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Abstract
Supervised and unsupervised kernel-based algorithms widely used in the physical sciences depend
upon the notion of similarity. Their reliance on pre-defined distance metrics—e.g. the Euclidean or
Manhattan distance—are problematic especially when used in combination with high-dimensional
feature vectors for which the similarity measure does not well-reflect the differences in the target
property.Metric learning is an elegant approach to surmount this shortcoming and find a
property-informed transformation of the feature space. We propose a new algorithm for metric
learning specifically adapted for kernel ridge regression (KRR):metric learning for kernel ridge
regression (MLKRR). It is based on the Metric Learning for Kernel Regression framework using the
Nadaraya-Watson estimator, which we show to be inferior to the KRR estimator for typical
physics-based machine learning tasks. The MLKRR algorithm allows for superior predictive
performance on the benchmark regression task of atomisation energies of QM9 molecules, as well
as generating more meaningful low-dimensional projections of the modified feature space.

1. Introduction

Over the last decade, supervised and unsupervised machine learning methods have established themselves as
reliable tools in the physical sciences [1–12]. Supervised models aim to find a mathematical relationship
between input data and target properties. Kernel-based regression methods, e.g. kernel ridge regression
(KRR) and Gaussian process regression (GPR), are popular in the field [3, 4, 13–15]. While equivariant
neural networks have recently also become state-of-the-art models to predict molecular properties [16–19],
KRR models remain important, particularly for small datasets. Unsupervised machine learning algorithms
instead find underlying structure in unlabelled data. Dimensionality reduction methods like t-distributed
stochastic neighbor embedding (t-SNE) [20], PCA, Multidimensional scaling or Isomap [21] enable the
visualisation of an otherwise uninterpretable high-dimensional feature space [10–12]. A central concept to
many supervised and unsupervised approaches is similarity: the underlying assumption being that points
close in the feature space should be close in property space. Similarity between two elements in a feature
space may be constructed using a kernel, a function that outputs a scalar value between 1 (identical) or 0
(entirely dissimilar). Many kernel functions contain a decreasing exponential of a metric, such as the
Euclidean distance (Gaussian kernel) or the Manhattan distance (Laplacian kernel). Alternative measures
such as the linear kernel (the dot product between the feature vectors), or the cosine similarity also exist.

Such pre-defined distance metrics pose problems, especially when a feature space is high-dimensional
and possibly polluted with irrelevant or redundant features. Ab-initio representations widely used in
chemistry, materials science and condensed matter physics [3, 4] illustrate these limitations. These
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representations are designed to encode the relevant information to describe any molecular structure:
typically, using non-linear functions of atom types and positions. Popular examples are SLATM [22], SOAP
[23] and FCHL [24, 25], among many others [4, 26, 27]. They are used to develop predictive models for a
variety of properties [25, 26, 28–38] or to facilitate the visualisation and interpretation of the chemical space
[10–12]. Yet, these representations do not provide a universally meaningful measure of molecular similarity,
resulting in sub-optimal performance when more challenging properties are targeted [39]. This deficiency is
intrinsically connected to the use of pre-defined metrics that treats all the features on a equal footing
regardless of their redundancy or relevance to a particular task. For instance, the Euclidean distance used in
the Gaussian kernel (dE(a,b) =

√∑
i(ai − bi)2 = ||a− b||2) is dominated by features with high variance,

which we found [39] to not necessarily correlate with predictive capabilities. While redundancy in a feature
space is easily eliminated by using unsupervised linear dimensionality reduction algorithms such as PCA and
CUR decomposition [40], adapting the relevance of descriptive features in a metric for a particular target
requires a supervised approach [41].

Metric learning (or distance metric learning, or similarity learning) [42, 43] provides an elegant solution
to adapt the notion of similarity (and distance) according to the target property. Thus, similarity can be
transformed from a global concept (two molecules are similar based on their structure) to an
application-specific concept (two molecules are similar, in the context of their properties). This conceptual
shift enables a more specific definition of similarity, which naturally circumvents many of the pitfalls of
pre-defined similarity notions, as well as enabling more accurate machine learning models. Despite its
promise, metric learning has remained largely absent in the chemical domain, except for a few examples on
graph-structured data [44]. This is likely because most frameworks are designed for clustering or
classification [45–47], while chemistry is dominated by regression tasks. We note that alternatives to metric
learning exist with the same goal of optimising representations for a specific task: for example in the GPR
framework [48], in (supervised) contrastive learning [49–52] or using deep belief networks [53, 54].

One of the few examples of metric learning algorithms focused specifically on regression tasks is metric
learning for kernel regression (MLKR) developed by Weinberger and Tesauro [45]. MLKR learns a linear
transformation matrix that transforms the distance metric between points in order to optimise the
prediction of a particular target in a kernel regression. However, the kernel regression used in MLKR
employs the non-parametric Nadaraya-Watson (NW) estimator, which, as demonstrated in this work, is less
suited than the KRR estimator for regression tasks. The NW estimator, which is essentially a
Nearest-Neighbours estimator, evaluates similarity between points in a relative manner using a notion that is
dependent on the distribution of points within a particular dataset. In KRR, the notion of similarity is
instead absolute, i.e. independent of the distribution of data. This is an important distinction if the aim is to
accurately predict molecular properties. Within this context, identifying the trial molecule that is close (in the
absolute sense) to the molecular system of interest is more relevant than identifying the closest points that
potentially correspond to dissimilar molecules.

In order to enable metric learning in the KRR framework, we propose a new algorithm—metric learning
for kernel ridge regression (MLKRR)—which modifies the MLKR formalism for the KRR estimator. While
this is not the first metric learning algorithm that exists for KRR [42, 55], to our knowledge this is the first
effort that is not an adaptation of a algorithm originally designed for clustering or classification. We choose
to start from the MLKR algorithm [45] because of its focus placed on the regression task (though not KRR).
Finally, we demonstrate the improved performance of MLKRR on the prototypical task of regressing
atomisation energies of small molecules in the QM9 dataset [56]. We expect that MLKRR could enable the
wide-spread adoption of metric learning for kernel-based machine learning tasks in the physical sciences,
thereby re-defining the fundamental notion of similarity upon which they depend.

2. Metric learning

Metric learning algorithms transform a feature space in order to construct a distance function that minimises
the prediction error of a specific property. They learn a linear transformation matrix A that generates a
Mahalanobis distance [57] (dM) on the original space

dM(a,b) = ||Aa−Ab||2 = ||A(a− b)||2. (1)

Since ATA is positive semidefinite, there exists an orthogonal matrix Q as well as non-negative diagonal
matrix D such that ATA= QTDQ, see [45]. Thus, the transformation of the feature space with A corresponds
to a rotation and a scaling of the components. In this way, distances of points can be increased or decreased,
depending on their relevance for the target property.
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2.1. Metric learning for kernel regression
Weinberger and Tesauro [45] propose the following method to apply the transformation matrix A in the
context of prediction. Suppose that the data points are xi ∈ Rd and the predictions are yi ∈ R, i= 1, . . . ,n.
The transformation is used in the Gaussian kernel as follows

k(xi,xj) =
1√
2πσ

e−
||A(xi−xj)||22

σ2 . (2)

The authors rely on the NW estimator

ŷi =

∑
j̸=i

yjkij∑
j̸=i

kij
. (3)

The prediction of a new data point x is then

f(x) = ŷ=

∑
j
yjk(x,xj)∑

j
k(x,xj)

. (4)

The learning of the matrix A is expressed as an optimisation problem. The goal is to minimise the residual
sum of squares L :=

∑
i(yi − ŷi)2. The optimisation then relies on the gradient of the loss with respect to the

transformation matrix A

∂L
∂A

=
4

σ2
A
∑
i

(̂yi − yi)
1

Zi

∑
j ̸=i

(̂yi − yj)kijxijx
T
ij , (5)

where xij := xi − xj and Zi :=
∑

j ̸=i kij.

2.2. Metric learning for kernel ridge regression
We introduce MLKRR, which uses the standard parametric KRR estimator instead:

ŷi =
∑
j

αjk(xi,xj). (6)

The prediction of a new data point x is then:

f(x) = ŷ=
∑
j

αjk(x,xj). (7)

The coefficients αj that minimise the sum of squares Lα :=
∑

i(yi − ŷi)2 are obtained by solving the linear
equation [58]:

α= (K+λI)−1y (8)

where K ∈ Rn×n is the matrix defined by the Gaussian kernel k(xi,xj), λ is a small regularisation parameter
and I is the identity matrix. In classical KRR, the α coefficients are optimised for a fixed kernel. In the MLKR
approach described above on the other hand, only the matrix A is optimised. The novelty of our method [42]
lies in the specific combination of both principles. We now explain the two-step procedure that computes first
the estimator and then the metric.

We first sample nα data points {x(α)i }nαi=1 and their corresponding labels {y
(α)
i }nαi=1 from our dataset in

order to compute the estimator from the coefficients α. It follows from the expression (8) above that αmay

be written in terms of the matrix A, hidden in the kernel matrix Kij := k(x(α)i ,x(α)j ). Once the estimator is
found, we use its predictions (7) in order to optimise the matrix A. For this, a new loss function is considered

on new data points. We sample nA new data points {x(A)i }nAi=1 with their corresponding labels {y
(A)
i }nAi=1. The

predictions of these points are hence given by

ŷ(A)i :=
∑
j

αjk
(
x(A)i ,x(α)j

)
, (9)

3
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Figure 1.MLKRR transforms and rotates the components of the original feature space. A training set is divided into two sets,
labelled α and A. The colours of the points represent the corresponding function values. The projection of the points with
standard PCA does not show a correlation of the value with the first principal components, while the PCA projection of the
points (PCA’) that have been transformed with A illustrate such a correlation. The transformed point-set features are less noisy
and the relevant signals are amplified.

which in turn yield the second loss function to minimise LA :=
∑

i(y
(A)
i − ŷ(A)i )2. The computation of the

matrix A is done by gradient descent using the gradient∇ALA. To express the gradient in a closed form, we
introduce the following notation.

The predictions (9) impose the definition of the additional kernel matrix Qij := k(x(A)i ,x(α)j ). Further, we

set X(α) and X(A) the matrices whose rows are the data points of corresponding superscript. Let also y(α) and
y(A) be the vectors whose entries are the property labels of corresponding superscript. The gradient∇ALA is
now given by

∂LA

∂A
=− 4

σ2
A
(
−X(A)TWX(α) −X(α)TWTX(A) +X(A)TRX(A) +X(α)TSX(α)

)
+

4

σ2
AX(α)T

(
−W̃− W̃T + R̃+ S̃

)
X(α),

(10)

whereWij := (̂y(A)i − y(A)i )αjQij, W̃ab := Kabαb

[
(K+λI)−TQT(̂y(A) − y(A))

]
a
. The diagonal matrices R,S, R̃, S̃

are the vertical and horizontal sums ofW and W̃, that is Rii :=
∑

jWij, and Sjj :=
∑

iWij. More on the
definitions of these matrices, together with the proof of correctness of the expression is given in the appendix.

Figure 1 illustrates the MLKRR algorithm at work. Initially, there is no correlation between the two
principal components (i.e. high-variance components) of a high dimensional dataset and the target property.
The MLKRR algorithm learns a transformation matrix A by minimising the squared distance between the
predicted target property and the property labels of training data. The matrix A redefines the distance metric
on the original feature space. As illustrated in the right panel of figure 1, the high-variance components of
the feature space now correlate with the target property. We note that here the matrix A is square such that
the transformation rotates and scales the components, but it could be non-square to reduce the
dimensionality of the feature space [42].

We implemented MLKR and MLKRR in a python module found at github.com/lcmd-epfl/MLKRR
based on the python library metric-learn [59].

2.3. Conceptual comparison of MLKR andMLKRR
The different nature of the similarity used by the KRR and NW estimators affects their respective regression
performance. Given a datapoint x in two different data distributions, the KRR definition of similarity
between x and a neighbour a is independent of any other points in the distribution. On the other hand, the
NW definition of similarity adapts to the distribution of data, so that a point x is similar to a if a is the closest
point to x (see figure 2(a)). Effectively, functions regressed with NW result in piece-wise surfaces resembling
Voronoi diagrams, where each region of the feature space is dominated by the nearest data point.
Alternatively, KRR generates surfaces that transition smoothly, which generally results in superior prediction
performance. This is clearly observed in figure 2(b), which shows the result of a simple regression on a 2D
feature space.

4
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Figure 2. (a) Depiction of the different approaches to define similarity between KRR and NW. (b) Target function depending on
two features and the corresponding regressions based on the KRR and the NW estimators. The two models were trained on a
limited sample of data points marked as crosses in the first plot.

3. Computational details

3.1. Dataset
All models were built using a random subset of 24 000 molecules from the QM9 dataset [56] of 134 000
three-dimensional structures and corresponding atomisation energies of small drug-like molecules (up to
nine heavy atoms). The initial set was then split into 20 000 for training, 2000 for validation (fitting
hyperparameters for the KRR, and tracking the accuracy of the models throughout optimisation) and 2000
for testing (used for the out-of-sample error in the learning curves). An equivalent model for the
HOMO-LUMO gap (20% gain in performance) is discussed in the supplementary material.

3.2. FCHL representation
Molecules are represented using the Faber-Christensen-Huang-Lilienfeld 19 (FCHL19) representation [25]
as implemented in the qml python package [60], but other representations could have been used. An
equivalent model trained using the BoB [27] representation shows similar improvement and is given in the
supplementary material. The default settings were used for all of the FCHL19 parameters. Local
representations were converted to global ones by summing all of the atomic contributions, such that the
eventual representations were a vector consisting of 720 features.

3.3. Optimisation details
The MLKR and MLKRR algorithms were optimised for enough time to reach convergence, which was
around 2000 steps in both cases (see figure 3). The function minimize of the SciPy [61] library was used to
optimise the matrix A, which itself uses the L-BFGS-S [62] algorithm. A was initialised as the identity matrix.
For the MLKRR, we used nα = nA, although some of our tests suggest that nα < nA could be superior. In
order to reduce overfitting for the MLKRR, the training data was reshuffled into A and α sets every 30
optimisation steps. The starting kernel width σ for the MLKRR was σ= 55, and the regularisation parameter
was fixed at λ= 1× 10−9. These parameters are the optimal values for the standard KRR, which were
optimised using a grid search on the test set.

5
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Figure 3. Learning curves showing the evolution of the mean absolute error (MAE) throughout the optimisation process for our
implementations of MLKR and MLKRR. Both converge after around 2000 steps.

4. Results and discussion

4.1. Learning transformationmatrices
Training the MLKR and MLKRR algorithms consists of optimising the relevant transformation matrices A.
Figure 3 illustrates the evolution of the optimisation process for the two algorithms. Despite the noisier
optimisation of the MLKRR, which is a result of the periodic reshuffling of the datasets to optimise both A
and α, both algorithms converge after approximately 2000 steps.

After the optimisation process, we obtain the optimised transformation matrices A, which are visualised
in figure 4. Both matrices AMLKR and AMLKRR contain many non-zero values, both along the diagonal and in
off-diagonal terms. Modifications to diagonal terms are effectively a re-weighting of the original features,
akin to the application-based re-weighting of terms by Ceriotti et al [63]. Here however, the re-weighting is
entirely learned by the algorithm. Diagonal terms Aii where |Aii|> 1 indicate that a higher weight is applied
to specific features, whereas |Aii|< 1 indicate that a lower weight is applied. Aii = 0 indicates that the feature
is dropped entirely, reducing the dimensionality of the feature space. Off-diagonal terms Aij, i ̸= j, are linear
combinations of the original features. The highly correlated nature of the FCHL features is illustrated by the
fact that the transformation matrices are rather smooth (shown in the panels on the right of figure 4). After
convergence, the largest terms in the transformation matrices are the diagonal values. This is partially due to
the fact that the initial guess for the optimisation process is the identity matrix. It also indicates that the
original features are useful to predict the target property with an appropriate re-weighting (i.e. a selection
and amplification of relevant features for the target property). The selection of off-diagonal terms acts to
combine features that are originally correlated, i.e. generating new features. Thus, the metric learning process
naturally applies a feature selection protocol.

4.2. Improving predictions of atomisation energies of QM9molecules
With our trained transformation matrices in hand, we now proceed to evaluating the new feature space for
the prediction of atomisation energies of QM9 molecules. As we showed in our previous work [39], unless
modified by feature selection or metric learning protocols, feature variance is not necessarily correlated to
predictive capabilities. Here, since we have modified the feature space and corresponding distance metric, we
expect the variance to again correlate with the relevance of features for a target property. In figure 5, the
variance of the original FCHL features and modified FCHLMLKR and FCHLMLKRR features is shown. The
original and transformed features do not represent exactly the same information, as the transformed features
are constructed as a linear combination of the original ones. Nevertheless, they are still the dominant
components, as seen in the diagonal from the Amatrices in figure 4. As observed, FCHLMLKRR, and to a lesser
extent, FCHLMLKR makes use of almost all of the feature space. This suggests that the metric learning
procedure effectively manipulates all of the features to eliminate irrelevance and redundancy.

The goal of the metric learning procedure is to improve predictions on the target property. In figure 6, we
compare the relative capabilities of the distance metric learned by MLKR andMLKRR to improve predictions
in a KRR model. The learning curves illustrate the evolution of the MAE with increasing training data. In the
left panel of figure 6, we observe that the metric obtained with MLKRR offers a significant improvement over
the original. The learning curve shows a faster decrease and the MAE of the final model is∼38% lower. On
the other hand, the metric obtained with MLKR in fact performs worse than the original one. The learning
curve is shifted upwards and the performance of the final model is∼24% worse. This suggests that the

6
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Figure 4. Colourmaps representing the learned transformation matrices A for MLKR (AMLKR) and MLKRR (AMLKRR). The
lefthand panels illustrate all matrix elements, whereas the righthand panels illustrate zoomed-in components. Both
transformation matrices amplify the diagonal components in order to select relevant features for the target property, as well as
choosing off-diagonal components to reduce the number of redundant features. The colour scale is capped in the range [−2, 2] to
facilitate the visualisation of the off-diagonal elements (the highest absolute values of the matrices are below 5).

Figure 5. Feature variances of the original FCHL and the metric-learned alternatives (FCHLMLKR and FCHLMLKRR) on the QM9
dataset (left), with a zoom on the [0, 5] range of the y axis (right).

distance metric learned by the MLKR framework does not necessarily improve its capabilities for KRR. Since
the MLKR optimisation procedure relies on the NW estimator, we suspect that the nature of this estimator
compared to that of the KRR results in a metric that is less suitable for regression tasks.

4.3. Dimensionality reduction
We illustrate the effects of our metric-learned similarity measures by constructing 2D projections of the
QM9 dataset using the feature spaces spanned by FCHL, FCHLMLKR (FCHL ·AT

MLKR) and FCHLMLKRR

7
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Figure 6. Learning curves with the evolution of the MAE on a validation set of 2k structures obtained using a KRR model (left)
and distribution of errors in the same set obtained with a KRR constructed using 10 000 data points from the training set (right),
generated using the FCHL representation and the altered variations obtained with MLKR (FCHLMLKR) and MLKRR
(FCHLMLKRR).

Figure 7. 2D projections of FCHL, FCHLMLKR and FCHLMLKRR constructed using t-SNE and PCA algorithms (first and second
row, respectively). The colourmap shows the atomisation energy for each compound.

(FCHL ·AT
MLKRR). t-SNE projects data points in a N-dimensional space (N = 2 in general) by minimising the

difference of the pairwise affinity between points in the original and new spaces. The definition of affinity
between two points in t-SNE is:

pij = e−γd(xi,xj)
2
/∑

k ̸=i

e−γd(xi,xk)
2

(11)

akin to the weights of the kernel average for the predictions in the NW estimator of MLKR (see equation
(3)). PCA instead performs the projection such that the new dimensions are those with the highest variance
in the original data. It does not rely on an explicit distance as in the t-SNE, but still selects the principal
components by evaluating XTX (where X is the feature vector), which is analogous to a distance.

8
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The t-SNE and PCA maps obtained with FCHL, FCHLMLKR and FCHLMLKRR are shown in figure 7,
where each of the points representing a molecule are coloured by their atomisation energy. Distinct
differences between the maps are observed. The t-SNE and PCA maps obtained with the FCHLMLKR features
tend to organise local clusters. Yet, there is no global coherence between the organisation of the projected
points and the coloured target property. Instead, the FCHLMLKRR maps resemble more closely those of the
original FCHL, albeit organised into larger regions offering a better coherence with respect to the target
property. Overall, MLKRR improves the organisation of data to uncover patterns (figure 7) relevant to
optimise the prediction of the targeted properties (figure 6).

The proposed MLKRR algorithm offers additional functionalities beyond maximising prediction
accuracy for specific applications. Careful analysis of the learned transformation matrices provide valuable
insights as to why some representations behave better than others [15]. In addition, the algorithm offers a
mathematical route to construct a hierarchy of molecular representations adaptable and tailored to specific
targets as an alternative to building representations encoding the relevant information in absolute terms [4].
Comparisons between the similarities and metrics learned for a wide range of applications might also
uncover hidden trends useful to develop improved and more general molecular representations. Finally,
MLKRR could also be exploited in transfer-learning or meta-learning approaches: a concept which has so far
been limited to neural network applications [64].

5. Conclusions

Similarity-based machine learning methods are widely used in the physical sciences. Their dependence on a
pre-defined distance metric is problematic in combination with high-dimensional feature vectors often
containing irrelevant or redundant features. To address this shortcoming, we introduce an algorithm,
MLKRR, which re-defines the notion of similarity between points to optimise the prediction of specific
target properties in KRR tasks. MLKRR was shown to offer improved performance (38%) on the
prototypical regression task of atomisation energies of the QM9 dataset [56], as well as generating more
meaningful low-dimensional projections of transformed feature vectors. In addition, we illustrate why the
MLKRR algorithm is more suited to the prediction of continuous target properties, as is typical in the
physical sciences, than the related MLKR algorithm based on the NW estimator.
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Appendix. Derivation of MLKR andMLKRR gradients

Derivation of the MLKR gradient in equation (5)
Starting from the top, we find

∂L
∂A

= 2
∑
i

(̂yi − yi)
∂ ŷi
∂A

,

where ŷi =
1
Zi

∑
j ̸=i kijyj and Zi =

∑
j ̸=i kij.

This naturally leads us to compute ∂ ŷi
∂A , and hence

∂kij
∂A . Firstly, the kernel derivative is

∂kij
∂A

=− 1

σ2
kij

∂

∂A

(
d(xi,xj)

2
)
,

=−
2kij
σ2

Axijx
T
ij ,

(12)
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where xij := xi − xj.
Consequently, one has

∂ ŷi
∂A

=
1

Zi

∑
j ̸=i

∂kij
∂A

yj −
1

Zi
ŷi
∑
j̸=i

∂kij
∂A

,

=− 2

σ2Zi
A
∑
j ̸=i

kijyjxijx
T
ij +

2

σ2Zi
Aŷi
∑
j ̸=i

kijxijx
T
ij ,

=
2

σ2Zi
A
∑
j̸=i

kij(̂yi − yj)xijx
T
ij .

From which the conclusion stems naturally.

Derivation of the MLKRR gradient of equation (10)
In the following, the derivation of the gradient (10) and its precise definition are given. The notations
defined in section 2.1 will be reused along with the subsequent new ones.

We consider two different kernel matrices: one between X(α) and itself and one between X(A) and X(α)

(seen as K and Q respectively in equation (10)). We also denote by H the regularised kernel defining the
coefficients α for KRR.

To simplify notations, we let the index i range over {1, . . . ,nA}, while the indices j,a, and b range over
{1, . . . ,nα}. We further lose the superscripts on x and y when the indices suffice to determine them, and use
the same letter K for both kernels.

ki,j :=
1√
2πσ

e−
d(xi,xj)

2

σ2 , kj,j′ :=
1√
2πσ

e−
d(xj,xj′)

2

σ2 ,

H := (K+λI), α :=H−1y(α).

As above, we start from the following expression

∂L
∂A

= 2
∑
i

(̂yi − yi)
∂ ŷi
∂A

,

where ∂ ŷi
∂A =

∑
j
∂
∂A (αjkij). Remembering that both α and K depend on A, we therefore aim to compute

∂kij
∂A

and
∂αj

∂A .
Remember that the kernel derivative is already computed in (12).

∂kij
∂A

=−
2kij
σ2

Axijx
T
ij ,

where xij := xi − xj.
The second term requires treating the derivative of H−1, the details of which are spared. In fact, routine

computation yields that

∂

∂A
(H−1)jj′ =

2

σ2
A
∑
a,b

(H−1)ja(H
−1)bj′kabxabx

T
ab,

and hence that

∂αj

∂A
=

2

σ2
A
∑
a,b

(H−1)jakabαbxabx
T
ab.

Combining both derivatives gives the following expression for the gradient.

∂L
∂A

= 2
∑
i,j

(̂yi − yi)

[
∂kij
∂A

αj +
∂αj

∂A
kij

]
,

=− 4

σ2
A
∑
i,j

(̂yi − yi)αjkijxijx
T
ij

+
4

σ2
A
∑
a,b

kabαb

[
H−TKT(̂y− y(A))

]
a
xabx

T
ab.

(13)
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We recall that K has two different definitions depending on its indexing. To clarify, we set K ∈ Rnα×nα the
kernel between X(α) and itself; and we set Q ∈ RnA×nα the kernel between X(A) and X(α).

The lemma below allows us to turn this expression into matrix form. Indeed, note that both sums are of
the form

∑
i,jWij(xi − xj)(xi − xj)T, where xi and xj are lines of X(A) or X(α) depending on their index.

Lemma 1. Consider two matrices A and B with lines {ai}, {bj} of matching dimensions, and let xij = ai − bj. Set
further the matrix

Σ=
∑
i,j

Wijxijx
T
ij , (14)

with some coefficients Wij making up a matrix W. Then

Σ=−ATWB−BTWTA+ATRA+BTSB,

where R and S are both diagonal matrices with Rii =
∑

jWij, and Sjj =
∑

iWij.

Applying the lemma to both expressions in (13) leads us to construct the matricesW ∈ RnA×nα and
W̃ ∈ Rnα×nα in the following way.{

Wij := (̂yi − yi)αjQij,

W̃ab := Kabαb

[
H−TQT(̂y− y(A))

]
a
.

Finally, the diagonal matrices R,S, R̃, S̃ given by the lemma conclude.

Proof of lemma 1. The right-hand side of (14) splits into four sums which make up each term of the result.

Σ=
∑
i,j

Wij(ai − bj)(ai − bj)
T,

=
∑
i

∑
j

Wij

aia
T
i +

∑
j

(∑
i

Wij

)
bjb

T
j ,

−
∑
i,j

Wijaib
T
j −

∑
i,j

Wijbja
T
i .

Note that the last two terms are transpose of each others so that only one has to be treated. Additionally, for a
general matrixM of appropriate dimensions, one can easily verify that

ATMB=
∑
i,j

Mijaib
T
j .

TakingM=W,R, and S yields the desired result.
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