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Abstract
The current research focuses on the prediction of the maximum axial compression load a

cylindrical shell is able to bear. This maximum axial compression load is the value at which a

cylindrical shell loses stability and abruptly buckles. After the buckling event the shells are

permanently damaged and become unfit for any structural function. Hence, buckling is a

critical not admissible failure mode in the design of shell structures. Standard methodologies

available in the literature such as linear stability analysis fail to deliver an accurate prediction

and overestimate the value of the load at which collapse occurs. The reason for this deviation

between real shells and theory is the presence of geometric imperfections that are unique

for each shell. In fact, nominally identical shells exhibit large variations in their load bearing

capability. This variability means that the only reliable approach able to obtain the real loading

bearing capability previous to this research is a destructive compression test.

In this thesis, a new conceptual approach to describe the behaviour of cylindrical shells is

introduced. The new description is based on the dynamical systems approach used to study

turbulence in the field of fluid dynamics. Using the dynamical systems approach applied to a

non-linear formulation of the shell equations, fixed points of the dynamical system are calcu-

lated and their stability under finite amplitude perturbations characterised. The boundary

delimiting the transitions to a buckled state or returning to the unbuckled one is also charac-

terised. The basin enclosed by this boundary, the basin of attraction, becomes smaller as the

axial load is increased, vanishing at the compression load at which a cylindrical shell buckles.

The shrinking of the basin of attraction can be characterised by evaluating its extension at

different axial loads. This can be done by probing cylindrical shells. This probing at different

axial compression loads defines a landscape that can be used to extrapolate the load at which

the landscape, together with the basin of attractions vanishes. This axial compression load is

the buckling load of the shell.

The framework described theoretically is implemented in a series of test campaigns to show

the predictive capability of stability landscapes in real shells. Stability landscapes are the ex-

perimental technique employed to explore and characterise the basin of attraction associated

with each fix point. The exploration of the basin of attraction is performed using a single

poker that represents only one of the directions to perturb a fix point of the dynamical system

towards the boundary of the basin of attraction. The success of extrapolating the buckling load

with stability landscapes constructed with a single poker at a single location does not provide

a perfect predictive capability in real shells. The reason for this is the complex interaction
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between the imperfections present in real shells. The complex interaction between imperfec-

tions was also studied during this research, revealing that the buckling load of cylindrical shells

is a function of all the imperfections present in the shell. The buckling load of a cylindrical

shell is not dictated by the strongest imperfection alone, but by the combination of all defects.

The key output of the current research is a non-destructive test procedure based on construct-

ing stability landscapes at different locations of the cylindrical shells. A test following this

procedure has been able to provide a successful accurate prediction of the buckling load of a

shell with realistic imperfections. This test procedure is believed to be a viable option to test

in a non-destructive manner any cylindrical shell relevant for engineering applications.
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Zusammenfassung
Die vorliegende Forschungsarbeit ist auf die Vorhersage der maximalen axialen Drucklast,

der eine zylindrische Schale widerstehen kann, fokussiert. The maximale axiale Drucklast ist

der Wert bei dem eine zylindrische Schale die Stabilität verliert und abrupt beult. Nach dem

Beulvorgang sind die Schalen permanent beschädigt und können keine strukturelle Funktion

mehr erfüllen. Daher ist das Beulen ein nicht zulässiger Fehlermodus in der Auslegung von

Schalenstrukturen. Standardmethoden wie lineare Stabilitätsanalyse sind nicht in der Lage

genaue Vorhersagen zu treffen und überschätzen die Last unter welcher das Beulen eintritt.

Der Grund für diese Abweichung zwischen realen Schalen und der Theorie liegt in der Anwe-

senheit geometrischer Imperfektionen, welche einzigartig für jede einzelne Schale sind. In

Realität zeigen augenscheinlich identische Schalen große Abweichungen in ihrer Lastkapazi-

tät. Diese Varianz bedeutet, dass die einzig verlässliche Methode die wahre Tragfähigkeit zu

ermitteln darin liegt, zerstörende Tests durchzuführen.

In dieser Forschungsarbeit wird ein neuer konzeptioneller Ansatz zur Beschreibung des Ver-

haltens zylindrischer Schalen eingeführt. Die neue Beschreibung basiert auf dem dynami-

schen Systemansatz, der für die Untersuchung von Turbulenz im Bereich der Fluiddynamik

verwendet wird. Unter Anwendung dieses Ansatzes auf die lineare Formulierung der Scha-

lengleichungen werden Fixpunkte des dynamischen Systems berechnet und deren Stabilität

unter finiten Amplitudenperturbationen charakterisiert. Die Grenzen, die die Transition von

einem gebeulten Zustand in den ungebeulten Zustand und trennen, werden auch charakteri-

siert. Das Basin, welches von diesen Grenzen eingeschlossen wird, das Attraktionsbasin , wird

mit der Erhöhung der axialen Last kleiner und verschwindet bei erreichen der Beullast. Das

Schrumpfen des Attraktionsbasins kann charakterisiert werden, indem dessen Ausmaße unter

den verschiedenen axialen Lasten durch testen zylindrischer Schalen ermittelt werden. Das

Testen unter verschiedenen axialen Drucklasten definiert eine Charakteristik, welche für die

Extrapolierung der Last unter welcher die Charakteristik zusammen mit dem Attraktionsbasin

verschwindet. Diese axiale Drucklast ist die Beullast der Schale.

Das theoretisch beschriebene Rahmenwerk ist in einer Reihe von Testkampagnen implemen-

tiert, um die Vorhersagekraft der Stabilitätscharakteristiken in realen Schalen aufzuzeigen.

Stabilitätscharakteristiken sind die experimentelle Methodik um das Attraktionsbasin an je-

dem Fixpunkt zu erforschen und zu beschreiben. Die Erforschung des Attraktionsbasins wird

mit einem einzelnen Prüfstab durchgeführt, welcher eine einzelne Richtung für die Störung

eins Fixpunktes des dynamischen Systems hinsichtlich der Grenze des Attraktionsbasins re-
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präsentiert. Die Extrapolation der Beullast mit Stabilitätscharakteristiken, welche mit einem

einzelnen Druckstab an einer einzelnen Stelle generiert wurden, liefert keine perfekte Vor-

hersagekapazität in realen Schalen. Der Grund dafür liegt in der komplexen Interaktion der

Imperfektionen untereinander, welche in realen Schalen existiert. Die komplexe Interaktion

der Imperfektionen untereinander wurde ebenfalls in dieser Forschungsarbeit untersucht und

zeigt auf, dass die Beullast zylindrischer Schalen eine Funktion aller Imperfektionen in realen

Schalen ist. Die Beullast einer zylindrischen Schale wird nicht ausschließlich durch die größte

Imperfektion bestimmt.

Die Hauptergebnis der vorliegenden Forschung is eine zerstörungsfreie Testprozedur, welche

auf Stabilitätscharakteristiken an verschiedenen Stellen der zylindrischen Schalen basiert. Ein

Test nach dieser Testprozedur hat nachweislich die genaue Beullast einer Schale mit realen

Imperfektionen.
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Résumé
Cette recherche se concentre sur la prédiction de la charge de compression axiale maximale

qu’une coque cylindrique est capable de supporter. Cette charge de compression axiale maxi-

male est la valeur à laquelle une coque cylindrique perd sa stabilité et flambe brusquement.

Après le flambage, les coques sont définitivement endommagées et deviennent impropres à

toute fonction structurelle. Par conséquent, le flambement est un mode de défaillance critique

non admissible dans la conception des structures en coque. Les méthodologies standard

telles que l’analyse de stabilité linéaire ne parviennent pas à fournir une prédiction précise et

surestiment la valeur de la charge à laquelle l’effondrement se produit. La raison de cet écart

entre la théorie et la pratique est la présence d’imperfections géométriques propres à chaque

coque. En effet, des coques supposées identiques présentent de grandes variations dans leur

capacité de charge. Cet écart est la raison pour laquelle la seule approche fiable permettant

d’obtenir la capacité portante réelle est un test de compression destructif.

Dans ce travail de recherche, une nouvelle approche conceptuelle pour décrire le comporte-

ment des coques cylindriques est introduite. Cette nouvelle approche est basée sur la théorie

des systèmes dynamiques. Cette dernière est utilisée pour étudier la turbulence dans le do-

maine de la dynamique des fluides. En appliquant cette approche à une formulation non

linéaire des équations de coque, les points fixes du système dynamique sont calculés et leur

stabilité, sous des perturbations d’amplitude finie, caractérisée. La frontière, délimitant les

transitions vers un état déformé ou retournant vers l’état non déformé, est également carac-

térisée. Le bassin entouré par cette limite, le bassin d’attraction, devient plus petit à mesure

que la charge axiale augmente, disparaissant à la charge de compression à laquelle une coque

cylindrique flambe. Le rétrécissement du bassin d’attraction peut être caractérisé en explorant,

à différentes charges axiales, l’extension de celui-ci en sondant des coques cylindriques. Ce

sondage à différentes charges de compression axiale définit un paysage qui peut être utilisé

pour extrapoler la charge à laquelle le paysage ainsi que le bassin d’attractions disparaissent.

Cette charge de compression axiale est la charge de flambement de la coque.

Ce cadre théorique est éprouvé dans une série de campagnes de tests pour montrer la ca-

pacité prédictive des paysages de stabilité dans des coques réelles. Les paysages de stabilité

sont la technique expérimentale pour explorer et caractériser le bassin d’attraction associé à

chaque point fixe. L’exploration du bassin d’attraction s’effectue à l’aide d’un tisonnier qui

ne représente qu’une des directions pour perturber un point fixe du système dynamique

vers la frontière du bassin d’attraction. L’extrapolation de la charge de flambement, avec
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des paysages de stabilité construits avec un seul tisonnier à un seul endroit, ne fournit pas

une capacité prédictive parfaite dans des coques réelles. La raison est l’interaction complexe

entre les imperfections présentes dans les coques réelles. Cette interaction complexe entre

les imperfections a également été étudiée au cours de cette recherche, révélant que la charge

de flambement des coques cylindriques est fonction de toutes les imperfections présentes

dans la coque. La charge de flambement d’une coque cylindrique n’est pas dictée par la seule

imperfection la plus forte.

Un résultat clé de la recherche actuelle est une procédure de test non destructif basée sur

la construction de paysages de stabilité à différents endroits des coques cylindriques. Un

test, suivant cette procédure, a été en mesure de fournir une prédiction précise de la charge

de flambement d’une coque avec des imperfections réalistes. Cette procédure de test est

considérée comme une option viable pour tester de manière non destructive toute coque

cylindrique utilisée dans des applications d’ingénierie.
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Introduction

0.0.1 Buckling of Cylindrical Shells: The problem

Cylindrical shell structures are among the most efficient load bearing elements available to

the structural engineering community. The main reason why cylindrical shell structures are

so efficient structurally is the fact that they posses a high stiffness per unit of mass to react to

in-plane loads and the associated membrane dominated stress states. The high stiffness per

unit of mass that makes cylindrical shells structurally efficient also contributes to the main

challenge to accurately predict their behaviour and stability.

One of the reasons for the difficulty in predicting the behaviour of real cylindrical shells lays

in the fact that the bending stiffness of a cylindrical shell is much lower than its membrane

stiffness. The membrane stiffness of a cylindrical shell is linearly proportional to the Young’s

modulus of the material E and the shell thickness h. While the bending stiffness, D, is

proportional to h3 and the Young’s modulus of the material E in the following form Eh3/12(1−
ν) with ν being the Poisson’s ratio of the material. Thus as h approaches small values, the

bending stiffness decreases much faster than the membrane stiffness.

The difference between membrane and bending stiffness together with the zero Gauss curva-

ture of perfect cylindrical shells makes any small deviation from an in-plane stress component

induce significant radial displacements in the cylindrical shell. The consequence of those ra-

dial displacements is that as the load increases, radial deformation grows at a higher rate than

in-plane deformations because radial deformations have a lower energy cost. Perfect shells

can bend without stretching. Hence, the ease to develop radial deformations undermines the

capability of a cylindrical shell to maintain a membrane dominated stress state.

Real shells have geometric imperfections that are not known. These unknown imperfections

deteriorate membrane dominated states and promote radial deformations. The presence of

the unknown geometric imperfections makes the application of standard stability theory an

inaccurate tool to predict the stability behaviour of cylindrical shells. In the case where the

imperfections are known, linear stability analysis is able to provide an accurate prediction but

in most practical applications the imperfections are not know. The presence of the unknown

geometrical imperfections decreases significantly the load bearing capabilities of cylindrical

shells.
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Despite the disadvantage of the difference between the membrane and the bending stiffness,

and the influence of geometric imperfections, the advantages of using structural concepts

based on cylindrical shells,namely their stiffness per unit of mass. This is the main reason

for their ubiquity in high performance structures in use these days. Cylindrical shells can be

found in a wide variety of applications ranging from offshore platforms to space launchers,

wind turbines and aircraft. A small sample of these structures is shown in figure 1. These

examples are small sample of the engineering achievements enabled by cylindrical shells

structures.

(a) Offshore jig used in the extraction of oil. The

main support structure are the cylindrical shells at

the base.

(b) GE Heliade-X wind power generator. The tower

lifting the generator unit is a shell structure that

needs to accommodate the ever larger blades re-

quired to achieve the energy generation goals

(c) The A350-100 is one of the latest generation wide

body aircraft where the main passenger volume is

a cylindrical shell optimized to increase range and

minimize fuel consumption

(d) Space Exploration technologies Starship is a next

generation space launcher with all its main struc-

tural component based on cylindrical shells with

the exceptions of the tank domes.

Figure 1 – Examples of engineering structures where structural concepts based on cylindrical
shells are critical to perform the required mission.

2
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The difference between membrane and bending stiffness of cylindrical shells is the root cause

for the so-called imperfection sensitivity of these structures. The geometric imperfections

are the factor making this difference of stiffness come into play affecting and influencing the

behaviour and stability of thin cylindrical shells. The shell structures shown in figure 1 need

to be manufactured and assembled. It is during these processes, with their characteristic

tolerances and defects, that cylindrical shells become imperfect. The presence of these

imperfections, mainly geometric, mean that the final shape presents deviations from the

intended ideal cylindrical shape. An example of the imperfections of real cylindrical shells

that have undergone a complex manufacturing and assembly process are shown in figure 2.

(a) Radial displacement deviation form the a perfect cylindrical shape obtained by NASA in

a sub-scale legacy space shuttle cylindrical shell of 2.4 meters diameter. (Hilburger, 2012)

(b) Amplification of a 3 Dimensional representation of a measured imperfection of a cylin-

drical shell Degenhardt et al. (2012)

Figure 2 – Examples of characteristic imperfections present in aerospace grade cylindrical
shells

It is nowadays an accepted fact that geometric imperfections distort cylindrical shells to the

point where they can only bear less than half of the load that stability analysis predicts for the

ideal geometry. There are other factors like loading or material imperfections, but geometrical

imperfections are the main contributor (Babcock, 1983). An example of how the buckling load

of cylindrical shells differs from the theoretical prediction of linear stability for the perfect

cylindrical shell is shown in figure 3.

In this graphic, the solid line represents the normalized linear stability prediction. While the

3
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dots correspond to experimental data from destructive compression tests of aerospace grade

shells. The dashed line is an envelope of the empirical data known as the SP-8007. The SP-8007

guideline describes the knock-down factor to be applied to the linear stability buckling load

prediction in order to have a conservative estimation of the actual load a cylindrical shell can

bear. The knock-down factor is thus the ratio between the real buckling load of a cylindrical

shell and that predicted by linear stability. The difference between the solid line and the dots

representing experiments in figure 3 is the empirical evidence that motivates the current

research.

Figure 3 – Test data from the NASA SP-8007, this is a data set coming from a large test campaign
of aerospace grade shells related to the development of the Apollo program (Seide, 1969)

The imperfections causing the deviation between the linear stability predictions of the buck-

ling load and the real one are of stochastic nature. This means that beforehand, i.e. before

the cylindrical shell is constructed, it is impossible to determine the exact imperfections

present in it. In fact, if the buckling load of a cylindrical shell needs to be known with absolute

certainty, a destructive compression test is the most reliable tool for this end. Indeed, to best

of the knowledge of the author, there is no non-destructive test technique that has been used

successfully in a full scale cylindrical shell to predict its buckling load.

In the case of cylindrical shells, the compression test is necessarily destructive because once

the maximum force that the structure can bear is reached, the cylinder becomes unstable and

loses a large portion of its load bearing capability. The implications of the lost of load bearing

capability is that a large portion of the strain energy that was mostly stored in the form of

membrane strain energy becomes bending strain energy (Almroth et al., 1973). Due to the

difference between membrane and bending stiffness, storing similar amount of energy in the

form of bending strain energy requires large radial displacements. These large displacements

result in permanent damage for most material systems. This destructive nature of the buckling

event of cylindrical shells is an additional motivation to be able to predict the buckling load of

cylindrical shells in engineering applications. Because in engineering catastrophic failures
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like the one characteristic of cylindrical shells are to be avoided.

Hence the main challenges to predict the buckling load of cylindrical shells can be summarised

in the following points:

• The buckling load of a real shell cannot be predicted from the linear stability analysis of

the perfect cylinder.

• The stochastic nature of the imperfections makes impossible to determine accurately

the buckling load of a cylinder until it is manufactured.

• The destructive nature of the buckling event in cylindrical shells implies that currently

there is no non-destructive approach to determine the buckling load of a cylindrical

shell.

0.0.2 Shell buckling: Historical overview

The first formal studies about buckling of slender structures can be attributed to the Swiss

mathematician Leonhard Euler in the X V I I I century (Euler, 1759). Afterwards, one century

had to pass for the first experimental studies about buckling of cylindrical shells to occur. They

were performed in the X I X century by Fairbairn and Hodgkinson to verify the tubular struc-

tures of a newly designed bridge (Fairbairn, 1859). The initial investigation about buckling of

shells was done experimentally and there was no comparison established with any theoretical

prediction.

The first theoretical prediction of the buckling load of a cylindrical shell would arrive at

the beginning of the X X century. Based upon linear stability theory, Timoshenko (1914),

Lorenz (1911) and Southwell (1914) derived independently the critical stress value at which a

cylindrical shell buckles:

σcr = Eh√
3(1−ν2)

(1)

As the X X century progressed, the rapid evolution of the aeronautical industry dramatically

increased the utilization of slender components like struts and shells. The utilization of these

components led to intensive testing campaigns to verify the different designs. It was during

these first testing campaigns that Lundquist (1934), Donnell (1933) and Flügge (1932) realised

independently the large scatter of values of the buckling load for nominally identical shells

and the deviation of these values with respect to the theoretical buckling load predicted by

linear stability analysis of the perfect shell.

The deviation between experimental data and analytical predictions triggered a significant

interest in the research community to tackle this apparent discrepancy. The seminal work of

von Karman and Tsien suggested that the deviation between the linear stability threshold and
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the experimental data was caused by the presence of geometric imperfections (Von Karman

et al., 1940; Von Karman and Tsien, 1941). The hypothesis of von Karman and Tsien was proven

mathematically by Koiter (1945). Koiter provided an analytical solution of the buckling load

of a cylindrical shell including geometrical imperfections, obtaining a much lower buckling

load than the one of the original perfect shell. Koiter used as a geometrical imperfection a

superposition of trigonometric series that degraded the geometry in the radial direction of the

cylindrical shell.

The next major leap in the research of buckling of cylindrical shells occurred at the beginning

of the second half of the X X century. The space race encouraged the creation of ever larger

and more efficient launchers that made extensive use of cylindrical shells. The issue of the

deviation between theoretical predictions and experimental values became worse as the

cylindrical shells got more slender (larger radius R over thickness h ratios). This worsening of

the discrepancy between theoretical predictions and experimental values can be observed in

the experimental data of NASA, see 3.

During the design of the launchers of the Apollo program, namely the Saturn V , NASA could

not wait for the development of an analytical or numerical solution for predicting buckling

loads of cylinders or to determine if such a methodology was even possible. Hence, they

carried out a large test campaign with aerospace shells to derive an empirical lower bound

of the knock-down factors to be applied to the linear stability predictions in order to obtain

the maximum compression load a cylindrical shell could bear. This guideline is known as the

NASA SP-8007 (Seide, 1969) and was in fact obtained based on the data already presented in

figure 3. This guideline to obtain conservative buckling load predictions is still used nowadays

in the preliminary design of critical structures such as space launchers.

It was also around the research effort to derive the NASA SP-8007 when the first ideas about

introducing lateral probing appeared (Ricardo, 1967; Okubo et al., 1970). In the case of Ricardo

and Okubo, the intention was to derive buckling loads under combined loading (compression

and radial forces).

In the last decade of the X X century and the beginning of the X X I , with the advancement of

computational capabilities, there have been developments in the direction of moving away

from purely empirical methods. Two main approaches have appeared, both of them based

on the extensive application of commercial finite element codes. The first one consists of the

application of statistical design based on the application of imperfections that are generated ei-

ther from real scans of cylindrical shells (Arbocz and Starnes, 2002) or synthetically (Elishakoff

et al., 1996). The second approach consists of the application of worst-case imperfections with

a low number of parameters to determine the minimum load a cylindrical shell can bear prior

to manufacturing without resorting to destructive testing. In this second approach, lateral

loads are used as imperfections (Castro et al., 2013) or dimples (Wullschleger, 2006). However,

neither of the two approaches has led to a conclusion on how to determine the buckling load

of a cylindrical shell accurately without resorting to its destructive testing.
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In the last years, NASA is trying to develop new knock-down factor guidelines (Haynie and

Hilburger, 2010; Hilburger, 2012). The direction followed in this case is based on the com-

pilation of real imperfections because they are oriented towards a very specific geometry

(Hilburger et al., 2012). To this end, NASA has been carrying a very ambitious test and analysis

program based on the spare hardware form the Space Shuttle program (see figure 4) and the

replication of the test via detailed finite element models. This work has been done under

the umbrella of the Shell Knock-Down Factor project (Hilburger et al., 2018; Hilburger, 2018;

Lovejoy and Hilburger, 2013; Lovejoy et al., 2018).

(a) Cylindrical test article with the speckle pattern re-

quired by a digital image correlation system to track

deformation in real time during the loading sequence

of an axial compression test

(b) Space shuttle heritage stiffened cylindrical shells.

These section belong to the un-pressurized section of

the main fuel tank of the vehicle

Figure 4 – Test set up and specimens used in the NASA shell buckling knock-down factor
experimental buckling program

On the experimental side, the most notable development has been the vibration correlation

technique proposed initially by Singer (Weller et al., 2002). The vibration correlation technique

measures the natural frequencies of the corresponding structure as a function of the applied

pre-load. Experimentally, it requires an acoustic excitation to visualize the variation of the

natural frequencies of the cylindrical shell. This technique has also been investigated recently

by DLR (Franzoni et al., 2019; Arbelo et al., 2014b) and Technion (Abramovich, 2021) in sub-

scale specimens. The application of these techniques hinges in the dynamic excitation of the

complete structure while it is being compressed. Nevertheless, the complex experimental set

up associated with this technique makes it unpractical for its implementation in applications

relevant for engineering.

0.0.3 Shell buckling: A new approach

Understanding the behaviour and stability of cylindrical shells is the focus of this research with

a special focus on the prediction of the maximum axial compression force a cylindrical shell is

able to bear prior to collapse. This collapse load is normally referred to as the spontaneous
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buckling load or more plainly buckling load. As presented so far throughout this introduction,

this seemingly simple question of how much load a cylindrical shell can carry has remained

unanswered. In fact, to this date it is not possible to predict the buckling load of an engineering

relevant cylindrical shell without recurring to destructive testing of the shell under study

(Calladine, 1995).

On the analytical and numerical sides, the successful prediction of the buckling load of a

cylindrical is directly not possible if the imperfections present are unknown. In fact, when

standard linear theory is used to compute the stability threshold of cylindrical shells under

compression, it significantly over-predicts it. The only feasible path to this date to predict

the buckling load of a cylindrical shell without destructively testing it is hence building a very

precise finite element model and performing a virtual test of it.

In the current research, a novel approach to study cylindrical shells and their behaviour at the

onset of stability is discussed. This is done with the aim of predicting buckling loads for realistic

cylindrical shells in a non-destructive manner. This new approach is based on the dynamical

systems methodology used to study turbulence and shear flows transition in the field of fluid

mechanics. Using this approach, cylindrical shells are modelled as a dynamical system of

which equilibrium solutions, also referred to as fixed points, are calculated. Following the

concepts of the dynamical system approach, the stability of each of those fixed points is

studied to understand the behaviour of the system.

The dynamical system description of cylindrical shells allows for the modelling of their stability

behaviour as a finite amplitude perturbation problem with a full non-linear description. This

fact allows to define a set of perturbed states, that if the perturbation is removed will return to

the unperturbed fixed point. The set of all possible perturbed states that satisfy this conditions

define the basin of attraction associated with each fixed point.

The extension of the basin of attraction can be evaluated by perturbing the corresponding

fixed point until it becomes unstable. The extension of the basin of attraction becomes

smaller as the axial compression load exerted on the cylindrical shell increases, i.e. as the shell

approaches the buckling point. In fact, there is a load level where the fixed point can only be

infinitesimally perturbed that coincides with the maximum load the cylindrical shell can bear.

This is the spontaneous buckling load or simply the buckling load.

The description in the state space of cylindrical shells as a dynamical system and the different

features mentioned in the previous paragraph have a corresponding representation that can

be assessed experimentally. The experimental representation of the fact that the basin of

attraction shrinks as the axial load is increased is the creation of stability landscapes. Stability

landscapes are the experimental representation of a single direction from the fixed point to

the boundary of the basin of attraction in state space. An example of a stability landscape can

be seen in figure 5 together with its key features.
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Figure 5 – Example of a stability landscape.

The most relevant feature of the stability landscapes for the current research is the ridge, more

precisely the line connecting the points at the top of it. The top of the ridge extrapolates

towards the point where the stability landscape vanishes. i.e. the buckling load of the cylin-

drical shell. This fact is the property of stability landscapes that will be investigated during

the current research to propose a potential non-destructive testing procedure for cylindrical

shells.
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1 Shell theory for axially loaded cylin-
ders

In this chapter we review the classical tools to derive the elastic response of shells. Specif-

ically, we discuss shell theories and the different kinematic relationships between physical

deformations and mechanical strains. The aim is to motivate the utilization of a certain

strain-displacement model suitable for the calculations that will be carried out subsequently.

Furthermore, a classic buckling analysis of a cylindrical shell will be presented to demonstrate

the classic approach to estimate the buckling load of a cylindrical shell. This stability analysis

is relevant due to the large influence that the linear buckling eigen-modes have had in the

study of cylindrical shell buckling. The final section of this chapter will provide an insight into

energy-based methodologies to numerically approximate solutions of shell equations as well

as the techniques used to construct these approximations.

Shells have played a prominent role in the development of different aerospace engineering

feats. In the process leading to the successful development of flight hardware several variants

of structural analyses are essential. These analyses need to verify the structural integrity and

stability of the different components present in the structure of the complete vehicle. Hence,

models are needed to describe or approximate the elastic response of shells accurately under

the presence of external loads. These models are required to predict the deformations and

stresses present in the different components under their respective loading conditions. These

internal stresses or strains need to be verified against the appropriate allowable values to

demonstrate that a vehicle is able to undertake its mission. Due to the extensive use of shells in

different aerospace crafts, there have been many attempts to model and construct analytical

expressions that capture and accurately describe the elastic response of shells.

The main approaches to derive different strain-displacement models have been the appli-

cation of geometric principles to infer admissible deformations and kinematic relations of

the strains present in a certain shell (Timoshenko, 1964; Love, 1888, 1927; Kirchhoff, 1850)

and the asymptotic reduction of 3D elasticity and variational formulations based on energy

minimization (Hornung and Velčić, 2015; Lewicka et al., 2010). These approaches have certain

advantages and limitations that will be shown later in the chapter. Each model has a range

of validity regarding the kinematics that they can describe and approximate. These model
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Chapter 1. Shell theory for axially loaded cylinders

limitations specially restrict maximum displacements and rotations that can be describe

accurately.

The fact that different cylindrical shell strain-displacement approximations or theories have

associated different ranges of validity enables the possibility to select one or another de-

pending on the analysis that needs to be carried out. As an example, if the stress of a shell

is to be predicted far away from its linear stability threshold, a linear Kirchoff-Love strain-

displacement approximation will describe accurately the kinematics of the problem. However,

if an analysis requires to model the deformation of a cylindrical shell in the deep post-buckling

regime, a strain approximation based on the Sander-Budiansky-Koiter strain-displacement

approximation will be required.

Displacement-strain relationships together with a stress-strain relationship and force balance

describes the response of a shell. The force balance should consider a general loading affecting

the cylindrical shell. The equilibrium condition can be stated in the most general form by

applying equation 1.1 to a cylindrical shell. In equation 1.1, b represents the body forces, the

term ρü the effect of inertia and σ the internal stresses present in a solid as a reaction to the

applied loading.

∇·σ+b = ρü (1.1)

However, a force balance in the form of 1.1 applied to a cylindrical shell is not practical to

study structures like cylindrical shells. This equilibrium is not practical to study cylindrical

shells due to the fact that in this kind of structural components the thickness is orders of

magnitude smaller than the other characteristic lengths. In fact the most common approach

to study cylindrical shells is to study them as 2D entities in space with an associated parameter

to represent the thickness (Niordson, 1985).

A well established practice (Timoshenko, 1964) to derive an expression of force balance in a

cylindrical shell is to take a representative segment of a cylindrical shell, isolate it and identify

all the forces acting on it. All these forces are required to be in equilibrium with the rest of the

cylindrical shell via the internal reactions. The graphical representation of this equilibrium is a

free body diagram. An illustration of all the forces involved is presented in the schematic shown

in figure 1.1. Under equilibrium conditions, the internal strains and hence the stresses are

related to the geometric deformations via the strain-displacement relationships. These strain-

displacement relationships are obtained from different approximations of the asymptotic

reduction of 3D elasticity.
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Figure 1.1 – Complete set of internal forces present in a representative shell element as a
reaction of a generic external force.

There is an alternative variational approach to derive equilibrium equations. This approach

consists of applying Hamilton’s principle (Sanders, 1959) to a portion of a cylindrical shell. In

this approach, a general expression containing the contributions of the different strains to the

internal work is obtained. This expression of the internal work needs to be equal to the external

work done by the external forces. In this expression the different strain approximations are

included. The outcome is exactly the same as in the case where a force equilibrium is created

from a free body diagram. Hence, it is an arbitrary choice to select one approach or another.

The free body diagram approach will be used.

1.0.1 Cylindrical shell force balance

In the derivation of the shell model a change of coordinates is introduced. The change of

coordinates reads as follows x = x, y = Rθ being θ the azimuthal coordinate in the cylinder

and R = z where R is the nominal radius of the cylindrical shell (Doyle, 2001). This change of

coordinates transforms all the components from a Cartesian coordinate system to a coordinate

system where the cylinders becomes a surface with intrinsic curvature.

After introducing the change of coordinates, the first step in the derivation of the shell equa-

tions is to state the force equilibrium of the free body diagram depicted in figure 1.1. Equation

1.2 represent the force equilibrium along the x axis while equation 1.3 represent the force

equilibrium along the azimuthal direction y . Equation 1.4 is the out of plane equilibrium

considering the external load depicted in figure 1.1. In equations 1.2 to 1.4, Naa represents

the corresponding stress resultant aligned with coordinate a. Nab represents the shear stress

resultant oriented from coordinate a to b. The same nomenclature is applied to the moment
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Chapter 1. Shell theory for axially loaded cylinders

resultants Maa and Mab .

∂Nx

∂x
+ ∂Nx y

∂y
= 0 (1.2)

∂Ny

∂y
+ ∂Nx y

∂x
= 0 (1.3)

∂Qx

∂x
+ ∂Qy

∂y
+Nx

∂2w

∂x2 +2Nx y
∂2w

∂x∂y
+Ny

∂2w

∂y2 =−pz (1.4)

Taking moments around the x and y axis equations 1.5 and 1.6 are obtained.

∂Mx

∂x
+ ∂Mx y

∂y
=Qx (1.5)

∂My

∂y
− ∂Mx y

∂x
=Qy (1.6)

Equations 1.5 and 1.6 express the equilibrium equation along the z axis as a function of stress

and moments resultants as shown in equation 1.7

∂2Mx

∂x2 +2
∂2Mx y

∂x∂y
+ ∂2My

∂y2 =−
[

pz + (Nx +P0)
∂2w

∂x2 +Nx y
∂2w

∂x
∂y +Ny

(
∂2w

∂y2 + 1

R

)]
(1.7)

In equation 1.4, P0 represents a uniform compression stress resultant, a compression force

per unit length. The pz in equation 1.7 represents a radial pressure distribution normal to the

surface of the cylindrical shell. This represents a particular loading condition that will be of

interest in the current research. The boundary conditions assumed for the cylindrical shell are

clamped at both ends.

Once the force equilibrium is stated, an expression to relate the loading to the deformations

is needed. This relationship of the different stress and moment resultants to the strains (ε)

and curvatures (κ) is shown in equations 1.9 to 1.14 via the material characteristics and the

thickness of the cylindrical shell h. The constitutive model of the material assumes a material

model where the behaviour is isotropic and linear elastic (Lemaitre (2001)). The focus of the

current research is oriented towards the mathematical models used to describe deformations

and non-linearities in cylindrical shell from the geometric point of view. Hence, the material

model is selected as simple as possible. The isotropic linear elastic model selected only uses 3

parameters, E (Young’s Modulus), ν (Poisson’s ratio) and G (Shear modulus), where only two
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of them are required to define the third, 1.8.

G = E

2(1+ν)
(1.8)

Nx = Eh

1−ν2

(
εx +νεy

)
(1.9)

Ny = Eh

1−ν2

(
εy +νεx

)
(1.10)

Nx y = Eh

2(1+ν)

(
εx y

)
(1.11)

The moment resultants are related to curvature as follows:

Mx = Eh3

12(1−ν2)

(
κx +νκy

)
(1.12)

My = Eh3

12(1−ν2)

(
κy +νκx

)
(1.13)

Mx y = Eh3

2(1+ν)

(
κx y

)
(1.14)

Inserting the different strain-displacement approximations in equations 1.9 to 1.14 is how the

different shell models are included. The different strain-displacement expressions include

the characteristic kinematics, the contributions of the different displacement components, of

each shell theory.

An additional feature introduced in the equilibrium equations is the Airy stress potential φ.

The Airy stress potential is used to simplify the two equations of in-plane equilibrium (1.2 and

1.3) to a single equation with

Nx = ∂2φ

∂y2 (1.15)

Ny = ∂2φ

∂x2 (1.16)

17



Chapter 1. Shell theory for axially loaded cylinders

Nx y = ∂2φ

∂x∂y
(1.17)

This stress potential is defined according to equations 1.15 to 1.17. The Airy stress potential

exists due to the fact that the internal forces can be derived as a potential from equation 1.1 in

the absence of inertial forces (Reddy, 2013). The Airy potential implies that the equilibrium

equations are directly satisfied in the case when no body forces are applied (Airy, 1863).

1.1 Linear theory of cylindrical shells

In this section the linearized strain-displacement that are valid for small displacement are

considered.

The application of this approximation is valid under the following assumptions. The deforma-

tions present in the cylindrical shell are small in comparison to the shell thickness and the

sections of the cylindrical shell remain perpendicular to the line defining the mid-surface of

the cylindrical shell under bending. This last point meaning that cross-sections that originally

were perpendicular to the mid-plane of the shell remain so after deformation. This limitation

in the shear deformation is acceptable for thin cylindrical shells. However, for cylindrical

shells with a larger thickness, this assumption is not valid (Reissner, 1945). The shell theory

resulting from these hypotheses was derived in the 19th century independently by Love (Love,

1888, 1927) and Kirchhoff (Kirchhoff, 1850; Kirchhoff and Hensel, 1883).

Implementing the considerations stated in the previous paragraph leads to the strain-displacement

relationships presented in expressions 1.18 to 1.20. These equations represent the strain-

displacement relationships of the Kirchhoff-Love shell theory that have seen a very wide

utilization to deal with linear analysis of shells (Gibson, 1965; Timoshenko, 1964).

εx = ∂u

∂x
(1.18)

εy = ∂v

∂y
+ w

R
(1.19)

εx y = ∂u

∂y
+ ∂v

∂x
(1.20)

for the in-plane strains and

κx = ∂2w

∂x2 (1.21)
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1.2. Non-linear shell theory of cylindrical shells

κy = ∂2w

∂y2 (1.22)

κx y = ∂2w

∂x∂y
(1.23)

for the curvatures.

This shell theory or strain-displacement approximation, as it was mentioned before, is suitable

for cases where the displacements and rotations are small. The range of validity of this shell

theory makes it not suitable to predict the behaviour of shells at the onset on instability or the

collapse of cylindrical shell. This being due to the fact that more significant displacements

and rotations are involved in this case (Hutchinson, 2016). This theory is useful to study linear

problems that arise typically in stress analysis as shown in (Megson, 2007).

1.2 Non-linear shell theory of cylindrical shells

Elasticity is intrinsically non-linear due to the kinematics of the deformations of a solid. The

deformation that a body undergoes changing the location of one point from its initial position

to a final position leads to a term in each component of the strain tensor that is non-linear

(Landau and Lifshitz, 1970). The definition of each of those terms of the strain tensor in 3D is

the one shown in equation 1.24. In this expression, i ,k are the different combinations of x, y

and z.

εi k = 1

2

(
∂ui

∂xk
+ ∂uk

∂xi
+ ∂ui

∂xi

∂ui

∂xk

)
(1.24)

The non-linear term present in each component of the stress tensor 1.24 is neglected in

applications where the deformations are small. However, in order to deal with a problems like

the one of predicting the collapse of cylindrical shells, the geometrically non-linear behavior of

elasticity can not be neglected. In this case the magnitude of the deformations, displacements

and rotations involved are too big to not consider the non-linear contribution in the strain

tensor.

1.2.1 Donnell-Mustari-Vlasov

This approximation of the strain-displacement relationships that includes non-linear effects

is the so called Donnell-Mustari-Vlasov (DMV) approximation. It is the lowest complexity

non-linear approximation due to the fact that it includes a single non-linear term on the

strain-displacement relationships. Other approximations include more involved non-linear

terms (Reddy, 2007).

19



Chapter 1. Shell theory for axially loaded cylinders

The DMV shell theory was derived by Donnell, Mushtari and Vlasov (Donnell, 1933; Mushtari

and Galimov, 1961; Vlasov, 1958) independently in the US and the USSR during the 20th

century. The DMV approximation of the strain-displacement relation of cylindrical shells has

seen very wide application (Audoly and Pomeau, 2010; Howell et al., 2009; Chien, 1944a,b).

The DMV approximation is able to cope with small strains so linear elastic material models

can be applied. In addition to that, the deformations need to be short wavelength due to the

approximation of the curvatures and not exceed the order of magnitude of the shell thickness

(Hutchinson and Thompson, 2017; Budiansky, 1968). Regarding rotations, the slope in the

displacement field should remain small, meaning that ∂w/∂x << 1 (Amabili, 2003, 2008). The

Kirchoff-Love hypothesis should hold (Kirchhoff and Hensel, 1883; Love, 1888), meaning that

the shell section must remain straight after the deformation occurs.

The strain-displacement relationships of DMV are presented in equations 1.25 to 1.30. Note

that the non-linear term appears in the in-plane strains while the curvatures remain linear

functions of the radial displacement of the cylindrical shell. The non-linear terms are a

quadratic function of the radial displacement w with no non-linear terms involving the in-

plane displacements u and v .

εx = ∂u

∂x
+ 1

2

(
∂w

∂x

)2

(1.25)

εy = ∂v

∂y
+ w

R
+ 1

2

(
∂w

∂y

)2

(1.26)

εx y = ∂u

∂y
+ ∂v

∂x
+ ∂w

∂x

∂w

∂y
(1.27)

κx =−∂
2w

∂x2 (1.28)

κy =−∂
2w

∂y2 (1.29)

κx y =−2
∂2w

∂x∂y
(1.30)

Once the strain-displacement relationships are available, the next step is to update the equi-

librium equations to consider the loading and boundary conditions of interest. The boundary

conditions are clamped at both ends. The loading presented in figure 1.1 is simplified to

consider as external forces only an axial compression load, a stress resultant (P0) and a radial
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1.2. Non-linear shell theory of cylindrical shells

pressure distribution (PR ) that for practical reasons will be represented by a Gaussian distribu-

tion. A Gaussian distribution was selected due to the ease to control the location, area and

intensity of the maximum. Furthermore, a normal distribution satisfies all the requirements

of continuity that are needed to not affect the solution of the equations. A presion distribution

is included because in chapter 2 the DMV equations with an identical loading scheme will be

used to study cylindrical shell buckling.

Equation 1.31 represents the equilibrium along the axial direction, equation 1.32 represents

the equilibrium along the tangential direction and 1.33 the equilibrium in the radial direction.

Sub-indices x and y denote derivatives with respect to x and y , respectively.

Nx,x +Nx y,y = 0 (1.31)

Ny,y +Ny x,x = 0 (1.32)

D∆2w +w,xx (Nx +P0)+w,y y Ny +2w,x y Nx y − 1

R
Ny +PR (x, y) = 0 (1.33)

In the current research, the DMV approximation is considered sufficient. Namely because of

the following reasons:

• The shells under study are sufficiently slender. The ratio of thickness over radius is

smaller than 20 Amabili (2003).

• The DMV strain-displacement approximation describes the intrinsic non-linear be-

haviour of elasticity. It captures the non-linear behaviour of shells. These statements

are only correct in the case the deformations are small.

• The range of deformations where the current research will focus, the pre-buckling

regime, is within the range of validity of this approximation (Amabili, 2003). Pre-buckling

deformations are in the order of the shell thickness.

• More complex approximations will not provide additional accuracy in describing the pre-

buckling deformations. Higher-order models are used to cope with larger displacements

associated with post-buckling (Hutchinson, 2016). This regime will not be studied in

the current research.

The aim of this section was to provide a justification for the selection of the DMV approxima-

tion and the equations to be used in subsequent chapters. A more through justification of the

model is provided in (Ciarlet, 1980),(Ciarlet and Paumier, 1986).

Although the DMV approximation of the strain-displacement relationships is used in the

current research, a more complex approximation will be presented in the next section as an
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Chapter 1. Shell theory for axially loaded cylinders

example. The intention of presenting a more complex strain-displacement approximation is

to show how additional complexity is added beyond the DMV one to model the non-linear

behaviour of cylindrical shells when larger displacements and rotations are present. The main

application of this more complex model is the study of the collapse of cylindrical shells beyond

the pre-buckling regime.

1.2.2 Sanders-Budiansky-Koiter Shell theory

The Sanders-Budiansky-Koiter (SBK) approximation differs from the non-linear strain-displacement

relationship proposed by the DMV model in that it retains higher order terms from the asymp-

totic reduction. This approximation was proposed in very similar forms by Sanders (1959),

Budiansky (1968) and Koiter (1966). The strain-displacement relationships from the SBK

approximation are presented in equations 1.34 to 1.39

εx = ∂u

∂x
+ 1

2

(
∂w

∂x

)2

+ 1

8

(
∂v

∂x
− ∂u

∂y

)2

(1.34)

εy = ∂v

∂y
+ w

R
+ 1

2

(
∂w

∂y

)2

+ 1

8

(
∂u

∂y
− ∂v

∂x

)2

(1.35)

εx y = ∂u

R∂θ
+ ∂v

∂x
+ ∂w

∂x

(
∂w

∂y
− v

R

)
(1.36)

κx =−∂
2w

∂x2 (1.37)

κy =−∂
2w

∂y2 + ∂v

∂y2 (1.38)

κx y =−2
∂2w

∂x∂y
+ 1

2R

(
3
∂v

∂x
− ∂u

∂y

)
(1.39)

The SBK approximation has been used by different authors (Ciarlet, 2000; Yamaki, 1984;

Amabili, 2003) to explore the limits of the different strain-displacement approximations.

They verified that the DMV strain-displacement model becomes inaccurate beyond the pre-

buckling regime. One of the most important application of this shell theory are commercial

finite element codes like Abaqus (Dassault Systèmes Simulia Corp, 2011) that incorporate

this approximation on the 2D elements. This code has been successfully used not only to

predict buckling of shell structures, but also to trace the evolution process of the collapse of

cylindrical shells deep in the post-buckling regime as shown in (Hilburger et al., 2018).
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1.3. Classic stability analysis of cylindrical shells

1.2.3 Derivation of non-linear shell theory from the Γ limit of energy functionals
of 3D elasticity

A well established process to derive the different strain-displacement approximations that

model the behaviour of cylindrical shells is based upon a formal asymptotic reduction from 3D

non-linear elasticity. This asymptotic reduction leads to a model consisting of a 2D manifold in

3D with a parameter to model the thickness of the cylindrical shell. However, in the application

of the asymptotic reduction process, there is the possibility to only retain certain contributors

depending on the behaviour that is to be captured (moderate rotations, moderate strain, large

rotations etc.). This leads to different strain-displacement approximations from the ones

presented in subsections 1.2.1 and 1.2.2.

In recent years, a new approach for the derivation of the 2D non-linear strain-displacement

approximation from 3D-elasticity has been developed in the applied math community (Hor-

nung and Velčić, 2015), (Lewicka et al., 2010). A complete derivation of the DMV model is

presented in (Hornung and Velčić, 2015). It is based on the application of Γ convergence

(Braides, 2002) in the limit when a geometric dimension of the solid, the thickness of the

shell in this case, tends to a very small value in comparison with the other characteristic

dimensions. Furthermore, imposing the assumption of small strains and rotations, the DMV

model is obtained (Hornung and Velčić, 2015; Lewicka et al., 2010). An introduction to Γ

convergence and the practicalities of this technique is given in Maso (1993).

The fact that via a different approach the same expressions for capturing the non-linear

behaviour of cylindrical shells can be obtained shows that the model used, DMV in this case,

is a reliable tool for modelling the behaviour of cylindrical shells.

1.3 Classic stability analysis of cylindrical shells

The existing deviation between the buckling loads predicted by linear stability theory and

the values obtained in compression tests of cylindrical shells is the motivation for the current

research about the collapse of cylindrical shells. This discrepancy was realized very early on

and initially it was thought that the source for the discrepancy between analytical predictions

and the experiments could be attributed to an incorrect formulation of the shell models. This

hypothesis was shown to be incorrect by Koiter (1945) in line with the initial suggestion of von

Karman (Von Karman and Tsien, 1941).

In spite of the work of Koiter (1945), there are sources still claiming that wrong modeling is the

source of the deviation between predictions and experiments (Hart-Smith, 2015). Beyond this

last source, there is a well established consensus that the main reason of the deviation between

the theoretical predictions and experiments are geometric imperfections, deviations from the

ideal geometry of the cylindrical shell. In fact, in the last years, high-fidelity finite element

models based on the SBK shell strain-displacement approximation managed to accurately

predict the buckling load of non-ideal structures made out of cylindrical shells (Hilburger et al.,
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Chapter 1. Shell theory for axially loaded cylinders

2018) and Kosztowny (2021)). These models included the exact shape and imperfections of

these cylindrical shells as well as the load introduction imperfection present at the boundary

conditions.

Classical stability analysis remains relevant for two reasons. The first one is that the predictions

made in the past have shaped the thinking of the structural engineering community about

cylindrical shell buckling. These include the buckling load predictions and classical global

eigen-modes that affect the complete domain of the cylindrical shell. These so-called global

eigen-modes in the form of checkerboard patterns and other fully periodic solutions led

researchers to not think about the possibility and relevance of localized solutions. This has

changed recently as for example the work of Kreilos (Kreilos et al., 2016) demonstrates. The

second reason is the fact that the results of the classical stability analysis are the ones used

as reference to express the results of any buckling analysis or test of real shells. Hence, it is

important to understand how this reference value is derived.

In this section, an overview about how the early methods used to approximate buckling loads

will also be provided. These are early methods not based on numerical methodologies, like the

finite element method. However, they were sufficient to predict the stability of cylindrical shells

and provide early insights about the accuracy of the partial differential equations describing

cylindrical shells.

1.3.1 Analytical stability prediction

A closed analytical solution for the derivation of the buckling load of a cylindrical shell via

stability analysis can only be obtained for simply supported boundary conditions. These

boundary conditions are detailed in equations 1.42 to 1.45. The linearized equations using the

Donnell approximation read as shown in expressions 1.40 and 1.41. Here the a summary of the

calculation is presented. For a complete overview of the procedure, the work of (Timoshenko,

1985) should be visited.

1

Eh
∇4φ=−∂

2w

∂x2

1

R
(1.40)

D∇4w = Nx
∂2w

∂x2 +2Nx y
∂2w

∂x∂y
+Ny

∂2w

∂y2 + 1

R

∂φ

∂x2 (1.41)

There are 4 boundary conditions required to solve the system of differential equations com-

posed by equations 1.40 and 1.41. These boundary conditions are presented in equations

1.42 to 1.45. They are to be imposed at x = 0 and x = L, where x is the axial coordinate of

the cylindrical shell of radius R and length L. The field w is the radial displacement in the

complete cylindrical shell and φ the Airy stress potential as defined in expressions 1.15 to 1.17.

D = Eh3/12(1−ν) is the bending stiffness of the shell, where E is the Young’s modulus of the
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1.3. Classic stability analysis of cylindrical shells

material, h the thickness of the cylindrical shell and ν the Poisson’s ratio of the material.

w(x = 0) = w(x = L) = 0 (1.42)

v(x = 0) = v(x = L) = 0 (1.43)

∂2w(x)

∂x2 x=0
= ∂2w(x)

∂x2 x=L
= 0 (1.44)

∂2φ

∂y2
x=0

= ∂2φ

∂y2
x=L

= 0 (1.45)

Once the equations describing the system have been introduced together with the required

boundary conditions, it is possible to proceed with their solution. The next step in the solution

is to insert an ansatz for w(x, y) and F (x, y) that satisfies the simply supported boundary

conditions described in equations 1.42 to 1.45. The following ansatz for w(x, y) and F (x, y)

satisfies them.

w(x, y) = wmn sin
(mπx

L

)
cos

(ny

R

)
(1.46)

φ(x, y) =φmn sin
(mπx

L

)
cos

(ny

R

)
(1.47)

Note that the expressions for the ansatz of equations 1.46 and 1.47 are fully periodic trigono-

metric functions with wmn and φmn constant. This ansatz does not allow for any completely

localized solution to occur.

Introducing equations 1.46 and 1.47 into the equilibrium equations 1.40 and 1.41 with the

variablesα andβ defined as follows with m and n being the wave number of the corresponding

eigen-mode in axial and azimuthal directions

α= mπ

L
(1.48)

β= n

R
(1.49)
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leading to an eigen-value problem of the form presented in equation 1.50

Nx si n(αx)si n(βy) = 0 (1.50)

where Nx is

Nx = Eh3

12(1−ν2)

(α2 +β2)2

α2 + Eh

R2

α2

(α2 +β2)2 (1.51)

and the critical value for Nx is the minimum

Nx cr = min

(
Eh3

12(1−ν2)

(α2 +β2)2

α2 + Eh

R2

α2

(α2 +β2)2

)
(1.52)

Differentiation of equation 1.52 with respect to (α2+β2)2

α2 leads to the result that Ncr is a mini-

mum for the following

(α2 +β2)2

α2 = 2
√

3(1−ν2)

hR
(1.53)

Introducing 1.53 in 1.52 and considering that the resultant Ncr can be converted into stress by

dividing it by the thickness of the cylindrical shell, the classical result for the buckling stress of

a cylindrical shell is obtained. It is shown in equation 1.54. This is the classical result used to

compute the linear stability threshold of an axially loaded cylindrical shell.

σcl =
1√

3(1−ν2)

Eh

R
(1.54)

The critical stress can be converted to an equivalent load by multiplying it by the cross-section

of the cylindrical shell 2πRh, leading to equation 1.55.

Pcl =
2π√

3(1−ν2)
Eh2 (1.55)

Equations 1.54 and 1.55 do not consider the length of the cylinder. This means that these

equations have a limited range of validity. Namely, in the case of very slender cylindrical shells,

buckling will occur in a similar way to the traditional column Euler buckling. Furthermore,

cylindrical shells that are too short will not be able to accommodate deformations with the

characteristic length predicted. Batdorf derived an expression to consider the influence of the

length of the cylinder, see equation 1.56 (Batdorf, 1947; Batdorf et al., 1947; Weller et al., 2002).
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Where Z is the Batdorf parameter.

Z = L2

Rh

√
1−ν2 (1.56)

The Batdorf parameter is a better metric to characterize the geometry of cylindrical shells due

to the fact that for identical R/t it has been shown that the predicted buckling load varies for

different lengths of the cylindrical shell (Wagner et al., 2019). However, in applications with

moderate length, R/t is still the most established parameter to characterize a shell. Due to

the moderate length (L/R < 10) of the shell used in the current research, R/t will be used to

characterize the different test articles.

1.3.2 Approximate solution

In the previous section, it was shown that to obtain an analytical closed solution of the shell

equations, even in the linear case, it is only possible for very specific cases of boundary condi-

tions: simply supported. Hence, in order to deal with non-linear shell approximations, cope

with more complex strain-displacement relationships or more complex boundary conditions,

approximate methods exist. These methods can approximate solutions of these more complex

shell problems without recurring to fully numerical schemes like the finite element method.

The most used methodology to construct the approximate solutions for these more complex

configurations is the Raleight-Ritz method. The finite element method has also been used.

However, it has been applied to the partial differential equations in the complete domain of

interest. This imposes restrictions on the domains that are acceptable. This finite element

methodology is the base for the case where the domain is discretized in smaller subdomains

as it will be discussed in chapter 3.

The Raleight-Ritz method is a variational method based on the minimization of the energy

potential associated with an elastic system (Rayleigh, 1877; Ritz, 1908). In the case of the the

cylindrical shells, the energy potential is associated with the strain energy. The Raleight-Ritz

method constructs an approximation of the relevant fields (displacements in the case of

cylindrical shells) in the form of a finite Fourier series as shown in expression 1.57 for a generic

1D case.

u(x) ≈
Nui∑
i=1

ui Xi (x)+X0 (1.57)

Where the Fourier modes Xi (x) must satisfy the homogeneous boundary conditions imposed

on the system, in this case a cylindrical shell, and X0 is used to satisfy the in-homogeneous

boundary conditions. The different approximations built for the displacements fields of the

shell (u, v and w) need to be constructed in the form of double Fourier series. Namely because
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of the two-dimensional nature of the domain used to describe a cylindrical shell.

u(x, y) ≈ L

R

Nu∑
m=1

Nu∑
n=1

umn cos
mπx

L
cos

ny

R
(1.58)

v(x, y) ≈ L

R

Nu∑
m=1

Nu∑
n=1

vmn sin
mπx

L
sin

ny

R
(1.59)

w(x, y) ≈
Nu∑

m=1

Nu∑
n=1

wmn sin
mπx

L
cos

ny

R
(1.60)

In 1.58, 1.59 and 1.60, m and n are the axial half-wave number and the circumferential wave

numbers respectively and the Fourier coefficients. umn , vmn and wmn are the unknowns that

need to be calculated in order to construct the approximated solution.

The procedure followed to construct the approximated solution by the Raleight-Ritz method

consists of finding the state of deformation that minimizes the total potential energy of

the system. This state of deformation corresponds to the stationary point of the system

(energy minimum). This is practically implemented by differentiating the potential energy

associated with the cylindrical shell with respect to the unknown Fourier coefficients of

the approximations 1.58, 1.59 and 1.60 simultaneously. This action can be mathematically

expressed as shown in equation 1.61, where δ represents the variation of the potential energy.

δΠ= ∂Π

∂umn
= ∂Π

∂vmn
= ∂Π

∂wmn
= 0 (1.61)

In the case of cylindrical shells, the potential Π under a compression force can be written as

Π=UB +UM +VP (1.62)

where UB is the strain energy due to the bending, UM represents the membrane strain energy

and VP the variation in potential due to the action of the compression force acting on the

cylindrical shell. These terms can be expressed as a function of strains and the acting forces

and moments as follows:

UB = 1

2

∫ 2πR

0

∫ L

0
(Mxκx +2Mx yκx y +Myκy )d xd y (1.63)

UM = 1

2

∫ 2πR

0

∫ L

0
(Nxεx +2Nx yεx y +Nyεy )d xd y (1.64)
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VP =−
∫ 2πR

0

∫ L

0
N0

∂u

∂x
d xd y (1.65)

Once these expressions of the potential are stated, the next steps are guided towards obtaining

a system of equations where we can introduce the different derivatives of the approximation

functions. In order to do this, it is required firstly to express the different moment and stress

resultants as a function of the strains through the constitutive laws. Secondly to introduce

the displacements trough the strain-displacement relationships. At this point, the derivatives

of the approximations 1.58, 1.59 and 1.60 can be included and a system to derive the Fourier

coefficients can be built using 1.61.

The Rayleigh-Ritz semi-analytical procedure has found some application in recent years as

an alternative to finite elements analysis (Castro et al. (2015) Castro and Donadon (2017)).

The motivations behind this were mainly two. Firstly, the semi-analytical Rayleigh-Ritz is

computationally faster, at comparable accuracy, than commercial finite element codes (Castro

et al. (2015)). Secondly, the search for alternative solvers to commercial finite element codes.

However, there are limitations to this procedure that in some problems will force the utilization

of those commercial codes. This is the case of complex geometries where the approximations

of the field variables can not be constructed via Fourier series.

1.4 Conclusions

In the current chapter different shell approximations have been shown. These different

approximations consists of different strain displacement relationships that represent the

kinematics of existing shell models. Among the presented models the DMV approximation

has been selected as a sufficiently accurate description. The main reasons are:

• The shells under study are sufficiently slender.

• The DMV strain-displacement approximation describes the non-linear behaviour of

shells in the case of small deformations.

• The range of deformations where the current research will focus, the pre-buckling

regime, are in the order of the shell thickness.

• Deformation beyond the onset of stability will not be studies.

Hence, the DMV model is the approximation that will be used for the theoretical work of

chapter 2 about the dynamical system approach applied to buckling of cylindrical shells.
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2 Dynamical systems approach applied
to cylindrical shell buckling

A dynamical system is a mathematical description of the evolution of a physical system

over time f (u,T ). The system is characterized by the state vector u for any given time. The

description and study of the behaviour of physical systems as a dynamical system is known as

the dynamical system approach.

The applications of the dynamical system approach has become a relevant tool to study

physical systems. In fact, it has seen very wide spread application as a methodology to explain

the underlying physics of different phenomena. The dynamical systems approach has been

used to study many different physical systems ranging from the relatively simple double

pendulum (Strogatz, 1994) to complex pattern formation systems described by non-linear

partial differential equations (Burke and Knobloch, 2007; Knobloch, 1986b,a) and even galaxy

dynamics (Yılmaz and Güdekli, 2021).

The dynamical systems approach connects to key research questions in the field of engineering

in the description of complex system governed by non-linear partial differential equations.

As an example, the dynamical systems approach has been applied to uncover the physical

phenomena underlying one of the most challenging research questions in the engineering

world: turbulence (Jiménez, 2018).

In the research on turbulence, via the application of the dynamical systems approach and its

ideas, a new conceptual description has arisen. The seemingly disordered patterns present

in turbulent flows can be explained as a trajectory connecting different invariant solutions

of the corresponding dynamical system (Reetz et al., 2019). In this conceptual description,

specific invariant solutions or equilibrium states exist for specific values of control parameters

and these states and the associated invariant manifolds and eigen-directions dictate how the

system evolves in time (Azimi and Schneider, 2020).
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Chapter 2. Dynamical systems approach applied to cylindrical shell buckling

2.1 From turbulence to cylindrical shell buckling

Cylindrical shells are structurally stable under axial compression up to a critical value of the

loading force, above which they abruptly collapse in a buckled state. The classical approach to

estimate the load at which this collapse occurs is based on the linear stability analysis of the

unbuckled loaded state. Considering the unbuckled state as an equilibrium solution of the

dynamical system, and the axial load as the control parameter, an estimate of the buckling

load is obtained as the critical value of the loading force above which infinitesimal radial

perturbations exponentially grow driving the (linearised) dynamics to the buckled state (see

figure 2.1a)

(a) Graphical description of the traditional ap-

proach to stability.

(b) Graphical description of the finite amplitude

perturbation approach to stability.

Figure 2.1 – Graphic description of the different approaches to understand stability discussed
in this research work

However, the theoretical prediction obtained via linear stability analysis has been shown to be

an overestimate of the actual buckling load measured in experiments (Seide, 1969), see figure

3. In the experiments performed by NASA (Seide, 1969), it was shown that the transition from

the unbuckled state to the buckled one occurs at loads that are smaller than the critical value

predicted by linear stability theory. Furthermore, the buckling loads of nominally identical

shells vary for each specimen. The discrepancy between the results from linear stability

analysis and the experimental measures lies in the sensitivity of the transition point (buckling

load) to the specific geometrical imperfections of each cylindrical shell (Koiter, 1945). Note

that geometric imperfections are not considered by the standard analytical linear stability

analysis.

Structural imperfections of the cylindrical shells, for which the value R/h is a proxy (the

thinner is the shell, the more challenging is to manufacture a geometrical perfect shell) are

then responsible for lowering the stability threshold above which the unbuckled state is

triggered. These observations are summarised in figure 2.2, where the bifurcation diagram

is shown. The black curve represents the end-to-end displacement of a perfect shell as a
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2.1. From turbulence to cylindrical shell buckling

function of the axial load. The unbuckled state of a perfect shell represented by the solid

black line is linearly stable for values of the axial load from zero to the buckling load FA , and

unstable beyond it, at which point the system transitions to the buckled state via a backward

bifurcation. The effect of the imperfections is to reduce the stability range of the base state,

shifting the linear stability threshold down towards lower values of load FA . The stochastic

nature of imperfections thus makes in principle necessary a full characterisation of each shell

and its imperfections to determine the buckling load. Making therefore the prediction of

buckling a challenging task.

Figure 2.2 – Conceptual depiction of basin of attraction of a perfect shell and its relationship
to the axial load versus displacement curve characteristic of a cylindrical shell.

Interestingly, a similar scenario can be observed in other physical systems, more specifically

in the transition to turbulence of many subcritical shear flows. Analogously to the critical

buckling load, the transition from the laminar to the turbulent regime is characterised in fluid

flows by a critical value of the Reynolds number (Re) 1. This critical value can be estimated by

means of linear stability analysis of the laminar state, represented by the steady solution of the

Navier-Stokes equations describing the flow physics. However, as for the buckling problem,

the predictions of the critical Reynolds number obtained from linear stability analysis are far

from capturing the actual laminar-turbulent transition process of many flow systems.

Considering, for example, the plane Poiseuille flow system in a channel geometry (the flow be-

tween two infinite parallel planes driven by a fixed pressure gradient), the numerical solution

of the Orr-Sommerfield problem, obtained from the linearisation of the Navier-Stokes equa-

tions, yields a critical value of the Reynolds number Recr = 5772 (Orszag, 1971), approximately

five times larger than the values at which transition to turbulence has been experimentally

observed (Davies et al., 1992). Even more remarkable is the case of the plane Couette flow

systems (fluid motion between two infinite parallel planes where one is stationary and the

other one has a constant motion) or the pipe flow system. For these cases, the laminar solution

is linearly stable for all Reynolds numbers.

In all the fluid examples mentioned above, transition to turbulence can be explained as the

result of a finite amplitude perturbation of the linearly stable laminar state. As shown in figure

1The ratio between inertial and viscous forces
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2.3a, when the laminar state of a pipe flow is perturbed with a finite amplitude disturbance,

injecting a perpendicular flow jet of amplitude A j et in a perfect pipe, it is possible to identify

at each value of the control parameter Re, a critical perturbation amplitude below which

instabilities decay (blue dots in figure 2.3a) and above which turbulence is sustained (red

dots in figure 2.3a). In other words, at a given value of the Reynolds number, both states,

the laminar one (linearly stable) and the turbulent one, can be observed depending on the

amplitude of the disturbance introduced in the system.

The surprising similarity between the results obtained from pipe flow experiments (figure

2.3a) and those obtained from shell buckling experiments (figure 2.3b) suggests a connection

between the linear stability threshold of an imperfect shell, due to imperfections, and the

critical perturbation amplitude necessary to trigger buckling in a perfect shell for a given

sub-critical value of the axial the load.

Considering the bifurcation diagram shown in figure 2.2, this translates into the identification

of the critical non-linear amplitude perturbation at each load FA < FA buckl i ng which allows

the transition from the unbuckled base state to the buckled one. Owing to the similarities

between laminar-turbulent transition in fluid mechanics and shell buckling, we believe that

a deeper insight onto the latter problem can be achieved by means of a dynamical system

approach, transferring theoretical and numerical tools already used for the non-linear analysis

of the Navier-Stokes equations to the elastic shell theory.

(a) Disturbance amplitudes that triggered the transi-
tion from laminar to turbulent flow from the exper-
iments performed by Darbyshire and Mullin (Dar-
byshire and Mullin, 1995) (Mullin, 2011)

(b) Data from compression test carried out by NASA
in the 60′s showing the buckling load of each of the
cylindrical shells tested Seide (1969). The R/t is a
proxy for imperfections.

Figure 2.3 – Analogy between turbulence transition in shear flows and cylindrical shell buck-
ling.Virot et al. (2017)

Given the aforementioned similarities between cylindrical shell buckling and some fluid

systems, it might be obvious to study them with the same tools, i.e. using the dynamical

systems approach. However, this has not been the case and the dynamical systems approach

has not been applied as a general framework in the field of solid mechanics or to cylindrical
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shell buckling in particular. Traditionally, buckling or collapse of cylindrical shells has been

studied instead as the attempt to predict the maximum load that a given cylindrical shell with

a certain imperfection shape and intensity can bear (Wullschleger, 2006; Hühne et al., 2008;

Deml and Wunderlich, 1997). In practice, this means that the most accepted approaches to

derive the buckling load of a cylindrical shell are two. A first one where a linear stability analysis

is performed in the ideal geometry neglecting the influence of imperfections. A second one

where an envisaged potentially critical imperfection is included on the ideal geometry and

either a real or an in silico compression experiment (Simulation) is performed to obtain the

maximum load the cylindrical shell can bear (Wagner et al., 2016; Kriegesmann et al., 2016;

Khakimova et al., 2014) including the mentioned imperfection.

2.2 Dynamical systems and cylinder shell buckling

The great advance in computational power over the past two decades, enabled the possibility

of describing many non-linear problems as high-dimensional dynamical systems and charac-

terising their fully non-linear solutions, theretofore not accessible. The field that benefited the

most of these developments is without any doubt represented by transitional turbulent flows

where dynamical system theory allowed to establish a connection between the emergence of

turbulence and chaos theory.

A fluid flow is normally described by a three-dimensional velocity field u whose evolution is

constrained to satisfy the Navier-Stokes equations and some given boundary conditions

u̇ = N S(u) + b.c. (2.1)

where N S(u) is the nonlinear Navier-Stokes operator. From a dynamical system point of view

such a system can be described in its state space rather than in the three-dimensional physical

space. Defining the state space as the space where each point represents a possible solution of

the governing equations plus boundary conditions, the temporal evolution of the state vector

u under the action of a time operator f t (u) can be seen as a trajectory among these solutions.

After an initial transient is passed the long term dynamics of the system is controlled by the

steady solutions u∗ for which the left-hand side of (2.1) vanishes or equivalently satisfies

σ f t (u∗)−u∗ = 0 (2.2)

up to a symmetry operation σ . These type of solutions, referred to as invariant solutions, can

be of different types, from simple fixed points for which the left-hand side of (2.1) vanishes

point-wise in time, to periodic orbits for which equation (2.2) is satisfied for a specific value of

t = T (with T period of the orbit) to more complex solutions.

Many of these solutions have been already found in several flow systems in the past 20

years yielding a much deeper understanding of the mechanistic underpinning of transitional

turbulent flows: from the Nagata solution in plane Couette flow (Nagata, 1990), to the spatially

35



Chapter 2. Dynamical systems approach applied to cylindrical shell buckling

localised solutions in plane Couette flow and pipe flow (Schneider and Eckhardt, 2006), and

several others (Kawahara et al., 2012) including solutions of non-Newtonian fluid systems

(Page et al., 2020).

Within the dynamical system framework the unbuckled state is represented in the state space

as a fixed point solution, and it is characterised by a basin of attraction. The boundary of the

basin of attraction separates initial conditions that decay to the base state from those that

buckle. Often referred as edge of chaos, the basin boundary is represented by a co-dimension

one manifold whose size varies with the prescribed axial load (see figure 2.4). On this manifold

many non-linear fixed points are embedded. These invariant states, called edge states, are

characterised by a single unstable direction and belong to the basin of attraction of the

unbuckled state.

With the aim of characterising the critical perturbation amplitude that drives the system to the

buckled state we then need to estimate the size of the basin of attraction for varying loading

force, and this can be done computing and characterising the invariant states on the basin

boundary, specifically the edge states, and studying how they change when changing the load.

(a) Conceptual depiction of basin of attraction of a

perfect shell

(b) Conceptual depiction of the basin of attraction

of an imperfect shell

Figure 2.4 – Basin of attraction conceptual description for the case of a perfect and an imperfect
shell.

2.2.1 Dynamical system description of cylindrical shell buckling

The description selected to describe the cylindrical shells uses the DMV approximation be-

cause it is accurate enough to represent the cylindrical shell for the reasons outlined in the

previous chapter. The DMV shell description captures the geometrical non-linear strain-

displacement relationship for the case of a cylindrical shell allowing for the fully non-linear

description of the different states. The equilibrium equations of the DMV approximation

are presented in equations 2.3 and 2.4. Equation 2.3 represents the in-plane force balance

that has been simplified to a single equation thanks to the application of Airy stress function.

Equation 2.4 represents the force balance in the out-of-plane directions. These equations

have as a reference a pre-buckling state of a uniformly expanded cylinder that has been pre-
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compressed with an axial force P0 and has a constant radial displacement w0 making the total

displacement wtot al = w +w0.

1

Eh
∆2φ= 1

R
w,xx − 1

2
[w, w] (2.3)

D∆2w + 1

R
φ,xx − [w,φ]+P0w,xx = 0 (2.4)

The bracket from equations 2.3 and 2.4 is defined as follows:

[A,B ] = A,xx B,y y + A,y y B,xx −2A,x y B,x y (2.5)

Using the Airy stress function φ to simplify to a single equation the in-plane force balance

yields the expression given in equation 2.3. Where E is the Young’s modulus and h is the

thickness of the shell. D is the bending stiffness of the cylindrical shell. It is equal to Eh3/12(1−
ν) where ν is the Poisson’s ration of the material.

∂2φ

∂x2 = Ny y ,
∂2φ

∂y2 = Nxx ,
∂2φ

∂x∂y
=−Nx y (2.6)

The system of equations based on the DMV non-linear shell description defined by equations

2.3 and 2.4 can be posed as a dynamical system of the form presented in equations 2.7 and 2.8

by including the dynamic viscous forces.

In the dynamical system describing the cylindrical shell, the second order in time term has

been neglected. The stability of fixed points is not modified by the second order inertial term

if the first order viscous damping is present. Hence, the inertial contribution can be neglected

and it can be assumed that the over-damped dynamics will be studied.

1

Et
∆2φ− 1

R
w,xx + 1

2
[w, w] = 0 (2.7)

D∆2w +P0w,xx + 1

R
φ,xx − [w,φ] =−δw,t (2.8)

The dynamical system described by equations 2.7 and 2.8 can also include a radial forcing

function P (x, y) as shown in equation 2.9.

D∆2w +P0w,xx + 1

R
φ,xx − [w,φ]+P (x, y) =−δw,t (2.9)
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Chapter 2. Dynamical systems approach applied to cylindrical shell buckling

This radially acting forcing function has not been included in the initial description of the

dynamical system because the system of interest is the cylindrical shell under uniform com-

pression. However, in order to perturb linearly stable fixed points and characterise their

associated basins of attraction, this radial forcing is required. Furthermore, using this radial

forcing, a very relevant equilibrium point of the system has been obtained. This especial

equilibrium point will be discussed in section 2.3.

The boundary conditions used for the solution of the dynamical system are defined by equa-

tions 2.7 and 2.9 are periodic boundary conditions in the azimuthal direction. In the lon-

gitudinal direction, the boundary conditions used are clamped at the shell structure ends.

Meaning in this case that the field and its first derivative in the normal direction are zero for

the deviation from the pre-compressed state (w).

2.2.2 Numerical implementation

The aim is to compute equilibria of equations 2.7 and 2.8 and characterize their stability. The

solutions scheme for the system makes use of an in-house developed code CYBUCK. CYBUCK

relies on a high-order finite differences solver following the algorithm proposed by (Fornberg,

1998). This software was developed for the work presented by Kreilos in (Kreilos and Schneider,

2017). In the current research, CYBUCK has been used as a tool to explore the state space and

understand the behaviour of cylindrical shells.

The studies carried out using CYBUCK are the search of fixed points in the system, parametric

continuation studies, time integration and stability. A continuation study consists of the

search of fixed points in the dynamical system for a varying parameter. In the case of the

dynamical system used to define the cylindrical shell, the control parameter used is the axial

pre-load P0. A continuation procedure means finding the equilibrium points of the system

for a changing control parameter. Time integration shows the evolution of the system in time.

Lastly, with the stability feature of CYBUCK, the spectrum of the different fixed points can be

characterized.

2.3 Fixed points and their role in cylindrical shell buckling

The determination of the critical amplitude perturbation which triggers buckling in a perfect

shell, requires to determine the size of the basin of attraction of the unbuckled state. This

can be done computing the invariant states of equations 2.7 and 2.8 that are embedded on

its basin boundary. These states will be first constructed numerically for a fixed load and

then parametrically continued in the axial force to characterise the variations of the critical

perturbation amplitude as a function of the axial compression load.
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Unstable equilibria of cylindrical shells

The initial localised solution consisting of a single dimple was built in the following manner.

Firstly, an axial compression load P0 was prescribed. In a second step, after applying the axial

compression, a localised radial pressure distribution P (x, y) was applied similar to a radial

probe. Then, while leaving constant the compression force, the value of the radial pressure

distribution was varied in a continuation procedure. The continuation procedure varies the

pressure distribution resultant and finds the corresponding equilibrium states of the system

for each value of the pressure.

(a) Non-dimensional poking curves used to construct the initial edge state associated

considering the geometrical properties of the 7.5oz can with a continuation procedure

of the integrated lateral pressure.

(b) Edge state of the 7.5oz can (c) Single unstable eigen

mode from the edge state of

the 7.5oz can

Figure 2.5 – Construction of the edge state for the 7.5oz can geometry. The pre-load considered
in this case is 70% of the critical buckling load.
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Chapter 2. Dynamical systems approach applied to cylindrical shell buckling

The continuation of the integrated pressure field of the radial pressure distribution grows up

to a maximum. After this maximum the radial displacement increases while the total force of

the pressure field decreases until in becomes 0 as shown in figure 2.5a. In this continuation

procedure, at the point where the radial load vanishes, the radial displacement field sustains an

inward displacement in the form of a localised dimple (See figure 2.5b). This is an equilibrium

point of the dynamical system under a uniform compression load P0 and no radial force. This

equilibrium point although it has been calculated using equation 2.9 it is also a fixed point

of the dynamical system defined by equations 2.7 and 2.7. The stability analysis of the single

dimple fixed point from figure 2.5b has a single unstable eigen-mode. This means that the

single dimple unstable fixed point is an edge state of the system.

An alternative technique to construct the single dimple unstable fixed point is edge tracking.

This method consists of creating a bisection between two states that are known to bound the

basin boundary. The state in between these two initial states is a state on the edge or basin

boundary (Kreilos and Eckhardt, 2012). This technique was demonstrated initially for the

dynamical system describing the cylindrical shells in (Kreilos and Schneider, 2017).

The technique to construct the single dimple edge state via probing is a numerical correlation

of the experimental work that will follow in upcoming sections. Probing is a technique

that can be implemented in the experiments while edge tracking has a more challenging

implementation in an experimental set up.
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2.3. Fixed points and their role in cylindrical shell buckling

(a) Graphical depiction of the basin of basin of attrac-

tion of a shell showing the basin boundary where a

large variety of un-stable fixed points exists

(b) 2 dimple solution

built by assembly of in-

dividual dimples

(c) 3 dimple solution

built by assembly of in-

dividual dimples

(d) 5 dimple solution

built by assembly of in-

dividual dimples

(e) 17 dimple solution

built by assembly of in-

dividual dimples

Figure 2.6 – Example of the complexity of unstable equilibria that may lay in the basin bound-
ary separating the un-buckled state from the buckled state. All these un-stable fixed points
have been calculated for identical compression force, 70% of the critical one.

Using as a minimal unit the localized dimple of the edge state, is possible to construct other

unstable fixed points that may lay in the basin boundary. The solutions shown in the 3D plots

of figure 2.6 have been obtained using this construction technique. These fixed points are

potential candidates to be unstable equilibria on the basin boundary, i.e. the edge.

The construction technique used to obtain the fixed points from figure 2.6 consists in creating

an initial conditions for a Newton search based on the original single dimple solution. The

core structure of the single dimple field is cut and placed in a field a number of times and

this artificial field is used as an initial condition for a Newton search. This process is shown

schematically for the case of the 2 dimple solution in figure 2.12.
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Chapter 2. Dynamical systems approach applied to cylindrical shell buckling

(a) Graphical description of states on the edge and associ-

ated eigen modes represented by the arrows

(b) Example of most unstable

eigen-mode of a 2 dimple so-

lution.

Figure 2.7 – Illustration of states on the edge or basin boundary and example one of the 3
unstable eigen-modes associated with a 2 dimple state. There is always one unstable eigen-
mode associated with each individual localized structure plus a series of all the possible
combinations.

The complex arrangements of dimples from figure 2.6 are unstable equilibrium solutions of

the shell equations. However, in order to confirm that these states are in the basin boundary,

there is a verification that needs to be performed.

The approach to discern whether the solutions from figure 2.6 are embedded in the basin

boundary or not consists of deriving the spectrum of the corresponding solution, find the

most unstable one and perturb the fixed point (u) in opposite direction of the basin boundary

as graphically depicted in figure 2.7a with the most unstable eigen-mode (u∗). The final step

in the verification about whether the solution is part of the basin boundary or not is to perform

a forward time integration of the perturbed solutions (u+εu∗ and u−εu∗). In this forward

time integration, the solution perturbed toward the unbuckled state (u−εu∗) should decay

while the one perturbed towards the buckled state (u+εu∗) should move toward the buckled

state, developing additional structures. In the first case the strain energy should tend to 0

while in the second it should grow as shown in figure 2.9a. A graphical depiction of the two

time integrations is shown in figure 2.8. The upper row corresponds to the dashed line of

figure 2.9a, the two dimple structures vanishes. The lower row corresponds with the solid line

of figure 2.9a. The two dimple structures grows and starts to develop additional structures.
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2.3. Fixed points and their role in cylindrical shell buckling

Figure 2.8 – Snapshots of the forward time integration of the perturbed field. The upper row
corresponds to the direction towards the basin of attraction of the un-buckled state. The lower
row corresponds to the forward time integration of the direction towards the buckled state.

Figure 2.9 – Evolution of the strain energy of the forward time integration of the perturbed
solutions. The solid one in the direction of the buckled state and the dashed one in the
direction of the unbuckled state.
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Snaking in cylindrical shells

Once the initial localised solution with a single dimple is obtained, it is possible to follow a

continuation procedure on the compression load parameter P0. The additional fixed points

found following this continuation procedure allow to explore the change of the state space

structures as a function of axial load supported by the DMV shell equations. Under decreasing

axial load, the continuation procedure unveils a series of localised solutions similar to an

arrangement of dimples where additional localised structures develop through different

bifurcations. The branch containing an odd number of localised features emerging from the

single dimple solution can be observed in figure 2.10 in blue. This branch of solutions was

initially calculated by Kreilos and published in Kreilos and Schneider (2017). The structure of

spikes that follows the growth of localised structures is a feature of dynamical systems called

snaking (Champneys, 1998; Hunt et al., 2000).

Figure 2.10 – Reproduction of the snaking curve calculated by Kreilos and Schneider (2017).
This branch is referred as the odd branch of the snaking due to the fact that there is an odd
number of dimples present in each invariant solution.

In the initial work by Kreilos and Schneider (2017), it was already discovered that the fixed

points of the dynamical system describing the cylindrical shell undergo snaking. Figure 2.10

reproduces the so-called odd branch of the snaking. Due to the symmetries in the system,

it was hypothesised that the localised solutions behave similarly to the Swift-Hohenberg

equation as it is the case in many other physical systems (Burke and Knobloch, 2007). If

this is the case the cylindrical shell dynamical system should have a state space similar to

the schematic of figure 2.11. Following this hypothesis about the similarity of behavior of

cylindrical shells and Swift-Hohenberg, the next feature to be searched for is the second

branch of the snaking. Meaning that a search for an additional branch with similar localised
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2.3. Fixed points and their role in cylindrical shell buckling

structures but with an even number of features, i.e. dimples.

The starting point for this search of the even branch of the snaking is the original edge state

found with a single dimple. In order to build the simplest solution with an even number of

features, two of the single dimples can be put together and used as an initial condition for a

Newton search. Practically, this means to take the field with a single dimple that is known to

be an invariant solution of the system, include two dimples in a new field and use this initial

field as initial condition for CYBUCK to find a new fixed point.

Figure 2.11 – Sketch depicting the typical state space diagram of the Swift-Hohenberg equation
with quadratic and cubic non-linearity. Note that the odd and even branches emerge in a
secondary bifurcation from the fully periodic solution.

This process required a number of iterations to find the correct spacing between dimples

that would first lead to an invariant solution of the system and second to a solution that

would undergo snaking. In figure 2.12 this process is illustrated showing the initial developed

single dimple fix point, the patterned dimple structure from the single dimple fix point and

the final converged 2 dimple solution. This 2 dimple solution was calculated for the same

load parameter and then continued in axial load parameters toward the primary bifurcation

at higher load. The continuation also followed towards a lower load level. In this second

continuation the 2 dimple solution underwent homoclinic snaking as seen in the odd branch

of the snaking.
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Chapter 2. Dynamical systems approach applied to cylindrical shell buckling

(a) 2D representation of the

single dimple solution

(b) 3D representation of the

single dimple solution

(c) Initial condition of the 2 dimple solution consisting of

2 single dimples tilled together

(d) 2D representation of the

converged 2 dimple solution

(e) 3D representation of the

converged 2 dimple solution

Figure 2.12 – Schematic representation of the construction of the 2 dimple unstable equilib-
rium.

Under the continuation of the axial force towards lower values, the localised solution under-

goes a series of bifurcations. The system underwent a series of saddle node and pitchfork

bifurcations leading to the creation of additional structures. The role of these specific bifurca-

tions will be explained later. The branch with an even number of features emerging from the

double dimple solution can be observed in figure 2.13. The fact that the second branch with

even number of localised structures is also present in the system confirms that the system

behaves similarly to a traditional physics model. The Swift-Hohenberg equation with squared

cubic non-linearity (SH23). The characteristic state space of SH23 is shown in figure 2.11.
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Figure 2.13 – Additional branch containing the solutions with even number of dimples

The phase space diagrams presented in figures 2.10, 2.13 and 2.15 show the evolution of the

L2 norm of the radial displacement associated with each invariant solution as a function of

the normalized axial compression load.

Figure 2.15 – Combination of the branches with odd an even number of features showing a
snaking diagram. The number included in the plot refer to the 3D deformation of figure 2.14

It was mentioned earlier that bifurcations are the mechanism for the creation of additional

structures in the system. In the case of the cylindrical shell, the bifurcation that is responsible
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(a) Figure corresponding
to point 1

(b) Figure corresponding
to point 2

(c) Figure corresponding
to point 3

(d) Figure corresponding
to point 4

(e) Figure corresponding
to point 5

(f) Figure corresponding
to point 6

(g) Figure corresponding
to point 7

(h) Figure corresponding
to point 8

(i) Figure corresponding
to point 9

(j) Figure corresponding
to point 10

(k) Figure corresponding
to point 11

(l) Figure corresponding
to point 12

Figure 2.14 – Fixed points along the even and odd branches of the snaking. The numbers in
the sub-captions refer to the numbers used in the annotations of figure 2.15
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(a) Cross-section of the eigen-mode associated with the first saddle node bifurcation.

for the growth of additional structures on the sides of the existing dimples are saddle node

bifurcations. This kind of bifurcations can be identified evaluating the spectrum associated

with each fixed point. At the moment when an eigen-mode becomes unstable and the as-

sociated displacement field suggests the addition of new structures to the existing ones, the

system has undergone a bifurcation. In the case of the saddle node bifurcation the eigen-mode

is fully symmetric and adds new structures at the extremes of already existing ones in the

corresponding fixed point.

An additional bifurcation identified studying the spectrum of the snaking curves are pitchfork

bifurcations. These phenomena lead to the creation of new structures that are not symmetric

in this case. This guarantees the existence of an additional feature that is also present in the

Swift-Hohenberg model, rung states. These states are non-symmetric fixed points that are

in between the even and odd branches. The succession of these non-symmetric states form

connections between the odd and the even branch as shown in figure 2.11. These connections

between the even and odd branches of the snaking forms a structure of ladders that has also

been reported for different systems Schneider et al. (2010). In figure 2.18, the result of the

initial rung state emerging from the single dimple solution is shown. The non-symmetric field

is also displayed in the 3D plot of the same image.
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(b) Front view eigen-mode asso-
ciated with the first saddle node
bifurcation.

(c) Top view eigen-mode associ-
ated with the first saddle node bi-
furcation.

Figure 2.16 – Summary of the results used to identify the first saddle node bifurcation of
the even branch, the transition between 2 to 4 dimples. In the saddle node bifurcation the
symmetry is preserved. It is a mechanism that adds localized structures to the train of localized
dimples in the mid section of the cylindrical shell

(a) Partial rung state.
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(a) Front view eigen-mode associated with the first saddle node bifurcation.

(b) Cross-section of the displacement field associated with the rung state

51



Chapter 2. Dynamical systems approach applied to cylindrical shell buckling

(b) Front view eigen-mode asso-
ciated with the first saddle node
bifurcation.

(c) Top view eigen-mode associ-
ated with the first saddle node bi-
furcation.

Figure 2.17 – This is a pitchfork bifurcation. In this bifurcation the symmetry is not preserved.
It is a mechanism to add localized structures to the train of localized dimples in the mid
section of the cylindrical shell only on one side. This is the sign that rung states are present in
this system

(c) Front view eigen-mode associated with the first

saddle node bifurcation.

(d) Top view eigen-mode associated with the first

saddle node bifurcation.

Figure 2.18 – This is the 3D representation of the initial rung state. The run state emerges from
a symmetry breaking bifurcation that allows the creating of additional structures only in one
front.

This last feature completes a picture that shares a lot of similarities with the Swift-Hohenberg

equation with quadratic and cubic non-linearity (SH23) Burke and Knobloch (2006). Cylindri-
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cal shell can only behave similarly to SH23 due to symmetry reasons in the field characterising

the systems. In cylindrical shells, radial displacement is not the same weather it happens

inwards or outwards. Hence the similarity with the Swift-Hohenberg equation with cubic and

quintic non-linearity (SH35). This last version of the Swift-Hohenberg equation posses addi-

tional features that have not been found in the case of the cylindrical shell. Namely, the two

additional branches of localized solutions that should emerge from the primary bifurcation

for the SH35 Houghton and Knobloch (2011).

(e) The upper graph of the plot represents the mid section of the last invariant

solution obtained via continuation on the load parameter towards higher axial

load. The lower one is a Fourier transform of the upper graph showing the

frequency content of the solution along the azimuthal direction.

(f) 3D view of the nearly periodic invariant

solution

Figure 2.19 – Summary of the nearly periodic solution found during the continuation in load
towards higher value of axial load.

The continuation procedure used to obtain the snaking curves for values of decreasing axial

load was also followed in the direction of increasing load. In this direction, the aim was to find
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an additional feature present in physical systems that behave similarly to the Swift-Hohenberg

model, the full periodic branch that should emerge close to the primary bifurcation.

The radial displacement field of the fixed point of figure 2.19f is very similar in terms of

morphology to the fully periodic eigen-modes reported in the literature (Koiter, 1945). The

secondary bifurcation emerging from the fully periodic solution was not found. This is a devia-

tion form the picture of the SH23. The secondary bifurcation where the two snaking branches

emerges must exist. However, the numerical scheme used during the current research had

difficulties resolving the region where the bifurcation should occur.

(a) State space representation of the final part of the continuation of the odd and even branch of snaking

towards lower axial load

(b) Evaluation of frequency content of the last

invariant solution of the odd branch

(c) Evaluation of frequency content of the last

invariant solution of the even branch

Figure 2.20 – Summary of the results of the continuation towards lower loads approaching to a
nearly periodic state.

The snaking branches in the original SH23 system reconnect to the periodic state. However,

in the case of the cylindrical shell this does not occur. The continuation towards lower load

develops a set of dimples that cover the complete cylinder
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This different behaviour is possibly linked to the fact that the selected parameter of the

geometry does not allow for the domain to accommodate the required dimples.

2.4 Conclusions

In this chapter, a dynamical system description of a cylindrical shell based on the DMV

approximation has been introduced. The concepts from turbulence research have been

applied to obtain fixed points of the this dynamical system and study the stability of the

different fixed points obtained during the current research. The buckling of cylindrical shells

has been studied as a finite amplitude perturbation characterising partially the basin of

attraction of the system. The concept of basin of attraction has been introduced. An approach

to create fixed points based in probing has been demonstrated. This probing technique is

the numerical analogy of the probing probing technique that will be used experimentally to

explore the extension of the basin of attraction in chapter 5.

The basin of attraction shrinks as the compression load increases, until vanishing at the critical

buckling load. This last point is the link between dynamical systems theory and experiments.

Hence, the basin of attraction and its potential as a predictive tool of buckling loads will be

explored in chapters 5 and 6.

On the numerical side, a new set of features of the dynamical system describing cylindrical

shells have been found during the current research. These new dynamical system features

describing cylindrical shells resemble features in the Swift-Hohenberg with quadratic and

cubic non-linearity. Namely, the even branch of the snaking, a rung state and an almost

periodic state close to the primary bifurcation parameter.
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3 Finite Elements applied to the predic-
tion of cylindrical shell buckling

The finite element method is the numerical scheme that lies at the foundation of many tools

used to solve partial differential equations. In fact it is the numerical method of choice of

the main commercial codes used in the field of solid mechanics in general and to study the

collapse of cylindrical shells in particular. The key advantages of the finite element method

are its flexibility to adapt to complex domains, cope with complex load cases and deal with

systems with over constrained boundary conditions (Liu, 2003; Bathe, 2014a).

The ability to cope with complex geometries is the most relevant advantage that sets apart finite

element based analyses from analytical methods or other numerical schemes like spectral

methods. Analytical solutions can only provide a closed form solution for a small group of

very simple geometries and boundary conditions. In fact these boundary conditions are often

idealized and can not be exactly replicated in reality. In the case of other numerical methods,

like spectral methods (Gottlieb and Orszag, 1977), regular simply connected domains are

required.

Tools based on the finite element method have seen a widespread utilization in industry

and are the main tool of the structural engineers to analyse the mechanical response of any

structure. In the case of the current research, the study of the collapse of cylindrical shells, the

main advantages of using finite elements are two:

• The possibility to adapt to any complex geometry in 3D space including geometrically

imperfect cylindrical shells

• The capability to capture realistic boundary conditions, loading imperfections and

complex loading schemes as in physical experiments

The first one is key for the study of realistic imperfect systems. The possibility to adapt to any

complex geometry allows the inclusion of complex geometrical imperfections and loading

schemes. The geometrical imperfections are deviations form the ideal geometry that make
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the system under study closer to reality. The complex loading scheme allows the inclusion of

load cases that combine different loads as it occurs in reality.

The second capability listed allows to study numerically the same system that can be tested

in an experimental set up. The control over the boundary conditions is very important to

capture accurately the physics of the different systems that can be studied with finite elements.

Namely the sensitivity that some systems like cylindrical shells present to any deviation from

the ideal conditions.

The basic pictorial and simplified idea of the finite element method is the following one.

A complex domain representing the system under study is discretized by smaller regular

patches. In these smaller patches is where the solid mechanics problem of interest is solved

locally constructing approximations of the displacement fields (Zienkiewicz, 2013). A more

formal description of finite element method is is the following one: The strong form of the

governing equations modelling a system can be expressed in an equivalent weak formulation

that together with a set of local approximation functions are used to build estimations of the

solutions of the problem in a discretized domain (Fish, 2013).

The finite element formulations described in this section are presented following the displacement-

based approach instead of the force-based approach. The difference between the two ap-

proaches is the fields that are approximated. In the displacement-based formulation the dis-

placements are approximated while in the force-based one the stress fields are approximated.

The displacement formulation is more convenient because the compatibility conditions re-

quired at element level in terms of displacements and rotations can be determined directly

from the displacement field (Bathe, 2014b). This formulation is the one used in commercial

finite elements codes like Abaqus or NASTRAN.

In section 3.1 the basic numerical scheme of the linear finite element method will be presented.

Section 3.2 illustrates the non-linear finite element schemes and their basic functionalities to

include geometrical non-linearity. The sections presenting the mathematical descriptions are

included to demonstrate technicalities of the different finite element formulations used in

the current research. The references used as resources in sections 3.1 and 3.2 are (Fish, 2013;

Crisfield, 1981; Liu et al., 2008; Bathe, 2014b). These references provide much deeper insight

in the topic of finite element analysis than what is presented here. In addition to the technical

description about how finite elements work, details will be provided about how to practically

carry out an accurate finite element analysis to predict the collapse of cylindrical shells.

3.1 Linear Finite Elements

In the linear finite element formulation, the key underlying assumption about displacement

and rotations is that they are assumed infinitesimally small. Hence, the effect of deformations

does not affect the stress state of the system under study (Crisfield, 1981). This linear behaviour

refers to the geometry. In the case of the material, the behaviour will be also considered as
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linearly elastic.

The first step required to implement the finite element method is the derivation of the weak for-

mulation of the corresponding problem under study. The weak formulation is more commonly

referred to principle of virtual work (W ) in solid mechanics (Fish, 2013)

δW = 0 (3.1)

The virtual work principle is to be applied to an arbitrary elastic body that represents a 3D

portion of a solid. In this arbitrary piece of solid, the work performed by a set of virtual

displacements δu times the forces applied need to be equal to the work of the internal stresses

times the internal strains. The internal stresses at the boundaries of the 3D element are given

by the Couchy stress tensor σi j

σi j


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (3.2)

The fact that σi j =σ j i makes 3.2 a symmetric matrix with only 6 independent components.

Consequently, it is possible to express the stress components in vector notation:

σT
i j = [σ11,σ22,σ33,σ12,σ23,σ31] (3.3)

The internal virtual strains have the same symmetries as the stress components and can also

be expressed in vector notation:

δεT
i j = [δε11,δε22,δε33,δε12,δε23,δε31] (3.4)

The virtual work principle applied to a portion of a 3D elastic body is then:

∫
V
δεT

i jσi j dV =
∫

V
δuT bdV −

∫
Aσ

δuT t d Aσ (3.5)

where b represents the body forces acting on the volume of the 3D element and t represents

the traction forces at the boundaries. In order to obtain the total virtual work of the body,

the integrals from equation 3.5 need to be extended to the complete body. In order to do

that, a summation covering the complete body is required. This summation extended to the
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complete body is

n∑
1

∫
V
δεT

i jσi j dV =
n∑
1

∫
V
δuT bdV −

n∑
1

∫
Aσ

δuT t d Aσ (3.6)

In 3.6, n represents the number of elements used to discretize the complete solid. The stress

term on the left hand side of 3.6 can be expressed as a function of the strain times a material

related matrix M. Under the assumption that the material behaves linearly and in an isotropic

manner, all the components of that matrix are constant leading to the linear stress-strain

relation

σi j = Mi j εi j (3.7)

Once the stress term in the left hand side has been expressed as a function of the strains,

n∑
1

∫
V
δεT

i j Eεi j dV =
n∑
1

∫
V
δuT bdV −

n∑
1

∫
Aσ

δuT t d Aσ (3.8)

the expression for the virtual work is only a function of deformations.

Equation 3.8 represents the virtual work performed by a virtual displacement in global coordi-

nates on a complete body. At this point it is important to remember that the aim is to obtain

the nodal displacements at the level of the element 3.8 and then assemble the contribution of

all the finite elements present in the body. Hence a relationship between global strains and

local displacements (uL ) following equation 3.9.Furthermore an expression to link the global

displacement (u ) with the local ones (uL) is also needed, this is done following equation 3.10.

These relationships are provided by the matrices B and N. B is the so-called strain matrix and

N is the shape functions matrix. The shape functions are polynomial expressions used to

approximate the displacements within each individual element (Liu, 2003).

εi j = BuL (3.9)

u = NuL (3.10)

n∑
1

∫
V
δuT

L BT EBuL dV =
n∑
1

∫
V
δuT

L N bdV −
n∑
1

∫
Aσ

δuT
L Nt d Aσ (3.11)
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Equation 3.11 can be simplified by taking out the common factor uT
L into equation 3.12

n∑
1

∫
V

BT EBuL dV =
n∑
1

∫
V

N bdV −
n∑
1

∫
Aσ

Nt d Aσ (3.12)

After the elimination of the virtual displacements, a system of linear equation is obtained in

the form of equation 3.13

KuL = p (3.13)

where K and p are defined according to 3.14 and 3.15

K =
n∑
1

∫
V

BT EBdV (3.14)

p =
n∑
1

∫
V

N bdV −
n∑
1

∫
Aσ

Nt d Aσ (3.15)

K in equation 3.14 is the global stiffness matrix of the problem and p in equation 3.15 is the

load vector.

3.2 Non-linear Finite Elements

The buckling event of a cylindrical shell and the large displacements and rotations associated

with it invalidate the assumptions underlying the linear finite element formulation which

requires infinitesimal displacements and rotations. The deformations and rotations are large

enough so the state of deformations influences the internal stress state of the cylindrical shell

(Crisfield, 1981). In addition to geometry-induced non-linearity, there are other sources of

non-linearities in solid mechanics as it was mentioned in section 3.1. These additional sources

for non-linear behaviour are not going to be explored in this section. If the reader would like

to get information about material-induced non-linearities, (Hutchinson J.W., 1970) offers a

good insight into this topic. Following the statement of section 3.1, the material behaviour will

be considered linear elastic also in this section.

The main source contributing to the non-linear behavior of the collapse of cylindrical shells

is largely attributed to geometric imperfections (Babcock, 1983). Geometric imperfections

are deviations form the ideal geometry of the cylindrical shells. In the current research,

the imperfections considered consist of radial deformations. The presence of geometric

imperfections leads to larger radial deformations than in the case of perfect cylindrical shells.

Hence, a method to consider the influence of this pre-buckling deformation is required in
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order to accurately predict when buckling occurs. The approach to capture this non-linear

behaviour in the non-linear finite element method formulations is the inclusion of the tangent

stiffness matrix (Crisfield, 2012).

The presence of the tangent stiffness matrix implies that the complete stiffness matrix in

the case of non-linear finite elements has two components. A tangent stiffness matrix and

a linear stiffness matrix. The tangent stiffness matrix captures the effect on the deformed

geometry of the loaded cylindrical shells. Hence, it is a function of the state of deformation

and encodes information about the loading. The linear stiffness matrix describes the rigidity

of the cylindrical shell in an unloaded state. This means that the constant stiffness matrix

of the linear finite element formulation (K ) is the addition two stiffness matrices, a first one

constant (Kl ) and a second one that depends on the loading (Knl ).

[Kl +Knl ]u = p (3.16)

Following a similar approach to the previous section with linear finite elements, a derivation

of the non-linear version of the method is shown. The derivation presented will be a brief

introduction of how the methodology works and how the key features of the non-linear

behaviour of a geometrically non-linear problem are included in the non-linear finite element

formulation. In order to gain a better understanding about the details of this formulation,

(Crisfield, 1981) provides a complete overview.

There are different formulations that are used for the derivation of the non-linear finite

element algorithm. The commercial finite element code Abaqus uses the updated Lagrangian

formulation (Dassault Systèmes Simulia Corp, 2011). Other formulations that are commonly

used are the total Lagrangian and corrotational formulations (Crisfield, 1981).

The main differences between these formulations is the reference state that is used along

the iterative process to reach the final configuration. In the case of the total Lagrangian

formulation it is the initial unloaded state, while in the case of the updated Lagrangian it is

the previous computed equilibrium state. In the case of the corrotational formulation, it is

a local coordinate system that moves with the element is used. In this coordinate system

the element can be considered to behave linearly. This last fact makes the corrotational

formulation suitable to deal with large displacements that do not imply large local strains or

curvatures (Crisfield, 1981).

Abaqus is the tool used for the finite element calculations of this work. Hence, the derivations

of the non-linear finite elements will be done following the updated Lagrangian formulation.

The solution strategy in non-linear finite element problems follows an incremental scheme.

This incremental scheme acts via the inclusion of a pre-factor acting on the loading that varies

from 0 to 1. This pre-factor acts as a "knob" where 0 corresponds to no load and 1 corresponds

to the complete loading being applied. Hence in order to apply a loading completely a number
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of intermediate problems or steps for increasing values of the pre-factor need to be solved.

The pre-factor acts as a control parameter to introduce the loading. In cylinder shell buckling

the pre-factor is applied to either the prescribed end to end displacement of the cylindrical

shell or the applied axial compression load.

In the updated Lagrangian formulation the state of the next step (t +1) can be expressed as a

function of the set of displacements to be solved at the current state (u) plus the contribution

of the previous completed step (ut ).

ut+1 = ut +u (3.17)

where the displacement u is the unknown part to be calculated to obtain the next step ut+1

using as a reference the already calculated one ut . The fact of using the previous state as a

reference state makes the construction of the strain displacement depend only on derivatives

of u. In the case of the updated Lagrangian formulation the non-linear strain metric used is

the Green strain tensor:

εt = 1

2

[(
∂ut

∂x

)
+

(
∂ut

∂x

)T

+
(
∂ut

∂x

)T (
∂ut

∂x

)]
(3.18)

The Green strain tensor defined in 3.18 can be split in two different parts, a linear and a

non-linear one:

ε= εLi near +εNon−l i near (3.19)

The stresses at each state (as well as the displacement field u) can also be expressed in the

same way:

σt+1 =σt +σ (3.20)

As in the linear formulation, in the non-linear one the virtual work principle is also applied.

The virtual work expression in the case of the updated Lagrangian formulation reads:

∫
i V
σδi εi dV +

∫
i V
σδiηi dV +

∫
i V

Siδi εi dV +
∫

i V
Siδiηi dV = δi Wext (3.21)

In this expression the term

∫
i V

Siδiηi dV (3.22)
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is neglected. This simplification is made because ηi << εi . ηi is the product of the partial

derivatives representing the non-linear part of the strain while εi represents a first order

derivatives in the linear part of the strain-displacement relationship. Additionally, the stress is

expressed as a function of the material properties times the strain.

σt =Cεt (3.23)

Thus the expression for the virtual work 3.21 can be rewritten as

∫
tV
σδtεNon−Li near t +

∫
tV

CεLi near tδtεLi near dV = δt Wext −
∫

tV
σδtεl i near dV (3.24)

at step t .

The virtual work as stated in equation 3.24 is referred to displacements in a global coordinate

system. These global displacements need to be expressed in the local nodal coordinates

applying the shape function matrix N in the same way it was done in the linear formulation.

u = NuL (3.25)

And similarly for the virtual displacements.

δu = NδuL (3.26)

After transforming the global displacements to the local coordinate system displacement via

the shape functions matrix N , a similar transformation needs to be applied to the strains. They

need to expressed as a function of the local displacement and that is done, as in the case of

the linear finite element formulation, via matrix B as shown in equation 3.27.

ε= BuL (3.27)

And similarly for the virtual strains.

δε= BδuL (3.28)

A key benefit of the updated Lagrangian formulation is that it does not include any reference

to the initial state of deformations. Hence, the variation of the linear and non-linear part of the

strain does not contain any term related to the initial state. This fact simplifies the variation of
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the linear part of the strain as shown in equation 3.29.

δtεLi near = 1

2

[(
∂δu

∂t u

)
+

(
∂δu

∂t u

)T
]

(3.29)

It has the same effect for the variation of the non-linear part of the strain as presented in 3.30.

δtεNon−l i near =
1

2

[(
∂δu

∂t x

)T (
∂u

∂t x

)
+

(
∂u

∂t x

)T (
∂δu

∂t x

)]
(3.30)

Considering expressions 3.29 and 3.30, a transformation following expressions 3.31 to 3.34

can be implemented to represent the displacement in the local coordinates frame.

[
∂ui

∂t x j

]
= Bl uL (3.31)

[
∂δui

∂t x j

]
= BlδuL (3.32)

[
∂ui

∂t x j

]
= Bnl uL (3.33)

[
∂δui

∂t x j

]
= BnlδuL (3.34)

This transformation enables us to write the expression for the virtual work as a function of

local deformations:

∫
tV

BT
nl [σi j ]Bnl dV +

∫
tV
δuT

L B T
l Ct BLuLdV =

∫
tV
δuT

L bdV +
∫

t Aσ

δuT
L N T tt d Aσ−

∫
tV

B T
L σi j dV

(3.35)

Equation 3.35 can then be expressed in compact form:

[Kl +Knl ]uL = pt − ft (3.36)

with

Kl =
∫

tV
B T C BdV (3.37)
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Knl =
∫

tV
B T

N Lσi j BN LdV (3.38)

pt =
∫

tV
N T bdV +δuT

L

∫
t Aσ

N T tt d Aσ (3.39)

ft =
∫

tV
B Tσi j dV (3.40)

Where Kl is the linear part of the tangent stiffness matrix. Knl is the non-linear contribution

to the tangent stiffness matrix. Note that the tangent stiffness matrix is the key difference

between the linear and non-linear formulations. It encodes the influence of the change of

geometry due to the loading. pt represents the external loading and ft corresponds to the

internal forces reacting to the external loading.

3.3 Predicting the buckling load of cylindrical shells with finite ele-

ment tools

State-of-the-art commercial codes like Abaqus are commonly used in industrial and research

applications to predict the maximum load cylindrical shells can carry before they collapse or

become unstable. A commercial code is a tool that can provide the estimation of these loads

and their associated displacement fields. However, there are many details of the analysis that

need to be considered to obtain physically representative and reliable results. The system to

derive the buckling load of a cylindrical shell consists of the shell to be studied constrained in

all degrees of freedom at both ends with the exception of the axial degree of freedom at one

of the ends. At the end where the axial degree of freedom is not constrained, a load is then

applied in the form of a force or a displacement until collapse occurs.

The first step to define when buckling occurs is the definition of an observable metric that

provides relevant information about the status of the system under study. A variable that is able

to show if a cylindrical shell has undergone buckling or not. In cylindrical shell buckling the

main observable metric used to identify buckling events is the reaction force that a cylindrical

shell exerts while being compressed. The axial reaction force increases as higher compression

load is applied and shows a sudden drop once the maximum axial compression load associated

with a buckling event is reached. An example with two curves of axial reaction force as a

function of axial displacement is presented in figure 3.1. These curves are referred to as end-

shortening curves. The end-shortening curves present the axial reaction force as a function of

the displacement of the top part of the cylindrical shell as it shrinks due to the applied force.

In figure 3.1 there are two curves, a dashed one and a dotted one, for two axially compressed

finite element models of realistic cylindrical shells including geometric imperfections. The
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dashed line shows a single drop in force while the doted line features a first mild drop in

reaction force followed by a final abrupt one. The curve with a single drop represents a single

global buckling event, since after that first drop the cylindrical shell is not able to bear any

higher load. In the case with the two drops, the mild one occurs first, i.e. for a lower axial

displacement. It corresponds to a local buckling event. While the second drop, the abrupt one,

corresponds to the global buckling event that dictates the maximum load bearing capacity of

the shell. A local buckling event is identified as a drop in the end-shortening curve after which

the cylindrical shell can withstand a higher load than the one that triggered the local buckling

event itself. Physically, local buckling can be identified by the appearance of a dimple that

remains localized until the global buckling event. Physically, global buckling can be identified

by the sudden appearance of an arrangement of dimples that cover the complete cylindrical

shell.

The utilization of the axial compression force to identify buckling events is very convenient

because it allows to directly compare results of simulations and data from experiments. This

is the case because the same metrics can be observed directly in numerical models as well

as experiments. Experimentally, the radial displacement is also used to understand if the

maximum compression load a cylindrical shell can bear has been overcome. Practically this

is done via the application of strain gauges or digital image correlation (DIC) (Weller et al.,

2002). In the case of the extensometers they are placed opposed to each other, one in the

interior face of the cylindrical shell and the other in the exterior. Once the readings from the

two diverge buckling has occurred. In the case of the DIC it is more obvious. The characteristic

large dimple pattern emerges after the critical load is overcome and it is reported by the DIC

system.

The shortcomings of using the radial displacement to identify buckling and correlate numeri-

cal models with experiments is that the imperfection present in the shell needs to be known.

This is required not only to get a good correlation but also to understand where to place the

extensometers to sample the results. Hence, the reaction force is the most suitable approach

to identify a buckling event in cylindrical shells.

The previous paragraph implicitly assumed that the buckling load is obtained from a geomet-

rically non-linear compression analysis. However, there is another approach to estimate the

buckling load of a cylindrical shell. This approach consists in performing linear stability anal-

ysis using as a reference the un-loaded state. The linear stability analysis approach without

including pre-buckling deformations provides an ideal load that cannot be reached in reality.

It is a useful measurement to compare the effect of imperfections with respect to the case of

the cylindrical shell with no imperfection. However, it lacks the capability to provide a reliable

buckling load estimate for practical purposes on its own. If combined with a geometrically

non-linear analysis to provide a loaded base state, then linear stability becomes an option to

predict buckling. This option will be discussed later in the chapter.
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Figure 3.1 – End shortening curves obtained from a geometrically non-linear solution using
the Newton solver of Abaqus. The curves show two different phenomenology of the buckling
process. The dashed line represents a case where only a global buckling event exists. The
dotted line represents the case where a local instability occurs before the global buckling
event.

3.3.1 Linear stability analysis around the unloaded state

Historically, the first approach to derive the maximum load a cylindrical shell can carry was to

perform linear stability analysis (Von Karman et al., 1940). The prediction of buckling loads

based on linear stability analysis provides an overestimation of the load carrying capacity of

real cylindrical shells (Koiter, 1945).

Linear stability analysis around the unloaded state of cylindrical shells with the finite element

method yields an eigen-value problem. This eigen-value problem aims at finding the point

where the stiffness matrix of the system becomes singular. The path to this eigen-value

problem is going to be presented in this section. A more detailed derivation can be found in

the different references used as support for the one presented herein (Liu, 2003; Bathe, 2014b).

F in equation 3.41 represents the vector of forces acting on a cylindrical shell for an equilibrium

state u?. K (λ) is the stiffness matrix associated with state u?(λ) that encodes information

about the loading state. λ loading parameter that is used to control the applied load.

F = K (λ)u? (3.41)

The condition for the cylindrical shell to become unstable is that the stiffness matrix K (λ)

becomes singular for a certain λ. The stiffness matrix can be approximated as a Taylor
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expansion in the form of

K (λ) = K0 +λ∂K (λ)

∂λ
(3.42)

where only linear terms are retained. ∂K (λ) /∂λ is the so called tangent stiffness matrix Kt .

Thus, the above expression can be rewritten as

K (λ) = K0 +λKt (3.43)

where K0 is the stiffness matrix of the base state. In this section, the base state is the unloaded

state K0 hence the components of K0 are the stiffness components associated with each degree

of freedom of each individual element.

Therefore, in order to find the value of λ where the stiffness matrix becomes singular the

eigen-value problem

det (K0 +λKt ) = 0 (3.44)

needs to be solved.

This is the standard eigen-value problem solved by commercial software packages like Abaqus

(Dassault Systèmes Simulia Corp, 2011).

The eigen-value problem is based on the assumption that a linear extrapolation of the loading

scheme of the problem is sufficiently accurate. This is the issue of using standard linear

stability analysis to predict buckling loads of real shells. It is a linear extrapolation of a non-

linear problem. Hence, this imposes a limit on how accurately the prediction can be if the

linearization occurs using as a reference state one that is far away from the point where the

system becomes unstable. However, if the reference state is close enough, within the range

of validity of the linear approximation, then linear stability analysis remains a valid tool to

predict when cylindrical shell becomes unstable.

3.3.2 Quasi-static non-linear analysis

In the derivation of the non-linear finite element algorithm it was mentioned that non-linear

systems are solved in an incremental manner. The approach followed to implement this

incremental solution strategy is realized by a scalar parameter that pre-multiplies the loading

in order to apply it progressively. This parameter is increased until the complete load is

implemented and at each increment of the process an equilibrium solution is obtained. In the

case of the commercial code Abaqus, this parameter is associated to a pseudo-time that acts
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as the parameter that varies the loading parameter from 0 at the beginning of the analysis to 1

at the end of it.

The numerical scheme to solve this kind of problems is the Newton-Rapshon method. This

method consists of the construction of a first order Taylor expansion around the known state i

and approximating the i +1 based on a linear approximation.

The implementation of this algorithm is the following. Given a certain state defined by ui .

If this state is a solution, an equilibrium point, this state must satisfy the condition that the

work performed by external forces (p) is identical to the work performed by internal forces (f)

leading to a residual r equal to 0

r = p− f = 0 (3.45)

The Taylor expansion for the residual for the next step can be written as shown in equation

3.46

r(ui+1) = r(ui )+
[
∂r(ui )

∂ui

]
ui (3.46)

with 3.45 in 3.46 we obtain
∂f

∂u
u = p− f (3.47)

where
∂f

∂u
= KT (3.48)

KT is referred as the tangent stiffness matrix at point i .The tangent stiffness matrix is the

Jacobian matrix (Brothers et al., 2014). The approximation for the step i +1 can be obtained as

shown in equation 3.49.

K i
T ui = p− f (3.49)

The output produced by equation 3.49 is an approximation. This approximation is based

on a set of values of nodal displacements that needs to be updated until a certain criteria

or tolerance is met to consider the solution accurate enough. The most common metric

to determine if the approximated solution is accurate enough is the residual r . Ideally, the

residual r should be 0 but in reality this is not possible and it is set to a low enough value

that can be considered 0. In case the residual r is not within the specified tolerance, the

Newton-Rapshon procedure undergoes successive iterations until the value of r is within the

specified tolerance.
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Loading strategy

An important aspect in the prediction of the buckling load of a cylindrical shell are the loading

conditions. Namely, if an analysis is performed under load control conditions, meaning

that a compression load is prescribed, or displacement control conditions, meaning that a

compression displacement is prescribed. Under any of these two loading conditions, the value

of the buckling load must remain the same because it is a feature of the system. Furthermore,

the initiation of buckling and the associated displacement field should remain similar for the

same reason. The displacement field at the onset of instability will be used to define a buckling

mode showing the initial state of deformations at the initiation of buckling. This is done by

subtracting from the displacement field of the first equilibrium state after the buckling load

the displacement field of the equilibrium state at the buckling load.

The possibility to define the buckling mode at the onset of instability is very important espe-

cially in chapter 6 because it will be used to understand how buckling initiates in cylindrical

shells. Hence, it will be verified whether there is any difference in this buckling mode depend-

ing on the loading strategy and the most suitable loading strategy to derive it.

Figure 3.2 – Geometrically non-linear solution using Abaqus inbuilt Newton solver for different
loading conditions. The system used for this analysis is a perfect cylindrical shell with an
R/h of 283 and a length of 107 millimeters. The boundary conditions used in the analysis
are clamped at both ends of cylindrical shell. The clamped boundary conditions suppress
all degrees of freedom in the unloaded end and all degrees of freedom with the exception of
the axial one on the loaded end. The axis of the cylindrical shell are aligned with the Z axis
of the analysis allowing axial displacement once the load is applied. In the load control case
the maximum load capability is 2899N and in the case of the displacement control case the
maximum load capability is 2873N . The relative difference is below 1%

In figure 3.2 the end shortening curves of the analysis of a cylindrical shell under compression

obtained with the Newton solver of Abaqus are shown. The two different curves correspond to

the cases of load controlled and displacement controlled loading. The curve with the sudden
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drop in the compression load is the displacement controlled one. The prediction obtained

with both loading strategies is in very good agreement. The deviation between both case is

only 26N , less than 1%.

Figures 3.3 and 3.4 show the radial displacement plots at onset of instability and the buckling

for load controlled conditions and displacement controlled conditions respectively. The radial

displacement plot of the buckling mode is obtained by subtracting to the radial displace-

ment fields of the first equilibrium state that is obtained immediately after the maximum

compression force reached the radial displacement field at the maximum compression force

the shell can bear. This buckling mode shows the location where buckling starts. It removes

the pre-buckling deformations and only shows the structures that appear after the onset of

instability.

The deformation patterns in figures 3.3a and 3.4a are very similar in terms of morphology

although in the case of the load controlled conditions the deformations are more evenly

distributed. Regarding the buckling modes from figures 3.3b and 3.4b, the morphology of

the eigen-mode varies between the two loading conditions. However, in both cases the

larger displacements tend to accumulate in the vicinity of the locations where the boundary

conditions are applied. The reason for more extended deformation in the load controlled case

is the fact that the first loading step after the onset of instability is deeper in the post buckling

regime. At the onset of stability the stiffness matrix becomes singular and large displacements

can be reached with no force increase. This only occurs in the case of load controlled loading

conditions and it is the reason to use displacement controlled boundary conditions. The

information about the transition towards a buckled state is more precise in the case of the

displacement controlled loading strategy.

(a) Maximum radial displacement plot

under load controlled conditions

(b) Buckling-mode at the onset of instability

under load controlled conditions

Figure 3.3 – Displacement fields associate with the load controlled loading newton simulation
of Abaqus. Each field, has been normalized with the maximum radial displacement of them.
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(a) Maximum radial displacement plot

under displacement controlled conditions

(b) Buckling-mode at the onset of instability

under displacement controlled conditions

Figure 3.4 – Displacement fields associate with the displacement controlled loading newton
simulation of Abaqus. The fields have been normalized with the maximum radial displacement
of each of them.

3.3.3 Quasi-static arc-length analysis

The arc-length method is a step forward from the standard Newton-Raphson method in the

sense that it allows to follow unstable solution paths that include snap-through and snap-back

phenomena like the ones sketched in figure 3.5. The arc-length method allows to deal with

situations where the stiffness matrix of the system under study becomes singular unlike the

Newton-Rapshon method. A classical case of this behaviour is the complete path followed

by the joint of two rods of arbitrary length with a force or displacement pushing at this joint.

Depending on the length of the rods, they will follow a behaviour similar to one of the sketches

from figure 3.5. This path cannot be computed with a traditional Newton-Raphson method.

In fact, if the solution of this problem is attempted using the Newton-Raphson method, the

trajectory followed by the solutions will be the one described by a dashed line in the sketches

of figure 3.5. The limit and turning points located where the dashed lines begin in figures 3.5a

and 3.5b, respectively, can not be passed by the Newton method. At those points, the stiffness

matrix associated with the problem becomes ill-conditioned in their vicinity and becomes

singular at exactly those points (Jorabchi and Suresh, 2011; Müller, 2007).
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(a) Snap through example. (b) Snap back example.

Figure 3.5 – Snap through and snap back examples to illustrate the cases where the arc-length
method is to be used. (Crisfield, 1981)

The implementation of the arc-length method algorithm is similar to the one of the Newton-

Rapshon method. If any given state is a solution of a system, it must satisfy the condition that

the external work is identical to the internal one. This condition leads to a residual r equal 0 as

in the case of the Newton-Rapshon method.

r = p− f = 0 (3.50)

In the case of the arc-length, the loading f is applied incrementally by a pre-factor λ that is 0

for no load and 1 once the complete loading has been applied. Hence, f in 3.50 is a function of

λ that is used to move towards the final loading condition in an incremental manner so the

expression in 3.50 can be written as shown in equation 3.51.

r = p−λf = 0 (3.51)

The residual r is a function of the state u and the pre-factor λ (r (u,λ)). This means that the

residual r will also be affected by the same issues of the tangent stiffness matrix mentioned

before. It will become rank deficient at the point where the system becomes unstable.

r(u,λ) = p−λf = 0 (3.52)

In order to avoid the stiffness matrix of the problem becoming rank deficient, Riks introduced

the idea of including the pre-factor λ as an additional variable. In the arc-length method, the

pre-factor λ controlling the loading becomes another variable to solve for (Crisfield, 1981; Riks,

1979). Due to the fact that there is an additional variable to solve for an additional equation, it

is required to keep the number of equations equal to the number of unknowns. This additional
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new equation is the arc-length that should provide the intersection with the trajectory of

solutions of the system. This arc-length can be expressed in incremental form as shown in

equation 3.53 (Crisfield, 1981).

a = (∆uT u+∆λ2fT f)−∆l 2 = 0 (3.53)

Where ∆l is the fix radius of the desired intersection. Considering the new equation 3.53

together with equation 3.50, the enhanced system of equations can be solved by applying the

Newton-Rapshon method. In section 3.3.2 it was shown that the Newton-Rapshon method is

implemented based on a Taylor series truncated up to the linear term. In this case the Taylor

series expansion is to be applied to equation 3.52 and 3.53. The truncated Taylor series for

these equations can be expressed as shown in equations 3.54 and 3.55, where the sub-index 0

refers to the previous known state and the sub-index 1 refers to following one.

r1 = r0 +
∂r

∂u
δu+ δr

∂λ
δλ= r0KTδu− fδλ (3.54)

a1 = a0 +2∆uTδu+2∆λδλpT p (3.55)

Equations 3.54 and 3.55 can be combined and solved for δλ and δu, after setting r1 and a1 to

0, as shown in equation 3.56.

(
δu

δλ

)
=−

[
KT −p

2∆uT 2∆λpT p

]−1 (
δr0

a0

)
(3.56)

In equation 3.56, the matrix in the square brackets remains non-singular even when KT is

singular. This is the key feature that makes the arc-length method a tool capable of following

equilibrium paths that are not possible with other approaches like the pure Newton-Rapshon

method. Riks algorithm is the one implemented in the commercial solver used in this research

Abaqus (Riks, 1979; Crisfield, 1981; Ramm, 1981).

Loading strategy

As in the previous section about the use of the Newton-Raphson solver of Abaqus, the impact

of the two different loading strategies in the buckling load prediction is studied. The aim is to

know if there is any difference in the predicted buckling load or behaviour that could impact

the application of the arc-length to study the collapse of cylindrical shells.
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Figure 3.6 – Geometrically non-linear solution using Abaqus arc-length solver for different
loading conditions. In the load control case the maximum load capability is 2881N and in the
case of the displacement control case the maximum load capability is 2864N , the deviation is
18N . The system used to carry out is the same used to derive the end shortening curves of
figure 3.2

Figure 3.6 contains the end shortening curves for the load and displacement controlled cases.

In this case both curves are exactly on top of each other. The end shortening curves from

figure 3.6 illustrate one of the shortcomings of the application of the arc-length algorithm

as a solution strategy, the identification of the point where buckling occurs. This is due to

the difficulty to pass the bifurcation point compared to the Newton-based algorithm of the

previous section.

A second limitation of the application of the arc-length algorithm to obtain the buckling load

is its lack of correlation with real experiments. Buckling of cylindrical shells is a sub-critical

backward bifurcation (Champneys et al., 2019) that can be followed numerically with the

arc-length algorithm but can not be accessed experimentally during the compression test

usually employed to derive the buckling load of a cylindrical shell experimentally. Hence, the

correlation between numerical studies and experiments is only possible up to the primary

bifurcation provided no local buckling event occurs before reaching this point.
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(a) Maximum radial displacement plot

under load controlled conditions

(b) Buckling-mode at the onset of instability

under load controlled conditions

Figure 3.7 – Displacement fields associate with the load controlled arc length simulation of
Abaqus. The fields have been normalized with the maximum radial displacement of each of
them.

(a) Maximum radial displacement plot

under displacement controlled conditions

(b) Buckling-mode at the onset of instability

under displacement controlled conditions

Figure 3.8 – Displacement fields associate with the displacement controlled arc length simula-
tion of Abaqus. The field have been normalized with the maximum radial displacement of
each of them.

The fields from figures 3.7 and 3.8 represent the maximum radial displacement and eigen-

mode. In this case they are identical because in the case of the arc-length algorithm the path

followed by the solution is identical independently of the loading configuration used. However,

due to the impossibility of following these paths in experiments, the arc-length will not be

used as a solution strategy in the different analysis of this research.

3.3.4 Dynamic explicit analysis

Shell buckling in reality is a dynamic event. In fact, the development of the characteristic

buckling pattern that occurs once the onset of instability is overcome has a characteristic time

in the order of milliseconds. Hence, the dynamic part beyond the onset of instability certainly

involves the effects of inertia that a quasi-static simulation does not include. A particular

case where dynamics might play an important role is the case where local buckling is present
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during the compression loading of a cylindrical shell. In this specific situation the effect of

inertia might be a contributor to trigger global buckling from this initial localized buckling

event due to the contribution of inertial forces.

The time evolution of a cylindrical shell is described by the equation of motion of the form of

equation 3.57.

M ü+C u̇+K u = p (3.57)

Where M represent the mass matrix, C the damping matrix, K the stiffness matrix and p the

external forces acting on the system.

The differential equation posed in 3.57 can be solved by direct time integration methods (Bathe,

2014b). These methods are based on satisfying the equilibrium of the system considering the

inertia and damping terms not at all time but at discrete time steps. This means that in order

to find a solution for certain elapsed time T, this time period (T) is divided in a certain number

of intervals N leading to a solution step ∆T equal to T /N . One approach used to solve this

kind of problem relies upon explicit methods, where the accelerations and velocities present

in the system can be calculated by central differences as shown in equations 3.58 and 3.59. In

this case the initial condition of the system in terms of velocity and acceleration needs to be

known:

ün = un+1 −2un +un−1

∆t 2 (3.58)

u̇n = un+1 −un−1

2∆t
(3.59)

Introducing equations 3.58 and 3.59 in equation 3.57 for step n the displacements for the

next time step can be obtained as presented in equation 3.60. This can be done under the

assumption that the values for step n and n −1 are available.

(
1

∆t 2 M + 1

2∆t
C

)
un+1 = p − f + 2

∆t 2 Mun −
(

1

∆t 2 M − 1

2∆t
C

)
un−1 (3.60)

The key to use this solution scheme is to have well defined initial conditions. In this case the

initial condition that needs to be known corresponds to the initial state n = 0 and the previous

one, n =−1 that are calculated following equation 3.61

un−1 = un −∆t u̇+ ∆t 2

2
ü (3.61)

These explicit solvers can cope with large systems at a very low effort per time increment due

to the simplicity of the algorithm.They are efficient in terms of time, the computational time
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per step is short. However, the central difference procedure is conditionally stable depending

on the size of the time increment. The most common limitation used to pick the largest stable

time increment is shown in equation 3.62, known as a Courant–Friedrichs–Lewy condition.

∆t ≤ ηLmi n

cd
(3.62)

Where Lmi n is the minimum distance between nodes in the mode, cd is the dilatational wave

speed of the material and η is a characteristic speed in the problem being solved. η is the

speed related to the problem under study. The dilatational wave speed is

cd =
√

E(1−ν)

ρ(1+ν)(1−2ν)
(3.63)

In equation 3.63 E is the Young’s modulus of the material and ν the Poisson ratio.

Loading strategy

In the case of a dynamic analysis, the loading strategy is more important than in the quasi-

static analysis described in the previous sections. This is due to the fact that in the case of the

dynamic analysis the characteristic time imposed by the presence of inertia and the presence

of inertia itself can affect the evolution and initiation of buckling. One example of this is the

triggering effect that local buckling might have to induce global buckling due to the inertia of

the section affected by the local buckling event. A second example is the loading rate. Due to

the presence of a damping term in the dynamics, a high loading rate will stiffen the response

of the cylindrical shell. Hence, explicit simulations expand the range of parameters to control

and study in order to perform an accurate prediction of the buckling load of a cylindrical shell.

Figure 3.9 shows the end-shortening curves for the two loading strategies. In these end-

shortening curves, the one associated with load controlled loading conditions does not reach

the same maximum load as the displacement controlled one. This discrepancy is caused by

the fact that the load increment for the solution did not match the exact same value. The

reason for this is the resolution in terms of loading required, the load increment would need

to become smaller so they can achieve the same value in both curves. The time increment is

too small in the load control with respect to the time scale of the buckling process.
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Figure 3.9 – Geometrically non-linear solution using Abaqus explicit solver for different loading
conditions.In the load control case the maximum load capability is 2512N and in the case of
the displacement control case the maximum load capability is 2608N

This is a limitations of the load controlled loading scheme in a dynamic simulation in particular

to match the results of the displacement controlled loading scheme. The loading increments

have to be very small to avoid missing the exact moment when buckling occurs. This detail

together with the large computation effort required makes dynamic simulations not a practical

tool to study a broad range of parameters. However, a dynamic simulation is the closest one to

reality when describing the complete buckling process.

Figures 3.10 and 3.11 show the radial displacements plots at the maximum axial load together

with the buckling mode. In this case, the differences are more significant than in the previous

sections. The reason for this deviation is the increment size relative to the characteristic time

of the event being modelled, collapse of a cylindrical shell.

(a) Maximum radial displacement plot

under load controlled conditions

(b) Buckling-mode at the onset of instability

under load controlled conditions

Figure 3.10 – Displacement fields associated with the load controlled explicit simulation of
Abaqus. The fields have been normalized with the maximum radial displacement of them.
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(a) Maximum radial displacement plot

under displacement controlled conditions

(b) Buckling-mode at the onset of instability

under displacement controlled conditions

Figure 3.11 – Displacement fields associated with the displacement controlled explicit simula-
tion of Abaqus. The fields have been normalized with the maximum radial displacement of
them.

In the case of the load control loading scheme, the time increment is in the order of magnitude

of the characteristic time that the buckling process needs to develop through the complete

cylindrical shell. Hence, the difference between the different fields is due to the fact that

the comparison is not being done for the equivalent conditions of compression force. The

load controlled case is much deeper into the post-buckling regime due to the highly dynamic

nature of the buckling event. As mentioned before, this issue would require a very short

time increment to accurately capture the buckling. The short time increment required would

make the computational time impractical. The simulation would require a large number of

increments to be computed even if the computational cost of each of those time increment is

low.

3.3.5 Finite element solution strategies conclusions

Table 3.1 summarizes the buckling loads obtained by the different loading conditions and

solution strategies. The differences between the quasi-static cases are below 1%. In the case

of the dynamic simulations, the deviation is higher between the different loading strategies,

approximately 3%. In the comparison between the quasi-static solutions and the dynamic ones

the deviation is higher, roughly 13%. The linear buckling prediction using linear extrapolation

from the unloaded base state matches very closely the values predicted by the non-linear

quasi-static solutions. This is expected due to the fact that the shell used in these analyses is

an ideal one and has a linear behaviour up to the buckling point.

Two main reasons motivate the choice of a given finite element method for predicting shell

buckling in this work: the sensitivity of the dynamic simulations to small variations of the

time step and the fact that the information of interest is the maximum buckling load prior

to the buckling event. The most suitable solutions strategy to determine the buckling load

of a cylindrical shell is then a quasi-static solver. Namely the Newton-Rapshon one under

displacement control loading conditions. The arc-length is considered not suitable due to the
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non-physical behaviour shown by this solutions when compared to experiments.

Solver Loading strategy Predicted Buckling
load (N)

Newton Controlled displacement 2873 N
Newton Controlled load 2899 N

Arc-length Controlled displacement 2864 N
Arc-length Controlled load 2881 N

Dynamic explicit Controlled displacement 2608 N
Dynamic explicit Controlled load 2512 N
Linear buckling — 2902 N

Table 3.1 – Buckling load predicted by the most representatives solvers

The different buckling load predictions have been done for an ideal geometry. In this case the

buckling load predicted by the linear stability analysis linearizing around the unloaded state

manages to predict the buckling load. If the linear stability analysis would be performed with

an imperfect shell, the prediction would be less accurate.

In the next section it will be shown how additional factors influence the behaviour of cylindrical

shells. Namely, flexible boundary conditions and pre-buckling deformations.

3.4 Additional factors influencing cylindrical shell buckling

In addition to the loading conditions and the different solvers that can be used to predict

buckling loads of cylindrical shells, there are other aspects to consider. Among those, the

primary ones are the boundary conditions of the model and the pre-buckling deformations.

Other features like material properties variability is not considered due to its minimal impact.

3.4.1 Flexible Boundary Conditions

The boundary conditions at the constrained ends of the cylindrical shells influence the overall

buckling behaviour of cylindrical shells under compression(Babcock, 1983; Weller et al., 2002).

Furthermore, to compare numerical analysis with real experiments, boundary conditions

should be thoroughly studied to understand how they might affect the final result.

In the current research this impact has been very clear due to the fact that most of the ex-

perimental work has been carried out with commercial beverage cans. Cans offered a very

repeatable and accessible population that allowed carrying out buckling tests on statistically

relevant populations. However, these cans have conical ends that showed evident deforma-

tions during the experimental work.
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Figure 3.12 – End shortening curves comparing the behaviour under compression load of
a complete can and an equivalent straight cylinder. The boundary conditions at the end of
the complete can is fully clamped with the 6 degrees of freedom of each node constrained at
the bottom and 5 degrees of freedom constrained at the top with only the degree of freedom
aligned with the axial direction free to allow the loading to take place. In the equivalent
cylinder the boundary conditions are the same. The rest of parameters are the same in both
cases.

Hence, the study of the influence of the boundary conditions was a key point that needed to

be addressed. Particularly, the influence of the boundary conditions in shells that are similar

to the ones used in the experimental work of the current research. The approach followed

was to compare the behaviour of a complete can and a simplified cylinder. The simplified

cylinder had the length of the straight section of the can. This is the approximation that has

been used to perform the numerical experiments. The end-shortening curves of the complete

can and the simplified equivalent cylinder can be seen in figure 3.12. The flexibility of the

boundary conditions of the complete can played a role in the overall stiffness, making the can

significantly softer than the equivalent cylinder. However, the presence of the conical ends in

the can did not affect significantly (< 1%) the load bearing capacity of the shell. Furthermore,

the collapse occurred in the straight section of the can represented in the equivalent cylindrical

shell. In the post-buckling regime, the load controlled analysis of the simplified cylinder just

gets an infinite displacement. In the case of the full can the conical ends act as a limit.

3.4.2 Pre-Buckling Deformations

The second relevant additional factor influencing the buckling load of cylindrical shells are

pre-buckling deformations. In this section it will be shown how the pre-buckling deformations

influence the actual buckling load of a cylindrical shell and the shift in the eigen-mode shape

associated with it. This study is only relevant for linear stability analysis. Namely, in this
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section it will shown how linear stability analysis around points closer to the buckling load

provide different estimations of it. This is due to the fact that as the loading approaches the

critical buckling load the linearization extrapolates to different points.

It is a well known fact that pre-buckling deformations affect the maximum load a cylindrical

shell can carry. Deviations of around 15% have been reported in the literature (Brush et al.,

1975). The reason for this deviation in buckling load is not including the non-linear contri-

bution to the pre-buckling deformation in the base state (Koiter, 2008; Thompson, 1969) in

analytical solutions or in the tangent stiffness matrix (Drew and Pellegrino, 2002) in the case

of finite elements.

A less known fact is the shift in shape of the eigen-mode that becomes unstable as the pre-load

is increased. The analysis used to demonstrate this mode shift is a linear stability analysis

performed using different reference states with increasing levels of pre-load. The reference

pre-loaded state will consist of a non-linear solution using the Newton solver of Abaqus. The

analysis is performed in a cylindrical shell corresponding to the straight section of a can. This

straight section corresponds with a cylindrical shell that is 107 mm long and has an R/h of

263 with a thickness of 0.105µm. The boundary conditions are clamped in the same way as

described in the previous sections. The outcome of this analysis can be seen in figures 3.13 to

3.22.

(a) Linear buckling eigen-mode dis-

placement field

(b) Section at half height of the

shell

(c) Section at the middle plane of

the shell

Figure 3.13 – Linear buckling mode and sections of a perfect cylinder with no pre-load effect
considered
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(a) Linear buckling eigen-mode

displacement field

(b) Section at half height of

the shell

(c) Section at the middle plane of

the shell

Figure 3.14 – Linear buckling mode and sections of a perfect cylinder with 1000N pre-load
effect considered

(a) Radial displacement displacement field (b) Section of the radial displace-

ment field amplified 50 time with

respect to reality

Figure 3.15 – Radial displacement corresponding to an axial compression load of 1000 N .
The maximum value is 8.06 10−3 mm and it is located near the nodes where the boundary
conditions are enforced at the top and the bottom of the shells.
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(a) Linear buckling eigen-mode dis-

placement field

(b) Section at half height of the

shell

(c) Section at the middle plane of

the shell

Figure 3.16 – Linear buckling mode and sections of a perfect cylinder with 1500N pre-load
effect considered

(a) Radial displacement displacement field (b) Section of the radial displace-

ment field amplified 50 time with

respect to reality

Figure 3.17 – Radial displacement corresponding to an axial compression load of 1500 N .
The maximum value is 1.27 10−2 mm and it is located near the nodes where the boundary
conditions are enforced at the top and the bottom of the shells.
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(a) Linear buckling eigen-mode dis-

placement field

(b) Section at half height of the

shell

(c) Section at the middle plane of

the shell

Figure 3.18 – Linear buckling mode and sections of a perfect cylinder with 2000N pre-load
effect considered

(a) Radial displacement displacement field (b) Section of the radial displace-

ment field amplified 50 time with

respect to reality

Figure 3.19 – Radial displacement corresponding to an axial compression load of 2000 N .
The maximum value is 1.82 10−2 mm and it is located near the nodes where the boundary
conditions are enforced at the top and the bottom of the shells.
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(a) Linear buckling eigen-mode dis-

placement field

(b) Section at half height of the

shell

(c) Section at the middle plane of

the shell

Figure 3.20 – Linear buckling mode and sections of a perfect cylinder with 2500N pre-load
effect considered

(a) Radial displacement displacement field (b) Section of the radial displace-

ment field amplified 50 time with

respect to reality

Figure 3.21 – Radial displacement corresponding to an axial compression load of 2500 N .
The maximum value is 2.57 10−2 mm and it is located near the nodes where the boundary
conditions are enforced at the top and the bottom of the shells.
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(a) Linear buckling eigen-mode dis-

placement field

(b) Section at half height of the

shell

(c) Section at the middle plane of

the shell

Figure 3.22 – Linear buckling mode and sections of a perfect cylinder with 2650N pre-load
effect considered

(a) Radial displacement displacement field (b) Section of the radial displace-

ment field amplified 50 time with

respect to reality

Figure 3.23 – Radial displacement corresponding to an axial compression load of 2650 N .
The maximum value is 2.89 10−2 mm and it is located at the nodes near where the boundary
conditions are enforced at the top and the bottom of the shells.

In figures 3.13 to 3.22 the evolution of the lower eigen-mode is shown. There is a shift in the

shape of the eigen-mode from a regular checkerboard pattern in the case with no pre-load
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(Figure 3.13 ) to a boundary dominated one as the pre-load increases (Figure 3.22).

3.5 Practical aspects of predicting buckling loads of cylindrical shells

The aim of this section is to summarize the practical aspects and lessons learnt during the cur-

rent research about how to reliably predict buckling loads of cylindrical shells. The main tool

used to predict buckling loads of cylindrical shells in the current research is the commercial

finite element code Abaqus. Hence, the practical details will be referred to this software.

The four options that Abaqus offers for predicting buckling loads of cylindrical shells are

the utilization of the Newton-Rapshon, the arc-length, the dynamic explicit solvers and the

combination of the Newton solver with a linear stability analysis sufficiently close to the

buckling load. Among these four options, the most suitable one for practical applications is

the one based on the Newton-Raphson solver. Namely because of the following points:

• Capability to capture the geometrical non-linearity.

• Capability to replicate entire experimental setups.

• Computationally cost-effective.

The arc-length is less suitable than the Newton solver because it can not replicate real testing

conditions. The arc-length solver follows the unstable paths of solutions admissible by the

system. These unstable paths are not accessible in real loading conditions during an axial

compression experiment.

The explicit solver is very fast per iteration. However, due to limit on the size of the time

increment dictated by the stability of the solver, a large number of time steps are required.

Hence, explicit solvers end up requiring a long time to complete the analysis, making them

computationally expensive in terms of time.

The option of using a linear stability analysis whit a previous Newton-based analysis is con-

voluted. It involves applying a sufficiently high pre-load that should be as close as possible

to the buckling load via a Newton solver analysis and performing a linear stability analysis

afterwards. It is more efficient to perform the complete analysis with a Newton solver until the

buckling load is reached.

Beyond the points listed as benefits, there are details on the Newton-Rapshon solver of Abaqus

that require careful selection in order to perform accurate predictions of the buckling load

of a cylindrical shell. These parameters are the stepping and the stabilisation scheme. The

stepping represents the subdivisions in fictitious time units that Abaqus uses to increase the

loading progressively during the analysis. The stabilization scheme is a numerical method

used by the solver to stabilize the solution at points where the stiffness matrix becomes close
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to singular. Practically it introduces a damping term that uses the nodal displacements from

the two previously converged steps and the fictitious time units associated between these two

steps to avoid having a singularity (Dassault Systèmes Simulia Corp, 2011).

The stepping needs to be kept small enough so no buckling event is missed. Hence a max-

imum step size is to be established by an exploratory study of this parameter. It should be

remembered that the step size is linked to the loading increment and that the solutions of the

system found are for each of these load increments. Hence if a step (loading increment) is

too large, it is possible that the exact loading where a local buckling occurs is not computed

and the local buckling event can go unnoticed. The minimum and maximum step sizes used

successfully during the current research to pass the buckling point and not miss any local

buckling event are 1x10−12 and 1x10−2 respectively.

The stabilization needs to be kept as small as possible so as not to affect the physics of the

system under study. In fact, a parametric study is required as in the case of the maximum

stepping allowed in order to identify the minimum value that allows the computation to

overcome discontinuities like snap-through or buckling events. As mentioned before, the

introduction of the damping term modifies the physics of the problem due to the fact that it

dissipates energy through an artificial mechanism. The approach to identify the maximum

level of stabilisation allowed is to increase the damping factor used while controlling the level

of energy dissipated. The energy dissipation should remain below 2% of the total energy

present in the system under analysis (Drew and Pellegrino, 2002). The specific stabilization

scheme used during this research has been the prescription of a damping factor. The value of

the damping factor used is 2x10−7. During the current research the application of this value

never led to a energy dissipation greater than 2%.

An additional relevant parameter to control in the computation of the buckling load of cylin-

drical shells is the element sized used, i.e. the density of the spatial discretization. This is a

critical parameter to be able to capture the different deformation patterns that emerge during

the buckling process of cylindrical shells. An approach to derive this is a parametric study with

decreasing element size until the variation of the buckling load obtained stops varying below a

certain threshold. However, there is a characteristic length that avoids the lengthy parametric

study, 0.5
p

Rh (Wullschleger, 2006). Where R represents the shell radius and h its thickness.

The key parameters to perform an accurate buckling load prediction of a cylindrical shell with

the Newton solver of Abaqus are therefore summarized in table 3.2.

3.6 Conclusions

In this chapter the finite element implementation used to analyze structural mechanics

problem have been introduced. The finite element code used in the current research, Abaqus,

has been evaluated to select the most suitable approach to deal with geometrically non-linear

problems, particularly collapse of cylindrical shell. Among the different options the the solvers
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Solver Parameter
Parameter Value

Maximum Damping Factor 2x10−7

Minimum Step Size 1x10−12

Maximum Step Size 1x10−2

Maximum element size 0.5
p

Rh

Table 3.2 – Summary of modelling related and solver parameters used during the current
research and recommended to perform accurate predictions of the buckling load of cylindrical
shells

available in Abaqus, the most suitable strategy has been to use the Newton solver under

displacement control conditions to determine the real buckling load of cylindrical shells. The

newton solver required lower computational time than the other options while maintaining

the accuracy. The displacement control loading strategy was selected because the buckling

point is more evident.

The utilization of the newton solver with s displacement controlled loading strategy will be

used to determine the buckling load of cylindrical shells required in the current research.
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4 Localised nature of cylindrical shell
buckling

Remark: This chapter is largely inspired by an article under preparation titled "Holes, a geo-

metric imperfection view in the context of cylindrical shell buckling"

It is well-known that geometric background imperfections, specifically deviations from the

ideal geometry of a cylinder in the radial direction, reduce the maximum axial compression

load a cylindrical shell can sustain before it buckles and collapses. In many relevant engi-

neered shell structures, spatially distributed geometric background imperfections coexist with

additional localized features that will further degrade the load-carrying capacity. We thus

combine an extensive experimental study with FEM simulations to investigate how localized

defects represented by a drilled hole interact with geometric background imperfections in

setting the load-carrying capacity of cylindrical shells. Introducing amplitudes for both inter-

acting imperfection types, we show that there is no cumulative degrading affect of both, but

that, depending on the relative amplitudes, either localized defects or the background control

the buckling load. These observations suggest a path towards quantitatively comparing the

strength of different imperfections and can inform the design of shell structures.

4.1 Introduction

Shells are one of the most weight-efficient structural concepts available in engineering. With-

out the exceptional strength-to-weight ratio of shell structures, spaceflight would likely remain

a mere dream. However, the beneficial mechanical characteristics of shells come with a major

engineering flaw; it is notoriously difficult to predict the maximum load-bearing capability of

shell structures under compression. Linear stability analysis provides a prediction for the criti-

cal load at which a shell buckles and collapses, but in reality, shells fail at much smaller loads.

This drastic reduction in the failure load compared to its linear prediction is a general feature

of shell structures and is especially pronounced for highly symmetric geometries, including

spheres and cylinders. The deviation between predicted and observed failure loads in com-

pressed shells is primarily caused by the presence of geometric imperfections (Von Karman
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and Tsien, 1941; Koiter, 1945). In addition, other types of imperfections such as non-perfect

loading conditions, residual stresses, pre-buckling deformations and material imperfections

contribute to the reduction in the load-carrying capacity relative to the theoretical prediction.

However, it was demonstrated by Babcock (Babcock, 1983) that the main reason for the ob-

served reduction of buckling loads in shells is indeed the presence of geometric imperfections,

as initially highlighted by Koiter (Koiter, 1945) and von Karman (Von Karman and Tsien, 1941).

In the 1960’s, following the advancement of rocketry, the need to reliably predict the buckling

load of axially loaded cylindrical shells became a priority for agencies like NASA. Extensive

experimental test campaigns, summarized in Fig. 4.1a, evidenced the stochastic nature of

buckling loads caused by stochastically varying realizations of imperfections that result in

nominally identical shells buckling at different loads. In view of the stochastic nature of

imperfections, predicting the buckling load of an individual shell was considered practically

impossible. Consequently, a conservative empirical lower bound for the distribution of buck-

ling loads was defined and codified as a design guideline; the NASA SP-8007 (Seide, 1969).

This guideline remains the basis of shell design until today. Perhaps motivated by the renewed

interest in space travel, there is a recent thrust by NASA, headed by Hilburger (Hilburger,

2018), to derive less conservative yet reliable criteria for estimating minimal buckling loads of

shells. The recent approach to improve design guidelines aims to capture the characteristic

imperfections induced by different manufacturing methodologies in finite elements models,

numerically compute buckling loads for these characteristic imperfections, and extrapolate

the simulation results to new designs. In addition to these recent application-driven programs,

also novel fundamental research on shell buckling conducted at TU Delft, EPFL, Harvard,

Bristol, and others (Uriol et al., 2020; Yang and Pezzulla, 2020; Groh and Pirrera, 2019) indicates

that understanding the buckling of shells remains an important issue and a subject of great

interest in structural engineering.

The manufacturing process of shells creates a background of smooth deviations from the

ideal geometry stochastically distributed over the entire shell (Gardner et al., 2018; Lovejoy

et al., 2018). These geometric background imperfections including their spatial correlations

set the buckling load of the individual shell. However, shell structures may also have, or in

some cases require, additional localized imperfections in the form of dimples or holes. The

interactions of stochastic background imperfections with additional localized ones are not

well-understood, and only the interaction between multiple deterministic defects has been

very recently studied for spheres(Yang and Pezzulla, 2020; Arbelo et al., 2014a,b).

There is evidence that local imperfections can act as nucleation points that localize the initia-

tion of buckling (Esslinger, 1970; Abramian et al., 2020). Even in shells without intentionally

engineered dimples or holes, buckling is typically initiated at a single location, as directly

shown by high-speed images obtained by Esslinger (Esslinger, 1970). Based on transferring the

Southwell method (Southwell, 1932) to shells, Craig et al. (Craig and Duggan, 1973) suggested

that the locations where buckling is initiated are characterized by minimal stiffness with

respect to lateral deformations and maximal deviations from the ideal cylindrical geometry.
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The local response to laterally-induced deformations has recently also led to a description of

stability properties of axially loaded cylinders by so-called stability landscapes (Virot et al.,

2017). These have allowed predicting the spontaneous buckling loads even for individual

defected shells (Abramian et al., 2020). Similar approaches have been successfully applied

to spherical shells without defects (Hutchinson and Thompson, 2018). Additional evidence

that local properties of the shell contribute to controlling the buckling load of compressed

cylinders is provided by the identification of dynamically unstable dimple-like equilibrium

solutions of the Donell-Mushtari-Vlasov shell equations (Kreilos and Schneider, 2017), whose

existence was confirmed by finite element computations (Groh and Pirrera, 2019). These

localized equilibria define critical perturbations to induce buckling for subcritically loaded

shells.

Observations that global background imperfections strongly affect buckling loads while the

buckling process is initiated locally suggest that both localized and distributed background

imperfections together control when a compressed cylinder buckles. Previous studies have,

however, focused only on either engineered localized or randomly distributed background

imperfections. Here, we study the interactions of coexisting localized and distributed back-

ground imperfections. In a combined experimental and numerical study, we investigate the

impact of introducing a round hole in an imperfect cylindrical shell with background imper-

fections. On the experimental side, we extend surveys by Toda (Toda, 1974, 1983) and Starnes

(Starnes, 1972) from the 70′s and 80′s, who investigated the effect of introducing a hole of

increasing size in a small number of very high-quality Mylar shells. For two out of the three

studied specimens, the data replicated in Fig. 4.1b clearly suggests that the hole significantly

affects the buckling load only if its radius a exceeds a characteristic length scale given by the

geometric mean of the cylinder radius and the shell thickness a &
p

Rt . The remaining dataset

shows no clear threshold in hole size.

Here, we experimentally study the buckling of an extended ensemble of aluminum shells,

consisting of 470 different specimens with varying realizations of background imperfections.

The large set of cylindrical shells allows us to test whether there is indeed a universal critical

hole size beyond which the hole affects the buckling load, or whether the size at which a hole

starts to affect the buckling load depends on the specifics of the background imperfections.

The experiments show no clear significance of the characteristic
p

Rt scale. Presumably,

due to large variations in the background imperfections of commercial aluminum shells, the

experimental data thus remains inconclusive. To disentangle the combined effects of hole

size and background imperfections, we thus introduce an amplitude for the background

imperfections. We measure buckling loads as a function of the hole size and the amplitude

of randomly-generated background imperfections in a numerical study. Based on 550 buck-

ling calculations, we demonstrate that the introduced background imperfection amplitude

modifies the statistics of buckling loads. To isolate the deterministic aspects of the interaction

between the hole size and the background imperfections, we choose a fixed realization of

background imperfections, only varying their amplitude. For a fixed background imperfection

amplitude, the buckling load shows a transition as a function of hole size. As in the data by
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Toda and Starnes (Toda, 1974, 1983; Starnes, 1972), the hole only controls the buckling load

if it exceeds a critical size. However, this critical size is not universal but depends on the

amplitude of background imperfections. Consequently, the ratio of the hole size and the char-

acteristic amplitude of background imperfections determines whether the background or the

localized imperfection controls the buckling load. Only for specific background imperfection

amplitudes, the critical hole size is given by
p

Rt .

(a)

(b)

Figure 4.1 – a) Experimental data of buckling loads of aerospace shells tested for the creation
of the N AS A SP − 8007 design guideline (Seide, 1969) in the late 60′s. The knock-down
factor γ= Pcr i t ./Ptheor y measuring the ratio of the buckling load relative to its linear theory
prediction as a function of the radius-to-thickness ratio R/t is presented. The data shows
significant deviations from the linear theory (γ= 1) and stochastic variations that led to the
empirical design rule (dashed curve). b) Historical data about the effect of holes on the
buckling load of cylindrical shells. The knock-down factor γ is shown as a function of the
hole radius a normalized by the geometric mean of the shell radius and thickness, α= a/

p
Rt

Lekkerkerker (1965). Only three shells manufactured out of Mylar that allowed buckling
without undergoing damage were used in these experiments and a new, bigger hole was
subsequently implemented after each test. Two datasets suggest a possible transition at α≈ 1.
Data from (Toda, 1974, 1983; Starnes, 1972).
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4.2 Experimental study

(a) (b)

(c)

Figure 4.2 – a) The experimental setup consisting of a biaxial testing machine described in
detail elsewhere (Virot et al., 2017; Abramian et al., 2020). b) Typical end-shortening curves
obtained for shells with different hole sizes under axial loading. Two types of behavior are
observed. The first is a single sharp drop in the force indicating a single catastrophic global
buckling event beyond which the shell cannot carry the pre-buckling load. Alternatively,
there can be multiple drops indicating initial local buckling events followed by a subsequent
global buckling event. After the local buckling event, the shell can carry a load higher than
the local buckling threshold. Whether a specific shell shows local buckling depends on the
individual specimen with its distinct imperfections. We, however, observe that shells with
holes of a smaller size tend to only show global buckling, while larger holes tend to promote
local buckling events. c) Characteristic deformation patterns observed in the post-buckling
regime of the test specimens for different hole radii, ranging from 0.4mm (top left), 0.8mm
(top left), and 2.1mm (bottom left) to 3.4mm (bottom right). We typically observe a shorter
pattern wavelength for the specimen with smaller holes.
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Table 4.1 – Parameters of the 470 shells tested within the experimental campaign. For the
given geometry, the empirical NASA SP 8007 design rules suggests a knock-down factor (KDF)
of 0.44.

Hole radius α Sample size Average buckling Standard Average

load (N ) deviation (N ) KDF

a = 0 mm 0 80 986.9 219.9 0.34

a = 0.4 mm 0.46 80 953.2 145.3 0.32

a = 0.5 mm 0.48 80 923.6 198.6 0.31

a = 0.6 mm 0.69 80 955.7 186.3 0.32

a = 0.8 mm 0.92 80 973.2 162.9 0.33

a = 1.2 mm 1.38 30 931.6 154.3 0.32

a = 1.6 mm 1.85 30 914.4 137.4 0.31

a = 2.1 mm 2.42 30 864.2 68.4 0.29

a = 3.0 mm 3.46 30 761.8 44.7 0.26

a = 3.4 mm 3.92 30 754.9 78.1 0.26

4.2.1 Experimental setup

In the current experimental campaign, we study the buckling load of aluminum soda cans.

Specifically, we consider 7.5oz coke cans available in the American market. These shells,

with a thickness of t = 105µm and a radius R = 28.6mm have been studied previously (Virot

et al., 2017; Abramian et al., 2020). Holes of a given radius were manually drilled at the mid-

plane of the straight cylindrical section of length L = 107mm. Additional radial deformations

were minimized by using high drill speeds and a minimal applied force. Following the initial

proposal by Lekkerkerker (Lekkerkerker, 1965), we normalize the hole radius by the geometric

mean of the cylinder radius and the shell thickness. This yields the non-dimensional hole

size α= a/
p

Rt , where a is the radius of the hole, R is the radius of the shell, and t is the shell

thickness. The same re-scaled hole radius α has been considered in previous studies on the

influence of holes on the buckling behavior of shells (Starnes, 1972, 1970; Toda, 1983; Van Dyke,

1965). The experimental setup consists of a custom-designed compression testing machine

manufactured by ADMET. The machine can apply a compression load of up to 2200 N with

a displacement and force resolution of 20µm and 0.1 N respectively. We perform standard

displacement-controlled tests. The axial vertical stage reduces the end-to-end distance until

the maximum compression force is reached and the shell buckles. Compression loads and end-

shortenings are recorded continuously. Thereby end-shortening curves like those presented

in figure 4.2b are measured for each of the 470 individual shells that have been tested.

4.2.2 Experimental test results

The end-shortening-curve for each shell indicates a maximum axial load beyond which the

shell fails. This catastrophic failure is referred to as global buckling (Weller et al., 2002; Haynie
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and Hilburger, 2010) and the maximum force defines the buckling load of the specific shell.

For some specimen, end-shortening-curves also present a local drop in force but subsequently,

higher loads can be applied without the shell failing; this behavior is called local buckling.

Examples of end-shortening curves for two shells showing either global buckling only, or a

local buckling event preceding global buckling are shown in figure 4.2b.

Buckling loads for all 470 tested shells are measured and shown in figure 4.3 as a function of

the hole size α. For each tested hole size, the distribution of buckling loads is characterized by

its mean and standard deviation. Table 4.1 summarizes the entire collected data.

The ensemble average of the buckling loads varies by approximately 30%, ranging from 986.9 N

for α = 0 to 754.9 N for α = 4. Significantly larger variations by more than 200% have been

observed for the standard deviation, which ranges from 219 N for α= 0 to 78.1 N for α= 4.

While the data in figure 4.3 and table 4.1 clearly indicates a strong influence of the hole size

on the statistical distribution of buckling loads, no clear threshold behaviour, as reported in

previous works, can be identified within the studied range of α values. We also observed an

increasing probability for local buckling events for larger α.

The data by Toda (Toda, 1974, 1983) and Starnes (Starnes, 1972) clearly suggests the presence of

a threshold atα= 1. In contrast to the present study, those data sets do not refer to an ensemble

of many nominally identical shells but were obtained for a single specimen manufactured from

Mylar. For the same shell, the size of the hole was varied. Those tests followed the sequence:

elastically buckle the shell, un-buckle the shell and drill a new hole for the explored range

of values of α. Moreover the Mylar shells chosen for those earlier experiments (Toda, 1974,

1983; Starnes, 1972) show knock-down factors reaching 0.7, which is considerably higher than

the average knock-down of 0.34 characterizing the aluminum shells studied here. The lower

knock-down factor of the shells tested here suggests that on average, the aluminum shells are

significantly more damaged and have more background imperfection than the pristine Mylar

shells used by Toda and Starnes, but they are likely more representative of many commonly

used shell structures.

While the statistics of buckling loads for the tested aluminum shells shows clear variations

with α indicating the hole size to significantly alter the load-carrying capabilities, no apparent

transition at a specific value of α is visible in the data shown in figure 4.3. We attribute the lack

of a threshold to larger background imperfections that together with the hole set the buckling

load of each individual shell specimen. In order to disentangle the influence of the hole from

statistically varying background imperfections in shells with larger background imperfections

typical of many engineering situations, we conduct a numerical study where we systematically

investigate the interaction between a background imperfection and a localized hole defect.

Numerical "in-silico" experiments allow us to control the relative strength of the hole defect

compared to background imperfections, and to characterize the interactions between those.

Since background imperfections result from uncontrolled details of the shell’s manufacturing

process, a systematic variation of background imperfections in lab experiments would not be
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Chapter 4. Localised nature of cylindrical shell buckling

feasible.

Figure 4.3 – Complete data set of the experimental campaign studying the variations of the
buckling load with increasing hole size for the natural background imperfections present
in aluminum soda cans. For fixed α= a/

p
Rt with hole radius a, shell diameter R and shell

thickness t , all specimens have nominally the same geometry but buckle at different loads
measured in terms of the knock-down factor γ. These variations are attributed to different
realizations of the (in general unknown) background imperfections.

4.3 Numerical study

To investigate the interaction of a hole with background imperfections, we set up a suitable

finite element model. We thereby aim to systematically test whether a critical hole size beyond

which the hole controls the buckling load exists. Finite element models have been successfully

applied in the past to analyze shells with holes (Brogan and Almroth, 1970; Almroth and

Holmes, 1972). We consider either perfect cylinders or perfect cylinders with imperfections,

subject to fully clamped boundary conditions applied to all the nodes of both ends of the shells.

To mimic parallel end-plates in the experiment, the nodes on the upper end satisfy a multi-

point constraint and are free to move in axial direction by a common displacement defining

the end-shortening of the shell. The line-integral of the stress resultant over the circumference

at the top end is set to the applied axial force. The considered cylinder geometry replicates the

straight section of the commercial cans used in the experiments, as detailed in table 4.2.
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Table 4.2 – Geometric characteristics of the shell used in the creation of the Abaqus finite
element model. These dimensions correspond to the straight cylindrical section of the 7.5oz
cans tested in the experiment.

Parameter Value

Radius 28.6 mm

Thickness 105µm

Length 107 mm

R/t 274

L/R 3.74

We discretize the cylinder geometry using Abaqus’ parabolic pre-integrated shell elements S8R

with 6 degrees of freedom (DOF) associated with each node. The strain approximation used in

the formulation of the S8R element is based on the Koiter-Sanders-Budiansky shell theory

(Dassault Systems Simulia Corp., 2018) in a fully Lagrangian framework. This formulation is

suitable for small-strains and large rotations(Sanders, 1959). The material response is modeled

as Hookean and isotropic with the representative material parameters detailed in table 4.3.

Table 4.3 – Mechanical characteristics of the material

Parameter Value

Alloy H −19

Young modulus 69 GPa

ν 0.33

Yield stress 200 MPa

To obtain sufficiently resolved numerical solutions, elements should be smaller than the

characteristic length in circumferential direction 0.5
p

Rt ≈ 0.86mm (Wullschleger, 2006). We

consequently choose elements with a characteristic length of 0.8mm, which translates into

225 elements in the circumferential direction. An aspect ratio close to one sets the number

of elements in the axial direction and yields nearly perfectly square elements. For this grid

resolution, additional refinement tests show no variation in the buckling load for shells without

holes, validating the numerical model including the chosen resolution. Implementing holes of

varying diameters requires a refined mesh close to the hole that transitions to the near-square

background mesh. The topological constrains imposed by the hole necessitates the use of a

non-ideal element shape; in the transition area elements with high aspect ratios and skewness
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need to be used. Such mesh geometries may cause numerical artifacts and spurious results.

The accuracy of numerical results is therefore confirmed by checking the robustness of a

solution with respect to small parameter perturbations. If a solution is robust, infinitesimal

parameter variations lead to infinitesimal variations of the buckling load, while spurious

solutions show non-smooth dependence on small parameter variations.

4.3.1 Numerical model justification and background imperfections

A numerical analysis based on the entire geometry of a commercial 7.5 oz coke can is possible

but computationally very expensive. Here, we thus consider the simplified system of a pure

cylinder, neglecting the conical parts at the top and bottom of the can. We consider the

simplified geometry is justified and allows comparisons to experiments for the following three

reasons:

1. The deformations of the conical section within a can are very small compared to the

cylindrical section prior to the global buckling point so that the cylindrical section is

effectively loaded subject to the same clamped boundary conditions considered in the

numerical model.

2. In our experiments, buckling is always confined to the cylindrical section of the can

suggesting that differences in boundary conditions have negligible effects.

3. The eigenmode associated with the linear stability threshold, evaluated with the Abaqus

Lanczos solver, is virtually indistinguishable for both geometries, as shown in figure 4.4.

The simplified cylinder has an associated eigenvalue of 2902 N and 0.23784 mm for the load

and displacement control, respectively. The eigenvalue of the simplified cylinder is used as

the reference throughout the study to calculate the knock-down factors of the non-perfect

cylinders and to non-dimensionalize the end-shortening.
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(a) (b)

Figure 4.4 – Comparison of the critical eigenmode of the complete can a) and the simplified
cylinder b) representing the straight section of the can. In both cases the structure of the
eigenmode is identical with 28 azimuthal and 11 axial half waves respectively. The critical
eigenvalue of the can and the cylinder differ by only 2%.

To replicate the behaviour of real defected shells such as those studied experimentally, back-

ground imperfections need to be included in the numerical model. The aim is to emulate

non-local defects that cover the complete surface, with a spatial structure similar to the ones

surveyed at NASA Langley in the Space Shuttle legacy hardware (Gardner et al., 2018; Lovejoy

et al., 2018). Non-local random imperfections have been implemented in finite element-

based numerical analysis of buckling before (Hansen, 1977; Elishakoff et al., 1987; Roorda and

Hansen, 1972), either as the only imperfection or in combination with local defects (Schenk

and Schuëller, 2007). Background imperfections have been traditionally implemented using

either uncorrelated random distributions or randomized linear combinations of trigono-

metric functions (Koiter, 1945) to perturb the location of nodes radially away from the ideal

cylinder geometry. These approaches led to valuable insights into the statistical impact of a

random background, but both traditional implementation approaches also have significant

disadvantages. The uncorrelated random model is nonphysical as the imperfections lack the

smoothness of background imperfections present in real shells. The alternative randomized

linear combination of trigonometric functions preserves smoothness but requires arbitrarily

choosing a large number of parameters. To overcome the limiting disadvantages and combine

the advantages of the two traditional methodologies, we here introduce Random Gaussian

Correlated (RGC) imperfections. RGC imperfections retain the stochasticity of uncorrelated
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random imperfections and preserve the smoothness of a randomized linear combination of

trigonometric functions while minimizing the number of arbitrary parameters to be selected

to only three.

Technically, the imperfections are implemented as follows. We introduce preferred axial and

azimuthal correlation length scales by spatially filtering an initially uncorrelated random

deformation field with a Gaussian filter. That means, we define a radial displacement field

d w(z,θ) relative to the perfect cylinder with axial and azimuthal coordinates z ∈ [0,L] and

θ ∈ [0,2π], respectively:

d w(z,θ) =C
∫ L

0

∫ 2π

0
κ(z − z ′,θ−θ′)η(z ′,θ′)d z ′dθ′ . (4.1)

Hereη is a (spatially) uncorrelated and centered Gaussian random function with 〈η(z,θ)η(z ′,θ′)〉∝
δ(z − z ′,θ−θ′) and 〈η〉 = 0. The kernel

κ(z,θ) = exp

(
− z2

λ2
z
− θ2

λ2
θ

)
(4.2)

has a Gaussian form and sets an axial and azimuthal length scales λz = L/n and λθ = 2π/m

corresponding to the integer values of n and m, respectively. Together with the scaling factor

C these two integer values constitute the three parameters controlling the RGC imperfections.

Technically, we evaluate the convolution in equation 4.1 using 2D Fourier transforms together

with the convolution theorem, as commonly done in filtering applications (Garcia and Stoll,

1984). Throughout this study, we set n = 2, and m = 4, so that only the maximum deviation

from the ideal geometry is to be selected. This maximum deviation is denoted by β, a non-

dimensional parameter that expresses the maximum deviation for the ideal geometry in terms

of the thickness of the shell. For each realization of the Gaussian correlated random noise, we

thus adjust the scaling factor C such that

β= max(|d w |)/t . (4.3)

The resulting background imperfection is smooth and random, as shown in detail in figure 4.5.
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(a)

(b)

(c)

Figure 4.5 – a) 3D visualization of a characteristic RGC imperfection. The field defines a
stress free radial displacement applied to the nodes of the FE model. b) 2D visualization of a
characteristic imperfection showing the random nature of the arrangement of smooth dimples.
c) Example of the FE model. The random self correlated imperfection has been amplified for
visualisation purposes.
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To characterize the reduction of buckling loads for varying amplitudes of the background

imperfections and in order to determine a value of β, for which the numerical model captures

the behaviour of the experimentally tested shells, we carry out a large number of in-silico

experiments for shells with background imperfections but without a hole defect. Figure 4.6b

shows the spontaneous buckling loads of ensembles of shells for prescribed β, ranging from

0.25 to 5.0. For each value of β, 50 unique realizations of an RGC background imperfection

were constructed and numerical buckling tests performed. Figure 4.6a shows a set of typical

end-shortening curves obtained at different imperfection amplitudes β.

The data clearly indicates a reduction in average buckling load with increasing imperfection

amplitude; the average knock-down factor varies from above 0.9 for β= 0.25 to a value below

0.2 for β= 5. At β= 2, we obtain an average knock-down factor very close to the one of the

experimentally tested commercial cans with no holes, as shown in Table 4.1.

A detailed inspection of the end-shortening curves shown in figure 4.6a reveals that for β= 1,

the behavior is very similar to the one expected from a perfect shell, showing a single large

drop in load when the global buckling threshold is reached. However, this shell, with β= 1,

already exhibits a substantially reduced load-bearing capability compared to a shell without

defects. For values of β ranging from 2 to 3, end-shortening curves reveal the likely emergence

of local buckling events preceding the global buckling and a further reduced load-bearing

capability. The curves corresponding to values of β= 2 and β= 3 have the same slope as the

one for β= 1, which indicates an identical stiffness until the first buckling event. For β= 4 and

β= 5, the behavior changes significantly compared to the other end-shortening curves. The

stiffness is noticeably reduced, and the characteristic drop in the global buckling becomes

significantly smaller. At β= 5 almost no drop characteristic of a catastrophic buckling event

remains. Consequently, at β= 4 and β= 5, no characteristic dynamic buckling behavior with

mostly unchanged stiffness followed by sudden loss of stability is observed. This behaviour

suggests that beyond a certain amplitude of background imperfections, cylindrical shells no

longer exhibit a dynamic buckling event, while they retain a residual load-bearing capability

of approximately 20% of that of the perfect shell.

The random realizations of the RGC imperfection yields a stochastic distribution of buckling

loads for fixed amplitude β, as evidenced by the data displayed in Fig. 4.6b. Thus, the

numerical model replicates the stochastic nature of the experimental test data in Figs. 4.5 and

4.3, albeit with smaller standard deviation. The lower bound of the experimentally observed

buckling loads both with and without a hole defect corresponds to a knock-down factor of

approximately 0.2 (Fig. 4.3), which is very close to the knock-down factor the numerical data

asymptotes to, when the amplitude of background imperfections is increased. This suggests

that the ensemble of experimentally tested shells contains realizations with large enough

amplitude so that the residual load-bearing capability of shells is reached. The numerical

data with controlled imperfection amplitude, shows that the average buckling load decreases

monotonically as a function of β. Initially it drops linearly until it levels off around β= 2 and

asymptotes towards a fixed value. Consequently, the maximum amplitude of the background
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imperfection β indeed controls the average buckling load. For small enough values of β, the

distribution remains broad, while for large enough values of β, the distribution significantly

narrows.

(a)

(b)

Figure 4.6 – a) Characteristic end shortening curves for varying values of the background
imperfection amplitude β. b) Numerical data showing the influence of the amplitude in the
RGC imperfection on the buckling load of the shell.

4.3.2 Interaction of background imperfections with a localized defect

We have shown that introducing specific random background imperfections in a numerical

FEM model reproduces the stochastic nature of buckling loads observed in experiments.

We have moreover introduced an amplitude parameter for the background imperfections

that allows controlling their strength. To investigate the interaction of those background

imperfections with localized hole defects, we now introduce holes of varying size in the

numerical model. Varying both the size of the hole, characterized by its re-scaled radius α

and the amplitude of background imperfections β, independently allows us to investigate
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Chapter 4. Localised nature of cylindrical shell buckling

under which conditions either the hole or the background imperfections control when the

shell buckles.

Holes in a perfect cylinder:Using the mesh parameters discussed above, we first introduce

a hole of radius a at the midsection of a perfect cylinder. In figure 4.7a representative end-

shortening curves of the finite element analysis of the perfect cylinder, β= 0, with a hole of

varying size given by α= a/
p

Rt are presented. As expected, introducing a hole defect has a

downgrading effect on the maximum load that the cylinder can sustain before global buckling

occurs. For small holes with α ≤ 2, only global buckling occurs, while for larger holes with

α> 2 local buckling occurs before the global buckling event. The presence of the hole does not

affects the stiffness of the shell before buckling. For the studied hole sizes up to α= 4 all shells

retain a residual load-bearing capability of approximately 600N , equivalent to a knock-down

factor of 0.2, suggesting the existence of a minimum load that all shells of a certain geometry

can carry independently of the size of the hole defect.

To investigate the impact of the hole defect on the loaded shell and gain information on the

location where buckling is initiated, we visualize the deformation of the loaded shell at the

buckling load for different hole sizes. The radial deformation is shown in the contour plots of

figure 4.6b. As expected, due to the fact that the hole defect breaks rotational symmetry of the

perfect cylinder, even for the smallest hole sizes, the initiation of buckling occurs at the hole

and then propagates through the complete shell.

(a)
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(b)

Figure 4.6 – Buckling behavior of a perfect shell (β = 0) with a hole of varying size. a) Rep-
resentative end-shortening curves of the perfect shell for different hole sizes given in terms
of the rescaled radius α. b) Representative contour plots of radial displacement fields at the
onset of global buckling for a perfect shell with different hole sizes. α grows from left to right
and from top to bottom. The hole sizes in the shells are 0.8mm and 1.6mm for the first 2
shells, and 4.2mm and 6.8mm in the case of the last 2. The grayscale was selected to show the
deformation contours of each individual shell qualitatively.

Holes interacting with background imperfections:For the perfect cylinder without back-

ground imperfections, even a very small hole defect acts as the only and thus dominant

imperfection controlling at which load and location the shell buckles. To explore the in-

teraction of a hole defect with background imperfections, we now consider a cylinder that

contains both a hole defect and background imperfections whose relative strength can be

varied. Instead of considering an ensemble of different realizations of the RGC background

imperfections, we select a single realization and scale its amplitude. We thus consider a deter-

ministic system with two control parameters, the hole sizeα and the amplitude of background

imperfections β, which can be varied independently.

The computed knock-down factor for the background imperfection amplitude ranging from

β= 0 (perfect cylinder) to β= 2 and hole size ranging from α= 0.25 to approximately α= 2.5

is shown in Fig. 4.7. In the absence of background imperfections, i.e. β = 0, the buckling
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load decreases almost linearly with hole size, until at α≈ 2 a plateau is reached. For non-zero

background imperfection amplitudes and small hole sizes, the buckling load is independent

of the hole size α but varies with β, suggesting that the background imperfections control

when the shell buckles. As the hole size increases, there is a β-dependent critical value of α,

beyond which the buckling load becomes dependent on α and – for intermediate background

imperfection amplitudes – approximately follows the β = 0 trend. For the largest studied

background imperfection amplitudes, β= 1.5 and β= 2, the presence of the hole does not

affect the buckling load of the shell for any value of α within the studied range. However,

for values of β between β = 0.25 and β = 1, two regimes coexist. For holes below a critical

size, α<αcrit, the shells are insensitive to the presence of the hole, while for α>αcrit shells

become senstitve to the presence of the hole and approximately behave as if background

imperfections were absent. This behaviour suggests that there is a critical hole size below

which the background imperfections control when the shell buckles, while for larger holes

the localized defect acts as dominant imperfection. However, contrary to the observations by

Toda and Starnes (Starnes, 1972; Toda, 1974, 1983), the critical hole radius is not universal and

given by
p

Rt , but depends on the amplitude of background imperfections.

In order to determine the critical hole size αcr i t as a function of background imperfection

amplitude β, we normalize each computed knock-down factor γ(α,β) by the knock-down

factor for the smallest studied hole size γ(αmi n = 0.25,β). As shown in Fig. 4.8, extrapolation

allows to clearly determine the value of αcr i t beyond which the hole defect further degrades

the buckling load of a shell. The obtained values are compatible with a linear fit (Figure 4.8

inset), implying that the critical hole size is approximately proportional to the amplitude of

the background imperfections.

Figure 4.7 – Influence of the hole size (α) on the global buckling load for different imperfections
amplitudes (β).
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Figure 4.8 – Re-normalization of the data from figure 4.7 by the smallest α. For each β

the critical αcr i t beyond which the hole defect further degrades the load-carrying capacity
can be extracted. αcr i t and the background imperfections amplitude β are approximately
proportional (inset).

4.4 Discussion

Within an extensive campaign combining experiments and FEM simulations, we have studied

how unavoidable geometric background imperfections and localized hole defects interact

to set the buckling load of an axially loaded cylindrical shell. Experimental buckling tests of

470 commercial aluminum shells with hole defects of varying size indicate that the hole size

affects the distribution of knock-down factors within the ensemble of nominally identical

specimens. While the lower-bound of the distribution with γ≈ 0.2 does not depend on the

hole size, the highest knock-down factors observed within each distribution decrease as a

function of hole size (Fig. 4.3). In combination, an increased hole size leads to a reduced mean

knock-down factor. However, unlike in previous studies based on exceptionally high-quality

shells, no clear threshold in the hole size beyond which the hole defect affects the buckling

load has been observed. Specifically, no evidence of a threshold at a hole radius of
p

Rt , or

equivalently α= 1, was found.

To complement the experimental campaign, FEM simulations were carried out. Gaussian

filtering of uncorrelated noise allowed us to include realistic random background imperfec-

tions in the model, and to define an adjustable amplitude β, measuring the maximal radial

deviation from the perfect geometry in units of the shell thickness. Numerical buckling tests

for 550 realizations of random background imperfections without a hole defect, reveal stochas-

tic distributions of buckling loads. The distributions for a fixed imperfection amplitude are

narrower than those observed for the experimental shells where amplitudes are unknown,
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and strongly depend on β (Fig. 4.6b). As the imperfection amplitude is increased, the mean

knock-down factor first decreases almost linearly with the imperfection amplitude, before it

levels off at a residual load-carrying capacity of γ≈ 0.2, the same value also observed as the

lower bound in the experimental tests.

To investigate the interaction of background imperfections and a hole defect of varying size,

we include a hole in the numerical model, consider a fixed realization of the background

imperfections, and compute the buckling load for the now deterministic system as a function

of independently varied hole size α and background imperfection amplitude β (Fig. 4.7).

Withing the tested hole sizes and for background amplitudes up to β= 1, two distinct regimes

are observed. Below a critical hole sizeαcr i t , the knock-down factor is independent of the hole

size, indicating that the background imperfection controls the buckling load. For holes larger

than the critical value, the knock-down factor depends on α and becomes approximately

independent of the background imperfection amplitude, indicating that now the hole defect

controls when the shell buckles. Consequently, the knock-down factor is not given by a super-

position of the degrading influence of background imperfections and an additional degrading

factor due to the hole defect. Instead, the clearly separated regimes suggest that either the

background imperfections or the localized hole defect provide the dominant imperfection

and control the buckling load.

Unlike suggested by previous studies (Starnes, 1972; Toda, 1974, 1983), the critical hole size

is not universal and given by the geometric mean of the shell radius and thickness
p

Rt , or

αcr i t = 1, but depends on the amplitude of background imperfections with the data suggesting

that the critical hole size is proportional to the background imperfection amplitude β (Fig.

4.8). This is compatible with the observation that for a perfect shell, the limit β→ 0, even the

smallest hole defect will act as the only and thus obviously dominant defect degrading the

knock-down factor.

These results are not only relevant for understanding the specific interaction of local and

distributed imperfections in an axially loaded cylindrical shell, but also suggest a more general

framework for comparing the ’strength’ of different types of imperfections. There is no obvious

norm that characterizes how large imperfections are. Introducing amplitudes for two inter-

acting imperfection types, here smooth geometric background imperfections and a localized

hole defect, and identifying thresholds for when one of them dominates, allows to compare

their strength.

Based on the observation that their respective amplitudes determine whether the background

or the hole control the buckling load, we can interpret the experimental buckling data for

commercial aluminum shells (Fig. 4.3). Here background imperfections are a result of the

manufacturing, transport and handling processes so that not only the spatial structure but

also amplitude of the background imperfections is randomized. As the critical value for α

depends on the randomly varying background imperfection amplitude, no clear threshold

is observed. Moreover, a comparison of the average knock-down factor below γ= 0.4 to the
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β- resolved numerical data, suggests that for most specimens the background imperfections

are so large that the hole has no substantial influence on the buckling load. The lower bound

within the measured distributions of knock-down factors is compatible with the asymptotic

value found for large background imperfection amplitudes in the absence of hole defects.

This behaviour clearly suggests that the background imperfections control the buckling load

and explains a lower bound that remains independent of the hole size. The realizations of

background imperfections with the lowest amplitudes within each distribution however enter

the hole-size dependent regime in which the hole defect dominates. Consequently, the hole

defect degrades the highest knock-down factors within each distribution and leads to the

observed maxima decreasing as a function of α. Thus, the experimental data supports our

conclusion, that there is no superposition or additive degrading effect due to localized hole

defects and geometric background imperfections but that both interact with the stronger

imperfection dominating and controlling the buckling load.

The experiments by Starnes (Starnes, 1972) and Toda (Toda, 1974, 1983) were using a single

shell with one specific realization of (unknown) background imperfections. These results are

thus comparable to our deterministic investigation albeit without control and variation of the

background imperfection amplitude. For their pristine shells, they report a knock-down factor

without any hole of close to γ = 0.8. Within our numerical model using random gaussian

correlated imperfections, this knock-down factor translates into an equivalent background

imperfection amplitude of β≈ 0.5. Remarkable, with the approximately linear dependency of

the critical hole size (Fig. 4.8 inset), we get αcr i t ≈ 1, precisely as reported by Starnes and Toda.

Although the shells used in previous experiments differ slightly in geometry, with R/t = 400

as opposed to R/t = 274 studied here, and despite the analysis being based on a specific

realization of background imperfections, this calculation suggests that the observation of

a critical hole size with αcr i t = 1 was likely a coincidence and is only valid for the specific

background imperfections of the tested shells.

4.5 Conclusions

In summary, we do not observe a universal significance of the scale
p

Rt for the critical size of

a hole beyond which it degrades the load-carrying capacity of an axially loaded cylindrical

shell. Instead, the hole will control the buckling load when it is the strongest or dominating

imperfection. Whether this is the case depends on how strong other coexisting background

imperfections are in comparison, implying a critical hole size that depends on the strength

of the geometric background imperfections. The interaction of a localized hole defect with

background imperfections is not simply described by a superposition of degrading effects due

to both. But the stronger imperfection will have a dominant effect. Comparing the relative

strength of different imperfections remains an open problem. However, the existence of clear

threshold when both interacting imperfections are assigned independent amplitudes suggests

a path towards quantitatively comparing the strength of different imperfections.
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5 Predicting global buckling of cylindri-
cal shells via stability landscapes

Remark: All published experimental data from section 5.2.1 has been published in (Abramian

et al., 2020). The data was collected by the author of this thesis using control scripts for the

bi-axial-test machine, developed by the author.

In chapter 4 it has been shown that the buckling behaviour of cylindrical shells is modified

by localized defects. It was also shown that the modification of the buckling load is not only

dependent on the localized defects but also on the background long range imperfections.

The fact that the presence of background imperfections influences the buckling load of cylin-

drical shells, even in the presence of large localized imperfections, does not undermine the

importance of the local properties of shells to control buckling or infer information about

their stability. The buckling load of cylindrical shells is influenced simultaneously by both

kinds of imperfections, local and global.

The effect of long range global imperfection in the buckling load of cylindrical shells under the

presence of any localized imperfection suggest a complex interaction. The expected behaviour

would be that for a strong enough local imperfection the background imperfections would

have no effect and vice-versa. In order to understand this complex behaviour, a suitable

methodology to explore the stability of cylindrical shells at different locations is required.

The capability to explore different locations is important to understand the influence of the

background imperfections that cover the complete cylindrical shell.

Due to the catastrophic nature of the buckling event in cylindrical shells, this methodology

will have to be able to provide information about the stability of a cylindrical shell without

risking triggering its collapse. Furthermore, this methodology will have to be able to provide

information about the stability behaviour of the shell in a large number of locations to capture

the influence of the background imperfections in combination with localized ones.

A methodology that satisfies the requirements mentioned above is based on stability land-

scapes. This approach allows for a local evaluation of the properties of a cylindrical shell.
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Furthermore, stability landscapes encode information about the stability of the cylindrical

shell without triggering collapse (Abramian et al., 2020; Virot et al., 2017; Thompson and

Sieber, 2016).

The stability landscape is a surface defined in a three dimensional space spanned by the axial

load at which the different measurements are performed, the displacement of a poker used to

probe the surface of the cylindrical shell in the radial direction and the reaction force of the

shell opposing the deformation induced by the poker.

Stability landscapes extrapolate to a vanishing point as the axial load is increased. This feature

enables the utilization of stability landscapes to predict the maximum load a cylindrical shell

can bear. This last possibility will be explored in this chapter

The only property that stability landscapes do not satisfy is the capability to provide informa-

tion about the complete shell. However this can be changed by successively building stability

landscapes at different locations to learn about the stability properties of a cylindrical shell in

multiple locations. Practically, this means that stability landscapes will have to be constructed

at different locations. A sufficient number of locations will have to be investigated to achieve a

degree of certainty about the fact that there is a point or area in the cylindrical shell where

the buckling load extrapolation is correct. This is an option that will also be explored in this

chapter.

In chapter 2 the dynamical systems description of cylindrical shells was introduced together

with the idea of the basin of attraction linked to each fix point of the system. Stability land-

scapes are the experimental methodology to explore the extension of the basin of attraction.

They are the link between the theoretical description of cylindrical shell buckling as a finite

amplitude problem and experiments.

In state space, an stability landscape corresponds to the exploration under a finite amplitude

perturbation of one of the possible directions leading to the basin boundary. There are infinite

directions to be explored, these directions correspond with different shapes of the finite

amplitude perturbation used. In the current research a single poker is the perturbation that

is going to be used to explore the basin of attraction of each stable fix point. A fix point on

the dynamical systems corresponds with a stable configuration of a cylindrical shell under a

compression load.

5.1 Predictions via numerically obtained stability landscapes

In order to use the stability landscapes as a predictive tool, it is important to verify their ability

to provide an accurate estimation of the buckling load of a cylindrical shell non-destructively

at the compression load where the stability landscape vanishes. The approach followed to

demonstrate that stability landscapes are able to extrapolate to the correct buckling load once

the right location is found is to perform an experiment in the most controlled manner possible.
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Due to the stochastic nature of the imperfections present in real cylindrical shells and the

known sensitivity to imperfections of cylindrical shells, the most suitable experiments are

numerical ones (also known as in-silico experiments). These numerical experiments will be

based on finite element analyses following the recommendations from chapter 3.

5.1.1 FEM applied to stability landscape derivation

The main reason to use numerical experiments is the fact that in simulations it is possible to

control all the different aspects that have an effect on the final result. The main aspects to be

controlled in the case of cylindrical shells are geometric imperfections, non-ideal boundary

conditions or imperfections in the loading conditions. In simulations it is possible to remove

all the aforementioned real world features, implement perfect boundary conditions, use

perfect load introduction and implement at the same time engineered imperfections in a

controlled fashion. This last feature can be used to carry out a parametric study to understand

the influence of an imperfection for nominally identical conditions.

In-Silico test procedure

The sequence for the simulation to verify the predictive capability of stability landscapes is to

prescribe a certain load below the maximum the cylindrical shell can bear and probe radially

the shell retrieving the radial displacement of the probe as well as the radial reaction force

exerted by the shell on the probe. The plot of radial force as a function of radial displacement

is a poking curve. A very useful feature of these simulations is that it allows a destructive

test to be carried out to obtain the maximum load the cylindrical shell can bear prior to the

extraction of the stability landscapes. This fact is very useful to understand the different load

levels to include in the derivation of the stability landscapes through successive poking curves.

Namely, it allows to discern the levels of pre-load that can be applied to construct stability

landscapes without triggering buckling.

Regarding the location where to derive the stability landscape, the most reasonable position is

the point where the nucleation of buckling takes place. This location is the position where the

variation in radial force becomes zero at the moment where the collapse of the cylindrical shell

begins. Furthermore, a suitable point should be as far away as possible from the boundary

conditions to avoid any influence of them (Mikulas et al., 2011) and localized in the azimuthal

direction. In order to fulfil these conditions, the best is to introduce a controlled imperfection

at the location where the probing will take place.

On the modelling side, the finite element model used in the simulations consists of a shell

that is probed with an infinitely rigid poker at different axial loads making use of a contact

tracing algorithm inbuilt in the commercial finite element software Abaqus. At each of the

axial loads a poking curved is built by extracting the radial reaction exerted by the shell as the

poker moves radially via a prescribed displacement. This process is repeated for increasing
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axial loads to build a complete landscape. An illustration of the finite element model including

a cylindrical shell and the poker is shown in figure 5.1.

The solver used for these in-silico experiments is the Newton-based one from Abaqus. This is

the most suitable solver for practical applications as discussed in chapter 3. It allows for the

solution of geometrically non-linear problems. Furthermore, it is able to cope with different

bifurcation scenarios via the utilization of different stabilization techniques as shown in

chapter 3. These stabilization techniques are not used during the extraction of the landscapes

because no singularity of the stiffness matrix occurs. The stabilization techniques are only

used in this chapter to obtain the maximum load bearing capability of the cylindrical shell.

This load is needed to guarantee that the pre-load induced in the cylindrical shell for the

extraction of the landscape is not greater than the load bearing capability of the cylindrical

shell under study. The solver control values are the one specified in chapter 3.

(a) Side view finite element
model including the cylindrical
shell and the poker

(b) Front view finite element
model. The poker is located
5mm below the hole used as
a local imperfection to nucle-
ate buckling

Figure 5.1 – Example of the finite element model used for the creation of the stability land-
scapes. The model includes 2 bodies, the shell and the poker that is used as a probing device.
The shell is modelled with parabolic pre-integrated S8R elements. The poker is modeled with
3D tetrahedral elements with infinite stiffness. The interaction between the poker and shell
is done using the friction less penalty contact algorithm of Abaqus. The complete solution
,consisting a pre-loading step and a probing step, is done using the Newton solver of Abaqus.
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Numerically derived stability landscapes

A set of stability landscapes obtained using the numerical approach previously described are

shown in figure 5.3 for different localized imperfection sizes. In the case of the landscapes

in figure 5.3 the localized imperfections are holes of various sizes ranging from 0.8 mm to

3.2 mm. The landscapes show the same features discovered empirically (Virot et al., 2017).

The main feature is the ridge, this feature corresponds to the section where the poking forces

grows up to a level to then decrease down to zero for a fix axial load. The relevance of the ridge

feature comes from the fact that the point where it vanishes corresponds with the maximum

compression load a cylindrical shell can bear. This load is referred as the spontaneous buckling

load (SBL).

The data points in the lines projected in the axial force / poking force (FA/Fp ) plane in figure 5.3

are the elements used to extrapolate to the corresponding maximum load a certain cylindrical

shell can carry: the buckling load prediction. These curves are shown independently in figure

5.4. The curves used for the extrapolation follow the maxima of the stability landscape feature

referred as the ridge according to (Virot et al., 2017). In figure 5.4 the extrapolation curves

predict the buckling load of the cylindrical shell. The deviation between the different predicted

buckling loads and the actual ones is below 1%. As a side note, the influence of the hole in the

local stiffness becomes significant as the hole size grows. In the case of the smallest two hole

sizes, 0.8mm and 1mm, the local stiffness sensed by the poker does not change through the

extrapolation curve.
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(a) Stability landscape for

a perfect shell with hole of 0.8 mm

(b) Stability landscape for

a perfect shell with hole of 1 mm

(c) Stability landscape for

a perfect shell with hole of 1.2 mm
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(d) Stability landscape for

a perfect shell with hole of 1.6 mm

(e) Stability landscape for

a perfect shell with hole of 2.4 mm

(f) Stability landscape for

a perfect shell with hole of 3.2 mm

Figure 5.3 – Numerically derived stability landscapes for the geometry of 7.5oz. coke can
containing a hole of different sizes. The poking location for the construction of the different
stability landscapes is located 5mm below the hole. Note how the maximum of the ridge
decreases as the axial load increases enabling the extrapolation for the buckling load of
each cylindrical shell. The X axis represents the compression load applied (FA). The Y
axis represents the distance the poker has moved in contact with the shell (Dp ). The Z axis
represents the reaction force exerted by the cylindrical shell on the poker as the poker moves
radially (Fp ).
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Figure 5.4 – Extrapolation results for a cylindrical shell with a hole of different sizes and no
additional background imperfections. The boundary conditions in the cylindrical shell are
fully clamped with the exception of the axial degree of freedom at the opt that is left free to
allow the loading to take place. The buckling loads predicted via extrapolation in all the cases
are accurate. The criteria used to accept a prediction as accurate is to present a deviation
below 5%

Conclusions

Stability landscapes derived numerically can provide an accurate prediction of the maximum

load bearing capability of a perfect cylindrical shell with a localized imperfection. This has

been verified for the case in which a localized engineered imperfection in the form of a hole

is the only imperfection. Similar results have been reported in the case of spherical shells

(Abbasi et al., 2021).

5.2 Predictions via experimentally obtained stability landscapes

In section 5.1 the suitability of stability landscapes to extrapolate to the buckling load of a

cylindrical shell was shown in a set of in silico experiments. In this section the aim is to

replicate the same procedure but with real cylindrical shells experimentally. The experimental

work in this research is oriented towards performing a series of test campaigns to demonstrate

how stability landscapes if used at the right location of a cylindrical shell are able to predict

buckling as shown numerically in section 5.1.
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Figure 5.5 – Summary of the results published in Abramian et al. (2020) where the work from
the current research was included. Sub-figure (a) described the configuration of the poking
experiments. Sub-figure (b) shows the creation of a so-called ridge. Sub-figure (c) shows
ridges for shells with nominally identical geometry but different background imperfections.
Sub-figure (d) shows a summary of all the data.

The experiments were performed using the same set up described in chapter 4. It employs an

uni-axial ADMET machine with the addition of a new feature: a radial actuator. This radial

actuator has a force measurement set up at the tip. This force measuring set up is composed

by a round poker that comes in contact with the cylindrical shell and a force sensor in the

form of a S-type load cell. The poker is used to probe the cylindrical shells via a prescribed

radial displacement.The force readings from the load cell are used to build the poking curves

that compose the stability landscapes. A close image of the poker can be seen in the top left

part of figure 5.5.

The experimental work of this chapter is divided in three test campaigns. A first one where the

idea of predicting buckling load with stability landscapes was tested. A second more extensive

campaign was carries out to clarify the influence of using a dimpled hole instead of a hole as

localized imperfection. A third campaign was conducted to study the complete area around

the localized imperfection to understand the buckling load predictive capability of stability

landscapes.
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5.2.1 1st Test campaign: Stability landscapes of dimpled holes

The configuration selected for the cylindrical shell corresponds, as in the previous chapter, to

the 7.5oz. coke can present in the American market. These cylindrical shells have a straight

section that is 107 mm long. The wall thickness of the straight section of the shell is 0.105 mm

and the radius is 28.6 mm. The cylindrical shells contain a localized imperfection in the shape

of a 1 mm hole, placed in the middle of the straight section. The probing of the cylindrical

shell is done 5mm below the center of this hole.

The dimension of 1 mm for the hole diameter was selected so the average buckling load of

shells remained unaffected while providing a location for a relevant noticeable imperfection.

The fact that a 1 mm hole will not affect the average buckling load was obtained experimentally

in chapter 4.

The results obtained in this test campaign are presented in figure 5.5. In a high percentage,

the tests were successful (Deviation smaller than 5 % between prediction and actual buckling

load), meaning that the buckling load of the corresponding cylindrical shell could be predicted

accurately. On the opposite side, there were a few experiments that provided wrong extrapo-

lations of the actual buckling load. These experiments that provided wrong predictions are

considered failures. Hence based on these definitions, it is possible to specify a success rate

via dividing the number of successful tests by the total number of experiments that yielded a

buckling load prediction. In the number of experiments that yielded a buckling load prediction

are included the correct predictions and the wrong predictions.

The fact that there was a high success rate in predicting the actual buckling load of cylindrical

shells was not unexpected. In fact, the prediction based on the dynamical system theory and

the finite element models predicted that this would be the case. Furthermore, looking at how

the imperfections of real shells look like (See figure 5.6), the relevance and presence of the hole

is evident. The hole is located at the central blue dot that appears in all the cylindrical shells

from figure 5.6. The area covered by the hole and the deviation suggest that although the hole

was selected because of the single parameter nature of its morphology, its implementation

was more complex than that.

In reality the creation of the hole induced a dimple of a size considerably larger than the

intended 1 mm diameter of the hole. Hence, in this case the induced defect need to be

considered a dimpled hole and not a simple hole at location. This imperfection is a more

relevant, stronger imperfection than the bare hole and it is believed to have an impact in the

predictions provided by the stability landscapes created in its vicinity. This last fact will be

tackled in the next section.

Specimen ID Buckling load Buckling load Deviation Accurate prediction

(N) prediction (N) (N/%) X/ 7

Can №1 761 773 12/1.62 X
Can №2 762 803 40/5.27 X
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Can №3 783 854 71/9.00 X
Can №4 785 805 20/2.56 X
Can №5 817 794 22/2.74 X
Can №6 828 826 2/0.29 X
Can №7 824 863 40/4.83 X
Can №8 852 825 27/3.21 X
Can №9 849 858 8/0.95 X

Can №10 853 861 8/0.96 X
Can №11 868 895 27/3.13 X
Can №12 884 895 11/1.22 X
Can №13 879 901 21/2.44 X
Can №14 888 889 2/0.18 X
Can №15 884 924 40/4.53 X
Can №16 905 934 28/3.13 X
Can №17 900 934 34/3.75 X
Can №18 936 971 35/3.75 X
Can №19 958 918 39/4.10 X
Can №20 956 999 43/4.47 X
Can №21 965 988 22/2.30 X
Can №22 978 990 12/1.26 X
Can №23 977 984 7/0.74 X
Can №24 992 938 54/5.45 X
Can №25 1004 1006 2/0.22 X
Can №26 999 1029 20/2.05 X
Can №27 993 1020 27/2.73 X
Can №28 1010 1037 27/2.69 X
Can №29 1047 1070 22/2.15 X
Can №30 1088 1002 14/1.32 X
Can №31 1109 1005 4/0.39 X
Can №32 649 842 193/29.68 7

Can №33 780 925 145/18.61 7

Can №34 790 910 120/15.16 7

Can №35 800 920 120/14.96 7

Can №36 801 940 139/17.34 7

Table 5.1 – Buckling load of the poking experiments carried out with a hole of 1mm and the
additionally induced dimple from the drilling process. This work was performed as a part of
the current research and was published in Abramian et al. (2020)

.
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(a) Scan of

specimen A

(b) Scan of

specimen B

(c) Scan of

specimen C

(d) Scan of

specimen D

Figure 5.6 – Deviation from the ideal geometry present in real shells. The contour plots
show the complexity of the imperfections present in shells. The shell are nominally identical
however the deviations in the form of imperfections makes them unique. The maximum
deviations are in the order of 2 to 3 times the thickness of the shell, 0.105mm

Note that in the case where the landscapes were built around a dimpled hole there was a

high success rate regarding the capability to predict buckling of cylindrical shell. The success

rate achieved is approximately 86%. This success rate is defined as the ratio between the test

that predicted the buckling load of cylindrical shells correctly and the total number of test

expressed in percentage form. The data from this test campaign is summarized in table 5.1.

The high rate of success achieved in this first experimental test campaign was a strong evidence

of the capability of stability landscapes to predict buckling loads of cylindrical shells in a non-

destructive manner. However, the cases where the extrapolation provided an inaccurate

prediction were not expected. In fact, according to the numerical models and the dynamical

system-based theoretical prediction, the extrapolation should always provide an accurate

estimation of the buckling load at the vanishing point of the stability landscape. The reason

for this is the fact that a stability landscape always has an axial load where it vanishes. In fact,

the success rate in the numerical model used to extrapolate the buckling load of cylindrical

shells with a hole is 100% as it can be seen in figure 5.4.

5.2.2 2nd Test campaign: Stability landscapes of flat holes

Initially, high success rates of the prediction observed in preliminary studies described in

section 5.2.1 could not be reproduced. It was eventually found that undocumented details on

the hole drilling procedure had significant relevance. A second test campaign was carried out

including carefully drilled holes instead of the dimpled ones used in the fist test campaign.

In this second test campaign no dimple was induced during the drilling process because the

drilling technique did not use pressure but very high rotational speed of the drill bit for drilling
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the hole. The results from this second test campaign showed a lower success rate than those

from the first campaign. The success rate dropped to 25% from the 86% obtained in the first

test campaign. The reason for the variation in the success rate is thought to be the change of

morphology between imperfections from dimpled holes to bare holes.

The results from this second test campaign are presented in table 5.2. In table 5.2 the dashed

rows refers to poking experiments where the specimen failed before poking started. These

specimens are not considered as a part of the population to define the success rate of the test

campaign. Only specimens where a prediction of the buckling load was obtained are used to

define the success rate.

Specimen ID Buckling load Buckling load Deviation Accurate prediction

(N) prediction (N) (N/%) X/ 7

C11906 944 1045 101/10.70 X
C21906 1089 1494 405/37.19 7

C31906 851 1112 261/30.67 7

C41906 873 2814 1941/222.34 7

C51906 1018 1651 633/62.18 7

C61906 840 871 31/3.69 X
C71906 910 2043 1133/124.51 7

C81906 - - - -

C12906 864 1305 441/51.04 7

C22906 949 1162 213/22.44 7

C32906 - - - -

C42906 1005 1077 31/3.69 X
C52906 820 1354 534/65.12 7

C62906 - - - -

C10907 1005 1077 72/7.16 X
C20907 928 1034 106/11.42 7

C30907 800 1354 554/69.25 7

C40907 872 1005 133/15.25 7

C50907 872 1598 726/83.26 7

C60907 930 1226 296/31.83 7

C11007 930 1069 139/14.95 7

C21007 862 929 67/7.77 X
C31007 - - - -

C41007 803 1059 256/31.88 7

C21307 864 1306 442/51.16 7

C31307 905 1049 144/15.91 7

C41307 1005 1077 72/7.16 X
C51307 - - - -

C61307 820 1354 534/65.12 7

C11307 - - - -
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C21307 949 992 43/4.53 X
C31307 - - - -

C41307 864 1304 440/50.93 7

C11607 - - - -

C21607 - - - -

C31607 - - - -

C41607 858 1184 326/38.00 7

C51607 - - - -

C61607 - - - -

C71607 916 991 75/8.19 X
C81607 - - - -

C91607 - - - -

C101607 - - - -

C121607 830 1091 261/31.45 7

C121607 - - - -

C131607 - - - -

C141607 - - - -

C11707 801 829 28/3.50 X
C21707 - - - -

C31707 929 976 57/5.06 X
C41707 912 949 37/4.06 7

C51707 - - - -

C61707 845 943 98/11.60 7

C71707 817 904 87/10.65 X
C81707 - - - -

C91707 - - - -

C101707 - - - -

C121707 - - - -

C121707 - - - -

C131707 1148 1269 121/10.54 X
C141707 - - - -

C101707 858 872 14/1.63 X
C121707 833 1092 259/31.09 7

C121707 815 972 157/19.26 7

C131707 1000 1103 103/10.30 7

C141707 - - - -

Table 5.2 – Buckling loads and prediction of experiments carried out with carefully drilled
holes with a 1mm diameter.
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5.2.3 3rd Test campaign: The effect of distance in stability landscapes

The difference between a carefully drilled hole and a dimpled hole is their morphology. The

geometry of both imperfections is different. However, under the visual inspection that each

specimen of the different test campaigns underwent, the difference between imperfections,

although noticeable, is only evident for a trained eye. In fact it is very striking that such a small

difference has such a relevant impact in the results. This small difference in the imperfection

realization shifted the success rate from 86% in the case of the dimpled hole (1st test campaign)

to 25% in the case of the carefully drilled or flat hole (2nd test campaign). This is an evidence

of how sensitive cylindrical shells are to small variations in their geometry.

The cases where the extrapolation did not provide an accurate prediction of the buckling

load contradicts the behaviour predicted by the numerical models and the prediction of the

dynamical systems theory model of the cylindrical shell. The theory says that the value of axial

compression where the stability landscape vanishes marks the maximum compression load a

cylindrical shell can bear. The main difference between these ideal models and the experi-

ments is the existence of background long range imperfections. Hence, the research effort is

directed towards understanding the influence of the long range background imperfections in

the buckling load predicted by stability landscapes. This is done by sampling a grid of points

around the local imperfection. The sampling of a grid of points around the local imperfection

intends to show the variability in buckling loads as the distance from the local imperfection

varies.

In order to understand further what makes the extrapolation work only for some cases, the

best strategy was considered to be gathering more information around the probing locations

as mentioned before. This is considered the most suitable strategy because extracting more

landscapes at different spacial locations around the localized imperfection will show the

dependency of the quality of the predictions as a function of the distance to the imperfection.

Considering these details, the subsequent experimental campaign consisted of constructing

stability landscapes in locations around the dimpled hole and attempt to understand how the

extrapolations of the ridges of the stability landscape change around such a defect. This kind

of experiment is only possible due to the non-destructive nature of the stability landscapes.

Motivated by the higher success rate of the dimpled hole, this configuration was selected to

uncover why the extrapolation based on ridges works in some cases and does not in others.

The testing procedure to build the different landscapes around the dimpled hole consisted of

varying the axial and azimuthal coordinates to create a grid of locations where the buckling

load was predicted. In each of these locations, a poking curve was extracted before the load

was increased. Meaning that a mapping of the complete grid for each load increment was

done before moving to the next increment of axial load. The maximum applied load was

limited by the moment where a poking force lower than 0.2N was reached. This is a limit set

based on the experience in the different test campaigns.

In practice, the sampling at multiple locations was done with an automatic rotating stage
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that allowed for controlling the azimuthal location of the probing. The axial position was

controlled with metallic shims placed below the shell to control the relative axial position

of the local imperfection and the probing device. The utilization of shims to control the

relative distance between the probing location and the localized imperfection meant that only

locations below the localized imperfections could be explored. However, due to symmetry

reasons an identical behaviour can be expected in locations placed symmetrically above

the localized imperfection. The variation at symmetric locations was only performed in the

azimuthal coordinate. The azimuthal coordinate locations to the right and left of the localized

imperfection were explored.

The area of the shell where the grid for the procedure was implemented is represented by

a cylindrical sector. This sector corresponds to a section of the shell covering 112◦ in the

azimuthal coordinate with the hole centered in it and a 5 mmm length in the axial coordinate.

The grid density is 13 points in the azimuthal direction and 4 in the axial direction. In the

case of the azimuthal direction, the density is not homogeneous, with additional locations

in the vicinity of the holes. Axially the are 4 locations evenly spaced. The exact locations are

−44◦,−33◦,−22◦,−11◦,−5◦,0◦,5◦,11◦,22◦,33◦,44◦ azimuthally and 2 mm, 3 mm, 4 mm and

5 mm axially. The data obtained in the different test is summarized in figures 5.7, 5.11, 5.15

and 5.19.

The tests were carried out with different 7.5oz coke cans, with a total population of 23 shells.

Out of these test articles, only 4 survived the complete procedure. The other 19 failed at

compression load increments.

In the 4 cases (Specimen A, B, C and D) that endured the complete procedure, the buckling

load was obtained with a final destructive compression testing. In this test campaign, the

shells were scanned prior to testing. The aim of this observation was to try to discover a

potential correlation between existing imperfections and quality of the prediction. Figure 5.6

shows the scans of 4 cylindrical section of the coke cans with a dimpled hole that endured the

complete testing sequence.

3rd test campaign: Specimen A

The data obtained in the case of specimen A shows a wide spread of values in the extrapolations

provided by the different ridges. As the vertical distance increases, the extrapolation provided

by all the ridges becomes less accurate. An additional trend in the data from specimen A seems

to be that the further away from the dimpled hole in the azimuthal direction, the lower the

accuracy of the buckling load prediction.

Figure 5.8 represents a map of the relative error of each extrapolation provided by the different

ridges. In this figure, the general trends pointed out earlier remain true although there are

exceptions where ridges constructed far away from the localized imperfection provide an

accurate prediction. This behaviour suggests that there is not a perfect correlation between
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distance to the hole and accuracy in the prediction.

(a) Ridges for axial location 2 mm

below the hole

(b) Ridges for axial location 3 mm

below the hole
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(c) Ridges for axial location 4 mm

below the hole

(d) Ridges for axial location 5 mm

below the hole

Figure 5.7 – Summary of the ridges obtained at different locations azimuthally and axially
probed in specimen A
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Figure 5.8 – Relative error maps for the different shells. The color coding is related to the
accuracy of the prediction provided by the ridge derived at each specific location.

In order to show better the correlation between distance from the imperfection and accuracy

of the prediction, the data from figure 5.8 was plotted as a function of the distance to the

hole. Figure 5.9 shows this representation. In figure 5.9 there is not a clear evidence of the

correlation between distance and accuracy of the prediction. There are accurate predictions

far away from the localized imperfection as there are inaccurate predictions in the vicinity of

the local imperfection.

Figure 5.9 – Relative error of the buckling load prediction as a function of the distance to the
dominant imperfection.

In the case of specimen A, only a few of the extrapolation curves in the vicinity of the imper-

fection provide an accurate approximation of the buckling load of the shell. Locations placed
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at symmetrical azimuthal locations never provide the same extrapolation nor have the same

stability landscapes as shown by their ridges. This is shown in figure 5.9.

The variability is a feature of the system and demonstrates first the influence of background

imperfection and second the sensitivity of cylindrical shells to small variations in its geometry.

The differences present in the ridges shows the wealth of information that a stability landscape

encodes about each point of a cylindrical shell. In fact, it seems that each point in the shell

has a very characteristic signature that makes each landscape unique for a combination of

azimuthal and axial coordinates and compression load.

The end-shortening curve of specimen A displayed in figure 5.10 features a clear global

buckling event at 723 N . Prior to the global event, there is a small drop in axial force at

approximately 650 N . This local drop is linked to a local buckling event. The predictions

from the extrapolations provided by the stability landscapes do not capture the local buckling

event looking at the data summarized in figure 5.7. Only a single ridge provides an accurate

estimation of the local buckling load in the case were the probing occurs 2 mm bellow the

dimpled hole and −22◦ away from it in the azimuthal direction. The slope in the ridges also

shows a significant spread of values. The variation in the maximum forces reached by the

ridges is very high for nominally identical compression loads.

A final remark about specimen A is that under the standard configuration of testing that

provided a highly reliable load prediction (Single stability landscape constructed 5mm below

the localized imperfection), the test of this shell would have provided a failed prediction. The

load extrapolation for specimen A would have over-shot the real buckling load of the shell.

Figure 5.10 – End-shortening curve for specimen A. This specimen shows a local buckling
event at 630 N before reaching the maximum compression force, the buckling load of this
shell, of 723 N
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3rd test campaign: Specimen B

Specimen B is the second shell that underwent the complete procedure. The obtained ridges

are shown in figure 5.11.

The different extrapolation curves built based on the ridges from the individual landscapes of

specimen B show a similar trend to the ones observed in the case of the specimen A. In both

cases there seems to be a worse capability to predict the maximum load capability of a shell as

the distance from a relevant imperfection grows. The slope in the ridges also seems to have a

significant spread. However, in the case of Specimen B, the quality of the prediction is better.

In the ridges of specimen B there seems to be two different clusters in the data. This is more

clear in figures 5.12a to 5.11c, where one set of ridges extrapolate relatively well the buckling

load while a second group predicts much higher buckling load values.

In the case of specimen B, a poking map summarising all the predictions and relative errors

has been crated too. This second specimen features a stronger correlation with the distance to

the defect when compared with specimen A. However, there are accurate predictions coming

from ridges far away from the hole too. This becomes more evident in figure 5.13, where

the relative error is plotted against the distance to the imperfection. Although in the case

of specimen B the correlation between distance and accuracy of the prediction is better in

comparison with specimen A, the correlation is not perfect. This is an additional evidence of

the influence of the variable background imperfections.

(a) Ridges for axial location 2 mm below the hole
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(b) Ridges for axial location 3 mm below the hole

(c) Ridges for axial location 4 mm below the hole

(d) Ridges for axial location 5 mm below the hole

Figure 5.11 – Summary of the ridges obtained at different locations azimuthally and axially
probed in specimen B138
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(e) Relative error map for can SH16b

Figure 5.12 – Relative error maps for the different shells. The color coding is related to the
accuracy of the prediction provided by the ridge derived at each specific location.

(a) Caption 2

Figure 5.13 – Poking maps for the different shells explored

The end-shortening curve presented in figure 5.14 for specimen B shows a clear global buckling

event with no previous local buckling. In this case, the extrapolation of the buckling load

for shell specimen B would have provided an accurate prediction under the nominal test

conditions of a dimpled hole.
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(a) End- shortening curve for specimen B

Figure 5.14 – End-shortening curve Specimen B

3rd test campaign: Specimen C

The third test article that underwent the test procedure completely was specimen C. The

summary of the ridges constructed in the different locations is shown in figure 5.15.

(a) Ridges for axial location 2 mm

below the hole
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(b) Ridges for axial location 3 mm

below the hole

(c) Ridges for axial location 4 mm

below the hole

(d) Ridges for axial location 5 mm

below the hole

Figure 5.15 – Summary of the ridges obtained at different locations azimuthally and axially
probed in specimen C
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(e) Relative error map for can SH19b

Figure 5.16 – Relative error maps for specimen C. The color coding is related to the accuracy of
the prediction provided by the ridge derived at each specific location.

The results from the probing data of specimen C show the same spread of extrapolations of the

buckling load found in specimens A and B. The same trend related to the distance to the hole

can also be observed in this case. The closer to the relevant imperfection, a hole in this case,

the higher the probability to obtain a good approximation of the buckling load. Nevertheless,

there also a small number of accurate predictions obtained away from the hole. The structure

in the ridges of specimen C is closer to the structure in the ridges present in specimen A. i.e.

there are not two distinct sets of ridges as it occurs with specimen B. The slopes of the ridges of

specimen C show a similar variability to that found in the slopes of the ridges of specimen A.

The end-shortening curve of specimen C of the final destructive test presents a single drop in

the axial force. This drop is associated the global buckling event. It is worthwhile noting the fact

that there is no local buckling event previous to the final global one. This is a difference with

respect to the behaviour observed for specimen A. This difference with respect to specimen

A might be related to the fact that a significant number of ridges of specimen C predict a

buckling load significantly lower than the one obtained in the final destructive test.

In the case of specimen C, a map summarising all the predictions has also been created.

This map is displayed in figure 5.16. It becomes evident in this map that there are accurate

predictions obtained far away from the localized imperfections as well as inaccurate ones

that occur in the vicinity of the local imperfection. The lack of correlation between distance

to the local imperfection and the quality of the prediction is shown more clearly in figure

5.17, where the relative error of the prediction is plotted as a function of the distance to the

localized imperfection. The correlation between quality of the prediction and distance to the
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local imperfection is more similar to the one shown by specimen A than by specimen B.

(a) Caption 2

Figure 5.17 – Poking maps for the different shells explored

In this case the testing of specimen C would have also provided a successful prediction of the

buckling load of specimen C under the test procedure used in the 1st and 2nd test campaigns.

The ridge obtained at 5 mm below the ridge and 0◦ delivered a very accurate prediction of the

buckling load with a deviation of only 0.7% from the real buckling load.

Figure 5.18 – End-shortening curve specimen C

Specimen C only presents a single drop in the end shortening curve as it can be observe in

figure 5.18.
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3rd test campaign: Specimen D

The fourth specimen that underwent the complete testing procedure is specimen D. In the

case of this test article, the behaviour is very similar to the one featured by specimen B. There

are two different clusters of ridges, which become evident in figures 5.20a, 5.20b and 5.19c.

The first cluster interpolates to the right buckling load, while the second interpolates to a

significantly higher one. Interestingly, the variation of the slope of the ridge as a function axial

load is lower for the ridges that extrapolate to the wrong buckling load.

(a) Ridges for axial location 2 mm below the hole

(b) Ridges for axial location 3 mm below the hole
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(c) Ridges for axial location 4 mm below the hole

(d) Ridges for axial location 5 mm below the hole

Figure 5.19 – Summary of the ridges obtained at different locations azimuthally and axially
probed in specimen D
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(e) Relative error map for can SH23

Figure 5.20 – Relative error maps for the different shells. The color coding is related to the
accuracy of the prediction provided by the ridge derived at each specific location.

Specimen D has been included to show a third case where the standard testing procedure

would have provided a good prediction. The standard procedure is the one were a single ridge

was built 5 mm below the hole to extrapolate the buckling load of a shell.

Furthermore, in the case of specimen D there is better a correlation between distance to the

local imperfection and the accuracy of the prediction. As for specimen B, a larger portion

of the landscapes constructed near the local imperfections provide an accurate predictions

when compared to specimen A. This decrease in accuracy for increasing distances to the

imperfection occurring for specimen D can be assessed in the relative error map featured in

figure 5.20.

Following the same approach as in the other specimens, the data from the relative error map

has been plotted as an scatter graph. In this graph the relative error is plotted versus the

distance to the local imperfection as shown in figure 5.21.
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(a) Caption 2

Figure 5.21 – Relative error versus distance to the localized imperfection of the predictions of
buckling load for specimen D.

Figure 5.22 – End shortening curve for specimen D

Regarding the buckling behaviour of Specimen D, it is also characterised by a single global

buckling event as shown in the end-shortening curve of figure 5.22
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5.3 Conclusions

In the the current chapter a non-destructive method based on the construction of single stabil-

ity landscapes was demonstrated numerically. The non-destructive methodology was tested

in different test campaigns. It was found that the high success rate achieved in the numerical

implementation was not achievable in experiments. The limitation of the methodology is

linked to the reduced area sampled with the suggested non destructive testing methodology.

Hence, an extension of the local probing technique of the current chapter is suggested for the

next chapter. The suggested improvement consists in sampling multiple locations covering

the complete shell.

5.3.1 Numerical predictions

Numerical-based stability landscapes are able to predict the buckling load of cylindrical shells

with a hole of different sizes and no background imperfection. This finding opens new avenues

for buckling research as it enables researchers to replicate complete test procedures of shells.

Furthermore with the added value that an identical shell can be tested an infinite amount of

times.

5.3.2 Experimental work: 1st test campaign

Stability landscapes derived in the vicinity of a relevant local imperfection, a dimpled hole in

this case, are able to predict the buckling load of a cylindrical shell with a high success rate

(86%). Hence, stability landscapes revealed themselves as a useful tool to non-destructively

test non-idealised cylindrical shells and predict their buckling load.

The fact that the success rate is not 100% means that the stability landscapes are a promising

tool but it is not ready to be used as a reliable engineering tool to predict the buckling load of

cylindrical shells.

5.3.3 Experimental work: 2nd test campaign

In the 2nd test campaign carefully drilled holes were used as local imperfections. In order to

achieve more control in the implementation of the local imperfections the drilling technique

was modified with respect to the technique used in the dimpled holes of the 1st campaign.

The key outcome from the the 2nd test campaign is that the buckling predictions had a lower

success rate 25% in comparison to the 86% obtained in the 1st test campaign. Hence, the

predictions provided by stability landscapes created at a location close to a weaker (Bare

hole, 2nd test campaign) localized imperfection have a lower predictive capability than the

predictions arising from stability landscapes constructed close to s stronger local imperfection

(Dimpled hole, 1st test campaign) .

148



5.3. Conclusions

5.3.4 Experimental work: 3r d test campaign

In the 3r d test campaign it was observed that the relative error of the buckling load predictions

as a function of the distance to the imperfection is not a monotonic function. There are

accurate predictions of the buckling load that occur far away from the localized dominant

imperfection as well as inaccurate ones obtained close to the imperfection.

Nevertheless, there is a higher density of accurate predictions in the vicinity of a dominant

local imperfection imperfection.
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6 Predicting buckling of imperfect cylin-
drical shells

The initial picture about the relevance of localised imperfections and local behaviour is more

complex than anticipated in the case of real cylindrical shells. This has been made evident in

the previous chapters, particularly in chapters 4 and 5. In chapter 4 it was shown that local

and long range background imperfections can not and should not be disentangled. This fact

makes the buckling load of a cylindrical shell a function of both kinds of imperfections. In

chapter 5 the variations in accuracy of predictions around a dominant local imperfection and

the varied success in predicting buckling showed that local imperfections play an important

role but do not control buckling for every case.

This view where the buckling load of a cylindrical shell depends on the background and the

local imperfections is not necessarily opposed to the experimental evidences about localisa-

tion shown in chapter 4. In fact, in the same chapter it was shown that local modifications

of geometry can only modify the buckling process to a certain degree. The buckling load of

cylindrical shells is affected by non-localised imperfections independently of the size of the

local defect.

Furthermore, in chapter 5 it was shown that the local argument might not be as solid as

claimed in Abramian et al. (2020). The buckling load predictions based on stability landscapes

constructed at a proper location (near a dominant imperfection) are able to predict the

spontaneous buckling load of a cylindrical shell with a very high degree of accuracy in most

of the cases (Abramian et al., 2020; Virot et al., 2017). However, some cases still provided

inaccurate predictions.

In the three experimental campaigns discussed in chapter 5, there were subsets of cases where

the predictions of buckling loads delivered wrong values. The existence of these cases where

stability landscapes provided inaccurate predictions forced us to investigate more deeply the

phenomena occurring when a cylindrical shell undergoes a poking experiment. In essence,

the aim would be to understand why the predictions work in some cases and do not work in

others.
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To that aim, a set of carefully controlled and monitored experiments would be the optimal tool.

The experimental data from chapter 5, although very meaningful, required a large amount of

samples and long testing periods. Hence, to be more time efficient and have access to carefully

controlled and monitored experiments, the best approach is given by in-silico experiments.

These experiments are similar to the ones from section 5.1.1, based on finite elements. In order

to have meaningful in-silico experiments, a representative finite element model is required. It

will be introduced in the next section.

6.1 Finite element analog of real cylindrical shells

This finite element model used in the present chapter includes realistic synthetic imperfections

created following the approach to replicate real shell background imperfections presented in

chapter 4. In addition to the background imperfection, a local one was introduced to have

a geometrical configuration that resembled as much as possible the one of the shells experi-

mentally tested, see chapter 5. Thus, a 1 mm diameter hole was used as a local imperfection

and, around the hole, a 5 mm by 5 mm Gaussian dimple was introduced to replicate the

geometry of the 1s t test campaign of chapter 5. Hence, the final finite element model used in

this chapter is a combination of the realistic model of the shell from chapter 4 and the model

for the probing in-silico experiments of chapter 5. During the current research an Abaqus

plug-in was created to automate the constructions of all the finite element models. The code

can be found in appendix A.

In order to obtain a behaviour in the analog finite element model similar to that of the real

test, a numerical study consisting of synthetic probing experiments of shells was carried

out. In this in-silico experiments, a similar behaviour was obtained. i.e. in a subset of the

specimens, the buckling loads were predicted accurately (specimens Ax in table 6.1), while

in other cases the predictions were inaccurate (specimens Bx in table 6.1). A summary of

these in-silico experiments can be seen in tables 6.1 and 6.2. The data presented in tables

6.1 and 6.2 is not the complete population of synthetic poking tests. The total population

was 71 specimens, where only the 15 specimen A cases, shown in tables 6.1 and 6.2, provided

successful predictions. Thus, the success rate was 21%.

The criteria to select this population of working predictions (specimens Ax) is to understand

if there is a common factor between them. The smaller segment of the non-working ones

(specimens Bx) are going to be used to find counter examples to challenge the hypotheses and

try to explain why the predictions work or not work. The main outcome of the current research

would be a non-destructive procedure to test cylindrical shells using stability landscapes. This

procedure should ideally be based on one or several of the hypotheses formulated and tested

in the upcoming sections provided their validity is confirmed.

Specimen ID Buckling load Buckling load Linear buckling

Displacement Control (N) Load Control (N) prediction (N)

Specimen A1 996 996 1067
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Specimen A2 891 891 1102

Specimen A3 908 909 1035

Specimen A4 842 842 932

Specimen A5 832 832 830

Specimen A6 948 948 1180

Specimen A7 954 954 1087

Specimen A8 1192 1192 1648

Specimen A9 899 899 1134

Specimen A10 1007 1007 1259

Specimen A11 793 794 871

Specimen A12 829 829 900

Specimen A13 993 992 1201

Specimen A14 1071 1067 1152

Specimen A15 981 980 1074

Specimen B1 787 789 867

Specimen B2 826 825 819

Specimen B3 843 843 972

Specimen B4 728 729 757

Specimen B5 940 940 871

Table 6.1 – Buckling loads predicted by different methodologies. The values from the second
column are derived via imposing an ever increasing compression force until the buckling
point is reached. In the third column the axial compression is imposed via a displacement. In
the last column the value correspond with the results of a linear stability analysis

Note that the linear buckling prediction using the unloaded state as a reference state provides

a buckling load estimation that is larger than the real buckling load. However, there are cases

where this does not happen. In the cases where the linear stability prediction under-predicts

the buckling load, the end-shortening curves present a noticeable change of slope before

the main collapse associate with the global buckling event. The slope of the end-shortening

curves becomes smaller until the point of collapse is reached. This behaviour is in line with the

explanation in chapter 3 about linear stability. Linear stability analysis around the unloaded

base state is a good tool if the response of structure is linear. However, linear stability analysis

breaks down or would need to use a reference base state closer to the maximum load to

provide a reasonable prediction of the buckling load.

Specimen ID Buckling load Buckling load Deviation Accurate prediction

(N) prediction (N) (N/%) X/ 7

Specimen A1 996 1028 32/3.21 X
Specimen A2 891 896 5/0.56 X
Specimen A3 908 902 6/0.66 X
Specimen A4 842 844 2/0.24 X
Specimen A5 832 831 1/0.12 X
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Specimen A6 948 961 13/1.37 X
Specimen A7 954 961 7/0.73 X
Specimen A8 1192 1191 1/0.08 X
Specimen A9 899 910 11/1.22 X

Specimen A10 1007 1046 39/3.87 X
Specimen A11 793 831 38/4.79 X
Specimen A12 829 831 2/0.24 X
Specimen A13 993 993 0/0.00 X
Specimen A14 1071 1091 20/1.87 X
Specimen A15 981 992 11/1.12 X
Specimen B1 787 8095 7308/928.59 7

Specimen B2 826 1500 674/81.60 7

Specimen B3 843 ∞ ∞/− 7

Specimen B4 728 1445 717/98.49 7

Specimen B5 940 1180 240/25.53 7

Table 6.2 – Buckling loads of the in silico experiments compared to the predicted values with
the stability landscape extrapolations and the capability to accurately predict the maximum
compression load the different cylindrical shells can carry. The success criteria to consider a
prediction successful has been set to a maximum deviation of 5% between the prediction and
the real buckling load. The ridges and extrapolations used in the prediction presented in this
table can be seen in appendix B.

.

Considering the data presented in tables 6.1 and 6.2, the in silico experiments behave like the

real experiments. Hence, the synthetic specimens are considered representative to explore the

mechanism dictating why the buckling load prediction works in some cases and not in some

other.

The current research has been done using the Abaqus commercial FE software. The utilization

of this code allowed to access the different states of the shell and to operate with the radial

displacement fields under different loading conditions. Hence, the utilization of the output

from Abaqus was key to develop the framework used in this chapter to understand under

which circumstances stability landscapes are able to provide accurate predictions of buckling

loads. Furthermore, the capability to access different states of different analyses enabled the

understanding of the contributions of the different loads to the radial deformation field that is

used to characterise the state of the cylindrical shells under study.

The approach to find the mechanism behind successful predictions is based on proving or

refuting a set of hypotheses based on observations of the synthetic experimental data. The

main observable of the experimental data is the radial displacement at different stages of

the in silico experiments. Using the radial displacements at the different stages of tests and

correlating it with different features of the stability landscape, the validity of each hypothesis

is investigated. The different hypotheses are presented and investigated in sections 6.2 to 6.6.
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6.2 Correlation between Probing location & Buckling Mode

The first hypothesis about why predictions of buckling loads are successful or not is the

following one: If the stability landscape is built at the location where buckling starts, the

prediction of the buckling load will be successful.

The traditional view about buckling initiation is that the location where the maximum dis-

placements occurs is the point of nucleation, i.e. the location where buckling starts (Hilburger,

2012). However, the correct approach to define where the buckling process begins is the

location where deformations occur once the maximum compression load is overcome, not at

the maximum load. The approach to visualize this variation of displacements is to subtract

the displacement field at the maximum compression load to the displacement field of the next

equilibrium point. This results in a radial displacement field that shows the initial growth of

the spacial structures of the buckling process, i.e. the buckling mode.

Figure 6.1 – Locations along the end shortening curve used for the construction of the buckling
mode. At point the maximum compression load is reached and point 2 is the next converged
step. The radial displacement at point 1 is subtracted from the radial displacement of point 2.

After defining the field that shows the buckling mode, it is important to verify that it remains

independent of the loading strategy. This independence of the loading strategy is depicted

in figure 6.2. In addition to this verification, one needs to introduce a normalization for the

different fields so they can be compared. The field normalization selected is presented in

section 6.2.1.
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(a) Maximum radial displacement plot under load control

conditions

(b) ĉ plot under load control conditions

(c) Maximum radial displacement plot under displace-

ment control conditions

(d) ĉ plot under load control conditions

Figure 6.2 – Radial displacement fields from the Specimen A5 shell showing that the maximum
displacement fields and the buckling mode are identical for the two different loading strategies,
load controlled and displacement controlled

6.2.1 Vector normalization

The radial displacement extracted form the finite element analysis w ′ can be expressed in

terms of a selected length scale. w ′ is expressed using a reference length scale L of 1mm. The

selection of 1mm as a length scale facilitates the coupling between the post-processing that

takes place outside of the finite element software and displacement fields obtained directly

from it. The formal expressions relating the different length-related variables with respect to

the selected length scale are presented in equations 6.1 and 6.2

w ′(x ′, y ′)

w ′ = Lw

x ′ = Lx

y ′ = Ly

(6.1)
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Lw = w(x ′, y ′)

= w(Lx,Ly)

w(x, y) = w ′(Lx,Ly

L

(6.2)

Once the reference length scale is selected, the next step is to define a norm and a normaliza-

tion for the different fields following equation 6.3.

|| ||2 : w −→ ||w ||2 ∈R (6.3)

In this case, the norm selected is a L2 norm of the radial displacement fields w following

equation 6.4.

||w ||2 =
√Ï

A
w2 d A (6.4)

||w ||2 =
√

〈w, w〉 (6.5)

With an inner product of the field w as shown in equation 6.6 for a continuous and a discrete

function on the left and right sides of the second equal sign, respectively.

〈wa , wb〉 =
Ï

A
wa wb d A = Ar ea

N M

∑
i j

wa i j wb i j (6.6)

In 6.6 the Ar ea (A) can be computed as given in equation 6.7.

Ar ea = (−πR

L
,
πR

L
)× (0,

l

L
) = (−a, a)× (0,b) (6.7)

Considering the definitions presented in equations 6.3 to 6.7 to obtain a norm of a field w

equal to 1 expression 6.8 must be fulfilled.

||w ≡ 1|| =
p

2ab
!=
√
α

∑
i j

w2
i j =

p
αN M (6.8)
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The condition that fulfills expression 6.8 is to use a parameter α according to equation 6.9.

αN M = 2ab ⇔α= 2ab

N M
(6.9)

6.2.2 Probing location & buckling mode correlation

Let us define the field ĉ as the normalized buckling mode of a cylindrical shell. The name

of buckling mode was selected because of the difference between radial displacement fields

used to construct ĉ. The difference between the radial displacement field associated with the

maximum radial displacement minus the radial displacement field from the next converged

after the maximum force is overcome determines the evolution of the buckling process.

Figure 6.3 shows the ĉ field of specimen A7. This test article provided a successful prediction

of the buckling load using the stability landscape methodology. The stability landscape was

built in the 0,48.5 point (see figure 6.3). Hence, there is a certain degree of correlation between

probing location and buckling mode. The structures of the ĉ overlap with the location of

probing. This case where correlation is observed therefore supports the hypothesis stated at

the beginning of the present section.

Figure 6.3 – ĉ of specimen A7. The probing location and the buckling mode are spatially
correlated in the case where the predictions are accurate.

Figure 6.4 shows the ĉ field of specimen B1. In this case the stability landscape methodology

provided an inaccurate prediction of the buckling load. The stability landscape was built a

the 0◦,48.5 point as well. Hence, there is no correlation between the probing location and

the buckling mode. This case where no correlation is observed also supports the hypothesis

stated at the beginning of section 6.2. In this case the prediction does not work and it should
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not work because the correlation stated at the beginning of 6.2 is not fulfilled.

Figure 6.4 – ĉ of specimen B1. The probing location and the buckling mode are not spatially
correlated in the case where the predictions are not accurate.

Lastly, figure 6.5 shows the ĉ field of specimen A11. For this specimen, an accurate prediction

of the buckling load was obtained using the stability landscape methodology. The stability

landscape was built in the 0◦,48.5 point. However, there is no correlation between probing

location and buckling mode. Thus, this case where no correlation is observed does not support

the hypothesis stated at the beginning of section 6.2. In this case the prediction does not work

but it should work for the hypothesis stated at the beginning of 6.2 to be fulfilled. Hence, this

is a counter example that refutes the validity of the hypothesis stated at the beginning of this

section.
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Figure 6.5 – ĉ of specimen A11. The probing location and the buckling mode should be spatially
correlated in the case where the predictions are accurate. However, in this case the correlation
does not exists.

6.2.3 Conclusions

Two examples that motivated the hypothesis formulation about the correlation between

probing location and buckling mode were shown in figures 6.3 and 6.4. However, a counter

example to the hypothesis was found in specimen A11. The field ĉ associated with this case is

shown in figure 6.3. Therefore, the hypothesis that if the probing location and the buckling

mode of a shell are correlated then a successful prediction based on stability landscapes can

be provided is refuted.

6.3 Correlation between ridge variation & buckling mode

The second hypothesis about why predictions of buckling loads are successful or not reads as

follows: If the buckling mode and the radial displacement field constructed from the difference

between two consecutive maxima of two poking curves (ridge variation) are correlated, then

the prediction of the buckling load will be successful.

6.3.1 Variation of radial displacement on the ridge

Let us consider u(FA,Dmax
p )−u(FA −∆,Dmax

p ), the radial displacement field calculated between

two consecutive points (FA and FA −∆) at the top of the ridge (Dmax
p ). This field represents the

direction in which the vector used for interpolation evolves as a function of axial compression

force. The resulting entity to evaluate the correlation is a radial displacement field. An

illustration of this vector in a stability landscapes is shown in figure 6.6.
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Figure 6.6 – Pictorial representation of the vector defining the variation of the radial displace-
ment of a cylindrical between two consecutive poking curves at the point where the reaction
of the poker is maximum, the ridge.

6.3.2 Correlations

The u(FA ,Dmax
p )−u(FA −∆,Dmax

p ) field of specimen A8 is displayed in figure 6.7. This case

provided a successful prediction of the buckling load using the stability landscape methodol-

ogy. The stability landscape was built in the 0◦,48.5 point. Hence, there is a certain degree of

correlation between the top of the ridge extrapolations and buckling mode. This case where

correlation is observed therefore supports the hypothesis stated at the beginning of the current

section.

(a) Specimen A8 ĉ buckling mode (b) Specimen A8 u(FA ,Dmax
p )−u(FA −∆,Dmax

p

Figure 6.7 – Example of fields that are spatially correlated supporting the hypothesis that when
the buckling mode and the vector defined along the top of the ridge in figure 6.6 are correlated
then predictions are successful. Specimen A8

Figure 6.8 shows the u(FA ,Dmax
p )−u(FA −∆,Dmax

p ) field of specimen B3. In this case, the

stability landscape methodology yielded an inaccurate prediction of the buckling load. In this

case there is no correlation between top of the ridge extrapolations and buckling mode. Hence,
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this case where no correlation is observed supports the hypothesis stated at the beginning of

section 6.3 as well since it provided an inaccurate buckling load prediction.

(a) Specimen B3 ĉ buckling mode (b) Specimen B3 u(FA ,Dmax
p )−u(FA −∆,Dmax

p

Figure 6.8 – Example of fields that are not spatially correlated supporting the hypothesis that
when the buckling mode and the vector defined along the top of the ridge in figure 6.6 are not
correlated then predictions are not successful. Specimen B3

Figure 6.9 shows the u(FA ,Dmax
p )−u(FA −∆,Dmax

p ) and ĉ fields of specimen A15. This case

provided an accurate prediction of the buckling load using the stability landscape methodology.

This case where no correlation is observed between the fields does not support the hypothesis

stated at the beginning of section 6.3. In this case the correlation does not work but it should

work for the hypothesis stated at the beginning of the section to be fulfilled. Hence, this case is

a counter-example that refutes the validity of the hypothesis stated at the beginning of section

6.3.

(a) Specimen A15 ĉ buckling mode (b) Specimen A15 u(FA ,Dmax
p )−u(FA −∆,Dmax

p

Figure 6.9 – Example of fields that are not spatially correlated refuting the hypothesis that
when the buckling mode and the vector defined along the top of the ridge in figure 6.6 are
correlated then predictions are successful. Specimen A15

6.3.3 Conclusions

For this hypothesis about the correlation between the top of the ridge vector and buckling

mode, two examples supporting it were shown in figures 6.7 and 6.8. Nevertheless, a counter
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example to the hypothesis was found for specimen A15. The fields u(FA ,Dmax
p )−u(FA −

∆,Dmax
p ) and ĉ associated with this item are shown in figure 6.9. Therefore, the hypothesis

that if the extrapolation of the tops of the ridge and the buckling mode of a shell are correlated

then a successful prediction based on stability landscapes can be provided has been refuted.

6.4 Correlation between filtered ridge variation & buckling mode

The third hypothesis about why predictions of buckling loads are successful or not is the

following one: If the buckling mode and the radial displacement field constructed from the

difference between two consecutive maxima of 2 poking curves without the contribution of

the pre-load deformation (filtered ridge variation) are correlated, then the prediction of the

buckling load will be successful.

6.4.1 Variation of radial displacement along the ridge filtered

Let us define a new field â as the radial displacement depicting the variation of the displace-

ment field without the contribution of the base state deformations. The radial displacement

field (u) can be constructed as the combination of the deformations due to the effect of the

axial load (ũ) and the deformation caused by the poking (û). The idea behind the third hypoth-

esis studied herein is that the contribution of the deformations in the shell prior to the lateral

probing (ũ) hide the effect of the deformations induced by the lateral probing (û). Hence,

the deformation coming just from the pre-load should be subtracted (ũ), i.e. filtered out. A

graphical depiction of the emerging vector (â) is displayed in figure 6.10.

Figure 6.10 – Pictorial representation of the vector â representing the variation of radial
displacement between two points at the top of the ridge subtracting the contribution of the
initial pre-load in the radial displacement.
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6.4.2 Correlations

Figure 6.11 shows the ĉ and â fields of specimen A8. This case provided a successful prediction

of the buckling load using the stability landscape methodology. In this case there is a certain

degree of correlation between the top of the ridge extrapolations without the contribution

of the pre-load deformations and the buckling mode. Hence, this case where correlation is

observed and provides an accurate prediction supports the hypothesis stated at the beginning

of the present section.

(a) ĉ (b) â

Figure 6.11 – Example of fields that are spatially correlated supporting the hypothesis that
when the buckling mode and the vector defined along the top of the ridge in figure 6.10 are
correlated then predictions are successful. Specimen A8

(a) ĉ (b) â

Figure 6.12 – Example of fields that are not spatially correlated supporting the hypothesis that
when the buckling mode and the vector defined along the top of the ridge in figure 6.10 are
not correlated then predictions are successful. Specimen B3

The ĉ and â fields of specimen B3 are depicted in figure 6.12. This case provided an inaccurate

prediction of the buckling load using the stability landscape methodology. In this case there

is no correlation between the top of the ridge extrapolations without the contribution of the

pre-load deformations and the buckling mode. Therefore, this case where correlation is not

observed and an inaccurate prediction is obtained also supports the hypothesis studied in
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this section.

Finally, figure 6.13 displays the ĉ and â fields of specimen A15. This case provided an accurate

prediction of the buckling load based on the stability landscape methodology. However,

in this case there is no correlation between the top of the ridge extrapolations without the

contribution of the pre-load deformations and the buckling mode. This case where correlation

is not observed and provides a successful prediction does not support the hypothesis stated at

the beginning of section 6.4.

(a) ĉ (b) â

Figure 6.13 – Example of fields that are spatially not correlated refuting the hypothesis that
when the buckling mode and the vector defined along the top of the ridge in figure 6.10 are
correlated then predictions are successful. Specimen A15

6.4.3 Conclusions

In the present section two examples that supported the hypothesis formulation about the

correlation between the top of the ridge vector without the pre-load radial deformations

and buckling mode were shown in figures 6.11 and 6.12. However, a counter-example to

the hypothesis was found in specimen A15. The fields ĉ and â associated with this case are

depicted in figure 6.13. The hypothesis that if the extrapolation of the tops of the ridge without

the contribution of the pre-load deformation and the buckling mode of a shell are correlated

then a successful prediction based on stability landscapes can be provided was refuted.

6.5 Correlation between filtered ridge variation & ridge orthogonal

probing

The fourth hypothesis about why predictions of buckling loads are successful or not reads as

follows: If the field associated with vector â and the field arising from the difference between

two points at the top of a poking curve with constant axial pre-load are correlated, then the

prediction of the buckling load will be successful.
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Variation of radial displacement at the top of the ridge for constant pre-load

Let us consider b̂, the new vector introduced to evaluate the correlation from the present

hypothesis. It is a field containing the radial displacement depicting the variation of the radial

displacement field perpendicular to the ridge. Namely the variation in the radial displacement

field existing between the converged solutions of the in-silico experiments immediately before

and after the maximum of one of the poking curves. A poking curve is constructed with the

radial force obtained during the probing of the shell at a fix compression load. In each of

the points of a poking curve, there is a unique radial displacement field associated to it. A

graphical representation of the direction described by field b̂ is shown in figure 6.14.

Figure 6.14 – Pictorial representation of the vector containing the information about the
variation in radial displacement between two points before and after the top of the ridge for a
certain poking curve.

6.5.1 Correlations

Figure 6.15 shows the â and b̂ fields of specimen A3. This case provided a successful prediction

of the buckling load using the stability landscape methodology. In this case there is a certain

degree of correlation between the top of the ridge extrapolations without the contribution of

the pre-load deformations and the field orthogonal to the ridge associated with b̂. This case

where correlation is observed and a successful buckling load prediction is obtained supports

the hypothesis stated at the beginning of the present section.
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(a) b̂ (b) â

Figure 6.15 – Example of fields that are spatially correlated supporting the hypothesis that
when â and b̂ are correlated then predictions are successful. Specimen A3

Figure 6.16 shows the â and b̂ fields of specimen B1. This case provided an inaccurate pre-

diction of the buckling load using the stability landscape methodology. In this case there is

no correlation between the top of the ridge extrapolations without the contribution of the

pre-load deformations and the field orthogonal to the ridge associated with b̂. Nece, this case

where correlation is not observed and an inaccurate prediction was obtained also supports

the hypothesis stated at the beginning of section 6.5.

(a) b̂ (b) â

Figure 6.16 – Example of fields that are not spatially correlated supporting the hypothesis that
when â and b̂ are not correlated then predictions are not successful. Specimen B1

Lastly, figure 6.17 shows the â and b̂ fields of specimen A6. This case provided an accurate

prediction of the buckling load using the stability landscape methodology. In this case there

is no correlation between the top of the ridge extrapolations without the contribution of the

pre-load deformations and the field orthogonal to the ridge associated with b̂. This case where

correlation is not observed even though it provided a successful buckling load prediction is

therefore against the hypothesis stated at the beginning of this section.
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(a) b̂ (b) â

Figure 6.17 – Example of fields that are not spatially correlated refuting the hypothesis that
when â and b̂ are correlated then predictions are successful. In the case of Specimen A6 the
prediction was successful

6.5.2 Conclusions

In the present section two examples that supported the hypothesis about the correlation

between the top of the ridge vector without the pre-load radial deformations and the field

orthogonal to the ridge associated with b̂ were shown in figures 6.15 and 6.16. However, a

Specimen A6 provided a counter-example to the hypothesis. The fields ĉ and ĉ associated

with this case are displayed in figure 6.17. The hypothesis that if the extrapolation of the tops

of the ridge without the contribution of the pre-load deformation and the field orthogonal

to the ridge associated with b̂ of a shell are correlated then a successful prediction based on

stability landscapes can be provided is thus refuted.

6.6 Correlation between ridge orthogonal probing & buckling mode

The fifth hypothesis about why predictions of buckling loads are successful or not is the

following one: If the fields associated with vector b̂ and ĉ are correlated, then the prediction of

the buckling load will be successful.

6.6.1 Correlations

Figure 6.18 shows the b̂ and ĉ fields of specimen A7. This case provided a successful prediction

of the buckling load using the stability landscape methodology. In this case there is a certain

degree of correlation between the field orthogonal to the ridge associated with b̂ and the

buckling mode. This case where correlation is observed therefore supports the hypothesis

stated at the beginning of section 6.6.
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(a) ĉ (b) b̂

Figure 6.18 – Example of fields that are spatially correlated supporting the hypothesis that
when buckling mode and b̂ are correlated then predictions are successful. Specimen A7

Figure 6.19 shows the b̂ and ĉ fields of specimen B4. This case provided an inaccurate pre-

diction of the buckling load using the stability landscape methodology. In this case there is

no correlation between the field orthogonal to the ridge associated with b̂ and the buckling

mode. This case where correlation is not observed and an inaccurate buckling load prediction

is obtained also supports the hypothesis stated at the beginning of the present section.

(a) ĉ (b) b̂

Figure 6.19 – Example of fields that are not spatially correlated supporting the hypothesis that
when buckling mode and b̂ are not correlated then predictions are not successful. Specimen
B4

Finally, figure 6.20 shows the b̂ and ĉ fields of specimen A10. This case provided an accurate

prediction of the buckling load using the stability landscape methodology. In this case there is

no correlation between the field orthogonal to the ridge associated with b̂ and the buckling

mode. This case where correlation is not observed and a successful prediction is obtained is

thus against the hypothesis stated at the beginning of section 6.6.
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(a) ĉ (b) b̂

Figure 6.20 – Example of fields that are not spatially correlated refuting the hypothesis that
when buckling mode and b̂ are correlated then predictions are successful. Specimen A10
provided a successful prediction

6.6.2 Conclusions

In this section two examples that supported the hypothesis about the correlation between

the top of the ridge vector without the pre-load radial deformations and buckling mode were

shown in figures 6.18 and 6.19. However, a counter-example to the hypothesis was found

for specimen A10. The fields ĉ and b̂ associated with this case are shown in figure 6.20. The

hypothesis that if the extrapolation of the field orthogonal to the ridge associated with b̂ and

the buckling mode of a shell are correlated then a successful prediction based on stability

landscapes can be provided is therefore refuted.

6.7 Extending local probing to complete cylindrical shells

In the previous sections the attempt to uncover the reason why the buckling load extrapo-

lation works in some cases and it does not in others was not successful. Hence, in order to

understand if the stability landscape is able to predict the buckling load of any cylindrical

shell, an alternative procedure for testing was proposed. This alternative procedure consists

of probing the cylindrical shell in a grid of points covering the complete domain. The aim

is to construct a stability landscape in each of the locations and assess the accuracy of the

predictions at those different points.

This new approach will be demonstrated with one of the synthetic specimens used in the

previous sections. The case selected is one that did not provide an accurate prediction (Relative

error with respect to the real buckling load greater than 5%) of the buckling load. The reasoning

using one specimen that did not work is to try to find a location that would provide an accurate

prediction.
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6.7. Extending local probing to complete cylindrical shells

Figure 6.21 – Ridges extrapolating to different buckling loads. Specimen E used the imperfec-
tion configuration of shell NL L 1, this shell was tested with the standard testing procedure
and delivered a wrong buckling load prediction.

Figure 6.22 – Relative error map showing the accuracy of the predictions an the location of the
locations where the predictions were constructed. The circle in the center is the location of
the local imperfection. The ridge constructed 5 mm below the hole provided a buckling load
prediction of 8095 N , leading to a relative error of 928 %.
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Chapter 6. Predicting buckling of imperfect cylindrical shells

Figure 6.23 – This plot of distance versus relative error for specimen E shows that there are cases
where the prediction can be successful far away from the local imperfection. The opposite is
also true, there predictions that are close to the imperfection that provide wrong predictions.
In the case of this imperfection, the standard prediction provided a wrong load prediction just
5 mm from the localized imperfection

The in-silico experiment was performed with Specimen B1. The ridges that where found

at different locations are given in figure 6.21. Note that not all locations probed provided

a stability landscape with a clear ridge feature. The predictions provided by each ridge are

shown then in the relative error map in figure 6.22. The quality of the prediction of buckling

load as a function of the distance to the localized imperfection is also presented in figure 6.23.

There are 8 locations where the relative error with respect to the real buckling load of Specimen

B1 is below 5%. Out of the 30 locations probed only 14 provided an stability landscape that

could be used to extrapolate to a buckling load.

The locations from figure 6.22 that provided accurate prediction of the buckling load are more

common in the middle section of the cylindrical shell. There are predictions that are are

accurate far away from the localized imperfection represented by the black circumference of

figure 6.22.

6.7.1 Conclusions

The data presented in figures 6.22, 6.23 and 6.21 shows that the alternative methodology

proposed in this section is able to successfully predict the buckling load of Specimen B1. This

fact suggests that in the case of Specimen B1 the probing at multiple locations is a better

technique than the introduction of a localized imperfection to determine the location to
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6.8. Conclusions

construct the stability landscape.

6.8 Conclusions

The mechanism behind the accurate predictions based on a single location remains unclear.

A set of five hypotheses have been tested. During their verification process, different examples

were found where the the hypotheses were satisfied. However, counter-examples were also

present. Hence, no clear conclusion could be drawn about what makes predictions based on

the stability landscape work only for some cases.

On the other hand, a specimen that failed to deliver an accurate prediction was tested in mul-

tiple locations with the same stability landscape methodology and in this case the prediction

was successful. This fact suggests that a non-destructive methodology for cylindrical shells

could be possible via performing probing experiments at different locations.
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7 Conclusions

7.0.1 Dynamical systems approach applied to shell buckling

The behaviour of a cylindrical shell was modelled as a dynamical system applying the same

concepts used in fluid dynamics to study turbulence and laminar-turbulent transition. The

description of the cylindrical shell allowed for a fully non-linear characterization of the system.

This later fact provided the possibility to study cylindrical shell buckling as a finite amplitude

problem to characterize the basin of attraction associated with the different fix points of

the system. Furthermore, the description of cylindrical shell buckling as a finite amplitude

problem enables the definition of the critical perturbation that triggers buckling for sub-critical

loads.

Dynamically unstable localized equilibrium solutions that have not been previously reported

in the literature have been identified. These localized solutions lay in the boundary of the

basin of attraction. The single dimple solution has a single unstable eigen-mode associated to

it, making it an edge state of the system. In a variational system like the one of the cylindrical

shell, this edge-state might be the minimum perturbation to exit the basin of attraction.

The concept of basin of attraction in state space can be used as a motivation to experimentally

explore the point where it vanishes. The variation in size of the basin of attraction with axial

compression has been shown herein. This was the foundation for the utilization of stability

landscapes constructed experimentally as a prediction tool of the buckling load of cylindrical

shells.

The dynamical system describing the cylindrical shell based on the DMV shell approximation

shows a feature called homoclinic snaking under the continuation of the axial load parameter.

This is a feature in common with other physical systems that can sustain localized solutions.

The first rung state in the system was also found. Rung states are the non-symmetric states

connected to the two branches present of the homoclinic snaking.
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Chapter 7. Conclusions

7.0.2 Localized nature of cylindrical shell buckling

In the current research, it has been verified that the initiation of buckling is a local phe-

nomenon. The buckling process nucleates at a certain location, then it propagates through the

complete shell. Once a large portion of the shell is covered with dimples, these start to coalesce

and form larger ones. This later larger dimples are the deformation normally observed after

the buckling test is concluded. The experimental data showing this process was collected

using high-speed cameras during a set of destructive compression tests.

The large campaign of destructive compression testing of real shells with various hole sizes

showed that there are dimensions of a localized imperfection that do not affect the average

buckling load. i.e. the average buckling load of shells with small imperfections is very similar

to the one of a shell with no local imperfection. The relevance of local imperfection with

respect to the background, in the case of the specimens tested, is covered by the variability in

the buckling load due to the different realization of the background imperfections.

Localized deformations play a relevant role in the buckling of cylindrical shells. However,

they do not remove completely the influence of background imperfections in the buckling

load of cylindrical shells for any of the local imperfection sizes studied herein. The buckling

load of cylindrical shells is a function of both the localized and the background imperfections.

Furthermore, the final effect of these two kinds of imperfections on the buckling load of a

cylindrical shell is not a simple superposition of both imperfections, but a combined action.

In the study of realistic cylindrical shells with localized and background two regimes where

identified based on their relative influences. There is a regime where the influence of the

local imperfection dominates with respect to the one of the background imperfection. While

the second regime features the opposite behaviour. Hence, there is a threshold at which the

influence of imperfections changes prevalence. The background imperfection intensity of the

specimens used in the large test campaign of chapter 4 is in the regime where the background

imperfection prevails.

7.0.3 Stability landscapes

Stability landscapes are able to encode information about the stability of cylindrical shells.

The ridge feature of the stability landscapes can be used to extrapolate the axial load at which

the landscape vanishes. This load coincides with the buckling load of the cylindrical shell.

The predictive capability of stability landscapes was established via the utilisation of a finite

element model containing a single localized imperfection. In this case, the success rate was

100%. This ideal success rate is linked to the fact that there must be an axial compression force

where the stability landscape vanishes. Additionally, the nearly perfect nature of the finite

element model might enable sensing of the buckling event without the interference of the

background imperfections present in real shells.

After the numerical verification that stability landscapes are able to predict buckling, a number
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of experiments was set to study the system in the lab. The experiments consisted of the probing

of the shells at a single location in the first 2 of the 3 test campaigns. In the third campaign,

the shell was probed at a different location in the vicinity of the localized imperfections. The

results obtained showed that only in a portion of the real experiments the buckling load of

a shell could be predicted, opposed to the 100% success rate of the numerical model. The

success rate varied from 86% to roughly 20%. The two different success rates can be attributed

to a different implementation of the localized imperfection used to define the probing location.

The main learning outcome about the stability landscapes of real shells is that they are a

features of each individual point of a cylindrical shell. There was a noticeable variability be-

tween stability landscapes constructed at nominally identical locations of nominally identical

cylindrical shells. Hence, it can be said that a stability landscape is a unique signature of a

particular location of a cylindrical shell.

7.0.4 Non-destructive testing procedure of cylindrical shells

The buckling load of a cylindrical shell can be predicted in a non-destructive manner via

its characteristic stability landscapes. The testing procedure used in the current research

consisted of probing a shell at multiple locations. The proposed non-destructive technique

can be implemented numerically or experimentally. The test sequence followed is not relevant

for the numerical analysis. i.e. it does not matter if the landscapes are built in one go or if

individual poking curves are collected at each location before increasing to the next pre-load

level. In the case of the experiment, the testing sequence is however vital and it should consist

of the construction of individual poking curves at each location before increasing the pre-load.

In this way, two measurements can be taken to predict if the buckling force is close. First

evaluate if the maximum poking force is low and second verify that the next pre-load level is

below all the current extrapolations arising from the different locations.
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8 Further work

• Numerically derived state in the edge of cylindrical shells with defects: In the current

research, the existence of complex localized solutions was shown. These complex

localized solutions lay in a manifold that acts as a boundary between the un-buckled

and the buckled state, the edge. This next step should focus on demonstrating that this

same state space picture exists in the case of shells with defects. The validation of the

picture where the state space remains the same for a real shell would open the door to

demonstrating formally the existence of an optimal trajectory to transition between the

un-buckled and the buckled state.

• Minimal seed: In the field of laminar-turbulent transition there has been a lot of interest

to find the so-called minimal seed. This is the optimal perturbation in terms of energy

that will trigger a fluid to transition to the turbulent regime. In the case of the cylindrical

shell, because it is a variational system, the minimal seed corresponds with an edge

state of the system. Hence, the calculation of of the edge state associated with imperfect

cylindrical shells would be a potentially interesting approach to define worst case

imperfections.

• Advanced imaging of experiments:

The buckling event in cylindrical shells is very dynamic, with a characteristic time of

mili-seconds. Hence, to draw valid conclusions about the initialization of buckling,

high-speed imaging of the complete domain of the different experiments is required.

In this case, high-speed imaging would not only allow to locate the nucleation point

but also to understand more about the propagation of the event. This second point

becomes important once the effect of inertia is to be taken into account.

• Knowledge of real imperfections:

The documentation of the imperfections present in specimens tested via scanning of

their surface would be useful data to predict the buckling load of cylinders. These

imperfections could be included in finite element models to obtain the buckling load

179



Chapter 8. Further work

of cylinders non destructively. The same finite element models could also be used to

predict edge states of real cylindrical shells.

• Explore larger population with the non-destructive methodology suggested numeri-

cally and experimentally:

In the last chapter of the thesis, a multi-location probing technique was used to success-

fully predict buckling of a shell with realistic imperfections. Only one case was tested.

Hence, it would be very interesting to test a larger population of realistic shells with

a similar procedure. The application of the proposed non-destructive methodology

should also be evaluated in experiments.
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A Appendix A

During the current research a Abaqus plug-in was used for the following purposes:

• Generate parametric studies

• Implementations of probing procedure

• Implementation of random self-correlated imperfections

• Combinations of localized and global imperfections

The complete plug-in can be found in the following direction:

• Git Plug-In Link (Click here!!)
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B Appendix B

Figure B.1 – 2D projection of the ridge feature of the landscape associated with Specimen A1

Figure B.2 – 2D projection of the ridge feature of the landscape associated with Specimen A2
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Appendix B. Appendix B

Figure B.3 – 2D projection of the ridge feature of the landscape associated with Specimen A3

Figure B.4 – 2D projection of the ridge feature of the landscape associated with Specimen A4
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Figure B.5 – 2D projection of the ridge feature of the landscape associated with Specimen A5

Figure B.6 – 2D projection of the ridge feature of the landscape associated with Specimen A6

185



Appendix B. Appendix B

Figure B.7 – 2D projection of the ridge feature of the landscape associated with Specimen A7

Figure B.8 – 2D projection of the ridge feature of the landscape associated with Specimen A8
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Figure B.9 – 2D projection of the ridge feature of the landscape associated with Specimen A9

Figure B.10 – 2D projection of the ridge feature of the landscape associated with Specimen A10
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Figure B.11 – 2D projection of the ridge feature of the landscape associated with Specimen A11

Figure B.12 – 2D projection of the ridge feature of the landscape associated with Specimen A12
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Figure B.13 – 2D projection of the ridge feature of the landscape associated with Specimen A13

Figure B.14 – 2D projection of the ridge feature of the landscape associated with Specimen A14
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Appendix B. Appendix B

Figure B.15 – 2D projection of the ridge feature of the landscape associated with Specimen A15

Figure B.16 – 2D projection of the ridge feature of the landscape associated with Specimen B1
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Figure B.17 – 2D projection of the ridge feature of the landscape associated with Specimen B2

Figure B.18 – 2D projection of the ridge feature of the landscape associated with Specimen B3
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Figure B.19 – 2D projection of the ridge feature of the landscape associated with Specimen B4

Figure B.20 – 2D projection of the ridge feature of the landscape associated with Specimen B5
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