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Abstract: This paper introduces a new method for solving the distributed ac power flow
(pf) problem by further exploiting the problem formulation. We propose a new variant of the
aladin algorithm devised specifically for this type of problem. This new variant is characterized
by using a reduced modelling method of the distributed ac pf problem, which is reformulated
as a zero-residual least-squares problem with consensus constraints. This pf is then solved
by a Gauss-Newton based inexact aladin algorithm presented in the paper. An open-source
implementation of this algorithm, called rapidpf+, is provided. Simulation results, for which the
power system’s dimension varies from 53 to 10224 buses, show great potential of this combination
in the aspects of both the computing time and scalability.
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1. INTRODUCTION

The ongoing implementation of the energy transition leads
to heterogeneous energy networks with numerous energy
producers, energy consumers, transport, conversion and
storage systems. Due to strongly varying renewable-based
energy feed-ins and demands of the power system, new
challenges arise in the aspect of power flow analysis,
including power flow (pf) problems and optimal power
flow (opf) problems.
The conventional pf problem is modeled as a system of
nonlinear equations. Usually, it is solved by centralized
methods, i.e., Gauss-Seidel or Newton-Raphson (Grainger,
1999). However, the centralized approach requires one
central entity, where all generation information and net-
work topology data are collected. Sharing such data is
unsatisfactory for system operators. In contrast to the
centralized approach, the distributed approach first solves
each decoupled sub-problem in its own local agent re-
spectively, and then deals with a coupled problem in a
central coordinator, in which some, but not all grid data
is collected. As a result, the distributed approach not only
preserves the information privacy and decision indepen-
dence, but also decreases the vulnerability due to single-
point-of failure (Mühlpfordt et al., 2021).
The idea to solve a global pf problem by breaking the
original problem into several smaller power flow problems
is proposed by Sun and Zhang (2008). However, there
are no convergence guarantees and the size of the test
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cases is limited to 200. In their following research (Sun
et al., 2014), they provided a simple convergence anal-
ysis, but didn’t provide actual convergence behavior of
the proposed method, and its scalability still remains
unknown. Besides, a popular distributed algorithm, Al-
ternating Direction Method of Multipliers (admm), has
attracted interest from researchers in terms of steady-state
analysis of power system (Erseghe, 2014). Nonetheless,
its convergence cannot be guaranteed for the nonconvex
ac pf problem, and is highly dependent on initial guess
and tuning parameters, as pointed out in our previous
research (Mühlpfordt et al., 2021).
In addition, Houska et al. (2016) proposed the Augmented
Lagrangian based Alternating Direction Inexact Newton
method (aladin) that is devised for non-convex problems
with local convergence guarantee. It has found widespread
application for analysis of power systems (Engelmann
et al., 2017, 2018; Meyer-Huebner et al., 2019; Du et al.,
2019; Jiang et al., 2021a,b). aladin shares the same idea
with admm—update primal variables in an alternating
fashion. However aladin requires sensitivities information
of sub-problems to build a second-order approximation
in the coordinator. When using suitable Hessian approx-
imation, aladin can achieve locally quadratic conver-
gence. In our previous work (Mühlpfordt et al., 2021),
an open-source matlab code for rapid prototyping for
distributed power flow (rapidpf) 1 is provided, in which
the ac pf problem is reformulated as a zero-residual least-
squares problem tailored for the aladin to speed up the
convergence—all the example cases can converge within
half-dozen iterates. Nevertheless, the total computing time
is not acceptable for large-scale problems due to the rela-
1 The code is available on https://github.com/KIT-IAI/rapidPF
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tive large dimension of the decoupled nlp problem and the
problematic code efficiency of the aladin-α toolbox (En-
gelmann et al., 2020).
The contribution of the present paper is two-fold. We
propose a Gauss-Newton based aladin algorithm for solv-
ing the zero-residual least-squares problem and a reduced
modelling method for distributed ac pf. Based on them,
we upgrade the open-source code of rapidpf. The remain-
der of this paper is organized as follows: Section 2 formu-
lates the distributed ac pf as a zero-residual least-squares
problem. Section 3 presents both the standard aladin and
the Gauss-Newton based aladin algorithms. The upgrade
of rapidpf, called rapidpf+, is described in Section 4. The
simulation results are compared and discussed in Section 5.

2. PROBLEM FORMULATION

This section introduces the distributed ac pf problem
of polar voltage coordination and its zero-residual least-
squares formulation. Before further discussion, we first
introduce some nomenclature. For a power system, R
represents the set of regions, nreg is the number of regions
and nconn is the number of all the connecting tie lines
between regions. In a specific region ℓ, Nℓ is the set of all
buses, whereas N core

ℓ and N copy
ℓ are the set of core and

copy buses in this region ℓ, respectively.

2.1 Distributed Power Flow

The conventional ac pf problem seeks a deterministic
solution to the steady-state operation of an ac electri-
cal power system by applying numerical analysis tech-
niques (Frank and Rebennack, 2016). Each bus in the
system has four variables, i.e., voltage angle θ, voltage
magnitude v, active power injection p, and reactive power
injection q.

(a) Coupled system
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(c) Decoupled region 2

3 4

5

6

θ
copy
3

v
copy
3

θcore4

vcore4

Fig. 1. Decomposition by sharing components for a two-
region system

Fact 1. Genetically, there are multiple mathematically
valid solutions to a power flow problem, but only one
solution has physical meaning (Frank and Rebennack,
2016).This results, e.g., from the periodic voltage angle
θ, and the respective trigonometric functions.

In order to apply a distributed algorithm, reformulation of
the ac pf problem is necessary. In terms of partitioning
the power system, we share the components between
neighboring regions to ensure physical consistency. As an
example, we take the 6-bus system with 2 regions, shown

in Figure 1. The coupled system, shown in Figure 1(a),
has been partitioned into 2 local regions. To solve the ac
pf problem in region R1, besides its own buses {1,2,3}
called core buses, the complex voltage of bus {4} from
neighboring region R2 is required. Hence, for the sub-
problem of region R1, we create an auxiliary bus {4} called
copy bus, along with its own core bus, to formulate a self-
contained ac pf problem.
Then, affine consensus constraints of the connecting tie
line are added to ensure consistency of the copy bus
with its original core bus in the neighboring region. The
consensus constraints of the example case in Figure 1 can
be written as

θcore
3 = θcopy

3 , θcore
4 = θcopy

4

vcore
3 = vcopy

3 , vcore
4 = vcopy

4

(1a)
(1b)

In a specific region ℓ, the power flow equations be repre-
sented as

pgi − pli = vi
∑
k∈Nℓ

vk (Gik cos θik +Bik sin θik)

qgi − qli = vi
∑
k∈Nℓ

vk (Gik sin θik −Bij cos θik)

(2a)

(2b)

for all core bus i ∈ N core
ℓ with the angle difference between

buses θik = θi − θk, complex generation sg = pg + jqg,
complex load sl = pl + jql, complex components of the
bus admittance matrix entries Yik = Gik + jBik. These
equations can also be written as residual function. These
power flow equations can be written as

rℓ(χℓ) = 0 (3)
where rℓ : R2ncore

ℓ +2ncopy
ℓ → Rnpf

ℓ is a residual function with
its components rℓ,m, i.e., the m-th power flow residual in
the region ℓ, and χℓ is the state of the region ℓ. Note that
the number of power flow equations npf

ℓ = 2ncore
ℓ in all

local region.
Hence, the distributed ac pf problem can be represented
as a system of nonlinear equations and affinely coupled
consensus equations as follows

rℓ(χℓ) = 0, ∀ℓ ∈ R∑
ℓ∈R

Aℓχℓ = Aχ = b.

(4a)
(4b)

with the state χ = (χ⊤
1 , χ

⊤
2 , · · · , χ⊤

nreg)⊤

2.2 Zero-Residual Least-Squares Formulation

Following Mühlpfordt et al. (2021), we reformulate the
distributed ac pf problem (4) in a standard least-squares
formulation with affine consensus constraint

min
χ

f(χ) :=
∑
ℓ∈R

fℓ(χℓ) =
1

2

∑
ℓ∈R

∥rℓ(χℓ)∥22

s.t. Aχ = b | λ

(5a)

(5b)
with the consensus matrix A = (A1, A2, · · · , Anreg) and
the state χ = (χ⊤

1 , χ
⊤
2 , · · · , χ⊤

nreg)⊤. The problem (5) can
be classified as a zero-residual least-squares problem, since
all the power flow residuals are equal to zero at the pf
solution χ∗.
Proposition 2. Let the power flow problem (2) be feasible,
i.e., a primal solution χ∗ to the problem (5) exists such that
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tive large dimension of the decoupled nlp problem and the
problematic code efficiency of the aladin-α toolbox (En-
gelmann et al., 2020).
The contribution of the present paper is two-fold. We
propose a Gauss-Newton based aladin algorithm for solv-
ing the zero-residual least-squares problem and a reduced
modelling method for distributed ac pf. Based on them,
we upgrade the open-source code of rapidpf. The remain-
der of this paper is organized as follows: Section 2 formu-
lates the distributed ac pf as a zero-residual least-squares
problem. Section 3 presents both the standard aladin and
the Gauss-Newton based aladin algorithms. The upgrade
of rapidpf, called rapidpf+, is described in Section 4. The
simulation results are compared and discussed in Section 5.

2. PROBLEM FORMULATION

This section introduces the distributed ac pf problem
of polar voltage coordination and its zero-residual least-
squares formulation. Before further discussion, we first
introduce some nomenclature. For a power system, R
represents the set of regions, nreg is the number of regions
and nconn is the number of all the connecting tie lines
between regions. In a specific region ℓ, Nℓ is the set of all
buses, whereas N core

ℓ and N copy
ℓ are the set of core and

copy buses in this region ℓ, respectively.

2.1 Distributed Power Flow

The conventional ac pf problem seeks a deterministic
solution to the steady-state operation of an ac electri-
cal power system by applying numerical analysis tech-
niques (Frank and Rebennack, 2016). Each bus in the
system has four variables, i.e., voltage angle θ, voltage
magnitude v, active power injection p, and reactive power
injection q.
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region system

Fact 1. Genetically, there are multiple mathematically
valid solutions to a power flow problem, but only one
solution has physical meaning (Frank and Rebennack,
2016).This results, e.g., from the periodic voltage angle
θ, and the respective trigonometric functions.

In order to apply a distributed algorithm, reformulation of
the ac pf problem is necessary. In terms of partitioning
the power system, we share the components between
neighboring regions to ensure physical consistency. As an
example, we take the 6-bus system with 2 regions, shown

in Figure 1. The coupled system, shown in Figure 1(a),
has been partitioned into 2 local regions. To solve the ac
pf problem in region R1, besides its own buses {1,2,3}
called core buses, the complex voltage of bus {4} from
neighboring region R2 is required. Hence, for the sub-
problem of region R1, we create an auxiliary bus {4} called
copy bus, along with its own core bus, to formulate a self-
contained ac pf problem.
Then, affine consensus constraints of the connecting tie
line are added to ensure consistency of the copy bus
with its original core bus in the neighboring region. The
consensus constraints of the example case in Figure 1 can
be written as

θcore
3 = θcopy
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vcore
3 = vcopy

3 , vcore
4 = vcopy

4

(1a)
(1b)

In a specific region ℓ, the power flow equations be repre-
sented as

pgi − pli = vi
∑
k∈Nℓ

vk (Gik cos θik +Bik sin θik)

qgi − qli = vi
∑
k∈Nℓ

vk (Gik sin θik −Bij cos θik)
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(2b)

for all core bus i ∈ N core
ℓ with the angle difference between

buses θik = θi − θk, complex generation sg = pg + jqg,
complex load sl = pl + jql, complex components of the
bus admittance matrix entries Yik = Gik + jBik. These
equations can also be written as residual function. These
power flow equations can be written as

rℓ(χℓ) = 0 (3)
where rℓ : R2ncore

ℓ +2ncopy
ℓ → Rnpf

ℓ is a residual function with
its components rℓ,m, i.e., the m-th power flow residual in
the region ℓ, and χℓ is the state of the region ℓ. Note that
the number of power flow equations npf

ℓ = 2ncore
ℓ in all

local region.
Hence, the distributed ac pf problem can be represented
as a system of nonlinear equations and affinely coupled
consensus equations as follows

rℓ(χℓ) = 0, ∀ℓ ∈ R∑
ℓ∈R

Aℓχℓ = Aχ = b.

(4a)
(4b)

with the state χ = (χ⊤
1 , χ

⊤
2 , · · · , χ⊤

nreg)⊤

2.2 Zero-Residual Least-Squares Formulation

Following Mühlpfordt et al. (2021), we reformulate the
distributed ac pf problem (4) in a standard least-squares
formulation with affine consensus constraint

min
χ

f(χ) :=
∑
ℓ∈R

fℓ(χℓ) =
1

2

∑
ℓ∈R

∥rℓ(χℓ)∥22

s.t. Aχ = b | λ

(5a)

(5b)
with the consensus matrix A = (A1, A2, · · · , Anreg) and
the state χ = (χ⊤

1 , χ
⊤
2 , · · · , χ⊤

nreg)⊤. The problem (5) can
be classified as a zero-residual least-squares problem, since
all the power flow residuals are equal to zero at the pf
solution χ∗.
Proposition 2. Let the power flow problem (2) be feasible,
i.e., a primal solution χ∗ to the problem (5) exists such that

the power flow residual rℓ(χ∗
ℓ ) = 0 for all ℓ ∈ R bounded

by consensus constraint (5b), and let linear independence
constraint qualification (licq) holds at χ∗. Then the dual
variable λ∗ = 0 with the primal solution χ∗ satisfies the
kkt conditions, i.e., (χ∗, λ∗ = 0) is a kkt point.

2.3 Sensitivities

The derivatives of the objective fℓ(χℓ) can be expressed as

∇fℓ(χℓ) = Jℓ(χℓ)
⊤rℓ(χℓ)

∇2fℓ(χℓ) = Jℓ(χℓ)
⊤Jℓ(χℓ) +Qℓ(χℓ)

(6a)
(6b)

with
Jℓ(χℓ) =

[
∇rℓ,1,∇rℓ,2, · · · ,∇rℓ,npf

]⊤

Qℓ(χℓ) =

npf∑
m=1

rℓ,m(χℓ)∇2rℓ,m(χℓ).

(7a)

(7b)

The Gauss-Newton approximation can be written as
∇2fℓ(χℓ) ≈ Jℓ(χℓ)

⊤Jℓ(χℓ) (8)
In practice, the first term (7a) dominates the second one
(7b), either because the residuals rℓ,m are close to affine
near the solution, i.e., ∇2rℓ,m are relatively small, or be-
cause of small residuals, i.e.,rℓ,m are relatively small (No-
cedal and Wright, 2006).
Remark 3. For solving the zero-residual least-squares prob-
lem, the Gauss-Newton approximation is exact at the
solution, and can converge to the exact Hessian during
iterations rapidly.

3. ALGORITHM

This section presents the standard aladin algorithm and
its new variant for zero-residual least-squares problems.

3.1 Standard ALADIN

Houska et al. (2016) introduced a novel algorithm, i.e.,
aladin, to handle distributed nonlinear programming.
aladin for problem (5) is outlined in Algorithm 1. The
algorithm has two main steps, i.e., a decoupled step (i)
and a consensus step (iii). Pursuing the idea of augmented
Lagrangian, the local problem is formulated as (10) in
step (i), where ρ is the penalty parameter and Σℓ is the
positive definite scaling matrix for the region ℓ. Based
on the result from local nlps (10), the aladin algorithm
terminates if both the primal and the dual residuals are
smaller than tolerance ϵ�����

∑
ℓ∈R

Aℓxℓ − b

�����
∞

≤ ϵ and max
ℓ

∥Σℓ(xℓ − zℓ)∥∞ ≤ ϵ (9)

Compared with a simple averaging step of admm in the
coordinator, aladin based on curvature information (11)
builds a coupled Quadratic Programing (qp) (12) to co-
ordinate the results of the decoupled step from all re-
gions. Additionally, a slack variable s and a corresponding
penalty parameter µ is introduced in the consensus step to
ensure feasibility of the coupled qp. Consequently, aladin
achieves fast and guaranteed convergence. A detailed proof
of local convergence can be found in Houska et al. (2016).

Algorithm 1 aladin(standard)
Initialization: λ, ρ, µ, zℓ, Σℓ ≻ 0 for all ℓ ∈ R,
Repeat:

(i) Solve decoupled nlps

min
xℓ

fℓ(xℓ) + λ⊤Aℓxℓ +
ρ

2
∥xℓ − zℓ∥2Σℓ

(10)

and compute local sensitivities for all ℓ ∈ R

gℓ = ∇fℓ (xℓ) and Hℓ ≈ ∇2fℓ (xℓ) (11)
(ii) Check termination condition (9)

(iii) Solve coupled qp

min
∆x,s

1

2
∆x⊤H∆x+ g⊤∆x+ λ⊤s+

µ

2
∥s∥22

s.t. A (x+∆x) = b+ s

(12a)

(12b)
where Hessian H = diag{Hℓ}ℓ∈R and gradient g with
components gℓ

(iv) Update primal and dual variables with full-step

z+ = x+∆x,

λ+ = λQP .

(13a)
(13b)

3.2 Gauss-Newton based inexact ALADIN

Based on the framework of standard aladin, we propose
a tailored version specific for solving zeros-residual least-
squares problem in the present paper, see Algorithm 2.
Since optimal values of Lagrangian multipliers are equal
to zero λ∗ = 0 according to Proposition 2, the Lagrangian
terms in (10)(12) can be neglected by fixing dual iterates
λ = 0 at the cost of convergence rate. In this way, both
coupled and decoupled steps can be viewed as adding a
residual to the original problems respectively, and can be
solved by equivalent linear systems efficiently.

Algorithm 2 inexact aladin(Gauss-Newton)
Initialization: λ, ρ, µ, zℓ, Σℓ ≻ 0 for all ℓ ∈ R,
Repeat:

(i) Solve decoupled linear systems and update primal variables xℓ(
Jz⊤
ℓ Jz

ℓ + ρI
)
pℓ = −Jz⊤

ℓ rzℓ (14)
with Gauss-Newton step pℓ = xℓ − zℓ, as well as compute local
sensitivities for all ℓ ∈ R

gℓ = Jℓ(x̂ℓ)
⊤rℓ(x̂ℓ) and Hℓ = Jℓ(x̂ℓ)

⊤Jℓ(x̂ℓ) (15)
(ii) Check termination condition (9)

(iii) Solve the linear system of coupled qp
(
H + µA⊤A

)
∆x = −µA⊤ (Ax̂− b)− g (16)

where Hessian H = diag{Hℓ}ℓ∈R and gradient g with
components gℓ

(iv) Update primal variables with full step

z+ = x̂+∆x. (17)

For the decoupled step (i), the objective function (10) can
be approximated by a quadratic model by applying the
Gauss-Newton method

Mℓ(pℓ) =
1

2
p⊤ℓ

(
Jz⊤
ℓ Jz

ℓ + ρI
)
pℓ + Jz⊤

ℓ rzℓ pℓ + fℓ(zℓ) (18)
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with Gauss-Newton step pℓ = xℓ − zℓ, Jacobian matrix
Jz
ℓ = Jℓ(zℓ) and residual vector rzℓ = rℓ(zℓ) at the

initial point zℓ in every iterate. Accordingly, the decoupled
nlp (10) is solved by a linear system (14), where xℓ is an
inexact solution to this problem.
For the coupled step (iii), the objective function can be
rewritten as

min
∆x

1

2
∆x⊤H∆x+ g⊤∆x+

µ

2
∥A (x̂+∆x)− b∥22 (19)

In the corresponding linear system (16), ∆x in coupled
step (iii) is locally equivalent to a standard Gauss-Newton
step of the original coupled problem (5), where the slack
variable s = A (x̂+∆x)−b can be viewed as an additional
weighted residual.
In the present paper, we focus on the local convergence due
to Fact 1 and good initial guess provided by matpower.
The local convergence indicates that the starting point
and the iterates are all located in a small neighborhood
of the optimizer, within which the solution has physical
meaning. The convex set Ω concludes all the points in
the bounded neighborhood. Besides, the objective f of the
original coupled problem (5) is second order continuously
differentiable according to Section 2.3, and

��∇2f(x)
�� is

bounded for all x ∈ Ω. Then, there exists a constant L > 0

∥∇f(x)−∇f(z∗)∥ =
��∇2f(x̃)

�� ∥x− z∗∥ ≤ L ∥x− z∗∥
(20)

with x̃ = x− t(x− z∗) ∈ Ω for some t ∈ (0, 1). Hence, the
function f is twice Lipschitz-continuously differentiable in
the neighborhood Ω.
Before discussing further about the convergence property,
we introduce a regularity and some nomenclature first:
A kkt point is called regular if linear independence con-
straint qualification (licq), strict complementarity condi-
tions (scc) and second order sufficient condition (sosc)
are satisfied. For the analysis of local decoupled step (i),
we introduce x̄ as the exact solution and x̂ as the inexact
solution of the decoupled nlps (10), whereas x∗ = z∗ is
the primal optimizer of the original coupled problem (5).
Next, let’s turn to the local convergence property of
Algorithm 2.
Theorem 4. Let the minimizer (x∗ = z∗, λ∗ = 0) be a
regular kkt point of problem (5), let the initial guess
located in the small neighborhood of the optimizer Ω, and
let µ sufficient large such that 1

µ ≤ O(∥x̂− z∗∥), then the
iterates x̂ of Algorithm 2 converge quadratically to a local
solution.

Proof of Theorem 4 can be established by three steps,
following the analysis in Appendix by Engelmann et al.
(2018). First, due to the fact that the local inexact solution
x̂ℓ is obtained by Gauss-Newton method, the x̂ is a linear
contraction to the exact solution x̄, i.e., there exists a
constant η1 > 0 such that

∥x̂− x̄∥ ≤ η1 ∥z − x̄∥ . (21)

Second, from Lemma 3 of Houska et al. (2016), we have
∥x̄− z∗∥ ≤ η2 ∥z − z∗∥ , ∃η2 > 0 (22)

This differs from standard aladin by a fixed dual variable
λ = 0.

Third, because the coupled step of Algorithm 2 is a stan-
dard Gauss-Newton step of the original coupled prob-
lem (5), as well as the Lipschitz continuity of f and
sufficient large µ such that 1

µ ≤ O(∥x̂− z∗∥), we obtain
the following inequality according to the convergence anal-
ysis of the standard Gauss-Newton method (Nocedal and
Wright, 2006, Section 10.3)��z+ − z∗

�� ≤
��H(z∗)−1Q(z∗)

�� ∥x− z∗∥+O(∥x− z∗∥2)
(23)

with Q = diag{Qℓ}ℓ∈R. For problem (5), all the optimal
residuals are equal to zero, then we have Qℓ(z

∗
ℓ ) = 0 for

all ℓ ∈ R. As a result,��z+ − z∗
�� ≤ O(∥x̂− z∗∥2) (24)

The statement of Theorem 4 follows by combining of(21),
(22) and (24).

4. OPEN-SOURCE IMPLEMENTATION

Based on the Algorithm 2, we improve the existing toolkit
rapidpf. To this end, in this section, we introduce a
reduced modelling method and describe the structural
upgrade of rapidpf+ compared with rapidpf.

4.1 Reduced modelling method

Table 1 summarizes the known and unknown variables of
a ac pf problem according to different bus-types in the
power system. In the original distributed ac pf model
proposed by Mühlpfordt et al. (2021), the known variables
are constrained by bus specification, which is added as
residuals in least-squares formulation. This results in the
unnecessary growth of the problem dimension and slows
down the run time. To overcome the issue, the present
paper distinguishes the known and the unknown variables,
and uses a so-called reduced modelling method to reduce
the dimension of the distributed ac pf problem.

Table 1. Known and Unknown variables for ac
pf problem regarding the bus-type

ref pq pv
Known variables θ, v p, q v, p

Unknown variables p, q θ, v θ, q

For a specific region ℓ ∈ N reg, the state consists of
variables from both core buses and copy buses. The state
of the core bus i is defined according to its own bus-type:

ζcore
i =



(pcore

i , qcore
i ) (ref)

(θcore
i , vcore

i ) (pq)
(θcore

i , qcore
i ) (pv)

, ∀i ∈ N core
ℓ , (25)

whereas the state of the copy bus j contains voltage angle
and magnitude

ζcopy
j = (θcopy

j , vcopy
j ), ∀j ∈ N copy

ℓ , (26)

The state of this specific region χℓ ∈ R2ncore
ℓ +2ncopy

ℓ is
composed by all the core and the copy buses in the regions.
Typically, ncore dominates ncopy in a sub-system of a power
grid. Therefore, the dimension by using the reduced mod-
elling method, i.e.,

∑
ℓ 2n

core
ℓ + 2ncopy

ℓ , is almost reduced
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with Gauss-Newton step pℓ = xℓ − zℓ, Jacobian matrix
Jz
ℓ = Jℓ(zℓ) and residual vector rzℓ = rℓ(zℓ) at the

initial point zℓ in every iterate. Accordingly, the decoupled
nlp (10) is solved by a linear system (14), where xℓ is an
inexact solution to this problem.
For the coupled step (iii), the objective function can be
rewritten as

min
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In the corresponding linear system (16), ∆x in coupled
step (iii) is locally equivalent to a standard Gauss-Newton
step of the original coupled problem (5), where the slack
variable s = A (x̂+∆x)−b can be viewed as an additional
weighted residual.
In the present paper, we focus on the local convergence due
to Fact 1 and good initial guess provided by matpower.
The local convergence indicates that the starting point
and the iterates are all located in a small neighborhood
of the optimizer, within which the solution has physical
meaning. The convex set Ω concludes all the points in
the bounded neighborhood. Besides, the objective f of the
original coupled problem (5) is second order continuously
differentiable according to Section 2.3, and
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with x̃ = x− t(x− z∗) ∈ Ω for some t ∈ (0, 1). Hence, the
function f is twice Lipschitz-continuously differentiable in
the neighborhood Ω.
Before discussing further about the convergence property,
we introduce a regularity and some nomenclature first:
A kkt point is called regular if linear independence con-
straint qualification (licq), strict complementarity condi-
tions (scc) and second order sufficient condition (sosc)
are satisfied. For the analysis of local decoupled step (i),
we introduce x̄ as the exact solution and x̂ as the inexact
solution of the decoupled nlps (10), whereas x∗ = z∗ is
the primal optimizer of the original coupled problem (5).
Next, let’s turn to the local convergence property of
Algorithm 2.
Theorem 4. Let the minimizer (x∗ = z∗, λ∗ = 0) be a
regular kkt point of problem (5), let the initial guess
located in the small neighborhood of the optimizer Ω, and
let µ sufficient large such that 1

µ ≤ O(∥x̂− z∗∥), then the
iterates x̂ of Algorithm 2 converge quadratically to a local
solution.

Proof of Theorem 4 can be established by three steps,
following the analysis in Appendix by Engelmann et al.
(2018). First, due to the fact that the local inexact solution
x̂ℓ is obtained by Gauss-Newton method, the x̂ is a linear
contraction to the exact solution x̄, i.e., there exists a
constant η1 > 0 such that

∥x̂− x̄∥ ≤ η1 ∥z − x̄∥ . (21)

Second, from Lemma 3 of Houska et al. (2016), we have
∥x̄− z∗∥ ≤ η2 ∥z − z∗∥ , ∃η2 > 0 (22)

This differs from standard aladin by a fixed dual variable
λ = 0.

Third, because the coupled step of Algorithm 2 is a stan-
dard Gauss-Newton step of the original coupled prob-
lem (5), as well as the Lipschitz continuity of f and
sufficient large µ such that 1

µ ≤ O(∥x̂− z∗∥), we obtain
the following inequality according to the convergence anal-
ysis of the standard Gauss-Newton method (Nocedal and
Wright, 2006, Section 10.3)��z+ − z∗

�� ≤
��H(z∗)−1Q(z∗)
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with Q = diag{Qℓ}ℓ∈R. For problem (5), all the optimal
residuals are equal to zero, then we have Qℓ(z

∗
ℓ ) = 0 for

all ℓ ∈ R. As a result,��z+ − z∗
�� ≤ O(∥x̂− z∗∥2) (24)

The statement of Theorem 4 follows by combining of(21),
(22) and (24).

4. OPEN-SOURCE IMPLEMENTATION

Based on the Algorithm 2, we improve the existing toolkit
rapidpf. To this end, in this section, we introduce a
reduced modelling method and describe the structural
upgrade of rapidpf+ compared with rapidpf.

4.1 Reduced modelling method

Table 1 summarizes the known and unknown variables of
a ac pf problem according to different bus-types in the
power system. In the original distributed ac pf model
proposed by Mühlpfordt et al. (2021), the known variables
are constrained by bus specification, which is added as
residuals in least-squares formulation. This results in the
unnecessary growth of the problem dimension and slows
down the run time. To overcome the issue, the present
paper distinguishes the known and the unknown variables,
and uses a so-called reduced modelling method to reduce
the dimension of the distributed ac pf problem.

Table 1. Known and Unknown variables for ac
pf problem regarding the bus-type

ref pq pv
Known variables θ, v p, q v, p

Unknown variables p, q θ, v θ, q

For a specific region ℓ ∈ N reg, the state consists of
variables from both core buses and copy buses. The state
of the core bus i is defined according to its own bus-type:

ζcore
i =



(pcore

i , qcore
i ) (ref)

(θcore
i , vcore

i ) (pq)
(θcore

i , qcore
i ) (pv)

, ∀i ∈ N core
ℓ , (25)

whereas the state of the copy bus j contains voltage angle
and magnitude

ζcopy
j = (θcopy

j , vcopy
j ), ∀j ∈ N copy

ℓ , (26)

The state of this specific region χℓ ∈ R2ncore
ℓ +2ncopy

ℓ is
composed by all the core and the copy buses in the regions.
Typically, ncore dominates ncopy in a sub-system of a power
grid. Therefore, the dimension by using the reduced mod-
elling method, i.e.,

∑
ℓ 2n

core
ℓ + 2ncopy

ℓ , is almost reduced

by half, compared with the original model—
∑

ℓ 4n
core
ℓ +

2ncopy
ℓ —proposed by Mühlpfordt et al. (2021).

4.2 rapidPF vs. rapidPF+

As shown in Figure 2, the rapidpf builds a distributed
ac pf problem based on matpower case files and solves
it by interfacing with an external aladin-α toolbox.
Nevertheless, due to the problematic code efficiency of the
aladin-α toolbox, computing for a large-scale problem
is not acceptable—for a 4662-Bus system, it takes 90.1
seconds to converge by using fmincon, whereas the initial
time by using casadi is intolerant.

matpower

rapidpf

aladin-α

rapidpf+

Models

original reduced

aladin

standard inexact

Modelling

Solution

Fig. 2. Flow charts for solving distributed ac pf by the
rapidpf and the rapidpf+ toolbox

In contrast, rapidpf+ doesn’t rely on the external aladin
toolbox. The user can switch between two models and two
aladin algorithms. Comparison of these combinations is
carried out in the following section.

5. SIMULATION RESULTS

In this section, we illustrate the performance of several
combinations of the two distributed ac pf models and the
two variants of aladin algorithm. We use the suggested
combination by Mühlpfordt et al. (2021) as a benchmark,
i.e., the original distributed power flow model with stan-
dard aladin (Algorithm 1). Towards practical implemen-
tation, several test cases by Mühlpfordt et al. (2021) are
also modified—multiple connecting tie lines are added and
the graph of regions is transferred from radial to meshed
topology. Besides, we introduce a 10224-bus test case to
exhibit the performance for a large-scale implementation.
The framework 2 is built on matlab-R2021a and the case
studies are carried out on a standard desktop computer
with Intel® i5-6600K CPU @ 3.50GHz and 16.0 GB in-
stalled ram. To run the benchmark, adding matpower
to matlab search path is necessary. The casadi tool-
box (Andersson et al., 2019) is used in matlab, and
ipopt (Wächter and Biegler, 2006) is used as the solver for
decoupled nlps. To solve the linear system, a conjugate-
gradient technique (Nocedal and Wright, 2006, Algorithm
7.2) is implemented in order to avoid matrix-matrix mul-
tiplications, i.e., J⊤J .
Following Engelmann et al. (2018), the quantities in the
following are used to illustrate the convergence behavior
(1) The deviation of optimization variables from the

optimal value ∥x− x∗∥∞.
(2) The primal residual, i.e., the violation of consensus

constraint ∥Ax− b∥∞ =
��∑

ℓ∈R Aℓxℓ − b
��
∞.

2 The code is available on https://github.com/xinliang-
dai/rapidPF.

(3) The dual residual γ = maxℓ∈R ∥Σℓ(xℓ − zℓ)∥∞.
(4) The solution gap calculated as |f(x)− f(x∗)|, where

f(x∗) is provided by the centralized approach.
The user-defined tolerance ϵ is set to 10−8, while the
penalty parameters ρ and µ are set to 102.

5.1 Comparison of different combinations

For fair comparison, the primal variables x are initialized
with the initial guess provided by matpower (Zimmer-
man et al., 2010), while the dual variable λ is set to zero.
runpf from matpower is used to represent a centralized
approach.
Table 2 displays the computing time of different com-
binations. The computing time of both algorithms also
benefit from the dimensional reduction—compared with
the original distributed ac pf model, the dimension by
applying reduced modelling method is decreased almost
by half.
What else stands out in this table is the fast computing
time of the Gauss-Newton based inexact aladin (Algo-
rithm 2). In contrast to solving nlp in a decoupled step
of Algorithm 1, Algorithm 2 solves the equivalent linear
systems of a quadratic approximation in both decoupled
and coupled steps by exploiting the structure of the prob-
lem formulation. Consequently, the computation effort has
been reduced dramatically. As a result, the computing
time of solving the reduced distributed pf model by using
Algorithm 2 is in the same order of magnitude with the
centralized approach, and can be further improved by
implementing parallel computing.
Note that all the test cases can converge within half a
dozen iterations, whatever model or algorithm is applied.
In summary, the dimensional reduction and the inexact
approach has little impact on convergence rate, but can
reduce the computational effort remarkably.

5.2 Convergence behavior of 10224-Bus system

Next, we study the convergence behavior of the largest
test case, i.e., 10224-bus system. The test case is composed
of six 1354-bus matpower test cases, and seven 300-bus
matpower test cases. Thereby, there are 13 regions and
242 connecting-tie lines between neighboring regions, as
presented in Table 2. Its connection graph of regions are
shown in Figure 3. To solve the ac pf problem of the

1

2 34

5

6

7 89

10

11 12 13

Fig. 3. Connection graph of 10224-bus test case

10224-Bus system, we use the reduced modelling method
with the Gauss-Newton based inexact aladin algorithm.
Figure 4 shows the four quantities in every iterate, i.e., the
deviation of current variables from the optimal value, the
primal residual, the dual residual and the solution gap.
Within half a dozen iterates, the new aladin algorithm
converges to the optimal solution with high accuracy, as
presented in Table 3. At the same time, a locally quadratic
convergence rate can be observed from Figure 4.
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Table 2. Computing time for solving power flow problem with different combinations

Original model Reduced modelBuses nreg nconn
Dimension standard[s] inexact[s] Dimension standard[s] inexact[s] centralized

53 3 5 232 0.143 0.027 126 0.114 0.011 0.004
418 2 8 1704 0.485 0.068 868 0.315 0.028 0.014

2708 2 30 10952 3.913 0.236 5536 2.149 0.109 0.051
4662 5 130 19168 10.442 0.451 9844 5.694 0.228 0.129

10224 13 242 41864 25.909 0.996 21416 14.392 0.591 0.257

Table 3. The deviation of the 10224-bus sys-
tem from the optimizer by applying reduced

modeling method with the inexact aladin

θ [rad] v [p.u.] p [p.u.] q [p.u.]
∥ · ∥∞ 1.7× 10−8 7.5× 10−9 5.7× 10−7 3.2× 10−6
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100
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Iteration

∥x− x∗∥∞
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104

Iteration

|f(x)− f(x∗)|

Fig. 4. Convergence behavior of 10224-bus system by
applying reduced modeling method with the inexact
aladin

6. CONCLUSIONS

The present paper investigates the application of a new tai-
lored version of aladin for solving the ac power flow (pf)
problem. Compared with the previous work by Mühlpfordt
et al. (2021), the dimension can be reduced by half by
applying reduced modelling method. Theoretically, the
convergence rate would be traded off for improvement
on computing time by applying the Gauss-Newton based
inexact aladin. However, the simulation results show no
difference between exact and inexact aladin in terms of
the number of iterations. Besides, no external nlp solver
is needed. In general, this new combination is of great
potential for handling large-scale systems, and turns out to
be as efficient as a centralized approach. For future work,
efforts toward parallel computing will be made to reduce
the computing time even further, and an extension to the
ac opf problem will be investigated.

REFERENCES

Andersson, J.A., Gillis, J., Horn, G., Rawlings, J.B., and
Diehl, M. (2019). Casadi: a software framework for
nonlinear optimization and optimal control. Math.
Program. Comput.”, 11(1), 1–36.

Du, X., Engelmann, A., Jiang, Y., Faulwasser, T., and
Houska, B. (2019). Distributed state estimation for AC
power systems using Gauss-Newton ALADIN. In 2019
IEEE 58th Conference on Decision and Control (CDC),
1919–1924. IEEE.

Engelmann, A., M”uhlpfordt, T., Jiang, Y., Houska, B.,
and Faulwasser, T. (2017). Distributed AC optimal
power flow using ALADIN. In In Proceedings of the 20th
IFAC World Congress, Toulouse, France, 5701–5706.

Engelmann, A., Jiang, Y., Benner, H., Ou, R., Houska, B.,
and Faulwasser, T. (2020). ALADIN-α—an open-source

matlab toolbox for distributed non-convex optimization.
Optimal Control Applications and Methods.

Engelmann, A., Jiang, Y., Mühlpfordt, T., Houska, B., and
Faulwasser, T. (2018). Toward distributed OPF using
ALADIN. IEEE Transactions on Power Systems, 34(1),
584–594.

Erseghe, T. (2014). Distributed optimal power flow using
ADMM. IEEE transactions on power systems, 29(5),
2370–2380.

Frank, S. and Rebennack, S. (2016). An introduction to
optimal power flow: Theory, formulation, and examples.
IIE transactions, 48(12), 1172–1197.

Grainger, J.J. (1999). Power system analysis. McGraw-
Hill.

Houska, B., Frasch, J., and Diehl, M. (2016). An aug-
mented Lagrangian based algorithm for distributed non-
convex optimization. SIAM Journal on Optimization,
26(2), 1101–1127.

Jiang, Y., Sauerteig, P., Houska, B., and Worthmann, K.
(2021a). Distributed optimization using ALADIN for
MPC in smart grids. IEEE Transactions on Control
Systems Technology, 29(5), 2142–2152.

Jiang, Y., Kouzoupis, D., Yin, H., Diehl, M., and Houska,
B. (2021b). Decentralized optimization over tree
graphs. Journal of Optimization Theory and Applica-
tions, 189(2), 384–407.

Meyer-Huebner, N., Suriyah, M., and Leibfried, T. (2019).
Distributed optimal power flow in hybrid AC–DC grids.
IEEE Transactions on Power Systems, 34(4), 2937–
2946.

Mühlpfordt, T., Dai, X., Engelmann, A., and Hagenmeyer,
V. (2021). Distributed power flow and distributed
optimization—formulation, solution, and open source
implementation. Sustainable Energy, Grids and Net-
works, 26, 100471.

Nocedal, J. and Wright, S. (2006). Numerical optimization.
Springer Science & Business Media.

Sun, H., Guo, Q., Zhang, B., Guo, Y., Li, Z., and Wang, J.
(2014). Master–slave-splitting based distributed global
power flow method for integrated transmission and
distribution analysis. IEEE Transactions on Smart
Grid, 6(3), 1484–1492.

Sun, H. and Zhang, B. (2008). Distributed power flow
calculation for whole networks including transmission
and distribution. In 2008 IEEE/PES Transmission and
Distribution Conference and Exposition, 1–6. IEEE.

Wächter, A. and Biegler, L.T. (2006). On the implemen-
tation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Math. Program.,
106(1), 25–57.

Zimmerman, R.D., Murillo-Sánchez, C.E., and Thomas,
R.J. (2010). Matpower: Steady-state operations, plan-
ning, and analysis tools for power systems research and
education. IEEE Trans. Power Syst., 26(1), 12–19.


