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A B S T R A C T

Measurement-rich power distribution networks may enable distribution system operators (DSOs) to adopt
model-less and measurement-based monitoring and control of distributed energy resources (DERs) for mitigat-
ing grid issues such as over/under voltages and lines congestions. However, measurement-based monitoring
and control applications may lead to inaccurate control decisions due to measurement errors. In particular,
estimation models relying on regression-based schemes result in significant errors in the estimates (e.g., nodal
voltages) especially for measurement devices with high Instrument Transformer (IT) classes. The consequences
are detrimental to control performance since this may lead to infeasible decisions. This work proposes a model-
less robust voltage control accounting for the uncertainties of measurement-based estimated voltage sensitivity
coefficients. The coefficients and their uncertainties are obtained using a recursive least squares (RLS)-based
online estimation, updated whenever new measurements are available. This formulation is applied to control
distributed controllable photovoltaic (PV) generation in a distribution network to restrict the voltage within
prescribed limits. The proposed scheme is validated by simulating a CIGRE low-voltage network interfacing
multiple controllable PV plants.
1. Introduction

Distribution system operators (DSOs) are required to operate their
networks ensuring the quality of supply (QoS) while respecting the
network’s physical limits [1–3]. However, the progressive installa-
tion of decentralized generation such as Photo-voltaic (PV) units in
distribution networks is causing power quality issues such as volt-
age violations as well as congestions in both lines and transformers.
Conventional methods tackle these problems by passive curtailments
of loads/generations, generation tripping, shunt capacitor banks and,
eventually expensive network reinforcement. Authors in [4] lay out
the potential ways to manage the electricity supply in modern power
systems with a high amount of renewable generations. In order to limit
expensive grid reinforcement programs, DSOs may need to adopt intel-
ligent control schemes of distributed energy resources (DERs) (e.g., [5,
6]) for the safe operation of their grids.

Voltage control is one of the widely acknowledged control schemes
to be adopted and improved in power distribution networks. Con-
ventional voltage controls are based on volt-var schemes, where only
the reactive power is controlled to regulate nodal voltages. How-
ever, as shown in [7], the sole reactive power control might not be
enough especially for grids with high R/X ratio of branches longitudinal
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impedances, the control of both active and reactive powers may be
needed. In the literature, this type of control can be broadly categorized
into two kinds. The first relies on the network model (network topol-
ogy, branch, and shunt parameters). These methods are also referred
to as model-based methods. For example, in [8,9], it is proposed a
distributed control of PV inverters for regulating the nodal voltage
magnitudes in a distribution grid where the grid constraints are mod-
eled using the admittance matrix of the network. However, in many
cases, the network parameters are either unavailable, partially missing,
or outdated. Thanks to the increasing adoption of monitoring systems
such as smart meters in present distribution networks, measurement-
based/data-driven/model-less control schemes can be an alternative.
This leads to the second kind of voltage control scheme often referred
to as measurement-based schemes [7,10–13]. These schemes are used
for real-time voltage control where the network model is inferred from
the measurements (e.g. [14]). However, in all the reported model-
less and measurement-based methods, the control or the estimation
problem does not consider uncertainty on the estimated grid models
(e.g., estimated sensitivity coefficients) and may result in wrong control
decisions. The uncertainty on the measurement-based estimated model
comes from the measurement noise of the instrument transformers
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(ITs). As reported in [15,16], the estimated sensitivity coefficients
suffer high biases due to measurement noise and fluctuating values due
to collinearity in the measured data set.

In this work, we propose a model-less robust voltage control that
accounts for the uncertainty on the measurement-based estimated sen-
sitivity coefficients ensuring safe and reliable operation of the dis-
tribution grid. The work comprises the estimation of the sensitivity
coefficients and their uncertainties and use them to provide robustness
against the inaccuracies of measurement-based estimated grid mod-
els [17]. The proposed voltage control problem consists of two stages:
in the first stage, an estimation problem is solved to estimate the
voltage sensitivity coefficients and their uncertainties. In the second
stage, we solve a robust voltage control problem accounting for the
uncertainties on the estimated coefficients. Overall, the contributions
of this paper are as follows:

• we investigate the effect of uncertainties of the voltage sensitivity
coefficients estimates adopted in model-less voltage control of
distributed PV generations in a power distribution systems. We
show how this may result in voltage violations;

• we formulate a robust voltage control problem using the
measurement-based estimated sensitivity coefficients and their
uncertainties;

• we present a performance comparison of different estimation
techniques of measurement-based estimations of sensitivity coef-
ficients for the proposed robust control.

The performance assessment is carried out on the CIGRE LV [2]
etwork interfacing multiple controllable PV units. First, we evaluate
ifferent techniques for estimating the sensitivity coefficients and their
ncertainties, then the dominant method is chosen to be coupled with a
obust control scheme. To show the effectiveness of the proposed robust
ormulation, we compare it with non-robust voltage control case when
ncertainties are not considered. The performance is also benchmarked
gainst model-based control.

The paper is organized as follows. Section 2 presents the model-
ess robust control framework, Section 3 presents different estimation
ethods for the estimation of the sensitivity coefficients, Section 4
resents the voltage control problem and its robust reformulation.
ection 5 describes the considered test-case and respective estimation
nd control results, and finally Section 6 concludes the work.

. Proposed model-less robust voltage control framework

Let us consider a power distribution network equipped with mea-
urement devices capable of providing high throughput measurements
n nodal voltage magnitudes and active/reactive powers. Let 𝑁𝑏 be

the number of non-slack buses and the set  𝑏 = {1,… , 𝑁𝑏} defining
the bus indices. The distribution network hosts multiple DERs (for
example, PV generation units) that can be controlled to provide active
and reactive power support to the grid. The objective is to control
DERs in real-time or quasi-real-time such that grid constraints are
always respected. The parameters and topology of the network are
not known, so model-based controls could not be implemented. The
control scheme solely relies on a model-less scheme, where the grid
constraints (such as nodal voltages, lines, and transformer power flows)
are accounted by models estimated from measurements. Although the
model-less framework is generic and can be applied for various control
schemes, this work focuses on the voltage control problem where the
DERs are controlled in real-time to avoid or mitigate voltage problems.

The model-less control framework consists of two stages: in the first
one, measurements on voltages and active/reactive power magnitudes
are used to estimate the voltage sensitivity coefficients; these are then
used by the voltage control stage. We compute the uncertainties of the
estimated sensitivity coefficients in order to formulate a robust voltage
control problem. The uncertainties of the estimates are inferred using
the inverse of the Fischer information matrix [18]. Fig. 1 shows the
2

w

Fig. 1. Model-less/measurement-based robust voltage control framework.

flow diagram illustrating the proposed two-stage scheme for the robust
model-less control framework. The first stage (on the left) is composed
of a measurement-based estimation loop that stores nodal voltage
magnitudes, active and reactive power measurements and estimates
the voltage sensitivity coefficients and their uncertainties. Then, the
block on the right solves the constrained optimization problem for
controlling DERs to mitigate the voltage problems in the network. They
are described as follows.

3. Measurement-based estimation of voltage sensitivity coeffi-
cients and their uncertainties

The voltage sensitivity coefficient of the 𝑖th node with respect to
absorbed/injected power at node 𝑗 is defined as

𝐾𝑃
𝑖𝑗 =

𝜕𝑉𝑖
𝜕𝑃𝑗

; 𝐾𝑄
𝑖𝑗 =

𝜕𝑉𝑖
𝜕𝑄𝑗

(1)

where, 𝐾𝑃
𝑖𝑗 𝐾𝑄

𝑖𝑗 are the sensitivity coefficients of the nodal voltage
magnitudes 𝑉𝑖 of node 𝑖 with respect to the active and reactive power
injections 𝑃𝑗 , 𝑄𝑗 of node 𝑗. Using the measurements on voltage magni-
tudes and active/reactive power injections, these sensitivity coefficients
are estimated. We assume following hypothesis to hold true.

Hypothesis 1. The DSO does not know the network parameters, and
the topology, and the system state.

Hypothesis 2. The distribution network is equipped with measure-
ments units providing the operator with the measurements of voltage
magnitudes, and active and reactive power injections at regular time in-
tervals. The metering devices are aligned with a network time protocol
(e.g. NTP [19]).

Hypothesis 3. The sensitivity coefficients remain unchanged over a
time window1 (5 min in this case) which is used to collect adequate
number of measurements in the estimation problem.

Hypothesis 4. The system is in steady-state, and the power injection
is subject to small dynamics that the first-order Taylor approximations
can represent with enough accuracy [9,20].

Hypothesis 5. The magnitude error from the ITs and voltmeter mea-
surements is Gaussian. It behaves according to the standards and they
do not have a bias [21,22].

1 We assume that there is no significant change in the network’s operating
onditions, such as topology or step change of the load/generation. If it
appens, the fixed time window could be replaced by a variable time window
here sensitivity coefficients are re-estimated.
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The objective is to estimate the voltage sensitivity coefficients and
their uncertainties by using the measurements of nodal voltage magni-
tudes, active and reactive powers. The method is described as follows.

3.1. Estimation model

Using the coefficient definition in (1) and Taylor’s first-order ap-
proximation, the magnitude deviation of the nodal voltages at time 𝑡𝑘
or node 𝑖 can be written as

𝛥𝑉𝑖,𝑡𝑘
⏟⏟⏟

𝛾𝑡𝑘

≈ [𝛥𝐏𝑡𝑘 𝛥𝐐𝑡𝑘 ]
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

ℎ𝑡𝑘

[

𝐊𝑃
𝑖,𝑡𝑘

𝐊𝑄
𝑖,𝑡𝑘

]

⏟⏟⏟
𝐗

(2)

here 𝑉𝑖,𝑡𝑘 − 𝑉𝑖,𝑡𝑘−1 = 𝛥𝑉𝑖,𝑡𝑘 ∈ R is the deviation of nodal voltage
agnitude of 𝑖th node, vectors 𝐏𝑡𝑘 − 𝐏𝑡𝑘−1 = 𝛥𝐏𝑡𝑘 ,𝐐𝑡𝑘 − 𝐐𝑡𝑘−1 = 𝛥𝐐𝑡𝑘 ∈

R𝑁𝑏 include deviations of active and reactive powers of all the nodes
from timestep 𝑡𝑘−1 to 𝑡𝑘. The vectors 𝐊𝑃

𝑖,𝑡𝑘
,𝐊𝑄

𝑖,𝑡𝑘
∈ R𝑁𝑏 include voltage

sensitivity coefficients of 𝑖th node with respect injections of nodes 𝑗 ∈
 𝑏. It should be noted that the approximation in (2) of the power-
flow equations involves two errors: (i) the linearization and (ii) the
measurement noise. In this work, we assume that the linearization error
is negligible compared to the one due to the measurement noise. This
assumption is reasonable if the state of the system is slow varying
and the control is acting in quasi real-time. Assuming that we have
measurements for time 𝑡 = 𝑡1 … , 𝑡𝑁 and coefficients do not change for
𝑁 timesteps (Hypothesis 3), Eq. (2) can be written as

Γ ≈ 𝐇𝐗 (3)

where, Γ ∈ R𝑁 = [𝛾𝑡1𝛾𝑡2 … 𝛾𝑡𝑁 ]𝑇 , 𝐇 ∈ R𝑁×2𝑁𝑏 = [ℎ𝑡1ℎ𝑡2 …ℎ𝑡𝑁 ]𝑇 and
𝐗 ∈ 𝑅2𝑁𝑏 includes 𝐊𝑃

𝑖,𝑡𝑘
and 𝐊𝑄

𝑖,𝑡𝑘
. Eq. (3) can be re-written assuming

noise model to be white Gaussian (Hypothesis 5).

Γ = 𝐇𝐗 +  ∈  (𝟎, 𝛴), (4)

𝛴 refers to the noise covariance matrix.

3.2. Estimation technique

The linear model in (4) is typically solved for 𝐗 by minimizing
the norm-2 difference of the residual, known as Least-Squares (LS).
However, the LS method does not perform well in case of low excitation
(nodal power injections are low) and suffers from the problem of mul-
ticollinearity (power injections at different nodes are very similar) [12,
16]. Also, the sensitivity coefficients vary as a function of network’s
states so, it is necessary to use the most recent estimates during a real-
time control. Thus, an online estimation scheme was used in [12,13]
that used recursive least square (RLS)-based estimation coupled with an
offline LS. In this work, we use this scheme to estimate the sensitivity
coefficients. Fig. 2 shows the dataflow of the estimation process. First,
the LS is used to get a rough estimates of the coefficients. Then, the
RLS is used to refine the LS estimates by using the latest information
on the voltage and power measurements. The LS is solved off-line using
a large number of historical measurements. The RLS problem is solved
at each time step using recent measurements where the LS estimation
is used to initialize the RLS. Both the processes are described next.

3.2.1. Offline LS
Offline LS problem is formulated as

𝐗̂ = min
𝐗

‖Γ −𝐇𝐗‖2 + 𝜆𝐗𝑇𝐗 (5)

where 𝜆 is a positive number that serves as a regularization parameter
and is used to avoid ill-conditioned information matrix (i.e., in case of
multi-collinearity nodal injections). The closed-form solution of (5) is
obtained in view of its quadratic and unconstrained nature as,

𝐗̂𝑡0 = (𝐇𝑇𝐇 + 𝜆𝐈)−1𝐇𝑇Γ = (𝐑𝑡0 + 𝜆𝐈)𝐇𝑇Γ (6)

where 𝐈 is the identity matrix. The covariance matrix is defined as
inverse of the information matrix, i.e. 𝐏cov = 𝐑−1.
3

𝑡0 𝑡0
𝜏

Fig. 2. Flow diagram for two-stage estimation of sensitivity coefficients.

3.2.2. Online RLS
In this scheme, an online recursive estimation is performed using the

most recent measurements. It utilizes the estimates from the previous
time step and measurements at the current time step. RLS updates
the estimates whenever the new data is available. LS solution in (6)
is used to initialize the RLS stage. The use of exponential forgetting
factor applied to the observations is advised to give less importance to
previous measurements [23]. The forgetting factor 0 < 𝜇 ≤ 1 is reflected
in the covariance matrix update.

𝐑𝑡𝑘 = 𝜇𝐑𝑡𝑘−1 + ℎ𝑇𝑡𝑘ℎ𝑡𝑘 (7)

This results in the following iterative updates.

𝑒𝑡𝑘 = 𝛾𝑡𝑘 − ℎ𝑡𝑘 𝐗̂𝑡𝑘−1 (8a)

𝐗̂𝑡𝑘 = 𝐗̂𝑡𝑘−1 + 𝑡𝑘𝑒𝑡𝑘 (8b)

𝑡𝑘 =
𝐏cov
𝑡𝑘−1

ℎ𝑇𝑡𝑘
𝜇 + ℎ𝑡𝑘𝐏

cov
𝑡𝑘−1

ℎ𝑇𝑡𝑘
(8c)

𝐏cov
𝑡𝑘

= (𝐈 − 𝑡𝑘ℎ𝑡𝑘 )𝐏
cov
𝑡𝑘−1

∕𝜇 (8d)

where,  is the estimated gain and 𝑒 the residual. In the following, this
scheme is referred to as RLS-F.

As reported in [23,24], the RLS-F scheme suffers from the windup
problem of the covariance matrix . It may lead to very large covariances
resulting in large estimates variances. Multiple schemes are proposed
in the literature to solve this problem. They are briefly described next.

3.2.2.1. Constant-trace scheme (RLS-CT). In [25], it is discussed how
to limit the windup problem of the co-variance matrix by setting an
upper bound on the trace sum of the covariance matrix and adding an
identity matrix 𝐈. The scheme uses two different factors 𝑐1 and 𝑐2 such
that 𝑐1∕𝑐2 = 10𝑒3; ℎ𝑡𝑘ℎ

𝑇
𝑡𝑘
𝑐1 ≫ 1. The covariance matrix is modified as:

𝐏cov
𝑡𝑘

= 𝑐1𝐏cov
𝑡𝑘

∕trace(𝐏cov
𝑡𝑘

) + 𝑐2𝐈 (9)

3.2.2.2. Selective forgetting (RLS-SF). In [23] it is proposed to use
selective forgetting factor, i.e., to use different forgetting factors for
different eigenvalues of the covariance matrix. These forgetting factors
are computed and updated iteratively to limit the windup problem of
the covariance matrix. The gain and covariance matrix are updated as
follows.

𝑡𝑘 =
𝐏cov
𝑡𝑘−1

ℎ𝑇𝑡𝑘
1 + ℎ𝑡𝑘𝐏

cov
𝑡𝑘−1

ℎ𝑇𝑡𝑘
(10a)

𝐏cov
𝑡𝑘

=
2𝑁𝑏
∑

𝑖=1

𝜏𝑖,𝑡𝑘
𝜇𝑖

𝑢𝑇𝑖,𝑡𝑘𝑢𝑖,𝑡𝑘 . (10b)

Here, 𝑢𝑖,𝑡𝑘 denotes the eigenvectors of 𝐏cov
𝑡𝑘

in Eq. (8d) and 𝜏𝑖,𝑡𝑘 the
orresponding eigenvalues. It proposed to limit 𝜏𝑖,𝑡𝑘 by a function 𝑓
hat keeps it within bounds [𝜏min 𝜏max]:

= 𝑓 (𝜏 ) (10c)
𝑖,𝑡𝑘 𝑖,𝑡𝑘−1
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𝑓 (𝑥) =

{

𝑥, 𝑥 > 𝜏max

𝜏min + (1 − 𝜏min∕𝜏max)𝑥 𝑥 ≤ 𝜏min
(10d)

More information on the tuning of RLS-SF is in [23,25].

3.2.2.3. Directional forgetting (RLS-DF). In [26], [27] proposed direc-
tional forgetting algorithm where the matrix 𝐑 is decomposed into two
parts: the first part is fully propagated to the next time step, whereas
the second part is propagated with a forgetting factor, 𝜇. This method
was first proposed in [26] and termed as ‘‘directional forgetting’’ as the
two parts of the gain matrix are orthogonal to each other. Theoretical
development supporting this algorithm is in [27]. The iterative updates
of RLS-DF are

𝑡𝑘 = 𝐏cov
𝑡𝑘

ℎ𝑇𝑡𝑘 (11a)

̄ cov
𝑡𝑘−1

= 𝐏cov
𝑡𝑘−1

+
1 − 𝜇
𝜇

ℎ𝑇𝑡𝑘ℎ𝑡𝑘
ℎ𝑡𝑘𝐑𝑡𝑘ℎ

𝑇
𝑡𝑘

(11b)

cov
𝑡𝑘

= 𝐏̄cov
𝑡𝑘−1

−
𝐏̄cov
𝑡𝑘−1

ℎ𝑇𝑡𝑘ℎ𝑡𝑘 𝐏̄
cov
𝑡𝑘−1

1 + ℎ𝑡𝑘 𝐏̄
cov
𝑡𝑘−1

ℎ𝑇𝑡𝑘
(11c)

𝐑𝑡𝑘 = [𝐈 −𝐌𝑡𝑘 ]𝐑𝑡𝑘−1 + ℎ𝑇𝑡𝑘ℎ𝑡𝑘 (11d)

𝐌𝑡𝑘 = (1 − 𝜇)
𝐑𝑡𝑘−1ℎ

𝑇
𝑡𝑘
ℎ𝑡𝑘

ℎ𝑡𝑘𝐑𝑡𝑘−1ℎ
𝑇
𝑡𝑘

(11e)

The updates strategies for the covariance matrix directly affects the
stimates and their uncertainties. The numerical performance of these
chemes (i.e. RLS-F, RLS-CT, RLS-SF and RLS-DF) are assessed in the
esults section.

.2.3. Estimation of uncertainties on sensitivity coefficients
In this work, we propose to account for the uncertainties of the

stimated sensitivity coefficients to robustify the voltage control. The
ncertainties are computed using the co-variance matrix given by

𝐗 = 𝜎𝑟
√

diag(𝐏cov) (12)

where 𝜎𝑟 is the estimated standard deviation of residuals inferred post-
estimation. They are continuously updated during the RLS estimation
stage. The uncertainty on the estimated coefficients are estimated to be
±3𝜎𝐗 corresponding to the 99 % confidence interval.

4. Model-less robust voltage control problem

As previously mentioned, the proposed control uses the estimated
coefficients and their uncertainties to formulate a robust voltage control
problem. The robustification uses the technique from [28] where the
robustness of a model-based voltage control was formulated against
uncertainty in the resistances of the grid’s branch impedances. In
contrast, in this work we propose a measurement-based and mode-less
way to define a robust voltage control.

In the following, first we introduce the non-robust voltage control
problem (i.e., the uncertainty on the coefficients estimates are not
accounted), then we present its robust counterpart.

4.1. Voltage control problem without considering uncertainty on the esti-
mates (Non-robust)

Let us consider a distribution network connected with controllable
PV generation units such that their active and reactive power injections
can be controlled. Let the set  pv includes indices of the PV units. The
objective is to control active/reactive power injections (𝑃𝑗,𝑡𝑘 , 𝑄𝑗,𝑡𝑘 , 𝑗 ∈
 pv) such that the nodal voltages are within the statutory bounds.
Additionally, the local objective of the PV units is to minimize the cur-
4

tailment of their active power generation and provide reactive power
support. The problem we solve at time 𝑡𝑘 is to minimize curtailments
of PV plants:

minimize
𝑃𝑗,𝑡𝑘 ,𝑄𝑗,𝑡𝑘 ,∀𝑗∈

𝑏

∑

𝑗∈ pv

{

(𝑃𝑗,𝑡𝑘 − 𝑃𝑗,𝑡𝑘 )
2 + (𝑄𝑗,𝑡𝑘 )

2
}

(13a)

ubject to the constraint on the PV generation limited by short-term
PP forecast 𝑃𝑗,𝑡𝑘 ,

≤ 𝑃𝑗,𝑡𝑘 ≤ 𝑃𝑗,𝑡𝑘 𝑗 ∈  pv (13b)

he capability constraint of the converter rating 𝑆max
𝑗 ,

≤ (𝑃𝑗,𝑡𝑘 )
2 + (𝑄𝑗,𝑡𝑘 )

2 ≤ (𝑆max
𝑗 )2 𝑗 ∈  pv, (13c)

and the minimum power factor constraint

𝑄𝑗,𝑡𝑘 ≤ 𝑃𝑗,𝑡𝑘𝜁 𝑗 ∈  pv (13d)

−𝑄𝑗,𝑡𝑘 ≤ 𝑃𝑗,𝑡𝑘𝜁 𝑗 ∈  pv. (13e)

Here, 𝜁 =
√

(1 − PF2min)∕PF2min, being PFmin the minimum power-factor
allowed for the PV operation of each PV plant. The final constraints are
on the voltage magnitudes, which are bounded by [𝑉 min, 𝑉 max]. The
voltage magnitudes are modeled by the estimated voltage sensitivity
coefficients as

𝑉 min ≤ 𝑉𝑖,𝑡𝑘−1+𝐊̂
𝑃
𝑖,𝑡𝑘−1

𝛥𝐏𝑡𝑘+

𝐊̂𝑄
𝑖,𝑡𝑘−1

𝛥𝐐𝑡𝑘 ≤ 𝑉 max ∀𝑖 ∈  𝑏
(13f)

The voltage sensitivity coefficients, 𝐊̂𝑃
𝑖,𝑡𝑘−1

, 𝐊̂𝑄
𝑖,𝑡𝑘−1

, are estimated on-
line using one of the estimation scheme described in Section 3 utilizing
latest measurements on voltages and power magnitudes.

As described earlier, the non-robust problem in (13) does not ac-
count for the uncertainty on the estimates caused by measurement
noise which might result in inaccurate control decisions leading to
voltage violations.

4.2. Robust voltage control problem

We here illustrate the robust voltage control by accounting for the
uncertainty on the measurement-based estimated voltage sensitivity
coefficients. The robust counterpart of (13) can be formulated by
adding following constraints to (13)

𝐊𝑃
𝑖,𝑡𝑘

∈ [𝐊̂𝑃
𝑖,𝑡𝑘

− 𝛥𝐊𝑃
𝑖,𝑡𝑘

, 𝐊̂𝑃
𝑖,𝑡𝑘

+ 𝛥𝐊𝑃
𝑖,𝑡𝑘

] ∀𝑖 ∈  𝑏 (13g)

𝐊𝑄
𝑖,𝑡𝑘

∈ [𝐊̂𝑄
𝑖,𝑡𝑘

− 𝛥𝐊𝑄
𝑖,𝑡𝑘

, 𝐊̂𝑄
𝑖,𝑡𝑘

+ 𝛥𝐊𝑄
𝑖,𝑡𝑘

] ∀𝑖 ∈  𝑏. (13h)

Here, 𝛥𝐊𝑃
𝑖,𝑡𝑘

, 𝛥𝐊𝑄
𝑖,𝑡𝑘

be the estimated uncertainty on 𝐊̂𝑃
𝑖,𝑡𝑘

, 𝐊̂𝑄
𝑖,𝑡𝑘

. As known,
accounting for the interval constraints makes the problem non-tractable
in its original form. Thus, it is reformulated using the technique
proposed in [28,29] summarized hereafter.

We introduce auxiliary variables 𝑧𝑖, 𝑔𝑖𝑗 , 𝑦
𝑝
𝑗 , 𝑦

𝑞
𝑗 , 𝑗 ∈  pv, 𝑖 ∈  𝑏. We

lso introduce a parameter 𝛺𝑖 ∈ [0, | pv
|] which provides a trade-

ff between the robustness and conservativeness of the solution as
escribed in [28]. Considering these auxiliary variables and following
he robust quadratic program with linear constraints in [29], the robust
ounterpart of the problem can be formulated as

minimize
𝑗,𝑡𝑘 ,𝑄𝑗,𝑡𝑘 ,∀𝑗∈

𝑏

∑

𝑗∈ pv

{

(𝑃𝑗,𝑡𝑘 − 𝑃𝑗,𝑡𝑘 )
2 + (𝑄𝑗,𝑡𝑘 )

2
}

(14a)

ubject to:

13b), (13c), (13d), (13e). (14b)

ith the help of the auxiliary variables, the constraints on the nodal
oltages are reformulated as follows.

𝑉𝑖,𝑡𝑘−1+ 𝐊̂𝑃
𝑖,𝑡𝑘−1

𝛥𝐏𝑡𝑘 + 𝐊̂𝑄
𝑖,𝑡𝑘−1

𝛥𝐐𝑡𝑘+

𝑧𝑖𝛺𝑖 +
∑

𝑔𝑖𝑗 ≤ 𝑉 max ∀𝑖 ∈  𝑏 (14c)

𝑗∈ pv
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Fig. 3. Topology of the CIGRE low-voltage system with distributed PV units.
.

1
1
1
1
1

𝑏

𝑉𝑖,𝑡𝑘−1+ 𝐊̂𝑃
𝑖,𝑡𝑘−1

𝛥𝐏𝑡𝑘 + 𝐊̂𝑄
𝑖,𝑡𝑘−1

𝛥𝐐𝑡𝑘−

𝑧𝑖𝛺𝑖 −
∑

𝑗∈ pv
𝑔𝑖𝑗 ≥ 𝑉 min ∀𝑖 ∈  𝑏 (14d)

− 𝑦𝑝𝑗 ≤ 𝛥𝑃𝑗,𝑡𝑘 ≤ 𝑦𝑝𝑗 ∀𝑗 ∈  pv (14e)

− 𝑦𝑞𝑗 ≤ 𝛥𝑄𝑗,𝑡𝑘 ≤ 𝑦𝑞𝑗 ∀𝑗 ∈  pv (14f)

𝑧𝑖 + 𝑔𝑖𝑗 ≥ 𝛥𝐾𝑃
𝑖𝑗,𝑡𝑘

𝑦𝑝𝑗 𝑖 ∈  𝑏, 𝑗 ∈  pv (14g)

𝑧𝑖 + 𝑔𝑖𝑗 ≥ 𝛥𝐾𝑄
𝑖𝑗,𝑡𝑘

𝑦𝑝𝑗 𝑖 ∈  𝑏, 𝑗 ∈  pv (14h)

𝑦𝑝𝑗 , 𝑦
𝑞
𝑗 , 𝑧𝑖, 𝑔𝑖𝑗 ≥ 0 𝑖 ∈  𝑏, 𝑗 ∈  pv. (14i)

The robust problem in (14) has a quadratic objective and linear
constraints, hence it is convex and can be efficiently solved with any
off-the-shelf solvers.

5. Simulation and results

5.1. Test-case and input data

For the validation of the measurement-based estimation and model-
less control scheme and the corresponding performance evaluation, we
consider a CIGRE benchmark low-voltage network [2]. The network is
20 kV/0.4 V, 400 kVA 3-ph balanced system as shown in Fig. 3. The
nominal demands and the PV generation sites and sizes are also shown
in the figure. In this case study, we assume reduced load condition
such that the PV generation is causing over-voltages during the middle
of the day. Fig. 4(a-b) shows the nodal active and reactive power
injections. To obtain the ground-truth measurements of the voltage
magnitudes and power injections, we carry simulated experiments
performing load-flows by knowing the true admittance matrix of the
grid. Then, the currents and voltages are corrupted with measurement
noises characterized by the IT’s specification described in [21,22]. This
process is described in Algorithm 1. The algorithm introduces noise in
polar coordinates (i.e., magnitudes and phase noise) on the voltage and
currents, which is then used to compute the corrupted nodal active (𝐏̃)
and reactive (𝐐̃) power magnitudes. The specifications of the ITs are
listed in Table 1.

5.2. Performance metrics

This section defines the metrics used in the performance assessment.
5

The first metric is the classical root-mean-square-error (RMSE), defined
Table 1
Errors specifications for different class of Instrument Transformers Defined by [21,22]

IT class Voltage transformers Current transformers

Mag. error Phase error Mag. error Phase error
(𝜎𝑚) [%] (𝜎𝑝) [rad.] (𝜎𝑚) [%] (𝜎𝑝) [rad.]

0.2 0.2 3e−3 0.2 3e−3
0.5 0.5 6e−3 0.5 9e−3
1 1 12e−3 1 18e-3

Algorithm 1 Raw-data generation
Require: Admittance matrix: 𝐘, nodal power injections: 𝐏,𝐐
1: procedure GenData
2: for 𝑡𝑘 = 𝑡1 ∶ 𝑡𝑁 do
3: [𝐕(𝑡𝑘), 𝐈(𝑡𝑘)] = LoadFlow(𝐏(𝑡𝑘),𝐐(𝑡𝑘), 𝐘)
4: [𝐕̃(𝑡𝑘), 𝐈̃(𝑡𝑘)] =
5: for 𝛽 = [𝐕(𝑡𝑘), 𝐈(𝑡𝑘)] do
6: 𝛿𝑚 =  (0, 𝜎𝑚|𝛽|∕3)
7: |𝛽| = |𝛽| + 𝛿𝑚

8: 𝛿𝑝 =  (0, 𝜎𝑝∕3)
9: arg(𝛽) = arg(𝛽) + 𝛿𝑚

0: 𝛽 = |𝛽|exp(𝑗 arg(𝛽))
1: end for
2: 𝐏̃(𝑡𝑘) + 𝑗𝐐̃(𝑡𝑘) = 𝐕̃(𝑡𝑘)𝐈̃(𝑡𝑘)∗
3: end for
4: end procedure

as

RMSE(𝐗̂) =
‖𝐗true − 𝐗̂‖2
‖𝐗true

‖2
. (15)

where, 𝐗true, 𝐗̂ are the true and estimated values of a generic quantity.
For the performance comparison on the estimation of the uncer-

tainty intervals, we use metrics inspired by [30]: the first is the pre-
diction interval coverage probability (PICP) that counts the number of
instances realization falling within the uncertainty bounds for a given
confidence interval 𝛼. It is

PICP = 1
𝑁

𝑡𝑁
∑

𝑡𝑘=𝑡1

𝑏𝑡𝑘 (16)

𝑡𝑘 =

{

1 𝐾𝑃
𝑖𝑗,𝑡𝑘

− 𝛥𝐾𝑃
𝑖𝑗,𝑡𝑘

≤ 𝐾𝑃
𝑖𝑗,𝑡𝑘

≤ 𝐾𝑃
𝑖𝑗,𝑡𝑘

+ 𝛥𝐾𝑃
𝑖𝑗,𝑡𝑘

0 otherwise.
(17)
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Fig. 4. (a) Nodal active (in kW) and (b) reactive (in kVar) power injections for non-zero injection nodes.
The second is the prediction interval normalized average width
(PINAW):

PINAW = 1
𝑁(𝐾𝑃

𝑖𝑗,max)

𝑡𝑁
∑

𝑡𝑘=𝑡1

(2𝛥𝐾𝑃
𝑖𝑗,𝑡𝑘

). (18)

Being 𝐾𝑃
𝑖𝑗,max the maximum value of the coefficient in the series.

The final metric is the coverage width-based criterion (CWC), which
quantifies the trade-off between high PICP and small PINAW. It is

CWC = PINAW(1 + 𝜂(PICP)𝑒−𝜈(PICP−𝛼)), (19)

𝜂 =

{

0, PICP ≤ 𝛼
1, otherwise

. (20)

The parameter 𝜈 can be set based on a tradeoff between the interval
width penalization. We chose it to be 𝜈 = 50. The considered confidence
𝛼 is 99%.

5.3. Estimation results

We estimate 𝐊𝑃 ,𝐊𝑄 for the nodes where the controllable units
(i.e., PV generation units) are connected. The estimation results using
the measurements corresponding to IT 1.0 are presented below. The es-
timated coefficients are shown for the 2nd day with peak PV production
during 32–42 h (potentially causing over-voltages). For performance
comparison among different schemes, we report the estimations for LS,
RLS-F, RLS-CT, RLS-SF, and RLS-DF as defined in Section 3.2. ‘‘LS’’
solves the LS algorithm and uses the measurements from last 5 min
(sampled at 1-second, i.e., 30 samples) to estimate the sensitivity coef-
ficients. For the methods based on the RLS, the first-day measurements
(0–24 h) are used to compute initial estimates (offline-LS). Then, they
are updated each 5-minutes with the last timestep measurements in a
recursive way. The forgetting factor 𝜇 = 0.85 is used in the simulations.

Figs. 5–9 shows the estimations and prediction intervals with confi-
dence interval coverage of 99%. For the sake of brevity, we show only
6

three coefficients which are 𝐾𝑃
15,15, 𝐾

𝑃
14,8, 𝐾

𝑄
15,18 in Fig. 5–9(a), (b) and

(c) respectively. The plots in red show the estimated coefficients, and
the gray area their corresponding uncertainty. The black line shows the
true coefficients.

As observed from the plot, LS fails in reliably estimating the coeffi-
cients and suffers from biases and large variances. The RLS-F exhibits
large uncertainty on the estimates. This is due to the windup problem in
the covariance matrix, as reported in [23]. RLS-CT, RLS-SF, and RLS-DF
do fix the windup problem using the strategies described in Section 3.2.
However, the RLS-CT fails to reliably estimate for the coefficient 𝐾𝑄

15,18.
RLS-SF and RLS-DF show similar performances. However, the former
fails to cover the true coefficient during 32–34 h for 𝐾𝑃

15,15.
To have a proper comparison, we report the RMSE and the PICP-

PINAW-CWC in Table 2 for the coefficient 𝐾𝑃
15,15 for the same duration

(32–42 h) using different methods and with measurements character-
ized by other IT classes. From such a comparison, it can be observed
that the RLS-DF performs the best with respect to all the metrics, i.e., it
has the lowest RMSE and highest coverage. From Table 2, it can be
observed that for all the estimation techniques, the RMSE increases for
increasing measurement noise. The RLS-DF has full PICP coverage for
all the IT classes, whereas the RLS-SF has slightly lower PICP for IT 0.5
and IT 1.0. From the comparison, it can be concluded that RLS-DF is
the dominant estimation method.

5.4. Control results

In the following, we present the voltage control results. We control
all three PV plants using the robust and non-robust approaches de-
scribed in Section 4. The objective is to restrict the voltage magnitudes
within the bounds 0.97–1.03 pu. We show the results only using the
dominant estimation schemes i.e., RLS-SF and RLS-DF from the last
analysis. In this setup, the previous day measurements (0–24 h) are
used to compute initial estimates (offline-LS) for the RLS. Then, the
online-RLS refines these estimates every 5 min using the last measure-
ments. The latest estimated coefficients and their uncertainties are then
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Fig. 5. Coefficients estimates and their uncertainty using the LS.
Fig. 6. Coefficients estimates and their uncertainty using the RLS-F.
Fig. 7. Coefficients estimates and their uncertainty using the RLS-CT.
Fig. 8. Coefficients estimates and their uncertainty using the RLS-SF.
Fig. 9. Coefficients estimates and their uncertainty using the RLS-DF.
Table 2
Performance comparison of different estimation techniques for 𝐾𝑃

15,15 with different IT classes.

Method IT 0.2 IT 0.5 IT 1.0

RMSE PICP-PINAW-CWC RMSE PICP-PINAW-CWC RMSE PICP-PINAW-CWC

LS 0.89 0.14-0.36–0.41 0.94 0.03-0.35–0.37 0.98 0.04-0.41-0.43
RLS-F 0.46 0.99-1.05–1.85 0.39 0.93-1.45–2.70 0.43 0.86-1.32-2.38
RLS-CT 0.16 0.18-0.11–0.11 0.05 0.87-0.19–0.34 0.05 0.88-0.23-0.42
RLS-SF 0.05 1.00-0.42–0.42 0.07 0.83-0.19–0.35 0.06 0.89-0.18-0.33
RLS-DF 0.05 1.00-0.47–0.47 0.05 0.99-0.24–0.24 0.06 0.99-0.26-0.26
7
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Fig. 10. Distribution of daily nodal voltage magnitudes using (a) non-robust and (b) robust voltage control.
Table 3
Performance comparison of different voltage control methods: maximum nodal voltage magnitude.
Method IT 0.2 IT 0.5 IT 1.0

Non-robust Robust Non-robust Robust Non-robust Robust

Model-based 1.031
RLS-SF (model-less) 1.041 1.032 1.043 1.032 1.059 1.034
RLS-DF (model-less) 1.036 1.031 1.043 1.034 1.045 1.034
used for the voltage control. To compare the voltage violations pro-
duced by the different control schemes, the power set-points from these
control schemes are fed to the non-linear AC power flow equations to
obtain the actual nodal voltages.

5.4.1. Non-robust voltage control
Fig. 10(a) compares the daily boxplot post-control nodal voltage

magnitudes for all the nodes using the non-robust control. The per-
formance is also compared against model-based method, i.e., when the
true sensitivity coefficients are known. As clear from the comparison,
the non-robust control fails to restrict the voltage magnitudes of nodes
14 and 15 within imposed bounds by a large margin, irrespective of
the estimation techniques. It should be noted that even the dominant
estimation method (i.e., RLS-DF) fails to respect the upper voltage
constraint in non-robust control.

5.4.2. Robust voltage control
Fig. 10(b) compares the daily boxplot post-control nodal voltage

magnitudes for all the nodes using the robust voltage control. As
it can be seen, robust voltage control succeeds in reducing voltage
violations. Robust voltage control using estimates from RLS-SF and RLS-
DF perform similarly to the model-based controls (i.e., the maximum
voltage magnitude is near the upper bound).

Fig. 11 shows the control results for the RLS-DF, comparing model-
less robust and non-robust methods against model-based control.
Fig. 11(a) shows the voltage of node 15 under different control schemes.
It can be observed that model-less robust control keeps the voltage
8

within the imposed upper bound and close to the model-based ap-
proach, whereas the non-robust method has higher voltage violations.
Fig. 11(b) shows the curtailed PV generation for node 15, and it can
be seen that model-less controls curtail more than model-based control.
The model-based control curtails 86.5 kWh out of the total 210 kWh
PV generation, whereas model-less non-robust and robust schemes
curtail 106 and 104 kWh respectively. This is because they compute
a more conservative solution to avoid voltage violations. Although
the non-robust scheme curtails more, it fails to satisfy the voltage
bounds due to inaccurate reactive power actuation. Finally, Fig. 11(c)
shows the reactive power injections in three cases. Model-based and
robust control follow a similar pattern, whereas non-robust provides
less reactive power during the middle of the day.

5.4.3. Performance with measurement noise
We also present a performance comparison when robust or non-

robust control is coupled with different estimation techniques for dif-
ferent IT classes of measurement noise. The results are summarised in
Table 3 resulting in different and the following observations: (i) non-
robust control always results in voltage violations, even when the mea-
surement noise is minimum; in contrast, robust control achieves negli-
gible violations; (ii) RLS-SF and RLS-DF-based robust control performed
the best with respect to maximum voltage violations, irrespective of the
IT class.

6. Conclusion

This work proposed a model-less robust voltage control scheme
accounting for the uncertainty on the sensitivity coefficients which
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Fig. 11. Control results using RLS-DF for robust, non-robust and model-based controls: (a) voltage magnitude, (b) active power and (c) reactive power for node 15.
are estimated from measurements. The control framework consisted
of two stages: in the first, voltage sensitivity coefficients and their
uncertainties are estimated using the measurements of nodal voltage
magnitudes and active and reactive power. In the second stage, these
estimated coefficients and their uncertainties are used by for the robust
voltage control problems.

The voltage sensitivity coefficients are estimated using a recursive
estimation algorithm, where the LS is solved offline to provide a rough
estimate of the coefficient using a large number of historical measure-
ments. Then, RLS is used to refine such a preliminary estimation by
using the most recent measurements. The work also compares differ-
ent forgetting schemes in online RLS estimation. We incorporate the
uncertainty of the estimated coefficient to formulate a robust voltage
control.

The scheme is validated for controlling active/reactive power in-
jections from distributed PV generation units connected to the CIGRE
low-voltage benchmark network. The results show that the non-robust
voltage controls fail to satisfy the voltage constraint (i.e., when un-
certainty on the estimated coefficients are not accounted for). The
proposed robust control scheme respects the voltage control limit even
in the highest instrument class. The performance comparison with
respect to different estimation schemes shows that an online estimation
scheme with directional forgetting performs the best.
9
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Appendix. Measurement noise validation

In Eq. (4), the noise  is assumed to be Gaussian. The noise 
is composed of deviations of the nodal voltage magnitudes and ac-
tive/reactive power measurements, and are obtained from the voltages
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and currents measurements Algorithm 1 as per the ITs’ specification
(Table 1). We may verify the Gaussian property by looking at the
standard quantile–quantile (QQ) plot in Fig. 12. The plot is shown for
IT class 0.5. As observed from the plot, the most quantiles (shown in
blue dots) follow the standard normal distribution (shown as a straight
line). Therefore, the Gaussian assumption in (4) is reasonable.

Fig. 12. QQ plot of the deviations of (a) active power, (b) reactive power, (c) voltage
magnitudes, and (c) residuals.
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