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Abstract
Post-quantum cryptography is a branch of cryptography which studies algorithms conjectured
to be resistant to attacks performed on quantum computers. This excludes widely deployed
public-key algorithms, such as RSA and Diffie-Hellman, whose hardness relies on the difficulty of
factoring and solving discrete logarithms, problems known to be solvable by a quantum computer.
This thesis treats two cryptographic schemes which are believed to be quantum-resistant and
provides theoretical and practical attacks against them.
The first protocol is the generalised Legendre pseudorandom function — a random bit generator
computed as the Legendre symbol of the evaluation of a secret polynomial at an element of
a finite field. We introduce a new point of view on the protocol by analysing the action of the
group of Möbius transformations on the set of secret keys (secret polynomials). We provide a
key extraction attack by creating a table which is cubic in the number of the function queries, an
improvement over the previous algorithms which only provided a quadratic yield. Furthermore
we provide an ever stronger attack for a new set of particularly weak keys.
The second protocol that we cover is SIKE – supersingular isogeny key encapsulation. In 2017 the
American National Institute of Standards and Technology (NIST) opened a call for standardis-
ation of post-quantum cryptographic algorithms. One of the candidates, currently listed as an
alternative key encapsulation candidate in the third round of the standardisation process, is SIKE.
We provide three practical side-channel attacks on the 32-bit ARM Cortex-M4 implementation of
SIKE.
The first attack targets the elliptic curve scalar multiplication, implemented as a three-point
ladder in SIKE. The lack of coordinate randomisation is observed, and used to attack the ladder
by means of a differential power analysis algorithm. This allows us to extract the full secret key of
the target party with only one power trace.
The second attack assumes coordinate randomisation is implemented and provides a zero-value
attack — the target party is forced to compute the field element zero, which cannot be protected
by randomisation. In particular we target both the three-point ladder and isogeny computation in
two separate attacks by providing maliciously generated public keys made of elliptic curve points
of irregular order. We show that an order-checking countermeasure is effective, but comes at a
price of 10% computational overhead. Furthermore we show how to modify the implementation
so that it can be protected from all zero-value attacks, i.e., a zero-value is never computed during
the execution of the algorithm.
Finally, the last attack targets a point swapping procedure which is a subroutine of the three-
point ladder. The attack successfully extracts the full secret key with only one power trace even
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if the implementation is protected with coordinate randomisation or order-checking. We pro-
vide an effective countermeasure — an improved point swapping algorithm which protects the
implementation from our attack.
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Abstract
La crittografia post-quantistica é un ramo della crittografia che studia algoritmi che si ipotizzano
essere resistenti ad attacchi eseguiti su computer quantistici. Questo esclude algoritmi a chiave
pubblica ampiamente diffusi, quali RSA e Diffie-Hellman, e altri basati sulla fattorizzazione e sul
problema del logaritmo discreto, problemi noti per essere risolvibili da un computer quantistico.
Questa tesi tratta due schemi crittografici che si ritiene essere resistenti ai computer quantistici,
e fornisce attacchi teorici e pratici contro di essi.
Il primo protocollo è la funzione pseudocasuale di Legendre generalizzata — un generatore di
bit casuali calcolato come il simbolo di Legendre della valutazione di un polinomio segreto ad
un elemento di un campo finito. Nella tesi introduciamo un nuovo punto di vista sul protocollo
analizzando l’azione del gruppo delle trasformazioni di Möbius sull’insieme delle chiavi segrete
(polinomi segreti). Forniamo un attacco per l’estrazione della chiave segreta creando una tabella
di grandezza cubica nel numero di valutazioni della funzione di Legendre, un aumento rispetto
ai precedenti algoritmi che fornivano solamente un rendimento quadratico. Inoltre, forniamo un
attacco ancora più forte su un nuovo set di chiavi particolarmente deboli.
Il secondo protocollo che trattiamo è SIKE – “supersingular isogeny key encapsulation”, tradotto
“incapsulamento di chiavi usando isogenie supersingolari”. Nel 2017 il National Institute of
Standards and Technology americano (NIST) ha aperto un bando per la standardizzazione degli
algoritmi crittografici post-quantistici. Uno dei candidati, attualmente elencato come candidato
alternativo tra gli algoritmi di incapsulamento di chiavi, è SIKE. Questa tesi fornisce tre attacchi
pratici tramite canali laterali (attacchi side-channel) all’implementazione di SIKE sul ARM Cortex-
M4 a 32 bit.
Il primo attacco mira alla moltiplicazione scalare sulla curva ellittica, implementata come una
scala a tre punti (three-point ladder) in SIKE. La mancanza di randomizzazione delle coordinate
viene osservata e utilizzata per attaccare la scala per mezzo di un algoritmo di analisi differenziale
del consumo di energia(differential power analysis). Questo ci permette di estrarre l’intera chiave
segreta dell’entità attaccata con una sola traccia del consumo di energia (power trace).
Il secondo attacco presuppone che la randomizzazione delle coordinate sia già implementata
e fornisce un attacco a valore zero – la entità attaccata è costretta a calcolare l’elemento zero
del campo, il quale non può essere protetto dalla randomizzazione. In particolare, vengono
attaccati sia la scala a tre punti che il calcolo della isogenia in due attacchi separati, fornendo
chiavi pubbliche generate maliziosamente, e fatte di punti di curve ellittiche di ordine irregolare.
Mostriamo che una contro misura di controllo dell’ordine dei punti è efficace, ma ha il prezzo di
un overhead computazionale del 10%. Inoltre, mostriamo come modificare l’implementazione

v



Abstract

in modo che possa essere protetta da tutti gli attacchi a valore zero, cioè, un valore zero non viene
mai calcolato durante l’esecuzione dell’algoritmo.
Infine, l’ultimo attacco riguarda una procedura di scambio di punti che è un sottoprogramma
della scala a tre punti. L’attacco estrae con successo l’intera chiave segreta con una sola traccia
del consumo di energia anche se l’implementazione è protetta con la randomizzazione delle
coordinate o con il controllo dell’ordine dei punti. Per combattere l’attacco forniamo una contro-
misura efficace – un algoritmo di scambio di punti migliorato, che protegge l’implementazione
dal nostro attacco.
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Résumé
La cryptographie post-quantique est une branche de la cryptographie qui étudie les algorithmes
supposés être résistants aux ordinateurs quantiques. Cela exclut les algorithmes largement dé-
ployés tels que RSA et Diffie-Hellman, ou d’autres qui reposent sur les problèmes de factorisation
et de logarithme discret, qui sont connus pour être résolus par un ordinateur quantique. Cette
thèse traite de deux protocols cryptographiques qui sont supposés être résistants aux ordinateurs
quantiques et fournit des attaques théoriques et pratiques contre eux.
Le premier protocole est la fonction pseudo-aléatoire de Legendre généralisée — un générateur
de bits aléatoires calculé comme le symbole de Legendre de l’évaluation d’un polynôme secret
à un élément d’un corps fini. Nous introduisons un nouveau point de vue sur le protocole en
analysant l’action du groupe des transformations de Möbius sur l’ensemble des clés secrètes
(polynômes secrets). Nous fournissons une attaque d’extraction de clé en créant une table qui est
cubique dans le nombre de requêtes de la fonction, une amélioration par rapport aux algorithmes
précédents qui ne fournissaient qu’un rendement quadratique. En outre, nous proposons une
attaque toujours plus puissante pour un nouvel ensemble de clés particulièrement faibles.
Le deuxième protocole que nous couvrons est SIKE – «supersingular isogeny key encapsulation»,
ou «encapsulation de clé basée sur les isogenies supersingulières». En 2017, le National Institute
of Standards and Technology (NIST), l’Institut national américain des normes et de la technologie,
a ouvert un appel à la standardisation d’algorithmes cryptographiques post-quantiques. L’un des
candidats, actuellement répertorié comme un candidat alternatif d’encapsulation de clé dans le
troisième tour du processus de normalisation, est SIKE. Nous fournissons trois attaques pratiques
par canal latéral (attaques side-channel) sur l’implémentation 32-bit ARM Cortex-M4 de SIKE.
La première attaque vise la multiplication scalaire de la courbe elliptique, implémentée comme
une échelle à trois points (three-point ladder) dans SIKE. L’absence de randomisation des coor-
données est observée et utilisée pour attaquer l’échelle au moyen d’un algorithme d’analyse de
puissance différentielle. Cela nous permet d’extraire la clé secrète complète de la partie cible avec
une seule trace de puissance.
La deuxième attaque suppose que la randomisation des coordonnées est mise en œuvre et fournit
une attaque à valeur nulle — la partie cible est forcée de calculer l’élément nul du corps, qui ne
peut pas être protégé par la randomisation. En particulier, nous ciblons à la fois l’échelle à trois
points et le calcul de l’isogénie dans deux attaques distinctes en fournissant des clés publiques
générées de manière malveillante et constituées de points de courbe elliptique d’ordre irrégulier.
Nous montrons qu’une contre-mesure de vérification de l’ordre est efficace, mais au prix d’une
surcharge de calcul de 10 %. En outre, nous montrons comment modifier l’implémentation de
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manière à la protéger contre toutes les attaques à valeur nulle, c’est-à-dire qu’une valeur nulle
n’est jamais calculée pendant l’exécution de l’algorithme.
Enfin, la dernière attaque vise une procédure d’échange de points qui est une sous-routine de
l’échelle à trois points. L’attaque réussit à extraire la clé secrète complète avec une seule trace de
puissance, même si l’implémentation est protégée par la randomisation des coordonnées ou la
vérification de l’ordre. Nous proposons une contre-mesure efficace — un algorithme d’échange
de points amélioré qui protège l’implémentation de notre attaque.
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Резиме
Пост-квантна криптографиjа jе грана криптографиjе коjа проучава алгоритме за коjе се
веруjе да су отпорни на нападе квантним рачунарима. Наjраспрострањениjи алгоритми
асиметричне криптографиjе данас, РСА (RSA) и Дифи-Хелман (Diffie-Hellman), а и други
чиjа се тежина заснива на проблемуфакторизациjе и дискретних логаритмима, могу бити
разбиjени помоћу квантних рачунара. Ова теза проучава два криптографска алгоритма
коjи су сматрани отпорним на квантне рачунаре и нуди теориjске и практичне нападе на
њих.
Први протокол jе генерализована Лежандрова псеудонасумична функциjа – генератор
насумичних битова коjи се израчунава као Лежандров симбол од вредности евалуациjе
таjног полинома над елементом коначног поља. Представљени су нова тачка гледишта
на скуп таjних кључева (таjних полинома), и напад за откривање таjног кључа коjи се
заснива на грађењу табеле коjа jе кубна у броjу упита функциjа. Представљени напад jе
побољшање у односу на предходне наjбоље алгоритме чиjе су табеле само квадратне у
односу на броj упита функциjе.
Други протокол коjи покривамо jе SIKE – „supersingular isogeny key encapsulation”, или
размена кључева суперсингуларним изогениjама. У 2017. амерички национални институт
за стандарде и технологиjе (NIST) jе отворио позив за стандардизациjу пост-квантних
криптографских алгоритама. Jедан од кандидата, тренутно на листи алтернативних кан-
дидата за размену кључева, jе SIKE. У овоj тези представљена су три практична напада
споредним каналима (тзв. side-channel напади) на 32-битну имплементациjу SIKE-а на
ARM Cortex-M4 микропроцесору.
Први напад таргетира операциjу скаларног производа у елиптичким кривама, имплемен-
тирану кроз лествицу са три тачке (тзв. three-point ladder) у SIKE-у. Примећен jе недостатак
рандомизациjе координата и искориштен како би се извршио напад на мердевине помоћу
диференциjалне анализе потрошње струjе (тзв. differential power analysis).
Други напад полази од претпоставке да jе имплементациjа заштићена рандомизациjом
координата и нуди „напад нултих вредности” – нападнута странка jе натерана да израчуна
елемент нула у пољукоjи неможебити заштићенрандомизациjом.Прецизниjе, таргетира-
ни су и лествице са три тачке и изогениjа, кроз два одвоjена напада. Напади се извршаваjу
тако што се нападнутоj странки предаjе злонамерно генерисан jавни кључ састављен из
тачака на елиптичкоj криви коjе су неправилног реда. Поред тога, доказана jе успешност
заштитне мере провере реда тачака, коjа додуше долази уз додатне трошкове у рачунању
– око 10% више рачунања у односу на алгоритам коjи не користи заштитну меру. Такође,
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представљен jе начин да се додатно измени имплементациjа тако да буде заштићена од
свих напада нултих вредности, т.j., да вредност нула никада не буде израчуната у току
извршења алгоритма.
Последњи напад таргетира операциjу замене тачака коjа jе сама подрутина унутар ле-
ствице са три тачке. Напад успешно открива цео таjни кључ са само jедним мерењем
напона на микропроцесору у току рада алгоритма, чак и када jе имплементациjа заштиће-
на рандомизациjом координата или провером реда тачака. Представљена jе и делотворна
контрамера – побољшани алгоритам за замену тачака коjи успешно брани имплемента-
циjу од наведеног напада.
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Introduction

What is a quantum computer? “It’s just an excuse to give cryptographers jobs”.

Whether you’re a sceptic (or as sceptics say – a realist), or if you believe in the inevitable change of
the computing paradigm towards quantum, the theory of quantum computing is here to stay. The
practice, on the other hand, is lagging behind by about 10 years – the realists’ new natural constant.
At the time of the writing of this thesis, quantum computers were commercially available [IBM09].
However they were limited to working on only 20 quantum bits, or qubits. There are serious
doubts about the scalability of quantum computers, and some researchers such as Kalai [Kal16]
argue that there are physical barriers which make quantum computing infeasible. The argument,
in a nutshell, is “Noisy quantum systems will not allow building quantum error-correcting codes
needed for quantum computation” [Kal19].

Practice aside, in theory quantum computers can solve some problems that are classically hard.
For example the Deutsch-Jozsa problem [DR92], definition 1, is solved on a quantum computer
with only one query, while a classical computer requires at least two queries of a secret function.

Definition 1 (The Deutsch-Jozsa problem). Let f : {0,1} → {0,1} be a function. Given oracle
access to f , decide if f is constant or not.

The Bernstein-Vazirani problem [BV97], definition 2, increases the gap further – it is solvable with
a single query on a quantum computer, but on a classical one a polynomial number of queries is
needed.

Definition 2 (The Bernstein-Vazirani problem). Let s ∈ {0,1}n be a secret and let f : {0,1}n → {0,1}

be a function such that f ((x1, . . . , xn)) = 〈s, x〉 = s1x1 ⊕·· ·⊕ sn xn . Given oracle access to f , find s.

Finally, an exponential separation is given by Simon’s problem [Sim97], definition 3, which is
solved in a linear number of queries on a quantum computer, while a classical one requires an
exponential number of queries.

Definition 3 (Simon’s problem). Let s ∈ {0,1}n be a secret and let f : {0,1}n → {0,1}∗ be a function
such that f (x) = f (y) if and only if x − y = s (i.e., xi ⊕ yi = si for i = 1, . . . ,n). Given oracle access
to f , find s.

1



Introduction

Similarly, Shor’s algorithm [Sho97] solves problems that are believed to be hard, and on which
present day cryptography is based. In particular the RSA problem, factoring and the discrete
logarithm problem all fall prey to Shor’s algorithm.

However, quantum computers are not almighty. So far NP-hard problems have not been solved
(in polynomial time) by quantum computers. Similarly, secret-key cryptography is only lightly
scratched by quantum computers – Grover’s algorithm [Gro96] can solve function inversion (or
unsorted search) in time square root of the size of the input space. A quadratic speed up over
the best classical algorithms, but not an exponential one. In most cases secret-key cryptography
solves the problem of the quantum threat by doubling the security parameters.

For public-key cryptography, however, increasing the parameters is not enough to promise
quantum resistance. Instead, new algorithms are being developed, and more importantly, new
hardness assumptions are made, in particular ones that, as far as one is able to infer, cannot be
solved by quantum algorithms.

The generalised Legendre pseudorandom function. The first algorithm that this thesis covers
is the generalised Legendre pseudorandom function (PRF). Using the Legendre symbol in a
pseudorandom function was originally proposed by Damgård [Dam90]. Initially, the Legendre
PRF was defined for some prime p and secret key k ∈ Fp as an oracle O which at input x computes
the Legendre symbol O (x) = (x+k

p

)
. Later generalisations of the protocol by Russell and Shparlinski

[RS04] proposed to use a higher degree polynomial in x as the key. The generalised Legendre
PRF is defined for a prime p and a secret key f ∈ Fp [x] as an oracle O which at input x computes
O (x) = ( f (x)

p

)
. The prime p was originally considered to be secret by Damgård, but we assume

that it is publicly known. Damgård conjectured that when f is linear (the original Legendre PRF
case), given a sequence of Legendre symbols of consecutive elements it is hard to predict the
next one, even when the prime p is public. Similar problems conjectured to be hard were also
proposed [GRR+16], such as finding the secret polynomial while being given access to O and
distinguishing O from a random function, for both the linear and the general Legendre PRF. So far
no classical polynomial time algorithms were found for either of these problems and it is believed
that they are hard. A quantum polynomial time algorithm was given by Russel and Shparlinski
[RS04], but it relies on querying a quantum oracle, i.e., querying the oracle on a quantum state.
No subexponential algorithms are known when only classical queries to the oracle are allowed.
Currently, the Legendre PRF can be considered to be quantum-resistant.

While mathematically simple, the Legendre PRF was considered to be too computationally ex-
pensive for traditional cryptographic settings and thus not used in practice as a pseudorandom
function. A recent result by Grassi et al. [GRR+16] showed that it can be used in multiparty-
computation settings, and that in that paradigm it is orders of magnitude faster than the alterna-
tive symmetric-key primitives. This is mainly due to the homomorphic property of the Legendre
symbol and the possibility of evaluating it with only three modular multiplications in arithmetic
circuit multi-party computations, which makes it a very efficient MPC friendly PRF candidate. In
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comparison, SHA256 requires tens of thousands of multiplications while AES needs 290 in the
MPC setting [Fei19].

There are plans to incorporate the Legendre PRF into the Ethereum 2.0 protocol [Fei19], and
in order to motivate research in this direction, the Ethereum foundation published a number
of challenges. In each challenge, a list of M = 220 Legendre symbols of consecutive elements
was provided. The difficulty of the challenge was based on the size of the underlying prime field
which varied from 64 to 148 bits. The goal was to find the secret key which parametrises the linear
Legendre PRF. We provide the solutions for challenges of size 64,74 and 84 bits.

Supersingular isogeny key encapsulation. The second cryptographic algorithm that we cover
is SIKE – Supersingular isogeny key encapsulation.

Given the current state of the “quantum threat” and the substantial amount of research done on
the topic of quantum computers, the American National Institute for Standards and Technology
(NIST) has started a project to solicit, evaluate and standardise post-quantum cryptographic
protocols [Div16]. The submissions for the standardisation process are divided into two categories
– key encapsulation mechanisms (KEM) and digital signatures. SIKE, as the name suggests, is a
key encapsulation mechanism.

The NIST standardisation process started in 2017. Initially there were 69 KEM submissions. The
submitted protocols can be classified into four groups depending on the algorithmic approaches
that were used:

• Lattice based algorithms,
• Multivariate quadratics based algorithms,
• Code based algorithms,
• Isogeny based algorithms.

Out of all the submissions SIKE was the lone isogeny candidate. In the meanwhile the standardis-
ation process reached the third round. At the time of writing there are nine algorithms left, out of
which four are designed as finalists, and five as alternate candidates. SIKE is one of the remaining
alternate candidates.

The development of isogeny-based cryptography protocols started in 1997 by Couveignes [Cou06],
only to be independently rediscovered in 2006 by Rostovsev and Stolbunov [RS06]. The main
building blocks of their algorithm are isogenies between ordinary elliptic curves. The proposed
construction was shown to be resistant to known classical attacks, but a subexponential quantum
attack was found by Childs et al. [CJS14]. The attack – finding a secret isogeny between two
curves – is based on computing the endomorphism ring of the elliptic curves and observing that
isogenous curves are in a one-to-one relation with elements of the class group of said ring. The
class group is Abelian and thus finding the hidden isogeny reduces to a hidden shift problem in an
Abelian group. This attack was mitigated by Jao and De Feo [DJ11] (and Plût [DJP14]) who propose
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to use supersingular instead of ordinary elliptic curves in an algorithm called SIDH (Supersingular
isogeny Diffie-Hellman) which later became SIKE. Due to the nature of supersingular elliptic
curves (i.e., the non-commutativity of their endomorphism ring), the previously mentioned attack
is prevented. In addition to the lack of subexponential attacks in both classical and quantum
settings, the new SIKE algorithm stood out in its simple structure reminiscent of the classical
Diffie-Hellman protocol, but also, and more importantly, SIKE was more efficient and had lower
key sizes. Over the years, SIKE was improved [AJK+16, CLN16, ZSP+18, BF18a, BF18b] and the
current implementation stands competitive with respect to other NIST candidates in the third
round. One of the main downsides of SIKE is its high run-time which currently qualifies the
scheme as the slowest surviving candidate, at the moment being around 300 times slower than
the fastest candidate. However, this downside is compensated with the lowest key sizes among all
quantum-resistant candidates, with the public key size around 3 times smaller than the key size
of second smallest candidate. The trade-off between the cost-effectiveness of the key size and the
computational cost was studied in [Lan18, Kwi19, PST20, Wei20].

This thesis follows the NIST recommendation to study side-channel attacks on post-quantum
cryptographic schemes [Moo18, Apo20] and consists of the side-channel analysis of the SIKE
implementation adapted to the 32-bit ARM Cortex-M4 chip architecture. The Cortex-M4 [Hol] is
a low-power and low-cost embedded microcontroller from the ARM Cortex-M family, which is
recommended by NIST for post-quantum cryptography evaluation [Moo19, KRSS19]. As such, the
Cortex-M4 should be used with care in cryptographic settings. The implementation that we target
in all attacks is the Cortex-M4 implementation by Azarderakhsh et al. [SAJA20], which is included
in the official third round NIST submission of SIKE [JAC+17]. In addition to the implementation
by Azarderakhsh et al., the submission also includes an optimised implementation in C for 32-bit
architectures. Both implementations have some level of side-channel resistance as they are
both constant-time. The main differences lie in the low-level functions, such as multi-precision
additions, multiplications, and modular reductions that have been rewritten in assembly in
order to take full advantage of the Cortex-M4 capabilities. In addition to the before mentioned
implementations, the submission also contains a reference implementation which is written in C,
uses GMP for modular arithmetic, and uses affine coordinates. The reference implementations
is orders of magnitude slower than the other two due to the excessive number of costly field
inversions that are computed.

This thesis covers three attacks on SIKE in Chapters 4, 5, and 6. The attacks are arranged in order
in which they were discovered, and also in order of strength – attacks in later chapters defeat
the countermeasures proposed in previous chapters. The attacks are based on side-channels,
exploiting physical properties of the microprocessor which is running SIKE in order to extract
secret information. Different types of side-channel approaches are used – differential power
analysis, electromagnetic attacks, collision power analysis, clustering power analysis. They are
explained in the corresponding chapters, however, the emphasis will be on the theoretical side of
the attacks rather than the techniques used in side-channel analysis.

In Chapter 4 we give a differential power analysis attack which targets the elliptic curve scalar
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multiplication procedure in SIKE. The scalar multiplication operation is computed by means
of a three-point ladder – a constant-time ladder which takes for input a triple of elliptic curve
points (Q,P,Q −P ) and outputs the point R =Q + [sk]P , where sk is a secret scalar. The ladder is
computed by looping over all bits of the secret scalar sk , and at each iteration computing a double-
and-add function (Q,P,Q−P ) 7→ ([2]Q,P +Q,Q−P ) which is preceded by a conditional swap on
the last two points of the triple. Our attack is based on the observation that the representation of
projective coordinates is not protected by (multiplicative) coordinate randomisation. We exploit
the lack of coordinate randomisation by guessing the values of point coordinates and computing
the correlation between said values and power consumption in order to confirm our guesses. In
particular, the attack consecutively extracts the secret bits of sk . For each bit of sk , we assume the
knowledge of the points triple at the beginning of the corresponding loop iteration, and we make
two hypothesis on the conditional swap for the two bit guesses. In such manner we obtain two
possible elliptic point triples. We proceed by computing the coordinates of the points in the two
triples, and correlating them with the power consumption. High correlation indicates a correct
guess. We use this procedure to extract the whole secret key by using only one power trace of the
three-point ladder procedure.

In Chapter 5 we provide two attacks on a SIKE implementation which is assumed to be protected
by coordinate randomisation. The attacks aim to defeat the countermeasure by forcing the
target party to compute projective points which have 0 as one of their coordinates, and which
therefore cannot be protected by coordinate randomisation. The first of the two attacks targets
the three-point ladder procedure. We create a malicious public key formed of elliptic curve points
of an order which is different from the order of honestly generated public keys. The malicious
points are such that when the target party computes the three-point ladder with those points
as input, they are forced to compute an elliptic curve point equal to [0 : 1] or [1 : 0] if and only
if a secret bit of their secret key is equal to a hypothesised value. Side-channel analysis in form
of electromagnetic measurements is used in order to deduce if a projective coordinate is equal
to 0, and therefore to deduce the value of a secret bit. The second attack creates a malicious
public key of a similar form, and targets the isogeny computation procedure. When the target is
provided with a malicious public key, the isogeny computation leads to irregular behaviour. We
characterise such behaviour, and form our public keys so that during the isogeny computation
only two things can happen – eventually all field values become 0 or all field values become
random. In particular we make the public keys depend on a digit of the secret key so that the
former situation happens if the secret key digit is correctly guessed, and the latter if the digit is
incorrectly guessed. This allows us to extract the whole secret key of the target party by using
a power analysis distinguisher; in particular we used collision power analysis. Furthermore we
show that the reference implementation (which is different from the original target – Cortex-M4
implementation) crashes if all field values become 0, which leads to a remote full key extraction
attack. The chapter finishes by providing a countermeasure – the order checking procedure,
originally suggested by Costello, Longa, Naehrig in [CLN16]. However, the countermeasure
comes at a cost of 10% performance overhead, which puts the future of SIKE, which is already the
slowest of all post-quantum key encapsulation algorithms, in a difficult position.
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In Chapter 6 we provide a clustering power analysis attack on an implementation of SIKE which is
protected by coordinate randomisation and order checking. We target the three-point ladder, in
particular the point swapping operation. This function swaps two elliptic curve points depending
on the value of a secret bit. In particular, the secret bit is expanded into a mask – 0xFFFFFFFF
or 0x00000000 – which is then used in a conditional XOR swap algorithm. The high Hamming
distance between the two possible masks allows for the creation of a side-channel distinguisher.
The attack is performed by measuring all the executions of the swaps, and assigning them to one
of the two clusters based on the power consumption during the corresponding mask computation.
Two different clustering algorithms are studied, k-cluster and thresholding. Both approaches
extracted the whole secret key in each of the 1000 experiments that were performed. Finally, we
provide an effective countermeasure based on splitting the mask into two random shares and
correspondingly adjusting the conditional XOR swap. The countermeasure successfully protects
from the attack in question, and comes at a negligible performance overhead when compared to
the overall runtime of SIKE.

Publications. The four chapters of this thesis are based on previous work which was written in
collaboration with other authors.

• Chapter 3 is based on the paper “Cryptanalysis of the generalised Legendre pseudorandom
function”, [KKK20a], which was written in collaboration with Thorsten Kleinjung and Dušan
Kostić. The paper is published in “ANTS XIV: Proceedings of the Fourteenth Algorithmic
Number Theory Symposium”.

• Chapter 4 is based on the paper “Full key recovery side-channel attack on ephemeral SIKE”,
[GdGK21], which was written in collaboration with Aymeric Genêt and Natacha Linard de
Guertechin. The paper is published in “COSADE 2021: Proceedings of the 12th international
workshop on Constructive Side-Channel Analysis and Secure Design”.

• Chapter 5 is based on the paper “SIKE channels: Zero-Value Side-Channel Attacks on SIKE”,
[DEG+22], which was written in collaboration with Luca De Feo, Nadia El Mrabet, Aymeric
Genêt, Natacha Linard de Guertechin, Simon Pointié and Élisse Tasso. The paper is under re-
vision for TCHES 2022. The preprint of the paper is available at https://eprint.iacr.org/2022/054.

• Chapter 6 is based on the paper “Single-trace clustering power analysis of the point swap-
ping procedure in the three point ladder of Cortex-M4 SIKE”, [GK22], which was written in
collaboration with Aymeric Genêt. The paper is accepted at “COSADE 2022: Proceedings of
the 13th international workshop on Constructive Side-Channel Analysis and Secure Design”.
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1 The Legendre pseudorandom function

The usage of Legendre symbols in a pseudorandom function (PRF) is an idea originally proposed
by Damgård [Dam90]. Further generalisations with higher degree polynomials were proposed
by Russell and Shparlinski [RS04]. In both cases a prime p is given and the Legendre PRF is
modelled as an oracle O that on input x outputs the Legendre symbol

( f (x)
p

)
, where f (x) ∈ Fp [x] is

a secret key. Damgård conjectured that when f is linear, given a sequence of Legendre symbols of
consecutive elements it is hard to predict the next one. Similar problems conjectured to be hard
were also proposed [GRR+16], such as finding the secret polynomial while being given access
to O and distinguishing O from a random function. So far no polynomial time algorithms were
found for either of these problems and it is believed that they are hard. Until recently practical
applications have been limited, primarily due to availability of much faster alternatives.

A recent result by Grassi et al. [GRR+16] sparked an interest in the linear Legendre PRF because it
was found suitable as a multi-party computation (MPC) friendly pseudorandom generator. This
is mainly due to the homomorphic property of the Legendre symbol which allows the function
to be evaluated very efficiently in the MPC paradigm. The Legendre PRF is order of magnitudes
faster then the alternatives which are mostly block-cipher based.

There are plans to use this construction as a PRF in the Ethereum blockchain [Fei19]. For this
purpose the Legendre PRF was shown to be a great candidate because of its efficiency. In compar-
ison, SHA256 requires tens of thousands of multiplications, AES needs 290 in the MPC setting,
while the Legendre PRF requires only 3 [Fei19].

1.1 Mathematical background

We recall the definitions and some properties of the main mathematical objects used to define
the Legendre pseudorandom function.
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Chapter 1. The Legendre pseudorandom function

Definition 1.1.1 (Legendre symbol). The Legendre symbol of an element x in Fp is defined as:

(
x

p

)
= x

p−1
2 =


1 if x ∈ F∗p is a square mod p

0 if x = 0 mod p
−1 if x ∈ F∗p is not a square mod p.

(1.1)

It stems directly from the definition that the Legendre symbol is a multiplicative function, i.e.,
that the following formula stands: (

ab

p

)
=

(
a

p

)(
b

p

)
. (1.2)

This property is crucial for the usage of the Legendre symbol in the MPC setting.

In practical implementations, the Legendre symbol is usually redefined by setting
(0

p

) ..= 1. The
main reason behind this choice is that this way the Legendre symbol becomes a binary function
and its output can be saved in a single bit. The main drawback is that the function loses the
multiplicative property.

Independently of the definition of
(0

p

)
we will assume that the multiplicative property of the

Legendre symbol stands. This is a non-problem and the reader should be easily convinced that
the algorithms that we provide terminate in the same expected time and with the same probability.

Definition 1.1.2 (Legendre sequence). The Legendre sequence with starting point a and length
L is defined to be the sequence of Legendre symbols evaluated at L consecutive elements starting
from a. We denote it with {a}L :

{a}L
..=

(
a

p

)
,

(
a +1

p

)
,

(
a +2

p

)
, . . . ,

(
a +L−1

p

)
. (1.3)

Every starting point a fully determines its sequence of length L, but not vice versa – that property
depends on L. In general, these sequences are as well distributed as one can hope them to be. It
is well known that when L = 1 “half” of the sequences with starting point a are equal to 1, and
the other “half” of the sequences are equal to −1. Similar properties are true for larger L, and in
general, following a theorem of Davenport, around one in 2L elements of Fp is a starting point of
a given sequence of length L.

Theorem 1.1.1 (Davenport, 1933 [Dav33]). Let S be a finite sequence of ±1’s of length L. Then
the number of elements of Fp whose sequence is equal to S satisfies

#
{

a ∈ Fp

∣∣∣{a}L = S
}
= p

2L
+O(pε) (1.4)

where 0 < ε< 1 is a constant depending only on L.
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1.2 The Legendre pseudorandom function

In Chapter 3 we assume that L is such that {a}L uniquely defines a, i.e., that the following holds

{a}L = {b}L if and only if a = b. (1.5)

For (1.5) to hold we need to have L =Ω(log2 p). The only provable upper bound comes from the
Weil bound [Wei48] and is L =O(

p
p log p) which is exponential.

Our computational results, together with other statistical data on the distribution of Legendre
sequences [Dam90], indicate that on average over all sequences S of length L, there are p

2L +O(1)

elements whose Legendre sequences are equal to S. In other words, for a random S and a random
j we have { j }L = S with probability 1

2L . A good estimate of L in terms of p is L = ⌊2log2 p⌋.

1.2 The Legendre pseudorandom function

In this section we define the Legendre pseudorandom function, and its higher degree generalisa-
tion.

Definition 1.2.1 (Pseudorandom Functions). A pseudorandom function family {Ok }k is a set of
functions with the same domain and codomain indexed by a set of keys k such that a function
Ok chosen randomly over the set of k-values cannot be distinguished from a random function.

Definition 1.2.2 (Legendre PRF). The Legendre pseudorandom functions are functions Ok from
Fp to {−1,1} indexed by k ∈ Fp and defined as

Ok (x) =
(

x +k

p

)
. (1.6)

Definition 1.2.3 (Higher degree Legendre PRF). The Legendre pseudorandom functions of degree
r are a family of functions O f from Fp to {−1,1} indexed by f = kr xr + . . .+k1x +k0 ∈ Fp [x] and
defined as

O f (x) =
(

f (x)

p

)
. (1.7)

The degree r is assumed to be polylogarithmic in p.

Two oracles O f (x) and O f /kr (x) are the same up to multiplication by
(kr

p

)
and therefore we can

assume the polynomial f to be monic. The case of linear f (x) thus reduces to the standard
Legendre PRF as introduced by Damgård which we from now on refer to as the linear Legendre
PRF.

The polynomial f (x) is considered up to multiplication by a square in Fp [x] since the Legendre
symbol is invariant under square factors of f (x). This is not entirely true as a square linear factor
introduces a zero and may change the output of the oracle at one point, but the reader should be
convinced that this can be safely ignored.

11



Chapter 1. The Legendre pseudorandom function

The secret key space, i.e., the space from which we choose f (x) is the space of monic polynomials
modulo squares. The number of such polynomials equals pr −pr−1 for r > 1 (see [Ber15], problem
3.3) and p for r = 1.

Definition 1.2.4 (Generalised Legendre sequence). The length L Legendre sequence of a polyno-
mial f (x) is denoted by

{
f
}

L and defined as

{
f
}

L
..=

(
f (0)

p

)
,

(
f (1)

p

)
,

(
f (2)

p

)
, . . . ,

(
f (L−1)

p

)
. (1.8)

As a generalisation to Theorem 1.1.1 and property (1.5) we assume that L is such that { f }L uniquely
defines f , i.e., that the following holds{

f
}

L = {
g
}

L if and only if f = g . (1.9)

With r the degree of f we have L = Ω(r log p). We assume that property (1.9) holds for L =
Θ(r log p). A reasonable estimate is L = ⌊2r log p⌋. Throughout Chapter 3 we include the depen-
dence on L in the complexity of our algorithms.

1.3 Hard Problems

There are three main problems conjectured to be hard, and on which the security of the Legendre
PRF is based.

Definition 1.3.1 (Generalised Legendre Symbol Problem - GLSP). Let f be a uniformly random
monic square-free polynomial. Given access to an oracle O that on input x ∈ Fp computes
O (x) = ( f (x)

p

)
, find f .

Definition 1.3.2 (Decisional Generalised Legendre Symbol Problem - DGLSP). Let f be a uni-
formly random monic square-free polynomial. Let O0 be an oracle that on input x ∈ Fp computes
O0(x) = ( f (x)

p

)
, and let O1 be an oracle that on input x outputs a random value in {−1,+1}. Given

access to Ob where b is an unknown random bit, find b.

Definition 1.3.3 (Next Symbol Problem - NSP). Given a Legendre sequence
{

f
}

M of M =
polylog(p) symbols, find

( f (M)
p

)
, or equivalently find

{
f
}

M+1.

The DGLSP trivially reduces to GLSP and NSP. In the other direction, following a theorem of
Yao [Kra86] on general pseudorandom functions, predicting the next bit of a pseudorandom
function is as hard as distinguishing it from a truly random one. Therefore, under polynomial
time reductions, we have that NSP = DGLSP ≤ GLSP.

12



2 SIKE

SIKE, the supersingular isogeny key encapsulation is a post-quantum key encapsulation mecha-
nism (KEM) built on the theory of isogeny graphs of supersingular elliptic curves.

We start by introducing the mathematical background – finite fields, elliptic curves, isogenies.
Then we introduce supersingular isogeny Diffie-Hellman (SIDH), the main building block of SIKE.
Finally we end by introducing SIKE which is essentially a Fujisaki-Okamoto wrapper of SIDH.

A general overview of isogeny-based cryptography can be found in [DF17]. For a complete tutorial
on SIKE, the reader is advised to see [Cos19].

2.1 Mathematical background

Let q = pr be an odd prime power, and denote with Fq the finite field with q elements. All primes
denoted with p are assumed to be strictly greater than 3. We denote with F the algebraic closure
of a field F. The projective space of degree n over a field F is denoted with Pn(F), and an element
P ∈Pn(F) is denoted with P = [X0 : . . . : Xn]. We call coordinate randomisation of P the process
of sampling a non-zero element ξ ∈ F at random, and multiplying all coordinates of P with ξ,
obtaining P = [ξXo : . . . : ξXn].

Equivalence of integers a and b modulo n is denoted with a≡
n

b. The ring of integers modulo an
integer n is denoted with Z/(n).

We will use the minimal amount of definitions necessary to cover SIKE. For a more technical
introduction to elliptic curves we refer the reader to [ST15, Sil09, Cas91].

Definition 2.1.1 (Algebraic curve). An algebraic curve C over F is the set of points [X : Y : Z ] ∈
P2(F) that are the solutions to a homogenous polynomial equation f (X ,Y , Z ) = 0. If f is of degree
d then we call C a degree d curve. In particular, third degree curves are called cubics.

Definition 2.1.2 (Singular points). Let C be a cubic, f it’s defining polynomial and fX , fY , fZ

the derivatives of f with respect to X , Y and Z respectively. We call P = [XP : YP : ZP ] a singular

13



Chapter 2. SIKE

point if

f (XP ,YP , ZP ) = fX (XP ,YP , ZP ) = fY (XP ,YP , ZP ) = fZ (XP ,YP , ZP ) = 0. (2.1)

Definition 2.1.3 (Smooth curves). An algebraic curve without singular points is called smooth.

Definition 2.1.4 (Elliptic curve). On the projective plane P2(F), an elliptic curve E is a smooth
cubic over F together with a designated point O on the curve called the identity.

Definition 2.1.5 (Short Weierstraß form). When the characteristic of the field F is different from
2 or 3 we may without loss of generality (see [Sil09]) suppose that the elliptic curve E is defined
by the short Weierstraß equation in projective coordinates:

Y 2Z = X 3 +aX Z 2 +bZ 3 (2.2)

with the identity point being O = [0 : 1 : 0]. The curve equation can be written in affine coordinates
as

y2 = x3 +ax +b. (2.3)

The curve is smooth if and only if 4a3 +27b2 ̸= 0.

Theorem 2.1.1 (Group structure). An elliptic curve E has a natural group law, known as the
chord-and-tangent rule. Given two points P and Q we can define the point P +Q as follows:

1 Let L be the line through P and Q , or the tangent line if P =Q .
2 Let S be the other point of intersection of E with L.
3 Let L2 be the line through S and O , or the tangent line if S =O .
4 Let R be the other point of intersection of E with L2.

Then P +Q ..= R . This operation defines an Abelian group structure on E .

Proof. See [Sil09].

Remark. For any field extension F⊆Kwe denote with E(K) the group of points P ∈P2(K) which
satisfy the curve equation (2.2).

Definition 2.1.6 (E as anZ-module). The group structure makes E aZ-module, giving a meaning
to multiplication of elements of E by integers. We make the following definition for all P ∈ E ,n ∈N:

[n]P ..= P +P + . . .+P︸ ︷︷ ︸
n times

(2.4)

[−n]P ..=−([n]P ) (2.5)

Definition 2.1.7 (n-torsion). We denote by E [n] the n-torsion of the elliptic curve E over F, e.g.,

14



2.1 Mathematical background

the subgroup of points of E(F) such that [n]P =O :

E [n] ..= {P ∈ E(F) | [n]P =O } (2.6)

Theorem 2.1.2 (Torsion subgroups structure). The n-torsion is completely characterised, and
we have for char(F) ̸ |n

E [n] ∼=Z/(n)⊕Z/(n), (2.7)

while if char(F) = p there are two cases

E [pr ] ∼=Z/(pr ) for all r ∈N, or (2.8)

E [pr ] ∼= {O } for all r ∈N. (2.9)

Proof. See [Sil09].

Definition 2.1.8 (Ordinary and supersingular curves). Let E be a curve over F, and let char(F) = p .
Then

E is ordinary if E [pr ] ∼=Z/(pr ), (2.10)

E is supersingular if E [pr ] ∼= {O }. (2.11)

Definition 2.1.9 (Isogenies). An isogeny over F is a non-constant rational map defined over F
from an elliptic curve E to an elliptic curve E ′ that is also a group morphism from E(F) to E ′(F).

Remark. All non-constant rational maps sending O ∈ E to O ′ ∈ E ′ are isogenies (see [Sil09]).

Definition 2.1.10 (Isogeny degree). The degree of a separable1 isogeny φ : E → E ′ is the order of
the kernel subgroup

kerφ ..= {P ∈ E(F) |φ(P ) =O ′} (2.12)

Definition 2.1.11 (The j -invariant). Klein’s j -invariant of an elliptic curve E defined by equation
(2.2) is defined to be:

j (E) ..= 1728
4a3

4a3 +27b2 . (2.13)

The smoothness condition of the curve equation assures that the denominator is not zero.

Remark. Two elliptic curves are isomorphic if and only if they have the same j -invariant [Sil09].
Furthermore for any j0 ∈ F there is an elliptic curve E such that j (E) = j0. For j0 = 0 the curve
is y2 = x3 +1, for j0 = 1728 the curve is y2 = x3 +x and for other values the curve is defined the
short Weierstraß equation with a = b = 27 j0

4(1728− j0) .

1The only type of isogeny used in SIKE
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Chapter 2. SIKE

Definition 2.1.12 (Isogenous curves). Two curves are said isogenous if there is an isogeny between
them. If the degree of the isogeny is l , the curves are called l -isogenous. We say that the curves
are isogenous over F if the isogeny is defined over F.

Every separable isogeny has a finite kernel and is uniquely determined by it. More precisely,
every finite subgroup G of E gives rise to a unique isogeny φ : E → E ′ with kerφ=G , where E ′ is
uniquely defined up to an isomorphism. We denote the image curve by E/G , so

φ : E → E ′ =.. E/kerφ. (2.14)

Remark (Computing isogenies). Given an isogeny φ as a rational map, one can compute kerφ in
time polynomial in the degree of the isogeny by means of a root finding algorithm.

The converse is also true – given a finite group G , represented for example by a (pair of) group
generator(s), one may compute the associated isogeny using Vélu’s formulas [Vél71] in time
polynomial in #G .

Remark. Every isogeny of degree d =∏
pi can be written as a composition of isogenies of degrees

pi . This property can be used to evaluate large smooth degree isogenies, which is one of the main
elements of SIKE.

Theorem 2.1.3 (Composing isogenies). If we have finite subgroups G ⊆ H ⊆ E giving rise to
isogenies φ : E → E/G and ψ : E → E/H then there is a unique isogeny η : E/G → E/H such that
the following diagram commutes:

Figure 2.1: Composition of isogenies.

E E/G

E/H ∼= E/G
/
φ(H) ,

φ

ψ
η

ψ= η◦φ.

The kernel of η is isomorphic to H/G and equal to φ(H) ⊆ E/G .

Proof. See [Sil09].

Theorem 2.1.4 (Dual isogeny). Let E ,E ′ be elliptic curves, and φ : E → E ′ an isogeny of degree d .
Then there exists a unique isogeny φ̂ : E ′ → E such that φ̂◦φ= [d ] on E , and φ◦ φ̂= [d ] on E ′,
and deg(φ) = deg(φ̂).

Proof. See [Sil09].
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2.1 Mathematical background

Definition 2.1.13 (ℓ-isogeny graph). An isogeny graph is a graph of isomorphism classes of
isogenous elliptic curves connected by ℓ-isogenies. More precisely, every node in the graph
represents an isomorphism class of elliptic curves, and edges represent isogenies of degree ℓ.
Due to Theorem 2.1.4, the graph can be made an undirected graph, where the edge assigned to
an isogeny and its dual are considered equivalent.

Theorem 2.1.5. Every supersingular elliptic curve E over Fp satisfies j (E) ∈ Fp2 . In other words
E is isomorphic to a curve defined over Fp2 .

Proof. See [Sil09].

Theorem 2.1.5 shows that there is only a finite number of supersingular elliptic curves over Fp

since the number of possible j -invariants is bounded by p2. The exact number of supersingular
elliptic curves over Fp is actually lower, and given by the following theorem.

Theorem 2.1.6. The number of isomorphism classes of supersingular elliptic curves over Fp2 is

⌊ p

12

⌋
+


0 if p ≡

12
1,

1 if p ≡
12

5,7,

2 if p ≡
12

11.

(2.15)

Proof. See [Sil09].

The ℓ-isogeny graph of supersingular curves over Fp2 has some nice combinatoric properties.
Before we proceed, we recall a couple of graph-theoretic definitions and theorems.

Definition 2.1.14. Let G = (V ,E) be a k-regular graph with n nodes and let λ1, . . . ,λn be the
eigenvalues of the associated adjacency matrix. The adjacency matrix is symmetric and real, so
its eigenvalues are real, which without loss of generality we can supposed to be ordered. Then,
the eigenvalues satisfy

k =λ1 ≥ . . . ≥λn ≥−k. (2.16)

Definition 2.1.15. Let G be a k-regular graph with λi eigenvalues of the associated adjacency
matrix. Then G is called an ε-expander if ε< 1 and

|λi | ≤ εk for all i ̸= 1. (2.17)

Expander graphs are widely used and have many interesting properties. In particular they have a
small diameter and random walks on ε-expanders are rapidly mixing.
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Chapter 2. SIKE

Theorem 2.1.7 (Mixing theorem). Let G = (V ,E) be a k-regular ε-expander. Let S ⊆V be a subset
of vertices and let x ∈V be any vertex in V . Then a random walk of length at least

log((2#V )/#S1/2)

log(1/ε)
(2.18)

starting from x will land in S with probability at least 1
2

#S
#V .

Proof. See [JMV09].

The smaller the ε value in an expander graph is, the shorter the graph diameter, and random
walks are more rapidly mixing. However, the size of ε is bounded from below as the next theorem
shows.

Theorem 2.1.8 (Alon-Boppana bound). Let G be a k-regular graph on n vertices with diameter m.
Let λ1 ≥λ2 ≥ . . . ≥λn be the eigenvalues of the adjacency matrix. Then

λ2 ≥ 2
p

k −1− 2
p

k −1−1

⌊m/2⌋ , (2.19)

or in other words λ2 ≥ 2
p

k −1−o(1) for n →∞.

Proof. See [Nil91].

Corollary 2.1.8.1. Following Theorem 2.1.8 and formula 2.17 we have that all ε-expanders must
satisfy ε≥ 2

p
k−1
k −o(1).

There is a family of expander graphs that have optimal expansion properties,i.e., satisfy the bound
in Theorem 2.1.8 sharply. These graphs are called Ramanujan graphs and are defined as follows.

Definition 2.1.16 (Ramanujan graphs). Let G be a k-regular graph. Then G is called a Ramanujan
graph if it satisfies

|λi | ≤ 2
p

k −1 for all i ̸= 1. (2.20)

Ramanujan graphs are ε-expanders as can be seen by setting ε= 2
p

k−1
k .

Finally this brings us to the main theorem on the structure of ℓ-isogeny graphs of supersingular
elliptic curves which proves rapid mixing of random walks along the edges of the graph.

Theorem 2.1.9 (Pizer [Piz90]). For every p ≥ 5 the graph of ℓ-isogenies of supersingular elliptic
curves over Fp for any ℓ coprime to p is a connected and ℓ+1-regular graph. Moreover it is a
Ramanujan graph.
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2.2 SIDH

2.2 SIDH

Supersingular isogeny Diffie-Hellman, or shorthand SIDH, is a Diffie-Hellman-like key agreement
protocol. It is the main building block of SIKE, and in fact we can consider SIKE to be SIDH with
a Fujisaki-Okamoto [FO99] wrapper.

SIDH is a protocol in which two parties, call them Alice and Bob, communicate over an integrity-
preserving and authenticated channel in such a manner that at the end of the protocol they agree
on a shared secret.

The difference from Diffie-Hellman where the two parties compute secret exponentiations which
may be represented as random walks in a group is that in SIDH the two parties compute secret
isogenies which are represented as quasi-random walks in the graph of isogenous supersingular
elliptic curves.

Figure 2.2: Comparison of group Diffie-Hellman and SIDH (simplified).

g

gα gβ

gβ gα

gαβ

x 7→xα x 7→xβ

x 7→xα x 7→xβ

E

E/G A E/GB

E/GB E/G A

E/(G A +GB )

X 7→X /G A X 7→X /GB

X 7→X /G A X 7→X /GB

2.2.1 Public parameters

All algebraic computations in SIDH take place in a finite field Fp2 , where p is a prime of the form
p = ℓe A

A ℓ
eB
B −1, with ℓe A

A ≈ ℓeB
B ≈p

p, with ℓA ̸= ℓB small primes (in practise taken to be 2 and 3).

Curves that are used in SIDH are of cardinality (p +1)2, supersingular, and they all satisfy

E(Fp2 ) ∼= (Z/(p +1))2 ∼= (Z/(ℓe A
A ))2 ⊕ (Z/(ℓeB

B ))2. (2.21)

Since E [ℓe A
A ] ⊆ E(Fp2 ) and E [ℓeB

B ] ⊆ E(Fp2 ), the elliptic curve is exactly the product of the ℓe A
A and

ℓ
eB
B torsion. Let P A ,Q A be generators of the ℓe A

A -torsion on E , and let PB ,QB be generators of the
ℓ

eB
B -torsion on E , so

〈P A ,Q A〉 = E [ℓe A
A ], 〈PB ,QB 〉 = E [ℓeB

B ]. (2.22)
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Chapter 2. SIKE

Call E0 an elliptic curve with the above properties, for example the elliptic curve with j -invariant
j (E0) = 1728 when p ≡

4
3.

Finally, the public parameters are a sextuple containing the prime p, the starting curve E0, and
the ℓe A

A and ℓeB
B -torsion generators (P A ,Q A) and (PB ,QB ):

(p,E0,P A ,Q A ,PB ,QB ). (2.23)

From this point onward let I ∈ {A,B} represent one party and J ∈ {A,B} \ {I } the other party.

2.2.2 Secret key computation

The secret keys of both parties are secret subgroups of E(Fp2 ). The subgroups are created as
follows. Party I chooses a pair of numbers

mI ,nI ∈
{
0, . . . ,ℓe I

I −1
}

(2.24)

such that they are not both multiples of ℓI . Then they compute a secret point RI as follows:

RI = [mI ]PI + [nI ]QI . (2.25)

Point RI is of order ℓe I
I . We define G I = 〈RI 〉 to be the cyclic group generated by the secret point.

This cyclic group is the secret key. It can be represented as the generating point RI or the pair
(mI ,nI ).

It should be noted that the points RI and [ξI ]RI with ξI ∈Z/(ℓe I
I )× generate the same group G I .

Therefore the pair (mI ,nI ) is defined up to multiplication by an element of Z/(ℓe I
I )×. In practice

this is avoided by setting mI = 1, and choosing nI uniformly at random fromZ/(ℓe I
I ), so the secret

key of party I is simply nI .

The secret group G I is a randomly sampled cyclic subgroup of E [ℓe I
I ] of order ℓe I

I . The group G I

uniquely defines a secret isogeny φI of degree ℓe I
I and kernel G I .

2.2.3 Public key computation

Both parties compute their secret isogenyφI : E0 7→ E0/G I , and evaluate the isogeny on the points
P J ,Q J , obtaining their public key:

pkI = (E0/G I ,φI (P J ),φI (Q J )). (2.26)

A straightforward use of Vélu’s formulas to compute φI is inefficient. Instead, more efficient
algorithms are used where the isogeny is computed as a composition of e I isogenies of degree ℓI .
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The procedure is given in Section 2.5.5.

2.2.4 Shared secret computation

After sharing the corresponding public keys, the two parties compute another isogeny, but this
time starting from the other party’s public key curve, and using that other party’s public key
points.

Let us rename the elements of the public key of party J as

E J ,P ′
I ,Q ′

I
..= E0/G J ,φJ (PI ),φJ (QI ). (2.27)

The party I first computes the kernel generating point of the isogeny as

R ′
I = [mI ]P ′

I + [nI ]Q ′
I , (2.28)

with the same method that was used in Section 2.2.2. The point R ′
I is of order ℓe I

I . The party I

proceeds by computing the isogeny φ′
I : E J → E J /G ′

I of kernel G ′
I = 〈R ′

I 〉. Finally both parties
reach the same elliptic curve E I J = E J /G ′

I
∼= E I /G ′

J = E J I , and their shared secret is the final
curve’s j -invariant.

Figure 2.3: Supersingular isogeny Diffie-Hellman

E ,P A ,Q A︸ ︷︷ ︸
RA

,PB ,QB︸ ︷︷ ︸
RB

E A ,P ′
B ,Q ′

B EB ,P ′
A ,Q ′

A

EB ,P ′
A ,Q ′

A︸ ︷︷ ︸
R ′

A

E A ,P ′
B ,Q ′

B︸ ︷︷ ︸
R ′

B

E AB
∼= EB A

φA φB

φ′
A φ′

B

2.3 Hard problems

There are four main problems conjectured to be hard and on which the security of SIDH is based.

Definition 2.3.1 (Decisional supersingular isogeny problem - DSSI). Let E and E ′ be two super-
singular curves over Fp2 . Decide if there is an ℓe -isogeny between them.

Definition 2.3.2 (Computational supersingular isogeny problem - CSSI). Let E be a supersingular
elliptic curve, let P A ,Q A be generators of E [ℓe A

A ], and let PB ,QB be generators of E [ℓeB
B ] withℓA ,ℓB
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coprime. Let RA = [mA]P A + [nA]Q A with mA ,nA chosen at random not both divisible by ℓA . Let
G A = 〈RA〉 and let φA : E → E/G A be the corresponding isogeny.

Given (E ,PB ,QB ) and (E/G A ,φA(PB ),φA(QB )), find a generator of G A .

Definition 2.3.3 (Supersingular computational Diffie-Hellman problem - SSCDH). Assume the
conditions of Definition 2.3.2 along with the point RB = [mB ]PB + [nB ]QB with mB ,nB chosen at
random not both divisible by ℓB , the group GB = 〈RB 〉 and the isogeny φB : E → E/GB .

Given (E ,P A ,Q A ,PB ,QB ), (E/G A ,φA(PB ),φA(QB )), and (E/GB ,φB (P A),φB (Q A)), find the elliptic
curve E/(G A +GB ).

Definition 2.3.4 (Supersingular decisional Diffie-Hellman problem - SDCDH). Assume the
conditions of Definition 2.3.3 along with a point RC ∈ E chosen at random among points of order
ℓ

e A
A ℓ

eB
B , the group GC = 〈RC 〉 and the isogeny φC : E → E/GC .

Given a tuple sampled with probability 1/2 from one of the following two distributions

1. (E ,P A ,Q A ,PB ,QB ), (E/G A ,φA(PB ),φA(QB )), (E/GB ,φB (P A),φB (Q A)), E/(G A +GB ),

2. (E ,P A ,Q A ,PB ,QB ), (E/G A ,φA(PB ),φA(QB )), (E/GB ,φB (P A),φB (Q A)), E/(GC ),

decide from which distribution the tuple was sampled.

So far the best algorithms, classical and quantum, for solving any of the above problems are
exponential.

2.4 SIKE

SIKE is derived from SIDH, by applying the Hofheinz-Hövelmanns-Kiltz variant of the Fujisaki-
Okamoto (FO) transform [HHK17]. The reason for this choice is because the textbook SIDH
protocol is insecure in the static or semi-static setting, i.e., when one of the parties has a static
public key [GPST16]. The FO transform overcomes this weakness, but at a cost of a performance
overhead and only allowing for semi-static keys.

The public parameters are the public parameters of SIDH

pp = (p,E0,P A ,Q A ,PB ,QB ). (2.29)

The protocol is asymmetrical so we assume that Bob is the server and Alice is the client.

There are three phases to the protocol: public key generation, key encapsulation and key decap-
sulation.
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2.4 SIKE

2.4.1 Public key generation

Bob starts by choosing a random string s ∈ {0,1}t (t > 0 public parameter) which will be used to
create a random key K if he detects a cheating attempt from Alice. Then, Bob proceeds in the
same way as in SIDH. The process is given in Algorithm 1.

Algorithm 1: PUBLIC KEY GENERATION

Procedure Public key generation(pp)
1 skB ←$ [0, l eB

B )
2 s ←$ {0,1}t

3 RB = PB + [skB ]QB

4 Let φB : E0 → EB be such that Ker(φB ) = 〈RB 〉
Output: pkB = (EB ,φB (P A),φB (Q A))

2.4.2 Key encapsulation

Alice generates a random message m ∈ {0,1}t (t > 0 public parameter) which plays the role of the
secret in the following. Then, Alice computes her private key by setting

skA =G(m ||pkB ) mod ℓe A
A , (2.30)

where G is a public cryptographic hash function (in practice, SHAKE256 is used). She proceeds by
computing her secret key RA = P A+[skA]Q A and her public key c0 = pkA = (E A ,φA(PB ),φA(QB )).
Alice continues by computing the common secret j (EB A) from Bob’s public key. She sets c1 =
F ( j (EB A))⊕m, where F is a cryptographic hash function that may or may not be different from
G .

Finally, Alice sends the concatenation of c0 and c1 as ciphertext (i.e., ct = c0 || c1) to Bob and
computes the key K to be used as K = H(m || ct ) (where H is yet another cryptographic hash
function which can be the same as G or F ).
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Algorithm 2: KEY ENCAPSULATION

Procedure Key encapsulation(pp, pkB )
1 m ← {0,1}t

2 skA =G(m ||pkB ) mod ℓe A
A

3 RA = P A + [skA]Q A

4 Let φA : E0 → E A be such that Ker(φA) = 〈RA〉
5 pkA = (E A ,φA(PB ),φA(QB ))

6 R ′
A =φB (P A)+ [skA]φB (Q A)

7 Let φ′
A : EB → EB A be such that Ker(φ′

A) = 〈R ′
A〉

8 c0 = pkA

9 c1 = F ( j (EB A))⊕m

10 K = H(m || ct ) // Shared secret K

Output: ct = (c0 || c1)

2.4.3 Key decapsulation

After receiving ct = (c ′0 ||c ′1), Bob sets pk ′
A

..= c ′0, computes j (E ′
AB ), and extracts m′ = F ( j (E ′

AB ))⊕
c ′1 as shown in Algorithm 3. Bob then computes

sk ′
A =G(m′||pkB ) mod l e A

A ,

and proceeds by computing the corresponding public key pk ′′
A . Bob then checks that pk ′′

A = pk ′
A ,

to confirm the truthfulness of Alice. In case the check passes, he sets K = H(m′ || ct ), and K =
H(s || ct ) otherwise.

Algorithm 3: KEY DECAPSULATION

Procedure Key decapsulation(ct)
1 (E ′

A ,P ′
B ,Q ′

B ) = c ′0
2 R ′

B = P ′
B + [skB ]Q ′

B
3 Let φ′

B : E ′
A → E ′

AB be such that Ker(φ′
B ) = 〈R ′

B 〉
4 m′ = F ( j (E ′

AB ))⊕ c ′1
5 sk ′

A =G(m′ ||pkB ) mod ℓe A
A

6 R ′ = P A + [sk ′
A]Q A

7 Let φ′ : E0 → E ′′
A be such that Ker(φ′) = 〈R ′〉

8 pk ′′
A = (E ′′

A ,φ′(PB ),φ′(QB ))
9 if pk ′′

A = c0 then
K ← H(m′ || ct )

else
K ← H(s || ct )

Output: K

A full execution of the SIKE algorithm is shown in Figure B.1.
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2.5 Practical implementation of SIKE

Currently, SIKE is one of the alternate candidates in the third round of the NIST standardisation
process for post-quantum cryptography. The official implementation of SIKE, and the official
submission to the standardisation process, can be found in [JAC+17].

In this section we give the parameters and formulas used in the practical implementation of SIKE.

2.5.1 Public parameters

For all sets of public parameters, the numbers ℓA and ℓB are selected to be 2 and 3 respectively,
for efficiency reasons. The starting elliptic curve is

E0 : y2 = x3 +6x2 +x, (2.31)

and the starting points P A ,Q A ,PB ,QB are determined by a deterministic process explained in
[JAC+17] and hard-coded.

Figure 2.4: Public parameters of SIKE

prime size (bits) e A eB classical security quantum security

434 216 137 108 72
503 250 159 125 83
610 305 192 152 101
751 372 239 187 125

2.5.2 Choice of representations

Elliptic curves. The elliptic curves used in SIKE are Montgomery curves [Mon87]. An elliptic
curve E over F is a Montgomery curve if it is represented by the following formula

E : by2 = x3 +ax2 +x, (2.32)

for some coefficients a,b ∈ F such that b(a2 −4) ̸= 0. The point O = [0 : 1 : 0] is assumed to be the
identity. In SIKE the coefficient b is set to be equal to 1. Note that b only defines the curve E up to
it’s twist.

Define the projective representation of a as [A : C ] = [a : 1]. In addition to that set A+
24 = A+2C ,

A−
24 = A−2C , and C24 = 4C . In SIKE, the elliptic curve with coefficient a is represented in four

different ways depending on the subroutine:

• As a, the affine curve coefficient,
• As [A : C ] such that C ̸= 0 where a = A

C ,
• As [A+

24 : C24] such that C24 ̸= 0 where a = (4A+
24 −2C24)/C24,
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• As [A+
24 : A−

24] such that A+
24 ̸= A−

24 where a = 2(A+
24 + A−

24)/(A+
24 − A−

24).

Points. Montgomery curves allow for a point P ∈ E to be represented only by its X and Z coordi-
nates; P = [XP : ZP ].

This representation defines the point up to its inverse, i.e., [XP : ZP ] defines both P and −P . With
this representation it is possible to compute multiples of P ([n]P for n ∈Z) without the need for
the Y coordinate [Mon87].

However, two points in Montgomery coordinates cannot be added without additional information.
This problem is resolved by saving a pair of points P,Q in a triple of points in Montgomery
coordinates

P, Q ←→ Q = [XQ : ZQ ], P = [XP : ZP ], Q −P = [XQ−P : ZQ−P ]. (2.33)

The point P+Q can then be computed from Q,P,Q−P . Formulas are given in the next subsection.

Public keys. A public key in SIKE is a triple formed from an elliptic curve E and two points on
that curve P and Q. In practice, this triple is saved as the triple of points Q,P,Q −P in affine
Montgomery coordinates, i.e., Q = [xQ : 1], P = [xP : 1], Q −P = [xQ−P : 1] and

pk = (xQ , xP , xQ−P ). (2.34)

The curve coefficient a can be extracted from the triple with the following formula

a = (1−xQ xP −xQ xQ−P −xP xQ−P )2

xQ xP xQ−P
−xQ −xP −xQ−P . (2.35)

In addition to the public keys, the torsion generating points on the starting curve (P A ,Q A), (PB ,QB )

are also represented as triples (xQ A , xP A , xQ A−P A ), (xQB , xPB , xQB−PB ).

Compressed SIKE. In uncompressed (i.e., the previously described) SIKE, public keys are formed
as triples of coordinates of elliptic curve points pk = (xQ , xP , xQ−P ), from which the curve coeffi-
cient a is computed. Compressed SIKE is an alternative implementation of SIKE which represents
the public key points Q,P as elements of Z/(ℓe I

I )⊕Z/(ℓe I
I ) through a basis of the ℓe I

I torsion
which is deterministically chosen as a function of the underlying curve. This allows for about 40%

smaller public keys, however at a cost of slower algorithms due to the necessity of computing
torsion bases and computing coefficients of points in the torsion basis. In particular the over-
head is 65%−75% for key generation, 55%−65% for key encapsulation, and 5%−10% for key
decapsulation. Throughout the paper we assume that uncompressed SIKE is used, unless stated
otherwise.
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2.5.3 Formulas

The main building blocks of SIKE are doubling and tripling formulas, differential addition, and
2-isogenies, 3-isogenies and 4-isogenies. They are components of a scalar multiplication function
used to compute the secret point R , and the high-order isogeny computation.

Doubling. The doubling of a point [X : Z ] on the curve represented by the affine coefficient a is
given by the formula

[2][X : Z ] = [
(X 2 −Z 2)2 : 4X Z (X 2 +aX Z +Z 2)

]
. (2.36)

In practice the curve is represented as [A+
24 : C24] and the doubling is given by

[2][X : Z ] = [
C24(X 2 −Z 2)2 : 4X Z (C24(X −Z )2 + A+

244X Z )
]

. (2.37)

Tripling. The tripling of a point [X : Z ] on the curve represented by the affine coefficient a is
given by the formula

[3][X : Z ] = [
(X 4 −6X 2Z 2 −4aX Z 3 −3Z 4)2X : (3X 4 +4aX 3Z +6X 2Z 2 −Z 4)2Z

]
. (2.38)

In practice the curve is represented as [A+
24 : A−

24] and the tripling is given by

[3][X : Z ] = [
X (A+

24(X +Z )4 − A−
24(X −Z )4 −2(X 2 −Z 2)(A+

24(X +Z )2 − A−
24(X −Z )2))2

: Z (A+
24(X +Z )4 − A−

24(X −Z )4 +2(X 2 −Z 2)(A+
24(X +Z )2 − A−

24(X −Z )2))2].

(2.39)

Differential addition. The addition of points Q = [XQ : ZQ ] and P = [XP : ZP ], assuming the
point Q −P = [XQ−P : ZQ−P ] is provided as well, is given by the formula

[XQ : ZQ ]+ [XP : ZP ] = [
ZQ−P (XP XQ −ZP ZQ )2 : XQ−P (XP ZQ −XQ ZP )2]. (2.40)

The differential addition formula is independent of the curve coefficient (it is implicit in the value
of Q −P which is curve-dependent).

2-isogeny. The 2-isogeny contains two parts - the isogeny computation, which computes the
codomain curve of the 2-isogeny, and the isogeny evaluation, which maps points from the
codomain to the domain curve. These two parts are treated separately.

The isogeny computation takes as input the kernel point [X2 : Z2] and outputs the curve as

[A+
24 : C24] = [

Z 2
2 −X 2

2 : Z 2
2

]
. (2.41)
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The isogeny evaluation takes as input the kernel point [X2 : Z2] and the point to be evaluated
[X : Z ] and maps it to

[X : Z ] 7→ [X (X X2 −Z Z2) : Z (X Z2 −Z X2)] . (2.42)

3-isogeny. The 3-isogeny contains two parts - the isogeny computation, which computes the
codomain curve of the 3-isogeny, and the isogeny evaluation, which maps points from the
codomain to the domain curve. These two parts are treated separately.

The isogeny computation takes as input the kernel point [X3 : Z3] and outputs the curve as

[A+
24 : A−

24] = [
(3X3 −Z3)3(X3 +Z3) : (3X3 +Z3)3(X3 −Z3)

]
. (2.43)

The isogeny evaluation takes as input the kernel point [X3 : Z3] and the point to be evaluated
[X : Z ] and maps it to

[X : Z ] 7→ [
X (X X3 −Z Z3)2 : Z (X Z3 −Z X3)2]. (2.44)

4-isogeny. The 4-isogeny contains two parts - the isogeny computation, which computes the
codomain curve of the 4-isogeny, and the isogeny evaluation, which maps points from the
codomain to the domain curve. These two parts are treated separately.

The isogeny computation takes as input the kernel point [X4 : Z4] and outputs the curve as

[A+
24 : C24] = [

X 4
4 : Z 4

4

]
. (2.45)

The isogeny evaluation takes as input the kernel point [X4 : Z4] and the point to be evaluated
[X : Z ] and maps it to

[X : Z ] 7→ [
X (X X4 −Z Z4)2(X X 2

4 +X Z 2
4 −2Z X4Z4)

: Z (X Z4 −Z X4)2(Z X 2
4 +Z Z 2

4 −2X X4Z4)
]
.

(2.46)

j -invariant. The j -invariant of a Montgomery curve E represented by the coefficient a is com-
puted by first representing the curve as [A : C ] via

[A : C ] = [a : 1] = [4A+
24 −2C24 : C24] = [2(A+

24 + A−
24) : A+

24 − A−
24], (2.47)

and then computing the j -invariant as

j (E) = 256(A2 −3C 2)3

C 4(A2 −4C 2)
= 256(a2 −3)3

(a2 −4)
. (2.48)
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2.5.4 Three-point ladder

Computation of the secret point R = P + [sk]Q (we drop the naming subscript I ∈ {A,B}) is done
via a constant-time three-point ladder introduced in [FLOJRH18].

The ladder takes as input a pair of points Q,P represented in Montgomery coordinates, together
with the difference Q −P , and the affine curve coefficient a (which is computed from the triple
via formula 2.35).

The algorithm then loops trough all bits of the secret key, and computes a conditional swap
(cswap) and a double-and-add at each iteration. The cswap(P,Q,swap) is a constant-time routine
which performs a swap of two points P and Q if the bit swap is equal to 1.

The double-and-add, denoted as xDBLADD is a routine which combines a doubling with a differ-
ential addition.

Algorithm 4: DOUBLE-AND-ADD
Input: Coefficient a+

24, points R0,R1,R2.
Assumes: An elliptic curve with a = 4a+

24 −2 contains the points R0,R1,R2,
and R2 = R0 −R1.
Output: ([2]R0,R1 +R0,R2)
Procedure dadd(R0,R1,R2, a+

24)
1 [A+

24 : C24] = [a+
24 : 1]

2 R1 = R1 +R0 // Via formula 2.40, page 27.
3 R0 = [2]R0 // Via formula 2.37, page 27.

return (R0,R1,R2)

The three-point ladder is finally given in Algorithm 5. We follow the variable naming convention
of [JAC+17].

Algorithm 5: THREE-POINT LADDER
Input: Montgomery curve E with coefficient a, points Q,P,Q −P ,
an integer m =∑ℓ−1

i=0 mi 2i with mi ∈ {0,1}.
Assumes: Q,P,Q −P ∈ E , and P,Q −P ∉ {[1 : 0], [0 : 1]}.
Output: P + [m]Q .
Procedure Three-point ladder(Q,P,Q −P,m, a)

1 a+
24 = (a +2)/4

2 m−1 = 0
3 R0, R, R2 ←Q, P, Q −P
4 for i = 0 to ℓ−1 do
5 cswap(R2, R, mi ⊕mi−1)
6 R0, R2,R ← xDBLADD

(
R0, R2, R, a+

24

)
7 cswap(R2, R, mi )

return R
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2.5.5 Isogeny computation

An isogeny with a cyclic kernel can be computed in linear time in the order of the kernel via
Vélu’s formulas. When the order of the kernel is smooth, as is the case in SIKE, the isogeny can be
computed exponentially faster. Let R be a point of order ℓe , and let G = 〈R〉. In this subsection
we show how to compute the isogeny φ of kernel G and order ℓe as a composition of isogenies of
degree ℓ.

Let Ri
..= [ℓe−i ]R, and let Gi

..= 〈Ri 〉 for i = 0,1, . . . ,e. The order of Ri and the cardinality Gi are
equal to ℓi . Furthermore there is an ascending filtration of G

{O } =G0 ⊆G1 ⊆ ·· · ⊆Ge−1 ⊆Ge =G , (2.49)

with [Gi+1 : Gi ] = ℓ. This filtration, together with Theorem 2.1.3, allows one to compute the
isogenyφ as the composition of small degree isogeniesφi as shown in the following commutative
diagram.

Figure 2.5: Splitting the isogeny

E E/G

E/G E/G1 E/G2 · · · E/Ge

φ

∼= ∼=
φ1 φ2 φ3 φe

In practice 2e A -isogenies are computed as composition of (e A mod 2) isogenies of degree 2

and ⌊ e A
2 ⌋ isogenies of degree 4 (for efficiency reasons), while 3eB -isogenies are computed as a

composition of eB isogenies of degree 3, so ℓ can be thought to be equal to 3 or 4.

Isogeny computation via multiply-and-push

One way to compute an ℓe isogeny generated by 〈R〉 is to compute the ℓ-isogeny generated by
[ℓe−1]R , push the point R through said ℓ-isogeny, and continue recursively. Each time the order
of the pushed kernel point decreases by a factor of ℓ.

The curve Ei /Hi and the isogeny φi of Algorithm 6 correspond to the curve E/Gi and isogeny
φi of Figure 2.1. The cost of Algorithm 6 is O(e2) point-multiplications by ℓ and O(e) degree ℓ
isogeny computations.

Isogeny computation via tree traversal

An ℓe -isogeny can be computed in a more efficient way through a combination of ℓ-isogenies
and multiplications by ℓ by using a tree traversal algorithm guided by what SIDH calls a strategy.
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Algorithm 6: DEGREE ℓe ISOGENY COMPUTATION AND EVALUATION - MULTIPLY-AND-PUSH
Input: Curve E , kernel generator R , evaluation points [T1, . . . ,Tm]
Assumes: R,T1, . . . ,Tm ∈ E and R has order ℓe .
Output: Curve E/〈R〉 and list of evaluations [φR (T1), . . . ,φR (Tm)].
Procedure isog_map(E ,R, [T1, . . . ,Tm])

1 E0 = E
2 for i = 0 to e −1 do
3 K = [ℓe−(i+1)]R // point of order ℓ

4 Hi = 〈K 〉
5 φi : Ei 7→ Ei /Hi

6 Ei+1 = Ei /Hi

7 for i = 1 to m do
8 Ti =φi (Ti )

9 R =φi (R) // point of order ℓe−(i+1)

return Ee , [T1, . . . ,Tm]

Tree traversal as a game. A tree traversal can be modelled as a game which is played on an n×n

rectangular grid, in the area between the axes and above the line y = x −n. The goal of the game
is to reach the point (0,n) starting from the point (0,0).

To this end, the player can perform two kinds of move: a vertical move downwards (correspond-
ing to a multiplication by ℓ), or a horizontal move rightwards (corresponding to an ℓ-isogeny
computation). Moreover, the player can move to any point that was previously visited (some
computed points may be saved). Downwards moves are unrestricted, but horizontal moves to the
right, i.e., from the vertical line x = i to x = i +1, are allowed only after the point (i ,−(n − i )) was
reached (the next curve is computed only after computing the kernel point of the corresponding
ℓ-isogeny).

A successfully played game can therefore be represented by a graph of all the visited points, such
as Figure 2.6. Such a graph represents an ℓe -isogeny computation; the point at (0,0) represents
the kernel generator R, all points on the same vertical line are on the same curve noted on the
top. Reaching the point (n,n) is equal to reaching the penultimate curve together with a point of
order ℓ, so just the final ℓ-isogeny is left to reach the final curve.

Strategy. A strategy for computing an ℓe -isogeny is defined as a tuple of e −1 integers, and the
set Se of valid strategies is defined recursively as

S1 = {()}, Sn = {
(b) :: Sa :: Sb

∣∣ a +b = n, Sa ∈Sa , Sb ∈Sb
}
, (2.50)

where () denotes the empty tuple and :: denotes concatenation. Given a curve E , a kernel gen-
erator R, a list of evaluation points [T1, · · · ,Tm], and a strategy S = (s1, . . . , se−1), the isogeny
computation/evaluation proceeds as described in Algorithm 7.
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Figure 2.6: Visualisation of two tree traversal games (ℓ7-isogeny computation).

φ1 φ2 φ3 φ4 φ5 φ6

[ℓ0]R

[ℓ1]R

[ℓ2]R

[ℓ3]R

[ℓ4]R

[ℓ5]R

[ℓ6]R

E0 E1 E2 E3 E4 E5 E6
φ7

E7

φ1

φ1

φ1

φ2

φ2

φ3

φ3 φ4 φ5

φ5

φ6 φ7

[ℓ0]R

[ℓ1]R

[ℓ2]R

[ℓ3]R

[ℓ4]R

[ℓ5]R

[ℓ6]R

E0 E1 E2 E3 E4 E5 E6 E7

The recursive nature of the algorithm is naturally visualised as a binary tree with e leaves. By
stretching the tree to draw all the leaves at the same diagonal y = x − (e −1), we even have a
visualisation of the computational effort required to compute the isogeny: edges going downwards
represent point multiplications by ℓ, edges going to the right represent ℓ-isogeny evaluations.

Figure 2.6 shows this representation for the strategy S = (6,5,4,3,2,1) ∈S7, which performs 21
multiplications by ℓ and 6 isogeny evaluations and the strategy S = (3,2,1,1,1,1) which performs
9 multiplications by ℓ and 11 isogeny evaluations (assuming the list [T1, . . . ,Tm] is initially empty).
The former actually represents Algorithm 6 as a tree traversal game which is in general given by
the strategy S = (e −1,e −2, . . . ,1).

In general, one can find an optimal strategy which computes the ℓe -isogeny in O(e log(e)) multi-
plications by ℓ and O(e log(e)) degree ℓ isogenies. Furthermore, given the computational cost
of a multiplication by ℓ, and the cost of an ℓ-isogeny, one can find, in time O(e log(e)) the most
efficient strategy for tree traversal [ZSP+18]. The optimal strategy for each set of SIKE parameters
is hard-coded in the algorithm.
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Algorithm 7:DEGREE ℓe ISOGENY COMPUTATION AND EVALUATION - TREE TRAVERSAL
Input: Curve E , kernel generator R , strategy S = (s1, . . . , se−1),
list of evaluation points [T1, . . . ,Tm].
Assumes: S ∈Sn , R,T1, . . . ,Tm ∈ E and R has order ℓe .
Output: Curve E/〈R〉 and list of evaluations [φR (T1), . . . ,φR (Tm)].
Procedure isog_strategy(E ,R,S, [T1, . . . ,Tm])

1 if S = () then
2 φR : E 7→ E/〈R〉
3 E = E/〈R〉
4 for i = 1 to m do
5 Ti =φR (Ti )

6 else
7 K ← R
8 for i = 1 to s1 do
9 K = [ℓ]K

10 SL = (s2, . . . , se−s1 )
11 E , [R,T1, . . . ,Tm] ← isog_strategy

(
E , K , SL , [R,T1, . . . ,Tm]

)
12 SR = (se−s1+1, . . . , se−1)
13 E , [T1, . . . ,Tm] ← isog_strategy

(
E , R, SR , [T1, . . . ,Tm]

)
return E , [T1, . . . ,Tm]
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3 Attack on the generalised Legendre
pseudorandom function

The generalised Legendre pseudorandom function was originally introduced by Damgård [Dam90]
as what we call a linear Legendre PRF, and later generalised by Russell and Shparlinski [RS04]. For
a public parameter prime p , the function is modelled as an oracle O f parametrised by a secret key
f ∈ Fp [x] of degree r , which on input an element x of Fp outputs O f (x) = ( f (x)

p

) ∈ {−1,1}. Given a
sequence of Legendre symbols of f evaluated at consecutive elements, it is conjectured to be
hard to predict the symbol of f evaluated at the next element. Similarly, distinguishing O f from a
random function, or obtaining f while given oracle access to O f is assumed to be hard as well
(see Chapter 1.3).

While mathematically simple, the Legendre PRF was considered to be too computationally ex-
pensive for traditional cryptographic settings and thus not used as a pseudorandom function.
A recent result by Grassi et al. [GRR+16] showed that it can be used in multiparty-computation
settings, and that in that paradigm it is orders of magnitude faster then the alternative symmetric-
key primitives. There are plans to incorporate the Legendre PRF into the Ethereum 2.0 protocol
[Fei19], and in order to motivate research in this direction, the Ethereum foundation published
a number of challenges. In each challenge, a list of M = 220 Legendre symbols of consecutive
elements was provided. The difficulty of the challenge was based on the size of the underlying
prime field which varied from 64 to 148 bits. The goal was to find the starting element, or in other
words the secret key which parametrises the linear Legendre PRF.

Previous work. First attacks on the Legendre PRF were devised in the quantum computing
paradigm. In a series of papers [van02, vDH00, vDHI01] van Dam, Hallgreene and Ip provided
efficient quantum algorithms for obtaining the secret key given quantum access to a linear Leg-
endre PRF oracle. This was later improved on by Russell and Shparlinski [RS04] who introduced
the generalised Legendre PRF, and provided a quantum algorithm for obtaining the secret key
when given access to a quantum oracle. The first non-trivial classical attack on the Legendre
PRF was given by Khovratovich [Kho19] who devised a memory-less collision attack of time
complexity O(p

r
2 ) with unconstrained access to the oracle. Further improvements by Beullens

et al. [BBUV20] and Kaluđerović et al. [KKK20b] give faster attacks on the linear Legendre PRF
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when the number of oracle queries is bounded by M . The attack complexities are O
(

p log2 p
M 2

)
and

O
(

p log p loglog p
M 2

)
respectively. So far there are no known polynomial time attacks when access to

the oracle is classical.

Contributions. We analyse the action of Möbius transformations on monic polynomials of degree
r , and use it to provide an improved attack on the Legendre pseudorandom function. When r ≥ 3

we classify the secret key polynomials into three groups, and for the most relevant case we give
an O(pr−3) attack with O(p3) precomputation and p −o(p) oracle queries. The other two cases
consist of weak keys which we fully characterise while providing faster attacks. For degree r < 3

we give an O(pr /2) attack with O(pr /4) queries, and O( pr log p
M 2 ) if the number of queries is limited

to M . These are improvements with respect to previous algorithms of a factor from p up to p3 in
the general case, and even more for a new family of bad keys.

Structure.

In Section 3.1 we introduce the Möbius group and define the action of group elements on monic
polynomials. We then show how this action partitions the key space into three sets, which we call
good, bad and ugly keys.

Section 3.2 provides the Algorithm for solving the generalised Legendre symbol problem. The
section is divided into three parts providing a different algorithm for each of the three key types,
and towards the end provides alternative algorithms for low degree polynomials.

Section 3.4 gives algorithms in the case when the number of queries to the oracle is limited. We
also provide practical comparisons with other known algorithms.

Finally we discuss possible future directions and give some security recommendations.

3.1 Möbius transformations

Invertible rational projective transformations of the projective space, also known as Möbius
transformations, act naturally on rational functions of P1, changing the argument and preserving
their degrees. We show how this action can be exploited in order to connect oracles of monic
polynomials that are in the same orbit under the action of the group of Möbius transformations.

Definition 3.1.1 (Möbius transformations). We call M the group of Fp -rational automorphisms
of P1. This group is isomorphic to the projective linear group of degree two PGL2(Fp ) which has
order p3 −p . The elements of M are called Möbius transformations. Given a matrix m = (

a b
c d

) ∈
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3.1 Möbius transformations

PGL2(Fp ) there is a unique Möbius transformation ϕm given by

ϕm : P1 −→P1

[x : y] 7−→ [ax +by : cx +d y],
(3.1)

and function composition satisfiesϕm1 ◦ϕm2 =ϕm1m2 . We drop the notation ofϕm and only use
m from now on.

Recall a classical Lemma on Möbius transformations.

Lemma 3.1.1. Given a set of three distinct points x1, x2, x3 ∈P1 and another set of three distinct
point y1, y2, y3 ∈P1 there is a unique Möbius transformation m which sends xi to yi for i = 1,2,3.

Proof. We will show that there always exists a transformation n such that n(x1) = [0 : 1], n(x2) =
[1 : 1], n(x3) = [1 : 0].

If xi are all affine points with xi = [x ′
i : 1], then

n =
(

x ′
2 −x ′

3 −x ′
1(x ′

2 −x ′
3)

x ′
2 −x ′

1 −x ′
3(x ′

2 −x ′
1)

)
.

If xi = [1 : 0] then the associated matrix is ni :

n1 =
(

0 x ′
2 −x ′

3

1 −x ′
3

)
, n2 =

(
1 −x ′

1

1 −x ′
3

)
, n3 =

(
1 −x ′

1

0 x ′
2 −x ′

1

)
.

The transformation which sends xi to yi is the composotion of the mapping which sends xi to
[0 : 1], [1 : 1], [1 : 0] with the inverse of the mapping which sends yi to [0 : 1], [1 : 1], [1 : 0].

Finally, uniqueness follows from the fact that the only map acting as identity on [0 : 1], [1 : 1] and
[1 : 0] is the identity itself, which is proved by analysing the formula 3.1.

Corollary 3.1.1.1. It follows from Lemma 3.1.1 that if a Möbius transformation fixes three points,
then it must be the identity.

Möbius transformation have a natural action on monic polynomials which is introduced in the
following definition.

Definition 3.1.2 (Action of M on monic polynomials). The action of a Möbius transformation
m = (

a b
c d

) ∈M on a polynomial f is denoted by m · f = fm and defined as

m · f = fm(x) ..=


f
(

ax+b
cx+d

)
(cx+d)r

f
(

a
c

)
cr

if c ̸= 0,

f
(

ax+b
cx+d

)(
d
a

)r
if c = 0.

(3.2)

39



Chapter 3. Attack on the generalised Legendre pseudorandom function

The corrective factors (cx +d)r and f
( a

c

)
cr (resp.

(
d
a

)r
) are introduced in order to make fm a

polynomial and to make it monic correspondingly.

Lemma 3.1.2 (Action of M on roots of polynomials). Let f be a monic polynomial. If α is a root
of f then m−1(α) is a root of fm , where m−1 = (

d −b−c a

)
is the inverse of the Möbius transformation

m. Thus, if f (x) =∏r
i=1(x −αi ) then

fm(x) =
r∏

i=1
(x −m−1αi ) =

r∏
i=1

(
x − dαi −b

−cαi +a

)
. (3.3)

Proof. Both polynomials in (3.2) and (3.3) are monic of equal degree and they have matching
roots with equal multiplicities. Therefore the polynomials are equal.

We conclude that the group M of Möbius transformations has left (covariant) action on the roots
of polynomials in Fp [x] and right (contravariant) action on polynomials.

3.1.1 Action of M on oracles

Suppose we are given access to O f , the oracle of f . Following (3.2) we can mimic the oracle of fm

with:

O fm (x) =
(

fm(x)

p

)
=


O f

(
ax+b
cx+d

)(cx+d
p

)r
O f

( a
c

)(c
p

)r if c ̸= 0 and cx +d ̸= 0,(ax+b
p

)r
O f

( a
c

)(c
p

)r if c ̸= 0 and cx +d = 0,

O f

(
ax+b
cx+d

)(d
p

)r (a
p

)r if c = 0.

(3.4)

This allows us to obtain an oracle associated to O fm for each m ∈M .

In order to compute
{

fm
}

L the Legendre sequence associated to fm , we need to query the oracle
at most L+1 times and compute at most L+1 additional Legendre symbols.

3.1.2 Orbits of M

The Möbius group acts on the key space of irreducible polynomials of degree r in Fp [x]. We divide
the key space into orbits of M , and characterise polynomials based on the size of the orbit they
are in. The following lemma helps characterise these sets.

Lemma 3.1.3. Let M be the Möbius group and f ∈ Fp [x] an irreducible polynomial of degree r

with 3 ≤ r < p. Then, the stabiliser of f is a cyclic group of order r ′ for some r ′ | r . Furthermore
r ′ | p2 −1.

Proof. Let Stab( f ) = {m ∈M | f = fm} be the stabiliser of f , and let m ∈ Stab( f ). By (3.3) the roots
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of fm are m−1αi implying that m permutes the roots of f . Let Gal( f ) = {φi
..= x 7→ xp i |i ∈Z/r }

be the Galois group of f , and let α be any root of f .

Since m permutes roots of f , we must have mα=φi (α) for some i ∈Z/r . Each root of f can be
written as φ j (α) for some j ∈Z/r . Then m(φ j (α)) =φ j (mα) =φ j (φi (α)) =φi (φ j (α)), the first
equivalence following since m is rational and it commutes with the Frobenius. Hence m acts
on the roots equivalently to φi . This gives rise to a homomorphism from Stab( f ) to Gal( f ). This
homomorphism is injective since two Möbius transformations with the same action on a set of
r ≥ 3 are equal, following from Lemma 3.1.1.

Therefore Stab( f ) is a subgroup of Gal( f ) ∼=Z/r , so it is isomorphic to Z/r ′ for some r ′ | r . The
stabiliser is naturally a subgroup of M , so its order divides #M = p(p2 −1). Since r ′ < p we have
r ′ | p2 −1.

We divide the key space of monic square-free polynomials of degree r into three subsets depending
on their reducibility and the size of their orbit.

Definition 3.1.3 (Good polynomials). A polynomial of degree r ≥ 3 is called good if it is irreducible
and one of the following equivalent properties is true

• The M -stabilizer of f is trivial (reduced to the neutral element).
• The M -orbit of f is of size p3 −p.

Definition 3.1.4 (Bad polynomials). A polynomial of degree r ≥ 3 is called bad if it is irreducible
and one of the following equivalent properties is true

• The M -stabilizer of f is of size r ′ > 1.
• The M -orbit of f is of size p3−p

r ′ with r ′ > 1.

Definition 3.1.5 (Ugly polynomials). A polynomial of degree r ≥ 3 is called ugly if it is reducible.

Algorithms for good, bad and ugly polynomials are different, so the three types of polynomials
are treated individually. Furthermore the polynomials of degree r < 3 are handled separately.

3.2 Algorithm for r ≥ 3

We give an algorithm for solving the Generalised Legendre Symbol Problem for polynomials of
degree r ≥ 3. The general idea is to do a table-based collision search. The algorithm is divided
into two stages – the precomputation stage and the search stage.

In the precomputation stage we create a table containing { fm}L for many m ∈M together with
descriptions for the m’s. This is done by using the oracle O f and exploiting property (3.4).

In the search stage we do a collision search and compute random polynomials g until {g }L = { fm}L

for some m in the table. This allows us to compute f as f = gm−1 .
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Chapter 3. Attack on the generalised Legendre pseudorandom function

The tables and the trials differ for different polynomial types, so we give three separate algorithms
for good, bad and ugly polynomials.

All algorithms start by querying the oracle O (x) at all x ∈ Fp , and computing
(x

p

)
for all x ∈ Fp .

These results are then saved in a table and whenever we need an oracle query or a Legendre
symbol we read them instead of computing an expensive symbol or querying the oracle multiple
times.

3.2.1 Good polynomials algorithm

Recall that f is good if it is an irreducible polynomial of degree r ≥ 3 and the stabiliser of f is
trivial or the M -orbit of f has size p3 −p.

Precomputation

In the precomputation stage we generate a table T containing
{

fm
}

L and a description of m for
all Möbius transformations m as described in Section 3.1.1. Since f is good, the table T contains
p3 −p different sequences.

Search

The search is done by trying random g (x) of degree r and computing
{

g
}

L until we find a collision,
which we expect to find after O(pr−3) trials. For each trial g is evaluated at L points, and L

Legendre symbols are extracted, so the run-time can be measured in the number of Legendre
symbols extracted which is O(pr−3L).

3.2.2 Bad polynomials algorithm

Recall that f is bad if it is an irreducible polynomial of degree r ≥ 3 and the stabiliser of f is
non-trivial or the M -orbit of f has size p3−p

r ′ for some r ′ > 1. It follows from Lemma 3.1.3 that
Stab( f ) is isomorphic to Z/r ′.

The first step is to find Stab( f ), the stabiliser of f . A straightforward way to find it in O(p3) is by
enumerating M and isolating the matrices that fix f . Appendix A.1 describes a non-trivial way to
find it in O(p2 logr ) steps.

Call m any generator of Stab( f ). The matrix m is rational so it has a Jordan canonical form of one
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of the following three types:(
a 0

0 b

) (
λ 0

0 µ

) (
a 1

0 a

)
Rational Irrational Non-diagonal

where a,b ∈ Fp \ {0} and λ,µ ∈ Fp2 \Fp , conjugates of each other. We can exclude non-diagonal
matrices since they have order p, while m has order r ′ < p.

Let D be a diagonal matrix of order r ′ and P a change of basis matrix (these can be chosen
uniquely from a set of representatives given in Appendix A.1) such that

m = P D P−1.

The polynomial fP is stabilised by D as the following formula shows

D · fP = (PD) · f = (mP ) · f = P · fm = P · f = fP .

Therefore fP satisfies fP ( u
v x)( v

u )r = fP (x) where (u, v) = (a,b) or (λ,µ). This sets the following
constraints on the coefficients of fP

fP (x) = xr +kr−1xr−1 + . . .+k2x2 +k1x +k0 = xr +
r−1∑
i=0

ki xi

(D · fP )(x) = xr +kr−1( u
v )r−1xr−1 + . . .+k1( u

v )x +k0 = xr +
r−1∑
i=0

ki ( u
v )i xi

from which it follows that

ki = ki ( u
v )i for i = 0,1, . . . ,r −1. (3.5)

Since u
v has order r ′ we have ki = 0 for all i that are not multiples of r ′.

The goal is to search polynomials which satisfy (3.5) in order to reduce the search space from
O(pr ) to O(pr /r ′

).

Precomputation

The precomputation done by creating a table T which satisfies the following two constraints:

• For each {t }L ∈ T , the polynomial t is in the orbit of f .
• For each {t }L ∈ T , the polynomial tP satisfies (3.5).

The Legendre sequence { f }L of the polynomial f is not the only sequence in T . There is a family
of O(p) polynomials t in the orbit of f such that tP satisfy (3.5). However, the two classes differ
for the two types of polynomials, so we treat them separately.
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Rational. When D is rational, P is rational too, so the polynomial fP is in the orbit of f . If C is a
rational diagonal matrix, C · fP is another polynomial in the orbit of f satisfying (3.5). The total
number of such polynomials is p−1

r ′ since matrices C can be chosen up to stabiliser of fP which is
〈D〉. A set of representatives is

C1 =
{(

g i 0

0 1

)∣∣∣g ∈ F∗p generator, 0 ≤ i < p−1
r ′

}
. (3.6)

We define the table T to be the table containing {PC P−1 · f }L together with a description of C for
all C in C1. It has p−1

r ′ elements, and for all polynomials t in the table, tP satisfies (3.5).

Irrational. When D is irrational, P is too, so fP is not in the orbit of f . There are additional
constraints on fP following from the rationality of m. For any element x ∈ F2

p we denote with x

the conjugate of x. We also denote with n the element-wise conjugate of n ∈M . Then:

m = P

(
λ 0

0 µ

)
P−1 = m = P

(
λ 0

0 µ

)
P−1 = P

(
µ 0

0 λ

)
P
−1

.

Let AP
..= P−1P . From the definition of AP and the above formulas it follows that

A−1
P = AP(

λ 0

0 µ

)
AP = AP

(
µ 0

0 λ

)
.

These constraints imply that AP = ( 0 α
1/α 0

)
for some α ∈ Fp2 . The action of AP is the same as the

action of
(

0 s
1 0

)
where s =αα ∈ Fp . Note that s can be computed and, up to choosing a different

representative for P , can be set to be equal to 1. We further have

AP · fP (x) = fPAP (x) = fP (x) = P · f (x) = P · f (x) = P · f (x) = fP (x),

which gives new constraints on the coefficients of fP (x):

fP (x) = xr +kr−1xr−1 + . . .+k2x2 +k1x +k0 = xr +
r−1∑
i=0

k i xi

(AP · fP )(x) = xr + k1s
k0

xr−1 + . . .+ kr−1sr−1

k0
x + sr

k0
= xr +

r−1∑
i=0

kr−i sr−i

k0
xi .
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This translates to

kp+1
0 = sr

kr−i = k0k i

sr−i
(3.7)

kp−1
r /2 = sr /2

k0
if r is even.

The polynomial fP is not the only polynomial satisfying (3.5) and (3.7). Certainly (3.5) is satisfied
for every C · fP where C is a diagonal matrix. In order for C · fP to satisfy (3.7) we need AP · fPC = fPC ,
which implies

(C APC
−1

) · fP (x) = fP (x).

This condition, together with C being diagonal implies that C is contained in{(
c 0

0 c

)∣∣∣c ∈ F∗p2

}
.

Multiplying C on the right by a rational scalar matrix or by an element of Stab( fP ) = 〈D〉 does not
change the polynomial C · fP . Therefore C can be chosen from a reduced set of representatives,
for example the following:

C2 =
{(

g i 0

0 g i

)∣∣∣g generator of F∗p2 , 0 ≤ i < p+1
r ′′

}
,

where p+1
r ′′ = gcd(p +1, p2−1

r ′ ), in other words r ′′ = r ′
gcd(r ′,p−1) . The choice of r ′′ follows from the

exponents of g being chosen modulo p +1 (action of F∗p ) and modulo p2−1
r ′ (action of r ′’th roots

of unity).

The table T contains {PC P−1 · f }L together with a description of C for all C in C2 (note that
PC P−1 is rational). It has p+1

r ′′ elements, and for all polynomials t in the table, tP satisfies (3.5)
and (3.7).

Search

In the search phase we consider g (x) = xr +∑r /r ′−1
i=0 gi xi that satisfy (3.5) and compute {gP−1 }L

until we find a hit in T . In that case f = g(PC )−1 . We analyse the run-time separately for the two
types of polynomials.

Rational. For rational polynomials, the coefficients gi are in Fp . The total number of polynomials
g is pr /r ′

and we expect to find a hit after O(pr /r ′−1r ′) trials.
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Irrational. For irrational polynomials, the coefficients gi are in Fp2 and they satisfy (3.7). There-
fore there are p +1 choices for g0, the gi with 1 ≤ i < r /2 can be chosen freely, giving p2 choices
each, and the g j for r /2 < j are constrained to one value for each choice of the previous coeffi-
cients. If r is even, gr /2 has p −1 choices. The total number of polynomials g is O(pr /r ′

) and we
expect to find a hit after O(pr /r ′−1r ′′) trials.

3.2.3 Ugly polynomials algorithm

We recall that f is ugly if it is a reducible polynomial of degree r ≥ 3. Write f (x) = l (x)h(x) where
rh = deg(h(x)) ≥ r /2.

The Legendre symbol is multiplicative, and Möbius transformations are homomorphic with
respect to polynomial multiplication, so we have { fm}L = {lm}L{hm}L , where the multiplication is
element-wise. It follows that { fm}L{lm}L = {hm}L .

Precomputation

We create two tables, T1 containing { fm}L for all m ∈ M , and T2 containing sequences of all
polynomials g (x) of degree r − rh (the candidates for lm(x)). The main table T is a product of T1

and T2, i.e., a table of size O(pr−rh+3) containing { fm}L{g }L for all m ∈M and all g .

Search

The search phase consists of trying random polynomials t (x) of degree rh until we find a hit in
T . This gives {t }L = { fm}L{g }L , and implies that t (x) = hm(x), g (x) = lm(x), and finally f (x) =
gm−1 (x)tm−1 (x). We expect to find a solution in O(prh−3) trials.

The above description glosses over a number of minor details that one needs to be careful about.
The run-time is actually prh divided by the size of the orbit of h(x).

If h is good, then its orbit is maximal and we are good.

If h is bad, we can test all bad h in time O(prh /r ′
h L) for each r ′

h | rh , so in total O(prh /2L). For both
Type 1 and Type 2 we can enumerate all polynomials h in time O(prh /r ′

h−1r ′′
h L) with r ′′

h defined as
in (3.2.2).

If h is ugly, we analyse two cases:

1.) h has an irreducible factor of degree at least 3.

Suppose h = h1h2 of degrees r1 and r2. We select a set of O(pr1−3) representatives for
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h1, multiply them with polynomials of degree r2 and search for {h}L = {h1}L{h2}L in T ,
achieving an O(prh−3) run time.

2.) h has all factors of degree ≤ 2.

There are three subcases to consider:

- h is divisible by a product of three linear polynomials. Then at least one hm is divisible
by x(x −1)(x −2), so we test for h = x(x −1)(x −2)h2 where h2 are of degree rh −3.

- h is divisible by a linear and quadratic polynomial. Then one of hm is divisible by
x(x2 −u) where u is a chosen non-square, so we test for h = x(x2 −u)h2 where h2

are of degree rh −3.

- h is divisible by two quadratic polynomials. Then one of them can be considered to
be x2 −u where u is a non-square, and the other one has only one degree of freedom.
We test for h = (x2 −u)h1h2 where h1 is selected from O(p) quadratic polynomials
and h2 is of degree rh −4.

Therefore if f is ugly we can find it in O(prh−3) trials irrespective of the type of h.

3.2.4 Time-memory tradeoff for low degrees

The run-time of the algorithm depends mainly on the search stage. However for some low degree
polynomials, the precomputation may take longer than the search stage. In some cases a time-
memory tradeoff allows to reduce the complexity further.

Good polynomials

For r ≥ 6, the table-based collision search with an O(p3) table and O(pr−3) trials is optimal, given
the approach as presented. For 3 ≤ r ≤ 5, a tradeoff with an O(pr /2) table and O(pr /2) trials is
better.

Bad polynomials

If r /r ′−1 < 2 then the bottleneck is the precomputation phase that takes O(p2 logr ) steps. This
can happen when r ′ = r /c for c = 1,2. Not much can be done to reduce the precomputation cost
since testing badness costs O(p2 logr ). For r = 3 we can lower the attack complexity to O(p1.5)

with table-based collision search for good polynomials.

Ugly polynomials

We test if f is ugly by trying to find it using the ugly polynomials algorithm for each rh =
⌈r /2⌉, . . . ,r −1. The precomputation cost is O(pr−rh+3) and the search cost is O(prh−3).
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If r − rh + 3 > rh − 3, i.e., rh < r /2+ 3, then we can do a tradeoff. Call ε ..= rh − r /2 < 3. We
compute only the action of pε many matrices on f , and after multiplying with the table T2 of pr−rh

sequences, obtain a table of size pr /2. We expect to finish the search phase in O(prh−ε) =O(pr /2)

if a collision exists. Otherwise we assume that f does not have a factor of degree rh and move to
rh +1.

3.2.5 Algorithm comparison

In Table 3.1 we provide a comparison of the best known algorithms for solving the degree r ≥ 4

generalised Legendre symbol problem. The run-times are given in big-O’s. Size of the stabiliser of
f is denoted with r ′, and r ′′ = r ′ if r ′ | p −1 and r ′′ = r ′/gcd(r ′, p −1) otherwise. We denote with
rh the degree of a factor of f which is at least r /2. Complexity is given in the number of Legendre
symbols computed/extracted. In all cases we need p queries.

Table 3.1: Comparisons of GLSP solving algorithms.

good polynomials search precomputation memory

Khovratovich [Kho19] pr−1r log p r log p r log p
Beullens et al. [BBUV20] pr−2r 2 log2 p p2 p2

Our algorithm pr−3r log p p3r log p p3r log p

bad polynomials search precomputation memory

Khovratovich [Kho19] pr−1r log p r log p r log p
Beullens et al. [BBUV20] pr−2r 2 log2 p p2 pr−rh r log p
Our algorithm pr /r ′−1r ′′r log p p2r log p (p/r ′′)r log p

ugly polynomials search precomputation memory

Khovratovich [Kho19] pr−1r log p r log p r log p
Beullens et al. [BBUV20] prh r log p pr−rh r log p pr−rh r log p
Our algorithm prh−3r log p pr−rh+3r log p pr−rh+3r log p

3.3 Algorithm for r = 2

If r = 2 all polynomials are bad or ugly. There is a deterministic O(p) algorithm for finding f in
this case – we first precompute the action of {

(
1 a
0 1

)|a ∈ Fp } on the polynomial f , which assures
that the precomputed table contains the Legendre sequence of a polynomial of the form x2 − c :(

1 a
0 1

) · (x2 − t x +n) = x2 − (t −2a)x + (n +a2 − t a).

Then we test all p such polynomials until we find f .
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3.4 Algorithm for r = 1 and the limited query case

In the Section 3.2 we query the oracle at all elements of Fp and then extract up to p3−p sequences.
With p −o(p/L) queries we still have access toΩ(p3) sequences, so the same algorithms work. In
this chapter we show how to solve the problem when the number of queries is limited.

When the secret polynomial is linear doing more than O(p1/2L) queries is wasteful. In fact, there
is a straightforward algorithm - we create a table with O(p1/2) sequences by doing L+1 queries
per sequence. This allows us to find the secret polynomial after O(p1/2) trials. This is essentially
the algorithm in [Kho19], where the author further provides a memory-less approach.

The main difference in the linear case with respect to the higher degree case is that we are allowed
M ≤p

pL queries to the oracle. A natural question arises – how many different group actions
can we obtain from only M queries? The same question can be asked in the higher degree case,
and the algorithm we provide can be directly applied in that scenario. One would expect a cubic
increase, as with full access to the oracle, but this seems to be out of reach.

3.4.1 Linear shifts subgroup

Let G be the subgroup of M consisting only of linear Möbius transformations,

G =
{(

d i

0 1

)∣∣∣d ∈ F∗p , i ∈ Fp

}
⩽ PGL2(Fp ).

An element (i ,d) ..= (
d i
0 1

)
sends f (x) to fi ,d (x). In order to extract { fi ,d (x)}L from the oracle O of

f , we compute (
fi ,d (x)

p

)
=O

(
d x + i

0x +1

)(
0x +1

p

)r (
d

p

)r

=O (d x + i )

(
d

p

)r

for all x ∈ [0,L). If O is queried in [0, M), then we can extract all fi ,d such that d x + i ∈ [0, M) for
all x ∈ [0,L). This creates the following constraints on i ,d :d = 1,2, . . . ,

⌊ M−1
L−1

⌋
i = 0,1, . . . , M −1− (L−1)d

or

d =−1,−2, . . . ,−⌊ M−1
L−1

⌋
i = (L−1)(−d), . . . , M −1.

The total number of eligible (i ,d) ∈G is

⌊M−1
L−1 ⌋∑

d=1
2(M − (L−1)d) = M 2

L−1
−M +O(L)

with the constant in O(L) being at most 2.

The limited query algorithm works as follows:

49



Chapter 3. Attack on the generalised Legendre pseudorandom function

Precomputation

Query O at [0, M). Extract O( M 2

L ) Legendre sequences { fi ,d }L and save them in a table T together
with descriptions of (i ,d).

Search

Search is done by trying random polynomials until we find a hit in the table, which is expected
after O( pr L

M 2 ) trials, in particular O( pL
M 2 ) for the linear PRF.

Further improvements

The cost of the precomputation is M queries and O( M 2

L ) sequence extractions. The cost of the
search is O( pL

M 2 ) trials. A straightforward way to do a sequence extraction is to read the pre-saved
queries L times. Due to the nature of the sequences, this cost can be amortised to O(1) per
sequence. Doing a trial constitutes of evaluating the polynomial in L places and computing L

Legendre symbols. Again, this cost can be amortised to O(logL) per trial. These implementational
improvements are not within the scope of this thesis, and they are explained in detail in [KKK20b].

3.4.2 Algorithm comparison

The first algorithm by Khovratovich [Kho19] computes sequences with on-the-go queries, and
directly computes Legendre symbols. The main benefit of this approach is that it is memory-less,
but it requires O(

p
p) oracle queries. This was improved on in [BBUV20] by extracting sequences

rather than querying/computing symbols, and increasing the sequence yield to M 2/L2. In our
terminology, the authors of [BBUV20] use the same group G but only elements (i ,d) such that
i < d , leading them to a table which is a factor of L smaller with respect to ours. Using the full
group G as in 3.4.1 comes with cheaper sequence extraction in the precomputation stage, but
more expensive sequence extraction in the search stage thus the loglog p factor in Table 3.2. A
more detailed analysis is given in [KKK20b].

Table 3.2: Comparisons of best known algorithms for the linear Legendre PRF challenge, in big-O’s
andΘ(log p)-bit word operations. We denote with t the time to compute a Legendre symbol

Algorithm search precomputation memory best obtainable run-time

Khovratovich [Kho19] p t log2 p
M M log p

p
p t log p

Beullens et al. [BBUV20] p log2 p
M 2 M 2 M 2

log p
p

p log p

Our algorithm p log p loglog p
M 2

M 2

log p M 2
√

p loglog p
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3.4.3 Experiments

Ethereum research posted a number of challenges [Fei19] for breaking the linear Legendre PRF.
In each challenge we are given a prime p of size varying from 64 to 148 bits, and M = 220 bits of
the sequence {k}M as defined in (1.3). The challenge is to recover the key k. In each case we were
able to precompute a table with ∼ 234 sequences. The most interesting is of course challenge
#2 since it had not been solved before. The actual number of trials performed in challenge #2

is 246.97 = 1.38e14 which is far less than expected. This can be explained by large variance and
by sheer luck. The two most difficult challenges (#3 and #4) are out of reach with the proposed
attack and its implementation. An in-depth explanation of the experiments is given in [KKK20b].
The code and the keys of the first three challenges can be found at

https://github.com/nKolja/LegendrePRF.

Table 3.3: Results and estimates for solving the Legendre PRF challenges [Fei19].

Challenge Prime Expected Observed Expected Observed
bit size # trials # trials core-hours core-hours

0 64 230 230.78 290 sec 490 sec
1 74 240 239.53 82 59
2 84 250 246.97 1.4e5 1.72e4
3 100 266 - 9.1e9 -
4 148 2114 - 2.5e24 -

3.5 Conclusion

3.5.1 Security recommendations

Following our argumentation, the most secure PRFs are the ones coming from good polynomials.
The best way to start is to make sure that the secret key is an irreducible polynomial.

The number of bad polynomials can be shown to be small. There are at most pr /r ′+2r ′ polynomials
with a stabiliser of size r ′, since each of them is conjugate to a polynomial satisfying (3.5). By
using the inclusion-exclusion principle we see that the number of bad polynomials is bounded
by ∑

r ′|gcd(r,p2−1)
r ′>1

−µ(r ′)pr /r ′+2r ′ =O(pr /3+2r ). (3.8)

Therefore a random polynomial is unlikely to be bad. The easiest way to assure that our secret
polynomial is not bad is to choose p and r such that gcd(r, p2 −1) = 1.

We also recommend using higher degree polynomials in order to increase security as opposed to

51

https://github.com/nKolja/LegendrePRF


Chapter 3. Attack on the generalised Legendre pseudorandom function

increasing the size of the field and using the linear Legendre PRF. The main reason behind this
choice is efficiency. Let M(n) be the cost of multiplying two n-bit numbers. On a field of size n

bits, the Legendre symbol can be computed in O(M(n) logn) operations [BZ10], and degree-r

polynomial evaluation can be computed in O(r M(n)) with Horner’s method.

Generalised Legendre PRF with a polynomial of degree r and a field of size n provides at least as
much security as the linear Legendre PRF on a field of size r n. The cost comparison is given in
Table 3.4.

Table 3.4: Cost comparison of linear and high degree Legendre PRF

Protocol Multiplication Legendre symbol Oracle evaluation

degree 1 O(n) O(M(r n) log(r n)) O(M(r n) log(r n))
degree r O(r M(n)) O(M(n) log(n)) O(M(n)(r + logn))

3.5.2 Future directions

As it currently stands, all classical attacks on the Legendre PRF are based on collision-searching
methods. This bounds the attack from below by the square root of the key space, and no better
attacks for finding the secret key are known.

There are quantum algorithms which solve the problem in polynomial time, however they rely on
a quantum oracle. So far there are no quantum algorithms that solve the classical oracle problem
in subexponential time, even though some improvements have been done in that direction [FS21].
Given that Legendre symbol based cryptographic schemes are becoming increasingly popular,
this subject would certainly be of interest.

Another interesting research direction would be to give an algorithm which enumerates all Möbius
transforms which can be used with a predetermined set of queries.

When M = p −o(p/L), then we can extractΩ(p3) sequences, and when M is “small” we showed
how to extract M 2/L sequences. Can one obtain more than a quadratic yield for small M? At what
point does the yield increase from quadratic to cubic? Can the yield increase by changing the
definition of sequences? All of these are interesting questions which can be studied, but so far
seemed out of reach.
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4 Full key recovery side-channel at-
tack against ephemeral SIKE on the
Cortex-M4
In this chapter we present a full secret key extraction attack using a side-channel power analysis
of recommended implementation of SIKE on the ARM Cortex-M4 microcontroller. The target of
our attack is the three-point ladder given in Algorithm 5, page 29. We firstly target the three-point
ladder with an attack which processes multiple traces obtained from computations done with
the same secret key. Then, we show how to extend the attack to a fully ephemeral setting where a
single trace is enough to fully extract the secret key.

Because the attack requires just a single trace it can be applied at any stage of the protocol: key
generation, key encapsulation and key decapsulation.

In addition to the attack, we argue that many countermeasures that were mentioned in the
literature [ZYD+20] are defeated by the attack. Finally, we recommend the well-known projective
point coordinate randomisation, which stops our attack with a negligible performance overhead.

Side-channel analysis of supersingular isogeny protocols was initially conducted in [KAJ17]
in which the authors address concerns about power analysis without carrying out a practical
experiment. The first paper to practically evaluate the side-channel vulnerabilities of SIKE is due
to Zhang et al. [ZYD+20]. In their study, the authors fully describe a practical differential power
analysis on the three point ladder of the key decapsulation procedure which requires thousands
of traces, and discuss potential countermeasures. However, since the authors rely on the fact that
the private key is fixed across the measurements, the attack is applicable only to the semi-static
settings of the SIKE protocol. We extend these results and target SIKE in ephemeral settings.

In the past, many papers have already mounted horizontal attacks against the classical Mont-
gomery ladder in the case of elliptic curve cryptography, such as [CFG+10], [PZS17], and [APS19].
We apply similar techniques, but on the variant of the ladder with three points used in SIKE.

Template attacks have also been explored against the elliptic curve scalar multiplication, for
instance in [MO09], [ZWMZ14], and [DPN+16]. As opposed to horizontal correlation power anal-
yses, template attacks require control over the input of the targeted procedure and sometimes
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even further interactions with the targeted device. Online template attacks [BCP+14] against
classical elliptic curve cryptography require only one power trace of the target device, but addi-
tional power measurements on the same or a similar template device are needed. Our horizontal
correlation power analysis does not rely on such a requirement and is executed purely offline. In
particular, our attack is based on an entirely different setup where, instead of correlating power
traces with each others, we correlate Hamming weights of processed values. Our results show
much stronger correlations due to the reliance on a specific leakage model, unlike the online
template attack which is leakage-agnostic.

Other post-quantum algorithms have been targeted by power analyses. In a similar fashion, Aysu
et al. [ATT+18] have attacked the lattice-based key exchanges of Frodo and NewHope with a
horizontal correlation power analysis. Bos et al. have addressed this attack in [BFM+19] and
proposed a profiled extend-and-prune approach. Recently, Sim et al. [SKL+20] have shown a
single-trace ephemeral-key recovery against various lattice-based key exchanges.

Finally, let us mention the work of Primas et al. [PPM17] in which the first single-trace attack on
lattice-based encryption was described using belief propagation. This work was recently extended
by Kannwischer et al. [KPP20] to a single-trace power analysis of the Keccak hash function, used
in various applications, including the hash-based signature scheme SPHINCS+.

4.1 Correlation power analysis

A Correlation power analysis (CPA) [BCO04] is a statistical known-text side-channel power analysis
that aims to deduce a portion of a secret value across multiple power measurements. A CPA aims
to use a correlation coefficient to quantify the link between power consumption and the values
processed by a processing unit. In the scope of this paper, we consider two types of CPA:

• Vertical CPA, which targets a fixed secret value across different executions of the attacked
algorithm by collecting multiple power traces that correspond to multiple executions of
the same operation.

• Horizontal CPA, which targets an ephemeral secret value using a single power trace that
correspond to multiple operations. These operations must be similar to allow the segmen-
tation of the power trace into multiple ones thereby simulating a vertical CPA.

In a typical threat model for CPA, the adversary has the capability of measuring the power con-
sumption of a target device which acts as a black-box key decapsulating device. The algorithm
inputs are not required to be manipulated but are supposed to be accessible by the target device.
As a result, a CPA attack is completely passive (i.e., non-intrusive) and can be mounted even
during a trusted communication between two honest parties.

Definition 4.1.1 (Pearson’s correlation coefficient). To assess correlation between the processed
values and the power samples, the Pearson’s correlation coefficient (PCC) is computed. Let n > 0

be the number of measurements, each of which consists of S > 0 power samples. Then, let
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T (s) ∈Rn be a vector of power samples synchronised at a same instant 0 ≤ s < S, and M ∈Nn a
vector of the Hamming weights of the processed values.

PCC(M ,T (s)) = Cov(M ,T (s))p
Var(M)Var(T (s))

. (4.1)

The overall attack consists of the following steps:

1. Find an operation in the attacked procedure which involves:

(a) A (small) portion of a secret value which is the same across all measurements.
(b) A known input (resp. output).

In the following, we refer to the result of this operation as the intermediate value.
2. Collect n > 0 power traces consisting of S > 0 power samples each, i.e., T (s) for 0 ≤ s < S,

that correspond to the computation of the intermediate value with different inputs (resp.
outputs).

3. Take a guess for the portion of the secret value involved in the intermediate value computa-
tion.

4. Compute the vector of intermediate values from the known inputs (resp. outputs) and the
secret value guess, and derive its corresponding vector of Hamming weight M .

5. For each vector of power samples at a same time, i.e., T (s) for each 0 ≤ s < S, compute
PCC(M ,T (s)).
This results in a vector of PCC at each moment in time.

Using a large enough n > 0 given the signal-to-noise ratio of the power consumption, a strong
PCC at any point in time indicates a valid guess, while a weak PCC at every point in time can rule
out said guess.

Figure 4.1 gives a visual example of a CPA. In this example, the portion of the secret value is only
one bit, resulting thus in two possible intermediate values. The PCC computation takes one of
the two Hamming weight vectors M sketched on the left of the figure, and each vector of power
samples at a same timing instant shown on the right, to produce each point in the corresponding
PCC plot below. Since the PCC plot for the bit guess of one shows a spike, the corresponding bit
for the secret value is successfully recovered.

4.2 Side-channel analysis

In this chapter, we explain how to exploit the link between power consumption and processed
data in order to recover private key bits.
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Figure 4.1: Visual example of a CPA. Correlations between two arrays of Hamming weights and the
power traces are plotted in the bottom. A strong correlation indicates that the bit value associated
to these power traces is 1.

4.2.1 Point of attack

The main point of attack is the three-point ladder (see Algorithm 5). This is a function which
takes as input an elliptic curve E , two points P and Q on that curve, and a secret key sk. The
“curve and points” triple may be thought of as a part of the public parameters (E0,PI ,QI ), or a
public key pkI = (E I ,φI (P J ),φI (Q J )) with {I , J } = {A,B}. The three-point ladder computes the
point R = P + [sk]Q where sk is the private key of the computing party.

Recalling Chapter 2.5.2, the triple (E ,P,Q) containing a curve and two points is represented as
three field elements (xQ , xP , xQ−P ), where Q = [xQ : 1], P = [xP : 1], Q −P = [xQ−P : 1]. The
coefficient a defining the curve E can be obtained from these values with a small number of
modular multiplications, squarings and a single inversion, as shown in formula 2.35.

The main ingredient of the three-point ladder is a double-and-add function xDBLADD given in
Algorithm 4 on page 29. This function takes as input a triple of points R0,R1,R2 ∈ E in Montgomery
coordinates such that R2 = R0−R1, the coefficient a of the curve, and outputs ([2]R0,R0+R1,R2).

We show how the computation of R = P + [sk]Q is done in practice in Algorithm 8.
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Algorithm 8: SECRET POINT COMPUTATION
Input: A public key or public parameters xQ , xP , xQ−P ,
an integer sk =∑ℓ−1

i=0 ski 2i with ski ∈ {0,1}.
Assumes: [xP : 1], [xQ−P : 1] ∉ {[1 : 0], [0 : 1]}.
Output: P + [sk]Q , where Q = [xQ : 1], P = [xP : 1].
Procedure sec-point(xQ , xP , xQ−P , sk)

1 a = get_a(xQ , xP , xQ−P ) // See formula 2.35, page 26.
2 Q, P, Q −P ← [xQ : 1], [xP : 1], [xQ−P : 1]
3 R = three-point ladder(Q,P,Q −P, sk, a) // See Algorithm 5, page 29.

return R

The goal of the attack is to measure the power consumption of the xDBLADD operation and to
deduce if the function was executed with or without the swap at step 5 of Algorithm 5. We may
assume that we know the private key up to bit i −1, by induction. We also know the starting points
Q,P,Q −P since they are public. Therefore, we may obtain the two possible inputs for xDBLADD,
and we know how they relate to the value of the i th bit of the private key. The two inputs and their
Hamming weights are computed and the power trace of certain instructions within xDBLADD is
correlated with the Hamming weights. Thanks to CPA, this allows us to distinguish when the i th

bit is zero or one.

Double-and-add

Despite the involvement of a (random) bit of the private key, xDBLADD is a deterministic function.
The inputs and outputs of each subprocedure in xDBLADD depend only on the original inputs of
the function. As a result, an educated guess on the original inputs allow us to infer the results of
all the operations involved in xDBLADD.

The function consists of 7 multiplications and 4 squarings of Fp2 elements, and multiple field
additions, subtractions, and modular reductions. Each Fp2 multiplication and each squaring
contain two multi-precision additions of Fp elements, referred to as “mp_addfast”. This multi-
precision addition is the operation on which our attack is focused. In total, there are 11×2 = 22

mp_addfast functions, out of which only 10 have inputs which differ in case of a swap at step 6

of the three-point ladder. The code of xDBLADD can be found in Figure C.1, and the code of the
Fp2 multiplication and squaring function in Figure C.2, C.3.

Multi-precision addition

In the Cortex-M4 implementation of SIKE, the mp_addfast is written in assembly. The function
computes the addition of two Fp elements. Depending on the size of p, each field element
is saved in an array of n ∈ {14,16,20,24} words of 32-bit. Each mp_addfast executes 2n load
instructions (LDMIA), n store instructions (STMIA), and n additions (ADDS, ADCS). These are
executed in batches of four consecutive additions, due to the limited number of available registers
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on the Cortex-M4. The code of the mp_addfast function can be found in Figure C.4.

4.2.2 Vertical attack

In a vertical attack against SIKE, we measure multiple executions of the three-point ladder in
which the target’s private key is fixed, but the client public key inputs are different. From these
traces, we concentrate only on a single mp_addfast instruction per xDBLADD, i.e., per bit of the
private key. Within the mp_addfast, we can decide to focus even further on the first addition
instruction. We can thus compute the two possible outputs of the first ADDS depending on the
cswap, for each public key, and then correlate the two vectors of Hamming weights of these
outputs with the power traces using the CPA procedure from Section 4.1. This process can be
repeated for each bit of the target’s private key, as the correctness of each guess depends on the
correctness of previous ones, resulting thus in an extend-and-prune attack.

4.2.3 Horizontal attack

In the horizontal attack scenario, we can measure only one power trace for a single execution of
the three-point ladder. The same approach as in the vertical attack cannot be used because there
would not be enough data to obtain strong correlations. We can work out this issue and re-obtain
“verticality” by combining the power traces of all 10 mp_addfast functions within each xDBLADD.
This way, we obtain 10 power traces with which we can correlate pairs of inputs – similarly as in a
vertical attack with 10 power traces.

We can further improve this attack. A multi-precision addition takes two Fp elements as input
and gives one as output. Each one of the 2n input words of 32-bits is loaded once and then used
in the addition instruction, and the n output words of 32-bits are stored. In total, there are 3n

words of 32-bits which pass through the pipeline registers and whose Hamming distance from
the previous word in the pipeline are related to the power consumption.

For each of the 3n words, we compute the PCC between the 10 power traces and the 10 pairs of
hamming weights of 32-bit words accounting for the two guesses of the current bit of the private
key. For each word, a spike in the correlation is expected at a different position depending on
the instruction which uses this particular word. The locations of spikes can be deduced from
the shape of the power traces. Once the 3n pairs of correlations are computed, we can add them
up such that the locations of the expected spikes are aligned. We expect to end up with two
correlations for each guess of the private-key bit, with a clear spike in the correlation plot of the
correctly guessed value.

In presence of noise in power measurement, the private key guesses may be erroneous. A single
wrong guess of a bit of the private key leads to completely inconclusive results, because the
following guesses depend on the correctness of the previous bits. Therefore, it is of particular
importance that no erroneous guesses are made in the process of key extraction. We propose two
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Figure 4.2: Depth search.

measures to approach this problem.

Depth search

When the guess of a single bit gives inconclusive results, we can proceed by making four guesses
for the next two bits in hope of finding a correlation coefficient with a notable spike. In particular
we can make a guess for k consecutive bits, obtaining in total 2k different combinations. For
each combination we compute a PCC for each of the k bits. In total there are 2(2k −1) correlation
coefficients. We then add up all the PCCs for each k-bit combination and we guess the current sk

bit to be the trailing bit of the combination with the strongest correlation.

Increasing verticality

We can increase verticality (i.e., the amount of power traces in the horizontal settings) by com-
puting correlations for bits in windows of size k. If, for one bit, 10 mp_addfast functions can
be measured from a single xDBLADD, then, for k bits, there will be k ×10 traces of mp_addfast
functions from the k consecutive xDBLADD functions. In total, 2k hypotheses need to be made
(one per bit), and 2k correlation coefficients are computed for 10k power traces.

Finally, rather than performing the attack on contiguous windows of k bits, we select only one
bit of the target’s private key to be the trailing bit of the k-bit combination with the strongest
correlation. This way, we can re-run the process starting from the bit right afterwards as a way to
correct errors due to the potential proximity of strong correlations. This process resembles the
error-correction procedure introduced in [DPN+16].
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Also, we mention that other operations, such as fpmul_mont and fpsub, can be measured and
combined to increase verticality. While these are dissimilar operations and may leak information
differently than mp_addfast, they may still add information to the overall selection of target’s
private bits.

4.3 Experimental results

In order to validate the horizontal attack described in Section 4.2, we reproduced the key recovery
on a programmable board which includes the ARM Cortex-M4 microcontroller (the target) and
runs the reference Cortex-M4 implementation of SIKE [SAJA20]. Details on the hardware setup,
the equipment, and the specifications can be found in [GdGK21].

4.3.1 Target implementation

The attacked implementation is the official SIKE implementation adapted for (32-bit) ARM
Cortex-M4 microcontrollers [SAJA20], which is part of the official submission package. The
implementation already has some levels of side-channel resistance in that it is constant-time. We
attacked SIKE instantiated with a prime of 434 bits (i.e., SIKEp434); a choice that we elaborate
on in this section.

We made modifications in the SIKE implementation to ease the collection and the pre-processing
of the traces. Note that these modifications were made for efficiency purposes and are by no
means necessary for our attack to work. In other words, we emphasise that the attack can be
mounted on the original implementation of SIKE presented in [SAJA20] without any difficulty.

The list of modifications are the following:

• A trigger is toggled when the double-and-add operation of the three-point ladder enters
into an mp_addfast procedure that depends on the swap.

• An idle delay of about 1 millisecond was introduced in between each mp_addfast call,
and of about 1 second after each loop iteration of the three-point ladder.

Limitations of the software. While the introduction of a trigger and multiple delays results in
an unrealistic attack scenario, we emphasise on the fact that the attack is still possible on an
unmodified SIKE implementation. The process of segmenting the power traces, as well as the
correlation and Hamming weights computations can be done offline, after the power traces have
been sampled. In a plain attack, as opposed to our experiment, the traces acquisition will be
synchronised on serial communication. Then, the targeted operations need to be identified
within the full resulting power trace (e.g., using cross-correlation techniques, as in [DPN+16]), so
the sub-power traces corresponding to the attacked instructions can be manually segmented
and carefully aligned to perform the CPA. This cumbersome process is not the main focus of our
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study and was therefore duly skipped.

Other SIKE instances

To achieve various levels of security, the original SIKE submission [JAC+17] presents four different
parameter sets, each of which with a prime of different size ranging from 434 to 751 bits (see Figure
2.4). While instantiating SIKE with a larger prime offers stronger security guarantees against
theoretical cryptanalysis, larger instances present a wider attack surface in a single-trace power
analysis. This property was also observed by Bos et al. [BFM+19], and is due to the increased
number of instructions executed which, therefore, yield more power measurements. As a result,
our attacked instance (SIKEp434) is expected to be the hardest to attack with a single trace.

Also, the compressed instances of SIKE are prone to the same horizontal attack, because the
starting points of the three-point ladder are deterministically obtained from the compressed
public key.

4.3.2 Collection of traces

Our experiment simulated a portion of the SIKE key exchange between Alice (ephemeral party
represented by the computer) and Bob (static party, the target, represented by the Cortex-M4);
namely, the key decapsulation procedure. Our attack scenario can be summarised with the
following steps:

1. On the computer, generate Bob’s key pair at random, and send Bob’s private key to the
Cortex-M4.

2. Given Bob’s public key, generate Alice’s key pair at random.
3. Send a public key to the Cortex-M4 and measure the power consumption of:

• only the second mp_addfast call involved in steps 6 and 8,
• and both mp_addfast call involved in steps 16, 17, 18, and 19,

This attack scenario was repeated a total of 460 times. Each of these experiments includes the
power traces of the 10 mp_addfast calls from the loop iterations for all the 217 bits of Bob’s
private key. Hence, 460×10×217 = 998,200 different power traces were acquired during that
experiment.

Power traces. Power traces are measured with an oscilloscope at a rate of 2.5e8 samples/second
during a period of 20µs. As a result, a power trace for a single execution of mp_addfast includes
5,000 power samples. A filter was applied to the power traces in order to down-sample them. In
addition to down-sampling, the high frequencies were removed because they were deemed
unnecessary. More information on the filtering of the traces in this attack can be found in
[GdGK21]. The figure 4.3 shows the average power consumption of an mp_addfast execution
before and after filtering.
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Figure 4.3: An mp_addfast power trace before and after filtering.

The traces and the attack are made accessible at https://github.com/nKolja/SIKE-HPA-2021.

4.3.3 Horizontal CPA procedure

Using the power traces, we performed a horizontal CPA on each iteration of the loop in the three-
point ladder (Algorithm 5, page 5). Each time, a single bit of the target’s private key is attacked,
with the assumption that the previous bits are known. This process can then be repeated across
all the bits of the key. Since a single bit is hypothesised at each step of the horizontal attack, there
are only two hypotheses to consider:

• The points R and R2 were swapped (the bit is different from the previous bit).
• The points R and R2 were left un-swapped (the bit is the same as the previous bit).

A strong correlation between the power traces for one loop iteration and the values corresponding
to one of the two hypotheses indicates the correctness of the hypothesised bit. As the attack moves
forward, a successful recovery of the first bits allows the recovery of the next ones. Therefore, a
full-key recovery can be incrementally mounted in an extend-and-prune manner.

Power traces segmentation

Due to the ephemeral settings of the protocol, we have access to only a single trace per loop
iteration involving a single bit of the target’s private key. Therefore, in order to apply a classical CPA,
we need to obtain verticality, i.e., find a way to obtain a certain amount of multiple different power
samples which are linked to a same portion of the private key. In our case study, we segmented the
power trace that corresponds to an iteration of the three-point ladder into 10 different power traces,
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each of which corresponding to an mp_addfast execution, for which, given either hypothesis,
the full input and output (and thus, relevant Hamming distances information) are known. As a
result, our horizontal CPA will amount to a vertical CPA with 10 power traces and 2 hypotheses.

CPA enhancements

To further improve the success of our attack, we have inspected the targeted function for which
the power traces were collected. Because, in our experiment, p is 434-bit long, each element is
saved as an array of ⌈434/32⌉ = 14 words of 32 bits. This results in exactly 14 addition instructions,
hence 14 leakage points, in a single mp_addfast power trace.

Moreover, we considered the leakage model from a Cortex-M4 microcontroller as explained
in [CGD18]. Because the power consumption leaks in the Hamming distance between the pipeline
registers, we actually obtain three leakage points on a power trace per instruction, coming from
the Hamming distance between:

(1) the first inputs of the current and the previous instruction,
(2) the second inputs of the current and the previous instruction, and
(3) the output of the current and the previous instruction.

This results in an additional segmentation of 3×14 = 42 points of leakage. For each point of
leakage, a PCC is computed with the 10 mp_addfast power traces and the 10 Hamming distances.

We expect each of these PCCs to produce a spike at a different point in time in the correlation
plot which we try to recover. The location of the spike corresponds to the position at which the
associated 32-bit word is processed by a pipeline register. Each of these leakage points is constant
throughout the mp_addfast executions and the three-point ladder loop (assuming the power
traces are properly aligned, which can be automated using basic peak alignment methods). These
positions can even be identified by analysing the spike structure of the power trace (using, e.g.,
cross-correlation techniques).

Finally, the 42 PCCs at each point of leakage are added together to produce a larger spike. This
consists of aligning all correlation plots on their leakage points and adding them together. We
expect the difference of added correlation coefficients to be large enough to correctly validate the
private bit.

4.3.4 Results

Among the 460 trials, our experimental results returned a resounding success rate of 100% in
recovering the full key. None of the improvements described in Section 4.2.3 were required.
An example of the corresponding CPA is shown in Figure 4.4 where six bits are shown to be
successfully recovered.
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This proof of concept shows that, even in ephemeral settings, the official ARM implementation of
SIKE is vulnerable to classical power analysis techniques.

All the code used to derive our results is shared on https://github.com/nKolja/SIKE-HPA-2021.

Figure 4.4: Addition of shifted PCC results with 10 segments of a single power trace. Each step
corresponds to a different bit. The blue curve corresponds to a bit hypothesis of zero, while the
red curve corresponds to bit hypothesis of one.

4.4 Countermeasures

The attack arises as a consequence of the three-point ladder being a deterministic function with
public inputs. Each value going through the pipeline registers can be reduced to only two cases.
These inputs depend on the public triple xQ , xP , xQ−P (which define the points Q = [xQ : 1], P =
[xP : 1], Q −P = [xQ−P : 1]), the bits of Bob’s private key up to the step at which the instruction
in question is being executed (which we may assume to be known by induction), and the two
possibilities for the current bit of the private key.

4.4.1 Recommended countermeasure

A simple and low-cost countermeasure, which was also mentioned in [FGD+10, Cor99, ZYD+20],
consists of randomising the coordinates that define the starting points, i.e., generate three random
non-zero field elements rQ ,rP ,rQ−P and set

Q = [xQ rQ : rQ ], P = [xP rP : rP ], Q −P = [xQ−P rQ−P : rQ−P ]. (4.2)

The increase in complexity comes from generating three random F∗
p2 elements and three field

multiplications. This is negligible with respect to the overall cost of the three-point ladder. The
execution of the protocol is still correct because the points Q,P,Q −P are not changed, but
the input of xDBLADD, seen as three pairs of Fp2 elements is now randomised. Since the values
rQ ,rP ,rQ−P are secret, we cannot predict the loaded and stored values in the pipeline registers,
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and thus cannot apply the same attack.

4.4.2 Other countermeasures

In addition to the randomised projective coordinates described above, the authors of [ZYD+20]
proposed a series of countermeasures (based on [FGD+10, JT01]) against CPA on SIKE that we
aim to evaluate in the case of a horizontal attack. However these countermeasures are either too
expensive, or do not offer additional protection against horizontal attacks. We also comment on
atomic elliptic curve algorithms.

1. Masking the base point Q

The starting point Q is masked with a random point R in order to obtain Q ←Q +R . The
final point P + [sk](Q +R) of the three-point ladder is then adjusted by subtracting [sk]R .

Masking the base point prevents both a vertical and a horizontal attack but cannot be
done without leaving the Montgomery representation. As a result, such a countermeasure
requires at least a square root computation over the field Fp2 , which is very expensive.

2. Random isomorphic elliptic curve
The point Q is mapped to a random elliptic curve E ′ where the scalar multiplication is
computed. The result is then mapped back to the original curve E in order to obtain [sk]Q

which is then added to P .

Such a countermeasure is unfortunately limiting, since the number of curves isomorphic
to E is low, and finding a non-trivial isomorphism is a non-trivial task.

3. Masking the scalar sk

The secret key sk is masked with a random value r by setting sk ← sk + r ·ord(Q).

If the masking is different at each execution and big enough, the vertical attack can be
conceivably prevented with this countermeasure. However, the horizontal attack is simply
extended by r ·ord(Q) bits and recovers a value congruent to the actual sk (mod ord(Q)).

4. Random key splitting
The private key sk is divided randomly as sk = sk1 + sk2. Then two three-point ladders are
computed in order to obtain (P + [sk1]Q)+ [sk2]Q .

While splitting sk differently across executions produces measurements of dissimilar oper-
ations in a vertical attack, this countermeasure is not effective against a horizontal attack,
as both shares can be independently recovered.

5. Window-based countermeasure
Instead of making a binary choice for swapping at each step of the three-point ladder, a
3-bit window is used, and two additions and three doublings are computed per window.

While a window-based method increases the complexity of a vertical attack, such a coun-
termeasure is ineffective in the settings of a horizontal attack, as the number of guesses
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per CPA iteration simply increases from 21 to 23. Besides, similarly as with the base point
masking, this countermeasure is not cost-efficient, as the new ladder will require to leave
the Montgomery representation, requiring at least one computation of a square root over
Fp2 .

6. Atomic three-point ladder
The authors of [CCJ04] propose atomic algorithms for preventing simple side-channel anal-
ysis. An atomic algorithm consists of a sequence of instructions which are indistinguishable
from a side-channel point of view.

At the first look, the three-point ladder might seem to be atomic, however the assumption
in [CCJ04] that modular operations are side-channel equivalent fails in the Cortex-M4
environment. While we are not able to distinguish a single pair of modular additions with
two different inputs, we are able to distinguish 10 tuples of modular additions with two
different 10-tuples of inputs, which breaks indistinguishability.

4.5 Conclusion

This chapter describes a CPA on SIKE in ephemeral settings that recovers the target’s entire private
key using a single power trace of the three-point ladder in the key decapsulation procedure. The
attack was experimentally verified. A countermeasure based on point randomisation is finally
suggested.

The impact of this attack on the security of SIKE is critical when the reference implementation
is used in an unprotected manner on a Cortex-M4 microcontroller. This is especially impor-
tant, because of the exceptionally leaky nature of such microcontrollers, thanks to the findings
of [CGD18]. Due to the simplicity of the CPA, countermeasures are required to be deployed when
the reference implementation of SIKE is used in an embedded environment.

We emphasise on the fact that the three-point ladder attacked in the key decapsulation is not the
only point of attack of the SIKE protocol and that each use of the three-point ladder (even in the
key generation, and key encapsulation) requires to be protected when exposed to power analyses.
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5 Zero-value side-channel attacks on
SIKE

In this chapter we provide two side-channel attacks against the official SIKE implementation pro-
tected with coordinate randomisation. Two of the attacks target the three-point ladder procedure,
and the third attack targets the isogeny computation. All attacks assume a static key setting, i.e.,
the target party uses the same secret key to decrypt multiple ciphertexts.

The attacks are executed in an adaptive fashion — we extract consecutive bits of the target’s secret
key, each time assuming that the previous bits are known and adapting the attack according to the
value of the extracted part of the secret key. Malicious public keys are computed and provided to
the target at each step of the attack. The public keys force the target to compute a projective point
with one of its coordinates equal to equal to 0 depending on a bit of the targets secret key. We shall
refer to these attacks as zero-value attacks. A computation of the field element 0 can be noticed by
side-channel, even if the projective coordinates have been randomised. We used electromagnetic
emission measurements for the three-point ladder attack and power consumption measurements
for the isogeny attack. In all of our experiments we managed to extract the whole secret key.

SIDH is known to be mathematically broken in a static or semi-static key environment. This is
why SIKE relies on the Fujisaki-Okamoto transform to allow for semi-static keys. The purpose of
the transform is precisely to validate that the ciphertext (public key) was generated honestly and
to abort if not. However, the side-channel leakage that we exploit happens before the Fujisaki-
Okamoto transform can prevent the attack.

Full validation of SIDH ciphertexts (and public keys) is believed to be as hard as breaking SIDH
itself. Luckily, our attack can be blocked by a partial ciphertext validation, which however, comes
at a price of around 10% performance overhead.

For completeness we also recall some earlier related to the subject of zero-value attacks on SIKE.
Coordinate randomisation in SIKE was recommended as a countermeasure in [KPHS18, ZYD+20,
GLK21]. We also mentioned it as a direct way to protect against the attack exposed in Chapter 4.
Coordinate randomisation was known not to be sufficient in certain ECC implementations, and
zero-value attacks were already introduced by Goubin [Gou03], Akishita and Takagi [AT03], and

69



Chapter 5. Zero-value side-channel attacks on SIKE

Izu and Takagi [IT03].

The possibility of applying a zero-value attack to SIKE was proposed by Koziel et al. [KAJ17]. Their
attack was only theoretical, and already assumed a certain type of partial ciphertext validation.
Finally they propose four attacks which work despite partial ciphertext validation. We will argue
that those earlier attacks do not apply to the current SIKE standard.

5.1 Background

Elliptic curves and points on elliptic curves in SIKE are defined over a quadratic field Fp2 and
represented with a pair of field elements [X : Z ]. The pair [X : Z ] and [ξX : ξZ ] for ξ ∈ F×

p2

represent the same projective pair.

We want to single out the projective points which have one of the coordinates equal to zero and
for that end we introduce new names for certain types of elliptic curves and elliptic curve points.

5.1.1 Elliptic curves

Depending on the subroutine of SIKE, an elliptic curve E : y2 = x3 +ax2 +x can be represented
in projective coordinates in three different ways as shown in Section 2.5.2, page 25. We recall the
representations here, referring to Section 2.5.2 for definitions of A and C :

• [A : C ] where [A : C ] = [a : 1],
• [A+

24 : C24] where [A+
24 : C24] = [A+2C : 4C ],

• [A+
24 : A−

24] where [A+
24 : A−

24] = [A+2C : A−2C ].

Considering all possibilities for an elliptic curve representations, invalid states included, an
elliptic curve in SIKE may fall into one of the following categories:

The undefined curve, represented by pairs [A : C ] = [A+
24 : C24] = [A+

24 : A−
24] = [0 : 0]. This does

not represent any algebraic object.

The degenerate curve, represented by pairs [A : C ] = [A+
24 : C24] = [1 : 0] or [A+

24 : A−
24] = [1 : 1].

This is not, properly speaking, a curve.

The singular curves, represented by pairs [A : C ] = [±2 : 1] or [A+
24 : C24] ∈ {[0 : 1], [1 : 1]} or

[A+
24 : A−

24] ∈ {[0 : 1], [1 : 0]}. These are not elliptic curves, because they exhibit a singularity
in (∓1,0) and behave often as exceptional points in formulas.

Elliptic curves, not corresponding to any of the above, or alternatively curves represented by [A :

C ] = [a : 1] with a ̸= ±2.
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5.1.2 Points on elliptic curves

Points on elliptic curve in SIKE are represented in Montgomery coordinates (see Section 2.5.2,
page 26), i.e., only the X and Z coordinate are used.

Considering all possibilities for point representations, invalid states included, an elliptic curve
point in SIKE may fall into one of the following categories:

The undefined point [0 : 0], this does not correspond to any algebraic point.

The identity O ..= [1 : 0], the identity of the elliptic curve group law.

The distinguished point T ..= [0 : 1], of order 2. This point is a member of all Montgomery curves.
Assuming the curve is well defined, [2]T =O .

The special 4-torsion points [±1 : 1], these points are members of all Montgomery curves. As-
suming the curve is well defined [2]P = T for any such point.

An ordinary point [X : Z ] not belonging to any of the above. Assuming the curve [A : C ] is well
defined, such a point is on the curve [A : C ] if X /Z + A/C +Z /X is a square in Fp2 .

5.2 The three-point ladder attacks

In this section we provide two attacks based on forcing the target party to compute the elliptic
curve point O = [1 : 0] or T = [0 : 1] during an execution of the three-point ladder. The attack is
performed in multiple steps. At each step we assume that we know the first i −1 bits of the secret
key of the target party, and the attack targets the i th bit.

Our final goal is to see where and how such points can occur, and to force a computing party to
compute such points based on a secret bit of their private key. The attack is done adaptively in an
extend-and-prune manner, that is, we perform the attack in multiple steps; at each step we recover
one bit of the private key by assuming that we know the previous parts. We write the secret key as
sk = sk020 + sk121 + . . . with ski ∈ {0,1} and we define sk<k

..= sk020 + sk121 +·· ·+ skk−12k−1.

A careful analysis of the three-point ladder (as described in Section 2.5.4 and Algorithm 5, page
29) shows that an input (Q,P,Q −P ), the value of the updated triple (R0,R2,R) after the kth loop
iteration is

([2k+1]Q, −P + [2k+1 − sk<k ]Q , P + [sk<k ]Q) if skk = 0, (5.1)

([2k+1]Q, P + [2k + sk<k ]Q , −P + [2k − sk<k ]Q) if skk = 1. (5.2)

We show how to create a public key (Q,P,Q −P ) such that the second output point (in bold in
Equations (5.1),(5.2)) is a zero-value point if and only if skk = 0 (or skk = 1).
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5.2.1 Forcing O

The second output point in Equation (5.1) is equal to O if P = [2k+1 − sk<k ]Q. For the second
point to be equal to O in Equation (5.2) we must have P =−[2k + sk<k ]Q . This simple equation
allows us to define the following pair of malicious public key points:

Table 5.1: Malicious public key points which forces the computation of O

Public key Q P Q −P

pkO
k,0 Point of order 3e3 [2k+1 − sk<k ]Q −[2k+1 − sk<k −1]Q

pkO
k,1 Point of order 3e3 −[2k + sk<k ]Q [2k + sk<k +1]Q

Note that P,Q −P ̸∈ {O ,T }, so the public key passes the assumption in Algorithm 5, page 29.
Plugging in pkO

k,0 (resp. pkO
k,1) in Equation (5.1) (resp. Equation (5.2)) shows that on correct guess,

the target point becomes O . Furthermore, if the guess is incorrect, then the point is [2k+1 +2k ]Q

which has both coordinates non-zero.

5.2.2 Forcing T

The second output point in Equation (5.1) is equal to T if P = [2k+1 − sk<k ]Q +T . For the second
point to be equal to T in Equation (5.2) we must have P =−[2k+sk<k ]Q−T . This simple equation
allows us to define the following pair of malicious public key points:

Table 5.2: Malicious public key points which forces the computation of T

Public key Q P Q −P

pkT
k,0 Point of order 3e3 [2k+1 − sk<k ]Q +T −[2k+1 − sk<k −1]Q −T

pkT
k,1 Point of order 3e3 −[2k + sk<k ]Q −T [2k + sk<k +1]Q +T

Note that P,Q −P ̸∈ {O ,T }, so the public key passes the assumption in Algorithm 5, page 29.
Plugging in pkT

k,0 (resp. pkT
k,1) in Equation (5.1) (resp. Equation (5.2)) shows that on correct guess,

the target point becomes T . Furthermore, if the guess is incorrect, then the point is [2k+1 +2k ]Q

which has both coordinates non-zero.

5.3 Isogeny attack

This section provides the attack on the isogeny computation (See Section 2.5.5, page 30 for the
definition of isogeny computation). Our goal is to manipulate the isogeny kernel generating point
R of the target party so that it becomes incompatible with isogeny formulas, i.e., the order of
the kernel point is different from the order of the isogeny. This leads either to computation of
undefined points [0 : 0] (which propagate indefinitely) or to completely (heuristically) random
computations. The two cases can be easily distinguished by use of side channels.
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In particular we propose that the distinguishing is executed during the computation of the j -
invariant. The reason is that one of the subprocedures of the j -invariant is an Fp inversion which
is computed as a sequence of circa log p hardcoded squarings and multiplications. Distinguishing
if this sequence started from the element 0 or from a random element is an easy matter.

We assume that the target party computes an isogeny of degreeℓe I
I , and the other party is expected

to have computed an isogeny of degree ℓe J

J before sharing their public key. In practice ℓe I
I = 3e3

and ℓe J

J = 2e2 , but the attack works also if we swap the parties, or more generally on any set of
SIKE parameters. We drop the subscript J , and write (ℓ,e) for (ℓJ ,e J ) from now on.

We assume that the target’s secret key is written in basis ℓ, so sk = sk0ℓ
0 + sk1ℓ

1 + . . . with
ski ∈ {0,1, . . . ,ℓ−1}. Furthermore we define sk<k

..= sk0ℓ
0 + sk1ℓ

1 + . . .+ skk−1ℓ
k−1.

The isogeny algorithm uses a hard coded strategy, and attempts to compute an ℓ
e I
I -isogeny

independently of the actual order of the kernel point R . We send the target party a malicious public
key made of points in the ℓe -torsion subgroup E [ℓe ] (as opposed to E [ℓe I

I ] which is expected by
the algorithm). Such public keys force the kernel generating point R to be of degree a power of ℓ.

Definition 5.3.1. We denote with vℓ the ℓ-adic valuation, defined, for a ∈Z×, as

vℓ(a) = max{x ∈Z |ℓx divides a}. (5.3)

Remark. By an abuse of notation we set vℓ(R) = vℓ(ord(R)) for any elliptic curve point R .

Furthermore we can control the exact order of the point R depending on a single ℓ-digit of the
secret key, skk , and assuming we know sk<k . For example, given some 0 < e ′ ≤ e and 0 ≤ ℓ′ < ℓ
we can compute a malicious public key such that

vℓ(R) =
e ′ if skk ̸= ℓ′,

e ′−1 if skk = ℓ′.
(5.4)

In addition to that we will show that there is an exponent o > 0 which satisfies so-called leakage
properties for any point R ∈ E [ℓe ] which is provided as a kernel of an ℓe I

I -isogeny:

L1. If vℓ(R) < o then the isogeny eventually computes undefined points [0 : 0].
L2. If vℓ(R) ≥ o then the isogeny computes random values.

The exponent o depends on the underlying prime p (more precisely the ℓe I
I and ℓe ) and the

tree-traversal strategy. These are public parameters and o can therefore be precomputed for any
set of SIKE parameters.

In this section, we first show how an adversary can control the order of a point in such a way
that it depends on the value of an ℓ-digit of the private-key. Then we show that there exists an
exponent o which satisfies the leakage properties (L1., L2.).
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5.3.1 Controlling the kernel point order

We show how to create a public key, which when used by the target party produces a kernel point
R of constrained order. In particular, given an exponent 0 ≤ e ′ ≤ e, an ℓ-digit ℓ′, and sk<k , we
want to force the target party to compute a point whose order is determined by formula 5.4.

That is done by creating a public key pk j
k as shown in Algorithm 9.

Algorithm 9:MALICIOUS PUBLIC KEY GENERATION
Input: Index of bit being guessed k, known part of secret key sk<k ,
an exponent e ′, ℓ-digit ℓ′

Assumes: 0 < e ′ ≤ e, 0 ≤ ℓ′ < ℓ and 0 ≤ k ≤ e −e ′

Output: Public key pk j
k = (Q,P,Q −P ).

Procedure pk_j(k, sk<k ,e ′,ℓ′)
1 E ← any supersingular elliptic curve
2 Pℓ,Qℓ← generators of E [ℓe ]
3 Assume [ℓe−1]Qℓ ̸= T // Swap Pℓ,Qℓ otherwise
4 S = [ℓe−(e ′−1)]Pℓ // vℓ(S) = e ′−1

5 Q = [ℓe−(e ′+k)]Qℓ // vℓ(Q) = e ′+k

6 P = S − [sk<k +ℓ′ℓk ]Q // vℓ(P ) ∈ {e ′−1, . . . ,e ′+k}
return (Q,P,Q −P )

The kernel generating point R obtained from the public key shown in Algorithm 9 satisfies the
order constraint as is proved in the following lemma.

Lemma 5.3.1. Let 0 < e ′ ≤ e, let ℓ′ ∈ {0,1, . . . ,ℓ− 1}, and assume that pk j
k is the output of

pk_j(k, sk<k ,e ′,ℓ′). Then the kernel generator point R = P + [sk]Q generated from the pub-
lic key pk j

k of Algorithm 9 satisfies

vℓ(R) =
e ′ if skk ̸= ℓ′,

e ′−1 if skk = ℓ′.
(5.5)

Proof. Following from Algorithm 9, we have vℓ(S) = e ′−1 and vℓ(Q) = e ′+k. Denote with
Q ′ ..= [ℓk ]Q , where we have vℓ(Q ′) = e ′. It follows that

P + [sk]Q = S + [sk − sk<k −ℓ′ℓk ]Q

= S + [skk −ℓ′]Q ′+ [skk+1ℓ]Q ′+ . . .

= S + [skk −ℓ′]Q ′+Q ′′,

where Q ′′ = [skk+1ℓ]Q ′+ . . . . The point Q ′′ is independent from S by construction and it satisfies
vℓ(Q ′′) ≤ e ′−1.

If skk = ℓ′ then R = S +Q ′′. The point R is the sum of two independent points which satisfy
vℓ(S) = e ′−1 and vℓ(Q ′′) ≤ e ′−1. Therefore vℓ(R) = e ′−1.
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If skk ̸= ℓ′ then R is a sum of two independent points of valuation e ′ − 1 and e ′ respectively.
Therefore vℓ(R) = e ′.

5.3.2 Evaluating formulas on bad points

Computing the isogeny with a kernel of incompatible order, i.e. order different from isogeny
degree, leads to irregular behaviour. During the execution of the ℓe I

I -isogeny, geometric structure
will be lost, and we will essentially work with random points on random elliptic curves. The goal
of this section is to show when irregular behaviour starts, and what types of unexpected behaviour
can happen.

Theℓe I
I -isogeny is computed by means of a hard-coded sequence of sub-algorithms which include

point multiplication by ℓI , degree ℓI isogeny computation, degree ℓI isogeny evaluation, and
saving and loading a point. The order in which these steps are executed is encoded in a strategy as
explained in Section 9 on page 31. Because saving or loading a point bears no algebraic structure,
we will only analyse the remaining three operations.

The isogenies that are directly computed in SIKE are of degree 2, 3 or 4. They are computed by
Vélu’s formulas for Montgomery curves. As such they satisfy the following list of properties:

P1 If the kernel point is of incorrect order, then the image point (resp. curve) is arbitrary and
does not share any known geometric relation with the preimage point (resp. curve).

P2 If the image of [X : Z ] is [U : V ], then the image of [Z : X ] is [V : U ].
P3 If the input point is equal to the kernel point, then the output is O .
P4 If the kernel point is [X : Z ] and the input is [Z : X ], then the output point is T .
P5 The image of O is O .
P6 The image of T is T .

The first statement is not proven and is based on heuristics. Given our experiments (Section
5.4.4, page 84) and the current understanding of elliptic curve isogenies, there was no evidence
to show the contrary. The other statements follow from the way the isogenies were constructed,
see [Ren18].

Remark. The points O ,T, [±1 : 1] are contained in all supersingular Montgomery curves. The
points O and T are contained in all Montgomery curves. We call the points O ,T, [±1 : 1] special.

Furthermore the distinguished point T induces an involution P 7→ P + T which is given by
[X : Z ] 7→ [Z : X ]. These properties stem from the definition of Montgomery curves.

Point multiplication by ℓI . The only point multiplication formulas used in SIKE are doublings
(see Equation 2.37 on page 27) and triplings (see Equation 2.39 on page 27). They are used during
computations of 2e2 and 3e3 respectively.

The formulas for point multiplications can sometimes output undefined points [0 : 0] when the
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underlying curve is degenerate, or singular. We show when this can occur in Table 5.3.

Table 5.3: Doubling and tripling on degenerate and singular curves

Doubling Tripling

Input Input curve [A+
24 : C24] Input curve [A+

24 : A−
24]

point [1 : 0] [1 : 1] [0 : 1] [1 : 1] [1 : 0] [0 : 1]

O [0 : 0] O O [0 : 0] O O

T [0 : 0] O O [0 : 0] T T
[1 : 1] T T [0 : 0] [1 : 1] [1 : 1] [0 : 0]

[−1 : 1] T [0 : 0] T [−1 : 1] [0 : 0] [−1 : 1]

ℓI -isogenies. SIKE uses isogenies of degree 2,3 and 4 as sub-algorithms for computing large
degree isogenies. In particular, a 2e2 -isogeny is computed as a composition of (e2 mod 2) degree
2 isogenies and ⌊ e2

2 ⌋ degree 4 isogenies. A 3e3 -isogeny is computed as a composition of e3 degree
3 isogenies.

The formulas for 2,3 and 4-isogenies can output undefined or degenerate values when the inputs
are incompatible. The output curves can be degenerate when the kernel points are special. The
output points can be undefined [0 : 0] if both the kernel point and the input point are special.
These occurrences are listed in Table 5.4 and Table 5.5.

Table 5.4: Isogeny computation with special kernels

Isogeny Curve Kernel point
degree representation O T [1 : 1] [−1 : 1]

2 [A+
24 : C24] [1 : 0] [1 : 1] [0 : 1] [0 : 1]

3 [A+
24 : A−

24] [1 : 1] [1 : 1] [1 : 0] [0 : 1]
4 [A+

24 : C24] [1 : 0] [0 : 1] [1 : 1] [1 : 1]

5.3.3 Traversal of the first isogeny branch

Almost all the analysis of the isogeny computation boils down to analysing the computations
done on the public curve E recovered from pk j

k (i.e., the first vertical branch in the tree traversal).

Definition 5.3.2. Given a strategy S = (s1, . . . , se I−1) for computing an ℓe I
I -isogeny from kernel

〈R〉, we define IndS to be the set of indices of points Ri = [ℓi
I ]R which are pushed by the first

ℓI -isogeny. More formally

IndS = {0, s1, s1 + s2, . . . , s1 + . . .+ sk } where k = max{i | s1 + . . .+ si < e I −1} (5.6)

For example, the set of indices of two strategies from Figure 2.6 on page 32 are {0} and {0,3,5}.
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5.3 Isogeny attack

Table 5.5: Isogeny evaluation on special points

Input Kernel point
point O T [1 : 1] [−1 : 1]

2-
is

og
en

y O O [0 : 0] O O

T T [0 : 0] T T
[1 : 1] [−1 : 1] [−1 : 1] [0 : 0] [−1 : 1]

[−1 : 1] [−1 : 1] [−1 : 1] [−1 : 1] [0 : 0]
3-

is
og

en
y O O [0 : 0] O [0 : 0]

T T [0 : 0] T [0 : 0]
[1 : 1] [1 : 1] [1 : 1] [0 : 0] [1 : 1]

[−1 : 1] [−1 : 1] [−1 : 1] [−1 : 1] [0 : 0]

4-
is

og
en

y O O [0 : 0] O [0 : 0]
T T [0 : 0] T [0 : 0]

[1 : 1] [1 : 1] [1 : 1] [0 : 0] [1 : 1]
[−1 : 1] [1 : 1] [1 : 1] [1 : 1] [0 : 0]

The process of computing the first step of an ℓe I
I -isogeny is shown in Algorithm 10.

Algorithm 10: FIRST VERTICAL BRANCH OF THE TREE-TRAVERSAL
Input: Kernel point R , starting curve E , set of indices Ind
Assumes: Ind stems from a strategy S, R ∈ E of order ℓe I

I
Output: Image curve computed by the first ℓI -isogeny E ′,
Images of points evaluated by the first ℓI -isogeny {φ([ℓi

I ]R)}i∈Ind

Procedure first_iso(R,E , Ind)
1 for i = 0 to e I −2 do
2 if i ∈ Ind then
3 Ri = R

4 R = [ℓI ]R

5 φ : E → E/〈R〉 // Degree ℓI isogeny with kernel 〈[ℓe I−1
I ]R〉

6 E ′ = E/〈R〉
7 for i ∈ Ind do
8 Ri =φ(Ri )

return (E ′, {Ri }i∈Ind)

5.3.4 Computing the isogeny with a bad kernel

In this subsection we will prove the existence of the exponent o which satisfies the leakage
properties (L1., L2.) from page 73.

Let R be a point of order ℓe ′
provided as kernel to the isogeny of degree ℓe I

I . Let E be the starting
curve of the isogeny and let IndS, E ′ and Ri be as in Section 5.3.3.
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Chapter 5. Zero-value side-channel attacks on SIKE

Following from Section 5.3.2, the first image curve E ′ is an arbitrary, generally non-supersingular
curve. After the first isogeny is computed, all the following elliptic curves and points are arbitrary.
The only deterministic “structure” that the points can carry is that some of them may have equal
projective coordinates. Recall the properties on page 75. There are three ways in which the isogeny
computation may proceed:

(i) There is a pair of saved points with equal coordinates. Assume that Rα and Rβ are
projectively equivalent and α < β ∈ IndS. As the points are equal, their images through
consecutive ℓI -isogenies will stay equal until we compute the isogeny generated by some
image of Rβ. This isogeny will send the corresponding image of Rα to O (prop. P3). The
point O is fixed by multiplications by ℓI and ℓI -isogenies (prop. P5). Eventually an isogeny
of kernel 〈O〉 is computed, whose image curve is the degenerate curve (Table 5.4). The im-
ages of points O are also O (Table 5.5). The first multiplication of O by ℓI on the degenerate
curve outputs the undefined point [0 : 0] (Table 5.3). From this point onward all values will
be 0, and the final j -invariant will be computed as 0/0.

(ii) There is a pair of saved points with flipped coordinates. Assume Rα = [X : Z ] and
Rβ = [Z : X ] and α<β ∈ IndS. This can only happen if Rα = Rβ+T which implies that R

and T are dependent. In particular the order of R is even, so the isogeny being computed
must be a 3e3 -isogeny. The property of Rα,Rβ having flipped coordinates is preserved
(prop. P2) until the image of Rβ is used to compute an isogeny. This isogeny will send
the image of Rα to T (prop. P4). The point T is fixed by point tripling and 3-isogenies
(prop. P6). Eventually an isogeny of kernel 〈T 〉 is computed, whose image curve is the
degenerate curve (Table 5.4). The first next image of T under the isogeny generated by T is
the undefined point [0 : 0] (Table 5.5). From that point onward all values will be 0, and the
final j -invariant will be computed as 0/0.

(iii) There are no points with equal nor flipped coordinates. The points and curves became
arbitrary after computing the first ℓI -isogeny (prop. P1). From this point onward we have
different arbitrary values which propagate (prop. P1). The final curve and its j -invariant is
random.

A visual example of isogeny computation in (i) is given in Appendix D.

Note that (i) is equivalent to the existence of α<β ∈ IndS such that [ℓαI ]R =±[ℓβI ]R , while (ii) is
equivalent to [ℓαI ]R =±[ℓβI ]R+T . In (iii), suchα<β ∈ IndS simply do not exist. These properties
are characterized by the order of point R as shown in the following lemma.

Lemma 5.3.2. For each set of SIKE parameters, let S be a strategy for computing the ℓe I
I isogeny

and let R be a point in the ℓe torsion. Furthermore assume that R and T are independent. Then
there is an exponent o > 0 such that:

1. vℓ(R) ≤ o −1 if and only if (i) applies,
2. vℓ(R) ≥ o if and only if (iii) applies.
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5.3 Isogeny attack

If R and T are dependent, then the following is true for the same exponent o:

1. vℓ(R) ≤ o if and only if (i) or (ii) applies,
2. vℓ(R) ≥ o +1 if and only if (iii) applies.

Proof. The statement (i) can alternatively be expressed as: “there are α < β ∈ IndS such that
Rα =±Rβ, that is, [ℓαI ]R =±[ℓβI ]R”. Given that R is a point of order ℓvℓ(R), the previous statement
reduces to a modular equivalence, more precisely ℓαI ∓ℓβI ≡ 0 (mod 2r ), where we define r ..=
vℓ(R).

This equation is certainly satisfied for r = 0, for all α,β ∈ IndS . Furthermore, an equality modulo
2r for some α,β reduces to an equality modulo 2r ′

for all r ′ ≤ r . Therefore it is only left to prove
that the equation is not satisfied for some r ≤ e, for all α,β ∈ IndS . This is proven by observing
SIKE parameters, in particular the strategies. We call the smallest such exponent o the break-point
exponent.

The statement (ii) can alternatively be expressed as: “there exist values α< β ∈ IndS such that
Rα =±Rβ+T ”. If R and T are independent, this cannot happen. Therefore, the first part of the
lemma is proven.

If R and T are dependent, we must have ℓ = 2 and [2r−1]R = T . Furthermore ℓI = 3, and (ii)
reduces to 3α∓3β−2r−1 ≡ 0 (mod 2r ). This equation is equivalent to the following two equations:
3α∓3β ≡ 0 (mod 2r−1) and 3α∓3β ̸≡ 0 (mod 2r ). By the definition of the break-point exponent,
3α∓3β ≡ 0 (mod 2o−1) and 3α∓3β ̸≡ 0 (mod 2o), therefore 3α∓3β−2o ≡ 0 (mod 2o+1) for some
α,β. On the other hand, 3α∓3β ̸≡ 0 (mod 2o) for all α,β, implies 3α∓3β−2o ̸≡ 0 (mod 2o+1)

for all α,β. This finishes the proof.

We report the values for o for both parties and all parameter sets in Table 5.6.

SIKE instances p434 p503 p610 p751

2e2 -isogeny 3 4 2 5
3e3 -isogeny 9 7 7 8

Table 5.6: Break-point exponents o for all parameter sizes.

Side-channel attack. Using Lemma 5.3.2, two different outcomes of the isogeny computation
can be forced depending on the value of a secret ℓ-digit: the party either computes only zero
values from a certain point in the tree traversal and onward, or completely random values. When
zero values can be distinguished from random ones with a side channel, such a behaviour enables
an adaptive bit-by-bit key recovery.

We propose to perform the zero-value distinction on the subroutine responsible for the subfield
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Chapter 5. Zero-value side-channel attacks on SIKE

inversion within the j -invariant computation. This is because the j -invariant computation occurs
at one of the last steps of the key exchange, making it a conveniently identifiable target, and
because the subfield inversion is usually computed as x−1 = xp−2; a noticeable sequence of ≥ 400

similar field operations. This scenario is illustrated in Algorithm 11.

Algorithm 11: ATTACK ON THE THE ISOGENY COMPUTATION
Input: Breaking point o.
Output: The secret key sk.
Procedure attack(o)

for k = 0 to e −o do
1 Assume we know sk<k =∑k−1

i=0 skiℓ
i

for ℓ′ = 0 to ℓ−1 do
2 pk j

k ← pk_j(k, sk<k ,o,ℓ′) // Algorithm 9, page 74.

3 Send pk j
k to the target

Side-channel analysis of exponentiation
4 if computation of 0p−2 is detected then
5 skk = ℓ′
6 Brute-force the remaining ℓ-digits of the secret key

return sk

Attacks on all parameters, which the reader can simulate by running a simple python script, are
included in https://github.com/nKolja/SIKE-zero-value-attacks. A visualisation of the attack
on all parameter sets is provided in Appendix E, where we explain how the isogeny computation
evolves in terms of tree traversal graph, and explicitly show when the first undefined point is
computed.

Attack on the reference implementation. For completeness we also mention how the attack
works on the reference implementation of SIKE, which is a part of the official SIKE submission
to the NIST post-quantum standardisation process. The reference implementation represents
elliptic curve points in affine coordinates, which makes it very inefficient due to the excessive
number of field inversions that are computed. When compared to the Cortex-M4 implementation,
the reference implementation is around 180 times slower. For this reason this version is generally
ignored in analyses of SIKE.

The reference implementation uses GMP [GMP91] for field arithmetic, and in particular computes
field inversions by means of a built-in inversion function. This function returns an error whenever
the field element 0 is provided as input. Therefore, our attack can be extended to a timing attack
or even a long distance attack if the reference implementation is used by the target.
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5.4 Experimental evaluations

5.4 Experimental evaluations

The attacks on both the three-point ladder and the isogeny computation were verified in practice.
The three-point ladder was attacked by means of electromagnetic analysis, and the isogeny attack
was performed by means of power consumption analysis. The details on the hardware used in
the attack can be found in [DEG+22].

5.4.1 Software

The attacked software calls the functions of the recommended implementation of SIKEp434 for
32-bit Cortex-M4 microcontrollers with input ciphertexts received from the computer.

Moreover, the scalar multiplication of the library is protected with coordinate randomisation.
As the original library does not offer such a countermeasure, coordinates are randomised after
computing the coefficient of the received curve, and before the Montgomery three-point ladder. A
random representation of the points (Q,P,Q−P ) is generated from the received affine coordinates
(xQ , xP , xQ−P ). This countermeasure consumes 6×log2(p) random bits to generate three random
Z coordinates and requires three Fp2 multiplications.

Finally, the code is further modified by adding a trigger. When toggled, the oscilloscope is notified
to start the capture of the electromagnetic activity or power consumption. The purpose of such a
modification is to make the collection of traces more convenient. Note, however, that the attack
is still applicable without a trigger and that the synchronization of traces can be performed using,
e.g., cross-correlation techniques [DPN+16].

5.4.2 Distinguishing zero values

There exist many ways to distinguish zero values in a power or EM trace. For instance, [Gou01,
AT03] argue that a zero value can be observed in a single measurement by noticing a significant
drop of power consumption or EM radiations. In practice, however, this method requires setting
a manual threshold based on observing the measured samples. As a result, to remove the hassle
of detecting zero values manually, we propose to make the distinction by comparing a trace (or
a collection of traces) to another. We use two different types of tests for comparing traces – the
t-test and collision power analysis.

t-test. Welch’s t-test [SM15] is a statistical hypothesis testing method that examines whether two
classes of traces were sampled from indistinguishable populations.

In our case, such a test is used to compare a collection of multiple traces of (known to be) non-zero
value executions against a collection of multiple traces that may or may not exhibit zero values
depending on a secret bit.
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The test proceeds by computing t statistics based on the observed means and variances of two
power sample or electromagnetic sample populations. Significant t values imply that the two
collections are not indistinguishable.

When attacking the three-point ladder, some t values are thus expected to be large when a
zero is processed in the target trace collection, since zero values are not affected by coordinate
randomisation. When non-zero values are processed in both classes, all the t values are expected
to be small, even when identical inputs were provided to the three-point ladder due to the
randomisation of coordinates [KAJ17].

Collision power analysis. When the target operation can be forced to process both zero and
random (i.e., non-zero) values regardless of the value for the private key, a more efficient approach
can be employed based on collision power analysis [SWP03, MME10]. In this case, the values
processed in a trace are detected by comparing the trace against two baselines (i.e., templates).
The baselines correspond to power traces relating the same execution as the target trace but in
which processed values are known to be zero and random. Such a scenario is applicable to the
j -invariant computation, as the entire procedure processes zero values when a special input is
provided.

In practice, a collision power analysis is typically mounted using Pearson’s Correlation Coefficient
(PCC). This technique correlates a target power trace Tr ∈Rm with a baseline B ∈Rm by computing
ρ(Tr,B) = Cov(Tr,B)/(σTrσB) (where Cov is the covariance, and σ the standard deviation). The
greater the value of the coefficient, the more correlated the trace is to the baseline. As a result, a
zero value is detected when the corresponding trace has a greater correlation coefficient with the
zero-valued baseline than with the random-valued one.

5.4.3 Three-point ladder

The following sections describe a proof of concept for the attack on the three-point ladder. We
experimentally verified the attack from Section 5.2.2 where the target is forced to compute the
distinguished point T .

Experimental procedure

The victim board runs the decapsulation routine, and computes the three-point ladder to obtain
P + [sk]Q . The computer sends the public key triplets with randomised coordinates to the board.
To find a bit skk , we will compare the electromagnetic emissions of the board performing the
ladder computations with three types of input:

• A random, correct triplet of points,
• A malicious triplet pkT

k,0 and
• A malicious triplet pkT

k,1.
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Figure 5.1: Trace for the wrong hypothesis. Figure 5.2: Trace for the correct hypothesis.

Figure 5.3: t-test for the wrong hypothesis. Figure 5.4: t-test for the correct hypothesis.

Figure 5.5: Experimental results for an attack on one bit.

For each of the cases, the attacker records multiple traces of the execution of the three-point
ladder on the board. For the sake of diversity, pkT

k,0 (respectively pkT
k,1) inputs are generated

multiple times by choosing different points and curves. Then, two t-tests (see Section 5.4.2) are
computed:

T0 between the traces obtained with a random triplet and the ones obtained with pkT
k,0,

T1 between the traces obtained with a random triplet and the ones obtained with pkT
k,1.

The t-test graph exhibiting peaks corresponds to the correct hypothesis. Comparing t-tests T0
and T1 eliminates the need for a threshold indicating that the values are significant.

Results

In Figure 5.5 we show the results of an attack on a single bit. In particular, we attack the 12th bit
of the secret key, and the time window in the figures is limited to the first 20 iterations of the
three-point ladder loop.

The trace corresponding to random inputs (not shown) is similar to the one obtained for the
wrong hypothesis (Figure 5.1). The difference between the trace corresponding to the correct bit
hypothesis and the wrong one is visible to the naked eye.

The attack is automated by performing a statistical test, as explained in Section 5.4.3. We use 10

raw traces from each collection (30 traces per secret bit) to compute T0 and T1. Do note that the
collection obtained with random inputs can be reused for both T0 and T1, and for all bits. The t

values are shown on Figures 5.3 and 5.4.
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This proof of concept shows that a bit of the secret key can be extracted by use of side-channel,
even if the implementation was protected by coordinate randomisation.

5.4.4 Isogeny computation

The following experiment describes a proof of concept for the attack on the isogeny computation
as described in Section 5.3 using power analysis.

Target operation

In the experiment, only the power consumption of the first Fp multiplication from the modular
inversion involved in the computation of the j -invariant is measured. The main reason this
choice was made is because the trace of a single multiplication was enough to extract the full
secret key.

If the leakage of one field multiplication alone is not enough to correctly detect the presence of
zero values, a single trace including the whole modular inversion can be segmented into multiple
sub-power traces to boost the accuracy of the comparison.

Experiment procedure

The experiment followed the approach with the two baselines as described in Section 5.4.2. The
targeted parameter set was SIKEp434 with a 434-bit prime p = 22163137 − 1. The target party
has a key of size ⌊log2(3137)⌋ = 217 bits and computes a 3137-isogeny. The malicious points are
contained in the 2e torsion, with e = 216. The break-point exponent o is equal to 9 (see Table 5.6,
page 74). We can extract bits of index k for 0 ≤ k ≤ e −o (see Algorithm 9, page 74). Therefore the
attack allows us to extract 216−9+1 = 208 bits of the secret key.

The attack procedure is given in Algorithm 12.

Algorithm 12: EXPERIMENTAL ATTACK ON ISOGENY COMPUTATION.

1 do capture the baselines B(0), B(∗) for the two categories—zero and random:
2 Send pk j

(0) ← pk_j(0,0,o −1,0) to capture B(0).

3 Send pk j
(∗) ← pk_j(0,0,o +1,0) to capture B(∗).

4 for k = 0 to e −o (starting with sk<0 = 0) do
5 Send pk j

k ← pk_j(k, sk<k ,o,0) to capture Tri .
6 if ρ(Tri ,B(∗)) > ρ(Tri ,B(0)) then sk<k+1 = sk<k +2k . // Section 5.4.2, page 82
7 return sk<e−o+1
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Results

Across N = 1,000 experiments, the first 209 private-key bits were always successfully extracted
through collision power analysis with baselines. Figure 5.8 shows power traces of the two baselines.
Table 5.7 shows the average correlation coefficients when a target trace is compared against the
two baselines.

Figure 5.6: Zero-valued baseline B(0). Figure 5.7: Random-valued baseline B(∗).

Figure 5.8: Examples of baseline traces corresponding to a single Fp2 multiplication processing
the zero value in one case, and a random value in the other.

Target
Baseline j = 0 j ̸= 0

j = 0 0.9975 0.3915
j ̸= 0 0.3916 0.9909

Table 5.7: Average PCCs between baselines and target traces (N = 1,000).

Given the significant correlations for a single field multiplication, the results give strong evidence
that the power analysis of one multiplication is enough to detect zeros. This proof of concept
shows that it is possible to extract the (almost) full secret key, which was furthermore successfully
confirmed across 1000 experiments.

5.5 Countermeasures

Our attacks rely on ciphertexts containing maliciously generated point triplets (Q,P,Q−P ) which
are not the legitimate images of the public ℓe I

I -torsion basis under an isogeny of degree ℓe .
Validating SIKE ciphertexts is a problem that is believed to be as hard as breaking SIKE itself,
thus we cannot hope to completely rule out side-channel attacks using malicious ciphertexts.
Nevertheless our malicious ciphertexts deviate from the legitimate format in a detectable way,
letting us design an effective countermeasure.

To counter the attack it is enough to check that P and Q are both of order ℓe I
I , and that they

generate the ℓe I
I -torsion, i.e., that they are independent. The independence can be checked by

showing that [ℓe I−1
I ]P ̸= [ℓe I−1

I ]Q. Furthermore, if ℓI = 2, we also check that [ℓe I−1
I ]P ̸= [0 : 1].

These checks can be done at the cost of two exponentiations. This test is called the CLN test, after
the names of its first proponents [CLN16].

85



Chapter 5. Zero-value side-channel attacks on SIKE

We added the countermeasure to Microsoft’s PQCrypto-SIDH library [HPR07] and tested it on a
laptop equipped with an Intel Coffee Lake i9-8950HK CPU 2.90GHz with Turbo Boost turned off.
We benchmarked both the generic C version and the version with x64 assembly optimizations.
The results are reported in Table 5.8 and show a performance hit of around 10%.

SIKEp434 SIKEp503 SIKEp610 SIKEp751

Decapsulation unprotected 10,562,332 14,743,837 28,449,749 44,881,873
Decapsulation with CLN 11,801,827 16,296,830 32,218,683 50,351,641
ratio 1.117 1.105 1.132 1.121

Decapsulation compressed 11,306,190 15,569,411 29,537,047 46,913,973

Table 5.8: Performance in cycles of unprotected SIKE decapsulation vs SIKE decapsulation with
CLN countermeasure.

5.5.1 Compressed SIKE

Compressed SIKE (see Section 2.5.2, page 26) offers protection from our attack by construction.
In compressed SIKE, the target party reads only the coordinates of the public key points in
Z/(ℓe I

I )⊕Z/(ℓe I
I ), but they compute a basis of theℓe I

I torsion themself, so the points obtained must
be of correct order. Furthermore the overhead in the decapsulation procedure is slightly smaller
than the overhead of the CLN protected uncompressed SIKE (see Table 5.8). Key generation and
encapsulation are still slower in compressed SIKE than in the CLN protected version.

5.5.2 Relation to previous work

In a work predating the first round of NIST’s competition, Koziel, Azarderaksh, and Jao ex-
plored zero-value attacks on SIDH/SIKE protected with coordinate randomisation and the CLN
test [KAJ17]. They presented four attacks and claimed that these manage to bypass the counter-
measure. We shall now explain why none of them applies to SIKE.

The first attack ([KAJ17, §5]) targets the three-point ladder. It is based on the fact that, in the
main loop of the ladder, one of the inputs to the differential addition is always either P or Q −P ,
according to a secret bit. First, we note that the attack assumes the coordinates of P and Q −P

are not randomised before entering the ladder, but in this case a simpler DPA would work as well.
Second, since the introduction of a more efficient ladder in [FLOJRH18], all implementations of
SIDH, including SIKE, have moved away from using a fixed pair of points in the loop, as can be
seen in Algorithm 5.

The second attack ([KAJ17, §6]) also targets the three-point ladder, and asks to find “[Montgomery]
curves with points P0 = (±1, y) with a large order”. However, such points always have order 4
([CS17]), the attack can thus not be mounted against any version of SIDH implemented using
Montgomery curves, such as SIKE.
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The third attack ([KAJ17, §7.2]) proposes to make a guess on the secret, and then generate a
ciphertext such that, if the guess is correct, the private isogeny computed during decapsulation
will pass through the (supersingular) curve with A = 0. This is clearly feasible, and although
the ciphertext generated would not pass the Fujisaki–Okamoto test, such an attack is hard to
detect at an early phase. The only obstacle, already realised by [KAJ17], is that in all efficient
implementations of SIDH/SIKE the curve E A is internally represented as [A+

24 : C24] or as [A+
24 :

A−
24]. Neither of these encodings can produce a zero if it represents an elliptic curve, thus it seems

that this idea cannot be used in a realistic scenario.

The last attack ([KAJ17, §7.3]) tries to force zeros in points pushed through the isogeny computa-
tion and, in a sense, foreshadowed our attack presented in Section 5.3. The description in [KAJ17]
is however incomplete and, by the authors’ own admission, does not apply to Montgomery curves.

5.5.3 Blocking all zero-value attacks

The CLN countermeasure does not only block our attack, it actually blocks all zero-value attacks
on SIKE. To be precise – the field element 0 is never computed during the execution of SIKE if the
input public key has passed the CLN test. To prove this, we provide tables of all field computations
that are executed during SIKE. We argue that the outputs of those computations are 0 only if the
input elliptic curve points are of a certain order, and we show that that cannot happen if the input
points pass the CLN test. All the tables are provided in Appendix F.

5.6 Conclusion

We described two types of zero-value attacks against SIKE: one on the three-point ladder, the
other on the isogeny computation. Both attacks are based on special-point inputs that enable an
adaptive bit-by-bit key recovery. The attacks were analysed in theory, and also verified experimen-
tally on the recommended SIKE implementation for Cortex-M4 with both electromagnetic and
power analysis using different techniques. At last, we argued that the Costello–Longa–Naehrig
test which verifies the order of the points is sufficient to stop the attacks. Furthermore we showed
that the CLN test blocks all zero-value attacks, i.e., that the field element 0 is never computed
during the execution of SIKE when the public key passes the CLN test.

An interesting open question to consider is whether it is worth dropping uncompressed SIKE
altogether and replacing it with compressed SIKE. This of course depends on the side-channel
and performance trade-off that one is willing to make. A semi-compressed version of SIKE with
uncompressed public keys and compressed ciphertexts would also be an interesting research
direction to pursue.
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6 Single-trace clustering power analysis
of Cortex-M4 SIKE

In this chapter we present a side-channel clustering power analysis against the recommended im-
plementation of SIKE for the ARM Cortex-M4 microcontroller. The attack targets the three-point
ladder procedure, in particular the conditional swap sub-procedure which is directly depen-
dent on a bit of the secret key. The attack is effective even if the implementation is protected by
coordinate randomisation or the CLN test (see Section 5.5).

The attack is applicable in a fully ephemeral setting. In other words, a single execution of the
key exchange is sufficient, and only samples from the power domain of the microcontroller are
necessary. Neither electromagnetic sampling, nor profiling, nor previous knowledge of the target
device is required and the key recovery is completely non-supervised, i.e., no template is ever
built.

A clustering method based on thresholding the distribution of sorted power samples is shown to
be sufficient to recover the full key. Finally, an effective countermeasure based on splitting the
masking value into multiple random shares during the swapping procedure is shown to protect
against the attack described in the paper, with a performance overhead which is less than 1% of
the overall runtime of the algorithm.

6.1 Side-channel analysis

In this section we briefly recall the parts of SIKE which are targeted, we explain techniques used
in the attack (clustering), and describe the attack which works by classifying the power samples
of a single execution of the three-point ladder in SIKE.

6.1.1 Point of attack.

SIKE makes use of the three-point ladder to compute a secret point that is then used to generate
the kernel of a party’s secret isogeny. More specifically, the three-point ladder is an optimised
computation of the elliptic curve operation of P + [sk]Q for a scalar sk of n bits, by using only
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the X and Z coordinates of the points Q , P , and Q −P on a Montgomery curve. The three-point
ladder was introduced in 5.

One of the main sub-procedures of the three-point ladder is a conditional swap function cswap
executed once per each realisation of a loop step.

Conditional swap

To perform the conditional swapping of points, a function cswap (also shown in Appendix G,
Listing G.1) takes R and R2 as parameters, as well as a mask that expands the value of the private
bit difference on a whole word. Given two consecutive private-key bits sk i−1, sk i (for 0 ≤ i < n

with sk−1 = skn = 0), with 32-bit words, such a mask corresponds to:

mask=
{

0x00000000 if sk i−1 ⊕ sk i = 0,
0xFFFFFFFF if sk i−1 ⊕ sk i = 1.

Then, each word of the two elliptic curve points (resp. a and b) is processed according to this
formula:

tmp = mask & (a ⊕b),

a = tmp⊕a,

b = tmp⊕b,

where & corresponds to the bit-wise “and” operator. Such a procedure is known to be constant-
time (see [CS18]).

6.1.2 Clustering

k-means.

The k-means algorithm [M+67] is an unsupervised clustering algorithm that partitions a popula-
tion of n samples into k sets solely based on the values of the samples.

Informally, the algorithm starts with k groups of means µ j (0 ≤ j < k), and reassigns the samples
to the group with the closest mean. As doing so may change the means of the groups, the process
is repeated until convergence. The procedure is shown in pseudocode in Algorithm 13.

6.1.3 Attack procedure

The attack assumes a passive adversary able to monitor the power consumption of the target
device. The power consumption of the entire three-point ladder is measured with a fixed sampling
rate. The power samples are then segmented into multiple power traces synchronised at the
beginning of each step of the three-point ladder. Moreover, only the segments corresponding to
the execution of the cswap functions are considered, each of them ultimately consisting of M
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Algorithm 13: THE k-MEANS ALGORITHM.
Input: Set S = {si ∈R} of n real values, k number of clusters.
Output: A partition of S into k clusters.
Procedure k-means(S,k)

1 Assign each si to a cluster j at random for all i .
2 repeat
3 Compute µ j as the mean of each cluster for all j .
4 Assign si to the cluster j = argmin|si −µ j | for all i .

until No µ j changes value.
return The final cluster assignment

samples (typically, a few thousands).

The cswap procedure uses a mask of value either 0x00000000 or 0xFFFFFFFF depending on the
difference between two consecutive secret bits. Due to the high Hamming distance between the
possible mask values, the power consumption is directly correlated with the value of the mask,
and thus the value of the corresponding secret bit.

The attack attempts to distinguish whether the swap occurred or not for each iteration of the
loop by gathering the samples at a same location in all iterations and clustering them with the
k-means algorithm.

Since a difference of bit s can only be zero (identical) or one (different), only two clusters are
considered (i.e., k = 2). The private key can be entirely reconstructed from the labels at the end
of the clustering.

Attack procedure. Given the n segmented power traces Ti of M power samples each, the proce-
dure consists of three steps:

1. Select a sample location 0 ≤ t < M in the power traces.
2. Cluster with k-means the n power samples at location t throughout the traces Ti (for

0 ≤ i < n), and reconstruct the key from the labels.
3. Verify the key obtained.

Algorithm 14 shows the second step of the attack in more details. The samples si must all corre-
spond to the samples at a same time throughout the n segmented power traces. Since Algorithm 14
considers samples from a single timing location in the power traces, the procedure can be re-
peated with all different positions until a returned key (or its bitwise inverse) successfully decrypts
a ciphertext. As a result, the overall attack has a complexity of precisely M executions of k-means
and key try-outs.
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Algorithm 14:CLUSTERING POWER ANALYSIS.
Input: Set S = {si ∈R} of n power samples at time t .
Assumes: The power samples are aligned,
si corresponds to i ’th step of the three-point ladder loop.
Output: Secret key sk.
Procedure cpa(S)

1 S0,S1 = k-means(S,2)
2 sk−1 = 0
3 for i = 0 to n −1 do
4 if si ∈ S0 then
5 swap= 0

6 if si ∈ S1 then
7 swap= 1

8 ski = swap⊕ ski−1

9 sk =∑
i≥0 ski 2i

return sk

6.2 Attack Enhancements

In a full attack as described in Section 6.1.3, the adversary needs to pass through all sample
locations in the traces and use k-means to recover a key candidate that eventually needs to
be verified. Adopting a better strategy for any of these steps can lead to both faster and more
successful results.

This section lists enhancements to speed up the eventual recovery of the key. These can sometimes
be combined to improve the overall attack.

6.2.1 Thresholding

Since the overall attack needs to run a clustering algorithm several times, an algorithm that
clusters the power samples more efficiently leads to faster results.

While Algorithm 13 already involves low-complexity computations, the clustering algorithm
does not needs to be generic and can therefore be tailored to a one-dimensional two-population
problem by splitting the distributions with an appropriate middle point.

Many solutions exist to find a suitable middle point, such as computing the overall mean of all
the samples, or finding the biggest gap between two neighboring power sample. Algorithm 15
proposes a clustering which calculates the literal middle point of the distribution by finding the
maximum and minimum. Such a solution runs in O (n), but can be tweaked to present other
advantages that are described in the next subsection.
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Algorithm 15: THRESHOLDING CLUSTERING ALGORITHM.
Input: Set S = {si ∈R} of n power samples at time t .
Assumes: The power samples are aligned,
si corresponds to i ’th step of the three-point ladder loop.
Output: Secret key sk.
Procedure tca(S)

1 d = (min(S)+max(S))/2
2 sk−1 = 0
3 for i = 0 to n −1 do
4 if si ≤ d then
5 swap= 0

6 if si > d then
7 swap= 1

8 ski = swap⊕ ski−1

9 sk =∑
i≥0 ski 2i

return sk

6.2.2 Enhancing key verification

The attack achieves a better performance by reducing the number of key candidates to verify and
by correcting plausible clustering mistakes.

Majority rule.

As noted by [PITM14], a same labelling re-occurring throughout many different locations is likely
to be correct. Two majority rules are therefore proposed:

1. A vertical majority in which a candidate key occurring multiple times through the timing
locations is verified in priority.

2. A horizontal majority in which individual key bits are labelled given their majority through-
out the clusterings at all timing locations.

In a horizontal majority rule, a threshold can be selected to filter all the bits for which the cluster-
ings give the same results, while the remaining bits can simply be guessed.

Educated thresholding.

In the clustering power analysis against the three-point ladder of SIKE, two observations can be
made:

1. A clustering is successful only when the two sub-distributions are separated.
2. The number of swaps must always be even.
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The first observation stems from the fact that two samples of identical value should always be
assigned to the same cluster. Hence, a successful clustering can only be found by splitting the
overall distribution in two in between two sample values.

The second observation is due to the fact that the three-point ladder requires the points to always
be “un-swapped” at the end of the procedure. This means that the sizes of the two clusters are
always even which can therefore be used to validate the key found.

As a result, one can design a thresholding algorithm similar to Algorithm 15 that first sorts the
power samples and then separates the distribution in two, each call at a different threshold
starting from a middle point. The threshold can move depending on the distance between the
current threshold and the two cluster centres (similarly as in k-means). By iteratively calling such
an algorithm, the labels that are more likely to be erroneous can be marked and subsequently
flipped in a way that makes sure that the total number of swaps is always even.

6.3 Experimental results

This section reports a proof of concept for the clustering power analysis described in Section 6.1.3,
in addition to an evaluation of the efficiency of the enhancements proposed in Section 6.2.

Details on the hardware setup, the equipment, and the specifications can be found in [GK22].

6.3.1 Target implementation

The software considered is the SIKE implementation for Cortex-M4 [SAJA20]. The implementation
was modified in order to introduce the coordinate randomisation countermeasure, and to ease
the power trace collection.

In particular, only the three-point ladder loop is executed, and the microchip is provided with a
secret key, a valid public key triple Q,P,Q −P , and a randomness seed. The seed is used at each
iteration of the loop to randomise the coordinates of the triple. The randomisation is carried
out at the beginning of each loop iteration by generating three random non-zero Fp2 elements
rR0 ,rP ,rQ−P and multiplying the X and Z coordinates of the points R0,R and R2 correspondingly.
In total, 6 multiplications in Fp2 are performed:

[XR0 : ZR0 ], [XR : ZR ], [XR2 : ZR2 ] 7→ [XR0 rR0 : ZR0 rR0 ], [XR rR : ZR rR ], [XR2 rR2 : ZR2 rR2 ]. (6.1)

We decided to use ChaCha8 [Ber08] for pseudo-random number generation due to its efficiency
and ease of implementation.

Though these modifications create an unrealistic attack scenario, the experiment is still practical
on unmodified software but requires additional effort of marginal complexity. A reader inter-
ested in processing equivalent power traces from the acquisition of raw power samples from the
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execution of unmodified software is advised to read [DPN+16].

The final software on which power traces were acquired can be found here: https://github.com/
AymericGenet/SIKE-clusterswap-2021.

6.3.2 Traces collection

Power traces of the cswap executions were collected in the following manner:

(1) Send the Cortex-M4 a random key and randomness seed.
(2) Generate and send three valid public key points Q , P , and Q −P .
(3) Repeat the following n times:

(a) Make the Cortex-M4 execute the next loop iteration.
(b) Save the power trace from the oscilloscope.

The above was repeated 1,000 times, each time with a different key and seed, for SIKEp434 (hence
n = 218). An example of a power trace along with its frequency components for SIKEp434 is
shown in Fig 6.1. Note that most of the frequency components are zero due to the limiting analog
bandwidth of the oscilloscope (20 MHz).

Figure 6.1: Example of one of the n power traces corresponding to cswap in a single iteration of
the loop.

6.3.3 Clustering power analysis

In the next step of the experiment, the n collected traces of each experiment are exploited to
attempt a key recovery as explained in Section 6.1.3 (cf. Algorithm 14).

(1) Process (for 0 ≤ i < n):
(a) Let Ti be a power trace of length M ,

(2) Run the attack on Ti :
(a) Go to the next sample location 0 ≤ t < M .
(b) Run clustering on S = {Ti [t ] |0 ≤ i < n}.
(c) Record the sk t returned for time t .
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The success rate is calculated through all the timing positions and frequencies over the 1,000 sets
of measured traces by comparing the recovered key with the correct key.

6.3.4 Results

Out of the 1,000 experiments, the correct key is always found in the set of recovered keys {sk t }.
Table 6.2 reports various metrics about how often the correct key appears in the set of recovered
keys. The independent success rates of each timing position is reported in Fig. 6.3. Finally,
examples of sample distribution successfully clustered is shown in Fig. 6.4.

Figure 6.2: Statistics on the number of timing locations which yield the correct key across the N =
1,000 experiments.

k-means

min. max. E(#t ) σ(#t )
154 341 251.704 30.056

Thresholding

min. max. E(#t ) σ(#t )
115 289 196.668 29.366

Figure 6.3: Success rate of the clustering power analysis (thresholding in opaque vs. k-means in
transparent) at each timing locations.

Figure 6.4: Example of a power sample distributions (at t = 1943). The threshold (in red) was
found by Algorithm 15.
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6.3.5 Discussion

The above experiment proves that the recommended Cortex-M4 implementation of SIKE from [SAJA20]
is vulnerable to low-effort power analyses, even in the case when the implementation is protected
with coordinate randomisation. As a result, the main objective of the experiment is achieved.

The rest of the discussion focuses on the efficiency of the improvements.

Thresholding efficiency.

In addition to demonstrating the efficiency of the pre-processing phase, the experiments show
that the thresholding proposed in Algorithm 15 is almost as successful as k-means. While k-means
discovered the secret key in more timing locations than thresholding (cf. Fig. 6.3), our experiment
with k-means took 29 hours to be performed, while the same analysis with thresholding took
only 6.5 hours.

Majority rule efficiency.

The extremely high occurrence of the correct key in Table 6.2 confirms that the vertical majority
rule explained in Section 6.2 helps validating the key. In all experiments, the most recorded
candidate was always observed to be the correct key. As a result, the correct key is expected to be
recovered within the first try-outs as the other candidates were all observed to be either random
or close to the correct key.

6.3.6 Other SIKE instances

Note that the success of the clustering is closely connected to the relatively big number of samples
available. As more samples are obtained, the distinction between the two clusters becomes easier.
However, depending on the noise, additional samples may undermine the success of the overall
clustering.

Still, similar results (if not better) have been obtained by running the same experiment with the
bigger instances of SIKE. The experiments were executed with fewer runs, a fixed wavelet level,
and only using the thresholding algorithm. The results are reported in Table 6.5 and prove that
the attack is not limited to SIKEp434.

6.4 Countermeasure

Protecting the point-swapping procedure against clustering power analysis is not obvious, as the
attack defeats classical countermeasures of [Cor99] which include coordinate randomisation,
exponent randomisation, point blinding, and even the CLN countermeasure explained in Chapter
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Figure 6.5: Statistics on the total number of timing locations which yield the correct key across
the N = 10 experiments with the other instances of SIKE.

Thresholding

p n min. max. E(#t ) σ(#t )
434 217 115 289 196.7 29.4
503 252 154 232 184.2 22.9
610 304 335 419 396.4 23.6
751 378 271 321 297.5 15.8

5.5. Moreover, due to the recent study which relies on deep learning [PCBP21], even the tiniest
bias in the power consumption may lead to a full recovery.

To make the task even more challenging, the target CPU of Cortex-M4 is known to be hard to
protect (see [BCH+21]). As the Cortex-M4 appears to leak in the Hamming distance of the pipeline
registers (see [CGD17]), the countermeasures need not only to consider the Hamming weight of
the processed values, but also the Hamming distance between the values used by two consecutive
instructions.

In this section, a countermeasure based on splitting the swapping mask is suggested.

6.4.1 Description

The proposed countermeasure revises the original swapping procedure from Section 6.1.1, page
90, in the following sense; instead of computing the value mask all at once, the idea is to split this
quantity into two shares and add each share separately in a two-stage process to both a and b.
Such a procedure avoids computing values of extreme Hamming distances.

To this end, the swapping mask is replaced by two 32-bit masks: m1 and m2 such that their bitwise
“xor” is equal to mask. In other words, given two consecutive private-key bits sk i−1, and sk i (for
0 ≤ i < n with sk−1 = skn = 0):

m1⊕m2=
{

0x00000000 if sk i−1 ⊕ sk i = 0,
0xFFFFFFFF if sk i−1 ⊕ sk i = 1.

Given the two masks m1 and m2, the new procedure works as follows:

tmp1 = m1 & (a ⊕b),

tmp2 = m2 & (a ⊕b),

a = (tmp1⊕a)⊕tmp2,

b = (tmp1⊕b)⊕tmp2.

Because of the way we define m1 and m2, and because “&” distributes over “⊕” as follows
(x & m1)⊕ (x & m2) = x & (m1⊕m2), the above procedure swaps a and b in the same way as
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the method in Section 6.1.1.

6.4.2 Implementation

The results from Section 6.3 provide insight on the critical points of the procedure that require
particular care. Mainly three leaking points were identified:

1. The generation of the masks.
2. The instructions used to perform the swapping operation.
3. Exiting the function.

The third point can be avoided by incorporating the procedure to the code without calling a
function, so only the first two points are addressed.

Masks generation

Let swap refer to the secret difference of private-key bits (i.e., swap= sk i−1 ⊕ sk i ). The suggested
countermeasure involves generating two random masks m1 and m2 that are either equal or bit-
wise complement depending on swap. To achieve this, given a random m1, the second mask m2 is
derived with the following formula: m2 = (1−2 ·swap)(m1+swap). This makes m2 become the
bitwise complement of m1 through the representation of negative numbers in the CPU with the
two’s complement, i.e., ¬ m1=−(m1+1).

Performance. Safely generating these two quantities requires sampling additional randomness.
In particular, the multiplication of (m1+swap) by (1−2 ·swap) is computed as u1(m1+swap)−
u2(m1+swap) where u1 −u2 = 1−2 ·swap. In total the mask generation requires at least 4 bytes
of entropy (15 bits of which are effective) for generating m1 and 4 bytes of entropy (14 bits of
which are effective) for protecting the computation of m2. Such an implementation introduces an
overhead of at least 12 additional instructions when compared to the original mask computation.
The code is given in Listing G.3.

The swapping operation

Because of the Cortex-M4 leakage model, the order of the operations and the order of the operands
play a critical role in the countermeasure. Particular care has to be taken with store and load
instructions, as the power consumption of these procedures leaks sensitive values. As a result,
given the two masks m1 and m2 generated as before, the implementation of the countermeasure
must follow a special order given in Listing G.4.

Performance. As opposed to the original pattern of 8 instructions, such a solution requires 14
instructions per iteration which introduces further delays.
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Benchmarks

We compare the run-time of our countermeasure against the run-time of the unprotected version
of SIKE. About 62% of the overhead stems from acquiring randomness for mask generation. We
generate a new pair of masks for each swap. In total there are 14×4 = 56 swaps, each of them
requiring 8 bytes of entropy in order to generate the masks safely. For that reason we decided to
use the Tiny Mersenne Twister pseudorandom number generator [SM11] seeded with a 64-bit
value obtained from a hardware-based source of true randomness.

The protected swap_points is about 5.7 times slower than the unprotected swap. Within the
three-point ladder function, the overhead adds up to about 70,000 additional cycles, which take up
5% of the total three-point ladder computing time. When considered as a part of a full execution
of SIKE, the overhead due to protecting the swap boils down from about 1% in the key generation
and decapsulation to 0.7% in the encapsulation procedure.

We generated the randomness needed for the masks in an ad-hoc manner during the execution
of the three-point ladder. We believe that the overhead induced by the randomness generation
can be further lowered by generating it during a pre-computation stage, or by using different
algorithms.

Table 6.1: Run-times (in cycles) of the SIKEp434 implementation on an
Intel Coffee Lake i9-8950HK CPU @ 2.90GHz with Turbo boost turned off.

Operation unprotected protected

Mask generation 1 251
Swapping operation 71 148
Three-point ladder 1,172,432 1,241,721
Key generation 6,083,645 6,153,241
Encapsulation 9,893,673 9,962,113
Decapsulation 10,625,881 10,747,176

6.4.3 Experimental validation

The proposed countermeasure was validated by conducting Welch’s t-test [SM16]. Such a test
gives a degree of confidence that two classes of power samples are statistically indistinguishable.
In the present case, the two classes respectively correspond to whether the points were swapped
during the collection of the power traces, or not.

The t values are computed with the following formula:

t = µ0 −µ1√
σ2

0/n0 +σ2
1/n1

where µ0, µ1 correspond to the means of the two classes, σ2
0, σ2

1 to their variances, and n0, n1 to
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their cardinality (here, n0,n1 ≈ 1000). A threshold of 4.5 for the t values is set to reject the null
hypothesis (see [DZD+17]). In other words, a t value greater than the threshold gives evidence
that the two distributions are not indistinguishable.

Figure 6.6: t-test of the countermeasure both in timing and frequency. The horizontal lines in red
show the threshold above which the null hypothesis is rejected.

Figure 6.7: Power sample distributions at the locations which produced the highest value in both
t-tests.

The results are shown in Fig. 6.6. Even though significantly large t values appear in the plots,
the attack is still unsuccessful when re-run against the countermeasure as the histograms cor-
responding to the power samples from the two classes overlap with each other at all points in
time and frequency. Fig. 6.7 illustrates this by showing the histograms at the highest peaks of the
t-test plots from Fig. 6.6. As one can notice, both histograms exhibit a significant variance, which
prevents the attack to fully recover the private key. The histograms at all other points showed a
similar overlapping.
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While such a discrepancy of distributions prevents a successful clustering with the techniques
described in this paper, more sophisticated attacks (such as [PITM14, PCBP21]) may still prevail.
These attacks may therefore require additional efforts to withstand.

6.5 Conclusion

This chapter described a plain clustering power analysis able to recover the entire private key in a
single execution of the three-point ladder in the implementation of SIKE for Cortex-M4.

While the attack has been experimentally shown to be always successful, the reader must keep
in mind that the experiment was performed on a chip that is particularly vulnerable to power
analysis. However, the countermeasure described completely thwarts the attack even on such a
vulnerable chip. If the countermeasure is safe under such defenceless circumstances, then the
implementation can be assumed to be safe in a more realistic scenario.

Future work. The experiment could be repeated with electromagnetic radiations of the micro-
controller. Also, the countermeasure requires to be evaluated against other side-channel attacks
and improved both in performance and security. Speeding up the countermeasure is also a
matter of interest. Generating randomness during a pre-computation stage for both coordinate
randomisation, and swap mask generating is a good direction to look into, and can bring a notable
improvement in reducing the overhead from the countermeasure. Finally, an evaluation of other
sensitive operations in SIKE—such as the isogeny computation—can be conducted, as there are
still many other points that have not been evaluated yet that may also leak secret information
through power consumption.
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A The Legendre pseudorandom function

A.1 Computing the stabiliser Stab( f ) of f

Let m ∈ Stab( f ) be a matrix of order r ′. Following the same argumentation from Section (3.2.2)
there exists a change of coordinate matrix P such that D = P−1mP is a diagonal matrix. We give a
set of representatives for matrices D and P such that for each m there is a single pair D,P in that
set satisfying

m = P D P−1.

This property can be used to argue that we need only to find one mr of order pr for any prime
divisor pr | r ′. Given mr , an element mi of order p i

r is simply PD1/p i−1
r P−1, and an element mq

of order qr for some other divisor qr | r ′ is PDq P−1 for the corresponding matrix Dq of order qr .
Furthermore, an element of order pr qr can be found by computing mu

r mv
q with upr + vqr = 1.

Therefore in order to find the full stabiliser group we need only to find one element of prime order.
This is done by searching for elements of order q in the stabiliser, for each prime q | r , so we may
start by assuming that we know r ′.

The search for m is done by going through the conjugacy class of a matrix D of order r ′, until we
find a matrix that stabilises f . The conjugacy class has sizeΘ(p2) so we expect to find m inΘ(p2)

steps, but we have to be careful and go through the whole class without repetitions.

The process is explained separately for rational and irrational matrices.

A.1.1 Rational matrices

If m is of rational then for some P ∈ GL2(Fp )

m = P

(
a 0

0 b

)
P−1
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where a,b ∈ Fp non-zero such that ξ ..= a/b has order r ′. Since m is defined up to scalar multipli-
cation in F∗p , we may suppose that a = ξ and b = 1, so D = (

ξ 0
0 1

)
for some ξ primitive r ′’th root of

unity in Fp . There are in total ϕ(r ′) different ξ values to consider, however each one will give rise
to a different generator of the stabiliser of f , so the choice of ξ does not matter.

The search for m is done by enumerating PDP−1, where matrices P are chosen from GL2(Fp ) up
to right multiplication by an element of Z (D) = {

(
a 0
0 b

)|ab ̸= 0}, the centraliser of D . In total there
are p2 +p elements in GL2(Fp )/Z (D). One set of representatives can be chosen to be

{
(

0 1
1 d

)
,
(

1 0
c 1

)
,
(

1 1
c d

)| c,d ∈ Fp such that the determinants are non-zero}.

When r ′ = 2, so D = (−1 0
0 1

)
, the set of representatives is halved because

(
0 1
1 0

) ∈ Z (D) after project-
ing on PGL2(Fp ). In that case we give the following (p2 +p)/2 representatives for the matrices P

:
{
(

0 1
1 d

)
,
(

1 1
c d

)| c < d ∈ Fp }

where the ordering of elements of Fp is induced from the lift to {0,1, . . . , p −1}.

A.1.2 Irrational matrices

If m is of irrational then for some P ∈ GL2(Fp2 )

m = P

(
λ 0

0 µ

)
P−1

whereλ,µ ∈ Fp2 are conjugate roots of an irreducible second degree polynomial such that ξ ..=λ/µ

is a primitive r ′’th root of unity.

Lemma A.1.1. The diagonal matrix D defined above is unique in GL2(Fp2 )/F∗p .

Proof. Since ξ=µ/µ=µp−1 we have ξp+1 = 1. Due to the primitivity of ξ it follows that r ′ | p +1.

If ξ ∈ Fp then ξ2 = 1 so ξ=−1 and r ′ = 2. In that case λ=−µ, so the minimal polynomial of λ is
x2 − c for some non-square c . Up to multiplying D by a constant in F∗p , we may suppose λ=p

u

for a fixed non-square u, and therefore there is only one such matrix.

If ξ is not rational, then ξ= ξp = 1/ξ, so ξξ= 1. Fromλ= ξµwe have D = (ξµ 0
0 µ

)
. The determinant

and the trace of D are the same as those of m, so in particular they are rational. This means that

µ(ξ+1) ∈ Fp

ξµ2 ∈ Fp

from which it follows that µ= a
ξ+1 and λ= ξa

ξ+1 for some a ∈ Fp . For any choice of a, the second
condition follows from ξξ= 1. Multiplying λ and µ by any non-zero rational constant does not
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change the property of D being conjugate to m ∈ PGL2(Fp ), to them being irrational conjugates
of each other or to their quotient being equal to ξ. Therefore we may suppose λ = ξ

ξ+1 and
µ= 1

ξ+1 .

We start by computing a primitive root of unity ξ of order r ′, and set D as above. As before, the
choice of ξ does not matter.

The search for m follows by going through P D P−1 where the matrices P are chosen such that
PDP−1 is rational and up to right multiplication by Z (D), the centraliser of D .

Rational PDP−1

If PDP−1 is rational we have PDP−1 = P D P
−1

, so

(P−1P )
(µ 0

0 λ

)= (
λ 0
0 µ

)
(P−1P ).

Define AP
..= P−1P . The matrix AP satisfies A−1

P = AP , so it has to satisfy

AP =
(

0 α

1/α 0

)

for some non-zero α in Fp2 . From P = PAP we have some constraints on P ,

P ∈
{(

q qα

r rα

)∣∣∣ q,r ∈ Fp2 , qr ̸= 0, q p−1 ̸= r p−1

}
.

The centraliser Z (D)

The matrix D is diagonal with different eigenvalues, so

Z (D) =
{(

x 0

0 y

)∣∣∣ x, y ∈ Fp2 , x y ̸= 0

}
.

Multiplying a P on the right by an element of the centraliser gives(
q q α

r r α

)(
x 0

0 y

)
=

(
qx q α y

r x r α y

)
=

(
qx qx (αy

x )

r x r x (αy
x )

)
,

which sends (q,r ) to (qx,r x) and α to α y
x , so we may assume that q = α = 1. A set of p2 −p

representatives for matrices P is {(
1 1

r r

)∣∣∣r ∈ Fp2 \Fp

}
.
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Appendix A. The Legendre pseudorandom function

When r ′ = 2, so D = (pu 0
0 −pu

)
for some rational non-square u, the set of representatives is halved

because
(

0 1
1 0

) ∈ Z (D) after projecting on GL2(F2
p )/F∗p . In that case we give the following (p2−p)/2

representatives for matrices P :{(
1 1

r r

)∣∣∣ r = a
p

u +b , 1 ≤ a ≤ p−1
2 , 0 ≤ b < p

}
.
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B SIKE

Figure B.1: The SIKE protocol.

Alice Bob
skB ←$ [0,ℓeB

B )

s ←$ {0,1}τ

RB ← PB + [skB ]QB

Let φB : E0 → EB be s.t. ker(φB ) = 〈RB 〉
pkB = (EB ,φB (P A),φB (Q A))pkB←−−−−−

m ←$ {0,1}τ

skA ←G(m∥pkB ) mod ℓe A
A

RA ← P A + [skA]Q A

Let φA : E0 → E A be s.t. ker(φA) = 〈R ′
A〉

R ′
A ←φB (P A)+ [skA]φB (Q A)

Let φ′
A : EB → E AB be s.t. ker(φ′

A) = 〈RA〉
c0 = (E A ,φA(PB ),φA(QB ))

c1 = F ( j (E AB ))⊕m

K = H(m∥c0∥c1)
(c0∥c1)−−−−→ R ′

B ←φA(PB )+ [skB ]φA(QB )

Let φB : EB → E ′
AB be s.t. ker(φB ) = 〈R ′

B 〉
m′ ← F ( j (E ′

AB ))⊕ c1

sk ′
A ←G(m′∥pkB ) mod ℓe A

A

R ′ ← P A + [sk ′
A]Q A

Let φ′ : E0 → E ′
A be s.t. ker(φ′) = 〈R ′〉

if (E ′
A ,φ′(PB ),φ′(QB )) = c0

K = H(m′∥c0∥c1)
else

K = H(s∥c0∥c1)
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C SIKE code

We include the code of the xDBLADD, fp2mul_mont, fp2sqr_mont and mp_addfast functions
from [SAJA20]. Minor changes, such as variable naming, have been made to the code in order to
adapt it to the names used in this paper. The lines of code 3,6,7,8,9,10,11,15,16,17,18,19
and the mp_addfast (highlighted in red) correspond to the targeted instructions.
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Appendix C. SIKE code

void xDBLADD(point_proj_t Q, point_proj_t P, point_proj_t QP, const
f2elm_t A24)

{ // Simultaneous doubling and differential addition.
// Input: projective Montgomery points Q=(Q->X:Q->Z), P=(P->X:P

->Z), Q-P=(QP->X:QP->Z), and Montgomery curve constant A24=(A+2)
/4.

// Output: projective Montgomery points Q <- 2*Q, and P <- Q+P.

f2elm_t t0, t1, t2;

1 fp2add(Q->X, Q->Z, t0);
2 fp2sub(Q->X, Q->Z, t1);
3 fp2sqr_mont(t0, Q->X);
4 fp2sub(P->X, P->Z, t2);

4.5 fp2correction(t2);
5 fp2add(P->X, P->Z, P->X);
6 fp2mul_mont(t0, t2, t0);
7 fp2sqr_mont(t1, Q->Z);
8 fp2mul_mont(t1, P->X, t1);
9 fp2sub(Q->X, Q->Z, t2);

10 fp2mul_mont(Q->X, Q->Z, Q->X);
11 fp2mul_mont(t2, A24, P->X);
12 fp2sub(t0, t1, P->Z);
13 fp2add(P->X, Q->Z, Q->Z);
14 fp2add(t0, t1, P->X);
15 fp2mul_mont(Q->Z, t2, Q->Z);
16 fp2sqr_mont(P->Z, P->Z);
17 fp2sqr_mont(P->X, P->X);
18 fp2mul_mont(P->Z, QP->X, P->Z);
19 fp2mul_mont(P->X, QP->Z, P->X);

//In practice 19 is called outside of xDBLADD
}

Figure C.1: xDBLADD from [SAJA20].
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void fp2mul_mont(const f2elm_t a, const f2elm_t b, f2elm_t c)
{ // GF(p^2) multiplication.

// Inputs: a = a0+a1*i and b = b0+b1*i.
// Output: c = c0+c1*i.
felm_t t1, t2;
dfelm_t tt1, tt2, tt3;
digit_t mask;
unsigned int i;

1 mp_addfast(a[0], a[1], t1);
2 mp_addfast(b[0], b[1], t2);

3 fpmul_mont(a[0], b[0], c[0]);
4 fpmul_mont(a[1], b[1], tt2);
5 fpmul_mont(t1, t2, c[1]);

6 fpsub(c[1],c[0],c[1]);
7 fpsub(c[1],tt2,c[1]);

8 fpsub(c[0],tt2,c[0]);
}

Figure C.2: fp2mul_mont from [SAJA20].

void fp2sqr_mont(const f2elm_t a, f2elm_t c)
{ // GF(p^2) squaring.

// Inputs: a = a0+a1*i.
// Output: c = c0+c1*i.
felm_t t1, t2, t3;

1 mp_addfast(a[0], a[1], t1);
2 fpsub(a[0], a[1], t2);
3 mp_addfast(a[0], a[0], t3);
4 fpmul_mont(t1, t2, c[0]);
5 fpmul_mont(t3, a[1], c[1]);

}

Figure C.3: fp2sqr_mont from [SAJA20].
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Appendix C. SIKE code

void __attribute__ ((noinline, naked)) mp_addfast(const digit_t* a,
const digit_t* b, digit_t* c)

{ // Multiprecision addition, c = a+b.
asm(

1 "push {r4-r9,lr} \n\t"
2 "mov r14, r2 \n\t"

3 "ldmia r0!, {r2-r5} \n\t"
4 "ldmia r1!, {r6-r9} \n\t"
5 "adds r2, r2, r6 \n\t"
6 "adcs r3, r3, r7 \n\t"
7 "adcs r4, r4, r8 \n\t"
8 "adcs r5, r5, r9 \n\t"
9 "stmia r14!, {r2-r5} \n\t"

10 "ldmia r0!, {r2-r5} \n\t"
11 "ldmia r1!, {r6-r9} \n\t"
12 "adcs r2, r2, r6 \n\t"
13 "adcs r3, r3, r7 \n\t"
14 "adcs r4, r4, r8 \n\t"
15 "adcs r5, r5, r9 \n\t"
16 "stmia r14!, {r2-r5} \n\t"

17 "ldmia r0!, {r2-r5} \n\t"
18 "ldmia r1!, {r6-r9} \n\t"
19 "adcs r2, r2, r6 \n\t"
20 "adcs r3, r3, r7 \n\t"
21 "adcs r4, r4, r8 \n\t"
22 "adcs r5, r5, r9 \n\t"
23 "stmia r14!, {r2-r5} \n\t"

20 "ldmia r0!, {r2-r3} \n\t"
21 "ldmia r1!, {r6-r7} \n\t"
22 "adcs r2, r2, r6 \n\t"
23 "adcs r3, r3, r7 \n\t"
24 "stmia r14!, {r2-r3} \n\t"

26 "pop {r4-r9,pc} \n\t"
:
:
:
);

}

Figure C.4: mp_addfast from [SAJA20].
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D A visual explanation of the isogeny
attack

Figure D.1: An example of an isogeny computation with a kernel of wrong order

[30]R

[31]R

[32]R

[34]R

[35]R

[36]R

[38]R

[39]R

[33]R

[37]R

E A0 E A1 E A2 E A3 E A4 E A5 E A6 E A7 E A8 E A9

In Figure D.1, we can see a 310-isogeny computation with a kernel of incompatible order.

• With black we denote regular points and supersingular elliptic curves.

• With blue we denote arbitrary points, isogenies with bad kernel, and arbitrary (non-supersingular)
elliptic curves.

• With cyan we denote the point O , isogenies with kernel 〈O〉, triplings of O and degenerate
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Appendix D. A visual explanation of the isogeny attack

elliptic curves.

• With red we denote the isogeny (tripling) which first creates the undefined point [0 : 0],
and undefined elliptic curves.

• With circles we denote undefined points [0 : 0].

• With dashed lines we denote isogenies which send points to the undefined point and
undefined elliptic curves.

Assume that the points [33]R and [37]R are equal. On the first curve E A0 the point R is tripled
9 times, and the points [30]R, [33]R, [37]R and [38]R are saved. A 3-isogeny is computed from
[39]R, and the saved points are pushed. The images of [33]R and [37]R are still equal. Another
3-isogeny is computed from the image of [38] and the saved points are pushed. The images of
[33]R and [37]R are still equal. The third 3-isogeny sends the image of [33]R to O . Triplings of
O are equal to O . The next isogeny, generated by O sends the saved O points to O , and the next
curve is the degenerate curve. The next isogeny is also generated by 〈O〉, sends O to O , and the
next curve is the degenerate curve. The first next tripling is the tripling of O on the degenerate
curve which outputs the undefined point [0 : 0]. From this point onward all the outputs are [0 : 0].
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E Practical isogeny computation with
kernel points of bad order

In this appendix we provide visual representations of tree traversals associated to isogeny compu-
tations with kernel generating points of bad order. The tree traversal graphs are provided for all
SIKE parameter sets. These are all the tree traversals that can occur during an execution of the
attack from Chapter 5.

We use the same colour palette as in Appendix D, for both degree 2e2 and 3e3 isogenies.

• With black we denote regular points and supersingular elliptic curves.

• With blue we denote arbitrary points, isogenies with bad kernel, and arbitrary (non-supersingular)
elliptic curves.

• With cyan we denote the point O (resp. T ), isogenies with kernel 〈O〉 (resp. 〈T 〉), triplings
of O (resp. T ) and degenerate elliptic curves.

• With red we denote the isogeny or tripling which first creates the undefined point [0 : 0],
and undefined elliptic curves.

• With circles we denote undefined points [0 : 0].

• With dashed lines we denote isogenies which send points to the undefined point and
undefined elliptic curves.

• On the starting curve, we draw a symbol on the left of saved points which are equal, or that
differ by T (i.e. the points have flipped coordinates); equal points have the same symbol;
points which differ by T have the same symbol with a tilde above one of the symbols; points
whose difference is not in {O ,T } either have different symbols, or one of them doesn’t have
a symbol next to it.
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Appendix E. Practical isogeny computation with kernel points of bad order

*

*

*

§

§

Figure E.1: Even degree isogeny with kernel of bad order; parameter set p434
Isogeny degree: 2216

Breaking point: o = 3
Kernel point degree: 3o−1
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*

Figure E.2: Even degree isogeny with kernel of bad order; parameter set p503
Isogeny degree: 2250

Breaking point: o = 4
Kernel point degree: 3o−1
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Appendix E. Practical isogeny computation with kernel points of bad order

*

*

Figure E.3: Even degree isogeny with kernel of bad order; parameter set p610
Isogeny degree: 2305

Breaking point: o = 2
Kernel point degree: 3o−1

Note: On the first curve points are connected by doublings, and the first two curves by a 2-isogeny.
Other isogenies are of degree 4.
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Figure E.4: Even degree isogeny with kernel of bad order; parameter set p751
Isogeny degree: 2372

Breaking point: o = 5
Kernel point degree: 3o−1
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Appendix E. Practical isogeny computation with kernel points of bad order

*

*

Figure E.5: Odd degree isogeny with kernel of bad order; parameter set p434.
Isogeny degree: 3137.
Breaking point: o = 9.
Kernel point degree: 2o−1.
Kernel point independent of T .
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Figure E.6: Odd degree isogeny with kernel of bad order; parameter set p503.
Isogeny degree: 3159.
Breaking point: o = 7.
Kernel point degree: 2o−1.
Kernel point independent of T .
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Appendix E. Practical isogeny computation with kernel points of bad order

*

*

Figure E.7: Odd degree isogeny with kernel of bad order; parameter set p610.
Isogeny degree: 3192.
Breaking point: o = 7.
Kernel point degree: 2o−1.
Kernel point independent of T .
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Figure E.8: Odd degree isogeny with kernel of bad order; parameter set p751.
Isogeny degree: 3239.
Breaking point: o = 8.
Kernel point degree: 2o−1.
Kernel point independent of T .
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Appendix E. Practical isogeny computation with kernel points of bad order

*

*

Figure E.9: Odd degree isogeny with kernel of bad order; parameter set p434.
Isogeny degree: 3137.
Breaking point: o = 9.
Kernel point degree: 2o−1.
Kernel point and T are dependent.
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Figure E.10: Odd degree isogeny with kernel of bad order; parameter set p503.
Isogeny degree: 3159.
Breaking point: o = 7.
Kernel point degree: 2o−1.
Kernel point and T are dependent.
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Appendix E. Practical isogeny computation with kernel points of bad order

*

*

*

Figure E.11: Odd degree isogeny with kernel of bad order; parameter set p610.
Isogeny degree: 3192.
Breaking point: o = 7.
Kernel point degree: 2o−1.
Kernel point and T are dependent.
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Figure E.12: Odd degree isogeny with kernel of bad order; parameter set p751.
Isogeny degree: 3239.
Breaking point: o = 8.
Kernel point degree: 2o−1.
Kernel point and T are dependent.
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F Blocking zero-value attacks

We list all functions in SIKE that compute arithmetic operations in the field Fp2 . These functions
take as input elliptic curve points, or elliptic curve coefficients, and output (or update) elliptic
curve points or elliptic curve coefficients. Additionally, there is the j -invariant, which takes
an elliptic curve coefficient and outputs an affine j -invariant. We analyse all the arithmetic
subfunctions which compute field additions/subtractions/multiplications/inversions and show
that they never output the field element 0. Whether or not the element 0 is computed directly
depends on the input of the higher level functions. All of the higher level functions are provided
in separate tables, exactly as they are implemented in SIKE [JAC+17]. The assumptions that are
made on inputs stem directly from the CLN test. In the tables different curve representations (see
Section 2.5.2, page 25) are used analogously.

Table F.1: xDBL – point doubling, see formula (2.37) on page 27.
Input: Point [X : Z ], curve [A+

24 : C24].
Assumption: Order of [X : Z ] is 2k for some k ≥ 2 and [2k−1][X : Z ] ̸= [0 : 1], A ̸= ±2C , C ̸= 0.
Output: Point [x : z] = [2][X : Z ].

Step Variable Formula Factorisation Roots

1 t0 X −Z X −Z [1 : 1]
2 t1 X +Z X +Z [−1 : 1]
3 t0 t 2

0 (X −Z )2 [1 : 1]
4 t1 t 2

1 (X +Z )2 [−1 : 1]
5 z C24 × t0 4C (X −Z )2 [1 : 1]
6 x z × t1 4C (X −Z )2(X +Z )2 [±1 : 1]
7 t1 t1 − t0 4X Z [0 : 1], [1 : 0]
8 t0 A+

24 × t1 4(A+2C )X Z [0 : 1], [1 : 0]
9 z z + t0 4C (X 2 +aX Z +Z 2) Points of order 2
10 z z × t1 4C 4X Z (X 2 +aX Z +Z 2) 2-torsion

By assumption the input [X : Z ] in Table F.1 is independent from [0 : 1] and therefore from [±1 : 1].
Moreover [X : Z ] ̸= [1 : 0] due to the order constraint, so the point [X : Z ] is different from the
listed roots. Furthermore the input curve is not degenerate/singular/undefined, so it can never
lead to computing an intermediate 0 value. This is not explicitly stated in the table but it stems
from the factorisation formulas.
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Appendix F. Blocking zero-value attacks

Table F.2: xTPL – point tripling, see formula (2.39) on page 27.
Input: Point [X : Z ], curve [A−

24 : A+
24].

Assumption: Order of [X : Z ] is 3k with k ≥ 2, A ̸= ±2C , C ̸= 0.
Output: Point [x : z] = [3][X : Z ].

Step Variable Formula Factorisation Roots

1 t0 X −Z X −Z [1 : 1]
2 t2 t 2

0 (X −Z )2 [1 : 1]
3 t1 X +Z X +Z [−1 : 1]
4 t3 t 2

1 (X +Z )2 [−1 : 1]
5 t4 t0 + t1 2X [0 : 1]
6 t0 t1 − t0 2Z [1 : 0]
7 t1 t 2

4 4X 2 [0 : 1]
8 t1 t1 − t3 (3X +Z )(X −Z ) [1 : 1], [−1 : 3](!)
9 t1 t1 − t2 2(X −Z )(X +Z ) [±1 : 1]
10 t5 t3 × A+

24 (A+2C )(X +Z )2 [−1 : 1]
11 t3 t3 × t5 (A+2C )(X +Z )4 [−1 : 1]
12 t6 A−

24 × t2 (A−2C )(X −Z )2 [1 : 1]
13 t2 t2 × t6 (A−2C )(X −Z )4 [1 : 1]
14 t3 t2 − t3 −4C (X 4 +2a +6X 2Z 2 +2aX Z 3 +Z 4) Pts of ord 4
15 t2 t5 − t6 4C (X 2 +aX Z +Z 2) Pts of ord 2
16 t1 t1 × t2 8C (X +Z )(X −Z )(X 2 +aX Z +Z 2) [±1 : 1],Pts of ord 2
17 t2 t3 × t1 −4C (X 4 −6X 2Z 2 −4aX Z 3 −3Z 4) Pts of ord 3 +T
18 t2 t 2

2 16C 2(X 4 −6X 2Z 2 −4aX Z 3 −3Z 4)2 Pts of ord 3 +T
19 x t2 × t4 32XC 2(X 4 −6X 2Z 2 −4aX Z 3 −3Z 4)2 3-torsion +T
20 t1 t3 − t1 −4C (3X 4 +4aX 3Z +6X 2Z 2 −Z 4) Pts of ord 3
21 t1 t 2

1 16C 2(3X 4 +4aX 3Z +6X 2Z 2 −Z 4)2 Pts of ord 3
22 z t0 × t1 32ZC 2(3X 4 +4aX 3Z +6X 2Z 2 −Z 4)2 3-torsion

All the roots in Table F.2, with the exception of [−1 : 3] are points of order 1,2,3,4 or 6. The order
of the input point [X : Z ] is ≥ 9 by assumption, so it must be different from the aforementioned
roots. The only possible threat comes from the point [−1 : 3] in step 8. It seems out of reach
to prove that the point [−1 : 3] cannot be of order 3k for k ≥ 2 on supersingular elliptic curves.
One could cook up a heuristic argument showing that such property happens with negligible
probability relative to the prime p . To remediate this problem we provide an alternative solution
– an algorithm for computing point tripling without using intermediate functions which have
[−1 : 3] for a root. This algorithm is provided in Table F.3.

Furthermore, the the curve coefficients never lead to computing 0 as an intermediate values.
This stems from the fact that the input curve is not degenerate/singular/undefined. This is not
explicitly stated in the table, but can be incurred from the factorisation formulas.
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Table F.3: xTPL_alt – point tripling alternative algorithm, see formula (2.39) on page 27.
Input: Point [X : Z ], curve [A−

24 : A+
24].

Assumption: Order of [X : Z ] is 3k with k ≥ 2, A ̸= ±2C , C ̸= 0.
Output: Point [x : z] = [3][X : Z ].

Step Variable Formula Factorisation Roots

1 t2 X −Z X −Z [1 : 1]
2 t3 X +Z X +Z [−1 : 1]
3 t1 t2 × t3 (X −Z )(X +Z ) [±1 : 1]
4 t0 t3 − t2 2Z [1 : 0]
5 t4 t2 + t3 2X [0 : 1]
6 t2 t 2

2 (X −Z )2 [1 : 1]
7 t3 t 2

3 (X +Z )2 [−1 : 1]
8 t1 t1 + t1 2(X −Z )(X +Z ) [±1 : 1]
9 t5 t3 × A+

24 (A+2C )(X +Z )2 [−1 : 1]
10 t3 t3 × t5 (A+2C )(X +Z )4 [−1 : 1]
11 t6 A−

24 × t2 (A−2C )(X −Z )2 [1 : 1]
12 t2 t2 × t6 (A−2C )(X −Z )4 [1 : 1]
13 t3 t2 − t3 −4C (X 4 +2aX 3Z +6X 2Z 2 +2aX Z 3 +Z 4) Pts of ord 4
14 t2 t5 − t6 4C (X 2 +aX Z +Z 2) Pts of ord 2
15 t1 t1 × t2 8C (X +Z )(X −Z )(X 2 +aX Z +Z 2) [±1 : 1],Pts of ord 2
16 t2 t3 × t1 −4C (X 4 −6X 2Z 2 −4aX Z 3 −3Z 4) Pts of ord 3 +T
17 t2 t 2

2 16C 2(X 4 −6X 2Z 2 −4aX Z 3 −3Z 4)2 Pts of ord 3 +T
18 x t2 × t4 32XC 2(X 4 −6X 2Z 2 −4aX Z 3 −3Z 4)2 3-torsion +T
19 t1 t3 − t1 −4C (3X 4 +4aX 3Z +6X 2Z 2 −Z 4) Pts of ord 3
20 t1 t 2

1 16C 2(3X 4 +4aX 3Z +6X 2Z 2 −Z 4)2 Pts of ord 3
21 z t0 × t1 32ZC 2(3X 4 +4aX 3Z +6X 2Z 2 −Z 4)2 3-torsion

The alternate point tripling algorithm (Table F.3) has only points of order 1,2,3,4 and 6 for roots,
while the input point is of order 3k with k ≥ 2. Therefore it can never compute the value 0 during
any of the steps.

When compared to the algorithm in Table F.2, the alternative algorithm computes one extra
multiplication, but one squaring and one addition less. This leads to about 1% - 1.5% performance
overhead during a tripling computation.
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Appendix F. Blocking zero-value attacks

Table F.4: xDBLADD – point double-and-add, see Algorithm (4) on page 29.
Input: Points Q = [XQ : ZQ ], P = [XP : ZP ], and QP = [XQP : ZQP ] and curve constant a as
a24 = (a +2)/4.
Assumption: The points Q,P,QP are on the curve of coefficient a,
The point Q is independent of P and QP =Q −P ,
Either all points are of order 3e3 , or
P and QP are of order 2e2 , Q is of order 2k with k ≥ 1 and [2k−1]Q = T
Output: Q and P are updated to [2]Q and Q +P .

Step Variable Formula Factorisation Roots

1 t0 XQ +ZQ XQ +ZQ [−1 : 1]
2 t1 XQ −ZQ XQ −ZQ [1 : 1]
3 XQ t 2

0 (XQ +ZQ )2 [−1 : 1]
4 t2 XP −ZP XP −ZP [1 : 1]
5 XP XP +ZP XP +ZP [−1 : 1]
6 t0 t0 × t2 (XQ +ZQ )(XP −ZP ) [±1 : 1]
7 ZQ t 2

1 (XQ −ZQ )2 [1 : 1]
8 t1 t1 ×XP (XQ −ZQ )(XP +ZP ) [±1 : 1]
9 t2 XQ −ZQ 4XQ ZQ [1 : 0], [1 : 0]
10 XQ XQ ×ZQ (XQ −ZQ )2(XQ +ZQ )2 [±1 : 1]
11 XP a24 × t2 a244XQ ZQ [1 : 0], [0 : 1]
12 ZP t0 − t1 −2(XQ ZP −XP ZQ ) [XP : ZP ] = [XQ : ZQ ]
13 ZQ XP +ZQ X 2

Q +aXQ ZQ +Z 2
Q Pts of order 2

14 XP t0 + t1 2(XQ XP −ZQ ZP ) [XP : ZP ] = [XQ : ZQ ]+T
15 ZQ ZQ × t2 4XQ ZQ (X 2

Q +aXQ ZQ +Z 2
Q ) 2-torsion

16 ZP Z 2
P 4(XQ ZP −XP ZQ )2 [XP : ZP ] = [XQ : ZQ ]

17 XP X 2
P 4(XQ XP −ZQ ZP )2 [XP : ZP ] = [XQ : ZQ ]+T

18 ZP ZP ×XQP 4XQP (XQ ZP −XP ZQ )2 [0 : 1], [XP : ZP ] = [XQ : ZQ ]
19 XP XP ×ZQP 4ZQP (XQ XP −ZQ ZP )2 [1 : 0], [XP : ZP ] = [XQ : ZQ ]+T

The xDBLADD procedure from Table F.4 is called multiple times during the execution of the three-
point ladder. The root equations in steps 12−14 and 16−19 are never satisfied because of the
independence assumption. If the input of the three-point ladder is a public key consisting of
points of order 3e3 , then the order assumption implies that none of the points are equal to the
roots in steps 1− 11, 13, 15, 18 and 19. If the input of the three-point ladder is a public key
consisting of points of order 2e2 , and Q is of order 2k , then the steps 4,5,13,18,19 can be safely
ignored due to the order constraint of points P and QP . Furthermore in steps 6 and 8 the value 0

cannot stem from the point P because of the same constraint. For the remaining steps, the only
way that 0 can show up is if it stems from the point Q. However, the point Q is always known
during the three-point ladder computation, and it does not depend on the secret key. It will
always lead to computing 0 in either steps 1,3,6,10 (if Q = [−1 : 1]) or 2,7,8,10 (if Q = [1 : 1]) in
the penultimate loop iteration of the three-point ladder, and in steps 9,11,15 (when Q = [0 : 1])
in the last loop iteration of the three-point ladder. This is correct behaviour of the algorithm, it
does not depend on the secret key, and cannot be exploited by an attacker.
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Table F.5: get_2_isog – 2-isogeny computation, see formula (2.41) on page 27.
Input: Kernel point [X2 : Z2].
Assumption: Kernel point is of order 2, different from T = [0 : 1].
Output: Image curve [a+

24 : c24] of isogeny with kernel 〈[X2 : Z2]〉.

Step Variable Formula Factorisation Roots

1 a+
24 X 2

2 X 2
2 [0 : 1]

2 c24 Z 2
2 Z 2

2 [1 : 0]
3 a+

24 c24 −a+
24 −(X2 −Z2)(X2 +Z2) [±1 : 1]

In Table F.5, the 2-isogeny kernel point is always a point of order 2 which is different from T = [0 : 1].
Therefore the kernel point is never equal to any of the roots, which means that the value 0 is
never computed during the execution of the algorithm. Furthermore, the output curve is never a
degenerate, singular or undefined curve.

Table F.6: eval_2_isog – 2-isogeny evaluation, see formula (2.42) on page 28.
Input: Kernel point [X2 : Z2], point to be evaluated [X : Z ].
Assumption: Kernel point is of order 2, different from T = [0 : 1],
Point [X : Z ] satisfies [2k ][X : Z ] = [X2 : Z2] with k ≥ 1.
Output: Image [x : z] of point [X : Z ] through the isogeny with kernel 〈[X2 : Z2]〉.

Step Variable Formula Factorisation Roots

1 t0 X2 +Z2 X2 +Z2 [−1 : 1]
2 t1 X2 −Z2 X2 −Z2 [1 : 1]
3 t2 X +Z X +Z [−1 : 1]
4 t3 X −Z X −Z [1 : 1]
5 t0 t0× t3 (X2 +Z2)(X −Z ) [±1 : 1]
6 t1 t1× t2 (X2 −Z2)(X +Z ) [±1 : 1]
7 t2 t0+ t1 2(X X2 −Z Z2) [X : Z ] = [X2 : Z2]+T
8 t3 t0− t1 2(X Z2 −Z X2) [X : Z ] = [X2 : Z2]
9 x X × t2 2X (X X2 −Z Z2) [X : Z ] ∈ 〈[X2 : Z2]〉+T
10 z Z × t3 2Z (X Z2 −Z X2) [X : Z ] ∈ 〈[X2 : Z2]〉

In Table F.6, the input point [X : Z ] lies above the kernel point [X2 : Z2] (i.e., [2k ][X : Z ] = [X2 : Z2]

with k ≥ 1). Therefore the input point is independent of [±1 : 1] and [1 : 0], which implies that the
input point and the kernel point can never be equal to the roots in steps 1−6. Since [X : Z ] is of a
strictly larger order than [X2 : Z2], we cannot have any of the constraints in lines 7−10. Therefore
0 is never computed during 2-isogeny evaluation.
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Appendix F. Blocking zero-value attacks

Table F.7: get_3_isog – 3-isogeny computation, see formula (2.43) on page 28.
Input: Kernel point [X3 : Z3].
Assumption: Kernel point is of order 3.
Output: Image curve [a+

24 : a−
24] of isogeny with kernel 〈[X3 : Z3]〉, and field elements k1,k2,k3.

Step Variable Formula Factorisation Roots

1 k1 X3 −Z3 X3 −Z3 [1 : 1]
2 t0 k2

1 (X3 −Z3)2 [1 : 1]
3 k2 X3 +Z3 X3 +Z3 [−1 : 1]
4 t1 k2

2 (X3 +Z3)2 [−1 : 1]
5 t3 X3 +X3 2X3 [0 : 1]
6 t3 t 2

3 4X 4
3 [0 : 1]

7 t2 t3 − t0 (3X3 −Z3)(X3 +Z3) [−1 : 1], [1 : 3]
8 t3 t3 − t1 (3X3 +Z3)(X3 −Z3) [1 : 1], [−1 : 3]
9 t4 t3 + t0 4X3(X3 −Z3) [0 : 1], [1 : 1]
10 t4 t4 + t4 8X3(X3 −Z3) [0 : 1], [1 : 1]
11 t4 t1 + t4 (3X3 −Z3)2 [1 : 3]
12 a−

24 t2 × t4 (3X3 −Z3)3(X3 +Z3) [−1 : 1], [1 : 3]
13 t4 t1 + t2 4X3(X3 +Z3) [0 : 1], [1 : 1]
14 t4 t4 + t4 8X3(X3 +Z3) [0 : 1], [1 : 1]
15 t4 t0 + t4 (3X3 +Z3)2 [0 : 1], [1 : 1]
16 a+

24 t3 × t4 (3X3 +Z3)3(X3 −Z3) [1 : 1], [−1 : 3]

The three isogeny computation, shown in Table F.7 takes for input a kernel point of order 3. The
roots of the subfunctions are points in the 2-torsion, and the points [±1 : 3]. The kernel point can
never be equal to one of the 2-torsion points due to the order constraint. The same is actually
true for the points [±1 : 3] when the underlying curve is not singular or undefined. We leave as an
exercise to the reader to plug in the point [±1 : 3] into the tripling formula in equation 2.39 or in
Table F.2 or F.3, and conclude that [3][±1 : 3] = [1 : 0] if and only if the underlying curve is singular.
Therefore, the value 0 is never computed during the 3-isogeny computation.
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Table F.8: eval_3_isog – 3-isogeny evaluation, see formula (2.44) on page 28.
Input: Kernel point [X3 : Z3], point to be evaluated [X : Z ], field elements k1,k2,k3 (Table F.7).
Assumption: Kernel point is of order 3,
Point [X : Z ] satisfies [3k ][X : Z ] = [X3 : Z3] with k ≥ 1.
Output: Image [x : z] of point [X : Z ] through the isogeny with kernel 〈[X3 : Z3]〉.

Step Variable Formula Factorisation Roots

1 t0 X +Z X +Z [−1 : 1]
2 t1 X −Z X −Z [1 : 1]
3 t0 t0 ×k1 (X3 −Z3)(X +Z ) [±1 : 1]
4 t1 t1 ×k2 (X3 +Z3)(X −Z ) [±1 : 1]
5 t2 t0 + t1 2(X X3 −Z Z3) [X : Z ] = [X3 : Z3]+T
6 t0 t1 − t0 −2(X Z3 −Z X3) [X : Z ] = [X3 : Z3]
7 t2 t 2

2 4(X X3 −Z Z3)2 [X : Z ] = [X4 : Z4]+T
8 t0 t 2

0 4(X Z3 −Z X3)2 [X : Z ] = [X4 : Z4]
9 x X × t2 4X (X X3 −Z Z3)2 [X : Z ] ∈ 〈[X3 : Z3]〉+T
10 z Z × t0 4Z (X Z3 −Z X3)2 [X : Z ] ∈ 〈[X3 : Z3]〉

In Table F.8, the input point [X : Z ] and the kernel point [X3 : Z3] are of order some power of 3,
with [X : Z ] of strictly greater order than [X3 : Z3]. Therefore they are different from all the roots
Table F.8, meaning that the value 0 is never computed during 3-isogeny evaluation.

Table F.9: get_4_isog – 4-isogeny computation, see formula (2.45) on page 28.
Input: Kernel point [X4 : Z4].
Assumption: Kernel point is of order 4, different from [±1 : 1].
Output: Image curve [a+

24 : c24] of isogeny with kernel 〈[X4 : Z4]〉, and field elements k1,k2,k3.

Step Variable Formula Factorisation Roots

1 k2 X4 −Z4 X4 −Z4 [1 : 1]
2 k3 X4 +Z4 X4 +Z4 [−1 : 1]
3 k1 Z 2

4 Z 2
4 [1 : 0]

4 k1 k1 +k1 2Z 2
4 [1 : 0]

5 c24 k2
1 4Z 4

4 [1 : 0]
6 k1 k1 +k1 4Z 2

4 [1 : 0]
7 a+

24 X 2
4 X 2

4 [0 : 1]
8 a+

24 a+
24 +a+

24 2X 2
4 [0 : 1]

9 a+
24

(
a+

24

)2 4X 2
4 [0 : 1]

In Table F.9 the kernel point [X4 : Z4] is of order 4 and different from [±1 : 1] by assumption.
Therefore it is different from all the roots in the table, and thus the 0 value is never computed
during 4-isogeny computation.
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Appendix F. Blocking zero-value attacks

Table F.10: eval_4_isog – 4-isogeny evaluation, see formula (2.46) on page 28.
Input: Kernel point [X4 : Z4], point to be evaluated [X : Z ], field elements k1,k2,k3 from Table F.9.
Assumption: Kernel point is of order 4, different from [±1 : 1],
Point [X : Z ] satisfies [4k ][X : Z ] = [X4 : Z4] with k ≥ 1.
Output: Image [x : z] of point [X : Z ] through the isogeny with kernel 〈[X4 : Z4]〉.

Step Variable Formula Factorisation Roots

1 t0 X +Z X +Z [−1 : 1]
2 t1 X −Z X −Z [1 : 1]
3 x t0 ×k2 (X4 −Z4)(X +Z ) [±1 : 1]
4 z t1 ×k3 (X4 +Z4)(X −Z ) [±1 : 1]
5 t0 t0 × t1 (X −Z )(X +Z ) [±1 : 1]
6 t0 t0 ×k1 4Z 2

4 (X −Z )(X +Z ) [±1 : 1], [1 : 0]
7 t1 x + z 2(X X4 −Z Z4) [X : Z ] = [X4 : Z4]+T
8 z x − z −2(X Z4 −Z X4) [X : Z ] = [X4 : Z4]
9 t1 t 2

1 4(X X4 −Z Z4)2 [X : Z ] = [X4 : Z4]+T
10 z z2 4(X Z4 −Z X4)2 [X : Z ] = [X4 : Z4]
11 x t0 + t1 4X (X X 2

4 +X Z 2
4 −2Z X4Z4) [X : Z ] = [X 2

4 +Z 2
4 : 2X4Z4]+T

12 t0 z − t0 4Z (Z X 2
4 +Z Z 2

4 −2X X4Z4) [X : Z ] = [X 2
4 +Z 2

4 : 2X4Z4]
13 x x × t1 16X (X X4 −Z Z4)2(X X 2

4 +X Z 2
4 −2Z X4Z4) [X : Z ] ∈ 〈[X4 : Z4]〉+T

14 z z × t0 16Z (X Z4 −Z X4)2(Z X 2
4 +Z Z 2

4 −2X X4Z4) [X : Z ] ∈ 〈[X4 : Z4]〉

In Table F.10 the points [X : Z ] and [X4 : Z4] cannot be equal to any of the listed roots due to
the assumptions. This is not obvious only in steps 11 and 12. The point [X 2

4 + Z 2
4 : 2X4Z4] is

equal to [2][X4 : Z4]. This formula is correct when [X4 : Z4] is a point of order 4 different from
[±1 : 1], which is true by assumption. The interested reader can prove the formula for [2][X4 : Z4]

by computing the doubling and comparing the output to the 4-division polynomial (polynomial
whose roots are exactly the points of order 4), whose factor can be found in Table F.2, line 14.
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Table F.11: j_inv – j -invariant computation, see formula (2.48) on page 28.
Input: Curve [A : C ].
Assumption: Input curve [A : C ] is not degenerate/singular/undefined, i.e., A ̸= ±2C , C ̸= 0.
Output: The j -invariant j of the curve [A : C ].

Step Variable Formula Factorisation Roots in [A : C ]

1 j A2 A2 [0 : 1]
2 t1 C 2 C 2 [1 : 0]
3 t0 t1 + t1 2C 2 [1 : 0]
4 t0 j − t0 A2 −2C 2 [±p2 : 1]
5 t0 t0 − t1 (A2 −3C 2) [±p3 : 1]
6 j t0 − t1 (A2 −4C 2) [±2 : 1]
7 t1 t 2

1 (A2 −4C 2)2 [±2 : 1]
8 j j × t1 C 2(A2 −4C 2)2 [±2 : 1]
9 t0 t0 + t0 2(A2 −3C 2) [±p3 : 1]
10 t0 t0 + t0 4(A2 −3C 2) [±p3 : 1]
11 t1 t 2

0 16(A2 −3C 2)2 [±p3 : 1]
12 t0 t0 × t1 64(A2 −3C 2)3 [±p3 : 1]
13 t0 t0 + t0 128(A2 −3C 2)3 [±p3 : 1]
14 t0 t0 + t0 256(A2 −3C 2)3 [±p3 : 1]
15 j 1/ j C−2(A2 −4C 2)−2 //
16 j z × t0 256C−2(A2 −3C 2)(A2 −4C 2)−2 [±p3 : 1]

During the computation of the j -invariant (Table F.11), the value 0 can be computed in steps 4, 5,
9−14 and 16 if the input curve coefficients are [±p2 : 1] or [±p3 : 1]. Steps 1−3 and 6−8 can be
disregarded because of the input assumption. The information that the attacker can obtain from
observing the computation of a 0 is that the public curve (assumed to be provided by the attacker)
and the curve of coefficient ±p2 or ±p3 are connected by the secret isogeny of the target party.

Finding an elliptic curve together with a well-chosen set of torsion generators (i.e. finding a public
key) such that the target’s secret isogeny goes from said curve to a known curve is a hard problem.
In fact, we already know of such a case – the SIKE public parameter starting curve (as known
curve) and the targets public curve (as public key, minus the points) are two curves connected
with the target parties isogeny. However, finding a good set of torsion generators is equivalent to
finding the secret isogeny itself, therefore assumed to be hard.

A small modification can be made in order to avoid computing a subfunction with the curve
[±p2 : 1] as a root. By computing t0 + t1 in step 4 and j − t0 in step 5 we avoid the occurrence of
the curve [±p2 : 1] in the set of roots, and obtain another [1 : 0] instead.

139





G Conditional swap

static void swap_points(point_proj_t R, point_proj_t R2, const
digit_t option)

{ // Swap points.
// If option = 0 then R <- R and R2 <- R2, else if option = 0xFF

...FF then R <- R2 and R2 <- R
digit_t temp;
unsigned int i;

1 for(i = 0; i < NWORDS_FIELD; i++) {
2 temp = option & (R->X[0][i] ^ R2->X[0][i]);
3 R->X[0][i] = temp ^ R->X[0][i];
4 R2->X[0][i] = temp ^ R2->X[0][i];
5 temp = option & (R->X[1][i] ^ R2->X[1][i]);
6 R->X[1][i] = temp ^ R->X[1][i];
7 R2->X[1][i] = temp ^ R2->X[1][i];
8 temp = option & (R->Z[0][i] ^ R2->Z[0][i]);
9 R->Z[0][i] = temp ^ R->Z[0][i];

10 R2->Z[0][i] = temp ^ R2->Z[0][i];
11 temp = option & (R->Z[1][i] ^ R2->Z[1][i]);
12 R->Z[1][i] = temp ^ R->Z[1][i];
13 R2->Z[1][i] = temp ^ R2->Z[1][i];

}
}

Figure G.1: Attacked source code of swap_points in C (simplified).
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Appendix G. Conditional swap

1 rsb r8, r6, #0 /* mask = (0 - swap) */
2 add.w r2, r4, #92 /* R */
3 add.w r3, r4, #540 /* R2 */
4 mov.w ip, #0 /* i = 0 */
5 <loop>:
6 ldr r7, [r2, #0] /* a = R->X[0][i] */
7 ldr r1, [r3, #0] /* b = R2->X[0][i] */
8 eor.w r0, r7, r1 /* a ^ b */
9 and.w r0, r0, r8 /* temp = mask & (a ^ b)*/

10 eors r7, r0 /* a = temp ^ a */
11 eors r1, r0 /* b = temp ^ b */
12 str.w r7, [r2], #4 /* R->X[0][i] = a */
13 str.w r1, [r3], #4 /* R2->X[0][i] = b */

... ... /* repeat with updated offset */

37 add.w ip, ip, #1 /* i++ */
38 cmp.w ip, #14 /* i < NWORDS_FIELD */
39 bne.n <loop>

Figure G.2: Compiled swap_points function with annotations (SIKEp434).

1 and.w %[u1], %[u1], #0xFFFFFFFD /* u1 = random(4) & 0xFFFFFFFD */
2 and.w %[m1], %[u2], #0xFFFFFFFE /* m1 = random(4) & 0xFFFFFFFE */
3 add.w %[u2], %[u1], %[swap] /* u2 = u1 + swap */
4 add.w %[m2], %[m1], %[swap] /* r = m1 + swap */
5 add.w %[u1], %[u1], #1 /* u1 = u1 + 1 */
6 mul.w %[u1], %[u1], %[m2] /* u1 = u1*r */
7 add.w %[u2], %[u2], %[swap] /* u2 = u2 + swap */
8 mul.w %[u2], %[u2], %[m2] /* u2 = u2*r */
9 sub.w %[m2], %[u1], %[u2] /* m2 = u1 - u2 */

Figure G.3: Source code of the secure masks generation in assembly.
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1 ldr.w %[a], [%[R]] /* a = R[i] */
2 ldr.w %[b], [%[R2]] /* b = R2[i] */
3 eor.w %[tmp1], %[a], %[b] /* tmp1 = a ^ b */
4 and.w %[tmp1], %[m1] /* tmp1 = tmp1 & m1 */
5 eor.w %[b], %[b], %[tmp1] /* a = a ^ tmp1 */
6 eor.w %[a], %[a], %[tmp1] /* b = b ^ tmp1 */
7 eor.w %[tmp2], %[a], %[b] /* tmp2 = a ^ b = R[i] ^ R2[i]*/
8 str.w %[b], [%[R2]] /* R2[i] = b */
9 and.w %[tmp2], %[m2] /* tmp2 = tmp2 & m2 */

10 str.w %[a], [%[R]] /* R[i] = a */
11 eor.w %[b], %[b], %[tmp2] /* b = b ^ tmp2 */
12 eor.w %[a], %[a], %[tmp2] /* a = a ^ tmp2 */
13 str.w %[a], [%[R]], #4 /* R[i] = a */
14 str.w %[b], [%[R2]], #4 /* R2[i] = b */

... ... /* repeat with updated offset */

Figure G.4: Source code of the secure swapping operation in assembly.

143





Bibliography

[AJK+16] Reza Azarderakhsh, David Jao, Kassem Kalach, Brian Koziel, and Christopher
Leonardi. Key compression for isogeny-based cryptosystems. Cryptology ePrint
Archive, Report 2016/229, 2016. https://eprint.iacr.org/2016/229. (page 4)

[Apo20] Daniel Apon. Passing the final checkpoint! NIST PQC 3rd round begins, 2020.
https://meetings.ams.org/math/fall2020se/meetingapp.cgi/Paper/1656, https://
www.scribd.com/document/474476570/PQC-Overview-Aug-2020-NIST. (page 4)

[APS19] Melissa Azouaoui, Romain Poussier, and François-Xavier Standaert. Fast side-
channel security evaluation of ECC implementations - shortcut formulas for hor-
izontal side-channel attacks against ECSM with the Montgomery ladder. In Ilia
Polian and Marc Stöttinger, editors, COSADE 2019, volume 11421 of LNCS, pages
25–42. Springer, Heidelberg, April 2019. (page 55)

[AT03] Toru Akishita and Tsuyoshi Takagi. Zero-value point attacks on elliptic curve cryp-
tosystem. In Colin Boyd and Wenbo Mao, editors, ISC 2003, volume 2851 of LNCS,
pages 218–233. Springer, Heidelberg, October 2003. (page 69, 81)

[ATT+18] Aydin Aysu, Youssef Tobah, Mohit Tiwari, Andreas Gerstlauer, and Michael Or-
shansky. Horizontal side-channel vulnerabilities of post-quantum key exchange
protocols. In 2018 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST), pages 81–88, 2018. (page 56)

[BBUV20] Ward Beullens, Tim Beyne, Aleksei Udovenko, and Giuseppe Vitto. Cryptanalysis of
the Legendre PRF and generalizations. IACR Trans. Symm. Cryptol., 2020(1):313–330,
2020. (page 37, 48, 50)

[BCH+21] Lejla Batina, Łukasz Chmielewski, Björn Haase, Niels Samwel, and Peter Schwabe.
SCA-secure ECC in software – mission impossible? Cryptology ePrint Archive,
Report 2021/1003, 2021. https://eprint.iacr.org/2021/1003. (page 98)

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with
a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors, CHES 2004,
volume 3156 of LNCS, pages 16–29. Springer, Heidelberg, August 2004. (page 56)

145

https://eprint.iacr.org/2016/229
https://meetings.ams.org/math/fall2020se/meetingapp.cgi/Paper/1656
https://www.scribd.com/document/474476570/PQC-Overview-Aug-2020-NIST
https://www.scribd.com/document/474476570/PQC-Overview-Aug-2020-NIST
https://eprint.iacr.org/2021/1003


Bibliography

[BCP+14] Lejla Batina, Lukasz Chmielewski, Louiza Papachristodoulou, Peter Schwabe, and
Michael Tunstall. Online template attacks. In Willi Meier and Debdeep Mukhopad-
hyay, editors, INDOCRYPT 2014, volume 8885 of LNCS, pages 21–36. Springer, Hei-
delberg, December 2014. (page 56)

[Ber08] Daniel J. Bernstein. The ChaCha family of stream ciphers, 2008. (page 94)

[Ber15] Elwyn R. Berlekamp. Algebraic Coding Theory - Revised Edition. World Scientific
Publishing Co., Inc., USA, 2015. (page 12)

[BF18a] Joppe W. Bos and Simon Friedberger. Arithmetic considerations for isogeny based
cryptography. Cryptology ePrint Archive, Report 2018/376, 2018. https://eprint.
iacr.org/2018/376. (page 4)

[BF18b] Joppe W. Bos and Simon J. Friedberger. Faster modular arithmetic for isogeny based
crypto on embedded devices. Cryptology ePrint Archive, Report 2018/792, 2018.
https://eprint.iacr.org/2018/792. (page 4)

[BFM+19] Joppe W. Bos, Simon Friedberger, Marco Martinoli, Elisabeth Oswald, and Martijn
Stam. Assessing the feasibility of single trace power analysis of Frodo. In Carlos
Cid and Michael J. Jacobson Jr:, editors, SAC 2018, volume 11349 of LNCS, pages
216–234. Springer, Heidelberg, August 2019. (page 56, 63)

[BV97] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM Journal
on Computing, 26(5):1411–1473, 1997. (page 1)

[BZ10] Richard P. Brent and Paul Zimmermann. An o(m(n) log n) algorithm for the jacobi
symbol, 2010. (page 52)

[Cas91] J. W. S. Cassels. LMSST: 24 Lectures on Elliptic Curves. London Mathematical Society
Student Texts. Cambridge University Press, 1991. (page 13)

[CCJ04] Benoît Chevallier-Mames, Mathieu Ciet, and Marc Joye. Low-cost solutions for
preventing simple side-channel analysis: side-channel atomicity. IEEE Transactions
on Computers, 53(6):760–768, 2004. (page 68)

[CFG+10] Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, and Vincent
Verneuil. Horizontal correlation analysis on exponentiation. In Miguel Soriano,
Sihan Qing, and Javier López, editors, ICICS 10, volume 6476 of LNCS, pages 46–61.
Springer, Heidelberg, December 2010. (page 55)

[CGD17] Yann Le Corre, Johann Großschädl, and Daniel Dinu. Micro-architectural power
simulator for leakage assessment of cryptographic software on ARM cortex-M3
processors. Cryptology ePrint Archive, Report 2017/1253, 2017. https://eprint.iacr.
org/2017/1253. (page 98)

146

https://eprint.iacr.org/2018/376
https://eprint.iacr.org/2018/376
https://eprint.iacr.org/2018/792
https://eprint.iacr.org/2017/1253
https://eprint.iacr.org/2017/1253


Bibliography

[CGD18] Yann Le Corre, Johann Großschädl, and Daniel Dinu. Micro-architectural power
simulator for leakage assessment of cryptographic software on ARM cortex-M3
processors. In Junfeng Fan and Benedikt Gierlichs, editors, COSADE 2018, volume
10815 of LNCS, pages 82–98. Springer, Heidelberg, April 2018. (page 65, 68)

[CJS14] Andrew Childs, David Jao, and Vladimir Soukharev. Constructing elliptic curve
isogenies in quantum subexponential time. Journal of Mathematical Cryptology,
8(1):1–29, Jan 2014. (page 3)

[CLN16] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for super-
singular isogeny Diffie-Hellman. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 572–601. Springer, Heidelberg,
August 2016. (page 4, 5, 85)

[Cor99] Jean-Sébastien Coron. Resistance against differential power analysis for elliptic
curve cryptosystems. In Çetin Kaya Koç and Christof Paar, editors, CHES’99, volume
1717 of LNCS, pages 292–302. Springer, Heidelberg, August 1999. (page 66, 97)

[Cos19] Craig Costello. Supersingular isogeny key exchange for beginners. In Kenneth G.
Paterson and Douglas Stebila, editors, SAC 2019, volume 11959 of LNCS, pages 21–50.
Springer, Heidelberg, August 2019. (page 13)

[Cou06] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive,
Report 2006/291, 2006. https://eprint.iacr.org/2006/291. (page 3)

[CS17] Craig Costello and Benjamin Smith. Montgomery curves and their arithmetic: The
case of large characteristic fields. Cryptology ePrint Archive, Report 2017/212, 2017.
https://ia.cr/2017/212. (page 86)

[CS18] Craig Costello and Benjamin Smith. Montgomery curves and their arithmetic - the
case of large characteristic fields. Journal of Cryptographic Engineering, 8(3):227–
240, September 2018. (page 90)

[Dam90] Ivan Damgård. On the randomness of Legendre and Jacobi sequences. In Shafi
Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 163–172. Springer, Hei-
delberg, August 1990. (page 2, 9, 11, 37)

[Dav33] H. Davenport. On the distribution of quadratic residues (mod p). Journal of the
London Mathematical Society, s1-8(1):46–52, 1933. (page 10)

[DEG+22] Luca De Feo, Nadia El Mrabet, Aymeric Genêt, Novak Kaluđerović, Natacha Linard
de Guertechin, Simon Pontié, and Élise Tasso. SIKE channels. Cryptology ePrint
Archive, Report 2022/054, 2022. https://eprint.iacr.org/2022/054. (page 6, 81)

[DF17] Luca De Feo. Mathematics of isogeny based cryptography, 2017. (page 13)

[Div16] NIST Computer Security Division. Post-quantum cryptography standardization,
2016. (page 3)

147

https://eprint.iacr.org/2006/291
https://ia.cr/2017/212
https://eprint.iacr.org/2022/054


Bibliography

[DJ11] Luca De Feo and David Jao. Towards quantum-resistant cryptosystems from su-
persingular elliptic curve isogenies. In Bo-Yin Yang, editor, Post-Quantum Cryp-
tography, pages 19–34, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. (page
3)

[DJP14] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies. Journal of Mathematical Cryptology,
8(3):209 – 247, 01 Sep. 2014. (page 3)

[DPN+16] Margaux Dugardin, Louiza Papachristodoulou, Zakaria Najm, Lejla Batina, Jean-Luc
Danger, and Sylvain Guilley. Dismantling real-world ECC with horizontal and verti-
cal template attacks. In François-Xavier Standaert and Elisabeth Oswald, editors,
COSADE 2016, volume 9689 of LNCS, pages 88–108. Springer, Heidelberg, April 2016.
(page 55, 61, 62, 81, 95)

[DR92] Deutsch David and Jozsa Richard. Rapid solution of problems by quantum compu-
tation. Proceedings of the Royal Society A, 439:553—-558, 1992. (page 1)

[DZD+17] A. Adam Ding, Liwei Zhang, François Durvaux, François-Xavier Standaert, and Yunsi
Fei. Towards sound and optimal leakage detection procedure. In Thomas Eisenbarth
and Yannick Teglia, editors, Smart Card Research and Advanced Applications - 16th
International Conference, CARDIS 2017, Lugano, Switzerland, November 13-15, 2017,
Revised Selected Papers, volume 10728 of Lecture Notes in Computer Science, pages
105–122. Springer, 2017. (page 101)

[Fei19] Dankard Feist. Legendre pseudo-random function, 2019. (page 3, 9, 37, 51)

[FGD+10] Junfeng Fan, Xu Guo, Elke De Mulder, Patrick Schaumont, Bart Preneel, and Ingrid
Verbauwhede. State-of-the-art of secure ECC implementations: a survey on known
side-channel attacks and countermeasures. In 2010 IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), pages 76–87, 2010. (page 66, 67)

[FLOJRH18] Armando Faz-Hernández, Julio López, Eduardo Ochoa-Jiménez, and Francisco
Rodríguez-Henríquez. A faster software implementation of the supersingular
isogeny Diffie-Hellman key exchange protocol. IEEE Transactions on Computers,
67(11):1622–1636, 2018. (page 29, 86)

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In Michael J. Wiener, editor, CRYPTO’99, volume
1666 of LNCS, pages 537–554. Springer, Heidelberg, August 1999. (page 19)

[FS21] Paul Frixons and André Schrottenloher. Quantum security of the legendre PRF.
Cryptology ePrint Archive, Report 2021/149, 2021. https://eprint.iacr.org/2021/149.
(page 52)

[GdGK21] Aymeric Genêt, Natacha Linard de Guertechin, and Novak Kaluđerović. Full key
recovery side-channel attack against ephemeral SIKE on the Cortex-M4. In Shivam

148

https://eprint.iacr.org/2021/149


Bibliography

Bhasin and Fabrizio De Santis, editors, Constructive Side-Channel Analysis and
Secure Design - 12th International Workshop, COSADE 2021, Lugano, Switzerland,
October 25-27, 2021, Proceedings, volume 12910 of Lecture Notes in Computer Science,
pages 228–254. Springer, 2021. (page 6, 62, 63)

[GK22] Aymeric Genêt and Novak Kaluđerović. Single-trace clustering power analysis
of the point-swapping procedure in the three point ladder of Cortex-M4 SIKE. In
Constructive Side-Channel Analysis and Secure Design - 13th International Workshop,
COSADE 2022, Leuven, Belgium, April 11-12, 2022, Proceedings, 2022. (page 6, 94)

[GLK21] Aymeric Genêt, Natacha Linard de Guertechin, and Novak Kaluđerović. Full key
recovery side-channel attack against ephemeral SIKE on the Cortex-M4. In Fabrizio
Bhasin, Shivam and De Santis, editor, Constructive Side-Channel Analysis and Secure
Design, pages 228–254, Cham, 2021. Springer International Publishing. (page 69)

[GMP91] The GNU multiple precision arithmetic library, 1991. (page 80)

[Gou01] Louis Goubin. A sound method for switching between Boolean and arithmetic
masking. In Çetin Kaya Koç, David Naccache, and Christof Paar, editors, CHES 2001,
volume 2162 of LNCS, pages 3–15. Springer, Heidelberg, May 2001. (page 81)

[Gou03] Louis Goubin. A refined power-analysis attack on elliptic curve cryptosystems. In
Yvo Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 199–210. Springer,
Heidelberg, January 2003. (page 69)

[GPST16] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On the security
of supersingular isogeny cryptosystems. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 63–91. Springer,
Heidelberg, December 2016. (page 22)

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search, 1996.
(page 2)

[GRR+16] Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and Nigel P.
Smart. MPC-friendly symmetric key primitives. In Edgar R. Weippl, Stefan Katzen-
beisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS
2016, pages 430–443. ACM Press, October 2016. (page 2, 9, 37)

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of
the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017, Part I, volume 10677 of LNCS, pages 341–371. Springer, Heidelberg,
November 2017. (page 22)

[Hol] ARM Holdings. Cortex-M4 specifications. https://developer.arm.com/ip-products/
processors/cortex-m/cortex-m4. (page 4)

149

https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4


Bibliography

[HPR07] Basil Hess, Geovandro Pereira, and Joost Renes. Efficient sidh library written in c
language, 2107. (page 86)

[IBM09] Ibm q system one, 2109. (page 1)

[IT03] Tetsuya Izu and Tsuyoshi Takagi. Exceptional procedure attack on elliptic curve
cryptosystems. In Yvo Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages
224–239. Springer, Heidelberg, January 2003. (page 70)

[JAC+17] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo,
Basil Hess, Aaron Hutchinson, Amir Jalali, Koray Karabina, Brian Koziel, Brian
LaMacchia, Patrick Longa, Michael Naehrig, Geovandro Pereira, Joost Renes,
Vladimir Soukharev, and David Urbanik. Supersingular isogeny key encapsula-
tion, 2017. https://sike.org/. (page 4, 25, 29, 63, 131)

[JMV09] David Jao, Stephen D. Miller, and Ramarathnam Venkatesan. Expander graphs
based on grh with an application to elliptic curve cryptography. Journal of Number
Theory, 129(6):1491–1504, Jun 2009. (page 18)

[JT01] Marc Joye and Christophe Tymen. Protections against differential analysis for elliptic
curve cryptography. In Çetin Kaya Koç, David Naccache, and Christof Paar, editors,
CHES 2001, volume 2162 of LNCS, pages 377–390. Springer, Heidelberg, May 2001.
(page 67)

[KAJ17] Brian Koziel, Reza Azarderakhsh, and David Jao. Side-channel attacks on quantum-
resistant supersingular isogeny Diffie-Hellman. In Carlisle Adams and Jan Ca-
menisch, editors, SAC 2017, volume 10719 of LNCS, pages 64–81. Springer, Heidel-
berg, August 2017. (page 55, 70, 82, 86, 87)

[Kal16] Gil Kalai. The quantum computer puzzle, 2016. (page 1)

[Kal19] Gil Kalai. The argument against quantum computers, 2019. https://arxiv.org/abs/
1908.02499. (page 1)

[Kho19] Dmitry Khovratovich. Key recovery attacks on the Legendre PRFs within the birthday
bound. Cryptology ePrint Archive, Report 2019/862, 2019. https://eprint.iacr.org/
2019/862. (page 37, 48, 49, 50)

[KKK20a] Novak Kaluđerović, Thorsten Kleinjung, and Dušan Kostić. Cryptanalysis of the
generalised Legendre pseudorandom function. volume 4, pages 267–282, 2020.
(page 6)

[KKK20b] Novak Kaluđerović, Thorsten Kleinjung, and Dusan Kostic. Improved key recovery
on the legendre PRF. Cryptology ePrint Archive, Report 2020/098, 2020. https:
//eprint.iacr.org/2020/098. (page 37, 50, 51)

150

https://sike.org/
https://arxiv.org/abs/1908.02499
https://arxiv.org/abs/1908.02499
https://eprint.iacr.org/2019/862
https://eprint.iacr.org/2019/862
https://eprint.iacr.org/2020/098
https://eprint.iacr.org/2020/098


Bibliography

[KPHS18] Philipp Koppermann, Eduard Pop, Johann Heyszl, and Georg Sigl. 18 seconds to
key exchange: Limitations of supersingular isogeny Diffie-Hellman on embedded
devices. Cryptology ePrint Archive, Report 2018/932, 2018. https://eprint.iacr.org/
2018/932. (page 69)

[KPP20] Matthias J. Kannwischer, Peter Pessl, and Robert Primas. Single-trace attacks on
Keccak. IACR TCHES, 2020(3):243–268, 2020. https://tches.iacr.org/index.php/
TCHES/article/view/8590. (page 56)

[Kra86] Evangelos Kranakis. Primality and Cryptography. John Wiley & Sons, Inc., New York,
NY, USA, 1986. (page 12)

[KRSS19] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. pqm4:
Testing and benchmarking NIST PQC on ARM Cortex-M4. Workshop Record of
the Second PQC Standardization Conference, 2019. https://cryptojedi.org/papers/
#pqm4. (page 4)

[Kwi19] Kris Kwiatkowski. Towards post-quantum cryptography in TLS, 2019. https://blog.
cloudflare.com/towards-post-quantum-cryptography-in-tls/. (page 4)

[Lan18] Adam Langley. Post-quantum confidentiality for TLS, 2018. https://www.
imperialviolet.org/2018/04/11/pqconftls.html. (page 4)

[M+67] James MacQueen et al. Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967. (page
90)

[MME10] Amir Moradi, Oliver Mischke, and Thomas Eisenbarth. Correlation-enhanced power
analysis collision attack. In Stefan Mangard and François-Xavier Standaert, editors,
CHES 2010, volume 6225 of LNCS, pages 125–139. Springer, Heidelberg, August 2010.
(page 82)

[MO09] Marcel Medwed and Elisabeth Oswald. Template attacks on ECDSA. In Kyo-Il
Chung, Kiwook Sohn, and Moti Yung, editors, WISA 08, volume 5379 of LNCS, pages
14–27. Springer, Heidelberg, September 2009. (page 55)

[Mon87] Peter Montgomery. Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation, 48:243–264, 1987. (page 25, 26)

[Moo18] Dustin Moody. Let’s get ready to rumble - The NIST PQC "competition",
2018. https://csrc.nist.gov/presentations/2018/let-s-get-ready-to-rumble-the-
nist-pqc-competiti. (page 4)

[Moo19] Dustin Moody. Round 2 of the NIST PQC "competition" - What was NIST think-
ing?, 2019. https://csrc.nist.gov/presentations/2019/round-2-of-the-nist-pqc-
competition-what-was-nist. (page 4)

151

https://eprint.iacr.org/2018/932
https://eprint.iacr.org/2018/932
https://tches.iacr.org/index.php/TCHES/article/view/8590
https://tches.iacr.org/index.php/TCHES/article/view/8590
https://cryptojedi.org/papers/#pqm4
https://cryptojedi.org/papers/#pqm4
https://blog.cloudflare.com/towards-post-quantum-cryptography-in-tls/
https://blog.cloudflare.com/towards-post-quantum-cryptography-in-tls/
https://www.imperialviolet.org/2018/04/11/pqconftls.html
https://www.imperialviolet.org/2018/04/11/pqconftls.html
https://csrc.nist.gov/presentations/2018/let-s-get-ready-to-rumble-the-nist-pqc-competiti
https://csrc.nist.gov/presentations/2018/let-s-get-ready-to-rumble-the-nist-pqc-competiti
https://csrc.nist.gov/presentations/2019/round-2-of-the-nist-pqc-competition-what-was-nist
https://csrc.nist.gov/presentations/2019/round-2-of-the-nist-pqc-competition-what-was-nist


Bibliography

[Nil91] A. Nilli. On the second eigenvalue of a graph. Discrete Mathematics, 91(2):207–210,
1991. (page 18)

[PCBP21] Guilherme Perin, Łukasz Chmielewski, Lejla Batina, and Stjepan Picek. Keep it
unsupervised: Horizontal attacks meet deep learning. IACR TCHES, 2021(1):343–
372, 2021. https://tches.iacr.org/index.php/TCHES/article/view/8737. (page 98,
102)

[PITM14] Guilherme Perin, Laurent Imbert, Lionel Torres, and Philippe Maurine. Attacking
randomized exponentiations using unsupervised learning. In Emmanuel Prouff,
editor, COSADE 2014, volume 8622 of LNCS, pages 144–160. Springer, Heidelberg,
April 2014. (page 93, 102)

[Piz90] Arnold K. Pizer. Ramanujan graphs and Hecke operators. Bulletin (New Series) of
the American Mathematical Society, 23(1):127 – 137, 1990. (page 18)

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel attacks
on masked lattice-based encryption. In Wieland Fischer and Naofumi Homma,
editors, CHES 2017, volume 10529 of LNCS, pages 513–533. Springer, Heidelberg,
September 2017. (page 56)

[PST20] Christian Paquin, Douglas Stebila, and Goutam Tamvada. Benchmarking post-
quantum cryptography in TLS. In Jintai Ding and Jean-Pierre Tillich, editors, Post-
Quantum Cryptography - 11th International Conference, PQCrypto 2020, pages
72–91. Springer, Heidelberg, 2020. (page 4)

[PZS17] Romain Poussier, Yuanyuan Zhou, and François-Xavier Standaert. A systematic
approach to the side-channel analysis of ECC implementations with worst-case
horizontal attacks. Cryptology ePrint Archive, Report 2017/629, 2017. https://eprint.
iacr.org/2017/629. (page 55)

[Ren18] Joost Renes. Computing isogenies between Montgomery curves using the action of
(0, 0). In Tanja Lange and Rainer Steinwandt, editors, Post-Quantum Cryptography
- 9th International Conference, PQCrypto 2018, pages 229–247. Springer, Heidelberg,
2018. (page 75)

[RS04] Alexander Russell and Igor E. Shparlinski. Classical and quantum function recon-
struction via character evaluation. Journal of Complexity, 20(2-3):404–422, 4 2004.
(page 2, 9, 37)

[RS06] Alexander Rostovtsev and Anton Stolbunov. Public-Key Cryptosystem Based On
Isogenies. Cryptology ePrint Archive, Report 2006/145, 2006. https://eprint.iacr.
org/2006/145. (page 3)

[SAJA20] Hwajeong Seo, Mila Anastasova, Amir Jalali, and Reza Azarderakhsh. Supersingular
isogeny key encapsulation (SIKE) round 2 on ARM cortex-M4. Cryptology ePrint

152

https://tches.iacr.org/index.php/TCHES/article/view/8737
https://eprint.iacr.org/2017/629
https://eprint.iacr.org/2017/629
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145


Bibliography

Archive, Report 2020/410, 2020. https://eprint.iacr.org/2020/410. (page 4, 62, 94,
97, 111, 112, 113, 114)

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509,
Oct 1997. (page 2)

[Sil09] Joseph H Silverman. The Arithmetic of Elliptic Curves. Graduate texts in mathematics.
Springer, Dordrecht, 2009. (page 13, 14, 15, 16, 17)

[Sim97] Daniel R. Simon. On the power of quantum computation. SIAM Journal on Com-
puting, 26(5):1474–1483, 1997. (page 1)

[SKL+20] Bo-Yeon Sim, Jihoon Kwon, Joohee Lee, Il-Ju Kim, Taeho Lee, Jaeseung Han, Hyo Jin
Yoon, Jihoon Cho, and Dong-Guk Han. Single-trace attacks on message encoding
in lattice-based KEMs. IEEE Access, 8:183175–183191, 2020. (page 56)

[SM11] Mutsuo Saito and Makoto Matsumoto. Tiny mersenne twister pseudo-random
number generator, 2011. (page 100)

[SM15] Tobias Schneider and Amir Moradi. Leakage assessment methodology - A clear
roadmap for side-channel evaluations. In Tim Güneysu and Helena Handschuh,
editors, CHES 2015, volume 9293 of LNCS, pages 495–513. Springer, Heidelberg,
September 2015. (page 81)

[SM16] Tobias Schneider and Amir Moradi. Leakage assessment methodology - extended
version. Journal of Cryptographic Engineering, 6(2):85–99, June 2016. (page 100)

[ST15] Joseph H. Silverman and John T. Tate. Rational Points on Elliptic Curves. Springer
Publishing Company, Incorporated, 2nd edition, 2015. (page 13)

[SWP03] Kai Schramm, Thomas J. Wollinger, and Christof Paar. A new class of collision
attacks and its application to DES. In Thomas Johansson, editor, FSE 2003, volume
2887 of LNCS, pages 206–222. Springer, Heidelberg, February 2003. (page 82)

[van02] Dam van. Quantum algorithms for weighing matrices and quadratic residues.
Algorithmica, 34(4):413–428, Nov 2002. (page 37)

[vDH00] Wim van Dam and Sean Hallgren. Efficient quantum algorithms for shifted quadratic
character problems, 2000. (page 37)

[vDHI01] Wim van Dam, Sean Hallgren, and Lawrence Ip. Quantum algorithms for hidden
coset problems. 2001. (page 37)

[Vél71] Jacques Vélu. Isogénies entre courbes elliptiques. Comptes-Rendus de l’Académie
des Sciences, Série I, 273:238–241, 7 1971. (page 16)

153

https://eprint.iacr.org/2020/410


Bibliography

[Wei48] André Weil. On some exponential sums. Proceedings of the National Academy of
Sciences, 34(5):204–207, 1948. (page 11)

[Wei20] Alex Weibel. Round 2 hybrid post-quantum TLS benchmarks, 2020.
https://aws.amazon.com/blogs/security/round-2-hybrid-post-quantum-
tls-benchmarks/. (page 4)

[ZSP+18] Gustavo Zanon, Marcos A. Simplício Jr., Geovandro C. C. F. Pereira, Javad Doliskani,
and Paulo S. L. M. Barreto. Faster isogeny-based compressed key agreement. In
Tanja Lange and Rainer Steinwandt, editors, Post-Quantum Cryptography - 9th
International Conference, PQCrypto 2018, pages 248–268. Springer, Heidelberg, 2018.
(page 4, 32)

[ZWMZ14] Zhenbin Zhang, Liji Wu, Zhaoli Mu, and Xiangmin Zhang. A novel template attack
on wnaf algorithm of ECC. In Tenth International Conference on Computational
Intelligence and Security, CIS 2014, Kunming, Yunnan, China, November 15-16, 2014,
pages 671–675. IEEE Computer Society, 2014. (page 55)

[ZYD+20] Fan Zhang, Bolin Yang, Xiaofei Dong, Sylvain Guilley, Zhe Liu, Wei He, Fangguo
Zhang, and Kui Ren. Side-channel analysis and countermeasure design on ARM-
based quantum-resistant SIKE. IEEE Transactions on Computers, 69(11):1681–1693,
2020. (page 55, 66, 67, 69)

154

https://aws.amazon.com/blogs/security/round-2-hybrid-post-quantum-tls-benchmarks/
https://aws.amazon.com/blogs/security/round-2-hybrid-post-quantum-tls-benchmarks/


NOVAK KALUĐEROVIĆ
Curriculum Vitae

PERSONAL INFORMATION

Nationality Serbian

Date of birth 1992 Aug 11

Address Room INF235 on EPFL campus

CONTACT DETAILS

+41 79 665 63 80

nk@kolja.rs

kolja.rs

EDUCATION

PhD, École polytechnique fédérale de Lausanne 2017 - 2022

“Attacks on some post-quantum cryptographic protocols: The case of the Legendre PRF and SIKE”

Thesis advisor: Arjen Lenstra, Serge Vaudenay Average grade 6,0/6,0

M.S. 110 cum laude, Sapienza - Università di Roma 2014 - 2016

“The Number Field Sieve”

Thesis advisor: René Schoof Average grade 29,93/30

B.S. 110 cum laude, Sapienza - Università di Roma 2011 - 2014

“The Three Squares Theorem”

Thesis advisor: Alessandro D'Andrea Average grade 28,95/30

RESEARCH INTERESTS

My main interests lie in secure implementations of cryptographic protocols, side-channel attacks as well as defence

thereof, and post-quantum cryptographic protocols. I am also fond of algebraic and computational number theory,

both in the theoretical and implementation domain. I am passionate about coding in C, and working on low-level and

high-efficiency implementations. Further interests include the theory of quantum computing and quantum algorithms.

PUBLICATIONS

SIKE channels: Zero-value side-channel attacks on SIKE 2022

A practical power-analysis attack on the isogeny computation in SIKE. TCHES 2022

Single-trace clustering power analysis of the point swapping

procedure in the three point ladder of Cortex-M4 SIKE 2022

A practical power-analysis attack of the point swap procedure in SIKE. COSADE 2022

Full key recovery side-channel attack on ephemeral SIKE 2021

A practical power-analysis attack on the three point ladder in SIKE. COSADE 2021

Cryptanalysis of the generalised Legendre pseudorandom function 2020

Analysis of a general algorithm for breaking the Legendre PRF. ANTS XIV

Improved key recovery on the Legendre PRF 2020

Algorithms for breaking the Legendre pseudorandom function. e-print

WORK EXPERIENCE

Applied scientist intern - “Protocols, Algorithms, Libraries” lab, AWS Cryptography, Seattle 2022

Worked on reducing certificate sizes for lattice-based post-quantum public key certificates.

Research intern - “Algorithms, Randomisation, Computation” lab, Sapienza - Università di Roma 2016

Worked on lower bounds for ordering problems and some open problems in computational complexity.

155



TEACHING EXPERIENCE

Computer science class for visiting students 2018, 2019, 2021

Lectured cryptography to visiting high school students from all around Switzerland.

"Path of Excellence" seminar 2016

Held a seminar on the topic of primality testing algorithms under the supervision of prof. A. Panconesi.

Student supervision 2017 - 2021

Personally supervised 11 Bachelor and 2 Master level research and implementation-oriented semester projects, and

one successful Master thesis.

Teaching 2017 - 2021

Served as a teaching assistant and replacement lecturer for the following Master and Bachelor courses:

CS-450: Advanced algorithms 2019

CS-101: Advanced information, computation, communication I 2018, 2019, 2021

COM-102: Advanced information, computation, communication II 2018, 2020

MATH-111: Linear Algebra 2020

HONOURS AND AWARDS

Teaching Assistant Award 2018, 2019

An award given by EPFL to the best teaching assistants.

EDIC Fellowship for Doctoral Studies 2017

One year fellowship for prospective doctoral students at EPFL.

Montenegrin national scholarship for excellence 2014, 2016

A scholarship awarded by the Montenegrin ministry of education to its highest achieving students in foreign

universities.

Laziodisu scholarship 2013, 2014, 2015, 2016

Scholarship providing funding and full tuition waiver to high achieving students during their Bachelors and Masters

degree studies awarded by the Lazio region.

OTHER

Server administrator 2018 - 2022

Responsible for the administration of TRX and Unicorn  random elliptic curve and random number beacons on

trx.epfl.ch.

Paper reviewing 2018 - 2022

Reviewed multiple papers for Number-Theoretic Methods in Cryptology, Journal of Mathematical Cryptology, MathCrypt,

Journal of Experimental Algorithmics, COSADE, Asiacrypt, Eurocrypt, PKC.

LANGUAGES

Serbian Native

English Fluent

Italian Fluent

French Basic communication skills

PROGRAMMING LANGUAGES

C, Python, Sage

156


	Acknowledgements
	Abstract (English/Italiano/Français/Српски)
	Contents
	Introduction
	I Background
	The Legendre pseudorandom function
	Mathematical background
	The Legendre pseudorandom function
	Hard Problems

	SIKE
	Mathematical background
	SIDH
	Public parameters
	Secret key computation
	Public key computation
	Shared secret computation

	Hard problems
	SIKE
	Public key generation
	Key encapsulation
	Key decapsulation

	Practical implementation of SIKE
	Public parameters
	Choice of representations
	Formulas
	Three-point ladder
	Isogeny computation



	II The generalised Legendre pseudorandom function
	Attack on the generalised Legendre pseudorandom function
	Möbius transformations
	Action of M on oracles
	Orbits of M

	Algorithm for r3
	Good polynomials algorithm
	Bad polynomials algorithm
	Ugly polynomials algorithm
	Time-memory tradeoff for low degrees
	Algorithm comparison

	Algorithm for r=2
	Algorithm for r=1 and the limited query case
	Linear shifts subgroup
	Algorithm comparison
	Experiments

	Conclusion
	Security recommendations
	Future directions



	III Supersingular isogeny key encapsulation
	Full key recovery side-channel attack against ephemeral SIKE on the Cortex-M4
	Correlation power analysis
	Side-channel analysis
	Point of attack
	Vertical attack
	Horizontal attack

	Experimental results
	Target implementation
	Collection of traces
	Horizontal CPA procedure
	Results

	Countermeasures
	Recommended countermeasure
	Other countermeasures

	Conclusion

	Zero-value side-channel attacks on SIKE
	Background
	Elliptic curves
	Points on elliptic curves

	The three-point ladder attacks
	Forcing O
	Forcing T

	Isogeny attack
	Controlling the kernel point order
	Evaluating formulas on bad points
	Traversal of the first isogeny branch
	Computing the isogeny with a bad kernel

	Experimental evaluations
	Software
	Distinguishing zero values
	Three-point ladder
	Isogeny computation

	Countermeasures
	Compressed SIKE
	Relation to previous work
	Blocking all zero-value attacks

	Conclusion

	Single-trace clustering power analysis of Cortex-M4 SIKE
	Side-channel analysis
	Point of attack.
	Clustering
	Attack procedure

	Attack Enhancements
	Thresholding
	Enhancing key verification

	Experimental results
	Target implementation
	Traces collection
	Clustering power analysis
	Results
	Discussion
	Other SIKE instances

	Countermeasure
	Description
	Implementation
	Experimental validation

	Conclusion


	IV Appendix
	The Legendre pseudorandom function
	Computing the stabiliser Stab(f) of f
	Rational matrices
	Irrational matrices


	SIKE
	SIKE code
	A visual explanation of the isogeny attack
	Practical isogeny computation with kernel points of bad order
	Blocking zero-value attacks
	Conditional swap
	Bibliography
	Curriculum Vitae




