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Abstract

Graphene nanoribbons (GNRs) – one-dimensional strips of graphene – share many of the

exciting properties of graphene, such as ballistic transport over micron dimensions, strength

and flexibility, but more importantly, they exhibit a tunable band gap that depends on the

atomic structure. Recent advances of fabricating atomically precise bottom-up GNRs with

unprecedented control over their atomic structure have attracted interest from the field of

nanoelectronics. However, a big part of the future success of GNRs depends on the ability

to produce and integrate GNR junctions into complex next-generation devices. Much more

effort is needed in both perfecting the production techniques and improving the theoretical

understanding of these exciting nanostructures.

This thesis is, therefore, devoted to exploring electronic transport properties in graphene

nanoribbon junctions and unraveling their underlying structure-property relationships. Using

tight-binding models, density functional theory and Green’s function method, we determine

the electronic properties of both experimentally synthesized and theoretically proposed

junctions.

In the first part of the thesis, we examine width-modulated GNR nanostructures and discover

a subtle interplay between the localized states in the scattering region and the continuum of

states in the leads. We show that depending on the size of the scattering region, we observe

contrasting behavior on the electronic transport properties. Next, we expand the width-

modulated region and show that a width-dependent transport gap opens in the presence

of a quantum dot, thereby yielding built-in one-dimensional metal-semiconductor-metal

junction.

Part II of this thesis is dedicated to a joint experimental and theoretical effort in order to

reveal the detrimental effect of “bite” defects, resulting upon the cleavage of phenyl groups of

precursor molecules. We explore their effect on the electronic transport from first-principles

calculations and show how conduction is disrupted at the band edges. We then generalize our

theoretical findings to other nanoribbons in a systematic manner, thus establishing guidelines

to minimize the detrimental role of such defects. Later, we show that strategically placed

“bite” defects can selectively modify electronic transport properties and apply this concept to

construct two prototypical components for nanoelectronics.

Whereas, in Part III we employ high-throughput screening of over 400000 angled junctions

in order to find potential candidates for interconnects in logic circuits and determine design

rules based on structure-property relationships. We discover that the bipartite symmetry
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Abstract

of graphene lattice and the presence of resonant states, localized at the junction, play an

important role in determining the transport properties of angled junctions. Besides, we also

provide a web application that allows easy design and calculation of electronic properties

of GNR junctions. Finally, the last chapter of the thesis involves developing a more realistic

model for transport calculations by including finite length and contact effects in order to

reduce the gap between the experimental and theoretical results.

Keywords: Graphene, Graphene Nanoribbons, GNR, Junctions, One-dimensional Structures,

Electronic Transport, Conductance, Tight-binding, Green’s Function, High-throughput Screen-

ing.
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Résumé
Les Nanorubans de graphène (GNR) – des bandes uni-dimensionnelles de graphène – par-

tagent beaucoup des propriétés du graphène, comme le transport balistique sur des distances

micrométriques, la résistance et la flexibilité. Mais surtout, ils présentent une bande interdite

réglable qui dépend de la structure atomique. Le succès récent dans la fabrication atomique-

ment précis GNRs avec un contrôle sans précédent sur la structure a attiré l’attention de la

nanoélectronique. Cependant, le futur succès des GNRs dépend de la possibilité de produire

et d’intégrer les jonctions des GNR dans des appareils complexes. Par conséquent, beaucoup

d’efforts sont nécessaires tant dans le perfectionnement des techniques de production que

dans l’amélioration de la compréhension théorique de ces nanostructures.

Cette thèse est donc dévouée à l’exploration du transport électronique dans les jonctions

des GNRs et à la resolution des relations entre des propriétés et de la structure. En utili-

sant le méthode des liaisons fortes, la théorie de la densité fonctionnelle et la fonction de

Green, nous avons déterminé les propriétés électriques des jonctions qui sont été synthétisées

expérimentalement et aussi découvertes théoriquement.

Dans la première partie de cette thèse, nous avons examiné la largeur ajustable des GNR nano-

structures et nous avons découvert l’interaction subtile entre les états localisés dans la région

de diffusion et les états continus dans les électrodes. Nous avons montré que’en fonction de la

taille de la région de diffusion un comportement contrasté sur les caractéristiques électriques

est observé. Ensuite, nous avons étendu la région de la largeur ajustable et prouvé qu’un écart

de conduction dépendant de la largeur se créé en présence d’un point quantique.

La deuxième partie de cette thèse est dédiée à un effort à la fois expérimental et théorique dans

le but de révéler l’effet néfaste des imperfections de “morsures” créé à partir du clivage du cycle

phényle. Nous avons exploré leur effet sur la conductance électrique et nous avons prouvé

qu’ils ont considérablement perturbés les propriétés aux bords des bandes. Nous avons ensuite

généralisé nos conclusions théoriques aux autres nanorubans et par conséquent nous avons

défini des bonnes pratiques pour minimiser le rôle néfaste de ces imperfections. Ensuite, nous

avons montré que ces imperfections stratégiquement placées peuvent modifier sélectivement

le transport électronique et appliquer ce concept à la construction de composants prototypés

pour la nanoélectronique.

Dans la troisième partie, nous avons utilisé une criblage à haut débit de plus de 400000 de

jonctions avec le but de trouver des candidats potentiels pour des interconnections dans des

circuits logiques et pour déterminer les règles de conception. Nous avons découvert que la

symétrie bipartite des mailles de graphène et la présence d’états résonnants situés à la jonction
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Résumé

joue un rôle important dans la détermination des propriétés de transport électronique. En plus,

nous avons aussi fourni une application web qui permet de concevoir facilement et calculer

les propriétés électroniques des jonctions des GNR. Pour conclure, le dernier chapitre de notre

thèse implique le développement d’un modèle plus réaliste pour les calculs de conductance

en incluant une longueur finie et des effets de contact pour réduire l’écart entre les résultats

expérimentaux et théoriques.

Mots-clés : Graphène, Nanorubans de graphène, GNR, Jonctions, structures uni-dimensionnelles,

Transport électronique , Conductance, Méthode des liaisons fortes, Fonction de Green, Cri-

blage à haut débit.
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1 Introduction

The single-atom-thick graphene is the first truly two-dimensional material isolated in 2004 by

Novoselov and Geim [Novoselov et al., 2004]. This groundbreaking Nobel-prize-winning work

defied expectations that two-dimensional materials should not exist in nature [Peierls, 1935]

and therefore, rightly propelled graphene to great acclaim. Owing to numerous novel physical

properties such as unparalleled thermal conductivity [Balandin et al., 2008], high carrier

mobility [Morozov et al., 2008], ballistic transport over micron dimensions [Bolotin et al.,

2008], strength and flexibility [Lee et al., 2008], huge hopes have been placed on this carbon-

based material from numerous science and industrial fields starting from biology, condensed

matter physics and chemistry to energy storage, sensor and even aerospace industry [Barkan,

2019; Reiss et al., 2019]. Perhaps, one of the most exciting expectations for graphene is to

replace silicon-based electronics in a new technological revolution to push and eventually

exceed the limits of Moore’s law [Moore, 1998], which states that the number of transistors per

unit area doubles every two years. However, almost 20 years latter graphene has not impacted

our everyday lives as much as we have hoped for.

Some of the reasons why graphene has not taken off so far stem from the fact that it simply

takes “time and money” to bring a new material to market and although there have been great

improvements, it is still quite expensive and challenging to produce defect-free graphene in

large amounts [Reiss et al., 2019]. While other reasons are linked to the intrinsic properties of

a graphene sheet. For example, while graphene has an extraordinary semi-metallic electronic

structure and exhibits massless Dirac fermions [Novoselov et al., 2005], some potential appli-

cations in nanoelectronics dictate that the material requires a band gap opening. Interestingly,

both of these problems can be tackled by utilizing different kinds of graphene-based nanos-

tructures – with new production methods and tweaked electronic properties. These potential

materials include the plethora of sp2-hybridized carbon nanostructures that extend over all

dimensionalities – 0D (fullerene, graphene flakes, carbon nano-onions), 1D (nanoribbons,

nanotubes), 2D (haeckelites) and 3D (nanofoams, nanoribbon/nanotube hydrogels).
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Figure 1.1: Overview of graphene’s properties. (a) Honeycomb atomic structure of graphene
with the basis vectors a1 and a2. (b) The reciprocal lattice of graphene with high-symmetry
points K ,K ′, M ,Γ and the associated basis vectors b1 and b2. (c) Valence orbitals of sp2-
hybridized carbon in graphene – sp2 orbitals combine to form in-plane σ bonds with neigh-
boring carbon atoms, while out-of-plane pz orbitals overlap laterally to form π bonds. (d)
Band structure of graphene as obtained from the nearest-neighbor tight-binding model with
t1 = 2.7 eV.

Special interest has awakened in the case of graphene nanoribbons (GNRs) – few-atom-wide

strips of graphene that exhibit a band gap [Son et al., 2006] and can be produced with atomic

precision through a bottom-up approach [Cai et al., 2010]. Pairing the unique physical proper-

ties of graphene such as the aforementioned long mean free path of electrons, with a tunable

band gap [Han et al., 2007] that depends on the atomic structure of GNR [Yazyev, 2013] has

rocketed them to the forefront for potential applications in nanoelectronics [Areshkin and

White, 2007; Wang et al., 2021a]. However, the probable future success of GNRs is still a pend-

ing question and much more effort is needed in both perfecting the production techniques

and improving the theoretical understanding of these exciting nanostructures. This thesis

will be devoted to examining GNR nanostructures as potential building blocks of novel nano-

electronics and focus on establishing structure-property design rules for electronic transport.

We will start this introductory chapter by taking a small step back and first introducing the

physical properties of graphene, while latter moving on to GNRs and discussing the electronic

properties, production and characterization techniques, and finally, current and potential

applications in nanoelectronics.

1.1 Graphene

Graphene – the two-dimensional allotrope of carbon – consists of sp2-bonded carbon atoms

arranged in a honeycomb structure. It can be described by a triangular lattice with a basis of

two atoms per unit cell and the corresponding lattice vectors:

a1 = a

2
(
p

3,1), a2 = a

2
(
p

3,−1), (1.1)
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1.1 Graphene

where a = p
3acc = 2.46 Å and acc = 1.42 Å, which is the carbon-carbon bond length in

graphene as seen in Figure 1.1(a). Similarly the reciprocal-lattice vectors then are expressed as

b1 = 2πp
3a

(1,
p

3), b2 = 2πp
3a

(1,−p3). (1.2)

Particular attention should be paid to the existence of two nonequivalent K high-symmetry

points in the reciprocal space shown in Figure 1.1(b), which give rise to many of the interesting

physical properties in graphene. These points in the momentum space are given by

K = 4π

3a
(

p
3

2
,

1

2
), K′ = 4π

3a
(

p
3

2
,−1

2
). (1.3)

Although graphene was previously considered to be thermodynamically unstable [Peierls,

1935], key electronic properties were already theoretically investigated by Wallace in 1947

[Wallace, 1947]. This happened almost sixty years before graphene was experimentally isolated

with the help of a scotch tape by Novoselov and Geim [Novoselov et al., 2004]. We can generally

distinguish two types of bonds in graphene-based structures – three (s, px , py ) valence orbitals

are hybridized into sp2 orbitals and combine to form the in-plane σ bonds, while the perpen-

dicular pz orbitals laterally interact with the neighboring pz orbitals and form the π bonds [see

Figure 1.1(c)]. Due to the lack of p orbitals in the core of carbon and hence the small atomic

radius, the formed covalent σ bonds are short and strong that in turn enhance the mechanical

flexibility and strength of the material [Meunier et al., 2016; Torres et al., 2020]. However, it

has been noted that there is a considerable separation between bonding and antibonding

σ bands (due to the filled shell) and the low-energy physics of graphene can be accurately

described by just taking the half-filled π band into account [Wallace, 1947]. In practice this

means that simple models such as one-orbital (pz ) tight-binding (TB) approximation (which

will be covered in Section 2.3) is often sufficient to describe the electronic structure and the

arising peculiar properties of graphene-based structures.

Within this simple approximation the conductance and valence electronic bands can be

expressed as [Wallace, 1947]

Ec,v (k) =±t1

√
3+ f (k)− t2 f (k), (1.4)

f (k) = 2cos
(p

3ky acc

)
+4cos

(p
3

2
ky acc

)
cos

(
3

2
kx acc

)
, (1.5)

where t1 ≈ 2.7 eV and t2 ≈ 0.2 eV are the nearest-neighbor and next-nearest neighbor hopping

energy [Reich et al., 2002] and the Fermi level is usually shifted to 0 eV. Often only first-nearest-

neighbor (1NN) coupling is taken into account and electron-hole symmetry can be observed

as seen in the band structure of graphene in Figure 1.1(d), this symmetry disappears if further-

laying neighbor couplings are included. From the band structure one can also immediately

notice the linear dispersion around the K (K ′) point and the crossing at E = 0 eV, which is

dubbed as a Dirac point. First, this shows that graphene lacks a band gap and is indeed a

3
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semi-metal and second, the dispersion close to the K point can be approximated as [Wallace,

1947]

Ec,v (q) ≈±ℏvF
∣∣q∣∣, (1.6)

where we assume k = K+q with
∣∣q∣∣<< |K| and q is the momentum measured relative to the

K point, while vF = 3t acc
2ℏ is the Fermi velocity. The electronic properties in these six corners

of the Brillouin zone hence mimic those of massless Dirac fermions and display an effective

“speed of light” around 106 m/s.

1.2 Graphene nanoribbons

One-dimensional graphene nanoribbons share many of the exciting properties of graphene,

but more importantly, they also exhibit unprecedented degree of tunability of their electronic

characteristics based on the atomic structure [Yazyev, 2013]. This degree of control makes

GNRs extremely appealing for building atomic-scale logic devices, which require switching

capability and an on-off ratio in the order of 104 −107. To achieve this band gaps of over 0.4 eV

are required, which call for the GNRs to be scaled down to mere nanometers [Schwierz, 2010].

GNRs can be imagined as being cut out from a graphene sheet with two typical cutting

directions that result in either armchair or zigzag edges as seen in Figure 1.2(a). Both of

these directions are separated by 30° and cutting in-between the two typical orientations will

result in GNRs with more complex edge structures. Although initially the top-down methods

such as cutting a graphene sheet or carbon nanotubes were employed [Kosynkin et al., 2009;

Tapasztó et al., 2008; Mohanty et al., 2012], they resulted in GNRs with rough edges that

induced unwelcome scattering and suppressed ballistic transport. Excellent progress was

made in last decade, when Cai et al. [Cai et al., 2010] introduced on-surface synthesis of

atomically precise GNRs as an alternative bottom-up method utilizing rationally designed

precursor molecules. We present the atomic structures of such pristine armchair (AGNR)

and zigzag (ZGNR) ribbons in Figure 1.2(b) and Figure 1.4(a). We will follow the convention

[Nakada et al., 1996; Wakabayashi et al., 1999] of marking the number of dimer or zigzag

lines for AGNRs and ZGNRs, respectively, to classify them by width and denote it by N -AGNR

(N -ZGNR), where N is the number of lines. Furthermore, as the hydrogen atoms contribute

negligibly to the electronic properties near to the Fermi level, in most TB calculations they

are neglected and the atomic structures are usually drawn without them. We note that in the

following chapters the edges are always assumed to be singly passivated by hydrogen atom.

The rest of this section is structured as follows: we will address the electronic structure of

GNRs with a focus on the more commonly used AGNRs, then discuss both the production

methods and characterization techniques, and finally review the current state of the research

on GNR-based electronics.
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Figure 1.2: Overview of AGNRs. (a) Atomic structure of a graphene sheet and the two typical
cutting directions – armchair (red) and zigzag (blue). (b) The atomic structure of N -AGNR,
where the dashed red line marks the unit cell and numbers indicating the width of the AGNR in
terms of dimer lines. (c) The Brillouin zone of graphene and ky =const cuts through the zone –
full lines indicate crossing of Dirac point, while dashed lines cross Dirac cone. (d) 7-AGNR and
(e) 8-AGNR band structure obtained with the 1NN-TB model. (f) Band gaps ∆N of N -AGNRs
calculated by the 1NN-TB model.

1.2.1 Electronic structure

An excellent starting point to obtain the electronic structure of graphene nanoribbons can be

achieved by taking the graphene tight-binding model and introducing boundary conditions.

By setting a condition for the electron wavefunction to be confined in the lateral direction of

the GNR we will observe that the electron wave vector will be quantized. This quantization

will show a strong dependence on the atomic structure of the ribbon and result in drastically

different electronic properties based on the edge type and GNR width.

Armchair graphene nanoribbons

Considering a N -AGNR, we can follow the derivation provided in references [Brey and Fertig,

2006; Rozhkov et al., 2009] to express the quantization of the wavevector ky as

ky = 2πnp
3(N +1)acc

, (1.7)
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where n is an integer between with possible values of 0 < n < N +1. The full AGNR spectrum

thus can be built up from N equidistant ky one-dimensional cuts ϵn(kx ) of the graphene band

structure. In Figure 1.2(c) we show how the imposed quantization of ky cuts through the

Brillouin zone of graphene, with full lines representing cuts through the Dirac points, while

dashed lines indicating cuts through the Dirac cone. Interestingly, the quantization condition

enforces three families of N -AGNRs with N = 3p, N = 3p +1 and N = 3p +2 (where p is an

integer) that determine whether the nanoribbon is metallic or semiconducting. For N = 3p+2

family the possible ky values dictate that one of the cuts (ky = 4π
3
p

3acc
) will go right through the

K point and hence the resulting nanoribbon will inherit the zero band gap of graphene.

The band structures of the semiconducting 7-AGNR (3p +1) and metallic 8-AGNR (3p +2) are

displayed in Figure 1.2(d) and (e) where the Dirac point can be seen for the 8-AGNR, while

7-AGNR exhibits a direct band gap at Γ. In general, the band gap ∆N of a N -AGNR is inversely

proportional to its width when considering GNRs within the same family, while the hierarchy

between the families is given by ∆3p ≥ ∆3p+1 > ∆3p+2. The band gaps of the 3 ≤ N ≤ 32 N -

AGNRs computed by the 1NN-TB model are displayed in Figure 1.2(f), with corresponding

analytical solutions [Cresti et al., 2008]:

∆3p = t1(4cos
πp

3p +1
−2),

∆3p+1 = t1(2−4cos
π(p +1)

3p +2
),

∆3p+2 = 0.

(1.8)

However, one needs to note that the zero band gap of N = 3p +2 family is only observed

in the 1NN tight-binding approximation and a finite band gap is opened with higher level

theory calculations [Rozhkov et al., 2009]. For example, first-principles calculations of the

“metallic” 8-AGNR predict a band gap opening of ∆8 ≈ 0.22 eV that has been associated with

electron-electron interactions [Zarea and Sandler, 2007] and edge relaxations [Son et al., 2006].

Interestingly, some of the effects can also be captured in improved TB models as was done

by Son et al. [Son et al., 2006], who included modified edge atom coupling due to the shorter

carbon-carbon bonds. It was noted that the edge carbon-carbon bond length shortens by

about 3.5% compared to bulk bonds and the corresponding hopping term hence increases

by about 12%. In practice, we can introduce another hopping term only applied to the edge

atoms, where ted g e = t1 +δt and δt ≈ 0.1t1. Similar effects can be achieved by introducing

additional longer-range coupling terms [White et al., 2007] such as second- (2NN) or third-

nearest-neighbor (3NN) coupling, which in turn introduce additional edge scattering and

a destruction of hidden long-range symmetry [Tepliakov et al., 2022]. Finally, it has also

been observed that depending on the theory level 3p and 3p +1 families can exchange their

positions in the band gap size hierarchy [Son et al., 2006].

Alternative AGNR grouping in the same three families also follows by considering the number

of Clar formulas for a particular width [Wassmann et al., 2010; Martín-Martínez et al., 2012].

6
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a b c

Figure 1.3: Clar’s sextet distribution in N -AGNRs. (a)N = 3p family only has one Clar formula,
(b)N = 3p +1 family displays two Clar formulas with localized double bonds and the resulting
superposition. (c) N = 3p +2 family displays 3p Clar formulas with localized double bonds
and the resulting superposition with delocalized Clar sextets over all of the structure. Adapted
from [Corso et al., 2018].

Clar’s rule [Clar and Clar, 1972] states that the Kekulé resonance structure with the largest

number of disjointed aromatic π-sextets (six π electrons localized in single benzene-like

ring) is the most representative and stable structure. This is an important measurement of

aromaticity and it gives an indication about bond length alternation in the structure that

in turn has been identified of one of the main causes for opening band gaps in conjugated

organic systems [Yang et al., 2004]. For N = 3p and N = 3p +1 families there are one and two

Clar formulas, respectively, [Figure 1.3(a) and (b)] and the superposition of these structures

does not result in all benzene rings having a π-sextet. This in turn leads to both single and

localized double bonds, and a large bond length variation that induces the opening of a band

gap. However, the N = 3p +2 family has 3p different Clar formulas as seen in Figure 1.3(c) and

a linear combination of these structures leads to highly aromatic system with negligible bond

length alternation in the middle part of the AGNR and hence a very small band gap [Corso

et al., 2018].

Zigzag graphene nanoribbons

As this thesis mainly deals with AGNRs, we will only briefly mention some of the peculiar ZGNR

properties and will not provide an extensive derivation of the electronic structure from the

boundary conditions and the resulting wavevector quantization. Although similar formalism

of slicing graphene’s band structure can be applied, added difficulty arises from introducing

curved slices and emergence of additional edge states that cannot be associated with the
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Figure 1.4: Overview of ZGNRs. (a) The atomic structure of N -ZGNR, the dashed blue line
marks the unit cell and numbers indicate the width of the ZGNR. (b) Band structure of 8-ZGNR
calculated by the 1NN-TB model, displaying a degenerate flat band at E = 0 eV. (c) Band
structure of 8-ZGNR calculated by the mean field Hubbard model including 3NN couplings.
The band structure experiences a band gap opening due to the magnetic ground state. (d) Clar
formulas and the resulting superposition structure displaying Clar’s sextets in every benzene
ring and additional unpaired electrons at the edges that give raise to the edge states. Adapted
from [Corso et al., 2018].

graphene’s band structure. For more in-depth discussion one can consult references [Dubois

et al., 2009] and [Wakabayashi et al., 2010].

We start by addressing the atomic structure of an N -ZGNR and the resulting band structure of

8-ZGNR calculated by nearest-neighbor TB model in Figure 1.4(a) and (b). Fascinatingly, both

edges are comprised of opposite sublattice atoms that leads to the peculiar doubly-degenerate

flat band with zero energy near the X point in the Brillouin zone ( 2π
3 < |k| <π). The electron

density associated with these flat bands is mainly localized on the opposite edges (sublattices)

and rapidly decays towards the center of the ZGNR, while density of states (DOS) display a

sharp peak at EF [Wakabayashi et al., 1999]. Small dispersion in these bands is acquired if

the nanoribbon is sufficiently narrow (N ≈ 3) and therefore overlapping edge states can form

bonding and antibonding levels [Nakada et al., 1996], however all wider ZGNRs are metallic at

the simple tight-binding level.

Intriguingly, this is no longer the case, when spin-polarization is considered – ZGNRs are

predicted to have a semiconducting magnetic ground state with ferromagnetic coupling along

the edge and anti-ferromagnetic coupling across the edges [Wakabayashi et al., 1999; Son

8
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et al., 2006]. Figure 1.4(c) displays the band structure of 8-ZGNR, but this time calculated with

the mean field Hubbard model (U = 2.0 eV) including up to third-nearest-neighbor couplings

(t2 = 0.2 eV, t3 = 0.18 eV). The band gap opens due to the staggered sublattice potentials that

result from the magnetic ordering – opposite spin states on opposite edges occupy different

sublattices [Kane and Mele, 2005]. Furthermore, with increasing ZGNR width the staggered

potentials decrease in the middle of the ribbon and hence the band gaps are also inversely

proportional to width of the ribbon.

Analyzing ZGNRs in the framework of Clar’s rule displays a very interesting picture – by

allowing the introduction of radicals into the structure, we can distribute Clar sextets over

the whole ZGNR length. We show in Figure 1.4(d) some of the possible Clar formulas and the

resulting superposition that exhibits Clar’s sextets over the whole ZGNR as well as the unpaired

electrons on the edges. This implies high aromaticity, low bond length modulation and hence

small band gap. Furthermore it also confirms the emergence of the edge states at Fermi level

due to the unpaired electrons and the spin polarized nature of such states [Corso et al., 2018].

1.2.2 Production methods

Among the first production methods of GNRs, the so-called “top-down” approach was the

most prevalent with unzipping of nanotubes [Kosynkin et al., 2009; Jiao et al., 2009, 2010],

etching and lithography of graphene [Chen et al., 2007; Ci et al., 2008; Campos et al., 2009;

Bai et al., 2009; Wang and Dai, 2010; Yang et al., 2010; Abramova et al., 2013] leading the way.

Recently Chen et al. [Chen et al., 2021] demonstrated that sub-10-nm wide GNRs can be

produced by squashing carbon nanotubes and then selectively etching the edges, whereas

atomically precise cutting using hydrogenation as pseudo-crack has been proposed by Qi [Qi

et al., 2020]. However, these techniques are lacking reproducibility and/or atomic precision,

which is essential to gain control over the electronic properties of GNRs. Alternative route was

proposed by Cai and colleagues [Cai et al., 2010], when they showed that it was possible to

grow atomically precise GNRs from precursor molecules, hence establishing a “bottom-up”

method. The tremendous advantage of this technique is the possibility to chemically design a

particular molecule, which will uniquely define the width, edge structure and doping pattern

of the GNR and thus also their electronic properties [Yazyev, 2013]. Furthermore, due to the

ultrahigh-vacuum conditions variety of issues, such as dangling bonds or oxidation products

are excluded. This work sparked a renewed interest into GNR research and a wide plethora of

different GNRs by on-surface [Abdurakhmanova et al., 2014; Kimouche et al., 2015; Basagni

et al., 2015; Liu et al., 2015; Ruffieux et al., 2016; Moreno et al., 2018; Sun et al., 2019a; Pawlak

et al., 2020; Keerthi et al., 2020; de la Torre et al., 2020] and in some cases in-solution or solid

phase [Kim et al., 2013; Gemayel et al., 2014; El Gemayel et al., 2014; Jordan et al., 2016; Vo

et al., 2014; Zhang et al., 2020; Yano et al., 2020; Dubey et al., 2021; Yao et al., 2021] synthesis

have been made since. We display an overview of (some) experimentally synthesized GNRs in

Figure 1.5 grouped by the three main edge types (armchair, zigzag or chiral) and the associated

sub-types.
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Figure 1.5: Representative examples of bottom-up synthesized GNRs.

Typical on-surface reactions follow two thermally activated main steps – first polymerization

through Ullmann coupling and then cyclodehydrogenation to obtain flat GNRs as seen in

Figure 1.6(a) [Cai et al., 2010]. These reactions are usually carried out under ultrahigh-vacuum

and start with thermal sublimation of the precursor molecules onto a solid surface that yield

surface-stabilized biradical species. Such surface-catalyzed dehalogenation allows lower reac-

tion temperatures in order to escape unwanted side-reactions or molecular desorption [Björk

et al., 2013; Dong et al., 2015]. After the first thermal activation step, biradical species diffuse

across the surface and bind covalently to form linear polymer chains entirely defined by the

precursor molecule. Depending on the substrate, metastable metal-organic intermediates

have also been detected to form during this step [Dong et al., 2015]. Figure 1.6(c) shows the

scanning tunneling microscopy (STM) image of a polymer chain after the first step. Finally, sec-

ond thermal activation step involves transforming the polymer chains into planar, atomically

precise GNRs through cyclodehydrogenation [Figure 1.6(d)]. Additional processes, such as

the lateral fusion of GNRs, can be observed if higher annealing temperatures are used, which

can decrease the selectivity of the reaction as GNRs of different widths are formed [Chen et al.,

2017b].

Interestingly, the choice of substrate is not only facilitating the dehalogenation process, but

can also determine the resulting product. For example, Han et al. [Han et al., 2014] showed

that substituting the traditional Au(111) or Ag(111) surface with Cu(111), while utilizing the

same precursor molecule (10,10′-dibromo-9,9′-bianthryl) used for synthesis of 7-AGNR, one
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Figure 1.6: On-surface synthesis of GNRs. (a) Reaction scheme of 7-AGNR starting from a
bianthryl monomer. (b) Reaction scheme for the polymerization of bianthryl monomer into
(3,1)-AGNR. The blue dots(red squares) indicate regions that are close to (away from) the
Cu(111) surface. (c) STM image (left) of the polymer before the final cyclodehydrogenation
step and density-functional theory simulated STM image (right) overlaid with model of the
polymer (carbon in blue, hydrogen in white). (d) Overview STM image after the final synthesis
step showing 7-AGNRs, with the inset showing a higher-resolution STM. Panels (c) and (d) are
adapted from [Cai et al., 2010].

can obtain a GNR with chiral-edge configuration. Figure 1.6(b) shows the reaction scheme of

bianthryl monomer polymerization into (3,1)-GNR that passes over the traditional Ullmann

coupling and undergoes intermolecular cyclodehydrogenation instead. Whereas, Schulz and

co-workers [Schulz et al., 2017] confirmed the role of the substrate by modifying the precursor

molecule and still observing the chiral GNR product. Furthermore, substrate can also have

a major impact on the length of resulting GNRs – as Au(111) brings down the threshold

temperatures of polymerization and cyclodehydrogenation closer to each other the radical

quenching by liberated H atoms can terminate the polymer growth and result in shorter GNRs

[de Oteyza et al., 2016]. Whereas it has been shown that the use of stepped surfaces, such as

Au(788) [Linden et al., 2012], can lead to well-aligned and longer GNRs.

Besides the substrate, another possible method to control reaction conditions and/or result-

ing GNR properties has been achieved by modifying the type of halogen atom attached to

the precursor molecule. For example, GNR length has been considered as the most critical

parameter for device integration and hence careful optimization of the growth conditions is

necessary. It has been shown that by substituting bromine atoms for iodine in the precursor

molecules it is possible to triple (quintuple) the average length of 5-AGNRs (9−AGNRs) [Gio-

vannantonio et al., 2017; Borin Barin et al., 2022]. On the other hand, Jacobse et al. [Jacobse

et al., 2016] showed that the geometry of the final product can be drastically altered, when

bromine was substituted with chlorine in the 7-AGNR’s precursor molecule. Curiously, for the

chlorine-functionalized precursor cyclodehydrogenation occurs before polymerization and

therefore random branches of polybisanthenes are formed instead of straight GNRs. Whereas

11
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Teeter [Teeter et al., 2021] showed that removing halogens from the precursor molecules result

in synthesis of non-covalent 2D structures. However, perhaps the most important effect of

halogen functionalization has been the ability to combine different halogens in order to con-

trol the sequence of individual Ullmann couplings and hence design complex GNR junctions.

The seminal work of Cai and co-workers [Cai et al., 2010] showed controlled growth of a triple

junction by depositing two different monomers with bromine and iodine groups as seen in

Figure 1.7(a) and (b).

The ability to produce GNR junctions is of the highest importance to make them attractive op-

tions as components for nanoelectronics. Unlike doping or modifying pristine GNRs to tailor

the band structure, one can introduce modifications locally to regulate electronic properties in

specific segments and hence achieve promising junction interfaces for innovative GNR-based

devices. Therefore, it is essential that individual GNRs exhibiting different properties can be

coupled in a controlled and precise way without introducing unwelcome effects. For example,

combining segments with different widths and hence electronic band gaps has been achieved

by Chen et al. [Chen et al., 2015], where a type-I semiconductor heterojunction was produced

by on-surface synthesis as seen in Figure 1.7(d) and (e). Whereas a type-II heterojunction was

achieved by combining pristine chevron-GNRs with their nitrogen-substituted equivalents

[Cai et al., 2014]. The resulting heterostructure behaved similarly to traditional p −n junction

and exhibited a band shift of 0.5 eV. Moreover, utilizing only straight GNRs is insufficient to

effectively produce or connect two-dimensional components, so nanostructures that exhibit

directional turns can be considered as the most basic building-blocks for circuit integration.

In this regard, Han et al. [Han et al., 2015] produced a two-terminal junction that couples

two (3,1)-AGNRs together in an angle as seen in Figure 1.7(c). Whereas Sun and co-workers

[Sun et al., 2019b] synthesized 3 different 7-AGNR (180°,120°,60°) junctions by introducing an

additional 1,3,6,8-tetrabromopyrene precursor molecule in the reaction. Such junctions could

act as potential interconnects or “wires” to connect multiple components together. Finally,

another exciting direction has involved synthesizing heterojunctions exhibiting topological

interface states [Cao et al., 2017; Gröning et al., 2018; Rizzo et al., 2018]. These topological

boundary states at GNR interfaces can serve as key elements to produce qubits, quantum spin

chains or induce new 1D bands that would be useful for applications in quantum information

devices [Wang et al., 2021a].

1.2.3 Characterization methods

Although numerous GNRs and GNR junctions have been successfully synthesized, precise

exploration and characterization of the underlying properties remains a challenging task.

Large variation in the reported values can be seen depending on the experimental technique

or even the substrate employed for measurements. For example, Zhang et al. [Zhang et al.,

2015] reported unexpectedly large band gap of 2.8 eV for 5-AGNR based on scanning tunneling

spectroscopy (STS) measurements on Au(111) surface, whereas Chen and co-workers [Chen

et al., 2017b] reported a much smaller optical band gap of 0.9 eV that they measured with
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Figure 1.7: GNR-based junctions. (a) Schematic model of triple junction fabrication process.
(b) STM image on gold of a triple GNR junction obtained from the two monomers displayed
in panel (a). Adapted from [Cai et al., 2010]. (c) Proposed atomic structure of a (3,1)-AGNR
junction, whereas the inset shows STM topographic image. Adapted from [Han et al., 2015]. (d)
Synthesis of 7-13-AGNR heterojunctions from two molecular precursors. (e) STM topograph
of 7-13-AGNR heterojunction, whereas the inset shows large scale image of multiple GNR
heterojunctions. Adapted from [Chen et al., 2015].

ultraviolet-visible-near infrared spectroscopy on silica substrates. Due to situations like these,

it is important to develop a consistent set of techniques and parameters that can be used in

combination to compare and characterize GNRs more precisely.

There is a multitude of experimental methods that have been used to probe the electronic

properties (angle-resolved and inverse photoemission, high-resolution electron energy loss

and optical spectroscopy) [Bronner et al., 2012; Denk et al., 2014; Jordan et al., 2017], chem-

ical structure (X-ray photoelectron spectroscopy) [Cai et al., 2010; Jordan et al., 2017] and

vibrational modes (Raman spectroscopy) [Cai et al., 2010; Chen et al., 2017b] of GNRs. How-

ever, one of the most widespread and functional characterization tools used for determining

the physical properties of GNRs is the scanning probe microscopy (SPM). Two main meth-

ods – scanning tunneling microscopy [Figure 1.8(a)] and atomic force microscopy (AFM) are

well-known tools for investigating the surface topography, whereas scanning tunneling spec-

troscopy (an extension of STM) can be used to analyze electronic properties of the samples,

such as density of states and band gap. Although, SPM techniques are known to be very

sensitive to surface cleanness (tunneling measurement can be disturbed by adsorbants or

chemical modifications) this issue is largely absent when characterizing GNRs due to the fact

that typically the structures are synthesized under ultrahigh-vacuum conditions.
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Figure 1.8: SPM characterization of GNRs. (a) Scanning tunneling microscope schematic
diagram. (b) STM image of a 9-AGNR on gold. (c) nc-AFM image of a 9-AGNR on gold. Panels
(b) and (c) are adapted from [Talirz et al., 2017]. (d) d I

dV spectra on three-monomer long
9-AGNR with the location of the spectra marked with red dot in the inset, while the black curve
is measured on Au(111). (e) Experimental constant-height d I

dV maps and the corresponding (f)
simulated LDOS maps at the bias voltages marked by arrows in (d). Panels (d), (e) and (f) are
adapted from [Kimouche et al., 2015].

Scanning tunneling microscopy

STM has been one of the most common tools for characterizing bottom-up synthesized

GNR and is often used for direct determination of chemical structure and surface topology

[Cai et al., 2010; Dienel et al., 2015; Nguyen et al., 2017; McCurdy et al., 2021]. Other uses

include imaging the reaction intermediates to provide better understanding of the reaction

mechanism [Ammon et al., 2017]. We show an example topography of a 9-AGNR obtained

by STM in Figure 1.8(b). In its core, the method is based on electron tunneling between

a sharp conductive tip and surface. Structural information can be gained by scanning the

tip across the surface in constant current or constant height modes. In constant current

mode, the distance between the tip and the sample is adjusted by feedback electronics – if

the current decreases below some set level the tip is brought closer to the sample and vice

versa. Whereas in the constant height mode both the tip distance from the surface and the

voltage is kept constant and hence the tunneling current, which is exponentially dependent

on the distance is recorded. Both modes have its advantages and disadvantages, with constant

height mode being faster, but may be more prone to damage the equipment if rough surfaces

are investigated. Furthermore, electronic transport measurements on bottom-up GNRs have

been carried out by lifting one end with the help of an STM tip and leaving the other one on

a conductive surface. Then current between the surface and the tip can be measured as a

function of applied bias and the tip-sample distance [Koch et al., 2012; Chong et al., 2018].

Interestingly, this method also allows measuring the impact of GNR length on transport as by

lifting the STM tip higher up a larger part of GNR is suspended between the two electrodes.

Alternatively, multiple-probe setups can be used to spatially resolve transport measurements

[Aprojanz et al., 2018].
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Atomic force microscopy

Higher-resolution images of more than 1000 times the optical diffraction limit, can by obtained

by AFM. It is often used to identify the bonding structure of pristine and defective GNRs

[van der Lit et al., 2013; Sánchez-Sánchez et al., 2016; Talirz et al., 2017; Pizzochero et al.,

2021a], as well as their junctions [Dienel et al., 2015] as the method provides atomic resolution.

AFM can also be operated in multiple modes, for example, in contact mode, a tip is attached

to a cantilever that is swept across the surface to measure the force between tip and sample.

Whereas in non-contact mode the cantilever is oscillated close to its resonant frequency and

changes in the amplitude of the oscillations are measured when the tip approaches the surface.

This data is then used to generate the resulting topographic image as seen, for example, in

Figure 1.8(c). In both modes laser is reflected from the cantilever and captured by a set of

photodiodes in order to measure the position of the cantilever.

Scanning tunneling spectroscopy

Lastly, STS is a measurement that uses STM to gain an insight about the local density of states

(LDOS) at a particular position of the sample at which the tip is located by measuring the

current-voltage (I −V ) characteristics and sweeping the sample bias. Practically it is done

by recording the derivative of the tunneling current with respect to the bias voltage, which is

proportional to LDOS in the Tersoff-Hamann approximation [Tersoff and Hamann, 1985]:

d I

dV
(V ,r) ∝ ρ(E ,r). (1.9)

V is the sample bias, r is the position of the tip and ρ is the LDOS at energy E = EF + |e|V ,

with Fermi energy denoted by EF . This is a very versatile method – for instance, we show a

sample d I
dV curve of a 5-AGNR on a gold surface in Figure 1.8(d) that can be used to extract

GNR’s band gap value and gain an insight about electronic states. Whereas spatial mapping of

a specific states as seen in Figure 1.8(e) can be obtained by sweeping the tip across the surface

[Ruffieux et al., 2012; van der Lit et al., 2013; Chen et al., 2013; Nguyen et al., 2017]. For more

precise effective masses, band alignment and electronic band dispersion Fourier-transformed

STS can be employed. This method involves a transformation from the real space d I
dV map

to the reciprocal space (ρ(E , x) → ρ̂(E , q)) and allows determining energy versus momentum

dispersion that can give very precise band gap values [Bergvall and Löfwander, 2013; Söde

et al., 2015]. Finally, by sweeping the tip-sample distance and keeping the voltage constant it

is also possible to obtain a local work function.

Theoretical calculations

Although we already saw that electronic structure of GNRs can be explained by simple theoret-

ical models, such as Clar’s theory and tight-binding method – computational simulations can

often be used to alleviate some of the technically challenging, time-consuming and expensive
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experimental techniques. For example, calculations can be carried out to predict the specific

properties of a GNR and hence indicate which targets are worth pursuing experimentally.

Moreover, simulations can often be of help in explaining complex measurements, such as

microscopy or spectroscopy results. As an example, we show in Figure 1.8(e) and (f) the

experimentally recorded and the simulated STS maps of 5-AGNR’s electronic states. It can be

seen that the simulated images resemble the experimentally recorded maps and provide a

better insight into the underlying physical properties. The background of the theoretical cal-

culations is covered in more detail in Chapter 2 of this thesis, while insight about current state

of theoretical transport calculations will be given in the next subsection about technological

applications.

1.2.4 Graphene nanoribbon electronics

Among the broad scope of potential applications, GNR-based nanoelectronics have probably

attracted the largest attention. As the transistor size in integrated circuits has reached nanome-

tres, it has become increasingly difficult to achieve further device miniaturization from bulk

semiconductors. Requirements, such as the need for higher performance with smaller device

footprint and lower power consumption, dictate that low-dimensional materials, like GNRs,

have to be considered as potential candidates [Chau et al., 2007]. Although the GNR research

field has developed in a rapid pace over the past decade it is still at the stage of laboratory

exploration and extensive investigations have to be conducted to successfully integrate GNRs

in electronic devices. In a perspective by Wang et al. [Wang et al., 2021a] the authors have

proposed a GNR-based electronics technology roadmap for the next 10 years focusing on

three directions – material synthesis, device design and circuit integration, each with its own

challenges and possible solutions. We use this roadmap as a basis to show the relevant cate-

gories associated with the work done in this thesis and highlight the issues we try to solve in

Figure 1.9.

Experimental studies of GNR integration in devices has mainly focused on utilizing them as

components in field-effect transistors (FET) [Zschieschang et al., 2015; Candini et al., 2017;

Martini et al., 2019; Tries et al., 2020], however, this field has been lagging behind both the

production of GNRs and the theoretical studies. Main challenges in this field are related

to the post-transfer process of on-surface synthesized GNRs or growing GNRs directly on

insulating substrates. Initial attempts have shown GNRs being transferred to non-conducting

surfaces, such as SiO2, to fabricate field-effect transistors, for instance a 7-AGNR connecting Pd

electrodes was shown to exhibit on-off ratio of 103 [Bennett et al., 2013]. Few years later Llinas

et al. [Llinas et al., 2017] achieved even higher on-off ratio of 105 and high on-current of 1 µA

with 9- and 13-AGNR based FETs [Figure 1.10(a)]. They also found that GNR-metal contact

Schottky barrier severely limits the performance of these devices. In this regard, advances

have been achieved by using electron beam lithography-defined graphene electrodes for

contacting the 9-AGNRs [Braun et al., 2021] to avoid the high contact resistance and screening

effects. Whereas recent success has been achieved with 5-AGNRs that have been considered
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Figure 1.9: Technology roadmap [Wang et al., 2021a] for GNR-based electronics (full circles
indicate achieved steps, empty circles show the challenges and aims, empty squares are
possible solutions and bold text denotes challenges tackled in this thesis).
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Figure 1.10: GNR-based nanoelectronics. (a) Id −Vg characteristics of the 9-AGNR device (in
inset) gated by the thick 50 nm SiO2 gate oxide. Adapted from [Llinas et al., 2017]. (b) GNR-
based flip-flop circuit and the corresponding electronic scheme. Adapted from [Areshkin and
White, 2007]. (c) Transmission eigenstates and transmission spectra of the lightning-shaped
and 90° GNR heterojunctions (regions L,R indicate left and right lead, while C indicates device
region). Adapted from [Chen et al., 2017a].

to have an optimal band gap for device integration. Borin Barin et al. [Borin Barin et al.,

2022] realized the first FET based on 5-AGNRs that exhibited switching behavior at room

temperature. Although ample improvements have been made in GNR-based FET production,

further work in overcoming technical challenges in contacting the GNRs, understanding

possible influence of defects and device geometry is still needed to push the performance

limits of GNR-based electronics.

One of the possible solutions to make further progress is utilizing computer simulations of the

potential devices in order to find best experimental targets. While the electronic properties of

novel pristine GNRs [Liu et al., 2019; Li et al., 2021a; Silva and Girão, 2021; Wang et al., 2021c;

Blackwell et al., 2021] can be investigated with relative ease, detailed comprehension is lacking

for more complex junctions or defective GNRs and hence a unified picture concerning the
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relationship between structure and electronic properties remains to be established. This is

an important initial step to design GNR-based structures with intended characteristics that

could be used to make-up the components in all-GNR electronic circuits as proposed in Figure

1.10(b). Furthermore, we would not just tackle two of the challenges outlined in the technology

roadmap – manufacturing interconnects and transistors, but also already start building a basis

for general GNR databases as vast amount of systems need to be studied in order to establish

these design rules.

Initial attempts to theoretically quantify the transport in nanostructures has been focused on

specific geometries. For example, Wakabayashi [Wakabayashi and Sigrist, 2000; Wakabayashi,

2001] explored different width ZGNR junctions and found a rich structure of many zero-

conductance dips in the low-energy region. Whereas Chen and colleagues [Chen et al., 2017a]

found that the transport properties of lightning-shaped ZGNR structures strongly depend on

numerous factors, such as width and symmetry of the leads as well as size and edge structure

of the scattering region. They showed that keeping the same edge structure throughout the

heterojunction conserves the transmission better than introducing an AGNR segment as seen

in Figure 1.10(c). Similar observations were made by Wurm [Wurm et al., 2009] and Liwei et al.

[Liwei et al., 2016], where AGNR segment acts as a bottleneck for electronic transport in AGNR-

ZGNR heterostructures. Interestingly, out of plane junctions that consist of pristine GNRs

overlapping have also been investigated as an alternative route to bottom-up synthesized

in-plane junctions. For instance, Richter and co-workers [Richter et al., 2020] modeled a

network of overlapping 5- and 9-AGNRs between two electrodes and observed that transport

is governed by inter-ribbon hopping, while Deng et al. [Deng et al., 2019a,b] examined the

dependency of a twist angle and nanopores on thermoelectric transport performance between

two overlapping GNRs. Others have investigated impact of width [Li et al., 2011], stacking

[Habib et al., 2011; Chu et al., 2017; Mohammadi and Haji-Nasiri, 2018] and overlap length

[Zheng et al., 2012; Yin et al., 2013] in similar structures.

Furthermore, ballistic transport has also been explored in GNR-quantum dot systems [Xiong

and Xiong, 2011; Xu et al., 2013], crossed junctions [OuYang et al., 2009; Brandimarte et al.,

2017] and nano-constrictions [Muñoz-Rojas et al., 2006; Kawai et al., 2011; Motta et al., 2012; Xu

and Wu, 2020; Zhou et al., 2021], where the dependence on size and edge type was established.

Whereas Saiz-Bretin and co-workers [Saiz-Bretín et al., 2019] showed that device geometry can

be tuned to increase the thermoelectric transport in graphene nanoring structures through

Fano resonances. Others have investigated the influence of defects, such as edge distortions

[Cresti and Roche, 2009; Dubois et al., 2010; Tien et al., 2019; Niu et al., 2021], vacancies

[Bahamon et al., 2010; Kihira and Aoki, 2017; Aydin et al., 2022], nanopores [Tran and Cresti,

2021; Cuong, 2021; Zhang and Liu, 2022; Zhang et al., 2022; Majhi et al., 2022] and doping [Biel

et al., 2009; Cresti et al., 2011; Lopez-Bezanilla and Roche, 2012; Marconcini et al., 2012; Yang

et al., 2019; Zaminpayma et al., 2021; Wang et al., 2021b] in GNRs. However, in spite of the

growing number of theoretical works analyzing GNR junctions there is still a large disconnect

between the theoretically examined systems and the experimentally achievable structures.

For instance, single-atom vacancies are seldom seen in bottom-up synthesized GNRs. Even
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more, as most works limit themselves to a particular system it is hard to establish overarching

design rules that could be applied to wide range of junctions. Accordingly, this thesis will

try to address these issues by investigating either experimentally synthesized systems or by

surveying the geometry space in a way that more general conclusions can be drawn.

1.3 Outline of the thesis

This thesis focuses on computational investigations of electronic transport properties in

graphene nanoribbon junctions. Mainly, we employ a combination of density functional

theorem or tight-binding model with Green’s function methodology to establish structure-

property relationships. The rest of this thesis is organized as follows:

• Chapter 2 is dedicated to review the methodology employed throughout this thesis,

including Kohn-Sham density functional theory, semi-empirical tight-binding model

and non-equilibrium Green’s function used to calculate ballistic transport properties.

• Part I (Chapters 3 and 4) covers the electronic transport in two-terminal width-modulated

graphene nanoribbon junctions. Starting with the shortest possible junction that can

also be reimagined as a perfect GNR hosting an edge-functionalized molecule, we

discuss the effect on the electronic transport that stems from interplay between the

localized states in the wider region and the continuum of states in the lead. Next, we

examine experimentally synthesized GNRs hosting a quantum-dot and systematically

analyze the transport gap dependency on length and width of metal-semiconductor-

metal junctions.

• Part II (Chapters 5 and 6) considers the effects of experimentally observable “bite”

defects on the electronic transport properties in armchair-edge GNRs and chevron-type

GNRs. First, we characterize the impact and prevalence of such defects in 9-AGNRs and

then extend our investigation to wider ribbons in order to establish underlying principles

of the adverse response on transport properties. Next, we employ the identified design

rules to create potential components for nanoelectronics based on chevron-type GNR

nanostructures with selectively engineered defects.

• Part III (Chapters 7 and 8) is devoted to exploring GNR-based nanostructure incorpora-

tion in next-generation nanoelectronic circuits. We employ high-throughput screening

to characterize more than 400000 junctions with 60° and 120° turns in order to find

promising candidates for electronic interconnects and examine structure-property

relationships. In addition we build a web-based application with a simple graphical

interface to streamline the calculations of similar junctions. Lastly, Chapter 8 focuses of

including the finite-size effects and metallic leads in order to simulate experimentally

relevant transport measurements.

• Chapter 9 summarizes the key results of this thesis and gives an outlook for future

research directions in this field.
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• Appendix A gives an overview of the web-based tight-binding application TBETA, where

simple graphical interface allows to design and calculate electronic properties of GNR

junctions. Appendix B briefly describes the structure and contents of our GNR angled

junctions library. Whereas Appendix C provides an analytical derivation of the binary

conductance phenomenon across metallic 120° junctions.
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2 Methodology

The ever-growing list of novel graphene-based nanostructures calls for a fast, efficient and

reliable computational methods of obtaining the electronic and transport properties. Hence,

in this section we will recall the theory behind two of the most common electronic structure

methods routinely used in our calculations - density functional theory (DFT) and the tight-

binding model. Starting from the well-known Schrödinger equation, we will show that DFT can

be used for computational quantum mechanical modeling of the ground state of many-body

configurations, such as atoms, molecules and periodic systems. Afterward, we will introduce

the semi-empirical tight-binding model, often parameterized from the aforementioned DFT

calculations, which has emerged as a computationally low-cost alternative especially for the

graphene-based systems. In addition, as most of the thesis is related to the examination of the

ballistic transport properties within various graphene-based nanostructures, we will establish

the Landauer-Büttiker formalism and the non-equilibrium Green’s function (NEGF) approach,

which can be combined with either DFT or TB methods as one of the prime options for treating

the electronic transport characteristics.

2.1 Schrödinger equation

Schrödinger equation can be used to precisely describe the world around us within the

quantum mechanics (QM) framework. We can use the time-independent version to express

the energy of any system as

Hψ(r) = Eψ(r), (2.1)

where we assert that the electronic state of a system can be fully characterized by a wavefunc-

tion ψ(r), total energy E and the Hamiltonian H. The total energy operator H can be divided

into potential and kinetic operators - V and T:

H = T+V, (2.2)
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that are then expand to obtain expressions involving electrons and nuclei as

H = Te +Tn +Vee +Vnn +Ven . (2.3)

Here, we note that for a system of N electrons and K nuclei, the Hamiltonian depends on

the nuclear masses M J , charges e ZJ and positions RJ in addition to the electron masses mi ,

charges −e, and positions r j . Subscripts j , i and J , I denote the i -th and j -th electron and the

I -th and J-th nucleus, respectively. Our Hamiltonian is hence

H =−
N∑
i

ℏ2

2mi
∇2

i −
K∑
I

ℏ2

2MI
∇2

I +
e2

2

N∑
i

N∑
j

1

ri j
+ e2

2

K∑
I

K∑
J

ZI ZJ

RI J
− e2

2

N∑
i

K∑
I

ZI

ri I
, (2.4)

where the factor 1
2 handles the double counting.

Due to the hugely different masses of nuclei and electron that differ by four orders of magni-

tude, the electrons will always see the atoms in a static configuration. Therefore, applying the

Born-Oppenheimer approximation [Born and Oppenheimer, 1927], we can treat the nuclei

as classical point-like particles separately from electrons. This allows us to introduce the

electron-only Hamiltonian:

Hel =−
N∑
i

ℏ2

2mi
∇2

i +
e2

2

N∑
i

N∑
j

1

ri j
− e2

2

N∑
i

K∑
I

ZI

ri I
. (2.5)

Now, the electron wavefunction will only depend parametrically on the nuclear coordinates

Helψn(r1, ...,rN ∨R1, ...,RK ) = E elψn(r1, ...,rN ∨R1, ...,RK ), (2.6)

and the total energy E t of the system can simply be recovered by re-introducing the contribu-

tion of classical point-like nuclei terms back into our equations:

E t = E e +E n . (2.7)

Although any system can be described with Eq. 2.5, exact solutions only exist for hydrogen

molecular ion and hydrogen atom. Hence, approximations, such as variation principle, can

be used to find the energy closest to the exact solution

E [Φ] = 〈Φ|H |Φ〉
〈Φ|Φ〉 ≥ E0, (2.8)

whereΦ is some trial function, which depends on some parametersΦ(c1, ...c + i ). We then try

to minimize the energy with respect of varying the parameters and if E [Φ] = E0, then we have

found the exact ground-state wavefunction. However, as the many-electron wavefunction

features 4 degrees of freedom per electron (3 spatial and 1 spin), it raises an exponentially

growing computational problem with increasing number of electrons. In order to treat large

scale systems, alternative methods that can find approximate solutions to the Schrödinger

22



2.2 Density functional theory

equation with reasonable computational effort are hence needed.

2.2 Density functional theory

In the search for another variable to replace the wavefunction, electron density emerges

as an appealing parameter. It can be easily obtained from the square of the wavefunction,

measured experimentally and more importantly, it is remarkably simpler than the many-body

wavefunction. Moreover, electron density can be considered as a “basic variable” since any

property of a system can be considered as a unique functional of the ground-state density. For

example, positions and the charges of nuclei can be determined from the cusps in the density,

whereas the number of electrons in the system can be expressed as∫
ρ(r)dr = N . (2.9)

In 1964 Hohenberg and Kohn [Hohenberg and Kohn, 1964] proved that electron density

uniquely determines the Hamiltonian operator and established a variational principle linking

electron density with energy. For some trial electron density ρt we get

E [ρt ] ≥ E0. (2.10)

Once again, if the trial density gives energy equal to the true ground-state energy, we have

found the exact electron density. Hence, the best approximation to ρ can be found by mini-

mizing energy with respect to changes in the density. Although Hohenberg and Kohn proved

that E [ρ] exists, their theorems do not tell anything about how to find or construct it. If we

start by expanding the electronic energy functional

E [ρ] = T [ρ]+Eee [ρ]+Ene [ρ], (2.11)

we know how to calculate the exact electron-nuclear attraction Ene [ρ] and Coulomb repulsion

of a charge distribution J [ρ], while we don’t know how to obtain the non-classical electron-

electron interaction Eee [ρ]− J [ρ]. Moreover, we have difficulties in calculating the kinetic

energy of the interacting electrons from the electron density, T [ρ].

To overcome some of the problems, Kohn and Sham [Kohn and Sham, 1965] formulated a

non-interacting model by imagining a reference “Slater” system where the electrons do not

interact with each other. It is proposed that the ground-state density of the real interacting

system is equivalent to the density of a chosen noninteracting system. This leads to exactly

soluble independent particle equations for the noninteracting system, while the complex

many-body terms are incorporated into exchange-correlation functional of the density. To

begin with, orbital description is re-introduced with Kohn-Sham orbitals φK S , which can form

the exact wavefunction of the non-interacting system and sum up to the true density of the
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fully interacting system:

ψs = 1p
N !

det |φks
1 ...φK S

N |, (2.12)

ρs =
N∑
i
|φK S

i |2. (2.13)

Now the kinetic energy term, which is exact for the non-interacting system can be expressed

as

Ts =−1

2

N∑
i

〈
φK S

i

∣∣∇2
i

∣∣φK S
i

〉
. (2.14)

Then, the Kohn-Sham energy functional can be defined as

E K S[ρ] = Ts[φK S
i ]+Ene [ρ]+ J [ρ]+Exc [ρ], (2.15)

where we are left with one unknown term – the exchange-correlation functional E xc [ρ]. This

term includes the non-classical contribution to electron kinetic energy and electron-electron

interactions:

Exc [ρ] = T [ρ]−Ts[φK S
i ]+Vee [ρ]− J [ρ]. (2.16)

If Exc [ρ] was known, the Kohn-Sham scheme would be exact. However, we do not know

the exact form of Exc [ρ] and therefore it needs to be approximated. The attempts to find

the best approximations are still ongoing and each form has its pros and cons, and while

one true (best) functional does not exist, one needs to choose in accordance to the task in

hand. The approximations begin with simple and inexpensive options, such as local density

approximation (LDA) [Ceperley and Alder, 1980] that assumes that the electron density of a

system corresponds to the density of a uniform electron gas. Improvements in precision can

be seen, when LDA is expanded by introducing the gradient of the density in a new class of

functionals called generalized gradient approximation (GGA). This class includes different

versions of parametrization, like PW91 [Perdew and Wang, 1992] or PBE [Perdew et al., 1996a].

Even higher complexity class called Meta-GGA incorporate also the Laplacian of the density

and once again offer multiple parametrizations including the TPSS [Sun et al., 2011] and SCAN

[Sun et al., 2015] functionals. Finally, very precise, but computationally expensive hybrid

functionals, like PBE0 [Perdew et al., 1996b] and HSE06 [Krukau et al., 2006] are based on

retaining a fraction of orbital-dependent exchange in the exchange and correlation functional.

After a sufficient level of approximation is selected, we can calculate the energy of the system

by minimizing E K S[ρ] with respect to variations in ρ. The minimum is reached when

δE K S[ρ]

δρ
= 0 (2.17)

Energy is minimum if Kohn-Sham orbitals satisfy the Schrödinger-like Kohn-Sham equation:

hK SφK S
i (r) = ϵK S

i φK S
i (r), (2.18)
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2.3 Tight-binding approximation

where ϵK S
i is the energy of the i -th Kohn-Sham orbital with the one-electron Hamiltonian:

hK S =−1

2
∇2 −

N∑
I

ZI

r−RI
+

∫
ρ(r′)
r− r′

dr′+ vxc (r), (2.19)

vxc (r) = δE K S[ρ]

δρ
. (2.20)

The Kohn-Sham equations behave as independent-particle equations that do not depend on

any of the approximations to the exchange-correlation functional and would lead to the exact

ground-state solution if the exact functional would be known. In practice the Kohn-Sham

equations are solved in self-consistent manner following these steps:

1. Guess the initial electron density ρ(r)i .

2. Construct the Kohn-Sham Hamiltionian hK S .

3. Diagonalize hK S to find the corresponding eigenvalues and eigenvectors.

4. Obtain the new electron density ρ(r)i+1.

5. If the new electron density is significantly different from last guess return to step 2. If the

difference is smaller than the utilized tolerance, the result has converged and calculation

is complete.

The exponential increases in computer power and the emergence of multitude of complex

computer codes in the past years have made DFT a common tool for many scientists to under-

stand complex systems. The large appeal of DFT is due to it being a parameter free method

that does not rely on fitting other results, while having a good predictive power (strongly

dependant on the employed exchange-correlation functional). However, in situations, where

computational resources are scarce or system sizes increase even further, empirical methods

have to be considered.

2.3 Tight-binding approximation

The tight-binding model is a semi-empirical approximation, which is used to predict the

electronic properties of a solid by expanding the crystal wavefuctions in the basis of functions

centered at each atomic site. At the groundwork of this approximation we consider that an

electron at a particular lattice site has little interaction with electrons and atoms positioned

elsewhere. We start by considering that the single particle states must obey Bloch’s theorem

ψnk(r+R) = e i k·Rψnk(r), (2.21)

where the band index is labeled by n, k is the wavevector in the first Brillouin zone and R is

the translation vector of a crystal. The single atomic orbitals φn clearly do not obey the Bloch’s
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theorem, but we can use them as a basis to expand the crystal wavefunction

ψnk (r) = 1p
N

∑
R

e i k·R ∣∣φnk (r−R)
〉

, (2.22)

where N designates the number of lattice sites in the crystal and the
1p
N

factor ensures nor-

malization.

Let’s now consider the simplest case with one atom in unit cell and, where only atomic s-orbital

φs(r) contributes to the crystal state, then Eq. 2.22 becomes

ψk (r) = 1p
N

∑
R

e i k·R ∣∣φs(r−R)
〉

. (2.23)

We now can insert this expression into the dispersion relation obtained from the time-independent

Schrödinger equation [Eq. 2.1] and obtain the following expressions:

E(k) = 〈
ψk(r)

∣∣H
∣∣ψk(r)

〉
, (2.24)

E(k) = 1

N

∑
R

∑
R′

e i k·(R′−R) 〈ψs(r−R)
∣∣H

∣∣ψs(r−R′)
〉

= 1

N

∑
R

∑
R′

e i k·(R′−R) 〈ψs(x)
∣∣H

∣∣ψs(x− (R′−R))
〉

, (2.25)

where we have introduced x = r−R. Now for each R in Eq. 2.25 we have R′−R = R′′, which is

another translation vector and can be used instead of R′ as the summation over R′ covers all

translation vectors. Hence substituting R′′ we obtain

E(k) = 1

N

∑
R

∑
R′′

e i k·R′′ 〈
ψs(x)

∣∣H
∣∣ψs(x−R′′)

〉
, (2.26)

which now leads to a further simplification – as each of the terms in the sum over R is now

identical it simply results in factor N , thus obtaining

E(k) =∑
R′′

e i k·R′′ 〈
ψs(x)

∣∣H
∣∣ψs(x−R′′)

〉
. (2.27)

We now will separate different terms in the sum over R′′ by considering that our atomic orbitals

ψs(r) are tightly localized – away from r = 0 these orbitals decay rapidly, while for small r they

are large. If R′′ = 0 then the expression becomes〈
ψs(x)

∣∣H
∣∣ψs(x−R′′)

〉= 〈
ψs(x)

∣∣ϵs
∣∣ψs(x−R′′)

〉= ϵs , (2.28)

due to the fact that Hψs(x) = ϵsψs(x) and the atomic states ψs(x) are normalized. Essentially,
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2.3 Tight-binding approximation

we can see that R′′ = 0 gives us the energy ϵs of the atomic s-orbital in an isolated atom.

However, if we consider large R′′ then we can expect the expression
〈
ψs(x)

∣∣H
∣∣ψs(x− (R′′))

〉≈ 0,

because of the small overlap between wavefunctions separated by large distances. Hence,

typically only terms where R′′ is small are included in the tight-binding calculations. If one

only considers the nearest-neighbor atoms, where R′′ =τ, with τ being the translation vector

between an atom and its nearest-neighbor, we can write

E(k) = ϵs +
∑
τ

e i k·τ 〈
ψs(x)

∣∣H
∣∣ψs(x−τ)

〉
. (2.29)

Then, instead of trying to evaluate the overlap
〈
ψs(x)

∣∣H
∣∣ψs(x−τ)

〉
explicitly, we replace it

with an empirical parameter t , called the hopping integral, whose value we adjust to match

the experimental or theoretical data and set

t (τ) = 〈
ψs(x)

∣∣H
∣∣ψs(x−τ)

〉
. (2.30)

Finally, we can express the energy E(k) as

E(k) = ϵs +
∑
τ

e i k·τt (τ). (2.31)

For example, the general shape of graphene’s band structure around the Fermi level can

already be obtained with this very simple expression including only one pz orbital per atom

and only considering the 1NN interactions (see Figure 2.1(a)). Small deviations from the

DFT only become apparent at energies further away from the Fermi level. Moreover, if 2NN

and 3NN couplings are considered, the tight-binding model is comparable to first-principles

calculations over wide range of energies and over the entire Brillouin zone [Reich et al., 2002].

In Figure 2.1(b) we compare the conductance profiles obtained by different 3NN models

[Kundu, 2011; Hancock et al., 2010; Gunlycke and White, 2008] and DFT calculations for a

defective 9-AGNR. It can be seen that the transport properties near band edges are reproduced

quite well and noticeable differences only arise at higher energies due to different bandwidths.

However, the key features, such as the conductance dips (E = 1.0t −1.3t), are reproduced

regardless of the model. All TB calculations carried out in this thesis are utilizing the TB

parameters by Hancock [Hancock et al., 2010] (t1 = 2.7, t2 = 0.2, t3 = 0.18), unless stated

otherwise. Overall, we note that TB approximation exhibits excellent scalability and can easily

treat graphene-based systems containing thousands of atoms as seen, for example, in twisted

bilayer structures [Haddadi et al., 2020], but some limitations arise when studying systems in

different chemical environments. For instance graphene nanostructures deposited on metal

surfaces or systems containing hetero-atoms are often too complex to describe with simple

TB approximation and DFT calculations need to be considered.
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Figure 2.1: (a) Graphene band structure calculated using DFT calculation (dashed grey lines)
versus the one-orbital nearest-neighbor tight-binding calculation (red line). (b) Conductance
plots of pristine (dashed line) and defective (solid line) 9-AGNRs calculated with DFT and
different parametrizations of 3NN TB.

2.4 Ballistic transport

The electron transport in a system is dependent on the relationship between the system size

L and electron mean-free path λ that can be defined as the average distance that the charge

carrier will travel before being scattered. The scattering events can be both elastic and inelastic

and the overall contribution can be approximated by summing individual contributors:

1

λ
= 1

λel−el
+ 1

λi mpur i t y
+ 1

λde f ect
+ 1

λbound ar y
+ 1

λl at t i ce
+ ..., (2.32)

where the scattering lengths due to separate events, such as electron-electron interactions,

impurities, defects, boundaries, phonons, etc. are considered.

When the device size is comparably larger than the mean-free path, the carrier flow enters

the diffusive transport regime and is described by the conventional mobility theory. On the

other hand, when the mean-free path of a charge carrier is longer than the system dimensions

(e.g. due to the minimization of the system) the electron experiences negligible scattering

(or negligible electrical resistivity) and enters ballistic transport regime. We note that in this

case the only observable scattering and hence the change of the electron’s path is due to

the collisions with the boundaries of the system, while other scattering events due to the

impurities, defects or thermal fluctuations are absent. Ballistic transport is usually observed

in reduced dimensionality systems, such as 2D sheets (graphene) or even quasi-1D structures,

like nanoribbons or nanotubes, due to the quantization effects. Comparison between the two

regimes is displayed in Figure 2.2(a).

In the case of ballistic transport, mobility is no longer applicable to describe the electron

behaviour and conductance is used instead. We adopt the Landauer formalism to match the

scattering properties with the electrical conductance of the conductor. Current ILR through a
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L>>λ

L<λ

a bL

λ

S RL-1-2 21

Device

Figure 2.2: (a) Scheme of diffusive transport (upper panel) and ballistic transport (lower panel)
between the source and drain (shaded regions). (b) Typical partition of the infinite system for
transport calculations within the non-equilibrium Green function method.

conductor attached to left (L) and right (R) electrodes can be expressed by:

ILR = 2e

h

∫ EL

ER

M(E) f ′(E)T (E)dE , (2.33)

where f ′(E) = f (E ,µ1)− f (E ,µ2) is the difference between the two Fermi functions of the

contacts with chemical potentials µ1 and µ2, e is the electron charge, V is the voltage and

T (E) is the transmission probability. Due to the confinement of electronic states in reduced

dimensionality structures, such as nanoribbons, there are multiple energy subbands at a given

energy and hence the total current is given by the sum of the currents of all the subbands (also

called channels). The number of channels, denoted by M(E), varies with energy depending

on the band structure of the system. Finally, Fermi function f (E ,µ) that describes the average

(over time) number of electrons in any energy level is expressed as

f (E ,µ) = 1

1+e(E−µ)/kB T
, (2.34)

depends on the chemical potential µ and temperature T of the reservoir connected to the

electrodes.

Assuming a ballistic transistor with no scattering and having perfect contacts we can re-write

the Eq. 2.33 by introducing conductance quantum G0:

I = 2e

h
(eV ) = 2e2

h
V =G0V , (2.35)

G0 = 2e2

h
= 7.75c ×10−5S, (2.36)

R0 = 1

G0
= 12.95kΩ. (2.37)
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Hence, the quantum of conductance is the smallest possible non-zero conductance and on the

flip side, the quantum of resistance R0 is the highest possible resistance for an ideal ballistic

conductor without scattering. Otherwise, scattering events within the ballistic transport

regime are usually treated by the introduction of the transmission probability, which tells

us the rate at which electrons transmit from source to drain contacts through the device.

Transmission can take values 0 ≤ T (E ) ≤ 1, with T (E ) = 1 describing ideal ballistic conductance

and T (E) = 0 describing complete back-scattering. Transmission is commonly obtained

either from the scattering-matrix or Green’s function methods that we will discuss in the

next section. Consequently we can express the conductance G of a ballistic conductor as a

multiple of quantum conductance that depends on the number of accessible channels and

the transmission probability:

G =G0M(E)T (E). (2.38)

Often the transmission is already given in the range of 0 ≤ T (E ) ≤ M(E ) to include the number

of available channels. Finally, we note that the conductance of any system cannot exceed the

maximum conductance defined by the ideal leads with T = 1.

2.5 Non-equilibrium Green’s function

Green’s function is a mathematical tool, which is used to solve difficult ordinary and partial

differential equations. It can also be applied to solve quantum mechanical problems in

physics, such as calculating ballistic transport in complex nanostructures with or without

applied bias. For instance, if the electrodes are not in equilibrium with each other, the central

part of the system will acquire a non-equilibrium electron density that can’t be solved with

DFT and therefore needs to be paired with Green’s function technique to obtain the steady-

state solution. This method can provide an alternative descriptor of the system just like the

wavefunction or electron density. Albeit Green’s function is not as intuitive to work with as

the electron density, it can often lead to simpler calculation of a necessary property of the

system as compared to working with electron density. For example, kinetic energy calculation

form electron density can be a tedious and expensive task as it is necessary to compute a

density matrix, whereas Green’s function is a generalization of the density matrix and often

can provides simple expressions for expectation values of 1-body operators.

First, we can re-write the Schrödinger equation [Eq. 2.1] to divide the Hamiltonian and

wavefunction of the system into contact HL,R ,
∣∣ψL,R

〉
and device subspace HD ,

∣∣ψD
〉

as shown

Figure 2.2(b). Typically, the device region contains the scattering center and one unit cell of

each lead, while the left and right leads are considered semi-infinite, thus the Hamiltonian is

expressed as  HL τL 0

τ†
L HD τ†

R

0 τL HR




∣∣ψL
〉∣∣ψD
〉∣∣ψR
〉

= E


∣∣ψL

〉∣∣ψD
〉∣∣ψR
〉

 , (2.39)

where τL(R) is the interaction between the device region and left (right) lead. Here we have
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assumed two leads that do not couple to each other, but in practice we can have N contacts

connecting to the device. Now, we define the unperturbed Green’s function as

(E −H)G(E) = I, (2.40)

where I is the identity matrix used for orthogonal basis set. Here, we will use the orthogonal

representation without loss of generality, while it is also possible to use non-orthogonal basis

with the overlap matrix S instead. We now will introduce a constant perturbation |v〉 in the

Schrödinger equation [Eq. 2.1]

H
∣∣ψ〉= E

∣∣ψ〉+|v〉 , (2.41)

and express the response to this perturbation as

(E −H)
∣∣ψ〉=−|v〉 , (2.42)∣∣ψ〉=−G(E) |v〉 . (2.43)

If we know the response to the perturbation, it is easier to calculate other properties instead of

solving the whole eigenvalue problem. For example, the wavefunction of right contact
∣∣ψR

〉
can be easily expressed form the wavefunction of the device

∣∣ψD
〉

. Using Eq. 2.39

HR
∣∣ψR

〉+τR
∣∣ψD

〉= E
∣∣ψR

〉
, (2.44)

(E −HR )
∣∣ψR

〉=τR
∣∣ψD

〉
, (2.45)∣∣ψR

〉= g2(E)τR
∣∣ψD

〉
, (2.46)

where gR is the Green’s function of the right contact. One needs to note that we obtain two

solutions for an infinite system – advanced and retarded solutions corresponding to incoming

and outgoing waves in the contacts. We will denote the retarded solutions with a dagger (G†).

As stated before, Green’s function is often easier to calculate than solving the whole Schrödinger

equation and to make it even more manageable, we can calculate part of the Green’s function

corresponding only to the device GD separately. Starting from the Eq. 2.40: E −HL −τL 0

−τ†
L E −HD −τ†

R

0 −τL E −HR


 GL GLD GLR

GDL GD GRD

GRL GRD GR

= E

 I 0 0

0 I 0

0 0 I

 , (2.47)

we select the second column and write the 3 equations:

(E −HL)GLD −τLGD = 0, (2.48)

−τ†
LGLD + (E −HD )GD −τ†

R GRD = 0, (2.49)

(E −HR )GRD −τR GD = 0. (2.50)
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We can solve equations 2.48 and 2.49 for GLD and GRD

GLD = gLτLGD = 0, (2.51)

GRD = gRτR GD = 0, (2.52)

and substituting them into Eq. 2.49 we obtain

−τ†
LgLτLGD − (E −HD )GDτ

†
R gRτR GD = I. (2.53)

Here, we can finally express our device Green’s function GD as

GD = (E −HD −ΣL −ΣR )−1, (2.54)

where ΣL(R) is the self-energy containing information about the left (right) semi-infinite lead.

The self-energies are obtained self-consistently using Dyson’s equation:

ΣL(R)(E) =τ†
L(R)(EI−HL(R) −ΣL(R)(E))−1τL(R). (2.55)

One can notice that the effect of the leads is to add the self-energies to the device Hamiltonian

HD in order to obtain an effective Hamiltonian He f f of the system

He f f = HD +ΣL +ΣR . (2.56)

It is important to mention that usually, for numerical calculations, one adds a small (η→ 0+)

imaginary character to the Green’s function in order to facilitate the matrix inversions:

GD (E) = ((E + iη)I−HD −ΣL −ΣR )−1, (2.57)

Consequently we can calculate the transmission coefficient by taking the trace of the following

product

T (E) = Tr [ΓLGDΓR G†
D ], (2.58)

where the broadening function ΓL(R) due to the leads is calculated from the self-energies

ΓL(R)(E) = i [ΣL(R)(E)−ΣL(R)(E)†]. (2.59)

Next, we use the transmission coefficient T (E) obtained above to express conductance G in

terms of conductance quantum G0 using the Landauer formula [Landauer, 1957]:

G(E) =G0T (E) = 2e2

h
T (E). (2.60)

In addition to transmission and conductivity, other important properties that one can calculate

from Green’s function are, for example, spectral density AL(R)(E) originating from left (right)
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lead and the density of states (DOS),

AL(R)(E) = GDΓL(R)G†
D (E), (2.61)

DOS = 1

π
Tr [Im(GD )]. (2.62)

Furthermore, as the probability to find an electron on the device is conserved in the steady-

state, we can also define an expression for finding the incoming probability current iL(R) from

the left (right) electrode as

iL(R) =− i e

ℏ
(
〈
ψL(R)

∣∣gL(R)

∣∣ψD
〉−〈

ψL(R)
∣∣g†

L(R)

∣∣ψD
〉

). (2.63)

Moreover, for non-equilibrium setups, we can also express current between two leads at

different chemical potentials µi :

I = q

h

∫ ∞

−∞
( f1(E ,µ1)− f2(E ,µ2))Tr [ΓLGDΓR G†

D ]. (2.64)

Some of the drawbacks of NEGF techniques are connected to the inefficiency of the imple-

mented algorithms and memory restraints, which is why the calculations rarely exceed 1,000

atoms. Main complexity arises from two computationally heavy steps – the self-energy cal-

culations require multiple iterations of matrix inversions and additionally non-equlibrium

calculations require a triple matrix product [Papior, 2016]. It is possible to mitigate some of

the problems by choosing the smallest possible unit cell and employing the Bloch’s theorem

to treat periodic directions and, more importantly, choosing an appropriate algorithm to

effectively invert matrices.
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3 Edge-Functionalized Graphene
Nanoribbons

We theoretically investigate the electron transport in armchair and zigzag graphene nanorib-

bons (GNRs) chemically functionalized with p-polyphenyl and polyacene groups of increasing

length. Our nearest-neighbor tight-binding calculations indicate that, depending on whether

the number of aromatic rings in the functional group is even or odd, the resulting conduc-

tance at energies matching the energy levels of the corresponding isolated molecule are either

unaffected or reduced by exactly one conductance quantum as compared to the pristine GNR,

respectively. Such an even-odd effect is shown to originate from a subtle interplay between

the electronic states of the guest molecule that are spatially localized on the binding sites and

those of the host nanoribbon. We next generalize our findings by employing more accurate

tight-binding Hamiltonians along with density-functional theory calculations, and critically

discuss the robustness of the observed physical effects against the level of theory adopted. Our

work offers a comprehensive understanding of the influence of aromatic molecules bound to

the edge of graphene nanoribbons on their electronic transport properties, an issue which is

instrumental to the prospective realization of graphene-based chemosensors.

This chapter is adapted from:

Čern, evičs, K., Pizzochero, M. and Yazyev, O.V. (2020). Even–odd conductance effect in graphene

nanoribbons induced by edge functionalization with aromatic molecules: basis for novel

chemosensors. Eur. Phys. J. Plus, 135:681. [pre-print: arXiv: 2005.05834]

My contribution to this work was conceiving the original idea, performing the tight-binding

calculations, analysis of the data and writing the paper.
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3.1 Motivation

Edge functionalization with p-polyphenyl and polyacene groups of increasing length, for

AGNRs and ZGNRs respectively, can be either seen as the shortest possible heterojunction

consisting of one unit cell of different width GNR connecting two equal-width leads or a

pristine GNR with side-attached defect. Regardless, it is an excellent fundamental system

to establish the effects of width-modulated junctions on electronic transport in GNRs. Fur-

thermore, chemical functionalization with molecules on the edge [Rosales et al., 2008b,a]

and on the surface [López-Bezanilla et al., 2009] of GNRs has been theoretically investigated

and the influence on the electronic structure of both armchair- and zigzag-edge graphene

nanoribbons has been identified. It has been shown that upon binding, each functional group

leaves a unique “fingerprint” reflecting its energy levels. This finding has made GNRs also an

appealing platform for the realization of novel chemosensors.

On the basis of 1NN-TB Hamiltonians described by the hopping integral t1 between the pz

orbitals, customarily taken to be t1 = 2.70 eV, it has been predicted that the formation of

a chemical bond between GNRs and either p-polyphenyl or polyacene groups may affect

the conductance spectra at all values of energy matching those of the isolated molecule.

Surprisingly, a phenomenon emerges in both AGNR and ZGNR, where the conductance at

energy E =±2.70 eV is unaltered when the guest molecule features an even number of rings,

whereas for an odd number of rings a Fano anti-resonance (stemming from the interference

between the continuum of states of the hosting GNRs and the states localized on the guest

molecule [Miroshnichenko et al., 2010]) occurs and removes one conductance quantum

[Rosales et al., 2008b]. Despite its potential in designing GNR-based sensors for aromatic

molecules, such an intriguing effect remains very poorly understood to date.

A previous work [Rosales et al., 2008b] justified this even-odd effect by suggesting that an

isolated molecule featuring an odd (even) number of rings would (not) exhibit such an elec-

tronic state located at E =±2.70 eV, in close analogy with chains hosting even or odd number

of quantum dots [Orellana et al., 2003]. Yet, we remark that polyacenes or p-polyphenyls,

irrespective of the number of rings, do present an energy level at E =±t1 =±2.70 eV in their

spectra at the 1NN-TB level of theory, thus proving the previous argument false. Hence,

this consideration highlights that the conductance profile of such edge-functionalized GNRs

depends only partially on the energy levels of the isolated functional group, signaling that

more complex effects ensuing from the interaction of the electronic structure of the hosting

nanoribbon with that of the guest molecule are operative and have to be clarified. In addition,

it remains to be ascertained whether such even-odd phenomenon is actually physical or

simply emerges as an artifact of the (possibly oversimplified) 1NN-TB model.

In this chapter, we investigate in detail, at different TB and also first principles levels of theory,

the effect of p-polyphenylene and polyacene molecules of varying length covalently bound

to the edge of AGNRs and ZGNRs on the electron transport by means of non-equilibrium

Green’s function calculations. We first unravel the origin of the even-odd conductance effect
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upon binding of guest molecules and rationalize the otherwise unclear loss of exactly one

conductance quantum in terms of the spatial distribution of the incoming wavefunction. Next,

we extend our findings to higher levels of theory in order to critically examine the robustness

of the observed effects with respect to the adopted theoretical models. Overall, we establish

a comprehensive picture of the impact of the aromatic functional groups on the electron

transport properties of graphene nanoribbons, hence contributing to lay the conceptual

foundations underlying the practical realization of GNR-based chemosensors.

3.2 Methodology

We obtain Hamiltonians at both tight-binding and density-functional theory levels. Our TB

Hamiltonians include one pz orbital per atom and take the general form

H =∑
i
ϵi c†

i ci −
∑
i , j

ti , j (c†
i c j +H .c), (3.1)

where ϵi is the on-site energy at lattice position i , ti , j is the hopping integral between the atoms

(i , j ), and c†
i (ci ) creates (annihilates) an electron at lattice site i . We adopt two TB models,

both setting on-site energies ϵ = 0 eV and including either first-nearest-neighbor hopping

solely (t1 = 2.70 eV) or up to the third-nearest-neighbor hopping (t1 = 2.70 eV, t2 = 0.20 eV, and

t3 = 0.18 eV) for carbon atoms both in nanoribbon and the edge-bound molecule. This latter

corresponds to the model proposed and benchmarked by Hancock and coworkers [Hancock

et al., 2010]. All our TB calculations are performed using the Kwant package [Groth et al., 2014].

For deeper insight to the TB model, please refer to Section 2.3.

Kohn-Sham DFT calculations are performed under the generalized gradient approximation

to the exchange and correlation functional devised by Perdew, Burke, and Ernzerhof [Perdew

et al., 1996a] as implemented in Siesta[Soler et al., 2002]. Core electrons are described by

separable norm-conserving pseudopotentials [Troullier and Martins, 1991] whereas single-

particle wavefuctions of valence electrons are expanded in a linear combination of atomic

orbitals of double-ζ polarization (DZP) quality. Real space integrations are performed with a

400 Ry mesh cutoff while the Brillouin zone is sampled with the equivalent of 21×1×1 k-mesh

per unit cell in all cases but transport calculations, for which it is increased to 400×1×1. We

optimize the atomic coordinates until the residual force acting on each atom converges to

0.02 eV/Å. We introduce guest molecules of increasing number of rings in in a 7×1×1 and

14×1×1 supercells of AGNRs and ZGNRs (yielding similar supercell lengths of 30.19 Å and

34.58 Å) containing 126 and 140 atoms, respectively. Replicas along non-periodic directions

are separated by a vacuum region larger than 10 Å.

With the tight-binding and Kohn-Sham Hamiltonians H at hand, transport properties are

next calculated using the non-equilibrium Green’s function (NEGF) formalism as presented in

Section 2.5 and conductance is expressed in terms of the conductance quantum G0 within

the Landauer formula [see Eq. 2.60]. Our quantum electronic transport calculations are
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Figure 3.1: (a) Atomic structure of 4-ZGNR edge-functionalized with a p-polyphenylene group
with L = 2 (biphenyl). (b) Conductance spectra of 4-ZGNR hosting biphenyl group (L = 2)
with dashed lines indicating the electronic states of the molecule. (c) Conductance spectra of
4-ZGNR hosting p-polyphenylene groups with 1 ≤ L ≤ 6 in the region of 2.70 eV. (d) Atomic
structure of 7-AGNR edge-functionalized with a polyacene group with L = 3 (anthracene).
(e) Conductance spectra of 7-AGNR hosting anthracene molecule (L = 3) with dashed lines
indicating the electronic states of the molecule. (f) Conductance spectra of 7-AGNR hosting
polyacene groups with 1 ≤ L ≤ 6 in the region of 2.70 eV.

performed with the help of Kwant [Groth et al., 2014] and Transiesta [Papior et al., 2017].

3.3 Results and discussion

3.3.1 Origin of even-odd effect in edge-functionalized graphene nanoribbons

As compared to their wider counterparts, narrow GNRs are more suitable systems to explore

the conductance spectra upon functionalization, as less energy bands are present around

E = ±2.70 eV. Hence, in the following we restrict our investigation to 4-ZGNR and 7-AGNR

without loss of generality, as the Fano anti-resonances due to the binding molecule occurs

irrespective of the number of carbon atoms N across the GNR [Rosales et al., 2008b].

We start our investigation by relying on the 1NN-TB model Hamiltonians. In Figure 3.1(a),

(b) and (c), we show 4-ZGNR hosting a p-polyphenyl functional group of increasing lengths,

ranging from phenyl (possessing a number of rings L = 1) to p-hexaphenyl (L = 6), along with

its effect on the resulting conductance spectra. Only the conduction states are given, as the

electron-hole symmetry is preserved in the 1NN-TB model in the entire energy spectrum.

In Figure 3.1(b) one clearly notices the presence of drop in the conductance at E = 1.94 eV

corresponding to the electronic state of the molecule, as well as a superimposition at E = 2.70
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eV to the conductance profile of that of the pristine system. Hence, the electronic state of the

molecule at E = 2.70 eV has no effect on the conductance profile in this particular case. We

observe that depending on the number of rings in the guest molecule, distinct effects in the

conductance spectra of the hosting nanoribbon emerges [see Figure 3.1(c)]. We stress again

that all p-polyphenyls host an electronic state at E = 2.70 eV, but 4-ZGNR functionalized with

p-polyphenyl groups possessing an even number of aromatic rings clearly shows conductance

spectra approaching that of the the pristine nanoribbon at E = 2.70 eV. On the other hand, the

spectra upon the introduction of a p-polyphenyls with an odd number of rings display a Fano

anti-resonance at E = 2.70 eV. We unambiguously observe the even-odd effect in the vicinity

(±δE ) of the conductance step, and in the following we will present our results at E = 2.70±δE

(with δE = 0.001 eV) to ensure avoidance of the irregularity. A parallel conclusion can be

drawn for 7-AGNR edge-functionalized with polyacenes displayed in Figure 3.1(d)−(f). In

this case, however, the lack of a conductance step at E = 2.70 eV makes Fano anti-resonances

even more visible, as we show in Figure 3.1(f). Again, resonant transport is observed when the

edge-attached molecule possesses an even L, while an anti-resonance is seen for an odd L,

which becomes narrower as the length of the chain increases, suggesting a weaker coupling to

the nanoribbon [Miroshnichenko et al., 2010]. Interestingly, the Fano anti-resonance occurs

at the position of the flat band in AGNRs as calculated by 1NN-TB model, whereas E = 2.70 eV

is the energy, where multiple sub-bands cross at X point of the Brillouin zone in ZGNRs.

We complement our analysis of this fascinating even-odd phenomenon by presenting in Figure

3.2 the local densities of states (LDOS), local probability current maps, and the wavefunctions

of 4-ZGNR and 7-AGNR upon binding of p–polyphenyls (L = 1,2) and polyacenes (L = 2,3),

respectively, at the relevant energy E = 2.70 eV. The LDOS of 4-ZGNR functionalized with a

phenyl group at the edge (L = 1) shown in Figure 3.2(a) indicates a pronounced localization

at both the inner region of 4-ZGNR as well as at the phenyl group, whereas no density is

observed on the edge site of ZGNR which binds to the phenyl group. At this latter site, we

also note the flow of the current is suppressed, see Figure 3.2(b). Moving from phenyl to

biphenyl (L = 2), on the other hand, the LDOS is delocalized over the whole 4-ZGNR [Figure

3.2(d)] and no density resides at the site which bridges the functional group to 4-ZGNR.

Furthermore, the probability current remains unperturbed and features a symmetric flow

through both edges of the nanoribbon, see Figure 3.2(e). These results lend further support

to the observations discussed in the previous paragraph, i.e. that changes in the transport

properties of edge-functionalized GNRs depend on the number of rings in functional group,

with odd number of rings causing the disruption of the electronic structure at E = 2.70 eV.

Similar observations translate to 7-AGNR. In the case of naphtalene (L = 2) [Figure 3.2(g)],

the LDOS is fully delocalized and no density can be found on the two atoms which bind the

polyacene with the nanoribbon, hence displaying local currents resembling those of pristine

7-AGNR [Figure 3.2(h)]. In contrast, functionalization with anthracene (L = 3) gives rise to

strong localization which in turn hinders the current to flow between the two edge atoms in

the nanoribbon at which the guest molecule binds, as seen in Figure 3.2(j) and (k).

In the case of guest aromatic molecules with L = 2, we observe that the state that is localized
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Figure 3.2: (a) LDOS and (b) probability current at E = 2.70−δE eV (with δE = 0.001 eV) in
4-ZGNR edge-functionalized with a phenyl (L = 1) group. (c) Wavefunctions of the isolated
benzene (L = 1) molecule at E = 2.70 eV, with colors indicating a phase difference of π and
black arrows indicating the binding sites. (d) LDOS and (e) probability current at E = 2.70−δE
eV in 4-ZGNR edge-functionalized with biphenyl (L = 2) group. (f) Wavefunctions of the
isolated biphenyl molecule at E = 2.70 eV. (g) LDOS and (h) probability current at E = 2.70
eV in 7-AGNR edge-functionalized with naphtalene (L = 2). (i) Wavefunctions of the isolated
naphtalene molecule at E = 2.70 eV. (j) LDOS and (k) probability current at E = 2.70 eV
in 7-AGNR edge-functionalized with anthracene (L = 3). (l) Wavefunctions of the isolated
anthracene molecule E = 2.70 eV.

on the molecule is not interacting with the continuum of states of the nanoribbon, and the

conductance at E = 2.70 eV is the same as that of the ideal lead [Figure 3.2(d) and (g)]. The rea-

son for this traces back to the spatial distribution of the electronic states in the corresponding

isolated molecules at E =±2.70 eV, as given in Figure 3.2(c), (f), (i), and (l). At variance with

benzene [Figure 3.2(c)]], in the biphenyl group the wavefunction [Figure 3.2(f)] does not local-

ize on the atoms that are directly bound to GNRs, thereby preventing any interactions with the

continuum of states of GNR to occur. In general, the spatial distribution of the wavefunction

is similar in all p-polyphenyl molecules possessing an even number of rings, showing zero-

weight at the binding sites and strong localization along the molecular armchair edges. On

the other hand, aromatic molecules featuring an odd number of rings feature a wavefunction

that does localize on the sites binding to the nanoribbon, thus leading to interaction with the
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Figure 3.3: Map of probability current of 4-ZGNR edge-functionalized with a phenyl group
at E = 2.70 eV for incoming (a) mode I, (b) mode II, and (c) mode III from the left lead.
Wavefunction of 4-ZGNR at E = 2.70 eV for incoming (d) mode I, (e) mode II, and (f) mode III
from the left lead.

ZGNR states and resulting in Fano anti-resonances located at E =±2.70 eV. Differently from

p-polyphenyls, in the case of polyacenes groups shown in Figure 3.2(i) and (l), there exist two

sites which bind to 7-AGNR. Similarly to p-polyphenyls, however, depending on whether the

wavefunction does reside or not on the binding sites, either an intact or disrupted transport

emerges in the current maps. Hence, we conclude that the localization of the wavefunction

at the sites of the guest functional groups which bind to the GNRs is the key ingredient in

governing the destructive interference of the electron transport in the hosting nanoribbon.

As shown in Figure 3.1((c) and (f), edge-functionalization of the nanoribbon with a molecule

containing an odd number of aromatic rings removes exactly one quantum from the con-

ductance at E = ±2.70 eV. Furthermore, we see that the local currents in Figure 3.2(b) and

(k) break the symmetry along the edges and hence indicate a different response from the

incoming modes. For the representative case of 4-ZGNR edge-functionalized with a phenyl

group (L = 1), we present in Figure 3.3 (a)−(c) the current maps due to the three incoming

modes from the left lead at E = 2.70−δE . Our results demonstrate that, while the current is

disrupted in panels (a) and (b), it is fully preserved in panel (c). The origin of this effect can

be rationalized by inspecting the behavior of the incoming wavefunction, as shown in Figure

3.3(d)−(f). Of the three wavefunctions displayed, only the one presented in Figure 3.3(f) does

not exhibit finite weight on the atoms at the edge of the nanoribbon, thereby indicating that

the local current in the inner region of the nanoribbon is not affected by the guest molecule.

On the other hand, the wavefunctions shown in 3.3(d) and (e) are localized to some degree

on the edge atoms as well. This is further reflected in the current maps of Figure 3.3(a) and

(b), in which one can observe how the local current is not flowing through the site that is
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bound to the phenyl group. A similar behavior has been previously reported in carbon-based

sp2-hybridized structures whereby one atom experiences a large on-site potential [Chen et al.,

2018]. We stress that the same effect is displayed by 7-AGNR edge-functionalized with a group

containing an odd number of rings (not shown here), with the difference that in this latter

case the guest molecule is covalently bound through two distinct carbon sites as compared

to 4-ZGNR. Remarkably, we demonstrate that the even-odd phenomenon boils down to the

interaction between two (four) sites, i.e. one (two) on the ZGNR (AGNR) and one (two) on the

edge-attached aromatic molecule.

3.3.2 Even-odd effect arising from higher-level theoretical models

Next, we expand our investigation by employing more realistic models, namely third-nearest-

neighbor TB model and DFT calculations in order to verify that the observed even-odd effect

is not an artifact of the possibly oversimplified 1NN-TB model. In Figure 3.4, we present the

conductance spectra of 4-ZGNR and 7-AGNR hosting p-polyphenyl and polyacene groups

of length 1 ≤ L ≤ 6 bound to the edge. As expected, 3NN-TB model and DFT calculations

break the electron-hole symmetry observed in the 1NN-TB model. Hence, both valence

and conduction states are presented. In Figure 3.4(a) and (c), we observe that the even-odd

effect is retained when the 3NN-TB model is adopted for 4-ZGNR system both in the valence

and conduction states, even though the energy at which it takes place is shifted by ∼0.6 eV

with respect to the 1NN-TB model for the latter. Additionally, we remark that there are no

distinct resonances and anti-resonances occurring at a particular energy, rather such effect

appears within the energy window in which the conductance takes approximately the value

of 4.0 or 3.0 G0. Furthermore, DFT results shown in Figure 3.4(b) and (d) also allow one to

discriminate between odd and even values of L, both in valence and conduction states, and,

similar to the 3NN-TB model, the phenomenon is again slightly shifted in energy w.r.t. the

1NN-TB model, yet to a different extent as compared the 3NN-TB results. The conductance

spectra of edge-functionalized 7-AGNR obtained at the 3NN-TB and DFT levels are given

in Figure 3.4(e) and (f), respectively. While the even-odd effect is observed in the 3NN-TB

model calculations, we found that, upon increasing L, the conductance deviates from the the

resonance and anti-resonance behaviors observed in the 1NN-TB model. Hence, the even-odd

effect becomes difficult to be resolved in longer aromatic functional groups. Furthermore,

DFT calculations of the valence states yield only a weak separation between odd and even

L at E ≈−2.80 eV, though for even values of L resonant transport is preserved. The 3NN-TB

results for the conduction states shown in Figure 3.4(g) reveal that the effect can still be clearly

observed, but, similar to 4-ZGNR, it appears shifted to E = 2.30 eV and spread over a wider

energy window. Finally, we did not single out any even-odd effect characteristics for 7-AGNR

with side-attached aromatic molecules in the conduction states calculated by means of DFT.

Overall, we establish that the even-odd phenomenon is not an artifact of the 1NN-TB model,

though it appears largely exaggerated by this simplified approach.

We then determine the band structure of pristine 7-AGNR to rationalize the discrepancy in the
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Figure 3.4: Conductance spectra of 4-ZGNR edge-functionalized with p-polyphenylene groups
of 1 ≤ L ≤ 6 below the Fermi level at the (a) 3NN-TB, and (b) DFT levels, as well as above the
Fermi level at the (c) 3NN-TB and (d) DFT levels. Conductance spectra of 7-AGNR edge-
functionalized with polyacene groups of 1 ≤ L ≤ 6 below the Fermi level at the (e) 3NN-TB,
and (f) DFT levels, as well as above the Fermi level at the (g) 3NN-TB and (h) DFT levels.

even-odd effect emerging in the different adopted levels of theory. Our results are presented in

Figure 3.5. The band structure obtained at the 1NN-TB level exhibits a flat band at E =±2.70 eV

[see Figure 3.5(a)], i.e. where the even-odd effect occurs. On the other hand, both the 3NN-TB

model and DFT calculations reveal that such band acquires some dispersion character and

slightly shifts in energy as compared to the 1NN-TB result. Such a poor description of the band

structure of 7-AGNR at the 1NN-TB level explains why the even-odd effect is shifted away from

E = 2.70 eV in higher levels of theory, and also accounts for the fact that this phenomenon

is observed at wider energy windows which correspond to the bandwidth. Furthermore, at

variance with the 1NN-TB model, the DFT band structure [Figure 3.5(c)] clearly shows strongly

dispersed character of the conduction states, hence substantially quenching the even-odd

effect in this energy range.

Finally, we discuss the observed deviation from the conductance values of 4.0 and 3.0 G0

shown in Figure 3.4(e), for even and odd values of L, respectively, on the basis of the 3NN-TB

model LDOS of 7-AGNR systems at E = 2.70 eV. We compare the LDOS of the pristine system

[Figure 3.5(d)] with that of the nanoribbon hosting a tetracene (L = 4) [Figure 3.5(e)] or an

octacene (L = 8) [Figure 3.5(f)]. Our findings indicate that the LDOS in the inner region of

the 7-AGNR edge-functionalized with tetracene closely resembles that of the pristine system,

with the LDOS on the functional group being well separated from the 7-AGNR and resulting

in resonant transport. The increase in the number of the rings, e.g moving from tetracene to

octacene, is accompanied by a disruption in the LDOS in the lead, as shown in Figure 3.5(f). In

addition, the LDOS starts to develop on the two binding sites, hence detrimentally perturbing

the transport properties and suppressing its resonant character. We conclude that a further
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increase in the length of acenes containing an even number of rings promotes a significant

hybridization of the localized state on the guest molecule with the continuum of states in the

hosting AGNR, yielding a decrease in the conductance.

3.4 Summary and conclusions

In summary, we have carried out a theoretical investigation of the transport properties of

GNRs with edges chemically functionalized with p-polyphenyl and polyacene groups. Our

1NN-TB results indicate that, depending on whether the number of aromatic rings in the

guest molecule is even or odd, either constructive or destructive interference takes place at

E = ±t1 =±2.70 eV in the conductance spectrum. In the case of functional groups with an

even number of rings, this effect stems from the fact that the local density of states does not

reside on the sites of the guest molecule which covalently bind to the nanoribbon, resulting

in negligible interactions between the continuum of states in GNR and the localized state

on the edge-attached molecule. On the other hand, upon binding of functional groups

containing an odd number of rings to the nanoribbon, the electron transport is decreased by

one quantum of conductance at E = t1. Further analysis indicates that such functionalization

affects local current and hence conductance to an extent which is governed by the behavior of

the wavefunction in the lead.
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3.4 Summary and conclusions

We then established that the even-odd phenomenon is largely preserved when adopting higher

levels of theory, i.e. 3NN-TB model and DFT. As compared to the simplified 1NN-TB model,

however, this phenomenon is shifted in energy and spread over a larger energy window. This

is a consequence of the approximate nature of the band structure obtained at the 1NN-TB

level, especially at energies further away from the Fermi level. Also, we have suggested that

such even-odd effect becomes less pronounced as the number of aromatic rings in the guest

molecule increases.

In conclusion, we have revisited and clarified the origin of the even-odd conductance effect

observed in graphene nanoribbons with armchair or zigzag edges chemically functionalized

with aromatic functional groups. We have provided a detailed understanding of the interplay

between the localized states on the guest molecules and the continuum of states of the

hosting graphene nanoribbon, and on its role in governing the resulting electron transport.

Overall, our results promote the validity of graphene nanoribbons as promising candidates

for chemosensing devices, and offer a theoretical insight into the formulation of guidelines

towards their realization.
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4 Electronic Transport Across Quantum
Dots in Graphene Nanoribbons

Success of all-graphene electronics is severely hindered by the challenging realization and

subsequent integration of semiconducting channels and metallic contacts. Here, we com-

prehensively investigate the electronic transport across width-modulated heterojunctions

consisting of a graphene quantum dot of varying lengths and widths embedded in a pair of

armchair-edged metallic nanoribbons, of the kind recently fabricated via on-surface syn-

thesis. We show that the presence of the quantum dot opens a width-dependent transport

gap, thereby yielding built-in one-dimensional metal-semiconductor-metal junctions. Fur-

thermore, we find that, in the vicinity of the band edges, the conductance is subject to a

smooth transition from an antiresonant to a resonant transport regime upon increasing the

channel length. These results are rationalized in terms of a competition between quantum-

confinement effects and the coupling between the states in quantum dot and the states in the

lead. Overall, our work establishes graphene quantum dot nanoarchitectures as appealing

platforms to seamlessly integrate gap-tunable semiconducting channels and metallic con-

tacts into an individual nanoribbon, hence realizing self-contained carbon-based electronic

devices.

This chapter is adapted from:

Čern, evičs, K., Yazyev, O.V. and Pizzochero, M. (2020). Electronic transport across quantum

dots in graphene nanoribbons: Toward built-in gap-tunable metal-semiconductor-metal

heterojunctions. Phys. Rev. B, 102:201406(R) [pre-print: arXiv: 2006.15075]

My contribution to this work was writing the code for TB calculations, performing part of the

calculations (LDOS, eigenvalues, coupling strength), analysis of the data and co-writing the

paper.
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Chapter 4. Electronic Transport Across Quantum Dots in Graphene Nanoribbons

4.1 Motivation

We have already mentioned in introductory Section 1.2.2 that the atomically precise bottom-

up GNRs are fully defined by the selection of the precursor monomers [Cai et al., 2010] and

that there has been a broad assortment of experimentally synthesized GNRs featuring diverse

widths [Dong et al., 2018; Beyer et al., 2019; Yamaguchi et al., 2020], edge geometries [Abbas

et al., 2014; Wang et al., 2021d] and chemical compositions [Chen et al., 2016; Liu et al., 2017;

Carbonell-Sanromà et al., 2017; Hayashi et al., 2017], hosting novel physical phenomena, such

as magnetism [Ribeiro et al., 2011; Li et al., 2019a; Sun et al., 2020; Pizzochero and Kaxiras,

2021, 2022], engineered topological states [Cao et al., 2017; Gröning et al., 2018; Rizzo et al.,

2018; Li et al., 2021b] and induced metallicity [Rizzo et al., 2020]. More importantly, the large

degree of control that has been experimentally achieved over the atomic-level features of GNRs

has also sparked the opportunity to realize complex heterostructures, including two-terminal

[Blankenburg et al., 2012; Cai et al., 2016; Ma et al., 2019], triple- [Sánchez-Sánchez et al., 2017;

Zuzak et al., 2020], as well as hetero-junctions [Marangoni et al., 2016; Nguyen et al., 2017;

Bronner et al., 2018].

Of particular interest among this rich variety of carbon-based architectures is the assembly of

width-modulated armchair graphene nanoribbons. These heterojunctions have been recently

fabricated either through lateral fusion of two distinct AGNR segments of different length

via cross-dehydrogenative coupling [see Figure 4.1(a)] or following a co-deposition of two

distinct precursors on metal surface, yielding armchair nanoribbons that are smoothly edge-

functionalized with guest graphene quantum-dots of varying length and width [Chen et al.,

2015; Wang et al., 2017; Jacobse et al., 2017; Chen et al., 2017b; Rizzo et al., 2018, 2021]. Figure

4.1(b) shows the STM image of several experimentally synthesized 7-14-7-AGNR quantum dot

structures with varying lengths, while a high resolution nc-AFM image of one such structure is

presented in Figure 4.1(c).

Strikingly, these heterojunctions can be seen as an extension of the AGNR nanostructures

investigated in Chapter 3, where the wider central region is now extended laterally. Such

nanoarchitectures may hold promise towards graphene electronics by virtue of the tunable

band-gap of the constituent AGNR building-blocks [Jacobse et al., 2017] due to the width

dependent electronic properties (discussed in more depth in Section 1.2.1). For example,

combining N -AGNRs from the quasi-metallic N = 3p +2 family with the semiconducting N =
3p, N = 3p +1 families can result in novel integrated metal-semiconductor one-dimensional

heterojunctions.

Although graphene-based quantum dots and constrictions have been previously theoretically

studied [Darancet et al., 2009; González et al., 2011; Xiong and Xiong, 2011], a comprehensive

picture of the electronic structure of the aforementioned width-modulated armchair graphene

nanoribbons is still missing. In this chapter, we fill this gap in knowledge by systematically

investigating the charge transport across graphene quantum-dots of different geometries

embedded in armchair-edged graphene nanoribbons. With the help of atomistic simula-
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4.2 Methodology

tions, we achieve a detailed understanding of the interplay between their atomic structure

and electronic transport. Importantly, we establish guidelines to assemble all-graphene elec-

tronic devices composed of a semiconducting quantum-dot channel seamlessly connected

to metallic leads. Overall, our findings expedite the potential of as-synthesized graphene

quantum-dots to develop complete built-in carbon-based electronic devices in one dimen-

sion.

4.2 Methodology

Our calculations are conducted at the tight-binding level, in which the Hamiltonian describing

the pz electrons takes the form of Eq. 3.1. We set the on-site potential ϵi to 0 eV and fix the

nearest-neighbor hopping integral t1 to 2.75 eV. The choice of resorting to the tight-binding

framework instead of e.g. first-principles calculations is dictated by the large number of atoms

considered in our realistic models (up to several thousands) and supported by the well-known

satisfying description that the TB Hamiltonian provides as far as the experimentally relevant

low-energy physics of graphene nanostructures is concerned.

Transport properties are calculated using the non-equilibrium Green’s function formalism as

presented in Section 2.5 and implemented in Kwant [Groth et al., 2014]. We express conduc-

tance in terms of the conductance quantum G0 following Eq. 2.60.

4.3 Results and discussion

We consider the nanoarchitectures experimentally reported in e.g. [Wang et al., 2017; Jacobse

et al., 2017]. Figure 4.1(d) shows a model of our width-modulated AGNRs in which a chan-

nel containing a graphene quantum-dot of width M and length L is contacted to a pair of

equivalent semi-infinite leads of width N , hence giving rise to a N -(N +M)-N in-plane het-

erojunction. As is customary [Wakabayashi et al., 1999], both N and M are quantified as the

number of dimer lines across the transport direction. We set N = 5,8,11 (that is, N ∈ 3p +

2) to ensure the metallic character of the leads at the adopted level of theory, whereas we

extensively cover the width space of the quantum dot by choosing 5 ≤ M ≤ 13. In analogy with

experiments [Wang et al., 2017], we span a length interval of the quantum dot L = n ×a0 rang-

ing from 0.9 to 21.3 nm, i.e. corresponding to 2 ≤ n ≤ 50 unit cells of lattice constant a0 = 4.26

Å. The combination of the geometrical parameters N , M , and L leads to over 1300 distinct

atomic structures. For each of them, we have obtained both the conductance spectrum and

the electronic density of states. These results are given in the Supplemental Material‡, which

serves as an “atlas“ to understand the electronic properties and further guide the design of

such width-modulated AGNRs.

In the following, we identify the general trends and uncover the physical effects that govern the

‡See Supplemental Material at https://journals.aps.org/prb/supplemental/10.1103/PhysRevB.102.201406 for
additional results.
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Figure 4.1: AGNR quantum dots. (a) Schematic illustration of the formation of a 14-AGNR
quantum dot by edge fusion of two 7-AGNRs. (b) STM image showing several 7-14-7 quantum
dot heterostructures on Au(111). Scale bar: 5 nm. (c) nc-AFM frequency shift image of a
7-14-7-AGNR heterojunction. Scale bar: 2 nm. Panels (a),(b) and (c) are adapted from [Wang
et al., 2017]. (d) Atomic model of the nanostructure considered in our electron transport
calculations, in which a quantum dot of varying width M (with 5 ≤ M ≤ 13) and length L (with
0.9 nm ≤ L ≤ 21.3 nm) acts as a channel region embedded in a pair of metallic N -AGNRs leads
(with N = 5, 8, 11), giving rise to a N -(M +N )-N -AGNRs heterojunction.

electronic transport across these heterojunctions. Without loss of generality, we mainly focus

on structures with N = 5 and M = 5,6,7 and increasing L. In Figure 4.2, we show the atomic

structures of 5-10-5, 5-11-5, and 5-12-5-AGNR heterojunctions along with the evolution of

their conductance spectra with the length of the quantum dot. Due to the electron-hole

symmetry encoded in the employed tight-binding Hamiltonian, only positive energies are

given. Irrespectively of the width of the quantum dot, comparable changes are observed in the

conductance spectra upon lengthening the channel region. Specifically, conductance peaks

sharpen, become denser, and step in energy towards the Fermi level. From a qualitative point

of view, this situation is analogous to that of a particle encountering a double (symmetric)

rectangular potential barrier, when the separation between the barriers is widened.

On a more rigorous ground, in the vicinity of the band edge, we can identify a smooth transition

between two distinct transport regimes that emerge upon increasing the length of the graphene

quantum dot. In Figure 4.3, we show the conductance spectrum and the density of states

of the three selected heterojunctions mentioned above containing a short [Figure 4.3(a)],

intermediate [Figure 4.3(b)], and long [Figure 4.3(c)] quantum dot. Also shown are the energy

levels of the corresponding finite-size isolated (M +N )-AGNR of length L. On the one hand,
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Figure 4.2: Atomic structure (upper panels) and conductance spectrum (lower panels) of (a)
5-10-5, (b) 5-11-5, and (c) 5-12-5-AGNR heterojunctions for increasing lengths of the quantum
dot L, as indicated. Fermi level level is set to zero.

the introduction of a short (e.g. approximately L < 5 nm for 5-10-5-AGNR) quantum dot

preserves the metallic character, substantially diminishes the conductance at the band edge,

and gives rise to asymmetric Fano lineshape whose minimum is located in energy quite far

from the level associated with the corresponding isolated dot [Mendoza et al., 2008; Deng

et al., 2014]. Such antiresonances closely resemble those previously observed in the case of

graphene nanoribbons upon functionalization with a p-polyphenyl or polyacene functional

groups to the edge [Čern, evičs et al., 2020b]. On the other hand, the introduction of a long

(e.g. approximately L > 10 nm for 5-10-5-AGNR) quantum dot turns the electronic transport

into a resonant tunneling regime, where a finite transport gap opens and conductance peaks

discretize, assume a unitary value, and eventually match in energy the spectrum of the isolated

dot. These two transport regimes are bridged by an intermediate situation, where both

resonant and antiresonant features coexist, though at different energy scales [Xiong and Xiong,

2011].

We suggest that the origin of the transition crossing the two transport regimes traces back

to the different coupling strength between the states of the channel and those of the lead

that occurs when moving from short to long quantum dots. This is further supported by the

evolution of the local density of states (LDOS) at the band edge with the length of the quantum
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Figure 4.3: Selected representative density of states of the central channel (red lines), transmis-
sion spectrum (blue area), and energy levels of the isolated graphene quantum dot of width
(M +N ) (green lines) corresponding to the (a) antiresonant (L = 0.85 nm), (b) intermediate
(L = 5.1,3.0,2.1 nm for top, middle, and bottom panel, respectively), and (c) resonant tunnel-
ing (L = 12.8 nm) electronic transport regimes discussed in the text for N = 5 and M = 5 (top
panels), M = 6 (middle panels), and M = 7 (bottom panels). Fermi level is set to zero.

dot, as displayed in Figure 4.4(a). For short quantum dots, the LDOS localizes at the ends,

thereby offering electronic states that are available to interact with those of the leads, hence

promoting a strong coupling between the states in channel and the leads. Oppositely, long

quantum dots host a LDOS that resides in the inner region solely, hence behaving rather

independently from the contacts. In addition, we remark that, due to the different behavior

in the antiresonant and resonant regimes, the difference in energy between conductance

peaks and corresponding levels of the isolated quantum dot [δ(E)] can be utilized as a suitable

descriptor to monitor the transport crossover. This is indeed shown in the inset of Figure

4.6(f), where it can be noticed that the increase of L rapidly decreases δ(E), as we further detail

below.

This argument holds for all topologically trivial heterojunctions, but at first glance seems to

fail for junctions that display topologically protected interface states. In Figure 4.4(b) and (c),

we compare the electronic properties of two structurally similar heterojunctions but, contrary

to the 5-9-5-AGNR heterostructure, the 5-11-5-AGNR heterostructure is built from a pair of

AGNRs belonging to different topological classes, i.e., that feature topological invariant Z2=1

(5-AGNR) and Z2 = 0 (11-AGNR), hence exhibiting a topologically protected interface state.

54



4.3 Results and discussion

Energy (t1)
0.0

0.0

0.2

0.4

0.6

0.8

1.0

C
on

d
u
ct

an
ce

 (
G

0
)

Junction
Lead

0

40

80

60

20

100

D
O

S

75

125

25

175

D
O

S

150

100

50

0

a

b c

0.0

0.2

0.4

0.6

0.8

1.0
C
o
n
d
u
ct

an
ce

 (
G

0
)Junction

Lead

0.1 0.2 0.3 0.4
Energy (t1)

0.0 0.1 0.2 0.3 0.4
Energy (t1)

0.0 0.1 0.2 0.3 0.4
Energy (t1)

0.0 0.1 0.2 0.3 0.4

Figure 4.4: (a) Evolution of the local density of states at the band edge with L in the 5-10-5-
AGNR heterojunction. Local density of states, conductance spectrum and density of states
of the (a) 5-9-5-AGNR and (b) 5-11-5-AGNR heterostructures. The LDOS corresponds to the
energy at which the first peak in the conductance spectrum occurs.

The Z2 invariant for an N = odd armchair ribbon can be expressed as [Cao et al., 2017]

Z2 = 1+ (−1)[ N
3 ]+[ N+1

2 ])

2
, (4.1)

while for N = even we have

Z2 = 1− (−1)[ N
3 ]+[ N+1

2 ])

2
. (4.2)

Although the topologically protected state in the 5-11-5-AGNR heterojunction exhibits a strong

localization at the interface between the channel and the lead in contrast to topologically

trivial junctions, our results indicate that no additional DOS or conductance peaks associated

with the interface state arise. Furthermore, if we disregard the high LDOS concentrated at the

interface of topological junctions, the central part of the GNR will recover the LDOS pattern

observed in topologically trivial junctions, similar to Figure 4.4(a) and (b). Therefore, following

the same principles for transition from antiresonant to resonant transport with increasing

L. In addition, as no new conductance peaks are observed, the transport gaps, on which we
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focus in this chapter, are also not sensitive to the topological interface states.

The weakening of the channel-to-lead states coupling induced by the increase of L and the

accompanying transition between the two transport regimes discussed above have dramatic

consequences on the transport gap. In Figure 4.5, we give such gap – as extracted from the

conductance spectra – for all the heterojunctions considered in this work, featuring N = 5

[Figure 4.5(a)], N = 8 [Figure 4.5(b)], and N = 11 [Figure 4.5(c)]. Irrespective of the width

(M +N ) of the channel, the introduction of short quantum dots and the ensuing antiresonant

transport regime either retain the metallic character or open only a tiny transport gap. However,

as the length of the quantum dot is increased and the resonant tunneling regime is reached,

a substantial transport gap opens and eventually converges to that of the periodic (M +N )-

AGNR. This implies that the channel in the considered structures featuring either (M +N )

∈ 3p or (M +N ) ∈ 3p +1 acquires semiconducting character [Jacobse et al., 2017], with a finite

transport gap that can be engineered through the modulation of the quantum-dot width.

This finding indicates that these heterojunctions feature a semiconducting channel based

on a graphene quantum-dot that is is seamlessly contacted to a pair metallic leads, thereby
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giving rise to complete all-carbon devices built into a single armchair graphene nanoribbon.

Contrarily, the transport gap of heterojunctions featuring a quantum dot of width (M +N )

∈ 3p +2 vanishes with L.

The results reported in Figure 4.5, in which we show that the energy gap increases with the

length of the quantum dot, may appear counterintuitive on the basis of quantum-confinement

effects solely, according to which one should expect the gap to decrease with the length of

the nanostructure [Talirz et al., 2019]. In Figure 4.6(a)−(c), we present the energy spectra of

finite-size AGNR of increasing length (notice that the zero-energy modes originate from the

zigzag terminations and do not contribute to the electronic transport as they are selectively

localized on one sublattice, hence effectively decoupled from the other lead). As expected,

we observe that the energy gap decreases as the length of the AGNR increases, apparently

at odds with the findings of Figure 4.5. However, we remark that another physical effect is

operative and plays a central role in modulating the transport-gap width when the AGNR acts

as a quantum dot. This corresponds to the coupling between the quantum dot states(channel)

and the continuum of states in the semi-infinite AGNRs (lead) [Vergés et al., 2018], which

in turn is very pronounced for small values of L, as we discussed above. In order to single

out the impact of such coupling on the conductance spectrum, for the sake of illustration

we gradually decrease the hopping integral t1 between the atoms connecting the channel to
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the leads and obtain the resulting transmission spectrum in Figure 4.6(d)−(f). Two distinct,

though closely related, effects can be observed upon weakening the channel-to-lead coupling.

Firstly, the conductance peaks step away from the Fermi level and approach the energy values

of the isolated quantum dot AGNR, as shown in the inset of Figure 4.6(f). As the hopping

integral decreases, this energy shift δ(E) vanishes, irrespective of the value of L considered

within the antiresonant transport regime as well. Second, the broadening of the peaks in

the conductance spectra is strongly reduced, such that the tails that were extending towards

the Fermi level shrink, with a metal-to-semiconductor transition taking place even for short

L. Hence, the emergence of the two transport regimes (antiresonant vs. resonant) and the

consequent transport gaps (metallic vs. semiconducting) are found to be dominated by a

subtle competition between the energy gap of the isolated quantum dot and the broadening

of the conductance peaks that occurs upon contacting the channel to the leads.

4.4 Summary and conclusions

We have investigated the electronic transport in width-modulated heterojunctions consisting

of graphene quantum-dots embedded in metallic armchair nanoribbon leads, similar to those

recently synthesized via bottom-up approaches. We have considered over a thousand differ-

ent configurations of varying geometries and determined their charge transport properties

through a combination of atomistic tight-binding and non-equilibrium Green’s functions

calculations. The emerging picture indicates that the conductance is found to be dominated

by the length scale of the quantum dot, which induces a smooth transition from a metallic

antiresonant transport regime (similar to the one observed in Chapter 3) to a semiconducting

resonant regime. Upon exceeding a critical length of the quantum dot – the value of which is

governed by the interplay between the intrinsic band-gap and the strength of the coupling

between the states in quantum dot and the lead – a width-dependent transport gap opens,

thereby giving rise to built-in one-dimensional metal-semiconductor-metal junctions.

To conclude, our work demonstrates that the experimentally realized functionalization of

metallic AGNRs with graphene quantum-dots offer an effective route to directly integrate a

semiconducting channel into metallic electrical contacts while preserving the advantageous

fine tunability of the AGNR band gap. Overall, our findings envisage graphene quantum-dot

nanoarchitectures as self-contained electronic devices encoded in a sole graphene nanorib-

bon.
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5 Electronic Transport Across “Bite”
Defects in Graphene Nanoribbons

On-surface synthesis has recently emerged as an effective route towards the atomically precise

fabrication of graphene nanoribbons of controlled topologies and widths. However, whether

and to which degree structural disorder occurs in the resulting samples is a crucial issue

for prospective applications that remains to be explored. In this chapter, we show experi-

mentally visualized ubiquitous missing benzene rings at the edges of 9-atom wide armchair

nanoribbons that form upon cleavage of phenyl groups of precursor molecules. These defects

are referred to as “bite” defects. First, we address their density and spatial distribution on

the basis of scanning tunnelling microscopy and find that they exhibit a strong tendency to

aggregate. Next, we explore their effect on the quantum charge transport from first-principles

calculations, revealing that such imperfections substantially disrupt the conduction properties

at the band edges. Finally, we generalize our theoretical findings to wider nanoribbons in

a systematic manner, hence establishing practical guidelines to minimize the detrimental

role of such defects on the charge transport. Overall, our work portrays a detailed picture of

“bite” defects in bottom-up armchair graphene nanoribbons and assesses their effect on the

performance of carbon-based nanoelectronic devices.

This chapter is adapted from:

Pizzochero, M.*, Čern, evičs, K.*, Borin Barin, G., Wang, S., Ruffieux, P., Fasel, R. and Yazyev,

O.V. (2021). Quantum electronic transport across “bite” defects in graphene nanoribbons 2D

Materials, 8:035025 [pre-print: arXiv: 2006.15075]

My contribution to this work was conceiving the original idea, performing TB calculations,

analysis of the data and co-writing the paper.

*These authors contributed equally to this work
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5.1 Motivation

On-surface synthesis [Cai et al., 2010] has recently emerged as an effective route towards the

atomically precise fabrication of graphene nanoribbons of defined topologies and widths.

However, even this bottom-up approach does not produce entirely perfect GNRs as random

cross-couplings [Dienel et al., 2015; Han et al., 2020] and even edge defects [Costa et al., 2018;

Talirz et al., 2017; Teeter et al., 2019] have been observed experimentally. Furthermore, defects

are considered to be a pivotal issue for potential applications in nanoelectronics, yet both the

prevalence and the role on the electronic properties of GNRs remain to be explored.

Owing to their mechanical robustness, long-term stability under ambient conditions, easy

transferability onto target substrates [Borin Barin et al., 2019], fabrication scalability [Di Gio-

vannantonio et al., 2018], and suitable band-gap width [Talirz et al., 2017], 9-atom wide

armchair graphene nanoribbons (9-AGNRs) have emerged among the most promising can-

didates to be integrated as active channels in field-effect transistors. In particular, among

the graphene-based electronic devices realized so far, 9-AGNR-FETs are those displaying the

highest performance, with 1 µA on-current and 105 on-off current ratio at V D =−1 V [Llinas

et al., 2017]. Although the detrimental effect of defects on electronic devices is well known,

current GNR-FETs are limited by significant Schottky barriers at the contacts. Which in turn

has prevented an experimental characterization of the impact of GNR edge defects on device

performance. In fact, to which extent structural disorder is present in atomically precise GNRs

is an issue that has not been settled to date, despite its crucial consequence on the resulting

devices.

Here, we combine experimental and theoretical efforts to investigate defects in bottom-up

armchair graphene nanoribbons, with a special focus on 9-AGNRs. By means of scanning-

tunneling and atomic-force microscopies, we identify missing benzene rings at the edges as

abundant defects, and additionally underly their effect on the charge transport on the basis of

extensive first-principles calculations. Overall, this chapter offers an unprecedented view on

the nature of the structural disorder in bottom-up fabricated armchair graphene nanoribbons,

which is instrumental to the realization of novel carbon-based electronic devices.

5.2 Methodology

First-principles calculations have been performed within the density-functional theory frame-

work, as implemented in SIESTA [Soler et al., 2002]. We treated the exchange and correlation

effects under the generalized gradient approximation of Perdew, Burke, and Ernzerhof [Perdew

et al., 1996a]. Core electrons were described by separable norm-conserving pseudopotentials

[Troullier and Martins, 1991], while the Kohn-Sham wavefuctions of valence electrons were

expanded in a linear combination of atomic orbitals of double-ζ polarization (DZP) quality.

Real space integrations have been performed with a 450 Ry mesh cutoff. The Brillouin zone

was sampled with the equivalent of 21 × 1 × 1 k-mesh per unit cell in all cases but transport
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calculations, for which it was increased to 400 × 1 × 1. We optimized the atomic coordinates

until the residual force acting on each atom converges to 0.01 eV/Å. We introduced single “bite”

defects in otherwise pristine 7 × 1 × 1 supercells of N -AGNR of increasing widths (6 ≤ N ≤
26), containing from 112 (6-AGNR) to 392 atoms (26-AGNR). Pairs of “bite” defects in 9-AGNR

are modelled in a 14 × 1 × 1 supercell containing 308 atoms. Replicas along non-periodic

directions are separated by a vacuum region larger than 10 Å.

We also relied on a tight-binding model Hamiltonian with one pz orbital per carbon atom

with the help of KWANT package [Groth et al., 2014]. The Hamiltonian is expressed in Eq.

3.1. As proposed by Hancock et al. [Hancock et al., 2010], we included first-, second-, and

third-nearest-neighbor hopping integrals with corresponding values of −2.70 eV, −0.20 eV, and

−0.18 eV, respectively, while on-site terms are set to 0 eV. This tight-binding Hamiltonian yields

results in excellent accord with density-functional theory calculations, as we have shown in

Figure 2.1(b).

In order to investigate the quantum transport properties of armchair graphene nanoribbons,

Hamiltonians obtained from density-functional theory and tight-binding calculations were

next combined with the non-equilibrium Green’s function formalism [Section 2.5], as imple-

mented in Transiesta [Papior et al., 2017] and Kwant [Groth et al., 2014], respectively. G(E)

is expressed in terms of the conductance quantum G0 following Eq. 2.60.

5.3 Results and discussion

5.3.1 Experimental characterization of “bite” defects in 9-AGNRs

We synthesize 9-AGNRs by relying on the coupling and subsequent cyclodehydrogenation of

3’,6’-di-iodine-1,1’:2’,1”-terphenyl (DITP) precursor molecule on the Au (111) surface [Di Gio-

vannantonio et al., 2018]. A representative STM image overviewing the resulting products is

shown in Figure 5.1(a). It can be clearly observed that 9-AGNRs invariably exhibit missing

atoms at the edges as a predominant type of disorder. We inspect the atomic structure of such

defects through non-contact atomic-force microscopy imaging, as displayed in Figure 5.1(b).

Our result reveals that these defects – that we dub “bite” defects – consist of a missing benzene

ring, and we estimate their density to 0.19 ± 0.10 nm−1. Such “bite” defects originate from the

C-C bond scission that occurs during the cyclodehydrogenation step of the reaction [Talirz

et al., 2017], as we show in Figure 5.1(e). Similar defects have also been observed in chevron-

edged GNRs synthesized from 6,11-dibromo-1,2,3,4-tetraphenyltriphenylene precursors, and

their formation was correlated with the cyclization of multiple flexible phenyl rings against

each other [Cai et al., 2010].

Furthermore, we study the spatial distribution of “bite” defects. In Figure 5.1(c) and (d),

we give the pair distribution function (i.e., the normalized frequency of occurrence over a

wide interval of relative distances) of “bite” defects forming either at the same edge [Figure

5.1(c)] or at opposite edges [Figure 5.1(d)]. A representative STM image of each of the two
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Figure 5.1: STM and NC-AFM characterization of 9-AGNRs on Au(111). (a) STM topography
image of 9-AGNRs (LHe, −1.5 V, 0.01 nA). Notice the ubiquitous presence of missing atoms at
the edges. (b) Laplace-filtered NC-AFM image acquired with a CO-functionalized tip (0.01 V,
0.002 nA) of a “bite” defect in 9-AGNR. Scale bar is 1 nm. (c,d) Positional correlation analysis
of “bite” defects in 9-AGNRs, i.e. normalized frequency of occurrence ( f ) of relative distance
between “bite” defects (d) forming at the same edge (c) or opposite edges (d). Insets show STM
images of representative configuration of defects pair. (e) Reaction scheme for the on-surface
synthesis of 9-AGNR via surface-assisted dehalogenation and polymerization, followed by
cyclohydrogenation. Highlighted in red are the phenyl rings that undergo C-C scission during
the dehydrogenation step, resulting in the formation of “bite” defects.
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Figure 5.2: (a) Atomic structure of a “bite” defect in 9-AGNR. (b) Zero-bias conductance
spectra of pristine (grey) and defective (red) 9-AGNR, the latter hosting a “bite” defect. (c)
I -V characteristics of pristine (grey) and defective (red) 9-AGNR. Circles indicate results of
first-principles calculations while solid lines are the fit to the Simmon’s formula in to the
intermediate-voltage regime, I ∝ (V +V 3). Evolution of the conductance in defective 9-AGNR
under (d) positive and (e) negative bias voltages with respect to the zero-bias conductance
(grey), with 0.25 eV ≤ |V | ≤ 2.00 eV.

configurations is also shown in the corresponding insets. Our analysis demonstrates that “bite”

defects strongly tend to agglomerate within approximately 2 nm, irrespective of whether the

same or opposite edges are considered. Additionally, we found that the number of defects

forming at the same edge is double than that forming at opposite edges, indicating that an

edge selectivity is operative. Overall, we observe that “bite” defects preferentially form close to

each other at the same edge of 9-AGNRs.

5.3.2 Theoretical investigation of “bite” defects in 9-AGNRs

With this systematic experimental exploration of “bite” defects in armchair graphene nanorib-

bons at hand, we next address their effect on the quantum charge transport by combining

density-functional theory calculations with non-equilibrium Green’s function technique. We

start considering a single defect in 9-AGNR, the atomic structure of which is displayed in

Figure 5.2(a). In Figure 5.2(b), we show the zero-bias conductance spectrum of a defective

9-AGNR, and additionally compare our result with that of the pristine nanoribbon that shows

ideal conductance quantization. It is found that the introduction of a “bite” defect leads to a

pronounced decrease of the transmission at the band edges. The transmission profiles are
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Figure 5.3: (a) Atomic structure of a single “bite” defect in 9-AGNR, along with the lattice sites
at which the introduction of a second “bite” defect is introduced. (b) Formation energies of a
pair of “bite” defects forming at the sites given in panel (a) under C-rich and H-rich conditions,
with defects forming at the same (opposite) edge(s) given in red (blue). (c) Evolution of the
τ descriptor [given in Eq. (5.1)] for pair of “bite” defects forming at the lattice sites given in
panel (a), either at the same edge (red) or opposite edges (blue).

very similar at the edges of both the valence and conduction bands, but the electron-hole

asymmetry becomes more pronounced at higher energies. In order to quantify the conduc-

tance suppression effect, we introduce a descriptor, τ, which estimates the fraction of the

conductance which is preserved in the vicinity (δE ) of the valence band maximum (VBM) and

conduction band minimum (CBM) upon the defect formation as

τ=
∫ CBM+δE

VBM−δE Gd(E)∫ CBM+δE
VBM−δE Gp(E)

dE , (5.1)

with Gp(E ) and Gd(E ) being the conductance of the defective and pristine armchair graphene

nanoribbons, respectively. Here and below, we assume δE = 0.10 eV and find τ= 26%, thus

indicating a considerable reduction of the conductance due to the presence of a “bite” defect

at the edge of 9-AGNRs. We have explicitly verified that the values of τ obtained are rather

insensitive to the choice of δE.

We extend our investigation through the determination of the charge transport properties

under finite bias voltages. Figure 5.2(c) compares the I -V characteristics of a 9-AGNR with

and without a “bite” defect. In both cases, currents arise when the applied bias voltage

exceeds in magnitude the width of the band-gap (∼1 eV at the adopted level of theory). Within

this regime, zero-energy contributions emerge in the conductance spectra shown in Figs.

5.2(d) and (e), hence signalling the enhancement of the tunnelling probability induced by

the increase of the bias voltage. The current grows with the applied bias voltage following

a nearly cubic scaling, as supported by the excellent agreement between the results of our

calculations and the fit to the Simmon’s formula appropriate to the intermediate-voltage range

I ∝ (V +V 3) [Simmons, 1963a,b], as displayed in Figure 5.2(c). The sign of the applied bias
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Figure 5.4: Conductance spectra of pairs of “bite” defects (red) forming at (a) the same edge
and (b) opposite edges, labeled according to Figure 5.3(a). Upper panels show the atomic
structure of the defects configuration considered in each case. Also given for comparative
purposes are the conductance spectra of 9-AGNR either in the pristine case (grey) and hosting
a single “bite” defect (light blue).

voltage is found to be irrelevant for shaping the evolution of both the current [Figure 5.2(c)]

and conductance [Figs. 5.2(d) and (e)], as a consequence of the electron-hole symmetry which

is largely retained in a wide energy interval in the defective lattice. The main difference in the

I -V characteristics of pristine and defective 9-AGNR traces back to the current intensities,

which are found to be lowered by one order of magnitude upon the formation of a “bite”

defect. Overall, our findings clearly pinpoint the detrimental role that “bite” defects play on

the electronic transport properties of 9-AGNRs.

We then address the formation of pairs of “bite” defects, either at the same edge or at the

opposite edges of the nanoribbon, of the kind shown in the insets of Figure 5.1(c) and (d).

The configurations considered are presented in Figure 5.3(a), and consist in introducing a

second defect at increasing distances (up to 1 nm) from the first defective site. We assess

the relative stability of “bite” defects through the determination of their formation energy

E form, which is the primary quantity of interest when thermodynamic equilibrium prevails.

As graphene nanoribbons are binary compounds, the introduction of defects changes the

nominal stoichiometry, thus rendering E form a linear function of the chemical potential µ of

the constituent elements. The formation energy reads

E form(µ) = E d −E p −nHµH +nCµC , (5.2)
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Figure 5.5: (a) Formation energy and (b) τ of a single “bite” defect in armchair graphene
nanoribbons as a function of the increasing width N . Local density of states 0.05 eV below the
valence band edge of defective (left panels) and pristine (right panels) armchair nanoribbons
in (c) 9-, (d) 10-, and (e) 11-AGNR, as obtained at the tight-binding level of theory.

with E d and E p being the total energies of the defective and pristine models, respectively,

nH (nC) the number of added (removed) H (C) atoms required to create the defect, while µC
and µH are the corresponding chemical potentials. As usual, we assume that C and H are in

thermal equilibrium with armchair graphene nanoribbons of general formula CxHy through

the equality µCxHy = xµC + yµH, where graphene and molecular hydrogen are assumed to be

the reference systems for the determination of the chemical potential reservoirs. In Figure

5.3(b), we present the formation energy of pairs of “bite” defects. Our calculations indicate

that their stability is enhanced when two defects are in proximity to each other (that is, sites α

and β), with the formation energy attaining the lowest value when the second defect forms at

nearest-neighboring site (α) at the same edge. In contrast, when the distance between the two

defects is larger than ∼9 Å (i.e., sites γ, δ, ϵ), E form reaches its maximum and remains practically

constant. Comparison of the results in Figure 5.3(b) with twice the formation energy of a single

“bite” defect (0.64 eV and 0.16 eV in H-rich and C-rich conditions, respectively), suggests that,

under thermodynamic equilibrium, “bite” defects exhibit a tendency to aggregate at shortest

distances (positions α and β), but the interaction is negligible at larger distances. From a

qualitative point of view, this theoretical result parallels the experimental analysis of Figure

5.1, although formation energies reflect the stability of defects under equilibrium, whereas the

synthesis of 9-AGNRs (and of the defects emerging therein) is largely governed by the kinetic

control.

In Figure 5.4, we overview the conductance spectra of pairs of “bite” defects in each of the ten

configurations considered. In all cases, the conductance in the vicinity of the band edges is

further reduced as compared to that of the nanoribbon containing either a single or no “bite”

defect. However, the degree to which this reduction occurs is largely controlled by the relative
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Figure 5.6: (a) Atomic structure of a coaxial “bite” defect in an armchair graphene nanoribbon
(AGNR). (b) Upper panel: formation energy (E f or m) in both C-rich and H-rich conditions of
the chemical potential of coaxial double “bite” defects as a function of increasing width (N )
of the hosting AGNR. Lower panel: Evolution of the formation energy per number of defects
with N for coaxial double “bite” defects in the 3p (red), 3p+1 (green), and 3p+2 (blue) AGNR
families. Conductance spectra of (c) 9-AGNR, (d) 11-AGNR, and (e) 12-AGNR, as representative
members of the 3p, 3p+1, and 3p+2 families, respectively, containing a coaxial double “bit”
defect (colored lines). Also superimposed for comparative purposes are the conductance
spectra of the corresponding nanoribbon hosting single (blue area) or no (grey area) “bite”
defects.

position of the defects. This can be clearly observed in Figure 5.3(c), in which we report the

values of the descriptor τ given in Eq. (5.1) for pairs of “bite” defects. Depending on whether

the defects are introduced at the same edge or at opposite edges, two distinct situations are

identified. On the one hand, for defects forming at the same edges, τ decreases as the distance

between defects increases. Specifically, the formation of a second defect at the α site preserves

the largest amount of conductance (τ = 18%, only slightly lower than the value obtained in the

single “bite” defect case discussed above, τ = 26%). It is worth noticing in this context that this

configuration is the thermodynamically stable one, see Figure 5.3(b). On the other hand, the

formation of a pair of defects at opposite edges yields an almost complete suppression of the

conductance in the vicinity of the band edges (τ ≈ 2%), with τ being insensitive to the specific

defects configuration.
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Figure 5.7: Representative Clar’s formula of armchair graphene nanoribbons featuring (a)
N = 3p and (b) N ̸= 3p. The red crosses indicates the bonds that have to break in order to
create the “bite” defect, which exhibit lower bond orders in (a) and on average higher in (b).

5.3.3 Width-dependent response to “bite” defects in N -AGNRs

We next generalize our findings by comprehensively investigating the dependence of the stabil-

ity and charge transport of “bite” defects on the width of the armchair graphene nanoribbon.

We consider a range of widths (N ) spanning an interval from 6 up to 26 atoms. The calculated

properties show clear multiple-of-3 oscillations [Figure 5.5(a) and (b)], therefore we group the

nanoribbons into the N = 3p, 3p+1 and 3p+2 families according to their width, where p is

a positive integer (2 ≤ p ≤ 8 in the considered range of N ). The stability of “bite” defects as

a function of the increasing width of the hosting armchair graphene nanoribbon is given in

Figure 5.5(a). The formation energy is highly sensitive to N . Specifically, this value increases

with N in the 3p family, whereas it decreases when N = 3p+1 or 3p+2. In all families, however,

it remains approximately constant when the width is larger than 17 atoms. This finding suggest

that, under thermodynamic equilibrium, narrow armchair nanoribbons belonging to the 3p

family are the most susceptible systems to “bite” defects.

Additionally, results concerning the stability and conductance of pairs of “bite” defects at

opposite edges of AGNR are given in Figure 5.6. Similarly to single “bite” defects discussed

above, the formation energy increases (decreases) with N in the 3p (3p+1 or 3p+2) family, and

remains approximately constant when N exceeds 17 atoms [see Figure 5.6(b)]. Furthermore,

in Figure 5.6 we show the formation energy per defect in order to estimate the aggregation

tendency that is quantified by the difference in formation energy per number of defects

between the pair of “bite” defects (circles) and a single “bite” defect (dashed line). We can

see that the 3p + 1 family displays largest difference in the formation energies and hence

favours aggregation of defects, while the 3p +2 family displays the smallest difference and

hence isolated defects are thermodynamically favoured. Overall, both tendencies weaken as

the width of the graphene nanoribbon increases, while the 3p family does not show a clear

preference for the aggregation regardless of the width.

The enhanced stability of “bite” defects in the 3p family can be interpreted in terms of Clar’s

rule as seem in Figure 5.7. For N = 3p, there exists a unique Clar’s formula, whereas multiple,
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Figure 5.8: Conductance spectra of pristine (grey area) and defective (colored lines) armchair
graphene nanoribbons for different widths, grouped according to their width into the 3p (red
lines), 3p+1 (green lines), and 3p+2 (blue lines) families.

energy-degenerate Clar’s formulas can be conceived for N ̸= 3p. The formation of the defect

requires four C-C bonds to break. In the case of N = 3p, these bonds have lower bond order,

whereas for N ̸= 3p their bond order is (on average) higher. Therefore, a larger energy cost

is needed to create the “bite” defect in armchair graphene nanoribbons of width N ̸= 3p.

For additional insight on how GNR electronic properties can be derived in terms of Clar’s

formalism, please refer to Subsection 1.2.1.

Finally, we broaden our study by addressing the charge transport in defective AGNRs of

varying width. The conductance spectra upon “bite” defect formation in the 3p, 3p+1 and

3p+2 families are shown in Figure 5.8. From a qualitative point of view, the disruption of

the conductance is seen to be milder in wider nanoribbons as compared to the narrower

ones. However, for a given value of p, the conductance in the vicinity of the band edges of 3p

armchair nanoribbons undergoes the most drastic reduction. These effects can be translated

on a quantitative basis through the determination of τ as a function of N , as given in Figure

5.5(b). As far as the transport properties are concerned, the conductance increases with

increasing the nanoribbon width, with τ exceeding 85% in the case of armchair graphene

nanoribbons of N larger than 22 atoms. This naturally reflects the decrease of edge-to-bulk

ratio, end hence the effect of edge defects, upon increasing the width. Of the three families,

however, we found that the conductance is the most strongly reduced in the 3p one. Indeed, τ

is approximately halved in the 3p family as compared to both 3p+1 and 3p+2, when the same

value of p is considered.

We rationalize the largest “bite” defect-induced disruption of the conductance observed in the

3p family in terms of the local density patterns. In Figure 5.5(c)−(e) we present the local density

of states calculated at the tight-binding level (see Section 2.3 for the 3NN TB model comparison

with DFT) slightly below the valence band edge for both pristine and defective 9-, 10-, and
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Figure 5.9: LDOS of 9-AGNR hosting a single “bite” defect for different values of energy E ,
from the 3NN TB model calculations. Energies are referenced to the valence band maximum
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Figure 5.10: LDOS of armchair graphene nanoribbons with and without “bite” defect 0.05 eV
below the valence band edge from the 3NN-TB model calculations.

11-AGNR, as representative members of the 3p, 3p+1, 3p+2 families, respectively. Already in

the pristine armchair nanoribbons, the local density of states behave differently in the three

families, being mostly present on the two inner (outer) edge atoms in the 3p (3p +1) family,

and rather uniformly distributed on the edges of the 3p+2 family. Upon the introduction of the

“bite” defect, in 3p-AGNR we observe the emergence of a pronounced density on the sublattice

that is the closest to the defect, strongly affecting the local density of states across the entire

width, and eventually leading to a significant decrease of the conductance. We also note in

the energy-resolved LDOS plots in Figure 5.9 that the disruption to the conductance is the

most prominent at the band edges, while at larger energies this effect is less pronounced and

the electron density is more homogenous even next to the defect site. Unfortunately, both

of these observations indicate that the “bite” defects have a major impact on the electronic

transport properties near the band edges and hence, defective 9-AGNRs could be ill-suited for

FET fabrication.

In contrast, albeit a weaker perturbation around the “bite” defect is observed in the 3p +1 and
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3p +2 families, the local density of states far from from the defective site is substantially less

altered in these systems, closely resembling that of the corresponding pristine nanoribbons.

Furthermore, we notice that such local effects become less relevant when the width of the

nanoribbon is increased. Indeed, at larger values of N , the local density of states [see Figure

5.10] in the regions far from the defective site remains nearly unperturbed, thereby explaining

the sizable recovery of conductance at the band edges in wide AGNRs containing a “bite”

defects, as presented in Figure 5.5(b). Finally, similar conclusions can be extended to the pair

of “bite” defects, where we show in Figure 5.6(c)−(e) that once again the largest disruption of

the conductance upon defect formation occurs in the 9-AGNR (3p family). Interestingly, while

the introduction of another “bite” defect further suppresses the conductance near the band

edge for both 9-AGNR and 11-AGNR, the conductance for 10-AGNR stays almost the same

and larger changes are only visible at higher energies, hence establishing 10-AGNRs as a more

robust alternative for the use in FETs.

5.4 Summary and conclusions

In summary, we have experimentally identified the “bite” defects, i.e., missing benzene rings

at the edges, as the predominant source of atomic-scale disorder in atomically precise 9-

atom-wide armchair graphene nanoribbons. These defects form upon phenyl-ring cleavage

occurring during the cyclo-dehydrogenation step of their synthesis, and exhibit a substantial

tendency to aggregate within ∼2 nm. Our first-principles calculations reveal that “bite” defects

dramatically disrupt the charge transport of 9-AGNRs by reducing the transmission in the

vicinity of the band edges from 74 % up to 98 %, depending on the number and configuration

of defects considered. Additionally, we have expanded our theoretical investigation to N -

AGNR (with 6 ≤ n ≤ 26), and found that conduction properties become less sensitive to

“bite” defects in wider nanoribbons and specifically in those belonging to the 3p+1 and 3p+2

families. Altogether, we suggest that the precursor molecule or the conditions employed

in the 9-AGNRs synthesis need to be re-examined in order to fabricate “bite” defect-free

nanoribbons for high-performance applications in electronic devices. Alternatively, N -AGNRs

with N ̸= 3p qualify as better candidates to minimize the impact of such structural disorder

on the electronic properties. To conclude, our work uncovers the role of “bite” defects on

the charge transport of armchair graphene nanoribbons and establishes useful guidelines to

mitigate their detrimental impact on the resulting electronic devices.
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6 From Defect to Effect: Controlling
Electronic Transport in Chevron-Type
Graphene Nanoribbon Nanostructures
Although bottom-up synthesis allows for careful control over the properties of graphene

nanoribbons, this method is not entirely defect free. Depending on the choice of the precursor

molecule, edge defects, such as missing benzene rings resembling a “bite”, have been observed

in both armchair-edge and chevron-edge GNRs. Therefore we investigate the adverse effect of

the “bite” defects on the transport properties in three chevron-type GNRs and discover that the

extent of scattering is governed by the different defect positions. Moreover, due to the distinct

electron density localization patterns for particular energy bands, the conductance at a specific

energy can be altered selectively. Applying the concepts learned in single GNRs, we engineer

defects in two nanostructures to construct prototypical components for nanoelectronics. First,

we design a switch, consisting of three laterally fused fluorene-chevron GNRs, and place a pair

of “bite” defects to effectively allow the switching between 4 binary states corresponding to

distinct current pathways. Second, we show that conscientious placement of a “bite” defect

pair can increase conductance between two leads in a triple chevron GNR junction. Overall,

we outline how the incorporation “bite” defects affects transport properties in chevron-type

nanostructures and provide a guide on how to design nanoelectronic components.

This chapter is adapted from:

Čern, evičs, K., Yazyev, O.V (2022). From Defect to Effect: Controlling Electronic Transport in

Chevron-Type Graphene Nanoribbon Nanostructures – In preparation.

My contribution to this work was conceiving the original idea, performing the calculations,

analysis of the data and writing the paper.
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6.1 Motivation

In the previous chapter we characterized experimentally observed “bite” defect arising from a

benzene ring cleaving during the polymerization process of 9-AGNR. We saw that the defects

negatively affect the transport properties of the AGNRs and hence hinder the production of

efficient electronic devices. However, a strong dependence on AGNR width was observed and

potential candidates from the N = 3p +1 and N = 3p +2 families preserved the electronic

transport properties even in the presence of multiple “bite” defects. This has raised a further

questions about the overall impact of such defects and whether it is possible to design GNRs

that could effectively be used in devices regardless of the structural faults.

Here, we continue our investigation of “bite” defects by considering a new class of GNRs with

a chevron-edge type [see Figure 1.5 for sample of experimentally synthesized edge-types]

that have also displayed missing benzene rings in the resulting synthesized structure [Cai

et al., 2010]. Similar to 9-AGNRs [Pizzochero et al., 2021b], the defect also emerges due to

the employed precursor molecule (6,11-dibromo-1,2,3,4-tetraphenyl-triphenylene) that hosts

multiple flexible phenyl rings. These rings are presumed to cleave due to the steric-hindrance

effects during the cyclization step and hence result in the same exact defect as observed in

9-AGNR. However, as the chevron-edge graphene nanoribbon (cGNR) can not be categorized

in any of the three AGNR families and as no previous investigations have been made, the

impact of these defects on electronic properties is unclear.

Interestingly, recent progress has been made in modifying the precursor molecule in or-

der to obtain derivatives of the cGNRs – either laterally extended chevron GNRs (ecGNRs)

[Mehdi Pour et al., 2017; Costa et al., 2018; Teeter et al., 2019] or fluorene-chevron GNRs

(fcGNRs) [Jacobse et al., 2020] that can be coupled into a two-dimensional superlattice ge-

ometry and exhibit emergent interface-localized electronic states. Furthermore, Mutlu and

co-workers [Mutlu et al., 2021] have used such laterally coupled fcGNRs to fabricate short-

channel FETs with on-off ratios exceeding 104 and noted that structural perfection plays a

remarkably important role in the charge transport. Nonetheless, due to the atomic structure

of the base precursor molecule, “bite” defects are still expected in the newly synthesized

nanostructures and thus cause a concern over the practicality of employing chevron-based

GNRs in electronic devices.

In this chapter, to expedite the process of attaining optimal devices, we first explore experi-

mentally observed defects in multiple chevron-type GNRs and investigate the effects on the

electronic transport. Next, we use this knowledge to strategically place defects in complex

nanostructures in order to gain control over the electronic transport characteristics and thus

devise simple components for electronic circuits. Overall, we both reveal the adverse effects

of defects and also show how they can be used to selectively control the electronic transport

properties for realization of novel carbon-based electronic devices.
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6.2 Methodology

Electronic properties were obtained using the 3NN TB model Hamiltonian. The Hamiltonian

is expressed in Eq. 3.1 and as before, we utilize TB parameters from [Hancock et al., 2010]

with corresponding values of −2.70 eV, −0.20 eV, and −0.18 eV for first-, second- and third-

nearest-neighbor hopping integrals, while on-site terms are set to 0 eV.

Whereas electronic transport properties were calculated by using non-equilibrium Green’s

function formalism [see Section 2.5], where the transmission coefficient T (E ) can be expressed

from Eq. 2.58 and the conductance is expressed in terms of the conductance quantum G0 from

Eq. 2.60. All our calculations were done with the help of Kwant package [Groth et al., 2014].

6.3 Results and discussion

6.3.1 Chevron-type graphene nanoribbons

In Figure 6.1 we show three experimentally obtainable GNRs, which all share a similar pre-

cursor molecule and thus also a common shape. Chevron-edge GNR [Figure 6.1(a)] was

first synthesized by Cai et al [Cai et al., 2010] from tetraphenyl-triphenylene monomers and

displays a pure armchair edge structure. Slightly modifying the tetraphenyl-triphenylene

precursor molecule by an extra atom, yields a fluorene-chevron GNR [Figure6.1(b)] that has

been shown to host an in-gap edge state and thus makes the ribbon truly metallic. Interest-

ingly, Jacobse and colleagues showed that the metallic fcGNR can cross-link laterally to create

nonporous semiconducting graphene with emergent interface electronic states [Jacobse et al.,

2020]. Finally, more significant lateral extension of the cGNR can be obtained by attaching

another benzene ring to the precursor molecule and thus the resulting extended-chevron GNR

[Figure 6.1(c)] has been shown to exhibit a lower band gap [Teeter et al., 2019] in accordance

with width-dependent band gaps in AGNRs.

Unusually, all these GNRs retain glide symmetry that display the peculiar band structure

with doubly degenerate bands at X (brillouin zone boundary) point. We also notice that the

low energy bands show only minor dispersion and do not cross each other, hence leading

to discrete bands that in turn offer exciting opportunities for selective electronic transport

engineering. Furthermore, multiple different phenyl-group attachments in chevron-based

GNR precursor molecules further extend the tunability over the positioning of the “bite”

defects and as we saw in Chapter 5 the transport properties can be greatly affected by varying

the position and distances between these defects. In Figure 6.1, we present in red some of

the possible cleavage points in the precursor molecules and the resulting final structure that

arises from selective introduction of a defect.
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Figure 6.1: Overview of the precursor molecule, atomic structure and band structure of (a)
chevron GNR, (b) fluorene-chevron GNR and (c) extended chevron GNR. Marked in red are
the possible defect origin positions in the precursor molecule and the resulting GNR.

6.3.2 “Bite” defects in chevron-type graphene nanoribbons

As a starting point into engineering defects to control the transport properties, we have to

establish the effects of a single point-like defect in an otherwise pristine system. In Figure

6.2(a) we show the unit cell of the cGNR and mark 8 possible defect positions, however

only 2 of these are not symmetrically equivalent. We designate these positions as “Side”

(1,4,5,8) and “Center” (2,3,6,7) defects and plot the corresponding conductance plots in Figure

6.2(b). We focus on the transport properties in valence and conduction bands, and, similar

to Chapter 5, compare the conductance curves with the pristine cGNR with a descriptor τ

[Eq. 5.1], which estimates the preserved conductance in an energy interval spanning from

VBM−δE to CBM+δE . In this case δE is set to extend over the bandwidth. For example, if a

defect completely suppresses the conductance in both the valence and conduction bands

then τ= 0, while if a defect does not have any influence on the conductance in both bands,

then τ= 1. We can notice in Figure 6.2(b) that the center defect causes a larger disruption, with

only τ= 0.39 conductance preserved, while side defect induces significantly smaller scattering
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Figure 6.2: (a) Atomic structure of the cGNR unit cell with red numbers marking the eight
possible “bite”’ defect positions. (b) Conductance profiles of the valence and conduction
bands with and without “bite” defects. (c) Local density of states and (d) probability current
maps of pristine and defective cGNRs at E = 0.28t1. (e) Conductance plots of “bite” defect
pairs in cGNR. (f) Local density of states and probability current of 3-7 “bite” defect pair in
cGNR at E = 0.28t1.

with τ= 0.66 conductance preserved in the two bands. We can explain these results by looking

at the local density of states [Figure 6.2(c)] at the valence band (E =−0.28t1), where the largest

electron density is concentrated on the central atoms. Hence, center defects interact more

heavily with the wavefunction associated with the band as opposed to the side defects, where

only minuscule electron density is located. Similar observations can be also made for the

conductance band due to the qualitative electron-hole symmetry. Furthermore, we also plot

the spatial probability current maps in Figure 6.2(d) and show how the current pathways are

affected by the introduced defects and confirm our observations based on the LDOS data.

Next, we check the conductance plots for a pair of defects in Figure 6.2(e) and observe that a

pair of two center defects has the largest suppression of conductance only retaining τ= 0.18

of the original conductance. Moreover, in the one-band region, e.g. −0.3t1 < E < 0.26t1, this
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Figure 6.3: (a) Atomic structure of the ecGNR unit cell with red numbers marking the nine
possible “bite”’ defect positions. (b) Conductance profiles of the valence and conduction
bands with and without “bite” defects. (c) nc-AFM image of ecGNR on Au(111) with the red
number marking the defect position, adapted from [Teeter et al., 2019]. (d) Local density of
states in ecGNR at E = 0.28t1. (e) Conductance plots of “bite’ defect pairs in ecGNR.

defect pair can completely suppress the conductance. It can be noticed that the pair defects

follow the same trends observed with an individual defect as the lowest scattering originating

from two side defects (τ = 0.43), while a middle ground is reached when a pair of side and

center defects is considered (τ= 0.33). Overall, we show that “bite” defects have a detrimental

effect on conductance close to band edges and caution in the design of the precursor should

be exercised, yet we also find that strategic placement of defects can allow a degree of control

over the magnitude of conductance.

Similar principles of defect impact also extend to ecGNR shown in Figure 6.3(a), where another

defect position is accessible due to the additional benzene ring in the precursor molecule.

However, we observe that the extended defect has the smallest impact on the conductance

(τ= 0.77), followed by the side defect (τ= 0.55), while the center defect is still the most adverse

(τ= 0.36) [Figure 6.3(b)], which agrees very well with our conclusions about bulk LDOS being

concentrated in the middle of the cGNR. This can be also seen in Figure 6.3(d), where LDOS is

being more localized on the central atoms akin to the cGNRs. In Figure 6.3(c) we show such

center “bite” defect as characterized with the help of nc-AFM by Teeter and co-workers [Teeter

et al., 2019]. Although the missing benzene ring in position 9 leads to the smallest transport

disruption, the combination of two such defects represent a width-modulated ecGNR-cGNR-
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Figure 6.4: (a) Atomic structure of the fcGNR unit cell with red numbers marking the four
possible “bite”’ defect positions. (b) Conductance profiles of the three lowest energy bands
with and without “bite” defects. (c) Local density of states and (d) probability current maps of
pristine and defective fcGNRs at E = 0.

ecGNR heterostructure that not only decreases the transport in the two bands by about a third,

but also induces an anti-resonance around E =±0.3t1 as seen in Figure 6.3(e). Interestingly, no

such anti-resonances were observed in the valence or conduction bands of defective cGNRs.

On the other hand, electronic structure and hence also the electronic transport character-

istics of fcGNRs differ widely from both cGNRs and ecGNRs. The out-most atom in the

five-membered ring gives rise to a in-gap metallic band and opens additional possibilities for

engineering the transport properties. We show the possible defect positions in Figure 6.4(a)

and the conductance profiles in Figure 6.4(b). Note that τ is defined only for the metallic band

now. One can notice that only center defects are possible due to the nature of the precursor

molecule [see Figure 6.1(b)] and also see the detrimental effect on the metallic band, where

only τ= 0.15 conductance is preserved. The LDOS and current plots at E = 0 seen in Figure

6.4(c) and (d) show that the metallic band arises due to the five-membered ring and the current

pathways are strongly confined to the band edges. Interestingly, we can observe that adding

just a single defect at position 3 leads to both upper- and lower-edge current pathways dis-

rupted, not just the top one. Whereas the LDOS plot displays a peculiar localization pathway –
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Figure 6.5: (a) Atomic structure of the laterally fused double fcGNR unit cell with red numbers
marking the four possible “bite” defect positions in one fcGNR. (b) Band structure of double
fcGNR. (c) Conductance profiles of double fcGNR with and without “bite” defects. Probability
current of pristine double fcGNR at (d) E = 0 and (e) E = 0.23t1.

the electron density is localized either on the top or the bottom side and hence prompts to

negligible overlap between the sides, thus minimizing conductance. Adding a second defect

can result in two drastically different outcomes – either further suppressed conductance or

resonant tunneling at E = 0. First, adding a second defect at position 2 displays only negligible

changes in both LDOS and current maps as compared to the single defect, but exhibiting a

very low τ= 0.01 value. Second, we can recover perfect conductance G =G0 in our metallic

band if we place the other defect in position 6. The resulting resonance peak corresponds to

the localized state observed in Figure 6.4(c) that acts as a quantum dot and facilitates resonant

transport. Additionally, we can observe that the band at E ≈ 0.5t1 qualitatively responds to the

defects in the same way as cGNR and ecGNR, hence giving us an opportunity to selectively

affect the electronic transport in different bands. With the knowledge gained from placing

“bite” defects in the three chevron-type GNRs, we now turn our attention to more complex

structures.

6.3.3 Engineering “bite” defects in graphene nanoribbon nanostructures

As a first step, we take two fcGNRs and fuse them laterally [Figure 6.5(a)] to obtain a nonporous

graphene nanoribbon. Interestingly, we see in Figure 6.5(b) the emergence of another in-gap

state at E = 0.23t1 that arises due to the hybridization between the five-membered rings

[Jacobse et al., 2020]. By exploring the probability current maps in Figure 6.5(d) and (e) we can

assign these states to either inner (E = 0) or outer (E = 0.23t1) five-membered rings. Whereas

the previously equivalent defect positions can be split in two groups – defects 2 and 7 can be
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Figure 6.6: (a) Atomic structure and (b) bond-resolved STM image of laterally fused triple
fcGNR. Panel (b) is adapted from [Jacobse et al., 2020]. (c) Band structure and (d) conductance
profile of laterally fused triple fcGNR. Probability current plots in laterally fused triple fcGNR
with 2-7 “bite” defect pair at (e) VG = 0, (f) VG = 0.25t1 and (g) VG = 0.45t1 displaying the
switching notion of the channels.

classified as the “outer”, while defects 3 and 6 can be considered as “inner” positions. We show

in Figure 6.5(b) the effect on conductance, when both of these defects are introduced. It is clear

that now the defect positions will play a different role on both in-gap bands and, for example,

the “outer” defect (2 or 7) has a small influence on the metallic band (τ = 0.77), whereas

conductance is drastically affected (τ= 0.17) at E = 0.23t1. This is a direct consequence of the

different LDOS localization patterns and current pathways. Therefore, careful introduction

of defects can lead to a selective closure of particular transport channels, while not affecting

others.

We continue our investigation by fusing an additional fcGNR to our previous nonporous

GNR and extend it laterally as seen in Figure 6.6(a) and (b). The resulting band structure and

conductance plots in Figure 6.6(c) and (d) tell us that there are still two in-gap bands at E = 0
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Figure 6.7: Probability current in laterally fused pristine fcGNRs at (a) E = 0, (b) E = 0.25t1 and
(c) E = 0.45t1

and E ≈ 0.25t1 with maximum conductance of G = 2G0 and G =G0 (except for a very narrow

energy range), respectively. Whereas the band at E ≈ 0.45t1 has the maximum conductance

of G = 3G0. Although we already observed the spatially resolved current pathways in double

fcGNR corresponding to different bands, the effect is more prevalent in triple fcGNR. We show

in Figure 6.7 that the metallic band is once again localized only on the very outer atoms similar

to fcGNR and double fcGNR, while the E ≈ 0.25t1 band arising from the fusion of the inner

five-membered rings is localized only on the middle ribbon. Finally, at E ≈ 0.45t1 we have

three current pathways equally distributed over the 3 fused ribbons.

Resolving the spatial current map already gives us a degree of control over the transport

properties. For example, in a device consisting of the triple fcGNR, we can vary the gate voltage

(VG ) to target a specific band and hence control in which part of the fcGNR the current flows.

Furthermore, using the previous results of defect impact on transport properties, we propose

a more complex switch that can access four different binary states – (0,0),(1,0),(0,1) and (1,1),

where 0 and 1 correspond to the magnitude of conductance G0 delivered to two regions of the

triple fcGNR. We show in Figure 6.6(e)−(g) the three different states associated with a specific

gate voltage VG and indicate the state with “light bulbs”, where the yellow color demonstrates

if the pathway is on (1) or off (0). It is straightforward to see that the fourth state (0,0) can be

accessed at any energy that is not coinciding with a band, for example, at E = 0.1t1.

Strikingly, we see that after the introduction of the 2+7 defect pair in the bottom ribbon, we

can completely close down one current pathway and decrease the conductance by exactly

one conductance quantum G0 [Figure 6.6(d)]. Although, we already observed some degree

of selectivity over different bands by introducing a defect in particular positions in narrower

chevron-based GNRs, the laterally fused triple fcGNR shows an unprecedented possibility

to carefully control the transport properties. We attribute this characteristic to the distinct

separation of different bands and the band’s localized nature, where the wavefunction is

confined to a particular fcGNR that makes up the extended structure. Interestingly, the strong

confinement then allows us to selectively alter only a particular band, without affecting the

spatial transport in other parts of the ribbon.

After showing that chevron-based GNRs can be used as building blocks for potential all-
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defects.

carbon devices and defect engineering gives a selective control over the electronic transport

properties, we move on with investigating junctions composed from multiple GNRs. One of

the first experimentally synthesized junctions by Cai et al [Cai et al., 2010] was a symmetric

chevron-based triple junction [Figure 6.8(a)]. First, we show that such junction can be used

as an electron beam splitter – the conductance of valence and conduction bands measured

from the left lead to the upper(lower) lead exhibits low scattering with τ = 0.38 and hence

overall transmission of τ= 0.77 to both leads [Figure 6.8(c)]. The low scattering stems from

the fact that design of the central scattering region retains the symmetry and shape of the

individual leads as shown by Chen et al [Chen et al., 2017b]. Next, we notice that careful

engineering of the “bite” defects astonishingly can increase the conductance in a selected

direction. Figure 6.8(b) shows a pair of two “bite” defects placed in the upper lead and the

resulting current map at E = 0.36t1 that shows an increased transmission to the right lead. We
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calculate that the ratio of the retained conductance is increased from τ= 0.38 to τ= 0.47, while

also minimizing the conductance to the upper lead down to τ= 0.04. We propose that adding

together multiple such triple-junctions with or without engineered “bite” defects can be

used to selectively control and split the incoming current and effectively act as interconnects

between components of an electric circuit.

6.4 Summary and conclusions

In summary, we investigated the electronic transport properties of three chevron-type graphene

nanorribons in presence of “bite” defects. Our calculations show the detrimental effect of the

defects on the conductance, however, we also notice that different defect positions lead to

diverse response in particular energy bands, thus giving a degree of control over the transport

properties. Furthermore, it can be seen that the spatial electron density localization and

current pathways play a major role in predicting the effects of the defect and therefore this

information can be used to selectively affect a distinct conductance channel.

Next, we applied the lessons learned about individual GNRs to construct more complex

nanostructures and selectively engineer the electronic transport properties with the help of

strategically placed “bite” defects. For example, we design a switch consisting of three laterally

fused fluorene-cGNRs and place a pair of defects to effectively allow the switching between 4

binary states corresponding to current pathways. With varying gate voltage we can achieve

current flow in one, two or none of the connections, while not introducing any additional

electron scattering and maintaining electronic transport of exactly one conductance quantum

per connection. Interestingly, experimental realization of such structure could be achieved

in near future, as innovative designs of precursor molecules have already been utilized to

synthesize GNRs with “bite”-like edges [Fu et al., 2020].

Finally, we show how an experimentally synthesized triple cGNR junction can act as an

electron beam splitter and preserve 77% of the pristine cGNR’s conductance in valence and

conduction bands. In addition, deliberate placement of a defect pair can increase conductance

between two of the leads from 38% to 47% of the maximum, hence turning the defect into

a positive effect. We propose that using a triple junction as a building-block and placing

defects strategically offers an excellent control over the current flow and thus can potentially

be applied as interconnects in all-graphene nanocircuits. Further tunability of such system

could be improved by applying a gate potential [Araújo et al., 2021] to create a switch or

transistor-like system. Overall, we establish design rules of defect incorporation in cGNR

structures to control electron transport.
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7 Design Rules for Interconnects Based
on Graphene Nanoribbon Junctions

Graphene nanoribbons (GNRs) produced by means of bottom-up chemical self-assembly are

considered promising candidates for the next-generation nanoelectronic devices. We address

the electronic transport properties of angled two-terminal GNR junctions, which are inevitable

in the interconnects in such graphene-based integrated circuits. We construct a library of

over 400000 distinct configurations of 60° and 120° junctions connecting armchair GNRs of

different widths. Numerical calculations combining the tight-binding approximation and the

Green’s function formalism allow identifying numerous junctions with conductance close to

the limit defined by the GNR leads. Further analysis reveals underlying structure-property

relationships with crucial roles played by the bipartite symmetry of graphene lattice and the

presence of resonant states localized at the junction. In particular, we discover and explain

the phenomenon of binary conductance in 120° junctions connecting metallic GNR leads

that guarantees maximum possible conductance. Overall, our study defines the guidelines for

engineering GNR junctions with desired electrical properties.

This chapter is adapted from:

Čern, evičs, K., Yazyev, O.V (2022). Design Rules for Interconnects Based on Graphene Nanorib-

bon Junctions – Submitted

My contribution to this work was performing the calculations, development of the web appli-

cation, analysis of the data and writing the paper.
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7.1 Introduction

In the two previous parts of this thesis we have investigated the electronic properties of

various experimentally-obtainable GNR structures and also shown the degree of control one

has over electronic properties by either introducing different width elements or engineering

defect placement. As a consequence of this analysis, we have also proposed potential GNR-

based components for next generation nanoelectronics, such as metal-semiconductor-metal

junctions [Chapter 4], switches and splitters [Chapter 6]. However, these components were not

designed with a conscious objective in mind, but were rather the byproduct of a fundamental

study of transport properties in bottom-up synthesized systems. In this chapter we change

our approach and conduct our investigation by computational high-throughput screening

of hundreds of thousands of possible GNR junctions in order to find potential targets with

specific electronic transport properties.

We start by searching for interconnects joining individual electrical components as they are

the most basic and fundamental building blocks of any integrated circuit. Linear interconnects

based on one-dimensional GNRs allow for little freedom in designing such circuits, while to

effectively accommodate a large number of components on a plane one would desire graphene

interconnects that follow paths with “turns” akin to the conductive traces of common printed

circuit boards. Each “turn” can be viewed as a two-terminal GNR junction, and the electronic

transport properties of such junction are expected to depend strongly on the details of its

atomic structure. This is in contrast to macroscopic interconnects, such as printed circuit

board traces or ordinary wires, since bending a wire does not generally affect its resistance.

While the electronic and transport properties of one-dimensional GNRs are largely understood

by now, relations between the structure and electronic transport properties of GNR junctions

remain to be explored.

In this chapter, we address the structure-property relations of two-terminal GNR junctions and

formulate design rules for engineering interconnects with minimal scattering for graphene-

based nanoelectronic circuits. To achieve this goal, we systematically characterize over 400000

unique structures of GNR junctions connecting two identical armchair GNRs of different

width at angles of 120 and 60 degrees. Extensive library of calculations performed using the

combination of tight-binding model and Green’s function technique allows to uncover several

universal physical mechanisms underlying the electronic transport across GNR junctions

and establish design rules necessary for engineering nanometer-width interconnects for

graphene-based nanoelectronic circuits.

7.2 Methodology

We employ a tight-binding model with one pz orbital per atom and only nearest-neighbor

hopping integral that has been shown to provide reasonably accurate description of the

electronic structure of graphene [Kundu, 2011] and GNRs [Hancock et al., 2010] near the
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Fermi level. Importantly, this simple model is computationally inexpensive to conduct high-

throughput screening. The Hamiltonian is expressed in Eq. 3.1. We set on-site energies

ϵi = 0 eV and a hopping integral t1 = 2.75 eV between the nearest-neighbor atoms in our

calculations. Electronic properties are calculated by using non-equilibrium Green’s function

formalism [see Section 2.5], where the transmission coefficient T (E ) can be obtained from Eq.

2.58 and the conductance G(E ) is expressed in terms of the conductance quantum G0 from Eq.

2.60.

We invite the readers to use our web-based open-access application TBETA [Čern, evičs et al.,

2020a] on the Materials Cloud portal [Talirz et al., 2020] that implements the described

methodology and allows reproducing all our results. It is designed for easy-to-use construction

of angled junction configurations and calculation of their electronic transport properties.

Access to wider range of junctions can be achieved by manually selecting the scattering region,

including leads of different width and shifting the position of leads in relation to each other.

No coding knowledge is required to design a junction and run the calculations. Conductance

and density of states can be computed over selected energy windows, while local density of

states, local current and lead wavefunctions are computed at a selected energy. For more

information see Appendix A. All results reported in our work and the web-based application

use Kwant [Groth et al., 2014] as the engine for performing calculations.

7.3 Results and discussion

Although we are using the one-orbital nearest-neighbor tight-binding model, this minimalist

methodology allows for sufficiently accurate description of the discussed properties, yet it

is simple enough for performing massive high-throughput screening of a large number of

junction structures and rationalizing the numerical results in terms of analytical models.

7.3.1 Construction of junction structures

Using this methodology we perform an exhaustive investigation of the electronic transport

properties of 120° and 60° two-terminal GNR junctions connecting two armchair graphene

nanoribbon (AGNR) leads of the same width. These junction angles, in addition to the trivial

case of 180°, can be constructed without introducing any topological defects changing the

crystallographic orientation of graphene lattice. We explored leads of different width defined

by 3 ≤ N ≤ 9 carbon atoms, hence covering the semiconducting (N = 3p, N = 3p +1) and

metallic (N = 3p +2) AGNR families [Nakada et al., 1996]. Figure 7.1(a) shows an example

N = 7 AGNR.

We then generate junction structures within the limits defined by a circular area as shown in

Figure 7.1(b) for the 120° junctions of 7-AGNRs. The circle is defined by the intersection point

of the lead axes such that there is no overlap between the leads. Note, the position of the circle

center leads to 3 distinct classes of 120° junctions, which are denoted by lead intersection
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Figure 7.1: GNR junctions and their electronic properties. (a) Atomic structure of 7-AGNR,
with black and white atoms representing the two sublattices and red atoms showing the semi-
infinite leads. (b) An example of 120° two-terminal junction with 7-AGNR leads (IPC). Area
limiting the scattering region used in constructing various junction configurations is shown
in blue. (c) An example of 60° junction with 7-AGNR leads. (d) Band structure and DOS of
7-AGNR. (e) Conductance profiles of 7-AGNR lead (panel (a)), 120° (panel (b)) and 60° (panel
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a b c

d e

Figure 7.2: Definition of 3 classes of angled junctions. The axes of AGNR leads (N = 5 in
this illustration) intersect (a) the atomic position in one of the sublattices marked with black
(intersection point IPA), (b) in the complementary sublattice marked with white (IPB) or (c) in
the empty (center of a hexagon) position (IPC). The AGNR (N = 4) leads attached in the (d) up
configuration and (e) down configuration.

point IPI , with I = A,B or C corresponding to sublattice A, sublattice B or the center of the

hexagon [see Figure 7.2]. The intersection point IP can be controlled by adjusting the distance

between the leads. Furthermore, for leads with even number of atoms across the width there

are two possibilities for attaching the leads for each of the classes, hence doubling the number

of structures. The distinctions up and down correspond to the aligned edge with respect of

the (N+1)-AGNR. We also assume the edge carbon atoms to be hydrogen terminated, but due

to the absence of π-bonding hydrogen they are not included in the one-orbital tight-binding

model [Hancock et al., 2010]. Once the circular area is defined, we generate all possible

junction configurations by removing atoms from it and imposing the following restrictions:

mirror symmetry of the junction and the presence of only three- and two-fold coordinated

carbon atoms. For 60° junctions, the circular area is defined in a similar way, except that the

circle center is defined as the intersection of lines drawn along the GNR edges [Figure 7.1(c)].

The properties of the generated junctions are then compared to those of pristine AGNR

leads. Figure 7.1(d) shows the band structure and density of states (DOS), while Figure 7.1(e)

compares the conductance profiles of the three structures presented in Figure 7.1(a)−(c).

The results are presented in terms of the nearest-neighbor hopping integral t1 = 2.75 eV.

Quantized conduction can be observed for the pristine 7-AGNR, reflecting the number of

sub-bands (transmission channels) at a particular energy E , with a maximum value G = 3G0

(G0 = 2e2/h = 7.75×10−5 S) when three channels are present and a minimum of G = 0 in the

band gap. The conductance of junctions is bound from above by the lead conductance and is

no longer quantized due to scattering. In general, GNR junctions show complex conductance

profiles with pronounced differences between each other. For example, the 60° junction
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Figure 7.3: Quantum interference in 3-AGNR junctions. (a) Conductance plots of ortho-, meta-
and para-attached 3-AGNR leads with the atomic structures displayed. The conductance
profiles are offset with respect to each other by G0 for clarity. The wavefunction inside the
scattering region of (b)ortho-, (c)meta- and (d)para-attached 3-AGNR junctions at E = 0.4t1.
Schematic drawing of the two pathways (blue and red) and the phase (+ or − corresponding
to phase difference of π) in (e)ortho- and (f)meta-attached 3-AGNR junctions.

exhibits conductance close to the quantized conductance of the lead near the band edge

(E = 0.3t1), but the conductance of 120° junction is suppressed at the same energy.

The objective of designing optimal graphene-based interconnects consists in minimizing the

amount of scattering at each “turn”, i.e. achieving conductance close to the limit defined by

the conductance of the GNR leads. To quantify the junction conductance with respect to the

ideal lead, we utilize slightly modified descriptor τ [Eq. 5.1] used in Chapters 5 and 6,

τ=
∫ E0+δE

E0
G j (E)dE∫ E0+δE

E0
Gl (E)dE

, (7.1)

which estimates the preserved conductance in a narrow energy window δE = 0.037t1 = 0.1 eV

with E0 being the conduction band minimum or the Fermi level for the semiconducting and

metallic GNR leads, respectively. The chosen energy range roughly represents the expected

operating conditions of graphene devices. G j (E) and Gl (E) are the conductances of the

junction and the ideal lead, respectively. From here on, we will be referring to well-conducting

junctions if τ> 0.9.

7.3.2 3-AGNR two-terminal junctions

We start our discussion of structure-property relationships by considering the simplest case

of 3-AGNR junctions. Three possible configurations of the scattering region correspond to a

single benzene ring connected to the leads in ortho-, meta- or para-positions, using chemistry

notations, to obtain 60°, 120° and 180° junctions, respectively. The latter case is the ideal
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3-AGNR, and hence no scattering is possible. Figure 7.3(a) shows the atomic structures of

the junctions and displays the corresponding conductance spectra. We show only positive

energies 0 ≤ E ≤ 3t1 since at negative energies the results are identical due to the electron-hole

symmetry inherent to our tight-binding model.

In Figure 7.3(a), the 60° junction demonstrates conductance very close to that of the perfect

3-AGNR lead (τ= 0.99) at the band edge (E = 0.4t1), whereas for the 120° junction the conduc-

tance is essentially zero at this energy. One needs to note that seemingly small difference in

the attachment points gives rise to distinct transport properties. Further differences between

the three configurations can be observed in the scattering center wavefunctions at E = 0.4t1

plotted in Figure 7.3(b)−(d). When the leads are attached in the ortho- position, the wave-

function is delocalized over all atoms in the scattering center but the phase is reversed upon

transmission [Figure 7.3(b)]. In contrast, the wavefunction is localized only on one of the

sublattices in the central region of the 120° junction and vanishes completely as it approaches

the other lead [Figure 7.3(c)], hence manifesting in nearly zero conductance.

The aforementioned observations can be rationalized in terms of the quantum interference

(QI) phenomenon. In Figure 7.3(e), we show a schematic representation of the 60° junction

and graphically represent the phase of the incoming wavefunction as + or − as a continuation

of the wavefunctions of the perfect 3-AGNR lead (Figure 7.3(d)). We note the two inequivalent

pathways colored in blue and red result in constructive QI (violet) and explain the phase rever-

sal as observed in Figure 7.3(b). Similarly, for the 120° junction [Figure 7.3(f)] the two pathways

result in destructive interference. This simple model correctly predicts the wavefunctions

in the scattering region [Figure 7.3(b) and (c)] and reaches an excellent agreement with a

graphical model designed for visual inspection of the connectivity in π-conjugated systems

[Zhao et al., 2017].

Although QI has been observed to influence electronic transport properties in organic molecules

[Sautet and Joachim, 1988; Li et al., 2019b; Greenwald et al., 2021], only recently its effect

has been investigated for more complex graphene nanostructures. Calogero and co-workers

[Calogero et al., 2019a,b; Alcón et al., 2021] showed that the electronic transport in nanoporous

graphene can be controlled through para- and meta-bridges. However, we observe that in

GNR junctions QI effects are pronounced only in cases where the scattering center is attached

to the lead through a single bond. For wider AGNR junctions involving multiple covalent

bonds to leads it becomes difficult to interpret the results in terms of QI, and thus systematic

numerical characterization of the electronic transport properties needs to be performed.

7.3.3 Systematic screening of electronic transport across junctions

The structures of N -AGNR junctions with lead widths 4 ≤ N ≤ 9 were systematically con-

structed resulting in total of 438187 unique configurations. Regardless of the lead width

and junction angle, it was always possible to identify configurations with τ ≥ 0.9. The en-

tire database of investigated junctions ordered in terms of τ is provided in Supplementary
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Figure 7.4: Electronic transport across metallic 120° junctions. (a) Conductance profiles of 150
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the junction at E = 0. (g) LDOS of a metallic 120° 5-AGNR junction with zigzag edges at E = 0.

Tables 1–36 [Čern, evičs and Yazyev, 2021] and described in Appendix B. Below, we focus on

representative junctions that demonstrate conductances close to those of ideal leads and help

establishing the underlying structure-property relationships.

120° junctions

We first discuss the 120° junctions by pointing at striking transport phenomenon observed for

the metallic AGNR leads (N = 5,8). Figure 7.4(a) shows conductance profiles of 150 randomly

selected 8-AGNR junctions in the 0 ≤ E ≤ 0.10t1 energy range. The conductance at E = 0 is

binary taking only values of G =G0 or G = 0, and this effect is not observed for the 60° junctions.

We also note that both the 60° and 120° junctions with semiconducting leads do not show

this effect at the band edge. In Figure 7.4(b), we show a 120° 8-AGNR junction that features

G = G0 at E = 0 with practically no backscattering up to the energies as high as E = 0.3t1

(∼ 1 eV) [Figure 7.4(c)]. For this particular junction, there is no large variation in the DOS of the

junction compared to the 8-AGNR lead [Figure 7.4(d)], and the local density of states is rather

delocalized in the scattering region at E = 0 [Figure 7.4(e)]. Our observation is in agreement

with the finding that a delocalized transmission eigenstate leads to conductance enhancement

[Xia et al., 2020]. Besides, we show that such delocalization leads to homogeneous local current

paths through the junction [Figure 7.4(f)] closely resembling local current in the lead.
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Figure 7.5: (a) Atomic structure of a selected 5-AGNR 120° junction with mixed-edge scattering
centre. (b) LDOS of the junction at E = 0. (c) Conductance profile of the junction in the
0 ≤ E ≤ 0.5t1 energy range and the full conductance profile shown in the inset. (d) Local current
across the junction at E = 0. (e) Atomic structure of a selected 5-AGNR 120° junction with
sublattice imbalance δN =−2. (f) LDOS of the junction at E = 0 with red arrows pinpointing
the attachment points. (g) Conductance profile of the selected junction in the 0 ≤ E ≤ 0.5t1

energy range and the full conductance profile shown in the inset. (h) Local current of the
junction at E = 0 with dashed red line indicating the split between two regions.

Remarkably, we also discover that such perfectly transmitting 120° junctions can demonstrate

a DOS peak at E = 0 and localized states associated with the zigzag edge segments [Figure

7.4(g)]. We note that the electronic characteristics of this junction indicate a weakly coupled

localized state leading to the Fano resonance [Miroshnichenko et al., 2010], as previously

observed for T-shaped junctions [Kong and Xiong, 2010] and quantum dots [Chapter 4 of this

thesis and Xiong and Xiong [2011]]. Additionally, we reveal metallic 120° junctions [see Figure

7.5(a)−(d)] with perfect transmission that combine different types of edges–armchair, zigzag

and mixed–thus concluding that the edge geometry in the scattering center does not play a

central role in determining the transport properties. However, we note that all metallic 120°

junctions with τ> 0.9 are characterized by non-zero sublattice imbalance δN = NA −NB , with

NA and NB being the number of atoms in the scattering area belonging to sublattices A and B,

respectively.

Figure 7.6(a) shows a histogram of sublattice imbalance δN for 75 highest and 75 lowest

transmitting metallic (5-AGNR, IPA) junctions. All junctions with high transmission have

the same sublattice imbalance δN = −1 with an exception of two structures characterized

by δN = −2. This deviation can be rationalized in terms of LDOS that is only localized in

a sub-region with δN = −1 as seen in Figure 7.5(e)−(h). We note that the lower triangular

fragment is decoupled from the rest of the junction as the atoms marked with the red arrows

in Figure 7.5(f) show no electron density a E = 0. Hence, the local current in Figure 7.5(h)
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can only be observed in the region above the red dashed line, where sublattice imbalance of

δN =−1 is preserved. Similar behavior with decoupled localized states is observed in GNRs

with edge functionalized molecules as we saw in Chapter 3. We have also observed that for

metallic 8-AGNR junctions the sublattice imbalance δN =−3 is associated with high τ value,

whereas other sublattice differences δN produce G = 0 at E = 0. The increase in δN arises due

to the two extra missing atoms at the interface between the scattering region and the lead for

AGNRs with even number of carbon atoms across the width.

Therefore, we conclude that high conductance of 120° junctions with metallic AGNR leads

is associated with negative (δN < 0) and odd (δN mod 2 ̸= 0) sublattice imbalance. In order

to rationalize the observed binary conductance at E = 0, we first note that in 120° junctions

the semi-infinite leads are connected to the same sublattice of the scattering region [Figure

7.6(c)], while the opposite is true for the 60° [Figure 7.6(d)] and 180° two-terminal junctions.

Second, in the nearest-neighbor TB model the number of zero-energy states is equal or larger

the absolute value of δN . The wavefunction of a such zero-energy states is localized on the

majority sublattice [Wang et al., 2009]. It has been further shown that zero-energy states due

to the sublattice imbalance facilitate the transmission of charge carriers [Kihira and Aoki,

2017]. Thus, we conclude that the resonant zero-energy states are involved in the electronic

transport resulting in maximum conductance at E = 0 for metallic 120° junctions. Depending

on the coupling strength between the leads and the scattering centre, the DOS peak width of

the zero-energy states can be significantly broadened and hence facilitate the conductance

over a wide energy range around E = 0. We show the conductance through a zero-energy state

depending on the coupling strength with the leads in Figure 7.7, where low coupling leads to

narrow, resonant-like conduction peaks. In contrast, metallic 120° junctions with no sublattice

imbalance (δN = 0) or with a zero-energy state localized on the sublattice not connected to

the leads (δN > 0) exhibit G = 0 at E = 0. In these cases we observe that the trace of the matrix

product in Eq. (2.58) is zero due to diagonal elements having a pair with an opposite sign that

stems from the symmetry of the device Hamiltonian and the fact that the self-energies ΣL(R) in

98



7.3 Results and discussion

-0
.1

5

Energy (t
1
)

0.00 t
1

0.10 t
1

0.15 t
1

0.20 t
1

0.25 t
1

0.50 t
1

0.75 t
1

1.00 t
1

0

1

C
o
n
d
u
c
ta

n
c
e
 (

G
0
)

a b

0

10

D
O

S

5

15

20

25

-0
.1

0

-0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

-0
.1

5

Energy (t
1
)

-0
.1

0

-0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

Figure 7.7: Transport through a zero-energy state. Evolution of (a) conductance and (b) DOS
peak near E = 0 upon changing the strength t1 of the coupling to the leads.

Eq. (2.57) affect only one sublattice. To support this finding, we present analytical derivation

of the binary conductance phenomenon for metallic 120° junctions in the Appendix C.

Figure 7.6(b) presents the histogram of sublattice imbalance δN for 900 semiconducting 120°

junctions (7-AGNR, IPB) with highest and lowest conductance. Interestingly, the junctions with

highest τ have predominantly sublattice imbalance of δN =−2, while δN ≥ 0 is associated

with low τ values. The results seem to indicate that the zero-energy states due to the sublattice

imbalance still have a strong effect on electronic transport at the band edge. We note, however,

that this behavior is difficult to quantify and further investigation is required. Finally, another

common feature observed for τ> 0.9 semiconducting 120° junctions is a narrow DOS peak at

the band edge, resembling the DOS of the lead. The broadening of the DOS peak, on the other

hand, leads to increased “smoothening” of the conductance profile and hence lower τ values.

For example, we show in Figure 7.8(a)−(c) a junction displaying almost no backscattering and

a very sharp DOS peak at the band edge, while in Figure 7.8(d)−(f) both of these features are

less pronounced for a junction exhibiting τ= 0.78. In extreme cases, we observe very small

values of DOS near the band edge thus leading to τ= 0 as seen in Figure 7.8(g)−(i).

60° junctions

As far as 60° junctions are concerned, the leads are connected to the complementary sub-

lattices of the scattering region and hence no binary conductance at E = 0 is observed. Fur-

thermore, all considered 60° junctions have no sublattice imbalance since only symmetric

configurations are investigated in our work.

Nevertheless, several common properties are observed for the 60° and 120° junctions with

high τ values. In Figure 7.9(a) we show a representative 5-AGNR 60° junction with τ= 1. The

conductance profile of the junction practically matches the one of the lead in the 0 ≤ E ≤ 0.5t1

energy range [Figure 7.9(b)]. Moreover, DOS in Figure 7.9(c) is nearly constant, similar to the

selected metallic 120° junction in Figure 7.4(d), and the LDOS at E = 0 reveals that the electron
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Figure 7.8: (a) Atomic structure of a 7-AGNR 120° junction with τ= 1. (b) Conductance profile
and (c) DOS of the junction in the 0 ≤ E ≤ 0.5t1 energy range. (d) Atomic structure of a 7-
AGNR 120° junction with τ= 0.78. (e) Conductance profile and (f) DOS of the junction in the
0 ≤ E ≤ 0.5t1 energy range. (g) Atomic structure of a 7-AGNR 120° junction with τ = 0. (h)
Conductance profile and (i) DOS of the junction in the 0 ≤ E ≤ 0.5t1 energy range.

density is delocalised over the scattering region [Figure 7.9(d)]. The effect of the localized

states on conductance of 60° junctions is however different. While localized states due to

sublattice imbalance facilitate transmission across 120° junctions, increased localization due

to the presence of zigzag edges often leads to low τ values in metallic 60° junctions.

In extreme cases of τ= 0 we notice that the electron density is localized only on one of the

sublattices [Figure 7.9(e)]. However, rare exceptions are found among semiconducting 60°

junctions where Fano resonances are observed near the band edge leading to high values of τ

[Figure 7.9(f)]. These Fano resonances occur when localized states in the scattering center

hybridize with the continuum of states in the lead [Miroshnichenko et al., 2010]. Overall, we

observe that in 60° junctions with τ> 0.9 local density of states resembles that in the leads and

localization leads to lower transmission.
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Figure 7.9: Electronic transport in 60° GNR junctions. (a) Atomic structure of a metallic 60°
5-AGNR junction with τ = 1. (b) Conductance profile and (c) DOS of the junction in the
0 ≤ E ≤ 0.5t1 energy range and the full profiles (insets). (d) LDOS of the junction at E = 0. (e)
LDOS at E = 0 of a selected metallic 60° 5-AGNR junction characterized by τ= 0 at E = 0. (f)
LDOS at E = 0 of a selected semiconducting 60° 7-AGNR junction with τ= 0.83. (g) Probability
current at E = 0 in the scattering region of the junction shown in panel (a). (h) Probability
current at E = 0 in the pristine 5-AGNR lead. (i) Probability current in a 120° 5-AGNR junction
at E = 0 that represents half the 60° 5-AGNR junction in panel (a).

Analyzing local current distributions further helps establishing the design rules of GNR junc-

tions. It can be seen that the current is mainly carried by well defined channels, in the case of

5-AGNR leads localized at the edges, and is preserved in the scattering region [Figure 7.9(g)].

Hence, comparing the probability current in the scattering center to the one of the pristine

leads [Figure 7.9(h)] gives an indication about the junction conductance. Strikingly, deviations,

such as the one observed in Figure 7.9(g), where the local current on the inside edge is around

2.5 times larger than the current on the outside edge (matching the deviation of LDOS in

Figure 7.9(d)) can still lead to equal local current on both edges in the other lead. In general,

we observe that junctions with preserved AGNR edges or even parts of scattering center re-

sembling pristine AGNR geometry, usually display high τ values. This further supports the

argument against inclusion of zigzag edges in the junctions as concluded from the LDOS

analysis. Our observations agree with the work of Chen et al. [Chen et al., 2017b], where

asymmetry and deviation from the lead geometry were found to decrease the conductance of

the junctions.

Finally, we show that 60° junction with τ= 1 [Figure 7.9(a)] can be viewed as two 120° junctions
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with τ= 1 connected in series. As the local current leaving the junction in Figure 7.9(i) matches

the incoming current, the addition of a second junction with the same structure leads to a 60°

“turn” characterized by a high conductance. We also note that combining two equivalent 120°

junctions removes the sublattice imbalance and result in having both sublattices attached to

the leads, thus eliminating the observed binary conductance phenomenon at E = 0.

7.4 Summary and conclusions

In summary, we performed a systematic and exhaustive exploration of 120° and 60° two-

terminal junctions in armchair graphene nanoribbons by means of numerical calculations

combining tight-binding approximation and Green’s function formalism. Our calculations

show that irrespective of the lead width and junction angle it is always possible to construct

junctions with minimal electron scattering, which could be used as optimal interconnects

in all-graphene nanocircuits. Furthermore, having analyzed 438187 unique configurations

we propose clear design rules to control the electronic transport properties of such junctions.

In particular, we discovered digital, either full on or full off, conductance of metallic 120°

junctions, that is governed by sublattice imbalance. In contrast, for 60°-angled junctions

highest conductance is achieved when armchair-type edge structure was preserved in the

scattering center.

Finally, we present a complete library of results in Supplementary tables 1–36 [Čern, evičs

and Yazyev, 2021], which are described in Appendix B. We also provide an easy-to-use online

tool TBETA [Čern, evičs et al., 2020a] that allows reproducing all results presented in our work.

TBETA is publicly available on the Materials Cloud portal [Talirz et al., 2020] and allows to

construct arbitrary GNR junctions and calculate their electronic and transport properties. For

more information see Appendix A and B. Overall, our results establish design rules necessary

for engineering GNR junction with desired electrical characteristics.
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8 Finite Length and Contact Effects on
Electronic Transport in Graphene
Nanoribbon Heterostructures
Further advances in both experimental and theoretical research are needed to effectively

integrate GNRs as components in nanoelectronics. Besides, it is also extremely important to

bring both of the approaches together in a complementary manner so that complex experi-

mental phenomena can be explained within theoretical models. Although electronic transport

calculations of infinite GNRs, carried out by tight-binding model and Green’s function meth-

ods, give helpful insights into the characteristics of heterojunctions or defects, they are often

difficult to compare with experimental observations. One of the reasons is the assumption

that semi-infinite leads of the same geometry are attached to the localized scattering center,

hence neglecting the effects of both finite size and realistic contacts. Here, we show that even a

basic tight-binding description of metallic leads causes the emergence of interesting transport

phenomena, like the edge-state facilitated transport or tunability of the transport gap. On one

hand, our results agree with the experimental observation that the 7-AGNR exhibits the bulk

band gap only if the length of the ribbon exceeds 8 nm, while on the other hand we show that

very short ribbons display conductance peak at E = 0 and hence are metallic. Moreover, we

also notice that these effects are robust against different lead configurations and attachment

points, thus suggesting that it is often enough to include a simple description of metallic leads

in order to improve the simulations. Lastly, we show a calculation using a more realistic model

that resembles experimental measurements of transport properties with the help of an STM

tip.

This chapter is adapted from:

Čern, evičs, K., Yazyev, O.V (2022). Finite Length and Contact Effects on Electronic Transport in

Graphene Nanoribbon Heterostructures – In preparation

My contribution to this work was performing the calculations, analysis of the data and writing

the paper.
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Chapter 8. Finite Length and Contact Effects on Electronic Transport in Graphene
Nanoribbon Heterostructures

8.1 Motivation

As we saw in the previous chapters, the electronic transport properties of GNRs are often

investigated assuming semi-infinite GNR leads and, therefore, the calculations usually exclude

important finite length effects. For example, Talirz [Talirz et al., 2019] showed a clear band-gap

dependence on the length and termination of 7-AGNRs, where the bulk gap value is only

achieved for 8 nm or longer ribbons. Zang [Zang et al., 2020] and Valdiviezo [Valdiviezo et al.,

2021] observed diverse length dependence on conductance in one-dimensional carbon wires.

Whereas the impact of GNR length on electronic, transport and aromatic properties was

recently explored by Zdetsis [Zdetsis and Economou, 2021]. However, the typical transport

calculations based on Green’s function and Landauer formalism show no dependence on the

size of scattering center as semi-infinite leads of the same geometry are assumed to connect the

system. Although, such calculations allowed us to investigate the effects of local perturbations,

such as junctions [Chapters 3, 4 and 7] or defects [Chapters 5 and 6] on the electronic transport

properties, it is generally not sufficient to make comparisons with experimental results. More

importantly, the experimental transport measurements are mainly carried out by contacting

the finite length ribbons with metallic leads (e.g. lifting the GNR with an STM tip as reported

in Section 1.2.3), which are completely neglected in most theoretical models.

The inclusion of metallic leads in the calculations often means departing away from the simple

and efficient tight-binding models as the complexity of the Hamiltonian due to the description

of heteroatoms increases noticeably. Such systems can be then tackled by utilizing DFT

calculations as was done by Chong et al. [Chong et al., 2018], who included the gold STM tip in

the calculations to observe the effect on DOS in 7-AGNRs. Nonetheless, another problem arises

when considering the appropriate contact configuration, which is generally not known in the

experiments and can have a major impact on electronic transport properties. For example, it

has been shown that both the extent of hybridization and the contact length between metal

and carbon atoms in carbon nanotubes determine optimum transport conditions [Nemec

et al., 2006; Deretzis and Magna, 2006].

In this chapter, we show that even a very simple tight-binding model can give an invaluable

insight into phenomena that arises from the introduction of finite length systems and attach-

ment of metallic leads. First, we discuss the length-dependent properties, like the transport

gap and emergence of edge state conductance, while afterwards we focus on different con-

figurations of the attached leads. Finally, we apply the acquired knowledge to simulate an

experimentally relevant electronic transport measurement, where a GNR is lifted up from a

metallic surface by an STM tip.

8.2 Methodology

To describe the graphene nanoribbons we utilize a 3NN tight-binding model [see Section 3.2

and Eq. 3.1] with tC = t1 =−2.78 eV, t2 =−0.15 eV and t3 =−0.095 eV for the first-, second- and
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third-nearest-neighbor hopping integrals [Kundu, 2011], whereas the square lattice metallic

leads are described only by a single nearest-neighbor hopping integral tM = t1 =−2.78 eV. In

all cases we use the same on-site potential ϵ=−0.4 eV. Our results are expressed in the terms

of the nearest-neighbor hopping integral tC = t1 =−2.78 eV.

Whereas the transport properties are calculated using the Green’s function method [Section

2.5] and within the Landauer formalism [Section 2.4]. G is expressed in the terms of con-

ductance quantum G0 [Eq. 2.60]. The numerical calculations are performed with the help of

kwant [Groth et al., 2014].

8.3 Results and discussion

We start by comparing the results of a semi-infinite GNR lead based calculation with one that

includes the finite size effects and attaches simple metallic leads. We select 7-AGNRs as a

representative example as they are one of the most commonly synthesized nanoribbons [Cai

et al., 2010; Ma et al., 2017b; Deniz et al., 2017], whereas recently heterojunctions consisting of

laterally fused 7-AGNRs have also been gaining attention [Ma et al., 2017a; Wang et al., 2017;

Senkovskiy et al., 2021]. For example STM image of bottom-up synthesized 7-AGNRs and the

corresponding heterojunctions see Figure 8.1(a). To better illustrate the difference between

the calculation methods, the 7-14-AGNR heterojunction is chosen as an otherwise pristine

structure except for the interface between the two widths. The main interest of investigating

said system is understanding how the junction between the 7- and 14-atom wide segments

scatters the electrons and hence affects electronic properties. Consequently, it is enough to

prolong the pristine segments of 7- and 14-AGNR, and consider them as semi-infinite leads in

order to determine the transport characteristics of the heterojunction [Figure 8.1(b)]. Yet, in

this way we completely dismiss the finite size of the experimentally synthesized AGNR and

make it difficult to compare our results with experimental measurements, where metal leads

are often employed.

We show in Figure 8.1(d) that adding even a simple square lattice metallic leads [Figure 8.1(c)]

to our model system provides a striking difference in conductance curves, when compared to

the conventional infinite GNR calculations. The red curve corresponding to the semi-infinite

GNR leads shows that conductance is affected negligibly near the band edges, with only minor

scattering occurring due to the junction. However, the more realistic finite GNR calculations

reveal a completely different story. First, we recognize that the conductance obtains a fine

structure corresponding to the available localized states in the GNR and thus showing the

effect of the contact resistance. Second, we notice the difference between the transport gap in

the bulk system and our finite GNR – the closest conductance peaks are about 0.05tC away

from the band edge of 7-AGNR. Furthermore, we also identify non-negligible conductance

from the in-gap states due to the quasi-metallic nature of the 14-AGNR (3p +2 family), which

was not observed with semi-infinite GNR leads.
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Figure 8.1: (a) STM image of experimentally synthesized 7-,14- and 21-AGNRs and (i) 7-14-
AGNR, (ii)14-21- and (iii) 7-21-AGNR nanostructures marked in white. Adapted from [Ma et al.,
2017a]. (b) Atomic structure of infinite 7-14-AGNR heterojunction. (c) Atomic structure of
finite length 7-14-AGNR heterojunction with semi-infinite square lattice metallic leads. (d)
Conductance plots of infinite 7-AGNR, infinite 7-14-AGNR heterojunction [panel (a)] and
finite length 7-14-AGNR heterojunction with semi-infinite metallic leads [panel(b)].

8.3.1 Finite length and coupling strength effects

We continue by exploring the finite length effects of pristine 7-AGNR segments in Figure

8.2, where we vary the length L in terms of unit cells and then attach simple semi-infinite

metallic nanowire leads to calculate transport properties. For simplicity, we set the metal

nearest-neighbor hopping terms to the ones corresponding to graphene (tM = tC =−2.78 eV),

while only varying the metal-carbon (tC M ) hopping term. Similar strategy of picking isotropic

hopping parameters has been employed in carbon nanotube studies [Krompiewski, 2004]. To

explore the importance of coupling between the leads and GNR, we vary the metal-carbon

hopping term tC M . We show in Figure 8.2(b) the conductance profile of L = 10 7-AGNR system

with varying coupling strength, which is expressed in terms of the nearest-neighbor carbon

hopping parameter tC M = ntC , where 0.1 ≤ n ≤ 1.

First, we establish that the fine structure of the conductance profile is independent of the

metal-carbon hopping strength close to the Fermi energy and second, we observe that the

transport is resonant, i.e. conductance peaks of G =G0 appear at discrete energies and become

more broadened with increasing tC M . Furthermore, we notice a good correspondence of these

conductance peaks with the eigenvalues of the finite 7-AGNR segment that are plotted as

vertical black dashed lines. Interestingly, at E = 0 there is a conductance peak corresponding

to the zigzag end states only at very weak coupling tC M = 0.1tC , whereas it cannot be observed

for larger couplings.

Due to the recognized negligible effect of the metal-carbon coupling on conductance profile,

we choose tC M = 0.4tC corresponding to a resistive interface [Blanter and Martin, 2007] for

further investigation of our finite systems. Finite length effects can be clearly seen in Figure

8.2(c), where longer 7-AGNR segments display conductance peaks closer to the band edge

defined by the bulk system. These conductance peaks become more narrow and are shifted
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Figure 8.2: (a) Atomic structure of finite length L = 5 7-AGNR with one-atom-wide metallic
leads. (b) Conductance plots of L = 10 7-AGNR system with metallic leads and various carbon-
metal hopping integral values. (c) Conductance plot near the band edge (−0.5tC ≤ E ≤ 0.22tC )
and (d) inside band gap (−0.4tC ≤ E ≤ 0.4tC ) of the system in panel (a) with varying length
L. (e) Plot of the transport gap versus the GNR length L, where the black circles indicate the
band gap values, empty circles marking the band gap in the presence of a non-negligible zero
energy peak, exponential decay (∆L = 1.65× e−0.33L +0.49) is marked with red line and the
bulk 7-AGNR band gap is illustrated with dashed blue line. (f) Conductance of the peak at
E = 0 versus the GNR length L, where the numerical values are shown by black dots and the
exponential (G(0)L = 563× e−1.16L −5.8×10−6) decay by red line. (g) LDOS plot at E = 0 for
L = 4 (upper) and L = 10 (lower) 7-AGNR.
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towards the band edge with increasing length. In Figure 8.2(e) we show that the transport gap

approaches the bulk value, when L = 20 or around 8.5 nm, which is in excellent agreement with

Talriz [Talirz et al., 2019]. Here, we established our transport gap as a measure of separation

between the two closest peaks inside the bulk bands with a minimum conductance of G =
0.01G0. However, in Figure 8.2(d) we can notice a prominent zero energy peak for short

segments of 7-AGNR. Indeed, if we employ the same search for conductance peaks of G >
0.01G0 also inside the bulk gap, we will find that for L < 10 there is no transport gap and the

short 7-AGNR segments are actually metallic. Depending on how one defines the threshold of

minimum conductance, small variations can be observed in the cut-off length of metallic or

semiconducting segments. For example, we can still distinguish a clear zero energy peak even

for L = 16 7-AGNR segments in Figure 8.2(d), although the amplitude of this peak is a couple

orders of magnitude smaller than the conductance peaks in the bulk bands. The magnitudes

of the zero conductance peak are plotted in Figure 8.2(f) and show an exponential dependence

on the length of the 7-AGNR segment. We attribute this to the exponential decay of zigzag edge

state’s LDOS with each successive zigzag chain as observed by Nakada and co-workers [Nakada

et al., 1996] in finite graphite systems with zigzag edges. We discover in Figure 8.2(g) that the

majority of the density is located on zigzag edges of both sides of the 7-AGNR segments (L = 4

and L = 10) and that it quickly decays towards the center of the segment hence providing

little overlap between the two edge states. Thus, we can observe that the magnitude of the

conductance peak decreases exponentially with the longitudinal separation of the two zigzag

ends. To recap, we show that already an extremely simplified lead model can give rise to

exciting finite length effects on the electronic transport properties and the qualitative results

are largely independent on the choice of parameters, such as metal-carbon coupling strength.

8.3.2 Lead configuration effects

Although we established that the fine structure of the conductance profile is largely indepen-

dent of metal-carbon coupling tC M magnitude, we can not fully dismiss the importance of

the lead configuration. Therefore, we turn our attention to the geometric shape and position

of our leads. For a greater variability of the lead geometry we now consider a 7-14-AGNR

heterostructure defined by two segment lengths – L7 = 8 and L14 = 8. Figure 8.3(a) displays

three lead configurations corresponding to nanowire (red), half (blue) and full (green) square

lattice leads.

We can vary the position of the attachment of the nanowire by moving it up or down in any of

the seven sites on the right side marked by the numbers. We then calculate the conductance

profiles of different attachment positions and display three characteristic profiles in Figure

8.3(c). It can be seen that the overall fine structure of the conductance displays peaks at the

positions of the finite system’s eigenstates and due to the extended 14-AGNR segment we also

notice multiple in-gap states. Interestingly, these in-gap states are not fully resonant (G ̸=G0)

and rather have a decaying intensity towards the zero energy state. Furthermore, it can be

noted that different positioning of the leads can decrease the conductance by more than an
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order of magnitude. More apparent changes can be observed around the Fermi energy, where

there are two almost degenerate zero energy states and one state at E = 0.025tC . When the

right lead is attached in position 4, we discover two distinct anti-resonances around Fermi

level, which are not observed in other configurations. The origin of these anti-resonances

can be traced back to the LDOS of the low-energy states displayed in Figure 8.3(b). We show

that the first three states are associated with the zigzag terminations and that the attachment

position 4 gives the largest overlap between states 2 and 3 thus leading to an interference and

prominent anti-resonances around Fermi level.

Noticing how the conductance characteristics can be influenced by varying the position of

the nanowire attachment, we now expand our leads to a square lattice as seen in Figure

8.3(a) marked by the blue and green lattice points. First, we consider 3-atom wide leads

fully connecting the left side of our heterostructure and the same exact lead on the right side

attached on positions 1-3 and dub this configuration “half leads”. Second, we consider “full

leads”, which have the same lead on the left side, but now expand our right lead over all seven

attachment points hence fully covering both sides. Lastly, we also consider the nanowire

attachment in position 2.

In Figure 8.3(d) we notice only marginal differences in the overall shape of the conductance

profile, while main differences are observed in the magnitude of the peaks. We observe that

square lattice leads display resonant peaks inside the bulk bands, where G = G0. Whereas

one-atom-wide nanowire has an order of magnitude lower conductance. For example, looking
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at the LDOS of the E = 0.25tC state, we notice that although the majority of density is concen-

trated on the 7-AGNR segment, the density is also more delocalized over the whole structure

and thus attachment in multiple locations on the right side give rise to higher conductance.

Intriguingly, the density associated with position 2 is comparatively lower than the density on

other sites thus further decreasing the conductance of this particular state, when nanowire

leads are attached. Overall, we discover that the positioning of the leads and the type of leads

has an effect on the magnitude of the conductance, but the general shape of the conductance

profile remains largely invariant. We attribute these changes in magnitude to the nature of

LDOS, where either accurately placed or just a larger number of attachment points coinciding

with the spatial distribution of the electron density can facilitate larger conductance through

the localized states. Our observations agree with the work done by Nemec and colleagues

[Nemec et al., 2006], where contact length of metals played a major influence on electronic

transport properties in carbon nanotubes.

8.3.3 Simulating STM transport measurement

After establishing the importance of finite size effects and lead configurations, we aim to use

our simplified model to simulate an experimental setup of measuring the conductance of a

GNR heterostructure by an STM tip [see Section 1.2.3]. In a typical experiment one side of

the GNR would be lifted by the STM tip, while the rest of the GNR would be in contact with

the gold surface [Figure 8.4(b)]. The conductance then is measured in the free standing GNR

segment between the STM tip and gold surface. Continuously lifting up the STM tip reveals an

increasing length of free standing GNR segment. We model this setup by attaching a nanowire

to one side of the GNR, while a full square lattice leads are attached to the other side of the

GNR, thus representing STM tip and gold surface respectively. The lifting motion is modeled

by increasing the length of our GNR as with increasing STM height we would make a larger

part of the GNR free-standing [Fig 8.4(a)]. For our calculation we consider a QD-like system

[Čern, evičs et al., 2020c] of 7-14-7-AGNR with the following length – L AGN R = L7 +L14 +L7 =
3.4+5.1+3.4 = 11.9 nm.

Figure 8.4(c) reveals a conductance map with respect to the free-standing GNR length. As

established earlier, the short 7-AGNR segments display metallic behaviour due to the zero

energy conductance peaks, while the states corresponding to the bulk GNR can be seen to

quickly converge towards the bulk value. Interestingly, when a segment of 14-AGNR becomes

(lower red dashed line) free-standing, we can observe the emergence of in-gap states due to

the quasi-metallic character of 14-AGNR. These states rapidly converge towards zero energy

with increasing length of the 14-AGNR segment. However, we can notice that the magnitude of

these peaks (G ≈G0 ×10−6) is much lower than the states corresponding to the bulk 7-AGNR

(G ≈G0). Finally, once the 14-AGNR segment ends and another 7-AGNR segment emerges as

free-standing (upper red dashed line), we notice slowing down of the convergence towards

zero energy and the low-energy states remain almost constant with further increasing 7-AGNR

segment length. This is a further confirmation of the metallic character of these emerging
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Figure 8.4: Modeling STM transport measurements. (a) Atomic structure of the GNR fragment
of increasing length between metallic leads. (b) Scheme of STM tip lifting a GNR from gold
surface. (c) Conductance map of increasing GNR fragment length. The lowest dashed red line
indicates the transition from 7-AGNR to 7-14-AGNR segment, while the second one indicates
transition from 7-14-AGNR to 7-14-7-AGNR segment as presented in panel (a).

states associated with the 14-AGNR segment. Although these metallic states are orders of

magnitude lower than the states associated with bulk 7-AGNR, we have to consider the effect

of our lead configurations seen in Section 8.3.2 and thus not discard the possibility of larger

peak magnitudes with different lead setups.

8.4 Conclusions

In summary, we have investigated the impact of attaching simple metallic leads to finite GNR

fragments. We show that in contrast to the standard calculations involving semi-infinite GNR

leads, utilizing fixed-length GNR fragments yield drastically different conductance profiles

and capture many finite length effects. For example, we reveal that transport gap of 7-AGNR

fragments reaches the bulk value, when they extend to over 8 nm, while very short fragments

L < 2 nm are actually metallic due to the tunneling zigzag states.

We also demonstrate that the transport close to the band gap is resonant-like, with conduc-

tance peaks matching localized states on the finite length GNR nanostructure. Furthermore,

it is apparent that the general conductance trends are largely independent of the chosen

carbon-metal hopping parameters or even the width of the lead. Although, the fine structure

of the conductance profile is largely invariant, it is the magnitude of the conductance that

shows the largest dependence on either attachment positions or the width of the metallic

leads. We reason that the magnitude is closely dependent on the localization patterns of the

electron density on the GNR and attachment points coinciding with increased density will

lead to larger conductance.
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Finally, we designed a basic tight-binding model to gain intuitive understanding of an experi-

mental conductance measurement of a 7-14-7-GNR heterojunction between the STM tip and

gold surface. We calculate a typical conductance map vs the STM height (GNR length) and

show the emergence of new in-gap states associated with different parts of the heterojunction.

Overall, we give an insight into modeling more complex structures closer resembling the

experimental setups by a very simple tight-binding model.
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Since the seminal work of Cai and co-workers [Cai et al., 2010] more than a decade ago, bottom-

up synthesized graphene nanoribbons have attracted a large interest as potential building

blocks for next-generation nanoelectronics. Part of the appeal arises due to the unprece-

dented atom-scale control over the GNR structure and hence also the electronic properties.

Yet, larger significance can be attributed to the possibility to design GNR junctions, thus

providing remarkable opportunity to seamlessly integrate multiple components in complex

nanoelectronic devices. Recent efforts in both the synthesis [Wang et al., 2017; Jacobse et al.,

2017; Chen et al., 2017b; Rizzo et al., 2018; Sun et al., 2021] and theoretical research [Liwei

et al., 2016; Chen et al., 2017a; Saiz-Bretín et al., 2019; Zhou et al., 2020] of GNR junctions has

been made, but overarching structure-property relationships in such systems are still eluding

and consequently also hampering further progress in this field.

This thesis, therefore, has been devoted to fill this gap by examining electronic transport

properties in experimentally produced graphene nanoribbon junctions and by establishing

underlying design principles of new junctions. In particular, we focused on three directions –

modeling and understanding width-modulated GNR structures, exploring experimentally

observable defects in various GNRs and designing potential components for nanoelectronics.

Our investigation was based on a combination of DFT, TB and Green’s function methods as

well as a high-throughtput screening to effectively characterize thousands of GNR junctions.

9.1 Overview of results

In Part I we determined the origin of previously unexplained even-odd phenomena in edge-

functionalized GNRs, where guest molecules displayed contrasting behavior depending on

their width. Previous assumption that conductance is affected at all energies matching the

electronic levels of isolated molecule was disproved by showing that unique electron density

localization patterns, based on the number of benzene rings, can lead to non-interacting

states. We demonstrated that in cases, where there is zero electron density on linking atoms

between the ribbon and the molecule, the conductance is not affected at that energy. This
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in turn adds another degree of complexity in order resolve electronic “fingerprint” of guest

molecules. We also expanded this research by considering higher theory level models, such as

third-nearest-neighbor TB model and DFT calculations, and confirmed that even-odd effect is

not an artifact of the simplified 1NN-TB model. However, this phenomenon was found to be

less pronounced as a consequence of larger band dispersion.

Next, we investigated the electronic transport in width-modulated heterojunctions that can be

seen as extensions of the edge-functionalized systems. Recently synthesized GNR junctions

were taken as a basis to explore graphene quantum-dots, embedded in metallic armchair

nanoribbon leads. We found that the transport is dominated by the length scale of the quantum

dot, where a smooth transition from an antiresonant transport regime to a resonant regime

was observed with increasing length of the system. More interestingly, we also noticed that

upon exceeding a critical length of the quantum dot a width-dependent transport gap opens,

thereby giving rise to built-in one-dimensional metal-semiconductor-metal junctions.

In Part II of the thesis we examined “bite” defects – missing benzene rings at the GNR edges –

in a combined experimental and theoretical effort in order to determine the adverse effect on

electronic transport properties. “Bite” defects were shown to form by phenyl-ring cleavage

from the precursor molecule during the cyclo-dehydrogenation step and were observed in

both AGNR and chevron GNRs. First, we showed that “bite” defects can disrupt the electronic

transport of 9-AGNRs by reducing the conductance up to 98% in the vicinity of the band

edges, depending on the number and configuration of the defects. Second, we expanded our

theoretical investigation to wider nanoribbons and discovered that conduction properties

become less sensitive to the defects for wider ribbons belonging to the 3p+1 and 3p+2 families.

Our findings accordingly suggest either utilizing alternative precursor molecules or employing

GNRs form the 3p+1 and 3p+2 families for electronic devices, in order to mitigate unfavorable

effect of the “bite” defects.

Subsequently, we turned our attention to chevron-type GNRs and noticed that particular

placements of “bite” defects result in diverse response on the conductance in different bands,

thus giving us a degree of control over transport properties. We applied the lessons learned

about the impact of defects in single GNRs in order to engineer transport properties in more

complex nanostructures. For instance, by strategically placing a pair of “bite” defects in

laterally fused triple fluorene-chevron GNR, we constructed a switch to control electron

pathways in the nanostructure. Fascinatingly, we also utilized “bite” defects to increase

conductance between two leads in a triple chevron GNR junction from 38% to 47%. Overall, in

this part of the thesis we outlined how experimentally detected “bite” defects affect transport

properties in GNRs and provided guidelines on how to design nanoelectronic components.

Chapter 7 was dedicated to exploring GNR integration in next-generation electronics by

screening over 400000 angled GNR junctions for potential interconnects. First, we concluded

that irrespective of the lead width and junction angle it was always possible to find junctions

with conductance close to the limit defined by the GNR leads. Next, we revealed underlying
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structure-property relationships, where either full on or full off conductance of metallic 120°

junctions was observed due to the bipartite symmetry of graphene lattice and the presence

of resonant states localized at the junction. Whereas for 60°-angled junctions preserving

the armchair-type edge structure in the scattering center led to the highest conductance.

Finally, we presented our results curated in a library of junctions and also provided an online

tool TBETA [Čern, evičs et al., 2020a] that implements user-friendly graphical interface for

tight-binding calculations.

Ultimately, we investigated the finite length and contact effects by attaching simple square

lattice leads to GNRs. We demonstrated that in contrast to the conventional tight-binding

calculations involving semi-infinite GNR leads, drastically different conductance profiles

emerged from utilizing fixed-length GNR fragments. For instance, the transport gap of 7-AGNR

fragments reached the bulk value, when they were longer than 8 nm, whereas, surprisingly,

very short fragments L < 2 nm were exhibiting tunneling zigzag states and hence were actually

metallic. Besides, we confirmed that these effects are largely robust against different lead

configurations, thus validating the inclusion of trivial metallic leads in order to improve

the simulations. Overall, we gave an insight into modeling more realistic structures, closer

resembling the experimental setups, by a very simple tight-binding model.

9.2 Perspectives

Although apparent progress has been made in both the experimental and theoretical research

of GNRs in the past years, new questions and hence potential research directions arise every

day. Here, I will briefly provide some of the key problems related to the work done in this

thesis that should be tackled in the future.

Despite not mentioned in this thesis, we have also explored spin-polarized transport in ZGNRs

with “bite” defects [Pizzochero et al., 2021a], whereas recent work by Sanz and co-workers

[Sanz et al., 2022] showed spin-filtering effects in crossed graphene nanoribbon junctions.

Both of these works demonstrate the applicability of GNRs as building blocks for exciting

spintronic devices, hence further work focusing on integrating such junctions in actual devices

is of paramount importance.

Next, to truly unlock the potential of all-carbon based electronics, new solutions need to be

found in order to mitigate the effects of Schottky barriers at metal-GNR contacts. One of the

possible directions could be eliminating the metal contacts entirely by producing devices

consisting entirely out of GNRs, such as side-gate transistors from triple GNR junctions. Recent

works [Jiang et al., 2019; Weckbecker et al., 2020; Wu et al., 2020] utilized changes in chemical

structure in molecule-graphene(metal) junctions to show transistor-like effects, thus paving

way for similar calculations based on functionalized GNR junctions. However, due to the bad

screening of semiconducting GNR electrodes, many extra layers are needed, thus drastically

limiting the size of accessible systems for finite-bias calculations in DFT [Papior, 2016].
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Finally, as a consequence of the work done in Part II and Part III of this thesis, I also envision

new experimental challenges arising. First, it is critical to develop more precursors molecules

to achieve even wider selection of edge structures, widths and avert formation of defects.

Second, there is a need for tighter control over the growth conditions in order to produce

GNRs with proper lengths and alignments for more effective device fabrication due to the

observed finite length and contact effects. Lastly, another big obstacle to tackle is the on-

surface synthesis of precise and well-defined junctions and the subsequent coupling of such

junctions in order to produce next-generation components for nanoelectronics.
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A Tight-Binding Electronic Transport
Application for Graphene Nanoribbon
Junctions
Tight-Binding Electronic Transport Application (TBETA) [Čern, evičs et al., 2020a] for graphene

nanoribbon junctions provides a simple yet powerful graphical interface for building struc-

tures of two-terminal junctions of graphene nanoribbons at angles 60°, 120° and 180°. The

electronic structure and transport properties of the constructed junctions are calculated using

the 1st, 2nd or 3rd nearest-neighbour tight-binding model [Kundu, 2011] in combination with

the Landauer formalism and Green’s function techniques. All of the numerical calculations

are performed using the Kwant code [Groth et al., 2014], but instead of the traditional way

of writing Python commands, we provide a graphical user interface. We utilize open-source

application Voilà [Voilà, 2022] to convert Jupyter notebooks [Kluyver et al., 2016] containing

our code into standalone web application providing a code-free environment. The interaction

with the underlying code is provided through ipywidgets library [ipywidgets, 2021] that

provides HTML widgets such as sliders, toggle buttons, text boxes, etc.

For instance, the following instructions describe how to design the atomic structure of any

junction:

1. Select the desired junction angle, width of GNR leads and four additional parameters

called distance, shift, quantum dot width and chirality.

2. Atoms can be removed from the initial scattering region by entering the corresponding

atom number(s) and then pressing the ’Remove atoms’ button.

3. Initial structure template with no atoms removed can be reset by pressing ’Reset system’.

We display the interface to design the atomic structure in Figure A.1, where we have selected to

construct a 120° junction between two 5-AGNR leads and calculated the associated lead band

structure with the first-nearest-neighbor tight-binding model. Next, the electronic properties

such as conductance and density of states are calculated in a selected energy range, while local

density of states, local current map and wavefunctions in the lead channels are displayed for a
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selected single energy value defined in terms of the tight-binding nearest-neighbor hopping

integral t . Figure A.2 shows the calculated conductance and DOS in a user defined energy

range −1t ≤ E ≤ 1.5t , whereas Figure A.3 presents the spatial electronic properties at E = 0.5t .

Figure A.1: The graphical interface of TBETA for designing GNR junctions.
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Figure A.2: Calculating electronic transport properties of GNR junctions in TBETA.
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Figure A.3: Spatially-resolved electronic properties of GNR junctions in TBETA.
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B Library of Graphene Nanoribbon An-
gled Junctions

We provide the raw data associated with our high-throughput screening and also curate it in a

PDF-based library for easier viewing [Čern, evičs and Yazyev, 2021]. First, we have classified

438187 unique GNR junction configurations hierarchically into 36 distinct classes according

to the following descriptors:

1. junction angle (120 or 60 degrees);

2. width (4-AGNR to 9-AGNR);

3. distance between the leads (intersection point class, only for 120 degree);

4. chirality (only even-numbered AGNRs).

For the 27 classes containing less than 4000 configurations each, we sort all of the junctions

accordingly to the descriptor τ and present the associated structural and electronic transport

characteristics as displayed in Figure B.1. This includes the information about the width,

angle, number of atoms, sublattice imbalance and also the atomic structure of a particular

AGNR junction. Both the conductance and DOS plots are showcased in the −3t ≤ E ≤ 3t and

0 ≤ E ≤ 0.5t regions, whereas the probability current and LDOS are plotted at either Fermi

level or band edge for metallic and semiconducting junctions, respectively. Whereas for the

remaining 9 classes hosting more than 4000 configurations each we only select the structures

that display high τ values and compile identical PDFs. For parties interested in uncovering the

properties of systems exhibiting low τ values we invite them to access our online tool TBETA
[Čern, evičs et al., 2020a] that allows reproducing not only all of our results, but also design

junctions outside the scope of this thesis.
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Cernevics, K. and Yazyev, O.V.                                                                    Supplementary table 21._______________________________________________________________________________________________________________________________________________

Configuration Nr. 6
GNR width N = 5
Junction angle = 120°
Intersection point IP_B
Number of atoms = 33
Sublatice imbalance δN = -1
Fraction of preserved conductance τ = 1.0

1

Figure B.1: An example page from Supplementary Tables categorizing a 120° 5-AGNR junction.
Starting from the top row: Information regarding the classification of the junction (left), atomic
structure of the junction (right). Second row - conductance (left) and DOS (right) plots in
the −3t ≤ E ≤ 3t region. Third row - zoom in of conductance (left) and DOS (right) in the
0 ≤ E ≤ 0.5t region. Last row - probability current (left) and LDOS (right) at E = 0+δE .
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C Binary Conductance Phenomenon
Across Metallic 120° Junctions

Below we discuss the origin of binary conductance in metallic 120° AGNR junctions. We will

demonstrate how in the case of no sublattice imbalance the structure of Hamiltonian matrix

HD results in T = 0, and hence G = 0 at E = 0. We will be representing our HD as a block matrix,

where zero blocks correspond to the two sublattices and the only hopping terms are between

atoms in the complementary sublattices

HD =
[

0 tab

t†
ab 0

]
. (C.1)

Next, as discussed in the Chapter 7, we recall that the self-energy of the leads is acting only on

one sublattice for the 120° 2-terminal junctions

He f f (E) = HD +ΣL(E)+ΣR (E) =
[

0 tab

t†
ab 0

]
+

[
ΣL(E)+ΣR (E) 0

0 0

]
. (C.2)

We continue by expressing the Green’s function as a block matrix

G = ((iη)ID −He f f )−1 =
[

iη−ΣL+R −tab

−t†
ab iη

]−1

=
[

Ga Gb

Gc Gd

]
, (C.3)

where we introduce the subscripts to denote blocks a,b,c and d in the matrix. Remembering

that only one sublattice is attached to the leads, the block matrix ΓL(R) is similarly expressed as

ΓL(R) =
[
ΓLa (Ra ) 0

0 0

]
. (C.4)

As the transmission across the junction is obtained by taking the trace of the matrix product in

Eq. C.5, we refer to this product as F for clarity

T (E) = Tr [F] = Tr [F1F2] = Tr [ΓLGΓR G†], (C.5)
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Appendix C. Binary Conductance Phenomenon Across Metallic 120° Junctions

Figure C.1: One-dimensional chain model with 3-site scattering region.

where we also assign F1 =ΓLG and F2 =ΓR G†. Now, we are only interested in block Ga as the

final matrix F can be expressed as block multiplications:

F =ΓLGΓR G† =
[
ΓLa GaΓRa G†

a ΓLa GaΓRa G†
b

0 0

]
=

[
Fa Fb

0 0

]
, (C.6)

where indices a and b once again refer to the corresponding blocks of the matrix. We also note

that taking the trace of F will only involve the block Fa . Therefore, showing that the block Ga

is zero will imply that the block Fa is also zero, finally leading to T = 0. Block matrix inversion

is carried out from Eq. C.3 to obtain Ga

Ga = ((iη−ΣL+R )− (−tab
I

iη
(−t†

ab)))−1. (C.7)

In the limit of η→ 0 we see that block Ga approaches 0 as well.

Further, we can show analytically perfect transmission T = 1 (and hence G = G0) at E = 0

by considering a simplified model system with sublattice imbalance. The model is a one-

dimensional chain with the scattering region consisting of 3 sites shown in Fig. C.1. Note that

this system inherits the discussed properties of more complex systems such the 120° angled

GNR junctions discussed in our work. All energy-dependent variables are calculated for E = 0.

We will start by transforming the basis of our matrices as ultimately we are interested in the

trace of matrix product F and the trace is invariant under the change of basis. As the new basis

we will choose the eigenvectors of HD ; the HD is then transformed to diagonal matrix H̃D with

the trace of 0 as the eigenvalues are pairwise symmetric around 0.

HD =

0 0 t

0 0 t

t t 0

 (C.8)

P−1HD P = H̃D


p

2t 0 0

0 0 0

0 0 −p2t

 (C.9)

P =


1p
2

−1
−1p

2
1p
2

1
−1p

2
1 0 1

 (C.10)
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Similarly, we transform the self-energy energy matrix ΣL(R) in the new basis.

ΣL(R) =

i t 0 0

0 0 0

0 0 0

 (C.11)

Σ̃L(R) =


t i
4

t
p

2i
4

−t i
4

t
p

2i
4

t i
2

−t
p

2i
4

−t i
4

−t
p

2i
4

t i
4

 (C.12)

We now obtain the Green’s function and we notice that the real part of the trace is zero, hence

showing that the symmetry along the diagonal is preserved.

G̃ =


1p
2t

−1
2t 0

−1
2t

i
t

−1
2t

0 −1
2t

−1p
2t

 (C.13)

Further, we also show the broadening Γ̃L(R), where one can notice that the matrix rows and

columns have a property similar to the previously mentioned diagonal symmetry, where the

elements in the same row (column) have a pair with an opposite sign except for the element

associated with the 0 energy state. For example, in the second row (column), this element is

−t , while in the other cases it is (−)tp
2

.

Σ̃L,R =


−t
2

−tp
2

t
2

−tp
2

−t tp
2

t
2

tp
2

−t
2

 (C.14)

Finally, we show the matrix F and the corresponding matrices F1 and F2 that have the afore-

mentioned diagonal pairwise symmetry. Although in our specific case these elements are 0,

more complex geometries will yield non-zero values. In the general case, when multiplying F1

and F2, only the elements in the row and column associated with the 0 energy state (second

row and column) will give non-vanishing values in final matrix F. We notice that the rows of

F1 and F2 contain pairs of values of the same sign, while columns contain the pairs of values

with opposite signs. For example, we show that multiplying row 2 with column 2, to obtain

the central element of the matrix F will result in only one non-vanishing term −i × i , which is

exactly 1. We associate this element with the 0 energy state.

F = F1F2 =


0 −ip

2
0

0 −i 0

0 ip
2

0

 .


0 ip

2
0

0 i 0

0 −ip
2

0

=


0 1p

2
0

0 1 0

0 −1p
2

0

 (C.15)
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Appendix C. Binary Conductance Phenomenon Across Metallic 120° Junctions

We note that taking the trace of F with more complex system shows that other diagonal terms

will cancel out as the final matrix F keeps the diagonal pairwise symmetry. Hence, for junctions

without sublattice imbalance, the trace of F is 0 due to the opposite sign contributions from the

energy states. However, for 120° GNR junctions with sublattice imbalance and an eigenvalue

of 0, we will see a contribution to transmission in the final matrix F from the zero energy state.

We have shown this diagonal value to be exactly 1, hence indicating that the zero-energy state

is responsible for the resonant transmission.
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