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Abstract: Management zones (MZs) are used in precision agriculture to diversify agronomic
management across a field. According to current common practices, MZs are often spatially static:
they are developed once and used thereafter. However, the soil–plant relationship often varies over
time and space, decreasing the efficiency of static MZ designs. Therefore, we propose a novel workflow
for time-specific MZ delineation based on integration of plant and soil sensing data. The workflow
includes four steps: (1) geospatial sensor measurements are used to describe soil spatial variability
and in-season plant growth status; (2) moving-window regression modelling is used to characterize
the sub-field changes of the soil–plant relationship; (3) soil information and sub-field indicator(s)
of the soil–plant relationship (i.e., the local regression slope coefficient[s]) are used to delineate
time-specific MZs using fuzzy cluster analysis; and (4) MZ delineation is evaluated and interpreted.
We illustrate the workflow with an idealized, yet realistic, example using synthetic data and with an
experimental example from a 21-ha maize field in Italy using two years of maize growth, soil apparent
electrical conductivity and normalized difference vegetation index (NDVI) data. In both examples,
the MZs were characterized by unique combinations of soil properties and soil–plant relationships.
The proposed approach provides an opportunity to address the spatiotemporal nature of changes in
crop genetics × environment ×management interactions.

Keywords: remote sensing; proximal sensing; crop modeling; soil; plant; management zone;
spatial variability; temporal variability; precision agriculture

1. Introduction

Crop yields and resource use efficiency (e.g., nutrients and water) have a strong spatial component,
which can be observed over a wide range of scales, from regional to subfield [1]. At the field scale,
yield variability in uniformly managed fields is often related to the spatial variability of soil properties
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and their impact on plant growth [2–6]. This variability can be addressed using precision agriculture
practices [7], such as variable rate management (VRM) [8]. According to VRM principles, efficiency or
crop production can be increased by varying agronomic inputs over a field according to varying soil
and crop conditions [9]. Within a field, areas with similar soil properties (e.g., texture, topography,
water holding capacity) that can be managed uniformly are commonly called management zones
(MZs) [10]. To justify the subdivision of a field into MZs, there should be sizeable difference in soil
properties between MZs [9,11]. The use of MZs for VRM has been shown to increase productivity,
decrease costs, and/or reduce environmental impacts of agronomic practices [12,13]. Several authors
have shown that within-MZ management should change over time [14–20], such an approach is often
referred to as “dynamic VRM” [14].

Shanahan et al. [21], Long et al. [22], and Quebrajo et al. [23] indicated that coupling soil and plant
data should increase the efficiency of MZ-based precision agriculture. Several sensor measurements can
be used as indicators of soil spatial variability, including: apparent electrical conductivity, gamma-ray
spectrometry, visible and near-infrared reflectance, and penetrometry [24–26]. Throughout the growing
season, field-scale crop canopy measurements from near-ground (e.g., tractor mounted sensors) and
remote sensing (e.g., unmanned aerial vehicles—UAV, satellites) can be used to provide information
about plant health [27]. In particular, visible, near-infrared, and thermal sensing can be used to infer
crop water status, nitrogen deficiency, and the effect of other biotic/abiotic stressors [28–31] and as an
indicator of potential yield [16,32–35].

According to current practices, MZ-designs derived from soil maps, crop sensing, and/or
historical yield maps are generally designed once and then implemented year after year. Nevertheless,
several authors have reported inconsistent benefits for this precision management strategy [21,22].
Spatial patterns in yield tend to change from year-to-year, mostly because of changes in meteorological
conditions [12,36–38]. In other words, the spatial patterns of most soil properties are fairly stable in
time, but at different times plants may be limited in different ways at the same location because of the
influence of transient factors affecting the soil–plant relationship, such as meteorological factors and
agronomical management [12,38,39].

Sadler et al. [40] indicated that there is a need for accurate and inexpensive systems to delineate
dynamic management zones, obtained by sensing within-field variability in real time, so that
agricultural management can be controlled adaptively. Recent research strongly suggested that
MZ designs should change over time, both intra- and inter-seasonally [19,20,38,41–44]. Myers [45]
formally justified the need for time-specific and spatially dynamic VRM through the “fundamental
theorem of precision agriculture production” where Crop Yield is a function of Genetics × Environment
×Management × Space × Time interactions. According to this theorem, the spatiotemporal variability
of crop performance should be addressed by adjusting the agronomic prescriptions over time and
space. Several examples of protocols and data analysis workflow for static soil and/or plant-based
MZ delineation are present in the scientific literature [46–49]. To our best knowledge, time-specific
MZ delineation based on soil and in-season plant information has not been commonly discussed in
the literature. Particularly, there is a lack of protocols and analytical workflow that farm managers,
agricultural consultants, and scientists can use to take advantage of free/inexpensive in-season crop
information (e.g., from UAV, Sentinel 2 satellite) and high-resolution soil maps.

We aim to present a novel workflow for the selection of time-specific MZs according to in-season
spatial measurements of crop growth status and its relationship with high-resolution soil spatial
information. The MZ should identify areas with homogeneous and unique (within a single field)
soil–plant relationships. The MZ-delineation workflow will be described in detail. We will also provide
two examples on how to implement the workflow. The first example is based on synthetic data.
The second example uses data from a maize (Zea mays L.) field in northeastern Italy.
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2. Materials and Methods

2.1. Time-Specific MZ-Delineation Workflow

The time-specific MZ delineation can be implemented as follows:

• STEP 1. Soil and time-specific plant spatial information acquisition, pre-processing, interpretation,
and interpolation

• STEP 2. Time-specific sub-field soil–plant modeling
• STEP 3. Time-specific MZ delineation with cluster analysis
• STEP 4. Evaluation/interpretation of time-specific MZ design

2.1.1. Soil and Time-Specific Plant Spatial Information

In STEP 1, high-resolution spatial measurements for target soil properties and in-season
plant-canopy information, such as canopy reflectance, are acquired, pre-processed, interpreted,
and interpolated. In-season plant-canopy reflectance is acquired and used as an indication of crop
status. Soil spatial information is used to interpret the crop canopy measurements.

Soil sensor data acquisition should be carried out according to established protocols [50–52] to
increase the accuracy and consistency of the survey across large areas. Attention should be paid to
selecting those sensors which represent the spatial variability of soil properties known or believed
to influence a crop at the site of interest [53,54]. For information on sensor data pre-processing
(e.g., conversion of spatial coordinates, removals of outliers), readers are referred to the first protocol
step of Córdoba, Bruno, Costa, Peralta, and Balzarini [49]. Subsequent to the sensor surveys, soil
sampling should be carried out across the root zone (e.g., 0–1.2 m) to calibrate/interpret the sensor
readings [50]. Sensor-directed sampling schemes can be used to minimize the number of sampling
sites [55,56]. Exploratory analyses, such as correlation analysis and principal component analysis
(PCA) should be carried out to investigate the relationships between soil sensor and laboratory soil
analyses. The strength of the relationships between collocated soil sensor values and laboratory soil
analyses should be investigated. If these relationships are moderately to very strong, the sensor data
can be considered as an indicator of spatial variability of the target soil properties. Then, sensor data
can be used to generate maps of the selected soil properties [57,58]. Soil maps should be generated
only if acceptable prediction errors [59] are obtained. Alternatively, for weak to moderately strong
relationships, the soil sensor maps should be used as qualitative indicator of soil spatial variability.
Córdoba, Bruno, Costa, Peralta, and Balzarini [49] describe how to practically process interpolated
data to obtain a raster of desired block support (e.g., of the same resolution chosen for the MZ design)
in the second step of their MZ-delineation protocol.

Free (e.g., Sentinel 2 satellite) or inexpensive (e.g., from UAV) crop measurements are available
throughout the growing season with moderately-high temporal resolution. For example, the Sentinel 2
satellite from the European Space Agency provides multi-spectral canopy reflectance at the 10 × 10-m
resolution, with a 5-day revisit time, free of charge. Remote sensing of crop canopy data can be used
to calculate vegetation indices [34]. Point measurements, such as those from tractor-mounted active
spectrometers [30], should be pre-processed and interpolated similarly to soil sensing measurements.
High-resolution raster data, such as that from satellite imagery, may need to be re-gridded and scaled
to the selected block support.

2.1.2. Time-Specific Sub-Field Soil–Plant Modeling

In STEP 2, soil information from STEP 1 is used to interpret in-season (i.e., time-specific)
measurements of crop status. The interpretation of crop canopy sensing measurements is not
straightforward—as they are influenced by species × growth-stage × stress levels × soil background
interactions [60–62].
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Moving window spatial regression modeling, such as geographically-weighted regression
(GWR) [63,64], can be used to understand the local (i.e., sub-field scale) variation in the plant–soil
relationship. With GWR, a regression is run for each grid location, rather than for the whole study
area [65]. Soil map(s) are used as the independent (explanatory) variable(s) and the in-season crop
status maps are the dependent variable. When multiple explanatory variables are available, one should
consider standardizing them. The GWR allows non-stationarity of the regression equation parameters
a (e.g., intercept, slope), estimating their values at each location i. For a dependent variable y the
equation reads:

yi = a0i + a1ix1i + . . . + akixki + εi (1)

where ε, is a random error term, a0 is the regression intercept, and a1 to ak are the regression coefficient(s)
for each explanatory variable(s) x1 to xk. The spatial variability of the soil–plant relationship can be
described with the maps of local a1 to ak coefficients (i.e., the regression slope[s]). Maps of GWR slope
coefficient(s) show the spatial variability of the impact (i.e., sensitivity) of the explanatory variable on
the regression [65].

In the GWR framework, spatial weighting is determined by incorporating all the dependent
and explanatory variables falling within a geographical kernel of each target feature [65]. The values
of the regression parameters and goodness-of-fit of the GWR depend on how the kernel size is
chosen [66]. Maps of the estimated dependent variable, local coefficient of determination (R2), and local
Pearson correlation coefficient r can be generated with the GWR [65]. The GWR is available in
commercial GIS software platforms (e.g., ArcMap’s Spatial Statistics package [65], version 10.5.1; ESRI,
Redlands, CA, USA), and freeware (e.g., spgwr package in R, version 3.4.1; the R Foundation for
Statistical Computing Platform, Vienna, Austria).

2.1.3. Time-Specific MZ Delineation with Cluster Analysis

In STEP 3, the MZ delineation is carried out using the soil map(s) and the time-specific GWR
slope maps from STEP 2 as ancillary variables. As indicated by Córdoba, Bruno, Costa, Peralta,
and Balzarini [49], fuzzy c-means (also known as “k-means”) unsupervised clustering algorithms [67]
can be employed to classify the data into MZs. ArcMap’s Grouping Analysis tool (e.g., [68]),
the Management Zone Analyst software [69] or the EZZone online tool [70] can be used to delineate
MZs. Several MZ designs can be tested. The optimum number of MZs can be identified using
cluster validity functions, including: the Calinski–Harabasz criterion [71], the fuzziness performance
index [67], the normalized classification entropy index [67,72], and the Jenks optimization method [73].
The Calinski–Harabasz criterion (CHC), also known as pseudo F-statistic, describes the ratio between
within-MZ similarity and between-MZ differences. It is defined as:

CHC =
BMZSS/(MZn− 1)

WMZSS/(N −MZn)
(2)

where N is the number of data points, MZn is the number of considered MZs, BMZSS is the
between-MZ sum of squares, and WMZSS is the within group sum of squares. The larger the value of
the CHC the higher are the within-MZ homogeneity and between-MZ differences. Finally, one may
consider smoothing the fuzzy c-means clustering results to reduce zone fragmentation [49,70].

2.1.4. Time-Specific MZ-Design Quality Control and Interpretation

In STEP 4, the quality of the MZ design from STEP 3 should be checked. Each MZ should identify
a unique combination of soil and soil–plant relationship characteristics. To infer differences across
MZs, parametric analysis of variance or the Kruskal–Wallis (KW) rank test [74] can be used. The KW
test is a nonparametric analysis assessing if samples originate from the same distribution. The test can
be used as alternative to the standard analysis of variance when assumptions for parametric testing
are not met.
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2.2. Synthetic Data Example

The proposed workflow can be demonstrated using synthetic data for soil clay content (percentage)
and normalized difference vegetation index (NDVI) [75].

A spatial random field for clay content was generated using the RFsimulate function in the
RandomFields package in R. The function estimated a Gaussian random field (RPgauss function)
having an exponential covariance function (RMexp function with variance = 25 and scale = 300),
a nugget effect (RMnugget function with variance = 5), and a pure trend model with covariance
0 (RMtrend function with mean = 15). The simulations were carried out over a square of size
250 × 250 cells. The random field was then converted into a 250× 250-pixel raster with pixel size = 1 m
using the function raster from the raster package in R. The clay content raster was then exported from
R to a text file using the writeRaster function. We refer to this raster as the true clay content (TCC) map.

Next, we mimicked a field procedure for generating a soil clay content map, using TCC as the true,
unknown, high resolution clay content. Accurate approximations of true soil properties can be obtained
when high-resolution covariates, such as those from proximal-soil sensing [76], are available [77].
Soil sensor surveys can be calibrated to estimate the spatial variability of a target soil property by using
laboratory measurements on collocated soil cores [58]. Heggemann et al. [78] reported that gamma-ray
sensor readings can be calibrated to predict texture values with high accuracy (up to ~95 percent of
observed variance in soil texture). We mimicked a typical sensor survey (e.g., Lesch [55]) in which
1870 data points (average nearest neighbor distance = 3.2 m) were spread across 24 nearly-parallel
transects (average nearest neighbor distance = 9.9 m). Values from the TCC map were extracted at
the sensor survey locations. A random error having mean = 0 and variance equal to 5 percent of
the extracted TCC values was added to the sensor data. This simulated a realistic sensor calibration
with goodness-of-fit with a R2 close to 0.95. The spatial autocorrelation of the calibrated sensor
measurements was described with a spherical semivariogram having range = 50.3 m, and nugget
equal to 67% of the total sill. This spatial structure was similar to those reported by other authors in a
5-ha clay loam field in Italy [79] and in a cluster of fields with contrasting soil properties (from clay to
gravelly) in Germany [80]. These calibrated sensor measurements were then interpolated using simple
kriging in with ArcMap’s Geostatistical Analyst package. The resulting sensor-derived clay content
(SCC) map was retained for further analyses.

NDVI is a vegetation index calculated from surface reflectance in the red (RED) and near-infrared
(NIR) regions of the electromagnetic spectrum. It is defined as:

NDVI =
(NIR− RED)

(NIR + RED)
(3)

NDVI ranges from −1 to +1. NDVI for agricultural crops usually ranges from ~0.1 to ~0.9,
with lush vegetation generally having high NDVI [81,82]. The NDVI information was simulated with
the understanding that, often, the spatial relationship between remote sensing canopy measurement
and collocated soil properties has both deterministic and spatial random components [83–85].
The deterministic component of the relationship can be a linear model between the soil property
and the available remote sensing plant information [84]. The spatial random component is often equal
to the field of spatially correlated residuals from the deterministic linear model [57,83]. We simulated
the NDVI as follow:

NDVI = S× (TCC + SpERR) + O (4)

where SpERR was a spatial error raster, S was a scaling factor = 0.01, and O was an
offset coefficient = 0.4. SpERR was generated in R, using the RandomFields package. We estimated a
Gaussian random field based on a model with exponential covariance function (variance = 7.5 and
scale = 50) and a nugget effect (variance = 5).

A GWR with 30-m bandwidth size was used to model the spatial variability of the synthetic
NDVI image using the SCC map as explanatory variable. Then, MZs were delineated with a fuzzy
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c-mean unsupervised cluster analysis. Clustering was carried out in ArcMap using the Grouping
Analysis tool from the Spatial Statistics package. The SCC and the time-specific GWR slope maps were
used for the cluster analysis. No spatial constraints were set for the cluster analysis: the covariate
data points could be grouped according to their value, disregarding the values of their geographical
coordinates (i.e., points did not need to be neighbors to be part of the same MZ). The classifications
were carried out for scenarios outputting two, three, and four MZs. Then, the optimal number of MZs
was identified using the CHC. Differences in clay (from the SCC map), NDVI, and GWR slope across
MZs were investigated with the KW test using STATISTICA (version 12, StatSoft Inc., Tulsa, OK, USA).

2.3. Field Data Example

2.3.1. Site Description

Another example is given using experimental data from researchers at the University of Padua,
Italy [86–88]. Here, we describe two time-specific MZ designs for a maize field based on remote sensing
imagery acquired during the late kernel blister stage (R-2), in two consecutive growing seasons.

The study site (Figure 1) is a 21-ha field located at Chioggia, Venice, Italy, along the southern
margin of the Venice Lagoon (45◦10′7.0′ ′ N, 12◦13′55.0′ ′ E). Previous studies [86–89] discussed the
relationship between soil and maize yield at this site. The site lies below average sea level, and the
groundwater level is kept fairly shallow (approximately between −0.6 to −1.5 m below ground level)
by a pumping station [87] to promote sub-irrigation [88]. The soil in the area is classified as Molli-Gleyic
Cambisol [90] with two coarsely-textured paleochannels crossing it with SW-NE direction (Figure 1).
The field is affected by soil salinity due to its proximity to the Venice Lagoon [86].

Here, we analyzed the two maize growing seasons (April to September), 2010 and 2011. The two
growing seasons differed greatly in terms of meteorology. Compared to the average April to September
rainfall from 1993 to 2012, 2010 was rainy (in the upper third quartile, 540 mm) and 2011 was a
drought year (in the first quartile, 200 mm) [88]. The daily average reference evapotranspiration was
4.01 mm day−1 in 2010 and 4.42 mm day−1 in 2011. For the entire growing season, the reference
evapotranspiration was 569 mm in 2010 and 672 mm in 2011 [88]. Agronomic management
(base-dressing of 64 kg N ha−1, and 94 kg P2O5 ha−1 and urea top-dressing of 184 kg N ha−1)
and maize hybrid (PR32P26, Pioneer Hi-Bred Italia, Gadesco-Pieve Delmona, Italy) were the same in
the two years [86].
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2.3.2. Soil Maps and Plant Spatiotemporal Information

Geospatial measurements of soil apparent electrical conductivity (ECa) were used as an indicator
of soil spatial variability at the study site. ECa over the 0–1.5 m soil profile (ECa Deep) was measured
in April of 2011 across the site with a frequency-domain electromagnetic induction sensor (CMD-1, GF
Instruments, Brno, Czech Republic) at 20,470 geo-referenced locations. Soil samples were taken
at 91 locations in May 2010 (Figure 1) down to 1.2 m with 0.3-m increments. Here we discuss
salinity and texture for the 0–1.2-m soil profile. Texture was measured with a Mastersizer 2000
(Malvern Instruments Ltd., Great Malvern, UK) and salinity was measured as EC1:2 (i.e., the electrical
conductivity of a 1:2 soil–water extract) [91]. Principal component analysis (PCA) carried out with
STATISTICA was used to visually assess similarities and differences between the ECa Deep dataset
and the selected soil properties [92]. The point measurements were preprocessed with a procedure
comparable to that of Córdoba, Bruno, Costa, Peralta, and Balzarini [49] and spatially interpolated with
ordinary kriging following Scudiero, Teatini, Corwin, Deiana, Berti, and Morari [86] on a 10 × 10-m
block support—the desired support for MZ at the site.

Two remotely sensed measures of crop status were available. On 31 July 31 2010 (10:39:40 UTC)
and 9 July 2011 (10:47:30 UTC) WorldView-2 (DigitalGlobe, Westminster, CO, USA) satellite scenes
were acquired over the study area. For both years, acquisition dates corresponded to late R-2 [88].
Pre-processing procedures, including sensor calibration, atmospheric correction, and radiometric
normalization, were applied according to Vicente-Serrano et al. [93]. Radiometric calibration was
required to convert digital numbers to top-of-atmosphere radiances [W m−2 sr−1 µm−1], using the
absolute radiometric calibration factors and effective bandwidths for each band, according to the
satellite data provider [94]. No topographic correction was applied to the images because the study
area is relatively flat and the solar incident angles (28.11◦ in 2010; 23.58◦ in 2011) were quite similar at
the two acquisition times. The top-of-atmosphere radiance was then transformed to surface reflectance
through the 6S code [95]. The values of aerosol optical thickness (AOT) at 550 nm collected from a
nearby AERONET (Aerosol Robotic Network, https://aeronet.gsfc.nasa.gov/) [96] station (45◦18′50.0”
N, 12◦30′29.9” E) were used as input for 6S. The AOT measurements were obtained simultaneously to
the satellite overpasses. WorldView-2 reflectance has 2 × 2-m spatial resolution over eight spectral
bands, at wavelengths spanning from 400 to 1040 nm. The red band (RED, 630–690 nm) and the
near-infrared band at 770–895 nm where used to calculate NDVI according to Equation (3). The NDVI
maps were aggregated (i.e., the coarsened pixel is the average of the pixels within the aggregated cell)
to the 10 × 10-m cell size, as suggested by Córdoba, Bruno, Costa, Peralta, and Balzarini [49].

2.3.3. Time-Specific Spatial Soil–Plant Modeling

The time-specific relationship between soil properties and in-season NDVI were described using
geographically weighted regressions (GWRs). The GWRs were carried out using the NDVI maps
as the dependent variable and spatial soil information (i.e., ECa Deep) as the independent variable.
GWRs were carried out with ArcMap using an adaptive kernel (i.e., moving window) of 70 neighbors.
For locations with significant GWR, the observed-estimated NDVI relationship was used as indication
of goodness-of-fit of the GWR models. The GWR slope map was selected as indicator of soil–plant
relationship type.

2.3.4. Delineating MZs with Cluster Analysis

Clustering was carried out using the Grouping Analysis tool in ArcMap. Spatial soil information
(i.e., ECa Deep) and the time-specific GWR slope map were used for the cluster analysis. No spatial
constraints were set for the cluster analysis. The classifications were carried out for scenarios outputting
three, four, and five MZs. Then, the optimal number of MZs was identified using the CHC. To compare
the proposed time-specific soil–plant based MZ delineation with a more traditional, static MZ design,
ECa Deep alone was used to select a static MZ design.

https://aeronet.gsfc.nasa.gov/
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2.3.5. Evaluation and Interpretation of MZ Design

Differences across MZs in the two years were investigated using the KW test in STATISTICA.
The following variables were tested for differences across MZs: ECa Deep, GWR slope, GWR local r,
EC1:2, and sand and clay contents. Additionally, in-season potential yield estimations were used to
evaluate the MZ designs. Appendix A reports on how yield maps (obtained from Scudiero, Teatini,
Corwin, Dal Ferro, Simonetti, and Morari [88]) and NDVI measurements were used to calculate yield
prediction maps.

3. Results and Discussion

3.1. Synthetic Data Example

Every time the crop status is mapped during the season (e.g., every week), a new set of MZ is
delineated (i.e., time-specific MZ design). Clearly, this applies only for crop growth stages when crop
canopy plays a relevant role in determining reflectance readings. For soil tillage, sowing, and early
vegetation stages when surface reflectance is mostly determined by soil, a static MZ delineation
approach based on the spatial variability of soil properties (e.g., [9]) may be more adequate.

Figure 2 outlines the proposed analytical protocol to delineate time-specific MZs from soil
information and in-season crop information using the synthetic dataset. In Step 1 of the protocol,
the soil and plant information were acquired and pre-processed. The clay content (percentage) map
had mean = 18.6%, standard deviation = 4.5%, minimum = 9%, and maximum = 30.1%. The NDVI map
had mean = 0.58, standard deviation = 0.04, minimum = 0.45, and maximum = 0.69. The NDVI values
are typical of vegetative stages for crops such as maize [97] and soybean (Glycine max (L.) Merr.) [98].
A simple linear model between the two maps had R2 = 0.61, with an intercept of 0.44 and a positive
slope of 0.007. Similar goodness-of-fit values between soil properties and vegetation reflectance were
reported by Gomez et al. [99] for clay and by Gomez et al. [100] for soil organic carbon. In Step 2, the clay
map was used as the explanatory variable in a GWR with NDVI as dependent variable. Through the
GWR analysis, clay explained 94.5% of the observed variance of NDVI. Such high goodness-of-fit
can be found in real-world data: Scudiero, Corwin, Wienhold, Bosley, Shanahan, and Johnson [54]
observed R2 ranging between 0.83 and 0.94 for their GWR analyses between soil maps and remotely
sensed winter wheat (Triticum aestivum L.) canopy reflectance. The GWR slope had mean = 0.009,
standard deviation = 0.008, minimum = −0.018, and maximum = 0.038. In Step 3, the clay and the
GWR slope maps were used to delineate MZs via unsupervised fuzzy c-means clustering. The CHC
indicated that the best number of MZs was three.

In Step 4, the MZ-design was evaluated and interpreted. The three MZs identified unique
combinations of clay content and GWR slope values. MZ 1 was characterized by low NDVI, low clay
content, and large GWR slope values (indicating high sensitivity of NDVI to clay). MZ 2 was
characterized by high NDVI, high clay, and moderately low GWR slope values. MZ 3 was characterized
by low NDVI, low clay content, and the smallest GWR slope values.
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3.2. Field Data Example

3.2.1. Soil and Plant Information

Figure 3a shows an example of short-scale soil spatial variation at the site. Figure 3b depicts the
frequency distribution of measured soil salinity. At this site, soils with EC1:2 >0.79 dS m−1 should be
considered salt affected, with EC1:2 >1.4 dS m−1 indicating strongly saline soils [88]. Figure 3c reports
the observed texture at the 91 soil sampling locations. Soil texture is predominantly in the loam and
sandy loam classes. Few samples are in the clay loam and loamy sand class.
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Figure 3. (a) Photograph showing the sharp textural change at the site (light vs. dark colors);
(b) histogram for measured soil salinity (EC1:2); (c) soil textural triangle; and (d) bi-plot of selected
variables (soil apparent electrical conductivity [ECa Deep], salinity, clay, and sand) on the two larger
factors in the principal components analysis.

The ECa Deep map is shown in Figure 4a. Descriptive statistics for the map are reported in
Table 1. ECa Deep showed a Pearson correlation coefficient of 0.89 with salinity, −0.51 with sand,
and 0.39 with clay. The PCA extracted two factors (with eigenvalues of 2.61 and 0.89) explaining 65.3%
(first component) and 22.3% (second component) of the total variance in the dataset. The bi-plot in
Figure 3d—see Abdi and Williams [92] for interpretation guidelines—indicates that the first component
contrasts the positive contribution of clay content and salinity on the ECa Deep measurements with the
negative correlation between sand content and ECa Deep. In Figure 3d, clay content was not clustered
with salinity and ECa Deep, indicating that the three variables were not collinear, yet negatively
correlated with sand content. According to the correlation and PCA analyses, high values of ECa Deep
were mainly interpreted as an indication of high salinity and fine soil texture. ECa readings larger than
1–2 dS m−1 are most likely due to high soil salinity rather than other edaphic factors contributing to
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soil conductivity [101,102]. Conversely, lower ECa Deep was interpreted as an indication of coarser
soils with low salinity. Note that Scudiero, Teatini, Corwin, Deiana, Berti, and Morari [86] reported
that the spatial patterns of ECa Deep remained stable over time at the study area.

The two in-season NDVI maps for the late R-2 growth stage are reported in Figure 4b (2010) and
Figure 4e (2011). Table 1 reports the descriptive statistics for the two NDVI maps. The 2010 NDVI
was more heterogeneous (mean = 0.79, standard deviation = 0.046) than that of 2011 (mean = 0.83,
standard deviation = 0.018). During the R-2 growth stage, environmental stressors (e.g., drought, heat,
severe nutrient deficiency) may prevent kernels from developing properly (e.g., kernel abortion at the
ear tip) [103,104].
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Figure 4. Maps of: (a) apparent electrical conductivity of the 0–1.5-m soil profile (ECa Deep);
Normalized Difference Vegetation Index (NDVI) for (b) 2010 and (e) 2011; local geographically-weighted
regressions (GWRs) slope coefficient for (c) 2010 and (f) 2011; and observed versus estimated NDVI
relationship for (d) 2010 and (g) 2011 on significant local GWRs.

Table 1. Descriptive statistics for the soil apparent electrical conductivity map (ECa Deep), and the
2010 and 2011 Normalized Difference Vegetation Index (NDVI) maps.

Variable Mean Median Minimum Maximum Standard Deviation

ECa Deep (dS m−1) 0.96 0.86 0.32 2.49 0.36
2010 NDVI 0.790 0.80 0.470 0.867 0.046
2011 NDVI 0.829 0.83 0.664 0.858 0.018

3.2.2. Plant–Soil Relationship at Different Time Points

Figure 4 summarizes the GWR analysis between soil ECa Deep and in-season NDVI for 2010
and 2011. For 2010, 1149 cells (62.5% of total) were characterized by a significant (p < 0.05) local
Pearson correlation coefficient r. For 2011, 56.8% of the cells had a significant local r. At the locations
with significant local r, the observed-estimated NDVI relationship was characterized by R2 = 0.73 in
2010 (Figure 3d) and R2 = 0.62 in 2011 (Figure 3g). There was a strong negative relationship in both
years (r = −0.36 in 2010 and r = −0.43 in 2011) between the significant local r and ECa Deep maps.
The slope of this relationship was steeper in 2011 (−0.46 with standard error = 0.027) than in 2010
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(−0.38 with standard error = 0.026). This may indicate that low ECa Deep (e.g., indicating coarse
texture) was a greater constrain in 2011 than 2010. Scudiero, Teatini, Corwin, Dal Ferro, Simonetti,
and Morari [88] showed that water stress in areas with coarser soil texture is particularly limiting in
dry years, such as 2011.

In areas where the significant local r values were consistently negative in both years, the ECa

Deep averaged 1.17 dS m−1 (standard deviation = 0.39 dS m−1), whereas, in areas with negative
local r only in 2010, it averaged 0.94 dS m−1 (standard deviation = 0.28 dS m−1). This suggested that
only very high ECa Deep, which indicates high salinity, consistently limited crop growth in the two
years. As discussed by other authors [105–107], the effects of high salinity on crops are generally stable
throughout different growing seasons.

The GWR slope maps (Figure 4c for 2010, Figure 4f for 2011) changed remarkably between the two
years, indicating a change in the sensitivity of plant NDVI to changes in soil properties. Changes of crop
growth and yield spatial patterns are expected between seasons having widely different meteorology,
as discussed by Maestrini and Basso [38] and McBratney, Whelan, Ancev, and Bouma [37].

3.2.3. Time-Specific MZ Delineation

The GWR slope and ECa Deep maps were used to drive the delineation of in-season site-specific
MZs. The CHC index indicated that a five-MZ configuration was optimal for 2010. The CHC was 1901.3
for three MZs, 1979.7 for four MZs, and 2002.7 for five-MZs. In 2011, the CHC index indicated that a
four-MZ configuration was optimal. CHC was 1248.9 for three MZs, 1383.4 for four MZs, and 1374.0 for
five MZs. The two MZ delineations are shown in Figure 5a (for 2010) and Figure 5b (for 2011).

Overall, 45.1% of the cells were classified in the same MZ at both times. The consistency
rate was 94.3% for MZ I, 75.6% for MZ II, 20.1% for MZ III, and 48.5% for MZ IV. Conversely,
changes in local GWR slope led to 54.9% of the cells being assigned to a different time-specific
MZ. As reported by Maestrini and Basso [38], it is reasonable to expect portions of a field to have
stable (e.g., consistently high yields) and unstable crop outputs. Management in the unstable areas
should be addressed within each growing season to meet desired agronomic output goals [18,38].
The proposed methodology helps characterizing time-specific changes in the crop output according to
soil spatial variability.
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0–1.5 m soil profile (ECa Deep) only.

3.2.4. Time-Specific MZ-Design Quality Control and Interpretation

In both years, each time-specific MZ was characterized by unique combinations of the variables
used in MZ delineation. Moreover, the time-specific MZs differed greatly in terms of ECa Deep,
significant GWR r and slope, salinity, and texture (Table 2). Note that the local GWR r and slope,
which can be used to interpret the ECa Deep–NDVI relationship, remained fairly consistent over time
at the different MZs.
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Table 2. Count (n), mean, and standard deviation (Std. Dev.) of apparent electrical conductivity
for the 0–1.5-m soil profile (ECa Deep), local regression slope and Pearson correlation coefficient (r)
obtained from significant geographically weighted regressions (GWR), soil salinity (EC1:2), sand and
clay contents, and potential yield estimations at each time-specific management zone (MZ) for 2010
and 2011 (n.a. = not available; NA = not assessed).

Variable (Unit) MZ
2010 2011

n Mean Std. Dev. KW 1 n Mean Std. Dev. KW 1

ECa Deep (dS m−1)

I 53 0.44 0.10 e 263 0.65 0.21 d
II 779 0.68 0.12 d 1164 0.78 0.15 c
III 402 1.54 0.19 a 146 1.24 0.45 a
IV 513 1.09 0.12 b 574 1.38 0.23 b
V 400 0.80 0.12 c n.a. n.a. n.a. n.a.

GWR slope

I 53 (100.0% 2) 0.790 0.316 a 221 (84.0% 2) 0.073 0.040 a
II 371 (47.6% 2) 0.065 0.113 b 488 (41.9% 2) −0.024 0.028 b
III 334 (83.1% 2) −0.069 0.069 c 146 (100.0% 2) −0.132 0.050 c
IV 294 (57.3% 2) −0.048 0.055 c 364 (63.4% 2) −0.018 0.029 b
V 397 (99.3% 2) −0.176 0.092 d n.a. n.a. n.a. n.a.

GWR local r

I 53 (100.0% 2) 0.587 0.102 a 221 (84.0% 2) 0.433 0.126 a
II 371 (47.6% 2) 0.028 0.411 b 488 (41.9% 2) −0.279 0.285 b
III 334 (83.1% 2) −0.439 0.239 c 146 (100.0% 2) −0.597 0.190 d
IV 294 (57.3% 2) −0.399 0.281 c 364 (63.4% 2) −0.308 0.349 c
V 397 (99.3% 2) −0.537 0.150 d n.a. n.a. n.a. n.a.

EC1:2 (dS m−1)

I 1 0.21 NA ab 11 1.73 1.33 b
II 32 1.38 0.89 b 49 1.49 1.01 b
III 17 3.67 1.46 a 3 3.16 1.32 ab
IV 26 2.28 1.18 a 28 3.03 1.45 a
V 15 1.35 0.85 b n.a. n.a. n.a. n.a.

Sand (%)

I 1 71.1 NA ab 11 54.1 15.6 ab
II 32 50.6 12.6 b 49 53.1 12.4 a
III 17 42.8 10.9 b 3 37.5 13.6 ab
IV 26 42.7 8.8 b 28 42.1 9.2 b
V 15 63.8 8.5 a n.a. n.a. n.a. n.a.

Clay (%)

I 1 9.0 NA ab 11 12.6 6.6 ab
II 32 13.5 5.1 a 49 12.6 4.8 b
III 17 17.4 5.7 a 3 20.8 9.3 ab
IV 26 16.8 4.7 a 28 17.3 4.7 a
V 15 8.7 3.2 b n.a. n.a. n.a. n.a.

Potential Yield
(Mg ha−1)

I 53 7.03 1.90 bc 263 10.0 1.7 b
II 779 8.38 2.24 a 1164 10.5 1.2 a
III 402 7.61 1.75 b 146 9.3 2.1 c
IV 513 7.19 2.01 c 574 10.3 1.3 b
IV 400 7.08 1.90 c n.a. n.a. n.a. n.a.

1 Different letters are significantly different between MZs at the p < 0.05 level according to the Kruskal–Wallis (KW)
test. 2 Percentage of cells having significant GWR within the MZs.

In both years, MZ I consisted of soils with low ECa Deep, low salinity, and coarse soil texture.
MZ I had the highest positive GWR slope values, meaning NDVI would decrease with increasing sand
content. Scudiero, Teatini, Corwin, Dal Ferro, Simonetti, and Morari [88] monitored crop water and
salt stress at five soil–plant–water monitoring stations at the site. One of their stations (“Station E”)
was located in our MZ I. Scudiero, Teatini, Corwin, Dal Ferro, Simonetti, and Morari [88] indicated
that at Station E maize was not stressed by salinity but was under water stress, particularly in 2011,
when water stress was described as “severe”.

In contrast, MZ II in both years had GWR slope and r distributions overlapping with 0, indicating
little to no influence of soil on crop NDVI variability. This is perhaps the reason why MZ II was
consistently characterized by the highest potential yield estimations (Appendix A). The very saline
MZ III (highest measured average ECa Deep and EC1:2) was characterized by lower potential yield
estimations for both years in comparison with the other MZs (Table 2), as expected for (unmanaged)
very saline portions of farmlands [106]. Similarly, the moderately saline MZ IV (second highest
average ECa Deep), was characterized by the second lowest yield predictions in 2010 and 2011,
together with MZ I. MZ V was only selected in 2010. It grouped soils with moderately high ECa Deep
(third highest MZ average) together with the strongest negative GWR slope values and low potential
yield estimations. In 2011, 89.5% of the 2010 MZ V locations were classified into MZ II. Previous
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research focusing on spatiotemporal variability of yield patterns [38], indicates that fields generally
have areas of stable and unstable yield patterns. For unstable areas, in-season NDVI is suggested as
the best predictor for yield spatial distribution [38]. Our proposed approach further refines the NDVI
information by interpreting its spatial variability as a function of soil spatial variability.

A static MZ design based on ECa Deep only (Figure 5c) would identify four areas with significantly
different soil properties (Table 3), but very heterogeneous and inconsistent in terms of GWR local r
and slope (Table 4).

Table 3. Count (n), mean, and standard deviation (Std. Dev.) of apparent electrical conductivity for
the 0–1.5-m soil profile (ECa Deep), soil salinity (EC1:2), and sand and clay contents for the static
management zones (MZs) delineated using ECa Deep only.

Variable (Unit) Static MZ n Mean Std. Dev. KW 1

ECa Deep (dS m−1)

1 718 0.92 0.10 c
2 181 1.71 0.17 a
3 444 1.31 0.12 b
4 804 0.63 0.10 d

EC1:2 (dS m−1)

1 28 1.98 1.04 b
2 9 4.07 1.51 ab
3 21 2.82 1.25 a
4 33 1.07 0.68 c

Sand (%)

1 28 50.3 11.9 ab
2 9 41.0 9.3 b
3 21 41.1 9.8 b
4 33 55.9 12.9 a

Clay (%)

1 28 13.3 5.0 bc
2 9 18.3 5.7 ab
3 21 17.9 5.0 a
4 33 11.8 4.9 c

1 Different letters are significantly different between MZs at the p < 0.05 level according to the Kruskal–Wallis
(KW) test.

Table 4. Mean, standard deviation (Std. Dev.), and count (n) for the correlation coefficient (r) and slope
obtained from significant geographically weighted regressions (GWRs) for the static management zones
(MZs) delineated using soil apparent electrical conductivity for the 0–1.5-m soil profile (ECa Deep) only.

GWR Variable Static MZ
2010 2011

n Mean Std. Dev. n Mean Std. Dev.

Local r

1 490 (68.2% 1) −0.374 0.351 349 (48.6% 1) −0.156 0.383
2 163 (90.1% 1) −0.474 0.158 148 (81.8% 1) −0.542 0.158
3 313 (70.5% 1) −0.408 0.281 289 (65.1% 1) −0.303 0.408
4 483 (60.1% 1) −0.098 0.472 433 (53.9% 1) −0.041 0.420

Slope

1 490 (68.2% 1) −0.086 0.148 349 (48.6% 1) −0.009 0.039
2 163 (90.1% 1) −0.077 0.065 148 (81.8% 1) −0.074 0.068
3 313 (70.5% 1) −0.058 0.065 289 (65.1% 1) −0.023 0.045
4 483 (60.1% 1) 0.066 0.304 433 (53.9% 1) −0.002 0.079

1 Percentage of cells having significant GWR within the MZ.

4. Conclusions

Characterizing the temporal variability of the soil–plant relationship within the growing
season and over years is very relevant to developing best crop management practices with VRM.
Soil influences plants according to complex interactions between factors that may change in time,
such as meteorological conditions, nutrient availability, and water content. Static MZs are not ideal
when spatial patterns of soil–plant relationship change in time—because of changing meteorology
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and/or other transient factors. We presented a time-specific MZ-delineation workflow to address such
spatiotemporal variability.

The proposed approach for time-specific MZs should be further tested and evaluated in the field.
Future work should focus on multi-field and multi-year comparisons of time-specific and static MZs
and their relative impact on crop yields and resource use efficiency (e.g., water, nutrients).
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kernel blister stage of maize growth; SCC, (synthetic) sensor-derived clay content; TCC, (synthetic) true clay
content; UAV, unmanned aerial vehicle; VRM, variable rate management; WMZSS, within-MZ sum of squares;
WV2, WorldView-2 satellite.

Appendix A Interpreting NDVI as Potential Yield Indicator

In-season potential yield predictions can be very useful for the producers to decide on the feasibility of VRM.
Throughout the season NDVI can be used as potential yield indicator [33,35]. Estimations can be made at different
growth stages [32], provided the NDVI measurements are calibrated accordingly [33]. This is particularly relevant
when historical yield data is available, so that yield-predicting NDVI functions can be developed and used in
following years.

According to [16], the in-season potential yield can be estimated by fitting the NDVI values to the 68th
percentile (i.e., sum of average and one standard deviation) of yield. The NDVI and yield data from 2010
and 2011 were clumped together. The yield data was obtained from Scudiero, Teatini, Corwin, Dal Ferro,
Simonetti, and Morari [88]. The dataset was divided into fifty quantiles according to NDVI. The within-quantile
average NDVI was then used as explanatory variable to estimate the within-quintile 68th percentile of yield.
The estimation was done using a second-degree locally-weighted least squares regression. The regression modeling
was carried out through the loess function (with span = 0.45) from the stats package in R. The span parameter was
selected through a leave-one-out cross-validation using the loess.wrapper function from the bisoreg package in R.
Figure A1a shows the scatterplot between NDVI (i.e., at late R-2) and maize yield, all points were clustered on a
uniform grid of hexagons using the hexbin package in R.

The model describing the potential yield (Mean absolute error = 0.26 Mg ha−1, mean error = −0.027 Mg ha−1,
and R2 = 0.98) is reported with a solid red line in Figure A1. The locally-weighted least squares regression estimations
were then applied to the two NDVI maps (Figure 4b,e) to obtain potential yield estimations across the whole study
area for 2010 (Figure A1b) and 2011 (Figure A1c).



Agronomy 2018, 8, 253 16 of 21
Agronomy 2018, 8, x FOR PEER REVIEW  16 of 21 

 

 
Figure A1. (a) Scatterplot between yield and WorldView-2 NDVI for both years. The modeled in-
season potential yield is depicted with a solid red line. Potential yield maps calculated for (b) 2010 
and (c) 2011. 

References 

1. Lobell, D.B.; Azzari, G. Satellite detection of rising maize yield heterogeneity in the US Midwest. Environ. 
Res. Lett. 2017, 12, doi:10.1088/1748-9326/aa5371. 

2. Corwin, D.L.; Lesch, S.M.; Shouse, P.J.; Soppe, R.; Ayars, J.E. Identifying soil properties that influence 
cotton yield using soil sampling directed by apparent soil electrical conductivity. Agron. J. 2003, 95, 352–
364, doi:10.2134/agronj2003.0352. 

3. Kitchen, N.R.; Drummond, S.T.; Lund, E.D.; Sudduth, K.A.; Buchleiter, G.W. Soil Electrical Conductivity 
and Topography Related to Yield for Three Contrasting Soil–Crop Systems. Agron. J. 2003, 95, 483–495, 
doi:10.2134/agronj2003.4830. 

4. Bobryk, C.W.; Myers, D.B.; Kitchen, N.R.; Shanahan, J.F.; Sudduth, K.A.; Drummond, S.T.; Gunzenhauser, 
B.; Gomez Raboteaux, N.N. Validating a Digital Soil Map with Corn Yield Data for Precision Agriculture 
Decision Support. Agron. J. 2016, 108, 957–965, doi:10.2134/agronj2015.0381. 

5. Kaffka, S.R.; Lesch, S.M.; Bali, K.M.; Corwin, D.L. Site-specific management in salt-affected sugar beet fields 
using electromagnetic induction. Comput. Electron. Agric. 2005, 46, 329–350, doi:10.1016/j.compag.2004.11.013. 

6. Singh, G.; Williard, K.J.; Schoonover, J.E. Spatial Relation of Apparent Soil Electrical Conductivity with 
Crop Yields and Soil Properties at Different Topographic Positions in a Small Agricultural Watershed. 
Agron. Basel 2016, 6, doi:10.3390/agronomy6040057. 

7. Zhang, N.Q.; Wang, M.H.; Wang, N. Precision agriculture—A worldwide overview. Comput. Electron. 
Agric. 2002, 36, 113–132, doi:10.1016/s0168-1699(02)00096-0. 

8. Fleming, K.L.; Westfall, D.G.; Wiens, D.W.; Brodahl, M.C. Evaluating Farmer Defined Management Zone 
Maps for Variable Rate Fertilizer Application. Precis. Agric. 2000, 2, 201–215, doi:10.1023/a:1011481832064. 

9. Fraisse, C.W.; Sudduth, K.A.; Kitchen, N.R. Delineation of site-specific management zones by unsupervised 
classification of topographic attributes and soil electrical conductivity. Trans. ASAE 2001, 44, 155–166, 
doi:10.13031/2013.2296. 

Figure A1. (a) Scatterplot between yield and WorldView-2 NDVI for both years. The modeled in-season
potential yield is depicted with a solid red line. Potential yield maps calculated for (b) 2010 and (c) 2011.

References

1. Lobell, D.B.; Azzari, G. Satellite detection of rising maize yield heterogeneity in the US Midwest.
Environ. Res. Lett. 2017, 12. [CrossRef]

2. Corwin, D.L.; Lesch, S.M.; Shouse, P.J.; Soppe, R.; Ayars, J.E. Identifying soil properties that influence cotton
yield using soil sampling directed by apparent soil electrical conductivity. Agron. J. 2003, 95, 352–364.
[CrossRef]

3. Kitchen, N.R.; Drummond, S.T.; Lund, E.D.; Sudduth, K.A.; Buchleiter, G.W. Soil Electrical Conductivity
and Topography Related to Yield for Three Contrasting Soil–Crop Systems. Agron. J. 2003, 95, 483–495.
[CrossRef]

4. Bobryk, C.W.; Myers, D.B.; Kitchen, N.R.; Shanahan, J.F.; Sudduth, K.A.; Drummond, S.T.; Gunzenhauser, B.;
Gomez Raboteaux, N.N. Validating a Digital Soil Map with Corn Yield Data for Precision Agriculture
Decision Support. Agron. J. 2016, 108, 957–965. [CrossRef]

5. Kaffka, S.R.; Lesch, S.M.; Bali, K.M.; Corwin, D.L. Site-specific management in salt-affected sugar beet fields
using electromagnetic induction. Comput. Electron. Agric. 2005, 46, 329–350. [CrossRef]

6. Singh, G.; Williard, K.J.; Schoonover, J.E. Spatial Relation of Apparent Soil Electrical Conductivity with Crop
Yields and Soil Properties at Different Topographic Positions in a Small Agricultural Watershed. Agronomy
2016, 6, 57. [CrossRef]

7. Zhang, N.Q.; Wang, M.H.; Wang, N. Precision agriculture—A worldwide overview. Comput. Electron. Agric.
2002, 36, 113–132. [CrossRef]

8. Fleming, K.L.; Westfall, D.G.; Wiens, D.W.; Brodahl, M.C. Evaluating Farmer Defined Management Zone
Maps for Variable Rate Fertilizer Application. Precis. Agric. 2000, 2, 201–215. [CrossRef]

http://dx.doi.org/10.1088/1748-9326/aa5371
http://dx.doi.org/10.2134/agronj2003.3520
http://dx.doi.org/10.2134/agronj2003.0483
http://dx.doi.org/10.2134/agronj2015.0381
http://dx.doi.org/10.1016/j.compag.2004.11.013
http://dx.doi.org/10.3390/agronomy6040057
http://dx.doi.org/10.1016/S0168-1699(02)00096-0
http://dx.doi.org/10.1023/A:1011481832064


Agronomy 2018, 8, 253 17 of 21

9. Fraisse, C.W.; Sudduth, K.A.; Kitchen, N.R. Delineation of site-specific management zones by unsupervised
classification of topographic attributes and soil electrical conductivity. Trans. ASAE 2001, 44, 155–166.
[CrossRef]

10. Moral, F.J.; Terrón, J.M.; Silva, J.R.M.D. Delineation of management zones using mobile measurements of
soil apparent electrical conductivity and multivariate geostatistical techniques. Soil Tillage Res. 2010, 106,
335–343. [CrossRef]

11. Baveye, P.C.; Laba, M. Moving away from the geostatistical lamppost: Why, where, and how does the spatial
heterogeneity of soils matter? Ecol. Model. 2015, 298, 24–38. [CrossRef]

12. Schepers, A.R.; Shanahan, J.F.; Liebig, M.A.; Schepers, J.S.; Johnson, S.H.; Luchiari, A. Appropriateness of
management zones for characterizing spatial variability of soil properties and irrigated corn yields across
years. Agron. J. 2004, 96, 195–203. [CrossRef]

13. Koch, B.; Khosla, R.; Frasier, W.M.; Westfall, D.G.; Inman, D. Economic Feasibility of Variable-Rate Nitrogen
Application Utilizing Site-Specific Management Zones. Agron. J. 2004, 96, 1572–1580. [CrossRef]

14. Liang, X.; Liakos, V.; Wendroth, O.; Vellidis, G. Scheduling irrigation using an approach based on the van
Genuchten model. Agric. Water Manag. 2016, 176, 170–179. [CrossRef]

15. Vellidis, G.; Liakos, V.; Porter, W.; Tucker, M.; Liang, X. A dynamic variable rate irrigation control
system. In Proceedings of the 13th International Conference on Precision Agriculture, Monticello, IL, USA,
24–27 June 2018.

16. Raun, W.R.; Solie, J.B.; Johnson, G.V.; Stone, M.L.; Mullen, R.W.; Freeman, K.W.; Thomason, W.E.; Lukina, E.V.
Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate
application. Agron. J. 2002, 94, 815–820. [CrossRef]

17. Hedley, C.B.; Yule, I.J. Soil water status mapping and two variable-rate irrigation scenarios. Precis. Agric.
2009, 10, 342–355. [CrossRef]

18. Basso, B.; Ritchie, J.T.; Cammarano, D.; Sartori, L. A strategic and tactical management approach to select
optimal N fertilizer rates for wheat in a spatially variable field. Eur. J. Agron. 2011, 35, 215–222. [CrossRef]

19. Cohen, Y.; Alchanatis, V.; Saranga, Y.; Rosenberg, O.; Sela, E.; Bosak, A. Mapping water status based on
aerial thermal imagery: Comparison of methodologies for upscaling from a single leaf to commercial fields.
Precis. Agric. 2017, 18, 801–822. [CrossRef]

20. Helman, D.; Bahat, I.; Netzer, Y.; Ben-Gal, A.; Alchanatis, V.; Peeters, A.; Cohen, Y. Using Time Series
of High-Resolution Planet Satellite Images to Monitor Grapevine Stem Water Potential in Commercial
Vineyards. Remote Sens. 2018, 10, 1615. [CrossRef]

21. Shanahan, J.F.; Kitchen, N.R.; Raun, W.R.; Schepers, J.S. Responsive in-season nitrogen management for
cereals. Comput. Electron. Agric. 2008, 61, 51–62. [CrossRef]

22. Long, D.S.; Whitmus, J.D.; Engel, R.E.; Brester, G.W. Net Returns from Terrain-Based Variable-Rate Nitrogen
Management on Dryland Spring Wheat in Northern Montana. Agron. J. 2015, 107, 1055–1067. [CrossRef]

23. Quebrajo, L.; Perez-Ruiz, M.; Pérez-Urrestarazu, L.; Martínez, G.; Egea, G. Linking thermal imaging and soil
remote sensing to enhance irrigation management of sugar beet. Biosyst. Eng. 2018, 165, 77–87. [CrossRef]

24. Adamchuk, V.I.; Hummel, J.W.; Morgan, M.T.; Upadhyaya, S.K. On-the-go soil sensors for precision
agriculture. Comput. Electron. Agric. 2004, 44, 71–91. [CrossRef]

25. De Lara, A.; Khosla, R.; Longchamps, L. Characterizing Spatial Variability in Soil Water Content for Precision
Irrigation Management. Agronomy 2018, 8, 59. [CrossRef]

26. Badewa, E.; Unc, A.; Cheema, M.; Kavanagh, V.; Galagedara, L. Soil Moisture Mapping Using
Multi-Frequency and Multi-Coil Electromagnetic Induction Sensors on Managed Podzols. Agronomy 2018, 8,
224. [CrossRef]

27. Gabriel, J.L.; Zarco-Tejada, P.J.; López-Herrera, P.J.; Pérez-Martín, E.; Alonso-Ayuso, M.; Quemada, M.
Airborne and ground level sensors for monitoring nitrogen status in a maize crop. Biosyst. Eng. 2017, 160,
124–133. [CrossRef]

28. Irmak, S.; Haman, D.Z.; Bastug, R. Determination of Crop Water Stress Index for Irrigation Timing and Yield
Estimation of Corn. Agron. J. 2000, 92, 1221–1227. [CrossRef]

29. Raun, W.R.; Solie, J.B.; Martin, K.L.; Freeman, K.W.; Stone, M.L.; Johnson, G.V.; Mullen, R.W. Growth stage,
development, and spatial variability in corn evaluated using optical sensor readings. J. Plant Nutr. 2005, 28,
173–182. [CrossRef]

http://dx.doi.org/10.13031/2013.2296
http://dx.doi.org/10.1016/j.still.2009.12.002
http://dx.doi.org/10.1016/j.ecolmodel.2014.03.018
http://dx.doi.org/10.2134/agronj2004.0195
http://dx.doi.org/10.2134/agronj2004.1572
http://dx.doi.org/10.1016/j.agwat.2016.05.030
http://dx.doi.org/10.2134/agronj2002.8150
http://dx.doi.org/10.1007/s11119-009-9119-z
http://dx.doi.org/10.1016/j.eja.2011.06.004
http://dx.doi.org/10.1007/s11119-016-9484-3
http://dx.doi.org/10.3390/rs10101615
http://dx.doi.org/10.1016/j.compag.2007.06.006
http://dx.doi.org/10.2134/agronj14.0331
http://dx.doi.org/10.1016/j.biosystemseng.2017.08.013
http://dx.doi.org/10.1016/j.compag.2004.03.002
http://dx.doi.org/10.3390/agronomy8050059
http://dx.doi.org/10.3390/agronomy8100224
http://dx.doi.org/10.1016/j.biosystemseng.2017.06.003
http://dx.doi.org/10.2134/agronj2000.9261221x
http://dx.doi.org/10.1081/PLN-200042277


Agronomy 2018, 8, 253 18 of 21

30. Solari, F.; Shanahan, J.; Ferguson, R.; Schepers, J.; Gitelson, A. Active sensor reflectance measurements of
corn nitrogen status and yield potential. Agron. J. 2008, 100, 571–579. [CrossRef]

31. Franke, J.; Menz, G. Multi-temporal wheat disease detection by multi-spectral remote sensing. Precis. Agric.
2007, 8, 161–172. [CrossRef]

32. Shanahan, J.F.; Schepers, J.S.; Francis, D.D.; Varvel, G.E.; Wilhelm, W.W.; Tringe, J.M.; Schlemmer, M.R.;
Major, D.J. Use of remote-sensing imagery to estimate corn grain yield. Agron. J. 2001, 93, 583–589. [CrossRef]

33. Teal, R.K.; Tubana, B.; Girma, K.; Freeman, K.W.; Arnall, D.B.; Walsh, O.; Raun, W.R. In-season prediction
of corn grain yield potential using normalized difference vegetation index. Agron. J. 2006, 98, 1488–1494.
[CrossRef]

34. Torino, M.S.; Ortiz, B.V.; Fulton, J.P.; Balkcom, K.S.; Wood, C.W. Evaluation of Vegetation Indices for Early
Assessment of Corn Status and Yield Potential in the Southeastern United States. Agron. J. 2014, 106,
1389–1401. [CrossRef]

35. Tagarakis, A.C.; Ketterings, Q.M. In-Season Estimation of Corn Yield Potential Using Proximal Sensing.
Agron. J. 2017, 109, 1323–1330. [CrossRef]

36. Blackmore, S.; Godwin, R.J.; Fountas, S. The analysis of spatial and temporal trends in yield map data over
six years. Biosyst. Eng. 2003, 84, 455–466. [CrossRef]

37. McBratney, A.; Whelan, B.; Ancev, T.; Bouma, J. Future directions of precision agriculture. Precis. Agric. 2005,
6, 7–23. [CrossRef]

38. Maestrini, B.; Basso, B. Predicting spatial patterns of within-field crop yield variability. Field Crop. Res. 2018,
219, 106–112. [CrossRef]

39. Fullmer, D.; Chetty, V.; Warnick, S. How good is bad weather? In Proceedings of the 2014 American Control
Conference, Portland, OR, USA, 4–6 June 2014; pp. 2711–2716.

40. Sadler, E.J.; Evans, R.G.; Stone, K.C.; Camp, C.R. Opportunities for conservation with precision irrigation.
J. Soil Water Conserv. 2005, 60, 371–378.

41. Vellidis, G.; Snider, J.; Liakos, V.; Porter, W.; Perry, C. Dynamic Variable Rate Irrigation Management Using
Soil Moisture and Canopy Temperature Sensors in the Southeastern USA. In Proceedings of the 2017 ASA,
CSSA, and SSSA International Annual Meeting, Tampa, FL, USA, 22–25 October 2017.

42. Franzen, D.W. Profitable Use of Site-Specific Nutrient Management Technologies. In Proceedings of the 2017
ASA, CSSA, and SSSA International Annual Meeting, Tampa, FL, USA, 22–25 October 2017.

43. Scudiero, E.; Morari, F.; Skaggs, T.H.; Braga, F.; Teatini, P. Understanding spatiotemporal variability of
soil–plant relationships in a heterogeneous coastal farmland in Northern Italy. In Proceedings of the 2016
ASA, CSSA, and SSSA International Annual Meeting, Phoenix, AZ, USA, 6–9 November 2016.

44. Liu, H.; Whiting, M.L.; Ustin, S.L.; Zarco-Tejada, P.J.; Huffman, T.; Zhang, X. Maximizing the relationship
of yield to site-specific management zones with object-oriented segmentation of hyperspectral images.
Precis. Agric. 2018, 19, 348–364. [CrossRef]

45. Myers, D.B. Measurements That Matter for Decision Agriculture. In Proceedings of the 2016 ASA, CSSA,
and SSSA International Annual Meeting, Phoenix, AZ, USA, 6–9 November 2016.

46. Betzek, N.M.; Souza, E.G.D.; Bazzi, C.L.; Schenatto, K.; Gavioli, A. Rectification methods for optimization of
management zones. Comput. Electron. Agric. 2018, 146, 1–11. [CrossRef]

47. Gavioli, A.; de Souza, E.G.; Bazzi, C.L.; Guedes, L.P.C.; Schenatto, K. Optimization of management zone
delineation by using spatial principal components. Comput. Electron. Agric. 2016, 127, 302–310. [CrossRef]

48. Taylor, J.A.; McBratney, A.B.; Whelan, B.M. Establishing Management Classes for Broadacre Agricultural
Production. Agron. J. 2007, 99, 1366–1376. [CrossRef]

49. Córdoba, M.A.; Bruno, C.I.; Costa, J.L.; Peralta, N.R.; Balzarini, M.G. Protocol for multivariate homogeneous
zone delineation in precision agriculture. Biosyst. Eng. 2016, 143, 95–107. [CrossRef]

50. Corwin, D.L.; Lesch, S.M. Characterizing soil spatial variability with apparent soil electrical conductivity I.
Survey protocols. Comput. Electron. Agric. 2005, 46, 103–133. [CrossRef]

51. Rossel, R.A.V.; Taylor, H.J.; McBratney, A.B. Multivariate calibration of hyperspectral γ-ray energy spectra
for proximal soil sensing. Eur. J. Soil Sci. 2007, 58, 343–353. [CrossRef]

52. Minty, B.R.S. Fundamentals of airborne gamma-ray spectrometry. AGSO J. Aust. Geol. Geophys. 1997, 17,
39–50.

http://dx.doi.org/10.2134/agronj2007.0244
http://dx.doi.org/10.1007/s11119-007-9036-y
http://dx.doi.org/10.2134/agronj2001.933583x
http://dx.doi.org/10.2134/agronj2006.0103
http://dx.doi.org/10.2134/agronj13.0578
http://dx.doi.org/10.2134/agronj2016.12.0732
http://dx.doi.org/10.1016/S1537-5110(03)00038-2
http://dx.doi.org/10.1007/s11119-005-0681-8
http://dx.doi.org/10.1016/j.fcr.2018.01.028
http://dx.doi.org/10.1007/s11119-017-9521-x
http://dx.doi.org/10.1016/j.compag.2018.01.014
http://dx.doi.org/10.1016/j.compag.2016.06.029
http://dx.doi.org/10.2134/agronj2007.0070
http://dx.doi.org/10.1016/j.biosystemseng.2015.12.008
http://dx.doi.org/10.1016/j.compag.2004.11.002
http://dx.doi.org/10.1111/j.1365-2389.2006.00859.x


Agronomy 2018, 8, 253 19 of 21

53. Priori, S.; Martini, E.; Andrenelli, M.C.; Magini, S.; Agnelli, A.E.; Bucelli, P.; Biagi, M.; Pellegrini, S.;
Costantini, E.A.C. Improving Wine Quality through Harvest Zoning and Combined Use of Remote and Soil
Proximal Sensing. Soil Sci. Soc. Am. J. 2013, 77, 1338–1348. [CrossRef]

54. Scudiero, E.; Corwin, D.L.; Wienhold, B.J.; Bosley, B.; Shanahan, J.F.; Johnson, C.K. Downscaling Landsat 7
canopy reflectance employing a multi-soil sensor platform. Precis. Agric. 2016, 17, 53–73. [CrossRef]

55. Lesch, S.M. Sensor-directed response surface sampling designs for characterizing spatial variation in soil
properties. Comput. Electron. Agric. 2005, 46, 153–179. [CrossRef]

56. Van Groenigen, J.W.; Stein, A. Constrained optimization of spatial sampling using continuous simulated
annealing. J. Environ. Qual. 1998, 27, 1078–1086. [CrossRef]

57. Hengl, T.; Heuvelink, G.B.M.; Stein, A. A generic framework for spatial prediction of soil variables based on
regression-kriging. Geoderma 2004, 120, 75–93. [CrossRef]

58. Lesch, S.M.; Corwin, D.L. Prediction of spatial soil property information from ancillary sensor data using
ordinary linear regression: Model derivations, residual assumptions and model validation tests. Geoderma
2008, 148, 130–140. [CrossRef]

59. Nelson, M.A.; Bishop, T.F.A.; Triantafilis, J.; Odeh, I.O.A. An error budget for different sources of error in
digital soil mapping. Eur. J. Soil Sci. 2011, 62, 417–430. [CrossRef]

60. Gausman, H.W.; Allen, W.A. Optical parameters of leaves of 30 plant species. Plant Physiol. 1973, 52, 57–62.
[CrossRef] [PubMed]

61. Huete, A.R.; Jackson, R.D.; Post, D.F. Spectral Response of a Plant Canopy with Different Soil Backgrounds.
Remote Sens. Environ. 1985, 17, 37–53. [CrossRef]

62. Li, H.; Lascano, R.J.; Barnes, E.M.; Booker, J.; Wilson, L.T.; Bronson, K.F.; Segarra, E. Multispectral Reflectance
of Cotton Related to Plant Growth, Soil Water and Texture, and Site Elevation. Agron. J. 2001, 93, 1327–1337.
[CrossRef]

63. Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically weighted regression—Modelling spatial
non-stationarity. J. R. Stat. Soc. Ser. D-Stat. 1998, 47, 431–443. [CrossRef]

64. Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically Weighted Regression: A Method for
Exploring Spatial Nonstationarity. Geogr. Anal. 1996, 28, 281–298. [CrossRef]

65. Mitchell, A. The ESRI Guide to GIS Analysis. Vol. II: Spatial Measurements and Statistics; ESRI Press:
Redlands, CA, USA, 2005.

66. Fotheringham, A.S.; Brunsdon, C.; Charlton, M.E. Geographically Weighted Regression: The Analysis of Spatially
Varying Relationships; John Wiley: Hoboken, NJ, USA, 2002.

67. Odeh, I.O.A.; McBratney, A.B.; Chittleborough, D.J. Soil pattern recognition with fuzzy-c-means: Application
to classification and soil-landform interrelationships. Soil Sci. Soc. Am. J. 1992, 56, 505–516. [CrossRef]

68. Venkatramanan, S.; Chung, S.Y.; Rajesh, R.; Lee, S.Y.; Ramkumar, T.; Prasanna, M.V. Comprehensive studies
of hydrogeochemical processes and quality status of groundwater with tools of cluster, grouping analysis,
and fuzzy set method using GIS platform: A case study of Dalcheon in Ulsan City, Korea. Environ. Sci.
Pollut. Res. 2015, 22, 11209–11223. [CrossRef] [PubMed]

69. Fridgen, J.J.; Kitchen, N.R.; Sudduth, K.A.; Drummond, S.T.; Wiebold, W.J.; Fraisse, C.W. Management Zone
Analyst (MZA): Software for subfield management zone delineation. Agron. J. 2004, 96, 100–108. [CrossRef]

70. Lowrance, C.; Fountas, S.; Liakos, V.; Vellidis, G. EZZone–An Online Tool for Delineating Management
Zones. In Proceedings of the 13th International Conference on Precision Agriculture, St. Louis, MI, USA,
24–27 June 2018.
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