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Level statistics of the one-dimensional ionic Hubbard model
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In this paper we analyze the spectral level statistics of the one-dimensional ionic Hubbard model, the Hubbard
model with an alternating on-site potential. In particular, we focus on the statistics of the gap ratios between
consecutive energy levels. This quantity is often used in order to signal whether a many-body system is integrable
or chaotic. A chaotic system has typically the statistics of a Gaussian ensemble of random matrices while the
spectral properties of the integrable system follow a Poisson statistics. We find that whereas the Hubbard model
without alternating potential is known to be integrable and its spectral properties follow a Poissonian statistics,
the presence of an alternating potential causes a drastic change in the spectral properties, which resemble the one
of a Gaussian ensemble of random matrices. However, to uncover this behavior one has to separately consider
the blocks of all symmetries of the ionic Hubbard model.
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I. INTRODUCTION

In the past years a significant effort has been devoted
to the understanding of the dynamics of quantum systems.
In contrast to the equilibrium physics at low temperature,
which is typically dominated by the low energy properties
of a quantum system, the nonequilibrium physics relies often
on properties of an arbitrary part of the spectrum. A central
question is the determination of the conditions under which
an isolated quantum many-body system thermalizes or fails to
thermalize [1–5]. In this context it is generally believed that a
generic chaotic system is best suited to exhibit thermalization
towards a suitable statistical mechanics ensemble [6].

Recent studies have put forward several examples of
nonequilibrium phenomena, which provide examples of sys-
tems failing to thermalize, such as many-body localization
[4,5,7–9], and Hilbert space fragmentation [10,11]. These sys-
tems feature a large number of (almost) conserved quantities
and are thus not chaotic. The phenomenon of quantum many-
body scarring [12–15] highlights that even in overall chaotic
systems tiny subspaces can be found, which fail to thermalize.
This scenario is especially relevant if the initial conditions lie
in this subspace [16].

A powerful probe of the properties of a many-body quan-
tum system in the context of quantum chaos are the universal
properties of the level statistics. There exist two cornerstone
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limits: the Poisson statistics and the statistics stemming from
random matrix theory [17]. The random matrix theory statis-
tics is conjectured to hold for generic chaotic systems [18,19],
where the energy levels repel each other. The exact class of
random matrices is determined by the symmetries present
in the system. In contrast, the Poisson statistics is found for
quantum integrable systems.

The level statistics of different many-body quantum sys-
tems have been classified as for example of the prime
examples of the Hubbard model [20] and variants of it [21],
or its bosonic counterpart [22], a kicked-parameter model of
spinless fermions [23], or more recently a family of Sachdev-
Ye-Kitaev models [24].

The Hubbard model is one of the most studied models
in condensed matter physics, since it is one of the simplest
models containing the competition between the kinetic term
and the interaction term of fermions. A large amount of effort
has been devoted to study the properties of the Hubbard model
[25] and in particular of its one-dimensional version [26,27].
The one-dimensional model has the particularity that it is
Bethe-Ansatz integrable, which enabled a lot of detailed stud-
ies [26]. In agreement with the conjecture mentioned before,
the level statistics of the one-dimensional Hubbard model was
found to follow the Poisson statistics [20], while, e.g., the
two-dimensional Hubbard model at low filling exhibits the
statistics of Gaussian orthogonal ensemble (GOE) [28].

In this paper, we will investigate the spectral properties
of a generalization of the one-dimensional Hubbard model
by adding an alternating local potential term. Such an ionic
Hubbard model has been realized in cold atomic gases using a
superlattice potential [29,30] and proposed to describe GeSe
[31]. Further, the ionic Hubbard model has been devised in
order to study the physics occurring at neutral-ionic phase
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transitions as they occur in solids for example, ionic to neutral
transitions in organic charge-transfer solids [32,33], and at
ferroelectric transitions in perovskites [34]. An alternating
local potential is also at the heart of the staggered fermion
formulation of massive fermions in quantum field theories on
a lattice [35], and is of relevance to ongoing efforts to simulate
quantum field theories.

Such an alternating potential is widely believed to break
the integrability of the Hubbard model. However, recently,
numerical results pointing towards a Poisson statistics of the
levels [21] were reported. The tension with the general expec-
tation motivated us to investigate the level statistics properties
of this model in more detail. Indeed we find that after all the
symmetries of the Hamiltonian are taken into account, the
level statistics are clearly of GOE nature in a wide range of
parameters considered.

In Sec. II we describe the one-dimensional ionic Hubbard
model considered in this paper. In Sec. III we present the level
statistics approach we use to show the chaotic character of
the ionic Hubbard model. In order to employ this procedure
we first need to identify all symmetries of the model, which
we present in Sec. IV. We determine the eigenenergies of the
ionic Hubbard model by performing complete numerical exact
diagonalization using the identified symmetries. Our results
regarding the spectral properties for generic and half filling
are presented in Sec. V.

II. MODEL

The Hubbard model is one of the standard models of
condensed matter physics. It is the simplest model, which
describes the competition between the motion of two species
of fermions, called spin-up and spin-down fermions, in a
periodic lattice potential and their on-site interaction. The
one-dimensional Hubbard model is given by the Hamiltonian

H0 = −J
L∑

j=1

∑
σ

(c†
j,σ c j+1,σ + c†

j+1,σ c j,σ )

+ U
L∑

j=1

n j,↑n j,↓. (1)

Here c j,σ are the fermionic operators describing a fermion
with spin σ =↑,↓ on site j. J is the tunneling amplitude of
the fermions from one lattice site to the neighboring ones, and
U the strength of the on-site interaction between the different
fermionic species. L denotes the length of the chain, which
is chosen to be an even number. The total particle number of
the fermions is denoted by N . We note that we focus on even
N , therefore the total spin is integer. We use in the following
periodic boundary conditions, i.e., we identify c(†)

L+1,σ ≡ c(†)
1,σ .

Depending on the parameters chosen, the one-dimensional
Hubbard model has many interesting phases [26,27]. These
reach from a metallic/Luttinger liquid phase (U = 0, and
U > 0 away of half filling) over a band insulating phase for
the totally filled case, a Mott insulating phase at half filling
for U > 0 to a superfluid phase for the attractive interaction
U < 0. Here we mentioned only the phases occurring for a
spin-balanced situation.

One experimentally relevant extension of the Hubbard
model is the so-called ionic Hubbard model, which has
an additional alternating local potential. Its Hamiltonian is
given by

H =H0 − η

L∑
j=1

∑
σ

(−1) jn j,σ , (2)

where η gives the strength of the alternating potential. The
ground-state phase diagram of the ionic Hubbard model has
attracted a lot of interest [36–57] and many interesting phases
have been pointed out. In particular, the very interesting phase
of a bond order arises. These results have been obtained using
either approximative methods or numerical methods because
of the common believe that the ionic Hubbard model for
generic couplings (i.e., away from the known integrable or
free parameter sets) is not Bethe-Ansatz solvable.

III. LEVEL STATISTICS

In this section we would like to summarize some prop-
erties of the spectra of quantum many-body models. It has
been conjectured that the spectral statistics of quantum many-
body systems displays either universal features described by
random matrix theory (RMT) for chaotic quantum systems
[18,19,58,59] (if all known symmetries are removed), or fol-
lows Poisson statistics for quantum integrable systems. There
exist numerous examples in the literature that show the useful-
ness of the spectral analysis in order to obtain information on
the chaoticity or integrability of many-body quantum models
[9,20,22–24,60–64].

In order to quantify the spectral properties of a model one
important quantity is the distance between adjacent many-
body eigenvalues

δn = En+1 − En, (3)

where {En} are the eigenvalues of the Hamiltonian sorted in an
ascending order. In the case of integrable models, for which
one can find an extensive number of conserved quantities,
the distribution of the level spacings should follow a Poisson
distribution

P(δ/�) = exp

(
− δ

�

)
, (4)

where � is the mean level spacing. In contrast, for a chaotic
model the underlying symmetries, as the time-reversal sym-
metry, determine with which random matrix ensemble the
model shares the same universal features. Similar to Hub-
bard model the ionic Hubbard Hamiltonian considered here
[Eq. (2)] is invariant under time-reversal operator T and has
rotational symmetry, which leads to the Gaussian orthogonal
ensemble (GOE) in random matrix theory [59].

For the GOE the level spacing distribution has the
Wigner-Dyson form

P(δ/�) = π

2

δ

�
exp

(
−π

4

δ2

�2

)
. (5)

Numerically, often an alternative way is employed in or-
der to characterize the spectral properties. One considers the
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TABLE I. Values of averages 〈r〉 and the probability at r = 0,
for the GOE distribution for different number of symmetry blocks
m (of equal size) and the Poisson distribution. Values taken from
Refs. [66,67].

Distribution 〈r〉 P(r = 0)

GOE (m = 1) 0.536 0
GOE (m = 2) 0.423 1.408
GOE (m = 3) 0.403 1.715
Poisson 0.386 2

behavior of the gap ratio for consecutive levels defined by [62]

rn = min (δn, δn+1)

max (δn, δn+1)
. (6)

This approach has the advantage of bypassing the need to
compute the density of states. The computation of the density
of states would imply a procedure for the unfolding of the
spectrum, which can lead to inaccurate numerical results [65].
The probability distribution of the consecutive gap ratios for
the Poisson statistics is given by

PPoisson(r) = 2

(1 + r)2
, (7)

and for the GOE statistics by [66]

PGOE(r) = 27

4

r + r2

(1 + r + r2)5/2 . (8)

One can quantify the proximity of the computed distribution
of gap ratios to Poisson or GOE by using the mean value 〈r〉 or
the value P(r = 0). The expected values for the Poisson and
GOE distributions are given in Table I.

The comparison of the spectral properties of a quan-
tum chaotic Hamiltonian with the ones of the RMT is
typically performed within each symmetry sector of the
symmetries present in the Hamiltonian. These symmetries
comprise for example spatial translations and reflections, but
also more special symmetries as particle hole transformations.
In the case in which a few symmetries are known for the
Hamiltonian, one typically block diagonalizes the Hamilto-
nian in order to perform the analysis of the level statistics.
However, in certain situations the symmetries might not be
known or the block diagonalization procedure may be im-
practical or not possible. Several work investigated different
situations where additional symmetries are present [67–70].

In particular, Giraud and coworkers [67] present analytical
results for the distributions of random matrices comprised
of several independent symmetry blocks, corresponding to
the presence of a discrete symmetry. In particular, we make
use of the results of Ref. [67] for the GOE distribution for
m = 2 or 3 blocks of equal size, to show the chaotic nature
of the half-filled ionic Hubbard model. The mean value 〈r〉
and the value P(r = 0) for the GOE distributions with m =
2 or 3 are given in Table I and the distributions are plotted
in Fig. 7. The analytical expression of the distributions can
be found in the Supplementary Material of Ref. [67]. One
can observe that by having multiple symmetry sectors the
value P(r = 0) becomes finite and increases for larger m (see

Table I). The mean value 〈r〉 is already closer to the value
expected for the Poisson distribution, Eq. (7), than the one
for the GOE distribution, Eq. (8), even for just m = 2 or 3
blocks. Whereas the distribution of consecutive level spacings
for m = 2 shows very pronounced leveling off at low values
as r → 0, the distribution of m = 3 already shows a behavior
very similar to the Poisson distribution. By taking a very large
number of symmetry sectors, m → ∞, one will recover the
Poisson distribution [67]. Thus, extreme care has to be taken
in the numerical analysis of the spectral properties of many
body quantum model, since missing just a few symmetries
the numerical results for a chaotic system could resemble an
integrable one. We demonstrate this explicitly for the ionic
Hubbard model in the Appendix A.

We note that in the following we mainly make use of the
results for the GOE distributions for which the m symmetry
blocks are of equal size. However, one can perform the same
analysis also for the case of unequal blocks [67], as we use it
in Appendix A. In the case of m = 2, as the ratio of the sizes
of the two blocks goes from 0 to 1 the values 〈r〉 and P(r = 0)
interpolate between the values for m = 1 and m = 2.

IV. SYMMETRIES

In order to study the level statistics of the ionic Hubbard
model we need to identify the discrete symmetries existing
in the model. In the following we list the symmetries (beside
the time-reversal symmetry discussed already in the previous
section) occurring in the ionic Hubbard model with periodic
boundary conditions and comment on how we take them into
account.

(a) Gauge symmetry. The global U (1) gauge symmetry

Ucj,σU † = eiφc j,σ , (9)

where φ is a real number, leads to the conservation of the
particle number Nσ with spin σ and consequently also of
the total particle number N = N↑ + N↓. This conservation is
directly implemented in the numerical exact diagonalization
method.

(b) Spin-rotation symmetry. The SU (2) spin rotation sym-
metry, well known from the Hubbard model, also exists in the
presence of an alternating potential. The spin operators are
defined by

Sα = 1

2

L∑
j=1

∑
a,b∈{↑,↓}

c†
j,a(σα )a,bc j,b, α = x, y, z, (10)

where σα are the Pauli matrices. These spin operators repre-
sent a SU(2) Lie algebra and generate the rotations in spin
space. As all spin operators commute with the Hamiltonian
of the ionic Hubbard model in Eq. (2), [H, Sα] = 0. Thus, the
Hamiltonian is rotationally invariant in spin space, which cor-
responds to the conservation of the total spin S. The symmetry
sectors corresponding to this symmetry are labeled by |s, mz〉,
where S2|s, mz〉 = s(s + 1)|s, mz〉 and Sz|s, mz〉 = mz|s, mz〉
(where h̄ = 1). The conservation of the Sz component is di-
rectly implemented in the numerical exact diagonalization
method. However, the symmetry sectors corresponding to
the absolute spin S are reconstructed from the numerical
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results. For more explanation on how this is performed see
Appendix B.

(c) Translational symmetry. The lattice in the ionic Hub-
bard model has a two site unit cell. Therefore, a translational
symmetry with respect to a translation by an even number of
lattice sites exists, i.e.,

Txc j,σ T †
x = c j+2,σ . (11)

The corresponding conserved (dimensionless) momentum
k determine the eigenvalues exp(ik) of the generator Tx.
The possible momentum values are k = 2π

L/2 j with j =
0, 1, . . . , L

2 − 1, for a chain with an even number L of sites.
Thus, each symmetry sector is characterized by its dimension-
less momentum k.

(d) Parity (reflection) symmetry. In the ionic Hubbard
model there exists a reflection symmetry given by the trans-
formation

Pcj,σ P† = c2− j,σ . (12)

This transformation also leaves the Hamiltonian invariant.
Here, the reflection center is chosen as the first site of the
chain. Due to the translational symmetry, the reflection center
can be chosen on any site of the chain (but not on a bond
center). The eigenvalues corresponding to the reflection sym-
metry are p = ±1.

Note that all symmetry generators besides (Tx, P) com-
mute. As the reflection symmetry changes the direction of
the momentum, it does not commute with the translational
symmetry in general, but only if the momentum is k = 0 or
k = π . The momentum k = π only exists if L

4 is an integer
number. Therefore, we cannot diagonalize the matrix with
respect to both the translation and reflection symmetry beside
in the special case of k = 0 or k = π . We choose to use the
translation symmetry first and the reflection symmetry only
for the special case of k = 0, π .

Combining all symmetries, the individual symmetry blocks
are thus characterized by (N, s, mz, k, p). The last quantum
number is only present for k = 0, π . Since the level statis-
tics are independent of the respective symmetry sectors, if
not stated otherwise, the distributions are calculated within
all computable sectors individually and are only afterwards
combined to decrease the statistical error of the distributions.

(e) Particle-hole like symmetry. In the ionic Hubbard
model an additional symmetry is present at half filling. This
additional symmetry resembles a particle hole symmetry, here
between two sublattices, i.e., with the transformation

Ccj,σC† = (−1) jc†
j+1,σ . (13)

The ionic Hubbard Hamiltonian at half filling is invariant
under this transformation. We discuss in Sec, V how this
symmetry influences the properties of the level statistics.

(f) Symmetries used in exact diagonalization. In the exact
diagonalization code we build subsectors for fixed N , mz, k,
and reflection quantum number, if applicable. It is tedious
to combine the particle hole-like symmetry with the other
symmetries in the existing code, and we did therefore not
implement it. However, in the subsequent analysis we are able
to detect the presence of this symmetry in the resulting level
statistics distributions and to account for it in the analysis, and

additionally we found a way to explicitly break the particle
hole-like symmetry by alternating Hubbard on-site interac-
tions, while retaining all other symmetries.

In the following we diagonalize individual blocks of sizes
up to ∼1.27 × 104. For the averages over all the symmetry
blocks up to ∼3.84 × 105 eigenvalues were taken into
account.

V. RESULTS

In this section we show our results on the spectral prop-
erties of the ionic Hubbard model and an extension using
alternating interactions. We start discussing the results at
quarter filling (N/L = 1/2) and at filling N/L = 2/3 as
typical fillings (Sec. V A), only the standard symmetries
[Secs. IV(a)–IV(d)] are present for this case. We recover the
GOE like behavior, which points towards the chaotic charac-
ter of the ionic Hubbard model. Additionally, we discuss in
Sec. V B the case of half filling, which is special due to the
extra particle hole like symmetry [Sec. IV(e)]. We show that
also in this case, the results are in agreement with a GOE like
behavior occurring within the different symmetry sectors.

A. Away from half filling

We start considering the ionic Hubbard model, Eq. (2), at
quarter filling, i.e., N/L = 1/2. We compute the energy levels
of the Hamiltonian in each block of the symmetries discussed
in Sec. IV and consider the level distribution separately within
these blocks. The data obtained from different symmetry sec-
tors at quarter filling is then assembled in a single histogram.
In the representation of the histograms the chosen size of
the bins plays a role. We choose the bin size in order to
minimize the statistical fluctuations and still obtain a good
representation of the distribution. Since the distributions vary
depending on the Hamiltonian parameters, we adapted the bin
size correspondingly.

In Fig. 1(a) we present the distribution of the ratios of
consecutive level spacings averaged over all symmetry blocks
for the standard Hubbard model, i.e., η/J = 0, as a benchmark
of our procedure. For the standard Hubbard model, the ratios
of consecutive level spacings are known to follow Poissonian
level statistics [20]. For the chosen intermediate value of the
interaction, U/J = 2, we find a distribution, which follows
nicely the Poisson prediction, as can be seen from the good
overall agreement between the numerical histogram and the
Poisson prediction for P(r), including the correct limiting
behavior as r → 0+. Furthermore the mean value 〈r〉 = 0.386
of the numerical data, which does not depend on the number
of bins, agrees with the Poisson distribution value in the first
three digits.

Once we switch on the alternating potential of the ionic
Hubbard model, the behavior is changed drastically. In
Fig. 1(b) the distribution P(r) from the numerical data is
shown for a value of the alternating potential of η/J = 1
following closely the distribution expected for the GOE ran-
dom matrix theory ensemble. The behavior for small r, where
P(r) clearly starts at 0 and rises linearly for small values
of r, is in stark contrast with the Poisson behavior and is a
consequence of the level repulsion of chaotic systems. The
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FIG. 1. Distribution of the ratios of consecutive level spacings
for (a) the standard Hubbard model (η/J = 0) and (b) the ionic Hub-
bard model at η/J = 1 in a chain with N = 6, L = 12 at U/J = 2
combining all s and k, p symmetry sectors for mz = 0. We use 30
bins to represent the distribution.

mean value 〈r〉 = 0.515 is also rather close to the GOE
prediction 0.536.

In order to investigate in more detail the behavior as a
function of the amplitude of the alternating potential η/J and
the dependence on U/J , we use the average value of the
ratio of the consecutive level spacings 〈r〉. For the Poissonian
distribution the mean value of this ratio is given by 〈r〉P =
0.386 and for the GOE the mean value is 〈r〉GOE = 0.536 (see
Table I). The dependence on η/J for fixed U/J is shown in
Figs. 2(a)–2(c) for different interaction strength U/J = 2, 4.
As discussed above, at η = 0 the value of 〈r〉 is very close to
〈r〉P of the Poisson distribution. We observe that for the small-
est nonzero values of η we consider and for all considered
interactions, the average value of r increases very rapidly to
almost the value expected for a GOE ensemble. A very good
agreement with the expected value of the GOE is found in
particular for 0.5 � η/J � 2.

Since, in principle one expects an infinitesimal value of η in
the thermodynamic limit to follow the GOE like distributions,
we investigate the transition from the Poisson distribution
at η = 0 to the GOE distribution for η > 0 more carefully
and study the numerical distributions at very small values
of η. Figure 3 shows the distribution of level spacing for
four different values of η for a finite system of size L = 12,
at quarter filling for U/J = 2. The main difference between

FIG. 2. Evolution of the mean value 〈r〉 of the ratios of consec-
utive level spacings with the strength of the alternating potential
η/J for (a) U/J = 2 and (b) U/J = 4. The expected mean value
for the Poissonian distribution and the GOE are marked with the
horizontal-dashed lines. For system size L = 12 combining all s and
k, p symmetry sectors, for L = 16 combining s = 3, 4 and all k, p
for mz = 0.

the Poisson distribution and the GOE like distribution is the
finite value arising in the Poisson distribution at r = 0 and
its suppression due to the level repulsion in the GOE like
ensemble. This shows that focusing on the manifestation of
level repulsion at small values of r is much more sensitive
than merely tracking the mean value of r. In order to resolve
the steep distributions at low values or r we choose a small bin
size to represent the distributions. Already at very small values
of η/J = 0.001, 0.01 a clear suppression of the value in the
first bins is visible for the considered chain length. Whereas
for η/J = 0.001 this is only the case for the first bin, at
η/J = 0.01 already about a handful of bins contributes to the
decrease of the distribution at low values of r due to the level
repulsion. For larger values of η/J = 0.05 and η/J = 0.1,
the vanishing distribution at r = 0 is clearly visible and the
distribution approaches the GOE distribution.

The GOE distribution is expected for any finite value of the
alternating potential (η/J �= 0) for sufficiently large system
sizes. We see in Fig. 4 that the suppression of the distribution
at low values of r is very sensible to system size. Whereas
for L = 12 still the distribution for low r lies considerably
above the GOE distribution, this deviation is already reduced
for L = 16 and the distribution lies much closer to the GOE
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FIG. 3. Distribution of the ratios of consecutive level spacings
for N = 6, L = 12 for the symmetry sector mz = 0 combining s =
0, 1 and all k, p symmetry sectors. The parameters of the system are
U/J = 2 and η/J = 0.001, 0.01, 0.05, 0.1, and 100 bins. The mean
values are given by 〈r〉 = 0.391, 0.405, 0.450, 0.482.

distribution. This hints that already at small values of the alter-
nating potential the level distribution follows the predictions
from the GOE if sufficiently large system sizes are considered.

Also for large values of approximately η/J � 2 the numer-
ically found average value of r drops below the value of the
GOE ensemble (cf. Fig. 2). We attribute the deviations from
the expected GOE ensemble to finite size effects as discussed
for small values of η/J . This is supported by the results
obtained for larger system sizes in Fig. 2 moving towards the
GOE predictions with increasing system size both at small
and large η/J . The deviations between the different system
lengths are in particular large for low and large values of
the alternating potential, where the GOE expectation is not
yet met.

The dependence of the average value of r on the interaction
strength is shown in Fig. 5 for two different value of η. A
drastic rise is clearly seen from the noninteracting integrable
case at U = 0, which lies close to the predictions for the
Poisson distribution to a finite interaction strength. Already at
interaction strength of about U/J ≈ 1 an almost steady value
is reached for η/J = 1, which agrees well with the predictions
for a GOE ensemble even for a smaller system size considered
[see Fig. 5(a)]. At larger value of the alternating potential,

FIG. 4. Distribution of the ratios of consecutive level spacings
for N = 6, L = 12, N = 8, L = 16. The parameters of the system
are U/J = 1 and η/J = 0.1, 30 bins. The mean value is given by
〈r〉 = 0.474, 0.502. For system size N = 6 combining all s and k, p
symmetry sectors, for N = 8 combining s = 3, 4 and all k, p for
mz = 0.

FIG. 5. Evolution of the mean value 〈r〉 of the ratios of consecu-
tive level spacings with the interaction strength U/J for (a) η/J = 1
and (b) η/J = 2. The value of the Poisson distribution and the GOE
are marked by horizontal-dashed lines. For system size N = 6 com-
bining all s and k, p symmetry sectors for mz = 0 and for N = 8
combining s = 3, 4 and all k, p for mz = 0. The statistical standard
error of the weighted mean of r over all computed symmetry sectors
was found to be of order 3 × 10−4 or lower for all shown system
sizes. This is below the symbol sizes.

η/J = 2, similar behavior is observed but a larger system size
of L = 16 is needed to reach the expected GOE value due to
finite size effects as discussed above [see Fig. 5(b)]. At large
values of the interaction we would expect again that deviations
from the GOE ensemble arise due to the large separations
occurring in the energy scales.

In order to show that the discussed behavior is generic for
different fillings, we show in Fig. 6 the dependence of the
average value of r on both the alternating potential η and the
interaction strength U for N/L = 2/3. We find that the shown
behavior resembles very much the behavior of the quarter
filling. The only difference is that the deviations from the GOE
value at a larger values of the alternating potential are smaller
than for quarter filling.

We therefore conclude this section, that the energy spectra
of the ionic Hubbard model at a generic filling (here N/L =
1/2 and N/L = 2/3) nicely follow the expected behavior of a
GOE ensemble and therefore point towards a chaotic nature
of the model.
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FIG. 6. Evolution of the mean value 〈r〉 of the ratios of consecu-
tive level spacings (a) with the alternating potential η/J at U/J = 2,
and (b) with the interaction strength U/J at η/J = 1. The value for
the Poissonian distribution and the GOE are marked by horizontal-
dashed lines. For system size N = 8 and L = 12 combining s =
2, 3, 4 and all k, p for mz = 0.

B. Half filling

For the case of half filling N/L = 1, the obtained distribu-
tions change drastically in comparison to what we described
for quarter filling, as seen in Fig. 7. This motivated us to
investigate this filling in more detail. From our symmetry
considerations, see Sec. IV, we know that in the case of
half filling an additional symmetry, Eq. (13), is present in
the ionic Hubbard model. As it was pointed out in Ref. [67]
such an additional symmetry changes the behavior seen in
the spectra drastically, if one does not consider the different
symmetry blocks independently. As seen in Sec. III depending
on how many symmetries blocks are considered together, the
distribution of the consecutive level spacing changes from the
GOE like distribution to a more Poisson like distribution [67].
In Fig. 7 the distribution of the consecutive level spacings is
shown for the case of half filling, where we have separated
the spectrum into the blocks of the symmetries, Secs. IV(a)–
IV(d), but not into the additional particle hole symmetry,
Sec. IV(e). Note that resulting distribution neither follows
a GOE like distribution nor a Poisson like distribution, but
lies somewhere in between. These distributions are genuinely
in between GOE and Poissonian, and do not converge to
either of them with larger system sizes, unlike the crossover

FIG. 7. Distribution of the ratios of consecutive level spacings
for N = 10, L = 10 for the symmetry sector mz = 0 combining all s
and k, p symmetry sectors. The parameters of the system are U/J =
2 and η/J = 1. The mean value is given by 〈r〉 = 0.426.

behavior discussed in the previous section. Using the
predictions from Ref. [67] we confront the obtained distri-
bution to the ones, which correspond to the presence of two
(m = 2) or three (m = 3) equally sized symmetry blocks (see
Sec. III). The numerical results lie very close to the results for
a GOE RMT with two symmetry blocks present, as expected
from our symmetry analysis.

This is further supported considering the mean value of r
and its dependence on the value of the alternating potential
shown in Fig. 8(a). As for the case of quarter filling, at L =
12 intermediate value of 0.5 � η/J � 2 lead to an excellent
agreement with the predicted value of the one predicted for
the distribution GOE m = 2. Larger deviations occur at larger
values of η. We attribute these again to finite size effects, as
we can show that the longer system sizes considered strongly
approach the expected mean value compared to the smaller
system sizes. The average value of r for the system size L =
12 already agrees nicely up to η/J ≈ 2 to the expected value
of the distribution of the GOE with m = 2.

In Fig. 8(b) the average value and its dependence on differ-
ent values of U/J is shown. For U/J > 0.5, the obtained main
value fluctuates very closely around the one predicted for the
distribution GOE m = 2 and is distinct from the one predicted
for the distribution with m = 3 equal symmetry blocks.

To conclude our investigation at half filling, let us note that
the form of the distribution drastically changes and cannot
be distinguished from the Poisson distribution, if the level
statistics is not separated with respect to the symmetries,
Secs. IV(a)–IV(d), as shown in Appendix A.

Thus, our entire results indicate that the ionic Hubbard
model shows similar properties as the GOE like ensemble, if
all known symmetries are considered.

C. Half filling: Breaking the particle-hole symmetry

In order to further corroborate our finding of the impor-
tance of the particle-hole like symmetry at half filling, we
introduce an additional term in the Hamiltonian, which ex-
plicitly breaks this symmetry. This is achieved by substituting
the homogeneous on-site interaction with an interaction using
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FIG. 8. Evolution of the mean value 〈r〉 of the ratios of consec-
utive level spacings with (a) the alternating potential at U/J = 1
and (b) the interaction strength U/J at η/J = 1. The value for the
Poissonian distribution and the GOE for different m are marked by
horizontal-dashed lines (see Table I).

an additional alternation in the on-site interaction term:

Hint = U0

L/2∑
j=1

n2 j,↑n2 j,↓ + U1

L/2∑
j=1

n2 j−1,↑n2 j−1,↓. (14)

This term breaks the particle-hole like symmetry, but leaves
all the other discussed symmetries (a)–(d), such as the re-
flection, translation, and spin-rotation symmetry invariant. As
shown in Fig. 9 the presence of such a symmetry breaking
term leads to a distribution, which follows very clearly the
GOE distribution for a single (m = 1) symmetry block. In
order to investigate this behavior in more detail we show
in Fig. 10 the average value of r with the symmetry break-
ing term, i.e. with the difference in the interaction strength
U1 − U0. A very steep rise of the average value of r is seen at
small amplitudes of the symmetry breaking term, but already
at (U1 − U0)/J ≈ 0.2, the average value stabilizes close to the
expected value of the GOE m = 1 ensemble. We expect that
this rise becomes more and more steep with increasing system
size signaling a direct change of the behavior from the m = 2
situation for the presence of the particle-hole like symmetry
to the standard GOE (m = 1) behavior when this additional
symmetry is explicitly broken.

FIG. 9. Distribution of the ratios of consecutive level spacings
for N = 10, L = 10 for the symmetry sector mz = 0 combining all s
and k, p symmetry sectors. The parameters of the system are U0/J =
1 U1/J = 2 and η/J = 1, and 30 bins. The mean value is given by
〈r〉 = 0.527.

VI. CONCLUSIONS

In this paper, we have investigated the energy level statis-
tics of the ionic Hubbard model and a generalization, which
breaks the particle-hole like symmetry at half filling. We find
that in general the ionic Hubbard model and its generaliza-
tion show, when all known symmetries are considered, the
spectral features of a GOE ensemble. This implies the chaotic
behavior of the level statistics of the ionic Hubbard model.
Following the conjecture that the GOE like statistics indicates
nonintegrability of a many-body Hamiltonian [20], to which
to our knowledge no generic counterexamples are known,
our results indicate the nonintegrability of the ionic Hubbard
model and its generalization. Our findings are in agreement
with the general belief that the ionic Hubbard model is, for
generic parameters, a nonintegrable model.

FIG. 10. Evolution of the mean value 〈r〉 of the ratios of consec-
utive level spacings with the difference of the interaction strengths
(U1 − U0 )/J at η/J = 1, U0/J = 1. The horizontal-dashed lines
mark the expected values for the Poisson distribution and for the
GOE with different m (see Table I). System size N = 10, L = 10
considered symmetry sector mz = 0 combining all s and k, p sym-
metry sectors.
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FIG. 11. Distribution of the ratios of consecutive level spacings
for N = 10, L = 10 for the symmetry sector mz = 0, but not sep-
arating for the s quantum number and combining data from all k, p
sectors. The parameters of the system are U/J = 2 and η/J = 1. The
mean value is given by 〈r〉 = 0.392.
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APPENDIX A: IMPORTANCE OF SYMMETRIES IN THE
NUMERICAL ANALYSIS OF THE SPECTRAL

PROPERTIES

In this Appendix, we show how neglecting the sepa-
ration into the different symmetry sectors the in principle
GOE like distribution of the consecutive level spacings ap-
proaches the Poisson-like distribution. In particular, we focus
on half filling, for parameters close to the ones considered in
Hosseinzadeh et al. [21] where the Poisson statistics was
identified.

To emphasize the effects of the separation into the different
symmetry sectors, we present in Fig. 11 the distribution of

the consecutive level spacings at half filling, but only taking
a fixed Sz sector, and not a fixed sector of the total spin S. In
this case the expected distribution for a chaotic system would
be a GOE with m = 10 symmetry blocks [67]. The number of
blocks results from the five symmetry sectors due to the total
spin, which are of unequal size, which should furthermore
be split in half due to the particle-hole symmetry present at
half filling (see Sec. V B). The sizes of the symmetry sectors
are: s = 0, 3880 states; s = 1, 5940 states; s = 2, 2475 states;
s = 3, 385 states; s = 4, 20 states. We can notice in Fig. 11
that this GOE distribution with m = 10 is very close to a Pois-
son distribution due to the large number of symmetry blocks.
Our numerical data is in agreement with this distribution and
thus, also lies very close to the Poisson distribution. This again
underlines the importance of the separation of the spectra into
the different symmetry sectors.

APPENDIX B: THE IMPLEMENTATION OF THE SPIN
ROTATION SYMMETRIES

As explained in the main text the quantum numbers asso-
ciated to the spin rotation are the total spin S with quantum
number s and the spin in z direction Sz with quantum num-
ber mz (which varies from −s to s) with the corresponding
eigenvector in each symmetry sector labeled as |s, mz〉. In our
computation only the quantum number of Sz is implemented
but one can take the advantage of the degeneracy of the
eigenvalues for a fixed total spin s and different mz’s. The
eigenvectors |s, mz〉 and |s, m′

z〉 are connected to each other
with the ladder operators S+ and S−. As the Hamiltonian
commutes with the ladder operators, the eigenvectors |s, mz〉
and |s, m′

z〉 are degenerate. Thus, knowing all eigenvalues for
different mz’s one can pick the ones for the desired quantum
numbers s. We start with the symmetry block with largest
possible value of mz (for N spin-half particles this value is
N/2), which corresponds only to one total spin s = mz and
the solution is clear. In the next symmetry sector with smaller
quantum number mz = s − 1 there exist the eigenvalues for
two quantum numbers, s and s − 1, the ones with total spin
s are the degenerate ones with the previous sector we looked
at and the remaining eigenvalues correspond to the symmetry
sector with total spin s − 1. One can decrease the quantum
number mz to zero and and with this procedure find all eigen-
values labeled with both quantum numbers s and mz. Note,
that the eigenvalues corresponding to the negative spin in z
direction (mz < 0) for a fixed total spin s are degenerate with
the ones with its positive value (|mz|).

[1] M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E
50, 888 (1994).

[2] C. Kollath, A. M. Läuchli, and E. Altman, Quench Dynam-
ics and Nonequilibrium Phase Diagram of the Bose-Hubbard
Model, Phys. Rev. Lett. 98, 180601 (2007).

[3] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,
Colloquium: Nonequilibrium dynamics of closed interacting
quantum systems, Rev. Mod. Phys. 83, 863 (2011).

[4] R. Nandkishore and D. A. Huse, Many-body localization and
thermalization in quantum statistical mechanics, Annu. Rev.
Condens. Matter Phys. 6, 15 (2015).

[5] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Colloquium:
Many-body localization, thermalization, and entanglement,
Rev. Mod. Phys. 91, 021001 (2019).

[6] F. Haake, Quantum Signatures of Chaos (Springer, Berlin,
2000).

033119-9

https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevLett.98.180601
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1103/RevModPhys.91.021001


JEANNETTE DE MARCO et al. PHYSICAL REVIEW RESEARCH 4, 033119 (2022)

[7] D. Basko, I. Aleiner, and B. Altshuler, Metal–insulator tran-
sition in a weakly interacting many-electron system with
localized single-particle states, Ann. Phys. 321, 1126 (2006).

[8] I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Interacting Elec-
trons in Disordered Wires: Anderson Localization and Low-T
Transport, Phys. Rev. Lett. 95, 206603 (2005).

[9] A. Pal and D. A. Huse, Many-body localization phase transition,
Phys. Rev. B 82, 174411 (2010).

[10] P. Sala, T. Rakovszky, R. Verresen, M. Knap, and F. Pollmann,
Ergodicity Breaking Arising from Hilbert Space Fragmentation
in Dipole-Conserving Hamiltonians, Phys. Rev. X 10, 011047
(2020).

[11] V. Khemani, M. Hermele, and R. Nandkishore, Localization
from Hilbert space shattering: From theory to physical realiza-
tions, Phys. Rev. B 101, 174204 (2020).

[12] N. Shiraishi and T. Mori, Systematic Construction of Coun-
terexamples to the Eigenstate Thermalization Hypothesis, Phys.
Rev. Lett. 119, 030601 (2017).

[13] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and
Z. Papić, Weak ergodicity breaking from quantum many-body
scars, Nat. Phys. 14, 745 (2018).

[14] V. Khemani, C. R. Laumann, and A. Chandran, Signatures
of integrability in the dynamics of Rydberg-blockaded chains,
Phys. Rev. B 99, 161101(R) (2019).

[15] W. W. Ho, S. Choi, H. Pichler, and M. D. Lukin, Periodic
Orbits, Entanglement, and Quantum Many-Body Scars in Con-
strained Models: Matrix Product State Approach, Phys. Rev.
Lett. 122, 040603 (2019).

[16] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran,
H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner et al.,
Probing many-body dynamics on a 51-atom quantum simulator,
Nature (London) 551, 579 (2017).

[17] M. L. Mehta, Random Matrices, 2nd ed. (Academic Press, Boca
Raton, FL, 1991).

[18] M. V. Berry, M. Tabor, and J. M. Ziman, Level clustering in
the regular spectrum, Proc. R. Soc. London, Sec. A 356, 375
(1977).

[19] O. Bohigas, M. J. Giannoni, and C. Schmit, Characterization of
Chaotic Quantum Spectra and Universality of Level Fluctuation
Laws, Phys. Rev. Lett. 52, 1 (1984).

[20] D. Poilblanc, T. Ziman, J. Bellissard, F. Mila, and G.
Montambaux, Poisson vs. GOE statistics in integrable and
non-Integrable quantum Hamiltonians, Europhys. Lett. 22, 537
(1993).

[21] A. Hosseinzadeh and S. A. Jafari, Quantum integrability of 1D
ionic Hubbard model, Ann. Phys. 532, 1900601 (2020).

[22] C. Kollath, G. Roux, G. Biroli, and A. M. Läuchli, Statisti-
cal properties of the spectrum of the extended Bose–Hubbard
model, J. Stat. Mech.: Theory Exp. (2010) P08011.

[23] T. Prosen, Ergodic properties of a generic nonintegrable quan-
tum many-body system in the thermodynamic limit, Phys. Rev.
E 60, 3949 (1999).

[24] M. Haque and P. A. McClarty, Eigenstate thermalization scaling
in Majorana clusters: From chaotic to integrable Sachdev-Ye-
Kitaev models, Phys. Rev. B 100, 115122 (2019).

[25] F. Gebhard, The Mott Metal-Insulating Transition (Springer,
New York, 1997).

[26] F. Essler, H. Frahm, F. Göhmann, A. Klümper, and V. Korepin,
The One-Dimensional Hubbard Model (Cambridge University
Press, Cambridge, 2005).

[27] T. Giamarchi, Quantum Physics in One Dimension (Oxford
University Press, Oxford, 2004).

[28] H. Bruus and J.-C. Anglès d’Auriac, The spectrum of the two-
dimensional Hubbard model at low filling, Europhys. Lett. 35,
321 (1996).

[29] D. Pertot, A. Sheikhan, E. Cocchi, L. A. Miller, J. E. Bohn, M.
Koschorreck, M. Köhl, and C. Kollath, Relaxation Dynamics of
a Fermi Gas in an Optical Superlattice, Phys. Rev. Lett. 113,
170403 (2014).

[30] M. Messer, R. Desbuquois, T. Uehlinger, G. Jotzu, S. Huber, D.
Greif, and T. Esslinger, Exploring Competing Density Order in
the Ionic Hubbard Model with Ultracold Fermions, Phys. Rev.
Lett. 115, 115303 (2015).

[31] D. M. Kennes, L. Xian, M. Claassen, and A. Rubio, One-
dimensional flat bands in twisted bilayer germanium selenide,
Nat. Commun. 11, 1124 (2020).

[32] J. B. Torrance, A. Girlando, J. J. Mayerle, J. I. Crowley, V. Y.
Lee, P. Batail, and S. J. LaPlaca, Anomalous Nature of Neutral-
to-Ionic Phase Transition in Tetrathiafulvalene-Chloranil, Phys.
Rev. Lett. 47, 1747 (1981).

[33] N. Nagaosa and J.-i. Takimoto, Theory of neutral-ionic
transition in organic crystals. I. Monte Carlo simulation
of modified Hubbard model, J. Phys. Soc. Jpn. 55, 2735
(1986).

[34] T. Egami, S. Ishihara, and M. Tachiki, Lattice effect of strong
electron correlation: Implication for ferroelectricity and super-
conductivity, Science 261, 1307 (1993).

[35] J. Kogut and L. Susskind, Hamiltonian formulation of Wilson’s
lattice gauge theories, Phys. Rev. D 11, 395 (1975).

[36] M. Fabrizio, A. O. Gogolin, and A. A. Nersesyan, From Band
Insulator to Mott Insulator in One Dimension, Phys. Rev. Lett.
83, 2014 (1999).

[37] M. Fabrizio, A. Gogolin, and A. Nersesyan, Critical properties
of the double-frequency sine-Gordon model with applications,
Nucl. Phys. B 580, 647 (2000).

[38] N. Gidopoulos, S. Sorella, and E. Tosatti, Born effec-
tive charge reversal and metallic threshold state at a band
insulator-Mott insulator transition, Eur. Phys. J. B 14, 217
(2000).

[39] M. E. Torio, A. A. Aligia, and H. A. Ceccatto, Phase diagram
of the Hubbard chain with two atoms per cell, Phys. Rev. B 64,
121105(R) (2001).

[40] T. Wilkens and R. M. Martin, Quantum Monte Carlo study of
the one-dimensional ionic Hubbard model, Phys. Rev. B 63,
235108 (2001).

[41] A. P. Kampf, M. Sekania, G. I. Japaridze, and P. Brune, Nature
of the insulating phases in the half-filled ionic Hubbard model,
J. Phys.: Condens. Matter 15, 5895 (2003).

[42] Y. Z. Zhang, C. Q. Wu, and H. Q. Lin, Inducement of bond-
order wave due to electron correlation in one dimension, Phys.
Rev. B 67, 205109 (2003).

[43] S. R. Manmana, V. Meden, R. M. Noack, and K. Schönhammer,
Quantum critical behavior of the one-dimensional ionic Hub-
bard model, Phys. Rev. B 70, 155115 (2004).

[44] C. D. Batista and A. A. Aligia, Exact Bond Ordered Ground
State for the Transition between the Band and the Mott Insula-
tor, Phys. Rev. Lett. 92, 246405 (2004).

[45] H. Otsuka and M. Nakamura, Ground-state phase diagram of
the one-dimensional Hubbard model with an alternating chem-
ical potential, Phys. Rev. B 71, 155105 (2005).

033119-10

https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1103/PhysRevLett.95.206603
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1103/PhysRevX.10.011047
https://doi.org/10.1103/PhysRevB.101.174204
https://doi.org/10.1103/PhysRevLett.119.030601
https://doi.org/10.1038/s41567-018-0137-5
https://doi.org/10.1103/PhysRevB.99.161101
https://doi.org/10.1103/PhysRevLett.122.040603
https://doi.org/10.1038/nature24622
https://doi.org/10.1098/rspa.1977.0140
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1209/0295-5075/22/7/010
https://doi.org/10.1002/andp.201900601
https://doi.org/10.1088/1742-5468/2010/08/P08011
https://doi.org/10.1103/PhysRevE.60.3949
https://doi.org/10.1103/PhysRevB.100.115122
https://doi.org/10.1209/epl/i1996-00113-x
https://doi.org/10.1103/PhysRevLett.113.170403
https://doi.org/10.1103/PhysRevLett.115.115303
https://doi.org/10.1038/s41467-020-14947-0
https://doi.org/10.1103/PhysRevLett.47.1747
https://doi.org/10.1143/JPSJ.55.2735
https://doi.org/10.1126/science.261.5126.1307
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1103/PhysRevLett.83.2014
https://doi.org/10.1016/S0550-3213(00)00247-9
https://doi.org/10.1007/s100510050123
https://doi.org/10.1103/PhysRevB.64.121105
https://doi.org/10.1103/PhysRevB.63.235108
https://doi.org/10.1088/0953-8984/15/34/319
https://doi.org/10.1103/PhysRevB.67.205109
https://doi.org/10.1103/PhysRevB.70.155115
https://doi.org/10.1103/PhysRevLett.92.246405
https://doi.org/10.1103/PhysRevB.71.155105


LEVEL STATISTICS OF THE ONE-DIMENSIONAL IONIC … PHYSICAL REVIEW RESEARCH 4, 033119 (2022)

[46] M. C. Refolio, J. M. L. Sancho, and J. Rubio, Modelling one-
dimensional insulating materials with the ionic Hubbard model,
J. Phys.: Condens. Matter 17, 6635 (2005).

[47] A. A. Aligia and C. D. Batista, Dimerized phase
of ionic Hubbard models, Phys. Rev. B 71, 125110
(2005).

[48] O. Legeza, K. Buchta, and J. Sólyom, Unified phase diagram
of models exhibiting a neutral-ionic transition, Phys. Rev. B 73,
165124 (2006).

[49] L. Tincani, R. M. Noack, and D. Baeriswyl, Critical properties
of the band-insulator-to-Mott-insulator transition in the strong-
coupling limit of the ionic Hubbard model, Phys. Rev. B 79,
165109 (2009).

[50] M. Hafez and S. A. Jafari, Excitation spectrum of one-
dimensional extended ionic Hubbard model, Eur. Phys. J. B 78,
323 (2010).

[51] A. Go and G. S. Jeon, Phase transitions and spectral properties
of the ionic Hubbard model in one dimension, Phys. Rev. B 84,
195102 (2011).

[52] A. J. Kim, M. Y. Choi, and G. S. Jeon, Finite-temperature phase
transitions in the ionic Hubbard model, Phys. Rev. B 89, 165117
(2014).

[53] M. Hafez Torbati, N. A. Drescher, and G. S. Uhrig, Disper-
sive excitations in one-dimensional ionic Hubbard model, Phys.
Rev. B 89, 245126 (2014).

[54] M. Hafez-Torbati, N. A. Drescher, and G. S. Uhrig, From
gapped excitons to gapless triplons in one dimension, Eur. Phys.
J. B 88, 3 (2015).

[55] S. Bag, A. Garg, and H. R. Krishnamurthy, Phase diagram of
the half-filled ionic Hubbard model, Phys. Rev. B 91, 235108
(2015).

[56] K. Loida, J.-S. Bernier, R. Citro, E. Orignac, and C. Kollath,
Probing the Bond Order Wave Phase Transitions of the Ionic
Hubbard Model by Superlattice Modulation Spectroscopy,
Phys. Rev. Lett. 119, 230403 (2017).

[57] A. Chattopadhyay, S. Bag, H. R. Krishnamurthy, and A.
Garg, Phase diagram of the half-filled ionic Hubbard model
in the limit of strong correlations, Phys. Rev. B 99, 155127
(2019).

[58] O. Bohigas, M.-J. Giannoni, and C. Schmit, Quantum Chaos
and Statistical Nuclear Physics, edited by T. H. Seligman and
H. Nishioka (Springer, Berlin, 1986) pp. 18–40.

[59] T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller,
Random-matrix theories in quantum physics: Common con-
cepts, Phys. Rep. 299, 189 (1998).

[60] T. C. Hsu and J. C. Angle‘s d’Auriac, Level repulsion in inte-
grable and almost-integrable quantum spin models, Phys. Rev.
B 47, 14291 (1993).

[61] G. Montambaux, D. Poilblanc, J. Bellissard, and C. Sire, Quan-
tum Chaos in Spin-Fermion Models, Phys. Rev. Lett. 70, 497
(1993).

[62] V. Oganesyan and D. A. Huse, Localization of interacting
fermions at high temperature, Phys. Rev. B 75, 155111 (2007).

[63] M. Serbyn and J. E. Moore, Spectral statistics across the
many-body localization transition, Phys. Rev. B 93, 041424(R)
(2016).

[64] M. Vyas and T. H. Seligman, Random matrix ensembles for
many-body quantum systems, in Latin-American School of
Physics Marcos Moshinsky ELAF2017: Quantum Correlations,
edited by J. A. Seman, R. Paredes, and R. Jáuregui, AIP Conf.
Proc. No. 1950 (AIP, New york, 2018), p. 030009.

[65] J. M. G. Gómez, R. A. Molina, A. Relaño, and J. Retamosa,
Misleading signatures of quantum chaos, Phys. Rev. E 66,
036209 (2002).

[66] Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux, Distribution
of the Ratio of Consecutive Level Spacings in Random Matrix
Ensembles, Phys. Rev. Lett. 110, 084101 (2013).

[67] O. Giraud, N. Macé, E. Vernier, and F. Alet, Probing Sym-
metries of Quantum Many-Body Systems through Gap Ratio
Statistics, Phys. Rev. X 12, 011006 (2022).

[68] N. Rosenzweig and C. E. Porter, “Repulsion of energy levels”
in complex atomic spectra, Phys. Rev. 120, 1698 (1960).

[69] M. V. Berry and M. Robnik, Semiclassical level spacings when
regular and chaotic orbits coexist, J. Phys. A: Math. Gen. 17,
2413 (1984).

[70] F. Sun, Y. Yi-Xiang, J. Ye, and W.-M. Liu, Classification of
the quantum chaos in colored Sachdev-Ye-Kitaev models, Phys.
Rev. D 101, 026009 (2020).

033119-11

https://doi.org/10.1088/0953-8984/17/42/004
https://doi.org/10.1103/PhysRevB.71.125110
https://doi.org/10.1103/PhysRevB.73.165124
https://doi.org/10.1103/PhysRevB.79.165109
https://doi.org/10.1140/epjb/e2010-10509-x
https://doi.org/10.1103/PhysRevB.84.195102
https://doi.org/10.1103/PhysRevB.89.165117
https://doi.org/10.1103/PhysRevB.89.245126
https://doi.org/10.1140/epjb/e2014-50551-0
https://doi.org/10.1103/PhysRevB.91.235108
https://doi.org/10.1103/PhysRevLett.119.230403
https://doi.org/10.1103/PhysRevB.99.155127
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1103/PhysRevB.47.14291
https://doi.org/10.1103/PhysRevLett.70.497
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.93.041424
https://doi.org/10.1103/PhysRevE.66.036209
https://doi.org/10.1103/PhysRevLett.110.084101
https://doi.org/10.1103/PhysRevX.12.011006
https://doi.org/10.1103/PhysRev.120.1698
https://doi.org/10.1088/0305-4470/17/12/013
https://doi.org/10.1103/PhysRevD.101.026009

