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INTRODUCTION
Non technical one...
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SHORT BIO

Experience
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INDUSTRIAL RESEARCH PROJECTS

ABBMedium Voltage Drives
2013–2014 R&D Platform Manager ACS 6000

ABB Corporate Research
2011 – 2013 Voltage Isolation Voltage Adaptation - VIVA

2010 – 2011 Power Electronics Traction Transformer - PETT

2009 – 2010 Advanced Power Supply Technology - APST

2009 – 2010 New Hardware Platform for Robotics - YuMi
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POWER ELECTRONICS LABORATORY AT EPFL

EPFL STI IEM PEL

École Polytechnique
Fédérale de Lausanne

School of
Engineering

Institute of
Electrical

and Micro
Engineering

▶ Active since February 2014
▶ Currently: 10 PhD students, 4 Post Docs, 1 Administrative Ass.
▶ Funding CH: SNSF, SFOE, Innosuisse
▶ Funding EU: H2020, S2R JU, ERC CoG
▶ Funding: Industry OEMs
▶ www.epfl.ch/labs/pel/

Competence Centre ▲ Power Electronics Laboratory
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PEL RESEARCH FOCUS

MVDC Technologies and Systems
▶ System Stability
▶ Protection Coordination
▶ Power Electronic Converters
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ĩp(t) vp(t)vp(t)

High Power Electronics
▶ Multilevel Converters
▶ Solid State Transformers
▶ Medium Frequency Conversion

vga vgb vgc

M

Lg

Ls

Vs

Is

ial ibl icl

icribriar

eal ebl ecl

ear ebr ecr

vCal1

vCalN

vCar1

vCarN

vCbr1

vCbrN

vCbl1

vCblN

vCcl1

vCclN

vCcr1

vCcrN

iga igb igc

VPN

P

N

P

ES2

ES4

I

II

IV

VLV

VMV

MFT

MFT

MFT

Components
▶ Semiconductor devices
▶ Magnetics
▶ Modeling, Characterization

Power Density [kW/l]
0 5 10 15 20 25 30

E
ffi

ci
en

cy
[%

]

98.6

98.8

99

99.2

99.4

99.6

99.8

100

All Designs
Filtered designs
Designs with standard core and wire
Filtered standard designs
Selected design 40

60

80

100

120

140

PLECS 2022 Conference September 20-21, 2022 Power Electronics Laboratory | 5 of 33



MMCRESEARCH PLATFORM
High power university lab prototype and versatile HIL system

PLECS 2022 Conference September 20-21, 2022 Power Electronics Laboratory | 5 of 33



MMCRELATED RESEARCH ACTIVITIES

Pump Hydro Storage Research Platform
▶ MMC based AC/AC converter
▶ Interface between SG and local AC grid

PEL
AC grid

MMC1 MMC2 SM
6 kV 6 kV

LAC

▲ MMC-Based AC/AC Converter for Pump Hydro Applications

Flexible DC Source (FlexDCS)
▶ MMC Based DC Source rated at 0.5 MVA
▶ Reconfiguration unit allows series/parallel operation
▶ Four quadrant operation

▶ Flexible voltage source in a range±10 kV DC
▶ Flexible current source in a range±100 A DC

LAC

VDC

LAC

MMC1

MMC2

AC grid
0.4/3.3/3.3 kV

reconfiguration

▲ Flexible DC Source Topology [1]
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▲ Pumped Hydro Storage Plants - Research Platform

[1] M. Utvić, S. Milovanović, and D. Dujić. “Flexible Medium Voltage DC Source Utilizing Series Connected Modular Multilevel Converters.” 2019 21st European Conference on Power Electronics and Applications (EPE ’19 ECCE Europe). 2019, pp. 1–9
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MODULARMULTILEVEL CONVERTER

▲ Modular Multilevel Converter

▶ Series connection of HB/FB Submodules (SMs)
▶ Flexible in terms of voltage scaling
▶ High quality voltage waveforms

▲ Branch with its voltage waveform

MMC demonstrator ratings
▶ 500 kVA or 2 x 250 kVA rated MMCs
▶ 2 x 3.3 kVac↔± 10 kVdc

▶ 8 low voltage cells per branch⇒ 16 cells per phase (half a cabinet)⇒ 48 cells per MMC⇒ 96 cells in total
▶ Industrial central controller and communication (ABB AC PEC 800)

▲ PEL MMC layout

⇒ The need for HIL
Complex control structure requiring flexible and safe means of testing
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MMC – SUBMODULE OPTIMIZATION

Submodule
▶ 1.2 kV / 50 A full-bridge IGBT module
▶ Ccel l = 2.25 mF

Thermal design
▶ Cell level: detailed FEM
▶ Cabinet level: simplified FEM

▲ CFD simulations

Semiconductor losses
▶ Virtual Submodule concept has been utilized [2]
▶ Closed-loop waveforms are approached by analytical waveforms
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▲ Time benchmark

[2] A. Christe and D. Dujic. “Virtual Submodule Concept for Fast Semi-Numerical Modular Multilevel Converter Loss Estimation.” IEEE Transactions on Industrial Electronics 64.7 (July 2017), pp. 5286–5294
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INSULATION COORDINATION

✓ MV MMC converter laboratory prototype layout compliant with:
▶ UL840 (for cell)
▶ IEC 61800-5-1

✓ Complete AC dielectric withstand tests on real prototype [3]

▲ Cabinet of one phase-leg (32 cells) in Faraday cage during insulation coordination testing

▲ AC dielectric withstand test result

▲ Drawer holding 4 cell (MKHP material)

[3] A. Christe, E. Coulinge, and D. Dujic. “Insulation coordination for a modular multilevel converter prototype.” 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe). Sept. 2016, pp. 1–9
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MMCMECHANICS

▲ MMC CAD development

▲ MMC - Actual mechanical assembly

▲ MMC coupled air-core branch inductors

HoneycombHeater DUT T° Logger

Air flow sensor

T° Controller

▲ MMC Submodule thermal heat-run test setup [4]

[4] I. Polanco and D. Dujic. “Thermal Study of a Modular Multilevel Converter Submodule.” PCIM Europe digital days 2020; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. 2020, pp. 1–8
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MMCSUB-MODULE
Low voltage based sub-module including cell controller
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MMCSUB-MODULE – STRUCTURE

Key Features
▶ Low voltage power components
▶ Full-bridge sub-module structure
▶ Sub-module rated voltage - 625 V
▶ Sub-module insulation coordination - 900 V
▶ Two interconnected PCBs: Power PCB and Control PCB

▲ MMC Sub-module Structure: Yellow parts - Control PCB

▲ Developed MMC FB sub-module based on the 1.2kV IGBTs
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MMCSUB-MODULE – POWER PCB

▶ Power processing part
▶ Semikron full-bridge IGBT module 1.2 kV/50 A
▶ Bank of electrolytic capacitors Csm= 2.25 mF
▶ Protection devices: Bypass thyristor, relay and OVD
▶ Current and voltage measurements
▶ Hybrid balancing circuitry

▲ MMC Sub-module Structure: Yellow parts - Control PCB

▲ Overview of the Power PCB
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MMCSUB-MODULE – CONTROL PCB

▶ Flyback based auxiliary power supply [5]
▶ +5V Output, used as a control feedback
▶ +80V Protection supply
▶ +15V Gate drivers supplies
▶ +15V Self-supply output

▶ DSP based main SM Controller
▶ Communication with upper level control
▶ Voltage and current measurements
▶ Monitoring the SM condition
▶ Decentralized modulation

▶ Gate drivers
▶ Protection logic

▶ Protection activation from upper level control
▶ Protection activation from DSP
▶ Protection activation by overvoltage detection

▶ Fiber-optical communication link

▲ MMC Sub-module Structure: Yellow parts- Control PCB

▲ Overview of the Control PCB

[5] Alexandre Christe et al. “Auxiliary submodule power supply for a medium voltage modular multilevel converter.” CPSS Transactions on Power Electronics and Applications 4.3 (2019), pp. 204–218
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MMCSUB-MODULE POWER TESTS

Extensive testing has been done:
▶ Power tests
▶ Thermal heat-runs
▶ Over current tests
▶ Loss of power supply
▶ DC link over voltage
▶ Terminal over voltage
▶ Short-circuit tests
▶ ...

▲ Developed MMC FB sub-module
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MMCDIGITAL TWIN
RT-Box based distributed HIL system
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MMCSUBMODULE AND HIL-RELEVANT ADAPTATIONS
Key features
▶ LV power components (1.2 kV IGBTs)

▶ Full-bridge submodule structure

▶ Submodule rated voltage - 625 V

▶ Submodule insulation coordination - 900 V
▶ Two interconnected PCBs:

▶ Power PCB
▶ Control PCB

▲ MMC SM structure; Parts highlighted in purple belong to the Control PCB

▲ Control PCB adjustments needed for HIL real-time simulations

⇒ Virtual Power Processing

Power parts of the SM get modeled in the simulator, while parts of the Control PCB must be retained to match the real scenario.
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MMC – RT-HIL SYSTEM (I)

DSP outputs governing the SM power part
▶ Four switching signals S1 . . . S4

▶ Protection triggering (THY_ON and REL_ON)

Signals sent from the SM to PEC:
▶ SM cap. voltage (VSM )
▶ SM current (iSM )
▶ SM AC terminal voltages (VAC1 and VAC2)
▶ IGBT module temp TIGBT

▲ Channels available on the RT Box 1

Description
No. of channels/

connectors
Voltage

range

Analog Inputs 16 −10V . . . 10V
Analog Output 16 −10V . . . 10V

Digital Inputs 32 3.3V or 5V
Digital Outputs 32 3.3V or 5V

SFP Connectors 4 N.A.

▲ Transformation of MMC cell into digital twin equivalent system [6]

 Limitation in the number of RT Box DIs and AOs
One RT Box hosts up to 8 SMs⇒ 6 x Branch RT Box for the real-time simulation
of MMC branches + 1 RT Box for Application (e.g. AC grid/AC machine/etc.)

[6] Stefan Milovanovic et al. “Flexible and Efficient MMC Digital Twin Realized With Small-Scale Real-Time Simulators.” IEEE Power Electronics Magazine 8.2 (2021), pp. 24–33
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MMC – RT-HIL SYSTEM (II)

▲ Digital Twin - Realized RT-HIL system for control verification purpose: (left) front view; (middle) wiring scheme; (right) back view.
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RT-HIL MODELING
Managing complexity of modular converters
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MMCREAL-TIMEMODELING (I)

Switchedmodel of an SM

▲ FB SM with protection circuitry

In a circuit with N switches, the number of distinct topologies equals 2N .

▶ Every state is described with its own state-space matrix

▶ Matrices need to be stored in the simulator memory

▶ Real-time code size and execution times

 The number of switching devices in the model must be
minimized to the highest possible extent

⇒
Sub-cycle average models

Mathematical equivalents retaining all physical proper-
ties of the switched model

Sub-cycle average models

▲ Sub-cycle average model of the FB SM (prot= SWREL ∧ SWTHY )

VECTORIZED NON-VECTORIZED

▲ Sub-cycle average model of a cluster of FB SMs
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MMCREAL-TIMEMODELING (II)

▲ Splitting of the branch model required for proper emulation of the MMC behavior in various operating regimes.
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MMCREAL-TIMEMODELING (II)

▲ Splitting of the branch model required for proper emulation of the MMC behavior in various operating regimes.

? What is a problem of this model and how can it be addressed?

PLECS 2022 Conference September 20-21, 2022 Power Electronics Laboratory | 19 of 33



CIRCUIT SPLITTING

▲ MMC model running on the Application RT Box

▶ 12 diodes⇒ 212 circuits (state-space matrices)
▶ Step-size Tstep > 75µs
▶ Code generation> 2min

 Simulation step-size is unacceptably large

The circuit must be sectioned into several inde-
pendent parts

Circuit splitting - General idea

(a) Original circuit

(b) Two circuits obtained after the splitting

▲ An example of possible circuit splitting.

▶ Artificial delay is introduced between newly formed circuit parts
▶ Systems 1 and 2 are treated independently
▶ The number of state-space matrices is reduced from 212 to 2× 26

▶ Reduction of the simulation step-size
▶ Splitting should be done at a place containing either capacitor or inductor

? The analyzed model does not have a concentrated DC link
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VIRTUAL CAPACITOR CONCEPT APPLIED TO THEMMCMODEL (I)

▶ ”Virtual”⇔ these elements do not exist in reality [7]
▶ Virtual elements do not conduct current components relevant for control testing
▶ Virtual elements can be used for circuit splitting!

▲ Extension of the original MMC by the so-called virtual capacitor highlighted in blue.

▶ Virtual capacitors⇒Circuit splitting
▶ Virtual resistors⇒Numeric stability

Separating lower branches from the MMCmodel

Upper branches≡ a set of voltage sources.

loo
p 1

loo
p 2

▲ Separating the set of lower branches from the original MMC model

The role of voltage sources v1 , v2 and v3 :

1. Preservation of the KVL equations

2. What is seen from the DC terminal must be equivalent to the original
circuit.

Therefore, one can conclude thatv1

v2

v3

=
vPA

vPB

vPC

 .
[7] Stefan Milovanović, Min Luo, and Dražen Dujić. “Virtual Capacitor Concept for Computationally Efficient and Flexible Real-Time MMC Model.” IEEE Access 9 (2021), pp. 144211–144226
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VIRTUAL CAPACITOR CONCEPT APPLIED TO THEMMCMODEL (II)

▶ Lower branches≡ a set of current sources
▶ Three independent systems

▶ System 1⇒Upper branches including VCs and VRs
▶ System 2⇒ Lower branches
▶ System 3⇒AC grid (or AC machine, etc.)

▶ Seen from the AC terminals, branches operate in parallel

▶ The number of state-space matrices is 2× 26

▶ Step-size Tstep = 7µs

▶ Code generation≈ 10s

⇒ Circuit splitting benefits

More than a ten fold reduction in the simulation step-size!

? Is model functionality preserved?

System 1

System 2

System 3

System 3 System 1Split.

▲ Model of the MMC relying on the use of three independent systems.
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HIL VERIFICATION

▼ Parameters of the converter used for further analyses

Rated
power

Output
voltage

Grid
voltage

Number of SMs
per branch

Nominal SM
voltage

SM
capacitance

Branch
inductance

Branch
resistance

PWM carrier
frequency

Fundamental
frequency

Virtual
capacitance

Virtual
resistance

(S∗) (VDC) (vg) (N ) (VSM ) (CSM ) (Lbr) (Rbr) ( fc) ( fo) (Cv) (Rv)

250kVA 5kV 3.3kV 8 650V 2.25mF 2.5mH 60mΩ 1kHz 50Hz 360nF 45Ω

▶ Converter with parameters provided above

▶ Real industrial ABB PEC800 controller
▶ Master & Slave PECs (flexibility in reconfiguration)
▶ PECMI (v and i measurements)
▶ Control HUB (SM signals aggregation and reference processing)
▶ COMBIO (Relays/Switches/Monitoring)

▶ Application RT Box step-size→ 7µs

▶ Branch RT Box step-size→ 3.5µs

⇒ Control structure identical to the real prototype

(a) Front view (b) Rear view

▲ HIL system used for result verification purpose.
PLECS 2022 Conference September 20-21, 2022 Power Electronics Laboratory | 23 of 33



MODEL VERIFICATION (I)

Test scenarios

▶ Converter charging
1. Converter OFF

2. Passive charging
3. Timeout
4. Active charging
5. Timeout

▶ No load operation

▲ Converter charging process. ▲ No load operation.
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▲ Spectral content of VC currents (PDC = 0).
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MODEL VERIFICATION (I)

Test scenarios
▶ Full load

▶ P̂DC = 250kW
▶ Rect. op. mode

▶ Load change 0→ P̂DC

▲ Operation at full load. ▲ Load change.
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▲ Spectral content of VC currents (PDC = 250kW).
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MODEL VERIFICATION (I)

Test scenarios
▶ Full load

▶ P̂DC = 250kW
▶ Rect. op. mode

▶ Load change 0→ P̂DC

▲ Operation at full load. ▲ Load change.
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▲ Spectral content of VC currents (PDC = 250kW).

⇒ Virtual network does not conduct currents at fundamental frequency⇒ functionality of the model is not altered
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CONTROL SW TESTING
Results recorded from the HIL platform
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MMCOPERATION (I)

▲ Simulated converter param.
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▲ Converter charging process presented through several stages
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▲ A fraction of the interval referred to as the passive charging
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MMCOPERATION (II)

▲ Simulated converter param.
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▲ Converter operation at no load (PDC = 0)
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▲ Converter operation at full load (PDC = 1MW)
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MMCOPERATION (III)

▲ Simulated converter param.
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▲ Passive charging of a branch
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▲ Branch operation at full load
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MMCOPERATION (III)

▲ Simulated converter param.
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▲ Passive charging of a branch
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▲ Branch operation at full load⇒ The RT model and control SW behave according to the expectations
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Using developed platform to drive research forward...
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MMCCONDITION HEALTHMONITORING

Ignacio Polanco
09.2018 – 08.2022
MSc: UDC, Chile
PhD: Condition health
monitoring for MMC

Objectives

▶ to develop new MMC SM CHM strategies [8]
▶ to explore new approaches to integrate existing MMC SM
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▲ MMC testing platform

[8] Ignacio Polanco and Dražen Dujić. “Condition Health Monitoring of Modular Multilevel Converter Submodule Capacitors.” IEEE Transactions on Power Electronics 37.3 (2022), pp. 3544–3554
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DIRECTMMC FOR HYDROPOWER APPLICATIONS

Philippe Bontemps
09.2019 – 08.2023
MSc: EPFL, Switzlerand
PhD: Direct MMC for hydro
applications

Funding
▶ EU project - XFLEX Hydro

Partners
▶ ALPIQ, ANDRITZ, ARMINES, CEA, EPFL, GE Renewable

Energy, EDF, EDP, NEW, HES-SO, INESCTEC, IHA, PVE, MINES
ParisTech, SuperGrid Institute, Universität Stuttgart, UPC,
VOITH, Zabala

Objectives
▶ Flexibility enhancements of Pumped Hydro Storage Power

Plant (PHSP) through variable speed drives
▶ Explore benefits in providing grid services
▶ Investigate impact on life expectancy of electric and hydraulic

machinery
▶ RT HIL model of the direct-MMC in a PHSP application [9]
▶ Power-in-the-Loop test on a 500kVA/6kV test rig
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1 2 3Branch
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Grid
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MV Grid
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▲ RT-HIL for Direct MMC and experimental MV test rig

[9] Philippe Bontemps, Stefan Milovanovic, and Drazen Dujic. “Distributed Real-Time Model of the M3C for HIL Systems Using Small-Scale Simulators.” IEEE Open Journal of Power Electronics 2 (2021), pp. 603–613
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SUMMARY

MMC research platform
▶ Electrical and mechanical design
▶ Insulation coordination
▶ Control development
▶ Testing independently HW and SW
▶ RT-HIL support for modeling and development
▶ Achieving flexibility for various applications
▶ Platform for future research activities

▲ MMC - Actual mechanical assembly

▲ PEL developed MMC sub-module

▲ Digital Twins - Four RT-HIL systems allowing for various topological reconfigurations
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