Hk for all k values with historical data set using the

least-squares method. Within a set of days D we choose for estimation (or we call it a day set),

Eq. (2.1) can be extended as

V D
k+1 = HkV D

k +ND
k , (2.5)

where the matrix V D
k is a time-velocity matrix defined for the day set D for a specific time tk as

a collection of all velocity vectors corresponding to the same time index within D, i.e.:

V D
k =

[
vd1

k vd2

k . . . v
d|D|
k

]
∈RM×|D|, ∀di ∈D. (2.6)

Here, the operator |·| of a set represents the cardinality (the number of elements) of the set.

Therefore, the number of the rows and columns represents the data dimension and the size of

a day set, respectively.

From Eq. (2.5), we shall estimate the transition matrix using the least-squares method, which

is also equivalent to the solution of the maximum likelihood method since we assume i.i.d.

Gaussian noise [48]. Therefore, the optimization problem can be stated as:

minimize
Hk

∥∥V D
k+1 −HkV D

k

∥∥2
F , (2.7)

where the operator ‖A‖F =
√

tr
(

A A>)
and tr

(
A A>)

indicates a sum of the all diagonal elements

of a matrix A A>.

In order to prevent an ill-posed problem and to give priority to more recent data for better

prediction, we introduce an adaptive matrix regularization term with a regularization parame-

ter ρ and a forgetting factor λ, which is recursively multiplied to old data set, to Eq. (2.7) as

follows:

minimize
Hk

ρλ|D| ‖Hk‖2
F +

∥∥∥∥(
V D

k+1 −HkV D
k

)
Λ

1
2
|D|

∥∥∥∥2

F
, (2.8)

where the diagonal matrixΛN is defined as follows with the forgetting factor λ:

ΛN =


λN−1 0 · · · 0

0 λN−2 . . .
...

...
. . .

. . . 0

0 · · · 0 1

 . (2.9)

The first term in Eq. (2.8) is the regularization term; its major role is to prevent the transition

matrices from overfitting to a small training data set. The term also allows reliable estimation

of the transition matrix numerically, which is described in Appendix A.1.2.
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Figure 2.1: Post-processing function for the freeways studied in this chapter. The function
makes the output values fall within a reasonable speed range, i.e., 0 ≤ f (x) ≤ 85.

The forgetting factor, on the other hand, decreases the weight of old data exponentially during

the recursive training process. For instance, whenλ = 0.995, a set of data a year ago is penalized

by the factor of (0.995)365 = 0.16. This forgetting factor also allows the regularization term

to vanish, adapting to the size of the training set since the term converges to zero when the

number of elements inD is getting bigger. The modified problem in Eq. (2.8) will be equivalent

to the original problem of Eq. (2.7) when we set ρ = 0 and λ = 1, which means no regularization

and no forgetting process.

The optimization problem in Eq. (2.8) can be analytically solved, and we derive it in Appendix

A.1.1. Here we present the solution:

H̄D
k = V D

k+1Λ|D|
(
V D

k

)>(
V D

t Λ|D|
(
V D

k

)>+ρλ|D|IM

)−1
, (2.10)

where the notation Ā represents an estimator of A.

One popular property of the solutions of the least squares problem is that they can be updated

with new observations [48]. The updating method not only prevents increasing memory size,

but also makes computation time consistent since the procedure only needs a pre-trained

model and a new observation for an update. This property can be essential to support accurate

travel time prediction because the system should be up-to-date with time. We describe the

implementation of an updating algorithm for Eq. (2.10) in Appendix A.1.3.

2.2.3 Velocity prediction

With the transition matrices H̄D
k introduced in the previous section, we can now predict the

velocity vectors for traffic forecasting, which is the second aim of this chapter. We start by

setting a notation of a predictor for i -step ahead at time step k:

vd̃
k+i |k for i = 1,2, · · · and d̃ ∉D. (2.11)
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Assuming that the trained transition matrix is close enough to the truth i.e., H̄D
k ≈ Hk for all k,

the velocity vector vd̃
k+i is written as follows using Eq. (2.1):

vd̃
k+i = H̄D

k+i−1vd̃
k+i−1 +nd̃

k+i−1 (2.12)

= H̄D
k+i−1

(
H̄D

k+i−2vd̃
k+i−2 +nd̃

k+i−2

)
+nd̃

k+i−1 (2.13)

...

= H̄D
k+i−1�k vd̃

k +nd̃
k+i−1�k , (2.14)

where

H̄D
k+i−1�k =

i∏
j =1

H̄D
k+i− j , (2.15)

nd̃
k+i−1�k =

i−1∑
j =1

H̄D
k+i− j nd̃

k+i− j−1 +nd̃
k+i−1. (2.16)

The noise vector in Eq. (2.14) follows a zero mean Gaussain vector with a covarianceΣ since

a linear combination of zero mean Gaussian random variable follows another zero mean

Gaussian random variable [49]. As a result,

vd̃
k+i ∼N

(
H̄D

k+i−1�k vd̃
k ,Σ

)
. (2.17)

We choose a predictor as the maximizer of the above density function:

vd̃
k+i |k = H̄D

k+i−1�k vd̃
k . (2.18)

This predictor is also an optimal estimator of the linear minimum mean square error (LMMSE) (Ap-

pendix A.1.4). Therefore, Eq. (2.18) shows that the best linear predictor vd̃
k+i |k is the propa-

gation of the current measurement vd̃
k through the trained transition matrices from H̄D

k to

H̄D
k+i−1.

However, in rare cases, an unbounded solution vd̃
k+i |k can have a negative speed or an unreal-

istically high speed due to the Gaussian noise assumption. This kind of wrong estimations

severely distort the calculation of travel time. In order to correct this effect, we design a

post-processing function f (x):

f (x) =


b · a(x−τl )

1+|a(x−τl )| +τl x < τl

x τl ≤ x ≤ τu

b · a(x−τu )
1+|a(x−τu )| +τu x > τu

, (2.19)
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(a) Freeway I5-S (b) Freeway I210-E

Figure 2.2: Detector locations on the freeways I5-S and I210-E. The 88 loop detectors along
the freeway I5-S and the 83 loop detectors along the freeway I210-E are used in this chapter
(green dots on both figures). In the names of the freeways, S (south) and E (east) represent the
direction of the freeways.

where the constants a and b are smoothing parameters, and τl and τu are threshold parame-

ters. We empirically set the smoothing parameters a and b to be 0.05 and 10, respectively. We

also have empirically chosen the lower threshold value τl and the upper threshold value τu as

10 and 75 (mph), respectively.

Figure 2.1 shows the post-processing function with the chosen parameter sets. The input x in

this example is a velocity value. When x is below the lower threshold of 10, the function deflects

the values to be always positive. When x is above the upper threshold of 75, the function makes

the output converging to the upper limit, which is 85 miles per hour in our case. Between

the two boundaries, it does not change the input value. We have tested different sets of the

smoothing and threshold parameters and found that it has little impact on prediction results.

We apply this post-processing function in Eq. (2.19) to Eq. (2.18) recursively at each step of

multiplication so that we can exclude the invalid estimations. The following shows the detailed

procedure.

vk+1|k = f
(
H̄k vk

)
vk+2|k = f

(
H̄k+1vk+1|k

)
...

vk+i |k = f
(
H̄k+i−1vk+i−1|k

)
(2.20)
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2.2.4 Travel time estimation

For estimating the travel time of a moving vehicle, we assume that the vehicle experiences a

velocity field, which is a function of time t and space x, and we know the exact continuous

velocity field v (t , x). Then we can calculate the increment of time∆t after traveling a distance

∆x as

∆t =
1

v (t , x)
∆x, (2.21)

since v = d x/d t . Consequently, a travel time at time t0 given a velocity field v (t , x) is computed

recursively as follows:

Algorithm 1 Numerical calculation of travel time

Input: the velocity field v (t , x); the departure time and location, t0 and x0; the location of the

destination xM ; and the space increment∆x

Output: the travel time

1: Initialization: t ← t0, x ← x0

2: while x < xM do

3: t ← t + 1
v(t ,x)∆x

4: x ← x +∆x

5: end whilereturn t − t0

In reality, we only know a discretized velocity field instead of a continuous one. For our study,

we know velocities at each sensor (every 0.7 miles on average) every 5 minutes. We generate

the continuous velocity field by interpolating the discretized velocity field with linear bivariate

B-spline curve fitting.

2.2.5 Performance measures for comparison with other methods

To measure the performance of our prediction, we use the absolute percentage error (APE)

and the mean absolute percentage error (MAPE), which are defined as:

APE(t ) = 100 ·
∣∣∣∣ a (t )−p (t )

a (t )

∣∣∣∣ , (2.22)

MAPE(T) =
1

|T|
∑
t∈T

APE(t ) , (2.23)

where the set T represents a set of time elements to examine. The values a (t ) and p (t ) are

respectively the actual travel time and the predicted travel time when departed at time t . The

MAPE estimates the mean deviation of estimation to the ground truth (i.e., the experienced

travel time) in percentage (%) unit.
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(a) Freeway I5-S (weekdays) (b) Freeway I210-E (weekdays and Saturday)

Figure 2.3: Average speed by time of test set for each freeway. The peak periods are also defined
as the area with color.

2.3 Results and Discussions

In this section, we employ the proposed method to predict traffic flow and thus travel time

using real-world data. We examine the performance of the proposed method by comparing

predicted travel time with that of other existing predictors.

2.3.1 Traffic data

We use traffic data of two different freeways in California having different traffic profiles:

Freeway I5-S and Freeway I210-E. Along the two freeways, there are respectively 88 and 83 loop

detectors within the area of our examination (Fig. 2.2). The total length of the corridor along

I5-S is 58.33 miles, and that of I210-E is 52.14 miles. The loop detectors collect measurements

(flow and occupancy data) every 30 second, and we use 5 minutes aggregated speed data,

which is processed by the Caltrans Performance Measurement System (PeMS).

From PeMS, we extracted one-year traffic data of both freeways (2012 for I5-S and 2015

for I210-E) for experiments. We allocated the first 70% of traffic data (from January 1st to

September 12th) as a training set, the next 15% of data as a validation set (from September 13th

to November 11th), and the last 15% of data as a test set (from November 12th to December

31st) for all the experiments.

We have considered the traffic data from 6 AM to 9 PM only and divided the data into two

groups: a peak period and an off-peak period (Fig. 2.3). Since the two freeways have very

different traffic profiles, we have defined the peak and off-peak periods differently for each

freeway. For Freeway I5-S, the peak period is defined as 6 - 10 AM (morning peak) and

3 - 7 PM (evening peak) on weekdays (from Mondays to Fridays); for Freeway I210-E, it is

defined as 1 - 8 PM (afternoon peak) every day except Sundays. The off-peak periods are

defined as a complementary set of the corresponding peak periods. Figure 2.3 illustrates them

straightforwardly.
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Table 2.1: Mean absolute percentage error (MAPE) on the validation sets for Freeways I5-S and
I210-E with different hyper-parameter pairs

(a) Freeway I5-S

ρ

λ
1.000 0.999 0.995 0.990 0.950

0 3.447 3.433 3.414 3.432 5.134
1 3.441 3.428 3.411 3.430 5.134
3 3.430 3.418 3.405 3.427 5.134

10 3.395 3.388 3.385 3.415 5.134
30 3.318 3.319 3.340 3.385 5.134

100 3.183 3.187 3.232 3.317 5.133
300 3.071 3.074 3.106 3.202 5.130

1000 2.996 2.987 2.982 3.045 5.119
3000 3.003 2.987 2.936 2.937 5.091

10000 3.244 3.192 3.043 2.926 5.003

(b) Freeway I210-E

ρ

λ
1.000 0.999 0.995 0.990 0.950

0 4.842 4.879 5.048 5.280 7.456
1 4.858 4.896 5.063 5.290 7.455
3 4.848 4.888 5.058 5.288 7.454

10 4.816 4.859 5.037 5.275 7.453
30 4.747 4.793 4.986 5.239 7.453

100 4.641 4.673 4.865 5.143 7.451
300 4.602 4.622 4.729 4.998 7.449

1000 4.643 4.637 4.672 4.808 7.443
3000 4.806 4.781 4.718 4.745 7.427

10000 5.318 5.232 4.965 4.811 7.369
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(a) Ground truth (I5-S) (b) Ground truth (I210-E)

(c) Prediction (I5-S) (d) Prediction (I210-E)

Figure 2.4: Velocity field of freeway I5-S on December 4th (Tuesday), 2012 and I210-E on
December 25th (Friday), 2015. (a) and (b): The ground truths and (c) and (d): predicted
velocity fields at 2 PM and afterwards using the proposed method, which is represented as
the contour plots. The blue dashed line represents the travel path of a vehicle at each velocity
field. The difference between the departure time and the arrival time is the travel time, which
is marked as a blue line on the upper horizontal axis.
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2.3.2 Determining hyper-parameters

(a) Freeway I5-S: Peak period (b) Freeway I210-E: Peak period

(c) Freeway I5-S: Off-peak period (d) Freeway I210-E: Off-peak period

Figure 2.5: Absolute percentage errors (APE) of 5 different travel time forecasters with various
horizons. Two examples of freeways in California, I5-S and I210-E, are studied during their
peak periods (a) and (b); and their off-peak periods (c) and (d). Inside the box plots, the
medians and mean values are marked as solid and dashed bars, respectively; different colors
represent different prediction horizons.

Using Eq. (2.10), we have trained transition matrices with different pairs of the regularization

parameter ρ and the forgetting factor λ. For each freeway, we have trained the transition

matrix by all possible combinations of the following sets:

ρ ∈ {0,0.1,0.3,1,3,10,30,100,300,1000,3000,10000},

λ ∈ {1,0.999,0.995,0.99,0.95}.
(2.24)

Table 2.1 shows the MAPE of travel time on the validation sets of the two freeways (peak periods

only) by varying the hyper-parameters. The MAPE is not very sensitive to the regularization

parameters, but it is influenced by the forgetting factors, as when the value of the forgetting

factor is too low, this leads to a training of the transition matrices with not enough data. For

18
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each case of the freeways, we have chosen the optimal pair among the tested parameter sets,

which are:

(
ρ,λ

)
=

{
(3000,0.995) for I5-S

(300,1) for I210-E
. (2.25)

We show that the optimal pairs of hyper-parameters chosen above work well for traffic pre-

diction by showing an example of predicted velocity fields (Fig. 2.4). The prediction results

(the contour plot) in Fig. 2.4 (c) and (d) show similar patterns to the ground truths (Fig. 2.4 (a)

and (b)), which confirms that the chosen hyper-parameters are functioning well for predicting

speeds and travel time.

2.3.3 Comparison of travel time with different forecasters

We examine the performance of our proposed method by comparing its performance with that

of different prediction methods. We have chosen four various forecasters: the instantaneous

travel time forecaster (abbreviated to inst.) as a real-time measurement-based method; the

k-nearest neighbor (k-NN) as a historical data-based method; the support vector regression

(SVR) and the vanilla artificial neural network (ANN) as representatives for direct methods. All

the details of implementing these methods are explained in Appendix A.2.

Specifically, we evaluate travel time using these methods with different prediction horizons.

We define a travel time at time t with a prediction horizon h-minutes as a travel time that a

vehicle will experience when it departs h-minutes after the time t . For example, Fig. 2.4 (c)

and (d) show travel time prediction with a 60-minute horizon at the current time of 2 PM. We

assign four different values for h: 0, 15, 30, and 60 minutes.
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Figure 2.5 shows the average prediction errors (APE) of the results on the test sets. It shows

that the proposed method always gives the best accuracy among others when h = 0 minute, for

both freeways and in both peak and off-peak periods. For longer horizons, the performance

of the proposed method is comparable to that of ANN and SVR, whereas it always performs

better than k-NN and inst. in these results.

First of all, it is surprising that the proposed method has comparable errors with that of ANN

and SVR for longer horizons. The ANN and SVR are direct methods, which means that they

have a separate model for each horizon and each one has been trained independently. The

proposed method, on the other hand, is an indirect method, which predicts the travel time of

longer horizons based on previous predictions. In other words, it uses a model trained only

once for all the horizons.

One could understand this from its superior performance at the 0-minute horizon. As it is

seen in all the sub-figures of Fig. 2.5, the proposed method starts from a very small error,

and then the error starts to increase gradually when extending the prediction horizon. This

is simply due to the aggregate noise in Eq. (2.14). From the fact that covariance of the sum

of two Gaussian random variables is always greater than the variance of each variable, the

sum of the noise terms in Eq. (2.16) always produces larger covariance and therefore more

substantial errors. However, since its initial 0-minute horizon error is very small compared to

the other methods, the errors can remain relatively small even when the noise propagates and

accumulates with time.

Compared to the other indirect methods, which are k-NN and instantaneous travel time

forecaster, the proposed method shows better prediction regardless of traffic profiles and

prediction horizons. We can find the reason by looking into the type of data that are considered

in each method. The k-NN is highly dependent on historical data, whereas the instantaneous

travel time forecaster uses only the real-time traffic measurement. Our prediction algorithm

(Eq. (2.20)), on the other hand, utilizes both the real-time measurement (vk ) and the historical

information that is considered in the transition matrix (H̄k ). This explains why it outperforms

the other two methods.

Table 2.2 shows the mean average percentage errors (MAPE) in the peak periods and the

corresponding improvement rates, which indicate how much the accuracy of travel time

prediction is improved compared to that of the instantaneous travel time. For instance, in

the case of Freeway I5-S during the peak periods, according to Table 2.2 (a), the proposed

method improves the prediction accuracy compared to instantaneous travel time by 56% with

the 0-minutes horizon. In contrast, ANN and SVR improve that by 33% and -9%, respectively.

Table 2.2 also confirms that the proposed method has the best prediction accuracy among

all five forecasters for short horizons (h = 0,15 min) and comparable performances to the

best one for longer horizons (h = 30,60 min). This result is promising since our approach has

an additional degree of freedom to be used for arbitrary departure time and various starting

points.
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3 Generalization of Dynamic linear
model

This chapter is written with its own notations, and the content of this chapter is avail-

able as a published paper:

Kwak, Semin, Nikolas Geroliminis, and Pascal Frossard. "Traffic signal pre-

diction on transportation networks using spatio-temporal correlations on

graphs." IEEE Transactions on Signal and Information Processing over Net-

works 7 (2021): 648-659.

3.1 Introduction

Multivariate time-series prediction is an important task since many real-life problems can be

modeled within this framework, such as weather forecasting [50]–[52], traffic prediction [3],

[53]–[67], power consumption forecasting [58], [68], and others [54], [66], [69]–[71]. In trans-

portation sensor networks, output signals from neighboring sensors may be similar or vastly

different, as shown in Fig. 3.1(a) and (b). Therefore, in this example, sensor A’s signal can be

utilized to predict sensor B’s as the two signals are well correlated. However, the signal of

sensor C is not correlated with that of sensor B, so it may not contribute to the prediction;

Sensor C is located after an intersection, and most traffic demands flow in another direction in

the intersection, therefore, the sensor rarely suffers congestion. Naturally freeway congestion

(expressed with a sharp decrease in the average speed of vehicles) is initiated at a bottleneck

location such as an on-ramp merging area with high entrance flow or an incident location.

Then, it propagates backwards with a finite speed, which is 3 to 4 times smaller than the speed

of traffic. Fig. 3.1(c) shows an example of congestion propagation in I-280 and I-880 freeways

in California. Note that there is a drastic decrease in the speed at a location (sensor B) and

a time (around 3 pm) that propagates through the traffic stream (this is called a shockwave).

Once demand for travel decreases congestion disappears by following the opposite trend

during the offset of congestion with a forward moving wave. Note that this propagation speed
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is not constant and depends on the concentration or density of vehicles (with units of veh/km)

on the two sides of the shockwave. There are various theories in transportation science to

describe the mechanisms of stop-and-go phenomena inspired by fluid and heat diffusion

models (see [72] for an overview).

Due to complex spatio-temporal correlation, the choice of model greatly influences the pre-

dictive performance. For small-scale sensor networks, such correlations can be estimated

directly from historical data [3], [55]–[58]. The vector Auto Regression (AR) is a representative

model for multivariate time series forecasting [56]–[58]. In this model, regression parameters,

or correlations between sensors, are estimated solely using historical data. In our previous

work [56], we implemented a predictor that explicitly expresses the periodicity of traffic sig-

nals with temporally localized vector AR model. However, these data-driven models are not

suitable for multivariate time series prediction with a large number of variables because the

number of correlations to be estimated increases exponentially compared with the number of

sensors, which causes incompleteness of the estimator (or overfitting).

Recently, many studies have prioritized the correlations among sensors by defining signals on

graphs [59]–[67]. In particular, in transportation networks, the physical travel distance between

sensors is a critical a priori information, the closer the sensors are in space, the higher the

correlation [9]. Utilizing this information, the authors had extracted the signal’s spatial features

through the heat propagation kernel (or convolutional filter) and passed it to temporal blocks

for forecasting, such as recurrent neural network (RNN) [59]–[62] and temporal convolutional

layer (TCN) [63]–[66]. By introducing this prior information to complex deep neural networks,

they achieved state-of-the-art performance in traffic prediction.
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However, the two predictors (with and without graphs) each have their own drawbacks. In

the former case, to the best of our knowledge, all studies, which currently show the best

performance, construct predictors based on deep neural networks. Therefore, these models

require expensive tuning processes of many hyperparameters and relatively long training due

to numerical optimization processes. In the latter case, on the other hand, it can be ineffi-

cient concerning the prediction accuracy, especially for large networks when the structural

information becomes important.

This chapter proposes a new model that combines the advantages of different frameworks

by implanting the sensors’ structural information into the existing data-driven model [56],

inheriting the periodicity modeling for the traffic signal. In most studies, the periodicity of

the traffic signal is taken as the input feature of the predictor, such as an encoded vector

that represents the time of the day or the day of the week, but the study [56] instead induces

the periodicity of the signal more clearly by making the model itself different for each time.

Each model has a matrix, which should be estimated by historical data, representing the

correlation between signals at two consecutive time intervals. As the size of the network is

proportional to the size of the matrix, a larger network can lead to overfitting. In this chapter,

we resolve the overfitting problem by approximating this matrix to the one derived from

data-independent graph topological information, therefore, we estimate only the remainder

by data. In detail, we transform the graph topological information into heat diffusion kernels,

which is introduced in [73], and approximate the matrix to a combination of the heat diffusion

kernels. In the process, we introduce some hyper-parameters. For example, one determines

which of the prior or historical datasets is more reliable. Most of the existing studies estimate

hyper-parameters through exhaustive search as a cross-validation method using a validation

set, but we estimate hyper-parameters directly from data by utilizing Bayesian inference [5].

As a result, the estimation process is relatively fast as most parameter estimation is performed

by analytic calculations except a few ones requiring a numerical optimization process. Besides,

our model is strongly interpretable. For example, through the hyper-parameter, it can be

seen that during the peak period, traffic prediction is relatively more dependent on data than

structural information compared to the non-peak period. Also, most importantly, predictors

based on this model showed comparable performance with a much shorter learning time than

state-of-the-art models. Especially, the proposed model shows great long-term prediction

performance as the model captures well the periodicity of traffic signals. Since the proposed

model requires a minimal number of hyper-parameter tuning, it might be applied to other

daily periodic graph signal prediction problems easily (e.g., weather forecasting, daily energy

consumption prediction). Here we summarize contributions of the work:

• We propose a novel traffic prediction method that successfully integrate graph structural

information to the existing data-driven model [56]. Hyper-parameters are learned

directly from data through Bayesian inference rather than by exhaustive search.

• Therefore, the training time required for inference is minimal. The trained model is

straightforward to analyze, unlike other deep neural network-based models.
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Table 3.1: The notations and definitions used in this chapter.

Rm m-dimensional Euclidean space

a,a,A Scalar, vector, matrix

diag(a) The diagonal matrix whose diagonal ele-
ments are from the vector a

diag(A) The vector whose elements are the diago-
nal components of the matrix A

I Identity matrix

1 All one vector

eA limn→∞
(
I+ 1

n A
)n

=
∑∞

n=0
1
n! A

n

[A]i , j The element of i -th row and j -th column
of the matrix A

[A]i ,: The slice of i -th row of the matrix A

|A| The determinant of the matrix A

|S | The cardinality of the set S

N (µ,σ2) A Gaussian distribution which has the
probability density function f (x) =

1
σ
p

2π
exp

(
−1

2

( x−µ
σ

)2
)

N (µ,Σ) A multivariate Gaussian distri-
bution which has the proba-
bility density function f (x) =

1p
(2π)N |Σ|

exp
(−1

2 (x−µ)TΣ−1(x−µ)
)

N (M,σ2)
∏

i , j N ([M]i , j ,σ2)

N (M,Σ)
∏

i N ([M]i ,:,Σ)

• It shows prediction performance comparable with deep learning methods especially for

long-term prediction.

3.2 Data model

In this section, we describe a mathematical model that represents a relationship between

traffic signals that are different in time. First, we define traffic signals on a graph and introduce

an existing prediction model [56] using this signals. Then, we suggest a model extending the

previous one that is applicable for large scale networks by exploiting graph information.

Mathematical notations that are used in this chapter are in Table 3.1.
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3.2.1 Graph signal

We start with modeling a transportation network using a graph. We define an undirected graph

G = (V ,E ); V is a set of nodes where each v ∈ V denotes a node (sensor) on the graph; E is a set

of edges where each of the edges connects two nodes. We define a signal on the nodes of the

graph with a traffic feature, in this chapter, for instance, speed, which is expressed as a vector

xd
t ∈RN of a day d and time t , where the constant N is the number of nodes. Therefore, the

vector xd
t represents a snapshot of speeds at a particular time and day. Especially, we express

the day index on the vector representation to exploit the periodicity of traffic signals later.

3.2.2 Dynamic linear model (DLM)

In our previous study [56], we defined a state equation of traffic in a small-scale transportation

network (a path graph) as temporally localized linear models as follows:

xd
t+1 = Ht xd

t +nd
t ,∀t ∈ [0,T −1] . (3.1)

We called this model the Dynamic linear model (DLM). The first time index (t = 0) corresponds

to the beginning of a day (midnight in our work), and the last index (t = T −1) refers to the

end of the day. Each entry of the noise vector nd
t ∈ RN is assumed to be an independent

and identically distributed (i.i.d.) random variable, which follows a Gaussian distribution

N (0,α−1
t ). Here the precision parameter αt explains how precisely a data pair (xd

t ,xd
t+1) fits to

the model. The transition matrix Ht represents the linear relationship between traffic signals

xd
t and xd

t+1.

The most important motivation behind this model is that the propagation of traffic features

over time occurs periodically on a daily basis. Consequently, we modeled that the transition

matrix Ht as a time-variant matrix that contains temporally localized (only between two

consecutive traffic features) spatio-temporal correlations of every sensor pair regardless of the

day of the week, noting that the transition matrix does not have the day index. In other words,

we assumed the correlations are identical both for weekends and weekdays [56].

In the work [56], the transition matrix is estimated by maximizing the likelihood (note that

we ignore some parameters such as the regularization parameter and the forgetting factor

introduced in the work for the brevity) as follows:

H̄t = argmax
Ht

f (Xt+1|Xt ,Ht ,αt ) = Xt+1XT
t (Xt XT

t )−1, (3.2)

where the collection of the m-past signals Xt =
(
x0

t x1
t · · · xm−1

t

)
. Therefore, the optimal

transition matrix is solely determined by the historical data Xt and Xt+1. From Eq. (3.2) we

see that the matrix Xt XT
t can be an ill-conditioned matrix when N is large. In other words,

the transition matrix H̄t can be overfitted by data. In the following subsection, we suggest a

method to avoid this problem by utilizing graph topological information.
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3.2.3 DLM with graph topological information

In this subsection, we suggest a way to avoid the overfitting problem approximating the

transition matrix to a heat diffusion matrix. To achieve this goal, we first define a weight matrix

that contains all edge weights between node vi and v j using a Gaussian kernel weighting

function with a threshold constant κ:

[W]i , j =

e−
dist2(i , j )

σ2 , if dist(i , j ) ≤ κ

0, otherwise.
(3.3)

The function dist(i , j ) denotes the shortest travel distance on G between the node vi and v j :

dist(i , j ) = min{dist(vi → v j ),dist(v j → vi )}, (3.4)

where the function dist(vi → v j ) represents the shortest travel distance from node vi to node

v j . As the graph G is undirected, the weight matrix is a symmetric matrix, i.e., WT = W.

The constants σ and κ are the kernel width and the distance threshold. If the kernel width is

large, the correlation of a pair of nodes is strong (close to one) even though the shortest travel

distance between the two nodes is large. On the other hand, the smaller the threshold is, the

sparser the weight matrix is.

The graph heat diffusion model [73] explains how each vertex propagates its heat to its neigh-

bors on the graph over time. As congestion evolves from one location to its neighbor over

time, we can express the change of traffic features by the heat diffusion model, especially for

short-term traffic changes since the total traffic volume of a network is well preserved for the

short-term in general.

The kernel on graphs that supports the heat diffusion model is introduced by [73]:

HG (τ) = e−τL(G ), (3.5)

where the constant τ denotes the diffusion period and the matrix L(G ) is the Laplacian of a

graph G . The matrix is defined as

L(G ) = diag(W1)−W. (3.6)

By definition, two extreme heat diffusion kernels of a connected graph G are:

HG (τ) =

I, when τ→ 0,
1
N 11T , when τ→∞,

(3.7)

where 1 is the vector whose elements are all one.

Therefore, with the heat diffusion kernel, we can describe the diffusion of a traffic signal
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through the graph G as follows:

x̃d
t+1(τ) = HG (τ)xd

t . (3.8)

We call the vector x̃d
t+1(τ) the internally diffused signals from xd

t by the diffusion period τ on

the graph G over one incremental time step.

Here, we define a convex combination of the heat diffusion kernels of K different predeter-

mined diffusion periods with a set T = {τ(0),τ(1), · · · ,τ(K−1)}1 as

HG (T ) =
∑
τ∈T

π(τ)HG (τ), (3.9)

where
∑
τ∈T π(τ) = 1. The mixture retains the property that the total input volume is preserved

through the diffusion process as shown in Appendix B.1, i.e., 1T HG (T )xd
t = 1T xd

t .

We embed heat diffusion kernels into DLM to exploit topological information of the trans-

portation network. The key idea is to express the transition matrix as a small variant from

a mixture of diffusion kernels. We decompose the transition matrix into the time-variant

internal diffusion and residual as follows:

Ht = HG
t (T )+ residual (3.10)

so that the internal diffusion matrix HG
t (T ) preserves the total traffic volume over time, i.e.,

1T HG
t (T )xd

t = 1T xd
t . Here, the time dependent internal transition matrix can be safely defined

as in Eq. (3.9) by substituting the time-invariant parameter π(τ) for the time-variant one π(τ)
t

because of the volume conservation property. The internal diffusion matrix represents how

the current signal xd
t diffuses through the transportation network (endogenous) whereas the

residual represents how much the traffic situation is getting better or worse in the next time

step based on the current signal (exogenous).

With this interpretation, we model the prior distribution of the transition matrix as:

f (Ht |γt ,Πt ,G ) = N
(
HG

t (T ),γ−1
t

)
, (3.11)

where the precision parameter γt represents how precisely the diffusion matrix explains the

transition matrix andΠt = {π(τ)
t |τ ∈T }.

The decomposition allows us to utilize data more efficiently during the estimation process

later. In Eq. (3.1), the transition matrix is a variable to be estimated from the data. Since the

dimension of this matrix is N 2, an increase in the number of sensors causes the estimation

1We predetermine the set T with two diffusion periods τ0 and τ∞ that correspond to each extreme case in

Eq. (3.7), respectively. In practice, we set τ0 as the biggest one that satisfies
∥∥∥HG (τ)− I

∥∥∥
2
< ε and τ∞ as the smallest

one that satisfies
∥∥∥HG (τ)−1/N 11T

∥∥∥
2
< ε with a predefined set τ ∈ linspace(-10,10,0.1), where the set contains

evenly spaced (0.1) numbers from −10 to 10. After that, we define T = logspace(τ0,τ∞,K ), where the function
returns K evenly spaced numbers on a log scale from τ0 to τ∞.
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Algorithm 2 Inference of parameters

1: function INFERENCE(W,K ,X1:T )
2: Set T = logspace(τ0,τ∞,K )
3: Define L(G ) by Eq. (3.6)
4: Define the function HG (τ) = e−τL(G )

5: for t ∈ [0,T −2] do
6: Infer α̂t , γ̂t and Π̂t by solving (3.25)
7: Infer Ĥt by Eq. (3.19)
8: end for
9: return Ĥt ,∀t

10: end function

of more elements, which results in an overfitting problem. This is the biggest impediment to

extending DLM to large networks. Still, if the structural information is set as a priori through

Eq. (3.11), the problem can be effectively avoided even if the number of sensors increases.

Assuming the graph G and the period set T are predefined, the internal diffusion matrix

only depends on the parameters π(τ)
t . By setting the number of diffusion periods to be much

smaller than that of sensors i.e., |T | ¿ N , we can describe the major part of the transition

matrix by the internal diffusion matrix with a few parameters when the sampling interval (the

time difference of two consecutive time indices) is relatively short, with likely preservation of

the traffic volumes, i.e., 1T xd
t+1 ≈ 1T xd

t . Consequently, we only need to exploit data to infer the

parameters π(τ)
t and the residual part whose norm is small with the decomposition.

3.3 Prediction and inference

This section describes how to estimate modeling parameters and predict graph signals by

using the model. Both the estimation and the prediction were performed by maximizing the

posterior distribution of each variable. Especially for hyperparameters, we utilize Bayesian

inference to estimate them instead of exhaustive search.

3.3.1 Inference of the transition matrix

We infer the transition matrix by maximizing its posterior distribution:

Ĥt = argmax
Ht

f (Ht |Xt ,Xt+1,αt ,γt ,Πt ,G ), (3.12)

which is proportional to the product of the prior and the likelihood by Bayes’ rule:

Posterior dist. ∝ f (Ht |γt ,Πt ,G ) f (Xt+1|Xt ,Ht ,αt ). (3.13)

Maximizing the posterior distribution can be interpreted as balancing between the prior and

likelihood of the transition matrix. For example, if there is no topological information about
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sensors, the transition matrix should be inferred by considering the training dataset only. In

this case, we can set the prior distribution as a uniform distribution, meaning that there is no

strong preference for a particular value of the transition matrix; the most probable transition

matrix becomes the maximum likelihood solution, which is Eq. (3.2):

Ĥt |No topological info. := H̄t

= argmax
Ht

f (Xt+1|Xt ,Ht ,αt )

= Xt+1XT
t (Xt XT

t )−1.

(3.14)

On the other hand, if we do not have any measurements, the most probable transition matrix

should be the maximizer of the prior distribution:

Ĥt |No measurements = argmax
Ht

f (Ht |γt ,Πt ,G ) = HG
t (T ). (3.15)

Since we use both prior and data measurements, the actual optimal transition matrix becomes

a combination of these two. According to the dynamic linear model, the likelihood

f (Xt+1|Ht ,Xt ,αt )

∝ e−
1
2 tr{αt (Xt+1−Ht Xt )(Xt+1−Ht Xt )T }

(3.16)

and the prior

f (Ht |γt ,Πt ,G ) ∝ e−
1
2 tr{γt (Ht−HG

t (T ))(Ht−HG
t (T ))T }. (3.17)

Therefore, by Eq. (3.13), (3.16) and (3.17),

f (Ht |Xt+1,Xt ,αt ,γt ,Πt ,G )

∝ e−
1
2αt tr{(Xt+1−Ht Xt )(Xt+1−Ht Xt )T }

·e−
1
2γt tr{(Ht−HG

t (T ))(Ht−HG
t (T ))T }

∝ e−
1
2 tr{(Ht−Ĥt )(αt Xt XT

t +γt I )(Ht−Ĥt )T },

(3.18)

where

Ĥt = (H̄tαt UtΛt +HG
t (T )γt Ut )(αtΛt +γt I)−1UT

t

= H̄tαt UtΛt (αtΛt +γt I)−1UT
t

+HG
t (T )γt Ut (αtΛt +γt I)−1UT

t ,

(3.19)

with the eigendecomposition of Xt XT
t = UtΛt UT

t . Therefore, f (Ht |Xt+1,Xt ,αt ,γt ,Πt ,G ) is a

multivariate Gaussian distribution with mean Ĥt and the covariance of each row; (αt Xt XT
t +

γt I )−1.
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Here, we measure how much each part contributes to the transition matrix

cdata
t =

wdata
t

wdata
t +wprior

t

, cprior
t =

wprior
t

wdata
t +wprior

t

(3.20)

by defining the weight of each part

wdata
t =

∥∥αt UtΛt (αtΛt +γt I)−1UT
t

∥∥
F ,

wprior
t =

∥∥γt Ut (αtΛt +γt I)−1UT
t

∥∥
F .

(3.21)

Note that these weights depend on the precision parametersαt and γt . If the data precision pa-

rameter αt is relatively large compared to γt , then cdata
t > cprior, meaning that the contribution

of data measurements is larger than that of the prior information.

3.3.2 Inference of other parameters

For the next step, we infer parameters αt , γt , andΠt . Similar to inferring the most probable

transition matrix, we infer the most probable αt , γt , and Πt by maximizing the following

posterior distribution:

α̂t , γ̂t ,Π̂t = argmax
αt ,γt ,Πt

f (αt ,γt ,Πt |Xt+1,Xt ). (3.22)

Setting the prior distribution f (αt ,γt ,Πt ) as a uniform distribution based on the assumption

that there is no preference for a certain value for these parameters before inferring, the

objective changes to maximize evidence f (Xt+1|Xt ,αt ,γt ,Πt ) [5] since

f (αt ,γt ,Πt |Xt+1,Xt ) ∝ f (Xt+1|Xt ,αt ,γt ,Πt ) f (αt ,γt ,Πt )

∝ f (Xt+1|Xt ,αt ,γt ,Πt ).
(3.23)

In Appendix B.2, we show that the evidence is

f (Xt+1|Xt ,αt ,γt ,Πt )

=
∫

f (Xt+1|Xt ,Ht ,αt ) f (Ht |γt ,Πt )dHt

= N (HG
t (T )Xt ,α−1

t I+γ−1
t XT

t Xt ).

(3.24)

Therefore, we infer the most probable hyper-parameters by maximizing the log-evidence with

a quasi-newton method (L-BFGS-B [74]):

maximize
αt ,γt ,Πt

logN (HG
t (T )Xt ,α−1

t I+γ−1
t XT

t Xt )

subject to 0 ≤π(τ)
t ≤ 1 ∀τ ∈T , 0 <αt , 0 < γt ,∑

τ∈T

π(τ)
t = 1.

(3.25)
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Algorithm 3 Prediction of traffic features (h-steps ahead)

function PREDICTION(xd
t ,h,Ĥt , · · · ,Ĥt+h−1)

Set p = xd
t

for i ∈ [0,h −1] do
Set p = Ĥt+i p

end for
xt+h|t = p

return xt+h|t
end function

Algorithm 2 summarizes the inference processes.

We emphasize that parameter inference through evidence maximization prevents overfitting

of the transition matrix to either data measurements or prior information. In Eq. (3.24) we

calculate the evidence by marginalizing the transition matrix. In other words, we set the tran-

sition matrix as a random variable instead of fixing it as a representative value, e.g., maximum

likelihood estimator. Noting that these parameters determine the contributions of measure-

ments and priors when the transition matrix is estimated in Eq. (3.19), the marginalization

process automatically penalizes the transition matrix to avoid the extreme cases [5].

3.3.3 Prediction of traffic features

Prediction of traffic features is performed by extracting and exploiting as much information as

possible from measurements and prior knowledge. Mathematically, we can express a traffic

signal that we want to predict as a random variable since the signal defined in the future is

entirely unknown. In this chapter, therefore, we try to infer the probability density function of

the signal xd
t+h

f (xd
t+h |xd

t ,xd
t−1 · · · ,G ), (3.26)

where the time indices t and t +h represent respectively the current time and the future

time index (h-steps ahead) that we want to predict. In the expression, the probability density

function is conditioned by the signals {xd
t ,xd

t−1, · · · } and the graph G that represents a set of

measurements and prior structural information, respectively.

In reality, it is common to limit the number of measurements to a fixed-sized one in a training

set. In addition to the training set that contains measurements apart from the day to be

predicted, it is crucial to keep measurements just before t , as the temporal correlation is

strong when the time difference is small. As a result, we estimate the density function that is

conditioned by a training set, the p-most recent measurements, and the graph G :

f (xd
t+h |xd

t ,xd
t−1, · · · ,xd

t−(p−1),X0:T−1,G ), (3.27)
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1
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Figure 3.2: Transportation sensor networks (District 7 area in California) that are used for
evaluating the proposed method.

where the training set X0:T−1 contains signals from t = 0 to t = T − 1 of multiple days d ∈
[0,m −1]. The dynamic linear model further simplifies the distribution (3.27) as follows

f (xd
t+h |xd

t ,Xt :t+h ,G ) (3.28)

because of the temporal locality of the model.

We define a predictor xd
t+h|t at the time step t for the horizon h as the maximizer of the

probability density function

xd
t+h|t := argmax

xd
t+h

f (xd
t+h |xd

t ,Xt :t+h ,G ). (3.29)

In other words, we define the predictor xd
t+h|t as the most probable xd

t+h based on the current

measurement vector xd
t , the training set Xt :t+h , and the graph G .

Proposition 1. The posterior distribution f (xd
t+h |xd

t ,Xt :t+h ,G ) is a Gaussian distribution that

has the mean vector Ĥt+h−1 · · ·Ĥt xd
t assuming f (Ht |Xt ,Xt+1,αt ,γt ,Πt ,G ) = δ(Ht − Ĥt ), where

the Dirac delta function δ(x) = 1 when x = 0 and δ(x) = 0, otherwise. The most probable

transition Ĥt is the maximizer of the posterior distribution f (Ht |·).

Proof. See Appendix B.3.

Since the mean value of a Gaussian distribution maximizes the distribution, the optimal

predictor is

xd
t+h|t = Ĥt+h−1 · · ·Ĥt xt := Ĥt+h−1←t xd

t . (3.30)

Therefore, the most probable signal xd
t+h is the successive propagation of the current mea-
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Figure 3.3: Prediction accuracy (RMSE) for the three different models on the PEMS-BAY
dataset. Each model represents respectively a single DLM (without topological information),
separate multiple DLMs for each freeway, and the proposed model (a DLM with topological
information).
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Figure 3.4: The heatmap of the elements in an estimated transition matrix Ht of the proposed
model. Darker colors represent larger absolute values. The sensors are grouped by freeways
and ordered from upstream to downstream within each freeway. Each axis shows the name of
the freeways. The sensors’ correlations within the same freeway are represented as red-shaded
areas (block-diagonal elements of the matrix). The separate multiple DLMs only use block
diagonal elements in the matrix.

surement vector xd
t through the most probable transition matrices that coincides with a

straightforward computation with Eq. (3.1) ignoring the noise term. Therefore, the prediction

for any horizon is just a matrix multiplication. Algorithm 3 summarizes this.
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3.4 Experiments

3.4.1 Settings

The proposed method was evaluated on different transportation networks. Figure 3.2 shows

the networks (G1 and G2) consisting of respectively 288 and 357 sensors with multiple freeways

that are connected through ramps. They experience significant levels of congestion in the

morning and evening peaks at various locations. These networks connect many origins

and destinations with complex demand profiles, creating propagation of congestion that is

different in duration, size, and time of occurrence. The PEMS-BAY dataset was also used as a

benchmark to compare with other state-of-the-art models [59], [65]. This data set consists

of data measured from 325 sensors (Fig. 3.1(a)) on the freeways of San Francisco Bay area.

The training and test dataset were constructed in the same way as [59], [65] to achieve a fair

comparison.

The sampling interval of each dataset is 5 minutes by default, and in the following subsection,

it is downsampled to 10 and 15 minutes, respectively, for a specific experiment. Both datasets

of networks G1 and G2 contain 209 days of speed data, and each of those is divided into a

training set and a test set at an 8:2 ratio by default. Another ratio is applied in Section 3.4.2 for

a specific experiment.

We used the root mean square error (RMSE) as an error metric to measure the accuracy of

prediction since the solution in Eq. (3.30) is also the optimal under the minimum mean squares

error (MMSE) sense [56]. The RMSE of a method with the prediction horizon h is defined as

RMSE(h,method) =
√

mean(xmethod
t+h|t −xt+h)2, (3.31)

where the mean value is evaluated over all t in the test set.

For prediction horizons, we set from 5 minutes to 120 minutes every 5 minutes. In our previous

work [56], on a freeway with a total length of about 60 miles (similar to the longest path of the

networks considered here), the actual travel time is about 70 minutes under usual congestion.

In the most severe congestion, the maximum travel time is about 100 minutes, and accordingly,

we set the maximum prediction horizon to 120 minutes.

All datasets were normalized using the mean and standard deviation of each sensor in the

training set. For a reference, we defined a baseline method that predicts future traffic features

assuming that the current traffic does not change over time, i.e., xbaseline
x+h|t = xt .

3.4.2 Analysis of network prior

In this section, we show how network prior information contributes to predictive performance.

Our model generalizes the DLM [56] to extend the model for a more extensive sensor network

using the sensor’s topology structure. When the DLM is simply used in an extensive network
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(a) Prediction accuracy (97/73
days for training/test set; 43:37 ra-
tio)
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(b) Prediction accuracy (194/73
days for training/test set; 73:27 ra-
tio)
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(c) Prediction accuracy (292/73
days for training/test set; 8:2 ratio)
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Figure 3.5: Accuracy of the prediction and the data contribution for different training-test set
ratio. The baseline method predicts future traffic features assuming that the current traffic
does not change over time, i.e., xbaseline

x+h|t = xt .

without topology structure information, an overfitting problem can occur. We introduce the

three following setups to evaluate how well the proposed model utilizes the topology structure

avoiding the overfitting problem,

1. a single DLM for the entire sensor network (without topological information),

2. separate DLMs (K = 5) for each freeway (block-diagonal DLM),

3. and the proposed model that is a single DLM (K = 5) with topological information.

As shown in Fig. 3.3, the proposed model shows the best performance, followed by block-

diagonal DLM and single DLM without topological information. The proposed model induces

the sensor’s topological information through heat diffusion kernels to give weights to each

element of this transition matrix and focus on estimating more essential components, resulting

in it as a sparse matrix, as shown in Fig. 3.4. As a result, it shows excellent performance in

long-term prediction by effectively estimating off-diagonal elements (correlation between

signals of sensors installed on different freeways) while avoiding the overfitting problem.

In the case of the model with a single DLM, all elements of this matrix are estimated using

historical data, while in the case of the model with separate DLMs, only the block diagonal

elements are estimated (red shaded area). Therefore, since the former one needs to estimate a
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much larger number of elements from the data than the latter, an overfitting problem may

occur. In contrast, in the separate DLMs, the historical data cannot be fully utilized due to

the lack of association between sensors belonging to different freeways. In particular, this

insufficiency causes degradation of long-term predictions as congestion propagates slowly

from one freeway to others.

The low prediction error is obtained only when the topological information is optimally

implanted into the DLM. Bayesian inference in our model is the key component to support

this process, as it optimally estimates various parameters that characterize the mixing ratio

between data and prior, which respectively correspond to DLM and topological information.

We set up the following experiment to find test the effectiveness of this estimation method:

1. the model with measurements (Eq. (3.2)),

2. the model with topological information (Eq. (3.15)),

3. and the model with both topological information and measurements (Eq. (3.19)).

For all the above models, we set three different cases that are characterized by different sizes

of the training sets with the same test set.

Figures 3.5(a)-(c) show the prediction accuracy of each case. Interestingly, the model with

measurements produced smaller errors when the size of the training set is smaller. The reason

is that each training set period is close to that of the test set with respect to time, which

means larger training sets contain measurement that are far from those in the test sets. This

may distort the inference process as traffic measurements have seasonal patterns. On the

other hand, the model using only the topological information showed poor performance in

predicting the far future because mixture kernels do not represent well the change in traffic

conditions due to the volume preservation characteristic. The model with both topological

information and measurements showed the best performance and similar outputs regardless

of the size of the training set. It shows that Bayesian inference estimates parameters αt and γt

in Eq. (3.19) optimally, extracting maximal information both from data and prior.

Figures 3.5(d)-(f) show the data contribution which is defined in Eq. (3.20) of the mixture

model. As the size of the training set increases, the data contribution increases since the

larger training set can generalize measurements more easily. Another important aspect from

the results is that the data contribution increases during peak periods such as morning and

evening peaks since the traffic volume is most likely not preserved during these periods

(therefore, it is difficult to explain it only with diffusion processes).

3.4.3 Analysis of different diffusion periods

We evaluated the proposed method with different diffusion processes (short, long, and mixture

of both) in order to examine how the model of Eq. (3.9) performs in different settings. The
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(a) Prediction accuracy (Ts =5
min.)
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(b) Prediction accuracy (Ts =10
min.)
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(c) Prediction accuracy (Ts =15
min.)
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Figure 3.6: Accuracy of the prediction and ratio of the short and long diffusion processes for
the same test set with different time intervals. The baseline method predicts future traffic
features assuming that the current traffic does not change over time, i.e., xbaseline

x+h|t = xt .

transition matrix Ĥt was set from Eq. (3.19) with three different diffusion priors:

1. HG
t (T ) = HG (τ0) = limτ→0 e−τL(G ) (short diffusion kernel; identity mapping),

2. HG
t (T ) = HG (τ∞) = limτ→∞ e−τL(G ) (long diffusion kernel; averaging),

3. and HG
t (T ) =π(τ0)

t HG (τ0)+π
(τ∞)
t HG (τ∞) (mixture of short and long diffusion kernels).

We also set three different cases that are characterized by different sampling intervals (Ts), 5,

10, and 15 minutes. The sampling interval indicates the time duration that corresponds to the

one-time incremental (the difference between t +1 and t). The sampling interval is related

to the diffusion period τ as a diffusion kernel expresses how traffic signals diffuse through a

graph within a sampling interval.

Figures 3.6(a)-(c) show the prediction accuracy of each diffusion prior on the transportation

network G1 with the three different sampling intervals. The predictor with the long diffusion

process showed relatively poor performance compared to the baseline method for small

prediction horizons, but it was improved when prediction horizons become larger. On the

other hand, the one with the short diffusion process showed relatively good performance

compared to the baseline method for all prediction horizons; however, it had insufficient

performance for large prediction horizons compared to the one with the long diffusion process.

The mixture model takes advantage of the two extreme cases, significantly improving the
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performance for both small and large prediction horizons. Specifically, around 50 minutes

prediction horizon in Fig. 3.6(a), the performance of the mixture model is noticeably better

than the others, meaning that a mixture of poor predictors can produce a good performance.

We emphasize that the distribution of the diffusion processes (Πt ) was determined optimally

by Bayesian inference. Figures 3.6(d)-(f) show the ratio of the coefficients π(τ0)
t and π

(τ∞)
t in

the mixture model that corresponds to the short and long diffusion processes, respectively.

Although the short diffusion process dominates the whole process, as shown in the figures, the

small portion of the long diffusion process contributes to the improvement. More importantly,

the ratio becomes smaller when the sampling interval increases. It shows that Bayesian

inference performs well in optimally determining parameters, since the performance of the

mixture model stays similar when the sampling interval is changed.

We also emphasize that the ratio depends on time. For example, during the early morning,

the diffusion kernel with long diffusion period (τ∞) contributes more to the prediction perfor-

mance although short diffusion (identity mapping) seems to be a more reasonable choice as

there are few changes in traffic during that time. However, if the signal values are relatively uni-

form (in the case of a traffic signal at early morning), taking an average can remove noise while

minimizing signal distortion as xt+1 ≈ xt (identity) ≈ 1
N 11T xt (averaging; robust to noise).

3.4.4 Comparison with state-of-the-art technologies

We compare the proposed method with other methods using a benchmark dataset: PEMS-BAY

dataset [59]. For a fair comparison, we use the same settings which are defined in [59] (also

same in [67])2. The models used for the comparison are as follows.

FC-LSTM (Fully Connected Long Short-Term Memory)

This model has been used as a representative reference for time-sequence modeling in deep

learning [75]. In general, the LSTM module extracts correlations of signals farther apart in

time than the RNN structure. However, this model’s disadvantage is that spatial correlations

can only be expected to learn directly from data as there is no separate module for extracting

spatial relationships of signals. The RMSE score for PEMS-BAY dataset is retrieved from [59].

STGCN

Yu, Yin, and Zhu [63] extracted spatial features with Graph Convolutional Neural Network

(CNN) utilizing spectral graph convolution in graph theory. After that, they attached Gated

CNN block to extract temporal features.

2Our code is available at: https://github.com/semink/lsdlm/
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Table 3.2: RMSE of different methodsfor PEMS-BAY dataset.

Horizon 15 min 30 min 60 min

FC-LSTM [75] 4.19 4.55 4.96
DCRNN [59] 2.95 3.97 4.74
STGCN [69] 2.96 4.27 5.69
Graph WaveNet [67] 2.74 3.70 4.52
ST-MetaNet [76] 2.90 4.02 5.06
Proposed 2.90 3.77 4.44

DCRNN (Diffusion Convolution Recurrent Neural Network)

Li, Yu, Shahabi, et al. [59] constructed a successful predictor by extracting the signal’s spatial

features from the underlying graph structure by diffusion convolutional layers. Compared to

STGCN, they designed the filter in the spatial domain directly rather than the graph spectral

domain. The authors combine this diffusion module to Gated Recurrent Unit (GRU) which is

a Recurrent Neural Network (RNN) variant.

Graph WaveNet

Xu, Shen, Cao, et al. [67] improved DCRNN by using dilated 1D convolution (also called

WaveNet) to extract temporal features in terms of computation time and performance.

ST-MetaNet

Pan, Liang, Wang, et al. [76] introduced graph attention network to extract spatial features.

They utilize RNN architecture to extract temporal features.

Table 3.2 shows the RMSE of each model and our proposed method. We confirm that the

performance of the proposed method reaches that of state-of-the-art methods based on a

complex deep learning architecture. It even performs better for long-term prediction as we

model based on DLM that explicitly expresses the daily periodicity of traffic signals. For

example, the RMSEs of our proposed method for 90 and 120 min horizons are respectively

4.70 and 5.26, while these are 5.26 and 6.02 with the pre-trained DCRNN model.3

Our proposed method requires lower computational effort compared to the others. Also,

it infers the majority of the parameters (N 2) analytically by Eq. (3.19). The method only

requires numerical computation when it solves the optimization problem (3.25) to infer K +2

parameters, which has O(K 2) complexity, where K 2 is noticeably smaller than N 2. Note that

the hyperparameters are optimally estimated by solving the optimization problem (3.25)

rather than the cross-validation method. As hyperparameter tuning is an expensive task, it

3As GraphWaveNet predicts all the horizons at once (not recursive), we could not use the pre-trained model for
the longer horizons. As a result, we choose DCRNN which shows the second-best result on 60 min horizon.
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Table 3.3: Computation costs for training on the PEMS-BAY dataset

Model Training(s)

DCRNN [59] 750 (per epoch)
Graph WaveNet [67] 580 (per epoch)
Proposed 760 (total)

can be a major advantage of the proposed method.

On the other hand, all state-of-the-art methods require heavy numerical computations to

train a large number of parameters as they are based on deep-neural-net architectures. Our

method successfully infers all parameters at the time scale of minutes with CPU computations,

which is noticeably shorter than other DNN based methods with GPU computations as shown

in Table 3.3 (note that the DNN based methods required from 50 epochs to 100 epochs to

converge).

Another advantage of our model compared to the deep-learning-based architectures is that

only a small number of parameters need to be decided heuristically. This can provide easy

scalability to apply our model to other traffic datasets or datasets with similar properties to

traffic data (daily periodicity). For example, in our model, the parameters to be determined

before training are the threshold constant κ, the kernel width σ to build a proper graph, and

the number of diffusion processes K to determine how many diffusion processes should be

mixed. We empirically choose the constants κ and σ such that the corresponding graph G is a

k-vertex-connected graph with a small number k. For the number of diffusion processes K ,

we set K = 5 for the PEMS-BAY dataset but the prediction performance is not sensitive to the

parameter (±0.01 minutes changes of the RMSE score from K = 3 to K = 7).

3.5 Conclusion

In this chapter, we proposed a method for predicting traffic signals in transportation sensor

networks. We successfully integrated topological information of the sensor network into a data-

driven model by assuming that the parameters in the model are supported by the mixture

of diffusion kernels with uncertainties. We exploited the Bayesian inference to optimally

determine the parameters that characterize the distribution of diffusion processes and the

importance of measurements against prior information. The importance varies with time, and

we discover that the data are relatively more important, especially for the peak period. Most

importantly, the proposed method reached accurate prediction at the level of state-of-the-art

methods with less computational effort. It particularly shows excellent performance in long-

term predictions by exploiting DLM’s periodicity modeling. Our method can be applicable

for predicting graph signals exhibiting daily patterns such as weather or energy consumption.

For future works, we may improve the short-term prediction performance if we give more

valuable prior information (e.g., graph structure more suitable for prediction; currently, it
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only depends on topology), or if it is possible to derive all inference processes (especially the

marginalization steps in Eq. (B.9) and (B.4)) with a non-linear model overcoming the limitation

of linear models.
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4 Traffic forecasting with a deep neural
network model

This chapter is written with its own notations, and the content of this chapter is avail-

able as a submitted paper:

Semin Kwak, Danya Li and Nikolas Geroliminis. "TwoResNet: Two-level

resolution neural network for traffic forecasting of freeway networks". In:

(Macau, China, Otc. 8-12, 2022). IEEE ITSC 2022 - 25th IEEE International

Conference on Intelligent Transportation Systems, 2022 (submitted)

4.1 Introduction

Most of the works related to traffic forecasting in freeway networks have recently designed

forecasters based on deep learning architectures [77]–[83]. The state-of-the-art performances

in traffic prediction are also mostly acheived by deep learning-based methods, with only a few

exceptions [84].

Spatial correlations of different sensors are crucial components for achieving an accurate

prediction. For example, when trying to predict traffic features of a sensor, those of neighboring

sensors give great information since congestion propagates through road networks [85]. Graph

convolutional network (GCN) is one of the most popular architectures that captures such

correlations; therefore, most state-of-the-art methods implant it into their architectures [79],

[81]–[83], achieving accurate prediction results.

Diffusion convolutional recurrent neural network (DCRNN) [81] is one of the pioneering works

that adopt GCN for traffic forecasting. The authors successfully combined a GCN architecture

with a recurrent neural network (RNN) and proved that extracting spatial correlations is

critical for improving prediction accuracy. Graph WaveNet [82] further improves the way

to extract spatial correlations. The authors revealed that the GCN is based on predefined

road connectivity, and the predefined one may miss the latent connectivity. Therefore, they
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suggested a new architecture that can learn road connectivity directly from data in an end-to-

end fashion. As a result, Graph WaveNet achieves remarkable performance improvements,

especially for long-term predictions.

This significant breakthrough in Graph WaveNet suggests that a hidden key parameter for long-

term predictions can be found by comparing the spatial correlations extracted by GCN with

those learned from data. Conventional GCN is known to extract spatial correlations among

neighboring nodes remarkably well, but not with remote nodes [11]. The underlying reason

is a practical limitation in the size of receptive fields during training processes. Receptive

field size has to be limited from a training perspective because it is related to the depth of

a network; the deeper a network is, the harder it is to be trained. On the other hand, Graph

WaveNet learns road connectivity from data, allowing GCN to extract correlations among

remote sensors. Such a contrast provides an insight that properly defining connectivity among

remote sensors is essential in long-term traffic predictions. However, this insight is neither

explicitly described in the original paper nor tested in the literature.

Based on the intuition, we introduce a deep neural network architecture called the two-level

resolution neural network (TwoResNet) that consists of two main blocks: the low-resolution

and high-resolution blocks. Each block focuses on macroscopic and microscopic traffic

dynamics, respectively. When the high-resolution block predicts microscopic traffic, it refers

to a macroscopic prediction from the low-resolution block. In other words, it allows the

GCN in the high-resolution block to refer to remote sensors at a coarsened level. We explain

how TwoResNet works with an analogy of how a company works. The boss of a company

(low-resolution block) focuses more on long-term visions while employees (high-resolution

block) focus more on short-term objectives, keeping the boss’ long-term ideas in their mind, to

maximize both short and long-term profits. As a result, our TwoResNet achieves a competitive

prediction accuracy compared to state-of-the-art methods.

The main contributions of this work are as follows:

• We suggest TwoResNet1, which learns macro and microscopic traffic dynamics sepa-

rately through the low-resolution and high-resolution blocks.

• We introduce a clustering method to group sensors for acquiring macroscopic traffics,

considering both proximity and correlations simultaneously.

• TwoResNet achieves a competitive prediction accuracy compared to most reliable state-

of-the-art works. For the long-term predictions, we obtained remarkable improvements

compared to the Graph WaveNet [82] without learning road connectivity.
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        High-resolution block

Low-resolution block
Downscaling

Encoder Decoder

Upscaling

Output
sequence

DecoderEncoder

Input

sequence

Figure 4.1: The architecture of a two-level resolution neural network (TwoResNet). In the
figure, S, H , N , and K represent the input sequence length, the maximum prediction, the
number of sensors, and the number of clusters, respectively.

4.2 Model architecture

We introduce our proposed model in a top-down approach. The two-level resolution network

(TwoResNet) is a deep neural network model that predicts time series for multi-step horizons

based on an input sequence, given predefined clusters and topological information:

y = TwoResNet(x|cluster, topology) (4.1)

where the input sequence x = (x−S+1, . . . , x0) ∈RS×Fin×N (S, Fin, and N are the input sequence

length, the number of input features, and the number of sensors, respectively) and the output

sequence y = (y1, . . . , yH ) ∈ RH×Fout×N (H and Fout are the output sequence length, i.e., the

maximum prediction horizon and the number of output features, respectively) that should be

close enough to the ground truth y true = (y true
1 , . . . , y true

H ).

It consists of two core blocks: Given the clustering information of each sensor, a low-resolution

block maps an input sequence x into an output sequence ȳ = (ȳ1, . . . , ȳH ) ∈RH×Fout×N defined

on a macroscopic scale. On the other hand, given topological information (i.e., road connec-

tivity), the high-resolution block maps the input sequence x and the output sequence of the

low-resolution block ȳ into a desirable output sequence y :

ȳ = LowResolutionBlock(x|cluster)

y = HighResolutionBlock(x, ȳ |topology)
(4.2)

Figure 4.1 shows the architecture and data flow of TwoResNet. Through this architecture,

we induce the low-resolution and the high-resolution blocks to focus on capturing traffic

dynamics on a macro and microscopic scale, respectively.

1https://github.com/semink/TwoResNet
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(a) Proximity-based adjacency. (b) Correlation-based adjacency. (c) Mixture adjacency of proximity-
based and correlation-based (α =
0.5).

Figure 4.2: Spectral clustering (K = 3) of sensors in a freeway network in with different adja-
cency matrices. Nodes with the same color belong to the same cluster.

4.2.1 Low-resolution block

We design the low-resolution block to predict traffic features on a macroscopic scale, such as

an average speed by region. It consists of a Downscaling module, an encoder, a decoder, and an

Upscaling module. Before an input sequence is fed into the encoder, the Downscaling module

aggregates traffic features of N sensors into K dimension with predefined clusters (which

will be explained later). After that, the encoder transforms the aggregated sequence into a

higher representation. The decoder generates an output sequence based on the representation

followed by the Upscaling module that broadcasts the K -dimensional features into the original

dimension N :

ẋ = Downscaling(x|cluster)

ż = Encoder(ẋ)

ẏ = Decoder(ż)

ȳ = Upscaling(ẏ |cluster)

(4.3)

Clustering

As seen in Eq. (4.3), the downscaling and upscaling modules require predefined clusters. For

clustering, we utilize spectral clustering [86]. Spectral clustering is a simple but powerful

clustering tool that very often outperforms classical clustering algorithms. Also, it has an

outstanding property that clusters data defined on the non-euclidean domain. The algorithm

takes an adjacency matrix of a graph structure as an input, together with the number of

clusters K :

I = SpectalClustering(A,K ) (4.4)

where A is an adjacency matrix. The indicator matrix I ∈RN×K such that [I ]n,k = 1 when the

node n belongs to the cluster k, otherwise 0. Each node only belongs to one cluster exclusively.
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(a) Without clustering.
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(b) With clustering.

Figure 4.3: The average speeds (a) of all sensors in the BAY area and (b) by clusters for the 9th
of January 2017. In (b), each color represents one cluster. Shaded areas represent the standard
deviation of each average speed of the same color.

For detailed explanation of the algorithm, see [87].

Figure 4.2(a) shows a clustering result (K = 3) with the Spectral clustering, based on an adja-

cency matrix Aprox that is defined as

[Aprox]i , j =

di j di j < threshold

0 otherwise
(4.5)

where di j = exp
(
− euclidean2(vi ,v j )

2δ2

)
, euclidean(vi , v j ) is the euclidean distance between the

sensor i and j , and δ is a bandwidth coefficient. The threshold set a sparsity of the matrix. As

shown in the figure, this clustering shows a strong locality; however, exploiting the averaged

traffic features purely based on the proximity may not be ideal for prediction since sensors in

the same group may have very different traffic patterns. For example, sensors on the same

freeway in the opposite directions may show completely different patterns since people use

one freeway during the morning but do the other during the evening for commuting.

With a correlation-based adjacency matrix Acorr, as shown in Fig. 4.2(b), sensors located

in opposite directions are well separated. We defined the matrix Acorr similar to Aprox by

defining di j = exp
(
− correlation(vi ,v j )

2δ2

)
, where correlation(vi , v j ) is the cross-correlation of the

sensor i and j across the time. However, in this case, we lose the locality of each cluster since

topological information is not involved in this process.

We mix proximity-based and correlation-based similarities to trade the locality and correlation

appropriately. Therefore, we define another adjacency matrix Amix such that:

di j = (1−α)exp

(
−euclidean2(vi , v j )

2δ2
1

)
+αexp

(
−correlation(vi , v j )

2δ2
2

)
(4.6)

with a hyperparameter α (0 ≤α≤ 1).
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Figure 4.4: Stacked recurrent neural network.

Figure 4.2(c) shows a clustering result when α = 0.5. Sensors in the opposite directions are

grouped in different clusters, and each cluster also keeps topological locality at the same time.

In order to evaluate the clustering, we obtain statistics on the average traffic flows before and

after the clustering. Figures 4.3(a) and (b) show the average speeds of all sensors in the Bay

area and by clusters for a day. Since the day is Monday, we can see clear morning and evening

peaks (speed drop) in (a), and they become clearer after clustering in (b). For example, with

K = 3, the sensors are grouped into whose measures (1) morning peak (green), (2) evening

peak (red), (3) and free flow (blue).

The low-resolution block utilizes such clusters to aggregate features into a macroscopic level

and processes them.

Downscaling and upscaling

Coarsening features is performed by averaging feature values that are within the same cluster.

For an arbitrary xt ∈RF×N of a sequence, we define

↓ xt = xt · I ·D−1
I ∈RF×K (4.7)

where D I is a diagonal matrix having eT · I as the diagonal term and e is the all one vector.

We also define an upscaling operation that simply broadcasts K dimensional macroscopic

features into the original N dimension according to the clusters. For an arbitrary ẋt ∈RF×K ,

↑ ẋt = ẋt · I T ∈RF×N (4.8)

With the downscaling and upscaling operations, we design the modules

Downscaling(x|I ) = (↓ x−S+1, . . . ,↓ x0) ∈RS×Fin×K

Upscaling(ẏ |I ) = (↑ ẏ1, . . . ,↑ ẏH ) ∈RH×Fout×N
(4.9)
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Encoder and decoder

Both encoder and decoder are based on the stacked recurrent neural network (RNN) architec-

ture [88]. The RNN architecture consists of L independent Recurrent Units (RU). The RNN

recurrently process an input state (xt ) and stacked hidden states (ht−1) and produce the next

stacked hidden states (ht ):

ht = RNN(xt ,ht−1) (4.10)

Figure 4.4 shows the data flow when a stacked RNN processes an input sequence.

Therefore, the encoder of the low-resolution block consumes an input sequence one at a

time, producing hidden states. Then the encoder repeats this process with the following input

sequence until it processes all the series from t = −S +1 to t = 0:

ḣt = RNNencoder
low (↓ xt , ḣt−1) (4.11)

where ḣ−S is set to zero vectors for all Llow units. The last stacked hidden states ḣ0 is set to the

output of the encoder ż.

Similarly, the decoder generates stacked hidden states one at a time, recurrently from t = 1 to

t = H , taking the previous output sequence and the decoder output of the last step:

ḣt = RNNdecoder
low (ẏt−1, ḣt−1)

ẏt = Linear(ḣ(Llow)
t )

(4.12)

where ẏ0 =↓ x0 and ḣ0 = ż. The Linear module projects the hidden state of the last unit into the

output dimension.

Recurrent unit

We use the Llow independent gated recurrent units (GRU) [89] for the recurrent units in the

RNN architecture. For l-th GRU, we evaluate

ḣ(l )
t = GRUl (ḣ(l−1)

t , ḣ(l )
t−1) (4.13)

where the input state ḣ(l−1)
t ∈RFi×K , the hidden state ḣ(l )

t−1 ∈RFo×K , and the next hidden state

ḣ(l )
t ∈RFo×K . The internal processes of the GRU are as follows:

r (l )
t =σ(W(l )

i r ḣ(l−1)
t +W(l )

hr ḣ(l )
t−1 +b(l )

r ·eT )

z(l )
t =σ(W(l )

i z ḣ(l−1)
t +W(l )

hz ḣ(l )
t−1 +b(l )

z ·eT )

n(l )
t = tanh(W(l )

i n ḣ(l−1)
t +b(l )

i n ·eT + rt ¯ (W(l )
hn ḣ(l )

t−1 +b(l )
hn ·eT ))

ḣ(l )
t = (1− z(l )

t )¯n(l )
t + z(l )

t ¯ ḣ(l )
t−1

(4.14)
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The bold-faced parameters are learnable parameters (W(l ) ∈RFo×Fi , b(l ) ∈RFo ),σ is the Sigmoid

function, tanh is the hyperbolic tangent function, and ¯ is the element-wise product. For

detailed explanation of each step in GRU, refer to [89]. We set Fi = Fin and Fo = Fhid for the first

recurrent unit (GRU1), and for the rest (GRU2 ∼ GRULlow ) we set Fi = Fhid and Fo = Fhid, where

the number of hidden features Fhid is a hyperparameter. Note that GRUl for the encoder and

decoder does not share the parameters.

4.2.2 High-resolution block

The high-resolution block consists of an encoder and a decoder block similar to the low-

resolution block. The entire architecture is motivated by [81]. The critical difference is in the

decoder module that takes the output of the low-resolution block as an input, inducing the

high-resolution block to focus on microscopic dynamics.

z = Encoder(x|topology)

y = Decoder(z, ȳ |topology)
(4.15)

Encoder and decoder

Most encoder parts are identical to the low-resolution block, except it consists of different

recurrent units that consider topological information. It processes all the input sequence from

t = −S +1 to t = 0:

ht = RNNencoder
high (xt ,ht−1) (4.16)

where h−S is set to all zero vector for all Lhigh units. The last stacked hidden state h0 is set to

the output of the encoder z.

The decoder of the high-resolution block has a similar structure to the encoder, except it

accepts the output of the low-resolution block. We induce the decoder to capture traffic dy-

namics at the microscopic level by adding the difference between two consecutive predictions

from the low-resolution block into the decoder input. Decoder iterates from t = 1 to t = H

generating y :

ht = RNNdecoder
high (yt−1 + ȳt − ȳt−1,ht−1)

yt = Linear(h
(Lhigh)
t )

(4.17)

where y0 = x0, ȳ0 =↑ (↓ x0), and h0 = z. The Linear module maps the hidden features into the

output dimension.

Adding ȳt − ȳt−1 into the decoder input induces the decoder to focus on microscopic com-

ponents. Decomposing yt = ŷt + ỹt , where ŷt and ỹt are the latent macro and microscopic

components of yt , and assuming the low-resolution block accurately predicts the macroscopic

52



Traffic forecasting with a deep neural network model Chapter 4

component, i.e., ŷt ≈ ȳt ,

yt−1 + ȳt − ȳt−1 = ŷt−1 + ỹt−1 + ȳt − ȳt−1

≈ ŷt + ỹt−1
(4.18)

Therefore, we can interpret the decoder transforms the input yt−1 + ȳt − ȳt−1 ≈ ŷt + ỹt−1 into

the output yt = ŷt + ỹt . As a result, the decoder only learns the transformation of ỹt−1 into ỹt ,

which is the dynamics of microscopic components.

Recurrent unit

We use Lhigh graph convolutional gated recurrent unit (GCGRU) for the recurrent units in the

RNN architectures both in the encoder and decoder. The l-th GCGRU evaluate

h(l )
t = GCGRUl (h(l−1)

t ,h(l )
t−1|topology) (4.19)

where the internal processes are

h̆(l−1)
t = GCN(h(l−1)

t |topology)

h̆(l )
t−1 = GCN(h(l )

t−1|topology)

h(l )
t = GRUl (h̆(l−1)

t , h̆(l )
t−1)

(4.20)

Therefore, it first transforms an input state (h(l−1)
t ∈RFi×N ) and a hidden state (h(l )

t−1 ∈RFo×N )

into higher representations (h̆(l−1)
t ∈R(2·M ·Fi+1)×N and h̆(l )

t−1 ∈R(2·M ·Fo+1)×N ) that absorb topo-

logical information through the GCN (the following section will introduce the transformation

in detail). Then, same as the low-resolution block, the transformed input and hidden state are

fed into the GRU to extract temporal features, generating the next hidden state (h(l )
t ∈RFo×N ).

The parameters of GRUl are not shared between the encoder and decoder.

Identical to the low-resolution block, we set Fi = Fin and Fo = Fhid for the first recurrent unit

(GCGRU1), and for the rest (GCGRU2 ∼ GCGRULlow ), Fi = Fhid and Fo = Fhid.

Graph convolutional network (GCN)

We use the spatial graph convolutional network (GCN) [81] for the GCN module. Given an

adjacency matrix A with self-connection (normalized by each row) that is a representation

of the topology of a freeway network, we transform features referring to neighboring node

features by using the M-layered bidirectional graph convolution:

GCN(x|A, M) = Concat(x,

gconv1(x|A), . . . ,gconvM (x|A),

gconv1(x|AT ), . . . ,gconvM (x|AT ))

(4.21)
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where gconvm(x|A) is a graph convolutional operation and Concat is the tensor concatenation

in the feature dimension.

We define the graph convolutional operation adopting [81] as follows:

gconvm(x|A) = x · (Tm(A))T (4.22)

where Tm(A) is the Chebyshev polynomials of the first kind that are obtained from the recur-

rence relation:

T0(A) = I

T1(A) = A

Tn(A) = 2A ·Tn−1(A)−Tn−2(A) (n ≥ 2)

(4.23)

With the definition, the input x is transformed by referring to the sensors within exactly m-hop

neighbors.

4.3 Training

4.3.1 Loss

We set the mean absolute error (MAE) overall horizons as our training metric. During the

training, we add the loss of the low-resolution block to the total loss of the network by a weight

γ. This induces the high-resolution block to only focus on the microscopic dynamics since it

makes the assumption in Eq. (4.18) valid:

MAElow = MAE(ȳ ,↑ (↓ y true))

MAEhigh = MAE(y, y true)

training loss = MAEhigh +γ ·MAElow

(4.24)

where

MAE(a, atrue) =
1

H ·Fout ·N

∑
h, f ,n

|[a]h, f ,n − [atrue]h, f ,n | (4.25)

4.3.2 Teacher forcing

We exploit a teacher forcing algorithm for training. Teacher forcing is an algorithm to feed

observed sequence (i.e., ground-truth) back into the RNN after each step, forcing the RNN to

stay close to the ground truth sequence. Therefore, we feed the ground truth y true
t−1 instead of

the prediction of the previous step yt−1 in Eq. (4.17) with a probability p. A desirable design

for the probability is that it should be close to 1 at the early training phase and approach 0

after enough epochs [90]. We model it as an inverse Sigmoid, defining the half-life coefficient
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(a) Ground truth traffic speed at 6:15 AM.
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(b) Predicted traffic speed for 6:15 AM (h = 3).

20

30

40

50

60

70

(c) Ground truth traffic speed at 7:00 AM.
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(d) Predicted traffic speed for 7:00 AM (h = 12).

Figure 4.5: Traffic speeds on 20th of June, 2017 and predicted speeds by TwoResNet (PEMS-BAY
dataset). The time when prediction is performed is t =6:00 AM. The unit of speed is mph.

η and reduce rate ρ, which should be greater than 0:

p(i |η,ρ) =
1

1+e−4ρ(η−i )
(4.26)

where i is the epoch index. The probability is 1/2 when i = η, and the derivative of p w.r.t. i at

i = η is −ρ ( d p
di |i =η = −ρ).

4.4 Experiments

We evaluate TwoResNet on two public datasets, METR-LA and PEMS-BAY [81]. METR-LA

dataset contains four months of aggregated traffic speed data every 5 minutes on 207 sensors

on the freeways of Los Angeles County. PEMS-BAY dataset contains six months of aggregated

traffic speed data every 5 minutes on 325 sensors in the Bay area.
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4.4.1 Baselines

For the baselines, we choose followings:

• ARIMA: Autoregressive integrated moving average model with Kalman filter [81] as a

representative model-based predictor.

• FC-LSTM: RNN with fully connected long short-term memory units [81] as a representa-

tive deep neural network-based predictor that only extracts temporal correlations of

sensors.

• DCRNN: Diffusion convolution recurrent neural network [81], which is a pioneering

model that successfully extracts spatio-temporal correlation with deep neural network

architecture.

• Graph WaveNet: Convolutional neural network (CNN)-based deep neural network [82]

that overcomes the drawback of DCRNN by learning road connectivity in an end-to-end

fashion.

4.4.2 Setups

We adopt the same data pre-processing procedures as in [81]. The adjacency matrix of each

freeway is constructed based on the travel distance between two sensors with the threshold

Gaussian kernel [4]. The dataset is split in chronological order with 70% for training, 10% for

validation, and 20% for testing. The input sequence length S and the maximum prediction

horizon H both are set to 12 (1 hour input windows and 1 hour maximum prediction horizon).

Z-score normalization is applied to the speed data.

We add time of the day and day of the week information into the input sequence since traffic

features are highly periodic. Specifically, we encode time of the day into a vector (cosξ, sinξ),

where ξ = 2π(1/24∗hour+1/60∗minute). With the polar encoding, the distance between any

vector pairs of time ξ1 and ξ2 is constant if |ξ1 −ξ2| is fixed. For day of the week information,

we map weekdays and weekends into 0 and 1, respectively.

For the low-resolution block, we group all the sensors into 5 clusters based on Eq. (4.4). For

the number of clusters, we choose it by the eigengap heuristic [87]. Cross-correlation is used

to calculate the correlation-based adjacency matrix with the training set. The threshold was

set such that the 90% of the adjacency matrix have zero values. The bandwidth parameters

δ1 and δ2 are set to the standard deviations of corresponding distances (euclidean2(vi , v j ),

correlation(vi , v j )). For both blocks, we set Fhid = 64 for the recurrent units. The GCN param-

eter M is set to 2. We also set the teacher forcing only for the high-resolution block and the

weight γ for the MAElow is set to 1.

All the other detailed settings for the hyperparameters are found in https://github.com/

semink/TwoResNet.
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Table 4.1: Performance comparison of TwoResNet and baseline methods.

Data Models
15 min 30 min 60 min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

M
E

T
R

-L
A

ARIMA 3.99 8.21 9.60% 5.15 10.45 12.70% 6.90 13.23 17.40%
FC-LSTM 3.44 6.30 9.60% 3.77 7.23 10.90% 4.37 8.69 13.20%
DCRNN 2.77 5.38 7.30% 3.15 6.45 8.80% 3.60 7.60 10.50%
Graph WaveNet 2.69 5.15 6.90% 3.07 6.22 8.37% 3.53 7.37 10.01%
TwoResNet (ours) 2.67 5.13 6.83% 3.05 6.18 8.13% 3.49 7.32 9.67%

P
E

M
S-

B
AY

ARIMA 1.62 3.30 3.50% 2.33 4.76 5.40% 3.38 6.50 8.30%
FC-LSTM 2.05 4.19 4.80% 2.20 4.55 5.20% 2.37 4.96 5.70%
DCRNN 1.38 2.95 2.90% 1.74 3.97 3.90% 2.07 4.74 4.90%
Graph WaveNet 1.30 2.74 2.73% 1.63 3.70 3.67% 1.95 4.52 4.63%
TwoResNet (ours) 1.30 2.73 2.71% 1.62 3.70 3.60% 1.91 4.47 4.49%

4.4.3 Results

Evaluation metrics

Following the convention, three different metrics are used to evaluate the performance: MAE

(Eq. (4.25)), root mean square error (RMSE) and mean absolute percentage error (MAPE):

RMSE(a, atrue) =
1

H ·Fout ·N

∑
h, f ,n

(
[a]h, f ,n − [atrue]h, f ,n

)2

MAPE(a, atrue) =
1

H ·Fout ·N

∑
h, f ,n

∣∣∣∣∣ [a]h, f ,n − [atrue]h, f ,n

[atrue]h, f ,n

∣∣∣∣∣
(4.27)

Comparison with baselines

We test all the baselines and our TwoResNet on both datasets for 15 minutes, 30 minutes, and

60 minutes ahead prediction. Table 4.1 summarizes the prediction accuracy for all the models.

In general, TwoResNet shows the best scores among all horizons for all three metrics on the

two datasets.

Figure 4.5 shows a sample prediction result of the TwoResNet for a peak period of h = 3 (15

minutes after the current time) and h = 12 (one hour after the current time). We can see the

model predicts the beginning of congestion even though the input does not contain enough

sign for the congestion.

Comparing ARIMA and FC-LSTM, we confirm that even a vanilla type of neural network is

superior to the model-based predictor in terms of prediction accuracy. We also ensure how

important to extract spatial correlation by comparing the results of FC-LSTM and DCRNN/-

Graph WaveNet. On the other hand, the outstanding performance of our model proves that the
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Table 4.2: Performance of HighResNet and TwoResNet on different time periods of the PEMS-
BAY dataset.

Models Period
15 min 30 min 60 min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

HighResNet
Morning peak 1.85 3.69 4.35% 2.49 5.30 6.27% 3.08 6.57 8.12%
Evening peak 1.74 3.54 4.16% 2.30 4.98 5.89% 2.73 5.99 7.26%
Off-peak 1.00 2.17 1.74% 1.15 2.69 2.16% 1.34 3.21 2.65%

TwoResNet
Morning peak 1.81 3.61 4.21% 2.41 5.09 5.94% 2.98 6.29 7.70%
Evening peak 1.72 3.48 4.09% 2.24 4.78 5.64% 2.61 5.68 6.90%
Off-peak 0.99 2.16 1.73% 1.14 2.61 2.08% 1.31 3.07 2.53%

two-level resolution architecture successfully learns additional representations that could not

be extracted through conventional GCN. Superb MAPE results prove that TwoResNet produces

a more reliable prediction when congestion happens since the absolute percentage error is

significantly higher under the condition than in the free flow situation with the same error

(the same numerator).

Importance of the low-resolution block

We divide the prediction period into the morning, evening, and off-peak periods to analyze the

importance of the low-resolution block in TwoResNet in detail. Each period is defined as 6 am

to 10 am, 2 pm to 8 pm, and the rest of the period, respectively. We test the HighResNet and

TwoResNet on each period of the PEMS-BAY dataset, where the HighResNet is a TwoResNet

only with the high-resolution block. Based on the result summarized in Table 4.2, we conclude

that adding the low-resolution block significantly improves prediction accuracy, mainly for

the peak periods and the long-term predictions. With the two-resolutions architecture, the

high-resolution block can focus more on short-term prediction while the low-resolution block

does more on the long-term. We can interpret it by an analogy that a company only with

employees (HighResNet) may find it difficult to have long-term plans (long-term predictions)

and venerable to external shocks (peak periods) compared to a company that has intelligent

supervisors (the low-resolution block in TwoResNet).

Ablation study of the periodicity encoding

We also conduct an ablation study for the periodicity encoding (time of the day and day of

the week): We set TwoResNet with and without the periodicity encoding and evaluated them

on the PEMS-BAY dataset. Table 4.3 shows the prediction results of the two settings. With the

periodicity encoding, the prediction accuracy of the TwoResNet is improved for all prediction

horizons. It proves that the periodicity encoding captures intrinsic periodicity, which cannot

be extracted directly from the data.
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Table 4.3: Performance of TwoResNet with and without the periodicity encoding (PE).

Models
15 min 30 min 60 min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Without PE 1.31 2.76 2.74% 1.64 3.74 3.66% 1.94 4.54 4.60%
With PE 1.30 2.73 2.71% 1.62 3.70 3.60% 1.91 4.47 4.49%

4.5 Conclusion

We proposed a two-level resolution neural network model (TwoResNet) that is decomposed

into a low-resolution and high-resolution block. The low-resolution block extracts regional

representative values based on a clustering method and produces predictions of the regional

changes. On the other hand, the high-resolution block predicts traffic features at the micro-

scopic level, being aware of the expected regional changes, i.e., the output of the low-resolution

block. As a result, TwoResNet achieves competitive scores compared to state-of-the-art meth-

ods on standard benchmark datasets. In future work, we will generalize the two-level architec-

ture to a multi-level one, expecting it to learn more dynamic spatio-temporal correlations.
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5.1 Summary of contributions

In Chapter 2, we presented a dynamic linear model representing traffic dynamics on a small-

scale freeway network. We effectively modeled non-linear traffic dynamics by expressing this

dynamic linear model with time-varying parameters. By exploiting mathematical properties

of the linear model, (1) we introduced a forgetting factor in the estimation model of time-

varying parameters, giving more weight to the latest data, (2) analytically derived the optimal

solution of the estimators from the least-squares perspective, (3) and, as a result, reduced

the estimation time dramatically by analytically updating the estimated parameters with new

data. In addition, by setting the time-varying parameters of the model to have a daily cycle

(irrespective of the day of the week), unlike heuristic methods using different models for each

major day, our prediction model significantly improved the prediction performance with an

algorithmic approach. When we predicted the estimated travel time of a fixed freeway section

using the proposed model, it outperforms other baselines for short-term prediction regardless

of traffic situations.

In Chapter 3, we described how to generalize the dynamic linear model defined in Chapter 2

to the case of extensive freeway networks. In the original dynamic linear model, the number

of parameters to be estimated is proportional to the square of the number of sensors in

the network. Therefore, as the size of the network increases, the number of measurements

relative to the number of parameters is relatively small, resulting in overfitting. To prevent

this, parameters were defined using network topology information regardless of data. We

induced parameters to fit the gap between this a priori model and the actual latent model

with measurements. Here, the a priori model defines the relationship between sensors as a

graph and then expresses it as a weighted sum of the graph diffusion kernels with different

diffusion coefficients. This diffusion coefficient was learned from the data with Bayesian

inference. Although a numerical process was required to optimize hyperparameters, learning

was significantly faster than other deep neural network-based methods because most of

the learning processes were performed analytically, thanks to the linear nature of DLM. In

61



Chapter 5 Conclusion and future research

particular, unlike neural network-based methods that optimize hyperparameters by exhaustive

search-based algorithms, we elegantly optimized them by exploiting the marginalization

process of Bayesian inference. These optimal hyperparameters have physical meanings, and

therefore they explain which traffic characteristics are more important than the others. In

addition, we showed excellent performance in long-term prediction compared to well-known

deep neural network methods.

In the last chapter, we proposed a neural network model to express the traffic dynamics in

extensive freeway networks, assuming that it shows complex intertwined patterns in both time

and space, which linear models might be limited to describe. In particular, we recognized that

the dynamics at macro and microscopic levels could have different behaviors. Therefore, we

introduced TwoResNet, which predicts traffic at the two different levels separately (but finally

fused) as a low-resolution and a high-resolution block, respectively. Macroscopic traffic was

defined as representative values for each region of a freeway network. A clustering method

was proposed to obtain these values, considering the network topology and the time series of

each sensor simultaneously. The low-resolution block processed these representative values

based on recurrent neural network (RNN) architecture and predicted future ones. In contrast,

the high-resolution block consumed the raw data with RNN and graph convolution, extracting

spatiotemporal correlations and predicting traffic at a microscopic level. As a result, the

TwoResNet achieved great long-term prediction by inserting the low-resolution output, that is,

predicted traffic at a macroscopic level, into the high-resolution RNN decoder input, which

indirectly expanded the receptive field of graph convolutional network (GCN) to the size of

each cluster. In particular, the TwoResNet outperformed one of the state-of-the-art models,

which implied that it overcomes the shortcomings of the existing GCN.

5.2 Future research

The existing graph convolutional network shows excellence in extracting the spatial correla-

tions but has the limitation that it must have a small receptive field. These shortcomings affect

the long-term performance of traffic prediction. Therefore, our future research directs toward

expanding the receptive field more effectively.

A graph convolutional network transforms features defined on each sensor by referring to

those of surrounding sensors based on a predefined topology. As a particular case, the graph

convolutional network (with a self-connected adjacency matrix) transforms the features of

each sensor, referring to those of all sensors within the k-hop neighbors, by performing the

convolution operation k times. Therefore, theoretically, features of any arbitrary sensors can

be referred to by performing the convolutional operation several times. However, it smooths

the features with k degree, resulting in missing details. Therefore, ironically, the more we

expand the receptive field to achieve better long-term prediction, the worse we get the overall

prediction performance.

We have noticed that extracting features of nearby sensors in detail is critical for accurate
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Figure 5.1: A new graph convolution.

short-term prediction, but extracting those of remote sensors on the same resolution is not

necessary for an accurate long-term forecast. As a result, we defined the TwoResNet with

two different resolutions. In addition to the two-resolution concept, we also believe that this

structure can be extended to have a multilevel resolution one. By further subdividing the

scope, we can classify freeway networks into three levels like a network/region/sensor or more.

In this way, the information can flow from the macroscopic level to the microscopic level

step by step (like TwoResNet), expecting the network learns more complex spatiotemporal

correlation.

In the heart of this idea, we believe that clustering will play a decisive role in configuring the

network in several resolutions. However, extending the clustering method used in TwoResNet

may not be straightforward for a multi-resolution network. Although prediction accuracy

was improved through clustering in TwoResNet, the clustering is not optimal for the actual

objective, i.e., minimizing forecasting error. For example, it is not obvious for multi-resolution

to decide what and how many potential representative values are in an intermediate resolution.

Therefore, we believe clustering should be done in an end-to-end fashion. One expected chal-

lenge is that since all subsequent calculations will be performed based on this clustering result,

if the network structure responsible for clustering is too complex, it would be challenging to

allocate enough resources for prediction.

Another possible approach is to realize the multi-resolution concept without clustering by

redefining the convolution operation of GCN. The new operation is expected to refer to (1)

features of nearby neighbors in detail, (2) features of distant neighbors at a coarsened level,

(3) and aggregated features of distant neighbors with minimal operation. The existing GCN

mainly performs the convolution operation using a self-connected adjacency matrix (we call

it A where all the diagonal term is 1). When we convolute features k times, i.e., Ak x, each

feature is transformed by referring to the neighbors located within the k-hops. On the other

hand, if the GCN performs the same operation using a self-disconnected adjacency matrix

(Ã; all the diagonal term is 0), it only refers to the neighbors precisely k-hop distance away.
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The first condition, (1), can be satisfied by using Ã. For example, if we parameterize Ãx and

Ã2x, we can refer to neighbors that are 1 and 2-hop away in detail. On the other hand, if these

two operations are combined, the conditions of (2) and (3) can be satisfied. If the convolution

operation is performed m times using A and the same process is performed l times using Ã in

order, i.e., Ãl Am x, each node on the graph refers to features of l -hop neighbors whose features

are already aggregated by m-hop neighbors. Figure 5.1 shows an example when m = 2 and

l = 3. When the convolution operation is performed with Am , the red-colored node aggregates

all the features from the shaded area (m-hop neighbors). After that, the green-colored node

refers the red-colored node by operating the convolution operation with Ãl , resulting in it

referring to the remote area in an aggregated way.

Although we expect to implement a more accurate predictor with this new operation, this

method also challenges that the graph should be a directed graph: Most of the assumptions

above will not be held if the graph is undirected. Therefore it may not be easy to generalize this

operation for other tasks, although freeway networks are often modeled as a directed graph.

Nevertheless, we expect that this challenge can be resolved since the new operation has great

flexibility that we can mix the two matrices A and Ã without any limitation.
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A.1 Mathematical derivations

A.1.1 Regularized least squares solution

A derivative of a scalar function is:

d f
(
x, y

)
=
∂ f

∂x
d x + ∂ f

∂y
d y. (A.1)

This can be extended to a matrix form as follows:

d f (H) = d f
(
H1,1, H2,1, · · ·Hn,m

)
(A.2)

=
∂ f

∂H1,1
d H1,1 + ∂ f

∂H2,1
d H2,1 +·· · ∂ f

∂Hn,m
d Hn,m (A.3)

= vec> (d H) · vec

(
d f

d H

)
(A.4)

= tr

(
d H> d f

d H

)
, (A.5)

where the function vec (·) vectorizes a matrix by concatenating its columns and

d f

d H
=



∂ f

∂H1,1

∂ f

∂H1,2
· · · ∂ f

∂H1,m

∂ f

∂H2,1

∂ f

∂H2,2
· · · ∂ f

∂H2,m

...
...

. . .
...

∂ f

∂Hn,1

∂ f

∂Hn,2
· · · ∂ f

∂Hn,m

 , (A.6)
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d H =


d H1,1 d H1,2 · · · d H1,m

d H2,1 d H2,2 · · · d H2,m
...

...
. . .

...

d Hn,1 d Hn,2 · · · d Hn,m

 , (A.7)

where Hi , j denotes the i , j entry of matrix H .

We define the cost function of Eq. (2.8) as f :

f (Hk )
∆
= ρλ|D| ‖Hk‖2

F +
∥∥∥∥(

V D
k+1 −HkV D

k

)
Λ

1
2
|D|

∥∥∥∥2

F
. (A.8)

Since the cost function is convex [91], we utilize that the derivative at global minimum is zero.

Therefore, we compute:

f (Hk +d Hk )− f (Hk )

= tr
(
2
(
HkV D

k Λ|D|
(
V D

k

)>−V D
k+1Λ|D|

(
V D

k

)>)
d H>

k

+H .O.T.
)
+ρλ|D|tr

(
2Hk d H>

k +H .O.T.
)

.

(A.9)

Here, the abbreviation H.O.T. stands for higher order terms of d Hk . Assuming that d Hk is

small enough,

f (Hk +d Hk )− f (Hk )

= d f (Hk )

= tr
(
2
(
HkV D

k Λ|D|
(
V D

k

)>+ρλ|D|Hk

−V D
k+1Λ|D|

(
V D

k

)>)
d H>

k

)
.

(A.10)

The higher order terms are ignored since they are much smaller than the first order term d Hk .

By Eq. (A.5), it is confirmed that:

d f

d Hk
= 2

(
HkV D

k Λ|D|
(
V D

k

)>
+ρλ|D|Hk −V D

k+1Λ|D|
(
V D

k

)>)
.

(A.11)

We set the derivative equal to zero to find the global minimum, then finally:

H̄D
k+1,k = V D

k+1Λ|D|
(
V D

k

)>(
V D

t Λ|D|
(
V D

k

)>+ρλ|D|IM

)−1
. (A.12)
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A.1.2 Regularization parameter

The data matrix V D
t Λ|D|

(
V D

k

)>
in Eq. (2.10) can be decomposed as:

V D
t Λ|D|

(
V D

k

)>
= U DU>, (A.13)

where UU> = U>U = IM and D is a diagonal matrix since the matrix is symmetric. Then, we

can rewrite the inner part of the inversion in Eq. (2.10) as follows:

V D
t Λ|D|

(
V D

k

)>+ρλ|D|IM = U
(
D +ρλ|D|IM

)
U>. (A.14)

Equation (A.14) proves that even if the number of training data is not enough (i.e., there are

some zero values in the diagonal of D), the inversion is still available since the regularization

term
(
ρλ|D|IM

)
is added and makes the regularized diagonal matrix

(
D +ρλ|D|IM

)
all non-zero

on the diagonal (= full rank). Therefore, the regularization term allows the model to be reliable

in the inversion process.

A.1.3 Recursive update

We define two matrices GD
k and PD

k as follows:

GD
k
∆
= V D

k+1Λ|D|
(
V D

k

)>
, (A.15)

PD
k
∆
=

(
V D

k Λ|D|
(
V D

k

)>+ρλ|D|IM

)−1
. (A.16)

Then we rewrite Eq. (2.10) with the multiplication of these two matrices:

H̄D
k = GD

k PD
k . (A.17)

The matrix GD∪d̃
k with a new day d̃ , which does not belong to the training set D, can be written

as:

GD∪d̃
k = V D∪d̃

k+1 Λ|D∪d̃|
(
V D∪d̃

k

)>
(A.18)

=
[

V D
k+1 vd̃

k+1

][
λΛ|D| 0

0 1

](
V D

k

)>(
vd̃

k

)>
 (A.19)

=λV D
k+1Λ|D|

(
V D

k

)>+vd̃
k+1

(
vd̃

k

)>
(A.20)

=λGD
k +vd̃

k+1

(
vd̃

k

)>
(A.21)
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and

PD∪d̃
k =

(
V D∪d̃

k Λ|D∪d̃|
(
V D∪d̃

k

)>+ρλ|D∪d̃|IM

)−1

(A.22)

=

([
V D

k vd̃
k

][
λΛ|D| 0

0 1

](
V D

k

)>(
vd̃

k

)>
+ρλ|D∪d̃|IM

)−1

(A.23)

=
(
λ
(
V D

k Λ|D|
(
V D

k

)>+ρλ|D|IM

)
+vd̃

k

(
vd̃

k

)>)−1
(A.24)

=

(
λ
(
PD

k

)−1 +vd̃
k

(
vd̃

k

)>)−1

(A.25)

=λ−1PD
k −

λ−1PD
k vd̃

k

(
vd̃

k

)>
PD

k λ
−1

1+λ−1
(
vd̃

k

)>
PD

k vd̃
k

, (A.26)

where the derivations (A.25) to (A.26) are based on the matrix inversion lemma [92]. Eq. (A.21)

and (A.26) show the availability of updating the matrices
{
PD

k ,GD
k

}
to

{
PD∪d̃

k ,GD∪d̃
k

}
with new

measurements
{

vd̃
k ,vd̃

k+1

}
. Therefore, we can estimate the new transition matrices H̄D∪d̃

k with

the updated matrices
{

PD∪d̃
k ,GD∪d̃

k

}
as in Eq. (A.17).

A.1.4 Linear minimum mean square estimator

A linear estimator for the velocity vector of i -step ahead at time t is written as:

vd̃
k+i |k = A0vd̃

k + A1vd̃
k−1 +·· ·+ Ak−1vd̃

1 (A.27)

What we need to do is to find an optimal set {A0, A1, · · · , Ak−1} in the minimum mean square

error (MMSE) sense. From Eqs. (A.27) and Eq. (2.14), we define the prediction error as follows:

vd̃
k+i −vd̃

k+i |k

=
(
H̄D

k+i−1�k − A0
)

vd̃
k −

k−1∑
j =1

A j vd̃
k− j +nd̃

k+i−1�k

(A.28)
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Its mean square is

E

[(
vd̃

k+i −vd̃
k+i |k

)(
vd̃

k+i −vd̃
k+i |k

)>]
= E

[[(
H̄D

k+i−1�k − A0
)

vd̃
k −

k−1∑
j =1

A j vd̃
k− j +nd̃

k+i−1�k

]
[(

H̄D
k+i−1�k − A0

)
vd̃

k −
k−1∑
j =1

A j vd̃
k− j +nd̃

k+i−1�k

]>]

= E

[[(
H̄D

k+i−1�k − A0
)

vd̃
k −

k−1∑
j =1

A j vd̃
k− j

]
[(

H̄D
k+i−1�k − A0

)
vd̃

k −
k−1∑
j =1

A j vd̃
k− j

]>]

+E

[
nd̃

k+i−1�k

(
nd̃

k+i−1�k

)>]
(A.29)

and Eq. (A.29) is minimized when

A0 = H̄D
k+i−1�k (A.30)

and

A j = 0 for j = 1,2, · · · ,k −1. (A.31)

Therefore, the linear MMSE estimator for the velocity vector of i -step ahead at time step k is:

vd̃
k+i |k = A0vd̃

k (A.32)

= H̄D
k+i−1�k vd̃

k , (A.33)

which is equivalent to Eq. (2.18).

A.2 Different predictors

In this section, we explain different travel time predictors which are compared with the

proposed method.

A.2.1 Instantaneous travel time

Instantaneous travel time is calculated based on the assumption that the current state does

not change with time, i.e.,

v
(
t ′, x

)
= v (t , x) , ∀t ′ > t , ∀x, (A.34)
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when the current time is t . The travel time i t t (t ) is then estimated based on this velocity field

with Algorithm 1.

A.2.2 k-Nearest neighbor

The k-Nearest neighbor (k-NN) method estimates an unknown velocity field with the k most

similar (or nearest) days in the training set up to a current time t in terms of euclidean distance.

Specifically, the velocity field for the rest of the day (after the current time) is estimated as the

average of the velocities of the k nearest neighbors.. We set k = 1, meaning that we choose

the most similar day in the training set for prediction. The travel time based on the nearest

neighbor method is calculated by Algorithm 1.

A.2.3 Support vector regression

To implement a support vector regression (SVR) method, we have followed the same procedure

of the previous work [30]. However, instead of using actual travel times as inputs, we put

instantaneous travel times because that we don’t know the actual travel time at the time of

estimation. We used the past 5 instantaneous travel times, i.e., i t t (t −4), i t t (t −3), ... , i t t (t )

as input variables. These input variables are scaled to have a zero mean and a unit variance.

We set the target as the actual travel time with prediction horizon h, a(t +h). Like in Ref. [30],

the linear kernel was chosen with the parameter setting C = 1000 and τ = 0.1.

A.2.4 Artificial neural network

We have designed a simple vanilla artificial neural network (ANN) for comparison using the

same scaled input and target variables as in the SVR above. We set one hidden layer with 10

neurons. We used the MLPRegressor module of Scikit-learn python package and set all the

parameter settings as the default setting except for the aforementioned hidden layer setting.
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B.1 Volume conservation of mixture of heat diffusion

By definition (in Eq. (3.6)), the graph Laplacian L(G ) has an eigenvector 1p
N

1 with the corre-

sponding eigenvalue 0. Let the eigen-decomposition of a matrix be

L(G ) = VDVT , (B.1)

where an orthonormal matrix V and a diagonal matrix D contain eigenvectors and correspond-

ing eigenvalues, respectively. Since the orthonormal matrix V contains the eigenvector 1p
N

1,

1T x̃d
t+1(τ)

(3.8)
= 1T HG (τ)xd

t

(3.5)
= 1T e−τL(G )xd

t = 1T Ve−τDVT xd
t

=
Np
N

1p
N

1T xd
t = 1T xd

t .

(B.2)

Therefore,

1T x̃d
t+1(T ) = 1T HG (T )xd

t = 1T
(∑
τ
π(τ)HG (τ)

)
xd

t

=
∑
τ
π(τ)1T HG (τ)xd

t =
∑
τ
π(τ)1T xd

t

= 1T xd
t

∑
τ
π(τ) = 1T xd

t .

(B.3)
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B.2 Evidence

f (Xt+1|Xt ,αt ,Πt )

=
∫

f (Xt+1|Xt ,Ht ,αt ) f (Ht |Πt )dHt

∝
∫

e−
1
2αt tr{(Xt+1−Ht Xt )(Xt+1−Ht Xt )T }

·e−
1
2γt tr{(Ht−HG

t (T ))(Ht−HG
t (T ))T }dHt

∝ e−
1
2αt

(
Xt+1(I−αt XT

t Σt Xt )XT
t+1−2γt HG

t (T )Σt Xt XT
t+1

)
·
∫

(2π)−
N 2

2 |Σt |−
N
2 e−

1
2 tr{(Ht−Ĥt )Σ−1

t (Ht−Ĥt )T }dHt

∝ e−
1
2αt

(
Xt+1(I−αt XT

t Σt Xt )XT
t+1−2γt HG

t (T )Σt Xt XT
t+1

)
∝ e−

1
2 tr{αt (Xt+1−HG

t (T )Xt )(I+αtγ
−1
t XT

t Xt )−1(Xt+1−HG
t (T )Xt )T },

(B.4)

where Σ−1
t =αt Xt XT

t +γt I.

B.3 Posterior distribution

When h = 1,

f (xt+1|xt ,Xt+1,Xt )

=
∫

f (xt+1|xt ,Ht ,αt ) f (Ht |Xt+1,Xt ,αt ,γt ,Πt ,G )d Ht

= f (xt+1|xt ,Ĥt ,αt ) = N (Ĥt xt ,α−1
t I).

(B.5)

Assume the statement is true for h = l −1 so that

f (xt+l−1|xt ,Xt :t+l−1) = N (Ĥt+l−2←t xt ,Rt+l−2), (B.6)

where Ĥt+l−2←t = Ĥt+l−2Ĥt+l−3 · · ·Ĥt . By the chain rule,

f (xt+l |xt ,Xt :t+l )

=
∫

f (xt+l |xt+l−1,Xt+l−1) f (xt+l−1|xt ,Xt :t+l−1)dxt+l−1.
(B.7)

Since

f (xt+l |xt+l−1,Xt+l ,Xt+l−1)

(B.5)
= N (Ĥt+l−1xt+l−1,α−1

t+l−1I),

f (xt+l−1|xt ,Xt+l−1, · · · ,Xt )
(B.6)

= N (Ĥt+l−2←t xt ,Rt+l−2),

(B.8)
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f (xt+l |xt ,Xt+l , · · · ,Xt )

=
∫

N (Ĥt+l−1xt+l−1,α−1
t+l−1I)

·N (Ĥt+l−2←t xt ,Rt+l−2)dxt+l−1

∝
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− 1
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t+l−2Ĥt+l−2←t xt )T

· (αt+l−1ĤT
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·R−1
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(B.9)

Applying matrix inversion lemma, Eq. (B.9) becomes

exp
(
− 1

2
αt+l−1

· (xT
t+l (I+αt+l−1Ĥt+l−1Rt+l−2ĤT

t+l−1)−1xt+l

−2xT
t+l (I+αt+l−1Ĥt+l−1Rt+l−2ĤT

t+l−1)−1

· Ĥt+l−1Ĥt+l−2←t xt
))

∝ exp
(
− 1

2
(xt+l − Ĥt+l−1Ĥt+l−2←t xt )T

·R−1
t+l−1(xt+l − Ĥt+l−1Ĥt+l−2←t xt )

)
,

(B.10)

where Rt+l−1 =α−1
t+l−1I+Ĥt+l−1Rt+l−2ĤT

t+l−1 and by definition Ĥt+l−1←t = Ĥt+l−1Ĥt+l−2←t , so

f (xt+l |xt ,Xt+l , · · · ,xt ) = N (Ĥt+l−1←t xt ,Rt+l−1). (B.11)

Finally, xt+h|t = Ĥt+h−1 · · ·Ĥt xt .
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