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Abstract— Speed of sound estimation in ultrasound
imaging is a growing modality with several clinical applica-
tions such as hepatic steatosis stages quantification. A key
challenge for clinically-relevant speed of sound estimation
is to obtain repeatable values independent from superfi-
cial tissues and available in real-time. Recent works have
demonstrated the feasibility to achieve quantitative estima-
tions of the local speed of sound in layered media. However,
such techniques require a high computational power and
exhibit instabilities. We present a novel speed of sound
estimation technique based on an angular approach of
ultrasound imaging in which plane-waves are considered in
transmit and in receive. This change of paradigm allows us
to rely on refraction properties of plane-waves to infer local
speed of sound values directly from the angular raw-data.
The proposed method robustly estimates the local speed of
sound with only few ultrasound emissions and with a low
computational complexity which makes it compatible with
real-time imaging. Simulations and in vitro experimental
results show that the proposed method outperforms state-
of-the-art approaches with biases and standard deviations
lower than 10 m s−1, 8 times less emissions and 1000 times
lower computational time. Further in vivo experiments vali-
date its performance for liver imaging.

Index Terms— Angular Framework, Plane-Waves, Speed
of Sound Estimation, Ultrasound Imaging.

I. INTRODUCTION

IN ultrasound imaging, speed of sound estimation tech-
niques aim at measuring the speed at which an emitted

ultrasonic wave propagates in a medium. In case of a biologi-
cal medium, speed of sound relates to tissue characteristics and
its estimation yields several clinical applications, from hepatic
steatosis staging [1] to breast cancer detection [2]–[4]. In the
case of liver steatosis, several studies have demonstrated that
speed of sound values measured in the liver correlate well with
histological fat score [5], and more recently to fat fraction and
steatosis grade [6]–[9]. Nevertheless, it is not broadly adopted
in clinical practice due to the lack of a technique that is both
easy to use and reliable.
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The first speed of sound estimation techniques in pulse-
echo ultrasound imaging appeared forty years ago, making
use of several transducer arrays [10] or probe displacements
[11]–[13]. They tracked time of flight of ultrasonic beams,
refraction or deformations, and yielded a good correlation with
histological grades [5] but were difficult to apply clinically.

More recently, several methods involving a single ultrasonic
probe have been proposed. They rely on the hypothesis of an
homogeneous speed of sound in the medium. Several are based
on the shape of the measured delay profiles of ultrasonic waves
coming from the medium [14], while others find the speed of
sound that maximizes a coherence-based criterion [15]. Such a
criterion is typically based on the Van-Cittert-Zernike theorem
[16]–[18]. Further methods search for the speed of sound that
optimizes focusing properties [19], entropy [20], or investigate
image deformations during compounding [21].

However, such techniques cannot measure the speed of
sound of a given region independently from shallower tissues.
They rather measure the round-trip propagation time of the
ultrasound wave between the probe (positioned at the skin
surface) and the region of interest, and output the correspond-
ing average speed of sound, which is equal to the local speed
of sound plus a bias caused by superficial layers. We call such
methods average methods or integrated methods.

To tackle this problem, a novel framework has been intro-
duced by Jaeger et al. [22], in which a tomographic inverse
problem is solved in order to retrieve a map of local speed
of sound from integrated measurements. Later developments
have reduced artifacts, unlocked in vivo applications [23]–[27],
generalized the framework to other physical models [28]–[31],
to different array geometries e.g. convex probes [32], and have
been validated clinically [9].

In the context of hepatic steatosis assessment, clinicians
are interested in quantitative speed of sound values within
regions of interest of the liver. While desirable in some cases,
a fine-grained map of speed of sound values is not required.
As a result, specific methods have appeared in the last five
years, making profit of the layered geometry of the liver
and overlying tissues to compensate for superficial tissues. A
first class of approaches use prior knowledge of superficial
layers [15] or rely on prior segmentation of such layers [33],
but the need for such priors makes them too complex to be
used in most cases. Others simplify the tomographic inversion
approach mentioned earlier to a one dimensional scenario
where the inversion is only performed in the axial direction
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[34]–[37]. Nevertheless, to the best of our knowledge, all
existing methods are based either on the derivation or on the
compensation of average methods, leading to instabilities in
practice.

We propose a new speed of sound estimation method that
yields robust and accurate local measurements. This method
requires only a few plane-wave emissions, is compatible with
real-time imaging, and does not suffer from instabilities in
deeper regions. Indeed, the proposed method is neither based
on derivation nor on inversion of average estimations, but
leverages refraction, a local physical phenomenon, to retrieve
directly the local speed of sound. More specifically, as the
local steering angle of a plane-wave is affected by speed of
sound changes through refraction, we recover the local speed
of sound by estimating the local steering angle.

The remainder of the paper is organized as follows. Theo-
retical aspects related to the proposed method are described in
Section II. Experiments and results are detailed in Sections III
and IV and discussed in Section V. Concluding remarks are
drawn in section VI.

II. THEORY

A. Notations and Basic Considerations
We consider a linear ultrasound probe composed of M

ultrasonic transducers regularly arranged along a line. We
note xj the lateral position of transducer j on this line. Each
transducer, upon electrical excitation, generates an acoustic
pulse h(t) that is supposed to be a gaussian pulse of central
pulsation ωc and standard deviation σ:

h(t) = e−
t2

2σ2 ejωct, (1)

using the hilbert notation.
We transmit a planar wavefront within the medium by

applying the following linear delay profile to the transducers
elements:

τj =
xj sinα

cth
, (2)

where cth is a default speed of sound (assumed to be
1540 m s−1 in most cases) and α is the so-called steering angle.
Under the wavefront assumption, we assume that such a planar
wavefront propagates in a unique direction α.

During its propagation, the generated wave is scattered by
the medium. In most biological tissues, the main scattering
regime is called speckle and is caused by microscopic granular-
ity of typical size significantly smaller than the wavelength of
the ultrasound wave. We model the reflectivity of such tissues
statistically using a density function χ(r), where r represents
the position in the medium.

As the wavefront is scattered, reflected waves propagate
back to the probe where they are recorded and processed.
Traditionally, they are delayed and summed to focus on
specific points of interest by means of a so-called beamforming
algorithm [38]. In this work, we implement a different strategy
since we receive plane-waves, in a similar way to the strategy
used in transmit. To receive a steered plane-wave of angle β,
we delay the element-raw-data {sj(t)}1≤j≤M recorded by
each transducer element with a linear delay law and we

sum the delayed signals, as in the standard delay-and-sum
algorithm, such that:

s(t) =
∑

1≤j≤M

sj

(
t− xj sinβ

cth

)
. (3)

As for the transmit, this reception strategy is equivalent to
selecting a unique direction in the received echoes.

We now introduce two key quantities for the understanding
of the proposed method: the mid-angle γ = (α+β)/2 and the
half-angle difference δ = (α−β)/2 (angles are defined using
the trigonometric convention, i.e. positive in the anticlockwise
direction). Such quantities are displayed in Fig. 1a.

We consider a medium Ω composed of a superposition of
N horizontal layers. We note ci the speed of sound in the i-th
layer. We position our linear probe on top of this medium.
Such a configuration is represented in Fig. 1b.
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Fig. 1. (a) Definition of the mid-angle γ and of the half-angle-difference
δ upon transmission of angle α and reception of angle β. (b) Example
of a refraction configuration. The linear probe is represented on top, with
filled square for transducers. Underneath is the imaged medium, made
of several layers.

As the speed of sound in the medium may not match the
default speed of sound used in (2), we denote by −th all the
quantities based on the default speed of sound cth. If the speed
of sound in the shallowest layer c1 is different from cth, the
steering angle in the first layer α1 will be different from αth.
By geometric considerations, we obtain that αth, α1, cth and
c1 are linked by the formula:

sinαth

cth
=

sinα1

c1
. (4)

Moreover, at the interface of two different layers, it is
well known that ultrasound waves undergo refraction. Their
direction of propagation is directly affected by the values of
speed of sound in each layer. More specifically, at the interface
between layers i and i + 1 for i ∈ [1, N − 1], noting αi the
steering angle in the i-th layer, Snell’s law of refraction states
that:

sinαi+1

ci+1
=

sinαi

ci
, ∀i ∈ [1, N − 1]. (5)

Using (4) and (5) and a recursion on the layers, we obtain
that:

sinαth

cth
=

sinαi

ci
, ∀i ∈ [1, N ]. (6)

Thus, since αth and cth are known, the problem of recover-
ing the speed of sound in the i-th layer amounts to estimating
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the steering angle αi of the planar wavefront in the i-th layer,
independently of all other layers.

Due to our specific angular transmit-receive strategy, Equa-
tion (6) is valid both in transmission and reception, and the two
directions must be taken into account to estimate accurately
the local speed of sound.

B. Theoretical Basis of the Proposed Speed of Sound
Estimation Method

The proposed method exploits discrepancies between two
angular-raw-data in order to infer local values of steering
angles. To do so, it relies on remarkable tomographic prop-
erties of speckle in angular-raw-data. These properties link
time scaling of angular-raw-data to local steering angles and
therefore to local values of speed of sound. Thus, by measuring
a scaling factor between two angular-raw-data, the proposed
method directly estimates the local value of speed of sound.

Consider a layer of interest in which the speed of sound is
uniform. We note this speed of sound cr and denote by −r all
associated quantities. For the sake of simplicity, we choose a
time origin as well as a spatial origin located at the top of this
layer, so that we only deal with the layer of interest without
having to handle offset constants.

We acquire a first signal s(t) from the transmission and
the reception of steered plane-waves of theoretical angles αth

and βth. Using a pulse-echo spatial impulse response model
[39] where standard hypotheses are made, e.g. neglecting
multiple scattering or transducers directivity, such a signal can
be expressed as :

s(t) =

∫∫

r

χ(r)h(t− τ(r))dr, (7)

where h is the emitted pulse described in (1), r is the position
in the medium, and τ(−) is the round trip time of flight. In the
angular framework, the round trip time-of-flight τ is defined
as:

τ(r) =
x sinαr + z cosαr

cr
+

x sinβr + z cosβr

cr
. (8)

With the trigonometric variable change of Fig. 1a applied
to real angles, we introduce γr and δr the mid-angle and
the half-angle-difference. We define the corresponding axial
coordinate ζ = x sin γr + z cos γr and lateral coordinate
ξ = z sin γr − x cos γr. With these new coordinates, we can
write r = (ζ sin γr − ξ cos γr, ζ cos γr + ξ sin γr). Using a
change of variable (x, z) → (ζ, ξ) in (7), we obtain:

s(t) =

∫

ζ



∫

ξ

χ (r) dξ


h

(
t− 2

ζ cos δr
cr

)
dζ. (9)

In this equation, the integral along ξ corresponds to the
integral of reflectivity function along a line of angle γr. It
can be reformulated using the Radon transform formalism as
Rχ(γr, ζ), the Radon transform of the reflectivity function χ
along angle γr at depth ζ. The external integration over the
variable ζ corresponds to the contribution along the direction

orthogonal to γr. With these new notations, Equation (9) can
be simplified as follow:

s(t) =

∫

ζ

Rχ (γr, ζ)h

(
t− 2

ζ cos δr
cr

)
dζ. (10)

As the reflectivity function is unknown, local steering an-
gles are well hidden in this signal. To recover their values,
we compare s(t) to another signal s′(t) obtained from the
emission and reception of a steered plane-waves of different
angles α′

th and β′
th. Similarly to (10), we obtain:

s′(t) =
∫

ζ

Rχ (γ′
r, ζ)h

(
t− 2

ζ cos δ′r
cr

)
dζ. (11)

The comparison between (10) and (11) reveals that if we
choose the steering angles such that γr = γ′

r, the signal s(t)
and s′(t) would be equal up to a factor and a rescaling. For
instance, under the simplification that h(t) is the Dirac delta
function, it can be easily shown that s(t cos δr) ∝ s′(t cos δ′r),
or equivalently s(t cos δr/ cos δ

′
r) ∝ s′(t). Hence, providing

that the scaling factor SF = cos δr/ cos δ
′
r can be measured

from s and s′, we can retrieve the true speed of sound using
(6) and a second order small angle approximation as described
in Supplementary-S-I, leading to:

cr ≈ cth

√
2
1− SF

δ2th − δ′2th
. (12)

In practice, we choose our theoretical angles such that γth =
γ′
th, which is equivalent to γr = γ′

r under the small angle
approximation. The use of (12) supposes that we are able to
compute the scaling factor SF accurately, which is in fact a
difficult task.

To do so, instead of a dirac simplification, we rely on the
temporal extent and oscillation of our gaussian pulse h(t).
We suggest the following two-step approach. First, the signals
s(t) and s′(t) are rescaled into ŝ(t) = s(t cos δth) and ŝ′(t) =
s′(t cos δ′th). At this point, the two signals are theoretically
re-aligned and equal, but a residual scaling factor may remain
due to the difference between theoretical and real angles. In a
second step, we measure this residual scaling as follows:

RSF :=
∂∠ ⟨ŝ(t)ŝ′(t)∗⟩

∂t
, (13)

where −∗ is the complex conjugation, ⟨−⟩ the averaging
operator and ∠− the phase operator. Such a scaling factor
embodies different operations that can be detailed for better
understanding. Intuitively, since ŝ(t) and ŝ′(t) are oscillating
signals, the phase of their correlation gives us information
about their relative time shift. The averaging process is used to
remove randomness induced by different speckle realizations.
Finally, a derivation is applied to extract the evolution of the
time shift, i.e. the residual scaling factor. Using speckle prop-
erties and the small angles approximation, we can demonstrate
that the residual scaling factor RSF defined above is equal to
(cf Appendix-A):

RSF ≈ ωc

2

(
1− c2r

c2th

)(
δ′th

2 − δ2th

)
. (14)
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This expression directly links the residual scaling factor to
the real local speed of sound value cr. It is interesting to
note that due to the derivation, this residual scaling factor
is independent to any phase offset that may be introduced
by unknown shallow tissues. It is therefore a local quantity.
We can indeed recover the exact location that corresponds to
a RSF measurement. The RSF is estimated via (13) from
⟨ŝ(t)ŝ′(t)∗⟩, which can be written as an integral of a gaussian
pulse (cf Appendix-A) centered around ζ = µtot ≈ crt/2.
Thus, a RSF computed at t roughly corresponds to the line
of angle γr with respect to the horizontal, that crosses the
central vertical axis x = 0 at z = crt/2.

The preliminary rescaling makes the RSF different from
the scaling factor SF mentioned in (12), thus leading to a
different speed of sound formula. In this case, we obtain from
(14) the following expression of the local speed of sound:

cr = cth

√
1−

2
ωc
RSF

δ′th
2 − δ2th

. (15)

Equation (15) is groundbreaking in two aspects. First, it en-
ables the extraction of the local speed of sound from refraction
effects in speckle. Refraction is most of the time neglected
in ultrasound imaging as it is a second order phenomenon
when using small angles. The precision given by the angular
transmit-receive strategy allows us to leverage this effect
reliably. Secondly, it links directly the local speed of sound
to the two signals acquired in the region of interest, in stark
contrast with state-of-the-art methods which most of the time
require the analysis of a large part of the medium and the
resolution of an optimization problem. The estimation process
does not require knowledge of superficial layers and can be
applied at any depth indifferently.

C. Proposed Speed of Sound Estimation Method

A summary of the presented method is given in Fig. 2.
First, a reasonable value of speed of sound cth =

1540m s−1 is considered. Then, two angle pairs (αth, βth)
and (α′

th, β′
th) are chosen so that they share the same mid-

angle (γth = γ′
th). In practice, we choose two pairs with not

too close squared half-angle-differences (|δ′2th − δ2th| > ϵ, with
ϵ = 0.015 rad2) in order to prevent instabilities in (15). Then,
the following steps are performed.

1) Two signals s(t) and s′(t) are acquired by transmitting
plane-waves of theoretical angles αth and α′

th and by
receiving along directions βth and β′

th using (3).
2) Angular signals s and s′ are rescaled into ŝ(t) =

s(cos δtht) and ŝ′(t) = s′(cos δ′tht).
3) The residual scaling factor RSF is computed from ŝ and

ŝ′ using (13), where the average is performed by taking
the mean of the correlation signal over 1 cm, windowed
by a hanning function, and the derivation is a simple
forward temporal difference.

4) The local speed of sound is deduced from RSF us-
ing (15).

This method only requires two plane-wave transmits and a few
processing steps with low computation complexity.

However, to increase the robustness of the method, we
decide to run it multiple times with different transmit and
receive angles. Each run gives us an estimate of the local
speed of sound. The different estimates are averaged to obtain
a more stable result. Empirical observations led us to transmit
15 angles ranging from -14° to 14° with 2° angle steps, as it
optimizes the trade-off between performances and number of
emissions. From the backscattered echoes of each transmitted
angle, we typically choose a hundred mid-angles ranging from
-15° to 15° thus defining a hundred receive angles that we
only consider if lower than 30°. We then gather these signals
in pairs that share a common mid-angle with not too close
half-difference angles, leading to a few thousands speed of
sound estimates, each associated with a specific line of angle
γr and depth ζ = crt/2. To preserve the spatial equivalence
between the image beamformed at cth and the estimated speed
of sound, we represent this line as a line of angle γth and depth
ζ = ctht/2. To combine all the estimates, we neglect all γth
(i.e. suppose all lines horizontal) and average the speed of
sound values at each depth. Such mixing affect the resolution
of the method, as a mid-angle of 15° can lead to a depth offset
up to 5mm on the edges of the region of interest. However,
the average offset is smaller than the half length of the hanning
window used for the correlation averaging and have therefore
a limited impact in our case.

In order to limit the lateral extension of the proposed
method, we use a lateral apodization in the reception step to
select a region of interest two centimeters wide.

The code of the resulting method is available at https://
github.com/E-Scopics/refraction-based-sos.

III. EXPERIMENTS

The performance of the proposed method is assessed against
two state-of-the-art approaches.

The first one is a coherence maximization technique, a
standard speed of sound estimation method first described
in [16] and implemented for instance in [15]. We label this
method average method as it estimates the average slowness
(inverse of the speed of sound) between the probe and a given
region of interest. The second one is the dix inversion method
proposed by Ali et al. [37], a layered approach that deduces the
local speed of sound from the output of the average method.
We used the python code from the github repository provided
by the authors. We tuned the regularization parameter to 109

to obtain a similar resolution than the proposed method while
maximizing the robustness and cropped profiles on both sides
to prevent border effects.

The proposed method is computed on a 15 plane-waves
dataset, and the two benchmark methods are computed on
a synthetic aperture dataset made of 128 single element
transmits. The three methods are compared on simulations,
in vitro and in vivo experiments.

A. Simulation
A five layered medium is simulated using k-Wave [40].

Ultrasonic speckle is generated with a random density distribu-
tion with small granularity. Five horizontal layers are defined
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Fig. 2. Summary of the proposed method. The technique is divided in three blocks. First, the acquisition block composed of the two transmissions
and receptions. Then, the residual scaling factor estimation block, were signal are scaled by a theoretical factor and compared. Finally, equation
(15) is applied to deduce the local speed of sound.

with speed of sound values typically encountered in vivo and
no attenuation. Their characteristics are reported in Table I.

TABLE I
SIMULATION LAYOUT: SPEED OF SOUND VALUES AND LAYER

THICKNESSES.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Speed of Sound (m s−1) 1540 1450 1580 1540 1480

Thickness (mm) 2 15 10 40 40

We simulate a 128-element linear probe of pitch 300 µm
which impulse response is approximated by a Gaussian pulse
(center frequency 5 MHz, relative bandwidth 66%) The full
synthetic aperture dataset is generated, and the plane-wave
dataset is synthesized a posteriori by summing the recorded
signals with linear delay laws. Radio frequency (RF) signals
are demodulated at 5 MHz and decimated to obtain complex
in-phase quadrature (IQ) signals.

The speed of sound estimation methods are compared
qualitatively by computing the speed of sound at various
depths and generating a profile along depth. The quantitative
comparison is performed between 30 mm and 60 mm, which
is in the fourth layer. Within this range, speed of sound is
estimated every millimeter, leading to 30 estimates for each
method. Means and standard deviations are computed to assess
biases and variabilities.

To evaluate the techniques in realistic settings, a noiseless
and a noisy configuration are considered. The noisy configura-
tion is obtained by adding a complex gaussian noise of power
equal to the plane-wave signal power to the final IQ signals.

In order to evaluate the real-time capability of the local
speed of sound estimation techniques, we compare the vari-
ability for different number of transmits, ranging between 2
and 100, in the two configurations. Transmit angles (respec-
tively elements) are chosen to be uniformly spaced within a
constant range of 30° (resp. 100 elements).

B. In vitro

The three methods are compared in vitro on a multipurpose
tissue mimicking reference phantom (Model 054GS, CIRS,
USA) whose ground truth speed of sound has been measured
at 1550 m s−1, used alone (uniform medium) or underneath a
homogeneous layer of gelified water measured at 1490m s−1,
either 22mm thick (bilayer 1) or 40mm thick (bilayer 2).

Ultrasonic pulses are emitted at 5 MHz using an E-Scopics
system equipped with a 128 elements linear probe of pitch
300 µm. Demodulated raw ultrasonic signals (IQ) are recorded
after low-pass filtering and decimation at 3.9 MHz. To compare
the three methods, we use an ultrasound transmission sequence
that alternatively emits single transducers and plane-wave
transmissions to record both datasets.

Estimation methods are compared qualitatively by comput-
ing the speed of sound profile along depth. For quantitative
results, three depth ranges are considered when possible,
namely 10 −30 mm, 30 −50 mm and 50 −70 mm. Speed of
sound is estimated every millimeter, and values are gathered
by ranges. Means and standard deviations are computed to
assess biases and variabilities.

C. In vivo
In vivo acquisitions are performed by imaging the liver of

healthy volunteers (in compliance with the ethical principles
of the Declaration of Helsinki 2018). Three different imaging
planes (typically intercostal, subcostal and epigastric) are
selected on four volunteers to study the reproducibility of
liver measurements for different configurations of superficial
tissues. For each imaging plane, the same acquisition setup
as for in vitro experiments is used but repeated ten times in
a 5 s long time interval to assess repeatability and robustness
against disturbances due to breathing, cardiac beats and probe
movements.

A 20 mm wide depth range is considered for each acqui-
sition and manually placed within the liver, trying to avoid
strong heterogeneities or reverberation artifacts.

Speed of sound is estimated within this range for each acqui-
sition. Mean and standard deviation across the ten acquisitions
are finally computed to assess the repeatability.

IV. RESULTS

In Fig. 3 is displayed the B-Mode image (leftmost plot)
corresponding to the noiseless simulation experiment along
with the speed of sound profiles (rightmost plot).

Different layers can be distinguished in the beamformed
image through visual assessment as speed of sound changes
imply acoustic impedance changes. On the right, the three
estimated profiles are compared to the ground truth. We
observe that the dix inversion method and the proposed method
both resolve the different layers and estimate accurately the
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Fig. 3. Simulation results in a noiseless configuration, with the B-mode
image on the left and the speed of sound profiles along depth on the
right. D.I. stands for the dix inversion method. First and last 5mm are
cropped to remove border effects of averaging and regularization.

local speed of sound. Both profiles appear smooth, with an
axial resolution of approximately 10mm. Such characteristics
are mainly driven by the averaging of the correlation for the
proposed method, and by the regularization term for the dix
inversion method. Furthermore, compared to the dix inversion
method, the proposed method stays stable along depth and
does not exhibit growing oscillations. As for the average
method, it yields estimates biased by superficial layers.

The noisy configuration is displayed in Fig. 4. We observe
that the average method is still biased and slightly less robust,
while the dix inversion method shows strong oscillations and
is no longer accurate. On the other hand, the proposed method
is still local, accurate and stable.
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Fig. 4. Simulation results in a noisy configuration, with the B-mode
image on the left and the speed of sound profiles along depth on the
right. D.I. stands for the dix inversion method.

Quantitative measurements are reported in Table II. They
reveal that in the noiseless case, the two local methods are

accurate within 2 m s−1 of the ground truth, whereas the
average method is biased by more than 20 m s−1. The proposed
method is about two times more robust than the dix inversion
method as highlighted by values of standard deviation. In
the noisy case, the dix inversion method performances are
significantly affected, with a variability five times higher than
in the noiseless scenario, whereas the proposed method is still
accurate within 2 m s−1 of the ground truth, and exhibits only
a slightly higher variability than in the noiseless case.

TABLE II
SIMULATION RESULTS

Ground
Truth

Average
Method

Dix Inversion
Method

Proposed
Method

Mean Std Mean Std Mean Std

Noiseless 1540 1515 4.7 1538 5.1 1538 2.5

Noisy 1540 1510 5.6 1546 25.0 1539 4.0

Mean and standard deviation of speed of sound measurements for the
three methods and two noise configurations. Values are expressed in
m s−1. Bold values indicate the best mean and standard deviation for each
configuration.

Finally, the variability of the dix inversion and the proposed
methods as a function of the number of transmits in the
noiseless and noisy scenarios is displayed Fig. 5. We observe
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Fig. 5. Speed of sound variations in the 30-60mm depth range for
different number of transmits, in noiseless and noisy configurations.
Noisy configurations are repeated 3 times with independent noise to
obtain 95% confidence intervals. Std values of Table II correspond to
one of these 3 realizations, with 128 transmits for the dix inversion
method and 15 transmits for the proposed method.

that in the noiseless case (circles), both methods could work
well with 5 transmits, with a slight advantage for the proposed
method. In the noisy scenario (triangles), the performances
of the proposed method stay roughly the same whereas the
dix inversion method shows a significant performance drop.
In the end, in the noisy case, the proposed method with 5
transmits performs better than the dix inversion method with
100 transmits.

Similarly, for the in vitro experiment, the beamformed
images are displayed on Fig. 6 alongside estimated speed
of sound profiles for the three configurations. Visually, the
average method is the most robust but is biased in the bilayer
cases, and the dix inversion method exhibits strong oscillations
near the interface and at high depths, which affects its ability to
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Fig. 6. In vitro results, with the beamformed image on the left and the compared profiles on the right, in three different configurations (from left to
right, uniform medium, bilayer 1 with interface at 22mm, and bilayer 2 with an interface at 40mm). Avg. stands for average method, D.I. for the dix
inversion method, Prop. for the proposed method and G.T. for the ground truth.

provide reliable local estimate of speed of sound. The proposed
method seems to exhibit the best compromise as it is unbiased
with reduced oscillations. Quantitative results are presented in
Table III for different depth ranges. In every configuration, the

TABLE III
In Vitro RESULTS

Average
Method

Dix Inversion
Method

Proposed
Method

Mean Std Mean Std Mean Std

Uniform
Medium

10-30 mm 1547 0.6 1548 4.3 1550 3.3

30-50 mm 1549 0.7 1553 6.3 1553 4.1

50-70 mm 1553 2.3 1560 54.8 1549 6.8

30-50 mm 1518 4.6 1555 12.2 1549 10.0
Bilayer 1

50-70 mm 1530 2.7 1560 29.3 1547 4.7

Bilayer 2 50-70 mm 1523 4.1 1568 18.1 1557 3.7

Mean and standard deviation of speed of sound measurements for the three
methods and different regions of interest in three different configurations.
Values are expressed in m s−1.

proposed method estimates accurately the calibrated phantom
speed of sound with biases lower than 7m s−1. Moreover, we
notice that the proposed method is more robust than the dix
inversion method, especially at high depths where the signal
to noise ratio (SNR) is the lowest.

In vivo results are displayed in Fig. 7. In this case, we com-
pare the three methods by plotting speed of sound estimates
along with the corresponding variability over ten acquisitions
for each situation. Regarding the box positioning, we relied
on a deeper region of interest for patient 4 as b-mode images
exhibit strong reverberation artifacts, and a shallower region
for the third acquisition of patient 3 whose b-mode image
revealed heterogeneities at 40 mm.

In vivo results, displayed in Fig. 7, show the difference
between the three methods. First, the average method is stable
and repeatable for each imaging plane, as shown by the
low uncertainty measured for each imaging plane (visually
assessed by the size of the errorbar in the rightmost plots of
Fig. 7). Two estimates show higher variability, likely caused
by motion between the acquisitions and closeness to the

superficial layers. However, estimated speed of sound varies
across imaging planes, as confirmed by the results of the
Welch t-test of independence which demonstrate significant
differences (p-value <0.001) in 4 cases among 12. This lack
of reproducibility can be understood as the average method
is not local and thus sensitive to speed of sound variations in
superficial layers. Secondly, the dix inversion method exhibits
a low repeatability, with variations of several tens meters per
second within the same imaging plane. This low reliability
makes any further statistical study difficult. Finally, the pro-
posed method exhibits a high repeatability for each imaging
plane (low standard deviations), and a high reproducibility
across imaging planes for the same volunteer (similar average
values for the three imaging planes for each patient).

We can therefore conclude that from a repeatability and
reproducibility point of view, the proposed method is the
only one that is reliable enough for in vivo speed of sound
quantification.

V. DISCUSSION

In this study, we present a speed of sound estimation method
based on refraction. This method detects the scaling between
signals caused by refraction, using tomographic and speckle
properties. We established a theoretical relationship between
the detected scaling factor to the actual local speed of sound
through a direct formula reported in equation (15). Although
the elemental algorithm only requires two signals extracted
from two plane-wave transmissions, a generalized version
making use of multiple signals extracted from 15 plane-wave
transmissions was tested experimentally.

Simulation results prove the ability of the proposed method
to estimate local speed of sound values from refraction effects
in speckle. Moreover, the absence of bias experimentally
validates the theoretical analysis and resulting formula (15).

The proposed technique is conceptually different from state-
of-the-art local speed of sound estimation methods. Indeed,
these methods traditionally measure quantities that relate to
the integrated slowness, like time of flight differences or a
global speed of sound, and extract the local speed of sound
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Fig. 7. In vivo study. One beamformed image for each imaging plane, for each volunteer is displayed on the left, with a red box delimiting the region
of interest. Speed of sound means and standard deviations over ten acquisitions are plotted via error bars on the right, for each estimation method.
* represents a p-value <0.001 in Welch’s t-test of independent means.

from such integral, by means of prior knowledge on superficial
layers, dix inversion or tomographic inversion. Our method, on
the other hand, cancels the cumulative effects with a derivation
and measures refraction, a local phenomenon.

The computed ultrasound tomography in echo mode method
(CUTE) described in [25] exhibits strong similarities with the
proposed method. Both emit plane waves, receive angularly
the echoes, map them to spatial coordinates (beamforming
for CUTE and scaling for the proposed method) and extract
phase differences using the common mid-angles strategy. The
extracted quantity, called phase-shifts in [25], relates strongly
to ∠ ⟨ŝ(t)ŝ′(t)⟩ used in (13). However, the processing chain
of the proposed method maximizes the angular accuracy at
the expense of lateral resolution whereas CUTE maximizes
the trade-off between angular accuracy and spatial resolution.
Indeed, phase-shifts are used in completely different ways.
CUTE leverages a ray-tracing approach to output a map of
local speed of sound from the accumulated slowness embedded
in phase shifts. Hence, lateral resolution is required for suf-
ficient conditioning. On the other hand, the proposed method
removes such cumulative effects by deriving phase shifts into
RSF and estimates the local speed of sound at the depth of
interest from refraction effects hidden in RSF . In this case,
the purely angular transmission-reception strategy is not only
optimal for phase shift accuracy but also magnifies refraction
effects.

Benchmarks show that the proposed method is reliable in
vivo, as opposed to the two methods we compared against.
First, global methods (e.g. the average method) are not local
and thus not repeatable. We observed biases of 10 to 30 m s−1,
but we believe that it can be far higher for overweight patients
that show more than 4 cm thick superficial layers. On the
other hand, most local methods (e.g. the dix inversion method)
are not robust enough in challenging situations (low SNR,

aberrations, movements), most likely due to the inversion
process that transform the global speed of sound into local
measurements. These issues are overcome by the proposed
method. Indeed, a higher SNR than single element transmis-
sions is allowed by plane-wave transmissions and reinforced
by the remarkable coherence in speckle brought by the angular
approach. Moreover, the choice to sacrifice lateral localization
in order to maximize angular precision in the proposed method
leads to robust and accurate phase shifts, which appear smooth
with reliable derivatives.

We noticed that the proposed method is sensitive to re-
verberation artifacts. This aspect is under study and will be
published in future works.

Initial hypotheses consisted in supposing a horizontally
layered medium. Still, the limit case of slightly non-horizontal
configurations can be studied theoretically and it can be
demonstrated (cf. Supplementary-S-II) that the proposed
method remains valid up to 10m s−1 for interfaces angled
up to 15°. In vivo experiments show that the method is
indeed robust against not perfectly horizontal layers and small
aberrations.

On top of accuracy and stability, the main improvement
compared to existing methods lies in its practical simplicity,
making it a strong candidate for clinical applications. Firstly,
it does not require the user to manually define layers or enter
prior information. The user only needs to position a box
inside the medium of interest. Secondly, the proposed method
needs a low number of transmits, typically 15 plane-waves,
as opposed to the hundred of emissions required by state-of-
the-art techniques. This leads to a lower data rate, a simplified
ultrasound sequence and a reduced acquisition duration, which
makes it compatible with duplex configurations in which speed
of sound estimation is mixed with B-Mode imaging. Besides,
it drastically reduces the impact of probe motion and tissues
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displacement that may cause instabilities to speed of sound
estimation. The video, provided as supplementary material to
this manuscript, displays the proposed method operating in
real-time alongside B-Mode images. It illustrates the practical
interest of the technique. Thirdly, its computational cost is low.
As seen in Fig. 2, it only requires an interpolation and negligi-
ble operations (e.g. correlation or filtering) per pair of signals.
Its computational cost is therefore significantly lower than
iterative methods that optimize an index computed at multiple
speed of sounds, or tomographic methods that solve an inverse
problems involving large matrices. We roughly compare the
computational needs between the proposed method and the
dix inversion method in Appendix-B. Results are displayed
Table IV. We see that the proposed method needs 1000 times

TABLE IV
COMPUTATIONAL LOAD

D.I. Method Proposed Method Gain

Number of operations 1012 109 x1000

Computational time (CPU) >15 min <1 s x1000

less operations than the dix inversion method, leading to a
computational time gain of three order of magnitude in CPU-
based implementations. Furthermore, its highly parallelizable
architecture will likely lead to a computational time of tens of
milliseconds in GPU-based implementations.

As a result, several clinical applications can be considered
for this method, such as steatosis assessment in the liver.
Future work will consist in transposing the method to the
convex configuration which is usually preferred for abdominal
applications.

VI. CONCLUSION

The study of refraction effects in ultrasound imaging enables
a robust and accurate local speed of sound estimation.

In summary, we rely on an angular point of view of ultrafast
ultrasound imaging based on the use of steered plane-waves
both in transmission and in reception. Such a strategy allows
us to exploit refraction effects to robustly estimate the speed
of sound from the received raw signals in a fast and efficient
way, with a few transmits and a low computational cost.
Experiments show that the resulting estimates are accurate and
more robust than state-of-the-art methods, especially at high
depths.

We obtain a local speed of sound estimation technique that
is compatible with real-time imaging and seems a promising
candidate for future clinical investigations.

APPENDIX

A. Residual Scaling Factor Expression in Speckle

Starting from (10) and (11), we can write the re-aligned
signals:

ŝ(t) =

∫

ζ

Rχ (γr, ζ)h

(
t cos δth − 2

ζ cos δr
cr

)
dζ, (A.1)

and similarly for ŝ′(t) with cos δ′th and cos δ′r. To simplify
further calculations, we introduce intermediate functions:

{
f(t, ζ) = t cos δth − 2 ζ cos δr

cr

f ′(t, ζ) = t cos δ′th − 2
ζ cos δ′r

cr

(A.2)

From there, we obtain for the averaged correlation:

⟨ŝ(t)ŝ′(t)⟩ =
∫∫

ζ ζ′

〈
Rχ (γr, ζ)Rχ (γr, ζ

′)
∗〉 ·

h(f(t, ζ))h∗(f ′(t, ζ ′))dζdζ ′. (A.3)

Let us first focus on the first part of this equation, i.e. on
speckle properties. We have that:

〈
Rχ (γr, ζ)Rχ (γr, ζ

′)
∗〉

=

∫∫

ξ ξ′

⟨χ(r)χ(r)∗⟩ dξdξ′. (A.4)

Following [41], we suppose that speckle is uniform and
independent in the layer of interest. Thus, if we average the
correlation of different speckle realisations (in our case across
depth), we obtain:

⟨χ(r)χ(r′)∗⟩ =
{

|χ|2 if r = r′,
0 else. (A.5)

From there, we obtain that the integrated quantity is always
0 except when ξ = ξ′ and ζ = ζ ′. We obtain for the general
expression:

⟨ŝ(t)ŝ′(t)⟩ = |χ|2l
∫

ζ

h(f(t, ζ))h∗(f ′(t, ζ))dζ, (A.6)

with l the lateral extent of the considered medium. We obtain a
simpler expression, where the two pulses are multiplied at the
same depth. As the two pulses are scaled and shifted due to the
unknown speed of sound, even after theoretical scaling, this
remaining expression is not as simple as it seems. To obtain its
analytic expression, we need to go back to the gaussian pulse
expression of h(t) = g(t)ejωct, with g a gaussian of mean 0
and standard deviation σ. We obtain:

⟨ŝ(t)ŝ′(t)⟩
|χ|2l =

∫

ζ

g(f(t, ζ))g(f ′(t, ζ))ejωc(f(t,ζ)−f ′(t,ζ))dζ.

(A.7)
Regarding the first part of the integral, we obtain a multi-

plication of two gaussian functions of variable ζ of mean and
standard deviation:





g(f(t,−)) ∼ N
(

crt
2

cos δth
cos δr

, σcr
2 cos δr

)
,

g(f ′(t,−)) ∼ N
(

crt
2

cos δ′th
cos δ′r

, σcr
2 cos δ′r

)
.

(A.8)

Besides, we know that the product of two gaussian functions
is a gaussian function of mean µtot =

µ1σ
2
2+µ2σ

2
1

σ2
1+σ2

2
. We obtain

that the global function gtot(ζ) = g(f(t, ζ))g(f ′(t, ζ)) is a
gaussian function of mean:

µtot =
crt

2

cos δth cos δr + cos δ′th cos δ
′
r

cos2 δr + cos2 δ′r
. (A.9)
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On the other hand, the phase of the complex exponential in
the second part of the integral is equal to:

ϕ = ωc

(
t(cos δth − cos δ′th)−

2ζ

cr
(cos δr − cos δ′r)

)
,

(A.10)
which is an affine function in ζ and can be written ϕ = aζ+b.
We obtain:

⟨ŝ(t)ŝ′(t)⟩
|χ|2l =

∫

ζ

gtot(ζ)e
j(aζ+b)dζ. (A.11)

From there, the symmetry around µtot shows that the phase
of such an integral is equal to the value of the affine function
at µtot, i.e. ∠ ⟨ŝ(t)ŝ′(t)⟩ = aµtot + b.

We obtain after development and re-factorization:

∠ ⟨ŝ(t)ŝ′(t)⟩ = ωct
cos δr + cos δ′r
cos2 δr + cos2 δ′r

·

(cos δth cos δ
′
r − cos δ′th cos δr) . (A.12)

Here, the local speed of sound does not appear explicitly.
However, refracted angles can be linked to their theoretical
value, cr and cth from refraction analysis, using (6). With a
second order Taylor expansion on the angles (supposed small
under the small angle approximation), the previous equation
can be simplified, leading to a derivative (cf Supplementary-
S-I):

∂∠ ⟨ŝ(t)ŝ′(t)⟩
∂t

≈ ωc

2

(
1− c2r

c2th

)(
δ′th

2 − δ2th

)
. (A.13)

B. Computational loads
In this section, we compare roughly the computational loads

of the dix inversion method and of the propose method. We
note Nz the number of points considered axially (typically
100) and Nbf the number of operations per point needed
for beamforming (typically 10 for an interpolation and an
apodization).

For the dix inversion method, the main computational load
comes from the beamforming at 100 different speed of sounds,
along 100 points laterally, Nz points axially, 128 transmits,
and 128 channels in reception. This leads to 2 · 108 ·NzNbf

operations.
For the proposed method, the first step is the computation

of the angular signals. We receive approximately 100 plane-
waves for each 15 transmits, from the 128 transducers signals.
To do so, we perform an interpolation and an apodization for
each depth, leading to a load of approximately 2 ·105 ·NzNbf .
Other steps consist in a correlation and filtering for each pair
of signal at each depth. With around 5 · 103 signals, it leads
to 2 · 105 ·Nz operations if we count 50 operations per point
per pair. In total, the first step is predominant, leading to 2 ·
105 ·NzNbf operations in total.
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S-I. TAYLOR EXPANSIONS

To solve implicit equations that involve angles and trigono-
metric formulas, we suppose that all considered angles are
small.

In practice, we approximate quantities asymptotically
around 0 using Taylor expansions and more specifically the
small-o notation of the Bachmann-Landau family. For two
real-valued functions f and g, f = o(g) means that f is asymp-
totically dominated by g around 0, i.e. lim

x→0
f(x)/g(x) = 0. In

our case, we want the variable x to represent αth, βth, α′
th and

β′
th at the same time, as all these quantities are supposed small.

Mathematically, we choose x = max (αth, βth, α
′
th, β

′
th).

The refraction analysis that led to Equation (6) showed that
for any set of superficial horizontal layers, in a layer of real
speed of sound cr, the real transmitted angle αr is equal to:

αr = arcsin

(
cr
cth

sinαth

)
. (S-1)

With the small-o notation, we have:

αr = arcsin

(
cr
cth

αth + o(x2)

)
(S-2)

=
cr
cth

αth + o(x2). (S-3)

Due to the symmetric transmit-receive strategy, this analysis
can be applied equivalently to all the considered angles.

Using the small-o properties on composition, sum and
differences, we can compute the asymptotic expression of a
few angular quantities summarized in Table S-I hereafter.

TABLE S-I
ASYMPTOTIC EXPRESSION OF ANGULAR QUANTITIES

Quantity Exact Expression Asymptotic Expression

αr arcsin
(

cr
cth

sinαth

)
cr
cth

αth + o(x2)

α′
r arcsin

(
cr
cth

sinα′
th

)
cr
cth

α′
th + o(x2)

βr arcsin
(

cr
cth

sinβth

)
cr
cth

βth + o(x2)

β′
r arcsin

(
cr
cth

sinβ′
th

)
cr
cth

β′
th + o(x2)

γr
αr+βr

2
cr
cth

γth + o(x2)

γ′
r

α′
r+β′

r
2

cr
cth

γ′
th + o(x2)

δr
αr−βr

2
cr
cth

δth + o(x2)

δ′r
α′
r−β′

r
2

cr
cth

δ′th + o(x2)

As the cosine function can be written asymptotically as
cosu = 1 − u2/2 + o(u2), we obtain by composition the
asymptotic expression of more complex trigonometric func-
tions summarized in Table S-II.

TABLE S-II
ASYMPTOTIC EXPRESSION OF TRIGONOMETRIC QUANTITIES

Quantity Asymptotic Expression

cos δth 1− δ2th
2

+ o(x2)

cos δ′th 1− δ′2th
2

+ o(x2)

cos δr 1− c2r
c2
th

δ2th
2

+ o(x2)

cos δ′r 1− c2r
c2
th

δ′2th
2

+ o(x2)

We can now estimate the asymptotic expressions of scaling
factors SF and RSF , which are ratios of the trigonometric
quantities studied in Table S-II.

A. Scaling factor SF

In the case of the scaling factor SF , we have:

SF =
cos δr
cos δ′r

=
1− c2r

c2th

δ2th
2 + o(x2)

1− c2r
c2th

δ′2th
2 + o(x2)

. (S-4)

We know that the inverse function can be written as 1/(1−
u) = 1 + u+ u2 + o(u2). By composition (as δ′th → 0 when
x → 0), and using the fact that δ′th

n
= o(x2) for n > 2:

SF =

(
1− c2r

c2th

δ2th
2

+ o(x2)

)(
1 +

c2r
c2th

δ′2th
2

+ o(x2)

)

(S-5)

= 1 +
c2r
c2th

δ′2th
2

− c2r
c2th

δ2th
2

+ o(x2) (S-6)

= 1− c2r
c2th

δ2th − δ′2th
2

+ o(x2). (S-7)

From above Equation (S-7) we deduce Equation (12) with
a second order approximation (where we remove the o(x2)
part).

B. Residual scaling factor RSF

By differentiating (A.12), we obtain the following equation
of RSF :
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RSF = ωc
cos δr + cos δ′r
cos2 δr + cos2 δ′r

·(cos δth cos δ′r − cos δ′th cos δr) .

(S-8)
By product and sum of asymptotic expressions of Table S-

II, we deduce the asymptotic expressions of more complex
terms summarized in Table S-III.

TABLE S-III
ASYMPTOTIC EXPRESSION OF RSF TERMS

Term Asymptotic Expression

cos δr+cos δ′r
2

1− 1
4

c2r
c2
th

(
δ2th + δ′2th

)
+ o(x2)

cos2 δr+cos2 δ′r
2

1− 1
2

c2r
c2
th

(
δ2th + δ′2th

)
+ o(x2)

cos δth cos δ′r −
cos δ′th cos δr

1
2

(
δ′2th − δ2th

)(
1− c2r

c2
th

)
+ o(x2)

To compute RSF, we need the ratio of the first two lines of
Table S-III. By composition with 1/(1−u) = 1+u+u2+o(u2)
and by product, we obtain:

cos δr + cos δ′r
cos2 δr + cos2 δ′r

= 1 +
1

4

c2r
c2th

(
δ2th + δ′2th

)
+ o(x2) (S-9)

The residual scaling factor RSF is obtained by multipli-
cation of ωc with (S-9) and the last line of Table S-III. We
obtain:

RSF =
ωc

2

(
δ′2th − δ2th

)(
1− c2r

c2th

)
+ o(x2) (S-10)

C. Discussion

The approximation of scaling factors is a necessary step to
obtain an explicit expression of cr. However, it may lead to
small errors to the speed of sound estimation. It is to be noted
that the asymptotic analysis only guarantees a convergence
property. Mathematically, using the definition of convergence,
it means that:

∀ϵ ∈ R+, ∃x0 s.t. ∀|x| ≤ x0, o(x2) ≤ ϵx2, (S-11)

i.e. the error is bounded by a factor times x2 if all angles are
sufficiently small. In practice, we need to verify that such an
error is sufficiently small.

To quantify the error in our configuration, we simulate, for
a range of speed of sound values cr, the real residual scaling
factor using (A.12), and estimate from this RSF the speed
of sound using the approximate formula (A.13). The values
of angles are chosen according to the framework described in
II-C to assess the approximation error of the final method. We
obtain the approximation error displayed in Fig. S-1.

We observe that the small angle approximation leads to
errors in the estimation of ±6 m s−1 in the worst cases, i.e.
a relative error lower than 0.5%. This effect can be consid-
ered as small with respect to the variability of the proposed
method in real conditions. Note that, as it is deterministic
and monotonous, it could be compensated by applying as a
correction the opposite of the error measured in Fig. S-1.
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Fig. S-1. Approximation error as a function of real speed of sound cr .

S-II. NON-HORIZONTAL LAYERS

In the case of non-horizontal layers, equation (6) obtained
recursively is no longer valid. However, such a configuration
can still be studied theoretically. We specifically focus on the
configuration displayed Fig. S-2, where only two layers are
considered with an interface of angle η with respect to the
horizontal.

z

x

c1

c2

η

α1

α2

Fig. S-2. Two-layer configuration with a non horizontal interface.

The two layers are considered uniform and their speed of
sounds are noted c1 and c2. We consider an incident wave
steered with an angle α1 with respect to the z-axis. Snell’s
laws of refraction give:

sin (α2 − η)

c2
=

sin (α1 − η)

c1
. (S-12)

We obtain:

α2 = η + arcsin

(
sin (α1 − η)

c2
c1

)
. (S-13)

We observe that refraction effects are impacted by the interface
angle. The same effect happens in reception, and considering
both the emission and the reception, we can compute the mid-
angle and the half-angle difference:




γ2 = η +

arcsin
(
sin(α1−η)

c2
c1

)
+arcsin

(
sin(β1−η)

c2
c1

)

2 ,

δ2 =
arcsin

(
sin(α1−η)

c2
c1

)
−arcsin

(
sin(β1−η)

c2
c1

)

2 .

(S-14)
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Using a second order approximation in a similar way to
Supplementary-S-I, Equation (S-14) can be simplified into:

{
γ2 ≈ η

(
1− c2

c1

)
+ c2

c1
γ1,

δ2 ≈ c2
c1
δ1.

(S-15)

As γ2 only depends on γ1 and not in α1 or β1 independently,
we can still compare two pairs that share the same mid-angle.
The half angle difference behaves approximately as if the
interface was horizontal.

However, for some values of α, β and η, the small angle
approximation is no longer valid for α − η and β − η. This
would result in a decrease of the observed coherence among
pairs (pairs will not share perfectly equal mid-angles) and
a bias in the final estimation of c2 (due to the half angle
difference being affected by η). As for Supplementary-S-I, we
can simulate the bias brought by η against different speed of
sound discontinuities in the configuration considered in II-C.
Such biases are displayed Fig. S-3.
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Fig. S-3. Bias caused by the non-horizontal-ness of the interface as a
function of speed of sound difference ∆c at the interface, for different
values of the interface angle ranging from 5 to 20 degrees. Due to the
symmetry of the problem, biases only depend on the absolute value of
the interface angle so negative angles are not represented.

We can see that strong interfaces (with high speed of sound
differences) bring biases to the estimation if they are not hori-
zontal. For interfaces with angles of less than 15° with respect
to the horizontal, such biases are lower than 10 m s−1 and
are not significant relatively to the variability of the proposed
method. Nevertheless, interfaces of higher angles could lead
to a significant error in the speed of sound estimation. This is
a limit of the proposed method. Nevertheless, the most biased
pairs would theoretically appear as the less coherent ones and
could thus be discarded.

The remaining issue is to understand how non-horizontal
refraction accumulates in multilayer media. Multiple effects
can arise, but we can point out the specific situation described
Fig. S-4, that is likely to be seen in vivo (e.g. vessels or
thin muscle layer), and where the angles are unaffected by
a non-horizontal layer as long as it is bounded by two parallel
interfaces.

c1

c2

c1

η

η

α1

α2

α1

Fig. S-4. Specific configuration of a non-horizontal layer bounded by
parallel interfaces, in a bigger homogeneous layer. In this case, the
incident wave angle is completely unaffected by the intermediate layer.


