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In this work, we tackle the problem of minimising the Conditional-Value-at-Risk (CVaR) of 
output quantities of complex differential models with random input data, using gradient-based 
approaches in combination with the Multi-Level Monte Carlo (MLMC) method. In particular, 
we consider the framework of multi-level Monte Carlo for parametric expectations introduced 
in [24] and propose modifications of the MLMC estimator, error estimation procedure, and 
adaptive MLMC parameter selection to ensure the estimation of the CVaR and sensitivities for 
a given design with a prescribed accuracy. We then propose combining the MLMC framework 
with an alternating inexact minimisation-gradient descent algorithm, for which we prove Q-

linear convergence in the optimisation iterations under the assumptions of strong convexity and 
Lipschitz continuity of the gradient of the objective function. We demonstrate the performance of 
our approach on two numerical examples of practical relevance, which evidence the same optimal 
asymptotic cost-tolerance behaviour as standard MLMC methods for fixed design computations of 
output expectations.

1. Introduction

Optimisation algorithms play an important role across various scientific and engineering fields as valuable design tools. The key 
goal of optimisation is to find the best values of certain parameters (design variables) of a model, typically a differential model 
such as a Partial Differential Equation (PDE), used to predict the behaviour of a certain system, such that a desired output Quantity 
of Interest (QoI) of the model is optimised. Such differential models usually also include various other input parameters besides 
the design variable, which may or may not be fully characterised. There is an increasing interest in the computational science and 
engineering community to treat such parameters as random variables to reflect their uncertainty, either due to a lack of knowledge 
or to some intrinsic variability. As a result, the output QoI being optimised also becomes a random variable. Naively optimising the 
system for only one particular value of the inputs (e.g., the nominal value) can lead to a design that is not robust enough to the 
uncertainties in the system. A classical example is of civil engineering structures designed to minimise structural loads for moderate 
wind conditions, which are then unable to withstand local wind gusts or storms [22].

The field of PDE-constrained Optimization Under Uncertainty (OUU) seeks to characterise the randomness of the output QoI of 
the PDE using summary statistics such as moments, quantiles, etc., and optimise the summary statistic instead of the QoI directly. In 
particular, in risk-averse PDE-constrained optimisation, one aims at favouring designs with acceptable performance also in extreme 

* Corresponding author.
Available online 6 October 2023
0021-9991/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

E-mail addresses: sundar.ganesh@epfl.ch (S. Ganesh), fabio.nobile@epfl.ch (F. Nobile).

https://doi.org/10.1016/j.jcp.2023.112523

Received 19 October 2022; Received in revised form 18 July 2023; Accepted 25 September 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:sundar.ganesh@epfl.ch
mailto:fabio.nobile@epfl.ch
https://doi.org/10.1016/j.jcp.2023.112523
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2023.112523&domain=pdf
https://doi.org/10.1016/j.jcp.2023.112523
http://creativecommons.org/licenses/by/4.0/


Journal of Computational Physics 495 (2023) 112523S. Ganesh and F. Nobile

conditions. In this case, the summary statistic, often called a risk-measure, should quantify the importance that is given in the design 
process to unfavourable scenarios. The reader is referred to [38] for a comprehensive review of several risk-measures and their main 
properties. An important class of risk-measures is that of coherent risk-measures [36,4], which exhibit favourable properties such as 
monotonicity and convexity.

In this work, we focus on the so-called Conditional-Value-at-Risk (CVaR) [35], which corresponds to the expectation of the output 
QoI conditional on being above a given quantile (referred to as the Value-at-Risk (VaR) in the finance literature), and is a widely 
used coherent risk-measure. To be more specific, let 𝑄(𝑧) ∈ ℝ denote the random QoI, which depends on the design parameter 
𝑧 ∈ℝ𝑑 . We denote by 𝔼[𝑋] the expected value of a random variable 𝑋, and by 𝑐𝜏 (𝑧) the CVaR of 𝑄(𝑧) of significance 𝜏 ∈ [0, 1], i.e., 
𝑐𝜏 (𝑧) ∶= 𝔼

[
𝑄(𝑧)|𝑄(𝑧) ≥ 𝑞𝜏 ], where 𝑞𝜏 is the 𝜏-quantile of 𝑄(𝑧). It was demonstrated in [35] that 𝑐𝜏 (𝑧) could be written in the following 

form under certain conditions on the distribution of 𝑄(𝑧):

𝑐𝜏 (𝑧) = min
𝜃∈ℝ

{
Φ(𝜃;𝑧) ∶= 𝔼 [𝜙(𝜃,𝑄(𝑧))]

}
, 𝜙(𝜃,𝑄) ∶= 𝜃 + (𝑄− 𝜃)+

1 − 𝜏
, (1)

where we denote with 𝑋+ the positive part of 𝑋; namely 𝑋+ ∶= max(0, 𝑋). In this work, we consider the following problem of 
penalised CVaR minimisation:

 ∗ = min
𝑧∈ℝ𝑑

{
𝑐𝜏 (𝑧) + 𝜅

‖‖‖𝑧− 𝑧𝑟𝑒𝑓‖‖‖2𝑙2
}
, (2)

= min
𝑧∈ℝ𝑑
𝜃∈ℝ

{
 (𝜃, 𝑧) ∶= Φ(𝜃;𝑧) + 𝜅 ‖‖‖𝑧− 𝑧𝑟𝑒𝑓‖‖‖2𝑙2

}
, (3)

where we have added a term penalising deviation of the design 𝑧 from a preferred design 𝑧𝑟𝑒𝑓 . In Eq. (3), the parameter 𝜅 controls the 
strength of the penalisation, and ‖⋅‖𝑙2 denotes the Euclidean norm. In particular, we will consider Monte Carlo type approximations 
of problem (3), and since evaluating the objective function and its sensitivities at a given design 𝑧 requires the solution of a costly 
PDE many times, we will accelerate the Monte Carlo estimation by multilevel strategies following the well established Multi-Level 
Monte Carlo (MLMC) paradigm [15], which has been shown to provide significant performance improvements in comparison to 
classical Monte Carlo methods for estimating various summary statistics of output QoI of differential models [16,15,19,25,12].

Two broad approaches can be used to solve problem (3); namely, gradient-free and gradient-based methods. Evolutionary 
algorithms, a type of gradient-free method, were used in combination with Monte Carlo estimators for PDE-constrained CVaR minimi-

sation in [34,33]. A genetic algorithm was also used in combination with MLMC estimators in [32]. Multiple different risk-measures, 
including the CVaR, were estimated, and the framework was applied to aerodynamic shape optimisation problems. The authors of 
[11] proposed a multifidelity Monte Carlo estimator for the CVaR based on cross-entropy methods combined with importance sam-

pling. This approach was used in [31] in combination with gradient-free optimisation algorithms to minimise the CVaR. However, 
gradient-free algorithms typically have slower rates of convergence in comparison to gradient-based methods and involve multiple 
expensive evaluations of the objective function. We propose instead the use of gradient based algorithms, combined with MLMC 
estimators, to compute sensitivities of the objective function in problem (3). In particular, the MLMC estimators developed in this 
work rely on the framework of parametric expectations [24] and extend the work in [5] to the computation of CVaR sensitivities, 
addressing the corresponding challenges as outlined hereafter. We mention that gradient-based methods have also been used for 
other risk-measures and sampling strategies in the context of PDE-constrained OUU [17,40,29].

The computation of the sensitivities of the CVaR 𝑐𝜏 (𝑧) with respect to the extended design variables 𝑧 and 𝜃 typically requires 
the estimation of expectations of the form 𝔼

[
(𝑄(𝑧) − 𝜃)+

]
and 𝔼

[
1𝑄(𝑧)≥𝜃𝑓 (𝑧)

]
for suitable design-dependent random variables 𝑓 (𝑧). 

Although 𝔼
[
(𝑄(𝑧) − 𝜃)+

]
and 𝔼

[
1𝑄(𝑧)≥𝜃𝑓 (𝑧)

]
can be shown to be differentiable in 𝜃 and 𝑧 [21,20] under some conditions on the dis-

tribution of 𝑄(𝑧), sample- or quadrature-based approximations of these expectations are typically not differentiable and may require 
some additional treatment. One possibility is to directly use the non-differentiable estimations in combination with non-smooth opti-

misation techniques that use sub-gradient information. For example, the work in [26] uses a combination of smooth and non-smooth 
optimisation techniques, using sub-gradients computed using Monte Carlo estimators, to minimise the CVaR. Alternatively, one could 
construct smoothed versions of the maximum/indicator functions, with sufficient regularity such that sample-based approximations 
are still differentiable. For example, a regularised version of the CVaR was constructed in [23], with second order differentiability, 
and optimised successfully using a trust-region method. However, although regularised or smoothed versions of the CVaR can be 
constructed with adequate differentiability, this property is lost in the limit of vanishing smoothing, as is required when the al-

gorithm is close to the optimum. The method proposed in [24,5] offers an alternative to CVaR regularisation. In these works, the 
quantity 𝔼

[
(𝑄(𝑧) − 𝜃)+

]
is estimated directly using an MLMC estimator at a set of points in 𝜃, all sharing the same realisations of 

𝑄(𝑧), followed by a cubic spline interpolation over the pointwise evaluations thus obtained. Derivatives such as 𝔼
[
1𝑄(𝑧)≥𝜃𝑓 (𝑧)

]
are 

then approximated using derivatives of the cubic spline. We propose to follow the above path in this work. As was discussed in [5], 
directly using a naive MLMC estimator to estimate 𝔼

[
1𝑄(𝑧)≥𝜃𝑓 (𝑧)

]
causes non-optimal MLMC complexity behaviour. By constructing 

an MLMC estimator of 𝔼
[
(𝑄(𝑧) − 𝜃)+𝑓 (𝑧)

]
and numerically differentiating in 𝜃 instead, the approach in [5] ameliorates this issue and 

preserves the same optimal complexity behaviour of the MLMC method as predicted for estimating 𝔼 [𝑄(𝑧)]. Lastly, since the MLMC 
estimator proposed in [24,5] automatically provides an approximation ̂ (⋅, 𝑧) of the function 𝜃 ↦  (𝜃, 𝑧) at a given design 𝑧, we 
propose in this work to use an optimisation algorithm in which, at each iteration, gradient steps are taken only in the design variable 
𝑧, whereas exact optimisation in 𝜃 is performed using the surrogate ̂ (⋅, 𝑧). Such an algorithm, introduced in [6], was applied in 
2

combination with the Monte Carlo estimation of a regularised version of the CVaR in [7].
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The main contributions of this work are as follows. We propose novel expressions for the sensitivity of the objective function 
defined in Eq. (3) in terms of parametric expectations, thus allowing us to use and extend the framework in [5] to build cost optimal 
adaptive MLMC estimators for those sensitivities with error control. We then propose to use MLMC sensitivity estimators within 
an Alternating Minimisation-Gradient Descent (AMGD) algorithm, analogous to the one proposed in [6,7], where gradient steps 
are taken in the design variable 𝑧 whereas exact optimisation is performed in 𝜃 using an MLMC-constructed surrogate ̂ of  . 
The accuracy of the surrogate and sensitivity estimation is increased over the optimisation iterations and is set proportional to the 
gradient norm. Following closely the analysis in [7], we propose a convergence result for our algorithm under the assumption that 
the objective function  (𝜃, 𝑧) is strongly convex with Lipschitz continuous gradients.

The structure of this paper is as follows. We present the problem formulation in Section 2, for a problem of penalised CVaR 
minimisation of the form in Eq. (3). The novel expression for the gradients in terms of the parametric expectations is also presented 
in Section 2. In Section 3, we propose the AMGD algorithm with inexact gradient and objective function estimation and demonstrate 
its convergence. Section 4 discusses the novel MLMC estimators, error estimation procedure, and adaptive Continuation MLMC 
(CMLMC)-type hierarchy selection for the gradients of  (𝜃, 𝑧). In addition, it presents a final CMLMC-AMGD algorithm. Lastly, in 
Section 5, we demonstrate the above optimisation algorithm and MLMC procedure on two problems of interest. The first is a two-

dimensional oscillator, typically used to model oscillatory phenomena in excitable media. The second is a more applied problem of 
pollutant transport modelling. We demonstrate that the procedure proposed in this work performs well and reflects the theoretical 
results presented in Sections 2 and 3.

2. Problem formulation

Let (Ω,  , ℙ) denote a complete probability space, 𝜔 ∈ Ω an elementary random event and 𝑧 ∈ℝ𝑑 the vector of design variables. 
We denote by 𝑄(𝑧, 𝜔) ∈ ℝ the random QoI, typically a functional of the solution to an underlying differential model with random 
input 𝜔 and design 𝑧. We are interested in minimising the CVaR 𝑐𝜏 (𝑧) of the random variable 𝑄(𝑧, ⋅) over the designs 𝑧 ∈ ℝ𝑑 , as 
indicated in Eq. (2), following the formulation presented in [35]. To this end, we first introduce the following assumptions on the 
random variable 𝑄(𝑧, ⋅).

Assumption 1. For any 𝑧 ∈ℝ𝑑 :

(i) 𝑄(𝑧, ⋅) is a random variable in L𝑝(Ω, ℝ) for some 𝑝 ∈ [1, ∞).
(ii) The measure of 𝑄(𝑧, ⋅) admits a probability density function, i.e., the measure of 𝑄(𝑧, ⋅) is free of atoms. We denote by Γ the subset of 

random variables in L𝑝(Ω, ℝ) that are free of atoms, and hence, 𝑄(𝑧, ⋅) ∈ Γ ⊂ L𝑝(Ω, ℝ).
(iii) There exists a positive random variable 𝐾 , possibly dependent on 𝑧, such that 𝔼 [𝐾] <∞ and

|𝑄(𝑧+Δ𝑧, ⋅) −𝑄(𝑧, ⋅)| ≤𝐾(⋅)‖Δ𝑧‖𝑙2 , (4)

for any Δ𝑧 ∈ℝ𝑑 close enough to 0 (restated here from [21,20]).
(iv) For almost every 𝜔 ∈ Ω, the mapping 𝑧 ↦𝑄(𝑧, 𝜔) is differentiable in ℝ𝑑 and the corresponding vector of partial derivatives 𝑄𝑧(𝑧, ⋅) =[

𝑄𝑧1 (𝑧, ⋅), ...,𝑄𝑧𝑑 (𝑧, ⋅)
]𝑇

of 𝑄 with respect to the components 𝑧𝑘 of 𝑧, 𝑘 ∈ {1, ...𝑑}, is a random variable in L𝑝(Ω, ℝ𝑑 ).

To quantify the tails of 𝑄(𝑧, ⋅), we first define the 𝜏-VaR 𝑞𝜏 (𝑧), alternatively known as the 𝜏-quantile, of significance 𝜏 ∈ (0, 1) as 
follows:

𝑞𝜏 (𝑧) ∶= min{𝜃 ∈ℝ|𝔼 [1𝑄(𝑧,⋅)≤𝜃] ≥ 𝜏}. (5)

The 𝜏-CVaR 𝑐𝜏 (𝑧) is defined as the expected value of 𝑄(𝑧, ⋅) in the tail above and including the 𝜏-VaR 𝑞𝜏 (𝑧):

𝑐𝜏 (𝑧) ∶= 𝔼
[
𝑄(𝑧, ⋅)|𝑄(𝑧, ⋅) ≥ 𝑞𝜏 (𝑧)] . (6)

As was described in Section 1, [35] proposed that 𝑐𝜏 (𝑧) could be written in the form in Eq. (1) for a random variable 𝑄(𝑧, ⋅) satisfying 
Assumption 1.(ii).

In this work, we extensively use the concept of parametric expectations. In particular, let us introduce the function (parametric 
expectation) Φ ∶ℝ ×ℝ𝑑 →ℝ as:

Φ(𝜃;𝑧) ∶= 𝔼 [𝜙(𝜃,𝑄(𝑧, ⋅))] , 𝜃 ∈ℝ, 𝑧 ∈ℝ𝑑 , (7)

with 𝜙 ∶ℝ ×ℝ →ℝ given by:

𝜙(𝜃,𝑄) ∶= 𝜃 + (𝑄− 𝜃)+

1 − 𝜏
, 𝜃 ∈ℝ, 𝑄 ∈ℝ. (8)

The introduction of the parametric expectation Φ has the advantage that the 𝜏-VaR 𝑞𝜏 (𝑧) and the 𝜏-CVaR 𝑐𝜏 (𝑧) of any significance 𝜏
can be obtained by simple post-processing of Φ as:

𝑞 (𝑧) = argminΦ(𝜃;𝑧), 𝑐 (𝑧) = minΦ(𝜃;𝑧) = Φ(𝑞 (𝑧);𝑧). (9)
3

𝜏
𝜃∈ℝ

𝜏
𝜃∈ℝ 𝜏
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The framework of parametric expectations allows us to write the penalised CVaR minimisation problem in Eq. (2) as a combined 
minimisation over 𝜃 and 𝑧 as in Eq. (3). The problem is restated below for reference:

 ∗ = min
𝑧∈ℝ𝑑
𝜃∈ℝ

{
 (𝜃, 𝑧) ∶= Φ(𝜃;𝑧) + 𝜅 ‖‖‖𝑧− 𝑧𝑟𝑒𝑓‖‖‖2𝑙2

}
. (10)

For the remainder of this work, we address the challenge of solving problem (10). The combined objective function  (𝜃, 𝑧) has several 
properties that, when combined with the properties of 𝑄 in Assumption 1, have useful implications for gradient based optimisation 
techniques. We first discuss the differentiability of  (𝜃, 𝑧). Theorem 2.1 below gives a result on Fréchet differentiability of the CVaR.

Theorem 2.1. Let 𝔏(𝑋, 𝑌 ) denote the space of bounded linear operators between the normed vector spaces 𝑋 and 𝑌 . We define the function 
 ∶ℝ × L𝑝(Ω; ℝ) →ℝ as follows:

(𝜃,𝑄) ∶= 𝜃 +
𝔼
[
(𝑄− 𝜃)+

]
1 − 𝜏

= 𝔼 [𝜙(𝜃,𝑄)] . (11)

Then, (𝜃, 𝑄) is jointly Fréchet differentiable in ℝ × Γ, with Fréchet derivative 𝐷(𝜃, 𝑄) ∈ 𝔏(ℝ × L𝑝(Ω, ℝ), ℝ) at the point (𝜃, 𝑄) ∈ℝ × Γ in 
the direction (𝛿𝜃, 𝛿𝑄) ∈ℝ × L𝑝(Ω, ℝ) given by:

𝐷(𝜃,𝑄)(𝛿𝜃, 𝛿𝑄) =

(
1 −

𝔼
[
1𝑄≥𝜃

]
1 − 𝜏

)
𝛿𝜃 +

𝔼
[
1{𝑄≥𝜃}𝛿𝑄

]
1 − 𝜏

. (12)

Proof. The reader is referred to Appendix A for the proof. □

This result, combined with Assumption 1 on 𝑄, leads immediately to the differentiability of  (𝜃, 𝑧).

Corollary 2.1. The objective function  (𝜃, 𝑧) is jointly Fréchet differentiable in ℝ ×ℝ𝑑 , with Fréchet derivative 𝐷 (𝜃, 𝑧) ∈ 𝔏(ℝ ×ℝ𝑑 , ℝ) at 
the point (𝜃, 𝑧) in the direction (𝛿𝜃, 𝛿𝑧) ∈ℝ ×ℝ𝑑 given by:

𝐷 (𝜃, 𝑧)(𝛿𝜃, 𝛿𝑧) =

(
1 −

𝔼
[
1𝑄≥𝜃

]
1 − 𝜏

)
𝛿𝜃 +

𝔼
[
1{𝑄≥𝜃}𝑄𝑇𝑧 𝛿𝑧

]
1 − 𝜏

+ 2𝜅(𝑧− 𝑧𝑟𝑒𝑓 )𝑇 𝛿𝑧. (13)

A direct implication of Corollary 2.1 is that the gradient ∇ ∈ℝ𝑑+1 and the partial derivatives 𝑧(𝜃, 𝑧) = [𝑧1 (𝜃, 𝑧), ...,𝑧𝑑 (𝜃, 𝑧)]𝑇
and 𝜃(𝜃, 𝑧) exist and are given by the following expressions:

𝜃(𝜃, 𝑧) = 1 −
𝔼
[
1𝑄(𝑧,⋅)≥𝜃

]
1 − 𝜏

, (14)

𝑧(𝜃, 𝑧) = 𝔼
[
1𝑄(𝑧,⋅)≥𝜃𝑄𝑧(𝑧, ⋅)

]
1 − 𝜏

+ 2𝜅(𝑧− 𝑧𝑟𝑒𝑓 ). (15)

One of the main contributions of this work is the estimation of the sensitivities in Eqs. (14) and (15) using MLMC estimators. However, 
as discussed in Section 1, using MLMC to directly estimate the expectations in Eqs. (14) and (15) may result in compromised or non-

optimal MLMC performance. The reader is referred to [5,24] for a detailed discussion on the topic. To ameliorate this issue, we 
propose the following alternative formulation of the gradients in terms of parametric expectations:

𝜃(𝜃, 𝑧) = Φ′(𝜃;𝑧), with Φ as in Eqs. (7)-(8), (16)

𝑧(𝜃, 𝑧) = Ψ′(𝜃;𝑧) + 2𝜅(𝑧− 𝑧𝑟𝑒𝑓 ), (17)

where Ψ(𝜃;𝑧) ∶= 𝔼
[
−
(𝑄(𝑧, ⋅) − 𝜃)+𝑄𝑧(𝑧, ⋅)

1 − 𝜏

]
=∶
[
𝔼
[
𝜓(𝜃,𝑄,𝑄𝑧1 )

]
, ...,𝔼

[
𝜓(𝜃,𝑄,𝑄𝑧𝑑 )

]]𝑇
. (18)

The superscript prime of the parametric expectations in Eq. (16) and Eq. (17) denotes the derivative computed with respect to 𝜃. In 
addition to Φ(𝜃; 𝑧), we have introduced the parametric expectation Ψ(𝜃; 𝑧) ∈ℝ𝑑 and the function 𝜓(𝜃, 𝑄, 𝑄𝑧𝑘 ) ∈ℝ where 𝑧𝑘 and 𝑄𝑧𝑘
denote the 𝑘th components of 𝑧 and 𝑄𝑧 respectively, 𝑘 ∈ {1, ..., 𝑑}. The differentiability of Ψ(𝜃; 𝑧) in 𝜃 follows by the same arguments 
of Theorem 2.1 and Corollary 2.1, under Assumption 1. It was shown in [5] that since 𝜙 and 𝜓 are Lipschitz continuous in their 
arguments, the corresponding MLMC estimators no longer suffer from the compromised performance due to discontinuities. The idea 
is then to build MLMC estimators Φ̂(⋅, 𝑧) and Ψ̂(⋅, 𝑧) for the whole functions 𝜃 ↦ Φ(𝜃; 𝑧) and 𝜃 ↦ Ψ(𝜃; 𝑧) respectively on a suitably 
chosen interval Θ ⊂ ℝ, and then approximate 𝜃 and 𝑧 as ̂𝜃(𝜃, 𝑧) = Φ̂′(𝜃; 𝑧) and ̃𝑧(𝜃, 𝑧) = Ψ̂′(𝜃; 𝑧) + 2𝜅(𝑧 − 𝑧𝑟𝑒𝑓 ) respectively. As a 

by-product of this approach for estimating sensitivities, we construct an approximation 𝜃 ∈ Θ ↦ ̂ (𝜃, 𝑧) = Φ̂(𝜃; 𝑧) + 𝜅 ‖‖‖𝑧− 𝑧𝑟𝑒𝑓‖‖‖2𝑙2 of 
the objective function itself for all 𝜃 ∈ Θ, at a given design 𝑧 ∈ ℝ𝑑 . This allows us to consider an optimisation problem in which 
exact minimisation in 𝜃 is performed at each iteration using the surrogate ̂ , and gradient steps are performed only in 𝑧 using the 
approximate gradient ̃𝑧. Notice that the gradient approximation in 𝑧 is inconsistent with the surrogate model ̂ , i.e., ̃𝑧 ≠ 𝜕𝑧̂ , in 
4

contrast to ̂𝜃 . We will detail this approach in the next section.
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3. Gradient based optimisation algorithm

In this section, we present a gradient-based iterative procedure to find a local minimiser (𝜃∗, 𝑧∗) of the OUU problem in Eq. (10), 
should it exist. The broad goal of a gradient based algorithm is to define the iterates (𝜃𝑗 , 𝑧𝑗 ), 𝑗 ∈ℕ such that

lim
𝑗→∞

(𝜃𝑗 , 𝑧𝑗 ) = (𝜃∗, 𝑧∗), (19)

where the iterates are computed using gradient information. Motivated by our interest in using MLMC estimators based on parametric 
expectations to estimate the objective function and its sensitivities, we consider in this section the general situation in which, at each 
iteration 𝑗 of the gradient based algorithm, we build an approximation ̂ 𝑗 (𝜃, 𝑧), 𝜃 ∈ Θ of the objective function at the design 𝑧 ∈ℝ𝑑
on a suitably chosen interval Θ ⊂ℝ (which may depend on 𝑗, although to ease the notation, we do not highlight such dependence), 
as well as approximations ̂ 𝑗

𝜃
(𝜃, 𝑧) and ̃ 𝑗𝑧 (𝜃, 𝑧), 𝜃 ∈Θ, where the approximation ̃ 𝑗𝑧 may not coincide with the 𝑧-derivative of ̂ 𝑗 . The 

approximations ̂ 𝑗 , ̂ 𝑗
𝜃

and ̃ 𝑗𝑧 may be random, as will be the case for MLMC estimators. We then propose the following variation of 
the standard gradient descent algorithm, starting from an initial design 𝑧0 :

𝜃𝑗 ∈ argmin
𝜃∈Θ

̂ 𝑗 (𝜃, 𝑧𝑗 ), (20)

𝑧𝑗+1 = 𝑧𝑗 − 𝛼̃ 𝑗𝑧 (𝜃𝑗 , 𝑧𝑗 ), (21)

where 𝛼 > 0 denotes a step size parameter. We note that according to the procedure in [5], the interval Θ can be freely selected and, 
hence, we can ensure that 𝜃𝑗 always belongs to the interior of Θ, so that ̂ 𝑗

𝜃
(𝜃𝑗 , 𝑧𝑗 ) = 0 ∀𝑗 ∈ℕ.

In Theorem 3.1 in Section 3.1, we show that the iterates (𝜃𝑗 , 𝑧𝑗 ) converge Q-linearly in the iteration counter 𝑗 towards (𝜃∗, 𝑧∗)
under additional assumptions on the objective function  and its approximations ̂ 𝑗 . The results of Theorem 3.1, specifically the 
implications of Eq. (24) introduced there, demonstrate that Q-linear convergence of the iterates 𝑧𝑗 and 𝜃𝑗 in 𝑗 can be obtained if the 
gradient approximation is accurate up to a tolerance that is a fraction 𝜂 of the gradient magnitude at the previous iteration. Such an 
accuracy condition was used in [7], and has been utilised in literature prior to this work. The interested reader is referred to [10]

and [8].

The step size is selected sufficiently small, and remains fixed over all optimisation iterations, although variable step sizes and line 
search methods could be easily added. The algorithm is terminated once the gradient magnitude drops to a specified fraction of the 
initial value. We introduce here the notation 𝑤 = (𝜃, 𝑧), ∇ = (𝜃 , 𝑧) and ∇̃̂ 𝑗 = (̂ 𝑗

𝜃
, ̃ 𝑗𝑧 ) for convenience in the following.

Algorithm 1: Novel AMGD algorithm

1: Input: Initial design 𝑧0 , iteration counter 𝑗 = 0, tolerance 0 < 𝜖 < 1, step size 𝛼 > 0 and tolerance fraction 𝜂 > 0.

2: Set residual 𝑟 = 𝜖 + 1.

3: while 𝑟 > 𝜖 do

4: if 𝑗 = 0 { Compute ̂ 0(⋅, 𝑧𝑗 ) and ̃ 0
𝑧 (⋅, 𝑧𝑗 ) up to a fixed tolerance.}

5: else

{
Compute ̂ 𝑗 (⋅, 𝑧𝑗 ) and ̃ 𝑗

𝑧 (⋅, 𝑧𝑗 ) such that MSE
(
∇̃̂ 𝑗 (⋅, 𝑧𝑗 )

) ≤ 𝜂2 ‖‖‖∇ (𝜃𝑗−1 , 𝑧𝑗 )
‖‖‖2𝑙2 with MSE

(
∇̃̂ 𝑗 (⋅, 𝑧𝑗 )

)
defined as in Eq. (24).

}
6: Compute a minimiser 𝜃𝑗 ∈ argmin𝜃∈Θ ̂ 𝑗 (𝜃, 𝑧𝑗 ).
7: Compute gradient step 𝑧𝑗+1 = 𝑧𝑗 − 𝛼̃ 𝑗

𝑧 (𝜃𝑗 , 𝑧𝑗 ).
8: Set residual 𝑟 = ‖‖‖∇̃̂ 𝑗 (𝑤𝑗 )

‖‖‖2𝑙2 ∕ ‖‖‖∇̃̂ 0(𝑤0)
‖‖‖2𝑙2 .

9: Update 𝑗← 𝑗 + 1.

10: end while

3.1. Convergence analysis

For the interested reader, we present a self-contained convergence analysis of the iterates (𝜃𝑗, 𝑧𝑗 ) in Theorem 3.1, under additional 
assumptions on  and ̂ 𝑗 , based on the analysis presented in [7]. The key differences in the two analyses are related to the fact 
that the algorithm studied here is an AMGD algorithm instead of a pure gradient descent algorithm. We first note that the objective 
function  (𝜃, 𝑧) is convex under the additional assumption that 𝑄(𝑧, ⋅) is almost surely convex in 𝑧 [35, Theorem 10]. When combined 
with the assumption that  →∞ when ‖𝑧‖𝑙2 , |𝜃|→∞, this ensures that a minimiser of  (𝜃, 𝑧) exists in ℝ ×ℝ𝑑 . However, we require 
additional assumptions on the objective function  to prove Q-linear convergence of the iterates 𝜃𝑗 and 𝑧𝑗 towards such a minimiser; 
namely Assumptions 2 and 3 below on strong convexity and on the Lipschitz continuity of the gradients, respectively. An immediate 
implication of Assumption 2 is that there exists a unique minimiser (𝜃∗, 𝑧∗) ∈ ℝ × ℝ𝑑 for the OUU problem in Eq. (10) such that 
𝑧(𝜃∗, 𝑧∗) = 𝜃(𝜃∗, 𝑧∗) = 0.

In what follows, we denote by 𝔼j [⋅] the expectation conditional on all of the random variables used to define 𝑧𝑗 (i.e., conditioned 
on the past up to iteration 𝑗), and by ⟨⋅, ⋅⟩ the 𝑙2 inner product. Readers interested in the implementation details of Algorithm 1 and 
its relation to the MLMC method can proceed directly to Section 4.
5

Assumption 2. The objective function  is 𝜇-strongly convex, i.e., there exists 𝜇 > 0 such that, for all 𝑤𝑎, 𝑤𝑏 ∈ℝ ×ℝ𝑑 , equivalently:



Journal of Computational Physics 495 (2023) 112523S. Ganesh and F. Nobile

(i)  (𝑤𝑏) ≥  (𝑤𝑎) + ⟨𝑤𝑏 −𝑤𝑎,∇ (𝑤𝑎)⟩+ 𝜇

2
‖‖𝑤𝑏 −𝑤𝑎‖‖2𝑙2 ,

(ii) ⟨∇ (𝑤𝑏) − ∇ (𝑤𝑎),𝑤𝑏 −𝑤𝑎⟩ ≥ 𝜇 ‖‖𝑤𝑏 −𝑤𝑎‖‖2𝑙2 .

Assumption 3. The objective function  has Lipschitz continuous gradients, i.e., there exists 𝐿 > 0 such that, for all 𝑤𝑎, 𝑤𝑏 ∈ℝ ×ℝ𝑑 :

‖‖∇ (𝑤𝑏) − ∇ (𝑤𝑎)‖‖𝑙2 ≤𝐿‖‖𝑤𝑏 −𝑤𝑎‖‖𝑙2 . (22)

Lemma 3.1. Let  satisfy Assumptions 2 and Assumptions 3. Then we have that, for 0 < 𝛼 ≤ 1∕𝐿,

𝜇

2
‖‖𝑤−𝑤∗‖‖2𝑙2 + 𝛼2 ‖∇ (𝑤)‖2

𝑙2
≤ ⟨∇ (𝑤),𝑤−𝑤∗⟩ . (23)

The above result is restated here from [7, Lemma 2.1].

Theorem 3.1. Let Θ ⊂ ℝ be a convex set. Let  ∶ ℝ × ℝ𝑑 → ℝ satisfy Assumptions 2 and 3, and ̂ 𝑗 ∶ Θ × ℝ𝑑 → ℝ satisfy the following 
condition:

MSE
(
∇̃̂ 𝑗 (⋅, 𝑧𝑗 )) ∶= 𝔼j

[‖‖‖̂ 𝑗𝜃 (⋅, 𝑧𝑗 ) − 𝜃(⋅, 𝑧𝑗 )‖‖‖2L∞(Θ)

]
+

𝑑∑
𝑘=1

𝔼j

[‖‖‖̃ 𝑗𝑧,𝑘(⋅, 𝑧𝑗 ) − 𝑧,𝑘(⋅, 𝑧𝑗 )‖‖‖2L∞(Θ)

]
≤ 𝜂2 ‖‖‖∇ (𝜃𝑗−1, 𝑧𝑗 )

‖‖‖2𝑙2 , (24)

for some 𝜂 > 0, where (𝜃𝑗−1, 𝑧𝑗 ) is the 𝑗th iterate produced by Algorithm 1 with step size 𝛼 satisfying 0 < 𝛼 ≤ 1∕𝐿 and 𝛼𝜇 ≤ 1. Then, the 
following result holds true:

𝔼
[‖‖‖𝑧𝑗+1 − 𝑧∗‖‖‖2𝑙2 +𝐶1(𝜃𝑗 − 𝜃∗)2

]
≤ 𝜉 𝔼

[‖‖‖𝑧𝑗 − 𝑧∗‖‖‖2𝑙2 +𝐶1(𝜃𝑗−1 − 𝜃∗)2
]
, (25)

for some constants 𝐶1 > 0 and 0 < 𝜉 < 1.

Proof. From the definition of the iterate 𝑧𝑗+1 in Eq. (21), we have:‖‖‖𝑧𝑗+1 − 𝑧∗‖‖‖2𝑙2 = ‖‖‖𝑧𝑗 − 𝑧∗ − 𝛼̃ 𝑗𝑧 (𝜃𝑗 , 𝑧𝑗 )‖‖‖2𝑙2 (26)

= ‖‖‖𝑧𝑗 − 𝑧∗‖‖‖2𝑙2 + 𝛼2 ‖‖‖̃ 𝑗𝑧 (𝜃𝑗 , 𝑧𝑗 )‖‖‖2 − 2𝛼
⟨̃ 𝑗𝑧 (𝜃𝑗 , 𝑧𝑗 ), 𝑧𝑗 − 𝑧∗⟩ (27)

= ‖‖‖𝑧𝑗 − 𝑧∗‖‖‖2𝑙2 + 𝛼2
(‖‖‖̃ 𝑗𝑧 (𝜃𝑗 , 𝑧𝑗 )‖‖‖2 + (̂ 𝑗𝜃 (𝜃𝑗 , 𝑧𝑗 ))2

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶�̂�1

−2𝛼
(⟨𝑧(𝜃𝑗 , 𝑧𝑗 ), 𝑧𝑗 − 𝑧∗⟩+ ⟨𝜃(𝜃𝑗 , 𝑧𝑗 ), 𝜃𝑗 − 𝜃∗⟩)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶�̂�2

−2𝛼
(⟨̃ 𝑗𝑧 (𝜃𝑗 , 𝑧𝑗 ) − 𝑧(𝜃𝑗 , 𝑧𝑗 ), 𝑧𝑗 − 𝑧∗

⟩
+
⟨̂ 𝑗

𝜃
(𝜃𝑗 , 𝑧𝑗 ) − 𝜃(𝜃𝑗 , 𝑧𝑗 ), 𝜃𝑗 − 𝜃∗

⟩)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶�̂�3

. (28)

The term �̂�1 = 𝛼2
‖‖‖∇̃̂ 𝑗 (𝑤𝑗 )‖‖‖2𝑙2 can be bounded as follows:

𝔼j
[
�̂�1
]
= 𝛼2 𝔼j

[‖‖‖∇̃̂ 𝑗 (𝜃𝑗 , 𝑧𝑗 )‖‖‖2𝑙2
]

(29)

≤ 𝛼2 𝔼j

[‖‖‖∇̃̂ 𝑗 (𝜃𝑗 , 𝑧𝑗 ) ± ∇ (𝜃𝑗 , 𝑧𝑗 )
‖‖‖2𝑙2
]

(30)

≤ 𝛼2
[
𝔼j

[‖‖‖∇̃̂ 𝑗 (𝜃𝑗 , 𝑧𝑗 ) − ∇ (𝜃𝑗 , 𝑧𝑗 )
‖‖‖2𝑙2
]1∕2

+ 𝔼j

[‖‖‖∇ (𝜃𝑗 , 𝑧𝑗 )
‖‖‖2𝑙2
]1∕2]2

(31)

≤ 𝛼2
[
𝜂
‖‖‖∇ (𝜃𝑗−1, 𝑧𝑗 )

‖‖‖𝑙2 + 𝔼j

[‖‖‖∇ (𝜃𝑗 , 𝑧𝑗 )
‖‖‖2𝑙2
]1∕2]2

(32)

≤ 𝛼2
[
(𝜂2 + 𝜂)‖‖‖∇ (𝜃𝑗−1, 𝑧𝑗 )

‖‖‖2𝑙2 + (1 + 𝜂)𝔼j

[‖‖‖∇ (𝜃𝑗 , 𝑧𝑗 )
‖‖‖2𝑙2
]]
. (33)⟨ ⟩
6

The term �̂�2 = −2𝛼 ∇ (𝑤𝑗 ),𝑤𝑗 −𝑤∗ can be bounded as follows:
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𝔼j
[
�̂�2
] ≤ −𝛼𝜇

(‖‖‖𝑧𝑗 − 𝑧∗‖‖‖2𝑙2 + 𝔼j
[
(𝜃𝑗 − 𝜃∗)2

])
− 𝛼2 𝔼j

[‖‖‖∇ (𝜃𝑗 , 𝑧𝑗 )
‖‖‖2𝑙2
]
, (34)

where we have used Lemma 3.1. Finally, the term �̂�3 = −2𝛼
⟨
∇̃̂ 𝑗 (𝑤𝑗 ) − ∇ (𝑤𝑗 ),𝑤𝑗 −𝑤∗⟩ can be bounded as follows:

𝔼j
[
�̂�3
] ≤ 2𝛼𝔼j

[‖‖‖∇̃̂ 𝑗 (𝜃𝑗 , 𝑧𝑗 ) − ∇ (𝜃𝑗 , 𝑧𝑗 )
‖‖‖𝑙2 ‖‖‖𝑤𝑗 −𝑤∗‖‖‖𝑙2] (35)

≤ 2𝛼𝔼j

[‖‖‖∇̃̂ 𝑗 (𝜃𝑗 , 𝑧𝑗 ) − ∇ (𝜃𝑗 , 𝑧𝑗 )
‖‖‖2𝑙2
]1∕2

𝔼j

[‖‖‖𝑤𝑗 −𝑤∗‖‖‖2𝑙2
]1∕2

(36)

≤ 2𝛼𝜂 ‖‖‖∇ (𝜃𝑗−1, 𝑧𝑗 )
‖‖‖𝑙2 𝔼j

[‖‖‖𝑤𝑗 −𝑤∗‖‖‖2𝑙2
]1∕2

. (37)

Combining the bounds for �̂�1, �̂�2 and �̂�3, we have the following:

𝔼j

[‖‖‖𝑧𝑗+1 − 𝑧∗‖‖‖2𝑙2
]
≤ (1 − 𝛼𝜇)‖‖‖𝑧𝑗 − 𝑧∗‖‖‖2𝑙2 − 𝛼𝜇𝔼j

[
(𝜃𝑗 − 𝜃∗)2

]
+ 𝛼2(𝜂2 + 𝜂)‖‖‖∇ (𝜃𝑗−1, 𝑧𝑗 )

‖‖‖2𝑙2 + 𝛼2𝜂𝔼j

[‖‖‖∇ (𝜃𝑗 , 𝑧𝑗 )
‖‖‖2𝑙2
]

+ 2𝛼𝜂 ‖‖‖∇ (𝜃𝑗−1, 𝑧𝑗 )
‖‖‖𝑙2 𝔼j

[‖‖‖𝑤𝑗 −𝑤∗‖‖‖2𝑙2
]1∕2

. (38)

We now utilise Lemma 3.1 once again, from which we have the following result:

𝛼 ‖∇ (𝑤)‖𝑙2 ≤ (1 +
√
1 − 𝛼𝜇)‖‖𝑤−𝑤∗‖‖𝑙2 =∶ �̃�‖‖𝑤−𝑤∗‖‖𝑙2 , (39)

for 0 < 𝛼 ≤ 1∕𝐿 and 𝛼𝜇 ≤ 1. In addition, the last term of Eq. (38) can be rewritten as follows:

2𝛼𝜂 ‖‖‖∇ (𝜃𝑗−1, 𝑧𝑗 )
‖‖‖𝑙2 𝔼j

[‖‖‖𝑤𝑗 −𝑤∗‖‖‖2𝑙2
]1∕2

≤ 𝜂
⎛⎜⎜⎜⎝
𝛼2
‖‖‖∇ (𝜃𝑗−1, 𝑧𝑗 )

‖‖‖2𝑙2
�̃�

+ �̃�𝔼j

[‖‖‖𝑤𝑗 −𝑤∗‖‖‖2𝑙2
]⎞⎟⎟⎟⎠ (40)

Applying Eqs. (39) and (40) to Eq. (38), we then have the following simplified bound:

𝔼j

[‖‖‖𝑧𝑗+1 − 𝑧∗‖‖‖2𝑙2
]
≤ (1 − 𝛼𝜇 + (𝜂2 + 2𝜂)�̃�2 + 2𝜂�̃�

)‖‖‖𝑧𝑗 − 𝑧∗‖‖‖2𝑙2
+
(
−𝛼𝜇 + 𝜂�̃�2 + 𝜂�̃�

)
𝔼j
[
(𝜃𝑗 − 𝜃∗)2

]
+
(
(𝜂2 + 𝜂)�̃�2 + 𝜂�̃�

)
(𝜃𝑗−1 − 𝜃∗)2, (41)

= (1 −𝐶1 +𝐶2)
‖‖‖𝑧𝑗 − 𝑧∗‖‖‖2𝑙2 −𝐶1 𝔼j

[
(𝜃𝑗 − 𝜃∗)2

]
+𝐶2(𝜃𝑗−1 − 𝜃∗)2, (42)

where we have defined the constants 𝐶1 = 𝛼𝜇 − 𝜂�̃�2 + 𝜂�̃� and 𝐶2 = (𝜂2 + 𝜂)�̃�2 + 𝜂�̃�. We then have the following:

𝔼j

[‖‖‖𝑧𝑗+1 − 𝑧∗‖‖‖2𝑙2
]
+𝐶1 𝔼j

[
(𝜃𝑗 − 𝜃∗)2

] ≤ (1 −𝐶1 +𝐶2)
‖‖‖𝑧𝑗 − 𝑧∗‖‖‖2𝑙2 +𝐶2(𝜃𝑗−1 − 𝜃∗)2

≤max
(
1 −𝐶1 +𝐶2,

𝐶2
𝐶1

)(‖‖‖𝑧𝑗 − 𝑧∗‖‖‖2𝑙2 +𝐶1(𝜃𝑗−1 − 𝜃∗)2
)
. (43)

We note that the leading constant on the right hand side is less than 1 as long as 𝐶1 > 𝐶2, which holds true for 𝜂 <
√
1 + 𝛼𝜇∕�̃�2 − 1. 

This in turn ensures contraction in the norm ‖𝑧‖2
𝑙2
+𝐶1𝜃

2 on the space ℝ𝑑 ×ℝ. This completes the proof. □

Remark 1. We note that although the accuracy condition Eq. (24) is stated in the L∞-norm for all 𝜃, the proof of Theorem 3.1 uses 
this property only at 𝜃𝑗 . This condition is required since we do not know the quantile 𝜃𝑗 a priori, and seek to use the parametric 
expectation framework from [5] to do so. [5] requires that the error in the approximations ̂ 𝑗 be controlled at all 𝜃, in order to 
estimate 𝜃𝑗 accurately.

Remark 2. In practical applications, it is difficult to determine whether Assumptions 2 and 3 are satisfied, since both are strongly 
dependent on the properties of the random QoI 𝑄(𝑧, ⋅). These assumptions require stronger properties on 𝑄(𝑧, ⋅) and its Probability 
Density Function (PDF) than those presented in Assumption 1; for example, that the PDF remains both upper bounded and lower 
bounded away from zero for all designs 𝑧, and that the random variable 𝑄(𝑧, ⋅) is bounded, i.e., 𝑄(𝑧, ⋅) ∈ L∞(Ω, ℝ).

Remark 3. We remark that 𝜂 is a monotonically increasing function of the product 𝛼𝜇 in the interval 0 < 𝛼𝜇 ≤ 1. For an appropriate 
7

step size 𝛼, chosen such that 𝛼𝜇 is close to 1, 𝜂 can be as large as 0.4.
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4. Gradient estimation and error control using MLMC methods

We note that the key assumption in the proof of Theorem 3.1 is Eq. (24); namely, that the gradient approximation is accurate up 
to a tolerance that is proportional to the magnitude of the true gradient. As stated earlier in Section 1, we are interested in utilising 
the framework of MLMC estimators for parametric expectations developed in [5] for the accurate estimation of the objective function 
 (risk-measure CVaR) and its gradient.

Expressing the gradients 𝑧 and 𝜃 in terms of the first derivatives of the parametric expectations Φ(𝜃; 𝑧) and Ψ(𝜃; 𝑧) as in Eqs. (16)

and (17) and estimating the latter using MLMC estimators poses many key advantages. The first advantage was already seen earlier 
in Section 3; namely that ̃ 𝑗𝑧 and ̂ 𝑗

𝜃
can be estimated for all 𝜃 for a given design 𝑧 in one shot. Secondly, as was demonstrated 

in [5], the level-wise differences for the MLMC estimator of Φ(𝜃; 𝑧), analogous to the level-wise differences corresponding to the 
classical MLMC estimator of 𝔼 [𝑄], decay at the same rate in the levels 𝑙 as the differences 𝑄𝑙 −𝑄𝑙−1, in an appropriately selected 
norm over 𝜃 ∈ ℝ. This ensures that if cost-optimal MLMC behaviour can be achieved for estimating 𝔼 [𝑄], then it can be achieved 
also for MLMC estimators of Φ(𝜃; 𝑧) and Ψ(𝜃; 𝑧), using a practically computable number of samples. The last key advantage is that, 
using the mechanism in [5], one can select the parameters of the MLMC estimator such that a prescribed tolerance can be attained 
on the MLMC approximation error on Φ and Ψ. By prescribing a tolerance proportional to the gradient magnitude, one can estimate 
the gradient using MLMC estimators that respect the condition in Eq. (24) as required by Algorithm 1.

Although the procedure used in this work to estimate Φ accurately is identical to the one described in [5], some important 
modifications are required to use the same procedure for accurately estimating Ψ. We present in this section the modifications of the 
work developed in [5] that are required for the accurate estimation of Ψ, and consequently the gradients 𝜃 and 𝑧, using the MLMC 
method.

4.1. MLMC estimator for the gradients

We begin by recalling that the parametric expectation Ψ is defined as in Eq. (18). The proposed MLMC method relies on a sequence 
of approximations {𝑄𝑙(𝑧)}𝐿𝑙=0 to 𝑄(𝑧) on a sequence of 𝐿 + 1 discretisations with, for example, different mesh sizes ℎ0 > ℎ1 > ... > ℎ𝐿, 
typically a geometric sequence ℎ𝑙−1 = 𝑠ℎ𝑙 with 𝑠 > 1. The MLMC estimator for the 𝑘th component Ψ𝑘(⋅; 𝑧) ∶= 𝔼

[
𝜓(⋅,𝑄(𝑧),𝑄𝑧𝑘 (𝑧))

]
of Ψ

on Θ, 𝑘 ∈ {1, ..., 𝑑} follows the same construction as that for Φ in [5]. The first step is to estimate Ψ𝑘(𝜃𝑟, 𝑧), 𝑟 ∈ {1, ..., 𝑛}, on a set of 𝑛
equidistant points 𝜽 = {𝜃1, ..., 𝜃𝑛} such that Θ = [𝜃1, 𝜃𝑛], by a standard MLMC estimator Ψ̂𝐿,𝑘(𝜃𝑟; 𝑧), which reads:

Ψ̂𝐿,𝑘(𝜃𝑟;𝑧) ∶=
1
𝑁0

𝑁0∑
𝑖=1
𝜓
(
𝜃𝑟,𝑄

(𝑖,0)
0 (𝑧),𝑄(𝑖,0)

𝑧𝑘,0
(𝑧)
)

+
𝐿∑
𝑙=1

1
𝑁𝑙

𝑁𝑙∑
𝑖=1

[
𝜓
(
𝜃𝑟,𝑄

(𝑖,𝑙)
𝑙

(𝑧),𝑄(𝑖,𝑙)
𝑧𝑘,𝑙

(𝑧)
)
−𝜓
(
𝜃𝑟,𝑄

(𝑖,𝑙)
𝑙−1(𝑧),𝑄

(𝑖,𝑙)
𝑧𝑘,𝑙−1

(𝑧)
)]
, (44)

where 𝑄(𝑖,𝑙)
𝑙

(𝑧) ≡𝑄𝑙(𝑧; 𝜔(𝑖,𝑙)) and 𝑄(𝑖,𝑙)
𝑙−1(𝑧) ≡𝑄𝑙−1(𝑧; 𝜔(𝑖,𝑙)) are correlated realisations of 𝑄𝑙(𝑧) and 𝑄𝑙−1(𝑧), respectively, typically obtained 

by solving the underlying differential problem on meshes with discretisation parameters ℎ𝑙 and ℎ𝑙−1, driven by the same realisation 
𝜔(𝑖,𝑙) of the random parameters for the fixed design 𝑧. On the other hand, 𝑄(𝑖,𝑙)

𝑙
and 𝑄(𝑗,𝑘)

𝑘
are independent if 𝑖 ≠ 𝑗 or 𝑙 ≠ 𝑘. Finally, 𝑄(𝑖,𝑙)

𝑧𝑘,𝑙

and 𝑄(𝑖,𝑙)
𝑧𝑘,𝑙−1

are the sensitivities of the realisations 𝑄(𝑖,𝑙)
𝑙

and 𝑄(𝑖,𝑙)
𝑙−1 respectively with respect to 𝑧𝑘. {𝑁𝑙}𝐿𝑙=0 is a decreasing sequence of 

sample sizes. The MLMC hierarchy is hence defined by three parameters; namely the number of interpolation points 𝑛, the number 
of levels 𝐿 and the level-wise sample sizes 𝑁𝑙 .

We finally construct a MLMC estimator Ψ̂𝐿,𝑘 of the whole function Ψ𝑘(⋅; 𝑧) ∶ Θ →ℝ by interpolating over the pointwise estimates 
as below:

Ψ̂𝐿,𝑘(⋅;𝑧) = 𝑛
(
Ψ̂𝐿,𝑘(𝜽;𝑧)

)
, (45)

where 𝑛 denotes a uniform cubic spline interpolation operator and Ψ̂𝐿,𝑘(𝜽; 𝑧) denotes the set of pointwise MLMC estimates in 
Eq. (44), that is Ψ̂𝐿,𝑘(𝜽; 𝑧) = {Ψ̂𝐿,𝑘(𝜃1; 𝑧), Ψ̂𝐿,𝑘(𝜃2; 𝑧), … , Ψ̂𝐿,𝑘(𝜃𝑛; 𝑧)}. An estimate of the first derivative Ψ′

𝑘
in 𝜃 is then obtained by 

computing the derivative of the resultant interpolated function, for each component Ψ̂′
𝐿,𝑘

:

Ψ̂′
𝐿,𝑘(⋅;𝑧) ∶=  ′

𝑛

(
Ψ̂𝐿,𝑘(𝜽;𝑧)

)
∶= 𝜕

𝜕𝜃
𝑛
(
Ψ̂𝐿,𝑘(𝜽;𝑧)

)
. (46)

4.2. Estimation of the Mean Squared Error (MSE) of the gradient

Since we have assumed that the gradient estimate ∇̃̂ 𝑗 is a random vector in L𝑝(Ω, ℝ𝑑+1) with 𝑝 ≥ 2, we propose to quantify the 
error on the gradient in an MSE sense as follows:

MSE
(
∇̃̂ 𝑗 (⋅, 𝑧𝑗 )) ∶= 𝔼

[‖‖‖̂ 𝑗𝜃 (⋅, 𝑧𝑗 ) − 𝜃(⋅, 𝑧𝑗 )‖‖‖2L∞(Θ)

]
+

𝑑∑
𝑘=1

𝔼
[‖‖‖̃ 𝑗𝑧,𝑘(⋅, 𝑧𝑗 ) − 𝑧,𝑘(⋅, 𝑧𝑗 )‖‖‖2L∞(Θ)

]
, (47)
8

where 𝑧,𝑘 and ̃ 𝑗
𝑧,𝑘

denote the 𝑘th components of 𝑧 and ̃ 𝑗𝑧 .
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We now present a result relating MSE
(
∇̃̂ 𝑗 (⋅, 𝑧𝑗 )) to the MSE of the MLMC estimators Φ̂′

𝐿
and Ψ̂′

𝐿
.

Proposition 4.1. Let Φ̂𝐿(⋅; 𝑧𝑗 ) and Ψ̂𝐿(⋅; 𝑧𝑗 ) denote the MLMC estimators of Φ(⋅; 𝑧𝑗 ) and Ψ(⋅; 𝑧𝑗 ) as defined in [5] and Eq. (44) respectively. 
Let ∇̃̂ 𝑗 (⋅, 𝑧𝑗 ) be the approximation to the true gradient ∇ (⋅, 𝑧𝑗 ) computed using the estimates Φ̂′

𝐿
(⋅; 𝑧𝑗 ) and Ψ̂′

𝐿
(⋅; 𝑧𝑗 ) at the 𝑗th optimisation 

iteration. Let Ψ𝑘 and Ψ̂𝐿,𝑘 denote the 𝑘𝑡ℎ component of Ψ and Ψ̂𝐿 respectively, for 𝑘 ∈ {1, ..., 𝑑}. Let the MSEs on Φ̂′
𝐿

and Ψ̂′
𝐿,𝑘

be defined as 
follows:

MSE
(
Φ̂′
𝐿

)
(𝑧𝑗 ) ∶= 𝔼

[‖‖‖Φ̂′
𝐿(⋅;𝑧𝑗 ) − Φ′(⋅;𝑧𝑗 )

‖‖‖2L∞(Θ)

]
, (48)

MSE
(
Ψ̂′
𝐿,𝑘

)
(𝑧𝑗 ) ∶= 𝔼

[‖‖‖Ψ̂′
𝐿,𝑘(⋅;𝑧𝑗 ) − Ψ′

𝑘(⋅;𝑧𝑗 )
‖‖‖2L∞(Θ)

]
, (49)

for the design 𝑧𝑗 ∈ℝ𝑑 . Then, we have that:

MSE
(
∇̃̂ 𝑗 (⋅, 𝑧𝑗 )) = MSE

(
Φ̂′
𝐿

)
(𝑧𝑗 ) +

𝑑∑
𝑘=1

MSE
(
Ψ̂′
𝐿,𝑘

)
(𝑧𝑗 ). (50)

Proof. We first note that:‖‖‖̂ 𝑗𝜃 (⋅, 𝑧𝑗 ) − 𝜃(⋅, 𝑧𝑗 )‖‖‖2L∞(Θ)
= ‖‖‖Φ̂′(⋅;𝑧𝑗 ) − Φ′(⋅;𝑧𝑗 )

‖‖‖2L∞(Θ)
(51)

‖‖‖̃ 𝑗𝑧,𝑘(⋅, 𝑧𝑗 ) − 𝑧,𝑘(⋅, 𝑧𝑗 )‖‖‖2L∞(Θ)
= ‖‖‖Ψ̂′

𝐿,𝑘(⋅;𝑧𝑗 ) − Ψ′
𝑘(⋅;𝑧𝑗 )

‖‖‖2L∞(Θ)
(52)

Adding together each of the contributions and taking the expectation on both sides, we have that:

MSE
(
∇̃̂ 𝑗 (⋅, 𝑧𝑗 )) = MSE

(
Φ̂′
𝐿

)
(𝑧𝑗 ) +

𝑑∑
𝑘=1

MSE
(
Ψ̂′
𝐿,𝑘

)
(𝑧𝑗 ). □ (53)

As was described earlier in this section, we seek to use the error estimation and adaptivity procedure described in [5] to accurately 
estimate Φ′ and Ψ′

𝑘
, and consequently, to accurately estimate the gradient ∇ . From Eq. (50), it is evident that if one can control 

the MSE of Φ̂′
𝐿

and Ψ̂′
𝐿,𝑘

in an L∞ sense, one can control the MSE on the gradient ∇ as defined in Eq. (47). Specifically, the MSE of 
the gradient is equal to a simple sum of the MSEs of the parametric expectations. Eq. (50) hence allows us to use the work of [5] to 
accurately calibrate MLMC estimators for the parametric expectations Φ′ and Ψ′ such that the resultant gradient estimate is accurate 
up to a prescribed tolerance.

4.3. Modified error estimation procedure

Since the error estimation procedure is independent of the design 𝑧, in the following, we drop the explicit dependence of Φ and 
Ψ on 𝑧, with the dependence being implied. We recall here that the error estimation procedure for estimating MSE

(
Φ̂′
𝐿

)
is identical 

to that presented in [5]. The procedure for estimating MSE
(
Ψ̂′
𝐿

)
however has several modifications from the procedure for Φ̂′

𝐿
, that 

we detail in this section. We recall that MSE
(
Ψ̂′
𝐿

)
was defined in Eq. (49). Proceeding similarly as in [5], we can bound MSE

(
Ψ̂′
𝐿

)
as follows:

MSE
(
Ψ̂′
𝐿,𝑘

) ≤ (êΨ𝑘𝑖 )2 + (êΨ𝑘
𝑏

)2 + (êΨ𝑘𝑠 )2, (54)

where êΨ𝑘𝑖 , êΨ𝑘
𝑏

and êΨ𝑘𝑠 denote error estimators that estimate the error due to interpolation, the error due to approximation of the 
QoI (i.e. bias error), and the error due to finite sampling (i.e. statistical error) respectively on Ψ̂𝐿,𝑘. The reader is referred to [5] for 
a detailed discussion of each of the three errors components, as well as their corresponding estimators.

The procedure for estimating the interpolation and bias errors requires the accurate estimation of 𝜃-derivatives of the function 
Ψ𝑙,𝑘(𝜃) = 𝔼

[
𝜓(𝜃,𝑄𝑙,𝑄𝑧𝑘,𝑙)

]
. Although the true function Ψ𝑙,𝑘 is smooth, replacing the true probability density with an empirical proba-

bility density corresponding to a Monte Carlo estimator implies that the right-hand side would be a linear combination of piecewise 
linear functions. The first derivative of such a function would be piecewise constant, and high order derivatives would not exist in the 
discontinuity points, and would be zero otherwise. A MLMC hierarchy designed based on estimates obtained in this manner would 
lead to non-optimal complexity behaviour. In [5, Section 3.2], a Kernel Density Estimation (KDE) based procedure was described 
for ameliorating this issue. Although the error estimation procedure is broadly the same for estimating Ψ as for Φ, an important 
distinction arises with respect to this KDE procedure, which we detail in this section.

Since the issue chiefly relates to the regularity of the empirical Monte Carlo probability density, we propose the use a KDE based 
smoothing technique; namely, we replace the true joint density 𝑝𝑙 of (𝑄𝑙, 𝑄𝑧𝑘,𝑙) with a KDE smoothed joint probability density 𝑝𝑘𝑑𝑒

𝑙
, 

which consists of a linear combination of two-dimensional kernels composed of products of two one-dimensional Gaussian kernels 
9

centred on each of the 𝑁𝑙 fine samples {(𝑄(𝑖,𝑙)
𝑙
, 𝑄(𝑖,𝑙)

𝑧𝑘,𝑙
)}𝑁𝑙
𝑖=1:
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Ψ𝑙,𝑘(𝜃) =∬ 𝜓(𝜃, 𝑞, 𝑞𝑧𝑘 )𝑝𝑙(𝑞, 𝑞𝑧𝑘 )𝑑𝑞𝑑𝑞𝑧𝑘 (55)

≈∬ 𝜓(𝜃, 𝑞, 𝑞𝑧𝑘 )𝑝𝑘𝑑𝑒𝑙 (𝑞, 𝑞𝑧𝑘 )𝑑𝑞𝑑𝑞𝑧𝑘 (56)

∶= 1
𝑁𝑙

𝑁𝑙∑
𝑖=1

∬ 𝜓(𝜃, 𝑞, 𝑞𝑧𝑘 )𝐾𝛿𝑙 (𝑞,𝑄
(𝑖,𝑙)
𝑙

)𝐾𝛿
𝑧𝑘,𝑙

(𝑞𝑧𝑘 ,𝑄
(𝑖,𝑙)
𝑧𝑘,𝑙

)𝑑𝑞𝑑𝑞𝑧𝑘 (57)

= − 1
𝑁𝑙

𝑁𝑙∑
𝑖=1

∫ 𝑞𝑧𝑘𝐾𝛿𝑧𝑘,𝑙
(𝑞𝑧𝑘 ,𝑄

(𝑖,𝑙)
𝑧𝑘,𝑙

)𝑑𝑞𝑧𝑘 ∫
(𝑞 − 𝜃)+

1 − 𝜏
𝐾𝛿𝑙 (𝑞,𝑄

(𝑖,𝑙)
𝑙

)𝑑𝑞 (58)

= − 1
𝑁𝑙

𝑁𝑙∑
𝑖=1
𝑄(𝑖,𝑙)
𝑧𝑘,𝑙 ∫

(𝑞 − 𝜃)+

1 − 𝜏
𝐾𝛿𝑙 (𝑞,𝑄

(𝑖,𝑙)
𝑙

)𝑑𝑞 =∶ 𝔼𝑘𝑑𝑒𝑙,𝑘 [𝜓(𝜃, ⋅, ⋅)] . (59)

Here, 𝐾𝛿𝑙 (⋅, 𝜇) denotes a Gaussian kernel with mean 𝜇 and bandwidth parameter 𝛿𝑙 > 0, which is selected according to Scott’s rule 
[37] for the realisations {𝑄(𝑖,𝑙)

𝑙
}𝑁𝑙
𝑖=1 and controls the “width” of the kernel. A closed form expression can be computed for the integral 

in Eq. (59), leading to the KDE smoothened approximation 𝔼𝑘𝑑𝑒
𝑙,𝑘

[𝜓(𝜃, ⋅, ⋅)] for Ψ𝑘.
According to the procedure in [5], the interpolation error requires the estimation of the quantity ‖‖‖Ψ(4)

𝑘
‖‖‖, for which we use the 

KDE estimator described above. To this end, we first select a level ⌈𝐿∕2⌉ from the MLMC hierarchy; this choice of level is to ensure 
that Ψ̂⌈𝐿∕2⌉,𝑘 is sufficiently close to Ψ𝑘, and 𝑁⌈𝐿∕2⌉ is large enough for the KDE procedure to produce accurate estimates. We then 
construct the KDE approximation Υ⌈𝐿∕2⌉,𝑘(𝜃) ∶= 𝔼𝑘𝑑𝑒⌈𝐿∕2⌉,𝑘 [𝜓(𝜃, ⋅, ⋅)]. The fourth derivative Υ(4)

𝑘
is then constructed using a second order 

central finite difference scheme on a uniform grid on Θ with 𝑛′≫𝑛 points. The norm is evaluated on the same grid as follows:‖‖‖Ψ(4)
𝑘
‖‖‖L∞(Θ)

≈ max
𝑖∈{1,...,𝑛′}

|||Υ(4)⌊𝐿∕2⌋,𝑘(𝜃𝑖)||| . (60)

For the bias error on Ψ̂𝐿,𝑘, we are required to estimate the quantity‖‖‖ ′
𝑛

(
𝔼
[
𝜓(𝜃,𝑄𝑙,𝑄𝑧𝑘,𝑙) −𝜓(𝜃,𝑄𝑙−1,𝑄𝑧𝑘,𝑙−1)

])‖‖‖L∞(Θ)
. (61)

Replacing the expectation by a Monte Carlo estimator leads to the same regularity issue as described earlier in this section. To 
smooth the empirical Monte Carlo density, we propose the use of a KDE smoothed approximation 𝑝𝑘𝑑𝑒

𝑙,𝑙−1 to the true density 𝑝𝑙,𝑙−1 of 
(𝑄𝑙, 𝑄𝑧𝑘,𝑙, 𝑄𝑙−1, 𝑄𝑧𝑘,𝑙−1), consisting of products of four one-dimensional Gaussian kernels:

𝔼
[
𝜓(𝜃,𝑄𝑙,𝑄𝑧𝑘,𝑙) −𝜓(𝜃,𝑄𝑙−1,𝑄𝑧𝑘,𝑙−1)

]
(62)

=⨌
[
𝜓(𝜃, 𝑞𝑓 , 𝑞𝑓

𝑧𝑘
) −𝜓(𝜃, 𝑞𝑐 , 𝑞𝑐

𝑧𝑘
)
]
𝑝𝑙,𝑙−1(𝑞𝑓 , 𝑞

𝑓

𝑧𝑘
, 𝑞𝑐 , 𝑞𝑐

𝑧𝑘
)𝑑𝑞𝑓 𝑑𝑞𝑓

𝑧𝑘
𝑑𝑞𝑐𝑑𝑞𝑐

𝑧𝑘
(63)

≈ 1
𝑁𝑙

𝑁𝑙∑
𝑖=1

⨌
[
𝜓(𝜃, 𝑞𝑓 , 𝑞𝑓

𝑧𝑘
) −𝜓(𝜃, 𝑞𝑐 , 𝑞𝑐

𝑧𝑘
)
]

×𝐾𝛿𝑙 (𝑞
𝑓 ,𝑄(𝑖,𝑙)

𝑙
)𝐾𝛿

𝑧𝑘,𝑙
(𝑞𝑓
𝑧𝑘
,𝑄(𝑖,𝑙)

𝑧𝑘,𝑙
)𝐾𝛿𝑙−1 (𝑞

𝑐 ,𝑄(𝑖,𝑙)
𝑙−1)𝐾𝛿𝑧𝑘,𝑙−1 (𝑞

𝑐
𝑧𝑘
,𝑄(𝑖,𝑙)

𝑧𝑘,𝑙−1
)𝑑𝑞𝑓 𝑑𝑞𝑓

𝑧𝑘
𝑑𝑞𝑐𝑑𝑞𝑐

𝑧𝑘
(64)

= 1
𝑁𝑙

𝑁𝑙∑
𝑖=1
𝑄(𝑖,𝑙)
𝑧𝑘,𝑙−1 ∫

(𝑞𝑐 − 𝜃)+

1 − 𝜏
𝐾𝛿𝑙−1 (𝑞

𝑐 ,𝑄(𝑖,𝑙)
𝑙−1)𝑑𝑞

𝑐 −𝑄(𝑖,𝑙)
𝑧𝑘,𝑙 ∫

(𝑞𝑓 − 𝜃)+

1 − 𝜏
𝐾𝛿𝑙 (𝑞

𝑓 ,𝑄(𝑖,𝑙)
𝑙

)𝑑𝑞𝑓 (65)

=∶ 𝔼𝑘𝑑𝑒
𝑙,𝑙−1,𝑘

[
𝜓(𝜃,𝑄𝑙,𝑄𝑧𝑘,𝑙) −𝜓(𝜃,𝑄𝑙−1,𝑄𝑧𝑘,𝑙−1)

]
. (66)

The expectation in Eq. (61) can be replaced by the KDE smoothened expectation in Eq. (66), which can then be used in the bias error 
estimation procedure outlined in [5]. Lastly, the procedure for the statistical error follows the idea of bootstrapping developed in [5]

identically without modification.

4.4. Adaptive hierarchy selection procedure and CMLMC-gradient descent algorithm

We discuss in this section how to select the parameters of the MLMC hierarchy; namely the number of interpolation points 𝑛, the 
level-wise sample sizes 𝑁𝑙 and the number of levels 𝐿. The aim is to select these parameters such that a prescribed tolerance can be 
obtained on the gradient estimate ∇̃̂ 𝑗 . In what follows, we drop the dependence on 𝑧 for notational simplicity, with the dependence 
being implied. We propose here a minor variation of the framework presented in [5, Section 5]. An adaptive strategy was proposed 
therein for the selection of the hierarchy parameters 𝑛, 𝐿 and 𝑁𝑙 for any statistic 𝑠𝜏 , the MSE of whose estimator �̂�𝜏 could be bounded 
by a linear combination of MSEs on Φ̂𝐿 and its derivatives:

MSE
(
�̂�𝜏
) ≤ 𝑐0MSE

(
Φ̂𝐿
)
+ 𝑐1MSE

(
Φ̂′
𝐿

)
+ 𝑐2MSE

(
Φ̂′′
𝐿

)
, 𝑐0, 𝑐1, 𝑐2 > 0. (67)

We first note that the same hierarchy adaptivity procedure extends trivially to any linear combination of MSEs of Φ̂𝐿, Ψ̂𝐿,𝑘, and their 
10

derivatives. Specifically, this includes the case of the MSE on the gradient ∇̃̂ 𝑗 in Eq. (50). In addition, each of the MSEs on the 
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parametric expectations in Eq. (50) can be split into its three error contributions, similar to Eq. (54), leading to the following error 
estimator for MSE

(
∇̃̂ 𝑗 (𝑤)):

MSE
(
∇̃̂ 𝑗) = MSE

(
Φ̂′
𝐿

)
+

𝑑∑
𝑘=1

MSE
(
Ψ̂′
𝐿,𝑘

)
≤
(
(êΦ𝑖 )

2 +
𝑑∑
𝑘=1

(êΨ𝑘𝑖 )2
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Squared interpolation error

+

(
(êΦ𝑏 )

2 +
𝑑∑
𝑘=1

(êΨ𝑘
𝑏

)2
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Squared bias error

+

(
(êΦ𝑠 )

2 +
𝑑∑
𝑘=1

(êΨ𝑘𝑠 )2
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Squared statistical error

. (68)

Here, êΦ𝑖 , êΦ𝑏 and êΦ𝑠 denote the interpolation, bias and statistical error estimators corresponding to MSE
(
Φ̂′
𝐿

)
. Once in the above 

form, the procedure described in [5] for adapting the hierarchy parameters 𝑛, 𝐿 and 𝑁𝑙 for linear combinations of MSEs can be 
extended trivially to the current case when combined with the modifications proposed in Section 4.3.

Lastly, we comment that the above adaptive procedure is carried out within the framework of the CMLMC algorithm presented 
in [5]. The CMLMC algorithm works by first simulating a small “screening” hierarchy with relatively few samples and levels. The 
algorithm then adapts the hierarchy parameters with respect to a decreasing set of tolerances, of which the target tolerance is the 
final one. The optimal parameters for a given tolerance in the sequence are computed based on estimates obtained from the optimal 
hierarchy for the previous tolerance, or the initial “screening” hierarchy. In this way, the MLMC estimator becomes robust to large 
variations in the estimates produced by an initial screening hierarchy.

We now possess all the ingredients required to tailor Algorithm 1 to the specific case in which an MLMC procedure is combined 
with a CMLMC algorithm to estimate the gradient up to a prescribed tolerance. The algorithm is detailed below, and differs from 
Algorithm 1 in that the first estimate of the gradient is computed based on a screening hierarchy, and that successive gradients are 
computed such that the MSE on the gradient satisfies a tolerance equal to a fraction of the gradient magnitude from the previous 
iteration; namely, the right-hand side of Eq. (24) is estimated using ̂ 𝑗−1𝑤 (𝑤𝑗−1). Another key difference to note is that in contrast to 
CMLMC algorithm described in [5], the screening hierarchy used to compute first estimates for the design 𝑧𝑗 is the optimal hierarchy 
used to accurately estimate the gradient for the design 𝑧𝑗−1. In addition, the gradient at the first design point 𝑧0 is estimated using 
an initial small fixed hierarchy.

Algorithm 2: CMLMC-gradient descent OUU algorithm

Input: Initial design 𝑧0 , iterate 𝑗 = 0, tolerance 0 < 𝜖 < 1, step size 𝛼 > 0 and 𝜂 > 0.

Set residual 𝑟 = 𝜖 + 1
while 𝑟 > 𝜖 do

if 𝑗 = 0 { Simulate screening hierarchy }
else

{
Start CMLMC from the optimal hierarchy for 𝑧𝑗−1 ; Simulate CMLMC adapting hierarchy such that MSE

(
∇̃̂ 𝑗 (⋅, 𝑧𝑗 )

) ≤ 𝜂2 ‖‖‖̂ 𝑗−1
𝑤 (𝑤𝑗−1)

‖‖‖2𝑙2
}

Compute minimiser 𝜃𝑗 ∈ argmin𝜃∈Θ ̂ 𝑗 (𝜃, 𝑧𝑗 ) = Φ̂𝐿(𝜃, 𝑧𝑗 )
Compute gradient ̃ 𝑗

𝑧 (𝜃𝑗 , 𝑧𝑗 ) = Ψ̂′
𝐿
(𝜃𝑗 ; 𝑧𝑗 ) + 2𝜅(𝑧𝑗 − 𝑧𝑟𝑒𝑓 )

Compute gradient step 𝑧𝑗+1 = 𝑧𝑗 − 𝛼̃ 𝑗
𝑧 (𝜃𝑗 , 𝑧𝑗 ) and ∇̃̂ 𝑗 (𝑤𝑗 ) =

(̂ 𝑗
𝜃
(𝜃𝑗 , 𝑧𝑗 ) = 0, ̃ 𝑗

𝑧 (𝜃𝑗 , 𝑧𝑗 )
)

Set residual 𝑟 = ‖‖‖∇̃̂ 𝑗 (𝑤𝑗 )
‖‖‖2𝑙2 ∕ ‖‖‖∇̃̂ 0(𝑤0)

‖‖‖2𝑙2
Update 𝑗← 𝑗 + 1

end while

5. Numerical results

5.1. FitzHugh Nagumo oscillator

To demonstrate the optimisation framework, we use the FitzHugh–Nagumo system described in [14] and [30]. The FitzHugh–

Nagumo model is a two dimensional simplification of the Hodgkin-Huxley model introduced by [18], which was originally proposed 
in the field of neuroscience to model the phenomenon of spiking neurons. The dynamical equations read as follows:[

�̇�

�̇�

]
=

[
𝑣− 𝑣3

3 −𝑤+ 𝐼
𝜁 (𝑣+ 𝑎− 𝑏𝑤)

]
,

[
𝑣(𝑡 = 0)
𝑤(𝑡 = 0)

]
=
[
𝑣0

𝑤0

]
, 𝑡 ∈ [0, 𝑇 ], (69)

where [𝑣(𝑡), 𝑤(𝑡)]𝑇 ∈ ℝ2 denotes the state variables and 𝑎, 𝑏, 𝜁 and 𝐼 denote system parameters. Fig. 1 shows a phase-space plot 
containing the 𝑣 and 𝑤-nullclines for a nominal value of the system parameters. The oscillator enters a limit cycle for parameter 
values such that the intersection of the two nullclines lies in the interval 𝑣 ∈ [−1, 1], indicated by the black lines. If the intersection lies 
exterior to this interval, then the oscillator eventually reaches the intersection and remains at a constant value of 𝑣 and 𝑤. Although 
initially proposed to model neuron behaviour, the FitzHugh–Nagumo model has seen widespread use in modelling wave phenomena 
in excitable media. Examples include blood coagulation [13,27] and cardio-electrophysiological phenomena [9], wherein the optimal 
control of the model plays an important role in the application. The reader is referred to [39] for an overview of existing work on 
11

the modelling applications and optimal control of the FitzHugh–Nagumo system.
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Fig. 1. FitzHugh–Nagumo oscillator dynamics. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

In this work, we study the forced FitzHugh–Nagumo system:[
�̇�

�̇�

]
=

[
𝑣− 𝑣3

3 −𝑤+ 𝐼 + 𝜎�̇�1
𝜁 (𝑣+ 𝑎− 𝑏𝑤) + 𝜎�̇�2

]
,

[
𝑣(𝑡 = 0)
𝑤(𝑡 = 0)

]
=
[
𝑣0

𝑤0

]
, 𝑡 ∈ [0, 𝑇 ], (70)

where �̇�1 and �̇�2 are “formal” derivatives of standard Brownian paths and 𝜎 = 0.01 controls the noise strength. To study the 
behaviour of the system, we propose the following QoI:

𝑄 = 1
𝑇

𝑇

∫
0

𝑣2(𝑡)𝑑𝑡. (71)

We are interested in minimising an objective function of the form in Eq. (10), where we seek to minimise the CVaR with significance 
𝜏 = 0.7. We denote by 𝑧 = [𝑎, 𝑏, 𝜁, 𝐼]𝑇 the vector of design parameters with respect to which we want to carry out the optimisation, 
and seek to penalise deviations from the design 𝑧𝑟𝑒𝑓 = [0.8, 0.7, 0.08, 1.0].

We discretise the interval [0, 𝑇 ] using a hierarchy of uniform grids 𝑡𝑗 = 𝑗Δ𝑡𝑙, 𝑗 ∈ {0, 1, ..., 𝑁𝑇,𝑙}, with Δ𝑡𝑙 = 𝑇 ∕𝑁𝑇,𝑙 and 𝑁𝑇,𝑙 =𝑁𝑇,02𝑙 . 
We set 𝑇 = 10 and 𝑁𝑇,0 = 20, and consider an Euler-Maruyama discretisation of Eq. (70). Using the notation 𝑣𝑙𝑛 to denote the 
approximation of 𝑣(𝑡𝑛) at level 𝑙, the discretised system then reads:[

𝑣𝑙
𝑛+1
𝑤𝑙
𝑛+1

]
=
[
𝑣𝑙𝑛
𝑤𝑙𝑛

]
+Δ𝑡𝑙

[
𝑣𝑙𝑛 −

(𝑣𝑙𝑛)
3

3 −𝑤𝑙𝑛 + 𝐼
𝜁
(
𝑣𝑙𝑛 + 𝑎− 𝑏𝑤

𝑙
𝑛

) ]+ 𝜎√Δ𝑡𝑙

[
𝜉𝑙1,𝑛
𝜉𝑙2,𝑛

]
, (72)

[
𝑣𝑙0
𝑤𝑙0

]
=
[
𝑣0

𝑤0

]
, 𝑛 ∈ {0, ...,𝑁𝑇 ,𝑙 − 1}, (73)

where 𝜉𝑙1,𝑛 and 𝜉𝑙2,𝑛 are independently drawn realisations of standard normal random variables. The quantity of interest that we study 
is the following time average:

𝑄 = 1
𝑇

𝑇

∫
0

𝑣2(𝑡)𝑑𝑡 ≈
𝑁𝑇 ,𝑙−1∑
𝑛=0

(
(𝑣𝑙𝑛)

2 + (𝑣𝑙
𝑛+1)

2

2

)
Δ𝑡𝑙
𝑇

=∶𝑄𝑙. (74)

To compute the sensitivities 𝑄𝑧,𝑙 , we utilize the method of adjoints. We consider the corresponding adjoint variables 𝜆𝑙𝑛 and 𝜈𝑙𝑛
corresponding to 𝑣𝑙𝑛 and 𝑤𝑙𝑛, 𝑛 ∈ {1, ..., 𝑁𝑇,𝑙} respectively. The adjoint equation reads as follows:[

𝜆𝑙𝑛
𝜈𝑙𝑛

]
=

[
𝜆𝑙
𝑛+1
𝜈𝑙
𝑛+1

]
+Δ𝑡𝑙

([
(1 − (𝑣𝑙𝑛)

2) 𝜁

−1 −𝜁𝑏

][
𝜆𝑙
𝑛+1
𝜈𝑙
𝑛+1

]
+

[
2𝑣𝑙𝑛
𝑇
0

])
, (75)[

𝜆𝑙
𝑁𝑇 ,𝑙

𝜈𝑙
𝑁𝑇 ,𝑙

]
=Δ𝑡𝑙

[
𝑣𝑙𝑛
𝑇
0

]
, 𝑛 ∈ {1, ...,𝑁𝑇 ,𝑙 − 1}. (76)

The reader is referred to Appendix B for the details of the derivation.

Once the adjoint equation is solved backwards in time, the approximation 𝑄𝑧,𝑙 of the sensitivities 𝑄𝑧 at level 𝑙 can then be 
obtained as follows:

𝑄𝑎,𝑙 =
𝑁𝑇 ,𝑙−1∑
𝑛=0

Δ𝑡𝑙𝜁𝜈𝑙𝑛+1, 𝑄𝑏,𝑙 = −
𝑁𝑇 ,𝑙−1∑
𝑛=0

Δ𝑡𝑙𝜁𝑤𝑙𝑛𝜈
𝑙
𝑛+1,

𝑁𝑇 ,𝑙−1∑
𝑙

𝑁𝑇 ,𝑙−1∑
𝑙 𝑙 𝑙

(77)
12

𝑄𝐼,𝑙 =
𝑛=0

Δ𝑡𝑙𝜆𝑛+1, 𝑄𝜁,𝑙 =
𝑛=0

Δ𝑡𝑙(𝑣𝑛 + 𝑎− 𝑏𝑤𝑛)𝜈𝑛+1.
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Fig. 2. Error estimator performance for the CMLMC estimator of the gradient for the FitzHugh–Nagumo system.

To demonstrate the performance of Algorithm 2, we assess the performance individually of its two components; firstly, the 
performance of the CMLMC algorithm, the error estimation procedure and the adaptive strategy described in Section 4 for accurately 
estimating the gradient for a given design, and secondly, the gradient based optimisation procedure described in Algorithm 2. We 
first assess the performance of the CMLMC algorithm and adaptive strategy. We remark that the solution of the forward and adjoint 
problems, as well as the CMLMC procedure, are implemented within the XMC software library [1], which we use for the simulations 
presented herein.

We seek to accurately estimate the gradient ∇ (⋅, 𝑧0) using the estimator ̂𝑤(⋅, 𝑧0), where 𝑧0 = [0.7, 0.8, 0.08, 1.0] and we set 𝜏 = 0.70
for the significance of the CVaR. The gradient and gradient error are estimated using the MLMC procedure described in Sections 4. 
To assess the reliability of the error bound derived in Proposition 4.1, we run a reliability study wherein we adapt the parameters 
of the MLMC hierarchy to attain a prescribed tolerance on MSE

(̂𝑤(⋅, 𝑧0)). We run the MLMC algorithm 20 times for each tolerance 
tested and compare the estimated error to the true error obtained using a reference gradient computed using a Monte Carlo estimator 
with 2 × 105 samples and 2 × 104 time steps. Specifically, we are interested in assessing the tightness of the inequality in Eq. (68).

The resultant plot is shown in Fig. 2a. Three errors are plotted in Fig. 2a; namely, the true error on the gradient, defined in the 
L∞ sense, corresponding to the term on the leftmost side of Eq. (68), the square root of the MSE estimate on the gradient, produced 
by the optimally calibrated MLMC hierarchy, corresponding to the term on the rightmost side of Eq. (68), and the true error on 
the gradient evaluated at the point (𝜃0, 𝑧0), where 𝜃0 corresponds to the 70%-VaR for the design 𝑧0. The true errors are computed 
with respect to a reference solution computed using 2 × 105 samples and 2 × 104 time steps. As can be seen from the figure, the MSE 
estimator provides a tight bound on the true error on the parametric expectations. However, the true error on the gradient in the 
L∞ sense is much larger than the true pointwise error. This is a natural consequence of using the L∞-norm over the entire interval 
Θ to define the MSE, as compared to using the pointwise error. Controlling the MSE error in an L∞ sense, as defined in Eq. (47), is 
necessitated by the error accuracy condition in Eq. (24), in order to ensure Q-linear convergence of Algorithm 2.

Fig. 2b shows the complexity behaviour of the MLMC estimator calibrated using the CMLMC algorithm. We compute the cost 
required to obtain the final optimal hierarchy for a given tolerance 𝜖2 on MSE

(̂𝑤(⋅, 𝑧0)). As can be seen from the figure, the cost 
grows as 𝜖−2, which is the theoretically predicated best case performance for the MLMC estimator. For comparison, we also plot the 
estimated cost of a comparable Monte Carlo estimator, as well as the expected cost growth rate for the case of the first order time 
discretisation used here. The Monte Carlo reference cost is computed as described in [5].

We now examine the performance of the gradient descent algorithm proposed in Section 3. We are interested in solving the 
minimisation problem given in Eq. (10), with 𝜏 = 0.7. We utilize the framework of Algorithm 2, with a tolerance 𝜖 = 0.01 on the 
gradient ratio. This implies that we stop the algorithm once the gradient magnitude has dropped to 1∕100th of its initial magnitude. 
As an initial guess, we begin with the design 𝑧0 = [0.7, 0.8, 0.08, 1.0]. We also set 𝑧𝑟𝑒𝑓 = [0.7, 0.8, 0.08, 1.0]. We combine the above with 
the CMLMC algorithm detailed in [5] and detailed further in Section 4, with 𝜂 = 0.2 on the relative error on the gradient.

We plot in Fig. 3a the value of the objective function for different iterations of the objective function. We observe Q-linear 
convergence in the number of iterations towards the final value, as predicted by Theorem 3.1, although we cannot guarantee that the 
hypotheses of Theorem 3.1 are satisfied for this problem. Fig. 3b shows the value of the gradient ratio 𝑟 for different iterations of the 
optimisation algorithm. We also observe that the gradient decreases Q-linearly. Lastly, we plot in Fig. 3c the Cumulative Distribution 
Function (CDF) of the output QoI 𝑄(𝑧𝑗 , ⋅) computed at different iterations of the optimisation algorithm, as well as the predicted VaR 
and CVaR values. We observe that the CDF, the VaR and the CVaR all move left, reducing the mass in the right tail of the distribution. 
Since we are minimising the CVaR, defined as the expectation of the random variable above the VaR, this translates to moving the 
right tail of the distribution as much as possible to the left.

Fig. 4a shows the optimal hierarchy produced by the CMLMC algorithm at each iteration of the optimisation. We observe that 
since the tolerance supplied to the CMLMC algorithm is a fraction of the gradient magnitude, the optimally tuned hierarchy becomes 
larger for later iterations of the optimisation. In addition, Fig. 4b shows the cumulative cost required for the optimisation algorithm 
to reach a given gradient magnitude. The cumulative cost at a given optimisation iteration is defined as the sum of costs of all 
optimal hierarchies until the current optimisation iteration. Specifically, the cumulative cost is computed as ∑𝑗

𝑖=0
∑𝐿
𝑙=0𝑁

(𝑖)
𝑙
(Cost

(
𝑄𝑙
)
+( ) ( )
13

Cost 𝑄𝑙−1 ), where {𝑁 (𝑖)
𝑙
}𝐿
𝑙=0 denote the optimal level-wise sample sizes for the 𝑖th optimisation iteration and Cost 𝑄𝑙 denotes the 
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Fig. 3. Performance of Algorithm 2 over different iterations for the FitzHugh–Nagumo system.

Fig. 4. Hierarchy of CMLMC estimators and complexity behaviour of Algorithm 2 for different iterations for the FitzHugh–Nagumo system.

average cost of simulating one sample of 𝑄𝑙 . This cost is plotted versus the gradient magnitude. We observe that after an initial 
pre-asymptotic regime, the cumulative cost grows as ‖‖‖∇̃̂ 𝑗 (𝑤𝑗 )‖‖‖−2𝑙2 , a rate commensurate with the use of an optimally tuned MLMC 

hierarchy at each iteration tuned to obtain a tolerance proportional to ‖‖‖∇̃̂ 𝑗 (𝑤𝑗 )‖‖‖𝑙2 .

5.2. Pollutant transport problem

We now apply the methodology to a more applied problem of practical relevance. A problem of pollutant transport is studied, 
where the concentration of pollutant in a domain is modelled using a steady reaction-diffusion-advection equation. We consider a 
square domain 𝐷 = (0, 1) ×(0, 1), with boundary 𝜕𝐷 ∶= Γ𝑑 ∪Γ𝑛, where Γ𝑑 ∶= {0} ×(0, 1) and Γ𝑛 ∶= 𝜕𝐷∖Γ𝑑 . We denote by 𝑢 ∶𝐷×ℝ9 ×Ω →
ℝ the concentration of the pollutant. The concentration satisfies the following equation:

−∇ ⋅ (𝜖∇𝑢(𝑥, 𝑧,𝜔)) + 𝕍 (𝑥,𝜔) ⋅∇𝑢(𝑥, 𝑧,𝜔) = 𝑓 (𝑥) −𝐵(𝑥, 𝑧), 𝑥 ∈𝐷, (78)

subject to the following boundary conditions:

𝜖
𝜕𝑢

𝜕𝑛
(𝑥, 𝑧,𝜔) = 0, 𝑥 ∈ Γ𝑛, for ℙ− a.e. 𝜔 ∈Ω (79)

𝑢(𝑥, 𝑧,𝜔) = 0, 𝑥 ∈ Γ𝑑 , for ℙ− a.e. 𝜔 ∈Ω, (80)

where 𝜖 > 0 denotes a viscosity parameter. 𝕍 (𝑥, 𝜔) is a random divergence-free velocity field defined as follows:

𝕍 (𝑥,𝜔) ∶=
[
𝑏(𝜔) − 𝑎(𝜔)𝑥1
𝑎(𝜔)𝑥2

]
, (81)

where 𝑎 ∼ [4.95, 5.05] and 𝑏 ∼ [3.95, 3.05] are uniformly distributed random variables, and 𝑥1 and 𝑥2 denote the components of 𝑥. 
The source 𝑓 (𝑥) is the sum of five Gaussian source terms:

𝑓 (𝑥) =
5∑
𝑖=1
𝑠𝑖 exp

(
−
(𝑥− 𝜇𝑖)𝑇 (𝑥− 𝜇𝑖)

2𝜎2𝑖

)
, (82)
14

where the values of 𝑠𝑖, 𝜇𝑖 and 𝜎𝑖 are given in Table 1. The sink term 𝐵(𝑥, 𝑧) is defined as follows:
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Table 1

Source term parameters for the pollutant transport problem.

𝑖 𝜇𝑖 𝜎𝑖 𝑠𝑖

1 [0.55205319,0.65571641]𝑇 0.0229487 2.3220339
2 [0.49379544,0.10950509]𝑇 0.0205321 1.7931427
3 [0.13032797,0.57569277]𝑇 0.0196891 2.3522452
4 [0.33868732,0.37971428]𝑇 0.0212297 2.2850373
5 [0.27670822,0.15833522]𝑇 0.0227373 2.3194400

Fig. 5. Error estimator performance for the pollutant transport problem.

𝐵(𝑥, 𝑧) =
9∑
𝑘=1
𝑧𝑘 exp

(
−
(𝑥− 𝑝𝑘)𝑇 (𝑥− 𝑝𝑘)

2𝜎2

)
, (83)

where the locations 𝑝𝑘 are defined as 𝑝𝑘 = (0.25𝑖, 0.25𝑗), 𝑖, 𝑗 ∈ {1, 2, 3}, 𝑘 = 3(𝑖 − 1) + 𝑗, 𝜎 = 0.05, and 𝑧𝑘 denotes the 𝑘th component of 
𝑧 ∈ℝ9. We are interested in studying the distribution of the random QoI 𝑄, defined as follows:

𝑄(𝑧,𝜔) ∶=
𝜅𝑠
2 ∫
𝐷

𝑢2(𝑥, 𝑧,𝜔)𝑑𝑥, (84)

with 𝜅𝑠 = 104.
The problem is implemented using the FEniCS finite element software [28]. The domain is discretised using a uniform triangular 

mesh with piecewise linear finite elements. The resultant linear system is solved using a sparse direct solver [3,2]. The number of 
elements per side of the square domain varies as 32 × 2𝑙∕2, 𝑙 ∈ {0, 1, ..., 𝐿}, leading to a mesh size ℎ𝑙 that varies as ℎ𝑙 = ℎ0 × 2−𝑙 . An 
in-built automatic differentiation module within the FEniCS library is used to compute the sensitivities of the QoI with respect to 
design parameters. Once again, the XMC software library [1] is used to implement the CMLMC procedure.

Similar to Section 5.1, we seek to examine both parts of the optimisation algorithm; namely the CMLMC and the gradient based 
OUU algorithm. For the CMLMC, we seek to accurately estimate ̂𝑤(⋅, 𝑧0), where 𝑧0 = [0.1]9, such that MSE

(̂𝑤(⋅, 𝑧0)) satisfies a 
prescribed tolerance. Fig. 5 shows the results of reliability and complexity studies conducted for the above parameters, similar to 
the one conducted for the FitzHugh–Nagumo system in Section 5.1. For studying the reliability of the error estimators, we conduct 
20 independent CMLMC simulations for a given tolerance. For each simulation, we plot three errors; namely the true L∞ error 
on the gradient, the square root of the MSE estimate produced by our error estimation procedure described in Section 4, and the 
true pointwise error on the gradient, computed by evaluating the parametric expectations ̂𝑤(⋅, 𝑧0) for the gradient at 𝜃0, the VaR 
corresponding to the design 𝑧0. The reference value of the gradient is computed by first running 20 simulations for a tolerance that 
is half of the finest tested tolerance, and averaging over the gradient estimates produced by these simulations. Similar to before, we 
find that although our novel error estimators provide a tight bound on the true L∞ error of the gradient, the L∞ error on the gradient 
is significantly larger than the error on the gradient evaluated at 𝜃0. Fig. 5b presents the complexity results of the CMLMC algorithm. 
The cost to compute the optimal hierarchy for a given tolerance 𝜖2 on MSE

(
∇̃̂ 𝑗 (⋅, 𝑧0)) is plotted versus the tolerance, for each of the 

20 CMLMC simulations at a given tolerance, in addition to their sample average value. In addition, the theoretical cost growth rate 
of a comparable Monte Carlo estimator is shown, as well as the estimated cost of the estimator for reference and comparison. The 
Monte Carlo reference cost is computed as described in [5]. As can be seen from the figure, the complexity follows the theoretically 
predicted complexity 𝜖−2.

For the OUU, we wish to minimise an objective function of the form in Eq. (10), with 𝑧𝑟𝑒𝑓 = 0 and for significance of 𝜏 = 0.7. 
This implies that we seek to minimise the CVaR while also minimising the amplitude of the controlled sinks. We utilise Algorithm 2, 
starting from a design 𝑧0 = [0.1]9, and halt the optimisation once a gradient ratio of 𝑟 = 0.08 has been achieved. In Fig. 6, we show 
the source field 𝑓 (𝑥), the control field 𝐵(𝑥, 𝑧∗) and the solution 𝑢(𝑥, 𝑧∗, 𝜔) for the mean conditions 𝑎(𝜔) = 4 and 𝑏(𝜔) = 5 at the optimal 
15

control 𝑧∗ obtained by solving problem (10).
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Fig. 6. Source, control and solution fields for the pollutant transport problem for 𝑎(𝜔) = 4 and 𝑏 = 5(𝜔), and for 𝑥 ∈𝐷.

Fig. 7. Optimization performance over different iterations for the pollutant transport problem.

Fig. 8. Hierarchy and complexity behaviour for different iterations for the pollutant transport problem.

Fig. 7a shows the decay of the objective function towards its final value. We once again observe Q-linear convergence in the 
optimisation counter 𝑗, as predicted by Theorem 3.1. In addition, we plot in 3b the gradient ratio for different iterations of the 
optimisation, which also decreases Q-linearly in the iteration counter 𝑗. Fig. 7c shows the CDF of the output QoI 𝑄(𝑧𝑗, ⋅) for different 
iterations 𝑗 of the optimisation algorithm, along with the estimated VaR and CVaR. The CDF, the VaR and the CVaR all move left as 
before in Section 5.1, which translates to moving the right tail of the distribution as much as possible to the left.

Fig. 8a shows the optimal hierarchy produced by the CMLMC algorithm at each iteration of the optimisation for a given tolerance. 
Similar to before, we observe that the optimally tuned hierarchy increases in size for later optimisation iterations, since the tolerance 
supplied to the CMLMC is a fraction of the gradient magnitude. Fig. 8b shows the cumulative cost as defined in Section 5.1 for a given 
gradient magnitude. We observe once again that the cumulative cost grows as ‖‖‖∇̃̂ 𝑗 (𝑤𝑗 )‖‖‖−2𝑙2 after an initial pre-asymptotic regime, 
as is to be expected for the use of an optimally tuned MLMC hierarchy at each iteration, tuned to obtain a tolerance proportional to ‖‖‖∇̃̂ 𝑗 (𝑤𝑗 )‖‖‖𝑙2 .

We now wish to study the performance of the AMGD algorithm for different significances 𝜏 . To this end, we compare the 
16

performance of the algorithm for 𝜏 = 0.7 and 𝜏 = 0.9. Since the performance of the algorithm in terms of objective function and 
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Fig. 9. Hierarchy and complexity behaviour for different significances for pollutant transport problem.

gradient decay in the 𝜏 = 0.9 case are nearly identical to the performance observed in Fig. 8 for the 𝜏 = 0.7, the corresponding results 
are not presented here. Fig. 9a shows the optimal hierarchy produced by the CMLMC algorithm at each optimisation iteration for 
the two significances tested. We observe that the level-wise sample sizes 𝑁𝑙 decay at the same rate in the levels 𝑙 for both tested 
significances, however with a larger constant for the 𝜏 = 0.9 case. Additionally, Fig. 9b shows the cumulative cost for a given gradient 
magnitude, for both significances. We observe that the cumulative cost grows as ‖‖‖∇̃̂ 𝑗 (𝑤𝑗 )‖‖‖−2𝑙2 in both cases, following an initial pre-

asymptotic regime. However, the 𝜏 = 0.9 case shows a larger constant. In this case, the interval Θ is changed with each optimisation 
iteration such that it is centered on the quantile estimate corresponding to the previous optimisation iteration. It can be shown, for 
the case of a simple Monte Carlo estimator, that the constant is expected to scale in this case as (1 − 𝜏)−1. The interested reader is 
referred to [5] for further discussion. We note that we observe a similar scaling in this case.

6. Conclusions

The aim of this work was to tackle the challenge of minimising the CVaR of a random QoI, typically the output of a differential 
model with random inputs, over a suitable design space, using gradient-based optimisation techniques. A main challenge in utilising 
gradient-based techniques was the differentiability of the CVaR in terms of the design variables. A differentiability result was pre-

sented in Section 2, which was a generalisation of the one presented in [21], showing that gradient-based algorithms could still be 
used to directly minimise the CVaR without requiring smoothing.

The expression for the sensitivities of the CVaR with respect to design parameters required the computation of expectations of 
discontinuous functions of the QoI; namely, the indicator function. Estimating this expectation naively using MLMC estimators could 
become impractically expensive, and possibly result in non-optimal complexity behaviour of the corresponding MLMC estimator. A 
similar issue was discussed and tackled in [5], and an alternative was proposed using the framework of parametric expectations. We 
presented a modified expression for the sensitivities of the CVaR, based on derivatives of parametric expectations, thereby allowing 
us to use the work in [5]. Based on this modification, we also presented a novel optimisation algorithm consisting of an alternating 
minimisation-gradient procedure. We demonstrated a theoretical result that, under additional assumptions on the combined objective 
function in Eq. (10), the novel algorithm would achieve Q-linear convergence of the design iterates towards the optimal design in 
the optimisation iterations.

To enable the use of the work in [5], we presented modifications of the MLMC estimator, the error estimation procedure and 
adaptive hierarchy selection procedure specific to computing the sensitivities of the CVaR. Namely, a relation was derived between 
the MSE of the sensitivities and the MSE of the parametric expectations in Section 4. In addition, a modification of the KDE smoothing 
procedure presented in [5] was presented, specific to CVaR minimisation. The combination of the MSE relation and KDE modification 
allowed us to trivially extend the error estimation and hierarchy adaptivity procedure of [5] to the current application. Lastly, a minor 
modification of the CMLMC procedure of [5] was presented in Algorithm 2, wherein the CMLMC was restarted from the optimal 
hierarchy of the previous design iterate.

The combination of gradient-based optimisation and MLMC estimation of the sensitivities of the CVaR was tested on two problems 
of practical relevance; namely the FitzHugh–Nagumo oscillator and a more applied problem of advection-reaction-diffusion problem 
used to model pollutant transport. In both cases, it was observed that the novel error estimation procedure provided tight bounds on 
the MSE of the gradient as defined in Eq. (47). In addition, the CMLMC algorithm was shown to produce the best-case complexity 
behaviour for the MLMC estimators of the sensitivities. The OUU algorithm was shown to converge Q-linearly in the optimisation 
iterations, while also preserving the best case MLMC cost complexity.

The numerical examples considered in this work demonstrated that the AMGD procedure performs well for the cases presented 
here. However, one may wish to improve on the performance of the algorithm by considering alternatives to the AMGD algorithm. 
Such variations could, for example, include higher-order optimisation methods such as the Newton method. It still remains to be 
seen whether higher-order methods can directly be used with objective functions of the type in problem (10), as well as whether the 
17

framework of parametric expectations can be combined with such an algorithm. We plan to explore such questions in future works.
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Appendix A. Proof of Theorem 2.1

To prove Theorem 2.1 on the Fréchet differentiability of the objective function  (𝜃, 𝑧), we first prove an important result in 
Lemma A.1. We recall that Γ ⊂ L𝑝(Ω, ℝ) is the set of L𝑝-integrable random variables whose measures are atom-free.

Lemma A.1. Consider random variables 𝑌 ∈ Γ ⊂ L𝑝(Ω, ℝ) and 𝛿𝑌 ∈ L𝑝(Ω, ℝ). We then have the following:

lim‖𝛿𝑌 ‖L𝑝→0
𝔼
[
1{0≤𝑌≤−𝛿𝑌 }

]
= 0, (85)

and lim‖𝛿𝑌 ‖𝑙𝑝→0
𝔼
[
1{−𝛿𝑌≤𝑌≤0}

]
= 0. (86)

Proof. We begin with the proof for Eq. (85), since the proof for Eq. (86) follows from identical arguments. We make use of the 
following result; for any 𝑋 ∈ L𝑝(Ω, ℝ), the following holds for any 𝜖 > 0 and 𝑝 ≥ 0:

𝔼
[
1{|𝑋|≥𝜖}] ≤ 𝔼

[ |𝑋|𝑝
𝜖𝑝

]
= ‖𝑋‖𝑝L𝑝 𝜖−𝑝. (87)

Setting 𝜖 = ‖𝑋‖𝛽L𝑝 for some 𝛽 ∈ [0, 1), we have that

𝔼
[
1{|𝑋|≥‖𝑋‖𝛽L𝑝 }

]
≤ ‖𝑋‖𝑝−𝛽𝑝L𝑝 = ‖𝑋‖𝛾L𝑝 , (88)

where 𝛾 ∶= 𝑝(1 − 𝛽). We rewrite the term within the limit in Eq. (85) as follows:

𝔼
[
1{0≤𝑌≤−𝛿𝑌 }

]
= 𝔼
[
1{0≤𝑌≤−𝛿𝑌 }

(
1{|𝛿𝑌 |<‖𝛿𝑌 ‖𝛽L𝑝 } + 1{|𝛿𝑌 |≥‖𝛿𝑌 ‖𝛽L𝑝 }

)]
(89)

= 𝔼
[
1{0≤𝑌≤−𝛿𝑌 }1{|𝛿𝑌 |<‖𝛿𝑌 ‖𝛽L𝑝 }

]
+ 𝔼
[
1{0≤𝑌≤−𝛿𝑌 }1{|𝛿𝑌 |≥‖𝛿𝑌 ‖𝛽L𝑝 }

]
. (90)

The first term can be bounded as follows:

𝔼
[
1{0≤𝑌≤−𝛿𝑌 }1{|𝛿𝑌 |<‖𝛿𝑌 ‖𝛽L𝑝 }

]
≤ 𝔼
[
1{0≤𝑌≤‖𝛿𝑌 ‖𝛽L𝑝 }

]
(91)

Due to dominated convergence, we can pass the limit into the expectation, resulting in the following:

lim‖𝛿𝑌 ‖L𝑝→0
𝔼
[
1{0≤𝑌≤‖𝛿𝑌 ‖𝛽L𝑝 }

]
= 𝔼
[

lim‖𝛿𝑌 ‖L𝑝→0
1{0≤𝑌≤‖𝛿𝑌 ‖𝛽L𝑝 }

]
= 𝔼
[
1{𝑌=0}

]
= 0, (92)

since 𝑌 ∈ Γ is atom-free. The second term can be bounded as follows, where we use a Hölder inequality:

𝔼
[
1{0≤𝑌≤−𝛿𝑌 }1{|𝛿𝑌 |≥‖𝛿𝑌 ‖𝛽L𝑝 }

]
≤ ‖‖‖1{0≤𝑌≤−𝛿𝑌 }‖‖‖L∞ ‖‖‖‖1{|𝛿𝑌 |≥‖𝛿𝑌 ‖𝛽L𝑝 }‖‖‖‖L1 (93)

≤ 𝔼
[
1{|𝛿𝑌 |≥‖𝛿𝑌 ‖𝛽L𝑝 }

]
(94)

𝛾
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≤ ‖𝛿𝑌 ‖L𝑝 . (95)
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Hence, we have that the second term in Eq. (90) goes to zero as well with the application of the limit, thus concluding the proof for 
Eq. (85). The proof for Eq. (86) follows from identical arguments. □

We now use the above result and present a proof of Theorem 2.1. We note that the function (𝜃, 𝑄) is a composition of two 
functions. We define the functions 𝑙1 ∶ Γ →ℝ and 𝑙2 ∶ℝ × Γ → Γ as follows:

𝑙1(𝑌 ) ∶= 𝔼
[
𝑌 +] (96)

𝑙2(𝜃,𝑄) ∶=𝑄− 𝜃, (97)

⟹ (𝜃,𝑄) = 𝜃 +
𝑙1◦𝑙2(𝜃,𝑄)

1 − 𝜏
. (98)

Hence, to show that  is Fréchet differentiable, it suffices to show that each of the functions 𝑙1 and 𝑙2 are Fréchet differentiable.

It is straightforward to see that 𝑙2 is Fréchet differentiable (being linear and bounded) with Fréchet derivative 𝐷𝑙2(𝜃, 𝑄) in the 
direction (𝛿𝜃, 𝛿𝑄) ∈ℝ × L𝑝(Ω, ℝ) given by:

𝐷𝑙2(𝜃,𝑄)(𝛿𝜃, 𝛿𝑄) = 𝛿𝑄− 𝛿𝜃. (99)

The Fréchet derivative of 𝑙1 however, requires some consideration. We argue that the Fréchet derivative of 𝑙1 exists at any point 
𝑌 ∈ Γ and is given by 𝐷𝑙1(𝑌 )(𝛿𝑌 ) = 𝔼

[
1{𝑌≥0}𝛿𝑌

]
. To prove this statement, we must verify the following limit:

lim‖𝛿𝑌 ‖L𝑝→0

|||𝔼 [(𝑌 + 𝛿𝑌 )+
]
− 𝔼
[
𝑌 +]− 𝔼

[
1{𝑌≥0}𝛿𝑌

]|||‖𝛿𝑌 ‖L𝑝 = 0 (100)

To show the above, we begin by re-writing the numerator as follows:

𝔼
[
(𝑌 + 𝛿𝑌 )+ − 𝑌 + − 1{𝑌≥0}𝛿𝑌

]
= 𝔼
[
𝛿𝑌 1{𝑌+𝛿𝑌≥0,𝑌≥0} − 1{𝑌≥0}𝛿𝑌

]
+ 𝔼
[
(𝑌 + 𝛿𝑌 )1{𝑌+𝛿𝑌≥0,𝑌 <0}

]
− 𝔼
[
𝑌 1{𝑌+𝛿𝑌 <0,𝑌≥0}

]
. (101)

Inserting Eq. (101) into Eq. (100), we have the following:|||𝔼 [(𝑌 + 𝛿𝑌 )+
]
− 𝔼
[
𝑌 +]− 𝔼

[
1{𝑌≥0𝛿𝑌 }

]|||‖𝛿𝑌 ‖L𝑝 ≤ 𝑇1 + 𝑇2 + 𝑇3‖𝛿𝑌 ‖L𝑝 , (102)

with the terms 𝑇1, 𝑇2 and 𝑇3 given by:

𝑇1 ∶=
|||𝔼 [𝛿𝑌 1{𝑌+𝛿𝑌≥0,𝑌≥0} − 𝛿𝑌 1{𝑌≥0}]||| , (103)

𝑇2 ∶=
|||𝔼 [(𝑌 + 𝛿𝑌 )1{𝑌+𝛿𝑌≥0,𝑌 <0}

]||| , (104)

𝑇3 ∶=
|||𝔼 [𝑌 1{𝑌+𝛿𝑌 <0,𝑌≥0}]||| . (105)

We then begin with the term 𝑇1. We first note that 𝑇1 can be rewritten in the following manner:

𝑇1 =
|||−𝔼

[
𝛿𝑌 1{0≤𝑌 <−𝛿𝑌 }

]||| ≤ 𝔼
[|𝛿𝑌 |1{0≤𝑌 <−𝛿𝑌 }] (106)

≤ ‖𝛿𝑌 ‖L𝑝 ‖‖‖1{0≤𝑌 <−𝛿𝑌 }‖‖‖L𝑞 = ‖𝛿𝑌 ‖L𝑝 𝔼 [1{0≤𝑌 <−𝛿𝑌 }]1∕𝑞 , (107)

≤ ‖𝛿𝑌 ‖L𝑝 𝔼 [1{0≤𝑌≤−𝛿𝑌 }]1∕𝑞 . (108)

The term 𝑇2 can be bounded as follows:

𝑇2 =
|||𝔼 [(𝑌 + 𝛿𝑌 )1{𝑌+𝛿𝑌≥0}1{𝑌 <0}

]||| ≤ 𝔼
[|𝛿𝑌 |1{−𝛿𝑌≤𝑌 <0}] , (109)

≤ ‖𝛿𝑌 ‖L𝑝 ‖‖‖1{−𝛿𝑌≤𝑌 <0}‖‖‖L𝑞 = ‖𝛿𝑌 ‖L𝑝 𝔼 [1{−𝛿𝑌≤𝑌≤0}]1∕𝑞 . (110)

Similarly, the term 𝑇3 can be bounded as follows:

𝑇3 =
|||𝔼 [𝑌 1{𝑌+𝛿𝑌 <0}1{𝑌≥0}]||| ≤ 𝔼

[|𝛿𝑌 |1{0≤𝑌 <−𝛿𝑌 }] (111)

≤ ‖𝛿𝑌 ‖L𝑝 ‖‖‖1{0≤𝑌≤−𝛿𝑌 }‖‖‖L𝑞 = ‖𝛿𝑌 ‖L𝑝 𝔼 [1{0≤𝑌≤−𝛿𝑌 }]1∕𝑞 . (112)

Inserting Eqs. (108), (110) and (112) into Eq. (102), and applying the limit using Lemma A.1, we have that:

lim‖𝛿𝑌 ‖L𝑝→0

|||𝔼 [(𝑌 + 𝛿𝑌 )+
]
− 𝔼
[
𝑌 +]− 𝔼

[
1{𝑌≥0}𝛿𝑌

]|||‖𝛿𝑌 ‖L𝑝 = 0. (113)
19

This concludes the proof.
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Appendix B. Adjoint of first-order ODE with additive noise

We present here the derivation of the adjoints for a first-order Ordinary Differential Equation (ODE) with white noise forcing 
for an objective function containing the CVaR of a time-averaged quantity of the trajectory. Let (Ω,  , ℙ) be a complete probability 
space, 𝜔 ∈Ω denote an elementary random event, and 𝑧 ∈ℝ𝑑 the set of design variables. Let 𝑢(𝑡, 𝑧, 𝜔) ∈ 𝑈 ⊂ℝ𝑁𝑢 be the state vector 
at time 𝑡 ∈ [0, 𝑇 ] for a given random input 𝜔 and design 𝑧. The state vector 𝑢 is governed by the following ODE with additive noise.

�̇�(𝑡, 𝑧,𝜔) = 𝑔(𝑢, 𝑧) + 𝜏�̇� (𝑡,𝜔) over (0, 𝑇 ], (114)

𝑢(0, 𝑧,𝜔) = 𝑢0, (115)

where 𝑔 ∶𝑈 ×ℝ𝑑 →ℝ𝑁𝑢 , and 𝑊 ∶ [0, 𝑇 ] ×Ω →ℝ𝑁𝑢 is a 𝑁𝑢-dimensional standard Wiener process.

We discretise the problem on a uniform temporal grid 𝕋 where the interval [0, 𝑇 ] is divided into 𝑁 ∈ ℕ segments of step size 
Δ𝑡 = 𝑇 ∕𝑁 , 𝕋 ∶= {𝑡𝑛 ∶= 𝑛Δ𝑡 ∶ 𝑛 ∈ �0, 𝑁𝑙�}. The ODE is discretised using the Euler–Maruyama scheme, which reads as follows:

𝑢𝑛+1 = 𝑢𝑛 +Δ𝑡𝑔(𝑢𝑛, 𝑧) + 𝜏
√
Δ𝑡𝜉𝑛,

𝑢0 = 𝑢0,

where 𝑢𝑛 denotes the approximation to 𝑢(𝑡𝑛, 𝑧, 𝜔), 𝜉𝑛 ∈ℝ𝑁𝑢 are 𝑁𝑢-dimensional random vectors whose components are independent 
identically distributed standard normal variables. We are interested in computing the statistics of time-averages of functions of the 
trajectory.

𝑄 = ⟨𝑓 (𝑢)⟩𝑇 . (116)

We approximate the time integral using the trapezoid rule on the aforementioned temporal grid, leading to

𝑄(𝑧,𝜔) ≈𝑄ℎ(𝑧,𝜔) ∶=
𝑁−1∑
𝑛=0

(
𝑓 (𝑢𝑛) + 𝑓 (𝑢𝑛+1)

2

)
Δ𝑡
𝑇
. (117)

We are interested in minimising the CVaR of this quantity over the parameters 𝑧 but use the combined formulation in Eq. (10). The 
corresponding Lagrangian for the problem reads

(𝜃, 𝑧,{𝑢𝑛},{𝜆𝑛}) = 𝜃 + 𝔼
[
(𝑄(𝑧, ⋅) − 𝜃)+

]
1 − 𝜏

+ 𝔼

[
𝑁−1∑
𝑛=0

𝜆𝑛+1
(
𝑢𝑛 +Δ𝑡𝑔𝑛 + 𝜏

√
Δ𝑡𝜉𝑛 − 𝑢𝑛+1

)
− 𝜆0(𝑢0 − 𝑢0)

]
, (118)

where we use 𝑔𝑛 ∶= 𝑔(𝑢𝑛, 𝑧), and 𝜆𝑛 ∈ ℝ𝑁𝑢 , 𝑛 ∈ �0, 𝑁� denote the Lagrange multipliers for the initial condition and the steps of the 
discretised equations.

Differentiating with respect to 𝑧 gives

d
d𝑧

= 𝔼

[
1𝑄ℎ≥𝜃
(1 − 𝜏)𝑇

𝑁−1∑
𝑛=0

(
𝑓𝑛𝑢 𝑢

𝑛
𝑧 + 𝑓

𝑛+1
𝑢 𝑢𝑛+1𝑧

2

)
Δ𝑡

]

+𝔼

[
𝑁−1∑
𝑛=0

𝜆𝑛+1
(
𝑢𝑛𝑧 +Δ𝑡(𝑔𝑛𝑢𝑢

𝑛
𝑧 + 𝑔

𝑛
𝑧 ) − 𝑢

𝑛+1
𝑧

)]
(119)

=∶ 𝔼
[̂] . (120)

Re-arranging the terms leads to

̂ = 𝑢0𝑧

[
𝜆1(1 + Δ𝑡𝑔0𝑢 ) +

1𝑄ℎ≥𝜃
(1 − 𝜏)𝑇

𝑓 0
𝑢Δ𝑡
2

]
+Δ𝑡𝜆1𝑔0𝑧 + 𝑢

𝑁
𝑧

[
1𝑄ℎ≥𝜃
(1 − 𝜏)𝑇

𝑓𝑁𝑢 Δ𝑡
2

− 𝜆𝑁
]

+
𝑁−1∑
𝑛=1

𝑢𝑛𝑧

[
𝜆𝑛+1(1 + Δ𝑡𝑔𝑛𝑢 ) − 𝜆

𝑛 +
1𝑄ℎ≥𝜃
(1 − 𝜏)𝑇

Δ𝑡𝑓𝑛𝑢

]
+Δ𝑡𝜆𝑛+1𝑔𝑛𝑧 , (121)

where we have used the subscript notation for partial derivatives.

We have in our case that 𝑢0𝑧 = 0. To remove terms dependent on 𝑢𝑛𝑧, we set

𝜆𝑛 = 𝜆𝑛+1(1 + Δ𝑡𝑔𝑛𝑢 ) +
1𝑄ℎ≥𝜃
(1 − 𝜏)𝑇

Δ𝑡𝑓𝑛𝑢 , 𝑛 = 1, ...,𝑁 − 1 (122)

𝜆𝑁 =
1𝑄ℎ≥𝜃
(1 − 𝜏)𝑇

𝑓𝑁𝑢 Δ𝑡
2

. (123)

This gives us the adjoint equations which are solved backwards in time. It is noteworthy to mention that since Eq. (122) is linear, 
20

that it can be solved for {𝜆𝑛} without the factor 
1𝑄ℎ≥𝜃
(1−𝜏)𝑇 , and equivalently, the sensitivities can be computed as:



Journal of Computational Physics 495 (2023) 112523S. Ganesh and F. Nobile

d
d𝑧

=
1𝑄𝑙≥𝜃

(1 − 𝜏)𝑇
𝔼

[
𝑁−1∑
𝑛=0

Δ𝑡𝜆𝑛+1𝑔𝑛𝑧

]
. (124)

That is, setting

 (𝜃, 𝑧) = 𝜃 +
𝔼
[
(𝑄ℎ(𝑧, ⋅) − 𝜃)+

]
1 − 𝜏

, (125)

we have that 𝑧(𝜃, 𝑧) = 𝔼
[∑𝑁−1

𝑛=0 Δ𝑡𝜆𝑛+1𝑔𝑛𝑧
]
.
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