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Whatever the final laws of nature may be,

there is no reason to suppose
that they are designed to make physicists happy.

— Steven Weinberg
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Abstract

Effective Field Theories (EFTs) allow a description of low energy effects of heavy new
physics Beyond the Standard Model (BSM) in terms of higher dimensional operators
among the SM fields. EFTs are not only an elegant and consistent way to describe
heavy new physics but they represent, at the same time, a valuable experimental tool for
collider searches. The Standard Model Effective Field Theory naturally parametrizes the
space of models BSM and measuring its interactions is, nowadays, substantial part of
the theoretical and the experimental program at the (HL-)LHC and at future colliders.
In this thesis we address the theoretical challenges of this Beyond the Standard Model
precision program, following three different paths.

Firstly, we present some results towards the so-called high-p7 program at the (HL-)LHC,
targeting to measure energy growing effects of higher dimensional operators in the tail
of kinematic distributions. Concretely, we focus on dilepton production and we study
the sensitivity to flavor universal dimension-six operators interfering with the SM and
enhanced by the energy. We produce theoretical predictions for the SM and the dim-6
EFT operators at NLO-QCD, including 1-loop EW logs. Our predictions are based on
event reweighting of SM Montecarlo simulations and allow an easy scan of the multi-
dimensional new physics parameter space on data. Furthermore we asses the impact of
the various sources of theoretical uncertainties and we study the projected sensitivity of
(HL-)LHC to the EFT interactions under consideration and to concrete BSM scenario.
We then turn to future colliders and in particular to very high energy lepton colliders. In
this context we study the potential of such machines with about 10 TeV center of mass
energy to probe Higgs, ElectroWeak and Top physics at 100 TeV via precise measurements
of EFT interactions. A peculiar aspect of so energetic ElectroWeak processes is the
prominent phenomenon of the EW radiation. On one hand we find that consistent
and sufficiently accurate predictions require resummations, that we perform at double
logarithmic order. On the other hand we show how the study of the radiation pattern
can enhance the sensitivity to new physics. We assess our results in Composite Higgs
and Top scenarios and minimal Z’ models.

Finally, we move to a top-down perspective and we perform a phenomenological study
of composite Higgs models with partially composite Standard Models quarks. Starting
from maximally symmetric scenarios that realize minimal flavor violation, we test various



Abstract

assumptions for the flavor structure of the strong sector. Among the different models
we consider, we find that there is an optimal amount of symmetries that protects from
(chromo-)electric dipoles and reduces, at the same time, constraints from other flavor
observables.

Keywords: Effective Field Theories, Precision physics, Beyond the Standard
Model, Flavor physics, Future Colliders, Collider physics, Composite Higgs,
Partial compositeness
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Riassunto

Le teorie efficaci di campo (EFT) consentono una descrizione a bassa energia di nuova
fisica pesante dopo lo Standard Model (SM), in termini di operatori efficaci. Le EFTs
non sono solo un modo elegante e consistente per descrivere nuova fisica pesante ma
rappresentano, allo stesso tempo, un efficiente strumento sperimentale per le ricerca
ai collider. Infatti, la teoria efficace dello Standard Model parametrizza naturalmente
lo spazio dei modelli di nuova fisica. Misurare con precisione le interazioni che vi
appartengono ¢ una parte sostanziale del programma teorico e sperimentale di (HL-)LHC
e dei collider futuri.

Questa tesi riassume alcune delle sfide teoriche di questo programma di fisica di precisione,
che vengono discusse attraverso 3 diversi capitoli.

Prima di tutto, ci focalizziamo sul cosiddetto programma di high-py di (HL-)LHC, mirato
a misurare nuove interazioni efficaci nella coda delle distribuzioni cinematiche. In pratica
studiamo 1’ impatto di operatori di dimensione 6, universali nel flavor e che crescono
con l'energia, in processi di produzione di due leptoni. Le predizioni teoriche utilizzate
sono ottenute tramite ripesamento di simulazioni MonteCarlo basate sullo SM. Queste
predizioni sono estramente precise (NLO-QCD + 1-loop EW Logs) e permettono di
spaziare agevolmente su un ampio spazio di parametri di nuova fisica per un efficiente
confronto con i dati.

Il secondo capitolo e’ dedicato ai “future collider” ed in particolare ai collider di leptoni ad
alta energia. In questo contesto studiamo il potenziale di tali macchine, con circa 10 TeV
di energia del centro di massa, per testare la fisica Elettrodebole, dell’ Higgs e del Top fino
a 100 TeV, tramite misure di precisione delle interazioni di EFT. Un aspetto peculiare
dei processi Elettrodeboli ad energie cosi alte ¢ I’ importante fenomeno della radiazione
Elettrodebole. Da un lato troviamo che predizioni consistenti e sufficientemente accurate
richiedono risommazioni, che eseguiamo al doppio logaritmo. Dall’altro lato mostriamo
come lo studio del pattern di radiazione puo aumentare la sensibilita alla nuova fisica.
Inoltre, quantifichiamo i nostri risultati in scenari di Higgs e Top composti e in modelli
minimali di 7.

Infine, cambiamo prospettiva e ci concentriamo su uno studio fenomenologico di modelli
di Higgs composto che includono quark dello SM parzialmente composti. Partendo da
scenari massimamente simmetrici, che relizzano l'ipotesi di “Minimal Flavor Violation”,

vii



Riassunto

studiamo varie ipotesi riguardo la struttura del flavor del settore forte. Tra i diversi
modelli che consideriamo, troviamo delle assunzioni ottimali che non generano dipoli
(cromo-)elettrici e riducono, allo stesso tempo, I'impatto delle altre osservabili di flavor.

Keywords: Teorie di campo efficaci, Fisica di precisione, Fisica dopo il mod-
ello Standard, Fisica del Flavor, Future Colliders, Fisica del collider, Higgs
composto, Partial compositeness
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The thesis is schematically organized as follows:

o Chapter 1 is based on [1,2]

1. L. Ricci, R. Torre, and A. Wulzer, On the W&Y interpretation of high-energy
Drell-Yan measurements, JHEP 02 (2021) 144 [2008.12978]

2. G. Panico, L. Ricci and A. Wulzer, High-energy EFT probes with fully differ-
ential Drell-Yan measurements, JHEP 07 (2021) 086 [2103.10532]

o Chapter 2 is mostly based on [3]

3. S. Chen, A. Glioti, R. Rattazzi, L. Ricci and A. Wulzer, Learning from radiation
at a very high energy lepton collider, JHEP 05 (2022) 180 [2202.10509]

and contains a short introduction on the resummation of IR effects in QFT.
e Chapter 3 is mostly based on a 4th paper to appear

4. A. Glioti,R. Rattazzi,L. Ricci and L. Vecchi, To appear

ix


https://doi.org/10.1007/JHEP02(2021)144
https://arxiv.org/abs/2008.12978
https://doi.org/10.1007/JHEP07(2021)086
https://arxiv.org/abs/2103.10532
https://doi.org/10.1007/JHEP05(2022)180
https://arxiv.org/abs/2202.10509




Contents

Acknowledgments
Abstract
Riassunto
Foreword

Introduction

The Standard Model Effective Field Theory . . . . . . .. .. ... ... ...
Searching for New Physics far from the EW scale . . . . . .. .. .. ... ..

1 Precision physics from the tail

1.1 New Physics in High-Energy dilepton-Drell Yan . . . . . . .. ... ...

1.2 Theoretical predictions via

event reweighting . . .. ... ... ... ..

1.2.1 Fixed-order QCD corrections . . . . . . . ... . ... ... ...

1.2.2 Reweighting POWHEG

1.2.3  Electroweak logarithms . . . . . . ... .. ... ... ... ..

1.3 The Drell-Yan Likelihood
1.3.1 Cross-section param

etrization . . . . . . .. ... ..o

1.3.2 Parametric and theoretical uncertainties . . . . . . . . . . . . ..

1.3.3 Statistical inference
1.3.4 LHC projections .

1.4  Fully differential measurements . . . . . . . . .. ... ...
1.4.1 Tree-level distributions . . . . . . . . .. ... ... ... .....
1.4.2 Bounds on the Universal parameters Wand Y . . ... ... ..

1.4.3 General quark-lepton interactions . . . . . . . .. ... ... ...

1.4.4 Experimental uncertainties . . . . .. ... ... ... ... ...

1.5 Sensitivity to Minimal 2’ models . . . . . .. .. .. ... 0.

1.6 Conclusion and outlook .

2 Precision physics from Very
2.1 Learning from radiation at
2.2 All-orders IR Double Logs

High Energy Leptons collisions
VHEL. . ... ... ... ... ...

vii

ix

11
12
15
16
21
24
31
32
33
38
39
44
44
47
20
57
99
63

67
68
71

Xi



Contents

xii

2.2.1 The method of the asymptotic dynamics . . . . . . ... ... ..
2.2.2  The Infrared Evolution Equation . . . . . . ... ... ... ...
2.3 Di-fermion and di-boson production at VHEL . . . . .. ... ... ...
2.3.1 Di-fermion production . . . . . . ... ... ... ...
2.3.2 Di-boson production . . . . ... ..o oL
2.4 Sensitivity projections . . . . .. ..o
2.4.1 WE&Y operators. . . . . . . .
2.4.2 Diboson operators . . . . . . ...
2.4.3 BSM sensitivity . . . . . ... o
2.5 Conclusion and outlook . . . .. .. ... L L

A light composite Higgs vs flavor observables

3.1 Composite Higgs . . . . . ... .
3.2 Partial Compositeness . . . . . . ... L
3.2.1 Symmetric strong sector . . . .. ...
3.3 Less symmetric strong sector . . . . .. ... L oL
3.3.1 Right-handed compositeness . . . . . . .. ... . ... ... ...
3.3.2 Left-handed compositeness . . . . ... .. ... ... ... ...
3.3.3 Other possibilities . . . . .. ... ... ... ... ... .. ...
3.4 Experimental constraints. . . . . .. ... o000
3.4.1 Universal constraints . . . . . .. ... ... ... .. ... ..
3.4.2  Anomalous couplings to SM gauge bosons . . . . . ... ... ..
3.4.3 Dipole operators . . . . . . . ...
3.4.4 Four-fermions operators . . . . . . . ... ... ... ..
3.5 Conclusion and outlook . . . .. ... ... o L

Appendices for Chapter 1

A1 Explicit formulas . . . . . . ...
A.2 Kinematical variables . . . . . . . .. .. ...
A.3 Correlation matrices . . . . . . . . ...
A4 LHC projections . . . . . . . . ..

Appendices for Chapter 2

B.1 Radiation integrals . . . . . . .. .. . Lo o
B.2 High-energy EW multiplets . . . . ... ... ... .. ... .. ...,
B.3 3" family operators . . . . . . ... ...
B.4 Summary plots . . . ... oL

Appendices for Chapter 3

C.1 Additional details on the models . . . . . . . ... .. ... ... ....
Cll UR)XUBIRC « v v v oo e e e e e e e
Cl2 UREG - o o oo e e
C13 UL - - v v o o

72
79
91
91
96
100
100
105
112
117

121
122
124
127
134
134
143
146
147
147
149
152
154
158

161
161
164
165
166

169
169
173
175
176



Contents

Bibliography 204

Curriculum Vitae 205

xiii






Introduction

The Standard Model (SM) represents one of the greatest successes in the history of
physics. In 2012 ATLAS [4] and CMS [5] announced the discovery of a spin-0 and mass
125 GeV resonance, compatible with the Higgs Boson. This was the last missing piece of
the puzzle and after that the SM was finally experimentally confirmed.

In these ten years after the Higgs boson discovery, we started a new step toward the
exploration of fundamental physics, the characterization of the Higgs sector. Moreover
much effort from both the experimental and the theoretical physics communities converted
the LHC from a discovery machine to a precision one and even if we are still at an early
stage of the LHC data interpretation, there is already an evidence of a first remarkable
result. The on-shell couplings of the Higgs boson are measured with 10% or more accuracy
and this is suggesting the Higgs looks like an elementary particle up to a scale of roughly
1TeV. So we are in a situation where we know that there is some new physics but we
have no guaranteed of where to find it.

Despite of its experimental success, the SM gives just a partial description of nature
and many questions are still open. Starting from energy scales far away from what
we can actually test in our laboratories, we already know that the SM is limited and
can describe processes below a maximum cut-off Agys. In fact, the SM embeds a per-
turbative description of gravity, defined as a semiclassical expansion around general
relativity. Yet, we know that processes at energies where quantum gravity becomes
relevant (E ~ Mp ~ 10'GeV), would eventually violate perturbative unitarity. In more
simple words, our calculations tell us that processes at the Plank scale Mp would not
conserve probabilities, meaning that the SM is inconsistent at energies above Agy < Mp.
Gravity at the Plank scale Mp establishes an upper limit for where we are guaranteed to
find something new. Apart from gravity, there are many more phenomena that are not
accounted by the SM. Among them, neutrino oscillations, dark matter, matter anti-matter
asymmetry, the CMB. At the same time there are still open questions behind what is
actually described by the SM. What is the origin of the peculiar SM flavor structure?
Why QCD seems to preserve CP? Why the proton lifetime is so long? And finally, what
is the mechanism behind the EW symmetry breaking?
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Many of the previous arguments point towards heavy new physics in the far UV. For
instance neutrino oscillations suggest new physics at £ ~ 10 GeV or flavor observations
seems compatible with £ ~ 10® GeV. These numbers are clearly large and incomparable
with the energy we can actually touch in the foreseeable future. One of the previous
question, however, can be addressed only proceeding in the exploration of the partially
studied TeV energy range. In fact, establishing and quantifying the gap above the EW
scale can unveil the mystery behind the generation of masses in the SM and why we
observe this failure of dimensional analysis, as known as fine-tuning.

We illustrate this argument through a simple example [6].

An invitation: the light electron mass

We learn in textbooks classical electromagnetism as the theory describing the interactions
among the electric and magnetic fields and electrons. We also learn that a static electron
generate a Coulomb potential Voouiomy = 7=, Where e is the electric charge and r is the
distance from the electron. It is clear that electromagnetism fails to describe phenomena
at very short distances, as fact of matters the Coulomb electric field would carry infinite
energy in the proximity of the electron. In light of the previous discussion it is legitimate
to wonder, what is the cut-off Rgy of the electromagnetism, i.e. the minimal distance
after which classical electromagnetism is not valid anymore and it must be replaced by a
more fundamental theory?

The experimental radius of the electron is r, < 107™'7e¢m and this set the maximum
cut-off for the electromagnetism. Yet, 10~7¢m seems an extremely small number, at

least compared with the only length suggested by dimensional analysis 4;;% ~ 107 3em.
It would be peculiar if Rgp = 7 and dimensional analysis would fail of four order of
magnitude in predicting Rgn-

To better quantify this statement we can imagine to compute the measured electron

mass m, starting from the new fundamental theory and to split our calculation into two

too  dm, too  dm, Rem  dm,
Me = / dr = / dr + / dr
0 dr REM dr 0 dr (1)

= 0EMMe + OBEM™Me ,

contributions

where M, is the functional form of the electron mass in terms of the new physics parame-
ters. The first term in eq. (1) includes the effects of the old classical electromagnetism,
up to a distance Rgym, and dggmme is the contribution from new physics Beyond the
electromagnetism. Moreover, we know how to compute the first contribution dgnme, it
is just the electron self-energy from to the Coulomb potential dgpme = a/Rpm, with
a = 1/137 the electromagnetic structure constant. If no new physics occurs before hitting
the electron radius 5EM|RE1\/INTe ~ 70 GeV, this is a huge number and an extremely
precise cancellation must take place between dgyvme and dggyme in order to reproduce
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me. We can quantify this through the so-called fine-tuning parameter A = dgpme/me.
Setting the EM cut-off at the electron radius means a fine tuning A = 10°, i.e. of 5 order
of magnitude. This is evidently paradoxical and this can be appreciated doing the mental
exercise of computing the electron mass from the hypothetical theory BEM. There, two
completely distinct effects have to be computed with 5 digits precision just to get the first
digit in me. Notice that if this, from a theoretical physicist perspective seems extremely
peculiar, from a more technical point of view poses a concrete problem. If there is a
large fine-tuning it means that the new short-distance theory cannot practically predict
the electron mass, since it would technically require an extremely high precision.

In the case of the electron Nature has chosen a different path with respect to the fine-
tuning. In fact, at a length well above 10717 em, electromagnetism is modified by the
quantum production of electron-positron pairs. Moreover EM it is replaced at short dis-
tances by the more fundamental Quantum ElectroDynamics (QED), which includes also
quantum mechanical effects. It is interesting that QED solves the electron naturalness
problem even without a microscopic explanation for the electron mass. The solution is
that the QED contribution to the electron mass is determined up to a multiplicative
constant, fixed as a function of the Beyond QED contribution. More precisely

1) 1) 3 1
Me = OBQED (1 + QED) , QED _ 2% log <> ; (2)

OBQED opqQEp 41 RqEDMe

where crucially the second term grows logarithmically as a function of the cut-off. This
growth is way milder than the powerlike growth in dgyme. Furthermore we can notice
that self-energy contribution to the electron mass is proportional to the mass itself and
vanishes in the m, — 0 limit. This remarkable property is peculiar of fermions and
related to the approximate chiral symmetry re-obtained in the m, = 0 limit.

The situation of the SM, after ten years from the Higgs boson discovery is closely
analogous to the one just described of classical electromagnetism. In practice, given Agy
we can play the same game and imagine to compute the Higgs mass m; = 125 GeV,
starting from a more fundamental theory beyond the SM. Since now we have a purely
quantum mechanical problem we can directly talk about energies, so Agys is the energy
cut-off of the SM and we have

Asmo ding too  dm?
2 h h
mi = dE——= + dE—=
h /0 dE " Jagw  dE . (3)
= Ssmmi + dpsumy
Again we can define the fine-tuning as A = 55Mm% /m%, where 65Mm%l can be easily

computed in perturbation theory. The leading contribution is the one related to top
loops and it reads

3y2
Ssmmy = STrtgAgM ; (4)
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and we can see that this contribution is quadratically enhanced by a large cut-off.
In principle, we can imagine no new physics to occur before the Plank scale, setting
Asm = Mp we get a fine-tuning of 32 orders of magnitude. This seems extremely
paradoxical: any theory BSM that can predict the Higgs mass would require extremely
precise calculations (more than 30 digits), making this hypothetical calculation unfeasible.
Moreover if nature respects naturalness we would expect new physics to show up at
scales not too far from the TeV range. For instance A = 5 TeV corresponds to a fine
tuning of only two digits that seems still compatible with the naturalness principle. We
remark that, if we don’t consider the cosmological constant, the Higgs mass is the only
parameter of the SM in this paradoxical situation.

To conclude, another crucial aspect, is that some solutions to the Higgs hierarchy
problem have been proposed, among all the most remarkable are supersymmetry and
compositeness (that will be discussed in ch 3). This is to say that there are examples
of natural solutions to the hierarchy problem and this poses the paradox. Why nature
should chose fine-tuning if there are natural choices?

Thanks to the huge experimental effort we can finally address this question. The large
Hadron Collider (LHC) can perform precision measurements at the TeV range and exactly
this year it is starting the third run of collisions. Feasible future collider proposals foresee
processes with center of mass energy of tens of TeV. Exploring physics at the TeV it
is a concrete plan to characterize the unknown and to establish what we know about
fundamental physics.

The Standard Model Effective Field Theory

The Standard Model is the most general Effective Field Theory (EFT) describing the
interactions among all the particles we have observed so far. Phenomenological inputs
together with a consistent description of spin-1 fields, requires the SM to be redundant
under the SU(3), x SU(2), x U(1)y gauge group. Apart from that (and Lorentz
invariance) no more constraints are required to the SM that is described only by its field
content. The matter content features three generation of following Weyl fermions

qL7 ulRa 3%7 liu ezRa

and a single scalar, the Higgs field H. All the quarks ¢y, ugr, dg transform in the
fundamental of SU(3)., the left-handed fermions

— ("L I, =YL
qr, = dL7 L= 6L’
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Field SU(3). SU(2)r U(
qr

3

UR 3
dr 3
1

1
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|
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Table 1 — Gauge quantum numbers of the Standard Model matter fields.

and the Higgs H are doublets of SU(2)r. The gauge quantum numbers of all the matter
fields are summarized in table 1. The Lagrangian reads

Lsw = L5 + LG] (5)

where the first term Egﬁ is the textbook-like “Standard Model” and it includes all the

interactions that would survive in the limit where Agyy — +o00, i.e. in the limit where

the SM is valid up to arbitrary high-scales (and we forget about gravity). Apart from

neutrino oscillations, Egl%f describes all the interactions observed so far.

In order to fix the conventions and the notation, we briefly describe Eg%
Cg%z,cg—l-ﬁH-f-ﬁy-f—ﬁg, (6)

The first addend £, includes the kinetic terms and the gauge interactions

1 1 1 .
Lgauge = _ZGWQGZV - ZWWGWgV N ZBWBW + Z ifDf + (D#H)(D“H)T .
f:q7u’d7l7€
(7)

where GF7*, WH* and B* are the SU(3), x SU(2)r x U(1)y field strengths. The
covariant derivative D is defined as
D, =0,— igs)\aGZ — igT“W;f — ig/YBu , (8)

with A\ and 7% the generators of SU(3). and SU(2), algebras and gs, g and ¢’ the
various gauge couplings. The term Ly contains the Higgs potential

2
L =X (HTH . l;) , (9)

and Ly describes the Yukawa interactions among the Higgs and the fermions

—Ly = Y9§ Huly + Y gt Huly + YT Hep + h.c.. (10)
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Here H = iooH*, with o; the Pauli matrices. The non zero Higgs doublet vacuum
expectation value

<H>=m, (1)

generates the masses for the gauge bosons and the various fermions. through the well-
known spontaneous symmetry breaking mechanism. Given the unitary transformation
that diagonalizes the up and down Yukawas

TUu %U;ded = Diag[mq, ms, ms] , (12)

the Cabibbo-Kobayashi-Maskawa (CKM) matrix is given by

Y.V, = Diag[’mu, me, mt] )

— g\ A AN (p—in)
UlUy = Vorw = ) 1— 1) AN? +0\YH,  (13)
AN(1 —p—in) —AN? 1

where in the second equality we expressed the CKM in the so-called Wolfenstein
parametrization. Finally, the last term in eq. (6) contains the topological term
L 9 Gw/aGa é/u/a — leuupaGa
*7 1672 v =2 po
Finally we remark that what we have just described is the “classical” Lagrangian and
that we don’t review in any detail the quantization procedure, for which we refer to
standard textbooks [7].

Now, we can turn to the second term in eq. (5). The SM is an Effective Field Theory
and, as such, contains all the indirect effects of the degree of freedom that are too heavy
to be directly produced. These effects are translated into a infinite tower of irrelevant
deformations of the SM, encapsulated in higher dimensional composite operators built
out from the SM fields

d>4 (5) (6)
Ly = A —L +A%M£ +.... (14)
In the previous expansion Agyr is the cut-off of the SM, i.e. the energy scale where we
can start producing the heavy BSM states. Processes closer and closer to this scale,
clearly cannot be accounted by the SM since all the operators in eq. (14) would become
more and more relevant and the expansion in eq. (14) would lose any meaning. On
the contrary, in the regime where Agys is larger than the energies of our processes, the
expansion in eq. (14) is meaningful and the SM-EFT is a consistent description for our
observations. In the current experimental situation, where no new particles on top of the
SM degree of freedom are observed and where Eg/}l is found to work remarkably well,
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the SM-EFT is the correct theoretical framework.

Following the discussion of the previous pages, the most important question is: what is
Agm? A first indication of where we expect new physics comes from neutrino oscillations.
Interactions in ﬁﬁj} can not address such phenomenon which can be described by
L?]@ Matching the experimental observation with the effects described by the so-called
Weinberg operator [8], the only interaction contained in Eg/[, we can expect Agy ~ 101
GeV.

Another hint comes from the large lifetime of the proton. Again Eg% predicts the proton
to be stable, just by the fact that all the interactions in Eds%j have an accidental symmetry
conserving the baryon number. Accidental means that higher dimensional interactions
can in principle spoil this symmetry, indeed E(;JQ contains operators mediating the decay
of the proton. Merging this consideration with experimental constraints, one can infer

new physics at Agy > 10 GeV.

However, new physics mediating neutrino oscillations and/or proton decay is not in
contradiction with new physics at a lower scale. In fact, as the L’ds%;; protects the proton
from decaying, a similar protection mechanism can arise in hypothetical new physics at
scales lower than 10 GeV.

As we discussed at length before, the naturalness argument is pushing for new physics
at the TeV scale. At the same time, this is the energy range we are currently exploring
at LHC and we plan to explore at future colliders. A SM cut-off of Agy ~ few TeV
can produce potentially measurable effects in Lgﬁ Therefore insisting in measuring the
effects of higher dimensional operators we have the chance to finally understand if or not

there is new physics, as suggested by naturalness.

Notice that from a bottom-up perspective the SM as an EFT is an extremely efficient way
to search for new physics. Whatever the heavy new physics we are looking for, it generates
higher dimensional operators. The coefficients of these operators, the so-called Wilson
coefficients, directly parametrize new physics effects. The latter can be computed and
matched with data, resulting in constrains or observation on this new physics parameter
space defined by the Wilson coefficients. In this sense, the SM, as an EFT, it is not only
the correct theoretical way to describe generic heavy new physics effects, but it is also an
experimentally valuable tool for BSM searches.

Also from a top-down perspective an EFT description of the SM seems a promising
framework. Specific BSM scenarios, at low energy, produce specific signatures described
only by certain operators or combinations of operators in Ecﬁj. Therefore, constraining
the SM interactions we are effectively constraining the space of UV theories BSM.

At the same time we remark that a completely general SM-EFT contains a so large set of
theories to lose any practical application. In fact, if at d = 5 there is only the Weinberg
operators, at d = 6 there are more than a thousand operators [9] and they become
more and more with the increasing of the scaling dimensions. This makes completely

“model independent” searches technically unfeasible and force us to select some class of
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operators.

Furthermore, theoretical inputs can drive the experimental searches, through BSM
motivated hypotheses that can restrict the space of Wilson coefficients. A remarkable
example that we study in details in the rest of the thesis is composite Higgs. The latter
admits an EFT description in terms of higher dimensional operators, whose Wilson
coefficients can be sized through arguments of dimensional analysis [10].! The result is a
concrete set of EFTs where the Wilson coefficients are functions of a benchmark model
parameters and can be matched with specific BSM models.

Searching for New Physics far from the EW scale

We just saw that an effective way to search for BSM is through precise measurements
of the SM interactions. These are the so-called indirect searches for new physics and
they are the common denominator over the three chapter of this thesis. More precisely
the material presented in this manuscript is part of a theoretical and experimental
program with the final goal to characterize or discover new physics through EFTs. This
is a challenging and ambitious program that needs a huge experimental effort and also
requires theoretical progress from many different directions. In this thesis we follow some
of them as we now shortly summarize.

The results collected in ch. 1 regard the so-called high-pr searches for EFT interactions
at the (HL-)LHC. The key idea we follow is to exploit the large energy provided by
our collider to improve the sensitivity to new physics. The logic is very simple and can
be easily understood just by dimensional analysis. Probing the effective interactions of
eq. (14) at energies E < Agp, gives a correction to observables scaling as (E/Agm)", for
some n > 0. For those observables with n > 0, the energy enhances the accuracy in the
determination of the EFT Wilson coefficients.

We focus on dilepton production, via the Drell Yan mechanism, and we identify the most
relevant deformations of the SM which give rise to the effects just mentioned. Given
that, we study the various kinematic distributions which can improve the sensitivity to
new physics and assess the impact of the different sources of theoretical uncertainties.
Furthermore we produced a theoretical tool to obtain theoretical predictions for dim-
6 EFT operators in dilepton DY at NLO-QCD and which includes 1-loop EW logs.
This tool is aimed to allow the experimental collaborations to have easy access to the
theoretical predictions and an efficient way to scan folded and unfolded data into a
multi-dimensional new physics parameters space.

Employing this tool, we produce a quantitative theoretical study based on concrete
projections for (HL-)LHC. We interpret our results in a simple BSM scenario.

In chapter 2 we turn to future collider and in particular Very High-Energy Lepton
Colliders. Here, borrowing the logic presented in ch. 1, we assess the impact of this

"'We refer to chapter 3 for a more detailed discussion.
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hypothetical machine to the sensitivity to heavy new physics encoded in EFT operators.
The story is, however, quite different than (HL-)LHC. In fact, even if the leptonic
environment is cleaner than the messy QCD one, additional challenges arise due to
the very high center-of-mass energy (tens of TeV). Radiative EW corrections become
O(1) effects, at the point to invalidate perturbative calculations and require systematic
resummations.

We address this problem resumming Leading-Log effects and we assess the impact of
higher order corrections. Moreover the main novelty of our phenomenological study is
related to the non trivial interplay between radiation and sensitivity. Concretely we
show how the study of the radiation pattern improves the sensitivity to new physics. We
conclude this study with the analysis of the projected sensitivity to relevant new physics
scenarios, such as composite Higgs.

Finally in chapter 3 we adopt a top-down perspective and we present a phenomenological
study mostly based on BSM motivated scenario. In particular we study the interplay
of the various flavor and non-flavor observables in a rich-class of composite Higgs EFTs
including the description of SM fermions via partial compositeness. We classify the various
scenarios based on symmetries and a well-defined set of assumptions. We furthermore
assess the impact of the present measurements. We point out the excluded scenario and
the ones that could be excluded or confirmed in the next few years. The main goal of
the work is to characterize a set of relevant EFTs to guide concrete phenomenological
studies of composite Higgs models.

In conclusion in the three chapters we present three different paths toward precision
physics, with the common goal to characterize and/or discover heavy new physics far
from the EW scale.






I} Precision physics from the tail

Accurate measurements of high-energy observables are powerful probes of new physics, and
arguably one of the most promising avenues for the continuation of the LHC experimental
program. The study of neutral (I77) and charged (lv) Drell-Yan (DY) differential cross-
section measurements offers a clear illustration of this potential [11]. This has also been
demonstrated for several other processes, including diboson and boson-plus-Higgs [12-27],
dijet [28,29], di-quark [30,31] production and also in the context of future colliders (see
ref. [32] for a summary).

The competitive advantage of high-energy measurements stems from the fact that the
effects of heavy new physics, at a scale A, increase with the energy F < A of the process
as a (positive) power of E//A. The larger F the larger the effect and thus, given finite
measurements accuracy, new physics could be visible only at high enough F.

However, precise measurements at high energy, and in particular at the tail of the LHC
energy spectrum, are challenging and requires effort from both the experimental and the

theoretical sides.

i

In this chapter we address the various theoretical problems of these “high-energy probes’
in the specific framework of the dilepton DY at the LHC. In particular we classify the
pertinent deformation of the SM, and we identify the relevant differential measurements
that can improve the sensitivity. Moreover we provide the theoretical predictions of the
new physics effects via event reweighting of SM Monte Carlo generated events. Our
predictions are not only sufficiently accurate, but the reweighting methodology also
allows an efficient exploration of the various BSM directions on the multi-differential set
of data. Finally we assess the impact of the various sources of uncertainties on concrete
sensitivity projections, that we then interpret in simple BSM scenarios.

11



Chapter 1. Precision physics from the tail

1.1 New Physics in High-Energy dilepton-Drell Yan

Charged (I717) and neutral (l;) DY are in some sense the ideal high energy probes. First
of all the large cross-sections together with low systematics allow accurate mesurements
of the high-energy tail, which is indispensable in order to detect tiny modification from
the SM predictions due to heavy new physics. Moreover the dilepton final states represent
an “easy” signal, simply characterizable by few kinematic variables that we can exploit
in order to improve our sensitivity, as we will explain in detail in sec. 1.4.

The main target of our searches are higher dimensional operator which parametrize
irrelevant deformation of the SM, related to heavy new physics. Restricting as customary
to dimension-6 operators, with Wilson coefficients G' o< 1/A? of dimension —2, we
immediately identify possible contributions to the scattering amplitudes of order G - E?
relative to the Standard Model. Even on this aspect dilepton DY is particularly promising,
since there is a large set of growing-with-energy amplitudes interfering a tree-level with
the SM ones. Therefore we can just focus on the leading effects from the most relevant
higher dimensional operators that, as we will see, happen also to describe a large set of
BSM motivated EFTs.

These dimension six operators can be easily identified in the so-called Warsaw basis [9].
In particular, among all the quark-lepton interactions, the ones giving rise to growing-
with-energy effects in dilepton DY, we can focus only on the “current-current” types, i.e.
on operators of the form J/'J, ,,, with Jf%q) any of the lepton (quark) chiral currents. This
is because the fermion chirality structure of the other operators forbids them to interfere
with the SM amplitude at tree-level.! Therefore the O(G E?) term they produce in the
amplitude results in an O((G E?)?) contribution to the cross-section, relative to the SM
one. Since we are interested in probing new physics at scales A that are higher than the
available energy, so that G E? < 1, we can neglect non-interfering operators compared
with the interfering (current-current) ones that do instead produce a genuine O(G E?)
contribution to the cross-section. The above argument of course fails, and non-interfering
operators should be included, if their Wilson coeflicients are enhanced relative to the
current-current ones. However, if it is hard to find a concrete new physics scenario
where this enhancement is structurally motivated, it is easy to find scenarios where the
converse happens and non-interfering operators are suppressed. Moreover when targeting
quartically energy-growing effects (from the square of the new physics amplitude) one
should also worry about the contribution of dimension-8 operators, that can produce
similar effects at the interference level. We thus regretless ignore non-interfering operators
and focus on the current-current ones. This could of course be reconsidered at a more
advanced stage of the global EFT interpretation of LHC data.

The methodology we describe in the rest of the chapter apply to any current-current
operators involving light quarks (including the bottom) and lepton, with arbitrary current

! Also Flavor-Changing Neutral Current (FCNCN) current-current operators, which are in any case
irrelevant because of the strong flavor constraints (see however [33]), do not interfere with the SM.

12



1.1. New Physics in High-Energy dilepton-Drell Yan
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Table 1.1 — Left table: Quark-lepton current-current operators in the Warsaw basis [9].
Right table: The operators related to the W and Y parameters, together with their
rewriting in terms of Warsaw basis operators. The operators are flavor universal and
thus the generation indices have been suppressed.

chirality and flavor structure. We present, however, concrete results only for two specific
new physics scenarios. The first is the “universal” scenario [34], where new effects can
be described only as modifications of the SM gauge bosons propagators and can be
parametrized through the 8 “oblique” parameters [35].2 Among them only W and Y give
rise to growing-with-energy effects in DY and they are related by equation of motion
to the Oy, and O} operators on the right panel of table 1.1. The second scenario is
the flavour universal one, where we relax the hypothesis of universality and we allow
new physics to couple directly to the SM fermions, assuming, however, that the new
effects preserve the SM flavor structure. The choice of restricting our analysis to this
two scenarios in motivated in first place by clarity. The expected sensitivity and the
impact of the various sources of uncertainties is much more effectively illustrated in a 2
dimensional parameter space. Moreover, as we will see in sec. 1.4, constraining effectively
the 7 dimensional parameter space of the flavor universal lepton-quark interactions is
technically more challenging and requires a more detailed phenomenological study. In
second place, we stress that the subset of EFTs we constrain in this chapter describe a
wide and interesting class of UV competion of the SM. Moroever already from the W
and Y parameters we can gain information on structurelly motivated scenarios such as
Composite Higgs [10].3

The search for EFT effects in DY data will be most likely based on unfolded differential
cross-section measurements, similar to those in refs. [39,40] for 8 TeV, in ref. [41] for
early run-1 and in ref [42] for recent run-2 data, to be compared with the corresponding
EFT predictions.* We should then provide such predictions as accurately as possible

20r 9 including the H parameter of [36].

3Notice that since the top plays no role in our discussion, W and Y also parametrize the effects of
“top-philic” theories [37, 38].

4An alternative is to compare the EFT predictions directly with the data distributions at the observed
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Chapter 1. Precision physics from the tail

and, equally importantly, provide reliable estimates of the associated parametrical and
theoretical uncertainties. The target accuracy is dictated by the experimental error
on the corresponding measurement, which is going to be vastly different in different
energy regions. At very high energy the error will unavoidably get large, because of the
limited statistics. This reduces the needs for theoretical accuracy, potentially allowing
us to cope with the limited knowledge of Parton Distribution Functions (PDF), with
the lack of Electroweak (EW) logs resummation, and with other effects that enhance
the uncertainties at very high energy. Verifying to what extent this is indeed the case
is one of the goals of [1]. A lot of data are instead available at lower energy, and the
measurement error will be dominated by systematic uncertainties. While we are unable
to quantify them, based on refs. [39,40] we expect experimental systematics of order
few percent in the energy range from 300 GeV to 2 TeV, in line with the first run-2
results in [42] (appeared after the publication of [1,2]). In section 1.3 we re-analyize this
accuracy goal, given state-of-the-art calculations and PDF uncertainties.

As we already mentioned, the DY final state is so simple that it can be characterized
completely with fully-differential cross-section measurements. Fully (i.e. triply) differential
measurements of the neutral DY process have already been performed by ATLAS with
early run-1 data [43].5 As we will quantify in sec. 1.4 exploiting correctly fully differential
measurements improves the sensitivity to the EFT operators with respect to the single
differential analysis. In particular, adopting the reweighting procedure described in
sec. 1.2 we will show how, starting just from simulation based on the SM-hypothesis,
we can efficiently explore the 7-dimensional parameter space defined by the Wilson
coefficients of the flavor universal quark-lepton interactions. We stress that the large
dimensionality of the EFT parameter space, combined with the large number of analysis
bins that are employed for the fully-differential analysis, would have made this project
computationally too demanding if employing a Monte Carlo implementation not based
on reweighting.

The rest of the chapter is organized as follows. We start in section 1.2 with the technical
discussion on the theoretical predictions. Then in sec. 1.3 we present the first sensitivity
projections for the W and Y parameters from single-differential measurements, together
with a detailed discussion on the statistical analysis and on the impact of the different
uncertainties. In sec. 1.4 we turn to the fully-differential measurements and we provide
more complete projections for the sensitivity to the quark-lepton interactions. We then
employ these results to study the sensitivity to the simple concrete BSM scenario of the
minimal Z’-model. Finally we conclude in sec. 1.6.

level. If this strategy is adopted, accurate Monte Carlo events generators are needed, and not only
differential cross-sections predictions. The reweighting strategy we discuss in sec. 1.2 does also provide
accurate event samples.

®Double differential measurements have been performed in Refs. [39,40].
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1.2. Theoretical predictions via event reweighting

1.2 Theoretical predictions via event reweighting

Precise theoretical predictions for dilepton DY processes have been widely investigated.
SM differential cross-section were firstly derived long ago, at NLO-QCD [44,45] and
including NLO-EW effects [46,47]. Further QCD results have been presented, from
some differential distribution at NNLO [48-51] to other predictions up to N3LO [52-55].
Moreover, combined NNLO-QCD and NLO-EW corrections to high mass DY pairs have
been studied in details [56-62] and state-of-the-art predictions for differential distribution
have been automated in FEWZ [63].

At dimension 6 in the SM-EFT, NLO-QCD corrections are automated and consistently
interfaced with the parton shower in the POWHEG Monte Carlo event generator [64]. The
practical applicability of this tool however is limited by the fact that NLO simulations
are long and demanding, and they should be run several times in order to extract, for
each bin, the dependence of the cross-section on the EFT parameters. Of course the
task is simplified by the fact that the cross-section is a quadratic polynomial in the
Wilson coefficients. However extracting the polynomial coefficients (in particular, the
linear ones) requires very accurate simulations, to be sensitive to the small correction
due to the EFT on top of the SM. Moreover it requires a careful choice of the simulation
parameters, which should be such that neither the SM nor the quadratic terms dominate
by too many orders of magnitude. Since this parameters choice depends strongly on
the bin, a large number of accurate simulations is required. While this approach might
perhaps still work in the two-parameters W&Y case, it would definitely be unfeasible in
the large parameter space of generic current-current operators.

To solve the problem, in [1] we adopted a different methodology, based on event reweight-
ing. Namely we noticed that the Born, the virtual, and the real helicity amplitudes
are all affected by current-current operators through a common multiplicative factor.
This factor is a linear polynomial in the Wilson coefficients (which enters squared in the
cross-section), with constant term equal one corresponding to the SM contribution and
coefficients that depend on the dilepton center-of-mass energy. The coefficients of the
polynomial are readily computed for each combination of helicities and of quarks and
lepton flavors, and they allow us to model the entire EFT parameter space, at exact
NLO accuracy, by reweighting the events of a single Monte Carlo simulation. Namely,
for each simulated event we compute the coefficients and we store them in the events file.
Once a cross-section binning is defined, the events are binned accordingly and the stored
information is used to compute the coeflicients of the quadratic polynomial that describes
the dependence on the EFT parameters of the cross-section in each bin. Reweighted
Monte Carlo events can also be used for the direct comparison of the EFT with the data,
or in order to check the possible impact of the EF'T effects on the unfolding procedure by
which the cross-sections are measured. Notice that the obvious virtues of the reweighting
methodology (whenever applicable) are well-recognized in the literature, to the point that
reweighting has been automated in MadWeight [65]. However, only recently MadWeight
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Chapter 1. Precision physics from the tail

included quark-lepton four-fermion operators in the EFT MADGRAPH [66] model at
NLOS [68], which were unvailable when we published [1]. Therefore we produced our
own implementation based on the SM POWHEG DY generator [69] as we will describe in
the following.

We stress that analytic reweighting is not only more efficient in providing (NLO QCD)
EFT predictions, but it also allows one to improve the accuracy by including new effects
on what was at time of [1] the state-of-the art prediction. We considered, in particular,
the EW single and double logs, which are enhanced at high mass and constitute the
dominant NLO EW effects, and we included them in the EFT prediction. We also used
reweighting to estimate the effect (on the SM prediction, most importantly) of Sudakov
logs of higher orders in the loop expansion.

In rest of the section we describe in detail the reweighting methodology derived in [1]
and then employed in [2]. We start, in section 1.2.1, by discussing how fixed-order
QCD NLO predictions, in the presence of quark-lepton current-current new physics
interactions, can be obtained by analytic reweighting. Next, in section 1.2.2, we illustrate
our POWHEG implementation and we show that reweighting is fully compatible with the
POWHEG master formula, ensuring that showering effects are consistently included in our
reweighted Monte Carlo events. We address in section 1.2.3 the slightly more technical
problem of including EW logarithms of IR and UV (RG-running) nature.

1.2.1 Fixed-order QCD corrections

We first consider neutral DY, i.e. the process
pp — 1T+ X, (1.1)

with [ = e, p or (possibly) a 7. We are interested in the high energy regime of the process,
with a lower threshold on the dilepton center-of-mass energy that we set for definiteness
at /s > 300 GeV. In all the amplitudes that contribute to dilepton production, at the
leading order in the EW and in the new physics couplings but at all orders in QCD, it is
possible to isolate a common subdiagram, displayed in figure 1.1 with its corresponding
Feynman rule. In the figure, x4 = L, R and x; = L, R denote the chirality of the quark
and of the lepton legs, and P, , the corresponding chirality projectors acting on the
quarks and leptons spinor indices, respectively. Notice that only same-chirality ¢/ and
[T /I~ pairs can interact in the SM (Higgs interactions are of course totally negligible), and
the same is true for the current-current effective vertices. Also the flavor (¢ = u,d, s, ¢,b)
of the quark must be the same of the anti-quark since we are excluding FCNC new
physics interactions as explained in footnote 1.

SLatest realeses of MADGRAPH also includes NLO-EW corrections on SM-EFT, which are also available
in explit form in [67] for the neutral DY.
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Figure 1.1 — Effective Feynman vertex for neutral DY, including SM EW and the new contact
interactions.

The effective coupling Cy depends on the quarks and leptons chirality and flavor, and it
reads

Colaxgs ba) = C8M (85 dgr ba) + K4 (1.2)

‘quylxl ’

where KU are constants that denote the coefficients of the effective neutral current
interactions

Ichq sy <6Xq P)/Mqu ) (in PY.L"le) . (1 .3)

The explicit expressions for the K factors of eq. (1.2) can be found in tab. A.2 and A.1,
respectively for the Oby, and Ofp operators or for the flavor universal ones. The SM
contribution depends on the dilepton invariant mass and it can be concisely written as

T3 (qy )T (L) + 9"°Y (4y, )Y (Iy,) | €2 1)ym?
Coui (51 s b)) = 2 (9,) (if)_m‘%z BV (), € f((?i)zfi ZLZ (1.4)

where g and ¢’ denote the SU(2); and U(1)y couplings, e is the electric charge, T is
the third SU(2)7 generator, Y and Q are the hypercharge and the fractional charge.”

Based on the above discussion, it is obvious that at tree-level the dependence on the new
physics parameters K can be obtained by reweighting the SM (K° = 0) predictions. The
dilepton production cross-section (fully differential in the dilepton 4-momenta) is the sum
of the polarized qg — 7]~ partonic cross-sections convoluted with the corresponding
PDF. The quarks and the leptons being effectively massless, each term in the sum
depends on new physics through the square of the corresponding Co(qy,, ly,) coefficient.
The differential cross-section is thus the sum of the SM cross-sections in each helicity
and quark flavor channel, each weighted by the factor

2 0 2
CO(q 7l ) ICq !
n(s, K@y bo) = (5o oo | = (1t s | b
pu e Xl) (CgM(5§qualxz) CgM(S;qXQ’le) -

Starting from a SM Monte Carlo simulation where quark and lepton flavors and helicities
are stored in the events file (or, equivalently, from simulations of the individual channels),

"We follow the exact same conventions as in ref. [9], apart from the sign (irrelevant in the above
equation) of the coupling in the covariant derivatives and in the field-strengths definition.
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Figure 1.2 — Effective Feynman vertex for charge plus DY. The subscript “L” denotes chirality,
not helicity.

Monte Carlo events implementing the differential cross-section calculation are readily
obtained by assigning to each event its reweighting factor p as defined above. Of course
we do not need to commit ourselves to a specific value of the K% parameters and reweight
the SM sample as the first step. Since p is merely a linear polynomial (squared) in K°,
with unit constant term, we just need to compute and store its coefficient 1/C2); (plus
the information of the helicity and flavor channel of the event) in the events file. The
actual reweighting can be performed at a later stage, or one can use eq. (1.5) to compute
the dependence on K° of the cross-sections in the analysis bins.

The reweighting formula in eq. (1.5) also holds at NLO in QCD, because the gluon-quark
coupling preserves the quark flavor and chirality. Therefore the one-loop ¢, Oy, l;gll;l
amplitude is proportional to the same Co(qy,, ly,) factor as the tree-level one, and the
same is true for ¢,,q, —initiated real emission amplitudes with one final gluon and for
94y, and gﬁxq—initiated real emissions. The dilepton differential cross-section is thus
the linear combination, with p reweighting coefficients as in eq. (1.5), of Born plus virtual
plus real contributions in each individual channel labeled by the flavor and chirality
of the initial quark or anti-quark and by the ones of the leptons. Notice that the IR
divergencies consistently cancel in each channel. The UV divergencies also cancel, with no
renormalization needed for the new physics coupling because the new interaction involves
a QCD-neutral vector current. Monte Carlo events reweighting can thus be carried out
at NLO in the exact same way described above for the tree level case. It should be
possible in principle to extend the reweighting approach also to NNLO accuracy. The
main difference is that at NNLO new channels appear (like for instance the ud — ud 1~
real correction) whose amplitude is not proportional to one specific Co(qy,, ly,;) effective
coupling, but to a linear combination of them. New reweighting factors should thus be
computed and used to deal with these new channels. We do not explore this possibility
because NLO accuracy will turn out to be more than sufficient for our purposes. NNLO
corrections to the SM contribution are instead important, but those are easily added on
top of our NLO new physics predictions.

Analogous considerations hold for the charged DY process
pp = T+ X. (1.6)
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The effective Feynman diagram is reported in figure 1.2 for charge-plus dilepton produc-
tion, with u = u,c and d = d, s, b representing up- and down-type quark flavor indices.
The effective coupling C+ ({u,d}, 1) depends now on a pair of quark flavor indices denoted
as “{u,d}”, and on the lepton flavor. It does not instead depend on the chirality, because
all fermions are left-handed as indicated in the figure. This is obviously the case in the
SM, but also for new physics since the only relevant operator (i.e., Ol(q3), see table 1.1) is
purely left-handed. We readily obtain the reweighting factors

2 2
_ K"Eru,d},l

Ci({u,d},
+({u,d}, 1) +CS+M(3; |

Cau(si {u,d}, 1))

pe(s, K0§q><q7 b) (1.7)

for both charge plus and minus DY processes. Explicitly, the SM effective coupling reads

+ 9° Vi
CSM(S; {ua d}7 l) =5 = 2 (18)
2 s —mjy
where V is the CKM quark mixing matrix. New physics is encapsulated in the couplings
of the effective charged current interactions

’C?u,d},Z(HLV#UL)(vl,L'YulL) + h.c.. (1.9)

Charged DY NLO events reweighting can be performed, using eq. (1.7), with the exact
same logic we described in the neutral case. Notice that we can regretless apply the
charged reweighting factor to all the events in the simulation, in spite of the fact that it
was derived for the Left-Left (LL) chirality subprocesses, because all the SM events are
indeed of the LL type. The only (very minor) subtlety with charged DY reweighting is
associated with real NLO corrections producing a top quark in the final state, through
for instance the SM bg — t1~7; subprocess. Given that the top is massive, and since
we are excluding effective interactions involving the top quark, we cannot deal with this
process with our strategy. However its contribution is totally negligible in the SM and
we do not expect that new physics effects in the top sector could be large enough to
make it detectable. Otherwise, the final states with an extra top quark could be isolated
experimentally and studied separately.

For concreteness, we now specialize the general reweighting formulas to the subset of
operators that are associated to the W and the Y parameters. The latter are defined as
the coefficients of the four-fermion operators Oy, and O}y reported in table 1.1. More
precisely, we write

2\ 12y
/ 9 / g

_ -7 1.10
2 2mi, 2B 2m3, (1.10)

By performing a field redefinition (i.e., by using the equations of motion), Oby;, and Obp
can be traded for the gauge/gauge operators Ogy and Oap of ref. [10]. In turn, Ogp
and O2p generate “oblique” corrections to the Z and photon propagators that can be

19



Chapter 1. Precision physics from the tail

encapsulated in the phenomenological parameters W and Y probed at LEP [35]. The
normalization is chosen in eq. (1.10) such that W =W and Y =Y at tree-level. The
relevance of Ogyr and Oyp (and in turn of Oéw /2 p) stems from the fact that they are
the only dimension-6 operators that grow with the energy in DY to be generated by a
new physics scenario where the light quarks and the leptons communicate with the new
physics sector only through the SM gauge interactions. For more details, also on the
correspondence between Oy /op and Ofy, Jop> See ref. [11].

By employing eq. (1.10), table 1.1, and the almost direct correspondence between the
K%+ couplings and the Warsaw basis operator coefficients (see tab. A.2), we immediately
derive the neutral and charged DY reweighting factors.

Pu(8, W, Y5 qy,, ly,) = (1+ ayy (55 xg> b )W + ay- (85 @y lxz)Y)Q ,
el W) = (1+ aly (5)W)? | (1.11)

where the neutral and charged a™° coeflicients are

92T3 (qu )TS(ZXJ)

ml%vch (@xqs L)

2
_S_mW

ay(s) = ———5—, (1.12)
w

_ 9/ QY(QXL; )Y(lxz)
m%/vch(‘wa )

aty (83 Gxgs by) = s Ay (83 axy, by) = :

with CgM as in eq. (1.4). The neutral DY reweighting coefficients are independent of
the lepton flavor and of the quark family, because Oéw/g g are quark- and lepton-family
independent. The ay;, and aj, coefficients can thus be computed for each SM Monte
Carlo event based on the quark type (u or d) and on the quark/lepton (LL, LR, RL
or RR) chirality combinations, for a total of 8 options. Actually aj, is non-vanishing
only for LL-chirality events, which are thus the only ones bringing the dependence on
W. This is because Ogpy can be viewed as a modification of the W5/W3 component,
which only couples to left-handed fermions, of the neutral vector bosons propagators. By
similar considerations it is easy to understand why the charged DY reweighting does
not depend on Y (Ozp does not affect the charged W-boson propagator) and why af,
is flavor-independent (i.e., the CKM factor drops). Notice that these features make
reweighting for charged DY trivial, in the sense that all events have to be scaled with
the same (but dependent on the dilepton mass) factor. Namely the charged dilepton
differential cross-section is equal to the SM one, summed over all channels, times the
overall factor p.(s, W) that brings the entire dependence on new physics. This is of course
not the case for neutral DY, where different flavor and helicity channels are weighted by
different W& Y-dependent factors.
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1.2. Theoretical predictions via event reweighting

1.2.2 Reweighting POWHEG

We applied our reweighting strategy to the POWHEG SM DY generator [69]. For the
charged process, our procedure merely consists in computing and storing the reweighting
coefficient afy, (s) in eq. (1.12) for each SM Monte Carlo event. The invariant mass
s = (p; + p,)? is obtained from the lepton and neutrino momenta before the showering
Monte Carlo (PyTHIA 8 [70], in our case) is applied to the event. The augmented SM
Monte Carlo sample can be used to produce histograms, with the cross-section (or, more
generally, the total weight) of each bin obtained as the (positive or negative) SM weight
of the event, times the reweighting factor (1.11), summed over the events that fall in the
bin. Notice that the cross-section in the bin can be evaluated as a function of W. Namely
one can expand p. in W, evaluate the coefficient of the linear and of the quadratic term
and sum them up (with the appropriate SM weights) separately over the events in the
bin. We thus obtain the linear and quadratic coefficients of the polynomial that describes
the cross-section in the bin as a function of W. The constant term of the polynomial is
of course the SM prediction for the cross-section.

The procedure is only slightly more complicated in the neutral DY case, because subpro-
cesses with different quark and lepton helicities must be reweighted with different factors,
while the SM Monte Carlo collects them in a single (one for each quark flavor) unpolarized
channel. This is not a problem for charged DY because the amplitudes are non-vanishing
only for the LL polarization subprocess as previously explained. Therefore even if the
Monte Carlo evaluates unpolarized cross-sections, the result is effectively the polarized
one. Fortunately in the code implementing the SM neutral DY calculation of ref. [69] it
is easy to access and modify the Z and the photon chiral couplings to quarks and leptons.
We can thus produce four SM generators, labeled as LL, LR, RL and RR, in which only
the corresponding quark/lepton chiral couplings are present (and set to the SM value)
while the others are set to zero. POWHEG evaluates the unpolarized cross-sections in each
of the four cases, however the results are effectively polarized as discussed above for
the charged process. The four Monte Carlo samples obtained by the four generators
represent the contribution of the four helicity subprocesses, to be reweighted with the
corresponding factor. For each event in each sample we compute ajy (s; qy,, ly,) and
ay (55 Gy, ly,) as in eq. (1.12), using the information of the quark flavor in the event.
Finally we combine the four samples in the calculation of the cross-section as a function
of W and Y similarly to what previously explained for the charged case.

The procedure outlined above is exact (in the limit of massless leptons and quarks)
from the viewpoint of a fixed-order NLO QCD calculation. However POWHEG [71] also
describes the hardest parton showering emission, producing events that can be further
showered without introducing double-counting. It is thus legitimate to ask if and how
our procedure interferes with the POWHEG approach, possibly invalidating its consistency.
In order to answer, we sketch below the implementation of the POWHEG method, in the
presence of new physics, on each individual helicity subprocess. This is a trivial extension
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Chapter 1. Precision physics from the tail

of refs. [69, 71], from which we borrow all notations.

The Born (B), the real (Ryg4, Ryg,q and Rggg, summed/averaged over the gluon he-
licity) and the “bare” virtual (V3) contributions, for given helicities, are equal to the
appropriate p factor times the corresponding SM expressions. The same applies to the
bare factorization counterterms Gg j and Ggp, since they emerge from the bare parton
distribution functions in the tree-level term and are therefore proportional to B. The
Catani—Seymour counterterms are also equal to p times their SM expressions, again
because they are proportional to the Born term. One might want to cross-check the
latter statement because the Catani-Seymour formalism was developed [72] to deal with
unpolarized processes, while here we are considering a polarized one. The statement can
be readily verified by direct calculation or by noticing that the Catani-Seymour formulas
hold for a completely generic unpolarized process with arbitrary Born term, and that
our polarized cross-sections are effectively the unpolarized cross-sections as computed in
a theory where the Z and the photon only couple to specific quark and lepton chiralities.
The Catani-Seymour formulas must thus apply. ¥ A last potential subtlety is associated
with the fact that the p reweighting factor depends on the dilepton invariant mass /s
and that the Catani-Seymour counterterms are evaluated on an “underlying-Born” 2 — 2
kinematics that is obtained from the true 2 — 3 kinematics by a prescription that is,
to some extent, arbitrary. Fortunately with the choice of ref. [69] the underlying Born
dilepton invariant mass is identical to the true one, therefore the exact same p(s) factor
appears in the Born, virtual and real contributions and in all counterterms. The dilepton
invariant mass is of course also consistently preserved in the reconstruction of the 3-body
kinematics out of the underlying Born 2-body variables.

We conclude that the elements that appear in the POWHEG master formula (see eq. (4.17)
of ref. [71]), including the subtracted virtual and the real contribution decomposition in
the two singular regions, all depend on new physics through the same p(s) multiplicative
factor. The same thus holds for the B term, which is a linear combination of the latter
terms. The rescaling instead cancels in the Sudakov exponent, which contains the “R/B”
ratio of real over Born, and in the real radiation term of the formula for the same reason.
Consequently, the POWHEG master formula for the cross-section is also equal to p(s) times
the corresponding SM object. Each of the LL, LR, RL and RR generators described above
implements the POWHEG formula for the corresponding helicity subprocess with p =1 (i.e.,
in the SM), and in each of them the contributions from different quark flavors are treated
separately. By reweighting based on the quark flavor of each event and joining the four
helicity samples we thus obtain events that rigorously implement the POWHEG calculation
of the Drell-Yan process in the presence of new physics. After passing them through a
showering Monte Carlo program, these events consistently include showering effects at
the NLO in QCD.

8 A similar argument also holds for counterterms in the so-called Frixione-Kunszt-Signer approach
[73,74].
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Figure 1.3 — Dilepton invariant mass (my;, left panel) and total transverse momentum of
the dilepton pair (P, right panel) distributions. § is the ratio between our prediction
and the one of ref. [64] minus one, with its error obtained by combining the Monte Carlo
errors of the predictions.

Our reweighting strategy is one consistent implementation of the POWHEG method for
the Drell-Yan calculation, but it is slightly different from the one of ref. [64] (where SM
EFT effects are included), and from the SM calculation [69]. This is because in these
implementations, different helicity subprocesses are grouped into unpolarized channels as
previously mentioned. Of course we eventually sum the four helicity contributions, but
this is not sufficient to make our implementation identical to the other ones, because of
the R/B ratio that appears in the Sudakov and in the real radiation term of the master
formula. Our R/B is the ratio of real and Born terms where the external quarks and
leptons have fixed helicity, while those of refs. [64,69] are summed over the helicities. On
inclusive observables the two implementations (after we sum over helicites, of course)
give the same prediction at NLO, owing to the NLO accuracy of the POWHEG formula.
The predictions are also identical at the leading log order where the real term in the
Sudakov exponent and the real radiation term (for low-kr emissions) factorize as the
product of the Born, which drops in the R/B ratio, times the appropriate splitting
functions. Since the splitting functions are the same (notice that the gluon helicity
sum is performed also in our case), the same expressions are found for R/B in the
two implementations. The latter property clearly follows from the fact that the first
POWHEG showering emission is consistent at the leading log level. The residual difference
between the two implementations is thus beyond NLO and leading log accuracy, and too
small to be appreciable in practice, as the results below demonstrate.

A validation of our reweighting is readily obtained by comparing with ref. [64], as in
figure 1.3 and in table 1.2. The left panel of the figure shows the neutral dilepton invariant
distribution at four selected points in the W and Y parameter space as computed with
our strategy, compared with those obtained with the code of ref. [64], represented as
points. One minus the ratio between our prediction and the one of ref. [64], denoted
as 0, is displayed below the plot with the corresponding Monte Carlo error. A similar
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Table 1.2 — Comparison with ref. [64] in 9 bins of the doubly-differential m;; and ¢, = cos 6,
distribution. The relative discrepancy ¢ is reported for the four values of the W&Y
parameter employed in figure 1.3.

comparison is shown in table 1.2 for 9 bins of the double-differential invariant mass and
cos 0, (with 6, the dilepton center-of-mass angle defined boosting the dilepton system
along the center-of-mass direction of motion in the LAB frame) distribution. The relative
discrepancy ¢ is in all cases compatible with zero within the error. Notice that the
error on ¢ is tiny in the invariant mass distribution plot because the cross-sections result
from dedicated simulations in each bin. The error is larger in the doubly-differential
distribution comparison because the cross-sections are obtained in this case by cutting the
dedicated simulation events (of 10° events each) in the 3 cos 0, bins. In the right panel of
the figure we consider instead the transverse momentum of the dilepton pair, integrated
over the dilepton mass above 300 GeV and over the angles. Although measuring this
distribution is not relevant to probe W and Y, the comparison is interesting because
of the slightly different implementation of the POWHEG radiation emission in the two
approaches. Also in this distribution, no difference is found within the Monte Carlo
error. Notice that the Ppj distribution includes showering with PyTHIA 8 [70], while
the other results described above are obtained with pure POWHEG events before showering.
Other comparison plots were made, also for charged DY production, and no significant
difference was found.

1.2.3 Electroweak logarithms

High-energy DY measurements target growing-with-energy new physics effects. Thus it
is imperative to keep under control any SM contribution that might result in a similar
behavior, such as EW double and single logarithms of both IR and UV (RG-running)
origin. One-loop EW NLO corrections, including in particular the corresponding EW
logs, are present in the neutral DY SM predictions of FEWZ [63] (together with QCD at
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1.2. Theoretical predictions via event reweighting

NNLO), and in POWHEG both for charged and for neutral DY [75,76]. New physics must
also be modeled correctly if we want to discover it by exploiting correlated deviations
from the SM of the measurements in multiple bins. Clearly the new physics term is itself
a correction to the SM, therefore it needs not to be predicted as accurately as the SM
one. However one should still carefully monitor the impact of high-order corrections on
the new physics contribution and include them if possible, as we did above for the NLO
QCD corrections. We now show how to add, again through reweighting, EW logs at the
one-loop order in the EW coupling expansion.

The relevant IR logs have been computed in ref. [77] (see also refs. [78-81]) up to two
loops, and they have been recently implement in Sherpa [82] (at one loop). Restricting
to one loop, and defining

s —t(u) —t(u)

u
L =log o Ly = 2Llog — + log? Pt (1.13)
w

the Feynman amplitudes for the fully exclusive 2 — 2 Drell-Yan processes at Next to
Leading Logarithm (NLL) accuracy read *

o o 2 .
MG = Fomp=t 4 ( 497r LR [VUd,Mgd ﬁ”l”] , (1.14)
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In the equation, Mp denote the Born (tree-level) amplitudes, including their dependence

* effective couplings defined in

on new physics encapsulated in the Cp and C+ = (C+)
section 1.2.1. The charged process amplitudes are of course only non-vanishing for the
LL chirality process. Neutral amplitudes for ut’ — v;7; are equal to those for dd — =1+
and similarly for down-initiated neutrino production. We denote as q1, Gy, I1 and I the
four particles involved in the scattering with the corresponding chiralities, such that the

generic Drell-Yan partonic subprocess is
@1z — lls. (1.15)
With this notation, the Mandelstam variables are defined as

s = (Pgy +p§2)27 t=(pg _pl1)27 u = (pg _%)2_ (1.16)

9The equations that follow assume that the charge-minus amplitude is the conjugate of the charge-plus
amplitude, as it is the case in the SM and for generic current-current New Physics operators. The sum
over the u’ and d’ flavor indices is understood. Log-enhanced terms with imaginary coefficient are not
reported because they do not interfere with the Born amplitudes.
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Chapter 1. Precision physics from the tail

The “diagonal” Fp factors in eq. (1.14) depend on the fermion species and chiralities.
They contain angular independent (a.i.) and angular dependent (a.d.) contributions.
The latter ones emerge, together with the other angular-dependent terms in eq. (1.14)
(those proportional to L; and L), from the double logarithms of t/m3, and of u/m%,
rewritten in terms of L = log s/ m%v The a.d. contributions which are not proportional
to L (e.g., the last term in eq. (1.13)), are normally not retained at the NLL accuracy.
We do include them because they are enhanced in the forward and backward regions.
We have verified that they considerably improve the quality of the NLL approximation,
not only in the angular but also in the invariant mass dilepton distribution.

We write Fp as
Fb = fai + fad (t/s,u)s) + f50 4 f2t/s,u/s) (1.17)

where the (IR-divergent) angular-independent and angular-dependent contributions from
soft and collinear photon loops have been isolated in the corresponding f24 terms, to be
discussed later. The others can be written concisely as

m2
fai = 542 > l(—LQ +3L) (°Cy + '} — €*q}) +2Lg} plog - (1,18)
f=q1,2,l1,2 w

2

1 m
fad = W [(gz,qlgz,z2 + gz,ngz,ll) (Lu + 2log(—u/s) log m%j,)

2
m
—(92.092.1, + 92.4:92.15) (Lt + 2log(—t/s) log 7m22 ) ] ,
W

in terms of the 72 eigenvalue (t:}), the Casimir (Cy = 0,3/4), the charge and hypercharge
(ys and gy) of each of the four fermions f = q1,¢2,11,l2. The coupling of the Z boson
9z.f = g(t?} - s%vqf) /cyw is used in place of t‘;’c for more compact expressions.

The results above are in D = 4 — 2 ¢ dimensions and the UV singularities are subtracted
in the MS renormalization scheme. The photon and the fermions are exactly massless,
therefore soft and collinear divergences appear in the f%4 terms

fQ?d _ 62 z + § Z q2 (1 19)

-t 2(4m)2 \e2 € I ‘
f=q1,2,l1,2

fot = 2 Lty + dants) 0B (—/5) — (gt + s o(—t/5)

ad. — (47T)2 c dq:141, T 4g2915) 108 qq1915 T Gq291, g

Notice that the f4°d terms diverge, but they do not depend on L = log(s/m3,). This
is because they are defined as the contribution to the loop integrals from the region
where the virtual photon is soft and/or collinear to an external leg, and these regions are
insensitive to myy,z up to m%,v 17 /s power corrections.
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1.2. Theoretical predictions via event reweighting

The € poles get canceled by real corrections and by PDF renormalization in the calculation
of the dilepton differential cross-section, provided extra emissions are allowed and provided
the charged leptons momenta are defined by recombining collinear photons. If the
energy (or pr) threshold for extra photons, the kS transverse momentum threshold for
recombination, and the factorization scale are a considerable fraction of /s, no large finite
contributions emerge from the cancellation and the 99 terms can simply be dropped in
the cross-section calculation. We construct our reweighted Monte Carlo samples targeting
the “fully-inclusive” differential cross-section as defined above. More exclusive results,
incorporating in particular the effect of a lower (or absent) k%S¢ threshold (or of a small
AR™* recombination cone), are easily obtained by passing the events through a QED
showering Monte Carlo code.

Reweighted Monte Carlo samples implementing the calculation described above are easily
obtained from a LO generator, which employs the SM Born matrix element Mg gn.
Provided of course that the fermion chirality channels are treated separately, or based
on LL, LR, RL, and RR polarized generators constructed as in section 1.2.2, one can
compute the reweighting factor

g 1 q1Gy—~ll2 @Gy — 12«
5 aga—lila;y 2R (M M
q1qo—l1l2 . IMB 2 ] 11,NLL ( B )

PNLL (s,t,u) =

MBS MBS

= pid " A (1.20)
for each event, as a function of the new physics couplings, and use it in a way similar to
that described in the previous sections for the NLO QCD reweighting. Up to running
effects, to be discussed below, the first term on the first line of the equation coincides with
Pnc in egs. (1.5) and (1.7) for the neutral and charged processes, respectively. Namely, it
can be expressed in terms of the Cyp and C4+ neutral and charged amplitude coefficients
and the corresponding SM expressions. It is a perfect square and, restricting to the
W&Y case for concreteness, its dependence on new physics can be parametrized by the
reweighting coefficients ay, - and aj, as in eq. (1.11). The second term in eq. (1.20)
contains NLL effects. It can also be expressed in terms of the C’s using eq. (1.14) and
noticing that the spinor current matrix elements drop in the amplitude ratio. The Apnry,
term is still a quadratic polynomial in the new physics parameters, but it is not a perfect
square and its constant term is not equal to zero. This is due to the fact that NLL
corrections are introduced also on the SM term, therefore the reweighting is non-trivial
even in the absence of new physics. The 6 coefficients of the Apnrr, polynomial have
to be computed and stored in the events file, together with arﬁ,/y and ajy, in order to
obtain the analytical W&Y predictions at NLL EW accuracy.

Notice that the NLL corrections are often negative, so that p can become negative in
certain regions of the phase space. If this had to result in a negative cross-section after
the weights are summed up in some bin, it would mean that the EW IR corrections are
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Chapter 1. Precision physics from the tail

too large to be treated perturbatively in that bin. Fortunately this does not occur in
the energy range of interest for the LHC measurements. Finally, we remark that the
NLL corrections in the LL chirality channel make neutral contact interaction operators
contribute to the charged DY process, because of the amplitude mixing in eq. (1.14).
Therefore, at least in principle, charged DY measurements are actually also sensitive to
the Y parameter and not only to W.

So far we only discussed EW logs of IR origin. UV logs do not appear explicitly in
eq. (1.14) because we are applying the results of ref. [77] with the MS renormalization
scale set to the center-of-mass energy +/s. At one loop order this is irrelevant for the
one-loop corrections in eq. (1.14), which can still be computed at a fixed scale. However
the tree-level amplitudes need to be evaluated with running couplings, RG-evolved at
the scale \/s. When expanding at one-loop, this produces single logarithms of s. The
running of the SM couplings g and ¢’ starts at the Z-boson mass my ~ myy, where these
)

parameters are defined. Therefore the SM couplings renormalization produces “IR-type’
logarithms of s/ m%v These are readily computed by replacing

4 /4
g
by L
167279
(1.21)
in the Cgﬁ\’f effective couplings as they appear in the effective Feynman vertices in
figures 1.1 and 1.2. The factors by = —19/6 and by = 41/6 in the above equation are

the SM ¢ and ¢’ couplings -functions.

g
92%92(8)292_{_592:92_#@[%[1’ g/2_>g/2(5)zg/2_|_5g/2:g/2+

The RG running of the new physics couplings is the last source of enhanced logarithms.
However these are not logarithms of s/m#,, but rather of A?/s, where A is the scale
where the EFT operators are renormalized. The explicit form of these terms depends on
the definition of the renormalized W and Y parameters. These are given by eq. (1.10),
in terms of the G, /2B four-fermion operator coefficients renormalized at A. The SM
parameters (g, ¢’, and myy) that appear in the equation are evaluated at my, therefore
they do not contribute to the running. Insertions of OéW/z p in EW loops generates
RG-running logarithmic contributions to a number of dimension-six operators. However,
only the current-current quark-lepton non-FCNC operators listed in table 1.1 produce
quadratically energy-growing effects in the DY cross-section and need to be retained.
The effect of the others is power-suppressed relative to the leading energy-growing terms.
It should be noted that OéW/Q p generate generic quark-lepton operators, namely the
universality relations on the right panel of table 1.1 are violated by RG-running. In
order to include running effect we thus need to go back to egs. (1.5) and (1.7), evaluated
with the IC’s obtained by solving the evolution equations at the leading log. The final
expression for the reweighting factors takes the form

PRl (s, 1 u) = pIE R 4 ApTT (1.22)
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Figure 1.4 — Dilepton invariant mass (my;, left panel) and canter of mass angle (cos 6.,
right panel) distributions. § is the discrepancy relative to the Born.

Explicit results, obtained with the DsixTools [83] calculation of the relevant S-functions
for the new physics couplings, and including the running of the SM couplings, are
presented in appendix A.1.

The RG EFT logs are found to have a marginal impact on the phenomenological analysis of
the DY data, but they introduce conceptually novel aspects that is worth clarifying. First,
they introduce a dependence on the EFT operators renormalization scale A. Technically,
A is arbitrary and we conventionally set it to A = 10 TeV in our projections for the W
and Y parameters sensitivity. On the other hand, for the interpretation of the results in
the microscopic UV theory the EFT operators emerge from, setting A to the cutoff scale
of the EFT would have been preferable. The EFT cutoff intrinsically depends on the UV
theory. The choice A = 10 TeV corresponds to the estimated cutoff scale in the Composite
Higgs UV scenario with moderate g, for values of W and Y close to the LHC reach [11].
Naively, one could consider employing the results with A = 10 TeV also for EFT’s with
much higher cutoff, by running the operator coefficients down to 10 TeV. However this
would not be correct in general because running produces many operators at 10 TeV,
while our calculation assumes that O}, /o ATC the only non-vanishing current-current
operators at A = 10 TeV. Therefore our results are strictly speaking inapplicable even
to theories where O}, /o Are the only operators that emerge at the cutoff scale, if the
cutoff scale is much higher than 10 TeV. Furthermore even in theories with 10 TeV cutoff,
the presence of other operators, even if not of the current-current type, does influence
the current-current operators running below A and our calculation does not apply. While
of limited practical relevance (since the RG logs are very small and the cutoff is unlikely
to be much higher than 10 TeV), this issue is readily addressed by including in the
reweighting all the current-current quark-lepton non-FCNC operators, with coefficients
RG-evolved starting from the most general d = 6 operators content at the scale A. Since
current-current operators are the only relevant ones in DY up to power-suppressed effects,
this will produce complete NLL predictions in the general EFT parameter space. We
will come back on this point in sec. 1.4.
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Chapter 1. Precision physics from the tail

We can not fully validate our implementation of the EW logarithms because EW radiative
corrections in the presence of the EFT operators have not been computed. However we
can validate the SM EW logarithms using the POWHEG calculation of neutral DY including
the complete one-loop EW correction [76]. We employ the “weak-only” POWHEG routine,
that implements only the virtual corrections involving massive vector bosons, obtaining
excellent agreement as figure 1.4 shows. The logarithms reproduce the exact one-loop
result up to O(1%) accuracy, relative to the tree-level, in the entire mass spectrum. In
particular they reproduce very accurately the O(20%) enhancement of the corrections
in the very high mass tail. Somewhat larger discrepancies are found as expected in the
forward and backward regions of the angular distribution. As previously mentioned,
the agreement would significantly deteriorate if we had not fully retained the angular-
dependent logs. Given the expected statistics and experimental errors, 1% accuracy in
the predictions would probably be sufficient in the analysis, therefore one might even
consider using the reweighted Monte Carlo in place of POWHEG for the Standard Model
prediction. The same level of accuracy is expected in the prediction of the new physics
EFT effects, relative to the exact one-loop calculation. Since new physics is itself a
small correction to the SM (never more than 10% in the relevant configurations), the
reweighted prediction of the new physics term is fully equivalent to the exact one-loop
result to all practical purposes. A technical aspect worth mentioning is that, since the
“weak-only” POWHEG routine does not implement the box diagrams involving the exchange
of a photon and of a Z-boson, the corresponding EW logs due to the soft/collinear
Z-boson region need to be consistently removed from our reweighting formulas for the
comparison. A successful comparison also relies on a judicious choice of the SM input
parameters. The most accurate predictions are obtained using tree-level input parameters
in the G-scheme [84,85].

Up to now we discussed pure EW corrections, obtained by reweighting tree-level Monte
Carlo events. We can straightforwardly combine EW corrections with NLO QCD effects
by reweighting the POWHEG DY generator [69]. The reweighting strategy is similar to the
one described in section 1.2.2, with the reweighting factors given by eq. (1.22). The only
difference is that reweighting now depends also on the ¢ and v Mandelstam variables,
and not only on s. These are computed on the POWHEG events, before showering, with
the following prescription. If a gluon is present in the final state, we assume that it
is emitted from the initial parton moving along the positive z-axis if it moves in the
right hemisphere (in the center of mass frame), and the converse for left-hemisphere
gluons. Concretely, we compute t and u using the four-momentum of the incoming
quark or anti-quark that travels in the z direction opposite to the final-state gluon. For
gluon-initiated process, the momentum of the initial quark or anti-quark is employed.
There is of course no ambiguity in events without emissions. At the leading log in QCD,
where the emissions are collinear or soft and factorize, this prescription is exact. It is
not exact at NLO, for hard emissions. However the ¢- and u-dependent terms in the
reweighting are EW corrections, therefore we do not need to model them precisely at
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1.3. The Drell-Yan Likelihood

NLO in QCD since mixed (two-loops order) QCD and EW corrections are not included
in our calculation.

Summarizing, our reweighting produces NLO QCD events, consistently matched with
QCD parton showering, and including NLL EW corrections on the SM and on the new
physics contributions. The NLL QED accuracy for partially exclusive quantities, like
lepton momenta defined with a narrow recombination cone, or “bare” muons momenta,
is obtained by the PYTHIA 8 QED showering. We validated QED showering effects by
comparing with the literature [63,76,85,86]. In particular we reproduced table 1 of
ref. [85], with AR™°=0.1 recombination cone, py i, =10 GeV, and |3, =3 thresholds
for photons. The thresholds on the recombined leptons are plT7min: 25 GeV and |n|!,.=2.5.
We also recombine to the nearest lepton the lepton pairs produced by photon splitting.
The same recombination strategy is adopted for the predictions reported in the following

sections.

Before concluding this section, it is worth emphasizing that our result does not include
real emissions of massive vector bosons. Namely we target a final state without W
or Z bosons. While theoretically well-defined, this final state is not experimentally
accessible because the vector bosons might not be detectable if they are soft, or collinear
to the beam, or if they decay to neutrinos. We could straightforwardly account for real
emissions, including new physics by reweighting, because at the NLL order the real
emissions factorize. Therefore they can be generated through splitting, starting from
Monte Carlo events without emissions, duly weighted to include new physics. We did not
implement this strategy because it is much simpler to use MADGRAPH. For a tree-level
process such as the massive vector bosons emission, reweighting is automated and can be
used to include the EFT effects. The effect of real corrections depends strongly on the
exact definition of the cross-section that is measured experimentally, which in turn is
also dictated by experimental considerations. Therefore we ignore real corrections in the
analysis of the following section, having in mind an hypothetical measurement of the
exclusive cross-section as defined above. However it should be emphasized that these
effects should be properly taken into account in the experimental analysis because they
are as relevant as the virtual EW logs [87], as expected.

Two more processes are not included in our results. One is the photon-quark dilepton
production, which does depend on new physics but is extremely small [84,85]. The other
is photon-photon initiated production, which is not sensitive to new physics and thus
can be easily added on top by a tree-level SM simulation.

1.3 The Drell-Yan Likelihood

We now turn to phenomenological applications. In this section we discuss the parametriza-
tion of the predicted cross-section as a function of the new physics parameters and with

31



Chapter 1. Precision physics from the tail

the associated uncertainties. We use it to build the binned Likelihood function needed
for the interpretation of the DY measurements in the EFT and this will be the starting
point for the LHC sensitivity projections presented at the end of this section and in the
rest of the chapter.

In this section we specialize again on the universal new physics scenario and we discuss
quantitative results only in the W and Y parameters space. Extending our analysis to
the 7-dimensional parameter space of the flavor universal quark lepton interaction is
straightforward and it will be briefly discussed in sec. 1.4.

1.3.1 Cross-section parametrization

Suppose the neutral and charged DY cross-sections are measured in bins, labeled by
the index I. The theoretical expected cross-section, denoted by U}h, is a quadratic
polynomial in the parameters of interest W and Y. The cross-section is positive, so it
can be parametrized as

1 cir c3r 1\ [
o (W,Y) = oGl 0 cor cayr || W (1.23)
0 0 C5.1 Y

= TP 11+ 2001 W + 251 Y + (¢ + G W2+ (B + ¢+ ) Y2
+2(c1,rea,r + ca,rear) WY

by employing the Cholesky decomposition for positive 3 x 3 matrices, in terms of six
dimensionless coefficients ¢y, with &k = 0,...,5. The decomposition is unique provided
co,1, c2,1 and c5 1 are positive, while both signs are allowed for the other coefficients. In
the equation, 73" denotes the prediction for the SM cross-section in each bin evaluated
with central-value inputs. Namely, with the strong coupling constant «g set to the
central value ag = 0.1180 and with central-value PDF and renormalization/factorization
scales. Consequently, the central value of the ¢ ; coefficients is equal to one by definition:
co,; = 1.

The central values of the other coefficients, ¢, 7, are readily computed with our reweighted
samples, starting from central-value SM Monte Carlo data. As explained in the previous
section, the reweighted events contain the coefficients of the weights as a polynomial in
W and Y. These are summed up in each bin producing the polynomial coefficients in the
bin, out of which the Cholesky decomposition coefficients can be computed, provided the
cross-section is a positive polynomial as it must be by consistency. This is always the
case in the kinematical regimes accessible at the LHC, because the negative EW logs are
still sufficiently small. The only subtlety is associated with the dependence on Y of the
charged DY cross-section. Since the latter emerges only through the EW logs, which
we expanded at fixed order in our reweighting formulas, no Y? term is present and the
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1.3. The Drell-Yan Likelihood

cross-section polynomial becomes negative at W = 0 for very large Y. While such large
values of Y are phenomenologically irrelevant, we solved the problem by adding the Y?
term to the charged DY reweighting for a fully consistent combined expansion in the
new physics and in the EW loop parameters.

1.3.2 Parametric and theoretical uncertainties

We now discuss the estimate of the uncertainties on the theoretical predictions for the
ck,1 coefficients.

These are described statistically, and included in the Likelihood, in terms of nuisance
parameters, with an approach that can fit both in a frequentist and in a Bayesian inference
framework. From the frequentist point of view the nuisance are related to parameters
the ¢ ; predictions depends on, such as for instance the value of o or the PDF. The
results of auxiliary measurements (e.g., as or PDF measurements) are incorporated in the
Likelihood as multiplicative terms that depend on the nuisance parameters but not on
the parameters of interest (i.e., W and Y). From the Bayesian perspective, the nuisance
are random variables (and so in turn the ¢ ;’s), and the likelihood of the auxiliary
measurements can be interpreted as their statistical distribution. In what follows we
adopt the Bayesian language to describe the auxiliary likelihood associated with the
nuisance parameters, but we eventually employ it for a frequentist inference on the W
and Y parameters.

Notice that the discussion above applies only to systematic uncertainties with an underly-
ing statistical origin. The uncertainties from scale variation instead, and more in general
all the uncertainties associated with missing higher order corrections in the predictions,
do not possess a robust statistical interpretation. As customary we will nevertheless
include them as nuisance parameters, but fortunately we will see that they do not play a
dominant role in our sensitivity projections.

We now examine the different sources of uncertainties individually, discuss their parametriza-
tion in terms of nuisance parameters, and start quantifying their impact.

Uncertainty from Monte Carlo statistic

No nuisance parameters must be included for Monte Carlo statistical uncertainties, which
are completely negligible. More precisely, the uncertainties on the new physics terms are
negligible provided the Monte Carlo statistics is sufficient to provide accurate enough
(well below 1%) predictions of the SM terms. This is because new physics is included
by reweighting, hence the relative accuracy on the new physics c; ; parameters is the
same one of the SM terms. Since new physics is itself a correction to the SM in the
kinematical regime of interest and for the relevant values of the W and Y parameters,
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Chapter 1. Precision physics from the tail

the resulting cross-section uncertainty is completely negligible. Accurate SM predictions
for unfolded differential cross-section measurements are easy to obtain. If instead the
analysis had to be performed on the observed distribution, producing large enough
detector simulations might be problematic. However once this is achieved, new physics
effects could be included by reweighting with negligible Monte Carlo error. As discussed
in the Introduction, it would have been harder to bring the uncertainties on the new
physics prediction to a negligible level if employing Monte Carlo predictions that are not
obtained by reweighting.

Uncertainty from og

The uncertainty coming from the value of the QCD coupling «g is, by construction,
determined by a single parameter. It is thus included through a single nuisance parameter
0% affecting all bins in a correlated way. The nuisance is distributed as a standard
normal, i.e.

fo (6°%) = ——e 3O, (1.24)

CV2r

We can regard 0% as a variable related to the physical ag (which is Gaussian-distributed
by assumption) by a suitable linear transformation that brings its distribution to the
standard normal.

The POWHEG SM DY [69] Monte Carlo samples include the weights of each event when
as is set to the lower and upper (o = 0.1165 and o = 0.1195) boundaries of the 1o
confidence interval, plus of course the weight for ag equal to its central value ag = 0.1180.
From the latter, we obtain the central-value coefficients ¢ ; (with ¢y ; = 1 as previously
discussed). From the former, we obtain the values of ¢ 1 for ag = ol and for as = al.
The resulting relative variations are shown in the left panel of figure 1.5 for the neutral
DY invariant mass distribution, with the binning employed for the LHC projections in
section 1.3.4.

We see that the ag uncertainties are rather small, compared with the expected exper-
imental (statistical and systematic) uncertainties of the cross-section measurements
(see figure 1.7). Also notice that the ag uncertainties are much smaller for the new
physics ¢ 1’s (for K =1,...,5) than for the overall multiplicative co ; coefficient, which
encapsulate in particular the uncertainty on the SM term of the prediction. Moreover,
the new physics contribution to the cross-section is small, suggesting that all the ag
uncertainties apart from those on cg; can safely be ignored in the analysis. This is
confirmed by the right panel of figure 1.5, which quantifies the relative impact of the
new physics terms to the total expected cross-sections J}h. Large values of the W and Y
parameters are chosen in the figure, well above the projected LHC sensitivity with only
100 fb~!. Even for these values, new physics is a small correction to the SM up to around
2 TeV energies. At this high energy, ag uncertainties are anyhow irrelevant because of
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Figure 1.5 — Left: Uncertainties on the ¢ ; coefficients from variation of the value of a,

/(2]¢x,1|). Right: Relative impact of the ¢y ; coefficients

computed as ‘ch[(a;‘) —cpr(al)
on the total a}h for W=5-10"% Y=—-5-10"%, and all nuisance parameters ; = 0.

This is computed as |Agor|/aP, with Ao the difference between the central-value
cross-section @4 and the value of o'® obtained by setting “c;” to zero in eq. (1.23).

the large statistical uncertainties (see again figure 1.7). Similar conclusions are reached
by studying the charged DY transverse mass distribution we consider in section 1.3.4 for
the LHC projections.

In light of the above discussion, we include the dependence on 6 only on cp s, with a

linear parameterization

Co,1 = Co,I (ros) = Co,r + R?Seas =1+ K}?Sgas , (1.25)

where the k7%’s are computed as

k7® = max (!Co,f(ai) —o,1] s |co,r(ag) — Eo,ID : (1.26)

If the dependence of the coefficients on g was exactly linear, the upper and lower
variations would be exactly equal and opposite, and eq. (1.25) would describe exactly
the dependence of co 1 on as. We have verified that the variations are equal and opposite
to good approximation, and the maximal variation was selected for conservative results.
Notice that the parameterization in eq. (1.25) does not respect the condition ¢ ; > 0 for
the unicity of the Cholesky decomposition. This does not produce negative cross-sections,
but (formally) results in a double coverage of the space of the predictions in terms of 6.
However the problem is irrelevant in practice because the uncertainties are so small that
co,r will never change sign in the Likelihood marginalization (or profiling) process.

Uncertainty from the parton distribution functions

The PDF uncertainties on the ¢’s are computed using POWHEG, with the same strat-
egy outlined above for the «g uncertainties. We employed the 30 PDF in the set
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PDF4LHC15_NLO_30_ PDFAS (code 90400 in the LHAPDF database [88]) [89-92],
which correspond to the Hessian reduction of the PDF uncertainties to 30 nuisance param-

eters 0;°", with ¢ = 1,...,30. The nuisance are uncorrelated and normally distributed:
1 1 (ppor)2
orrry = 3(0™) i =1,....30. 1.27
fPDF( 7 ) /727_(_ ( )

The use of an Hessian set is legitimated by the fact that we look for small deviations from
the SM, rather than to on-shell new physics. In this context, the Hessian parametrization
allows for a simpler treatment of the PDF uncertainties including correlations between
different bins and different process such as the neutral and charged DY. Our choice of
the set with 30 replicas, in alternative to the one with 100 replicas, is motivated by a
study we performed for neutral DY using the PDF4LHC15_NLO__MC__ PDFAS Monte
Carlo ensemble set, where we identified less than 20 eigenvectors of the ¢’s covariance
matrix with uncertainties above %o.

The following dependence of the ¢ ; coefficients on the PDF nuisance parameters is
assumed. The co 1, c21 and c5 7, which need to be positive for the unicity of the Cholesky
decomposition, are parametrized with an exponential:

PDF B & X(i) B y PDF
X(0;°") = X exp Z — 0, , for X ={cor,cor,0571}. (1.28)
i=1

The others are parameterized linearly

X(65°F) =X + Z(X@') —X)O° | for X = {c1.,c30,¢5.0) - (1.29)
=1

In the equation, we indicate with a bar the central value predictions, while the superscript
(0 denotes the value of the parameter obtained with each of the 30 PDF replicas in the
set. The parametrization is such that X equals (approximately, in the case of eq. (1.28))
X® when 6F°F is at its one-sigma value and all the other 65"’s vanish, compatibly with
the definition of the Hessian set.

The PDF uncertainties are larger than those on a4, and eventually turn out to be
the dominant component of the total theoretical uncertainties shown in figure 1.7.
Furthermore these uncertainties grow with the energy like the new physics effects.
Therefore in our analysis we account for them fully, both in the SM and in the new
physics contributions to the cross-section.

Uncertainty from missing higher orders

The uncertainties due to the truncation of the perturbative series in the cross-section
prediction are harder to quantify, and impossible to incorporate rigorously in any statis-
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Figure 1.6 — Left: Uncertainties from scale variation computed as (cj’F* — cf:i]n) /(2Ck.1)-

Right: Uncertainties from missing EW loops estimated as explained in the main text.

tical framework. Nevertheless we can estimate their impact as follows. Missing higher
orders in the QCD loop expansion are estimated by varying the factorization (up) and
QCD-coupling renormalization (ug) scales independently around the central values
fip = fig = \/5. The scales are varied by multiplicative factors equal to 2% o+1/2
and 1, in a grid with a total of 24 entries plus the central value configuration. The

maximal and the minimal values of the ¢ ; coefficients in this grid, denoted as c}'¢*

and c}cn’iln below, are used for the uncertainty estimate. Missing higher order in the EW
loop expansion are instead estimated by adding the leading IR logarithmic terms at two
loops to our reweighting formulas. All IR logs have been computed in ref. [77] at two
loops, however only the leading (i.e., L* angular-independent) terms are retained in the
estimate of the uncertainties. Compatibly with Sudakov resummation formulas, these are
straightforwardly included by replacing fai — fai + f2; /2 in eq. (1.17). The predictions
for the ¢y 1 coefficients that include this contribution are denoted as ci}su‘j&kov.

The uncertainties from missing higher orders in QCD (left panel) and in EW (right panel)
are displayed in figure 1.6. We discuss them in turn. NLO QCD scale variation effects
are known (see, e.g., ref. [93]) to be sizable in the SM. Correspondingly we see in the
figure that the uncertainties on the cg ;’s are relatively big. On the other hand, the scale
uncertainties on the new physics ¢ ;’s (with k& # 0) are extremely small and completely
negligible. Namely, we find that the NLO QCD scale variations mostly affect ot in
eq. (1.23) as an overall new physics-independent multiplicative factor. The uncertainties
due to the missing higher-orders in the EW loop-expansion are smaller than the QCD
scale variation, and they become sizable only at high energy where the statistical error
gets big. They are definitely irrelevant for the new physics term, but they could play a
role for the SM contribution, in particular for the charged DY process where they are
slightly larger than what shown in the figure for the neutral case.

The previous results show that our predictions for the new physics contribution to the
cross-section are sufficiently accurate, and the associated theoretical uncertainties can
be neglected. On the SM term instead, NLO QCD scale variations and missing higher
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orders in the EW expansion are potentially relevant. However the SM predictions are
available at NNLO [63], and 2-loops enhanced EW logarithms can be easily included in
by analytic reweighting. By replacing the SM term of our prediction with the NNLO SM,
and including 2-loops logs, we could thus lower the NLO scale variations to the NNLO
level, and make higher order EW corrections completely negligible. In what follows we
will thus ignore EW effects and include NNLO-sized QCD scale variations which we
estimate, following ref. [63], to be one tenth of the NLO ones. These uncertainties are
modeled by introducing one nuisance parameter 67" for each bin, following a standard
normal distribution. Linear dependence on 07" is assumed for cg r

C
coy = o + L B 5 RIS (1.30)

( max min)

1.3.3 Statistical inference

In the following section we will present sensitivity estimates for the W& Y parameters
at the LHC with the standard [94] frequentist approach based on the profile Likelihood
ratio and employing Asymptotic formulas and the “Asimov dataset”. Namely, we define
the “t,,” test statistic (with u = (W,Y) the parameters of interest), with the Likelihood
in the numerator maximized over the nuisance parameters for fixed W and Y and the
one in the denominator maximized also on the parameters of interest. The Asymptotic
(x3) distribution is assumed for ¢, in the EFT hypothesis in order to set the 95% (or
68%) CL boundaries, while the median ¢, in the SM hypothesis is obtained by setting
the observed data to the central-value SM prediction.

The treatment of experimental (statistical and systematical) uncertainties would be
completely straightforward if the experimental result was presented as a measurement of
the unfolded cross-section in the bins. Namely, the complete Likelihood will be merely
obtained by plugging a}h in the experimental Likelihood, expressed as a function of the
“truth-level” cross-sections o7, including the dependence on the parameters of interest
and on the nuisance, and multiplying by the nuisance parameters constraint terms. The
simplest way to mimic the complete Likelihood would be to employ a Gaussian guess for
the experimental Likelihood, which should include an estimate of the uncertainties on the
measurement emerging from the combination of statistical and systematic errors. Since it
is unclear how the statistical and systematic errors should be combined, a slightly more
sophisticated approach is considered in what follows. However it should be emphasized
that this adds nothing to the accuracy of our modeling of the experimental errors, given
the lack of basic information on the systematic uncertainties expected in the measurement
and of the (potentially very important) correlations between the errors in different bins
and in neutral and charged DY. One advantage of the strategy we follow is that it could
be adapted to the direct comparison of the W and Y prediction with the observed-level
distributions without unfolding.
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Experimental uncertainties

The experimental Likelihood for the o; cross-sections emerges from the number of events,
ny, observed in each bin. These are Poisson-distributed independent variables with means
pr that are related to the theoretical predictions ut®* = L - o'l (with L the integrated
luminosity) up to experimental uncertainties which we encapsulate in normal-distributed
nuisance parameters 677, and to the luminosity uncertainty. Namely, the y; are defined
as

J
pr = pib (1 +> [\/zcxp]l 05 +0.02 9L> , (1.31)
J

where 2P is the covariance matrix associated with the systematic experimental uncertain-
ties in the relation between the truth-level expected countings ,u}h and the observed-level
expectations puy. Notice that the expression above does not take into account event
migrations from the truth- and observed-level bins, which should be encapsulated in the
response matrix that multiplies the u}h term. However it can model realistically the effect
of uncertainties on the determination of the response matrix, provided a reasonable guess
is made for the covariance matrix X**P. The simple choice we consider in the next session
is based on current experimental results. The error on the luminosity measurement, at
the 2% level, is described by the normally distributed nuisance parameter 6%

The complete Likelihood we will employ for the statistical inference finally reads

2 (.00 07077, 57,07 = T Possson [l (1,07, 077 67 05,0
I=1
(1.32)

X fae (eas)fPDF(HPDF)fTU(Q}U)feXp(eeXp)fL(QL) :
(1.33)

The dependence of y; (through ot®; as in eq. (1.31)) on the parametric and theoretical
uncertainties is introduced by combining additively the correction terms in eqs. (1.25),
(1.28), (1.29), and (1.30).

1.3.4 LHC projections

We base our projection on hypothetical measurements of the neutral DY invariant mass
(my;) and of the charged DY transverse mass (mq) distributions in logarithmically-spaced
bins

{.3,.33,.365, .41, .46, .52, .59, .68, .79, .91,1.07, 1.26, 1.5, 1.8, 2.16, 2.62, 3.20, 3.93, 13} TeV .
The LHC collider energy is set to 13 TeV, and integrated luminosities of 100 fb~1, 300fb~!,

and 3ab~! are considered. The former luminosity is roughly the one that has been
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Figure 1.7 — Invariant and transverse mass distribution of the relative discrepancy between
BSM and SM predictions, for neutral (left panel) and charged (right panel) Drell-Yan.
The gray band represents the uncertainties (at 1o) in the theoretical predictions, while
the black bars denote the statistical uncertainties estimated as one over the square root
of the number of expected events. The HL-LHC integrated luminosity (L = 3ab™!) is
assumed.

collected as of today. The two latter ones are those that will be available at the end of
the LHC and of the HL-LHC programs, respectively. We incorporate in the projections
65% identification efficiency for electrons and 80% for muons, which effectively reduces
the luminosity by a factor of 2 in neutral DY and by around 40% for the charged process.

The projections are obtained with the Likelihood described in the previous section,
where all the relevant sources of parametrical and theoretical uncertainties in the cross-
section predictions are taken into account. However they are not fully realistic because
the experimental systematic uncertainties in the cross-section measurements (and the
correlation of these uncertainties across different bins) can only be estimated by the
experimental collaboration. Based on run-1 results, in our “baseline” scenario we set to
2% and to 5% the experimental relative uncertainties in the measurement of the neutral
and of the charged cross-sections, respectively. No correlation is assumed across different
bins, i.e. X*P oc 1 in eq. (1.31), aiming to a conservative result.

The results are illustrated in the rest of this section, starting from those in the baseline
configuration for the uncertainties. We next consider departures from the baseline setup
and discuss the impact of the various sources of uncertainties separately.

A first qualitative assessment of the sensitivity can be obtained by looking at figure 1.7.
The figure shows the corrections to the cross-section, relative to the SM, at 4 points
in the W&Y parameter space, overlaid with the total uncertainties in the theoretical
predictions, represented as a gray shaded region. As discussed in the previous section,
these uncertainties are dominated by the PDF contribution. The black bars correspond
to the statistical uncertainties in each bin at the HL-LHC. The 1% uncertainty level is
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Figure 1.8 — Projected 68% and 95% exclusions in the W&Y plane for different luminosities
from neutral (purple) and charged (green) Drell-Yan measurements at 13 TeV LHC.

marked with horizontal dotted lines because it provides a reasonable absolute lower bound
to the systematic component of the experimental error on the cross-section measurements,
on top of the statistical one. Based on the figure, we expect values of W&Y of the
order of 1-107% or less to be within the reach of the HL-LHC. This is confirmed by
the contours in the W&Y plane, at 68 and 95% CL, displayed in figure 1.8 for the 3
integrated luminosities we considered. The neutral and charged DY sensitivities are
shown separately and combined.

We further inspect our results, following ref. [11], from the viewpoint of the validity of the
EFT modeling of new physics. The first three plots in figure 1.9 show single-parameter
95% CL sensitivities as a function of the maximal energy (invariant or transverse mass)
of the data employed in the analysis. These are obtained considering only one (W or Y)
parameter of interest, with the other set to zero. The first two panels refer to neutral
and charged DY, respectively, and the third one to the combination of the two channels.
Consistently with ref. [11], we see that the reach sits comfortably below the “Derivative
Expansion Breakdown" region, showing that the usage of the EFT is justified and the
resulting limits are valid. More quantitatively, we see that the energy region which is
relevant for the limit does not exceed 2 or 3 TeV. The value of the W&Y parameters we
are sensitive to can easily be due to new physics particles which are much heavier than
that. For instance in Composite Higgs theories the new physics scale could easily be at
10 TeV or more, justifying the usage of the EFT at few TeV energies. A more simple
examples is the one of a Z’, such as the “Universal Z' model” employed in ref. [32] for
future colliders performance assessments. The sensitivity projection on the Y parameter
(which is the only one generated by this model), once translated in the mass-coupling
plane of the Z’ model as in figure 1.9, reveals that the HL-LHC could be sensitive to
values of the Y parameter induced by a Z’ which is as heavy as 30 TeV. The projected
direct reach on the Z’ particle at the HL-LHC, from ref. [32], is overlaid to the figure
in order to outline that the sensitivity to the model is dominated by the neutral DY
measurement of Y in a wide region of the parameter space.
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Figure 1.9 — Projected bounds as a function of a cutoff on the mass variable. Bottom
right: Projected exclusions on a simple Z' model (defined as in ref. [32]) from the
measurement of the Y parameter. The exclusion reach from direct Z’ searches, at the
HL-LHC, is also shown.

It is interesting to investigate the impact of each source of uncertainty on the sensitivity.
We report in figure 1.10 the projected single-operator limits obtained with different
assumptions on the errors, compared with the baseline configuration. Eliminating the
uncertainties from ag and from missing higher orders in the perturbative expansion is
found not to improve the sensitivity appreciably, and for this reason the corresponding
reach is not reported in the figure. On the other hand, we have verified that the reach
would significantly deteriorate with respect to the baseline, especially at the HL-LHC, if
the theory uncertainties on the SM prediction were increased to the level estimated by
the NLO scale variation in figure 1.6. Incorporating uncertainties from missing 2-loops
EW Sudakov effects degrades instead the reach by 10% at most at the HL-LHC. The
baseline reach projections thus rely on the availability of NNLO predictions, while it is
less relevant to include the enhanced EW logarithms at the 2-loops order.

As expected, PDF are the most relevant source of uncertainties in the theoretical predic-
tions. However we see in figure 1.10 that halving or eliminating these uncertainties does
not improve the sensitivity radically. We now turn to the uncertainties of experimental
origin, i.e. the luminosity and the X*P uncertainty of eq. (1.31). Removing the latter
(as in the “No Syst” bars) has a moderate impact on the reach, while the former is
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Figure 1.10 — Single-parameter 95% reach on W (left) and on Y (right), with different
integrated luminosities and for different uncertainty configurations.

completely irrelevant. Indeed, by removing also the luminosity uncertainty (“No Exp”
bar), the reach does not improve further.

The picture emerging from the previous discussion is that the experimental accuracy
assumed in the baseline configuration is sufficient, given the state-of-the art accuracy of
the theoretical predictions, to exploit at best the LHC and HL-LHC potential to probe
the W&Y parameters, and vice versa. A more accurate determination of the PDF could
improve the sensitivity, but only slightly. On the other hand, it should be emphasized
that our estimate of the experimental uncertainties is a mere guess, which in particular
does not take into account correlations between the experimental errors in the different
bins and in the different processes, which might reduce the impact of these uncertainties
on the reach. If this was the case, the adequacy of the theoretical predictions should be
reconsidered, and an improvement of the PDF determination could entail a much more
significant progress in the sensitivity. The absolute lower bound for the reach is provided
by the “Only Stat” bars in figure 1.10, where all sources of theoretical and experimental
systematic error are eliminated.

Before concluding, we compare our results with the findings of ref. [11]. Our projected
limits are weaker by around 30%, due to a different estimate of the PDF uncertainties.
In [1,2], we used LHAPDF, which combines several PDF sets, while the estimate in
ref. [11] was based on ref. [95], where only one set (NNPDF) was considered. The
PDF uncertainties of ref. [95] are a factor of around 2 smaller than ours in the relevant
kinematical range, making the uncertainties employed in ref. [11] effectively correspond
to our “Half PDF” configuration. With this configuration we could indeed accurately
reproduce the results of ref. [11] which are in line with the first run-2 findings in [42].
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Chapter 1. Precision physics from the tail

1.4 Fully differential measurements

We have considered so far only the invariant (transverse) mass distribution of the dilepton
pairs. The DY final state is however so simple that it can be characterized completely
with fully-differential cross-section measurements.'? In this section we generalize the
previous phenomenological analysis to fully-defferential DY measurements, quantifying
its impact on the sensitivity to EFT operators.

Moreover, we improve the results of sec. 1.3.4 including all the 7 flavor universal current-
current quark-lepton interactions. As we will explain the reweighting methodology
introduced in sec. 1.2 now becomes crucial. In fact, the large dimensionality of the EFT
parameter space, combined with the large number of analysis bins that are employed for
the fully-differential analysis, would have made our tasks computationally too demanding
if employing a Monte Carlo implementation not based on reweighting.

We start our investigation of the fully-differential DY dilepton production and its sensi-
tivity to new physics by developing a semi-analytic qualitative understanding based on
the structure of the tree-level distributions. Quantitative estimates of the sensitivity are
performed in Sections 1.4.2 and 1.4.3.

1.4.1 Tree-level distributions

Consider the neutral process qg — ¢7¢~. The fully-differential cross-section is given by

Ao B T
dm%e dey dy  3-647 mz}g

S { [+ e?2a(ra) + 0= ey )] Piomer)

[ = e?Ly(ry) + (1 + e)’Ly(r, ) Pg(ma)} ,
(134)

where my, = V/3 is the dilepton invariant mass and 7 = §/S (with v/S the collider
energy), while y is the absolute value of the rapidity (relative to the beam axis) of the
dilepton system. We define ¢, = cosf, as the cosine of the angle formed, in the rest
frame of the dilepton pair, by the charge-minus lepton and the direction of motion of the
dilepton rest frame relative to the lab frame. At tree-level, 0, as defined above is the
angle between the ¢~ and the most energetic incoming parton.!! The detailed definition
of the kinematical variables beyond tree-level is reported in Appendix A.2.

OFully (i.e. triply) differential measurements of the neutral DY process have already been performed by
ATLAS with early run-1 data [43]. Double differential measurements have been performed in Refs. [39,40].

Tt is essential not to define 6. with respect to a fixed beam-axis orientation. With that definition,
the fully-differential cross-section in eq. (1.34) would depend only on the combination (P{ 4+ PZ) like the
single-differential cross-section in eq. (1.37), and all the advantages of the fully-differential analysis would
be lost.
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The sum in eq. (1.34) spans over the light quarks ¢ = {u,d, ¢, s, b}, and, for each quark
species ¢, L is the product of the corresponding ¢ and g parton distribution functions
(PDFs), namely

Ly(r,y) = fo(VT eV smiy) fo(VT e Vsmi,). (1.35)

The coefficient functions P? (PJ) parametrize the contributions, including both SM
and new physics, from the subprocesses where the chirality of the incoming quarks is
the same (opposite) one of the outgoing leptons. Our target new physics operators are
flavor-universal, like the SM contribution to the scattering amplitudes. Therefore the
coefficient functions are the same for all the up-type and for all the down-type quarks,
for a total of four independent functions P*¢ and P*“. In the high energy regime

mye > my, and at the linear interference level in the new physics contribution, the
coefficient functions read

d - N _ pud
P (me) ~ Pgy , + mi, (Vs“’d : G) = Pgup, +mi GO,
(1.36)
d Sud A pud
Pyt (meg) ~ P&y, + mi, (Vo“’d : G) = Pyp, +mp GoY,

where G denotes the Wilson coefficients of the seven effective four-fermion operators
defined in Table 1.1. In these expressions both the SM terms Psuﬁ s and P§M7 o> and the

vectors ‘;Z%d, are kinematics-independent numerical coefficients, reported in Appendix A.1.
At the linear level, and up to tiny effects suppressed by m2Z / mﬁg, the neutral DY cross-
section depends on new physics only through the four linear combinations ij:g = Z%d -G
of the seven Wilson coefficients. With the fully-differential analysis we can probe each of
these four directions in the new physics parameters space independently, at least in line

of principle.

Consider for comparison the single-differential cross-section da/dmlgg. By integrating
eq. (1.34) over ¢, and y, we get

do T dc,
= § P4(m Pi(m 1.37
dm%e 727rm;}e dr [P (mae) + P5l(me)] ( )

where the parton luminosities are defined as

Ymax
1
= / dy 'Cq(Tv y) ) Ymax = _ilogT- (138)

—Ymax

ac,
dr

We see that the single-differential cross-section only depends on the sum of the “s” and “0”
coefficient functions. At linear level, using eq. (1.36), it is thus only sensitive to G¥ + G¥
and G9 + G, i.e. to two combinations of the four directions in the EFT parameter space
that the fully-differential analysis can probe. Actually it is not difficult to see that the
single-differential analysis is not even sensitive to G% + G and G 4 G¢ independently,
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Chapter 1. Precision physics from the tail

but only to the combination
(G + G +0.5 (G2 + GY). (1.39)

This is because the ratio between the up and the down quarks luminosities (that dominate
over the one of the other quark flavors) is nearly constant in 7 in the most sensitive
energy range my, ~ 1 — 2 TeV. The ratio is approximately equal to 2 owing to the valence
quarks content of the proton.

The advantages of performing a fully-differential measurement can now be appreciated
by analyzing the various regions in the (c.,y) kinematic space. In the kinematical
regime with small center of mass rapidity (y ~ 0), one has L,(7,y) ~ L4(7,—y), and
the cross-section in eq. (1.34) becomes proportional to (1 + c2)L,(7,0)(P4 + P4). Hence
this region provides sensitivity to the same combination of Wilson coefficients that can
be probed through the da/dmfz distribution. On the other hand, in the region with
large y we have L,(7,y) > L4(7, —y) for the (dominant) up and down quarks because
the valence quarks are typically more energetic than the sea anti-quarks. Therefore the
cross-section is proportional to (14 ¢.)2P? + (1 — ¢,)?PJ and it is sensitive to both P4
and PJ for ¢, ~ +1 and ¢, >~ —1, respectively.

Measuring the fully-differential distribution can also mitigate the degeneracy between
the up and down quark contributions that is due, as previously discussed, to the similar
shape of the parton luminosities. Indeed the dependence of L,(7,y) on y is significantly
different for the two quark species. In particular the up quark distribution is peaked at
larger values of y than the one of the down quark.!?

The discussion above shows that the fully-differential cross-section measurement has the
potential to disentangle the four G?ﬁ linear combinations of Wilson coefficients. This is
a significant improvement relative to the single-differential measurement that is sensitive
to one combination only. The quantitative assessment of this improvement is postponed
to Section 1.4.3.

It should be stressed that our findings are based on the dependence of the cross-section on
the Wilson coefficients at the linear order. At the quadratic level, all Wilson coeflicients
enter in the P{, functions with comparable coefficients (see the explicit expression for
the amplitudes in Appendix A.1). Therefore also the combinations of parameters that do
not enter or are suppressed in the linear term can be determined through their quadratic
contributions. These combinations are all expected to be tested less effectively than the
ones contributing to the linear terms, but with similar precision among them.

A similar analysis can be performed for the charged DY process q¢' — fv. In this case,
however, a fully-differential measurement has a milder impact. The reason for this is

127 detailed discussion of this feature can be found in Ref. [96] (see in particular Figure 3).
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Figure 1.11 — Left panel: Absolute value of the logarithmic derivative of the tree-level
differential cross-section with respect to the W and Y parameters in the (¢4, y) plane.
Right panel: Level contours of the tree-level SM differential cross-section (in arbitrary
units). Both plots are obtained at fixed myg = 1 TeV.

twofold. First, the charged process is only affected by one operator, namely 01(3)7 so that
no issue in disentangling various new physics contributions is present. Second, due to
the presence of a neutrino, only two independent kinematic variables can be accessed,
for instance the transverse momentum of the charged lepton pr, and its rapidity 7.
The new-physics contributions depend on the center of mass energy v/3, which is closely
correlated with pr,, but has a very mild correlation with 7,. The additional benefit
of considering both kinematical variables rather than only pr, is therefore expected to
be small. However it should be taken into account that more differential information
in the charged channel might help reducing the impact of PDF uncertainties in the
combination with the fully-differential neutral DY measurements. Indeed some advantage
of the doubly-differential measurement in charged DY will be observed in the analyses
presented below.

1.4.2 Bounds on the Universal parameters W and Y

As a first quantitative analysis we focus again on the specific set of dimension-6 operators
related to the Universal parameters W and Y. There are some crucial differences between
the W and the Y parameter, which make the latter more difficult to test. While W can
be probed in both the charged and the neutral DY channels, Y only affects the neutral
DY process. Furthermore, if the neutral channel is analyzed by fitting only the invariant
mass distribution, the single combination of Wilson coefficients that is probed at the
linear level, in eq. (1.39), turns out to be proportional to W 4 0.6Y (using Table A.4).
Therefore the sensitivity to Y is almost two times weaker than to W.

As we discussed above, a fully-differential analysis in the neutral channel can help to
disentangle different new physics contributions. This happens also for the W and Y

47



Chapter 1. Precision physics from the tail

parameters. To illustrate this point we show in the left panel of Figure 1.11'3 the
logarithmic derivatives of the tree-level differential cross-section with respect to W and

Y, namely
1 ddo 1 ddo

do OW |gy do Y |gy
evaluated at the SM point W =Y = 0. For definiteness the dilepton invariant mass has

(1.40)

been set to my, = 1 TeV in the figure. The logarithmic derivative scales like m?e as a
function of the mass. As expected, in most of the kinematic space, i.e. for small rapidity
and for ¢, 2 0, the cross-section dependence on W is roughly twice stronger than on Y.
In particular this happens in the regions with larger cross-section, as can be seen from
the plot in the right panel of Figure 1.11.

The behavior, however, drastically changes in the corner with ¢, < —0.5 and y/ymax 2 0.5.
For these configurations the differential cross-section mostly depends on Y, while the
sensitivity to W is small. This feature can be easily understood from the analysis we
performed in the previous section. For large rapidity and c, ~ —1 the differential cross-
section is controlled by PJ, which gets contributions from subprocesses with opposite
fermion chiralities. Since W corresponds to an operator with only left-handed fields, it
can contribute only to the same-chirality subprocesses and not to PZ. Exploiting the
fully-differential distribution for the fit is thus expected to improve the determination
of Y. It must be however noticed that the differential cross-section in the y ~ ymax and
cx ~ —1 corner is somewhat suppressed, and is an order of magnitude smaller than in
the ¢, > 0 region. This means that a significant improvement in the Y determination
can be obtained only when a high number of signal events are collected, so that the
Y ~ Ymax and c, ~ —1 region is sufficiently populated at high mys. To give an idea, at the
HL-LHC, out of ~12000 SM events with my, > 1.1 TeV, only 210 events are expected in
the region with y/ymax > 0.4 and ¢, < —0.6.

We show in Figure 1.12 the comparison of the projected exclusion reach on the W and Y
parameters obtained from a fit taking into account the fully-differential distribution or the
single-differential (invariant mass or transverse momentum for neutral and charged DY,
respectively) distributions. To obtain the bounds we considered the HL-LHC benchmark,
with collider energy 14 TeV and £ = 3 ab™! integrated luminosity, and we assumed that
the experimental measurements of the cross-section coincide with the SM predictions.'*
The fit of the charged DY process was obtained by considering a set of bins in the

transverse momentum and rapidity of the charged lepton, whose boundaries are

DT - {150, 180, 225, 300, 400, 550, 750, 1000, 1300, 7000} GeV,  (1.41)

nl/nmax : {07 1/372/371}7 (142)

where 7max i the minimum between the acceptance cut of 2.5 and the maximal kinemat-

13We employed the package of Ref. [97] to obtain semi-analytic expressions for the PDF.
MResults for the LHC run 3 benchmark are reported in Appendix A.4.
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Figure 1.12 — 95% CL allowed regions for W and Y at the 14 TeV HL-LHC. The
green and orange shaded regions correspond to the bounds from charged and neutral
DY, respectively, whereas the combined bounds are given by the blue shaded regions.
The fully-differential analysis results are reported with solid contours while the dashed
contours represent the sensitivity of the single-differential measurements.

ically allowed rapidity arctanh[(1 — 4p22F,£ /S)'/2]. For the neutral DY channel we instead
used a binning in myy, ¢, and y, with boundaries

mee: {300, 360,450, 600,800, 1100, 1500, 2000, 2600, 14000} GeV, (1.43)
et {-1,-06,-0.2,0.2,0.6,1}, (1.44)
Y/ymax :  {0,0.2,0.4,0.6,1} . (1.45)

The cross-section predictions are obtained as explained in sec. 1.2, at NLO in QCD
combined with parton showering (based on POWHEG and PyTHIA 8) and at the NLL
order in the EW expansion. The effects due to the W and Y parameters (and the EW
logarithms) are included through reweighting, which enables fast and accurate Monte
Carlo predictions in the relatively large number of bins (a total of 234) that we consider
in the fully-differential analysis. The O, O)p operators have been defined at the
renormalization scale of 10 TeV.

The projected bounds take into account, as explained in sec. 1.3, the PDF uncertainties
and a 2% luminosity uncertainty. We considered an 80% reconstruction efficiency for
each muon and 65% for each electron. The results now, do not take into account any
additional experimental systematic uncertainty. This is because we expect that the size
and the correlation of these uncertainties will strongly depend on the binning and it will
be quite different in the fully-differential measurement and in the single-differential one.
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Chapter 1. Precision physics from the tail

Since a quantitative estimate of the uncertainties is not available, we set them to zero
for a fair comparison of the two analysis procedures. A qualitative assessment of their
potential impact is presented in Section 1.4.4.

From Figure 1.12 we see that the fully-differential analysis gives a strong boost to the
sensitivity of the neutral DY channel, improving in particular the sensitivity along the
W 4+ 0.6 Y =0 line that is weakly probed by the single-differential analysis as previously
discussed. The charged DY sensitivity also improves. However it should be taken into
account that the single-differential analysis is performed (like in Refs. [1,11]) on the sum
of the charge plus and charge minus cross-sections in each pr, bin. The two charges
are instead separately measured and combined in the fully-differential analysis, which is
helpful to mitigate the impact of PDF uncertainties. The improvement we observe in the
charged channel is partly due to this effect.

Interestingly, the improvement of the fully-differential analysis is quite significant for
the combination of the neutral and charged DY channels. The 95%CL single-parameter
bounds from the combined fit are given by

W:  [-2.9,3.0 x 1075 ([-4.9,5.2] x 1079),
(1.46)
Y: [-68,71] x107° ([-8.3,8.8] x 1079),

where the numbers in parentheses correspond to the single-differential fit. The constraint
on W becomes nearly a factor 2 more stringent, whereas the determination of Y improves
more mildly. It is interesting to notice that part of the improvement in the W determina-
tion does not come from the naive sum of the log likelihood for the neutral and charged
processes, but is instead a consequence of the reduced impact of the PDF uncertainties.
The PDF errors, in fact, are strongly correlated in the two channels, so that including
both of them simultaneously in the fit allows one to distinguish their effects from the
contributions due to new physics.

1.4.3 General quark-lepton interactions

We now consider the impact of the fully-differential analysis on the determination of
the complete set of lepton-quark current-current operators listed in Table 1.1. In order
to make the comparison with the single-differential analysis more straightforward, it is
convenient to choose a basis in the space of Wilson coefficients which is aligned with
the directions that appears in the invariant mass distribution for the neutral dilepton
channel. As we discussed in Section 1.4.1, the do/ dmfg distribution depends at the linear
level only on two particular combinations of parameters, G* + G% and G¢ + G¢, with
ij:g defined as in eq. (1.36). Moreover the ratio of up and down parton luminosities
singles out one combination of Wilson coefficients (1.39) that is most effectively probed
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in the invariant mass distribution. We thus include in our basis the combination
GE=(GY+GY) +0.5(G+GY), (1.47)
and the orthogonal one, which we denote by
Gy =05(GY+GY) — (G214 GY). (1.48)

We further consider the two remaining combinations of parameters, which contribute
to the fully-differential distribution at the linear level but not to the invariant mass

distribution
GH=(GY -G +0.5(G4 - GY), Gy =0.5(GY — GY) — (G2 — G?). (1.49)
Finally, we complete the seven-dimensional basis with the C:’l(j) = Gl(?) coefficient and two

additional combinations, G+ and G5, that are orthogonal to all the others. The explicit
expressions are reported in Appendix A.1. The G and G coefficients contribute (at the
quadratic level) to the same-chirality and opposite-chirality subprocesses, respectively.
It is important to stress that the change of basis we are performing is not orthogonal.
%
(with the same value), but also gives a correlated contribution to the GEO

In particular this means that the G, coefficient of the Warsaw basis not only gives
3)
lq

coefficients.

rise to é

Fully-differential measurements improve the determination of the different parameters
defined above, relative to the single-differential analyses, to different extents. The
(N}l(g’) coefficient is mainly tested in the charged DY process, where the impact of the
differential analysis is less pronounced. Its (single-operator) determination can thus
improve only mildly from the combination with the neutral channel and the associated
possible reduction of the impact of the PDF uncertainties. The G+ and G coefficients
contribute only at quadratic order or through very small subleading terms in the m2Z / m%z
expansion, both to the single and to the fully-differential cross-section. Therefore they
will be tested with lower accuracy and they will not improve significantly with the
fully-differential analysis. We thus focus on the remaining four coefficients GEO. Among
those, G;E will not improve much, since it is already effectively probed in the invariant
mass distribution. A significant improvement is instead possible for the other ones.

For a first assessment of the perspectives for progress we show in Figure 1.13 the
logarithmic derivative of the tree-level fully-differential cross-section for the neutral
DY channel with respect to the four GEO parameters. In the low-rapidity region
(Y/Ymax S 0.5) the cross-section is sensitive dominantly to G. This is not surprising
since, as we saw in Section 1.4.1, the distribution in the low-rapidity region depends on
the same combination of coefficient functions that enter in the invariant-mass distribution.
The high-rapidity configurations, on the contrary, show very different sensitivity patterns

to the Gfg o coefficients. One can see, in particular, that the ¢* > 0 region, which has
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Figure 1.13 — Logarithmic derivative of the tree-level differential cross-section with respect
to the GfIE,O coefficients in the (c.,y) plane. The plots are obtained setting mg = 1 TeV.

a high SM cross-section (see the right panel of Figure 1.11), shows a relatively large
logarithmic derivative with respect to Gg. The fully-differential analysis is therefore
expected to improve significantly the determination of this coefficient and to disentangle
it from GE, which gives a different dependence of the logarithmic derivative as a function
of y.

On the other hand, the G, coefficient affects the distribution mainly in the ¢, ~ —1,
Y ~ Ymax corner, in which the cross-section is rather small. For this reason we expect its
determination to remain relatively poor. Finally the G coefficient is in an intermediate
situation. The related logarithmic derivative is significantly smaller than for GE and G5,
but nevertheless shows a distinctive pattern in the region with y/ymax < 0.5, which has

a good cross-section. We thus expect that the fully-differential analysis could provide
some improvement on its determination.

To estimate the sensitivity to GfEE o we performed the same analysis presented in Sec-
tion 1.4.2 for the W and Y parameters. The two-dimensional 95% CL contours for each
pair of coefficients, setting the others to zero, are shown in Figure 1.14.1° Different sets

15The plots are obtained by combining the neutral and charged DY channels. Notice that the charged
channel does not depend on the Gﬁ and G% coefficients, so its contribution is only indirect, through a
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Figure 1.14 — Allowed regions at 95% CL on the six coordinate planes along the four
GE o coefficients. Solid contours correspond to the fully-differential analysis, while the
dashed ones are obtained with the single-differential measurements. The blue shaded
regions include the full dependence on the Wilson coefficients in the cross-section, while
only the linear terms are retained in the orange shaded regions.

of bounds are compared in the plots. The solid contours correspond to the 95% CL
constraints from the fully-differential analysis, whereas the dashed ones are obtained
exploiting the invariant-mass distribution in the neutral channel and the transverse-
momentum distribution (summed over the two charges as discussed in Section 1.4.2)
in the charged channel. The blue shaded regions are obtained by considering the full
dependence on the Wilson coefficients in the cross-section, while the orange shaded
regions are found by taking into account only the linear terms. The axes of the ellipses
for the fully-differential analysis at the linear level are aligned with the reference axes of
each plane, owing to our judicious choice of the basis.

We also report, in Table 1.3, the expected sensitivity to all the seven parameters GEO,
G

others to zero and the bounds profiled over the other parameters. In the case of the

and C:’l(g). We list both the single-parameter bounds obtained by setting all the

fully-differential analysis we also report the results of the linearized fit.

We see from the figure and the table that the single-operator determination of GE is only
marginally modified, with a modest improvement or order 10%. This was expected, as
previously discussed, since the determination of GE from the invariant-mass distribution

reduction of the impact of the PDF uncertainties. This effect is however small.
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Chapter 1. Precision physics from the tail

95%CL single parameter profiled

[1073 TeV 2] fully diff.  fully diff. lin. single diff. fully diff.  fully diff. lin. single diff.
Gy [—0.36, 0.35] [—0.36, 0.36] [—0.49, 0.50] | [—0.53, 0.48] [—0.57, 0.57] [—0.97, 0.77]
Gt [—0.20, 0.19] [—0.20, 0.20] [—0.27, 0.25] | [~0.55, 0.32] [—0.60, 0.60] [—1.19, 0.45]
Gy [—0.61, 0.65] [—1.02, 1.02] [—0.77, 0.90] | [~1.52, 1.30] [—1.62, 1.62] [—3.31, 1.94]
G [—0.38, 0.35] [—0.37,0.37] [—1.01, 1.19] | [—0.44, 0.60] [—0.82, 0.82] [—1.32, 2.17]
e [—0.77, 0.65] [—2.74, 2.74] [—0.95, 0.79] | [~1.58, 1.80] [—5.85, 5.85] [—2.06, 3.20]
Gt [—2.14, 1.44] [—3.74, 3.74] [-2.24, 1.59] | [—2.46, 2.19] [—10.5, 10.5] [—2.91, 2.41]
G+ [—0.69, 0.67] [—18.6, 18.6] [—0.85, 0.84] | [~0.98, 0.89] [—25.5, 25.5] [—1.26, 1.31]

Table 1.3 — 95% CL projected bounds (in 10™3 TeV 2 units) for the seven coefficients
Gl(s’), GEO and ijo. The first three bounds correspond to single-operator fits, in which
all other parameters are set to zero, while the last three are profiled over the other

parameters. For each set of bounds the three columns correspond to the complete
fully-differential fit, the linearized one and the single-differential measurement fit.

is already quite good. Since GJEC contributes at the linear level and it is well probed, no
significant difference is present between the full fit and the linearized one in this direction.

A strong improvement is instead found in the sensitivity to Gg, as anticipated. The
bound from the full fit (i.e. including both the linear and quadratic dependence on
the Wilson coefficient in the cross-section) improves roughly by a factor of 3. The
improvement in the linearized fit is even more dramatic, since Gg does not contribute
to the invariant mass distribution at the linear level up to small effects, as previously
discussed. Correspondingly, an approximate flat direction is present for Gg (see for
instance the middle plot on the top row of Figure 1.14) in the single-differential linearized
contour. The fully-differential analysis is instead strongly sensitive to Gg at the linear
level and the linearized and the full fit agree very well.

The impact of the fully-differential analysis on the G and G, parameters follows a
slightly different pattern. In the full fit a mild improvement of the bounds, of order
15%, is found. The results, however, change drastically at the linearized level. In this
case the fully-differential analysis is able to significantly improve the constraints on both
parameters (see for instance the middle plot on the second row of Figure 1.14).

The profiled bounds reported in Table 1.3 are more difficult to interpret. They significantly
differ from the single operator ones, signaling the presence of non-negligible correlations
among the various parameters. We notice that for many parameters the fully-differential
analysis improves the profiled bound more than the single-operator one. This pattern is
particularly visible for the él(;’),
and G,. The origin of this behavior can be traced back to the reduction of flat directions

GE and G parameters, and, to a lesser degree, for Gg

in the fully-differential fit, which helps in reducing the correlations among the various
Wilson coefficients.
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1.4. Fully differential measurements

95%CL single parameter profiled
[1073 TeV 2] fully diff.  fully diff. lin. single diff. fully diff.  fully diff. lin. single diff.
GS) [—0.46, 0.44] [—0.45, 0.45] [—0.80, 0.75] | [—0.53, 0.48] [-0.57, 0.57] [-0.97, 0.77]
Gl(;) [-1.95, 2.42] [-2.15, 2.15] [—2.42, 3.55] | [—4.69, 5.28] [—12.8, 12.8] [-5.93, 8.75]
Gye [—2.13, 3.29] [-2.56, 2.56] [—3.19, 6.19] | [—4.31, 5.35] [—139, 139] [-7.11, 7.05]
Giu [-1.76, 2.12) [-1.92, 1.92] [—2.87,4.22] | [-3.18, 5.41] [-69.2, 69.2] [—7.38, 8.57]
G [-8.98, 5.01] [-7.09, 7.09] [-11.9, 6.92] | [—9.89, 8.95] [—148, 148] [-12.6, 14.0]
Geu [-1.22, 1.30] [-1.26, 1.26] [—1.51, 1.65] | [—3.38, 5.75] [—16.3, 16.3] [—4.46, 7.29]
Ged [—4.74, 3.55] [—4.03,4.03] [-7.12, 4.47] | [-9.25, 9.33] [—41.3,41.3] [-10.7, 12.7]

Table 1.4 — 95% CL projected bounds for the four-fermion operator coefficients in the
Warsaw basis. The bounds are given in 10~ TeV 2 units.
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Figure 1.15 — Left panel: Expected bounds on the Wilson coefficients as a function of the
upper cut on the energy of the events A.y. Right panel: Relative change in the bounds
in the last two bins in Acy. The darker shadowing corresponds to the fully-differential
analysis, while the lighter shadowing corresponds to the single diff. analysis.

For completeness, we report in Table 1.4 the bounds on the four-fermion operators in
the Warsaw basis. In this basis we find that Gl(s’) is expected to be determined with
much higher precision than the other parameters. Moreover its determination is only

mildly affected by profiling, differently from the bounds on the other coefficients that
(3)
lqg
is tested with high precision in the charged DY channel, which is not affected by the

significantly degrade in the profiled fit. This behavior is clearly due to the fact that G

other effective operators. The impact of a fully-differential analysis is quite large for

)

40% tighter, while the constraints on the other operators improve by an amount of order
10 — 20%.

many Warsaw operators. In particular the bounds on GZ(S’ , Gye and Gy, become roughly

As a last point, we investigate the dependence of our results on the maximal energy
scale, Acyt, of the measurements included in the fit. This gives useful indications on
the measurements that contribute more to the final sensitivity and on the energy range
of validity of the EFT description of new physics that is theoretically required for the
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Chapter 1. Precision physics from the tail

bounds to apply. Following Refs. [1,11], we show on the left panel of Figure 1.15 how the
single-operator bounds change by retaining in the fit only the bins where my; < Acyt in
the neutral channel and pr ¢ < Acy/2 in the charged one. We see that the bounds on the
Wilson coefficients with more stringent constraints, namely ég’), GE and G, saturate
around Acy; ~ 2 TeV. In particular, removing the last bin (starting at 2600 GeV) has an
extremely mild impact. The constraints on the other coefficients, on the contrary, receive
sizable contributions from the events in the last bin. This behavior can be explained by
recalling that the bounds on the él(g), GJEC and Gg coefficients in the fully-differential
analysis are mainly driven by the linear interference terms in the cross-section prediction.
These terms grow linearly with the partonic § so that the energy region with good
sensitivity, which we find to be v ~ 1 — 2 TeV, is where this growth starts being
balanced by the decrease of the quark luminosity. For the other parameters, instead, the
bounds are driven mostly by the square of the BSM contributions, which grow like §2.

The faster growth pushes the sensitive region to higher energies.

To appreciate better this point, we show in the right panel of Figure 1.15 the relative
change in the bounds on the various parameters when the last bin is removed. For the
fully-differential fit (darker shadowing), a variation below around 10% is observed for égfj),
G and Gg. The G, G+ and G coefficients, instead, show a relatively large change in
the bounds (=~ 30%). Finally, the G coefficient shows an intermediate behavior, which
is explained by the fact that for its determination the linear interference terms and the
quadratic terms have comparable weight. It is interesting to notice that the sensitivity to
the last bin of Gg is quite lower in the fully-differential fit than in the single-differential
one (displayed with lighter shadowing in the figure). This is because in the former case
the bound is driven by the linear terms, while in the latter it is mainly driven by the
quadratic terms. This difference can be also seen in the single-parameter bounds on GJ(S,
which improve by roughly a factor 3 with the fully-differential analysis (see Figure 1.14
and Table 1.3).

Running Effects

Our cross-section predictions include EW corrections at the single-log accuracy, among
which the ones associated with the Renormalization Group evolution of the EF'T operators.
Therefore, as we already mentioned before, our results depend, in line of principle, on the
operator renormalization scale. This has been set to 2 TeV because the measurements
at that scale dominate the sensitivity as previously shown. However the running effects
are extremely small and our results do not depend on this choice in practice. This has
been verified by repeating the fit in two ways. In one case we switched off completely
the running, while in the other one we fixed the values of the Wilson coefficients at an
energy scale £ = 10 TeV. In both cases the bounds on the Wilson coefficients, both
single-operator and the profiled ones, change at most by few %. Our results can thus be
safely applied even to EFT operators defined at several tens of TeV.
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1.4. Fully differential measurements

It is important to keep in mind that only quark-lepton current-current operators are
included in our calculation. Other EFT operators do not produce growing-with-energy
effects in high-energy DY, therefore their contribution is very suppressed relative to the
quark-lepton ones and completely negligible if their size is not anomalously large. In
particular this means that operators induced by the quark-lepton ones through running
are completely negligible because running is itself a small effect. The contribution to
the running of the quark-lepton operators by the other ones is also negligible, for the
same reason. On the other hand, one cannot firmly exclude the presence of other EFT
operators with anomalously large coefficients that are not already excluded or that can
not be probed with other LHC measurements. Such operators, if found to exist after a
more systematic global exploration of the LHC EFT potential, should be included in the
predictions.

1.4.4 Experimental uncertainties

This section is devoted to uncertainties that are not included in the analysis presented
above, namely the presence of systematic uncertainties in the experimental cross-section
measurements other than the luminosity uncertainty that was already taken into account.

As explained in sec. 1.3, our fits are based on the Poisson likelihood, which takes
automatically into account the statistical component of the cross-section measurement
errors. The systematic component of the experimental error is instead incorporated by
nuisance parameters on the expected Poisson countings. Only the nuisance corresponding
to a 2% luminosity uncertainty has been included in the analysis and its effect is very
small as expected. The dominant experimental errors are indeed those that, unlike the
luminosity, distort the shape of the differential distributions. We cannot rely on any
estimate of the size of these uncertainties, nor of their correlations across different analysis
bins which on the other hand are expected to have a major impact on the sensitivity to
new physics. In order to get a feeling of their possible impact, we adopt now a crude
parametrization of these effects by introducing a fully-uncorrelated 2% error in all bins,
both for the fully-differential and for the single-differential fit.'%

Including these uncorrelated systematic errors, the combined 95% CL bound on the W
and Y parameters become

W:  [-3.6,3.7] x 1075 ([-5.3,5.8] x 107°)
with 2% uncorr. syst.. (1.50)
Y: [-84,89]x107° ([-10.9,12.0] x 107°)

The numbers in parentheses refer to the single-differential fit. Comparing with the results
in eq. (1.46), we see that the bounds from the fully-differential analysis become roughly
25% weaker. In the case of the single-differential analysis, the bounds on Y suffer from

16Notice that this choice is slightly different from the one of sec. 1.3.3.
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Chapter 1. Precision physics from the tail

95%CL single parameter profiled
[10_3 TeV_Q] fully diff.  fully diff. lin. single diff. fully diff.  fully diff. lin. single diff.
éz(j) [—0.46,0.46] [—0.46,0.46] [-0.62,0.63] | [—0.68,0.59] [—0.72,0.72] [—1.06,0.84]
GE [-0.25,0.23] [-0.24,0.24] [-0.38,0.32] | [-0.67,0.36] [—0.73,0.73] [—1.51,0.51]
Gy [-0.67,0.70] [—1.45,1.45] [-0.85,0.95] | [-1.80,1.61] [—1.96,1.96] [—3.73,2.24]
G} [-0.41,0.37] [-0.40,0.40] [-1.07,1.24] | [-0.48,0.72] [-0.97,0.97] [—1.43,2.49]
G, [-0.79,0.67] [-3.01,3.01] [-0.99,0.83] | [—1.84,2.00] [-6.21,6.21] [—2.33,3.61]
Gt [—2.18,1.50] [—4.21,4.21] [-2.31,1.70] | [-2.59,2.44] [-11.9,11.9] [-3.17,2.85]
Gt [-0.71,0.69] [-22.2,22.2] [—0.89,0.88] | [~1.03,0.91] [—31.8,31.8] [—1.47,1.46]

Table 1.5 — 95% CL projected bounds for the seven coefficients 61(2)7 G%, Gg and Gio,
including a 2% uncorrelated systematic uncertainty.

95%CL single parameter profiled

[1073 TeV™2]| fully diff. fully diff. lin. single diff. fully diff.  fully diff. lin. single diff.
Gy [—0.57,0.55] [—0.56,0.56] [—0.89,0.82] | [—0.68,0.59] [—0.72,0.72] [—1.06,0.84]
Gy [-2.21,2.97] [-2.50,2.50] [—2.90,6.60] | [—5.28,5.88] [—14.9,14.9] [—6.65,9.92]
Gye [—2.39,4.33] [-3.02,3.02] [—3.78,7.83] | [—4.40,5.67] [—174,174] [-7.70,8.19]
e [-1.98,2.53] [-2.21,2.21] [—3.49,8.10] | [—3.29,5.74] [—86.7,86.7] [—7.95,9.81]
Gia [-10.1,5.58] [—8.83,8.83] [—13.1,8.00] | [—~10.57,9.19] [—179,179] [-15.0,15.3]
Geu [~1.48,1.63] [—1.55,1.55] [—1.95,2.30] | [—3.46,6.58] [—18.7,18.7] [—4.65,8.67]
Gea [—7.83,4.39] [-5.42,5.42] [—-12.7,5.62] | [-11.0,9.81] [—46.5,46.5] [—13.3,13.5]

Table 1.6 — 95% CL projected bounds for the four-fermion operator coefficients in the
Warsaw basis, including a 2% uncorrelated systematic uncertainty.

a similar change, while the ones on W are less affected and are only 10% weaker. The
advantage of a fully-differential analysis is however still evident also in these results.

In Tables 1.5 and 1.6 we give the bounds on the lepton-quark four-fermion operators
including the uncorrelated systematic uncertainty (the corresponding correlation matrices

for the fully-differential linearized fit are reported in Appendix A.3). The impact of the
)

uncertainty is relatively large on éz(j and G, whose determination becomes roughly

25% weaker. The reduction in sensitivity on the other coefficients is instead milder, at

most of order 10%. Similar results are found for the operators in the Warsaw basis

(Table 1.6). In this basis the most affected operators are Gl(s’),

of sensitivity of order 25%, while the bounds on the other operators are quite stable.

Gey and Ggg, with a loss

One can also see that the impact of the systematic uncertainty on the fully-differential
fit and on the single-differential one is comparable.
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1.5. Sensitivity to Minimal Z’ models

1.5 Sensitivity to Minimal Z’ models

For a concrete assessment of the benefits of the fully-differential analysis, we consider
in this section a minimal BSM scenario featuring a single additional vector boson that
gauges a generic linear combination of the hypercharge U(1)y and B — L. The Lagrangian
describing the new vector boson is

1 1
Ly = _ZFi” + 5M?AQ + A, JH (1.51)
with the current
_ i o
JHE= "oy Y () + gBr(B — L)) fA*f + 9Y§HTDHa (1.52)

f

where f denote the SM fermions and H is the Higgs doublet. In the above formula
gy and gpy, are free parameters, while Y'(f) and B(f) and L(f) are the hypercharge,
the baryon and the lepton numbers of the various fermions, respectively. This model
has been studied extensively in the literature and in particular in Ref. [98] (see also
Refs. [99-107]), where a first projection of LHC direct searches sensitivity was given, and
compared with the indirect constraints from precision measurements (EWPT) performed
at LEP and other experiments.'”

When integrated out at tree-level, the massive Z’ produces all the flavor-universal
(3)
lg
computed in terms of the three free parameters gy, gpr, and M (see Eq. (A.7)). Clearly

lepton-quark operators in Table 1.1 except ;. with Wilson coefficients that are readily
the Wilson coefficients are quadratic polynomials in the ratios gy /M and gpr /M, which
are therefore the only two parameter combinations that can be probed by indirect
searches.'® Furthermore the indirect constraints are symmetric under an overall change
of sign of the couplings (gy,g9pr) — (—9y,—gpr). The 95% CL reach on the model
at the HL-LHC is displayed in Figure 1.16 on the (gy /M, gpr/M) plane (left panel)
and on the (gy,gpr) plane for a fixed mass M = 7 TeV (right panel). The bounds
are obtained from the fully and single-differential analyses described in the previous
section, but including in this case a 2% uncorrelated experimental uncertainty in the
measurements, aiming at a more conservative result.

The advantage of the fully-differential analysis over the single-differential one is mainly
in the region gpr >~ —gy. This region is particularly difficult to probe as it entails the

"For the model to be free of gauge anomalies, 3 right handed neutrinos with B — L coupling must
be present. We take these states to be light, so that Z' — vrvg is allowed. Heavy vgr’s would only
modify the Z’ width I" and the direct searches, strengthening the reach on the coupling by a factor

Diight /Theavy. This factor is in the interval [1,1.2] in the entire range of couplings.

18This statement is true only at tree level. In fact, already at our level of accuracy (NLL), the RG
flow induces an additional logarithmic dependence on M in our observables. However these effects are
extremely small as can be appreciated in Figure 1.17, where the indirect searches contours are well
approximated by straight lines.
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Figure 1.16 — Left panel: 95% CL exclusion reach in the (gy /M, gpr/M) plane from
EWPT (gray shaded region) [98] and projected exclusion at the HL-LHC (blue and orange
shaded regions). Right panel: Comparison of direct (green shaded region) and indirect
(blue and orange shaded regions) exclusions at the HL-LHC for a heavy vector of mass
M = 7 TeV. In both panels the blue shaded region corresponds to the fully-differential
fit, while the orange shaded region is obtained with the single-differential one. In the left
panel, the dashed lines correspond to the exclusion reach obtained including only the
linear terms in the fit, while the solid ones correspond to the full fit taking into account
also the quadratic terms.

cancellation of the Z’ coupling to the right-handed electrons as well as the suppression
of the couplings to the left handed quark doublets, the right-handed up-type quarks and
the left-handed lepton doublets. Therefore in this region Gye, Ge, and Gq vanish and
Gl(;), G, and Gq are suppressed (and GEZ’)
suppression of the couplings to quarks also determines a reduction of the direct production

is always zero). We notice in passing that the

cross-section at the LHC, which makes direct searches less effective. The fully-differential
analysis not only improves the sensitivity along the gg;, = —gy direction, it also mitigates
the impact of the quadratic terms in the cross-section prediction. This is shown by the
dashed lines in the left panel of Figure 1.16, reporting the results of the linearized fits.
The single-differential linearized analysis possesses two very pronounced flat directions
that correspond to directions in the (gy, gpr) plane where the GJEC coefficient cancels.
The fully-differential analysis linearized contour is instead quite close to the full fit thanks
to the improved sensitivity to Gg at the linear level.

In the left panel of Figure 1.16 we also compare our result with existing EWPT constraints,
extracted from Ref. [98]. With the fully-differential analysis, the progress of the HL-LHC
is of a factor around 3 in g/M in most of the directions in the (gy /M, gpr/M) plane,
which corresponds to an improvement of one order of magnitude in the sensitivity to
the Wilson coefficients that scale like (g/M)2. Furthermore, notice that the EWPT
bounds in the figure are based on actual experimental measurements whose central value,
while compatible with the SM, disfavors the Z’ model. This is easily verified in the
direction gpr, = 0, where integrating out the Z’' produces only the O} operator with
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Figure 1.17 — HL-LHC 95% CL (1 d.o.f) exclusion reach in the mass/coupling plane for
three different Z’ benchmark models, namely ggr, = 0, ggr, = —gy and ggr, = gy. The
blue shaded region can be excluded through the fully-differential di-lepton DY analysis,
while the orange one can be probed with the invariant-mass fit. The green shaded region
corresponds to the exclusion from direct searches.

negative coefficient, that corresponds to a positive Y parameter. The central value of Y
measured at LEP is instead negative (see e.g. Ref. [11]) making the EWPT exclusion on
the model stronger. Our HL-LHC projections assume instead a central value at the SM
point. Depending on the sign of central value that will be eventually observed the actual
sensitivity to the model could be stronger or weaker than the projection.

We turn now to the comparison of our findings with the projected HL-LHC sensitivity
for direct searches of the Z’ particle, which are most effectively performed in the dilepton
final state. The exclusion on the resonant production cross-section times branching ratio
is obtained from the projections in Ref. [108], slightly improved to take into account the
more recent and refined results in Ref. [109]. The Z’ production cross-section is obtained
by two MADGRAPH [66] simulations (at each Z’' mass) with the Z’ coupling only to up-
or to down-type quarks, rescaled based on the analytical calculation of these couplings as
a function of gy and gpr. The branching ratio is also computed analytically. The results
are reported in Figure 1.17, in the mass/coupling plane for three benchmark models
(9v = g 9B = 0), (9v = 9:/V2, gL = —g+/v2) and (9v = 9./V2, gL = 9+/V2).
Notice that the plot extends up to the maximal g, coupling for which, depending on the
model, the width over mass ratio I'/M of the Z’ is reasonably small (< 0.3) enabling a
perturbative treatment. The indirect reach from our analyses, and from EWPT), is also
reported in the plots. We find a substantial improvement of the mass reach for relatively
large g, up to around 30 TeV in the first and in the second benchmark model. Finally,
in the right panel of Figure 1.16 we compare direct and indirect searches in the (gy, gnr)
plane at a fixed mass M = 7 TeV, slightly below the threshold of around 8 TeV after
which direct searches become ineffective. The direction gy, = —gy is difficult to probe
also directly, as anticipated. The sensitivity improvement of the fully-differential analysis
along this direction is significant.
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Figure 1.18 — Left panel: 50 discovery reach for HL-LHC and 95% CL EWPT exclusions.
Right panel: 95% CL likelihood contours assuming the presence of a Z’ with gpr,/M =
0.12 TeV~! in the measurements.

Discovery and characterization

High-energy measurements have the potential to discover the Z’. This is shown on the
left panel of Figure 1.18 by comparing the HL-LHC 50 discovery reach with the current
exclusion bound from EWPT in the (gy /M, gpr/M) plane. For M of several TeV or
more, direct searches are ineffective and high-energy measurements will provide the only
evidence for the existence of the Z’. While “indirect”, i.e. not based on the detection
of a resonant peak, this evidence would be a conclusive and convincing proof of the
existence of new physics thanks to the peculiar behavior (growing with energy) of the
observed signal and to the possibility of getting confirmations on its nature by the study
of angular distributions. The fully-differential analysis would clearly play a major role in
this context, on top of course of enabling the discovery itself in a larger region of the
parameter space.

We illustrate the benefits of the fully-differential analysis for the characterization of
a putative signal by picking up a point (¢pr,/M = 0.12 TeV~! and gy = 0) which is
discoverable at the HL-LHC, but close enough to the boundary of the discovery region
to make characterization more difficult. We assume the presence of the corresponding
signal in the data and we obtain the 95% CL likelihood contours on the right panel of
Figure 1.18. A simple question related to characterization is whether we can establish
that the underlying Z’ couples to the B — L current, rather than for instance to the
hypercharge current. The figure shows that this is possible only with the fully-differential
analysis.
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1.6 Conclusion and outlook

We have shown that the effect of the most relevant dimension-6 operators (i.e., those
that grow quadratically with the energy at the interference level) can be incorporated in
the high-energy Drell-Yan predictions by analytic reweighting, up to the NLO accuracy
in QCD and including double and single log-enhanced EW corrections at one loop.
Our method allows to compute the dependence on the new physics parameters of the
cross-section in any phase-space bin without performing a scan on the parameters space.
It can also generate events that include QCD and QED showering effects consistently,
based on the POWHEG method.

Two operators in this set, associated with the W and Y parameters, are particularly
interesting because they are generated in universal new physics scenarios including
Composite Higgs. We focused in sec. 1.3 on these operators for an illustration of the
methodology, and performed LHC (and HL-LHC) sensitivity projections. Our results
confirm and strengthen the findings of ref. [11], where less accurate predictions and
systematic uncertainties estimates were employed. Our finding for W is also in line with
the very recent charged DY measurement in CMS [42]. The result in [42] is, however,
slightly stronger than our and this can be traced back to the different PDF set they
use. Moreover, as soon as the ATLAS measurement for the charged DY and the neutral
measurements are published we plan to reconsider our analysis including the updated
data.

The accuracy of our predictions for the new physics contribution to the cross-sections is
found to be totally adequate, and the associated uncertainties are negligible. The relevant
uncertainties are those on the SM term, and PDF are the dominant source. Theoretical
uncertainties are under control provided NNLO QCD predictions are employed for the
SM term. One-loop EW radiative corrections should also be included, possibly exactly
rather than at the single-log order using our strategy. The impact of two-loops EW
logarithms on the reach has been found to be marginal, also at the HL-LHC. Nevertheless,
these terms could be included straightforwardly by analytic reweighting.

In sec: 1.4 We studied the potential of fully-differential DY measurements to probe
the seven flavor-universal current-current operators listed in Table 1.1. We found (see
Table 1.3) that five directions in this parameter space can be probed effectively at the
linear interference level with the fully-differential analysis, while with single-differential
measurements this is possible for only two directions. At the HL-LHC, the strongest
single-parameter sensitivity improvement, by a factor of 3, is for the parameter G$
because of the reasons explained in Section 1.4.1. Improvements in the ballpark of
30% or 10% are observed for the other single-parameter bounds. The improvement
is significantly more pronounced for the profiled bounds, owing to the reduction of
correlations in the fully-differential fit. The augmented sensitivity at the interference
level makes the fully-differential results generically more stable when the quadratic new
physics terms are excluded from the predictions. This is beneficial for considerations
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related to the validity of the EFT, as it lowers the scale of the measurements that drive
the sensitivity and reduces the impact of removing the highest-energy cross-section bins
as shown in Figure 1.15.

The observed sensitivity improvement is due to two distinct factors. The one with the
strongest impact is the extended linear-level sensitivity mentioned above and explained
in Section 1.4.1 in details. The second, which is also quite a strong effect, is the reduction
of the impact of PDF uncertainties due to their correlations across different analysis bins.
These correlations are typically different from the ones of the EFT differential cross-
section predictions, making harder for the PDF nuisance parameters to mimic the signal
and to reduce the sensitivity. Of course the effect is quantitatively so important because
the PDF are among the dominant sources of uncertainties in our fit. Correspondingly,
the benefits of the fully-differential analysis are (mildly) reduced when other sources of
systematic uncertainties are assumed to be present, lowering the relative impact of PDF
uncertainties in the total error budget. We have verified this fact in Section 1.4.4 by
including a 2% systematic uncertainty uncorrelated across all bins, on top of the fully
correlated luminosity uncertainty that is present (but has a totally negligible impact) in
the results of Sections 1.4.2 and 1.4.3.

The dependence (at the 10% or 20% level) of our results on the assumed patterns
of experimental systematic uncertainties outlines the need of detailed experimental
projections for DY measurements. Experimental uncertainties that are fully correlated
in all bins as in Sections 1.4.2 and 1.4.3 are definitely unrealistic. However assuming
the uncertainties to be fully uncorrelated, as in Section 1.4.4, is equally unrealistic. We
do expect correlations, especially in the fully-differential measurements, whose impact
could be beneficially for the sensitivity analogously to what we have found happening for
the PDF. The final HL-LHC sensitivity could thus be closer to the one in Sections 1.4.2
and 1.4.3 than to the one in Section 1.4.4. Furthermore, our findings are based on
the statistically sub-optimal strategy of comparing cross-section measurements with
EFT predictions, rather than comparing directly the EFT with the observed data.
More sophisticated and unbinned strategies could be considered to further improve the
sensitivity.

A significant improvement in the sensitivity is also found in the LHC run 3 projections
(see Appendix A.4). The gain is however much milder than for the HL-LHC, mostly
because the number of expected events is too low to efficiently reconstruct the full
angular distributions at high energy (i.e. to populate enough all the bins required for a
fully-differential analysis).

The sensitivity improvement of fully-differential measurements has a direct impact on

concrete putative new physics scenarios, as we discussed in Section 1.5 for a simple
3)
lq
is absent, the single-differential DY analysis is mostly sensitive to a single EFT parameters

minimal Z’ model. The point is that in models where the charged current O, operator
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combination: GE. In the new physics model it will be generically possible to suppress
GE without particular fine-tuning, making the single-differential analysis loose sensitivity
in a large region of the parameter space as in Figure 1.16. The fully-differential analysis
will boost the sensitivity in that region.

The results of Section 1.5 also outline the effectiveness of high-pr probes on a well-
established new physics benchmark that has been investigated since the beginning of the
LHC program. High-pr probes by high energy DY measurements extend (see Figure 1.17)
the projected HL-LHC exclusions well beyond the reach of direct searches in a large region
of the parameter space, with sensitivity to masses from 10 to 30 TeV. Discovery is also
possible up to around 20 TeV. In the event of a discovery, fully-differential measurements
will play a crucial role in the characterization of the observed signal as illustrated in
Figure 1.18.
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4 Precision physics from Very High
Energy Leptons collisions

The perspective of a future muon collider with high energy and high luminosity [110-113],
has triggered a growing interest in the physics potential of lepton colliders with a center
of mass energy of 10 TeV or more [112-153]. Such a Very High Energy Lepton Collider
(VHEL) could greatly advance the post-LHC knowledge of fundamental physics [110] by
directly searching for new heavy particles (see e.g. [114-117]), and by precise measurements
of EW scale processes taking advantages from the high luminosity of virtual vector bosons
pairs (see e.g. [117-119]).

Moreover, a third strategy of investigation can be carried at VHEL [3,110,118], exploiting
hard processes at energies comparable with the collider energy E.pn ~ 10TeV. These
searches aim at indirect effects of heavy new particles enhanced by FE.p,, which represent
extremely sensitive probes of new physics. With the target integrated luminosity of
10 ab—!, 2 — 2 scattering processes at E.,, = 10 TeV can be generically measured within
percent or few-percent precision, opening the possibility to test new physics up to a scale
A ~ 100 TeV.

In this chapter we focus on this last strategy, studying the potential of lepton collisions
with about 10 TeV center of mass energy to probe Electroweak, Higgs and Top short-
distance physics. Such precise measurements, so far from the EW scale, are particularly
challenging due to the phenomenon of Electroweak radiation. The reason is two-fold:
first of all sufficiently accurate theoretical predictions require the resummed inclusion
of radiation effects. Secondly, short-distance physics does influence the emission of
Electroweak radiation, implying that the radiation pattern can become an important
signal of new short-distance physical laws.

In the following, we illustrate these aspects by studying di-fermion and di-boson produc-
tion at VHEL as probes of Effective Field Theory contact interactions. Furthermore, we
will show that the complementary measurements of processes with or without the inclusion
of soft massive Electroweak bosons enhances the sensitivity to the new interactions.
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2.1 Learning from radiation at VHEL

One of the strengths of a VHEL is represented by the opportunity of precise indirect
searches of energy growing new physics effects. Through this kind of searches we can
fully exploit the large amount of energy provided by the collider and thanks to a clean
lepton environment we can target a 1% precision in many 2-to-2 processes. In this way,
with E., ~ 10 TeV we would have access, for the first time, to the unexplored A ~ 100
TeV energy scale.

The logic of these searches is strictly analogous the so-called “high-energy” probes at
LHC, described in Chapter 1. Low energy interactions due to heavy new physics can be
parametrized according to the SM-EFT paradigm and can give rise to growing-with-energy
effects. Certain operators can produce deviations from the SM scaling like E2,/A?, in 2-
to-2 processes with enough statistics to reach the percent precision we can aim at touching
the aforementioned 100 TeV new physics scale. The VHEL sensitivity to these probes
vastly and generically exceeds the potential of any other future project that is currently
under consideration. In particular it exceeds the sensitivity of precision measurements of
EW-scale processes at future Higgs factories, where new physics at A ~ 100 TeV produces
effects at the unobservable level of one part per million. It also exceeds the potential
sensitivity of a 100 TeV proton collider, because the effective luminosity for partonic
collisions above 10 TeV is significantly lower than that of the VHEL. The possibility of
probing new physics at the 100 TeV scale, and in particular of probing new physics that
is either flavor-universal or endowed with a flavor protection mechanism, is thus a unique
feature of the VHEL that deserves an extensive investigation.’

The above mentioned high-energy strategy exploits simple 2 — 2 processes with extremely
low or negligible background, whose target accuracy is statistically limited to 1%. At a
superficial look, it might thus seem that its implementation will not pose any specific
challenge, neither concerning the feasibility of the measurements, nor as concerns the
theoretical predictions that are needed for their interpretation. However the situation is
slightly more complex, both experimentally and theoretically, owing to the phenomenon
of EW radiation [154-174], which becomes prominent at 10 TeV or above. This happens
because of the existence of a large separation between the hard scale E of the process
and the vector boson mass scale my, which acts as an IR cutoff. As the hard scale is
increased, large logarithms log E? /m2, (squared) enhance both virtual corrections and
real emissions, up to the point where fixed-order perturbation theory becomes insufficient
and resummation is needed.

EW radiation obviously displays some similarities with QCD radiation, but also re-
markable differences. First, EW scattering processes violate the KLN theorem assump-
tions [175,176] because the initial state particles are not EW singlets. Therefore no

'Hard processes are also useful to investigate flavor non-universal effects, as we will see in Section 2.4.3
for Top Compositeness. See also Ref. [148] for a study of new physics potentially responsible for the g — 2
muon anomaly.
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i

cancellation takes place between virtual and real contributions, not even in “fully-inclusive’
cross-sections [154,155]. Moreover the observables that are fully inclusive in the sense of
Ref. [154] are insufficient to characterize new physics because they require summing over
the “color” of the hard final-state particles. In the EW context, color sum means, for
instance, including transversely-polarized W and Z bosons and photons (or, longitudinal
W, Z and Higgs) in the same observable, while we need to keep them separate for
a comprehensive exploration of new physics. Unlike QCD (and QED), EW radiation
effects cannot be eliminated or systematically mitigated with a judicious choice of the
observables. They unavoidably play an crucial role in the predictions and it is necessary
to assess their importance at VHEL as we will explain in detail later on. In particular
in sec. 2.3 and sec 2.4 we will assess the impact of EW radiation respectively on the
theoretical prediction and on the sensitivity to new physics.

The second peculiarity of EW radiation is that the IR cutoff scale is physical, and the
theory is weakly-coupled at the IR scale. It should thus be possible to characterize the
radiation fully by first-principle suitably resummed perturbative calculations. Unlike
QCD and QED, one can consider observables with an arbitrary degree of radiation
exclusiveness, among which “exclusive” scattering cross-sections with a fixed number (2,
in 2 — 2 processes) of hard partons in the final state and no extra massive vector bosons.>
Fully-inclusive cross-sections can be also considered, however they are not sufficiently

informative on new physics as previously mentioned.

Several approaches have been considered in the literature for the resummation of the effects
of EW radiation. Double logarithm (DL) contributions, of the form (alog? E?/m2,)"
with arbitrary n, have been resummed in fully-inclusive and exclusive cross-sections,
using respectively Asymptotic Dynamics [154,155] and the so-called InfraRed Evolution
Equation (IREE) [156,157]. In Soft-Collinear Effective Theory (SCET) the expansion
is already organized in exponential form. In that case the resummation of leading
logarithms (LL)? as well as its extension to next-to-leading (NLL) logarithm [163] has
been studied. The study of EW parton distribution or fragmentation functions [166—170]
is obviously connected, but not directly relevant for very high energy processes, where
the main role is played by the emission of EW radiation that is both collinear and soft.
Notice however that in some framework [166-170] soft effects are partially or completely
included in parton distributions and fragmentation functions.

In our analysis, in sec.s 2.3,2.4, we employ “semi-inclusive” final states, consisting of 2
hard partons with fixed EW color and flavor, carrying a large fraction of the total available
energy F., and accompanied by an arbitrary number of massive vectors, photons and
other light particles.?

In order to cope with QED and QCD radiation, the observable must still be inclusive over the
emission of photons and other light particles. The cross-section we define as “exclusive” coincides with
the “semi-inclusive” cross-section of Ref. [156]. Correspondingly, the “semi-inclusive” cross-section we
will readily introduce was not considered in Ref. [156]. See Section 2.2.2 for details.

3These include but do not coincide with the pure DL, as explained, for instance, in Ref. [163].

4A similar observable is discussed in [177] to show the impact of weak gauge boson emission at LHC.
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We restrict the accuracy of our predictions for semi-inclusive observables at the double
logarithm (DL) accuracy. The latter are obtained by extending the IR Evolution Equation
(IREE) treatment of EW radiation developed in Ref. [156], the explicit derivation is
presented in sec. 2.2. Similarly, we employ the IREE to compute the more standard
exclusive cross-sections. Single-logarithmic terms turn out to be relevant, and they
are included at fixed one-loop order in the exclusive cross-sections using the results of
Ref. [178].

Finally we must comment on the remarkable interplay between EW radiation and short-
distance physics that has no analog in QED and QCD [118]. Based on a simplistic
fixed order intuition, this interplay can be exemplified by noticing that the emission
of a soft W from one initial lepton changes the total charge of the initial state of the
hard 2 — 2 scattering process. By allowing for the charged W emission one thus obtains
a scattering cross-section that is sensitive to charged current new physics interactions,
while the exclusive process where no radiation is allowed is only sensitive to neutral
currents.” The combined measurement of the two types of cross-section thus enables
a more effective and complete exploration of new physics. In reality the situation is
slightly more complex, because the neutral and the charged current hard amplitudes both
contribute to the resummed expression of the neutral exclusive and of the charged and
neutral semi-inclusive cross-sections. However, since they appear in different combinations
in the different cross-sections, the conclusion is unchanged.

At a more quantitative level, we will see that the VHEL energy sits in an interestingly
“intermediate” regime for EW radiation. The energy is on one hand large enough for
the radiation effects to be important and require resummation. Accurate resummation
techniques, more accurate than the one considered in [3], will thus be needed to fully
exploit the potential of the machine. On the other hand, the energy is not yet in the
asymptotic regime where the Sudakov exponentials entail a strong suppression of the
non-emission probability. Therefore in this regime the exclusive cross-sections are still
large, and comparable with the semi-inclusive (and fully-inclusive) ones. Observables
with a different degree of radiation inclusiveness can thus be measured with comparable
statistical accuracy and combined, potentially boosting, as previously explained, the
indirect sensitivity to heavy new physics.

The rest of the chapter is organized as follows. We start, in Section 2.2, by reviewing the
general idea beyond the method of the asymptotic dynamics [179] to address the problem
of IR radiation. We report explicit results only for the case of abelian gauge theories and
we comment on the leading effects in the more general non-abelian setup. The main goal
of that section is to develop some intuition before the discussion on the more pragmatic

The final state they consider is somehow intermediate between the “fully-inclusive” of [154] and the
“semi-inclusive” we study in [3]

5More precisely, the charged and neutral current process depend on different linear combinations of
the Wilson coefficients of the operators parametrizing new physics.
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approach to the DL resummation based on the IREE. We discuss the latter in sec. 2.2.2.
In section 2.3 we present the calculation of the exclusive and semi-inclusive di-fermion and
di-boson production processes, to be employed in Section 2.4 to estimate the sensitivity to
dimension-6 EFT current-current contact interactions of muon colliders with a center of
mass energy ranging from 3 to 30 TeV. The estimates include experimental reconstruction
efficiencies at the level expected for the CLIC detector at 3 TeV, which we extract
from Ref. [180]. Our results do not depend on the nature of the colliding leptons. In
particular they do not include the effect of Beamstrahlung, which is expectedly small at
muon colliders but large at eTe™ colliders of the same energy. Up to this caveat, our
results thus also apply to hypothetical linear ete™ collider based on plasma wake field
acceleration [181].% In Section 2.4.3 we then study the impact of the EFT sensitivity
projections on concrete scenarios for Beyond-the-SM (BSM) physics such as Higgs and
Top Compositeness and a minimal Z’ extension of the EW sector. A conclusions to the
chapter and an outlook on future work are reported in Section 2.5.

2.2 All-orders IR Double Logs

Infrared effects play and ubiquitous and unavoidable role in our description of nature.
How to deal with them in QFT has been widely investigated in the past and it represents
nowadays the main focus of much ongoing research, from their theoretical understanding
to their phenomenological applications.

An intuition can be built by simple arguments based on scale separation. At energy E
the exchange of soft quanta, of characteristic scale § < E, becomes a probable and messy
phenomenon. In general, the larger the scale separation the more important are the
effects, up to a point where they cannot be ignored. Moreover, these effects are governed
by the IR dynamics and therefore we expect them to be in some sense universal, i.e.
independent of the process/theory under consideration.

The approach to the IR problem, that better clarifies this space-time picture, is the
so-called method of the Asymptotic Dynamics [179]. This method “solved” the IR
catastrophe in QED and was further generalized to systematically improve perturbation
theory in non-abelian gauge theories [182-184] and gravity [185]. In sec. 2.2.1 we present
the main idea and the calculation of the leading DL effects in QED. We furthermore give
a qualitative description of the generalization to the non-abelian case, pointing out the
peculiarities of high-energy EW processes.

While conceptually clean, the method of the asymptotic dynamics becomes extremely
complicated at the practical level and, moreover, it is not clear whether or not it can
address collinear effects. Therefore, in concrete applications, it leaves the stage to more
pragmatic diagrammatic approaches [186-188] (see also [189] for a recent review) and to

5Notice that Beamstrahlung potentially entails a strong depletion of the high-energy luminosity peak,
which is the part of the luminosity spectrum that is relevant for the high-energy probes.
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more modern techniques based on Effective Field Theory [190-197].

Targeting our concrete goal of sensible theoretical predictions for high energy EW
processes at VHEL, in [3] we based our prediction on the methodology of the IREE [156].
In sec. 2.2.2, we review the basic results for exclusive cross-sections and we show our
generalization to address semi-inclusive processes.

2.2.1 The method of the asymptotic dynamics

i

The main idea of the method of the asymptotic dynamics [179] is to separate the “strong’
IR dynamics, characterized by large IR logarithms, from the “weak” hard one, that can
be safely computed order by order in perturbation theory. In concrete, we split the
interaction Hamiltonian in two part

Hy(t) = Hy(t) + H}(t), (2.1)

where the soft and hard Hamiltonians, H7(t) and Hj(t), describe interactions character-
ized respectively by exchanges of modes of energies § < w < A and A < w. The parameter
0 is an IR cut-off (we comment on it in a second), while A is an extra scale we include
to separate soft and hard modes. More precisely, given the interaction Hamiltonian

o0 . .
Hi(t) = /5 dv (hy (v)e™ + h_(v)e™) = Hj(t) + H} (1), (2.2)
we define the soft and hard Hamiltonians as

A . +o0 .
H(t) = /5 'S hpe i, HI () = /A A S hge i, (2.3)
o=%

o=+

where all the previous operators are meant in the interaction picture. The idea, now, is
to convert our problem into a two potential problem.” In parallel to the Hamiltonian of
eq. (2.1) we decompose the Hilbert space as tensor product of the soft and hard Hilbert
spaces H = Hj, ® Hs and we write our S-matrix as

S =0 5,0, (2.4)

where €7 r are the soft Mgller operators, addressing the soft dynamics, and S}, is the
hard S-matrix responsible for the hard interactions. The operators Q; r are formally
defined as

0
O = Texp (—z‘ dtH;(t)) , (2.5)
Foo

"This is analogous to the distorted wave Born approximation used to describe 8 decays in Quantum
Mechanics [198].
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with T the time ordering. Notice that the term S in eq. (2.4) is not just build out of
the Hard interactions but also involves the soft ones. However it can be shown to be free
of IR divergences (see for instance [199]) when acting on H,.8

The arguments so far are just based on scale separation and apply to QED [179] and to
some extent to non abelian gauge theories [182,183] and gravity [185]. Notice that in
all our discussion we are considering weakly interacting particles, therefore in the case
of QCD the IR cut-off § has to be larger than the scale where QCD becomes strongly
coupled. Moreover, we stress that while in QED and QCD this cut-off is fictitious and
any sensible IR-free observable will not depend on it, for EW interactions A is completely
physical and it is provided by the masses of the gauge bosons.

Even if eq. (2.5) is general, only in QED one can find an explicit expression for the
Mgller operators, while for QCD (and gravity as well) this is not possible. In practice,
a solution [184] is to work order by order in a sort of improved perturbation theory
(Leading Log, Next-to-Leading-Log, etc...) until reaching the needed accuracy. On a
practical level this become exponentially complicated and since this approach is limited
to soft interactions but not collinear, other techniques seems more promising. In the
following we will focus only on the case of QED commenting, when relevant, to the case
of non-abelian gauge theories. Furthermore, in order to make the comparison to the EW
case more clear, we assume the cut-off A to be a physical mass term for our photon.

Abelian gauge theory

The main simplification in QED arises by the basic form of Hy(t), that can be easily
approximated in case of low energy transfer v. The interaction Hamiltonian is just

Hi(t) = e/d?’xzﬁAw(x), (2.6)

where the field can be expanded via the usual mode decomposition for ¢ (z), ¢ (x) and
A(z)

3 . .
0@ = 3 [ Gy (o000 4l 9e) o o
. 2.7
A (z) = ;lwq (A + Al @) o A - 3 chonla).

In the previous equations u,, v, and ¥ are respectively the massive spin 1/2 and 1 wave
functions of helicity o (for our discussion on soft effects the basis for the wave functions
is completely irrelevant) and c¢,, d, and a, are the standard annhilation operators. The
soft Hamiltonian H7(t) can be found expanding h+(v), defined in eq.s (2.2,2.6), for small
v. Notice that the conditions for v to be small, in QED, are basically two. First of all

8 A short discussion can be found on [200].
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we need one incoming particle and an outgoing pair or vicevarsa. If q and k are the
momenta of the pair we have

wkwg —k-q

V= wk +Wq — Wktq (2.8)

Wk + Wq
which is small either in the collinear region q || k or if one of the two momenta is soft, for
instance wq < wg. Moreover, notice that, in the previous approximation we neglected
the masses of the particles, assumed to be small compared to the energy of the parton.
A large photon mass would cut-off both the previous regimes and a large mass for the
fermion, instead, would just avoid collinear enhancements.

Focusing only in the soft region, we can substitute eq. (2.7) into eq. (2.6) and inverting
eq. (2.2) for hy(v) it is straightforward to find

3 3
hy (V) ~pe € / QWjé’w)g QWj(Qqﬂ):,,mA“(Q)p(p)W“qu —v),
By g A (2.9)
h-(v) =< e/ 2wp (2m)3 2wq(27r)3puA Ha)plp)o(te, —v).
where
P = fj p(p) = 3 (ch(P)eo (D) — di (P)do(P).  (210)

It is worth to comment on the physics interpretation of the interaction described by
eq. (2.9). The action of hy (t) is to excite soft photon quanta (in Hs) out of an energetically
moving fermion. Moreover hy(t) act trivially on the hard Hilbert space Hp,, being the
soft photon not enough energetic to affect the motion of the emitting particle. Eq. (2.10)
is the so-called Eikonal approximation of the interaction Hamiltonian. Moreover notice
that the configuration where the photon is hard and one fermion is soft is suppressed.

We now need to find an explicit form for the soft Mgller operators Q4 in eq. (2.5). A
simple strategy is to solve the soft time evolution, defined by

0 s

zaus(t, —00) = Hj(t)Us(t,—o0), (2.11)
and extract the Mgller operators as Q1 = Us(0, Foo). This is the point of our discussion
the differences of abelian and non-abelian theories become crucial. In general, eq. (2.11)
admits a solution in terms of Hj(t) and its commutators. In QED H7(t) is linear function
of the operators A*(q), acting on the soft Hilbert space H,. Therefore Us(t) can be built
out of Hy(t) and of [Hs(t), Hs(t')] only. On the contrary, in the non-abelian case, the
soft Hamiltonian also include self-interactions among soft gluons generating an infinite
algebra of commutator for Hg(t). The consequence is that eq. (2.11) cannot be solved
analytically and has to be approximated.
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A straightforward way to solve eq. (2.11), that is also generalizable to the non-abelian
case, is through the so-called energy transfer equation [184]. The idea is just to write
Us(t, £00) as

o (t, £00) Zu (t, £00) (2.12)

with

e Z(UnVn+ +O’1V1)th ( ) e ho’l (Vl)

(Onln + -+ o1y Ti€) - (o1v1 £ i)

UM (t, Foo) = / dvy - dvy, (2.13)

i

The leading behavior of the previous integral comes from the region where the integration
variables v; are strongly ordered § < v ... < v,. In this region we have’

1 n
(onvn + -+ o1y Lie) - (o111 £ ie) H unzlzze

z:l

(2.14)

and the Mgller operators simply become

A
Q4 :P,,exp(Z/
o=% é

where v is the energy ordering operator. Notice that the previous equation is only valid

h @)) , (2.15)

. g
ov =+ i€

to obtain the leading behavior of the soft effects and it is not exact. As mentioned before
the full expression for 1 can be found in QED, in terms of H(t) and [Hs(t), Hs(t')].
If we forget about the term proportional to [Hs(t), Hs(t')], responsible for the so-called
Coulomb phase [184], then we are free to commute the h,(v) in eq. (2.13) and then we
can get eq. (2.15) even integrating outside the strong ordering region. Focusing on the
leading contribution we get

o Nexp( /dtHf ) (2.16)

We insisted in this quite long derivation in order to show the nature of this approximation.
Subleading corrections can be found integrating in the regions where two v; are of the
same order and so on and so forth.

9To derive this expression a useful identity is

1 1
Z (A1) (AL +Ag) - (A1 + Ao+ ...+ Ax)  Ar1...Ax’

perm

where the sum is extended to all the permutation of the labels 1,2,..., N.
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We finally notice that eq. (2.16) can be rewritten as

d*q kTLu(q)

3k
0. = P, o [ ok , 2.1
+ o €XD ze/%k(%)5 / qu(Zw)dp() W, (2.17)
0<wg<A

where IT* = —i(A, — AL) and again P, is the ordering operator for the energy of photon.

We can now comment on the various properties of the Mgller operators. First of all they
are unitary on Hs and they act diagonally on Hj, i.e. schematically

B{0] Qux [97)), o Oy, V), [0, € Ha (2.18)

Notice that the previous property is valid only in QED, since in non abelian theories
Q. act non trivially on the color indices of the hard states. Secondly, the action of Q4
factorize leg by leg in multiparticle states, more precisely

W15 pnl Qe lpis e pa), = U L UE (2.19)
for each n-particle state |p1;...;pn), and where
U =N ,(p|Qxp)), (2.20)

with N a normalization constant. Morever, we stress that the unitary of Q., together
with eq. (2.4) and the fact that S, is IR finite trivially implies the Bloch-Nordsieck
theorem.

We can now use the results found so far to compute, at DL, the two simple observables
that we will need for our discussion on the radiative corrections at VHEL.

In particular, we consider a 2-by-2 process p1 (k1) p2(k2) — ps(k3) pa(k4) among massless
(k? = 0) charged particles. We are interested the regime where all the kinematic invariant
build out of two different k; are large |2k; - kj| ~ E? > §2, where we remind that in this
discussion ¢ is the mass of our photon.

We start with the exclusive process, where no extra particles are allowed on top of the
hard state. According to eq. (2.4) the S-matrix element reads

(01 ® ,ks; kal)S(Jk1s k2)y, @ 10),) = Sh(k1 ks — ks ka) O (UL (U)TUL UL 10),
(2.21)

where with |0), we denote the vacuum on the soft Hilber space. The previous equation
show that the contributions from the soft dynamics factorizes with respect to the hard
ones in Sy (k1 k2 — ks k4) that, at our level of approximation is simply the TL process
we compute in standard perturbation theory. The soft factor can be computed according
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to the previous results, namely we have

3
01U U LU 100, = Jolexp | [ mgéﬁ)ﬂ%q)w(q)—@(q) 0),
d<wq<A
(2.22)
where
EH
JHa) =) il o (2.23)

with n; = +(—) for ingoing (outgoing) particles. Moreover in the previous equation we
set A = E. Through the usual commutation relation among A(q) and Af(¢) and noticing
that J#(q)gq, = 0 just by charge conservation (}_; e;n; = 0), we get

_ B 1 d3q
O B e |5 [
0<wq<E

el E?
= exp <— 32Z7T2Z log? 52

where we are taking A = E. The algebra of the last step is not completely trivial and

(2.24)

needs some explanation. However, since we derive the same result in the non-abelian
case in sec. 2.2.2 we skip the details.

Eq. (2.24) show that the exclusive process is suppressed by the well known negative DL
Sudakov factor. Moreover in the limit of zero photon mass § or infinite energy FE, this
factor kills the process, meaning that there is zero probability of emitting no photons.

The second process we consider is the fully-inclusive one, where on top of the hard
states we include in our measurement any possible radiation. In practice we consider
the cross-section differential on the hard kinematic and integrated over soft final-state
radiation

dogi oc D (0l @ plksikal) S (Jkiska)y, @ 10),)* (2.25)
YeEHs

where with >y, we indicate that we are integrating over the radiation in Hs. Using
again eq. (2.4) we simply have

dogi oc |Sp(k1 kg — kakq))* (2.26)

where we just exploited the unitarity of the soft Mgller operators 24. As expected by the
Bloch-Nordsieck the IR enhancements (in general divergences) cancels after integrating
over final state radiation and our inclusive cross-section is just the tree-level one.
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Non-abelian gauge theory

In non-abelian gauge theories, as we already stressed before, eq. (2.5) cannot be solved
analytically and only an approximate expression for {24+ can be found. The main reason
is due to the self-interactions among gluons that appear in the soft Hamiltonian. While
in the abelian case H.(t) is linear on A,(j), this is not the case in a non-abelian framework,
since soft-gluons can interact among themselves. A way out to this issue consists in
solving eq.s (2.12,2.13) perturbatively.

This procedure was also used to compute observables at DL for high-energy EW inter-
actions and to show the non cancellation of the Sudakov DL suppressions in inclusive
observables in [154,155], as known as Bloch-Nordsieck theorem violation.

Starting from eq. (2.4) we now sketch a qualitative discussion.

Independently from the explicit form of H!(t) eq. (2.5) can be formally solved according
to eq. (2.11) and eq.s (2.12,2.13). Moreover the leading behavior of the radiation effects
in non-abelian gauge theories is completely analogous to the QED case. Eq. (2.13) can
be approximated keeping only the strong ordering region in the integration variables are
we are back again to eq. (2.15). The main difference is that now the Mgller operators
act non-trivially on the color indices of the hard states, therefore eq.s (2.18,2.27) get
modified. More precisely, it can be shown that at DL we still have a factorization similar
to eq. (2.27) but now the U* operators, acting on H carry a non trivial color structure,

ie.
w(D1, 0 Py | Qe [P, B3 P By, = U;;Oélﬁl . Upi;oznﬁn (2.27)
for each n-particle state |p1;...;pn), of color a1, ..., and where now
UZ 5= N (p,al Qs [p, B), | (2.28)

is a tensor of the non-abelian group. Moreover the operators U;aﬁ

;
% U* 5 (U;E)B7 = oy (2.29)

Starting from the previous expressions and from the S matrix factorization it is clear how
to argue the BN theorem violation. We can consider, for instance, the 2-to-2 reaction,
previously considered pi(k1, 1) pa(ke, @) — ps(ks.as) pa(ks, q) + X, where now we
have to specify the color of the hard states (aq,...,a,). With X we mean that we
are including all final-state radiation. The fully-inclusive cross-section is obtained by
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summing over the color of the final state, i.e.

dopi o D 3 |( (] ® ks, o ka, oul) S (Jkr, s k2, a2)), ® [0),)]? (2.30)
Qs peHs
T B8185,858% 77— -
X Z Z 0| Ukl alﬁl(Uk2)a2BQS e 4Uk17510¢1Uk2,5202 ’w>8
asas peH,s (2.31)

—\T —\T B3B4,B18
<w| (Uk3)a353(Uk4)a4ﬁ4Sh3 o 2U’z,ﬂlalUl€t,52a2 |0>5

T 81 By,
X Z Z 0‘ Uk’l a1,31(Uk2)a2/325 et |¢>s
Q304 PEH s (2.32)

<w| Sa3a475162 Uk17/31011 U’j;ﬁzozz ‘O>S )

with some abuse of notation and where repeated indices are summed over. In this way
we trivially show the BN theorem violation in EW interactions, summing over final state
color is not enough to avoid Sudakov DL, not even in fully-inclusive observables. The
complication in the previous equation is represented by the factor UT that have not a
simple form, not even in the leading approximation given by eq. (2.15). This is physically
related to the fact that primary radiation, the one produced by the hard states, can itself
radiate secondary particles and so forth so on. We will discuss more in detail this aspect
in the next section.

There is an additional property of the operators sza 5 that we have to mention, they
commute at DL
+ + _
|:Up17041/31’ Up27a2f32] =0. (2'33>
Therefore, from eq. (2.32) it is clear that summing over initial state color is sufficient to
drop the Soft factors and so to avoid IR effects. While this is guaranteed in QCD by the

confinement, in EW reactions and specifically at VHEL it would be meaningless to sum
over neutrino and electron, as mentioned already in the previous chapter.

2.2.2 The Infrared Evolution Equation

We now turn on the method of the IREE and we discuss directly 2-by-2 EW processes at
very high energy.

The basic idea is of the IREE to introduce an unphysical IR regulator A with dimension
(energy)? in the calculation of the observables and to write down a differential equation
for the evolution with X\ of the result. Denoting by “E?” the hardness of the observable
under consideration, the choice A ~ E? eliminates all the IR enhancements and makes
fixed-order perturbation theory well-behaved. For A\ ~ E?, the Born level computation
therefore offers a reliable approximation, which can be used as the initial condition for the
evolution equation to lower A. The physical predictions are obtained from the solution of
the IREE in the limit A — 0.

79



Chapter 2. Precision physics from Very High Energy Leptons collisions

In order to define the IR regulator, consider the 4-momenta k; of the external hard
particles that participate in the scattering process. They will correspond in our setup
to the 4 legs of a central energetic 2 — 2 processes. With the exception of the masses
k? < E?, all the Lorentz invariants constructed with the k;’s are therefore large and of
order E2?. Given a pair ij of external hard particles and given a radiation particle with
4-momentum ¢ we define its hardness relative to the ij pair as

ij (ki - q)(k; - q)
b (q) = 2 ’ (2.34)
(ki - k)
The IR regulator is provided by the lower bound A
h(g) = minh¥(q) > . (2.35)

i#j

on the “absolute” hardness h of the radiation. Notice that the bound is imposed on the
4-momentum of each individual radiation particle, either virtual or real. Specifically,
eq. (2.35) applies to the off-shell loop momenta describing virtual radiation, as well as to
the on-shell momenta of real radiation particles in the final state of the process. The
specific definition of the radiation hardness in eq. (2.34) is convenient because it reflects
the structure of the denominators that appear in the calculation of the IR-enhanced
diagrams, as we will readily see. At this stage, it is enough to remark that the lower cut
on h(q) in eq. (2.35) is a valid IR regulator as it eliminates both the regions where ¢ is
soft and those where it is collinear to one of the hard partons.

The main peculiarity of the IREE formalism applied to EW radiation stems from the
presence of the physical scale my ~ 100 GeV associated to the masses of the EW bosons.
We will see that my, acts as a threshold that separates two different regimes, A > m2,
and A\ < m2.. In the former regime, the cut on the radiation hardness in eq. (2.35) is
so strong that the mass of the radiation particles can be safely neglected and the IREE
computed in the unbroken SU(2);,xU(1)y EW gauge theory. Starting from the initial
condition at A ~ E?, the evolution is thus performed with the SU(2);xU(1)y evolution
kernel down to A ~ m2. At A < m2, the massive vector bosons do not contribute
to the evolution and the kernel is purely determined by the unbroken U(1)g group of

electromagnetism.

Amplitude evolution

We start, following Ref. [156], from the IREE for the scattering amplitude with purely
hard external quanta and with regulator A on the internal lines. While the discussion
holds for an arbitrary number of external legs, we focus for definiteness on 2 — 2
amplitudes, which we indicate by

\= Mx[p1(7~€1,a1)132(/€2a012) — p3(ks3, a3) p4(k4,0<4)} ; (2.36)
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where «a; denotes the gauge group index of the external state p;, which is taken to
transform in an irreducible representation of the group. The amplitude is labeled by the
4 indices o = ajasasay, and it is IR-regulated according to eq. (2.35). Since no real
radiation is involved, the cut acts only on the momenta of virtual vector bosons in loop
diagrams. We aim at writing down the IREE for M and to solve it given the initial
condition

%2 = BY = Born Amplitude. (2.37)

As we explained, for A\ > m?2, the effects of EW symmetry breaking (EWSB) can be
ignored, and MY equals the (IR-regulated) amplitude of the unbroken EW gauge theory.
More precisely, EWSB gives negligible relative corrections of order my /v/A (or powers
thereof) to all those amplitudes that are not forbidden by the SU(2);xU(1)y exact
symmetry of the unbroken theory. The other amplitudes are sensitive to EWSB at the
leading order and therefore they cannot be studied in the unbroken theory.'’ However
their contribution to the physical scattering process is negligible and they can be safely
excluded from the discussion.!! Similarly, for the allowed processes, up to negligible
power corrections of order my /E, the amplitude M is an SU(2)rxU(1)y invariant
tensor satisfying the charge conservation equation

(GY2ME + (GRME + (GHAME + (GHIME 20, WA e (2.38)
In the equation, Gf‘ denotes the generators associated with the representation of each
hard particle “¢” under the EW group, acting only on the corresponding index “«;” of
the amplitude tensor. For instance

(G4)% = 051052 (G4) %8 55* . (2.39)

Notice that, in our notation, (a3, ay4) run in the representations of the outgoing states,

while (aq, a2) run in the conjugate representation of the incoming particles. Consequently
in eq. (2.38), Gie = —G7 and Gac = —G5.

The IREE is obtained by computing the variation of the amplitude under an infinitesimal
variation A — A + dA of the IR cutoff in eq. (2.35). This computation dramatically
simplifies in the leading DL approximation as one can infer by inspecting diagrams
involving a number n of soft/collinear virtual vector bosons. Indeed the maximal
logarithm power arises from the region where momenta are hierarchically separated
E? > b(q1) > b(g2) > --- > b(gn) with the softer legs dressing the subdiagrams

OFor instance the amplitude with 3 transversely- and one longitudinally-polarized W bosons is
suppressed by my/FE already at the Born level, owing to the fact that it is impossible to form an SU(2)r
singlet with one doublet (i.e., the representation of longitudinal W’s owing to the Equivalence Theorem)
and three triplets.

Regarding power suppressed amplitudes, in [201] it has been found that they can receive positive
Sudakov enhancements. However due to the power-like suppression we don’t expect this to affect our
discussion.
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Figure 2.1 — Left panel: the leading Sudakov diagrams topology. Right panel: a
diagrammatic representation of the contributions to the amplitude variation that are
logarithmically enhanced. The momentum ¢ is integrated over the infinitesimal strip
oo (2.40).

involving the harder legs, as shown in the left panel of Figure 2.1. In this configuration
only the outermost virtual vector can reach a virtuality b(g,) ~ A, the inner ones being
much harder in the dominant region of integration. The effect on MY of the variation of
A is then computed by considering the variation of the endpoint of the integral over the
momentum of such outermost vector. More precisely we have that —dM§ = M{—MS ;5\
equals the integral over the outermost loop momentum in the infinitesimal strip

do={q: blg) €[\ A+A]}. (2.40)

The contribution to the variation from the vector that connects a given pair of hard
external legs can be depicted like on the right panel of Figure 2.1. The vector boson is
represented with a double line to indicate that its momentum ¢ must be integrated only
over the strip do.

As we already said the leading contribution comes from the integration region where ¢ is
soft (and also collinear), in which the vector boson emission is described by the eikonal
formula

]fz' kz’

— E — k
@ oy ~ 3 (G%‘l)a Mﬁ, o ~ 1 (Gﬁ)a Mﬁ,
T kioqo 0P TRIA R

(2.41)

(AP}

with G; the group generator acting on particle “i” as in eq. (2.39). In line with our
conventions, as explained above, the generators of the charge-conjugate representation
Gc appear in the eikonal formula for vector boson emission from an incoming particle.
For brevity, we have included the gauge coupling constants in the definition of the
generators G;. In terms of the canonical SU(2);,xU(1)y generators we then have

1,2,3 1,2,3
G‘77 :gT‘77

K3 K3 ?

GY =4¢V;. (2.42)
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The integration over the soft ¢ momentum factorizes with respect to the integral over the
harder lines, represented as a blob in Figure 2.1. Indeed in the eikonal (¢ — 0) limit the
virtual vector boson momentum can be neglected and the sub-amplitude blob evaluated on
the momenta k; of the external legs before the virtual vector boson emission/absorption.
Therefore the blob gives us back the original amplitude, with one less loop but this
is immaterial as MY is the all-loops amplitude. We can thus express the amplitude
variation in terms of the amplitude itself, eventually obtaining an evolution equation. In
covariant gauges, the leading DL contributions only arise from virtual vectors connecting
two distinct external lines. Therefore, we have

« 1 ki - k; A A (B
M= 42 /5 TP +ie(q- k‘)(q-kj)[%:Gi Gj} s My (243)

where the sum extends over the unordered ij pairs of distinct external legs and it
is understood that the conjugate generators must be employed for the incoming legs
i,7 = 1,2, due to eq. (2.41).

The evaluation of the integral in eq. (2.43) is quite straightforward, and it is reported in
Appendix B.1 for completeness. This gives

1 6A E? 1 e "
TN 8Ty QE(Gi)B§<Gj )7, M, (2.44)

SMG =

up to non logarithmically enhanced terms. Notice that in the equation we traded the
sum over unordered ij pairs for an ordered sum times 1/2. The sum over j # i can be
performed using charge conservation according to eq. (2.38), giving

W1 6. E? e
OMY= 1622 logA;{;Gi G| s M3
1 6\, E?
:16W2A1°gA;[9 ci+97y7| M3, (2.45)

where for any given external particle with weak isospin spin ¢; and hypercharge y;, the
coefficients ¢; = t;(t; + 1) and y? are nothing but the Casimirs of respectively SU(2),
and U(1)y. We thus recovered the familiar result that, in DL accuracy, IR effects are
universal for each individual external particle and purely determined by the Casimir of
the corresponding gauge group representation.

We finally obtain an IREE

dM§

B 4 W >\>>mw 19 o
dlog? (E2/)\) ICMA, where K T6m 22 [g ci+g yl} , (2.46)

with, since the Casimir operators are proportional to the identity, an evolution kernel
K that is a mere multiplicative constant. Solving eq. (2.46) starting from the initial
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condition (2.37) gives the amplitude evaluated with an IR cutoff scale A = m2,

2. 4 12,2
Mo, = exp |- SO LATI Y 100252 2 )| B (2.47)
w ; 327
Notice that the contribution to the previous equation coming from the Abelian U(1)y
group matches with the result previously found in eq. (2.24).

In order to continue the amplitude evolution to lower A, we should now consider the
regime A < m2, write the corresponding IREE and solve them using eq. (2.47) as
initial condition. This is straightforward, because we have seen that all that matters
for the derivation of the IREE are the loop integrals in a strip where the virtual
radiation hardness is infinitesimally close to the cutoff A as in eq. (2.40). In this region, a
logarithmic enhancement of the amplitude variation only originates from photon exchange
diagrams.'?> The IREE evolution kernel is thus immediately obtained by specifying the
previous formulae to the U(1)g gauge group of QED

Agm? 1
o W;[éqﬂ. (2.48)

Notice that in order to derive the IREE in this regime, only conservation of electric charge
must be employed. The conservation of the full SU(2);xU(1)y charges of eq. (2.38) is
not valid for A < m2,, where the effects of electroweak symmetry breaking are important.

Solving eq. (2.48) produces the regular QED Sudakov factors, which go to zero in the
physical limit A — 0 where the IR regulator is removed. Therefore the amplitude M
vanishes, and so does the cross-section of the corresponding fully-exclusive scattering
process, in which no extra radiation is present in the final state. More inclusive observables
need to be considered for a non-vanishing result. One possibility is to allow for the
presence of real photon radiation up to an upper threshold of order m2, on the hardness
h. This defines a cross-section that we denote as exclusive because it indeed excludes
the radiation of massive EW bosons. In fact, it is easy to check that h(q) > m? for
the emission of a real radiation quantum with ¢ = m?. An upper cut h(q) < m2, then
excludes the presence of massive EW bosons in the final state, but allows for (sufficiently)
soft photons. Ref. [156] considered this same observable (but calling it “semi-inclusive”)
showing that it stops evolving with A below m2,, due to the cancellation of real and
virtual IR effects in QED. Cross-sections that are exclusive according to our definition
can thus be computed at the DL accuracy by just squaring the A = m2, amplitude (2.47).
At the end of the next section we will re-derive the result of Ref. [156] for exclusive
cross-sections by a slightly different methodology, which is also suited for the calculation
of the other type of cross-sections we are interested in.

12The calculation of the loop integral in Appendix B.1 shows explicitly that no enhancement emerges
from the exchange of vectors with mass my much larger than A.
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Density matrix evolution

It is possible to extend the IREE methodology to more complex quantities than the hard

Feynman amplitude. Specifically, we consider the hard “density matrix” '3
DR = MRM)" + > [dPRi, 3 MMy (2.49)
N=1 PL--PN

which incorporates the emission of an arbitrary number N of radiation particles, with
gauge group indices denoted as p = p1 ... pn. In the equation, MY is the hard amplitude
with no extra emissions as in the previous section, while M$” is the amplitude for the
production of the 2 hard particles plus the radiation. The virtual radiation particles
exchanged in the Feynman diagrams for the amplitude are subject to the IR hardness
cutoff A as in eq. (2.35). The phase-space volume element dPh%, y =11, dPh?)\ for the
emission of real radiation is also constrained by eq. (2.35). The H superscript refers to
the possible presence of an upper cutoff on the radiation hardness h(q) < H. In what
follows we will first consider processes we define as semi-inclusive, for which H ~ E?2.
For these processes the upper radiation cut is effectively absent, and plays no role in
the discussion. The exclusive processes defined in the previous section instead simply
correspond to H = m2,.

It should be noted that eq. (2.49) formally violates the conservation of the total energy
and momentum, because in the radiation terms we are employing the same hard 4-
momenta that obey energy and momentum conservation in the absence of radiation.
It is understood that this makes sense only in the presence of an upper cutoff on the
total energy and momentum of the radiation, say a one tenth of E. In this way, the
radiation plays a minor role in the total balance of energy and momentum conservation
or, equivalently, the hard 4-momenta can be readjusted to balance the radiation emission
up to small corrections in the corresponding Feynman amplitudes. In practice, the cutoff
allows us to factorize the total phase-space into that for radiation, on one hand, and
that for the hard 2 — 2 process on the other, with the latter also including the delta
function of 4-momentum conservation. The density matrix (2.49) can thus be related to
the physical scattering cross-section.

An upper cut E,.q < E/10 on the total radiation energy and momentum does not affect
the predictions at the double logarithm accuracy. Indeed a simple modification of the
real radiation integral (see the discussion around eq. (2.51) computation in Appendix B.1
shows that the effect of this cut on the ¢ momentum of the radiated particle merely
entails reduction of the double logarithm from log? E?/\ to log? E2 /. The difference
is then of order log E?/\ x log E?/E?,, and falls into the same class as single logarithms

ra

as long as E/E,44 is not too small, with 1/10 qualifying.

13The same object was dubbed “overlap matrix” in Ref. [155].
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The hard density matrix (2.49) is a simple generalization of the scattering cross-section
in which the conjugated amplitude indices & are not equal to the indices « of the non-
conjugated amplitude. It is a useful generalization because it obeys charge conservation
equations similar to eq. (2.38). Namely, in the regime A > m2,, we have
4 5% maB] A>m2, _
> [GhHsD + (5D TEN 0, Y4, a4, (2.50)
i=1¢,2¢,3,4

where the obvious relations [1€]¢ = 1 [2¢]° = 2 should be understood. That way the
generators acting on the indices 3 of the complex conjugated amplitude are those of
the corresponding charge conjugated representation. Eq. (2.50) holds only for A > m2,
because in this regime both the virtual and the real emissions are nearly insensitive to
EWSB effects as previously explained. For A < m2,, only the electric charge generator is

conserved.

The IREE can be obtained like in the previous section by computing the variation of D)
under A = A + 0\, taking now also into account also the effect of the IR cutoff on real
emission. The contribution of virtual loop momentum integrals is thus accompanied by
that of integrals over the momentum of real radiation. All integrals have to be performed
over the infinitesimal strip do defined in eq. (2.40). Logarithmically enhanced terms only
arise from the exchange of virtual or real gauge bosons between different external legs
(i # 7), like in Figure 2.2. The effects and the corresponding diagrams can be divided
into two classes. The first, in the left panel of Figure 2.2, is given by primary radiation
diagrams where vector bosons are exchanged between the hard legs. The second, in the
right panel, is given by secondary radiation diagrams where vector bosons connect to at
least one real radiation leg.

We will first consider the effects of primary radiation. The virtual radiation integral gives
the result already mentioned in eq. (2.44), and, as we show in Appendix B.1, the result
is exactly the same for the real radiation integral. The total variation from primary
radiation is then

e 1 ox  E? Aya A48 IS L (GA)aDIP
DY = 162 N IOgT Z Z (G7) ,BZ [(Gj )BVDX +(Ge) DA }
i=1¢2¢34 A J#i
+HGH% 26 P + (G@apﬂ] -
J#

(2.51)

The argument of the first sum, over the four external legs, collects the contributions of all
the radiation emitted from the leg “¢” of the amplitude and of the conjugated amplitude.
A factor 1/2 is included to avoid double-counting. Notice that both virtual and real
radiation connecting one leg with itself is excluded from the sum, because, as we already

mentioned, no enhancement arises from those diagrams.
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Figure 2.2 — Diagrammatic representation of the contributions to the density matrix
variation from primary (left panel) and secondary (right panel) radiation. The vector
bosons are represented as double lines to indicate that their momenta have to be integrated
over the infinitesimal strip (2.40).

We can now proceed as in the previous section, and use the charge conservation in
eq. (2.50) to perform the sum over j in eq. (2.51). We find the IREE
dD§

o N— Y ) LD 2.52
dlog?(E2/\) BB A (2:52)

with an evolution kernel that is the direct sum of universal terms for each external leg

aa A m¥ 1 ¢ ca (o7 @ o o
K2 > DS “;cg‘aﬂ R +55[XA:G;‘2G;%} 512 ZA:(G{‘) 5(G2) 5]
_ ¢ 50 50 TAYe (AYaL 5% §%
= o 2 [omoy + 32 @[ T10595]
i A=123 j#i
92 ;0 i i
= [K}w [_];[55;55;}. (2.53)
7 JF1

The kernel contains one term, provided by the SU(2);, Casimir ¢; = ¢;(¢; + 1), which
is proportional to the identity in the color indices of the density matrix tensor, plus a
non-diagonal term constructed with the SU(2)z group generators matrices TiA of the
external legs. Notice that the contribution of the U(1)y hypercharge generator cancels.

There is one peculiarity of eq. (2.53) that is worth emphasizing. The semi-inclusive
cross-sections we are interested in are the diagonal entries (v = &) of the density matrix,
with no sum performed over the gauge group index « of the scattering particles.'*
However one can also consider inclusive cross-sections, where the sum over the gauge
index «; is performed for one or several external legs. By setting a; = «; and summing

“This is true only in a basis where the gauge indices a; label the on-shell SM particles, while for the
calculation of di-boson cross-sections we work in a different basis. See Section 2.3.2 and Appendix B.2
for details.
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over oy, the SU(2);, generators in eq. (2.53) recombine to form the Casimir operator,

“” cancels. We thus find again

and the contribution to the evolution kernel from leg
that, at DL accuracy, the cancellation between real and virtual IR effects in inclusive
cross-sections occurs on a leg-by-leg basis. Namely, the effects of soft/collinear emissions
associated to each individual leg cancel in the cross-section (and in the entire density
matrix) for processes that are inclusive over the color of the corresponding particle.
This result is stronger than the KLN theorem, which foresees a cancellation only when
summing over the color of all legs. The reason for the added strength is that we are here
considering radiation that is both soft and collinear. Notice however that fully inclusive
observables of practical relevance can only involve summation on the color of the final
state particles. This retains the IR effects associated with the colliding particles in the
initial state (e.g., two left-handed leptons ¢f ¢} ) which are not SU(2),, singlets. The
resulting non-cancellation of IR effects in “fully-inclusive” cross-sections, coincides with
the result of Ref. [155].

So far we have ignored the secondary radiation diagrams, depicted in the right panel
of Figure 2.2. We show now that their contribution vanishes, giving full justification to
eq. (2.53). Secondary radiation diagrams correspond to the effect of the A cutoff variation
on virtual or real vector bosons attached to one of the intermediate “p” particles in the
definition of the density matrix (2.49). Clearly these effects are potentially enhanced
only if the intermediate particle is relatively hard, such that a significant separation is
present between the IR cutoff A and the scalar product between the intermediate particle
and the external leg momenta. We thus start considering vector bosons attached to the
hardest intermediate particle, with gauge index “p;” as in the figure. The density matrix
is inclusive over the color of the intermediate particle. However we can momentarily
define an “extended” density matrix Di‘ 1AL with labels p1 and p; for the gauge indices
of the amplitude and of the conjugate amplitude, as in the figure. The actual density
matrix is eventually obtained by first setting p; = p; and then summing. The effect on
the extended density matrix variation of all the radiation emitted from p; and p; can be
written in a form similar to eq. (2.51) and then simplified using the analog of eq. (2.50)
for the extended density matrix. The resulting contribution to the evolution kernel from
the intermediate p; leg is the analog of that from the hard external legs in eq. (2.53).
But this contribution cancels out in the evolution of the actual density matrix, which
is inclusive over the p; leg, because of the previously explained leg-by-leg cancellation
mechanism. The argument can of course be repeated for the diagrams involving the
second hardest intermediate particle, showing, as anticipated, that all the secondary

radiation diagrams can be ignored in the calculation of the evolution kernel.

It is straightforward to adapt the previous results to the regime A < m2, in which only
the exchange of photons contributes to the evolution, as discussed in the previous section.
By specifying eq. (2.53) to the Abelian U(1)g group we immediately find that the kernel
vanishes, owing to the well-known cancellation between real and virtual IR effects in
QED. For the calculation of the physical (A — 0) density matrix, and in turn of the
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semi-inclusive cross-section, we thus only need to solve the IREE with the A\ > m2,
kernel (2.53), down to A = m2,.

For A = E? the hard density matrix (2.49) is well-approximated by its tree-level expression,
which serves as the initial condition for the evolution

5 = BY(BY)". (2.54)

The kernel is the direct sum of tensors, denoted as K; in eq. (2.53), each acting on the
pair ay, a; associated to the i-th external particle. Therefore the solution of the IREE

reads
2 @it _
Dt =D} = { 11 [exp B 2<E2/m3v>]] * }BW)* L2
¢ BiBi
where the “y” subscript denotes the density matrix of the semi-inclusive process, with no

upper cut on the real radiation hardness. The explicit form of the K; exponentials in the
above equation is reported in eq.s (B.31) and (B.36) for external legs in the doublet and
triplet SU(2) 1 representations. Applications of eq. (2.55) to specific processes are shown
in Sections 2.3.1 and 2.3.2.

We have defined the density matrix (2.49) allowing for the presence of an upper cutoff
‘H on the real radiation, but this played no role in the previous discussion because this
cutoff is effectively absent (H ~ E?) in our definition of semi-inclusive processes. In
exclusive processes we instead set H = m2,, namely we veto real radiation particles with
hardness above m2,. Obviously, for A > m?2, this upper cut is in contradiction with the
IR cutoff in eq. (2.35) on the radiation phase-space. Therefore in the density matrix
for the exclusive process no real radiation is present and in the A > m2 regime the
result simply equals the square of the hard amplitude in eq. (2.36). The evolution up to

— 2
A =my

can thus be obtained from the hard amplitude evolution (2.47) we obtained in
the previous section, or easily re-derived by dropping the terms in eq. (2.51) (namely, the
second and the third) that are due to real radiation. The contribution of real radiation
is instead restored for A < m2, and the evolution stops due to the cancellation between
virtual and real QED radiation as previously explained. The physical (A — 0) density

matrix for exclusive processes can thus be written in a simple closed form as
DOS — ex Z ghc+ 97yt 2(E2/m2)| B(B*)*. (2.56)
ex p 167 2 g w .

In Sections 2.3.1 and 2.3.2 we employ this formula to compute exclusive di-fermion
and di-boson production cross-sections, and discuss the need of supplementing it with
fixed-order single-logarithmic terms, from Ref. [178,202].

Before concluding this section it is worth commenting on the experimental definition
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of the semi-inclusive and exclusive processes, and on the perspectives for their actual
experimental detectability. The semi-inclusive process is characterized by two central
(specifically, emitted from 30 to 150 degrees from the beam line) energetic particles of
specific EW color and flavor. In particular we will require them to carry a total center of
mass energy above 85% of the VHEL E.y,, enforcing in this way the upper cut on the
total radiation 4-momentum required for the definition of the hard density matrix as
discussed below eq. (2.49). The two particles can be accompanied by the radiation of
EW bosons, photons, or any other soft particle.

Notice that in our calculation at the DL order we could ignore all the effects of collinear
(rather than soft-collinear) radiation, which emerge at the single logarithm. On the other
hand, the single logarithms associated with low-virtuality (below my,) photon splittings
are much larger than log E?/m2,. In particular, the emission of real photons that are
energetic but collinear to a light charged hard particle (e.g., an electron or a muon) with
mass my produces terms proportional to log E?/ m%. By the KLN theorem these terms
will be canceled by the corresponding virtual contributions, but only in suitably-defined
observables that recombine the emitted photons in the experimental definition of the
hard particle 4-momentum. With a lower threshold of order my on the energy of the
photons to be recombined, the net effect on our prediction should be of the order of a
single EW logarithm log E?/m2,. A more detailed assessment of this aspect, and of the
possible interplay between the QED and the EW bosons collinear emissions, requires
the inclusion of single logarithms and goes beyond the scope of this thesis. Similar
considerations hold for the collinear emission of QCD gluons to be collected into jets, in
the case of colored final states.

Up to the caveats outlined above, there are good perspectives for the actual direct
experimental detectability of semi-inclusive cross-sections. The situation is arguably
more problematic for the exclusive cross-section. In exclusive final states, we require
the presence of the two hard particles defined as above, plus the absence of any massive

2 as discussed at the end of the previous section), or

vector boson (since h(q) > ¢> =m
photons above the hardness upper threshold m2,. However, it is experimentally impossible
to impose this radiation veto strictly because the limited coverage of the detector in
the forward and backward regions will not allow to tag EW bosons or photons that
are collinear to the beam. Furthermore our definition of the exclusive cross-section is
problematic in the case of QCD-colored final states. Indeed if the upper cut h(q) < m2,
had to be imposed also on gluon radiation, QCD effects should be included in the
exclusive density matrix evolution (but not in the semi-inclusive one, where they cancel
because of color inclusivity), resulting in a large QCD Sudakov suppression factor in
eq. (2.56). This factor is as small as exp[—as/(47)(8/3) log? E2, /m2,] ~ 0.03 for di-quark
final states at the highest VHEL energy F., = 30 TeV, entailing a strong suppression
of the cross-section. Avoiding this suppression requires a definition of the exclusive
cross-section with a higher threshold on the QCD radiation.
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2.3 Di-fermion and di-boson production at VHEL

So far we discussed the resummation of DL in generic 2-to-2 semi-inclusive and exclusive
EW-processes. We now specify to diboson and difermion production at VHEL.

2.3.1 Di-fermion production

The first process we investigate is the production of a highly energetic pair of fermions
CF (k) €7 (ko) — f(ks) g(ka) + X, (2.57)

where f and g can be one of the six quarks, a lepton ¢’ # £ or a neutrino vy. We do
not discuss explicitly the final states with the same leptonic flavor as the initial state,
¢" =/, but these processes will be employed for the muon collider sensitivity projections
in Section 2.4. As previously discussed, the final state is characterized (both for exclusive
and semi-inclusive processes) by an invariant mass for the ( 1, g) pair that is almost equal
to the center of mass energy E.,, of the colliding leptons and by central scattering angle
0. € [30°,150°]. Here 6, is the angle between the incoming ¢t and the final anti-fermion

f in the lab frame. Notice that 6, almost coincides with the scattering angle in the center

of mass frame of the hard process, because of the tight cut on the invariant mass of the
(f,9) pair.

In order to resum the DL it is convenient to organize the calculation of the cross-section
in terms of amplitudes and density matrices whose external legs are canonical irreducible
representations of the EW group. This is trivial to achieve for the di-fermion process
because the helicity eigenstates of quarks and leptons in the massless limit do indeed
transform as canonical representations (doublets and singlets, with specific hypercharge),
reported for completeness in Appendix B.2. Furthermore, since we restrict our attention
to inelastic processes £’ # £, the only sizable helicity amplitudes are those with the same
chirality x7 (xo) for the two incoming (outgoing) fermions, corresponding to helicities
1/_41/21/1,1/2 for y = L and 1/;,1/21/J+1/2 for x = R. The dominance of such amplitudes
holds in the SM because of the vector-like structure of gauge interaction, and it will be
preserved by the 4-fermions new physics contact interaction operators we will study in
Section 2.4. We thus have to deal with four polarized cross-sections for each di-fermion
production process, labeled by x;xo = LL, LR, RL, RR. Each such cross-section will be
obtained from the diagonal o = & entries of the density matrices of Section 2.2.2, times
the appropriate phase-space factors.
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3 TeV 10 TeV 30 TeV

DL | ePl—1 | SL(%) | DL | ePP—1 | SL(Z) | DL | eP—1 | SL(%)

lr, — ¢ || -0.46 | -0.37 0.25 -0.82 | -0.56 0.33 -1.23 | -0.71 0.41

lr, —qr || -0.44 | -0.36 0.25 -0.78 | -0.54 0.34 -1.18 | -0.69 0.42

l;, —er || -0.32 | -0.27 0.13 -0.56 | -0.43 0.17 || -0.85 | -0.57 0.21

l;, —up || -0.27 | -0.24 0.11 -0.48 | -0.38 0.15 -0.72 | -0.51 0.18

lr = dp || -0.24 | -0.21 0.10 || -0.43 | -0.35 0.13 || -0.64 | -0.47 0.16

lp— ) || -0.32 | -0.27 0.13 || -0.56 | -0.43 0.17 || -0.85 | -0.57 0.21

fr —qr || -0.30 | -0.26 0.12 -0.53 | -0.41 0.16 -0.79 | -0.55 0.21

lp— g || -0.17 | -0.16 0.07 || -0.30 | -0.26 0.09 || -0.46 | -0.37 0.12

lr —ug || -0.12 | -0.12 0.05 -0.22 | -0.20 0.07 || -0.33 | -0.28 0.08

lr —dgr || -0.09 | -0.09 0.04 || -0.17 | -0.16 0.05 -0.25 | -0.22 0.06

Table 2.1 — Double and single logarithmic corrections to the exclusive processes (10~ — f .
The single-logarithmic corrections are evaluated at 6, = /2.

Exclusive processes

Exclusive cross-sections are readily obtained from eq. (2.56), and take the form

dJeX DL dUB
dcosf, dcosb,’

(2.58)

in terms of the corresponding Born-level differential cross-sections. The Double Log
exponent DL is of order ¢2/1672log?(E2,/m2), which ranges from 0.14 at Eep, = 3 TeV
up to 0.25 (0.38) for Ecm = 10(30) TeV, times the sum of the four SU(2) Casimir of the
external legs. For LL chirality processes this factor is as large as 4 x 1/2(1/2+ 1) = 3,
showing that DL resummation is mandatory at VHEL energies F¢y, > 10 TeV, at least
for this chirality. Double logs are still considerable for LR and RL chirality, while they
get smaller in the RR configuration because g'2 ~ g%?/4. Resummation might instead
not be necessary for F., = 3 TeV. However it will still be needed to include the effects
of radiation at fixed order since we aim, eventually, at theoretical predictions with
percent-level accuracy.

The DL Sudakov exponents in eq. (2.58) are listed in Table 2.1. The processes are
labeled taking into account that electric charge conservation enforces g = f in eq. (2.57),
since a charge mismatch cannot be compensated by the emission of charged W bosons,
which is forbidden in exclusive processes. The table also reports single logarithm (SL)
contributions computed at the fixed one loop order, which we extract from Ref.s [178].1°
Specifically, we employ the general formulae of Ref.s [178] to compute the 1-loop log-
enhanced cross-section, we subtract the corresponding DL and normalize to the Born
cross-section. We also subtract the single logarithms from the Renormalization Group

5Two loops NLL results for four-fermion processes are also available in [77,80].
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evolution, because we decided to compute the Born amplitude with the EW couplings at
the hard scale E.y,.'% Notice that the threshold for photon recombination into the hard
final state particles matters at the single-logarithmic order. Here we assume a scale of
recombination of order my, for which the SL terms can be easily obtained by adding a
fictitious photon mass m., = my to the calculations of Ref.s [178,202]. The SL terms
obtained in this way can be used for “improved” theoretical predictions

dop

SL
do—ex1 o eDL
dcosb,’

dcosf,

(1+ SL(6,))

(2.59)

that include single logarithms at fixed 1-loop order. We see in Table 2.1 that the SL
contributions are relatively large. It is unclear whether they require resummation or if
including them at fixed order (definitely higher than 1-loop, if we target 1% accuracy) is
sufficient.

Notice that, unlike double logarithms, the single logarithm contributions are not propor-
tional to the Born-level amplitude of the same scattering process. Namely the amplitudes
of the neutral-current processes in Table 2.1 receive SL corrections that are proportional
to Born charged-current amplitudes. Therefore it should be kept in mind the SL terms in
eq. (2.59), which we normalized to the Born cross-section of the process, depend on the
ratio between charged and neutral current Born amplitudes. We evaluated the amplitude
ratio within the SM to produce the results in Table 2.1. However the amplitude ratio
depends on the new physics contact interactions we consider in Section 2.4, entailing
a dependence of the SL terms on the new physics parameters. This is not the case for
the double logarithms, which are completely universal and insensitive to short-distance
physics. The single logarithms also carry a non-trivial dependence on the scattering
angle 0., as explicitly indicated in eq. (2.59). In Table 2.1 they are evaluated at central
angle 0, = m/2, where they are always positive. They can become negative, and typically
increase in magnitude, in the forward and backward scattering regions, which we however
exclude with the central cut 6, € [30°,150°]. Finally, notice that the SL terms are
affected by the sizable mass of the top quark, which we do include in the t¢ production
process.

The impact of EW radiation effects on the total (unpolarized) cross-section in the
central region, relative to the Born, is displayed in Figure 2.3 as a function of E¢y. The
production of two light up-type quarks is considered for illustration, but the results for
the other final states are similar. The blue line is the one-loop DL prediction without
exponentiation, while in red we report the resummed DL prediction in eq. (2.58). The
green line (labeled DL;+SL;) represents the fixed-order one loop DL plus SL, while in
black we report the SL-improved prediction in eq. (2.59). The dashed lines are semi-
inclusive cross-sections computed below. We notice a significant cancellation between

6The calculation is similar to the one performed in ch 1. We refer to Section 1.2 for additional details,
concerning in particular the inclusion of non-log-enhanced angular-dependent terms.
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Figure 2.3 — Impact of radiative corrections on the production of two up quarks at the
VHEL. The solid lines represent different predictions for the exclusive cross-section. The
dashed lines are double-logarithm semi-inclusive cross-sections resummed (in black) or at
one loop (in orange).

double and single logarithmic terms. However this cancellation is not expected to be
structural and to survive at higher orders in perturbation theory.

We do not try to assign theoretical uncertainties to our predictions. However an upper
bound can be obtained by considering the orange line in the figure, in which the resummed
DL are combined additively with the SL (i.e., as eP™ + SL), rather than multiplicatively.
An alternative estimate of the uncertainties could be obtained by varying the scale of the
EW couplings employed for the evaluation of the radiation terms DL and SL. Varying
this scale from my, (which we employ for our predictions) to Ee¢pn,, the relative change of
the radiation effects is rather small, typically at the 10% level or less.

Semi-inclusive processes

The semi-inclusive cross-sections are the diagonal o = & entries of the semi-inclusive
density matrix in eq. (2.55), with the appropriate K; exponential factors for each external
leg. The factors only depend on the SU(2); quantum numbers of the legs and not of their
hypercharge (and QCD color). They are provided by eq. (B.31) for L-chirality external
external legs (which transform as doublets or conjugate-doublets) and they are trivial
for the R-handed singlets. Notice that eq. (B.31) (and the same is true for the triplet
exponential factor (B.36)) does not mix diagonal with off-diagonal entries of the density
matrix. Namely if we set & = & we obtain a tensor that is diagonal in 8 and 8. Therefore
the DL resummed cross-sections, collected in a vector ddg;, are linear combinations of
the Born cross-sections dép. We express this relation as

da:‘si o eDL d&B
d cos 0, dcosb,’

(2.60)
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where the Double-Logarithm terms “DL” are now matrices connecting the Born cross-
sections of different processes unlike for exclusive processes (2.58).

For an explicit illustration of the semi-inclusive cross-section calculation, and of the main
features of the result, we consider the RL-chirality production processes. In this case, we

have
dUSl(g R—H—LLUL) dUB(KEEI_%—)ﬂLuL) 1
. dO’SI(E —)’L_LLdL) . 0 _ _ 0
ddy= R°R 77 dép= =dog(tht
P57 dog(Ch0n— dpur) o5 0 on(plp=ara) | |
dosi((hlr—drdy) dop((Hlp—drdr,) 1
(2.61)

where “u” and “d” denote here the up and down components of a L-handed fermion

doublet. The exponentiated DL matrix reads

4cosh?(L£/2)  2sinh(L) 2sinh(£)  4sinh?(L£/2)
DL _ le_ﬁ 2sinh(£)  4cosh?(£/2) 4sinh?(L£/2)  2sinh(L) (2.62)
4 2sinh(£)  4sinh?(L£/2) 4cosh?(£/2)  2sinh(L) ’ '

4sinh?(£/2)  2sinh(L) 2sinh(L£)  4cosh?(L£/2)
where £ = g?/1672log?(E2,,/m?).

We see that DL effects induce a non-vanishing cross-section for charged processes with
g # f in eq. (2.57), such as 4irdy and dpuy, production. Clearly this stems from the
emission of real soft W-bosons, which is allowed in the semi-inclusive final state. Such
charged cross-sections are proportional to the Born cross-section for the corresponding
neutral (apur or JLdL) processes, and they are not drastically smaller than those
because the double-logarithm is sizable at VHEL energies. Therefore they can be
measured bringing additional sensitivity to the charge-preserving Born amplitudes and to
the corresponding short-distance new physics effects. The interplay with short-distance
physics is even more interesting for the LL-chirality process. In that case, dy is a
16-dimensional vector that contains 4 observable (¢¢~-initiated) processes with final
states upur, urdr, druy, and drdy. DL is a 16 x 16 matrix that relates the observable
processes to 16 Born amplitudes, among which those (like, e.g., ¢~ — urpdy) that are
sensitive to new charged current interactions. We can thus probe the latter interactions
even with the neutral /*¢~ VHEL collisions.

The black dashed lines in Figure 2.3 quantify the impact of the EW radiation effects on
the neutral semi-inclusive cross-sections relative to the Born predictions. The effects are
smaller than for exclusive cross-sections, as qualitatively expected owing to the partial
cancellation between virtual and real radiation. While this suggests that resummation
might play a less relevant role in semi-inclusive predictions, we point out that one-loop
double logarithms are insufficient for accurate predictions. This is shown in the purple
dashed line in the figure, which is obtained by truncating at the one-loop order the
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exponentiated DL matrix. It would be interesting to study the impact of single logarithms
on the predictions. This could be achieved by combining the single radiative logs from
Ref.s [178,202] with the factorized formulas for real emissions in Ref.s [171,203] (which
however would have to be extended to include also the soft radiation region), but is left
to future work.

As a final technical note, we remark that the DL matrix is negative semi-defined with a
single vanishing eigenvector that corresponds to the “fully-inclusive” cross-section, further
averaged over the SU(2)y, color of the initial states. Specifically the vanishing eigenvector
of eq. (2.62) is (1,1,1,1)!, which corresponds to the sum of the cross-sections over the
SU(2)1, gauge indices of the final states. Therefore in this case the double logarithmic
effects cancel on the “fully-inclusive” cross-section, in accordance with the KLN theorem
since the right-handed initial leptons are SU(2)y, singlets. Clearly this does not happen
for the LL-chirality processes (nor for LR-chirality) and the average over leptons and
neutrinos in the initial states would be necessary for the cancellation. The vanishing
eigenvalue controls the behavior of the DL exponential at asymptotically high energies.
In the case of eq. (2.62), we have

(DL Bem—00 1

(2.63)

—_ = =

11
11
11
11

e T

and all the semi-inclusive cross-section listed in eq (2.61) become equal. Notice how-
ever this only holds at asymptotic energies, way above the VHEL energies. Cross-
sections equality becomes a reasonable (better than order-one) approximation only for if
g%/16m%log?(E2,/m2) is as large as ~ 1.5, i.e. Egy = 10000 TeV.

2.3.2 Di-boson production

We now turn to the production of two energetic vector or Higgs bosons. We are interested
in reactions that are not power-like suppressed at high energy, therefore we restrict our
attention to “longitudinal” processes entailing the production of zero-helicity W and Z
bosons and Higgs, and to “transverse” di-boson processes where the W and the Z (or,
the photon) have +1 helicities. Indeed the “mixed” longitudinal /transverse production
processes are suppressed by my /Ecn at the amplitude level, as readily understood (see
e.g. [174,203]) by combining the Goldstone Boson Equivalence Theorem with the selection
rules associated with the SU(2).xU(1)y SM group.

The new physics interactions we consider in Section 2.4 only affect longitudinal di-boson
production cross-sections, which thus play the role of the signal in our analysis. We
nevertheless also need the transverse cross-sections for an estimate of the background.
We discuss the calculation of the (exclusive and semi-inclusive) cross-sections for the two
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type of processes in turn.

Longitudinal di-boson
We consider the production, out of £7¢~, of one of the following hard final states

WiWy,  Zoh, WiZy, Wih, (2.64)
where the subscript “y” refers to the helicity of the massive vectors, and “h” denotes
the physical Higgs particle. Obviously only the first two final states can be produced in
an exclusive process, while the latter ones require the emission of at least one charged
W and therefore they only occur at the semi-inclusive level. Notice that the ones listed
above are the only hard final states with longitudinal bosons and Higgs that can be
produced by soft EW bosons radiation out of sizable Born-level 2 — 2 cross-sections.
Therefore they are the only longitudinal di-boson processes that can be considered for
precise VHEL measurements in the high-energy regime.

At energies much above my,, the adequate description of longitudinally-polarized massive
vectors is provided by the charged and neutral Goldstone boson scalars 7% and 7 (see
Appendix B.2). Together with the Higgs, they form a canonical SU(2);,xU(1)y doublet
H with 1/2 hypercharge, reported in eq. (B.26). We thus need to consider amplitudes
and density matrices associated with the hard processes

gil/Q(kl)Ql/Q(kl) — H(ks, ag) H k4, o),
Cirja(kr, )0y o(ka, o) — H(ks, af) H(ks, f) (2.65)

for, respectively, L-handed and R-handed production.!” For the gauge group indices we
employ the same notation as in eq. (2.36), supplemented by the superscripts 4 (Ei) to
indicate that the indices belong to the doublet (conjugate-doublet) representation. With
a slight abuse of notation we are denoting as {_y /5 = (Ve,—1/2, ZZl/g)t the lepton doublet
with —1/2 helicity and with £, 5 the conjugate-doublet with helicity +1/2. Notice that
final states with two H or two H need not to be included because they are power-like
suppressed at high energy by hypercharge conservation.

The relevant density matrices are obtained as a straightforward application of the results
in Section 2.2.2. The need for employing H and H as external states does not pose any
additional difficulty (relative to the di-fermion processes) in the evaluation of exclusive
cross-sections. That is because the double logs are mere multiplicative factors in front of
the Born-level density matrix (2.56). Therefore the exclusive cross-sections still take the
form of eq. (2.58) and are proportional to the corresponding Born-level predictions. For

"The production from opposite-chirality leptons is negligible, both in the SM and in the presence of
the new contact interactions we investigate in the following section.
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Figure 2.4 — Same as Figure 2.3, but for di-boson production. As explained in Section 2.4.2,
the cross-sections for W+W ™ production are integrated in the angular region 6, €
[67°,150°].

the semi-inclusive cross-section, we can proceed as for di-fermions in the determination of
the K; exponential factors, using in particular eq. (B.31) which also holds in the present
case because H and H are doublets. However in order to apply eq. (2.55) we must first
express the D% density matrix, which is written in the isospin basis (H and H ), in
the physical basis of the charge and CP eigenstates h, Zy = my and VVOi = 7%, This is
achieved by simply inverting eq. (B.26). The final result can again be expressed in terms

of the Born-level cross-sections in the form of eq. (2.60).

The results display the same qualitative features as di-fermions. In particular we observe
the same interplay between short-distance physics affecting the neutral- and the charged-
current Born amplitudes, which we investigate in Section 2.4 in details. Also at the
quantitative level, the relative impact of radiation radiation is similar, as expected because
SU(2)r, doublets are involved also in these processes. This is shown in the left panel
of Figure 2.4, where we show the exclusive and semi-inclusive cross-section predictions
for I/VOJr W, . The different predictions are obtained as explained in the previous section
for the di-fermion processes. Notice in particular the exclusive predictions that include
one-loop single logarithms as in eq. (2.59). We employ these predictions for exclusive
cross-section in the phenomenological studies of Section 2.2.2.

Transverse di-boson

Vector bosons (W, Z, or ) with transverse helicity T = +1 have zero hypercharge and
they decompose as a real triplet plus a singlet under the SM SU(2)z, as in eq. (B.27).
Therefore three non-power-suppressed hard processes have to be considered for L-handed
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production

figrja(kr, 09)0 1 9 (ka, af) — B(ks) B(ka)
ﬁ+1/2(/€1, 04(11)5—1/2(7*327 04(21) — W (ks, ag) B(ky), (2.66)
fig1/2(k1, o)l 1 a(ke, af) = W(ks, af) W (ks, o),

while only one is relevant for the production initiated by R-handed leptons '

0 o (k)€ jp(ka) — Bks) B(ka), (2.67)
The “*” superscript in eq. (2.66) refers to the triplet nature of the W indices.

Unlike for di-fermion and longitudinal di-boson, the transverse di-boson cross-sections
for L-handed initial leptons are linear combinations of several distinct density matrices
with different SU(2)7, quantum numbers. Therefore the exclusive cross-sections are not
proportional, unlike in eq. (2.58), to the corresponding Born cross-sections in general. For
instance in the v+ cross-section the contribution from the WW final state experiences a
stronger Sudakov suppression (2.56) than one from the BB (or W B) final state, owing
to the higher SU(2);, Casimir of the final states.

The evaluation of the semi-inclusive cross-sections proceeds as for the longitudinal di-
bosons. Namely we derive the cross-sections for the physical states by inverting eq. (B.27)
and we compute the double-logarithm exponentials using eq. (B.36) on the SU(2) triplet
subspace. Clearly the need of combining different density matrices complicates the
calculation, but it does not introduce any novel conceptual aspect. At the quantitative
level instead, the situation is significantly different than for di-fermions and longitudinal
di-bosons. As shown on the right panel of Figure 2.4, EW radiation effects are much
larger due to the larger Casimir ¢y = 2 of the triplet representation. A sufficiently
accurate modeling of these effects will probably require resummation even at the lowest
VHEL energy Ec.p = 3 TeV.

The figure reports the cross-section of the W{f W final state. This final state, together
with W{ Z, is the only transverse di-boson process we will consider in Section 2.4 (as a
background to the corresponding longitudinal processes). Notice however that there are
many other transverse di-boson processes (namely ZZ, Zv, v, and W+) that can be
measured at the VHEL. These processes probe heavy new physics in the EW sector. In
particular, as shown in Refs. [149, 150, 153], they are sensitive (together with di-fermions)
to minimal Dark Matter in large-multiplets. The large effects of EW radiation might
have a strong impact on these studies.

18The Born process €f1/2(k1)€11/2(k2) — W(ks, of) W (ka, af) is power-suppressed in the SM.
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2.4 Sensitivity projections

As described in the Introduction, we target effects from short-distance new physics
that grow quadratically with the collision energy, to be probed in £t/ collisions at the
highest available energy £ = FEy. In this section we consider the dimension-6 EFT
operators listed in Table 2.2, and we estimate the sensitivity of muon colliders of energies
FEem = 3, 10, 14 or 30 TeV to their Wilson coefficients. We assume a baseline integrated
luminosity [110]

F—10ap-t [ Fou ’ 2.68
- A 10Tev ) (2.68)

Semi-quantitative comments on the impact of a reduced luminosity target are postponed
to the Conclusions. We base our projections on statistically-dominated measurements
of exclusive and semi-inclusive cross-sections for the processes listed in Table 2.3. In
the table, for each process we label with a check mark the operators that produce a
quadratically growing-with-energy correction to the SM cross-section.

The target EFT operators are selected to represent generic manifestations, at energies
much below the new physics scale, of the BSM scenarios we investigate in Section 2.4.3.
These are Composite Higgs, Composite Top and a minimal Z’ model, which we select as
concrete examples of new physics in the Higgs, Top and EW-gauge sectors. Among the
many operators that emerge in these scenarios, we focused our attention on those that
display energy growth in 2 — 2 scattering processes at the muon collider. We will see in
Section 2.4.3 that other operators offer a weaker sensitivity to the same BSM scenarios.

The phenomenological analysis of the various processes listed in Table 2.3 is described
in Sections 2.4.1 and 2.4.2, focusing respectively on the effects of the “W&Y” and of
the “Di-boson” operators of Table 2.2. In an attempt to mimic realistic experimental
results, we include reconstruction (and, in some case, mistag) efficiencies at a level
that is comparable with the CLIC detector performances, which we extract, whenever
possible, from Refs. [37,180]. Table 2.3 displays surprisingly low efficiencies for certain
processes (e.g., tt), entailing a considerable degradation of the measurement uncertainty.
In Sections 2.4.1 and 2.4.2 we also present our results for the sensitivity of muon colliders
to the corresponding set of operators, with the main aim of outlining the impact of the
EW radiation effects on the analysis. The operators in the last class, dubbed “3'4 family”
in Table 2.2, are not discussed explicitly but the sensitivity projection results are reported

in Appendix B.3. The relevant final states, tt, bb and tb are discussed in Section 2.4.1.

2.4.1 WL&Y operators

The first two operators we consider are those associated with the W and Y parameters
of LEP EW precision tests [35], namely Ogpy and Osp defined as in Table 2.2. These
operators arise in the so-called universal scenarios [34,35], that is new physics that couples
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SILH basis Warsaw-like basis
_ v,a\2 _ JM%H Ta ap 1 z, a
W&Y Oaw = (D ,WH"") O = Jp, JL,M JI7 =3 Zf f_’Y“U f
Oz = (9,B")? Ohp =Ty vy, Y =S Yifr"f
. 2 B
Ow = L(Hio" D)D" Wp, | Oy = L (HIiDuo H) Ly Ly)
) .y ” B
Di-boson | 0y = L (11D, H)0" B, 0= @'iD, H)L 17" L)
2 4 12
— _
_%(HTZDMH)(ZR'YMZR)
3 = a v a 3 ~ a a
O = (ay'otq) (D*W3,) Op) = (@aq) J7 ,
rd : _ v _
Owp = (t9%t) (0" Byu) Oip = (tv"t) v

Table 2.2 — The operators under consideration in their “SILH” [10] form and, after using
the equations of motion, expressed as a linear combination of Warsaw [9] operators. Y7
is the hypercharge of the fermionic field f. In the operators involving the 3™ family the
fields t and ¢ denote respectively the right-handed and left-handed top quark.

Process | N (Ex) | N (S-) | Efi. | Oy | Ohs | O | O | O | OFF) | OLp

ete” 6794 9088 | 100% | v v

eve — 2305 | 100% | v v

pt = | 206402 | 254388 | 100% | v v

[, — 93010 | 100% | v v

T | 6794 9088 | 25% | v | V

TVy — 2305 | 50% | v v

jj (Nt) | 19205 | 25725 | 100% | v v

jj (Ch) — 5653 | 100% | v v

cée 9656 | 12775 | 25% | v v

cj — 5653 | 50% | v | V

bb 4573 6273 | 64% | Vv v v v
9771 | 11891 | 5% | V v v v v

bt — 5713 | 57% | v v v v v

Zoh 680 858 | 26% v |V

WrWi | 1200 1456 | 44% IV

WiWg | 2775 5027 | 44%

W=h — 506 19% v |V

Wi 2o — 399 | 23% v |V

W Zyp — 2345 | 23%

Table 2.3 — The exclusive and semi-inclusive processes employed for the sensitividy
projections. The operators that give a growing-with-energy contribution to each operator
are labeled with a check mark. The expected number of events (before efficiencies) is for
Ecry = 10 TeV with the integrated luminosity (2.68).
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dominantly to the bosonic sector of the SM. Employing Oop and Osp is convenient in
the low-energy context of the LEP experiment, however for our purpose it is better to
trade them for the current-current operators Oy, and Obp (see again Table 2.2), using
the SM equations of motion. In doing so, we neglect the contribution to the O, and Oy
operators, which are expected to have no impact on the sensitivity. In what follows we
parameterize the Ofy;, and O) 5 operator coefficients

2 12
9 W r 9 Y
2W — _2m\2N ) 2B — _2m\2N ) (269)

in terms of the dimensionless parameters W and Y.

The relevant scattering processes, listed in Table 2.3, are the production of two energetic
fermions in the central region of the detector. Specifically, as explained at the end of
Section 2.3, we have in mind the two hard particles whose invariant mass is higher than
around 85% of the total collider E.p,, and a scattering angle 6, € [30°,150°]. We assume
perfect detector sensitivity to massive W and Z bosons of arbitrary low 3-momentum,
enabling the measurement of exclusive scattering cross-sections where the emission of
massive vectors (and of photons with hardness above m2) is vetoed. The exclusive
cross-section measurements are combined with the semi-inclusive cross-sections, where
the emission of an arbitrary number (including zero) of massive vectors or hard photons

is allowed.

For each inclusive and semi-inclusive final state, we employ cross-section measurements in
10 equally-spaced bins of cos @, in the range [—v/3/2,v/3/2]. In processes (e.g., jj, or bb)
where the two final states are effectively indistinguishable, cos 6, is defined to be positive
and 5 bins are employed. We assume cross-section measurements with purely statistical
uncertainties, which we estimate based on the number of events that are expected in the
SM.

Of course in order to combine the exclusive and semi-inclusive cross-sections for the same
(neutral) hard final state we must take into account that the exclusive events are also
counted in the measurement of the semi-inclusive cross-section. It is thus convenient to
consider a cross-section with radiation, defined as the difference between the semi-inclusive
and the exclusive cross-sections

Orad = Ogi — Oex - (2.70)

The measurement of o,,q can be combined with the one of oey since they are statistically
independent. For charged hard final states there is instead only one type of cross-section,
which necessarily involves EW radiation emission by charge conservation. We will refer
to the charged cross-section as “semi-inclusive” or “with radiation” interchangeably.

We now discuss the di-fermion processes individually.

102



2.4. Sensitivity projections

e ete ™, ptp~ and 7H77: We assume 100% reconstruction efficiency for muon
and electrons, and an efficiency of 50% [180] for each 7 lepton. Notice that the
cross-section for muons is around 30 times larger than for the other leptons. This
is mostly due to the t-channel enhancement of the elastic pu*u~ scattering.

« cc and bb: We assume 50% and 80% efficiency for tagging respectively charm
and bottom quark jets [180]. We ignore the mis-tag of light jets, as well as ¢/b
misidentification. No information on the charge of the tagged quark is employed.

e jj: We consider the production of two light quarks u, d or s, which we suppose to
be reconstructed as jets with 100% efficiency. In Table 2.3 we report separately
the production of a neutral (Nt) and of a charged (Ch) quark/anti-quark pair, but
the two processes are collected into a single 2-jets final state. We also include the
contribution from mistagged b and ¢ quarks.

o tt: Based on Ref.s [37,204], we estimate as 5% the total efficiency for the recon-
struction of the ¢ pair. This (somewhat low) efficiency estimate only includes the
semi-leptonic tt final states, in which the charge of the tagged top quarks can be
measured.

e tb and cj: We use 50% and 80% tag efficiency for the charm and the bottom,
respectively, and v/0.05 = 20% efficiency for the top. The charge of the top quark
is assumed to be reconstructed.

o eve, pvy, and Tv;: The efficiency is 100% for muons and electrons, and 50% for
the 7. It should be noted that, because of the invisible neutrino, the hard scattering
region of this final state can not be selected with a cut on the invariant mass of
the two particles. The selection will have instead to be performed on the energy
and the transverse momentum of the observed charged lepton.

The different dependence on W and Y of the neutral- and charged-current Born amplitudes
entails (see Section 2.3.1) a different dependence on these parameters of the exclusive and
semi-inclusive cross-sections. The statistical combination of the two types of cross-sections
can thus increase the sensitivity, as illustrated in Figure 2.5. The left panel displays the
95% CL sensitivity of ¢¢ production to W and Y, comparing the impact of the exclusive
cross-section (in green) to that (in orange) of the cross-section with radiation. The two
measurements probe different regions of the W and Y parameter space, and a significant
sensitivity gain is observed in their combination (in blue). The green and blue lines on
the right panel of Figure 2.5 display a similar complementarity pattern for the e*e™ final
state. There also appears an even stronger complementarity with the measurement of
the ev cross-section, reported as a gray dashed line. The emergence of the ev process,
as well as the other charged final states in Table 2.3, is entirely due to EW radiation.
Nevertheless its (semi-inclusive) cross-section is large, because EW radiation is indeed
a prominent phenomenon at F., ~ 10 TeV. Furthermore the cross-section displays a
peculiar dependence on new physics, producing a sensitivity contour that is different from
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Figure 2.5 — 95% CL sensitivities to the W and Y parameters of the 30 TeV muon
collider. Exclusive and “with radiation” (i.e., semi-inclusive minus exclusive) cross-
section measurements of the ¢¢ process are considered in the left panel. The right panel
shows the impact of eTe™ (exclusive and “with radiation”) and ev (that only exists at
the semi-inclusive level) final states.

that of the eTe™ measurements. The statistical combination of the three measurements
(in blue) improves the sensitivity significantly.

The final results of our analysis including all channels are summarized in Figure 2.6
and in Table 2.4. The figure displays the sensitivity contours of exclusive measurements
as dotted lines, and the combined impact of charged and of neutral “with radiation”
cross-sections, in dashed. The combination of all measurements is also shown. The
table reports the results for 3, 10, 14 and 30 TeV, comparing the sensitivity of exclusive
cross-sections alone with the total combination.

At the High-Luminosity LHC (HL-LHC), it will be possible to probe the W and Y
parameters at the level of 4-1075 and 81075, respectively, at 95% CL [1,2,11]. Table 2.4
shows that the 3 TeV muon collider would improve by one order of magnitude or more,
and the sensitivity improves quadratically with the muon collider energy. Among the
other future collider projects [205], CLIC at 3 TeV has the best sensitivity, of around
4-107 for both parameters [180]. This is of course comparable with the 3 TeV muon
collider sensitivity, and a factor 10 worst than that of the muon collider at 10 TeV. The
comparison with FCC-hh projections is even more favorable to the muon collider.
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Figure 2.6 — 95% CL sensitivities to the W and Y at the 10 and 30 TeV muon collider.

Exclusive-only [95% CL)| Combined [95% CL)
Wx107 Y x107 PW.,Y Wx 107 Y x107 PW.Y
3TV || [-53,53] [—48,48] | -0.72 || [—4L,41] [C46,46] | -0.60

10 TeV || [—5.71,5.71] | [~4.47,4.47] | -0.74 || [=3.71,3.71] | [~4.16,4.16] | -0.54
14 TeV || [=3.11,3.11] | [—2.31,2.31] | -0.74 || [~1.90,1.90] | [—2.13,2.13] | -0.52
30 TeV || [~0.80,0.80] | [—0.52,0.52] | -0.75 || [~0.42,0.42] | [—0.47,0.47] | -0.48

Table 2.4 — Single-operator 95% CL reach and correlation for the W&Y parameters at
different muon collider energies including only exclusive cross-sections and combining all
measurements. Since the likelihood is dominated by the linear terms in the new physics
parameters, the single parameter reach plus the correlation characterizes our results
completely.

2.4.2 Diboson operators

The setup for this analysis is similar to that of Ref. [118]. Namely we consider the SILH
operators Oy and Op, we convert them into the current-current interactions O, and
's as in Table 2.2, and we study their effect on the production of high-energy vector
bosons and Higgs. Notice that, by the equivalence theorem, Oy, and O’ only significantly
affect the production of longitudinally polarized vector bosons. We are therefore here
studying the production of high-energy longitudinally vector bosons and Higgs, with the
production of transversely polarized vector bosons playing merely the role of background.
Since the effects are quadratically enhanced by the energy, such high-energy di-boson
processes are by far the best probe of these operators at the muon collider [118].

We thus consider, among those in Table 2.3, the following final states
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o Zh: Following Ref. [118], we consider an efficiency of 26% for tagging the two
hard and central final state particles, with a selection that reduces the background
to a manageable level. Notice that this final state is dominated by the longitudinal
helicity channel Zyh.

o« WTW™: Again like in [118], we assume a 44% efficiency for the detection of the
two W bosons in the semi-leptonic decay channel, where the charge of the W’s can
be reconstructed. Transverse WW production plays here the role of background.

e Wh: We consider an efficiency of 19%, having in mind the leptonic W decay, and
h — bb. Like for Zh, there is no relevant background from transverse production.

e WZ: We apply an efficiency of 23%, which corresponds to the leptonic W and the
hadronic Z decay. The background from transverse W Z production is considerable,
and is taken into account.

In our analysis we do not consider the possibility of employing the decay angles of the
bosons to extract information on their polarization. Therefore the transverse di-bosons
processes I/VT+ W and WrZr are effectively irreducible backgrounds to the corresponding
longitudinal processes, and the scattering angle 6, is the only discriminating variable.
An increased lower cut on 6, benefits the sensitivity, as it suppresses the ¢-channel
enhancement of the transverse background processes. After optimization we find, like in
Ref. [118], that a good signal sensitivity is obtained by the measurement of fiducial W
and W Z cross-sections in the range

6, € [67°,150°] . (2.71)

The possibility of binning 8, has been considered, but found not to improve the sensitivity.
Our analysis will thus be only based on the measurement of the fiducial WW and W Z
cross-sections in the above region, and of the Zh and Wh cross-sections for 6, € [30°, 150°].
As in the previous section, both exclusive and semi-inclusive cross-sections will be
employed for the neutral processes WW and Zh, plus the semi-inclusive charged cross-
sections for Wh and W Z.

The results of our analysis are reported in Table 2.5 and on the left panel of Figure 2.7,
in terms of the dimensionful coefficients (Cp and Cyy) of the Oz and Oy, operators of
Table 2.2. Our finding are quantitatively similar to the ones of Ref. [118]. We can thus
refer to that article for the (very favorable) assessment of the muon collider sensitivity to
Cp and Cy in comparison with current knowledge and with other future colliders. We
devote the rest of this section to discuss the approximate flat direction of the likelihood
in the (Cp, Cw) plane, which we observe in Figure 2.7 (left panel).

The flat direction entails a strong degradation of the marginalized sensitivity, as in
Table 2.5. Furthermore this degradation brings the marginalized Cg and Cyy limits to
large values, in a region where the likelihood is considerably affected by the contributions
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Single Operator (Exclusive-only) [95% CL]
Cg[10~% TeV—7] Cw[10~% TeV 7]
Linear Quadratic Linear Quadratic
3 TeV [—170,170] [—189,157] || [-77.4,77.4] | [—81,74.4]
10 TeV || [-15.3,15.3] | [—17,14.2] || [-8.18,8.18] | [-8.62,7.82]
14 TeV || [-7.86,7.86] | [—8.69,7.25] || [—4.40,4.40] | [—4.65,4.20]
30 TeV || [-1.73,1.73] | [-1.92,1.6] [-1.1,1.1] | [-1.16,1.04]
Single Operator (Combined) [95% CL]
Cp[10~* Tev—7] Cw[10~% TeV—7]
Linear Quadratic Linear Quadratic
3 TeV [—153, 153] [—169,142] || [-65.8,65.8] | [—68.2,63.6]
10 TeV || [-12.8,12.8] | [-13.9,11.9] || [-6.14,6.14] | [-6.37,5.93]
14 TeV || [—6.40,6.40] | [-6.95,5.99] || [-3.17,3.17] | [—3.29,3.06]
30 TeV || [—1.34,1.34] | [—1.44,1.25] || [-0.71,0.71] | [-0.737,0.686]
Marginalized (Exclusive-only) [95% CL]
Cp[10~1 TeV—7] Cw[1071 TeV—7]
Linear Quadratic Linear Quadratic
3 TeV [—478,478] [—352, 596] [—217,217] [—583, 125]
10 TeV || [-53.2,53.2] | [—35.2,50] [—28.4,28.4] | [-53.5,14.2]
14 TeV || [—29.4,29.4] | [—18.6,25] [—16.5,16.5] | [-27.5,7.82]
30 TeV || [-7.98,7.98] | [—4.45,5.19] || [-5.04,5.04] | [-6.16,2.05]
Marginalized (Combined) [95% CL]
Cp[10~* TeV—7] Cw[10~% TeV—7]
Linear Quadratic Linear Quadratic
3 TeV [—442, 442] [—341, 535] [—189, 189 [—426, 115]
10 TeV [—44, 44] [—33.4,43.4] || [-21.1,21.1] | [-35.1,12.3]
14 TeV || [-23.1,23.1] | [-17.6,21.6] || [—11.4,11.4] | [-17.6,6.6]
30 TeV || [=5.24,5.24] | [—4.12,4.43] || [=2.79,2.79] | [-3.70, 1.62]

Table 2.5 — Single operator and marginalized 95% reach on C'g and Cyy, at different muon
collider energies. The sensitivity of exclusive cross-section measurements alone is shown
separately from the combination of all the measurements. The significant degradation of
the marginalized bounds relative to the single-operators ones, and the strong sensitivity
to the quadratic terms at the marginalized level, is due to the approximately flat direction
displayed in Figure 2.7
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Figure 2.7 — Left: 95% sensitivity contours in the (Cp, Cy ) plane at the 30 TeV muon
collider. A second allowed region, not shown in the figure, can be eliminated by other
measurements [118]. Right: Zh and WW likelihood contours at tree-level. Notice that
the ellipses for WW and Zh are tangent in two points, one being the SM, the other being
the point where the amplitudes have the same magnitude as in the SM but opposite sign.

to the cross-sections of the terms that are quadratic in the new physics parameters. In
theories like Composite Higgs where Cpw ~ 1/ m2, this fact implies that the marginalized
limits correspond to a new physics scale m, not much above the collider energy. In fact,
looking at Table 2.5 we notice that the 30 TeV Cp reach corresponds to m, = 43 TeV.
Thus, if new physics happened to sit along the flat direction in Figure 2.7, diboson
processes would fail to extend the muon collider sensitivity well above the direct mass-
reach. We do not have reasons to expect new physics to lie in that direction. Actually in
certain Composite Higgs models one expects it to lie in the nearly orthogonal direction
Cp = Cy [118]. However the presence of the flat direction is an obstruction to the broad
exploration of new physics and to the characterization of a putative discovery. It is thus
worth explaining its origin and discussing strategies to eliminate it.

The origin of the flat direction in the tree-level sensitivity contour (showed dashed, on the
left panel of Figure 2.7) is readily understood analytically, by considering the gradients
“V?” of the Born-level cross-sections in the (Cp, Cy ) plane, around the SM point (0, 0).
Using the results for WW and Zh shown in Figure 2.8 and rescaling the gradients by
the common factor 2 E2 o one finds

Vit = (=ti){—th,+1}, VIV = (4+8){+65, +1},  VE' = V" =46,{1,0},

(2.72)
where sup- and sub-scripts refer respectively to the final states and to the chirality
of the incoming fermions. Notice that the Zh and WW gradients for right-handed
initial states are perfectly aligned, so that this contribution to the cross sections has
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Figure 2.8 — Left: Born-level cross-sections, with ty the tangent of the Weinberg angle,
normalized to a common o( (whose expression is irrelevant). Right: the angle between
the ZH and WW cross-section gradients as a function of the beam polarization fraction.

a flat direction (orthogonal to the gradient). The degeneracy can only be lifted by
the left-handed contribution to the cross sections. However, given the small value of
t2, ~ 0.3, the gradients V%h and VEVW also form a relatively small angle, ~ 30°. They
are thus not very effective in lifting the flat direction when considering the total (L + R)
contribution to the WW and Zh cross-section. Indeed, the angle between V%h + Vﬁh
and V%VW + ng is in the end only ~ 17° and thus the flat directions of the two
cross-section measurements essentially coincide, as the right panel of Figure 2.7 shows.
The combined likelihood is consequently also flat, in the same direction.

As evident in eq. (2.72), the L-gradients form a large angle with the R-gradient. Therefore,
if one could use polarized beams, the degeneracy would be eliminated by measuring the
contribution of each chirality. Considering a polarization fraction — Py, for the muon, and
+ Py, for the anti-muon beam, the cross-section gradients read (we indicate by Vg the
identical V", VW)

(1 + PL)2
4

V4 = vZh 4 (1- PL)2VR, oww _ (1 +PL)2VWW n (1- PL)ZVR’
(2.73)
The angle between the two gradients steeply increases for positive Py, as indicated by
the plot in the right panel of Figure 2.8. Correspondingly, even a modest amount of
polarization has a considerable impact on the sensitivity. The left panel of Figure 2.9
displays our sensitivity projections in a scheme where the VHEL integrated luminosity is
equally split between positive and negative P, = £30%. The likelihood contour (in green)
corresponding to Pr, = +30% is significantly smaller than that (in blue) for Pr, = —30%,
owing to the lifting of the flat direction achieved for positive Pr. On the other hand,
the measurements at Pr, = —30% probe a direction complementary to that probed at
P;, = +30%. The combination of the two measurements thus benefits the sensitivity.
The impact of beam polarization was emphasized already in Ref. [118]. Here we confirm
that result, using more accurate predictions and including the entire set of exclusive and

semi-inclusive cross-section measurements previously described.
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Up to this point, we discussed the flat direction in the un-polarized likelihood (left panel
of Figure 2.7) by employing the tree-level cross-sections. When considering also EW
radiation, the predictions are significantly affected, but the flat direction is not fully
eliminated. For the exclusive Zh and WW cross-sections this is easily understood, since
virtual radiation suppresses the L-processes more than the R ones, owing to the larger
Sudakov for incoming left-handed muons. The exclusive Zh and WW cross-sections
gradients are thus even more aligned than the gradients of the corresponding tree-level
predictions. The semi-inclusive cross-sections for Zh and WW production are also
quite aligned, among them and with the exclusive cross-sections. This was expected
because the partial cancellation between real and virtual logarithms make semi-inclusive
cross-sections not vastly different from the tree-level ones.

On the contrary, the measurement of the charged processes W Z and Wh could have been
expected to eliminate or mitigate the flat direction, because they are strongly sensitive
to the Born cross-section of the charged scattering (uv)r, — WZ/Wh (see the left panel
of Figure 2.8). The associated gradient

Vi =2{0,+1}, (2.74)

points in a different direction than th, VEVW and V. Therefore the gradient of
oWh/WZ ¢ould in principle point in a direction that is completely different from that of
the (nearly parallel) gradients of the Zh and WW cross-sections. However, by expanding
at the first order in £ = g2/1672 log?(E2,/m2,), the unpolarized (longitudinal) W Z and

W h cross-sections are approximately equal and read
1
oWZ ~ gWh ~ 1[, (0B + oW oDy, (2.75)

where a%l is the charged Born cross-section reported on the left panel of Figure 2.8

#hWWare the Born cross-sections of the

(times 1/4, from the polarization average) and o
neutral processes. Therefore, the charged cross-section gradient VCLh must compete with
the (nearly parallel) gradients of Zh and WW | and its size happens to be insufficient to

Wh/WZ Zh/WW

produce a large misalignment angle between the o and o gradients.

The situation would be improved, if we could tailor an observable in which the agh and
oWW contributions in eq. (2.75) are eliminated or reduced. Notice, for that purpose,
that the Zh and WW terms in eq. (2.75) can be interpreted as due to one hard upu
neutral-current scattering, followed by the radiation of one charged W boson from the
final legs of the hard process. The W is thus preferentially collinear to the final states.
The 0%1 term comes instead from the radiation of a W from the initial state, collinear to

the beam axis, followed by a hard v scattering.'® This suggests to consider alternative

9This interpretation would straightforwardly correspond to Feynman diagrams in a physical gauge,
where DL’s are associated to emissions from individual legs. We already remarked that in covariant
gauges instead they arise from the interference between emission from strictly different legs.
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Figure 2.9 — Left Panel: 95% CL contours in for P;, = £30% beam polarization. Right
Panel: the impact of the ISR-inclusive Wh cross-section measurement.

Wh and W Z cross-sections that exclude final state radiation (FSR) while being inclusive
on initial state radiation (ISR). FSR consists of soft radiation collinear to the hard
particles in the final state, which is precisely the source of the first two terms in eq. (2.75).
Excluding FSR, the resulting “ISR-inclusive” cross-sections are expected be roughly
wz/wh _ 1. o
UISRiiHC = Z[’O’CB : (276)
This observable should thus be mostly sensitive to Cy, and its measurement should

produce a nearly horizontal band in the (Cp,Cy ) plane, thus eliminating the flat

direction.

Unfortunately we are unable to produce resummed predictions for the ISR-inclusive
cross-sections with the IREE methodology. We can however illustrate the impact of
such measurements using tree-level MadGraph [66] predictions with the SMEFT@QNLO
model [68], focusing in particular on the Wh channel. Specifically, we simulate the
process
+,,— +117—
wpum - WTW"h, (2.77)

at Feo, = 30 TeV, with the following selection cuts. First, we identify as “hard” the
W boson that forms, together with the Higgs, the pair with the highest invariant mass.
Secondly we ask this mass to be above 0.85 - E.,, = 25.5 TeV and the hard W and h to
be within the central region 6, € [30°,150°]. These selections enforce the occurrence of
a hard scattering, and correspond to our definition of a “semi-inclusive” process. We
further restrict to the “ISR-inclusive” region by asking the other (“soft”) W to be parallel
to the beam, in a cone of 20°. Since the emission of at least one soft W is required for Wh

production, the latter cut effectively corresponds to a veto on central EW radiation.?"

20The attempt made in Ref. [118] to exploit the WW h process did not impose the crucial angular cut
that defines the ISR-inclusive region.
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Figure 2.10 — Left Panel: 95% exclusion reach on the Composite Higgs coupling-mass
parameter space. The reach for Og is taken from [118]. Right Panel: sensitivity
projections for a Y-universal Z’ model. The gray band and the blue dash-dot line
represent respectively the region probed by the HL-LHC program and the sensitivity
projections for all other future collider projects [206].

The above estimate of the ISR~inclusive cross-section produces the blue band on the right
panel of Figure 2.9. As expected, the band is nearly horizontal. In the figure we also
display, in green, the 95% CL contour of the likelihood including all the measurements
discussed in the present section, apart from the measurement of the semi-inclusive Wh
cross-section which is correlated with the ISR-inclusive measurement. The combination
of the two contours, shown in red, strongly mitigates the flat direction issue. Notice
however that our tree-level estimate of the ISR-inclusive cross-section could be subject to
large errors, and resummed predictions should be employed for a conclusive assessment
of the sensitivity gain.

2.4.3 BSM sensitivity

Composite Higgs.As a first concrete scenario of new physics we consider Composite
Higgs [207-209]. In this scenario, the Higgs is a composite Pseudo-Nambu-Goldstone
boson emerging from some strong dynamics at a scale m,. In principle the underlying
dynamics could arise from gauge interactions, like in QCD. However the only concrete
realistic constructions, accounting for the origin of both the fermion masses and the
scale m, itself, have been obtained in the context of warped compactifications. In these
constructions, compositeness occurs in a holographic sense. Within the Composite Higgs
scenario, the size of the Wilson coefficients in the resulting low energy EFT, can be
estimated, under simple but robust dynamical assumptions, in terms of the mass scale
m. and overall coupling strength g, of the underlying strong dynamics [10]. Furthermore,
simple considerations suggest g. < 4w, while the existence of O(1) couplings within the
SM implies g. > 1. More details on Composite Higgs can be found in sec. 3.1. Using the

112



2.4. Sensitivity projections

12 —
10 :,' /,,.
;""" m Comp. Top (e, =€)
8 A = Uni ICHq f AL
S niversa
N A ® N 10 TeV
S 6 L7 1=
O;i i ‘\“ 10 TeV
4 : 5 \‘\ 95% CL mm Universal CH
i 0 )y
e Q&CEL ~~~~~~ m Comp. Top (¢ = 1) ]
20 40 60 80 100 120 40 80 120 160
m. [TeV] m, [TeV]

Figure 2.11 — 95% exclusion reach for the two partial compositeness scenarios under
consideration. The green shapes represent the combined bound from the flavor universal
measurements, while the red contours also includes the di-top and di-bottom constraints.
The projected sensitivity of other future collider projects and the gray band of HL-LHC
are taken from Ref. [206]. The right panel (¢, = 1) also includes the stronger CLIC
sensitivity estimated in Ref. [210].

power-counting rules we review there, we find the Wilson coefficients of the operators in
the left column of Table 2.2 to scale as

2 12
Cow g ©B 9 1 S
Cow = — ——, (Oyp=—-"———, Cw=cw , Cp=cp ) (2.78)
2 g2m? 2 gim3 m3 ms

where the dimensionless coefficients coyy, cop, cw, cg are expected to be of order 1. Even
though it does not affect the processes studied in this section, an important role is also
played by

2
CH g
Op = 0,(H'H)O*(H'H),  Cyx= ot

(2.79)

In our sensitivity projections we will report the corresponding bounds, as obtained in [118]
by studying the process u™pu~ — hhvv at tree level. Other probes of Cy at the muon
collider, from Higgs coupling measurements, are superior or competitive at the lower
energy muon colliders [118], but they are not considered in the sensitivity plots.

Using the above scalings, and setting all the ¢ coefficients to 1, we can translate the
bounds of Section 2.4 for a 10 TeV muon collider into sensitivity estimates in the plane
(ms, g«), as in Figure 2.10. In the same plot we also report the HL-LHC sensitivity
projections, the envelope of the 95% CL sensitivity contours of all the future collider
projects that have been considered for the 2020 update of the European Strategy for
Particle Physics [206]. The advantage of the muon collider is evident. Results at muon
colliders with different energies, with an integrated luminosity scaling as in eq. (2.68),
are reported in Appendix B.4.
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Composite top.The results for purely bosonic operators we just discussed apply robustly
to basically all composite Higgs scenarios. Operators involving fermions are more sensitive
to the assumptions on the flavor dynamics, but one convenient option is offered by the
mechanism of partial compositeness [211], under which the elementary fermions mix
linearly with heavy partners in the strong sector. Due to its large Yukawa coupling,
the top quark is expected to have a large mixing with its partners and therefore precise
measurements involving the third family represent an appealing opportunity to probe

new physics.

At the muon collider the most relevant effects are expected in t¢ and bb production.?!

Indeed the dimension-6 operators in the last block of Table 2.2 gives rise to contributions
that grow with E., and which can be exploited at the large energy of the muon collider.
In a model-independent approach one can parametrize the “amount of compositeness” of
respectively the 3" quark family left-handed doublet and right-handed up-type singlet
by €, and €;. These quantities range from 0 to 1. Given the universal coupling strength
g« of the strong sector the resulting top Yukawa coupling scale as [10]

Yt ~ €q€tgx - (280)

The relevant Wilson coefficients are then expected to scale as (see [204] for a short review)

2 /.2 /.2
ge ge €
C(?B = cgig, C(B =c B*Qq , Cip = Cthmt ) (2.81)
* *

(
q m q aD 2

where the ¢; are, as usual, expected to be order 1 coefficient. For concreteness we focus
on two benchmark scenarios, where we fix ¢; and ¢, and leave g, and m. free. In the first
scenario, the right-handed top quark is assumed to be fully composite, corresponding
to ¢ = 1 and ¢, = ¥4/g«. In the second, the two top chiralities are assumed equally
composite, that is €, = €, = /yi/ 9.

Notice that the contribution of the operator

1 .- _
O = 5 (R tr) (LRt R) | (2.82)

to the Wilson coefficients of the O;p, through Renormalization Group (RG) evolution, is
not negligible in the scenario of total right-handed top quark compositeness [210]. Using
the power-counting estimate
2
g
Cit = € =3¢, (2.83)

L

21See [212] for a similar analysis for CLIC.
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we obtain a correction [210] to the Cyp coefficient at a scale p = Eep
32 ¢ m? 5 g 32 g3 m?
CtD(l,L) = CtD(m*)_*'Ctt(m*)?@lOg (ILLZ :Etﬁ CtD‘f’Cttiiﬂ_lOg MZ .
(2.84)

This correction is sizable if €; ~ 1, especially for large g, because the sensitivity of the
muon collider extends to a scale m, that is significantly larger than Fy,.

There are in principle three more operators O gy, Og; and OSBI (defined as in the “Warsaw”
basis [9]) that mix significantly with those in eq. (2.81) through RG evolution. However,
the their effects can only be important in the case where ¢, ~ 1, which we do not
contemplate in our analysis. We will therefore neglect the RG effects of the latter three
operators and consider only those of Oy.

Our results are summarized in Figure 2.11, where we report the projected exclusion
reach in the g, and m, plane in the two scenarios under consideration for E., = 10
TeV. Additional results can be found in Appendix B.4. Starting from the scenario
of equal compositeness (left panel) we notice that at g. the additional hypothesis of
top compositeness extends the muon collider potential to probe the scale of Higgs
compositeness m,. The effect is even stronger for fully composite ¢ (right panel), which
shows that di-top measurements can cover up to m, ~ 150 TeV for g, = 8. We should
point out, however, that this result depends on the exact O(1) value of the ¢y, ¢ip
coefficients in eq. (2.84). This dependence is illustrated in Figure B.4, where we set
¢p = 1 and we vary the value of cy.

Finally we remark that a detailed analysis of the composite Higgs scenario with partial
compositeness would require specific hypotheses on the flavor dynamics and a detailed
inspection of the flavor observables. Depending on those hypotheses, principally the
maximality or minimality of the underling flavor symmetry, the resulting flavor constraints
on the new physics scale m, can vary dramatically. While a comprehensive analysis
clearly exceeds the purposes of this work, a perspective can be gained by considering
available studies. As shown in Ref. [213], under the strongest assumptions, that is for a
symmetry structure offering the best protection from unwanted effects, flavour and CP
observables could start exploring the range m, = O(10) TeV in the next decade or so,
given the availability of better measurements and assuming better theoretical predictions.
This is roughly the same range explored by a 3 TeV muon collider. Moreover the m, ~ 50
TeV reach of a 10 TeV muon collider vastly surpasses any conceivable improvement of
flavour constraints, and competes with the more stringent flavour bounds obtained by
making more generic assumptions on the flavor dynamics. Notice also that the present
lepton flavor universality anomalies in B-decays, at least the seemingly more prominent
ones in neutral currents, suggest a new physics scale in the ~ 30 TeV range, which could
be explored both directly and indirectly by the muon collider.
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Figure 2.12 — Reach on the new physics scale at 20 (continuous) and at 50 (dashed),
relative to the collider energy, as a function of the integrated luminosity normalized to
eq. (2.68). The red lines are for Universal manifestations of Higgs compositeness, while
the green ones include the effect of Top compositeness in the e; = 1, €; = 4/ g+ scenario.
The blue lines are for the Y-universal Z’ for a fixed coupling gz = g.

Y-Universal Z' model The Y-universal Z’ model represents a simple extension of
the SM, featuring an additional heavy gauge boson, of mass M/, on top of the SM
particles.?? In this benchmark scenario the new vector charges are aligned with the SM
hypercharge with coupling ¢gz/. Requiring the width of the Z’ to not exceed 0.3My: sets
the perturbative limit on the coupling to be gz < 1.5. At energies below M/, integrating
out the Z’ only generates the O} operator of Table 2.2. The Wilson coefficient of the
operators corresponds, by eq. (2.69), to

2
Y = (W) : (2.85)

The sensitivity projections are reported in the right panel of Figure 2.10. The orange and
green regions are the ones probed by muon colliders at 3 and 10 TeV energy, respectively.
The gray band represents the expected exclusion reach from HL-LHC, while the blue
line indicates the combined sensitivity from other future collider projects (dominantly
FCC, and the 3 TeV stage of CLIC). The 3 TeV muon collider sensitivity is obviously
similar to the one of CLIC. A 10 TeV machine would greatly improve this result probing
up to 500 TeV for large (but still perturbative) coupling. The dashed lines represent the
discovery reach, showing that already at 3 TeV there are vast opportunities for indirect
discovery, well above the region that the HL-LHC might exclude. Results at higher muon
collider energies are reported in Figure B.2.

228ee [206] for details. Concrete BSM scenarios featuring additional Z’s can be found, for instance, in
Ref. [99].

116



2.5. Conclusion and outlook

2.5 Conclusion and outlook

We have studied the interplay between two classes of novel phenomena, which can be
observed at future lepton colliders with very large center of mass energy. The first class
consists of hard scattering processes induced by new physics at around 100 TeV. The
second class consists of the long-distance effects of EW radiation. Both phenomena play
a relevant role at lepton colliders with E¢, ~ 10 TeV, with particular focus on muon
colliders, which are the main target of our discussion.

The interplay manifests itself in two ways. The first one is simply that EW radiation
effects on the SM predictions are large (see Sections 2.3.1 and 2.3.2) and require to
be included and resummed with high accuracy in order to isolate the putative BSM
contribution to the measurements. EW radiation thus plays for muon colliders a similar
role as QCD radiation for the LHC, with the difference that its effects can not be
mitigated by the choice of suitable (inclusive) observables. Therefore to some extent,
they are even more important for muon colliders than QCD is for the LHC.

The second and possibly more interesting aspect of the interplay is given by the influence
on the pattern of EW radiation operated by the presence of new physics in the hard
scattering amplitude. This makes observables that require or that exclude the presence of
radiation display a different dependence on the new physics parameters, and the sensitivity
profits from their combined measurements as illustrated in Sections 2.3 and 2.4.2, and in
Appendix B.3.

Our sensitivity projections rely on putative measurements of exclusive and semi-inclusive
cross-sections. Both classes of processes are characterized by the occurrence of a hard
scattering, with two particles in the final state carrying almost all the available energy.
The emission of additional EW bosons and hard photons is vetoed in the exclusive case
and allowed in the semi-inclusive one. We computed the resummed semi-inclusive cross-
sections in double logarithm (DL) approximation by extending the IREE methodology
[156], as described in Section 2.2.2. The exclusive cross-sections were computed at DL,
but also including single logarithms at 1-loop, which we found to be sizable.

The studies performed in this chapter should be improved and extended in many directions.
Better predictions will be definitely needed in order to approach the percent-level accuracy
target that is needed to fully exploit the statistical precision potential of a muon collider.
Moreover, given the magnitude of the radiation effects we observed, it is possible that
more accurate predictions will considerably affect some of our sensitivity projections.
A first step in that direction, which we leave for future work, is the inclusion of single
logarithms at fixed leading order in the semi-inclusive predictions. That could be achieved
by combining one loop virtual logarithms with a factorized treatment of real emission.
That calculation, would possibly also help clarify the connection between soft-collinear
effects (studied in this chapter) and the PDF /Fragmentation Function treatment of EW
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radiation. It is not unconceivable that the same approach could be extended at the two
loop order. In parallel, the impact of resummation beyond DL should be assessed. The
SCET methodology currently offers the most promising approaches.

Another priority is to investigate further classes of cross-sections, sensitive to different
EW radiation patterns. Our results indicate that investigation should be done on the
basis of the structure of short distance new physics. At the end of Section 2.4.2 we took
one step in that direction, showing that the approximately flat direction in the (Cp, Cy)
likelihood contours is mitigated, in the absence of polarized beams, by considering an
“ISR~inclusive” cross-section. This third cross-section type is inclusive on radiation
collinear to the beam, but vetoes centrally emitted radiation. We could not compute the
ISR~inclusive cross-section at DL with our IREE methodology and limited ourself to a
tree-level estimate. A straightforward direction for progress would be to perform that
calculation and verify if and how it impacts our findings.

The definition and study of cross-sections should be also based on experimental con-
siderations. We already pointed out that exclusive cross-sections are problematic in
that regard. Indeed imposing the radiation veto requires experimental sensitivity to EW
radiation that is emitted in all directions, including the forward and backward regions
along the beam line. The angular coverage of the muon collider detector is still to be
quantified, however we expect that it will be insufficient for the measurement of exclusive
cross-sections.

In view of the above, it is important to emphasize that our sensitivity projections have
been verified to not change radically when exclusive cross-section measurements are not
available. This conclusion is not in contradiction with (and cannot be inferred from) our
sensitivity plots, where (see e.g. Figure 2.6) we observe a strong complementarity between
“exclusive” observables and observables “with radiation”. Indeed for neutral processes
the latter observables consists of the difference between the semi-inclusive and the
exclusive cross-sections. Therefore the impact of eliminating the exclusive measurements
can not be estimated by suppressing the “exclusive” cross section measurement in the
computation of the likelihood. The proper estimate is obtained by employing the semi-
inclusive neutral processes without subtraction, combined with the charged measurements,
produces a combined reach that is not much inferior to the one that exploits the exclusive
measurements. In essence, the main sensitivity gain due to radiation stems from the
emergence of the charged processes and from their complementarity with the neutral ones.
The complementarity between neutral measurements with different degrees of radiation
inclusiveness (e.g., exclusive versus semi-inclusive) plays instead a less relevant role in
our results. This same qualitative behavior can be observed in the comparison between
the neutral and charged lepton production processes on the right panel of Figure 2.5.

On the other hand, the complementarity between exclusive and semi-inclusive mea-
surements exists and can benefit the sensitivity as we illustrated on the left panel of
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Figure 2.5. It plays a marginal role in the combined fit to the limited number of EFT
operators we considered in [3]. It could however be relevant in a more global explo-
ration and characterization of putative new physics. One way to recover sensitivity, if
exclusive measurements were indeed unavailable, could be to exploit the ISR~inclusive
cross-sections. These are easier to measure because they do not require sensitivity to
radiation in the forward and backward regions. This aspect should be investigated.

Our phenomenological results strengthen and extend previous estimates of the muon
collider sensitivity to heavy new physics. We have considered a variety of BSM scenarios
with new physics coupled to the SM with electroweak strength. We found that a
E.y = 10 TeV muon collider can probe up to a scale ranging from 50 to 200 TeV. The
reach improves linearly with E.,. These figures are significantly above the potential
(direct and indirect) sensitivity of other future collider projects, and above the direct
sensitivity reach of the muon collider itself, which is obviously bounded by the collider
energy.

The indirect sensitivity to scales that are well above the direct reach is a great addition
to the physics case of a muon collider, whose relevance would not be diminished, but on
the contrary augmented, by the occurrence of a direct discovery. Indeed, direct hints for
new particles observed at the muon collider will turn into a full-fledged discovery of new
physics only after unveiling the underlying theoretical description of their dynamics. The
possibility of probing this dynamics well above the particle’s mass will play a decisive
role in this context. Furthermore, the direct manifestation of new physics might be
hard to detect. Perhaps, indirect probes will provide the first hint of its existence, to
be eventually confirmed by targeted direct searches. Finally, indirect searches for BSM
phenomena based on precise measurements guarantee a sound output of the project.
The connection with the phenomenon of EW radiation, which is interesting per se, adds
scientific value to the program.

Before concluding, we discuss the impact of the integrated luminosity on our results. We
employed the baseline luminosity in eq. (2.68), which corresponds to 90 ab=! for a 30 TeV
muon collider. Since the possibility of reducing the 90 ab™! target is under discussion, it
is worth assessing the impact of a lower integrated luminosity on our conclusions. An
important aspect is associated with the actual experimental feasibility of the relevant
measurements. While a conclusive assessment will require dedicated studies, the expected
number of events in Table 2.3 23 and the corresponding efficiencies show that, with a
factor 10 reduction in luminosity, some of the processes we employed would be left with
a handful of observed events, possibly preventing the corresponding measurements. If
the reduction in luminosity were less extreme, the sensitivity to the scale of new physics
would simply deteriorate as the fourth root of the luminosity, as shown in Figure 2.12
for some of the BSM scenarios we studied in Section 2.4.3. The figure displays the

23The table is for FEem = 10 TeV, however with the scaling in eq. (2.68) the results depend weakly on
the energy.
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exclusion and discovery reach on the new physics scale normalized to the collider energy
FEenyn = 30 TeV. This is the right figure of merit, since the goal is to extend the muon
collider sensitivity above the direct reach. The reduction by a factor of 1014 = 1.8 due
to a factor 10 luminosity reduction partially undermines this goal, especially for what
concerns the generic manifestations of the Composite Higgs scenario.
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5] A light composite Higgs vs flavor
observables

Flavor physics has always been a driving force for model building and thanks to the huge
experimental effort [214,215] plays nowadays a crucial role in our search for new physics.
Moreover flavor measurements can exclude substantial part of our models BSM or even
lead to new discoveries.

Among the possible UV completions of the SM, which can solve the hierarchy problem,
the composite Higgs, featuring the Higgs to be a composite particle of a new strong
dynamics, represents one of the most appealing scenarios. A fundamental ingredient
of composite Higgs models is the partial compositeness hypothesis, which includes a
description of the SM fermions masses. This task is, however, highly non trivial given
the peculiar SM flavor structure and the severe constraints from flavor observables, in
particular the CP odd ones.

In this chapter we face the problem of flavor physics in composite Higgs models, focusing
on a minimal set of scenarios which include a partial-compositeness [211] description of
the SM quarks. In particular we study a class of models where either the left-handed
or the right-handed SM quarks belong to the new strong dynamics. Starting from this
hypothesis we further assume a flavor symmetry group for the strong dynamics and we
classify our models according to the latter.

We find that enough flavor symmetries protect our models from (chromo-)electric dipoles
and that there is an optimal flavor group for the strong sector needed to avoid severe
flavor constraints. Furthermore we find that, among all the strongest constraints, B
physics observables are particularly important and can be the smoking-gun of the models
under consideration.
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3.1 Composite Higgs

The composite Higgs scenario is a simple and effective solution to the hierarchy problem.
The basic idea is that the Higgs boson, rather than being an elementary particle, is a
composite object of a new strong dynamics. The size of the Higgs ~ 1/m. set the SM
cut-off Agpr ~ m. in eq. (3) and the integrand dim} /dE is now localized around m.
At low energy F the latter integrand grows linearly with E, as predicted from the SM.
At energies E > m, it has a steep fall, being the composite Higgs transparent to wave
length much smaller than its characteristic length.

Composite Higgs models have been extensively studied in the literature (see for in-
stance [209,216,217] for reviews) and nowadays represent one of the most realistic
scenarios that can realize naturalness. In fact, despite of the various constraints from
collider searches (see [206] for recent results), a compositeness scale m, of few TeV seems
compatible with the present data and could solve the hierarchy problem with only 1 or 2
digits of fine tuning.

The mechanism behind the composite Higgs consists of a new strongly interacting
sector that completes the SM at high energies. This new dynamic, in analogy to QCD,
confines at low energies resulting in a set of bounds states, including the SM Higgs. The
composite sector itself emerges from a more fundamental theory at a scale Ayy and
that can naturally be larger than m, ~ TeV. This is necessary not to encounter again a
naturalness problem for m, at the TeV range and it is realized assuming that the strong
sector, at Ayy, is close to an UV fixed point of its renormalization group. Moreover, we
also need the strong sector to not flow down “too fast” in the IR. Namely we assume
the strong sector to be made just by almost marginal (and irrelevant) interactions, with
scaling dimensions not much smaller than 4. In this way we can focus on the dynamics
around and below m, and we can ignore the details of the UV dynamics at higher scales.

The structural features of composite Higgs models can be encoded in few simple ingre-
dients. The strong sector is symmetric under a global group G that it spontaneously
broken to a subgroup H at the confinement scale m,. The group H contains the SM
EW gauge group SU(2)r x U(1)y and the Higgs emerges as pseudo Nambu-Goldstone
boson in the G/H coset in this spontaneous symmetry breaking process. The explicit
symmetry breaking which makes the Goldstone “pseudo” comes from the mixing of
the composite sector with the elementary one!, through some interaction encoded in
a mixing Lagrangian L,,;;. These interactions are firstly mediated by the gauging of
SU(2)r, x U(1)y, and can contain additional linear mixing between the SM fermions and
linear operators belonging to the strong sector. The latter is the core of the so-called
partial compositeness construction that we discuss in detail later on.

A crucial aspect of this construction, that we need to emphasize, is that the Higgs is

LThis point is just to simplify the discussion, since it not necessary and there can be, in general, extra
sources of symmetry breaking.
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3.1. Composite Higgs

a pseudo goldtsone boson of an approximate symmetry and as so it is spontaneously
lighter of the other bounds states. In fact, as it happen in QCD, the confinement process
can produce many bound states, usually called resonances at m.. The pseudo-goldstone
bosons, being related to an approximate symmetry can be lighter than m,, allowing a
scale separation between the Higgs boson and the other resonances. Moreover through
the mechanism of the “vacuum misalignment”, the approximate goldstone symmetry
ensures that the Higgs boson is not only light but also looks like an elementary particle,
as in the SM (see for instance [209]).

The idea of a composite Higgs dates back to the 80’s [218-220] and attracted renewed
interests with extradimensional and holographic models [208,221-225]. For the present
and the next discussions it is enough to recall the general 4D EFT picture that describes
the phenomenology of this scenario [10,226]. By this, we mean that there is not only a
specific set of operators related to the Composite Higgs dynamics, it also means that
there are a set of rules that reproduce the size of the Wilson coefficients. In the case of
Composite Higgs, this rule takes the name of “SILH” power counting, from “Strongly
Interacting Light Higgs” [10], the title of the paper that pointed it out.

As we said, the main feature of composite Higgs models is that the Higgs arises as a pseudo
Nambu Goldstone boson of G — H (SO(5) — SO(4) in case of the minimal model [208])
symmetry breaking pattern, together with other resonance. We now parametrize the
Goldstone fields as

<3

U=¢'T, II=0474, (3.1)

with 74 the broken generators in G/H, we collectively denote ® the resonances with mass
~ m, and the field IT is weighted by the decay constant f = m./g.. We furthermore
assume that the only source of explicit breaking of G is absent in the limit £,,;, — 0
and that the strong sector is characterized by only one scale m, and one weak coupling
gsym < g < 4m.

The most general Lagrangian describing the composite states, in the limit L,;, — 0, is

0

I
e

ml
£c: fﬁcl

*

g«
U, mf[qq)] , (3.2)
where L. is a generic analytic function of its dimensionless arguments in the spirit of
Naive Dimensional Analysis (NDA) [227,228]. In eq. (3.2)d[®] = 1 for spin 0 and 1 field
¢ and d[®] = 3/2 for spin 1/2 fields (we avoid higher spin fields). Clearly, if the previous
is the most general local Lagrangian, the low energy EFT below m, for U (i.e. for the
Higgs boson) it is again the most general Lagrangian allowed by the goldstone symmetry.
This is captured by a g-model with decay constant f.

Yet, as we said, the group G is explicitly broken by the interactions with the SM that
implies new rules for the operators involving SM fields. In particular the SM gauge
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Chapter 3. A light composite Higgs vs flavor observables

bosons are associated to the respective gauge coupling and not to g,. Similarly if the
elementary fermions mix linearly to some composite operators AOvgpy € Lyniz, then
Ysnr is weighted by a factor A. Notice that the leading order expansion for U gives
higher dimensional operators among the SM Higgs describing universal composite Higgs
dynamics, that we already encountered in the previous chapter. We refer to the original
paper [10] for more details on the construction of the effective Lagrangian. We just
comment the for the applicability of the previous resglt iTE is crucial that the coupling
ga

ooz ) itis meaningful. Moreover,
notice that, this expansion is not only compatible with a weakly coupled scenario but

g« 18 g« < 4w, such that a semiclassical expansion (

also to a strong QCD-like dynamics allowing a large N expansion. In this case we can
4

identify g, = i (see again [209] for a review).

The construction of the effective Lagrangian through NDA is the starting point of all
the estimates that we perform in the rest of the chapter. So we repeat once again
that the EFT ideology suggests to write down all the higher dimensional operators
allowed by gauge and global symmetries and by the goldstone boson nature of the Higgs.
Furthermore NDA allows to estimate the size of the Wilson coefficients up to what we
assume to be and O(1) number.

3.2 Partial Compositeness

So far we just described the general logic behind composite Higgs models. A key ingredient,
that we now explore more in detail is the partial compositeness paradigm [211].2 This
costruction allows to include a description of the SM flavor and in principle an explanation
for the SM masses.

The most basic implementation of Partial Compositeness [211] are usually characterized
by three sets of mixings

Lonix = NG5 08 + MOl + N 04, + hec., (3.3)

where we are assuming one set of partners (O, Oq, Oy) for each SM fermions. Notice that
in some realization of partial compositeness a second mixing term with the left-handed
doublet is introduced. This will be necessary for some of the scenarios we will consider
in the following, but in the general case we study here it is unnecessary and leads to
further complications. We assume that the operators O come from the strongly coupled
composite dynamics that we take to be characterized by one typical mass scale m, and
one typical coupling g, in the same line of the previous discussion.

We now consider the so-called anarchic partial compositeness scenario (see [209] for a
review) where no flavor symmetries are assumed on the strong sector, with the only

2See [229-232] for extra-dimensional constructions addressing flavor in composite Higgs
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3.2. Partial Compositeness

requirement for eq. (3.3) to reproduce the SM Yukawas at low energy. The mixing
matrices A can written as

NG = ClNE N =XCY, N = MO (no sum), (3.4)

with all the C¥ a O(1) anarchic complex matrices and M hierarchical vectors A! < \? <
)\3'3

The hierarchic structure of the A vectors allows for a dynamical generation of the masses
through the RG running [208] of the theory from the UV scale Ayy > TeV to the IR
scale m,. Qualitatively, the energy scaling of A is dictated by the anomalous dimension
of the composite operators v = dim[O] — 5/2, where dim[O] is the conformal dimension
of the operator O. For v > 0 the running has the form

ms \7

Alma) ~ AAuv) { & : (3.5)
uv

leading to a small mixing with the composite sector, while a large mixing can be

generated for v < 0. However, as we will see in a moment, the SM flavor structure is

highly non trivial and a completely anarchic structure leads to severe constraints from

flavor observables.

In this scenario, at the scale m, the operators O% of a given mixing do not have any
distinguishable quantum numbers and can be rotated in flavor space together with
rotations in the elementary sector in order to rewrite the mixing matrices A in a more
convenient form

Lnix = XNyq, 0% + N, Oful + NjO4dy + h.c.. (3.6)

At energies smaller than m,, integrating out the composite resonances gives rise to the
Standard Model Yukawa couplings as

PBY PV

Ty, Yy = ; s, (3.7)

* *

iy _
Y, =

where ¢ and ¢ are some O(1) complex anarchic matrices.

The requirement of reproducing the SM masses and the CKM matrix, fixes the hierarchy

3Notice that some realization of anarchic partial compositeness require two mixings for the SM
doublets [233]. However we remark that this is not needed to reproduce the SM and furthermore it
requires specific assumption on the UV model.
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Chapter 3. A light composite Higgs vs flavor observables

among the different \. Namely we have

ma Mgy me AL ma AN ma Mg (3.8)
me A2 A2 Tomy NSNS Toms AZN2T my, AN '
Vitam ~ Vi ~ )\—? fori<j. (3.9)

q
The previous conditions fix the parameters of the model up to one undetermined quantity,
that in these models is conventionally taken to be

Tt :)\2/)\%, with y¢/ge S < g/t - (3.10)

~

The total lack of a structure in flavor space leads to large tree-level contributions to many
of the SM flavor observables that are accidentally suppressed in the SM, especially CP
violating ones. For example, the composite dynamics generates an electric dipole moment
(EDM) for the neutron. To be compatible with the strong experimental constraint [234],
the scale m, must be really large. If the dipole is generated at tree-level we can indeed
estimate this effect as

m
9 <1.8% 1072 cm = m, 45— 75 TeV. (3.11)
m*

dp, ~

In models where the dipoles are only generated at loop level, the bound on m, would
instead be suppressed by a power of g,/4m. Assuming a similar anarchic structure also
for the lepton sector, gives an even stronger constraint on m, coming from the much
more precisely measured EDM of the electron. In that case the bound becomes

de <11 x107% em = m, > 1300 TeV. (3.12)

~

Again, the bound on the mass gets reduced by a factor g./4m when the operator is
induced at 1-loop level.

Large tree-level contributions also appear to many other flavor observables. A complete
and updated analysis of those will be done in sec. 3.4, but we can anticipate some of the
stronger results. From the K — K mixing we find m, > 25 TeV, while from b — sy we

have m, = 29 TeV.

~

Finally it is important to note that in models in which we do not make any assumptions
on the composite sector, contributions to the neutron EDM might also come from flavor-
universal corrections to the Standard Model dynamics. For example, if the composite
sector violates CP also in the limit where all the mixing are turned off, we generate the
so-called Weinberg operator

g3 (m.)

1
L D ce(my) 22 31

b v vbp Y
febeqacheger (3.13)

126



3.2. Partial Compositeness

that contributes to the neutron EDM [235]. Indeed, we can estimate from NDA up to a
dimensionless order one number

dn

3
- ~ c(1GeV) 95 (m+) Aqcp

g2m2  Aw

(3.14)

where ¢(1 GeV) is the value of the Wilson Coefficient c(m,) at the Aqcp = 1 GeV scale.t
Such a running can be computed by first running from the scale m, to 1 TeV and then
down to ~ 1 GeV using the results of [236]

Oés(m*) 15/14
1GeV) = 0.3¢(1TeV) =~ 0.3 D) — s . 3.15
(1 GeV) = 03e(1 TeV) = 0.3c(m.) ( S ) (315)
Imposing the current experimental constraint, this translates to a bound on the composite

parameters of
Mg« 2 110 TeV . (3.16)

~

Even though this bound is weaker than the one from the quark dipole moments for large
values of g,, it is completely independent on the flavor structure of the model and only
comes from the assumption of CP violation in the composite sector.

3.2.1 Symmetric strong sector

In the previous section we have seen that the hypothesis of anarchic partial compositeness
is incompatible with a small (< few TeV) value for m, as would be required to address
the hierarchy problem. The main issues are related to CP odd observables and flavor
transitions, especially the ones in the down sector, that are very well experimentally
constrained. A possible way out is to invoke some symmetries in the strong dynamics.
However, the price to pay if we follow this path is that the flavor hierarchy cannot be
explained via RG evolution as it is done in anarchic models. In this chapter we adopt
this paradigm and we show how, by motivated and structured assumptions on the strong
sector flavor symmetry group, we can maintain m, < 10 TeV.

~

The first hypothesis is directly suggested by eq. (3.16): a TeV scale dynamics which
generate the CP odd Weinberg operator GGG unavoidably produces a large neutron
dipole moment. To avoid this, we then have to assume that the composite dynamics
respects CP and the only source of its breaking comes from the various mixing of eq. (3.6),
that is of course needed to reproduce the SM. This is however not enough to avoid the
large CP violating effects mentioned before. Indeed, the O(1) phases coming from the
mixings A, in general, imply again the strong bounds of egs. (3.11) and (3.12) and from
the other flavor violating observables. Some flavor symmetry is necessary.

4 Arguments based on QCD sum-rules [235] estimate a smaller matching coefficient in eq. (3.14). In
3
particular in [235] it was found d, /e = ¢(1 GeV)g;%::? ((10 — 30)MeV).
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Chapter 3. A light composite Higgs vs flavor observables

A very efficient solution to this problem is given by Minimal Flavor Violation (MFV) [237].
The idea is to assume that the only sources of violation of the flavor symmetries of the
SM quarks (or in general fermions) SU(3), x SU(3), x SU(3)q are given by the SM
Yukawas, transforming as spurions as

SU3), SUB). SU(3)4
YU ~ 3 3 1 (3.17)
Yye ~ 3 1 3

and that any new flavor violating contribution is proportional to them. Notice that this
hypothesis, together with a CP invariant strong dynamics, not only protect dipoles but
also screens (at least partially) flavor transitions, as we will see in detail later on.

In partial compositeness this idea is realized imposing flavor symmetries on the strong
sector [238,239]. Starting from the double mixing Lagrangian

Lomix = N2 q1,0% + N qLO8, + M2 0%l + A Ol + hec.. (3.18)
in the absence of the mixings A, the elementary quarks are symmetric under the flavor
group F. =U(3)q X U(3)y x U(3)q. Similarly we assume a flavor group F. under which
the O operators transform. To reproduce the SM Yukawas

Vi o (AguAa)? Y o~ (AgaAa)” (3.19)

it is clear that we need O, and O,, (O, and Og4) to transform under the same group. At
most F. can be U(3)y x U(3)p, with an obvious notation. The MFV paradigm requires
the As of eq. (3.18) to be spurions of the breaking of 7 = F, x F. to U(1)g according to
the same pattern of the SM Yukawas. This last point, together with eq. (3.19) selects
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3.2. Partial Compositeness

only few options, summarized by the following breaking scheme

Ay XA g X Agu XYy
Fox (Fe=UB)u x UB)p) “5 UB)g x UB)u+u X UB)pra - U(1)s,
qqX¥d
(3.20)
Agy XAg <L Ay ocYy
Fex (Fe=UB)y xU(3)p) UB)u+D+q X UB)u x U(3)4 Ve Ul)gs,
axYq
(3.21)
Agu XAy X1 MY
Fe X (.Fc = U<3)U+D> U<3)U+D+q X U(3)u X U(?))d /\—Y> U(l)B,
axYq
(3.22)
Agu XAgoxl Ao Yy
Fex (Fe=UB)y xUB)p) ————=UB)u+q¢ X UB)u X U(3)p+d W Ul)s,
(3.23)
AuocAg ol Ay XYy
Fex (Fe=UB)y xU(3)p) UB)U+u X U(3)p4q X U(3)4 —Y> Ul)s,
qqX¥d
(3.24)

that we will now review in turns.

Right-handed compositeness

The first pattern, in eq. (3.20), assumes both right handed quarks mixings to be completely
aligned with the composite fermions. Consequently the left handed mixings need to be
aligned with the SM Yukawas. This scenario, that we denote U (3)%{0, has been widely
explored in the literature [233,238]. Here we will briefly review it and present updated
bounds.

The model is characterized by the following form of the mixing parameters

Y/Lill Y(ZZ
~ =

U(3)%{C . )\Za = Eug*(sia’ éa = 5dg*5ai, )\ZZ; = )\Z; ~ Ecil . (325)
u

We will assume that A/g. < 1 such that a perturbative expansion of the Wilson coefficients
can be obtained by counting the insertions of the mixing the parameters. From this
Sey<land yp/ge Seqg < 1.

~ ~

assumption follows that y;/g.

As we have already anticipated, this scenario trivially protects the neutron EDM. The
reason is that the flavor quantum numbers of the dipole interactions are the same as the
Yukawa couplings. Therefore, at leading order in the insertion of the A’s the coefficient
of the dipole is necessarily aligned with the SM fermion mass matrix and so, under our
assumption of CP-invariance up to A, in the mass basis it is diagonal and real. Higher
order insertions of A will induce a misaligned correction to the dipole. However, this
effect is parametrically suppressed by factors of order Y?2/1672.
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Chapter 3. A light composite Higgs vs flavor observables

In this model the strongest constraints come from the interplay of the measurements of
the different four-fermion operators. Particularly important are the bounds from the
compositeness of the light families and the flavor transition involving down quarks, as
we will see in a moment. The U(3) symmetries of this scenario forces all up (down)
right-handed quarks to be equally composite, with a degree of compositeness measured
by the parameter ¢, (£4). The compositeness of the light families can be tested at the
(HL-)LHC by studying the dijet angular distributions [28]. In particular we focus on the
following two operators

OW) = (apy"ur)(dry,ur), (921) = (dp"dr)(drVudR) , (3.26)

whose coefficients are expected to be of order g2e /m? and gfsfi /m?2 respectively. The
projected 95%-bound for the 14 TeV LHC at 300 fb~! integrated luminosity is [29]°

my 2 12.79*53 TeV my = 5.8 g*egl TeV . (3.27)

Regarding the flavor transitions instead, the most important bounds come from transition
involving the B quark. We firstly consider the rare leptonic decays of Bs mesons into
muons. In our scenarios, if we assume the leptons have a negligible mixing with the
composite sector, the dominant transitions come from modifications of the Z couplings:

(0] = fiarfig@), (3.28)

where JL(LZ)

is the Standard Model current that couples to the Z. In our framework these
are induced by

o)’ = (i)t (o) = (1B )i 0

where 7% = 0% /2 with 0 the three Pauli matrices and the quarks have free flavor indices.
Integrating out the Higgs and the electroweak bosons we get the effective operators of
the form of eq. (3.28).

The B; decay effective Hamiltonian is conventionally parameterized as
_ ACryn e (G507 (I8 + Clo(5ry ) (B
Heir = —— 2 Vien(Vien) 55 | C10(507"80) (0,7°0) + Clo(507""br) (1) |
V2 16w

(3.30)
Notice that eq. (3.28) also contains the operators Cy and Cg, of the same form of the
previous ones but coupled with the leptonic current without the 7°. The latter are
suppressed by a factor (1 — 4sin?6,,) ~ 0.08 compared to the ones in (3.30).

SCMS [240] and ATLAS [241] only released 13 TeV results at 37 fb™' at the time of writing. Moreover,
both the analyses consider only operators universal on the fermion family. We thus decided to use the
projections for the end of Run 3 from [29] for our bounds.
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The current neutral anomalies in the rare B decays point towards non-zero values for the

Cg/)lo Wilson coefficients involving muons. Moreover the present fit prefers new physics
aligned to the direction Cy = —C1g (see [242]), even if some improvement with the data

can be obtained including the effect of only one operator among Cy and C1g. We report
the results from [242], for the best fit in some new physics direction

Cy=-0.73+0.15, C1p=0.54+0.12, Cy = —C19p=40.39 +0.07, (3.31)
where for each case all the other operators are set to zero.

The U(3)% model we are considering here generates C1o with a coefficient that can be

_ V247 Y e 1 3.32
= Gr o meaz 300 (3.32)

estimated as

Cio

The right-handed sector is instead diagonal and thus C7, is not generated at leading
order. Requiring C1y not to exceed twice the 1o error on the single operator best fit in
eq. (3.31) we get the following bound on m,

12.3

u

My 2, TeV . (3.33)
With an appropriate choice of the composite group and the representation of the composite
operators coupled to the elementary fermions, this bound could become weaker. Indeed,
a Prp symmetry [243] can be invoked to suppress the deviations of the Z couplings to
the left-handed components of the down-type quarks arising from (3.86). In such a case
the leading contribution would come from operators of the type

qi"q) 0By, gh T gl (DY W,,)°, (3.34)

and the resulting bound would be parametrically suppressed by a power of gg&, /gs =

9/(cw g+)
9.2

G«Eqy

My 2, TeV . (3.35)

The last important bounds come from the AF = 2 transitions in the B meson system.
The right-composite MF'V model only generates the O; operator of eq. (3.106) at tree-
level. Indeed in this model, the spurions accompanying fermion bilinears involving two
quarks of different chiralities (LR) or two right-handed quarks (RR) are clearly real
and diagonal in flavor since they are proportional to a Yukawa matrix or its square
respectively. This is not true however for bilinears involving only left-handed quarks
(LL), since they are proportional to a linear combination of Y, Y,/ and YdeT that is in
general not diagonal.
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The strongest bound comes from the By for which we estimate

A2 4/\6
Abs Ot~ 02 (3.36)
mygsxean
whose corresponding bound on m, is
6.5
My 2, el (3.37)
*Cu

A complete analysis of all the bounds of this model, including also other observables, is
done in sec. 3.4.

Putting together the bounds just discussed, we find that this model requires quite a
large value for m,. If we do not assume the Prr symmetry the strongest bounds are in
eq. (3.27) from quark compositeness, which tends to require small ¢,, and (3.33) from
AF =1 transitions, which require sizable &,,. Marginalizing over &, we see that the lower

bound on the new physics mass scale reads my 2 12.4gi/ 3 2 12.4 TeV. If one instead

assumes Prr, the bound from the Bs decay becomes subdominant. The minimum value
for my can then be found by combining eq. (3.27) with eq. (3.37) to give

my 2 9TeV . (3.38)

This bound is obtained for ¢, = 0.85/,/gx, which for not so large g, is compatible with
the hypothesis of composite u-type quarks.

It is clear that the origin of this problem is that the mixing in the up-sector ¢, is the
same for both the light families (that control the quark compositeness bound) and the
top-quark (which gives the dominant contribution to flavor-violating processes). In
sec. 3.3 we will quantify the improvement obtain when separating the mixing parameters
of the first two families from that of the top quark.

Left-handed compositeness

The second and third patterns, in egs. (3.21) and (3.22), feature SM doublets completely
aligned with the composite ones. From the flavor point of view, these two scenarios are
almost equivalent as long as the left handed mixings are comparable \;,, ~ A;,. The
main qualitative difference is that imposing the larger symmetry F. = U(3)y x U(3)p
suppresses tree-level transitions between right-handed up and down quarks. In other
words, the model (3.22) allows the flavor-violating structure (Y;/Yy);;ii;v*d;, whereas
these can only arise combined with a loop suppression g2/1672 in (3.21). These transitions
are, however, not significantly constrained experimentally, as we see in detail in sec. 3.4.
For this reason we will therefore only consider the case of (3.22) that can be realized
with a single mixing partner of the left-handed doublets. This scenario, that we denote
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3.2. Partial Compositeness

U(3)Lc, has been previously explored in [233,238].

This model thus contains the following mixing parameters

U . )\ia — 52’@ )\ai ~ YLM )\ai ~ Yiai
(S)LC : g = €q9x0 w = o d — e (339)
q q

where y;/g+ S eq < 1.

For the same reasons as U(3)3, there is no contribution to the neutron EDM. Yet, this
implementation of MF'V significantly suppresses flavor-changing transitions at tree-level.
This is readily understood since the spurion that controls LL structures is the identity,
while for the RL and RR structures we have respectively the Yukawa and its square,
which in the mass basis are diagonal. The only exception is the weakly-constrained
ur — dp structures mentioned above.

The most relevant constraints arise from flavor conserving processes. For example,
consider the operator

0%y = (ax~"ar) (@) (3.40)

for left-handed transitions in dijet searches. Using again the bounds from [29], we find
my 2 14.2 g.e2 TeV (3.41)
that clearly favors a small value for ¢,.

The strongest bound for this model however comes from the electroweak sector. The
operators in eq. (3.86) indeed generate a flavor universal correction to the W coupling of
the left-handed quarks as

9_(1+ b9k aVexu PLaw;t (3.42)

Sl

where we estimate
62 2
25q9x
m2

*

3giir ~ v (3.43)

This correction is constrained by the measured unitarity condition on Voky. Indeed,
the experimental condition [244] (1 + dgf)2 > |V 1= (1.5 +£0.7) x 1072 in our
model (where Ve is in fact unitary) reads (14 dg&,)% — 1 &~ 26g = (1.5+£0.7) x 1073.
By requiring that this modification does not exceed twice the 1-o error, we derive the
bound

My 2 9.3 gvgq TeV . (3.44)

Since to reproduce the top Yukawa e, cannot be smaller than y;/g,, this gives an absolute
lower bound on m.:
my 2, 9.3y TeV ~ 8 TeV . (3.45)
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Similarly to U (3)2RC, also in this model the origin of the strong lower bound on the new
physics scale is the universality of the ¢, parameter among the three families.

Mixed compositeness

Finally the two last scenarios of egs. (3.23) and (3.24) are somehow hybrid between
the pattern previously described [238] and they maintain the same weak spots of the
latter. In particular the scenario described in eq. (3.24) has the same strong bounds of
U (3)%10, from b — s transitions and compositeness of the light up families. The model
of eq. (3.23), regardless of the flavor structure is excluded up to m, > 8 TeV from the
unitarity of the CKM. For these reasons we will not analyze them further.

3.3 Less symmetric strong sector

We now go beyond MFYV violation and we show how a smaller strong sector flavor group
Fe allows to keep m, relatively low. The logic we follow is to start from a MFV set-up,
identify its weak spots and then try to reduce the tension with the data by downgrading
Fe to a smaller group. We stress that our goal is not to find the composite Higgs model
less constrained by flavor measurements, in fact we can expect that ad-hoc constructions
and specific assumptions for the spurions A can have weaker bounds than the ones we will
find in the rest of the section. Our procedure, on the contrary, is systematic and based
on two well defined hypotheses: the composite sector respects some flavor symmetry F.
and some of the SM quarks belong to the strong sector. The amount of compositeness of
the latter are measured by some parameters € and we can check a posteriori if € ~ 1 or if
€ < 1, meaning that our hypothesis is inconsistent.Furthermore we take as starting point
the Lagrangian of eq. (3.18), including one partner for each right-handed fields and at
most two partners for the SM doublets.

3.3.1 Right-handed compositeness

We first start from the scenario where the right-handed quarks are aligned with the
composite sector. In sec. 3.2.1 we analyzed in detail how MFV can be realized in this
hypothesis and why this model is only consistent with data for large values of m,. In
particular we saw that flavor transitions are enhanced by very composite right-handed
top. At the same time composite top means composite up and charm which are very
well tested and excluded by LHC measurements. The way out we want to explore is
to separate the top from the two lighter families reducing the U(3)y x U(3)p flavor
group to U(2)y x U(1)r x U(3)p. In sec. 3.3.1 we show how this scenario, we denote
as U(2) x U(3)rc, has enough freedom to have the right-handed top fully composite,
maintaining at the same time mildly composite light quarks and not generating other
dangerous (CP odd) effects as electric dipoles. A previous study of this scenario is
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Figure 3.1 — Summary plot for the three right-handed compositeness models under
consideration.

presented in [245], that we update and extend in the following. Then, in sec. 3.3.1, we go
beyond that and we try to separate also the heaviest family in the down sector. We will
see that this scenario, where F. = U(2)y x U(1)r x U(2)p x U(1) g, does not improve
significantly over U(2) x U(3)rc.-

Our results are summarized in fig. 3.1. We can see that MFV is excluded up m, ~ 9,
independently of the other parameters of the model. This bound is obtained by combining
the constraints from compositeness and AF = 2 transitions in the B sector, while the
tail at small values of g, comes from the AF = 1 leptonic B decays. The minimal m.
value is roughly a factor 3 larger than the minimum m, allowed by universal constraints.
The assumptions of U(2)%{C slightly improve the situation as shown by the green contour,
that it is dominated by the b — s transition. Yet, among the models we studied in this
section the mildest flavor-dependent constraints are found in the U(2) x U(3)gc scenario,
where the most relevant bound comes from rare B decays. In some sense this model
seems to have the ideal amount of symmetries necessary to avoid indirect searches; more
or less symmetries will just increase the tension with the data.

U(2) x U3)rc

This model is characterized by the flavor group F. = U(2)y x U(1)r x U(3)p and is
described by the following Lagrangian
UB)xU(2 iA i ia =i Ha i =
ﬁmgx)x (e :AqquOtl]i + AquLOQd + )‘qthO‘lt

R L _ (3.46)
+ 9+00;, URO A + 9+€405dR0ai + gxctOtr + h.c..

where A = 1,2 is the index of the U(2)y group, while a = 1,2, 3 is the index of the U(3)p
group. The mixing parameters A and ¢ can be identified as spurions of the breaking of
the flavor group F, transforming as in the table in App. C.1. While in the down sector

135



Chapter 3. A light composite Higgs vs flavor observables

this scenario is completely analogous to U (3)2RC, it differs in the up sector, having the
top separated from the other two quarks forming a doublet of U(2)y. A scheme of the
symmetry breaking pattern for this and the other right-handed scenarios is reported in
fig. 3.3.

The Yukawa couplings for the up and down sector are written in terms of the mixings as
Yu ~ (AQU€U|>\Qt6t) ) Yd ~ )\ngd (347)

where the vertical bar means that the 3 x 2 matrix and the 3 x 1 vector should be stacked
together to form a 3 x 3 matrix. We parametrize the mixings A in the most general
way that can reproduce the SM Yukawas. We only assume that A\, > A,,, which may
be explained by RG effects similarly to anarchic Partial Compositeness. Under this
hypothesis A\, ~ y; whereas )y, has the largest size of order y.. In order to generate a
Yukawa for the up-quark, we have to assume that one component is accidentally small
and of the order of y,. Using the flavor symmetries of the system, we can reduce them
in the following way

g [ e 0 [
)\qu = 0 Ye ) )\(It = — 0 )
: a by, °t Yt
y
U(2) x U(3)ge : c . (3.48)
L v
)\qd = ;Ud 0 Ys 0
I 0 0

The coefficients a and b are assumed to be O(1) complex numbers with an arbitrary
phase and the matrix Uisa3x3 unitary matrix. Notice that, by field redefinition we
can remove all but one phase on Uy meaning that in this model there are in total three
physical phases.

In this basis the Yukawa matrices are not diagonal and can be diagonalized with bi-
unitary transformations to go to the mass basis. In particular the two matrices U, and
V. that diagonalize Y, can be computed explicitly in the limit y, < y. < y; as shown in
app. C.1. The matrix U, is instead identified in terms of the CKM matrix as

Verkw = U0y . (3.49)

This model contains in total five additional real free parameters, namely e, €4, &, |a] ~ 1
and |b| ~ 1, and two additional CP violating phases, arg[a] and arg[b], compared to the
SM. Therefore, even if we assume a CP even strong sector, there are two additional
phases giving rise to new potentially measurable effects in electric dipole or CP odd
flavor transition. Moreover, notice that, from the Lagrangian in eq. (3.46) it is possible
to recover the U(3)%, model simply by setting @ = b =0 and &; = &,,. This point is also
summarized in fig. 3.3.
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3.3. Less symmetric strong sector

We now inspect the bounds on this scenario in details.

Electric dipole cancellation

As we mentioned before, the new phases in the mixing of eq. (3.46) can in general
produce new observables effects. A remarkable property of all the models under exam in
this section, is the absence of electric dipole moments at leading order in the spurion
insertions. In the specific case of U(2) x U(3)rc, moreover, non-zero electric dipoles are
generate at 1-loop only for the up sector and they happen to be extremely suppressed,
while contributions from the down quarks come at at least 2-loops.

Contributions to the electric and chromoelectric dipole moments of the neutron are
induced by the imaginary part of the Wilson coefficients Ct, and Cyy, of the following
operators

Oty = efra"~y’ frF Oty = gsfrLo" Y fRG . - (3.50)

In MFV, these are obviously aligned with the SM Yukawas at tree-level and so they are
real and diagonal in the mass basis. In the case of U(2) x U(3)grc the same is clearly
true for the down sector, which is completely equivalent to MFV, but the cancellation of
dipoles in the up sector is less trivial and requires a specific discussion.

Let start from the spurions in eq. (3.46), the flavour structure of the Wilson coefficient
of the operators in eq. (3.50) is

[Cuuv]ij X [Cuug]ij X (Aqueu’x)‘qﬁt)ija (3.51)

where x is an O(1) real number with x — 1 measuring the departure from the SM Yukawas,
and 4, j denote the SM flavor. To prove the absence of electric dipoles we must show that
the coefficients in eq. (3.51), once rotated in the mass basis, have real diagonal entries
i =7j. A way to see it is to start from the explicit form for the spurions in eq. (3.48) and
remove all the phases from Ay, , Aq,, €4 and ;. This can be done, for instance, rotating
the SM fields, in the Lagrangian of eq. (3.46), as

—iarg[al ’ —iarg[al —iarg[b] 7 —iarg[b]

qi — qje :
(3.52)

Up — upe qr, — qj. e . uR = uhe

This field rotation removes the phases from the two parameters a and b and moves them
to the down sector. In this way the new up Yukawa in eq. (3.47) is now free of complex
entries and can be diagonalized by orthogonal matrices only. As a consequence the dipole
Wilson coefficient in eq. (3.51) is build out just starting from real objects and it is clearly
real itself. Moreover any additional rotation of the fields which keeps the Yukawas real
and diagonal in the mass basis, cannot modify the diagonal entries of eq. (3.51) resulting
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Chapter 3. A light composite Higgs vs flavor observables

in no-tree level electric dipoles.

There is another way to prove the absence of electric dipoles at tree level. Starting
m/g]ij is built out of A\, ; and
€u/t- Since electric dipoles are observables, and so basis independent, we can search for

again from eq. (3.51) we can see that, at tree level, [C,

flavor invariants constructed as combinations of A, ; and €,/;. However, a basis for such

invariants is given by

Mg Trg AT, Te[(Aa AL ), AL O A )G s AL G AL ) g [ed?, el

qt qu”'qu qu *qu, qQu”’qu qu”qu

and it is manifestly real. Therefore, the only way to have a complex invariant is to
include also the \,, spurion, which can only occur at next to leading order.

In the U(2) x U(3)rc model the first diagonal imaginary contribution for the up-sector
requires at least one loop of the elementary fields. The Wilson coefficient of eq. (3.50) is
given by

1 v [
1672 /2

giving the following leading contribution to the electric dipole moment

Mo, Ogueulzrgen)|” (3.54)

4d”"*qq

[Cuuy] V=

2 3
vy RN(a)AnA 0.05
dy ~ 16,2 m2e? Me = My > = TeV . (3.55)

The latter is of the same order of the bound on Zbyb;, from LEP measurements, reported
in tab. 3.1 and it is clearly under control for ¢4 2 0.05. Notice that in the a — 0 limit
the previous contributions goes to zero.

We also remark that 1-loop contributions to down quarks electric dipole moments are
zero, as can be seen by a straightforward calculation. Indeed the contribution reads

ii 1 v ]
[Caay]” = 62 /3 {()\qu)‘jzu + 21 AL, + $2>\qd)‘cT1d))\qd] : (3.56)

with z1 and z9 some O(1) real numbers. It is clear that the term proportional to x5 is
real and diagonal in the mass basis. The first two terms in the mass basis instead read

Y2 1 ~ Y,
Mg, + 2NN DAL = Vi L_; + @1 + 52) UJY?UU] VCKM?Z (3.57)
u t u

with the notation of App. C.1. Since this contribution is written as the product of a
Hermitean matrix and a real and diagonal matrix, the diagonal entries are real as well,
proving that also at 1-loop there is no contribution to dipoles.
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3.3. Less symmetric strong sector

Constraints

We just showed that the U(2) x U(3)grc scenario is safe from electric dipoles. Moreover,
since the down sector is aligned with the Yukawas, this model is also protected from
dipole operators mediating b — sy transitions, which usually give rise to strong bounds.
However, this model has a less trivial flavor structure than MFV and the less amount of
symmetries in the strong sector open the way to new potentially measurable effects. All
the constrains on the model are detailed in sec. 3.4, in the following we just discuss the
most important signatures of the model.

The strongest constraints on U(2) x U(3)grc come from the same observables as U(3)3.
The bound from light fermion compositeness clearly coincides with eq. (3.27), i.e. we
have

my > 12.7 gue2 TeV My > 5.8 gue3 TeV . (3.58)

The bounds from AF = 2 and AF = 1 transitions in the B sector of egs. (3.37) and (3.33)
are instead now enhanced by a small ;. They are respectively

6.5
My 2 — (3.59)
gxEy
and
12.3 9.2
My 2 — TeV, (w/o Prr) My 2 e TeV(w/ Prr) . (3.60)
t *Ct

It is clear that in this model we can have a small value for ¢, and €4 in order to minimize
the bounds from compositeness, still keeping £; ~ 1 to minimize the flavor bounds. The
ideal scenario has a maximal top compositeness €; = 1 and the Prr protection, in which
case we find m, = 10.8¢, TeV. An order one value ¢, ~ 0.3 is perfectly compatible with
the assumption of composite up-type quarks and would imply the relatively weak bound
my 2 3 TeV. Much smaller values of ¢, would render the compositeness assumption
less plausible. In addition if €, < 0.04¢&; stronger bounds than the ones considered here
would arise from s-to-d AF = 2 transitions (see Tab. 3.4). Apart from what we just
mentioned, no other large effects are generated in this model. The strongest bound comes
from eq. (3.60) that, in presence of Ppr protection is relatively under control. Moreover,
the latter, has to be compared with the universal signatures discussed in sec. 3.4.1, as
shown by the summary plot in fig. 3.2.

UQ2c

We would like now to see if anything is gained by considering a smaller strong flavor
group F., studying the case where both the right-handed top and bottom possess only
an abelian flavor symmetry. The step of separating the bottom is not motivated by the
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Figure 3.2 — Current constraints on U(2) x U(3)rc model at 95% CL. The blue line is
obtained setting €, = 1. The black lines are the bounds from up quark compositeness for
two different values of ¢,,.

bounds previously discussed, which will not be relaxed. Considering this model is rather
aimed to see how much freedom we can leave to the strong sector before it results in

unwanted flavor signatures.

The scenario we consider now has so F, = U(2)y x U(1)r x U(2)p x U(1)p that is then
broken by the right-handed mixings to U(2)y4+u X U(1)irr X U(2)g4p X U(1)p4+p. The
mixing Lagrangian reads

U(2)

?{c_)\’iA—’L'OA +>\lB—zoB+)\l—10 +>\2—’LO
mix - qqu Qu q qr, qd (Ith qt qbQL Qb

d

+ geeu O U0 4; + gxdOF digdpi + gueit ROy + guerbrOp + hec.

£ (3.61)

where the indices A, B = 1, 2 transform respectively under U(2)y and U(2)p. Analogously
to the U(2) x U(3)rc scenario the Yukawas take the following form

Y~ (AqueulAget) s Yo~ (Aga€alAg80) 5 (3.62)

and we can parameterize the mixings A as

p [ v O [ ©
)\Qu _; 0 Ye ’ )‘qt = ;t 0 )
a b
U(2)% Ye Dle v (3.63)
o v O (0
Ay=—TUa| 0 o |, A=Us—]| 0 |,
= a Ys b’ Ys < Yb
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Figure 3.3 — Scheme of the various right-handed compositeness models under consideration.
Starting from the less symmetric U(2)% on the right, it is possible to recover U(3)3
switching off some of the parameters.

with Uy a 3 x 3 unitary matrix.® Notice that, even in this model, we can remove all
the phases but one from ﬁd, with a total of 5 phases in eq. (3.63). The matrices that
diagonalize the Yukawas are once again reported in app. C.1 and U, is rewritten in terms
of the CKM as

Vexm = UlU4U, . (3.64)

Similarly to before, for this model we assume the parameters a, b, a’ and b’ to be O(1) with
arbitrary phases. The model and its relation to the other Right-handed compositeness
scenarios is summarazied in fig. 3.3.

Constraints

This model inherits many features of the U(2) x U(3)rc case just examined. The most
important aspect is the absence of the electric dipoles at tree-level. The proof simply
follows from the arguments presented for the U(2) x U(3)rc. In that model we showed
that one cannot build physical observables using only spurion in the up-sector, the same
arguments trivially extends also to the U (2)12% case for both the down and up sectors.
Moreover, notice that, differently from U(2) x U(3)rc now we have one-loop dipoles
for both up and down quarks. The latter are totally analogous to eq. (3.55) and are
negligible.

The compositeness bound of eq. (3.58) and the flavor bound of egs. (3.60) and (3.59)
apply also here. In this model however we also generate additional flavor transitions.
The first one is the AF = 2 transition for right handed quarks. These bounds come from
the operator O; of eq. (3.106). The complete list of bounds can be found in sec. 3.4, here

SWe only need a single Uyq to reach this form: we start from a 3 x 3 unitary matrix that aligns A in
the third direction and then we multiply it with a 2 X 2 block diagonal unitary matrix that leaves A,
invariant but allow to diagonalize the top 2 x 2 block of \s together with a U(2)p matrix on the right.
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Chapter 3. A light composite Higgs vs flavor observables

we report only the strongest one, related to By system and we get

my > 19.3 guei TeV . (3.65)

Additional effects are also present in AF =1 (see sec. 3.4.2 for details), in fact, contrary
to U(3)4c and U(2) x U(3)rc the model U(2)4 has a less trivial structure in the down
sector and generate a non-suppressed (' in eq. (3.30)

V2 4 1 92Ys(eh — €3) 2(cp —€d)

9x
o = — ~ 23.9
10|U(2)2R,c Gr e VoV m2ys m?

(3.66)

Still from [242] we can read the bound on Cf,, which implies the following disequality on

My

IClol £ 0.2 = m. = 10.9 g.ep, TeV . (3.67)

The previous equation clearly tells that a small €, is preferred. Moreover there are two
effects that are enhanced by a small ;. The first is the anomalous Zbyby, coupling (see
tab. 3.1), the second is the 1-loop contribution to neutron dipole moment. The latter can
be simply red from eq. (3.55) replacing ¢4 — €. Combining eq. (3.67) with the bound
from Zbyb;, anomalous coupling in tab. 3.1 we find

m. > 0.9 /g: TeV (3.68)

obtained marginalizing on €. This effect is less relevant than universal constraints on
Cy, as described in sec. 3.85. The lowest value of m, outlined in the previous formula
is obtained for ¢, = 0.086/,/g.. However, values of &, much smaller than unity are
incompatible with the hypothesis of b-quark compositeness. To defend this hypothesis
much larger values of €; are necessary, and as a result a stronger constraint on m, follows.

The U(2)4 model also generates another AF = 1 effect, the B — X transitions, via
the so-called EW dipoles. These interactions are described according to the following
effective operators

Pty fuy Féin (3.69)

with F%), the field strength of the SM gauge bosons and ¢, j the flavor indexes of the
fermions.

The strongest constraints on these kind of interactions come from the radiative decay of
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B mesons. The effective Hamiltonian relevant for b — s~ transition is

4GF b
Het = _WvéKM(V(t?%{M)
and the new physics contribution to the previous Wilson coefficient is constrained to
be [246] roughly

« Mpe

T6m2 il (C7§L0'pubR + CégRU,uz/bL) R (3.70)

Re C7 < 0.03, ICL] < 0.07 (3.71)

at 95% CL. In our model we estimate

s '4+/272 1 TeV 2
m b4y 2~2.4< ev) , (3.72)

C”| ~
7 2
U@ke — my Gr LébKM( L('i*?{M)*m* m?

while C7 is suppressed by a further power or mg/my. This translates into the much
stronger bound

my 2 5.8 TeV . (3.73)

Combining all these bounds the largest possible value for g, is roughly &, < 0.5/gx.
The constraints on ¢4 are much milder and read ¢4 < 1/,/g«. Overall, scenarios with
composite d-type quarks seem to require g, ~ 1.

To conclude, separating the third family of the down-sector does not seem to offer a
significant improvement. Compared to the U(2) x U(3)rc model there are important
new signatures. The AF = 2 transition and the new correction to Cf, may be suppressed
by taking &5 small. However, the bound in eq. (3.73) gives a robust absolute lower bound
on m, independent on the other model parameters.

3.3.2 Left-handed compositeness

We now move on and we discuss the left-compositeness models. Our starting point is the
U(3)Lc model of sec. 3.2.1, where for concreteness we assume only one mixing for each
SM doublet. We have seen that MFV model requires at least m, = 8 TeV, due to the

tension with the precise measurement on the CKM matrix unitarity, see eq. (3.42). We
now try to relax this constrain assuming a smaller F..

U(2)Lc

Following the same logic we adopted so far, we can start from U(3)rc and then separate
the third family reducing the strong sector flavor symmetries. More explicitly, we take
the left-handed mixing to break the composite group F. = U(2)y+p x U(1)r4+p and
the elementary flavor group to the diagonal U(2)q4v+p *x U(1)g3 171, according to the
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Figure 3.4 — Same as fig. 3.3 for the left-handed compositeness case. We are assuming
only one mixing for the SM doublets. There is not an easy way to reproduce MFV by
fixing the values of the four parameters a() b(). In this limit they will be expressed as
some functions of the CKM angles and phase.

following Lagrangian

LU = g0t 025ia + gue gy Oy + N OMuly + NiOyuly + N O dly + NjOpdig + hc. |

(3.74)
where the index A = 1,2 is the index of U(2)y4+p. The SM Yukawas are then obtained
as

A A
Yo [0 ) 0 vo~ (25 ) (3.75)
)\t5q3 )\b5q3

where this time the 2 x 3 and 1 x 3 blocks are stacked on top of each other to form the
two 3 x 3 matrices. Similarly to before, we can use the flavor symmetries to reduce the A
mixings in the following form

/\u_1<yu 0 ayc>7 /\t:i(o 0 yt),

U2)Lc A0 e b s (3.76)
LC : .
L~2(ya 0 dvys 1
)\ — 71) )\ =
I €q ¢ ( 0 ys Vys )~ ’ €q3 ( 00w ) ’

where a, b, @’ and ¥ are complex numbers with arbitrary phases and U ng) isa2x2

orthogonal matrix, since it is always possible to remove phases from U f) by rephasing

the elementary quarks.
The matrices Uy, Vi, Ug and V; that diagonalize the two Yukawas are reported in app. C.1
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and the CKM matrix is readily obtained as

- _ r7(2)
Vexm = USUqUq, Us = < 8 2 ) : (3.77)

An important difference with the previous model is that Uy, is now determined in terms
of a 2 x 2 orthogonal matrix and thus contains only a single real parameter. This means
that three combinations of a, b, ' and b’ are determined as function of two remaining
CKM angles and the CKM phases Thus, among a, b, a’ and b’ there are only 3 phases
and 2 real parameters. Given the form of U, and Uy, we can see that for a generic 2 x 2
rotation matrix of angle 6, Voxw is roughly

cos 6 sin 6 a% + a’Z—Z
VoxkMm ~ sin 6 cos 0 b% + b’% ) (3.78)
Ye !Ys Ye /Ys
Gy T, byz+byb 1

For all O(1) coefficients, the (1,3) and (3,1) components are one order of magnitude
larger than the SM measured value because of the ratio ys/yp ~ 0.02. Thus, to reproduce
the CKM mixing angles we assume |a| ~ |b| ~ || ~ 1, 8 ~ X and |a’| ~ 0.1.

From the previous discussion it emerges that there is not an easy way to recover minimal
flavor violation just setting to zero some of the parameters. In general it is necessary to
set g4 = €4, and to fix a, b, o’ and b’ as functions of the various CKM entries. A cartoon
summarizing the model can be found in fig. 3.4.

Constraints

The spurion structure of this model is analogous to the one of U(2)%. Again this
scenario is free from dipole moment at leading order in the mixings A. The proof follows
from the same argument presented for U(2) x U(3)grc. Interestingly this model also does
not generate dipoles even at 1-loop. In fact, even at this order it is impossible to build
a combination of spurions that contributes to the dipoles and involves both up- and
down-type mixings. As we explained this is a necessary requirement to access one of the
physical phases of out model.

A first constraint to this model comes from the compositeness bound of eq. (3.41) that
gives
my 2 14.2 g*gg TeV, (3.79)

which can however be satisfied by taking a small value for ;. The model however faces
several constraints from flavor-violating processes, in particular a strong bound comes
from the b — s transitions induced by operators as in eq. (3.69). This effect, in analogy
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to U(2)%, gives

s 4272 1TeV ) 2
m v ° ) : (3.80)

C ~ — N2.4
ioke ™ o G Vot ™ (o

while C7 is suppressed by a further power or ms/my. This translates into an absolute
lower bound on m, given by

m, > 8.8TeV . (3.81)

Moreover, the (semi-)leptonic By decays (see sec. 3.4.2) are also enhanced in this model,
giving
V2 4n? gi(eq, — <) gica,
Colvae =G, 7~ gz~ BT e (3.82)

* m*
while the operator C is generated with a negligible coefficient. Again the Cyg coefficient

can be suppressed in presence of Prp protections. Imposing the experimental bound we
find

my 2, 14.2 g.eq, TeV, (w/o PpRr) my 2, 10.6 g4, TeV(w/ PrR), (3.83)
pushing toward the small ¢4, direction.

From the previous discussion and from the various bounds reported in sec. 3.4 we find that
the strongest constraint is given by eq. (3.81). In fact for each value of m, above 8.8 TeV
we can always find a compatible values for €,4,. Concretely, the strongest constraint on
€45 comes from the right-handed top coupling in table 3.1. Taking 4, ~ y;/g« this reads
my 2 0.5g./y: TeV ~ 7.3g,/(4m) TeV, which is milder than eq. (3.81).

To conclude, in this section we have found that both U(3)1,c and U(2)1,c are not allowed to
have m, in the few TeV range. While MFV is severely constrained by the CKM unitarity,
the less symmetric U(2)1,c model suffers from large corrections to flavor-violating dipole
operators.

3.3.3 Other possibilities

In the previous sections we just considered a minimalist set of scenarios of partial
compositieness and we need to comment on few more possibilities.

First of all, we remark that our logic was to start from the MFV hypothesis and then
lower down the symmetries of the strong sector. We have seen in sec. 3.2.1 that 5
realization of MFV, (summarized in egs. (3.20, 3.21, 3.22, 3.23, 3.24)), are possible and
we considered explicitely how to improve the ones of eq. (3.20) and eq. (3.22), respectively
in sec. 3.2.1 and sec. 3.2.1. Nevertheless also the other scenarios might be improved by
the right choice of F. and they deserve further investigations. For instance, given that
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the strongest bounds are related to the up sector, we expect that the model in eq. (3.24)
can be improved following the same pattern we specified for eq. (3.20) resulting in similar
constraints.

A more careful discussion it is needed for the models in egs. (3.23,3.21). In both of
them the strongest constraints are related to the unitarity of the CKM put under stress
by a large and equal compositeness of all the light families €4, 2 y:/g«. This can be
relaxed downgrading U(3)y — U(2)y x U(1)r and the considering smaller ¢4, to avoid
large LEP constrains. At the same time both of these scenarios, differently with U(2)r,c
discussed before, are expected not to produce dangerous effects in the down sector, being
completely aligned with the SM Yukawas. Yet, we still have to quantify the values of the
different ¢ that makes this model compatibles with the various bound.

Moreover, we have to remark that in partial compositeness there can be different
realization from the ones we have studied only relying in a small set of hypotheses. For
instance one can start from the single mixing Lagrangian in eq. (3.3) and assume an
U(3) symmetry in the strong sector and A\,  A\g [247].

Another possibility has been considered in [233,248] and relies on an approximated
U(2)? symmetry. We still need a detailed analysis of this scenarios and a quantitative
comparison with the models we presented. We just mention that the minimal model
considered in [248] has a structure very similar to our U(2)%. model but on the contrary
needs stronger assumptions, namely the absence of some spurions that might cause
additional effects. Moreover the U(2)? flavor symmetry cannot be justified according to
our set of hypothesis where the maximal amount of symmetry of the strong sector is
U(3)? and, up to the mixings, the SM quarks always respect U(3)3.

3.4 Experimental constraints

In this section we summarize and extend the analysis performed so far on the various
bounds for the different models under consideration. We remark that this section
partially overlap with the previous discussion, moreover it aims to collect all the relevant
constraints and can be skipped.

In order to make the discussion more systematic we define the tree-level flavor structures
[S]¥ as the coefficient that involves the smallest number of mixing A and ¢ for a given
flavor-dependent operators. In the rest of the section we often refer to these tree-level
flavor structures, whose explicit expression can be found in App. C.1.

3.4.1 Universal constraints

The first class of effects we consider are the universal ones [34], where all the new
interactions among the SM fields can be described through higher dimensional operators
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Figure 3.5 — Current and future universal constraints on CH-models at 95% CL. See the
main text for details.

involving only SM bosons.

In composite Higgs models we can parameterize the leading effects according to the
following Lagrangian [10]

_ 67H T 2 Cl Jf<_> T<—>ﬂ 1 Ciw THCL a pv
Lsivm =~ (@(H H)) + (H DMH> (H D H)—Hg : (H DHH) D,W
. CB = v Cow a apv 2C2B v
+igy (HID uH) 0,81 = g =5 (DM W) (D, W) = g 20" B (0,87
(3.84)

where the size of the Wilson coefficient, as function on the new physics parameters, can
estimated according to the so-called “SILH” power-counting. In particular, apart from
cr, we expect the other Wilson coefficients in eq. (3.84) to be general for composite Higgs
models, i.e. to not depend on the detailed flavor structure, and to scale as

2 1 1
cH~ T, W~ CB~ 5, Cow ~ C2B ~ —55 (3.85)

as functions of g, and m..

The operator ¢y and cp can be related to the S parameter [35] which has been constrained
by EWPT (see for instance [249]). The operator capy and cap are very well measured at
(HL)-LHC. W is expected to be stronger than Y and we can already read the bound on
W from recent run-2 results [42]. We extract the value for cy from [250].We report the
results for the current constraints in the left panel of fig. 3.5. In the right panel we report
the projections for HL-LHC. The bounds are obtained from [205,206] and we updated
the W constraint according to the projections of [2].7

The size of ¢p, on the contrary, is less generic and strongly depends on the specific
assumptions on the strong dynamics. Moreover the cr coefficient, usually related to the

"Notice that the estimate in [2] assumes conservative hypothesis for the systematic uncertainties,
given the recent measurements at 100 fb™" in [42].
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T oblique parameter, is protected by the custodial symmetry that we assume in all our
discussion. The main sources of custodial breaking, which generate a non-zero T', are the
exchanges of composite fermions, in the case the latter are not singlet under SU(2)g.®
These contributions have been computed in [233] for a defined fermion content. In the
various scenarios we consider we don’t find them competitive with the other constraints.

3.4.2 Anomalous couplings to SM gauge bosons

The first class of non universal effects we consider are the corrections to SM vector bosons
couplings. We focus on the following set of operators

O (B () (B,
(O] = (1 fﬁ,ﬂ) Ayl [Opal? = (HU’(BMH) T, '

where 7¢ = ¢%/2 with ¢ the three Pauli matrices and the quarks have free flavor indices.
The previous operators can be further classified in two categories: the flavor diagonal
corrections to Z and W bosons couplings and the AF = 1 flavor transitions, that we
discuss respectively in sec. 3.4.2 and sec. 3.4.2.

AF =0

We already discussed in eqs. (3.42) and below the corrections to the W couplings,
particularly important in the case of left-handed compositeness. Other important bounds
come from bottom and top couplings to the Z. The former is very well constrained by
LEP measurements, resulting in the following 95% bounds [251]

|[C(1)

s+ O] < 5572 TV 2, [Cra®| <1172 TeV 2. (3.87)

q3

The top coupling instead is less precisely constrained by LHC measurements and we
). oW

¢® YHge and Opy

estimate it from the individual operators reach on Og’

[C3P S 0.872TeV2, [[CGIP S 1172 TeV 2, |[Cru)®| S 0.62TeV 2, (3.88)

extracted at 95% CL from [252]. In the previous equation while we are taking the single
3) 3)
Hq37 OHqB
since in the two dimensional plane of their Wilson coefficients the direction corresponding

operator reach for [Op,]33, we are considering the marginalized ones for O

to the b couplings is the only very well tested (eq. (3.87)).

We report in table 3.1 the resulting power-counting and bounds on the Composite Higgs
parameters space for the various scenarios under consideration. We can notice that
the strongest bounds, for all the models, are given by the coupling the left bottom

8This contribution usually exceed the so-called IR effects [226].
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1 3
[Chia + Cial® [Cra]® (T
Fe P.C. Bound P.C. | Bound | P.C. Bound
2 2 2 2 2 2
U(3)%a i <+nj’;€3 > BOB) | | Llgea | 5 | 0.6g.en
2 2 2.2 2 2
U3) x U@no | 14 <+my> A8(008) | S0 | 1 1gey | 2% | 060
2 vi 8/0. erg? 292
U2)% i, <+mzbs§> 48(008) | 9% | 11, | 2| 060
392 A : .
U(3)LC :ni 5.5 GxEq sgyj;ﬁ o ggysﬁ %
€3,9% v} 2 0.5
U(2) Lo i 5.5 g egsi'na — agffn : o

Table 3.1 — Constraints from anomalous Z/W coupling for the different scenarios under
consideration. For each operator and scenario we report the Naive Power Counting (PC),
assuming the operator is produced at TL, and the lower bound on m, expressed in TeV.

to the Z. These effects are partially screened in models featuring Prr protection.’
As an example if in our model the up doublets partners transform in the (2,2)y/3 of

SU2)rL x SU2)r x U(1)x (see [208] for details), then the sum 05_23 + C’g;S is not
generated at leading order from the exchanges of Oy, . Notice that, in this case, additional
contributions come from the exchanges of the down doublets partners Ogy,. These effects
are proportional to yg and are typically small, they are reported in parenthesis in table 3.1.
The leading contribution to Zbyby, coupling is then generated through operators of the
form

[O((]B]ij = %VVQJLDVB#V, [O((I%]ij = (jiT“*y"qiD”W“

oy (3.89)

(3/1)
qH

contributions. We stress that in most of the models Prr protection is mandatory to

giving rise to an anomalous Z coupling suppressed of g?g u/ g2 with respect to the O

avoid large effects from AF = 1 b-to-s transitions. Moreover in presence of these Prgr
protection the bounds get weaker, we report them in tab. 3.2.

We also need to remark that in this section we are considering anomalous coupling only
to the third family even if Z coupling to light families have comparable experimental
bounds [251]. However we find that in LC models the strongest constraints arise from
VokwM unitarity and are slightly stronger than anomalous Z coupling effects. In RC models,
moreover, the compositeness of the light families is better constrained by compositeness
test at the LHC [238]. Finally, in U(3)pc and U(2)1c with only one partner for each
SM doublet anomalous right-handed DF = 1 effects are mediated by the operator

[Onq)? = (HYiDyH ) im' ", (3.90)

9Notice that in some minimal models Prr arises as an accidental symmetry in the lowest order
derivative expansion [253].
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Fe [C%]gg [Cg + Cfg]?’?’ [Cral®® | [Cru]®
UB)re %u? *au 1.1g«eq | 0.6 gsey
(32]>< ( )rC % gjf.ezt L1gieq | 0.6 guey
(2)ho e Juer 1.1gseq | 0.6 g.&p
UB)c | 08g.5 ile, - 0
U2)re 0.8 gueys 41e,, — 05

Table 3.2 — Lower bound on m, in TeV from anomalous Z/W coupling for the different
scenarios under consideration. We assume custodial protection for the Zbyb;, coupling.

Furthermore, the only relevant effect is expected from the third family, generating a
Wilson Coeflicient scaling as

: 1
[CHQ]?)S ~ P

—, (3.91)
€2 m?

in case of MFV or U(2)1c through the replacement ¢, — ¢4,. Given the present
experimental constraints [252], |[C,]*3| < 3.6 TeV~2 at 95% CL, this effect is cleary
negligible.

AF =1
Rare B-decays

We turn to rare (semi-)leptonic B decays. As already expained in the main text, we
focus on the following effective interaction Hamiltonian

4G , €2
Hefr = — \/f Ve (Véin) 152 |C1o(59b1) (29,7°0) + Clo(5r7"br) ((37°0)
(3.92)

+Co(5.7"bL) (Eyul) + Co (3R bR) (L1,ul) | -

In all our models C! /)10 are generated through the anomalous Z coupling operator of

eq. (3.28) and Cé ) is suppressed with respect to Cfo).

We can express Cho and C, through the tree-level flavor structure reported in App. C.1

207 [0 ] Vi (o,

sb
Clo =~ G SdeR] , (3.93)

m2
where we remind that the letter on the side of the brackets denote the quark type in the
mass basis. Again, 1n the presence of Prr protections, the C1g coefficient in eq. (3.93)

is suppressed by (g / g+)?. Notice that in App. C.1 we report the factors S only for
U(3)&e, U(2) x U(3)rc and U(2)1,c. The case of U(3)% can be obtained simply by the
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Fe Cho Cio (w/ PLR) Clo
12.3 9.2
U(B)ZRC Teu Gxfu X
U(3) x U;(Q)Rc %ﬂj %‘% X
U2 123 92 10.9 gcy
U@3)rc X X X
U<2)LC 14.2 g*€Q3 10.6€q3 —

Table 3.3 — Constraints from the leptonic and semi-leptonic B decays. For each operator
and scenario we report the lower bound on m, expressed in TeV. With — and x we
indicate respectively that the bound is negligible or the operator is not generated at
leading order.

()

replacements of figs. 3.3 and U(3)r,c do not generate neither C}; nor .

The scaling of the Cﬂ)) Wilson coefficients are summarized in the following equations

2 . _ V2472 Yy ’
. 2 4r2  y}

U2) x UB)re: Cro= ¥24%5 4, Clo =%,
Gr e mie;

2 _ V2 ar? v I /2 4n? 1 ys 95 (5 —¢2)
U(Q)RC Co = Gr e* mie;’ Co = Gr e Vi)™ v m3
UB)Le Cip = x Cly = X
U(2)r - C _\/5’4293(833 £5) C/O_\/5742 1 y2

(2rc: 10 = Gr e m3 ’ 107 Gr e Vi (Vi)™ mieg,
(3.94)

where the x means that no tree-level effects are present. Imposing the following constraints
[242] on the Wilson Coefficient

we find the bounds on m, in table 3.3.

3.4.3 Dipole operators

All the model considered in this chapter generate negligible EDMs, as discussed in
the main text. Here we summarize the effects related to the so-called EW dipoles, i.e.
interactions described according to the effective operators of the form

Ty F 1) Fr (3.96)

with F&7, the field strength of the SM gauge bosons and i, j the flavor indexes of the
SM g gaug J

fermions.
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The B system

The effective Hamiltonian relevant for b — s+ transition is

4G s s e _ _
Her = *T;Vé?(M(VéKM) F;QF” (C75L0wbR + C75R0LbL) - (3.97)

and the Wilson coefficient can be estimated as

o 4272 ) lS“LdR] sb o 4272 v [S“RdL ] sb
7= ,C7 = P— .
GrV&om (Vo)™ V2my | m32 T GV (Van)® Vamy, | m?
(3.98)
From the explicit expression of App. C.1 we find
U(3)ic Cr=x, Cl=x,
U(Q)XU(?))RC C7=><, C’§:><,
2
2 . _ (ms 4272 I _ ms 4272
U(2)RC ' Cr = (mb) GFVCH%M(ngqu)*mz ’ 07 o GFVC’”%M(V(i:f(M)*mz ’
U@3)Lc Cr = x, Cl = x,
. _ [(ms 4272 /I _ [ ms 2 4272
U(2)LC . Cr = b) GrViou (Vi) m? 07 N <mb> GrVom (Vo) mi
(3.99)
Imposing the constraints from [246]
ReC7 < 0.03, |C7] < 0.07 (3.100)
we get the following bounds
U(2%c: my >58TeV U2)Lc: ms>88TeV. (3.101)

The D system

Regarding the D mesons, the main AF = 1 constraints come from the direct CP violation
in the hadronic decays, usually encapsulated in the observable

Aacp = ag+g— — Ut - (3.102)
The latest measured value is [254]

Aacp = (—15.4+£2.9) x 1074, (3.103)
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roughly compatible with the expected SM prediction. In our models, such transitions
could arise at tree-level from flavor-changing dipole operators

_Grme

These operators are generated at tree-level by the three models in sec. 3.3, while for

H (Csturo" gsG ek + Cserot” gsGuur) - (3.104)

MFYV models they are zero. We estimate for all three models

U(2) x U(3)rc

while Cf is further suppressed by y,/y.. The imaginary part of Cy enters at O(1) in
Aacp as shown in [255]. However we see that for m, 2> TeV this contribution is well
below the experimental accuracy, leading to no relevant bounds on the models.

3.4.4 Four-fermions operators

An important set of constraints comes from the AF = 2 transitions. Adopting the
convention of [209], the short-distance contact operators mediating the AF = 2 flavor
transitions can be reduced to

fzm“ij)(fwafL), O = (5™ F8) vt in

)

= ( )
<flRf]L>< FiRfin) . c?%{z@%f%xf LI (5,100
(sz )( RfyL) 03] :(ffiij)(foJR%
= (fR o) (it ) OF = (Fr i) (o foR)

where ¢ and j denote the flavor indices while @ and S denote the color indices. In the
following we will neglect the @3, )3 and ()5 operators, since they have the same power
counting in terms of the new physics parameters, but a weaker experimental bound. The

bounds we use can be seen in fig. 3.6 and are taken from [215].

The Kaon system

The strongest bounds for the Kaon system come from the K — K° mixings and in
particular from the observables Amg and ex. In terms of the operators defined in
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)

) Tfi t

(=]
>

10°

NP scale A (TeV

10°

10?

Figure 3.6 — 95% constraints on AF' = 2 operators, from [215]

(3.106), the current and projected for HL-LHC bounds (in parenthesis) are

[Tm C5%) ~ [Tm C§) < 2.5 x 1072 (6.3 x 10710) TeV 2,
[Tm C5%| ~ |Tm C5%| < 2.5 x 1071 (6.3 x 10712) TeV 2, (3.107)
IIm C5%] < 6.3 x 10712 (1.6 x 10712) TeV 2.

Using the flavor structures of App. C.1 we find for the various models

4,4 10 ~
U(3)ac : mCy =25, O =,

4,4 0 ~
U@2) xUB)re: mCd =224 ImCl = x,

Ikt

A4 4 >\10 ~ 4 x2< 4
U(2)fe : ImC{! =278 e, ImCit =570 (3.108)
U@3)rc Im C5? = x| Im C~’fd =X,
2.4 ~ 2 6
U@2)Lc : Im C§4 = 24%A105 8 - T O = (of)? Y
* Yy 9g¥kEq

The U(2) xU(3)rc and U(2)% models also generate a contribution to C; that is enhanced
for small values of ¢,. We estimate this contribution to be

U2) xU(3 : A4e202n\6
(2) x U3)rc Tm O = 2= e lt7 (3.109)
U(2)%c - m2glele;

The U(2)%¢ and U(2)L¢c models also generate the three mixed chirality operators Os,
05 and Oy, but with negligible coefficients compared to the experimental bound. The
bound on m, coming from all these operators is reported in Tab. 3.4.
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Fe cyd Cyd csd | G5t | ¢yl
U(3)%0 %%6) X X X X
U3) x U(2)re %ﬁ’;) (;fé?éi) X X X X
EE I
UB3)rc X X X X X
U(2) Lo 5.7(11.4)g.c7, — — | — | —

Table 3.4 — Constraints from the Kaon system AF = 2 transitions. For each operator
and scenario we report the lower bound on m, expressed in TeV. In parenthesis the
projected bounds for HL-LHC. In square brackets an additional contribution that become
large for small values of £,,. With — and x we indicate respectively that the bound is
negligible or the operator is not generated at leading order.

The B; and B, system

Another important set of constraints from AF = 2 transitions, come from the flavor
violating processes involving the neutral B4y and Bs; mesons. For these operators the
current experimental bounds [215] are

|Abs Q4% ~ [Abs Q%4 <1 x 1070 (2.5 x 1077) TeV 2,
|Abs Q%] ~ |Abs Q4% < 2.5 x 1077 (6.3 x 1078) TeV 2, (3.110)
|Abs Q4 <1.1x 1077 (2.8 x 107%) TeV 2,

and
IRe Q4| ~ |Re Q%% < 2.5 x 107° (6.3 x 107%) TeV 2,

Im Q¥ ~ [Im Q¥*| < 8 x 1076 (2 x 107%) TeV 2,
IRe QY| ~ [Re Q5] < 8.1 x 1076 (1.6 x 1078) TeV 2,

Im Q% ~ [Im Q%] < 2.8 x 1075 (6.9 x 1077) TeV 2, (3.111)
Re Q% <4 x107% (1 x 1076) TeV 2,
Tm Q4] <1x1075(2.5 x 1077) TeV 2.
For these observables we estimate

U(3)ic Abs CY = 2;?;’%’5\? , Abs Cld = x |

U2) x UB3)re : AbsC = jjf;*g AbsCh = x

U2)3 Abs GV = jjlygk . AbsCh = ijgm” , (3.112)

U3)Lc Abs ¥ = x | Abs CV = x |

U2)Lc AbsClt = A2X0%55 | Abs O = (a')? B
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cbd chd Cbd | Chd | b
6503) X X X X
gxE2
6.5(13) % X % %
gxp
6.5(13 2
gfgg) 19.3(38.7)guc2 | — | — | —
X X X X X
8.7(17.3)g.e2, — — | — ] —
chs chs ch | Ch | o
5.9(11.8) % % % %
gxE2
5.9(11.8) % X % X
9*5?
5.9(11.8) 2 o . _
X X X X X

Re/Im C}s = L X
Re/Im C}s = %
Re/Im C}* = =
Re/Im C%* = x |

2_4
g*E
ReCls = A2\ %50
1 mz

The D system

7.9(15.8)g.c5,

experimental bounds are [215]

Re/Im C*
Re/Im C¥ =
Re/Im C*
Re/Im C¥s =

Re/Im C}* =

Im Q5%| ~ [Tm Q% < 1 x 1073 (1.6 x 107%) TeV 2,
Im Q5"] ~ [Im Q5*| < 2.5 x 1077 (2 x 10710) TeV 2,

Tm Q5% <5 x 10710 (1 x 10719) TeV 2.

Table 3.5 — Constraints from the By and B systems AF = 2 transitions. For each
operator and scenario we report the lower bound on m, expressed in TeV. In parenthesis
the projected bounds for HL-LHC. With — and x we indicate respectively that the
bound is negligible or the operator is not generated at leading order.

Also in this case the mixed chirality operators are generated only for the U(Z)%C and
U(2)1c models but give negligible bounds. The bounds on m, can be found in table 3.5.

The final set of AF' = 2 constraints we study come from the D system. These constraints
are complementary to the previous ones since they involve up-type quarks. The current

(3.114)
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Fe csm csu cse | Cs | o
U(3)%0 — X X X X
U(3) X U(Q)RC — 0.12(0-31)9*63 — — —
U(2)%0 — 0.12(0.31)gue? | — | — | —
UB)re X X X X X
U2)rc 0.12(0.31)g.e2, — — | — | —

Table 3.6 — Constraints from the D system AF = 2 transitions. For each operator and
scenario we report the lower bound on m, expressed in TeV. In parenthesis the projected
bounds for HL-LHC. With — and x we indicate respectively that the bound is negligible
or the operator is not generated at leading order.

In this sector most contributions are negligible compared to the experimental bounds.
We report here the only ones that could be potentially relevant

U@2) x UB)re : Im G = % %5

pomi
~ 2.4
U(2)% : Im O = 525 (3.115)
4
U2)Lc : Im Cf* = Z—%gfsgg .

The bounds on m, can be found in table 3.6.

3.5 Conclusion and outlook

In this work we have examined several possibilities for the flavor structure in Composite
Higgs models that implement Partial Compositeness. The class of models that we
studied have either the six right-handed SM quarks or the three left-handed ones strongly
composite. The models are further classified according to the flavor group of the composite
sector. The remaining mixings are instead taken to be generic, with the only request
that the Standard Model can be reproduced. The models we considered are summarized
in Fig. 3.3, for the right-handed compositeness models, and Fig. 3.4, for the left-handed
compositeness ones. The characteristic common to all of these models is the exact absence
of contributions to the neutron EDM at leading order in the number of spurion insertions,
assuming no additional CP odd effects arise from the strong sector.

We started from models that realize Minimal Flavor Violation and we then tried to reduce
the flavor symmetry group of the composite dynamics in order to relax the tension with
the experimental bounds. Regarding the right-handed compositeness models we have
seen that there is a clear advantage in going from U (3)% to U(2) x U(3)rc since this
removes the strong constraints coming from the interplay of light quark compositeness
bounds and AF = 2 transitions in the B sector. Further reducing the symmmetry group
to U(2)%( is instead not so convenient, since this model introduces new flavor-violating
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processes in the down sector. Most of these can be taken under control for sufficiently
small ¢, with the only exception being b — s, which is independent on ¢, and gives an
irreducible bound on m, that was absent in U(2) x U(3)grc.

We tried to apply the same logic to the left-handed compositeness models (with a single
partner for the SM doublets), where the U(3),c MFV model faces strong bounds from
combining light quark compositeness and the CKM unitarity constraints. This lead us to
consider the U(2)rc model that, however, introduces new flavor violating effects, absent
in MFV. Even for this model, we found the strongest constraint to come from the b — s+
transitions. In Fig. 3.7 we report a summary of the bounds of all the models studied.

It is interesting to notice that from the flavor point of view, in the scenarios considered
the strongest bounds always come from the B mesons mixings and decays. This is
different compared to the anarchic scenario where the strongest constraints are due,
respectively, to EDMs and to the K mesons system. We started to assess the projected
sensitivity expected from the BELLE II [214] and HL-LHC [215] programs, but we still
miss a complete study.'’

In this direction we also plan to assess the impact of future collider on the different
setup we considered. Preliminary projections for a universal and top-philic composite
dynamics, in very high-energy lepton colliders, are already present in [3] but a systematic
discussion on flavor is still missing.

Our study should also be extended to the lepton sector, already partially addressed in
the literature [239,256]. An unified discussion of all the SM flavor has not yet been
presented and can be crucial in light of the foreseen experiments [257,258].

Our preliminary results show that flavor observables play a remarkable role in the
composite Higgs framework. Different flavor structures can indeed completely exclude
a strong dynamics accounting for the SM masses or can give specific signatures of
it. Research and progress in flavor physics is mandatory in order to exploit the full
potential of the next experiments and this can play a major role in our understanding of
fundamental physics in the next few years.

198ee also [213].
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mm Universal
m U(2) x U3)re
= U(2)kc

m U(2)c 4

2 4 6 8 ) 12
m. [TeV]

Figure 3.7 — Summary of all the combined bounds for the various models examined in this
work. The grey area is for flavor-universal bounds and are common to all models. The
dotted lines are the two implementations of MF'V for right- and left-handed compositeness
models.
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!N Appendices for Chapter 1

A.1 Explicit formulas

In this section we report some explicit formula to complete the discussion of Ch. 1. First
of all the ICSXW Iy, encoding the new physics efffects in eq. (1.2) can be found in Table A.1
for the quark-lepton interaction in the Warsaw basis, and in Table A.2 for the W and Y
parameters.

We now turn to the explicit expression for the reweighting functions in eq. (1.20). We
specialize again to the W&Y scenario but the more general flavor universal one is
completely analogous. The first term in eq. (1.20) takes the form

N 2
pil(zthb = (1 + a;‘éfgw + a%f}?Y) , (A1)
where

log(A?/s) g°Bn,w (dxe )
16m2mi, CgM(QXqv ha)
log(A?/s) 9/2571,3’(%@7 b)
1672my, CgM(QXq’ )
log(A*/s) Vg Bew
16m2m3y, Cdy(s;{u,d}, 1))’
.\ = 10g(/2\2/28) § V19 *Bey |

’ 1672miy, Coy(s; {u,d}, 1))

aw,a = aw (83 Gxgs ba)

)

Y

ayx = ay (83 4x,s ba) +

ayy,x = ajy(s)

with a;((/c()y) and the C’s defined as in section 1.2.1. The S-functions, computed by

DsixTools [83], are reported in table A.3.
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(anXl) (LvL) (LvR) (R7L) (R’R)

u — U subprocess Gl(;) — Gl(g) Ge G Gey

d — d subprocess Gl(;) + Gl(s) Gye Gla Gea

Table A.1 — Explicit expressions for the new physics coefficients ICgX by defined in
q7

eq. (A.3) for the generic quark-lepton operators in the Warsaw basis (Table 1.1).

(X(le) (LaL) (LaR) (RvL) (RvR)
B 2 2 2 2 2
u — @ subprocess | 22 1\;V+29 Y 9=y Vi 29" Y
mi, 6mW 3mW 3mW
- a2 2 2 2 2
d — d subprocess 3912WJ2“9 Y g¢xY _g ¥ _g¥
My GmW GmW 3mW

Table A.2 — Explicit expressions for the new physics coefficients ICgX by defined in
q
eq. (A.3) for the Ofy;, and Oy operators.

(@xg:bx) | (ur,er) (dr,er) | (an,er) | (ur,er) | (dr,er) | (ur,er) | (dr,er)
fow | Tt | AL 4t | 42 | g 0 0
By 5192527£3g’2 —5192351039'2 _%g,z _88%39/2 %9,2 _%9,2 98;4109/2
B = Bt By = —Lig°

Table A.3 — The relevant S-functions.

The second term in eq. (1.20) is given by

_ 0 -
wu—ll Uy U, g Ixg 5CSM(uXu7 lxz) Uy, Uxy —x; Uy
APNLL,A =2 (Pn,A Fp + CO (., Iy, Pn,A +

SM Xu’ “X1

_ < 2 + /
U, Uy, —$ly s | [/u /C S; u,d s l
qu, 5)(1, \/ n?(u xu hxbxg g . [ué}% [ d S\/]( { } ))] ) ’

oA (47r) C[S)M (uXu7 le)

o - - 0 = =
Apdd—ll dxddxd”lxllxlf + 5CSM(dXd7 le) dygdxg =gl
pNLL,A - pn,A D CO (d l ) pn’A
SM\™Xd>» "X1

Cam(s: {u',d}, 1)Viva
QMEl O (dy,, ly,) :
SMA\%Xd» “X1

dy g dx, —lx I,
6Xd7L5leL \/pn,A P

e
A (4m)

= 6Car (53 {u,d}, 1))
A ud—vit -9 F SM\*» ) ’ ,W
AL (”CvA P Gyt udy, ) Vi)

2 _ = 0
* g uquXu_ﬂX ZX CSM(uXu7 le)
+ - Lu \/ 17Xl
162 4 (4m)? ( PeAlnA Cayi(s: {w,d}, 1))

2 = - 0
« 9 dy dy =l by, Canil(dy,,
- VudWLt (\/pc,ApnT]\i Xd XX sm(dxas ) )) :

C;M(s; {u7 d}v l))




A.1. Explicit formulas

where the factors 6CO(H) | defined as

8ch(qu7 le) 8CgM (qx«;v le)

5ch(qu; le) = 8g2 692 + aglz 59/2’
ACT (s {u,d}, I
MMwmmmzsméz}%ﬂ

take into account the RG running of the SM couplings g and ¢'.

The four coefficient functions P, appearing in the fully-differential cross-section for the
neutral DY process, eq. (1.34), can be expressed as

P? =8 ((Colar, 12))* + (Colan, 1r))*) . P¢ =3 ((Colar, Ir)* + (Colars 12))%) .

(A.2)
where the Cj functions can be split as
CO(qu7 lxz) = C(S)M(‘s; Gxq>» le) + ]CSXqlel ) (A3)
with a SM contribution
T3 (g ) T (ly) + 7Y (qy,)Y (1 2
CgM(§7qu, le): g (qu) (Xl)§ g (qu) (Xl) +O 77; , (A4)

and new physics effects encoded in IC2X Iy The explicit expressions for the latter are
q7

reported in Table A.1 for the quark-lepton interaction in the Warsaw basis, and in

Table A.2 for the W and Y parameters.

From the previous equations one can easily derive the expressions for the vectors \7;?0
defined in eq. (1.36) as
Gud=vVat-a, (A.5)

5,0 =

where G are the Wilson coefficients in the Warsaw basis. Analogously we defined the
‘7}0 vectors

GL, =V} G. (A.6)

5,0 =

We recall that the Gs{o coefficients are chosen to have components only along the
operators contributing to the neutral DY process and to be orthogonal to the coefficient
combinations G?;gl. Moreover V;,L and V;l contribute to same-chirality and opposite-
chirality subprocesses, respectively. We report the explicit values of the 1% components

in Table A 4.

The explicit expressions for the G]i; and Gg coefficients can be derived by substituting
the above expressions in the definitions in eqgs. (1.47), (1.48) and (1.49).

Finally, we report the Wilson coefficients in the Warsaw basis (see the left column of
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Generic quark-lepton operators Wand Y
el felse) G G G G G W Y
lq lq ge lu ld eu ed

‘7u 3g2+g/2 73927912 O O 0 _49/2 O 92(392+g'2) _9'2(3924»659'2)

s 6 6 3 24m3, 72m3,
— 2 2_ 12 2 2_ 12
P 3g2—g"? 3¢g%—g"? 0 0 0 0 242 g°(39°—g'%) g'*(39°—174'?)

s 6 6 3 24m2, 2m3,
— ’2 2 4

u _9° 29 _ 59
v 0 0 3 3 0 0 0 0 T8z,
7d g’2 9’2 914
Vo 0 0 3 0 3 0 0 0 - 9’m€v
—aJ_ 29/2 _3g2_g/2 g/2_3g2 . g/4
Vs 0 3 0 0 0 12 6 0 18m?
A’J_ 29/2 _ﬁ 2g/2 _ g/4
Vs 0 0 3 3 3 0 0 0 9m2,

Table A.4 — Explicit expressions for the components of the T_/;‘{O and ‘_/'SLO vectors. The
first part of the table gives the components along the generic quark-lepton operators in
the Warsaw basis, while the last two columns correspond to the components along the
W and Y parameters.

Table 1.1) that are obtained by integrating out the minimal Z’ model of Section 1.5

G .
q Y 9BL9y 4 9
e ER i R
lq IiL, 4+ 9BLIY | 9y
qu 1 g23 5 2 52
_ BL 4 59BLgY | Iy AT
O Mz g?%L 9BLYY g%:i ( )
Gl 56 R Ty
g 29
Geu BL + gpLgy + =3¢
Geg Ih1 _ ﬁ
3 3

A.2 Kinematical variables

The charged leptons momenta we employ in our analyses are obtained by recombining
photons (and lepton pairs from photon splitting) within a AR™® = 0.1 recombination

cone, with thresholds pJ. . =10 GeV and ||}, = 3. Acceptance cuts pr,min =25 GeV
L

max = 2.D are applied to the reconstructed lepton momenta. Events are selected to

and |7
have 2 (same-flavor) or 1 reconstructed leptons for, respectively, the neutral and charged

DY analyses.

The two variables employed in the charged analysis are the transverse momentum pr
and the rapidity 7y of the single observed lepton.

In the neutral case, the three variables are the invariant mass my, of the dilepton pair,
the rapidity of the dilepton system relative to the beam axis in absolute value (called
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y) and the cosine of the scattering angle ¢, = cosf,. Two alternative definitions of 6,
can be considered. The simplest option is to define it as the angle formed, in the rest
frame of the dilepton pair, between the charge-minus lepton and the direction of motion
of the dilepton rest frame relative to the lab frame. The second option is to define 6,
as the angle between the momentum of the charge-minus lepton and the z axis in the
Collins—Soper frame, along the lines of Ref. [259]. More precisely, ¢, is defined by the

formula
20200 Dap-Eor —pop+ Eo-

me|pzeel (M2, +pi,£4)1/2

Cx = , (A.8)
where Fy+ and p, = denote the energy and longitudinal momentum of each lepton,
while p, ¢ and p ¢ are the longitudinal and transverse momentum of the lepton pair.
The two definitions only coincide for the tree-level kinematics, where the dilepton pair
has vanishing transverse momentum. However we have checked that the differential
distributions obtained with the two definitions are almost identical, thus giving nearly
equal results for the fits (the differences in the bounds being at most 2 —3%). The results
reported in ch 1 are obtained with the Collins—Soper definition of c,.

We remark that the definition in eq. (A.8) contains the factor p, s¢/|p. ¢¢|, which takes
into account the direction of the boost of the CoM system. Its presence is essential for the
effectiveness of the fully-differential analysis as emphasized in Footnote 11. This factor is
duly taken into account in existing experimental measurements (see e.g. Ref. [43]).

A.3 Correlation matrices

In this appendix we report the correlation matrices for the fully-differential linearized fit
on the 7 4-fermion Wilson coeflicients presented in Section 1.4.4. The fit includes a 2%
uncorrelated systematic uncertainty. The corresponding 95% CL bounds are given in

Table 1.5 for the él(g)’ G% e Gj/ , coefficients and in Table 1.6 for the Warsaw basis.

¢Y G Gy G5 Gy Gk ab
G311 1 06l 045 -0.056 -022 -021 -0.1
GL|-061 1 -039 032 074 056 0.56
Gy | 045 039 1 028 -0.078 -0.36 0.1
G5 | -0056 032 0.28 1 026 -0.43 0.47
Gy | 022 074 -0078 0.26 1 064 056
GL | 021 056 -036 043 064 1 025

Gt -0.1 0.56 0.1 0.47 0.56  0.25 1
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GY G G Gu Gua G  Ge
GP 1 1 009 023 02 -026 -0.097 -0.027
GM | 000 1 04 039 -039 094 -0.78
Ge | 023 04 1 099 -0985 047 -0.55
G | 02 039 099 1 095 044 -0.49
G | 026 -0.39 -0.98 -095 1  -052 0.64
Gew | -0.097 094 047 044 -052 1  -0.94

Geq | -0.027 -0.78 -0.55 -0.49 0.64 -0.94 1

A.4 LHC projections

In this appendix we report the projections for the LHC run 3, assuming an energy of
14 TeV and an integrated luminosity £ = 300fb~!.

The 95% CL, single-parameter bounds for the Universal parameters W and Y are given
by

W: [-6.8,7.2] x 107° ([-8.2,8.9] x 107°),

(A.9)

Y: [-17,19] x 107°  ([-18,20] x 1079),
where the two sets of intervals correspond to the fully-differential and single-differential
combined bounds (the latter in brackets). These bounds are obtained including only a 2%
luminosity uncertainty, but no additional experimental systematic error. Comparing with
the analogous HL-LHC bounds in eq. (1.46), we see that the all bounds are roughly a
factor 2 weaker. The fully-differential analysis provides an improvement in the sensitivity,
although significantly milder than in the HL-LHC case. This pattern is not unexpected,
since the benefits of a fully-differential analysis tend to be larger when the number of
expected events is large enough to allow the fits to be dominated by the linear interference
terms. At the LHC with £ = 300fb~! the importance of the quadratic terms in the fits
is still high, thus explaining the much milder gain in sensitivity. As we will see in the
following, a similar pattern is found for the fits on the seven 4-fermion operators and on
the minimal Z’ model.

In Tables A.5 and A.6 we report the LHC run 3 bounds for the single parameter and the
profiled fits in the basis introduced in Section 1.4.3 and in the Warsaw basis, respectively.
Also in this case the bounds are derived assuming no uncorrelated experimental systematic
uncertainty. As for the HL-LHC, the main benefit of the fully-differential fit is in the
determination of the Gg parameter, which improves by roughly 40% in the single-
parameter fit. Mild improvements in the sensitivity to the other parameters (of order
10 — 20%) are also found.

Finally in Figure A.1 we report the projected LHC exclusion reach in the mass/coupling
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LHC projections

95%CL single parameter profiled

[1073TeV~2?]| fully diff. fully diff. lin. single diff. fully diff.  fully diff. lin. single diff.
Gy [~0.87, 0.87] [—0.87, 0.87] [-0.97, 0.97] | [~1.19, 1.06] [—1.30, 1.30] [—1.51, 1.27]
Gt [-0.53, 0.47] [-0.50, 0.50] [~0.60, 0.53] | [~1.30, 0.74] [~1.50, 1.50] [~2.01, 0.85]
Gr [~1.13, 1.20] [~2.66, 2.66] [~1.30, 1.51] | [~3.56, 2.80] [~4.54, 4.54] [5.03, 3.29]
a3 [~1.07, 0.87] [~1.00, 1.00] [~1.74, 1.94] | [-1.16, 1.45] [~2.17, 2.17] [~2.16, 3.41]
G [-1.30, 1.16] [-7.88, 7.88] [~1.53, 1.35] | [-3.02, 3.70] [~17.9, 17.9] [-3.41, 4.90]
Gt [-3.48,2.75] [-1L.0, 11.0] [~3.52, 2.81] | [-4.05, 3.79] [-30.5, 30.5] [-4.38, 3.92]
Gt [~1.19, 1.17] [-51.9, 51.9] [~1.42, 1.40] | [~1.65, 1.47] [~70.2,70.2] [~2.00, 2.00]

Table A.5 — 95% CL projected bounds (in 1072 TeV~2 units) for the seven parameters
G, G o and GL, at the 14 TeV LHC with £ = 300 b

lqg >

95%CL single parameter profiled
[10-3 TeV_2] fully diff.  fully diff. lin. single diff. fully difft.  fully diff. lin. single diff.
Gy [~1.09, 1.03] [~1.06, 1.06] [—1.35, 1.25] | [~1.19, 1.06] [—1.30, 1.30] [—1.51, 1.27]
Gz(;) [—4.68, 7.51] [—5.66, 5.66] [—5.11, 10.64] | [—8.62, 10.56] [—35.6, 35.6] [—9.72, 13.5]
Ge [—4.71, 8.62] [-6.57, 6.57] [—6.11, 10.9] [-7.23,9.37] [-375,375] [-10.9, 11.3]
G [—4.22, 6.42] [-5.01, 5.01] [—5.88, 10.6] [-6.05, 10.3] [-187, 187] [-11.6, 13.7]
Gl [—16.3, 10.2] [-18.0, 18.0] [—19.2, 12.5] [-16.9, 14.9] [—419, 419] [-20.2, 20.9]
Gey [—3.10, 3.54] [-3.30, 3.30] [—3.29, 3.83] [-6.20, 10.3] [—46.9, 46.9] [-7.25, 11.7]
Gea [-13.5, 8.18] [-10.3, 10.3] [—15.5, 8.69] [-16.9, 16.0] [—121, 121] [-17.9, 18.7]

Table A.6 — 95% CL projected bounds (in 1073 TeV 2 units) for the four-fermion operator
coefficients in the Warsaw basis at the 14 TeV LHC with £ = 300 b~

plane for the three benchmark Z’ models considered in Section 1.5. The mass exclusion

reach is roughly 25% weaker than the projections for the HL-LHC (compare Figure 1.17).

The improvement due to the fully-differential analysis is clearly visible. In particular

it plays a significant role in the difficult-to-test benchmark with gy = —gpr,, allowing

one to cover part of the parameter space not yet excluded by the EWPT, which is not

accessible with the single-differential analysis.
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M HL-LHC Direct searches
M LHC Single Diff.

B LHC Fully Diff.

---- EWPT

(9v = 9,981 = 0)

M LHC Single Diff.
B LHC Fully Diff.
---- EWPT

9:/V2, g5 = —g./V2)

B HL-LHC Direct searches

(9v = 9./V2, 951 = 9./V2)

M HL-LHC Direct searches
I LHC Single Diff.

B LHC Fully Diff.

---- EWPT
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M [TeV]
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10
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Figure A.1 — 95% CL (1 d.o.f) exclusion reach in the mass/coupling plane for three
different Z' benchmark models at LHC with £ = 300 fb~!. The blue shaded region can
be excluded through the fully-differential di-lepton DY analysis, while the orange one
can be probed with the invariant-mass fit. The green shaded region corresponds to the
exclusion from direct searches.
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B.1 Radiation integrals

The contribution of virtual radiation to the amplitude variation in eq. (2.43) is propor-
tional to the integral

—i /d4q 1 (i - kj)
(2m)* Joo " q* —mi, +ie (g ki)(qa - kj)

1

(B.1)

where we included a mass my ~ my, for the virtual vector in order to verify explicitly
that the integral is log-enhanced only in the A\ > m2, regime, where the IR cutoff is
much above the EW scale. We now proceed (following [260]) to the evaluation of I
assuming, for simplicity, exactly massless hard 4-momenta k? = ka = 0. The integral is
Lorentz-invariant, therefore it can only depend on the scalar product (k; - k;), that we

set to 1 1
(ki kj) = 5 (ki + ki) = §E27 (B.2)
in what follows.

The calculation is conveniently performed in Sudakov coordinates [261]. Namely we

parametrize the loop momentum ¢ as
q = uki +vkj +¢1 ¢+ ¢ G, (B.3)
where (¢1)? = (¢2)? = =1, Q12 - ki = C12- kj = 0 and ¢ - (1. In these coordinates
P =uvE?—|q |, (B.4)
and the infinitesimal strip do (2.40) that defines the integration region is expressed as

luv|E? € [\ A+ )] . (B.5)
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After the change of variables, the integral reads

dud
/ U ”/ . (B.6)
27r S0 lq.|? — qu2 + m3, — ic

The d?q, integral must be performed up to an upper cutoff that justifies the usage of the
Eikonal approximation formula in eq. (2.41) for the gauge boson vertices. In particular
we notice that the actual denominators of the virtual legs in the diagram are not (k;; - q)
as in the Eikonal formula, but rather (k; ; - ¢) £ ¢*/2, with plus or minus for incoming
and outgoing particles, respectively. Neglecting ¢2/2 is justified only if |¢.|?/2 is not as
large as to compete with the minimum among |k; - ¢| = |u| E?/2 and |k; - q| = |v| E?/2.
Therefore the ¢, integral should be cutoff at

lg1[* < A%, with A% = BZmin [u], |v]] . (B.7)

Similarly, the term proportional to uv in ¢? should not be large compared to (kij-q),
therefore the v and v integrals are also bounded, in the region

lul <1, |v| <1, (B.8)
supplemented by eq. (B.5).

The integration boundaries of v and v are invariant under v — —u and under v — —v
reflections. We can thus perform the integral (B.6) in the first quadrant of the (u, v) plane,
provided we duly symmetrize the integrand. Furthermore we notice that first-quadrant
integration region (restricted to u < 1 and v < 1, owing to eq. (B.8)) is conveniently
described by the coordinates 7 and y, defined by

u=+1e¥, v=+Te Y. (B.9)
Indeed in these coordinates the condition (B.5) merely sets the value of 7 to

A , P
T= 73 with 7 = ik (B.10)

while the upper bound (B.7) on the |g, | integral reads

A% = E%\/re W = EvVxe W (B.11)

We can thus express the integral as

; 22‘ w B 1 1 B.12
_( / |QL’ ’qL|2_)\+m%/_Z'6_’qL|2+)\+m%/—i6 , (B.12)
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where, since A? is symmetric under y — —v, we could take the y integral from 0 to

1 E
oo = loo 2 B.13
ym = —g log7 =log =, (B.13)

and multiply by a factor 2.

The d|q, |? integral in eq. (B.12) is readily performed. It is convenient to separate the
terms that emerge from the upper |q,|? integration extreme from the one of the lower
extreme |g, |2 = 0, obtaining two contributions to I, Iy and I1,. We will readily see that
fhe former contribution is suppressed, therefore

(B.14)

1 6N, E?i A+mi —ie
=— —log | —F——
8m2 \ AT

I~1T — log —
L 08 —)\—}—m%/—ie

The logarithm gives quite different results in the two regimes A > m2, ~ m%/ and
AL m2 ~ m%/ In the second one, the argument of the logarithm has positive real part,
almost equal to to 1 up to m%/ /A power-corrections. In the first regime, the argument
has negative real part and the log equals +i 7, plus A/ m%/ corrections. Namely

10X E?

2

A>mi rxem? 1 6N, E?

2
from which we recover eq. (2.44). More precisely, notice that the integral for each pair
of external legs ij is controlled by the specific scale E? = 2(k; - kj). In eq. (2.44) we
set all these scales equal up to corrections that are not log enhanced, but of order
one. This in turn corresponds to order 1/log corrections to the evolution kernel and to

single-logarithm corrections to the solutions of the IREE.

The contribution to I from the upper |q l|2 integration extreme is suppressed. To see
this it is convenient to employ the integration variable p = exp(y — yn), obtaining
2i oA 1 1

In=—""21{ dp-1lo
ENCH TN NV

(B.16)

1—p(1 —mi /N
1+ p(1 —i—m%//)\) ’

where we could drop the —ie because the argument of the logarithm has positive real
part in the entire range of integration. The p integral is finite for ﬁ/ E — 0, therefore
it does not produce log-enhanced contributions. In particular the integral gives —72/4
for A > m2 ~ m%/ and it is power-suppressed in the opposite regime.

We now compute the contribution of real radiation to the density matrix variation, which
we employ in eq. (2.51). The relevant integral that controls the contribution from a real
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radiation diagram like those in Figure 2.2, reads

= / g (hiky) __ 1 /cl4qc5(q2 ) 0(g") i)
) Joo 20 G- a)(kja) )P Jog (ki - )k, )

(B.17)
where we employed the eikonal formula in eq. (2.41), but ignored the “G” factors that
are included separately in eq. (2.51). Notice the presence of a minus sign, which is due to
three factors of —1. The first minus is due to the fact that applying the eikonal formula
to the conjugate amplitude gives the complex conjugate of the generator matrix “G;” of
the corresponding leg, while eq. (2.51) is expressed in terms of the generators Gje = —G}
of the conjugate representation. The second minus sign emerges from the sum over the
polarizations of the real vector boson, which gives —1,,,. The third minus is because the
contribution to the variation is minus the integral over the strip do, since the A cutoff is
a lower bound on the hardness.

In Sudakov coordinates (B.3), and setting (k; - k;) = E?/2, the integral becomes

Ig = — (271r)2 /&TdZ:fv O(u+v) /d\qJ_IQ(S (qu2 —qu* - m%/) . (B.18)
The integration extremes of all the variables are like those of the virtual integral, including
the condition (B.5) that defines the infinitesimal integration strip do. The delta function
in eq. (B.18) has support only if uv > 0, and the theta function further restricts the
integral to the first quadrant of the (u,v) plane. We can thus employ the 7 and y
coordinates in eq. (B.9) and readily obtain

1 6\, E?
In=——log = 9(A —m2). B.1
R Ry O(X —my) (B.19)

Evidently, the theta function condition is not satisfied for A < m2, ~ m#,, therefore the
integral vanishes in this regime. In the other regime
A>m? 1 oA E?

I =" =————log— B.20
which is equal to the virtual radiation integral, as anticipated in the main text. Notice
that the pre-factor of eq. (2.51) contains an additional 1/2, due to the fact that the
real radiation contribution is effectively counted twice in the equation by the two terms
proportional to (G{‘)(Gﬁ) and to (Gﬁ)(G}“) , which are equal after summing over ¢ and
]
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Bosons | SU(2), y Leptons SU(2)p, y
w t 0 (Ve—1725021 )5) d —1/2
B s 0 (P1/20 051 )0)" d -1/2
H d | +1/2 o s -1
H d | -1/2 AP 5 +1

Quarks SU(2), y
(u_1/2, d_1/2)" d +1/6
(ty1/2, dy1y2)! d -1/6

Ui/ S +2/3

U_y/9 s —2/3

dy1)2 s -1/3
d_1/2 S +1/3

Table B.1 — SU(2),xU(1)y quantum numbers of the SM particles in the high-energy
regime.
B.2 High-energy EW multiplets

The EW symmetry is effectively unbroken at energies much above the EW scale. Therefore
in this regime it is convenient to describe the SM particles in terms of representations of
the (linearly-realized) SM group SU(2); xU(1)y, with generators

TA={T"Y}, a=123. (B.21)
The generators act on the single particle states as
T p(k, ) = [p(k, HNTH, | (B.22)

with generator matrices TrA that define the representation “r” of the particle multiplet.
The field ¢ that interpolates the multiplet from the vacuum, namely

(0[2F(0)|p(k, B)) o< 63, (B.23)
transforms with the same generator matrix, i.e.
(08 (@), T4] = ()50 (x) (B.24)

The SU(2), representations of the SM particles and the corresponding U(1)y charges
are listed in Table B.1.

All the fermionic particles with helicity —1/2 transforms as doublets (i.e., r = d), the
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anti-particles with helicity +1/2 transform in the conjugate (r = d) of the doublet
representation, while all the others are singlets. Obviously this is true only in the high
energy limit where the fermions are effectively massless and the helicity corresponds the
chirality of the corresponding interpolating fields. The doublet representation matrices
are the standard

. 0 +1/2 0 —i/2\ [+1/2 0 0 ek ant
4= {<+1/2 0 ) ’<+z'/2 0 > ( 0 —1/2)} o Ti= -0 ==d)
(B.25)

The EW multiplets of bosonic particles are less well-known, but equally straightforward
to work out employing the standard Goldstone Boson Equivalence Theorem, or better
its stronger formulation in Ref.s [203,262]. The point is that for massive W* and Z
vector bosons with 0 (longitudinal) helicity one can employ interpolating fields that
are a specific combination of the regular gauge fields ch and Z,, and of the Goldstone
boson scalar fields 7% and 7z. The longitudinal states are thus a linear combination
of the quantum fluctuation modes associated to this two different type of fields, and
the scattering amplitudes with external longitudinal states are a linear combination of
Feynman diagrams where the external states are represented either as gauge fields or
as Goldstone fields. This is a convenient formalism in the high energy limit because
the polarization vector associated with gauge external lines vanishes as my/E (unlike
the regular longitudinal polarization, that diverges as E/myy), and only the Goldstone
diagrams survive. In essence this means that the Goldstones, and not the gauge, are the
adequate interpolating fields for the longitudinal particles at high energy. Therefore the
EW quantum numbers of the longitudinal particles are the ones of the Goldstones, and
not of the gauge fields. The Goldstone bosons, together with the Higgs, form a doublet
with +1/2 hypercharge, and the corresponding conjugate doublet

h+ing\t - h—img\t
H:(ﬁ,??z), H:(W_, \/Z;Z>. (B.26)

Vector bosons with transverse helicity T = +1 are instead well-described by gauge fields
even at high energy. Therefore they decompose into a triplet plus a singlet EW multiplet,
which are readily obtained by undoing the Weinberg rotation

o _ (W +Wp Wy — Wy
vz V2

Explicitly, the triplet generator matrices are

¢
, ewZT + swfyT> , B=—swZr+cwyr. (B.27)

00 0 0 0 i\ [0 —i 0
T¢={10 0 —i|,l0 0 o],[i 0 0 (B.28)
0 i 0 —i 00/ \o 0 o0
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We now proceed to the evaluation of the K; exponentials in the explicit formula for the
semi-inclusive density matrix (2.55), for external legs in the doublet (or anti-doublet) or
in the triplet canonical representations defined by eq. (B.25) and (B.28). The K tensors
in eq. (2.53) are

ad & o <& o aa - 1 .
T A

The exponential of eq. (B.29) is trivial and we readily obtain

[exp (—C Kd>] = e_£5gdg‘ + e L2 sinh(£/2)(50‘5‘555 , (B.31)
BB
where we defined )
g 2
1 E B.32
L= 0 (B ). (5.3

The exponential of eq. (B.30) is slightly more involved. First of all notice that the three
tensor structures in the right-hand-side of eq. (B.30) commute so we can exponentiate
all of them independently. In particular we get

exp (—2£6505 ) = e~2£6505 (B.33)

exp (~£6555 ) = cosh(£)3§05 — sinh(£)d555 (B.34)
aa s 1 3L aa

exp (L£6°%6,5) = 6565 + 3 (€% = 1) 6°%5,5. (B.35)

Taking the product of the factors just found, we get

[exp (—E Kt)] —e % (cosh(ﬁ)ég‘ég - sinh(ﬁ)(?%‘&g) + gefgﬁ sinh (3£/2) 5“5‘555 :

BB
(B.36)

B.3 3! family operators

The sensitivity to the 3" family operators in Table 2.2 are summarized in this section.
In Figure B.1 we report the two-dimensional contours in the (Cp, C’( )) and (Céil), 0(3))
planes, with the third operator set to zero. We notice that the “Wlth radiation” cross-
section measurements (see the main text) is mostly effective to probe Cé?g producing a
significant sensitivity improvement on the combined bound in this direction. The effect is
milder in the orthogonal directions. The likelihood is dominated by the linear term in the
new physics parameters so all our result can be expressed in terms of the single operator

reaches (at 95% CL) of and the correlations matrices in Table B.2. In the table we report
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Figure B.1 — 95% CL contours in the (Cip, Cq(?jj)) (left) and (Cé}l), é?’D)) (right) planes at
the 10 and 30 TeV muon colliders.

> L
v L"‘
& 1 L2f &
.5906"'/ ] 1 O.‘;
S o
& ] i
R 0.8
|0 95% CL |
1 04
95% CL = 14 TeV
I 2 30 TeV
3 TeV -
40 60 80 100 120 140 200 400 600 800 1000 1200 1400
Mz [TeV] My [TeV]

Figure B.2 — The same as the right panel of Figure 2.10 for various collider energies.

the sensitivity of exclusive cross-section measurements alone, and the combination of all

the measurements.

B.4 Summary plots

In this appendix we collect additional results skipped in the main text. In particular
in Figure B.2 we report the sensitivity projections for the Y-universal Z’ model, in the
(9271, Mz) plane for the different collider energies. In Figure B.3 we collect the sensitivity
projections for the composite Higgs model in the (m., g.) plane for E., = 3, 14, 30 TeV.
Projections including composite top measurements can be found in Figure B.5. Finally,
Figure B.4 shows the dependence of the bound on the value of the ¢ coefficients, as

explained in the main text.
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Figure B.4 — The same as the right panel of Figure 2.11 for different values of ¢+ to show
the model dependence of the result.
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Figure B.5 — The same as Figure 2.11 for various collider energies. The blue line on the
equally-composite (left panels) projections are taken from [206], while on the right-handed
composite top scenario are taken from [210].
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Exclusive-only
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0.46 0.36

Cip

Exclusive-only

i) o Cip iy oy
Eeon =3 TeV
Combined

Cip

Cip

Exclusive-only

Combined

0.43

0.25

Cip C;B

Cﬁ,) Cip

FEem =10 TeV

Exclusive-only

iy oy

Combined

Cg 0.41 0.22 Cg 0.38 0.13
Cip 'y o Cip a'p s Cip 'y o Cip a'p s
By =14 TeV Eeyy =30 TeV
Exclusive-only [95% CL] Combined [95% CL]
Cop 3 @ Cip c Cyp
3 TeV [—24.4,24.4] | [-9.47,9.47] | [-6.68,6.68] || [—23.1,23.1] | [—8.59,8.59] | [—5.45,5.45)
10 TeV || [—2.24,2.24] | [-0.97,0.97] | [-0.71,0.71] || [—2.04,2.04] | [-0.81,0.81] | [—0.49,0.49]
14 TeV || [-1.15,1.15] | [-0.52,0.52] | [-0.38,0.38] || [—1.03,1.03] | [—0.42,0.42] | [-0.25,0.25]
30 TeV || [-0.26,0.26] | [-0.13,0.13] | [-0.10,0.10] || [-0.22,0.22] | [-0.10,0.10] | [—0.05,0.05]

Table B.2 — Single-operator 95% CL reach and correlation matrices for the Wlison
coefficient Cfg, C’S)) and C’;‘O’D) of the operators of Table 2.2 at different collider energies.

All results include exclusive cross-sections or combined measurements.

The Wilson

coefficient are expressed in 10~* TeV~2. Since the likelihood is dominated by the linear
terms in the new physics parameters, the single parameter reach and the correlation
characterize our results completely.
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C.1 Additional details on the models

In this appendix we go into more details in the construction of the three models presented
in section 3.3. In particular for each model we report the quantum number of the spurions,
the matrices that diagonalize the Yukawas and the tree-level flavor structures used to
built the Wilson coefficients in sec. 3.4. The diagonalizing matrices are computed in the
Yu < Yo < 4y and yqg K ys < yp limit and for each entry of the matrix we only report
the leading term of this expansion. The tree-level flavor structures are the coefficients in
the mass basis of all the possible fermion bilinears that can appear in the dim—6 effective
operators as fixed by spurion analysis. Explicitly if an operator contains the bilinear
f;(( .. )gi ... of quarks f, g = u,d with chirality x and A and flavor 7 and j, by flavor
symmetry it will must appear with a coefficient

[ Sfxgx]l.j )

By tree-level we mean that in building [Sfxg*]ij we only have two spurion insertions
with the composite index contracted. In our conventions we take this structures to be
normalized in such a way that they have the units of measure of a single coupling.

C.1.1 U(2) x U(3)rc

This model is characterized by three diagonal right-handed mixings ¢,,, ¢4 and &, and
three left-handed off-diagonal mixings A,,, A¢, and Ag. The mixing Lagrangian is
reported in (3.46) These parameters break the flavor group that for this model is assumed
to be

F=U@B)gxUB)yxUB)axUR)yxUB)pxUl)r.

The form that we assume for the A\ mixing is reported in the main text in eq. (3.48),
where we assume the numbers a and b to be O(1) complex numbers with arbitrary phases.
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The spurion non-abelian quantum numbers for these mixing parameters, with respect to
the full flavor group are

UB)g | UB)u | UB)a | UR)y | UB)p | UM)r
A 3 1 1 2 1 0
A 3 1 1 1 3 0
Agi 3 1 1 1 1 -1
EulAi 1 3 1 2 1 0
€a0qi 1 1 3 1 3 0
£03; 1 3 1 1 1 1

In this model, the Yukawa matrices are given by (3.47). The only non-trivial matrix that
has to be diagonalized is Y,,. For Y, the diagonalization matrix Uy can be rewritten in
terms of the CKM matrix as in eq.(3.49). We define the U, and V,, matrices by

Y, = U,Y, Vi, (C.1)

where the bar indicates the diagonal and real matrix. The explicit form of U, and V,, in
the limit y, < y. < y¢ is

2
1 —arbge atige 1 —a*b¥% ale
t < t
] 2
t
—alue  _pY 1 —ale b ]
Yi Yi Yt Yt

Finally we consider the tree-level flavor structures of this model in the mass basis.

Sdrdr — v, (C.3)
SULIR = Vg SR (C.4)
SdeR — Q*E?I (C5)
SULUR = Y, 4+ (z — 1)UIY,V, (C.6)
Sdvur — i GULUR (C.7)
Surdr — (C.8)
Serur — g, Vidiag(es, €2, we7) Vi (C.9)

2 ~
SurLur — L [(Yu)z + <?2L$1 — 1) UJ(Y%)QUU
t

gs€3, «€q
SuLdL — GULULY o (C.11)
SdeL — VgKMSULUL VCKM (012)
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where we have defined the }7} matrix as

0 0 O
Y= 0 0 0 , (C.13)
0 0 w

and the z parameters are O(1) numbers that characterize the misalignment of these
structure with respect to the Yukawas.

C.1.2 U(2ic

This model is characterized by four diagonal right-handed mixings €., €4, € and &, and
four left-handed off-diagonal mixings Ay, Aq,, A¢, and Ay . The mixing Lagrangian is
written in (3.61) These parameters break the flavor group that for this model is assumed
to be

F=U@B)gxUB)uxUB)axUR)yxUR2)pxU1)rxU(1)p.

The form that we assume for the A mixing is reported in the main text in eq. (3.63),
where we assume the numbers a, b, a’ and b’ to be O(1) complex numbers with arbitrary
phases. The spurion non-abelian quantum numbers for these mixing parameters, with
respect to the full flavor group are

UB)g | UB)u | UB)a | UR)y | UR)p | UM)r | U()B
A 3 1 1 2 1 0 0
Ay 3 1 1 1 3 0 0
A, 3 1 1 1 1 -1 0
A, 3 1 1 1 1 0 -1
cubAi 1 3 1 2 1 0 0
Ed(sBZ‘ 1 1 ?) 1 2 0 0
€403 1 3 1 1 1 1 0
€503 1 1 3 1 1 0 1

In this model, the Yukawa matrices are given by (3.62). We define the diagonalizing
matrices by
Y, = UV, Ulyy=UYav), (C.14)
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where the bar indicates the diagonal and real matrices. The explicit form these matrices
in the limit vy, < y. < ¥+ and yg <K ys K yp is

Uu

Uy =

*p Yul * Yu
1 —a*blede g*dude 1 —a*bis

y; vg , 7
* *Y
2 t
—alue b 1 ale b
Yi Yt Yt Yt
%1 Ydy. 1% YdY: 2
1 —a™b Wzs a yigg 1 —a/*blz—;
b
11.0% Ydy. %Y 2
a'b degs 1 b =5 , Vd = a/b/*yid 1
v; ) Yy vy
_a/ydgs _b/?/% 1 —a'¥s _pYs
Yy Yy Yo Yo

(C.15)

Finally we consider the tree-level flavor structures of this model in the mass basis.

SdeR :Yd + (.’E — 1)U£%Vd

SuLdr — Sdrdr

Vekum
GdrdR :g*Vdeiag(é‘?p 662l7 $6§)Vd
SULUR =Y, + (x — D)UYV,

§aLur :VCTKMSULUR

Surdr —(
SurtR —g Vidiag(e2, &2, xe?)V,
— 82 ~
SuLuL — V)2 + [ e — 1| UI(V)?U,
9*63 l( ) + (51%.%'1 ) u( t)
1 ~ o, (&5 t o2 i
+ VCKM 2 HZQ(Yd> + 7%3 — T2 Ud(YVb) Ud VCKM
9x€4 b

qurdr, _ gurur VerM

gdrdr :VCTKMSuLUL Verm

where we have defined the f/t and f’b matrices as

0 0
0 O ,
0 Yi/b

Y=

o O O

and the x parameters are O(1) numbers.

C.1.3 U(2)Lc

(C.27)

This model is characterized by two diagonal left-handed mixings ¢, and €4, and four

right-handed off-diagonal mixings A,, Ag, A\t and \;. The mixing Lagrangian is written
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in (3.74) These parameters break the flavor group that for this model is assumed to be
F = U(3)q X U(B)u X U(3)d X U(Q)U+D X U(].)T+B

The form that we assume for the \ mixing is reported in the main text in eq. (3.76),
where we assume the numbers a, b and b’ to be O(1) complex numbers with arbitrary
phases, while @’ is O(0.1) with an arbitrary phase in order to reproduce the CKM. The
spurion non-abelian quantum numbers for these mixing parameters, with respect to the
full flavor group are

UB)g | UB)u | UB)a | UR)u+p | U)r4n
A 1 3 1 2 0
Ad 1 1 3 2 -1
A 1 3 1 1 1
b 1 1 3 1 0
ebia | 3 1 1 2 0
£:0i3 | 3 1 1 1 1

In this model, the Yukawa matrices are given by (3.75). We define the diagonalizing
matrices by
Y, = UV, Ulyy=Uv,v], (C.28)

where the bar indicates the diagonal and real matrices. The explicit form these matrices

in the limit y, < Yy < y¢ and yqg <K ys < yp is

1 —ab* ve ale 1 —ab*Yufe  qYule
AT v Yy
U, — 1. y2 Ye V. = *) YuYe 1 b¥e
u a b% 1 b* ) u — a 2 2 )
Yi Yt Yt 5 Yt
* Y * Ye _ ¥ YulYc ib*yic
—gtle _pr¥e ] a 1
Yt Yt th yt2
2
1 _a/b/*y% a/yi 1 _a/b/* ydfgs a/ydgs
Yy Yo Yy Y
2 1% 1.1 YdYs /Ys
Us=| o"v'% 1 pi |, Vo= | atbse 1 b3
yb Yb b 9 b
_q/*¥s _p/*Ys 1 —a* yd?g}s _p* 2/% 1
Yo Yo Yo Yy

(C.29)
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Finally we consider the tree-level flavor structures of this model in the mass basis.

Sddr =, 4 (z — VYUY Vy

€

SuLdR :VCKMSdeR

1 _
gindr = 22 l(Yd)Q +
g* q

§aLur :VCTKMSULUR

SuRdR _
Gx q

QURUR —

9*53

Surur :g*UJdiag(ag, 53, xe

qurdr, — gurur VerMm

Sdrde =yl SUEL Vaen

2
q

2
q3

SULtR :Yu + (:E - 1)U1Ii;tvu

1 [- _
3 [YUVCKMYd + (

T — 1) 1%} (?;,)QVd]

2

g3

5+ (Se ) i

2
a3

YU

where we have defined the fft and }71, matrices as

Yy =

and the x parameters are O(1) numbers.
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0
0
0

0
0
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€q o
1| VIV,

(C.36)

(C.37)
(C.38)
(C.39)
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