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Abstract
Removing geometrical details from a complex domain is a classical operation in computer
aided design for simulation and manufacturing. This procedure simplifies the meshing
process, and it enables faster simulations with less memory requirements. However,
depending on the partial differential equation that one wants to solve in the geometrical
model of interest, removing some important geometrical features may greatly impact
the solution accuracy. For instance, in solid mechanics simulations, such features can be
holes or fillets near stress concentration regions. Unfortunately, the effect of geometrical
simplification on the accuracy of the problem solution is often neglected, because its
analysis is a time-consuming task that is often performed manually, based on the expertise
of engineers. It is therefore important to have a better understanding of the effect of
geometrical model simplification, also called defeaturing, to improve our control on the
simulation accuracy along the design and analysis phase.

In this thesis, we formalize the process of defeaturing, and we analyze its impact on the
accuracy of solutions of some partial differential problems. To achieve this goal, we first
precisely define the error between the problem solution defined in the exact geometry,
and the one defined in the simplified geometry. Then, we introduce an a posteriori
estimator of the energy norm of this error. This allows us to reliably and efficiently
control the error coming from the addition or the removal of geometrical features. We
subsequently consider a finite element approximation of the defeatured problem, and
the induced numerical error is integrated to the proposed defeaturing error estimator.
In particular, we address the special case of isogeometric analysis based on (truncated)
hierarchical B-splines, in possibly trimmed and multipatch geometries. In this framework,
we derive a reliable a posteriori estimator of the overall error, i.e., of the error between
the exact solution defined in the exact geometry, and the numerical solution defined in
the defeatured geometry.

We then propose a two-fold adaptive strategy for analysis-aware defeaturing, which starts
by considering a coarse mesh on a fully-defeatured computational domain. On the one
hand, the algorithm performs classical finite element mesh refinements in a (partially)
defeatured geometry. On the other hand, the strategy also allows for geometrical
refinement. That is, at each iteration, the algorithm is able to choose which missing
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geometrical features should be added to the simplified geometrical model, in order to
obtain a more accurate solution.

Throughout the thesis, we validate the presented theory, the properties of the aforemen-
tioned estimators and the proposed adaptive strategies, thanks to an extensive set of
numerical experiments.

Keywords: Defeaturing, geometric simplification; a posteriori error estimation, adaptivity;
isogeometric analysis, trimming.
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Résumé
La suppression de détails géométriques d’un domaine complexe est une opération clas-
sique en conception assistée par ordinateur pour la simulation ou la fabrication. Ce
processus simplifie l’opération de maillage, et permet des simulations plus rapides et
qui nécessitent moins de mémoire. Cependant, en fonction de l’équation aux dérivées
partielles que l’on veut résoudre sur le modèle géométrique d’intérêt, la suppression
de certains détails géométriques importants peut avoir un impact considérable sur la
précision de la solution. Par exemple, pour des simulations en mécanique des solides, ces
détails peuvent être des trous ou des congés dans les zones où se concentre la contrainte
mécanique. Malheureusement, l’effet de la simplification géométrique sur la précision de
la solution du problème est souvent négligée, car son analyse est une tâche fastidieuse
qui est souvent faite manuellement et qui est également souvent basée sur la seule ex-
pertise des ingénieurs. Il est donc important de mieux comprendre l’effet du defeaturing,
c’est-à-dire de la simplification de modèles géométriques, pour améliorer notre contrôle
sur la précision des simulations tout au long de la phase de conception et d’analyse.

Dans cette thèse, nous formalisons le processus de defeaturing et nous analysons son
impact sur la précision de la solution de quelques problèmes aux dérivées partielles. Pour
atteindre cet objectif, nous définissons d’abord précisément l’erreur entre la solution du
problème défini dans la géométrie exacte et celle du problème défini dans la géométrie
simplifiée. Ensuite, nous introduisons un estimateur a posteriori de cette erreur en norme
de l’énergie. Cela nous permet de contrôler de manière fiable et efficace l’erreur provenant
de l’ajout ou de la suppression de détails géométriques. Nous considérons ensuite une
approximation par éléments finis du problème simplifié, et l’erreur numérique induite est
intégrée à l’estimateur d’erreur de defeaturing proposé. En particulier, nous abordons le
cas de l’analyse isogéométrique basée sur les B-splines hiérarchiques (tronquées), dans des
géométries éventuellement trimmées et multipatch. Dans ce cadre-là, nous introduisons
un estimateur a posteriori fiable de l’erreur globale, c’est-à-dire de l’erreur entre la
solution exacte définie dans la géométrie exacte et la solution numérique définie dans la
géométrie simplifiée.

Par la suite, nous proposons une double stratégie adaptative pour le defeaturing, dont
l’initialisation se fait avec un maillage grossier, et sur un domaine de calcul dans lequel tous
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les détails géométriques ont été enlevés. D’une part, l’algorithme effectue un raffinement
classique du maillage éléments finis, dans une géométrie (partiellement) simplifiée. D’autre
part, la stratégie permet également un raffinement géométrique. C’est-à-dire qu’à chaque
itération, l’algorithme est capable de choisir quels détails géométriques manquants doivent
être ajoutés au modèle géométrique simplifié, afin d’obtenir une solution plus précise.

Tout au long de la thèse, nous validons la théorie présentée, les propriétés des estimateurs
susmentionnés et les stratégies adaptatives proposées sur un ensemble étendu de tests
numériques.

Mots-clés : Defeaturing, simplification de modèles géométriques ; estimation de l’erreur a
posteriori, adaptativité ; analyse isogéométrique, trimming.
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Abbreviations

BVP Boundary value problem
CAD Computer-aided design
FEM Finite element method
HB-spline Hierarchical B-spline
IGA Isogeometric analysis
NURBS Non uniform rational B-spline
PDE Partial differential equation
THB-spline Truncated hierarchical B-spline

Sets

N Set of positive integers
R Set of real numbers
#S Cardinality of a discrete set S
⊂ Set inclusion allowing for equality
↪→ Continuous embedding

Differentials

∇ Gradient or Jacobian operator
∇· Divergence operator
∆ Laplacian operator

Inequalities
Let A and B be two expressions depending on a set T of parameters which will be
specified and which will change in every chapter of this thesis. We write:

A . B whenever A ≤ cB with a constant c > 0 independent of T
A ' B whenever A . B and B . A

A� B whenever A ≤ c(T )B with a large constant c > 0 which may depend on T
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Let n ∈ {2, 3}, let D ⊂ Rn, and let Λ be a subset of the boundary of D.

Vectors and matrices
Let v1, v2 ∈ Rn, and let M1,M2 ∈ Rn×n.

v1 · v2 Scalar product
M1 : M2 Frobenius product
‖ · ‖`2 Discrete `2-norm, Euclidean vector norm, Frobenius matrix norm

Geometrical domains

|D| – n-dimensional Lebesgue measure
– |Λ| (n− 1)-dimensional Hausdorff measure
D Λ Closure
int(D) int(Λ) Interior
∂D ∂Λ Boundary
conn(D) conn(Λ) Set of connected components
hull(D) hull(Λ) Convex hull
diam(D) – Diameter
– diam(Λ) Manifold diameter of the convex hull

Functions

Let v : Rn → R, v : Rn → Rn, w : Λ→ R and w : Λ→ Rn.

v|D v|D Restriction to D

vD vD (Component-wise) function average over D
supp (v) supp (v) Support
trΛ(v) trΛ(v) Trace on Λ
w? w? (Component-wise) extension by 0 to ∂D

Functional spaces

Ck(D) Ck(Λ) Space of k-times continuously differentiable functions, k ∈ N∪{∞}
Lp(D) Lp(Λ) Lebesgue space of exponent p ∈ [1,∞]
Lp(D) Lp(Λ) Lebesgue space of vector-valued functions, p ∈ [1,∞]
LLLp(D) LLLp(Λ) Lebesgue space of matrix-valued functions, p ∈ [1,∞]
Hs(D) Hs(Λ) Sobolev space of order s ∈ R
Hs(D) Hs(Λ) Sobolev space of vector-valued functions, s ∈ R
HHHs(D) HHHs(Λ) Sobolev space of matrix-valued functions, s ∈ R
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H1
w,Λ(D) Set of functions v ∈ H1(D) such that trΛ(v) = w, with w ∈ H 1

2 (Λ)
H1
w,Λ(D) Set of functions v ∈H1(D) such that trΛ(v) = w, with w ∈H 1

2 (Λ)
H

1
2
00(Λ) Set of functions w ∈ L2(Λ) such that w? ∈ H 1

2 (∂D)
H

1
2
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1 Introduction

1.1 Motivation

In a wide range of engineering applications, physics-based simulations are intensively
used for the design and manufacturing of complex objects. The following examples are
given in [Thakur et al., 2009], to only cite a few:
“Multi-body dynamics simulations are used to determine the sizes of actuators during the
design of robots. Finite element simulations are used in structural and thermal analysis
of components in the automotive and aerospace industries. Computational fluid dynamics
simulation is used in automotive engine cooling system design.”
In particular, thanks to the parallel development of computers and of always-faster
computing technologies, the finite element method (FEM) has revolutionized every
field of engineering since its first steps [Hrennikoff, 1941; Courant, 1943]. The basic
idea of FEM is to decompose the considered object, i.e., the computational domain,
into a finite number of (mapped) polygonal elements. This process, called meshing,
generates an analysis-suitable approximation of the geometry. Then, based on the so-
called isoparametric paradigm, the same polynomial functions used to describe the mesh
are employed in the analysis to approximate the solution field.

With the advance of engineering knowledge, these simulations are performed on objects
of increasing geometric complexity, nowadays mainly described by three-dimensional
computer-aided design (CAD) models. These models often contain a large number of
geometric details of different scales, also called geometric features. The illustration in
Figure 1.1 shows two important components of a car, a combustion engine and a B-pillar,
whose designs contain many features of different type. These features are for instance the
screw holes in the engine block, the gearwheels’ teeth, the rounds at the bottom of the
poppet valves, or the longitudinal rounds along the B-pillar. In a design, the presence of
features often comes from manufacturing constraints or from mechanical requirements.
Fillets and rounds are good examples: they may be added to a design because of the
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Chapter 1. Introduction

(a) Internal combustion engine of a F1 car.1 (b) B-pillar of an individual car.2

Figure 1.1 – Two examples of complex geometric designs on which physics-based simula-
tions need to be performed.

need of using round-tipped end mills to manufacture this specific part, or because they
are necessary to provide mechanical robustness. This shows the potential complexity of
geometrical models on which simulations need to be performed.

Unfortunately, the construction of a finite element mesh on such complex domains
may fail, or if it does not, the mesh may require a very large number of elements – or
equivalently, degrees of freedom –, therefore leading to simulations which are too costly
or even unfeasible. For instance, it has been shown in [White et al., 2003; Lee et al.,
2005] that the cost of the underlying simulation may be increased by up to a factor 10 in
the presence of a single geometric feature of relatively small size. In addition, in order
to meet functionality, manufacturability and aesthetic requirements, the need to adjust
geometric parameters requires repeated design changes involving adding or removing
geometrical features to the design. This typical process in simulation-based design for
manufacturing quickly becomes prohibitive when the geometry is very complicated.

However, depending on the problem at hand, the geometric description of the considered
object may unnecessarily increase the complexity of the simulation. That is, the full
geometric complexity may not be needed for the underlying analysis. Or in other words,
the geometric description of the object may require a high number of degrees of freedom,
but not all of them are necessary to perform an accurate analysis, and taking all of them
into account is even potentially too costly. For instance, the screw holes away from stress
concentration regions add geometric complexity, without having much influence on the

1Image courtesy to https://www.auto-innovations.com/.
2Image courtesy to the authors of [Coradello et al., 2020].
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1.1. Motivation

(a) Original geometry with multiple features
(fillets, rounds, holes, protrusions).

(b) Defeatured (or simplified) geometry.

Figure 1.2 – Illustration of defeaturing.

mechanical properties of the combustion engine of Figure 1.1a. At the contrary, the
rounds on the poppet valves are essential features for the engine to function properly. To
deal with complex geometries and to accelerate the process of analysis-aware geometric
design, it is therefore essential to be able to simplify the geometric model, process
also called defeaturing, while understanding the effect of this process on the simulation
accuracy. The idea of defeaturing is illustrated in Figure 1.2, where a complex geometry
is shown together with its simplified version, in which all the features have been removed.

Moreover, the automatic integration of design and analysis tools in a single workflow has
been an important topic of research for many years, see [Farouki, 1999; Riesenfeld et al.,
2015]. Indeed, the CAD design of an object and its analysis-suitable mesh are a priori
two distinct geometric descriptions of the same computational domain, and the need to
transform the first one into the other is costly, time consuming, and it creates geometric
inaccuracies. At the beginning of the century, in the seminal paper [Hughes et al., 2005],
a successful methodology has emerged to mitigate this issue. This method is referred
to as isogeometric analysis (IGA). The fundamental idea of IGA consists in employing
the basis functions used to describe CAD geometries for the numerical analysis of the
underlying partial differential equations (PDEs). That is, IGA uses smooth B-splines
or variants thereof as basis functions for the solution field. This new paradigm has
opened the road to an extensive amount of research; the interested reader is referred to
[Cottrell et al., 2009] for a review of the method, and to [Hughes, 2017] for a review of
a wide range of real world applications on which the method has shown its potential.
The mathematical foundations of IGA have also been developed in [Bazilevs et al., 2006;
Beirão da Veiga et al., 2014], and numerous implementations can now be found, see e.g.
[Nguyen et al., 2015; Pauletti et al., 2015; Vázquez, 2016].

Different extensions of the original IGA method have been developed in order to deal
with geometries of increased complexity: the main developments include for instance
multipatch domains [Buffa et al., 2015; Bracco et al., 2020], or geometries obtained by
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Boolean operations such as intersections (trimming) [Schmidt et al., 2012; Marussig and
Hughes, 2018; Antolín et al., 2019; Wei et al., 2021; Antolín and Hirschler, 2022] or unions
[Zuo et al., 2015; Kargaran et al., 2019; Antolín et al., 2021]. Since the tensor-product
nature of standard B-splines hinders the possibility of local refinement, the construction
of locally refined splines has also been a very active area of research. In this work, we
focus on hierarchical B-splines (HB-splines) [Forsey and Bartels, 1988; Kraft, 1997; Vuong
et al., 2011] and their truncated counterpart (THB-splines) [Giannelli et al., 2012, 2016;
Buffa and Garau, 2017], which are mathematically well-understood, conceptually simple,
and easy to implement. Their development and integration in an IGA mesh adaptive
framework have been recently reviewed in [Buffa et al., 2021b].

Nevertheless, dealing with very complex geometries remains challenging, and even the
most recent and the most efficient methods may come at a prohibitive cost because of
the inherent complexity of the designs. This is where analysis-aware defeaturing handily
comes into play. More precisely, suppose that one is able to determine which are the
geometrical features of a complex geometry that have the least influence on the accuracy
of the PDE solution at hand. Then, one can simplify the geometric model by defeaturing,
leading to an easier and cheaper analysis. By doing so, the meshing process is also
simplified. But it is important to consider the impact of the geometrical changes on the
analysis phase, i.e., to control the error introduced by defeaturing, in order to provide an
accurate solution of the problem.

1.2 Defeaturing error estimation: literature review

For a long time, defeaturing has been approached using subjective a priori criteria, which
mostly rely on the engineers’ expertise, or which are based on geometrical considerations
such as variations in volume or in area of the domain, see [Thakur et al., 2009]. Still based
on some a priori knowledge of the problem at hand, more objective criteria have then
been considered. These indicators are for instance based on the verification of constitutive
or conservation laws, see [Fine et al., 2000; Foucault et al., 2004; Rahimi et al., 2018].
However, in order to automatize the simulation-based design process, the interest is to
have an a posteriori criterion, which assesses the error introduced by defeaturing based
on the result of the analysis in the defeatured geometric model. Following this direction,
an a posteriori criterion is given in [Ferrandes et al., 2009]: it evaluates an approximation
of the energy norm between the exact solution of the problem at hand, and the solution
on the defeatured geometry. It is intuitively based on the fact that the energy error
due to defeaturing is concentrated in the modified boundaries of the geometry, and this
boundary error is estimated by solving local problems around each feature. Nevertheless,
this approach does not give a demonstrated certification that the proposed criterion is
indeed a good estimator of the defeaturing error.

A different approach is based on the concept of feature sensitivity analysis (FSA)
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[Gopalakrishnan and Suresh, 2007, 2008; Turevsky et al., 2008, 2009]. This technique
relies on topological sensitivity analysis (TSA) [Sokolowski and Zochowski, 1999; Choi and
Kim, 2005], which studies the impact of infinitesimal (topological) geometrical changes on
the solution of a given PDE. TSA is a method predominantly used in design optimization.
The works on FSA study defeaturing in geometries with a single arbitrarily-shaped
feature. First order changes of quantities of interest are analyzed when a small internal or
boundary hole is removed from the geometry. However, besides the underlying assumption
of infinitesimal features, this technique cannot be generalized to more complex features.

An alternative approach, still based on a posteriori error estimators, is proposed in [Li
et al., 2011] for internal holes. The idea behind this estimator is to reformulate the
geometrical defeaturing error as a modeling error. More precisely, the PDE solved in
two different geometries, the exact geometry and its defeatured counterpart, is rewritten
as two different PDEs on a unique (reference) geometry. The modeling error is then
estimated using the dual weighted residual method introduced in [Becker and Rannacher,
2001] and [Oden and Prudhomme, 2002]. This approach follows the lines of [Oden and
Vemaganti, 2000; Carstensen and Sauter, 2004; Vemaganti, 2004] that study heterogeneous
and perforated materials, [Repin et al., 2003] that studies the error introduced by the
approximation of boundary conditions, and [Repin and Sauter, 2020] that more generally
studies modeling errors arising in dimension reduction, homogenization and model
simplification. These are problems that can be easily related to defeaturing. The
developed technique of [Li et al., 2011] has then been generalized in [Li and Gao, 2011;
Li et al., 2013a,b; Zhang et al., 2016] to different linear and non-linear problems, and
to other types of features. Following similar ideas, another a posteriori error estimator
is introduced in [Tang et al., 2013], based on the reciprocal theorem which states the
conservation of solution flux in the features. However, some heuristic remains in all these
contributions, and a precise mathematical study of the estimator with regards to its
efficiency and stability is lacking. In particular, it is assumed that the difference between
the solutions of the PDE in the exact and defeatured geometries is small, and it relies on
the heuristic estimation of constants that depend on the size of the features.

Finally, it is also worth mentioning a very early method for defeaturing which also allows
for coarsening, called composite finite elements and developed in [Hackbusch and Sauter,
1997a,b]. In this approach, defeaturing is tightly linked to the underlying finite element
mesh, as it is assumed that defeaturing strictly comes from the fact that the mesh cannot
resolve the geometrical details of the computational domain. In our approach instead, we
want to be able to consider defeaturing independently from any discretization, in order
to be able to decouple the errors coming from the defeaturing operation and from the
numerical approximation of the problem at hand.
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1.3 Objectives and outline

The objective of this work is to deepen and improve the mathematical understanding
of defeaturing very complex geometries. After this introductory chapter, the thesis is
structured in two main parts.

In Part I, we present a functional framework for analysis-aware defeaturing. That is, we
first consider defeaturing in continuous problems, before any numerical approximation is
made. This part is organized as follows.

• Chapter 2 first provides some fundamentals of functional analysis, with the basic
definitions, the notation and some preliminary functional results used throughout
this monograph. Then, we discuss the mathematical foundations for the description
of physical phenomena in their differential and variational forms, and we provide
fundamental results of existence and uniqueness of the solution of boundary value
problems (BVP). Since we are interested in a quantification of the error coming
from some approximation of such problems, we also discuss error estimators and
the concept of adaptive strategies to reduce this error.

• We then introduce a sound mathematical framework for analysis-aware defeaturing
in Chapter 3. To begin with, we consider two- and three-dimensional geometries
that contain a single feature, and we work in the context of the Poisson equation for
which Neumann boundary conditions are imposed on the feature. A very general
feature is considered: it can either be negative (internal or boundary hole), positive
(protrusion), or more complex with both positive and negative components. After
providing a precise definition of the defeaturing error, we introduce an a posteriori
estimator of the energy norm of this error. Then, we prove the reliability and
efficiency (up to oscillations) of the proposed estimator, whose effectivity index is
independent of the size of the feature but not of its shape. This estimator does not
only consider geometrical properties of the feature, but it also takes into account
the effect of defeaturing on the PDE solution accuracy. Notably, the estimator is
very cheap to compute once the PDE solution in the defeatured domain is obtained,
as it only requires

◦ the solution of a local problem in a simplified feature (as, e.g., its bounding
box), only if the feature is not negative;

◦ the computation of local integrals on the boundary of the feature.

Indeed, the proposed estimator is derived from a representation of the defeaturing
error that only involves differences between feature boundary terms, as already
observed in [Gopalakrishnan and Suresh, 2008; Turevsky et al., 2008] and in [Li
and Gao, 2011; Li et al., 2013b,a]. Lastly, we present numerical experiments that
both validate the theory presented in the chapter, and show the potential of the
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proposed estimator.3

• Subsequently, in Chapter 4, we generalize the previous framework and results to
computational domains that contain an arbitrary number of geometrical features.
We also extend the study to linear elasticity problems and incompressible Stokes
equations. In particular, the proposed a posteriori estimator of the defeaturing
error has an effectivity index independent of the number of features. Based on the
theoretical study of the estimator, we propose an adaptive geometric refinement
strategy. That is, starting from a fully defeatured geometry, we design an algorithm
able to determine at each iteration step which features need to be added to the
geometrical model to reduce the defeaturing error. These important features are
then added to the (partially) defeatured geometrical model at the next iteration,
until the solution attains a prescribed accuracy. Numerical experiments are finally
presented in complicated two- and three-dimensional geometries, demonstrating in
particular that the proposed adaptive procedure ensures the convergence of the
defeaturing error.4

Since almost all PDE solutions can only be calculated numerically, then numerical
approximation methods need to be integrated to the analysis of defeatured problems.
This is the scope of Part II of this thesis, in which we propose a numerical framework for
analysis-aware defeaturing. This part, which considers the Poisson equation as driving
problem, is structured as follows.

• In Chapter 5, we first present some fundamentals of the numerical approximation of
PDEs by the finite element method. This method is then applied to the defeaturing
framework, that is, the numerical approximation of the defeatured problem is
precisely stated. Subsequently, we present an adaptive finite element analysis-
aware defeaturing strategy, which combines the geometric refinement procedure of
Chapter 4 with a finite element mesh refinement algorithm. This adaptive strategy
is designed to be used with an immersed FEM, in which the mesh is not fitted
to the computational domain, nor in particular, to the features that are added
along the simulation. The adaptive process is driven by an a posteriori estimator
of the discrete defeaturing energy error. More precisely, the discrete defeaturing
error corresponds to the error between the exact solution defined in the exact
fully-featured geometry and the numerical approximation of the solution defined in
the defeatured geometry.5

3In accordance with the Wiley publishing agreement, this chapter is adapted from [Buffa et al.,
2022b]. The main scientific research as well as the textual elaboration of the publication was performed
by the author of this work.

4This chapter is adapted from [Antolín and Chanon, 2022]. The main scientific research as well as
the textual elaboration of the publication was performed by the author of this work.

5Part of this chapter is adapted from [Buffa et al., 2022a]. The main scientific research as well as the
textual elaboration of the publication was performed by the author of this work.
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• In the remaining part of the thesis, we will concentrate more specifically on IGA as
a particular and natural numerical method for the approximation of the defeatured
problem. Therefore, in Chapter 6, we give a short introduction to IGA by presenting
and reviewing the main properties of B-splines. Then, we review the construction
of (T)HB-splines as an extension of B-splines which can be used in an adaptive
framework, as they can be locally refined. Lastly, we discuss more advanced spline
technologies, in particular multipatch and trimmed B-spline geometries, which
allow for a numerical analysis on more complex spline domains.

• Before addressing the numerical analysis of defeaturing complex B-spline geometries,
we first develop an adaptive mesh refinement strategy on trimmed geometries, in
the context of (T)HB-spline based IGA. This is the content of Chapter 7. This step
is needed because in our framework, features are added by immersed quadrature,
i.e., without modifying the underlying mesh. And indeed, trimming consists exactly
in cutting away parts of a geometric domain without reconstructing a global
parametrization, i.e., without re-meshing the domain. It is a widely used operation
to create complex designs in CAD, and it generates meshes that are not fitted to
the described physical object. In this chapter, we derive an a posteriori residual
estimator of the energy norm of the numerical approximation error. The estimator
is proven to be reliable, independently of the number of hierarchical levels and
of the way the trimmed boundaries cut the underlying mesh. Lastly, numerical
experiments are presented to validate the presented theory, and to show that the
estimator’s effectivity index is independent of the size of the active part of the
trimmed mesh elements.6

• Subsequently, in Chapter 8, we study the combined geometric and mesh refine-
ment strategy of Chapter 5 in the particular case of (T)HB-spline based IGA in
(potentially trimmed multipatch) geometries. In this context, we specialize to
this setting the proposed a posteriori estimator defined in Chapter 5. Secondly,
the reliability of the estimator is proven for very general geometric configurations.
For the proof, we consider a given fixed iteration of the adaptive process, and a
hierarchical mesh which is fitted to the (partially) defeatured geometry at that
iteration. Thirdly, we discuss the generalization of the adaptive strategy and of the
proof of the estimator’s reliability in multipatch and trimmed – therefore unfitted –
domains. Finally, numerical experiments are performed to validate the presented
theory and to illustrate the proposed adaptive strategy.7

To close the dissertation, in Chapter 9, we draw some conclusions on the contributions
of this thesis, we highlight some limitations, and we discuss possible future research
directions.

6This chapter is adapted from the submitted paper [Buffa et al., 2021a]. The main scientific research
as well as the textual elaboration of the publication was performed by the author of this work.

7Part of this chapter is adapted from [Buffa et al., 2022a]. The main scientific research as well as the
textual elaboration of the publication was performed by the author of this work.
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1.4 Implementation aspects

For the implementation of numerical experiments, several libraries are used in this thesis.
They are listed in the following for the sake of completeness.

The methods described in this work, and all the presented numerical experiments except
the one of Section 4.6.2, have been implemented on top of GeoPDEs8 [Vázquez, 2016].
GeoPDEs is an open-source and free Octave/Matlab package for the resolution of
PDEs. It has been specifically designed for IGA, and it also integrates multipatch and
(T)HB-spline techniques.

Moreover, an in-house tool presented in [Antolín et al., 2019, 2022] has been used
and linked with GeoPDEs. It is used for the geometric description and for the local
meshing process required for the integration of trimmed geometries. This tool relies on
the open-source geometric modeling environment IRIT 9 and on the geometric kernel
OpenCASCADE10 [OpenCASCADE, 2018].

Finally, the numerical experiment of Section 4.6.2 has been implemented in Igatools
[Pauletti et al., 2015]. Igatools is a flexible and optimized C++ isogeometric library able to
compute fully immersed problems, from which the in-house trimming tool from [Antolín
et al., 2019, 2022] has been developed.

8http://rafavzqz.github.io/geopdes/
9https://www.cs.technion.ac.il/~irit/

10https://www.opencascade.com/
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2 Some fundamentals and
preliminaries
In this chapter, we introduce some basic definitions and notations that are used throughout
the thesis, while reviewing some fundamentals of functional analysis and of the study of
boundary value problems (BVPs). In Sections 2.1 and 2.2, we concentrate on Lebesgue
and Sobolev spaces on given domains of Rn, where n = 2 or n = 3. Trace spaces are
of particular importance in the analysis of defeaturing problems that will be developed
in the next chapters. Therefore, in Section 2.3, we present already-existing and new
results on trace spaces, which will be used in the sequel. Subsequently, in Section 2.4, we
lie the mathematical foundations that describe numerous physical phenomena in their
differential and variational form. In particular, we address the concept of existence and
uniqueness of the solution of the corresponding problem. Finally, we are interested in
the analysis of the effect of perturbations or simplifications of the problem, that is, in a
quantification of the error when an approximation of the BVP is solved. In Section 2.5,
we thus discuss error estimators that control the approximation error, together with
adaptive strategies designed to reduce this error.

The notation and derivation used in this chapter follow [Grisvard, 2011; Ern and Guer-
mond, 2021a,b], and the author’s contributions are extracted from [Buffa et al., 2022b,
2021a; Antolín and Chanon, 2022]. Moreover, we use the symbol . to mean any inequality
which does not depend on the size of the considered domains, but which can depend on
their shape. Note that this symbol will be precisely redefined at the beginning of each
chapter in which it is used, and we write A ' B whenever A . B and B . A.

2.1 Domain properties

Let us denote by n the space dimension with n = 2 or n = 3, and let us define the notion
of Lipschitz domain in Rn.

Definition 2.1.1. A domain is an open bounded subset of Rn. A domain D with
boundary ∂D is said to be Lipschitz if for every x ∈ ∂D, there exists a neighborhood
U(x) of x such that U(x) ∩ ∂D is the graph of a Lipschitz function.
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Except if otherwise specified, we also assume that domains are connected. Let Λ be a d-
dimensional subspace of Rn, d ∈ {n− 1,n}. If d = n, then |Λ| denotes the n-dimensional
Lebesgue measure of Λ, and if d = n − 1, then |Λ| denotes the (n − 1)-dimensional
Hausdorff measure of Λ. Moreover, we respectively denote Λ and int(Λ) the closure and
the interior of Λ. If Λ is connected and if Λ∗ is a non-necessarily connected subset of Λ,
we write hull(Λ∗) the convex hull of Λ∗. More precisely, this is the smallest geodesically
convex subset of Λ containing Λ∗. That is, given any two points in hull(Λ∗), there is a
unique minimizing geodesic contained within hull(Λ∗) that joins those two points. We
also denote by diam(Λ∗) the manifold diameter of hull(Λ∗) in Λ, i.e.,

diam(Λ∗) := max{ρ(x, y) : x, y ∈ hull(Λ∗)},

where ρ(x, y) is the infimum of lengths of continuous piecewise C1-paths between x and y
in Λ.

In this document, we will need isotropy and regularity assumptions on different pieces of
domain boundaries.

Definition 2.1.2. Let Λ be a d-dimensional subset of Rn, d ∈ {n− 1,n}. We say that
Λ is isotropic if

diam (Λ) . max
Λc∈conn(Λ)

(
diam(Λc)

)
,

and each connected component Λc ∈ conn(Λ) satisfies diam (Λc)d . |Λc|.

Note that if Λ is isotropic and if we let Λmax := arg max
Λc∈conn(Λ)

(
diam (Λc)

)
, then

diam (Λ)d . diam (Λmax)d . |Λmax| ≤ |Λ|.

Definition 2.1.3. Let Λ be an (n− 1)-dimensional subspace of Rn. We say that Λ is
regular if Λ is piecewise shape regular and composed of flat elements, that is, if there is
NΛ ∈ N such that for all k 6= `, k, ` = 1, . . . ,NΛ,

• Λ = int

NΛ⋃
k=1

Λk
,

• Λk ∩ Λ` = ∅,

• |Λ| .
∣∣∣Λk∣∣∣,

• Λk is flat, i.e. it is a straight line if n = 2 or a flat square or triangle if n = 3.

Remark 2.1.4. When used, the regularity condition defined in Definition 2.1.3 is taken
for the sake of simplicity, but it can be relaxed by considering Λ piecewise smooth and
shape regular instead.
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2.2 Functional spaces

In this section, all function spaces are considered over the field of real numbers. We
introduce in particular the definitions and notations of Lebesgue and Sobolev spaces that
will be used throughout the thesis. For a complete presentation, the interested reader is
referred to [Yosida, 1974; Brezis, 2011; Grisvard, 2011].

2.2.1 Lebesgue and Sobolev spaces

Let D be a domain of Rn. Let Lp(D) denote the standard Lebesgue spaces of exponent
p ∈ [1,∞], equipped with the norm ‖ · ‖Lp(D) defined as follows: for all v ∈ Lp(D),

‖v‖Lp(D) :=
(∫

D
|v|p dx

) 1
p

if p <∞,

‖v‖L∞(D) := inf{C ≥ 0 : |v(x)| ≤ C for almost every x ∈ D} if p =∞.

For every scalar-valued functional space presented in this chapter, the corresponding
space of vector-valued functions of dimension n is denoted in bold, and the corresponding
space of tensor-valued functions of dimension n×n is denoted in blackboard bold. That is,
for instance, we denote by Lp(D) := [Lp(D)]n and LLLp(D) := [Lp(D)]n×n for all p ∈ [1,∞],
and the corresponding norms are computed component-wise. To simplify the exposition,
the notation corresponding to every vector- or tensor-valued functional space and to
their corresponding norm is not detailed in the following, but it can be found in the list
of notation. Moreover, the results presented in this chapter are given for scalar-valued
functions, but the statements and their proofs can be straightforwardly generalized to
vector- or tensor-valued functional spaces.

Subsequently, let Hs(D) denote the standard Sobolev space of order s ∈ R, s ≥ 0,
equipped with the norm ‖ · ‖s,D defined as follows. Let α := (α1, . . . ,αn) ∈ Nn be a
multi-index for which we write |α| = ∑n

i=1 αi. If we let Dα be the partial derivative
operator (in the sense of distributions) defined by

Dα := ∂|α|

∂xα1 · · · ∂xαn
,

then from [Grisvard, 2011, Definition 1.3.2.1], for all v ∈ Hs(D),

‖v‖2s,D :=
∑
|α|≤s

‖Dαv‖2L2(D), if s ∈ N,

‖v‖2s,D := ‖v‖2bsc,D + |v|2θ,D, |v|2θ,D :=
∫
D

∫
D

(v(x)− v(y))2

|x− y|n+2θ dx dy, if s = bsc+ θ ≥ 0.

(2.1)

We note that L2(D) = H0(D), so that the norm in L2(D) is written ‖ · ‖0,D. The
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corresponding semi-norms | · |s,D in Hs(D) are defined by

|v|s,D :=

∑
|α|=s

‖Dαv‖2L2(D)

 1
2

, if s ∈ N,

|v|s,D := |v|θ,D, if s = bsc+ θ ≥ 0. (2.2)

Remark that for all v ∈ H1(D) and all v ∈H1(D), the gradient of v denoted ∇v belongs
to L2(D), the Jacobian matrix of v denoted ∇v belongs to LLL2(D), and

‖∇v‖0,D = |v|1,D and ‖∇v‖0,D = |v|1,D.

Moreover, let H−s(D) denote the dual space of Hs(D) equipped with the dual norm
‖ · ‖−s,D defined as follows: if 〈·, ·〉s represents the duality pairing between H−s(D) and
Hs(D), then for all v ∈ H−s(D),

‖v‖−s,D := sup
w∈Hs(D)
w 6=0

〈v,w〉s
‖w‖s,D

, (2.3)

The previously introduced definitions of Lebesgue and Sobolev spaces on domains can be
extended to manifolds which are (possibly part of) boundaries of Lipschitz domains. The
interested reader is referred to [Grisvard, 2011, Section 1.3.3].

2.2.2 Trace spaces

To be able to solve partial differential equation (PDEs), we need to deal with the
imposition of boundary conditions, that leads us to the notion of trace. The following
theorem is due to Gagliardo [1957].

Theorem 2.2.1 (see e.g., [Ern and Guermond, 2021a, Theorems 3.10 and 3.15]). Let D
be a Lipschitz domain of Rn, and let Λ ⊂ ∂D, |Λ| > 0. Then

• there exists a unique linear continuous map

trΛ : H1(D)→ H
1
2 (Λ)

called trace operator, such that for all v ∈ H1(D) ∩ C0(D), trΛ(v) = v|Λ;

• there exists a linear continuous map

RΛ : H
1
2 (Λ)→ H1(D)

called lifting operator, such that trΛ(RΛ(w)) = w for all w ∈ H 1
2 (Λ).

When no confusion is possible, we will write v instead of trΛ(v) by abuse of notation.
Let us now state in particular the following result on traces, called trace inequality.
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Lemma 2.2.2 (see e.g., [Grisvard, 2011, Theorem 1.5.1.10]). Let D ⊂ Rn be a Lipschitz
domain, and let us denote by hD := diam(D). Then for all v ∈ H1(D),

‖v‖0,∂D . h
− 1

2
D ‖v‖0,D + h

1
2
D ‖∇v‖0,D .

So let D be a Lipschitz domain of Rn, and let Λ ⊂ ∂D, |Λ| > 0. If w ∈ H 1
2 (Λ), then let

H1
w,Λ(D) :=

{
v ∈ H1(D) : trΛ(v) = w

}
.

Let us also introduce the following trace Sobolev space

H
1
2
00(Λ) :=

{
w ∈ L2(Λ) : w? ∈ H

1
2 (∂D)

}
,

where w? is the extension of w by 0 on ∂D. Its norm and semi-norm are respectively
denoted ‖ · ‖

H
1/2
00 (Λ) and | · |

H
1/2
00 (Λ), and they are defined by:

‖w‖2
H

1/2
00 (Λ)

:= ‖w‖21
2 ,Λ + |w|2

H
1/2
00 (Λ)

and |w|2
H

1/2
00 (Λ)

:=
∫

Λ

∫
∂D\Λ

w2(s)
|s− t|n

dtds.

We recall from [Grisvard, 2011, Lemma 1.3.2.6], that for all w ∈ H
1
2
00 (Λ),

|w|2
H

1/2
00 (Λ)

.
∫

Λ

w2(s)
dist (s, ∂Λ) ds . |w|2

H
1/2
00 (Λ)

.

Moreover, from [Grisvard, 2011, Equation (1.3.2.7)],

‖w‖
H

1/2
00 (Λ) = ‖w?‖ 1

2 ,∂D .

In particular, we have
|w|21

2 ,Λ + |w|2
H

1/2
00 (Λ)

= |w?|21
2 ,∂D .

When Λ is not a connected set, then we define

H
1
2
00(Λ) :=

{
w ∈ L2(Λ) : w|Λc ∈ H

1
2
00(Λc), for all Λc ∈ conn(Λ)

}
,

and we equip this space with the norm

‖ · ‖
H

1/2
00 (Λ) :=

 ∑
Λc∈conn(Λ)

‖ · ‖2
H

1/2
00 (Λc)

 1
2

.

Furthermore, we let H−
1
2

00 (Λ) be the dual space of H
1
2
00(Λ), equipped with the dual

norm ‖ · ‖
H
−1/2
00 (Λ) defined as in (2.3).
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2.3 Some results on Sobolev and trace spaces

In this section, we state results that are used throughout the thesis. For further details,
for more general cases and for the missing proofs, we refer the interested reader to [Lions
and Magenes, 1973; Adams, 1975].

2.3.1 Sobolev embeddings

The Sobolev embedding theorem establishes the relationship among Sobolev spaces,
Lebesgue spaces, and spaces of continuous functions. It reads as follows.

Theorem 2.3.1 (see e.g., [Ern and Guermond, 2021a, Theorem 2.31]). Let D ⊂ Rn be
a Lipschitz domain. Then the following continuous embeddings hold:

• If 0 ≤ s < n

2 , then H
s(D) ↪→ Lp

∗(D) for p∗ = 2n
n− 2s .

• If s = n

2 , then H
s(D) ↪→ Lq(D) for any q ∈ R such that 2 ≤ q <∞.

• If s > n

2 , then H
s(D) ↪→ C0(D).

These embeddings also hold if we replace D by ∂D, and n by n− 1.

In particular, when s = n

2 in Theorem 2.3.1, then Hs(D) can be continuously embedded
in Lq(D) for an arbitrarily large q different from infinity. This gives us the intuition that
the embedding continuity constant might increase without bound with respect to q. In
the following two lemmas, we formalize this result in the reference domain (0, 2π)n.

Lemma 2.3.2. For all q ∈ [2,∞) and all v ∈ H 1
2 (0, 2π),

‖v‖Lq(0,2π) ≤ c
√
q‖v‖ 1

2 ,(0,2π),

where c is a constant independent of q.

Proof. See [Ben Belgacem et al., 2001, Lemma 5.1]. Note that the proof is very similar
to the one given for Lemma 2.3.3 below.

Lemma 2.3.3. For all q ∈ [2,∞) and all v ∈ H1
(
(0, 2π)2

)
,

‖v‖Lq((0,2π)2) ≤ c
√
q‖v‖1,(0,2π)2 ,

where c is a constant independent of q.

18



2.3. Some results on Sobolev and trace spaces

Proof. The proof follows [Ben Belgacem et al., 2001, Lemma 5.1], but in the two-
dimensional case. In order to use the Fourier decomposition, consider the Hilbert
basis of L2

(
(0, 2π)2

)
defined by ϕk(x) := ϕk1(x1)ϕk2(x2) for all k = (k1, k2) ∈ N2,

x = (x1,x2) ∈ (0, 2π)2, where for i = 1, 2, ϕ0(xi) = 1√
2π and ϕk(xi) = 1√

π
cos(kxi),

k ∈ N \ {0}. Let v ∈ H1
(
(0, 2π)2

)
be decomposed as v =

∑
k∈N2

vkϕk. Then

‖v‖1,(0,2π)2 =

 ∑
k∈N2

(1 + k2
1 + k2

2)v2
k

 1
2

. (2.4)

Now, for every q ∈ [2,∞), let q′ ∈ (1, 2] such that 1
q

+ 1
q′

= 1. Then by the Hausdorff-
Young inequality, there exists a constant C independent of q such that

‖v‖Lq((0,2π)2) ≤ C

∑
k∈N2

|vk|q
′

 1
q′

= C

∑
k∈N2

(
1 + k2

1 + k2
2
)− q′2 (1 + k2

1 + k2
2
) q′

2 |vk|q
′

 1
q′

.

Thus if we let r ∈ (2,∞] such that 1
r

+ q′

2 = 1, by Hölder inequality and using (2.4),

‖v‖Lq((0,2π)2) ≤ C

 ∑
k∈N2

(
1 + k2

1 + k2
2
)− q′r2  1

q′r
 ∑

k∈N2

(
1 + k2

1 + k2
2
)
v2

k

 1
2

= C

 ∑
k∈N2

(
1 + k2

1 + k2
2
)− q

q−2


q−2
2q

‖v‖1,(0,2π)2 .

One can conclude the proof by observing that the Riemann serial is bounded by √q.

2.3.2 Poincaré inequalities

In this section, let D be a Lipschitz domain, and let Λ ⊂ ∂D such that |Λ| > 0. Let us
first concentrate on the standard Poincaré inequality, which requires the trace of the
considered function to vanish on a part of the domain boundary.

Lemma 2.3.4 (Poincaré inequality, see e.g. [Ern and Guermond, 2021a, Lemma 3.30]).
Let hD := diam(D), and assume that |Λ|

1
n−1 ' hD. Then for all v ∈ H1

0,Λ(D),

‖v‖0,D . hD‖∇v‖0,D,

and thus
‖v‖1,D =

(
‖∇v‖20,D + ‖v‖20,D

) 1
2 .

(
1 + h2

D

) 1
2 ‖∇v‖0,D.
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In particular, thanks to Poincaré inequality, the semi-norm | · |1,D = ‖∇ · ‖0,D is a norm
in H1

0,Λ(D), equivalent to the standard H1-norm ‖ · ‖1,D.

Before stating the Poincaré-Friedrichs inequality, let us introduce the following notation.
For all function v whose trace is integrable on Λ, we define

vΛ := 1
|Λ|

∫
Λ

trΛ(v) ds (2.5)

as the average of the trace of v on Λ. Similarly, for all integrable function w on D, wD

denotes the average of w in D.

Lemma 2.3.5 (Poincaré-Friedrichs inequality, see e.g., [Ern and Guermond, 2021a,
Lemma 3.30]). Let hD := diam(D), and assume that |Λ|

1
n−1 ' hD. Then for all func-

tions v ∈ H1(D), ∥∥∥v − vΛ
∥∥∥

0,D
. hD‖∇v‖0,D.

In the following lemmas, we state and prove similar inequalities but on trace spaces and
on their dual, beginning from the Poincaré inequality on traces.

Lemma 2.3.6. Assume that Λ is isotropic according to Definition 2.1.2, and not neces-
sarily connected. Then for all v ∈ H

1
2
00(Λ),

‖v‖0,Λ . |Λ|
1

2(n−1) ‖v‖
H

1/2
00 (Λ).

Proof. Let v ∈ H
1
2
00(Λ), and recall that Λ ⊂ ∂D for some Lipschitz domain D ⊂ Rn.

Without loss of generality, we suppose that |∂D| = 1. Then, let us first suppose that Λ
is connected. So if we let v? ∈ H 1

2 (∂D) be the extension of v by 0, using [Acosta and
Borthagaray, 2017, Proposition 2.4] and the isotropy of Λ,

‖v‖20,Λ . |Λ|
1

n−1 |v?|21
2 ,∂D ≤ |Λ|

1
n−1 ‖v‖2

H
1/2
00 (Λ)

. (2.6)

Now, if Λ is not connected, then dist(s, ∂Λc) = dist(s, ∂Λ) for all Λc ∈ conn(Λ) and for
all s ∈ Λc. Thus∑

Λc∈conn(Λ)

∥∥∥v|Λc∥∥∥2

H
1/2
00 (Λc)

=
∑

Λc∈conn(Λ)

(∥∥∥v|Λc∥∥∥2
1
2 ,Λc

+
∣∣∣v|Λc∣∣∣2H1/2

00 (Λc)

)

. ‖v‖21
2 ,Λ +

∑
Λc∈conn(Λ)

∫
Λc

v2(s)
dist(s, ∂Λc)

ds

= ‖v‖21
2 ,Λ +

∫
Λ

v2(s)
dist(s, ∂Λ) ds = ‖v‖2

H
1/2
00 (Λ)

.

Therefore, from (2.6),

‖v‖20,Λ =
∑

Λc∈conn(Λ)
‖v‖20,Λc .

∑
Λc∈conn(Λ)

|Λc|
1

n−1 ‖v‖2
H

1/2
00 (Λc)

. |Λ|
1

n−1 ‖v‖2
H

1/2
00 (Λ)

.
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Now, let us state and prove the Poincaré inequality on dual trace spaces.
Lemma 2.3.7. Assume that Λ is isotropic according to Definition 2.1.2. Then for
all v ∈ L2(Λ),

‖v‖
H
−1/2
00 (Λ) . |Λ|

1
2(n−1) ‖v‖0,Λ.

Proof. Let 〈·, ·〉 denote the duality pairing between H
1
2
00(Λ) and H

− 1
2

00 (Λ). Then by
Lemma 2.3.6, we obtain

‖v‖
H
−1/2
00 (Λ) = sup

z∈H1/2
00 (Λ)
z 6=0

〈v, z〉
‖z‖

H
1/2
00 (Λ)

≤ sup
z∈H1/2

00 (Λ)
z 6=0

‖v‖0,Λ ‖z‖0,Λ
‖z‖

H
1/2
00 (Λ)

. sup
z∈H1/2

00 (Λ)
z 6=0

‖v‖0,Λ |Λ|
1

2(n−1) ‖z‖
H

1/2
00 (Λ)

‖z‖
H

1/2
00 (Λ)

= |Λ|
1

2(n−1) ‖v‖0,Λ.

Subsequently, let us study the Poincaré-Friedrichs inequality on trace spaces.
Lemma 2.3.8. Assume that Λ is isotropic according to Definition 2.1.2. Then for
all v ∈ H 1

2 (Λ), ∥∥∥v − vΛ
∥∥∥

0,Λ
. |Λ|

1
2(n−1) |v| 1

2 ,Λ.

Proof. Let v ∈ H 1
2 (Λ). Since Λ is an (n−1)-dimensional subspace of Rn, then from (2.1),

|v|21
2 ,Λ =

∫
Λ

∫
Λ

(v(s)− v(t))2

|s− t|n
ds dt.

Moreover, since Λ is isotropic, then diam(Λ) . |Λ|
1

n−1 . Therefore,

∥∥∥v − vΛ
∥∥∥2

0,Λ
=
∫

Λ

(
v(s)− 1

|Λ|

∫
Λ
v(t) dt

)2
ds

= 1
|Λ|2

∫
Λ

[∫
Λ

(
v(s)− v(t)

)
dt
]2

ds

≤ 1
|Λ|2

∫
Λ

[
|Λ|
∫

Λ

(
v(s)− v(t)

)2
dt
]

ds

= 1
|Λ|

∫
Λ

∫
Λ

(v(s)− v(t))2

|s− t|n
|s− t|n dt ds

≤ diam(Λ)n
|Λ|

∫
Λ

∫
Λ

(v(s)− v(t))2

|s− t|n
dtds

. |Λ|
1

n−1 |v|21
2 ,Λ.

Finally, the following result also holds true:
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Lemma 2.3.9. Assume that 1 ' |∂D| � |Λ|. For all v ∈ H 1
2 (∂D), if we define η ∈ R

as the unique solution of η = − log(η),

‖v‖0,Λ . cΛ|Λ|
1

2(n−1) ‖v‖ 1
2 ,∂D, where cΛ :=

max (− log (|Λ|) , η)
1
2 if n = 2,

1 if n = 3.

Proof. Let v ∈ H 1
2 (∂D). By Sobolev embedding, H 1

2 (∂D) can be continuously embedded
in L2p(∂D) for every 1 ≤ p <∞ if n = 2, or for every 1 ≤ p ≤ 2 if n = 3. Therefore, by
Hölder inequality,

‖v‖20,Λ =
∑

Λc∈conn(Λ)
‖v‖20,Λc ≤

∑
Λc∈conn(Λ)

|Λc|1−
1
p ‖v‖2L2p(Λc) . |Λ|

1− 1
p ‖v‖2L2p(∂D). (2.7)

If n = 3, by taking p = 2 in (2.7) and by Sobolev embedding,

‖v‖20,Λ . |Λ|
1
2 ‖v‖21

2 ,∂D = c2
Λ|Λ|

1
n−1 ‖v‖21

2 ,∂D.

Let us now consider the case n = 2. Thanks to Lemma 2.3.2, for all q ∈ [2,∞) and all
v ∈ H

1
2 (0, 2π),

‖v‖Lq(0,2π) ≤ c
√
q‖v‖ 1

2 ,(0,2π),

where c is a constant independent of q. Then by definition of the Lq-norm and the H 1
2 -

norm on a manifold (see [Grisvard, 2011, Sec. 1.3.3]), we obtain ‖v‖L2p(∂D) ≤ c̃
√
p‖v‖ 1

2 ,∂D,
where c̃ is a constant independent of p. So by taking p = max (− log (|Λ|) , η) = c2

Λ in (2.7),
then |Λ|−

1
p ≤ e and thus

‖v‖20,Λ . |Λ|1−
1
p p ‖v‖21

2 ,∂D . |Λ|c2
Λ‖v‖21

2 ,∂D = c2
Λ|Λ|

1
n−1 ‖v‖21

2 ,∂D.

2.3.3 Inverse inequalities

Before stating inverse inequalities, let us introduce some polynomial spaces. To do so,
suppose that {Λk}NΛ

k=1 is a partition of Λ such that each Λk is a flat element, i.e., a
straight line if n = 2 or a flat square or triangle if n = 3. Then for m ∈ N, we let Qm(Λ)
be the set of polynomials on Λ of degree at most m, and

Qpw
m,0(Λ) :=

{
φ : Λ→ R : φ|∂Λ ≡ 0,φ|Λk ∈ Qm(Λk) for all k = 1, . . . ,NΛ

}
.

Let us now state an inverse inequality on trace spaces which will be used in the sequel.

Lemma 2.3.10. Assume that Λ is isotropic and regular according to Definitions 2.1.2
and 2.1.3, and let m ∈ N. Then for all φ ∈ Qpw

m,0(Λ),

‖φ‖0,Λ . |Λ|−
1

2(n−1) ‖φ‖
H
−1/2
00 (Λ),

where the hidden constant increases with m.
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Proof. For all ψ ∈ Qpw
m,0(Λ) ⊂ H1

0 (Λ), the following inverse estimate is well known (see
e.g., [Ern and Guermond, 2021a, Lemma 12.1]): with the notation of Definition 2.1.3, for
all k = 1, . . . ,NΛ, ∣∣∣ψ|Λk ∣∣∣1,Λk

.
∣∣∣Λk∣∣∣− 1

n−1
∥∥∥ψ|Λk∥∥∥0,Λk

,

and the hidden constant increases with m. Therefore, since Λ is isotropic and regular,
then

|ψ|1,Λ . max
k=1,...,NΛ

(∣∣∣Λk∣∣∣− 1
n−1
)
‖ψ‖0,Λ . |Λ|−

1
n−1 ‖ψ‖0,Λ .

Moreover, from [Lions and Magenes, 1973, Theorem 11.7], we know that the interpolation
space [

H1
0 (Λ) ,L2 (Λ)

]
1
2

= H
1
2
00 (Λ) .

Therefore, from [Lions and Magenes, 1973, Proposition 2.3], for all ψ ∈ Qpw
m,0(Λ),

‖ψ‖
H

1/2
00 (Λ) . |ψ|

1
2
1,Λ ‖ψ‖

1
2
0,Λ . |Λ|−

1
2(n−1) ‖ψ‖0,Λ. (2.8)

Consequently, for all φ ∈ Qpw
m,0(Λ) ⊂ H−

1
2

00 (Λ), since Qpw
m,0(Λ) ⊂ H

1
2
00(Λ),

‖φ‖0,Λ =

∫
Λ
φ2 ds

‖φ‖0,Λ
≤ sup

ψ∈Qpw
m,0(Λ)
ψ 6=0

∫
Λ
φψ ds

‖ψ‖0,Λ
. |Λ|−

1
2(n−1) sup

ψ∈Qpw
m,0(Λ)
ψ 6=0

∫
Λ
φψ ds

‖ψ‖
H

1/2
00 (Λ)

≤ |Λ|−
1

2(n−1) sup
v∈H1/2

00 (Λ)
v 6=0

∫
Λ
φv ds

‖v‖
H

1/2
00 (Λ)

= |Λ|−
1

2(n−1) ‖φ‖
H
−1/2
00 (Λ). (2.9)

For the following lemmas, let D ⊂ Rn be a Lipschitz domain, J ∈ N, and suppose that

∂D =
J+1⋃
j=1

Λj

with Λi ∩ Λj = ∅ for all i, j = 1, . . . , J + 1, i 6= j. Moreover, let

Λ = int

 J⋃
j=1

Λj

 .

Then, consider the functional space

H :=
{
v ∈ H

1
2
00(Λ) : v|Λj ∈ H

1
2
00(Λj),∀j = 1, . . . , J

}
⊂ H

1
2
00(Λ)
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equipped with the broken norm

‖ · ‖H :=

 J∑
j=1

∥∥∥ · |Λj∥∥∥2

H
1
2
00(Λj)

 1
2

.

Finally, let H∗ be the dual space of H, equipped with the dual norm ‖ · ‖H∗ . Before
stating and proving an inverse inequality on H, let us first study the relation between
the norm on H

1
2
00(Λ) and the norm on H.

Lemma 2.3.11. For all v ∈ H,

‖v‖
H

1/2
00 (Λ) ≤

√
J‖v‖H ,

and for all w ∈ H−
1
2

00 (Λ),
‖w‖H∗ ≤

√
J‖w‖

H
−1/2
00 (Λ).

Proof. Let v ∈ H ⊂ H
1
2
00(Λ), and let v|?Λj be the extension of v|Λj by 0 on ∂D. Then by

triangular inequality,

‖v‖
H

1/2
00 (Λ) =

∥∥∥∥∥∥
J∑
j=1

v|?Λj

∥∥∥∥∥∥
H

1/2
00 (Λ)

≤
J∑
j=1

∥∥∥v|?Λj∥∥∥H1/2
00 (Λ)

=
J∑
j=1

∥∥∥v|?Λj∥∥∥ 1
2 ,∂D

=
J∑
j=1

∥∥∥v|?Λj∥∥∥H1/2
00 (Λj)

≤
√
J‖v‖H . (2.10)

Moreover, for all w ∈ H−
1
2

00 (Λ) ⊂ H∗, using (2.10),

‖w‖H∗ = sup
v∈H
v 6=0

∫
Λ
wv ds

‖v‖H
≤
√
J sup
v∈H
v 6=0

∫
Λ
wv ds

‖v‖
H

1/2
00 (Λ)

≤
√
J sup
v∈H

1
2
00(Λ)

v 6=0

∫
Λ
wv ds

‖v‖
H

1/2
00 (Λ)

=
√
J‖w‖

H
−1/2
00 (Λ).

Let us now state and demonstrate an inverse inequality on H.

Lemma 2.3.12. For all j = 1, . . . , J , assume that |Λj | ' |Λ|, and suppose that Λj is
isotropic and regular according to Definitions 2.1.2 and 2.1.3. If we let m ∈ N, for all
piecewise polynomial φ ∈ Q0

m where

Q0
m :=

{
ψ ∈ Qpw

m,0(Λ) : ψ|Λj ∈ Qpw
m,0(Λj),∀j = 1, . . . , J

}
⊂ H,
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then
‖φ‖0,Λ . |Λ|−

1
2(n−1) ‖φ‖H∗ ,

where the hidden constant increases with m.

Proof. For all ψ ∈ Q0
m and all j = 1, . . . , J , ψ|Λj ∈ Qpw

m,0(Λj), and thus since Λj is regular,
using (2.8), ∥∥∥ψ|Λj∥∥∥H1/2

00 (Λj)
. |Λj |−

1
2(n−1)

∥∥∥ψ|Λj∥∥∥0,Λj
. |Λ|−

1
2(n−1)

∥∥∥ψ|Λj∥∥∥0,Λj
.

Therefore,

‖ψ‖H =

 J∑
j=1

∥∥∥ · |Λj∥∥∥2

H
1
2
00(Λj)

 1
2

. |Λ|−
1

2(n−1) ‖ψ‖0,Λ.

Consequently, for all φ ∈ Q0
m ⊂ H, following the same steps as for (2.9) in the proof of

Lemma 2.3.10, replacing H−
1
2

00 (Λ) by H∗, H
1
2
00(Λ) by H, and Qpw

m,0(Λ) by Q0
m, then

‖φ‖0,Λ . |Λ|−
1

2(n−1) ‖φ‖H∗ .

2.4 Boundary value problems

In this section, we present the abstract framework that constitutes the mathematical
foundations upon which variational numerical methods have been successfully devised to
solve PDEs. Then, we summarize some classical results of functional analysis that show
the existence and uniqueness of a BVP solution.

Let D denote a connected Lipschitz domain of Rn, and consider a BVP of the formAus = f in D

Kus = κ on ∂D,
(2.11)

where us is the unknown solution, f and κ are given functions, A is a linear differential
operator, and K is a boundary operator corresponding to A.

Let us now consider the variational (or weak) formulation of problem (2.11) that we
formally write as follows:

find us ∈ V such that
a(us, v) = f(v), ∀v ∈ V , (2.12)

where V is a Hilbert space, a(·, ·) is a bilinear form on V × V corresponding to A, and
f(·) is a linear functional on V that takes into account the right hand side f . Non-
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homogeneous boundary conditions contained in K can either be imposed directly in the
definition of V (essential boundary conditions), or implicitly in the definition of a(·, ·)
and f(·) (natural boundary conditions).

Let us now introduce the notion of well-posedness of problem (2.12), originally defined
by Hadamard [1932]. To do so, let us first denote V ∗ the dual space of V , that we equip
with the dual norm ‖ · ‖V ∗ .

Definition 2.4.1 (see e.g., [Ern and Guermond, 2021b, Definition 25.1]). Problem (2.12)
is well-posed if it admits a unique solution for every f ∈ V ∗, and if there exists a constant
c > 0, uniform with respect to f, such that the following a priori estimate holds true:

‖us‖V ≤ c‖f‖V ∗ . (2.13)

Inequality (2.13) states that the solution us continuously depends on the problem data,
or more precisely on the right hand side f. Let us now state a fundamental theorem
which characterizes the well-posedness of problem (2.12).

Theorem 2.4.2 (Banach-Nečas-Babuška theorem, see e.g., [Ern and Guermond, 2021b,
Theorem 25.15]). Let V be a (real) Hilbert spaces with norm ‖ · ‖V , and let V ∗ be the
dual space of V equipped with the dual norm ‖ · ‖V ∗ . Moreover, assume that the bilinear
form a(·, ·) : V × V → R is continuous, i.e., there exists a constant C > 0 such that

|a(w, v)| ≤ C‖w‖V ‖v‖V , ∀w, v ∈ V . (2.14)

If there is a constant a > 0 such that a(·, ·) satisfies

sup
w∈V
w 6=0

a(w, v) > 0, ∀v ∈ V , v 6= 0, (2.15)

sup
v∈V
v 6=0

a(w, v)
‖v‖V

≥ a‖w‖V , ∀w ∈ V , (2.16)

then for any linear continuous functional f(·) ∈ V ∗, there exists a unique solution us ∈ V
to (2.12) which satisfies

‖us‖V ≤
1
a
‖f‖V ∗ . (2.17)

Remark 2.4.3. Condition (2.16) is equivalent to the following condition,

inf
w∈V
w 6=0

sup
v∈V
v 6=0

a(w, v)
‖w‖V ‖v‖V

=: a > 0, (2.18)

also known as inf-sup condition.
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Let us now discuss two special cases of Banach-Nečas-Babuška Theorem 2.4.2.

• If the bilinear form a(·, ·) is continuous and coercive, i.e., if it satisfies (2.14) and

∃a > 0 : a(v, v) ≥ a‖v‖2V , ∀v ∈ V , (2.19)

then conditions (2.15) and (2.16) are satisfied, and problem (2.12) is well-posed.
This result is known as Lax-Milgram theorem, see e.g., [Ern and Guermond, 2021b,
Lemma 25.2 and Remark 25.6]. In this case, we call energy norm the norm induced
by a(·, ·), that is, for all v ∈ V , the energy norm of v in D is given by

|||v|||D :=
(
a(v, v)

) 1
2 . (2.20)

Thanks to the continuity and the coercivity of a(·, ·), the energy norm |||·|||D is
equivalent to the norm ‖ · ‖V of V .

• Consider now the case in which A is a saddle point problem. Then the functional
space V can be decomposed as V = V × Q where V and Q are Hilbert spaces,
the unknown us and the test functions v can be decomposed as us = (us, ps) and
v = (v, q) with us, v ∈ V and ps, q ∈ Q, and problem (2.12) can be re-expressed as
follows:

find (us, ps) ∈ V ×Q such thata(us, v) + b(v, ps) = f(v), ∀v ∈ V ,
b(us, q) = fc(q), ∀q ∈ Q,

(2.21)

where a(·, ·) is a bilinear form on V × V , b(·, ·) is a bilinear form on V × Q, f(·)
is a linear functional on V , and fc(·) is a linear functional on Q. To lighten the
notation, let us drop the underlines without loss of clarity. Let

KerV (b) := {v ∈ V : b(v, q) = 0,∀q ∈ Q} ,

and assume that the bilinear forms a(·, ·) and b(·, ·) appearing in (2.21) are contin-
uous, i.e., they satisfy (2.14). Then conditions (2.15) and (2.16) of Banach-Nečas-
Babuška Theorem 2.4.2 is equivalent to the following conditions:

inf
w∈KerV (b)

w 6=0

sup
v∈KerV (b)

v 6=0

a(w, v)
‖w‖V ‖v‖V

=: a > 0, (2.22)

sup
w∈KerV (b)

w 6=0

a(w, v) > 0, ∀v ∈ KerV (b), v 6= 0, (2.23)

inf
q∈Q
q 6=0

sup
v∈V
v 6=0

b(v, q)
‖v‖V ‖q‖Q

=: b > 0. (2.24)

This result is known under the name of Ladyzhenskaya-Babuška-Brezzi (LBB)
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theorem, see e.g., [Ern and Guermond, 2021b, Theorem 49.13]. Note finally that if
a(·, ·) is coercive on KerV (b), then conditions (2.22) and (2.23) are satisfied. The
last condition (2.24) is also often referred to as inf-sup condition, or LBB-condition.

For further details and rigorous proofs, the interested reader is referred to [Ciarlet, 2002;
Brenner and Scott, 2008; Quarteroni and Valli, 2008]. Let us finally present the example
of Poisson’s problem that will be extensively used in this thesis.

Example 2.4.4 (Poisson’s problem). Let us consider the Poisson problem defined in a
Lipschitz domain D ⊂ Rn by decomposing ∂D = ΛD ∪ ΛN with ΛD ∩ ΛN = ∅, ΛD 6= ∅.
That is, if we let uD ∈ H

1
2 (ΛD), uN ∈ L2(ΛN ) and f ∈ L2(D), the considered problem

reads:

find us : D→ R, solution of
−∆us = f in D

us = uD on ΛD
∂us
∂n = uN on ΛN .

(2.25)

Let us formally multiply the first equation of (2.25) by a test function v, and let us
integrate the resulting equation by parts, using the boundary conditions given in (2.25).
The weak formulation of the Poisson problem then reads:

find us ∈ H1
uD,ΛD(D) such that

a(us, v) = f(v), ∀v ∈ H1
0,ΛD(D), (2.26)

where a(·, ·) and f(·) are defined for all w, v ∈ H1(D) by

a(w, v) :=
∫
D
∇w · ∇v dx,

f(v) :=
∫
D
fv dx+

∫
ΛN

uNv ds.

This problem can actually be easily transformed to address the imbalance of the spaces
of test and admissible functions, i.e., H1

0,ΛD(D) and H1
uD,ΛD(D) respectively. To do so,

let zs := RΛD(uD) be a lifting of the Dirichlet data uD given by Theorem 2.2.1, and for
all test functions v ∈ V := H1

0,ΛD(D), let

fzs(v) :=
∫
D
fv dx+

∫
ΛN

uNv ds− a(zs, v).

Then solving the following problem:

find ůs ∈ V such that
a(̊us, v) = fzs(v), ∀v ∈ V (2.27)
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is equivalent to solving (2.26), since solution us of (2.26) can then be obtained as

us = ůs + zs.

If we equip V with the norm ‖∇ · ‖0,D, it is easy to show that a(·, ·) is a continuous and
coercive bilinear form on V × V , and fzs(·) is a linear continuous functional. Therefore,
thanks to Lax Milgram theorem, problem (2.26) is well-posed, and the following stability
estimate is satisfied:

‖∇us‖0,D ≤
1
a

∥∥∥fzs∥∥∥
V ∗

,

where a is the coercivity constant of a(·, ·), i.e. a = 1 for problem (2.26).

2.5 Error estimation

It is in general very hard to exactly solve a BVP. Therefore, many methods have been
developed to solve an approximate problem instead, whose solution gives a controlled
approximation of the exact unknown. When a BVP is approximated, may it come
from a geometrical or a numerical approximation of the PDE at hand, it is indeed
important to be able to control the induced error. To discuss this aspect, let us ∈ V
be the exact solution of a PDE expressed in the variational form (2.12), and assume
that problem (2.12) is well-posed as it verifies the conditions of Lax-Milgram theorem
discussed in the previous section. Then, let Us be the considered approximation of us.

Remark 2.5.1. In the next chapters of Part I of this thesis, Us will be the solution ud
(or ud in the vectorial case) of the defeatured problem precisely defined in Chapter 3
(respectively, Chapter 4) . In the finite element literature, Us often denotes the numerical
approximation uhs of us; this will be the case in Part II of this thesis, and in particular in
Chapter 7. In Chapter 8, Us will be a combination of both, i.e., it will be the numerical
approximation of the defeatured problem solution, denoted uhd.

2.5.1 A priori estimation

To begin with, one may want to estimate the relative error between us and Us, in order
to quantify the magnitude of the approximation error. This is the realm of a priori error
bounds that are expressed in the form

|||us − Us||| ≤ ~G(us), (2.28)

where ~ depends on the approximation method parameters, G(·) is a norm (or more
generally a functional) that depends on the smoothness of the exact solution us, and |||·|||
is the functional norm in which the error is measured.
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In the context of numerical approximation, there exist rigorous a priori error estimates
for the finite element method. The most relevant results for this thesis will be given in
Part II, where the numerical approximation of the defeaturing problem is studied. For
more details, the interested reader is referred to [Ciarlet, 2002; Brenner and Scott, 2008].
In the context of defeaturing instead, the a priori analysis is still an open problem that
is beyond the scope of this work.

2.5.2 A posteriori estimation

Although a priori analysis constitutes the mathematical foundations of many approxima-
tion methods such as the finite element method, it cannot be used in practical applications
since the exact unknown solution us appears on both side of the inequality (2.28). Finding
a computable error bound which does not require the knowledge of the exact solution falls
into the realm of a posteriori error estimation. More precisely, the aim of a posteriori
estimation is to find a functional E (Us) which does not depend on us, such that

|||us − Us||| ≤ Cup E (Us) (reliability), (2.29)
Clo E (Us) ≤ |||us − Us||| (efficiency), (2.30)

where Cup and Clo are non-negative constants independent of us and Us, and of the
approximation parameters (e.g., underlying model precision, size of geometrical features,
mesh size, etc.). This question is crucial in engineering applications, since for an
approximation of the problem at hand, one needs to know the level of accuracy of
the corresponding analysis. A posteriori bounds of the error are mostly used to steer
adaptive strategies that allow for a reliable and efficient fine tuning of the approximation
parameters.

In this work, we concentrate on explicit residual-type a posteriori error estimators with
|||·||| := |||·|||D, where |||·|||D is the energy norm (2.20) of the problem at hand. The starting
point to derive this family of estimators is to find a representation of the error

e := us − Us,

using the weak formulation (2.12). That is, using (2.12) and by linearity of the bilinear
form a(·, ·),

a(e, v) = a(us, v)− a(Us, v) = f(v)− a(Us, v) =: RUs(v), for all v ∈ V , (2.31)

where RUs(·) is the residual of Us in a weak sense. The quantity RUs(·) does not
explicitly depend on the exact solution us; it only depends on us through the variational
formulation (2.12) of the problem at hand.
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By performing some mathematical steps, we first aim at finding an estimate

RUs(v) ≤ Cup E (Us)|||v|||D, ∀v ∈ V , (2.32)

where E (Us) only contains computable quantities. Common ingredients for this step
are integration by parts and Poincaré inequalities, see Section 2.3.2. Combining (2.31)
and (2.32) and choosing v = e, we obtain

|||e|||2D = a(e, e) = RUs(e) ≤ Cup E (Us)|||e|||D. (2.33)

Thus after simplifying (2.33) on both sides, the reliability estimate (2.29) can be demon-
strated.

Subsequently, to demonstrate the efficiency estimate (2.30), one first needs to find the
correct dual space W ∗ in which lies the residual RUs(·), where W is a subset of V that
can be continuously embedded in it, i.e., W ↪→ V . Then, one needs to derive an estimate

E (Us) ≤ C1‖RUs‖W ∗ , (2.34)

where ‖·‖W ∗ is the dual norm inW ∗ and C1 is a non-negative constant independent of the
approximation parameters. Common ingredients for this step are inverse inequalities, see
Section 2.3.3. This is sufficient to prove the efficiency estimate (2.30): indeed, using (2.31),
using the continuity of a(·, ·) from (2.14), and since the energy norm on V is equivalent
to the norm ‖ · ‖V , then if ‖ · ‖W is the considered norm of W ,

E (Us) ≤ C1‖RUs‖W ∗ = C1 sup
w∈W
w 6=0

RUs(w)
‖w‖W

≤ C1C2 sup
w∈W
w 6=0

a(e,w)
‖w‖V

≤ C1C2 sup
v∈V
v 6=0

a(e, v)
‖v‖V

≤ CC1C2 sup
v∈V
v 6=0

‖e‖V ‖v‖V
‖v‖V

= CC1C2‖e‖V ≤ C−1
lo |||e|||D,

where C2 is a non-negative constant independent of the approximation parameters, C is
the continuity constant appearing in (2.14), and Clo is a constant that only depends on
C, C1, C2, and on the constant of equivalence between ‖ · ‖V and |||·|||D.

Lastly, we introduce the so-called effectivity index

ηeff := E (Us)
|||e|||D

, (2.35)

which measures how well the estimator approximates the true error, where the optimal
value of ηeff is one.

We remark that (2.29) and (2.30) provide a computable bound on the error, except for
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the presence of the constants Cup and Clo. In the literature, some effort has been put
into finding a way to estimate these constants, we refer for instance to [Johnson and
Hansbo, 1992; Destuynder and Métivet, 1999; Vohralík, 2011; Hannukainen et al., 2012].
However, while providing a sharp bound is an important property of an error estimator,
we will see in the following chapters that it is not crucial to drive an adaptive strategy
for fine tuning the approximation parameters.

For more details on a posteriori error estimation in the context of numerical approximation
with finite element methods, the interested reader is referred to [Verfürth, 1994, 2013], and
to Part II of the thesis. The remaining of Part I is instead dedicated to the a posteriori
error analysis of the analysis-aware defeaturing problem, which is first introduced in
Chapter 3.

Remark 2.5.2. A vast amount of literature is dedicated to the study of error estimators,
and only a brief review of what is used in this thesis is presented in this section. For other
common types of a posteriori error estimators such as implicit or recovery-based error
estimators in the finite element context, the interested reader is referred to [Zienkiewicz
and Zhu, 1987; Ainsworth and Oden, 1997; Grätsch and Bathe, 2005]. We also highlight
that often in engineering applications, one is interested in local quantities rather than
global errors such as the energy norm of the error. This is the realm of research of the
so-called goal-oriented estimators. For an in-depth discussion on the subject the reader
is referred to [Oden and Prudhomme, 2002; Grätsch and Bathe, 2005, 2006] and to the
references therein.

2.5.3 Adaptivity

We have previously mentioned that a posteriori error estimators are often used to steer
adaptive strategies which fine tune the approximation parameters. Let us summarize in
this section the main steps composing an adaptive loop. For a review of the fundamental
concepts underlying adaptive finite element methods, we refer to [Nochetto et al., 2009;
Nochetto and Veeser, 2011] and to the references therein.

Using the notation from [Buffa and Giannelli, 2016], one iteration of an iterative process
is composed of the following four main building blocks:

SOLVE ESTIMATE MARK REFINE

More precisely, one first SOLVEs the approximation of the PDE at hand to obtain the
approximate solution Us. Then, the approximation error is ESTIMATEd by a suitable
a posteriori error estimator E (Us). If the error estimator is not below a prescribed
tolerance, then the approximation parameters need to be updated to obtain a better
approximation. In this thesis, the approximation parameters consist of:
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1. local geometrical details of smaller scale present in the domain in which the PDE
is defined (see Chapter 3),

2. the elements’ size of the underlying finite element mesh (see Chapter 5).

When deriving a posteriori error estimators, one looks for an expression that can be
decomposed as follows:

E (Us) =
(∑
τ∈T

Eτ (Us)2
) 1

2

,

where T is the set of approximation parameters, and where Eτ (Us) is an estimation of
the local error contribution due to parameter τ ∈ T . In this way, one can determine
which parameter most contributes to the error, and thus which parameter should be
chosen more carefully. This corresponds to the MARK module of the adaptive loop.
Several marking strategies have been proposed in the literature, see for instance [Babuška
and Rheinboldt, 1978; Johnson, 1990]. Let 0 < θ ≤ 1 be a marking parameter, and
let Tm ⊂ T denote the set of marked approximation parameters, then the predominant
strategies are the following:

• Maximum strategy: a parameter τm ∈ T is marked, i.e., τm ∈ Tm, if it satisfies

Eτm(Us) ≥ θmax
τ∈T

(
Eτ (Us)

)
. (2.36)

• Dörfler strategy [Dörfler, 1996]: the set of marked parameters τm ∈ Tm is obtained
by sequentially choosing the parameter corresponding to the largest estimator
contribution Eτm(Us), until the following criterion is met:

 ∑
τm∈Tm

Eτm(Us)2

 1
2

≥ θE (Us). (2.37)

With this marking strategy, error reduction is guaranteed at each iteration of the
adaptive loop.

Finally, the marked parameters in Tm are REFINEd, where refinement has a different
meaning depending on the type of parameters. In this thesis, using the same numeration
as above,

1. the marked geometrical details are added or removed from the geometrical model
on which the PDE is solved (see Chapter 3),

2. the marked mesh elements are refined in a classical way, where we refer for instance to
[Morin et al., 2002]. The special case of, possibly trimmed, hierarchical isogeometric
meshes is discussed in Chapters 6 and 7.
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3 A posteriori error estimation:
single feature geometries

Defeaturing consists in simplifying geometrical models by removing the geometrical
details of smaller scale, called features, that are considered not relevant for a given
simulation. Feature removal and simplification of CAD models enables faster simulations
for engineering analysis problems, and it simplifies the underlying meshing problem
that is otherwise often unfeasible. Understanding well the effects of this process is an
important step for the automatic integration of design and analysis into a single workflow.
The aim of this chapter is to give a solid mathematical framework for analysis-aware
defeaturing.

Let us consider a potentially complicated open Lipschitz domain Ω ⊂ Rn on which we
want to solve a PDE. More precisely, let us assume that Ω contains geometrical details
of smaller scale. As illustrated in Figure 3.1, there exist three kinds of such geometrical
features: a feature F ⊂ Rn is said to be

• negative if
(
F ∩ Ω

)
⊂ ∂Ω,

• positive if F ⊂ Ω,

• complex if it is composed of both negative and positive components.

A negative feature corresponds to a part where some material has been removed (e.g., a

Ω

(a) Internal negative
feature.

Ω

(b) Negative feature on
the boundary.

Ω

(c) Positive feature.

Ω

(d) Complex feature.

Figure 3.1 – Domains with different types of geometrical features F . In each case, the
negative component of F is dashed while its positive component is filled in gray.
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hole), a positive feature corresponds to the addition of some material (e.g., a protrusion),
and a feature is complex in the most general situation that corresponds to both the
addition and the removal of some material. We note than an internal feature (e.g., an
internal hole) is a special case of negative feature.

However, we suppose that we cannot solve the given PDE on the given computational do-
main because of the complexity of Ω coming from the presence of the features. Therefore,
we want to solve a similar problem instead, called defeatured (or simplified) problem, in
a defeatured domain Ω0 where features are removed: holes are filled with material, and
protrusions are cut out of the computational domain.

In this chapter, we work in the context of the Poisson equation defined in a geometry Ω
containing a single feature F . We assume that Neumann boundary conditions are imposed
on the boundary of the feature. The multi-feature case is studied in the subsequent
Chapter 4. The effects of defeaturing on the analysis are often neglected and, as of
today, there are basically very few strategies to quantitatively evaluate such an impact.
Therefore, after precisely defining the defeaturing problem, we introduce an a posteriori
estimator of the energy norm of the defeaturing error which is easy to compute, and
which explicitly depends on the size of the feature. We also demonstrate its reliability
and efficiency up to oscillations. The estimator is very cheap to compute: after the
computation of the solution in the simplified domain Ω0 and in a simplified positive
component of the feature (as, e.g., its bounding box), it only requires the computation of
local boundary integrals. Indeed, the proposed estimator is derived from a representation
of the defeaturing error that only involves differences between boundary terms on the
feature, as already observed in [Gopalakrishnan and Suresh, 2008; Turevsky et al., 2008]
and in [Li and Gao, 2011; Li et al., 2013b,a].

To ease the exposition, the defeaturing problem is first precisely defined in Section 3.1
in the simpler setting in which the geometry contains a feature which is either negative
or positive. It allows us to introduce the notation that is then used throughout the
thesis. Then in Section 3.2, the defeaturing error estimator is derived and analyzed in
the case in which the geometry contains a negative feature. Subsequently, in Section 3.3,
the defeaturing problem is generalized to a geometry with a complex feature, and the
a posteriori defeaturing error estimator is generalized and analyzed in this case in
Section 3.4. The study of the defeaturing problem when the feature is positive can be
deduced from Section 3.4 as a special case. Finally, in Section 3.5, we present a validation
of the previously presented results. Our validation is obtained by comparing errors and
defeaturing estimators for numerical solutions on very fine meshes. This chapter closely
follows [Buffa et al., 2022b].
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3.1. Defeaturing problem: geometry with a negative or a positive feature

3.1 Defeaturing problem: geometry with a negative or a
positive feature

In this section, we precisely define the analysis-aware defeaturing problem when the exact
geometry Ω contains either a negative or a positive feature, using the Poisson equation as
model problem. Let us first introduce the considered problem in the exact geometry Ω.

Let n be the unitary outward normal to Ω, let ∂Ω = ΓD∪ΓN with ΓD∩ΓN = ∅, |ΓD| > 0,
and let gD ∈ H

3
2 (ΓD), g ∈ H 1

2 (ΓN ) and f ∈ L2 (Ω). We are interested in the following
Poisson equation defined in the exact geometry Ω:

find u : Ω→ R, solution of
−∆u = f in Ω
u = gD on ΓD
∂u

∂n = g on ΓN .
(3.1)

In the framework presented in Section 2.4, let us formally multiply the first equation
of (3.1) by a test function v, and let us integrate the resulting equation by parts using
the boundary conditions given in (3.1). The weak formulation of the Poisson problem
then reads:

find u ∈W := H1
gD,ΓD(Ω) such that

aΩ(u, v) = fΩ(v), ∀v ∈ V := H1
0,ΓD(Ω) (3.2)

where aΩ(·, ·) and fΩ(·) are defined by

aΩ(w, v) :=
∫

Ω
∇w · ∇v dx for all w ∈W , v ∈ V ,

fΩ(v) :=
∫

Ω
fv dx+

∫
ΓN

gv ds for all v ∈ V .

The analysis done in Example 2.4.4 uses Banach-Nečas-Babuška Theorem 2.4.2 to
demonstrate that a Poisson problem as (3.2) is well-posed, when V is equipped with the
norm ‖∇ · ‖0,Ω.

Let us now assume that the exact geometry Ω contains a single open Lipschitz feature F
which is either positive or negative, and let us precisely define the considered defeaturing
problem in this context. First, we define the defeatured (or simplified) geometry Ω0 ⊂ Rn

as follows:

• if F is negative, Ω0 := int
(
Ω ∪ F

)
,

• if F is positive, Ω0 := Ω \ F ,
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Chapter 3. A posteriori error estimation: single feature geometries

Ω

F
γ

(a) Domain with a neg-
ative feature.

γ

Ω

F

(b) Domain with a pos-
itive feature.

γ0

Ω0

(c) Simplified domain
corresponding to do-
mains (a) and (b).

γ

Ω0

F

γ0

(d) Domain with a pos-
itive feature,
Ω := int

(
Ω0 ∪ F

)
.

Figure 3.2 – Illustration of the notation in different geometries with a negative or a
positive feature.

Ω

(a) Exact domain Ω.

F

Ω

(b) Possible simplified domain
Ω0 := int(Ω ∪ F ) with a neg-
ative feature F .

Ω0

F

(c) Possible simplified domain
Ω0 = Ω \ F with a positive
feature F .

Figure 3.3 – Exact geometry Ω and different possible defeatured geometries Ω0.

and we assume that Ω0 is also an open Lipschitz domain. In other words, if the feature
F is negative, then the exact domain Ω is embedded in the defeatured domain Ω0; if F
is positive instead, the exact domain Ω is the union of the defeatured domain Ω0 and the
feature F , as illustrated in Figure 3.2.

Remark 3.1.1. Given a complicated geometry Ω without any further information, one
cannot always easily tell whether the features it contains are negative or positive, see
Figure 3.3. Therefore, this is often a choice that the user needs to make, based on the
available geometric information at hand. If one has access to a simplified geometry, for
instance thanks to the history of (CAD) operations from which the exact geometry Ω
is built, then it is possible to define F from Ω and Ω0, instead of defining Ω0 from Ω
and F . The individuation of features in a given geometry and the construction of a
corresponding simplified geometric model can be complicated tasks, see [Thakur et al.,
2009] for a review of possible techniques. However, this goes beyond the scope of this
work, which supposes at its roots that the feature information is known.

Now, let n0 and nF be the unitary outward normals to Ω0 and F respectively. In this
work, the analysis is performed under the following assumption:

Assumption 3.1.2. In the exact problem (3.1), a Neumann boundary condition is
imposed on the feature’s boundary, i.e.,

ΓD ∩ ∂F = ∅.
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3.1. Defeaturing problem: geometry with a negative or a positive feature

Moreover, let γ be the piece of boundary of Ω that is removed by defeaturing, and let γ0
be the piece of boundary of Ω0 replacing it, that is,

γ0 := ∂F \ ΓN ⊂ ∂Ω0 and γ := ∂F \ γ0 ⊂ ∂Ω,

so that ∂F = γ ∪ γ0 and γ ∩ γ0 = ∅ (see Figure 3.2). In particular, note that an internal
feature F is a negative feature for which γ = ∂F and γ0 = ∅. In the following, the
defeaturing problem is stated, and the cases in which F is either positive or negative are
treated separately.

If feature F is negative, choose any L2-extension of f ∈ L2(Ω) in F , that we still write
f ∈ L2(Ω0) by abuse of notation. Note that such an extension is not needed for a positive
feature. Then, instead of (3.1), the following defeatured (or simplified) problem is solved:
after choosing g0 ∈ H

1
2 (γ0), find u0 ∈ H1(Ω0), the weak solution of

−∆u0 = f in Ω0

u0 = gD on ΓD
∂u0
∂n0

= g on ΓN \ γ

∂u0
∂n0

= g0 on γ0,

(3.3)

that is, u0 ∈ H1
gD,ΓD(Ω0) satisfies for all v0 ∈ H1

0,ΓD(Ω0),∫
Ω0
∇u0 · ∇v0 dx =

∫
Ω0
fv0 dx+

∫
ΓN\γ

gv0 ds+
∫
γ0
g0v0 ds. (3.4)

Thanks to Example 2.4.4, we know that problem (3.4) is well-posed. The choice of
defeatured problem data f in F and g0 on γ0 will be guided by Remark 3.2.1, and further
discussed in Section 3.5.2.3. We only anticipate here that the best possible choices satisfy
a conservation assumption of the solution flux in the feature, given by (3.12). We are
now interested in controlling the energy norm of the defeaturing error “u − u0” in Ω,
that we suitably define in what follows.

Negative feature case: in this setting, the boundary γ will play an important role in the
sequel, and the analysis is made under the following assumption.

Assumption 3.1.3. The boundary γ is isotropic according to Definition 2.1.2.

Since Ω ⊂ Ω0 when F is negative, then we consider the restriction of u0 to Ω to define
the defeaturing error. That is, the energy norm of the defeaturing error is defined by

∣∣∣∣∣∣∣∣∣u− u0|Ω
∣∣∣∣∣∣∣∣∣

Ω
:=
(
aΩ(u− u0|Ω,u− u0|Ω)

) 1
2 =

∥∥∥∇ (u− u0|Ω)
∥∥∥

0,Ω
=
∣∣∣u− u0|Ω

∣∣∣
1,Ω

.
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γ

Ω

(a) Domain Ω with a positive
feature F .

γ0

γr

γs

Ω0

F

(b) Simplified domain Ω0 and
positive feature F , Ω =
int
(
Ω0 ∪ F

)
.

γ0

Ω0

γs

F̃
γ̃

(c) Example of extended fea-
ture domain F̃ ⊃ F .

Figure 3.4 – Illustration of the notation in a geometry with a positive feature.

Positive feature case: in this setting, the solution u0 is only defined in the defeatured
geometry Ω0, but Ω0 does not contain the feature F since F ⊂ Ω but F 6⊂ Ω0. That
is, the solution u0 is not defined everywhere in the exact geometry Ω = int

(
Ω0 ∪ F

)
.

Therefore, to define the defeaturing error, and since Ω is the union of Ω0 and F , one
needs to solve a problem to extend u0 to F . The most natural extension would be the
solution of 

−∆ũ0 = f in F
ũ0 = u0 on γ0
∂ũ0
∂nF

= g on γ.
(3.5)

However, F may be complex or even non-smooth (see examples of Section 3.5.3), thus
finding or computing the solution of (3.5) may be cumbersome. Therefore, instead of
solving the extension problem (3.5) in the positive feature F , we can choose to solve an
extension problem in a simpler domain F̃ which shares γ0 as a boundary. More precisely,
let F̃ ⊂ Rn be a Lipschitz domain that contains F and such that γ0 ⊂

(
∂F̃ ∩ ∂F

)
, that

is, F̃ is a suitable (simple) domain extension of F . It can be for instance the bounding
box of F , if the boundary of the latter contains γ0. Note that it is possible to have
F̃ ∩ Ω0 6= ∅, but we also assume that

G := F̃ \ F

is Lipschitz. We also remark that one can look at F̃ as the defeatured geometry of the
positive feature F , that is, as a geometry simplified from the exact geometry F , for which
G is a negative feature.

Let ñ be the unitary outward normal to F̃ , let γ̃ := ∂F̃ \ ∂F , and let γ be decomposed
as γ = int(γs ∪ γr), where γs and γr are open, γs is the part of γ that is shared with ∂F̃
while γr is the remaining part of γ, that is, the part that does not belong to ∂F̃ . This
notation is illustrated in Figure 3.4. Note that γ0 and γ̃ are “simple” boundaries since
they are the boundaries of the chosen simplified geometry Ω0 and of the chosen extended
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3.1. Defeaturing problem: geometry with a negative or a positive feature

feature domain F̃ , respectively. As they will play an important role in the a posteriori
defeaturing error analysis of a geometry with a positive feature, we remark in particular
that γ0 and γ̃ can be non-connected sub-manifolds, as illustrated in Figure 3.2d, and we
make the following assumption.

Assumption 3.1.4. The boundaries γ0 and γr are isotropic according to Definition 2.1.2.

Therefore, when F is positive, let us choose an L2-extension of f in G that we still write
f by abuse of notation. Then we can solve the following extension of the solution u0
of (3.3) in F̃ instead of F : after choosing g̃ ∈ H 1

2 (γ̃), find ũ0 ∈ H1
(
F̃
)
, the weak solution

of 

−∆ũ0 = f in F̃
ũ0 = u0 on γ0

∂ũ0
∂ñ = g̃ on γ̃
∂ũ0
∂ñ = g on γs,

(3.6)

that is, ũ0 ∈ H1
u0,γ0

(
F̃
)
satisfies for all ṽ ∈ H1

0,γ0

(
F̃
)
,

∫
F̃
∇ũ0 · ∇ṽ dx =

∫
F̃
fṽ dx+

∫
γ̃
g̃ṽ ds+

∫
γs
gṽ ds. (3.7)

Thanks to Example 2.4.4, we know that problem (3.7) is well-posed. The choice of
defeatured problem data f in G, g0 on γ0 and g̃ on γ̃ will be guided by Remark 3.4.2,
and further discussed in Section 3.5.2.3. We only anticipate here that the best possible
choices satisfy conservation assumptions of the solution flux in the feature, given by
(3.31). Then, let us define the extended defeatured solution ud ∈ H1

gD,ΓD (Ω) as

ud = u0 in Ω0 and ud = ũ0|F in F .

Finally, the energy norm of the defeaturing error is defined by

|||u− ud|||Ω :=
(
aΩ(u− ud,u− ud)

) 1
2 =

∥∥∥∇ (u− ud)
∥∥∥

0,Ω
= |u− ud|1,Ω.

The a posteriori error analysis of the defeaturing problem in this setting can be deduced
as a special case of the analysis presented in Section 3.4, in which a geometry containing
a general complex feature is considered.

Remark 3.1.5. In the sequel, the defeaturing problem is analyzed in the case in which
all domains are Lipschitz, and under the isotropy Assumptions 3.1.3 and 3.1.4. A finer
analysis could be performed to take into account more general geometries such as the
non-Lipschitz fillet of Section 3.5.3, but this goes beyond the scope of this work.
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Chapter 3. A posteriori error estimation: single feature geometries

Whenever F is negative and σ := γ, or F is positive and σ := γ0 or σ := γr, and if σ is
regular according to Definition 2.1.3, then for all m ∈ N, we define

Πm,σ : L2(σ)→ Qpw
m,0(σ) (3.8)

as the extension of the Clément operator on σ introduced in [Clément, 1975] and further
developed in [Bernardi and Girault, 1998] (see also Chapter 5).

3.2 Defeaturing error estimator: negative feature case

In this section, an optimal a posteriori defeaturing error estimator is derived in the
simplest setting of a negative feature. We show that the derived estimator is an upper
bound and a lower bound (up to oscillations) of the energy norm of the defeaturing error.
The key issue in the subsequent analysis is to track the dependence of all constants from
the size of the feature. Although it would be possible to present the equivalent analysis
for a positive feature, we have decided to omit it and to let the positive feature case be a
consequence of the more general case of a complex feature, whose dedicated analysis is
presented in Section 3.4.

Let us therefore assume that F is a negative feature of the exact geometry Ω, and recall
the definition of solution u0 solving the defeatured problem (3.4). Moreover, suppose
that γ is isotropic according to Definition 2.1.2, and after observing that nF = −n on γ,
let

dγ := g + ∂u0
∂nF

= g − ∂u0
∂n (3.9)

be the error term on the Neumann data defined on γ. Then if we let η ∈ R be the unique
solution of η = − log(η), and if we let

cγ :=

max
(
|log (|γ|)| , η

) 1
2 if n = 2

1 if n = 3,
(3.10)

we define the a posteriori defeaturing error estimator as

ED(u0) :=
(
|γ|

1
n−1

∥∥∥dγ − dγγ∥∥∥2

0,γ
+ c2

γ |γ|
n
n−1

∣∣∣dγγ∣∣∣2 ) 1
2

, (3.11)

where we recall that dγ
γ denotes the average value of dγ over γ as defined in (2.5).

We first show that the quantity ED(u0) is a reliable estimator for the defeaturing error,
i.e., it is an upper bound for the defeaturing error, see Theorem 3.2.3. Then, assuming
that γ is also regular according to Definition 2.1.3, and under mild assumptions for the
two-dimensional case, we show that it is also efficient (up to oscillations), i.e., it is a
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3.2. Defeaturing error estimator: negative feature case

lower bound for the defeaturing error up to oscillations, see Theorem 3.2.4. This means
that the whole information on the error introduced by defeaturing a negative feature,
in the energy norm, is encoded on the boundary γ, and can be accounted by suitably
evaluating the error made on the normal derivative of the solution.

In this section, the symbol . is used to mean any inequality which does not depend on
the size of F , but which can depend on its shape.

Remark 3.2.1. Consider the simplified problem (3.3) restricted to F with the natural
Neumann boundary condition on γ, that is, u0|F ∈ H1(F ) satisfies

−∆ (u0|F ) = f in F
∂ (u0|F )
∂n0

= g0 on γ0

∂ (u0|F )
∂nF

= ∂u0
∂nF

on γ.

By abuse of notation, we omit the explicit restriction of u0 to F . Then, if we multiply
the restricted problem by the constant function 1 and integrate by parts, we obtain∫

F
f dx+

∫
γ0
g0 ds+

∫
γ

∂u0
∂nF

= 0.

Consequently,

dγ
γ =

(
g + ∂u0

∂nF

)γ
= 1
|γ|

(∫
γ
g ds−

∫
γ0
g0 ds−

∫
F
f dx

)
.

Therefore, the second term of the estimator ED(u0) in (3.11) only depends on the
defeatured problem data, and more precisely on the choice of g0 that one considers on
γ0, and on the choice of the extension of f that one considers in the feature F . As
a consequence, if the second term of the estimator (3.11) dominates, this means that
the defeatured problem data should be better chosen. Moreover, under the following
reasonable flux conservation assumption∫

γ
g ds−

∫
γ0
g0 ds−

∫
F
f dx = 0, (3.12)

the defeaturing error estimator (3.11) rewrites

ED(u0) = |γ|
1

2(n−1) ‖dγ‖0,γ .

Note that condition (3.12) is easily met if the Neumann boundary condition g and the
source function f are zero in the vicinity of the feature.

Remark 3.2.2. Since (4c2
γ − 1) > 0 for all γ, then by Cauchy-Schwarz inequality,
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ED(u0) . |γ|
1

2(n−1)

[∥∥∥dγ − dγγ∥∥∥2

0,γ
+ 4c2

γ |γ|
(
dγ
γ
)2
] 1

2

= |γ|
1

2(n−1)

[
‖dγ‖20,γ +

(
4c2
γ − 1

)
|γ|
(
dγ
γ
)2
] 1

2

. cγ |γ|
1

2(n−1) ‖dγ‖0,γ =: ẼD(u0).

One could be tempted to use the simpler indicator ẼD(u0), but when n = 2 and under
the flux conservation condition (3.12), ẼD(u0) is sub-optimal since ẼD(u0) = cγED(u0) in
this case. Indeed, no lower bound can be provided for ẼD(u0).

3.2.1 Reliability

In this section, we state and prove that the error indicator defined in (3.11) is reliable,
that is, it is an upper bound for the defeaturing error.
Theorem 3.2.3. Let u and u0 be the weak solutions of problems (3.1) and (3.3), respec-
tively. If γ is isotropic according to Definition 2.1.2, then the defeaturing error in the
energy norm is bounded in terms of the estimator ED(u0) introduced in (3.11) as follows:∣∣∣u− u0|Ω

∣∣∣
1,Ω

. ED(u0).

Proof. Let us first consider the simplified problem (3.3) restricted to Ω with the natural
Neumann boundary condition on γ, that is, since nF = −n on γ, the restriction
u0|Ω ∈ H1

gD,ΓD(Ω) is the weak solution of

−∆ (u0|Ω) = f in Ω
u0|Ω = gD on ΓD
∂ (u0|Ω)
∂n = g on ΓN \ γ

∂ (u0|Ω)
∂n = − ∂u0

∂nF
on γ.

(3.13)

By abuse of notation, we omit the explicit restriction of u0 to Ω. Then, for all test
functions v ∈ H1

0,ΓD(Ω),
∫

Ω
∇u0 · ∇v dx =

∫
Ω
fv dx+

∫
ΓN\γ

gv ds−
∫
γ

∂u0
∂nF

v ds. (3.14)

Let e := u− u0 ∈ H1
0,ΓD(Ω). Then from equations (3.2) and (3.14), for all v ∈ H1

0,ΓD(Ω),
∫

Ω
∇e · ∇v dx =

∫
ΓN

gv ds−
∫

ΓN\γ
gv ds+

∫
γ

∂u0
∂nF

v ds

=
∫
γ

(
g + ∂u0

∂nF

)
v ds =

∫
γ
dγv ds. (3.15)
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Now, if we take v = e ∈ H1
0,ΓD(Ω) in (3.15), then

|e|21,Ω =
∫
γ
dγeds =

∫
γ

(
dγ − dγ

γ
)
eds+ dγ

γ
∫
γ
e ds. (3.16)

Let us first estimate the first term of (3.16). Thanks to Poincaré inequality of Lemma 2.3.8
and a trace inequality,∫

γ

(
dγ − dγ

γ
)
e ds =

∫
γ

(
dγ − dγ

γ
)

(e− eγ) ds ≤
∥∥∥dγ − dγγ∥∥∥0,γ

‖e− eγ‖0,γ

.
∥∥∥dγ − dγγ∥∥∥0,γ

|γ|
1

2(n−1) |e| 1
2 ,γ ≤ |γ|

1
2(n−1)

∥∥∥dγ − dγγ∥∥∥0,γ
|e| 1

2 ,∂Ω

. |γ|
1

2(n−1)
∥∥∥dγ − dγγ∥∥∥0,γ

|e|1,Ω. (3.17)

Moreover, the second term of (3.16) can be estimated thanks to Lemma 2.3.9 and a trace
inequality, that is,

dγ
γ
∫
γ
e ds ≤

∣∣∣dγγ∣∣∣ |γ| 12 ‖e‖0,γ .
∣∣∣dγγ∣∣∣ cγ |γ| 1

2(n−1) + 1
2 ‖e‖ 1

2 ,∂Ω

. cγ |γ|
n

2(n−1)
∣∣∣dγγ∣∣∣ |e|1,Ω. (3.18)

Therefore, combining (3.16), (3.17) and (3.18), and simplifying on both sides, we obtain
the desired result.

3.2.2 Efficiency

In this section, we state and prove that the error indicator defined in (3.11) is efficient,
that is, it is a lower bound for the defeaturing error, up to oscillations. In the case n = 2,
the flux conservation assumption (3.12) is also required.
Theorem 3.2.4. Let u and u0 be as in Theorem 3.2.3, and assume that γ is isotropic
and regular according to Definitions 2.1.2 and 2.1.3. Suppose that either n = 3, or n = 2
and the flux conservation condition (3.12) is satisfied. Then the defeaturing error, in the
energy norm, bounds up to oscillations the estimator ED(u0) introduced in (3.11), that is

ED(u0) .
∣∣∣u− u0|Ω

∣∣∣
1,Ω

+ osc(u0),

where

osc(u0) := |γ|
1

2(n−1) ‖dγ −Πm (dγ)‖0,γ (3.19)

for any m ∈ N, with Πm := Πm,γ being the extension of the Clément operator defined
in (3.8).

Proof. To simplify the notation, we omit to explicitly write the restriction of u0 to Ω
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Chapter 3. A posteriori error estimation: single feature geometries

when it would be necessary, since the context makes it clear. As before, let us define the
error e := u− u0 ∈ H1

0,ΓD(Ω). From equation (3.15), for all v ∈ H1
0,ΓD(Ω),∫

γ
dγv ds =

∫
Ω
∇e · ∇v dx ≤ |e|1,Ω|v|1,Ω. (3.20)

Now, for all w ∈ H
1
2
00(γ), let uw ∈ H1

0,∂Ω\γ(Ω) ⊂ H1
0,ΓD(Ω) be the unique weak solution of

−∆uw = 0 in Ω
uw = w? on ∂Ω,

where w? is the extension of w by 0. Then

|uw|1,Ω . ‖w?‖ 1
2 ,∂Ω = ‖w‖

H
1/2
00 (γ)

by continuity of the solution on the data. Therefore, using (3.20),

‖dγ‖H−1/2
00 (γ) = sup

w∈H1/2
00 (γ)

w 6=0

∫
γ
dγw ds

‖w‖
H

1/2
00 (γ)

. sup
w∈H1/2

00 (γ)
w 6=0

∫
γ
dγuw ds

|uw|1,Ω

≤ sup
v∈H1

0,ΓD
(Ω)

v 6=0

∫
γ
dγv ds

|v|1,Ω
≤ sup

v∈H1
0,ΓD

(Ω)
v 6=0

|e|1,Ω|v|1,Ω
|v|1,Ω

= |e|1,Ω. (3.21)

Moreover, using Remark 3.2.2 if n = 3, or Remark 3.2.1 if n = 2 and the flux conservation
condition (3.12) is satisfied, then

ED(u0) . |γ|
1

2(n−1) ‖dγ‖0,γ .

Therefore, using the triangle inequality and applying the inverse inequality of Lemma 2.3.10,
we get

ED(u0) . |γ|
1

2(n−1)
(
‖Πm (dγ)‖0,γ + ‖dγ −Πm (dγ)‖0,γ

)
. ‖Πm (dγ)‖

H
−1/2
00 (γ) + |γ|

1
2(n−1) ‖dγ −Πm (dγ)‖0,γ . (3.22)

Finally, using another time the triangle inequality, Lemma 2.3.7 and (3.21), we obtain

‖Πm (dγ)‖
H
−1/2
00 (γ) ≤ ‖dγ‖H−1/2

00 (γ) + ‖Πm (dγ)− dγ‖H−1/2
00 (γ)

. |e|1,Ω + |γ|
1

2(n−1) ‖dγ −Πm (dγ)‖0,γ . (3.23)

Consequently, combining (3.22) and (3.23), and recalling definition (3.19) of the oscilla-
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3.3. Defeaturing problem: geometry with a complex feature

tions, then
ED(u0) . |e|1,Ω + osc(u0).

Remark 3.2.5. In some sense, the oscillations pollute the lower bound in Theorem 3.2.4.
It is therefore important to make sure that the oscillations are asymptotically smaller
than the defeaturing error, with respect to the size of the feature. While there is a strong
numerical evidence of it (see Section 3.5), an a priori error analysis of the defeaturing
problem is needed in order to obtain a rigorous proof, but this goes beyond the scope
of this work. However, we are expecting the term ‖dγ‖0,γ to depend on the measure of
γ. When the data is regular, so is u0, and it is then always possible to choose m large
enough so that the asymptotic behavior of the oscillations is O

(
|γ|m+ 1

2(n−1)

)
. Therefore,

upon a wise choice of m, the oscillations converge faster than the defeaturing error with
respect to the measure of γ.

3.3 Defeaturing problem: geometry with a complex feature

Instead of only discussing a defeaturing error estimator for a geometry containing a
positive feature, we directly generalize the previous study to a geometry containing a
complex feature, that is, a feature containing both negative and positive components. To
do so, we first extend in this section the analysis-aware defeaturing problem of Section 3.1
to a geometry Ω which contains a general complex feature.

Let us therefore assume that Poisson problem (3.2) is solved in an exact geometry Ω
which contains a complex open Lipschitz feature F , i.e., F is an open Lipschitz domain
composed of a negative component Fn and a positive component Fp that can have a
non-empty intersection (see Figure 3.5). More precisely, F = int

(
Fn ∪ Fp

)
, where Fn

and Fp are open Lipschitz domains such that if we let

Ω? := Ω \ Fp,

then Fp ⊂ Ω and Fn ∩Ω? ⊂ ∂Ω?, as illustrated in Figures 3.5 and 3.6. In particular, note
that if Fp = ∅ and F = Fn, then F is negative, while if Fn = ∅ and F = Fp, then F is
positive, as defined in Section 3.1. In this setting, the defeatured geometry is defined by

Ω0 := int
(
Ω? ∪ Fn

)
⊂ Rn, (3.24)

and as before, we also assume that Ω? and Ω0 are an open Lipschitz domains. Note that
in general Ω? ⊂ Ω∩Ω0 (see Figure 3.5f), but the set equality holds when F is completely
negative or positive.

As in the previous sections, let n0 be the unitary outward normal to Ω0, and let nF
be the unitary outward normal to Fn and to Fp. The vector nF may not be uniquely
defined if the outward normal to Fn is of opposite sign of the outward normal to Fp, but
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Ω

F = Fn
γ = γn

(a) Domain with a neg-
ative feature.

γ = γp

Ω

F = Fp

(b) Domain with a pos-
itive feature.

γn

γp

Ω

Fp
Fn

(c) Domain with a gen-
eral complex feature.

γ0

Ω0

(d) Simplified domain
for domains (a)–(c),
(e)–(f).

γn

γp

Ω

Fp

Fn

(e) Domain with a gen-
eral complex feature.

γn

γp

Ω

Fp

Fn

(f) Domain with a gen-
eral complex feature.

γ0,n

γ0,p

Ω0

(g) Simplified domain
for domains (e), (f).

γ = γp

Ω0

F = Fp

γ0 = γ0,p

(h) Domain with a pos-
itive feature,
Ω := int

(
Ω0 ∪ F

)
.

Figure 3.5 – Different geometries with a negative, a positive, or a general complex feature.

we allow this abuse of notation since the context will always make it clear. Similarly to
the negative feature case, the analysis is performed under the following assumption:

Assumption 3.3.1. In the exact problem (3.1), a Neumann boundary condition is
imposed on the feature’s boundary, i.e.,

ΓD ∩ (∂Fn ∪ ∂Fp) = ∅,

Furthermore, in a similar way to Section 3.1, let γ be the piece of boundary of Ω removed
by defeaturing, and let γ0 be the piece of boundary of Ω0 replacing it, that is,

γ0 := int (γ0,n ∪ γ0,p) ⊂ ∂Ω0 with γ0,n := ∂Fn \ ∂Ω?, γ0,p := ∂Fp \ ∂Ω,
γ := int (γn ∪ γp) ⊂ ∂Ω with γn := ∂Fn \ γ0,n, γp := ∂Fp \ γ0,p,

so that ∂Fn = γn ∪ γ0,n with γn ∩ γ0,n = ∅, and ∂Fp = γp ∪ γ0,p with γp ∩ γ0,p = ∅ (see
Figures 3.5 and 3.6).

Similarly to the negative feature case, choose any L2-extension of the restriction f |Ω? in
the negative component Fn of F , that we still write f ∈ L2(Ω0) by abuse of notation.
Then instead of (3.1), we solve the defeatured (or simplified) problem (3.3) whose weak
formulation is given in (3.4), and we obtain u0 ∈ H1

gD,ΓD(Ω0). As previously, we are
interested in controlling the energy norm of the defeaturing error “u− u0” in Ω, that we
suitably define in what follows.

Similarly to the positive feature case, the solution u0 of the defeatured problem is not
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Ω

γp

γn

(a) Domain Ω with a complex feature.

γ̃
F̃p

Ω0

γ0,p γ0,n

γs
γs

(b) Defeatured domain Ω0 and simpli-
fied positive component F̃p.

γr
Gp

Fn

Fp
γs

γs

Ω?

(c) Domains Ω?, Fn, Fp and Gp.

Ω̃

(d) Domain Ω̃.

Figure 3.6 – Illustration of the notation for a geometry with a complex feature whose
positive and negative components share a part of the boundary.

defined everywhere in Ω since Fp 6⊂ Ω0 but Fp ⊂ Ω. Therefore, we need to solve an
extension problem for u0 in a domain which contains Fp. Following the same rationale
for Fp as the one exposed in Section 3.1, let F̃p ⊂ Rn be a Lipschitz domain that contains
Fp and such that γ0,p ⊂

(
∂F̃p ∩ ∂Fp

)
, that is, F̃p is a suitable (simple) domain extension

of Fp, see Figure 3.6. To simplify the following exposition, let us assume that

F̃p ∩ Ω? = ∅,

even if this hypothesis could easily be removed. Furthermore, let

Gp := F̃p \ Fp, Ω̃ := int
(
Ω ∪Gp

)
= int

(
Ω? ∪ F̃p

)
, (3.25)

and let us also assume that Gp is Lipschitz. Now, choose any L2-extension of f in F̃p,
that we still write f by abuse of notation. Let ñ be the unitary outward normal to F̃p,
let γ̃ := ∂F̃p \ ∂Fp, and let γp be decomposed as γp = int(γs ∪ γr), where γs and γr are
open, γs is the part of γp that is shared with ∂F̃p while γr is the remaining part of γp,
that is, the part that does not belong to ∂F̃p, see Figure 3.6.

Therefore, and as for the positive feature case, we can define the extension

ũ0 ∈ H1
u0,γ0,p

(
F̃p
)
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Chapter 3. A posteriori error estimation: single feature geometries

of the defeatured solution u0 as the weak solution of (3.6), where F , F̃ and γ0 are replaced
by Fp, F̃p and γ0,p, respectively. Now, we can define the extended defeatured solution
ud ∈ H1

gD,ΓD (Ω) as

ud = u0|Ω? in Ω? = Ω \ Fp and ud = ũ0|Fp in Fp. (3.26)

Then, the energy error of the defeaturing error is defined by

|||u− ud|||Ω = ‖∇(u− ud)‖0,Ω = |u− ud|1,Ω .

Remark 3.3.2. Note that if Fn ∩ Fp 6= ∅, it may happen that u0 6= ũ0 on Fn ∩ Fp. But
in this case, the definition of ud in (3.26) specifies that ud = ũ0 on Fn ∩ Fp.

To ease the notation in the sequel, let

Γ0
N := (ΓN \ γ) ∪ γ0 and Γ̃N := γs ∪ γ̃ (3.27)

be the Neumann boundaries of Ω0 and of F̃p, respectively, and let

Γ := γn ∪ γr ∪ γ0,p and Σ := {γn, γ0,p, γr} . (3.28)

In the following section and chapters, we will see that the boundaries in Σ play an
important role in the analysis of the defeaturing problem. The analysis is performed
under the following assumption, similar to Assumptions 3.1.3 and 3.1.4.

Assumption 3.3.3. Each boundary σ ∈ Σ is isotropic according to Definition 2.1.2.

Note that as already observed in Section 3.1, these boundaries can be non-connected
sub-manifolds, see e.g., Figure 3.5h.

3.4 Defeaturing error estimator: complex feature case

In this section, we generalize the previously introduced optimal a posteriori defeaturing
error estimator to the framework of Section 3.3, in which the exact geometry Ω contains
a complex feature. Building upon the study of Section 3.2, we show that the derived
estimator is an upper bound and a lower bound (up to oscillations) of the energy norm
of the defeaturing error, by accurately tracking the dependence of all constants from the
size of the feature.

Recalling the definition of the defeaturing solution ud from (3.26), let dΣ be piecewise
defined as dΣ|σ := dσ for all σ ∈ Σ, with

dσ :=


g − ∂ud

∂n if σ = γn or σ = γr

−
(
g0 + ∂ud

∂nF

)
if σ = γ0,p.

(3.29)
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3.4. Defeaturing error estimator: complex feature case

That is, dσ is the error term on the Neumann data for σ = γn or σ = γr, and dγ0,p is the
jump in the normal derivative of ud due to the Dirichlet extension of ud in the positive
component of the feature. Then, we define the a posteriori defeaturing error estimator as

ED(ud) :=

∑
σ∈Σ

(
|σ|

1
n−1

∥∥∥dσ − dσσ∥∥∥2

0,σ
+ c2

σ |σ|
n
n−1

∣∣∣dσσ∣∣∣2)
 1

2

, (3.30)

where cσ is defined as in (3.10), and where we recall that for all σ ∈ Σ, dσ
σ denotes the

average value of dσ over σ as defined in (2.5).

Remark 3.4.1. If F is a negative feature, then ED(ud) = ED(u0) simplifies into the
previously introduced expression from (3.11), while if F is a positive feature, then
ED(ud) = ED(ũ0) simplifies into

ED(ũ0) :=

|γ0|
1

n−1

∥∥∥∥∥
(
g0 + ∂ũ0

∂nF

)
−
(
g0 + ∂ũ0

∂nF

) γ0
∥∥∥∥∥

2

0,γ0

+ |γr|
1

n−1

∥∥∥∥∥
(
g − ∂ũ0

∂n

)
−
(
g − ∂ũ0

∂n

) γr
∥∥∥∥∥

2

0,γr

+ c2
γ0 |γ0|

n
n−1

∣∣∣∣∣
(
g0 + ∂ũ0

∂nF

) γ0
∣∣∣∣∣
2

+ c2
γr |γr|

n
n−1

∣∣∣∣∣
(
g − ∂ũ0

∂n

) γr
∣∣∣∣∣
2
 1

2

.

In this section, we first show that the quantity ED(ud) is a reliable estimator for the
defeaturing error, i.e., it is an upper bound for the defeaturing error, see Theorem 3.4.4.
Then, assuming that γn, γr and γ0,p are also regular according to Definition 2.1.3, and
under mild assumptions for the two-dimensional case, we show that it is also efficient
(up to oscillations), i.e., it is a lower bound for the defeaturing error up to oscillations,
see Theorem 3.4.5.

In the remaining part of this chapter, the symbol . is used to mean any inequality which
does not depend on the size of Fn, of Fp, or of the positive extension F̃p, but which can
depend on their shape.

Remark 3.4.2. Consider the simplified extended problem (3.6) restricted to Fp and then
to F̃p \ Fp, with the natural Neumann boundary condition on γ0,p and γr respectively,
in a similar way to (3.13). By abuse of notation and as previously, we omit the explicit
restriction of ũ0 to Fp or to F̃p \ Fp. Then if we multiply the restricted problems by the
constant function 1 and integrate by parts, we obtain∫

Fp
f dx+

∫
γp
g ds+

∫
γ0,p

∂ũ0
∂nF

ds = 0,

and
∫
F̃p\Fp

f dx+
∫
γ̃
g̃ ds−

∫
γr

∂ũ0
∂n ds = 0.
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Consequently,

dγ0,p
γ0,p =

(
g0 + ∂ũ0

∂nF

) γ0,p

= 1
|γ0,p|

(∫
γ0,p

g0 ds−
∫
γp
g ds−

∫
Fp
f dx

)
,

dγr
γr =

(
g − ∂ũ0

∂n

) γr

= 1
|γr|

(∫
γr
g ds−

∫
γ̃
g̃ ds−

∫
F̃p\Fp

f dx
)

.

Moreover, as in Remark 3.2.1, it can be seen that

dγn
γn = 1

|γn|

(∫
γn
g ds−

∫
γ0,n

g0 ds−
∫
Fn
f dx

)
.

Therefore, the terms involving the average values of dσ in the estimator ED(ud) defined
in (3.30) only depend on the defeatured problem data. More precisely, they only depend
on the choice of g0 and g̃ that one chooses on γ0 and γ̃ respectively, and on the choice of
the extension of f that one considers in the extended feature F̃p. As a consequence, if
those terms dominate, this means that the defeatured problem data should be better
chosen. Moreover, under the following reasonable flux conservation assumptions∫

γ0,p
g0 ds =

∫
γp
g ds+

∫
Fp
f dx,

∫
γ̃
g̃ ds =

∫
γr
g ds−

∫
F̃p\Fp

f dx,

and
∫
γ0,n

g0 ds =
∫
γn
g ds−

∫
Fn
f dx, (3.31)

the defeaturing error estimator (3.30) rewrites

ED(ud) :=

∑
σ∈Σ
|σ|

1
n−1 ‖dσ‖20,σ

 1
2

.

Conditions (3.31) are easily met if the Neumann boundary condition g and the source
function f are zero in the vicinity of the feature.

Remark 3.4.3. Analogously to the case of a negative feature in Remark 3.2.2, note that

ED(ud) .

∑
σ∈Σ

c2
σ |σ|

1
n−1 ‖dσ‖20,σ

 1
2

=: ẼD(ud).

One could be tempted to use the simpler indicator ẼD(ud), but when n = 2 and
under the flux conservation conditions (3.31), ẼD (ud) is sub-optimal since in this case,
ẼD(ud) . max

σ∈Σ
(cσ) ED(ud). Indeed, no lower bound can be proven for ẼD(ud).

3.4.1 Reliability

In this section, we state and prove that the error indicator defined in (3.30) is reliable,
that is, it is an upper bound for the defeaturing error.
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Theorem 3.4.4. Let u be the solution of problem (3.2) defined in the exact domain Ω,
and let ud be the defeaturing solution defined in (3.26). If γn, γr and γ0,p are isotropic
according to Definition 2.1.2, then the defeaturing error in the energy norm is bounded
in terms of the estimator ED(ud) introduced in (3.30) as follows:

|u− ud|1,Ω . ED(ud).

Proof. Using arguments similar to Theorem 3.2.3, let us first consider the original
problem (3.1) restricted to Ω? := Ω \ Fp with the natural Neumann boundary condition
on γ0,p, that is, the restriction u|Ω? ∈ H1

gD,ΓD(Ω?) is the weak solution of


−∆ (u|Ω?) = f in Ω?

u|Ω? = gD on ΓD
∂ (u|Ω?)
∂n = g on ΓN \ γp

∂ (u|Ω?)
∂n0

= ∂u

∂n0
on γ0,p.

(3.32)

By abuse of notation, we omit the explicit restriction of u to Ω?. Then for all test
functions v0 ∈ H1

0,ΓD(Ω?),∫
Ω?
∇u · ∇v0 dx =

∫
Ω?
fv0 dx+

∫
ΓN\γp

gv0 ds+
∫
γ0,p

∂u

∂n0
v0 ds. (3.33)

Then, let us consider the simplified problem (3.3) restricted to Ω? with the natural
Neumann boundary condition on γn, in the same way as in (3.13). Since ud|Ω? = u0|Ω?
by definition, if we omit the explicit restriction of ud to Ω?, then for all v0 ∈ H1

0,ΓD(Ω?),∫
Ω?
∇ud · ∇v0 dx =

∫
Ω?
fv0 dx+

∫
ΓN\γ

gv0 ds+
∫
γn

∂ud
∂n v0 ds+

∫
γ0,p

g0v0 ds. (3.34)

Let e := u− ud ∈ H1
0,ΓD(Ω). So from (3.33) and (3.34), for all v0 ∈ H1

0,ΓD(Ω?), we obtain∫
Ω?
∇e · ∇v0 dx =

∫
γn

(
g − ∂ud

∂n

)
v0 ds+

∫
γ0,p

(
∂u

∂n0
− g0

)
v0 ds. (3.35)

Now, let us consider the simplified extended problem (3.6) restricted to Fp with the
natural Neumann boundary condition on γr, in a similar way to (3.32). Note that
ud|Fp = ũ0|Fp , and by abuse of notation and as previously, we omit the explicit restriction
of ud to Fp. That is, ud ∈ H1

(
Fp
)
is one of the infinitely-many solutions (up to a

constant) of∫
Fp
∇ud ·∇vp dx =

∫
Fp
fvp dx+

∫
γs
gvp ds+

∫
γ0,p∪γr

∂ud
∂nF

vp ds, ∀vp ∈ H1
(
Fp
)
. (3.36)
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And let us consider the original problem (3.1) restricted to Fp with the natural Neumann
boundary condition on γ0,p, again in a similar way to (3.32). By abuse of notation and
as previously, we omit the explicit restriction of u to Fp. So u ∈ H1

(
Fp
)
is one of the

infinitely-many solutions (up to a constant) of∫
Fp
∇u · ∇vp dx =

∫
Fp
fvp dx+

∫
γp
gvp dx+

∫
γ0,p

∂u

∂nF
vp ds, ∀vp ∈ H1

(
Fp
)
. (3.37)

Consequently, from (3.36) and (3.37), for all vp ∈ H1
(
Fp
)
,

∫
Fp
∇e · ∇vp dx =

∫
γ0,p

∂ (u− ud)
∂nF

vp ds+
∫
γr

(
g − ∂ud

∂nF

)
vp ds. (3.38)

Let v ∈ H1
0,ΓD(Ω), then v|Ω? ∈ H1

0,ΓD(Ω?) and v|Fp ∈ H1
(
Fp
)
. Therefore, from equa-

tions (3.35) and (3.38), since n0 = −nF on γ0,p, and since n = nF on γr, then recalling
the definitions of Σ in (3.28) and dσ in (3.29), we obtain∫

Ω
∇e · ∇v dx =

∑
σ∈Σ

∫
σ
dσv ds. (3.39)

Now, if we take v = e ∈ H1
0,ΓD(Ω) in (3.39), then

|e|21,Ω =
∑
σ∈Σ

∫
σ
dσe ds =

∑
σ∈Σ

[∫
σ

(
dσ − dσ

σ
)

(e− eσ) ds+ dσ
σ
∫
σ
e ds

]
. (3.40)

For each σ ∈ Σ, the first terms of (3.40) can be estimated as in (3.17), using Lemma 2.3.8,
trace inequalities and the discrete Cauchy-Schwarz inequality. Thus we obtain:

∑
σ∈Σ

∫
σ

(
dσ − dσ

σ
)

(e− eσ) ds .
∑
σ∈Σ
|σ|

1
2(n−1)

∥∥∥dσ − dσσ∥∥∥0,σ
|e| 1

2 ,σ

.

 ∑
σ∈{γn,γr}

|σ|
1

2(n−1)
∥∥∥dσ − dσσ∥∥∥0,σ

 ‖e‖1,Ω

+ |γ0,p|
1

2(n−1)
∥∥∥dγ0,p − dγ0,p

γ0,p
∥∥∥

0,γ0,p
‖e‖1,Ω?

.

∑
σ∈Σ
|σ|

1
n−1

∥∥∥dσ − dσσ∥∥∥2

0,σ

 1
2

|e|1,Ω. (3.41)

Moreover, for each σ ∈ Σ, the last terms of (3.40) can be estimated using Lemma 2.3.9,
trace inequalities and the discrete Cauchy-Schwarz inequality to obtain
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∑
σ∈Σ

dσ
σ
∫
σ
e ds .

∑
σ∈Σ

∣∣∣dσσ∣∣∣ |σ| 12 ‖e‖0,σ

.

 ∑
σ∈{γn,γr}

∣∣∣dσσ∣∣∣ cσ |σ| 1
2(n−1) + 1

2

 ‖e‖ 1
2 ,∂Ω

+
∣∣∣dγ0,p

γ0,p
∣∣∣ cγ0,p |γ0,p|

1
2(n−1) + 1

2 ‖e‖ 1
2 ,∂Ω?

.

∑
σ∈Σ

c2
σ |γσ|

n
n−1

∣∣∣dσσ∣∣∣2
 1

2

|e|1,Ω. (3.42)

Therefore, combining (3.40), (3.41) and (3.42), and simplifying on both sides, we obtain
the desired result.

3.4.2 Efficiency

In this section, we state and prove that the error indicator defined in (3.30) is efficient,
that is, it is a lower bound for the defeaturing error, up to oscillations. In the case n = 2,
the flux conservation assumptions (3.31) are also required.

Theorem 3.4.5. Consider the same notation and assumptions as in Theorem 3.4.4,
let Σ be defined as in (3.28), and assume that all σ ∈ Σ are also regular according to
Definition 2.1.3 with |γn| ' |γr| ' |γ0,p|. Suppose that either n = 3, or n = 2 and the flux
conservation conditions (3.31) are satisfied. Then the defeaturing error, in the energy
norm, bounds up to oscillations the estimator ED(ud) introduced in (3.30), that is

ED(ud) . |u− ud|1,Ω + osc(ud), osc(ud) := |Γ|
1

2(n−1)

∑
σ∈Σ
‖dσ −Πm(dσ)‖20,σ

 1
2

(3.43)

for any m ∈ N, with Γ defined in (3.28), dσ defined in (3.29), and Πm such that
Πm|σ ≡ Πm,σ for all σ ∈ Σ, Πm,σ being the extension of the Clément operator defined
in (3.8).

Proof. As before, let e := u − ud ∈ H1
0,ΓD(Ω). Then from equation (3.39), for all

v ∈ H1
0,ΓD(Ω), ∑

σ∈Σ

∫
σ
dσv ds =

∫
Ω
∇e · ∇v dx ≤ |e|1,Ω|v|1,Ω. (3.44)

Now, let H :=
{
v ∈ H

1
2
00 (Γ) : v|σ ∈ H

1
2
00(σ), for all σ ∈ Σ

}
, equipped with the norm

‖ · ‖H :=

∑
σ∈Σ
‖ · ‖2

H
1/2
00 (σ)

 1
2

,
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and let H∗ be its dual space equipped with the dual norm ‖·‖H∗ . Recall that Ω? := Ω\Fp,
so that Ω = int

(
Ω? ∪ Fp

)
. So for all w ∈ H, let us define piecewise the function

uw ∈ H1
0,∂Ω\(γn∪γr)(Ω) as the unique solution of
−∆

(
uw|Fp

)
= 0 in Fp

uw|Fp =
(
w|γr∪γ0,p

)? on ∂Fp,

−∆ (uw|Ω?) = 0 in Ω?

uw|Ω? =
(
w|γn∪γ0,p

)? on ∂Ω?,

where
(
w|γr∪γ0,p

)? and
(
w|γn∪γ0,p

)? are the extensions by 0 of w|γr∪γ0,p on ∂Fp and of
w|γn∪γ0,p on ∂Ω?, respectively. Then by continuity of the solution on the data and from
Lemma 2.3.11,

|uw|1,Ω =
(
|uw|21,Fp

+ |uw|21,Ω?

) 1
2

.
(∥∥(w|γr∪γ0,p

)?∥∥2
1
2 ,∂Fp

+
∥∥(w|γn∪γ0,p

)?∥∥2
1
2 ,∂Ω?

) 1
2

=
(
‖w‖2

H
1/2
00 (γr∪γ0,p)

+ ‖w‖2
H

1/2
00 (γn∪γ0,p)

) 1
2
. ‖w‖H . (3.45)

So, recalling that by definition, dΣ|σ = dσ on each σ ∈ Σ, thanks to (3.44) and (3.45)
and since H1

0,∂Ω\(γn∪γr)(Ω) ⊂ H1
0,ΓD(Ω), then

‖dΣ‖H∗ = sup
w∈H
w 6=0

∫
Γ
dΣw ds

‖w‖H
. sup

w∈H
w 6=0

∑
σ∈Σ

∫
σ
dσuw ds

|uw|1,Ω
≤ sup

v∈H1
0,ΓD

(Ω)
v 6=0

∑
σ∈Σ

∫
σ
dσv ds

|v|1,Ω
≤ |e|1,Ω.

(3.46)

Moreover, using Remark 3.4.3 if n = 3, or Remark 3.4.2 if n = 2 and the flux conservation
conditions (3.31) are satisfied, then

ED(ud) .

∑
σ∈Σ
|σ|

1
n−1 ‖dσ‖20,σ

 1
2

.

Therefore, using the triangle inequality, and the fact that |γn| ' |γr| ' |γ0,p| ' |Γ|, then

ED(ud)2 ≤
∑
σ∈Σ
|σ|

1
n−1 ‖Πm(dσ)‖20,σ +

∑
σ∈Σ
|σ|

1
n−1 ‖dσ −Πm(dσ)‖20,σ

. |Γ|
1

n−1 ‖Πm(dΣ)‖20,Γ + |Γ|
1

n−1 ‖dΣ −Πm(dΣ)‖20,Γ .

Now, we use the definition of the broken norm in H∗ to apply the inverse inequality of
Lemma 2.3.12. Recalling definition (3.43) of the oscillations, and using again the triangle
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inequality, we thus obtain

ED(ud)2 . ‖Πm (dΣ)‖2H∗ + osc (ud)2

.
(
‖dΣ‖H∗ + ‖Πm (dΣ)− dΣ‖H∗ + osc (ud)

)2
. (3.47)

Furthermore, applying Lemma 2.3.11 and then Lemma 2.3.7, we have

‖Πm (dΣ)− dΣ‖H∗ . ‖Πm (dΣ)− dΣ‖H−1/2
00 (Γ)

. |Γ|
1

2(n−1) ‖Πm (dΣ)− dΣ‖0,Γ = osc (ud) . (3.48)

To conclude, we plug in (3.46) and (3.48) into equation (3.47), and thus

ED(ud) . |e|1,Ω + osc(ud).

Remark 3.4.6. As in Remark 3.2.5, when the data is regular, it is always possi-
ble to choose m large enough so that the asymptotic behavior of the oscillations is
O
(
|Γ|m+ 1

2(n−1)

)
. Therefore, we can make sure that the oscillations get small with

respect to the defeaturing error, when the feature gets small.

3.5 Numerical considerations and experiments

From the definition of the a posteriori defeaturing error estimator (3.30) in the most
general case of a complex feature, we only need to perform the following steps to estimate
the error introduced by defeaturing the problem geometry.

(i) Choose the Neumann data g0 and the extension of the right hand side f in the
negative component Fn of feature F , and solve the defeatured problem (3.3).

(ii) For the positive component Fp of the feature F , solve the local extension prob-
lem (3.5). However, features may be geometrically complex, and the solution of the
extension problem an unwanted burden. Therefore, instead of (3.5), one can solve
the extension problem (3.6) in a chosen (simple) domain F̃p that contains Fp and
such that γ0,p ⊂

(
∂F̃p ∩ ∂Fp

)
.

(iii) Compute the boundary averages and integrals dσ
σ and

∥∥∥dσ − dσσ∥∥∥0,σ
for each σ ∈ Σ,

as defined in (3.29). That is, we suitably evaluate the error made on the normal
derivative of the solution on specific parts of the boundaries of the features.

In the remaining part of this section, we present a few numerical examples to illustrate
the properties of the proposed defeaturing error estimator. While validating the theory
developed in Sections 3.2 and 3.4, we study in particular:
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• the impact of the shape and size of the feature on the defeaturing error and
estimator, and how the proposed estimator can distinguish between a very small
but important feature and a large feature which has no impact on the defeaturing
error;

• the convergence of the defeaturing error and estimator with respect to the size of
F when F is a negative, positive or complex two-dimensional feature, and when F
is a negative or positive three-dimensional feature;

• the choice of defeaturing data (extension of the right hand side f in a negative
feature, and Neumann boundary conditions g0 and g̃), and how a bad choice can
lead to the divergence of the defeaturing error and estimator;

• the choice of feature extension F̃ and its impact on the analysis;

• two examples in which the feature is not a Lipschitz domain.

We use IGA for the numerical approximation of the considered PDEs. This numerical
method will be introduced in detail in Chapter 6. In order to neglect the error due to
the numerical approximation, a rather fine tensor-product mesh is used. In particular,
small elements are required close to the boundaries of the features, and the size of the
mesh is chosen such that the rate of convergence of the defeaturing error does not change
any more under mesh refinement. For the geometrical description of the features and the
local meshing process required, multipatch and trimming techniques have been used, see
Chapter 6 and, e.g., [Antolín et al., 2019, 2022; Wei et al., 2021].

3.5.1 Impact of some feature properties on the defeaturing error

In this section, we study the impact of the shape and the size of a feature on the
defeaturing error and estimator, and of the choice of the defeatured Neumann data.
Moreover, as the estimator depends upon the size of the features and the size of the
solution gradients “around” the feature, we will be able to show an example where small
features count more than big ones.

3.5.1.1 Feature shape

In this example, we compare the behavior of the error and the estimator on the same
Poisson problem in three different geometries: one with a star-shaped feature, another
one with a circular feature, and the last one with a squared feature. Let

Ω0 :=
{
x ∈ R2 : ‖x‖`2 < 1

}
,

let Ωt := Ω0 \ Ft, Ωc := Ω0 \ Fc and Ωs := Ω0 \ Fs, with
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Ft

Ωt

γt

(a) Domain with a star-
shaped feature.

Fc

Ωc

γc

(b) Domain with a circular
feature.

Fs

Ωs

γs

(c) Domain with a square-
shaped feature.

Figure 3.7 – Numerical test 3.5.1.1 – Comparison between feature shapes.

Domain Ω Perime-
ter of F Area of F ED(u0) |u− u0|1,Ω

|u− u0|1,Ω
|u|1,Ω

ηeff

Ωt, rt = 1.83 · 10−2 0.400 2.07 · 10−3 1.98 · 10−3 1.56 · 10−3 2.49 · 10−3 1.27
Ωc, rc = 6.37 · 10−2 0.400 1.27 · 10−2 1.21 · 10−2 8.42 · 10−3 1.37 · 10−2 1.45
Ωs, rs = 5.00 · 10−2 0.400 1.00 · 10−2 9.57 · 10−3 6.74 · 10−3 1.07 · 10−2 1.42
Ωc, rc = 5.64 · 10−2 0.355 1.00 · 10−2 1.01 · 10−2 6.76 · 10−3 1.08 · 10−2 1.51
Ωt, rt = 4.02 · 10−2 0.880 1.00 · 10−2 7.53 · 10−3 6.65 · 10−3 1.38 · 10−2 1.13

Table 3.1 – Numerical test 3.5.1.1 – Results of the comparison between feature shapes.

• Ft the 10-branch regular star of inner radius rt > 0, outer radius 2rt, and which is
centered at (0, 0)T ,

• Fc the circle of radius rc > 0, centered at (0, 0)T ,

• Fs the square of side length 2rs > 0, centered at (0, 0)T ,

as illustrated in Figure 3.7. We choose rt, rc, rs > 0 such that Ft, Fc and Fs have, first,
the same area, and then, the same perimeter. We consider Poisson problem (3.1) solved
in Ωt, Ωc and in Ωs, and its defeatured version (3.3). We take f ≡ 1 in Ω0, gD ≡ 0
on ΓD := ∂Ω0, and g ≡ 0 on ∂Ft, on ∂Fc and on ∂Fs. The results are summarized in
Table 3.1.

We can see that the larger the area of a feature, the larger the defeaturing error and
estimator. Moreover, the effectivity index ηeff only changes slightly when considering
the same feature but with different measures. Based on the developed theory, ηeff is
independent of the measure of the considered feature and its boundary. Therefore, the
small change in the effectivity index is due to numerical approximation, the solutions
not being exact but being obtained on a very fine mesh. Furthermore, the shape of the
feature does not impact much the defeaturing estimator: we do not observe any major
difference between the smooth feature (the circle), the convex non-smooth Lipschitz
feature (the square), and the non-convex non-smooth Lipschitz feature (the star). Our
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F 1

F 2

Ω

(a) Exact domain Ω with two features (not at scale). (b) Exact solution in Ω.

Figure 3.8 – Numerical test 3.5.1.2 – Geometry with two features of different size, and
exact solution.

theory indeed treats those different types of geometries in the same way. Finally, even if
the estimator is referred to the absolute error, both the relative and the absolute errors
are given to be able to quantify the magnitude of the defeaturing effect.

3.5.1.2 Feature size

Removing a small feature where the solution of the PDE has a high gradient can
significantly increase the defeaturing error, while the error might almost not be affected
when removing a large feature where the solution of the PDE is nearly constant. The
following example shows that our estimator is also able to capture this. Let Ω0 := (0, 1)2

and Ω := Ω0 \
(
F 1 ∪ F 2

)
, where F 1 and F 2 are circles of two different sizes given by

F 1 :=
{
x ∈ R2 :

∥∥∥x− x1
∥∥∥
`2
< 10−3, x1 =

(
1.1 · 10−3, 1.1 · 10−3

)T}
,

F 2 :=
{
x ∈ R2 :

∥∥∥x− x2
∥∥∥
`2
< 10−1, x2 =

(
8.9 · 10−1, 8.9 · 10−1

)T}
.

similarly to Figure 3.8a. We consider Poisson problem (3.1) solved in Ω, and its defeatured
version (3.3) in Ω0. Let f(x, y) := −128e−8(x+y) in Ω0, gD(x, y) := e−8(x+y) on

ΓD :=
(
[0, 1)× {0}

)
∪
(
{0} × [0, 1)

)
,

the bottom and left sides, g(x, y) := −8e−8(x+y) on ∂Ω0 \ ΓD, and finally g ≡ 0 on
∂F 1 ∪ ∂F 2. Since the geometry contains two features, we call E 1

D and E 2
D the defeaturing

estimators defined in (3.11) and computed, respectively, on the boundary of F 1 and on
the boundary of F 2, and we consider

ED(u0) :=
(
E 1
D(u0)2 + E 2

D(u0)2
) 1

2 (3.49)

as the total defeaturing estimator.

With this choice, the solution to Poisson’s problem has a very high gradient near feature
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E 1
D(u0) E 2

D(u0) ED(u0) |u− u0|1,Ω
|u− u0|1,Ω
|u|1,Ω

ηeff

5.03 · 10−2 7.86 · 10−6 5.03 · 10−2 1.45 · 10−2 2.05 · 10−2 3.47

Table 3.2 – Numerical test 3.5.1.2 – Results of the comparison between feature sizes.

F 1, and it is almost constantly zero near feature F 2, as we can observe in Figure 3.8b.
Therefore, one can expect the presence of F 1 to be more important than F 2 with respect
to the solution accuracy, even if F 1 is notably smaller than F 2. The results are presented
in Table 3.2, where we can see that this is indeed the case: the estimator on F 2 is four
orders of magnitude smaller than the estimator on F 1, even if the radius of F 1 is two
orders of magnitude smaller than the one of F 2. This confirms the fact that the proposed
estimator as written in (3.30) correctly trades off the measure of the features and their
position in the geometrical domain, in order to correctly assess the impact of defeaturing
on the solution.

Finally, and as in the previous numerical experiment of Section 3.5.1.1, both the relative
error and the absolute error are given to be able to quantify the magnitude of the
defeaturing effect. In the following, we will be interested in the convergence of the error
and estimator with respect to the size of the feature. Since the relative error is a scaling
of the absolute error, the convergence will be the same whether one considers the relative
or the absolute error. Moreover, since the magnitude of the error depends on the problem
at hand (geometries, size of the feature, and PDE data), and since the derived estimator
is referred to the absolute error, we will only look at the absolute defeaturing error in
the next experiments.

3.5.2 Error convergence with respect to the feature size

We now analyze the convergence of our estimator with respect to the size of the feature
and we compare it with the convergence of the defeaturing error. Moreover, we show an
example in which the choice of the defeatured problem data influences drastically the
convergence of both the estimator and the defeaturing error.

3.5.2.1 Two-dimensional geometries

We begin with two-dimensional examples of geometries with a negative feature. For

k = 0, 1, . . . , 6, let ε = 10−2

2k , and let Ωi
ε := Ω0 \ F iε for i = 1, 2 with Ω0 := (0, 1)2 and

F 1
ε :=

{
x = (x, y)T ∈ R2 :

∥∥∥x− (0.5, 1)T
∥∥∥
`2
< ε, y < 1

}
,

F 2
ε := (1− ε, 1)2,
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γ0

Ω1
ε

F 1
εγ

(a) Geometry with
negative feature F 1

ε .

γ0

Ω2
ε

F 2
ε
γ

(b) Geometry with
negative feature F 2

ε .

γ0

Ω0

F 3
ε

γ

(c) Geometry with
positive feature F 3

ε .

γ0

Ω0

F 4
ε

γ

(d) Geometry with
positive feature F 4

ε .

Figure 3.9 – Numerical test 3.5.2.1 – 2D geometries Ωi
ε, i = 1, 2, 3, 4.

as in Figures 3.9a and 3.9b. For i = 1, 2, we consider Poisson problem (3.1) solved in
Ωi
ε, and its defeatured version (3.3) in Ω0. We take f(x, y) := 10 cos(3πx) sin(5πy) in Ω0,

gD ≡ 0 on
ΓD := (0, 1)× {0},

g ≡ 0 on ΓN := ∂Ωi
ε \ ΓD, and g0 ≡ 0 on ∂Ω0 \ ∂Ωi

ε. We respectively call u(i) and u(i)
0

the exact and defeatured solutions.

The results are presented in Figure 3.10a. Both the error and the estimator converge
with respect to the size of the feature as ε ∝ |γ| in the first geometry Ω1

ε, and as ε2 ∝ |γ|2

in the second geometry Ω2
ε. The difference in asymptotic behavior of the error depends

on geometric symmetries and on the Neumann boundary conditions. Indeed, Ω2
ε has

features with sides parallel to ∂Ω0. Moreover, the effectivity index is indeed independent
of the size of the feature since it remains nearly equal to 1.81 and 1.78, respectively, for
all values of ε. That is, as predicted by the theory in Theorems 3.2.3 and 3.2.3, the
estimator is both reliable and efficient, here in dimension two, and its effectivity index is
independent of the size of the considered negative feature.

Let us now consider two-dimensional examples of geometries with a positive feature. Let
Ω0, ΓD, f , gD and g be as before, and let Ωj

ε := int
(
Ω0 ∪ F jε

)
for j = 3, 4 with

F 3
ε :=

{
x = (x, y)T ∈ R2 :

∥∥∥x− (0.5, 1)T
∥∥∥
`2
< ε, y > 1

}
,

F 4
ε := (1− ε, 1)× (1, 1 + ε),

as in Figures 3.9c and 3.9d. Let ΓN := ∂Ωj
ε \ ΓD. For each j = 3, 4, we consider the

same Poisson problem (3.1) as before, but solved in Ωj
ε. We also solve its defeatured

version (3.3) in Ω0 with g0 ≡ 0 on ∂Ω0 \ ∂Ωj
ε. Then, we extend the defeatured solution

to F jε by solving (3.6) with F̃ := F jε . We respectively call u(j) and u(j)
0 the exact and

defeatured solutions, and u(j)
d the defeatured solution extended to F jε .

The results are presented in Figure 3.10b. As for the negative feature case, the error in
Ω0 and the estimator converge with respect to the size of the feature as ε ∝ |γ0| in the

62



3.5. Numerical considerations and experiments

10−4 10−3 10−2

10−7

10−6

10−5

10−4

10−3

10−2

ε

Er
ro
r

∣∣∣u(1) − u(1)
0

∣∣∣
1,Ω1

ε

ED
(
u

(1)
0

)
O(ε)∣∣∣u(2) − u(2)

0

∣∣∣
1,Ω2

ε

ED
(
u

(2)
0

)
O
(
ε2)

(a) Geometries Ω1
ε, Ω2

ε with a negative feature.

10−4 10−3 10−2
10−8

10−7

10−6

10−5

10−4

10−3

10−2

ε

Er
ro
r

∣∣∣u(3) − u(3)
d

∣∣∣
1,Ω3

ε

ED
(
u

(3)
d

)
O(ε)∣∣∣u(4) − u(4)

d

∣∣∣
1,Ω4

ε

ED
(
u

(4)
d

)
O
(
ε2)
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ε with a positive feature.
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(c) Geometry Ω5
ε with a complex feature.
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(d) Geometry Ω6
ε with a complex feature.

Figure 3.10 – Numerical test 3.5.2.1 – Convergence of the error and estimator in 2D
domains with one feature.

first geometry Ω3
ε, and as ε2 ∝ |γ|2 in the second geometry Ω4

ε. Again, the difference in
asymptotic behavior of the error depends on symmetries and on the Neumann boundary
conditions. Indeed, Ω4

ε has features with sides parallel to ∂Ω0. Moreover, the effectivity
index is indeed almost independent of the size of the feature since it remains nearly equal
to 2.93 and 3.22, respectively, for all values of ε. That is, as predicted by the theory in
Theorems 3.4.4 and 3.4.5, the estimator is both reliable and efficient, here in dimension
two, and its effectivity index is independent of the size of the considered positive feature.
We also remark that the effectivity indices for the positive features are a little bit larger
than the ones for the negative features, and this may come from the smoothness of the
defeatured solution ud, see Remark 3.5.1.
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Ω5
ε

F 5
p,ε

F 5
n,ε

(a) Exact domain Ω5
ε.

γ0,p

γ0,n
γp

γn

(b) Zoom on the upper
boundary of Ω0 (up)
and Ω5

ε (down).

Ω6
ε

F 6
p,ε

F 6
n,ε

(c) Exact domain Ω6
ε.

γ0,p

γ0,n
γp

γn

(d) Zoom on the upper
boundary of Ω0 (up)
and Ω6

ε (down).

Figure 3.11 – Numerical test 3.5.2.1 – Exact domains Ω5
ε and Ω6

ε.

Let us finally consider two-dimensional examples of geometries with a general complex
feature. Let Ω0, ΓD, f , gD and g be again as before, and for ` = 5, 6, let

Ω`
ε := int

(
Ω0 ∪ F `n,ε \ F `p,ε

)
where, as illustrated in Figure 3.11,

F 5
p,ε := (0.5− ε, 0.5)× (1, 1 + ε),
F 5

n,ε := (0.5, 0.5 + ε)× (1− ε, 1),

F 6
p,ε :=

(
0.5− 3ε

4 , 0.5 + ε

4

)
× (1, 1 + ε) ,

F 6
n,ε :=

(
0.5− ε

4, 0.5 + 3ε
4

)
× (1− ε, 1) .

For each ` = 5, 6, let ΓN := ∂Ω`
ε \ ΓD and we consider the same Poisson problem (3.1) as

before, but solved in Ω`
ε. We also solve its defeatured version (3.3) in Ω0 with g0 ≡ 0 on

γ0. Note from Figure 3.11 that γ0 is different whether ` = 5 or ` = 6. Then, we extend
the defeatured solution to F `ε by solving (3.6) with F̃ := F `n,ε. As before, we respectively
call u(`) and u(`)

0 the exact and defeatured solutions, and u(`)
d the defeatured solution

extended to F `n,ε.

The results are presented in Figures 3.10c and 3.10d. As for the negative and positive
feature cases, the error in Ω0 and the estimator converge with respect to the size of the
feature as ε ∝ |γn| ' |γ0,p| in both geometries Ω5

ε and Ω6
ε. Moreover, the effectivity index

is indeed almost independent of the size of the feature since it remains nearly equal to
1.71 and 1.84, respectively, for all values of ε. That is, as predicted by the theory in
Theorems 3.4.4 and 3.4.5, the estimator is both reliable and efficient, here in dimension
two, and its effectivity index is independent of the size of the considered complex feature.
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Figure 3.12 – Numerical test 3.5.2.2 – 3D geometries Ωi
ε, i = 1, 2, 3, 4.

3.5.2.2 Three-dimensional geometries

Let us first consider three-dimensional examples of geometries with a negative feature.

Let ε = 10−2

2k for k = 0, 1, . . . , 6, and Ωi
ε := Ω0 \ F iε for i = 1, 2 with Ω0 := (0, 1)3 and

F 1
ε :=

(
0.5− ε

2, 0.5 + ε

2

)
× (1− ε, 1)× (0, ε),

F 2
ε := F 1

ε +
(

0.5− ε

2, 0, 0
)T

,

as in Figures 3.12a and 3.12b. For each i = 1, 2, we consider Poisson problem (3.1) solved
in Ωi

ε, and its defeatured version (3.3) in Ω0. We take

f(x, y) := 10 cos(3πx) sin(5πy) sin(7πz) in Ω,
gD ≡ 0 on ΓD := (0, 1)× {0} × (0, 1),

g ≡ 0 on ΓN := ∂Ωi
ε \ ΓD, and g0 ≡ 0 on ∂Ω0 \ ∂Ωi

ε.

The results are presented in Figure 3.13a. Both the error and the estimator converge with
respect to the size of the feature as ε 3

2 ∝ |γ0|
3
4 in the first geometry Ω1

ε, and as ε 5
2 ∝ |γ|

5
4

in the second geometry Ω2
ε. Moreover, the effectivity index is indeed independent of the

size of the feature since it remains nearly equal to 1.87 and 1.92, respectively, for all
values of ε. That is, again as predicted by the theory in Theorems 3.2.3 and 3.2.4, the
estimator is both reliable and efficient, here in dimension three, and its effectivity index
is independent of the size of the considered negative feature.

Let us now consider three-dimensional examples of geometries with a positive feature.
Let Ω0, ΓD, f , gD, and g be as before, and let Ωj

ε := int
(
Ω0 ∪ F jε

)
for j = 3, 4 with

F 3
ε :=

(
0.5− ε

2, 0.5 + ε

2

)
× (1, 1 + ε)× (0, ε),

F 4
ε := F 3

ε +
(

0.5− ε

2, 0, 0
)T

,
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Figure 3.13 – Numerical test 3.5.2.2 – Convergence of the error and of the estimator in
3D domains with one feature.

as in Figures 3.12c and 3.12d. Let ΓN := ∂Ωj
ε \ ΓD. For each j = 3, 4, we consider the

same Poisson problem (3.1) as before, but solved in this Ωj
ε. We also solve its defeatured

version (3.3) in Ω0 with g0 ≡ 0 on ∂Ω0 \ ∂Ωε. Then we extend the defeatured solution to
F jε by solving (3.6) with F̃ := F jε .

The results are presented in Figure 3.13b. As for the negative feature case, the error in
Ω0, the error in F jε and the estimator converge with respect to the size of the feature
as ε 3

2 ∝ |γ0|
3
4 in the first geometry Ω3

ε, and as ε 5
2 ∝ |γ0|

5
4 in the second geometry Ω4

ε.
Moreover, the effectivity index is indeed almost independent of the size of the feature
since it remains nearly equal to 3.10 and 3.22, respectively, for all values of ε. That
is, again as predicted by the theory in Theorems 3.4.4 and 3.4.5, the estimator is both
reliable and efficient, here in dimension three, and its effectivity index is independent of
the size of the considered positive feature. Finally, and as in the two-dimensional case,
we remark that the effectivity indices for the positive features are a little bit larger than
the ones for the negative features.

3.5.2.3 Effect of the choice of the defeatured problem data

Let us study the effect of the choice of the defeatured problem data on the convergence
of the defeaturing error and estimator. In particular, we will see that in the example of a
geometry with one negative feature F , the convergence of the error and the estimator

crucially depends on the value of the average
(
g + ∂u0

∂nF

)γ
. As seen in Remark 3.2.1,

this average only depends on the Neumann boundary conditions g on γ and g0 on γ0,
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Figure 3.14 – Numerical test 3.5.2.3 – Convergence of the error and of the estimator with
different Neumann boundary conditions.

and on the extension of the right hand side f in F . This means that one can obtain
an optimal convergence rate of the defeaturing error by wisely choosing the defeatured
data g0 and f , considering the original data g. If possible, g0 and f need to be chosen to
satisfy the compatibility condition (3.12), or at least in such a way that the second term
of the estimator in (3.11) converges faster than the first one. The same observation can
be made in the positive feature case.

To show this, let ε = 10−2

2k for k = 0, 1, . . . , 6. We consider a 2D geometry with one
negative feature. More precisely, let Ω0 be the disk centered at (0, 0)T of radius 1, let
Fε be the disk centered at (0, 0)T of radius ε, and let Ωε := Ω0 \ Fε, as represented
in Figure 3.7b. We solve Poisson problem (3.1) in Ωε with f ≡ 1 in Ωε, gD ≡ 0 on
ΓD := ∂Ω0, and we choose different Neumann data g = gi on ∂Fε for i = 1, . . . , 4, where
g1 ≡ 0, g2 ≡ 1, g3 ≡ ε−1, and g4 ≡ ε−3. Then, we solve the defeatured problem (3.3)
in Ω0, for which we need to choose an extension of f in Fε, that we still call f . This
extension should somehow mimic the behavior of the Neumann data g, as required by
the compatibility condition, but instead of that, we choose the trivial extension f ≡ 1
in all four cases, and we will verify whether this is always a good choice or not. For
i = 1, . . . , 4, we call u(i) and u(i)

0 the solutions of (3.1) and (3.3), respectively.

The results are presented in Figure 3.14. As we can see and as expected, the proposed
estimator follows the convergence of the defeaturing error in all four cases. Moreover,
the effectivity index always remains the same, as we were also expecting since the shape
of the geometry never changes. However, we see that the trivial extension of f in F is
not always a good choice since it slows down the convergence when g = g2, it does not
permit the error to decrease with ε when g = g3, and it even implies the error to explode
if ε decreases when g = g4. The explanation is present in the expression of the estimator
in (3.11): indeed, in the case g = g1, the first term of (3.11) is dominant, while in the
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2
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Figure 3.15 – Numerical test 3.5.3.1 – Geometries ΩR with a round, for R = 1 and R = 1
2 .

other cases, the second term dominates because of the value of
(
g + ∂u0

∂nF

)γ
due to the

bad choice of f in Fε. Consequently, the estimator not only tells us whether a feature is
important for the given problem at hand, but it also tells us whether the choice of the
defeaturing problem data is right, or if it should be reconsidered.

3.5.3 Non-Lipschitz features: fillets and rounds

Classical features one finds in design for manufacturing are fillets and rounds, that
allow for example the use of round-tipped end mills to cut out some material. However,
when considered as features isolated from the rest of the domain, fillets and rounds are
non-Lipschitz feature domains. The a posteriori analysis of defeaturing in the presence
of non-Lipschitz features is not covered by the presented theory. Nevertheless, thanks to
the following numerical examples, we show that the proposed estimator still manages to
capture the behavior of the defeaturing error when the features are non-Lipschitz fillets
and rounds.

3.5.3.1 Round: a negative non-Lipschitz feature

Let us first consider the case of a round, that is, the rounding process creates a convex
domain. For R ∈ (0, 1], and as represented in Figure 3.15, let

ΩR :=
{
x = (x, y)T ∈ R2 :

∥∥∥x− (R, 1−R)T
∥∥∥
`2
< R, x < R, y > 1−R

}
∪
(
(0, 1)× (0,R]

)
∪
(
[R, 1)× [1−R, 1)

)
,

Ω0 := (0, 1)2, and FR := Ω0 \ ΩR. We remark that FR is not a Lipschitz domain, that is,
this case is not covered by the presented theory. We consider Poisson problem (3.1) with
f ≡ 0 in ΩR, gD(x, y) := x2(1− x)2 + y2(1− y)2 on

ΓD :=
(
(0, 1]× {0}

)
∪
(
{1} × [0, 1)

)
,
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R ED(u0) |u− u0|1,ΩR ηeff

1.00 6.83 · 10−3 2.37 · 10−3 2.88
0.99 6.48 · 10−3 2.27 · 10−3 2.85
0.50 3.36 · 10−4 1.26 · 10−4 2.67
0.25 2.08 · 10−5 7.77 · 10−6 2.67
0.125 1.30 · 10−6 4.86 · 10−7 2.67

Table 3.3 – Numerical test 3.5.3.1 – Results for the geometry with a round.

and g ≡ 0 on ΓN := ∂ΩR \ ΓD. We solve the defeatured Poisson problem (3.3) with the
same data and g0 ≡ 0 on γ0 := ∂FR \ ΓN .

The results are presented in Table 3.3, and for all considered values of R, we indeed have
|u − u0|1,ΩR . ED(u0) with a low effectivity index. In particular, the effectivity index
is almost the same for all considered values of R in (0, 0.5) while it is slightly larger
for R ∈ (0.5, 1), since the geometries for R ∈ (0, 0.5) are almost an homothety of one
another, while it is not when R > 0.5 because of the closeness of the boundary ΓD from
the boundary γ. This example shows that our estimator estimates well the defeaturing
error even if the feature is not a Lipschitz domain, and it confirms the fact that we
can indeed have a feature that is attached to the Dirichlet boundary, γ ∩ ΓD 6= ∅, but
γ ∩ ΓD = ∅ as in the case R = 1.

3.5.3.2 Fillet: a positive non-Lipschitz feature

Now, let us consider the case of a fillet, that is, the filleting process creates a non-convex
domain. Since the fillet F is a complex positive feature we possibly do not want to mesh,
we will consider two different feature extensions F̃ 1 and F̃ 2 containing F to solve the
extension problem (3.6). We will compare them, and we will also compare the results
with the one obtained without feature extension, that is, for F̃ = F . In particular, we
remark again that F is not a Lipschitz domain, that is, this example is not covered by
the presented theory. As illustrated in Figure 3.16, let

Ω0 := (0, 1)2 \
[1

2, 1
]2

, F̃ 1 :=
(1

2, 1
)2

,

F̃ 2 := F̃ 1 \
{
x = (x, y)T ∈ R2 :

∥∥∥x− (1, 1)T
∥∥∥
`2
≤ 1

4, x ≤ 1, y ≤ 1
}

,

F := F̃ 1 \
{
x = (x, y)T ∈ R2 :

∥∥∥x− (1, 1)T
∥∥∥
`2
≤ 1

2, x ≤ 1, y ≤ 1
}

,

Ω := int
(
Ω0 ∪ F

)
.

The feature extension F̃ 1 is the bounding box of F , it is therefore a very simple geometry
but

∣∣∣F̃ 1
∣∣∣� |F |. At the contrary, F̃ 2 is a little bit more complex, but

∣∣∣F̃ 2
∣∣∣ ≈ |F |.
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Figure 3.16 – Numerical test 3.5.3.2 – Geometry Ω = int
(
Ω0 ∪ F

)
with a fillet F , and

two possible extended features.

Extension ED(ud) |u− ud|1,Ω |u− u0|1,Ω0 |u− ũ0|1,F ηeff

F̃ 1 1.78 2.92 · 10−1 1.69 · 10−1 2.39 · 10−1 6.11
F̃ 2 1.71 2.89 · 10−1 1.69 · 10−1 2.34 · 10−1 5.93
F 1.33 2.69 · 10−1 1.69 · 10−1 2.01 · 10−1 4.94

Table 3.4 – Numerical test 3.5.3.2 – Results for the geometry with a fillet.

We consider Poisson problem (3.1) with f ≡ 0 in Ω,

gD(x, y) := cos (πx) + 10 cos(5πx)

on ΓD := (0, 1) × {0}, and g ≡ 0 on ΓN = ∂Ω \ ΓD. We solve the defeatured Poisson
problem (3.3) with the same data and with g0 ≡ 0 on γ0 := ∂Ω0 ∩ ∂F . Then, we solve
the Dirichlet extension problem (3.6) firstly in F̃ 1 and secondly in F̃ 2, with g̃ ≡ 0 on
γ̃ := ∂F̃ 1 \ γ0 and γ̃ := ∂F̃ 2 \ γ0, respectively. Finally, we also solve (3.6) by taking
F̃ := F itself.

The results are presented in Table 3.4, and we indeed have |u− ud|1,Ω . ED(ud) with
a reasonably low effectivity index in all three cases. Note that the effectivity index
is higher in this case than in the case of a round since not only the geometry Ω but
also the feature F are simplified, respectively by Ω0 and by F̃ 1 or F̃ 2. Moreover, F
contains the extension F̃ 1 that itself contains the extension F̃ 2, and this is reflected
both on the defeaturing error and on the estimator. Indeed, both the error and the
estimator are larger when the considered extension is F̃ 1 instead of F̃ 2, and smaller
when F̃ = F . Based on the developed theory and on the experiments of Section 3.5.2,
the effectivity index ηeff changes because the shapes of F , F̃ 1 and F̃ 2 are different, not
because an extension is bigger than the other one. Furthermore, the effectivity index on
the fillet is larger than the one on the round: as already remarked in Section 3.5.2, the
effectivity index is in general larger for positive features than for negative ones. Finally,
the effectivity indices for both the round and the fillet are larger than for the other
negative and positive features, respectively, and this can come from the fact that rounds
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and fillets are non-Lipschitz features.

Remark 3.5.1 (Effectivity indices). Let us summarize the observations made on the
behavior of the effectivity indices.

• The effectivity index of every test case is independent of the measure of the feature
(see Sections 3.5.2.1 and 3.5.2.2), but it depends on their shape (see Section 3.5.1.1).

• The observed effectivity indices are small when Lipschitz features are considered:
in both two and three dimensions, the value of the effectivity index ranges between
1 and 4 (see Sections 3.5.1 and 3.5.2), in general with smaller values for negative
features than for positive ones. While we have no evidence of it, the difference
possibly comes from the smoothness of the extended defeatured solution ud. Indeed,
in the positive feature case, a γ0-Dirichlet extension of u0 is necessary to define
the error in the whole geometry Ω. This extension is in H1(Ω) by definition, but
its gradient jumps at the boundary γ0, making it possibly less regular than the
defeatured solution that one can have in the negative feature case.

• The observed effectivity indices are larger when non-Lipschitz features are consid-
ered, but such geometries are not considered in the presented theory. The special
cases of rounds and fillets are analyzed in Section 3.5.3, and the observed effectivity
indices in those cases are smaller than 3 and 5, respectively.

• The observed effectivity indices in the case of an extended positive feature, that is,
a feature for which F̃ ) F , are larger than in the case of a positive feature, while
still remaining relatively small (see Section 3.5.3.2). Indeed, in the former case, not
only the geometry Ω but also the feature F are simplified, respectively by Ω0 and
by F̃ .
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4 A posteriori error estimation:
multi-feature geometries

When complex engineering designs are created, they may contain a large number of
features. In this chapter, we generalize the analysis of Chapter 3 to a geometry containing
Nf distinct complex features, for some Nf ∈ N, Nf ≥ 1. In particular, we generalize
the a posteriori defeaturing error estimator introduced in Chapter 3 to multi-feature
geometries. With the help of this a posteriori error estimator, we are then able to design
an adaptive strategy which performs geometric adaptivity. More precisely, this algorithm
is able to determine at each iteration step which features most affect the solution accuracy,
in order to add them to the simplified geometrical model at the next iteration.

This chapter is therefore structured as follows. In Section 4.1, we first extend the analysis-
aware defeaturing problem of Section 3.3 to multi-feature geometries. Subsequently, in
Section 4.2, we generalize the a posteriori analysis of the defeaturing error presented in
Section 3.4 to this framework. In particular, we introduce a defeaturing error estimator
which has similar properties as in the single feature case, and whose effectivity index is
independent of the number Nf of features. The analysis is extended to a linear elasticity
problem in Section 4.3, and eventually to Stokes equations in Section 4.4. We then
introduce in Section 4.5 a geometric adaptive strategy driven by the defeaturing error
estimators previously defined. Finally, in Section 4.6, we present a validation of the
previously presented results. As in Chapter 3, our validation is obtained by comparing
errors and defeaturing estimators for numerical solutions on very fine meshes. This
chapter closely follows [Antolín and Chanon, 2022], and the notation generalizes the one
used in Chapter 3.

4.1 Defeaturing Poisson’s problem: geometry with multi-
ple features

In this section, let us consider Poisson problem (3.2) solved in an exact geometry Ω which
contains Nf ≥ 1 distinct complex geometrical features composing the set F :=

{
F k
}Nf
k=1

.
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That is, for all k = 1, . . . ,Nf , feature F k is an open Lipschitz domain which is composed
of a (not necessarily connected) negative component F kn and a (not necessarily connected)
positive component F kp that can have a non-empty intersection. More precisely,

F k = int
(
F kp ∪ F kn

)
,

where F kn and F kp are open Lipschitz domains such that if we let

Fp := int

Nf⋃
k=1

F kp

 , Fn := int

Nf⋃
k=1

F kn

 , Ω? := Ω \ Fp,

then

Fp ⊂ Ω,
(
Fn ∩ Ω?

)
⊂ ∂Ω?.

In this setting, the defeatured geometry is defined as in (3.24) by

Ω0 := int
(
Ω? ∪ Fn

)
⊂ Rn, (4.1)

and as before, we assume that Ω? and Ω0 are open Lipschitz domains. Let us make the
following assumption on the features.

Assumption 4.1.1. The features in F are separated, that is, F k ∩ F ` = ∅ for every
k, ` = 1, . . . ,Nf , k 6= `.

Remark 4.1.2. In the currently considered setting in which features are discrete objects,
it is always possible to satisfy Assumption 4.1.1 by changing the numbering of the features.
Indeed, if there are k, ` = 1, . . . ,Nf such that F k ∩ F ` 6= ∅, then F k,` := int

(
F k ∪ F `

)
can be considered as a single feature that replaces the two features F k and F `. However,
the treatment of a geometry in which the boundary is complex everywhere is not treated
here, see also Section 9.2.5.

As in the previous chapter, let n0 be the unitary outward normal to Ω0, and for all
k = 1, . . . ,Nf , let nk ≡ nFk be the unitary outward normal to F kn and to F kp . Note that
we allow the same abuse of notation as in the single feature case whenever the outward
normal to F kn has opposite sign from the one of F kp . Similarly to the single feature case,
the analysis is performed under the following assumption on the exact problem (3.1):

Assumption 4.1.3. A Neumann boundary condition is imposed on the boundary of
the features, that is, for all k = 1, . . . ,Nf ,

ΓD ∩
(
∂F kn ∪ ∂F kp

)
= ∅.

Then, for all k = 1, . . . ,Nf , let us introduce the notation γk0,p, γk0,n, γk0 , γkp , γkn and γk
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analogous to the single feature case presented in Chapter 3, where an upper index k is
added to the quantities referring to feature F k. That is,

γk0 := int
(
γk0,n ∪ γk0,p

)
⊂ ∂Ω0 with γk0,n := ∂F kn \ ∂Ω?, γk0,p := ∂F kp \ ∂Ω,

γk := int
(
γkn ∪ γkp

)
⊂ ∂Ω with γkn := ∂F kn \ γk0,n, γkp := ∂F kp \ γk0,p,

so that ∂F kn = γkn ∪ γk0,n with γkn ∩ γk0,n = ∅, and ∂F kp = γkp ∪ γk0,p with γkp ∩ γk0,p = ∅.
Moreover, let

γ0 :=
Nf⋃
k=1

γk0 , γ0,n :=
Nf⋃
k=1

γk0,n, γ0,p :=
Nf⋃
k=1

γk0,p,

γ :=
Nf⋃
k=1

γk, γn :=
Nf⋃
k=1

γkn , γp :=
Nf⋃
k=1

γkp . (4.2)

Similarly to the single negative feature case, consider any L2-extension of the restriction
f |Ω? in all the negative components F kn , k = 1, . . . ,Nf , that we still write f ∈ L2(Ω0) by
abuse of notation. Then instead of (3.1), we solve the defeatured problem (3.3) whose
weak formulation is given in (3.4), and we obtain u0 ∈ H1

gD,ΓD(Ω0).

As previously, since we are interested in the energy norm of the defeaturing error “u−u0”
in Ω, we need to extend the defeatured solution u0 to the positive components F kp of
the features. Therefore, for all k = 1, . . . ,Nf , we follow the same rationale for F kp
as the one exposed in Chapter 3 for the positive component of a single positive or
complex feature: let F̃ kp ⊂ Rn be a suitable (simple) domain extension of the positive
component F kp of feature F k, i.e., it is a Lipschitz domain that contains F kp and such
that γk0,p ⊂

(
∂F̃ kp ∩ ∂F kp

)
. Furthermore, let

Gkp := F̃ kp \ F kp , (4.3)

as in (3.25), and assume that Gkp is Lipschitz for all k = 1, . . . ,Nf . As in the single
feature case, note that Gkp can be seen as a negative feature of F kp whose simplified
geometry is F̃ kp .

To simplify the following exposition and even if this hypothesis could easily be removed,
let us make the following assumption.

Assumption 4.1.4. Assume that

• F̃ kp ∩ F̃ `p = ∅ for all k, ` = 1, . . . ,Nf such that k 6= `,

• if we let F̃p :=
Nf⋃
k=1

F̃ kp , then F̃p ∩ Ω? = ∅.
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Then, and as illustrated in Figure 3.6 for the analogous single feature case, let us define

Gp :=
Nf⋃
k=1

Gkp, Ω̃ := int
(
Ω? ∪ F̃p

)
= int

(
Ω ∪Gp

)
,

Now, consider any L2-extension of the restriction f |Fkp in each Gkp, that we still write f
by abuse of notation. For all k = 1, . . . ,Nf , let ñk be the unitary outward normal to F̃ kp ,
let γ̃k := ∂F̃ kp \ ∂F kp , and let γkp be decomposed as γkp = int

(
γks ∪ γkr

)
, where γks and γkr

are open, γks is the part of γkp that is shared with ∂F̃ kp while γkr is the remaining part of
γkp , that is, the part that does not belong to ∂F̃ kp . This notation is also analogous to the
single feature case illustrated in Figure 3.6, and as in (4.2), let

γ̃ :=
Nf⋃
k=1

γ̃k, γs :=
Nf⋃
k=1

γks , γr :=
Nf⋃
k=1

γkr .

Now, for all k = 1, . . . ,Nf , let us extend the solution u0 of (3.3) on F̃ kp exactly as in (3.6),
but to lighten the notation in the multi-feature context, we will write

uk ≡ ũk0, for k = 1, . . . ,Nf . (4.4)

That is, the extension problem for k = 1, . . . ,Nf reads: after choosing g̃k ∈ H 1
2 (γ̃k), find

uk ≡ ũk0 ∈ H1
(
F̃ kp
)
, the weak solution of



−∆uk = f in F̃ kp
uk = u0 on γk0,p
∂uk
∂ñk = g̃k on γ̃k

∂uk
∂ñk = g on γks ,

(4.5)

that is, uk ∈ H1
u0,γk0,p

(
F̃ kp
)
satisfies for all vk ∈ H1

0,γk0,p

(
F̃ kp
)
,

∫
F̃kp

∇uk · ∇vk dx =
∫
F̃kp

fvk dx+
∫
γ̃k
g̃kvk ds+

∫
γks

gvk ds. (4.6)

Finally, let ud ∈ H1
gD,ΓD(Ω) be the extended defeatured solution, that is,

ud ≡

u0|Ω? in Ω? = Ω \ Fp

uk|Fkp = ũk0|Fkp in F kp , for all k = 1, . . . ,Nf .
(4.7)
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4.1. Defeaturing Poisson’s problem: geometry with multiple features

Ω1

Ω2 Ω3

F 1

F 2

F 3
n

F 3
p

Figure 4.1 – Domain Ω with three separated features, and a possible choice of subdomains
Ωk, k = 1, 2, 3, satisfying Assumption 4.1.5.

Then, the energy error of the defeaturing error is defined by

|||u− ud|||Ω = ‖∇(u− ud)‖0,Ω = |u− ud|1,Ω .

For the a posteriori error analysis of the defeatured problem in multi-feature geometries
(see Section 4.2 and Chapter 8), we will actually need a separability assumption on the
features that is stronger than Assumption 4.1.1. The following assumption is illustrated
in Figure 4.1:

Assumption 4.1.5. The features in F are separated, that is,

• F k ∩ F ` = ∅ for every k, ` = 1, . . . ,Nf , k 6= `,

• there exist sub-domains Ωk ⊂ Ω, k = 1, . . . ,Nf such that

◦ F kp ⊂ Ωk,
(
γkn ∪ γkr

)
⊂ ∂Ωk, γk0,p ⊂ ∂(Ωk ∩ Ω0),

◦
∣∣∣Ωk

∣∣∣ ' |Ω| where the hidden constant is independent of the size of the features,
i.e., the measure of Ωk is comparable with the measure of Ω, not with the
measure of the feature F k,

◦ Ns := max
J⊂{1,...,Nf}

#J :
⋂
k∈J

Ωk 6= ∅

 � Nf , that is, the maximum number

Ns of superposed sub-domains Ωk is limited and notably smaller than the
total number of features Nf .

Remark 4.1.6. The second condition of Assumption 4.1.5 means that one cannot
have an increasingly large number of features that are arbitrarily close to one another.
Moreover, if Nf = 1, one can take Ω1 := Ω.

To ease the notation in the following chapters and similarly to (3.27), let us respectively
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Chapter 4. A posteriori error estimation: multi-feature geometries

denote the Neumann boundaries of Ω0 and of F̃ kp by

Γ0
N := (ΓN \ γ) ∪ γ0 and Γ̃kN := γks ∪ γ̃k, k = 1, . . . ,Nf , (4.8)

and let

Γ̃N :=
Nf⋃
k=1

Γ̃kN = γs ∪ γ̃. (4.9)

Finally, let us generalize the definitions of Γ and Σ from (3.28) as follows:

Γk := γkn ∪ γk0,p ∪ γkr , for k = 1, . . . ,Nf , (4.10)

and Σn :=
{
γkn
}Nf
k=1

, Σ0,p :=
{
γk0,p

}Nf
k=1

, Σr :=
{
γkr
}Nf
k=1

,

Σk :=
{
γkn , γk0,p, γkr

}
, for k = 1, . . . ,Nf ,

Σ := {σ ∈ Σk : k = 1, . . . ,Nf}. (4.11)

The parts of boundary belonging to Σ will play an important role in the sequel, and we
assume that Σ satisfies the isotropy Assumption 3.3.3.

In the remaining part of this chapter, the symbol . will be used to mean any inequality
which does not depend on the number Nf of features, on their size, or on the size of their
positive extension F̃ kp , but which can depend on their shape. Moreover, we will write
A ' B whenever A . B and B . A.

4.2 Multi-defeaturing error estimator for Poisson’s problem

In this section, we generalize the defeaturing error estimator introduced in Chapter 3, in
the case of a geometry that presents multiple features. As for the single feature case, we
show that in this general setting, the derived estimator is an upper bound and a lower
bound (up to oscillations) of the energy norm of the defeaturing error. The key issue in
the subsequent analysis is to track the dependence of all constants from the sizes of the
features and from their number.

Let us recall the definition of the defeatured solution ud from (4.7), and the definitions
of Σ, Σk, Σn, Σ0,p and Σr from (4.11). Then for all σ ∈ Σ, let kσ ≡ k if σ ∈ Σk for some
k = 1, . . . ,Nf , and to mimic (3.29) in the multi-feature setting, let

dσ ≡


g − ∂ud

∂n if σ ∈ Σn or if σ ∈ Σr,

−
(
g0 + ∂ud

∂nkσ

)
if σ ∈ Σ0,p.

(4.12)

Then, we define the a posteriori defeaturing error estimator as:
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4.2. Multi-defeaturing error estimator for Poisson’s problem

ED(ud) :=

∑
σ∈Σ

E σ
D(ud)2

 1
2

, (4.13)

where for all σ ∈ Σ,

E σ
D(ud) :=

(
|σ|

1
n−1

∥∥∥dσ − dσσ∥∥∥2

0,σ
+ c2

σ|σ|
n
n−1

∥∥∥dσσ∥∥∥2

`2

) 1
2

,

with cσ defined as in (3.10). Note that we can rewrite the estimator feature-wise, as
follows:

ED(ud) =

Nf∑
k=1

∑
σ∈Σk

E σ
D(ud)2

 1
2

=

Nf∑
k=1

E k
D(ud)2

 1
2

,

where for all k = 1, . . . ,Nf , we define E k
D(uk) as the defeaturing error estimator for

feature F k, that is,

E k
D(ud) :=

 ∑
σ∈Σk

E σ
D(ud)2

 1
2

. (4.14)

In this section, we first show that if the features satisfy the separability Assumption 4.1.5,
the quantity ED(ud) is a reliable estimator for the defeaturing error, i.e., it is an upper
bound for the defeaturing error with a hidden constant that is independent of the number
of features Nf and of their size, see Theorem 4.2.3. Then, assuming that all σ ∈ Σ are also
regular according to Definition 2.1.3, and under mild assumptions for the two-dimensional
case, we show that it is also efficient (up to oscillations), i.e., it is a lower bound for the
defeaturing error up to oscillations, see Theorem 4.2.4. The proposed estimator indicates
that the whole information on the error introduced by defeaturing multiple features, in
the energy norm, is encoded in the boundary of the features, and can be accounted by
suitably evaluating the error made on the normal derivative of the solution.

Remark 4.2.1. Note that in the estimator ED(ud), the terms involving the average
values of dσ only depend on the defeatured problem data (see the similar Remarks 3.2.1
and 3.4.2). As a consequence, if these terms dominate, this means that the defeatured
problem data should be more accurately chosen. Moreover, under the following reasonable
flux conservation assumptions for all k = 1, . . . ,Nf ,∫

γ̃k
g̃k ds =

∫
γkr

g ds−
∫
F̃kp \Fkp

f dx,
∫
γk0,p

g0 ds =
∫
γkp

g ds+
∫
Fkp

f dx,

and
∫
γk0,n

g0 ds =
∫
γkn

g ds−
∫
Fkn

f dx, (4.15)

the defeaturing error estimator (4.13) rewrites ED(ud) :=

∑
σ∈Σ
|σ|

1
n−1 ‖dσ‖20,σ

 1
2

.
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Remark 4.2.2. In a similar fashion as Remarks 3.2.2 and 3.4.3, note that

ED(ud) .

∑
σ∈Σ

c2
σ |σ|

1
n−1 ‖dσ‖20,σ

 1
2

=: ẼD(ud).

However, when n = 2 and under the flux conservation conditions (4.15), ẼD (ud) is
sub-optimal since in this case, ẼD(ud) . max

σ∈Σ
(cσ) ED(ud).

4.2.1 Reliability

In this section, we state and prove that the error indicator defined in (4.13) is reliable,
that is, it is an upper bound for the defeaturing error.

Theorem 4.2.3. Let u be the solution of problem (3.2) defined in the exact domain Ω,
and let ud be the defeaturing solution defined in (4.7). If all σ ∈ Σ are isotropic according
to Definition 2.1.2, and if the features F satisfy Assumption 4.1.5, then the defeaturing
error in the energy norm is bounded in terms of the estimator ED(ud) introduced in (4.13)
as follows:

|u− ud|1,Ω . ED(ud),

where the hidden constant is independent of the number of features Nf and of their size.

Proof. This proof is an extension to the one of Theorem 3.4.4. Consider the exact
problem (3.1) restricted to Ω? = Ω \ Fp with the natural Neumann boundary condition
on γ0,p. That is, since for all k = 1, . . . ,Nf , nk = −n on γkn , then u|Ω? ∈ H1

gD,ΓD(Ω?) is
the weak solution of 

−∆ (u|Ω?) = f in Ω?

u|Ω? = gD on ΓD
∂ (u|Ω?)
∂n = g on ΓN \ γp

∂ (u|Ω?)
∂n0

= ∂u

∂n0
on γ0,p.

(4.16)

By abuse of notation, we omit the explicit restriction of u to Ω?. Then for all test
functions v0 ∈ H1

0,ΓD(Ω?),∫
Ω?
∇u · ∇v0 dx =

∫
Ω?
fv0 dx+

∫
ΓN\γp

gv0 ds+
∫
γ0,p

∂u

∂n0
v0 ds. (4.17)

Then, let us consider the simplified problem (3.3) also restricted to Ω?, with the natural
Neumann boundary condition on γn. Thus, since ud|Ω? = u0|Ω? by definition, if we omit
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4.2. Multi-defeaturing error estimator for Poisson’s problem

the explicit restriction of ud to Ω?, then for all v0 ∈ H1
0,ΓD(Ω?),∫

Ω?
∇ud · ∇v0 dx =

∫
Ω?
fv0 dx+

∫
ΓN\γ

gv0 ds+
∫
γn

∂ud
∂n v0 ds+

∫
γ0,p

g0v0 ds. (4.18)

Let e := u− ud ∈ H1
0,ΓD(Ω). So from (4.17) and (4.18), for all v0 ∈ H1

0,ΓD(Ω?), we obtain∫
Ω?
∇e · ∇v0 dx =

∫
γn

(
g − ∂ud

∂n

)
v0 ds+

∫
γ0,p

(
∂u

∂n0
− g0

)
v0 ds. (4.19)

In a very similar fashion, we can deduce that for all k = 1, . . . ,Nf and all vk ∈ H1
(
F kp
)
,∫

Fkp

∇e · ∇vk dx =
∫
γk0,p

∂ (u− ud)
∂nk vk ds+

∫
γkr

(
g − ∂ud

∂nk
)
vk ds. (4.20)

Let v ∈ H1
0,ΓD(Ω), then v|Ω? ∈ H1

0,ΓD(Ω?) and for all k = 1, . . . ,Nf , v|Fkp ∈ H1(F kp ).
Therefore, from equations (4.19) and (4.20), since n0 = −nkσ on all σ ∈ Σ0,p, and since
n = nkσ on all σ ∈ Σr, then recalling the definition of dσ in (4.12), we obtain∫

Ω
∇e · ∇v dx =

∑
σ∈Σ

∫
σ
dσv ds

=
∑
σ∈Σ

[∫
σ

(
dσ − dσ

σ
)

(v − vσ) ds+ dσ
σ
∫
σ
v ds

]
. (4.21)

For each σ ∈ Σ, the first terms of (4.21) can be estimated as in (3.17) thanks to
Poincaré inequality of Lemma 2.3.8 and trace inequalities, using the domains Ωk defined
in Assumption 4.1.5 for k = 1, . . . ,Nf . That is,∑

σ∈Σ

∫
σ

(
dσ − dσ

σ
)

(v − vσ) ds

≤
∑
σ∈Σ

∥∥∥dσ − dσσ∥∥∥0,σ
‖v − vσ‖0,σ .

∑
σ∈Σ
|σ|

1
2(n−1)

∥∥∥dσ − dσσ∥∥∥0,σ
|v| 1

2 ,σ

.
∑

σ∈Σn∪Σr

|σ|
1

2(n−1)
∥∥∥dσ − dσσ∥∥∥0,σ

‖v‖1,Ωkσ +
∑

σ∈Σ0,p

|σ|
1

2(n−1)
∥∥∥dσ − dσσ∥∥∥0,σ

‖v‖1,Ωkσ∩Ω? .

(4.22)

Then, the last terms of (4.21) can be estimated thanks to Lemma 2.3.9 and trace
inequalities, using again the domains Ωk for k = 1, . . . ,Nf . That is,

dσ
σ
∫
σ
v ds . |σ|

1
2

∣∣∣dσσ∣∣∣ ‖v‖0,σ

.
∑

σ∈Σn∪Σr

cσ|σ|
n

2(n−1)
∣∣∣dσσ∣∣∣ ‖v‖ 1

2 ,∂Ωkσ +
∑

σ∈Σ0,p

cσ|σ|
n

2(n−1)
∣∣∣dσσ∣∣∣ ‖v‖ 1

2 ,∂(Ωkσ∩Ω?)

.
∑

σ∈Σn∪Σr

cσ|σ|
n

2(n−1)
∣∣∣dσσ∣∣∣ ‖v‖1,Ωkσ +

∑
σ∈Σ0,p

cσ|σ|
n

2(n−1)
∣∣∣dσσ∣∣∣ ‖v‖1,Ωkσ∩Ω? .

(4.23)

81



Chapter 4. A posteriori error estimation: multi-feature geometries

Thus by choosing v = e ∈ H1
0,ΓD(Ω), if we combine (4.21), (4.22) and (4.23), and if we

use the discrete Cauchy-Schwarz inequality, we get

|e|21,Ω =
∫

Ω
∇e · ∇e dx

.

∑
σ∈Σ

(
|σ|

1
n−1

∥∥∥dσ − dσσ∥∥∥2

0,σ
+ c2

σ|σ|
n
n−1

∣∣∣dσσ∣∣∣2)
 1

2
Nf∑
k=1

(
‖e‖21,Ωk + ‖e‖21,Ωk∩Ω?

) 1
2

. ED(ud)

Nf∑
k=1
‖e‖21,Ωk

 1
2

. ED(ud)|e|1,Ω.

We can conclude by simplifying on both sides.

4.2.2 Efficiency

In this section, we state and prove that the error indicator defined in (4.13) is efficient,
that is, it is a lower bound for the defeaturing error, up to oscillations. In the case n = 2,
the data compatibility conditions (4.15) are also required.

Theorem 4.2.4. Consider the same notation and assumptions as in Theorem 4.2.3,
and assume that all σ ∈ Σ are also regular according to Definition 2.1.3. Then, assume
that

∣∣∣γkn ∣∣∣ ' ∣∣∣γkr ∣∣∣ ' ∣∣∣γk0,p

∣∣∣ for all k = 1, . . . ,Nf . Moreover, for any m ∈ N, let Πm be such
that Πm|σ ≡ Πm,σ for all σ ∈ Σ where Πm,σ is the extension of the Clément operator
defined in (3.8), and let dk be such that dk|σ ≡ dσ on all σ ∈ Σk, for all k = 1, . . . ,Nf .
Finally, suppose that either n = 3, or n = 2 and the flux conservation conditions (4.15)
are satisfied. Then the defeaturing error, in the energy norm, bounds up to oscillations
the estimator ED(ud) introduced in (4.13), that is,

ED(ud) . |u− ud|1,Ω + osc(ud),

where for any m ∈ N, recalling definition (4.10) of Γk,

osc(ud)2 :=
Nf∑
k=1

(
osck(ud)

)2
, (4.24)

osck(ud) :=
∣∣∣Γk∣∣∣ 1

2(n−1)
∥∥∥dk −Πm

(
dk
)∥∥∥

0,Γk
for k = 1, . . . ,Nf .

Proof. This proof is an extension to the one of Theorem 3.4.5. Let e := u−ud ∈ H1
0,ΓD(Ω)

and let k ∈ {1, . . . ,Nf}. First, recall the definition of Ωk from Assumption 4.1.5, and let

Ωk
? := Ω? ∩ Ωk.

Then, let us consider the exact problem (3.1) restricted to Ωk
?, with the natural Neumann

boundary condition on γk0,p, and the natural Dirichlet boundary condition on ∂Ωk
? \ ∂Ω?.
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4.2. Multi-defeaturing error estimator for Poisson’s problem

That is, similarly to (4.16), u|Ωk? is the weak solution of

−∆
(
u|Ωk?

)
= f in Ωk

?

u|Ωk? = gD on ∂Ωk
? ∩ ΓD

u|Ωk? = tr∂Ωk?\∂Ω?(u) on ∂Ωk
? \ ∂Ω?

∂
(
u|Ωk?

)
∂n = g on ∂Ωk

? ∩ ΓN

∂
(
u|Ωk?

)
∂n0

= ∂u

∂n0
on γk0,p.

(4.25)

By abuse of notation, we omit the explicit restriction of u to Ωk
?. Then for all test

functions v0 ∈ H1
0,∂Ωk?\[ΓN∪γk0,p](Ω

k
?),∫

Ωk?
∇u · ∇v0 dx =

∫
Ωk?
fv0 dx+

∫
∂Ωk?∩ΓN

gv0 ds+
∫
γk0,p

∂u

∂n0
v0 ds. (4.26)

Then, let us consider the simplified problem (3.3) also restricted to Ωk
?, with the natural

Neumann boundary condition on γkn , and the natural Dirichlet boundary condition on
∂Ωk

? \ ∂Ω?. Thus, since ud|Ωk? = u0|Ωk? by definition, if we omit the explicit restriction of
ud to Ωk

?, then for all v0 ∈ H1
0,∂Ωk?\[ΓN∪γk0,p](Ω

k
?),∫

Ωk?
∇ud·∇v0 dx =

∫
Ωk?
fv0 dx+

∫
(∂Ωk?∩ΓN)\γkn

gv0 ds+
∫
γkn

∂ud
∂n v0 ds+

∫
γk0,p

g0v0 ds. (4.27)

So from (4.26) and (4.27), for all v0 ∈ H1
0,∂Ωk?\[ΓN∪γk0,p](Ω

k
?),∫

Ωk?
∇e · ∇v0 dx =

∫
γkn

(
g − ∂ud

∂n

)
v0 ds+

∫
γk0,p

(
∂u

∂n0
− g0

)
v0 ds. (4.28)

Let v ∈ H1
0,∂Ωk\ΓN (Ωk), so that v|Ωk? ∈ H

1
0,∂Ωk?\[ΓN∪γk0,p](Ω

k). Recall that Ω? = Ω \ F p,

so that Ωk = int
(
F kp ∪ Ωk

?

)
. Consequently, reusing equation (4.20), using (4.28), since

n0 = −nk on γk0,p, and since n = nk on γkr , then if we recall definition (4.12) of dσ,∫
Ωk
∇e · ∇v dx =

∫
γkn

(
g − ∂ud

∂n

)
v ds+

∫
γk0,p

(
−g0 −

∂ud
∂nk

)
v ds+

∫
γkr

(
g − ∂ud

∂n

)
v ds

=
∑
σ∈Σk

∫
σ
dσv ds.

Therefore, for all v ∈ H1
0,∂Ωk\ΓN (Ωk),

∑
σ∈Σk

∫
σ
dσv ds =

∫
Ωk
∇e · ∇v dx ≤ |e|1,Ωk |v|1,Ωk . (4.29)
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Now, let H(k) :=
{
v ∈ H

1
2
00

(
Γk
)

: v|σ ∈ H
1
2
00(σ), for all σ ∈ Σk

}
equipped with the norm

‖ · ‖H(k) :=

 ∑
σ∈Σk

‖ · ‖2
H

1/2
00 (σ)

 1
2

,

and let
(
H(k)

)∗
be its dual space equipped with the dual norm ‖ · ‖(H(k))∗ . For all

w ∈ H(k), let us define piecewise uw ∈ H1
0,∂Ωk\(γkn∪γkr )

(
Ωk
)
⊂ H1

0,∂Ωk\ΓN

(
Ωk
)
as the

unique solution of−∆
(
uw|Fkp

)
= 0 in F kp

uw|Fkp =
(
w|γk0,p∪γkr

)?
on ∂F kp ,

−∆
(
uw|Ωk?

)
= 0 in Ωk

?

uw|Ωk? =
(
w|γk0,p∪γkn

)?
on ∂Ωk

?,

where
(
w|γk0,p∪γkr

)?
and

(
w|γk0,p∪γkn

)?
are the extensions by 0 of w|γk0,p∪γkr

on ∂F kp and of
w|γk0,p∪γkn

on ∂Ωk
?, respectively. Then by continuity of the solution on the data and from

Lemma 2.3.11,

|uw|1,Ωk .
(
‖w‖2

H
1/2
00 (γk0,p∪γkr ) + ‖w‖2

H
1/2
00 (γk0,p∪γkn)

) 1
2
. ‖w‖H(k) . (4.30)

So thanks to (4.29) and (4.30), recalling that dk|σ = dσ on each σ ∈ Σk by definition,
then

∥∥∥dk∥∥∥(H(k))∗ = sup
w∈H(k)
w 6=0

∫
Γk
dkw ds

‖w‖H(k)
. sup

w∈H(k)
w 6=0

∑
σ∈Σk

∫
σ
dσuw ds

|uw|1,Ωk

≤ sup
v∈H1

0,∂Ωk\ΓN
(Ωk)

v 6=0

∑
σ∈Σk

∫
σ
dσv ds

|v|1,Ωk
≤ |e|1,Ωk . (4.31)

Moreover, using Remark 4.2.2 if n = 3, or Remark 4.2.1 if n = 2 and the flux conservation
conditions (4.15) are verified, then

ED(ud) .

Nf∑
k=1

∑
σ∈Σk

|σ|
1

n−1 ‖dσ‖20,σ

 1
2

.

Therefore, using the triangle inequality and since
∣∣∣γkn ∣∣∣ ' ∣∣∣γkr ∣∣∣ ' ∣∣∣γk0,p

∣∣∣ ' ∣∣∣Γk∣∣∣ for all
k = 1, . . . ,Nf , then∑

σ∈Σk
|σ|

1
n−1 ‖dσ‖20,σ .

∑
σ∈Σk

|σ|
1

n−1
(
‖Πm (dσ)‖20,σ + ‖dσ −Πm (dσ)‖20,σ

)
.
∣∣∣Γk∣∣∣ 1

n−1
∥∥∥Πm

(
dk
)∥∥∥2

0,Γk
+
∣∣∣Γk∣∣∣ 1

n−1
∥∥∥dk −Πm

(
dk
)∥∥∥2

0,Γk
.
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Now, we use the definition of the broken norm in H(k) to apply the inverse inequality of
Lemma 2.3.12. Recalling the definition of the oscillations in (4.24), and using again the
triangle inequality, we thus obtain for all k = 1, . . . ,Nf ,∑

σ∈Σk
|σ|

1
n−1 ‖dσ‖20,σ .

∥∥∥Πm

(
dk
)∥∥∥2

(H(k))∗ +
(
osck(ud)

)2

.
∥∥∥dk∥∥∥2

(H(k))∗ +
∥∥∥Πm

(
dk
)
− dk

∥∥∥2

(H(k))∗ +
(
osck(ud)

)2
.

Finally, using (4.31), and applying Lemma 2.3.11 and Lemma 2.3.7, we obtain

ED(ud)2 .
Nf∑
k=1

∥∥∥dk∥∥∥2

(H(k))∗ +
Nf∑
k=1

∥∥∥Πm

(
dk
)
− dk

∥∥∥2

(H(k))∗ + osc(ud)2

.
Nf∑
k=1
|e|21,Ωk +

Nf∑
k=1

∥∥∥Πm

(
dk
)
− dk

∥∥∥2

H
−1/2
00 (Γk)

+ osc(ud)2

.
(
|e|1,Ω + osc(ud)

)2
.

This concludes the proof.

Remark 4.2.5. When the data is regular, it is always possible to choose m large

enough so that the asymptotic behavior of the oscillations is O
(

max
k=1,...,Nf

∣∣∣Γk∣∣∣m+ 1
2(n−1)

)
.

Therefore, we can make sure that the oscillations get small with respect to the defeaturing
error, when the features get small.

4.3 Defeaturing in linear elasticity

In this section, we precisely state the defeaturing problem in a geometry on which a linear
elasticity problem is defined. We keep the same notation and geometric assumptions
as introduced in Section 4.1, as we directly treat the most general case of an exact
geometry Ω containing multiple complex features. In this framework and with the help
of Section 4.1, we derive an optimal a posteriori defeaturing error estimator, and we
show its reliability and efficiency.

4.3.1 Defeaturing problem and a posteriori error estimator

Let Ω ⊂ Rn be an open Lipschitz domain containing Nf ≥ 1 complex features satisfying
Assumptions 4.1.4 and 4.1.5, and let us first define the exact linear elasticity problem in
the exact geometry Ω. To do so, considering a function v : Ω→ Rn, let

eee(v) := 1
2
(
∇v +∇vT

)
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be the linearized strain rate tensor, let sss(v) be the Cauchy stress tensor in the medium,
and let CCC denote the fourth-order material tensor. Then the linear elastic regime is
governed by the constitutive relation called Hooke’s law which is defined by

sss(v) := CCC : eee(v), i.e., sss(v)ij =
n∑

k,`=1
CCCijk` eee(v)k`, ∀i, j = 1, . . . ,n.

In particular in this work, we consider an isotropic linear elastic material. So if we
denote δ the standard Kronecker delta, the components of CCC read

CCCijk` = λδijδk` + µ (δikδj` + δi`δjk) , ∀i, j, k, ` = 1, . . . ,n,

where λ and µ denote the phenomenological first and second Lamé coefficients, respectively.
That is, the constitutive relation can be rewritten as

sss(v) = 2µeee(v) + λ(∇ · v)IIIn, (4.32)

where IIIn is the identity tensor in Rn×n. Owing to thermodynamic stability, we know that
µ > 0 and λ+ 2

3µ > 0. Therefore, we assume that there exist µmin,κmin > 0 such that

µ,λ ∈ L∞(Ω), µ(x) ≥ µmin, λ(x) + 2
3µ(x) ≥ κmin, a.e. in Ω. (4.33)

Now, let ∂Ω = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅, |ΓD| > 0, let n be the unitary outward
normal of Ω, and let gD ∈H

3
2 (ΓD), g ∈H 1

2 (ΓN ) and f ∈ L2 (Ω). The considered linear
elasticity problem in the exact geometry Ω reads as follows:

find u : Ω→ Rn, solution of
−∇ · sss(u) = f in Ω
u = gD on ΓD
sss(u)n = g on ΓN .

(4.34)

In the framework presented in Section 2.4, let us formally multiply the first equation
of (4.34) by a test function v, and let us integrate the resulting equation by parts using
the boundary conditions given in (4.34). The weak formulation of the linear elasticity
problem then reads:

find u ∈H1
gD,ΓD(Ω) such that for all v ∈H1

0,ΓD(Ω),∫
Ω
sss(u) : eee(v) dx =

∫
Ω
f · v dx+

∫
ΓN
g · v ds. (4.35)

Let z := RΓD(gD) ∈ H1
gD,ΓD(Ω) be a lifting of the Dirichlet data gD given by Theo-
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rem 2.2.1, and for all w,v ∈ V := H1
0,ΓD(Ω), let

aΩ(w,v) :=
∫

Ω
sss(w) : eee(v) dx, (4.36)

fzΩ(v) :=
∫

Ω
f · v dx+

∫
ΓN
g · v ds− aΩ(z,v).

Then, finding ů ∈ V such that aΩ (ů,v) = fzΩ(v) for all v ∈ V is equivalent to solv-
ing (4.35). If we equip V with the norm ‖∇ · ‖0,Ω, it can be shown that under the
assumptions written in (4.33) on the Lamé coefficients, aΩ(·, ·) is a continuous and
coercive bilinear form on V × V , and fzΩ(·) is a linear continuous functional, see [Ern and
Guermond, 2021b]. Therefore, by Banach-Nečas-Babuška Theorem 2.4.2, problem (4.35)
is well-posed.

Let Ω0 be the defeatured domain as defined in (4.1). To introduce the corresponding
defeatured problem, and as for Poisson’s equation from Section 4.1, we need to choose
an L2-extension of f in the negative components of the features, that we still write f by
abuse of notation. Moreover, we assume that the constitutive relation (4.32) governing the
linear elastic regime of the body deformation is also valid on functions defined everywhere
in Ω0, with the Lamé coefficients also satisfying (4.33) in the negative components of the
features. Finally, recalling the notation from Section 4.1, the analysis is performed under
Assumption 4.1.3 on the exact problem (4.34), that is, a Neumann boundary condition is
imposed on the boundary of the features.

Then instead of the exact problem (4.34) and similarly to (3.3), the following defeatured
problem is solved: after choosing g0 ∈H

1
2 (γ0), find the weak solution u0 ∈H1(Ω0) of

−∇ · sss(u0) = f in Ω0

u0 = gD on ΓD
sss(u0)n = g on ΓN \ γ
sss(u0)n0 = g0 on γ0,

(4.37)

that is, u0 ∈H1
gD,ΓD(Ω0) satisfies for all v0 ∈H1

0,ΓD(Ω0),∫
Ω0

sss(u0) : eee(v0) dx =
∫

Ω0
f · v0 dx+

∫
ΓN\γ

g · v0 ds+
∫
γ0
g0 · v0 ds. (4.38)

Using the same arguments as for problem (4.35), we can demonstrate that problem (4.38)
is well-posed.

As previously, since we are interested in the energy norm of the defeaturing error “u−u0”
in Ω, we need to extend the defeatured solution u0 to the domain extension F̃ kp of the
positive component F kp of feature F k, for all k = 1, . . . ,Nf . Thus, let us choose an
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L2-extension of f in F̃ kp , that we still write f by abuse of notation, and let us assume that
the constitutive relation (4.32) governing the linear elastic regime of the body deformation
is also valid for functions defined in F̃ kp , with the Lamé coefficients satisfying (4.33).
Then similarly to (4.5), define for all k = 1, . . . ,Nf the following extension of the solution
u0 of (4.37) in F̃ kp : after choosing g̃k ∈ H 1

2 (γ̃k), find uk ≡ ũk0 ∈ H1
(
F̃ kp
)
, the weak

solution of 

−∇ · sss(uk) = f in F̃ kp
uk = u0 on γk0,p

sss(uk)ñk = g̃k on γ̃k

sss(uk)ñk = g on γks ,

(4.39)

that is, uk ∈H1
u0,γk0,p

(
F̃ kp
)
satisfies for all vk ∈H1

0,γk0,p

(
F̃ kp
)
,

∫
F̃kp

sss(uk) : eee(vk) dx =
∫
F̃kp

f · vk dx+
∫
γ̃k
g̃k · vk ds+

∫
γks

g · vk ds. (4.40)

Using the same arguments as for problem (4.35), we can demonstrate that problem (4.40)
is well-posed.

Finally, recalling that Ω? := Ω \ Fp, let ud ∈ H1
gD,ΓD(Ω) be the extended defeatured

solution defined in a similar way as (4.7), that is,

ud ≡

u0|Ω? in Ω?

uk|Fkp = ũk0|Fkp in F kp , for all k = 1, . . . ,Nf .
(4.41)

Then, the defeaturing error is defined by |||u− ud|||Ω, where |||·|||Ω is the energy norm in
Ω given by

|||v|||Ω :=
(
aΩ(v,v)

) 1
2 =

(∫
Ω
sss(v) : eee(v) dx

) 1
2

, ∀v ∈H1
0,ΓD(Ω).

As in Section 4.1, recalling definition (4.11) of Σ, the parts of boundary belonging to Σ
will play an important role in the a posteriori defeaturing error analysis. In particular,
we assume that Σ satisfies the isotropy Assumption 3.3.3.

For all σ ∈ Σ, recall that we let kσ ≡ k if σ ∈ Σk for some k = 1, . . . ,Nf . Then, let

dσ ≡


g − sss(ud)n if σ ∈ Σn or if σ ∈ Σr,

−
(
g0 + sss(ud)nkσ

)
if σ ∈ Σ0,p.

(4.42)

We are now able to define the a posteriori defeaturing error estimator as

ED(ud) :=

∑
σ∈Σ

E σ
D(ud)2

 1
2

, (4.43)
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where for all σ ∈ Σ,

E σ
D(ud) :=

(
|σ|

1
n−1

∥∥∥dσ − dσσ∥∥∥2

0,σ
+ c2

σ|σ|
n
n−1

∥∥∥dσσ∥∥∥2

`2

) 1
2

,

with cσ defined as in (3.10). Note that we can rewrite the estimator feature-wise, as
follows:

ED(ud) =

Nf∑
k=1

∑
σ∈Σk

E σ
D(ud)2

 1
2

=

Nf∑
k=1

E k
D(ud)2

 1
2

,

where for all k = 1, . . . ,Nf , we define E k
D(uk) as the defeaturing error estimator for

feature F k, that is,

E k
D(ud) :=

 ∑
σ∈Σk

E σ
D(ud)2

 1
2

. (4.44)

The proposed estimator indicates that all the information on the error introduced by
defeaturing, in the energy norm, is encoded in the boundary of the features, and can be
accounted by suitably evaluating the error made on the normal traction of the solution.

Remark 4.3.1. As in Remark 4.2.1, the terms involving the component-wise average
values of dσ in the estimator ED(ud) only depend on the defeatured problem data. As
a consequence, if these terms dominate, this means that the defeatured problem data
should be more accurately chosen. Moreover, under the following reasonable vectorial
data compatibility conditions for all k = 1, . . . ,Nf ,∫

γ̃k
g̃k ds =

∫
γkr

g ds−
∫
F̃kp \Fkp

f dx,
∫
γk0,p

g0 ds =
∫
γkp

g ds+
∫
Fkp

f dx,

and
∫
γk0,n

g0 ds =
∫
γkn

g ds−
∫
Fkn

f dx, (4.45)

the defeaturing error estimator (4.43) rewrites ED(ud) :=

∑
σ∈Σ
|σ|

1
n−1 ‖dσ‖20,σ

 1
2

.

Remark 4.3.2. In a similar fashion as Remark 4.2.2, note that

ED(ud) .

∑
σ∈Σ

c2
σ |σ|

1
n−1 ‖dσ‖20,σ

 1
2

=: ẼD(ud).

However, when n = 2 and under the data compatibility conditions (4.45), ẼD(ud) is
sub-optimal since in this case, ẼD(ud) . max

σ∈Σ
(cσ) ED(ud). Indeed, no lower bound can

be provided for ẼD(ud).

In the remaining part of this section, we study the properties of the a posteriori defeaturing
error estimator ED(ud). We first show that if the features satisfy the separability
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Assumption 4.1.5, the quantity ED(ud) is a reliable estimator for the defeaturing error
|||u− ud|||Ω, i.e., it is an upper bound for the defeaturing error with a hidden constant
that is independent of the number of features Nf and of their size, see Theorem 4.3.3.
Then, assuming that all σ ∈ Σ are also regular according to Definition 2.1.3, and under
mild assumptions for the two-dimensional case, we show that it is also efficient (up to
oscillations), i.e., it is a lower bound for the defeaturing error up to oscillations, see
Theorem 4.3.4. The key issue in the subsequent analysis is to track the dependence of all
constants from the size of the features and from their number.

4.3.2 Reliability

In this section, we state and prove that the error indicator defined in (4.43) is reliable,
that is, it is an upper bound for the defeaturing error.

Theorem 4.3.3. Let u be the solution of problem (4.35), and let ud be the defeaturing
solution defined in (4.41). If all σ ∈ Σ are isotropic according to Definition 2.1.2, and if
the features F are separated as in Assumption 4.1.5, then the defeaturing error in the
energy norm is bounded in terms of the estimator ED(ud) introduced in (4.43) as follows:

|||u− ud|||Ω . ED(ud),

where the hidden constant is independent of the number of features Nf and of their size.

Proof. Let us follow similar steps as in the proof of Theorem 4.2.3. So to begin with,
consider the exact problem (4.34) restricted to Ω? = Ω \ Fp with the natural Neumann
boundary condition on γ0,p. That is, since for all k = 1, . . . ,Nf , nk = −n on γkn , then
the restriction u|Ω? ∈H1

gD,ΓD(Ω?) is the weak solution of

−∇ · sss (u|Ω?) = f in Ω?

u|Ω? = gD on ΓD
sss(u|Ω?)n = g on ΓN \ γp

sss(u|Ω?)n0 = sss(u)n0 on γ0,p.

(4.46)

By abuse of notation, we omit the explicit restriction of u to Ω?. Then for all test
functions v0 ∈H1

0,ΓD(Ω?),∫
Ω?

sss(u) : eee(v0) dx =
∫

Ω?
f · v0 dx+

∫
ΓN\γp

g · v0 ds+
∫
γ0,p

sss(u)n0 · v0 ds. (4.47)

Then, let us consider the simplified problem (4.37) also restricted to Ω?, with the natural
Neumann boundary condition on γn. Thus, since ud|Ω? = u0|Ω? by definition, and if we
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omit the explicit restriction of ud to Ω?, then for all v0 ∈H1
0,ΓD(Ω?),∫

Ω?
sss(ud) : eee(v0) dx =

∫
Ω?
f · v0 dx+

∫
ΓN\γ

g · v0 ds+
∫
γn
sss(ud)n · v0 ds+

∫
γ0,p

g0 · v0 ds.

(4.48)
Let e := u− ud ∈H1

0,ΓD(Ω). So from (4.47) and (4.48), since sss is linear by definition
(see the constitutive relation (4.32)), for all v0 ∈H1

0,ΓD(Ω?), we obtain∫
Ω?

sss(e) : eee(v0) dx =
∫
γn

(
g − sss(ud)n

)
· v0 ds+

∫
γ0,p

(
sss(u)n0 − g0

)
· v0 ds, (4.49)

In a very similar fashion, we can deduce that for all k = 1, . . . ,Nf and all vk ∈H1
(
F kp
)
,

∫
Fkp

sss(e) : eee(vk) dx =
∫
γk0,p

(
sss(u)− sss(ud)

)
nk · vk ds+

∫
γkr

(
g − sss(ud)nk

)
· vk ds. (4.50)

Therefore, let v ∈ H1
0,ΓD(Ω), then v|Ω? ∈ H1

0,ΓD(Ω?) and v|Fkp ∈ H1(F kp ) for all
k = 1, . . . ,Nf . Therefore, from equations (4.49) and (4.50), since n0 = −nkσ on all
σ ∈ Σ0,p, and since n = nkσ on all σ ∈ Σr, then recalling the definitions of aΩ(·, ·)
in (4.36) and of dσ in (4.42), we obtain

aΩ(e,v) =
∫

Ω
sss(e) : eee(v) dx =

∑
σ∈Σ

∫
σ
dσ · v ds (4.51)

=
∑
σ∈Σ

[∫
σ

(
dσ − dσ

σ
)
· (v − vσ) ds+ dσ

σ ·
∫
σ
v ds

]
.

(4.52)

For each σ ∈ Σ, the first terms of (4.52) can be estimated as in (3.17) thanks to the
Poincaré inequality of Lemma 2.3.8 and trace inequalities, using the domains Ωk defined
in Assumption 4.1.5 for k = 1, . . . ,Nf . That is,

∑
σ∈Σ

∫
σ

(
dσ − dσ

σ
)
· (v − vσ) ds

.
∑
σ∈Σ

∥∥∥dσ − dσσ∥∥∥0,σ
‖v − vσ‖0,σ .

∑
σ∈Σ
|σ|

1
2(n−1)

∥∥∥dσ − dσσ∥∥∥0,σ
|v| 1

2 ,σ

.
∑

σ∈Σn∪Σr

|σ|
1

2(n−1)
∥∥∥dσ − dσσ∥∥∥0,σ

‖v‖1,Ωkσ +
∑

σ∈Σ0,p

|σ|
1

2(n−1)
∥∥∥dσ − dσσ∥∥∥0,σ

‖v‖1,Ωkσ∩Ω? .

(4.53)

Then, the last terms of (4.52) can be estimated thanks to Lemma 2.3.9 and trace
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inequalities, using again the domains Ωk for k = 1, . . . ,Nf . That is,

dσ
σ ·
∫
σ
v ds . |σ|

1
2

∥∥∥dσσ∥∥∥
`2
‖v‖0,σ

.
∑

σ∈Σn∪Σr

cσ|σ|
n

2(n−1)
∥∥∥dσσ∥∥∥

`2
‖v‖ 1

2 ,∂Ωkσ

+
∑

σ∈Σ0,p

cσ|σ|
n

2(n−1)
∥∥∥dσσ∥∥∥

`2
‖v‖ 1

2 ,∂(Ωkσ∩Ω?)

.
∑

σ∈Σn∪Σr

cσ|σ|
n

2(n−1)
∥∥∥dσσ∥∥∥

`2
‖v‖1,Ωkσ

+
∑

σ∈Σ0,p

cσ|σ|
n

2(n−1)
∥∥∥dσσ∥∥∥

`2
‖v‖1,Ωkσ∩Ω? . (4.54)

Thus by choosing v = e ∈H1
0,ΓD(Ω), if we combine (4.52), (4.53) and (4.54), and if we

use the discrete Cauchy-Schwarz inequality, we get

|||e|||2Ω = aΩ(e, e) .

∑
σ∈Σ

(
|σ|

1
n−1

∥∥∥dσ − dσσ∥∥∥2

0,σ
+ c2

σ|σ|
n
n−1

∥∥∥dσσ∥∥∥2

`2

) 1
2

Nf∑
k=1

(
‖e‖21,Ωk + ‖e‖21,Ωk∩Ω?

) 1
2

.ED(ud)

Nf∑
k=1
‖e‖21,Ωk

 1
2

. ED(ud)‖∇e‖0,Ω. (4.55)

Finally, using the coercivity of aΩ(·, ·) in H1
0,ΓD(Ω) equipped with the norm ‖∇ · ‖0,Ω,

then
|||e|||2Ω . ED(ud)‖∇e‖0,Ω . ED(ud)

(
aΩ(e, e)

) 1
2 = ED(ud)|||e|||Ω, (4.56)

and we can conclude by simplifying on both sides.

4.3.3 Efficiency

In this section, we state and prove that the error indicator defined in (4.43) is efficient,
that is, it is a lower bound for the defeaturing error, up to oscillations. In the case n = 2,
the data compatibility conditions (4.45) are also required.

Theorem 4.3.4. Consider the same notation and assumptions as in Theorem 4.3.3,
and assume that all σ ∈ Σ are also regular according to Definition 2.1.3. Then, assume
that

∣∣∣γkn ∣∣∣ ' ∣∣∣γkr ∣∣∣ ' ∣∣∣γk0,p

∣∣∣ for all k = 1, . . . ,Nf . Moreover, for any m ∈ N, let Πm be such
that Πm|σ ≡ Πm,σ for all σ ∈ Σ, where Πm,σ is the component-wise extension of the
Clément operator defined in (3.8), and let dk be such that dk|σ ≡ dσ on all σ ∈ Σk, for
all k = 1, . . . ,Nf . Finally, suppose that either n = 3, or n = 2 and the data compatibility
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conditions (4.45) are satisfied. Then the defeaturing error, in the energy norm, bounds
up to oscillations the estimator ED(ud) introduced in (4.43), that is,

ED(ud) . |||u− ud|||Ω + osc(ud),

where for any m ∈ N, recalling definition (4.10) of Γk,

osc(ud)2 :=
Nf∑
k=1

(
osck(ud)

)2
, (4.57)

osck(ud) :=
∣∣∣Γk∣∣∣ 1

2(n−1)
∥∥∥dk −Πm

(
dk
)∥∥∥

0,Γk
for k = 1, . . . ,Nf .

Proof. This proof follows similar steps as in the proof of Theorem 4.2.4. So let us
define e := u − ud ∈ H1

0,ΓD(Ω) and let k ∈ {1, . . . ,Nf}. First, let us recall the
definition of Ωk

? := Ω? ∩ Ωk, where Ωk is the domain associated to feature F k defined in
Assumption 4.1.5. Then, let us consider the exact problem (4.34) restricted to Ωk

?, with
the natural Neumann boundary condition on γk0,p, and the natural Dirichlet boundary
condition on ∂Ωk

? \ ∂Ω?. That is, similarly to (4.46), u|Ωk? is the weak solution of

−∇ · sss
(
u|Ωk?

)
= f in Ωk

?

u|Ωk? = gD on ∂Ωk
? ∩ ΓD

u|Ωk? = tr∂Ωk?\∂Ω?(u) on ∂Ωk
? \ ∂Ω?

sss

(
u|Ωk?

)
n = g on ∂Ωk

? ∩ ΓN

sss

(
u|Ωk?

)
n0 = sss(u)n0 on γk0,p.

(4.58)

By abuse of notation, we omit the explicit restriction of u to Ωk
?. Then for all test

functions v0 ∈H1
0,∂Ωk?\[ΓN∪γk0,p](Ω

k
?),

∫
Ωk?

sss(u) : eee(v0) dx =
∫

Ωk?
f · v0 dx+

∫
∂Ωk?∩ΓN

g · v0 ds+
∫
γk0,p

sss(u)n0 · v0 ds. (4.59)

Then, let us consider the simplified problem (4.37) also restricted to Ωk
?, with the natural

Neumann boundary condition on γkn , and the natural Dirichlet boundary condition on
∂Ωk

? \ ∂Ω?. Thus, since ud|Ωk? = u0|Ωk? by definition, if we omit the explicit restriction of
ud to Ωk

?, then for all v0 ∈H1
0,∂Ωk?\[ΓN∪γk0,p](Ω

k
?),

∫
Ωk?

sss(ud) : eee(v0) dx =
∫

Ωk?
f · v0 dx+

∫
(∂Ωk?∩ΓN)\γkn

g · v0 ds

+
∫
γkn

sss(ud)n · v0 ds+
∫
γk0,p

g0 · v0 ds. (4.60)
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So from (4.59) and (4.60) and by linearity of sss, for all v0 ∈H1
0,∂Ωk?\[ΓN∪γk0,p](Ω

k
?),

∫
Ωk?

sss(e) : eee(v0) dx =
∫
γkn

(
g − sss(ud)n

)
· v0 ds+

∫
γk0,p

(
sss(u)n0 − g0

)
· v0 ds. (4.61)

Let v ∈H1
0,∂Ωk\ΓN (Ωk), so that v|Ωk? ∈H

1
0,∂Ωk?\[ΓN∪γk0,p](Ω

k
?). Recall that Ω? = Ω \ Fp,

so that Ωk = int
(
F kp ∪ Ωk

?

)
. Consequently, reusing equation (4.50), using (4.61), since

n0 = −nk on γk0,p, and since n = nk on γkr , then if we recall definition (4.42) of dσ,∫
Ωk

sss(e) : eee(v) dx =
∫
γkn

(
g − sss(ud)n

)
· v ds+

∫
γk0,p

(
− g0 − sss(ud)nk

)
· v ds

+
∫
γkr

(
g − sss(ud)n

)
· v ds

=
∑
σ∈Σk

∫
σ
dσ · v ds. (4.62)

Now, let aΩk(·, ·) : H1
0,∂Ωk\ΓN (Ωk)×H1

0,∂Ωk\ΓN (Ωk)→ R be defined by

aΩk(w,v) =
∫

Ωk
sss(w) : eee(v) dx, ∀w,v ∈ H1

0,∂Ωk\ΓN (Ωk).

Note that aΩk(·, ·) is continuous with respect to the norm ‖∇ · ‖0,Ωk . Thus using (4.62),
for all v ∈H1

0,∂Ωk\ΓN (Ωk),

∑
σ∈Σk

∫
σ
dσ · v ds =

∫
Ωk

sss(e) : eee(v) dx = aΩk(e,v) . ‖∇e‖0,Ωk‖∇v‖0,Ωk . (4.63)

Now, let H(k) :=
{
v ∈H

1
2
00

(
Γk
)

: v|σ ∈H
1
2
00(σ), for all σ ∈ Σk

}
equipped with the

norm

‖ · ‖H(k) :=

 ∑
σ∈Σk

‖ · ‖2
H

1/2
00 (σ)

 1
2

,

and let
(
H(k)

)∗
be its dual space equipped with the dual norm ‖ · ‖(H(k))∗ . For all

w ∈ H(k), let us define piecewise uw ∈ H1
0,∂Ωk\(γkn∪γkr )

(
Ωk
)
⊂ H1

0,∂Ωk\ΓN

(
Ωk
)
as the

unique solution of−∇ · sss
(
uw|Fkp

)
= 0 in F kp

uw|Fkp =
(
w|γk0,p∪γkr

)?
on ∂F kp ,

−∇ · sss
(
uw|Ωk?

)
= 0 in Ωk

?

uw|Ωk? =
(
w|γk0,p∪γkn

)?
on ∂Ωk

?,

where
(
w|γk0,p∪γkr

)?
and

(
w|γk0,p∪γkn

)?
are the extensions by 0 of w|γk0,p∪γkr

on ∂F kp and of
w|γk0,p∪γkn

on ∂Ωk
?, respectively. Then by continuity of the solution on the data and from
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Lemma 2.3.11,

‖∇uw‖0,Ωk .
(
‖w‖2

H
1/2
00 (γk0,p∪γkr ) + ‖w‖2

H
1/2
00 (γk0,p∪γkn)

) 1
2
. ‖w‖H(k) . (4.64)

So thanks to (4.63) and (4.64), recalling that dk|σ = dσ on each σ ∈ Σk by definition,
then

∥∥∥dk∥∥∥(H(k))∗ = sup
w∈H(k)
w 6=0

∫
Γk
dk ·w ds

‖w‖H(k)
. sup
w∈H(k)
w 6=0

∑
σ∈Σk

∫
σ
dσ · uw ds

‖∇uw‖0,Ωk

≤ sup
v∈H1

0,∂Ωk\ΓN
(Ωk)

v 6=0

∑
σ∈Σk

∫
σ
dσ · v ds

‖∇v‖0,Ωk
≤ ‖∇e‖0,Ωk .

(4.65)

Moreover, using Remark 4.3.2 if n = 3, or Remark 4.3.1 if n = 2 and the data compatibility
conditions (4.45) are satisfied, then

ED(ud) .

Nf∑
k=1

∑
σ∈Σk

|σ|
1

n−1 ‖dσ‖20,σ

 1
2

.

Therefore, using the triangle inequality and since
∣∣∣γkn ∣∣∣ ' ∣∣∣γkr ∣∣∣ ' ∣∣∣γk0,p

∣∣∣ ' ∣∣∣Γk∣∣∣ for all
k = 1, . . . ,Nf , then∑

σ∈Σk
|σ|

1
n−1 ‖dσ‖20,σ .

∑
σ∈Σk

|σ|
1

n−1
(
‖Πm(dσ)‖20,σ + ‖dσ −Πm(dσ)‖20,σ

)
.
∣∣∣Γk∣∣∣ 1

n−1
∥∥∥Πm

(
dk
)∥∥∥2

0,Γk
+
∣∣∣Γk∣∣∣ 1

n−1
∥∥∥dk −Πm

(
dk
)∥∥∥2

0,Γk
.

Now, we use the definition of the broken norm in H(k) to apply the inverse inequality of
Lemma 2.3.12. Recalling the definition of the oscillations in (4.57), and using again the
triangle inequality, we thus obtain for all k = 1, . . . ,Nf ,∑

σ∈Σk
|σ|

1
n−1 ‖dσ‖20,σ .

∥∥∥Πm

(
dk
)∥∥∥2

(H(k))∗ +
(
osck(ud)

)2

.
∥∥∥dk∥∥∥2

(H(k))∗ +
∥∥∥Πm

(
dk
)
− dk

∥∥∥2

(H(k))∗ +
(
osck(ud)

)2
.
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Finally, using (4.65), applying Lemma 2.3.11 and then Lemma 2.3.7, we obtain

ED(ud)2 .
Nf∑
k=1

∥∥∥dk∥∥∥2

(H(k))∗ +
Nf∑
k=1

∥∥∥Πm

(
dk
)
− dk

∥∥∥2

(H(k))∗ + osc(ud)2

.
Nf∑
k=1
‖∇e‖20,Ωk +

Nf∑
k=1

∥∥∥Πm

(
dk
)
− dk

∥∥∥2

H
−1/2
00 (Γk)

+ osc(ud)2

.
(
‖∇e‖0,Ω + osc(ud)

)2
.

To conclude, we use the coercivity of the bilinear form aΩ(·, ·) in H1
0,ΓD(Ω) to obtain

‖∇e‖0,Ω . |||e|||Ω,

as in (4.56).

Remark 4.3.5. As in Remark 4.2.5, when the data is regular, it is always possi-
ble to choose m large enough so that the asymptotic behavior of the oscillations is

O
(

max
k=1,...,Nf

∣∣∣Γk∣∣∣m+ 1
2(n−1)

)
. Therefore, we can make sure that the oscillations get small

with respect to the defeaturing error, when the features get small.

4.4 Defeaturing in Stokes equations

In this section, we are interested in studying the defeaturing problem in the context of
incompressible fluid flows, in the time-independent Stokes regime. So in this framework,
we first precisely state the defeaturing problem in a multi-feature geometry, by keeping
the same notation and geometric assumptions as introduced in Section 4.1. Then with
the help of Sections 4.1 and 4.3, we derive an optimal a posteriori defeaturing error
estimator, and we show its reliability and efficiency.

4.4.1 Defeaturing problem and a posteriori error estimator

Let Ω ⊂ Rn be an open Lipschitz domain containing Nf ≥ 1 complex features satisfying
Assumptions 4.1.4 and 4.1.5, and let us first define the exact Stokes equations in Ω. To
do so, considering a function v : Ω→ Rn, let eee(v) denote the linearized strain rate tensor
in Ω, and let sss(v) be the viscous stress tensor of the considered fluid. Assuming the fluid
to be Newtonian, Galilean invariance implies that

sss(v) = 2µeee(v) + λ(∇ · v)IIIn, (4.66)

where IIIn is the identity tensor in Rn×n, and the constants µ > 0 and λ ≥ 0 are now the
dynamic and bulk viscosities, respectively. Note that in this section, sss(v) is the viscous
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stress tensor and not the total Cauchy stress tensor that would be defined by

rrr(v, q) := sss(v)− q IIIn

for some function q : Ω → R in the space of pressures. Now, let ∂Ω = ΓD ∪ ΓN with
ΓD ∩ΓN = ∅, |ΓD| > 0, let n be the unitary outward normal of Ω, and let gD ∈H

3
2 (ΓD),

g ∈H
1
2 (ΓN ), fc ∈ L2(Ω) and f ∈ L2 (Ω). The considered Stokes equations in the exact

geometry Ω read as follows:

find (u, p) : Ω→ Rn+1, solution of

−∇ · sss(u) +∇p = f in Ω
∇ · u = fc in Ω
u = gD on ΓD
sss(u)n− pn = g on ΓN .

(4.67)

In the framework presented in Section 2.4, let us formally multiply the two first equations
of (4.67) respectively by some test functions v and q, and let us integrate by parts the first
resulting equation using the boundary conditions given in (4.67). The weak formulation
of the Stokes equations then reads:

find (u, p) ∈H1
gD,ΓD(Ω)× L2(Ω) such that for all (v, q) ∈H1

0,ΓD(Ω)× L2(Ω),∫
Ω
sss(u) : eee(v) dx−

∫
Ω
p∇ · v dx =

∫
Ω
f · v dx+

∫
ΓN
g · v ds,

−
∫

Ω
q∇ · udx = −

∫
Ω
qfc dx. (4.68)

Note that if fc ≡ 0, then (4.67) is also the system of equations describing the linear
elastic problem of Section 4.3 in the incompressible limit λ→∞.

Let z := RΓD(gD) ∈ H1
gD,ΓD(Ω) be a lifting of the Dirichlet data gD given by Theo-

rem 2.2.1, and for all functions w,v ∈ V := H1
0,ΓD(Ω) and all q ∈ L2(Ω), let

aΩ(w,v) :=
∫

Ω
sss(w) : eee(v) dx, fzΩ(v) :=

∫
Ω
f · v dx+

∫
ΓN
g · v ds− aΩ(z,v),

bΩ(v, q) := −
∫

Ω
q∇ · v dx, fzc,Ω(q) := −

∫
Ω
qfc dx− bΩ(z, q). (4.69)

Then, finding ů ∈ V such that for all v ∈ V and all q ∈ Q,

aΩ(ů,v) + bΩ(v, p) = fzΩ(v),
bΩ(ů, q) = fzc,Ω(q),

is equivalent to solving (4.68) since sss is linear. If we equip V with the norm ‖∇ · ‖0,Ω,
it is possible to show that aΩ(·, ·) is a continuous and coercive bilinear form on V × V ,
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bΩ(·, ·) is a continuous bilinear form on V ×Q that satisfies the inf-sup condition (2.24),
and the functionals fzΩ(·) on V and fzc,Ω(·) on Q are linear and continuous. We refer to
[Ern and Guermond, 2021b] for the proof. Therefore, by Ladyzhenskaya-Babuška-Brezzi
theorem, problem (4.68) is well-posed.

Let Ω0 be the defeatured domain as defined in (4.1). To introduce the corresponding
defeatured problem, and as for Poisson’s equation from Section 4.1, we need to choose an
L2-extension of f and an L2-extension of fc in the negative components of the features
Fn, that we still write f and fc by abuse of notation. Moreover, we assume that the
viscous stress tensor sss also satisfies (4.66) on functions defined everywhere in Ω0. Finally,
recalling the notation from Section 4.1, the analysis is performed under Assumption 4.1.3
on the exact problem (4.67), that is, a Neumann boundary condition is imposed on the
boundary of the features.

Then, instead of the exact problem (4.67) and similarly to (3.3), the following defeatured
problem is solved: after choosing g0 ∈ H

1
2 (γ0), find (u0, p0) ∈ H1(Ω0) × L2(Ω0), the

weak solution of 

−∇ · sss(u0) +∇p0 = f in Ω0

∇ · u0 = fc in Ω0

u0 = gD on ΓD
sss(u0)n− p0n = g on ΓN \ γ
sss(u0)n0 − p0n = g0 on γ0,

(4.70)

that is, (u0, p0) ∈H1
gD,ΓD(Ω0)× L2(Ω0) satisfies for all (v0, q0) ∈H1

0,ΓD(Ω0)× L2(Ω0),∫
Ω0

sss(u0) : eee(v0) dx−
∫

Ω
p0∇ · v0 dx =

∫
Ω0
f · v0 dx+

∫
ΓN\γ

g · v0 ds+
∫
γ0
g0 · v0 ds,

−
∫

Ω
q0∇ · u0 dx = −

∫
Ω
q0fc dx. (4.71)

Using the same arguments as for problem (4.68), we can demonstrate that problem (4.71)
is well-posed.

As previously, since we are interested in the global defeaturing error in Ω, we need
to extend the defeatured solution (u0, p0) to the domain extension F̃ kp of the positive
component F kp of feature F k, for all k = 1, . . . ,Nf . Thus, let us choose an L2-extension
of f and an L2-extension of fc in F̃ kp , that we still write f and fc by abuse of notation.
Moreover, we assume that the viscous stress tensor sss also satisfies (4.66) on functions
defined in F̃ kp . Then, similarly to (4.5), define for all k = 1, . . . ,Nf the following
extension of the solution (u0, p0) of (4.70) in F̃ kp : after choosing g̃k ∈ H 1

2 (γ̃k), find
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(uk, pk) ≡
(
ũk0, p̃k0

)
∈H1

(
F̃ kp
)
× L2

(
F̃ kp
)
, the weak solution of



−∇ · sss(uk) +∇pk = f in F̃ kp
∇ · uk = fc in F̃ kp
uk = u0 on γk0,p

sss(uk)ñk − pkñk = g̃k on γ̃k

sss(uk)ñk − pkñk = g on γks ,

(4.72)

that is,
(uk, pk) ∈H1

u0,γk0,p

(
F̃ kp
)
× L2

(
F̃ kp
)

satisfies for all (vk, qk) ∈H1
0,γk0,p

(
F̃ kp
)
× L2

(
F̃ kp
)
,

∫
F̃kp

sss(uk) : eee(vk) dx−
∫
F̃kp

pk∇ · vk dx =
∫
F̃kp

f · vk dx+
∫
γ̃k
g̃k · vk ds+

∫
γks

g · vk ds,

−
∫
F̃kp

qk∇ · uk dx = −
∫
F̃kp

qkfc dx. (4.73)

Using the same arguments as for problem (4.68), we can demonstrate that problem (4.73)
is well-posed.

Finally, let (ud, pd) ∈H1
gD,ΓD(Ω)× L2(Ω) be the extended defeatured solution defined

in a similar way as (4.7), that is,

(ud, pd) ≡

(u0, p0)|Ω? in Ω? = Ω \ Fp

(uk, pk)|Fkp ≡
(
ũk0, p̃k0

)
|Fkp in F kp , for all k = 1, . . . ,Nf .

(4.74)

Then, in the context of Stokes equations, we define the defeaturing error by

|||u− ud|||Ω + ‖p− pd‖0,Ω,

where |||·|||Ω :=
(
aΩ(·, ·)

) 1
2 .

As in Sections 4.1 and 4.3, recalling definition (4.11) of Σ, the parts of boundary belonging
to Σ will play an important role in the a posteriori defeaturing error analysis. In particular,
we assume that Σ satisfies the isotropy Assumption 3.3.3.

Recall that kσ ≡ k if σ ∈ Σk for some k = 1, . . . ,Nf , and let us redefine dσ for all σ ∈ Σ
in the context of Stokes equations. That is, let

dσ ≡


g − sss(ud)n + pdn if σ ∈ Σn of if σ ∈ Σr,

−
(
g0 + sss(ud)nkσ − pdnkσ

)
if σ ∈ Σ0,p.

(4.75)
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We are now able to define the a posteriori defeaturing error estimator as

ED(ud, pd) :=

∑
σ∈Σ

E σ
D(ud, pd)2

 1
2

, (4.76)

where for all σ ∈ Σ,

E σ
D(ud, pd) :=

(
|σ|

1
n−1

∥∥∥dσ − dσσ∥∥∥2

0,σ
+ c2

σ|σ|
n
n−1

∥∥∥dσσ∥∥∥2

`2

) 1
2

,

with cσ is defined as in (3.10). Note that as previously, we can rewrite the estimator
feature-wise, as follows:

ED(ud, pd) =

Nf∑
k=1

∑
σ∈Σk

E σ
D(ud, pd)2

 1
2

=

Nf∑
k=1

E k
D(ud, pd)2

 1
2

,

where for all k = 1, . . . ,Nf , we define E k
D(uk, pk) as the defeaturing error estimator for

feature F k, that is,

E k
D(ud, pd) :=

 ∑
σ∈Σk

E σ
D(ud, pd)2

 1
2

.

The proposed estimator indicates that all the information on the error introduced by
defeaturing is encoded in the boundary of the features, and can be accounted by suitably
evaluating the error made on the normal viscous stress and pressure of the solution.

Remark 4.4.1. Similarly to Remarks 4.2.1 and 4.3.1, the terms involving the component-
wise average values of dσ in ED(ud, pd) only depend on the defeatured problem data. As
a consequence, if these terms dominate, this means that the defeatured problem data
should be more accurately chosen. Moreover, under the reasonable data compatibility
conditions (4.45) that represent flux conservation assumptions in this context, the

defeaturing error estimator (4.76) rewrites ED(ud, pd) :=

∑
σ∈Σ
|σ|

1
n−1 ‖dσ‖20,σ

 1
2

.

Remark 4.4.2. Similarly to Remark 4.2.2 and 4.3.2, note that

ED(ud, pd) .

∑
σ∈Σ

c2
σ |σ|

1
n−1 ‖dσ‖20,σ

 1
2

=: ẼD(ud, pd).

However, when n = 2 and under the flux conservation conditions (4.45), ẼD(ud, pd) is
sub-optimal since in this case, ẼD(ud, pd) . max

σ∈Σ
(cσ) ED(ud, pd).

In the remaining part of this section, we study the properties of the a posteriori defea-
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turing error estimator ED(ud, pd). We show that if the features satisfy the separability
Assumption 4.1.5, the quantity ED(ud, pd) is a reliable estimator for the defeaturing
error |||u− ud|||Ω + ‖p− pd‖0,Ω, i.e., it is an upper bound for the defeaturing error with
a hidden constant that is independent of the number of features Nf and of their size,
see Theorem 4.4.3. Then, assuming that all σ ∈ Σ are also regular according to Defini-
tion 2.1.3 and under mild assumptions for the two-dimensional case, we show that it is
also efficient (up to oscillations), i.e., it is a lower bound for the defeaturing error up to
oscillations, see Theorem 4.4.4. As previously, the key issue in the subsequent analysis
is to track the dependence of all constants from the size of the features and from their
number.

4.4.2 Reliability

In this section, we state and prove that the error indicator defined in (4.76) is reliable,
that is, it is an upper bound for the defeaturing error.

Theorem 4.4.3. Let (u, p) be the weak solution of Stokes problem (4.68) in the exact
geometry Ω, and let (ud, pd) be the weak solutions of the Stokes problem in the defeatured
geometry, as defined in (4.74). If all σ ∈ Σ are isotropic according to Definition 2.1.2,
and if the features F are separated as in Assumption 4.1.5, then the defeaturing error is
bounded in terms of the estimator ED(ud, pd) introduced in (4.76) as follows:

|||u− ud|||Ω + ‖p− pd‖0,Ω . ED(ud, pd),

where the hidden constant is independent of the number of features Nf and of their size.

Proof. Let us follow similar steps as in the proofs of Theorems 4.2.3 and 4.3.3. So to
begin with, consider the exact problem (4.67) restricted to Ω? = Ω \ Fp with the natural
Neumann boundary condition on γ0,p, as in (4.46). By abuse of notation, we omit the
explicit restriction of u and p to Ω?. Then for all (v0, q0) ∈H1

0,ΓD(Ω?)× L2(Ω?),∫
Ω?

sss(u) : eee(v0) dx−
∫

Ω?
p∇ · v0 dx =

∫
Ω?
f · v0 dx+

∫
ΓN\γp

g · v0 ds

+
∫
γ0,p

(
sss(u)n0 − pn0

)
· v0 ds,

−
∫

Ω?
q0∇ · udx =−

∫
Ω?
q0fc dx. (4.77)

Then, let us consider the simplified problem (4.70) also restricted to Ω?, with the natural
Neumann boundary condition on γn. Thus, since ud|Ω? = u0|Ω? by definition, and if we

101



Chapter 4. A posteriori error estimation: multi-feature geometries

omit the explicit restrictions of ud and pd to Ω?, for all (v0, q0) ∈H1
0,ΓD(Ω?)× L2(Ω?),∫

Ω?
sss(ud) : eee(v0) dx−

∫
Ω?
pd∇ · v0 dx =

∫
Ω?
f · v0 dx+

∫
ΓN\γ

g · v0 ds

+
∫
γn

(
sss(ud)n− pdn

)
· v0 ds+

∫
γ0,p

g0 · v0 ds,

−
∫

Ω?
q0∇ · ud dx =−

∫
Ω?
q0fc dx. (4.78)

Let eu := u − ud ∈ H1
0,ΓD(Ω) and ep := p − pd ∈ L2(Ω). So from (4.77) and (4.78),

since sss is linear from its definition (4.66), then for all (v0, q0) ∈H1
0,ΓD(Ω?)× L2(Ω?), we

obtain∫
Ω?

sss(eu) : eee(v0) dx−
∫

Ω?
ep∇ · v0 dx =

∫
γn

(
g − sss(ud)n + pdn

)
· v0 ds

+
∫
γ0,p

(
sss(u)n0 − pn0 − g0

)
· v0 ds,

−
∫

Ω?
q0∇ · eu dx = 0. (4.79)

In a very similar fashion, we can deduce that for all k = 1, . . . ,Nf and all test functions
(vk, qk) ∈H1

(
F kp
)
× L2

(
F kp
)
,

∫
Fkp

sss(eu) : eee(vk) dx−
∫
Fkp

ep∇ · vk dx =
∫
γk0,p

[(
sss(u)− sss(ud)

)
nk − (p− pd)nk

]
· vk ds

+
∫
γkr

(
g − sss(ud)nk + pdnk

)
· vk ds,

−
∫
Fkp

qk∇ · eu dx = 0. (4.80)

Therefore, let (v, q) ∈ H1
0,ΓD(Ω) × L2(Ω), then v|Ω? ∈ H1

0,ΓD(Ω?) and v|Fkp ∈ H
1(F kp )

for all k = 1, . . . ,Nf . Therefore, from equations (4.79) and (4.80), since n0 = −nkσ on
all σ ∈ Σ0,p, and since n = nkσ on all σ ∈ Σr, then recalling the definitions of aΩ(·, ·)
and bΩ(·, ·) in (4.69) and of dσ in (4.75), we obtain

aΩ(eu,v) + bΩ(v, ep) =
∫

Ω
sss(eu) : eee(v) dx−

∫
Ω
ep∇ · v dx =

∑
σ∈Σ

∫
σ
dσ · v ds, (4.81)

bΩ(eu, q) = −
∫

Ω
q∇ · eu dx = 0. (4.82)

The right hand side of (4.81) can be estimated exactly as (4.51), and thus for all
v ∈H1

0,ΓD(Ω), ∑
σ∈Σ

∫
σ
dσ · v ds . ED(ud, pd)‖∇v‖0,Ω. (4.83)

Now, remark that if we take v = eu ∈H1
0,ΓD(Ω) and q = ep ∈ L2(Ω), then equation (4.82)

102
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reads bΩ(eu, ep) = 0, and thus using (4.83), equation (4.81) rewrites

aΩ(eu, eu) =
∫

Ω
sss(eu) : eee(eu) dx−

∫
Ω
ep∇ · eu dx

=
∑
σ∈Σ

∫
σ
dσ · eu ds

. ED(ud, pd)‖∇eu‖0,Ω.

Using the coercivity of aΩ(·, ·) in H1
0,ΓD(Ω) equipped with the norm ‖∇ · ‖0,Ω, then

|||eu|||2Ω = aΩ(eu, eu) . ED(ud, pd)‖∇eu‖0,Ω

. ED(ud, pd)
(
a(eu, eu)

) 1
2 = ED(ud, pd)|||eu|||Ω, (4.84)

so that if we simplify on both sides,

|||eu|||Ω . ED(ud, pd). (4.85)

Finally, since bΩ(·, ·) satisfies the inf-sup condition (2.24), using (4.81) and (4.83), using
the continuity of aΩ(·, ·) in H1

0,ΓD(Ω), and then its coercivity as in (4.84), then

‖ep‖0,Ω . sup
v∈H1

0,ΓD
(Ω)

v 6=0

bΩ(v, ep)
‖∇v‖0,Ω

= sup
v∈H1

0,ΓD
(Ω)

v 6=0

∑
σ∈Σ

∫
σ
dσ · v ds− aΩ(eu,v)

‖∇v‖0,Ω

≤ sup
v∈H1

0,ΓD
(Ω)

v 6=0

∑
σ∈Σ

∫
σ
dσ · v ds

‖∇v‖0,Ω
− inf
v∈H1

0,ΓD
(Ω)

v 6=0

aΩ(eu,v)
‖∇v‖0,Ω

. ED(ud, pd) + ‖∇eu‖0,Ω

. ED(ud, pd) + |||eu|||Ω. (4.86)

We can therefore conclude by combining (4.85) and (4.86).

4.4.3 Efficiency

In this section, we state and prove that the error indicator defined in (4.76) is efficient,
that is, it is a lower bound for the defeaturing error, up to oscillations. In the case n = 2,
the data compatibility conditions (4.45) are also required.

Theorem 4.4.4. Consider the same notation and assumptions as in Theorem 4.4.3,
and assume that all σ ∈ Σ are also regular according to Definition 2.1.3. Then, assume
that

∣∣∣γkn ∣∣∣ ' ∣∣∣γkr ∣∣∣ ' ∣∣∣γk0,p

∣∣∣ for all k = 1, . . . ,Nf . Moreover, for any m ∈ N, let Πm be
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such that Πm|σ ≡ Πm,σ for all σ ∈ Σ, where Πm,σ is the component-wise extensions
of the Clément operator defined in (3.8), and let dk be such that dk|σ ≡ dσ on all
σ ∈ Σk, for all k = 1, . . . ,Nf . Finally, suppose that either n = 3, or n = 2 and the
data compatibility conditions (4.45) are satisfied. Then the defeaturing error bounds the
estimator ED(ud, pd) introduced in (4.76) up to oscillations, that is

ED(ud, pd) . |||u− ud|||Ω + ‖p− pd‖0,Ω + osc(ud, pd),

where for any m ∈ N,

osc(ud, pd)2 :=
Nf∑
k=1

(
osck(ud, pd)

)2
,

osck(ud, pd) :=
∣∣∣Γk∣∣∣ 1

2(n−1)
∥∥∥dk −Πm

(
dk
)∥∥∥

0,Γk
for k = 1, . . . ,Nf .

Proof. This proof follows similar steps as in the proof of Theorems 4.2.4 and 4.3.4. So let
eu := u−ud ∈H1

0,ΓD(Ω), let ep := p−pd ∈ L2(Ω), and let k ∈ {1, . . . ,Nf}. First, let us
recall the definition of Ωk

? := Ω? ∩ Ωk, where Ωk is the domain associated to feature F k
defined in Assumption 4.1.5. Then, let us consider the exact problem (4.67) restricted to
Ωk
?, with the natural Neumann boundary condition on γk0,p, and the natural Dirichlet

boundary condition on ∂Ωk
? \ ∂Ω?. That is, similarly to (4.46),

(
u|Ωk? , p|Ωk?

)
is the weak

solution of 

−∇ · sss
(
u|Ωk?

)
+∇

(
p|Ωk?

)
= f in Ωk

?

∇ ·
(
u|Ωk?

)
= fc in Ωk

?

u|Ωk? = gD on ∂Ωk
? ∩ ΓD

u|Ωk? = tr∂Ωk?\∂Ω?(u) on ∂Ωk
? \ ∂Ω?

sss

(
u|Ωk?

)
n− p|Ωk?n = g on ∂Ωk

? ∩ ΓN

sss

(
u|Ωk?

)
n0 − p|Ωk?n0 = sss(u)n0 − pn0 on γk0,p.

(4.87)

By abuse of notation, we omit the explicit restriction of u and p to Ωk
?. Then for all test

functions (v0, q0) ∈H1
0,∂Ωk?\[ΓN∪γk0,p](Ω

k
?)× L2(Ωk

?),

∫
Ωk?

sss(u) : eee(v0) dx−
∫

Ωk?
p∇ · v0 dx =

∫
Ωk?
f · v0 dx+

∫
∂Ωk?∩ΓN

g · v0 ds

+
∫
γk0,p

(
sss(u)n0 − pn0

)
· v0 ds,

−
∫

Ωk?
q0∇ · udx =−

∫
Ωk?
q0fc dx. (4.88)

Then, let us consider the simplified problem (4.70) also restricted to Ωk
?, with the natural

Neumann boundary condition on γkn , and the natural Dirichlet boundary condition on
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∂Ωk
? \ ∂Ω?. Thus, since

(
ud|Ωk? , pd|Ωk?

)
=
(
u0|Ωk? , p0|Ωk?

)
by definition, if we omit the

explicit restrictions to Ωk
?, then for all (v0, q0) ∈H1

0,∂Ωk?\[ΓN∪γk0,p](Ω
k
?)× L2(Ωk

?),∫
Ωk?

sss(ud) : eee(v0) dx−
∫

Ωk?
pd∇ · v0 dx =

∫
Ωk?
f · v0 dx+

∫
(∂Ωk?∩ΓN)\γkn

g · v0 ds

+
∫
γkn

(
sss(ud)n− pdn

)
· v0 ds+

∫
γk0,p

g0 · v0 ds,

−
∫

Ωk?
q0∇ · ud dx =−

∫
Ωk?
q0fc dx. (4.89)

So for all (v0, q0) ∈H1
0,∂Ωk?\[ΓN∪γk0,p](Ω

k
?)×L2(Ωk

?), using (4.88), (4.89), and the linearity
of sss, we obtain∫

Ωk?
sss(eu) : eee(v0) dx−

∫
Ωk?
ep∇ · v0 dx =

∫
γkn

(
g − sss(ud)n + pdn

)
· v0 ds

+
∫
γk0,p

(
sss(u)n0 − pn0 − g0

)
· v0 ds,

−
∫

Ωk?
q0∇ · eu dx = 0. (4.90)

Let (v, q) ∈H1
0,∂Ωk\ΓN (Ωk)× L2(Ωk), so

(
v|Ωk? , q|Ωk?

)
∈H1

0,∂Ωk?\[ΓN∪γk0,p](Ω
k
?)× L2(Ωk

?).

Recall that Ω? = Ω \ Fp, so that Ωk = int
(
F kp ∪ Ωk

?

)
. Consequently, reusing equa-

tion (4.80), using (4.90), since n0 = −nk on γk0,p, and since n = nk on γkr , then if we
recall definition (4.75) of dσ,∫

Ωk
sss(eu) : eee(v) dx−

∫
Ωk
ep∇ · v dx

=
∫
γkn

(
g − sss(ud)n + pdn

)
· v ds+

∫
γk0,p

(
− g0 − sss(ud)nk + pdnk

)
· v ds

+
∫
γkr

(
g − sss(ud)nk + pdnk

)
· v ds

=
∑
σ∈Σk

∫
σ
dσ · v ds,

and −
∫

Ωk
q∇ · eu dx = 0. (4.91)

Now, let
aΩk(·, ·) : H1

0,∂Ωk\ΓN (Ωk)×H1
0,∂Ωk\ΓN (Ωk)→ R,

bΩk(·, ·) : H1
0,∂Ωk\ΓN (Ωk)× L2(Ωk)→ R,

be defined by

aΩk(w,v) =
∫

Ωk
sss(w) : eee(v) dx, ∀w,v ∈H1

0,∂Ωk\ΓN (Ωk),

bΩk(v, q) = −
∫

Ωk
q∇ · v dx, ∀v ∈H1

0,∂Ωk\ΓN (Ωk),∀q ∈ L2(Ωk).
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geometric adaptivity

defeaturing

Ω

Figure 4.2 – Illustration of defeaturing and geometric adaptivity.

Note that aΩk(·, ·) and bΩk(·, ·) are continuous with respect to the norms ‖∇ · ‖0,Ωk for
H1

0,∂Ωk\ΓN (Ωk), and ‖ · ‖0,Ωk for L2(Ωk). Thus using (4.91), for all v ∈H1
0,∂Ωk\ΓN (Ωk),

∑
σ∈Σk

∫
σ
dσ · v ds = aΩk(eu,v) + bΩk(v, ep) .

(
‖∇eu‖0,Ωk + ‖ep‖0,Ωk

)
‖∇v‖0,Ωk . (4.92)

The rest of the proof is identical to the one of Theorem 4.3.4, replacing (4.63) by (4.92).

Remark 4.4.5. As in Remarks 4.2.5 and 4.3.5, when the data is regular, it is always
possible to choose m large enough so that the asymptotic behavior of the oscillations is

O
(

max
k=1,...,Nf

∣∣∣Γk∣∣∣m+ 1
2(n−1)

)
. Therefore, we can make sure that the oscillations get small

with respect to the defeaturing error, when the features get small.

4.5 An adaptive geometric refinement strategy

In this section, we aim at defining an adaptive analysis-aware defeaturing strategy in a
geometry Ω containing Nf ≥ 1 distinct complex features. More precisely, starting from
a fully defeatured geometry Ω0, we want to precisely define a strategy that determines
when and which geometrical features need to be reinserted in the geometrical model,
among those that have been removed by defeaturing. Note that the word defeaturing
may be misleading when thinking of an adaptive strategy: the geometry Ω0 in which the
problem is actually solved is (partially) defeatured, but the adaptive algorithm selects the
features that need to be added to the geometrical model, in order to solve the differential
problem up to a given accuracy. The concept of geometric adaptivity is illustrated in
Figure 4.2.

In the sequel, we elaborate on each of the building blocks which compose one iteration of
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an iterative process, as introduced in Section 2.5.3. To do so, let i ∈ N be the current
iteration index of the adaptive geometric refinement strategy. For simplicity in this
section, let us always write ud the defeatured solution, even in the context of linear
elasticity for which it should be ud, or in the context of Stokes equations for which
it should be (ud, pd). To begin the process, let Ω(0)

0 be the fully defeatured geometry
defined as in (4.1). That is, Ω(0)

0 is the domain in which all features of Ω are removed:
their positive component is cut out, and their negative component is filled with material.
Since some features will be reinserted during the adaptive process, we denote Ω(i)

0 the
simplified geometry at the i-th iteration, and in general, we use the upper index (i) to
refer to objects at the same iteration. However, to alleviate the notation, we will drop
the index (i) when it is clear from the context. In particular, we will write Ω0 ≡ Ω(i)

0 .

4.5.1 Solve and estimate

In the framework of Poisson’s problem, we first solve the defeatured problem (3.4),
respectively (4.38) in the framework of linear elasticity, and (4.71) in the framework of
Stokes equations, defined in the (partially) defeatured geometry Ω0. Then, we solve the
local extension problem (4.6), respectively (4.40) and (4.73), for each feature having a
non-empty positive component. We thus obtain the defeaturing solution ud ≡ u

(i)
d defined

in (4.7), respectively (4.41) and (4.74), as an approximation of the exact solution u

of (3.2), respectively (4.35) and (4.68), at iteration i. Then, the defeaturing error is
estimated by ED(ud) defined in (4.13), respectively (4.43) and (4.76).

4.5.2 Mark

In this section, we drop the dependence of the defeaturing error estimator on the
defeatured pressure pd when Stokes equations are considered, without loss of clarity.
Now, recalling that Nf ≡ N

(i)
f at the current iteration i, we select and mark features{

F km
}
km∈Im

⊂ F with Im ⊂
{

1, . . . ,N (i)
f

}
to be added to the (partially) defeatured geometry Ω0 ≡ Ω(i)

0 . In the following, we use
the maximum strategy presented in (2.36), but a Dörfler strategy as in (2.37) could also
be used. That is, first recall definition (4.14) of the single feature contributions E k

D(ud)
of the defeaturing error estimator ED(ud), for k = 1, . . . ,Nf . Then, after choosing a
marking parameter 0 < θ ≤ 1, a feature F km is marked, i.e., km ∈ Im, if it verifies

E km
D (ud) ≥ θ max

k=1,...,Nf

(
E k
D(ud)

)
. (4.93)

In other words, the set of marked features are the ones giving the most substantial
contribution to the defeaturing error estimator. The smallest is θ, the more features are
selected, and inversely.
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4.5.3 Refine

In this step, the defeatured geometry Ω(i)
0 is refined, meaning that the marked features{

F k
}
k∈Im

are inserted in the geometrical model. That is, the new partially defeatured

geometrical model Ω(i+1)
0 at the next iteration is built as follows:

Ω(i+ 1
2)

0 = Ω(i)
0 \

⋃
k∈Im

F kn , (4.94)

Ω(i+1)
0 = int

Ω(i+ 1
2)

0 ∪
⋃
k∈Im

F kp

 . (4.95)

And thus in particular,

F (i+1)
n := F (i)

n \
⋃
k∈Im

F kn , F (i+1)
p := F (i)

p \
⋃
k∈Im

F kp ,

F̃ (i+1)
p := F̃ (i)

p \
⋃
k∈Im

F̃ kp , Ω(i+1)
? := Ω \ F (i+1)

p ,

and as in definition (4.1),

Ω(i+1)
0 = int

(
Ω(i+1)
? ∪ F (i+1)

n

)
.

Once the mesh and the defeatured geometry have been refined, the modules SOLVE and
ESTIMATE presented in Section 4.5.1 can be called again. To do so, we update Ω0 as
Ω(i+1)

0 , we define N (i+1)
f := N

(i)
f −#Im, we update the set of features F as F \

{
F k
}
k∈Im

,

and we renumber the features from 1 to N (i+1)
f . The adaptive loop is continued until

a certain given tolerance on the error estimator ED(ud) is reached, or until the set F is
empty, meaning that all the features have been added to the geometrical model.

Remark 4.5.1. Note that a more precise geometric refinement strategy could be per-
formed since Gkp can be seen as a negative feature of F kp whose simplified domain is
F̃ kp , for all k = 1, . . . ,Nf . More precisely, for each k = 1, . . . ,Nf , one could consider
separately the contributions to E k

D(ud) given by

• γkn and γk0,p, which indicate whether feature F k should be added to the defeatured
geometrical model Ω0;

• γkr , which indicates whether the negative feature Gkp of F kp should be removed from
the simplified positive component F̃ kp of F k.

However, since this adds an extra complexity without introducing new conceptual ideas,
this strategy is not further developed in the remaining part of this thesis.
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4.6 Numerical considerations and experiments

In this section, we perform a few numerical experiments to illustrate the validity of the
proposed a posteriori defeaturing error estimators. Thanks to the experiments, we also
demonstrate that the adaptive procedure presented in Section 4.5 ensures the convergence
of the defeaturing error.

To estimate the error introduced by defeaturing the problem geometry in practice, one
needs to perform the same steps (i)–(iii) as presented in Section 3.5, where steps (ii)
and (iii) are repeated for each feature. More precisely, in step (ii), one solves the extension
problem (4.6) on the simplified positive component F̃ kp of every feature F k, k = 1, . . . ,Nf ,
while in step (iii), the boundary averages and integrals dσ

σ and
∥∥∥dσ − dσσ∥∥∥0,σ

are
computed for each σ ∈ Σ as defined in (4.12).

The numerical experiments of this section have been implemented as in Chapter 3. That
is, we use IGA on very fine meshes for the numerical approximation of the PDEs, and
multipatch and trimming techniques for the geometrical description of the features.

4.6.1 Impact of some feature properties on the defeaturing error

While validating the theory developed in Section 4.2 for Poisson’s problem, we study in
this section the impact of some properties of the geometrical features on the defeaturing
error and estimator. In particular, we study the influence of the size and shape of the
features, of the distance between them, and of their number.

4.6.1.1 Size and shape of the features

Let us consider again the numerical experiment of Chapter 3, Section 3.5.1.2, in which
we have considered a geometry with a very small important feature, and a large feature
whose presence or absence does not affect much the solution accuracy. The considered
geometry is illustrated in Figure 4.3b. From (3.49), we see that the results provided in
this numerical experiment have already used the multi-feature defeaturing error estimator
presented in this chapter.

Let us then perform the same test, but with square holes instead of circular ones. That
is, let us consider the same defeatured geometry Ω0 = (0, 1)2, and the same data to solve
Poisson equation (3.1), but now Ω := Ω0 \

(
F 1 ∪ F 2

)
, where F 1 and F 2 are squares

centered at (1.1 · 10−3, 1.1 · 10−3)T and (8.9 · 10−1, 8.9 · 10−1)T , respectively, and whose
sides have length 2 · 10−3 and 2 · 10−1, respectively. The geometry is illustrated in
Figure 4.3b, and we recall that the solution has a high gradient close to the bottom left
corner where F 1 is located, and is almost constantly equal to zero close to the top right
corner where F 2 is located.
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F 1

F 2

Ω

(a) Exact domain with two circular features.

F 1

F 2

Ω

(b) Exact domain with two square features.

Figure 4.3 – Numerical test 4.6.1.1 – Exact geometries used for the comparison between
feature sizes and shapes (not at scale).

Features E 1
D(u0) E 2

D(u0) ED(u0) |u− u0|1,Ω ηeff

Circular holes 5.03 · 10−2 7.86 · 10−6 5.03 · 10−2 1.45 · 10−2 3.47
Square holes 6.29 · 10−2 7.73 · 10−6 6.29 · 10−2 1.64 · 10−2 3.84

Table 4.1 – Numerical test 4.6.1.1 – Results of the comparison between feature sizes and
shapes.

Results are presented in Table 4.1. In both geometries, independently of the shape of the
features, F 1 is indeed more important than F 2 since the estimator for F 1 is four orders
of magnitude larger than the estimator for F 2. In both cases, the proposed estimator
well estimates the defeaturing error since the effectivity index ηeff is reasonably low, with
values comparable to the single feature experiments of Chapter 3. This validates the
theory developed in Section 4.2.

4.6.1.2 Distance between features

The following numerical example is used to show that Assumption 4.1.5 is very weak, as
one can consider features that are arbitrarily close to one another, as soon as the number
of close features is bounded. Indeed, consider a geometry with either two square features,
one positive and one negative, or one complex feature, as follows. Let Ω0 := (0, 1)2, let
s ∈ (−0.1, 0.8), and let Ωs := int

(
Ω0 ∪ F 1

s \ F 2
s

)
with

F 1
s :=

(
0.4− s

2, 0.5− s

2

)
× (1, 1.1) ,

F 2
s :=

(
0.5 + s

2, 0.6 + s

2

)
× (0.9, 1) ,

as illustrated in Figure 4.4. That is,

• if s ≤ 0, then F 1
s ∪ F 2

s needs to be considered as the single feature of Ωs because of
Assumption 4.1.5, where F 1

s is the positive component of that feature, and F 2
s is

its negative component. In this case, we let γ1
0,s := γ0,p, γ2

0,s := γ0,n, γ1
s := γp, and

γ2
s := γn;
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γ1
0,s

γ2
0,s

Ω0

(a) Simplified domain
Ω0 for s = 0.1.

Ωs

γ1
s

γ2
s

(b) Exact domain Ωs

for s = 0.1.

γ1
0,s

γ2
0,s

γ1
s

γ2
s

(c) Zoom on part of the
upper boundary of Ω0
(up) and Ωs (down) for
s = 0.

γ1
0,s

γ2
0,s

γ1
s

γ2
s

(d) Zoom on part of
the upper boundary of
Ω0 (up) and Ωs (down)
for s = −0.05.

Figure 4.4 – Numerical test 4.6.1.2 – Simplified domain Ω0 and exact domains Ωs for
different values of s.

• if s > 0, then F 1
s and F 2

s are two distinct features satisfying Assumption 4.1.5 and
separated by a distance s, where F 1

s is positive, and F 2
s is negative. In this case, we

let γ1
0,s := γ1

0,p = γ1
0 , γ2

0,s := γ2
0,n = γ2

0 , γ1
s := γ1

p = γ1, and γ2
s := γ2

n = γ2, following
the multi-feature notation presented in this chapter.

Let us consider Poisson problem (3.1) with f ≡ 0 in Ω, gD(x, y) := 40 cos(πx)+10 cos(5πx)
on

ΓD := (0, 1)× {0},

and g ≡ 0 on ΓN := ∂Ωs \ ΓD. We solve the defeatured Poisson problem (3.3) with the
same data, and we take g0 ≡ 0 on

γ1
0,s =

(
0.4− s

2, 0.5− |s|2

)
× {1}

and γ2
0,s =

(
0.5 + s

2, 0.6 + s

2

)
× {1}.

Finally, we solve the Dirichlet extension problem (4.5) in F̃ 1
s = F 1

s .

We choose different values of s in order to consider different cases:

• with s = 2 · 10−1, the distance between the features and the distance between γ1
0,s

and γ2
0,s are of the same order of magnitude as the measures of γ1

0,s and γ2
0,s;

• with s = 2 · 10−4, the distance between γ1
0,s and γ2

0,s is several orders of magnitude
smaller than the measures of γ1

0,s and γ2
0,s;

• with s = 0, the boundaries of the feature components intersect in one single point;

• with s = −1 · 10−3, the measure of the intersection between the boundaries of the
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s ED(ud) |u− ud|1,Ωs ηeff

2.0 · 10−1 1.58 1.49 1.73
2.0 · 10−4 2.84 1.68 1.69
0.0 · 100 2.84 1.68 1.69
−1.0 · 10−3 27.0 15.1 1.78
−9.9 · 10−2 24.5 14.3 1.71

Table 4.2 – Numerical test 4.6.1.2 – Results for the problem with two features; s > 0
corresponds to separate features, while s < 0 corresponds to features with overlapping
boundaries.

feature components is several orders of magnitude smaller than the measures of
the boundaries of the features;

• with s = −9.9 · 10−2, the measure of the intersection between the boundaries of
the feature components is of the same order of magnitude as the measures of the
boundaries of the features.

The results are presented in Table 4.2, and we indeed see that the defeaturing estimator
approximates well the defeaturing error in all the different presented cases. In particular,
we observe that the effectivity index ηeff is not influenced by the distance separating
the positive and negative components of the feature(s). This confirms the fact that
Assumption 4.1.5 in not very restrictive in practice.

4.6.1.3 Number of features

Under Assumption 4.1.5, the effectivity index of the defeaturing error estimator should
not depend on the number of features present in the original geometry Ω. To verify
this, let Ω0 := (0, 1)2 be the fully defeatured domain, and let Ω := Ω0 \

⋃Nf
k=1 F

k, where
Nf = 27, and the features F k are circular holes of random radii in the interval (0, 0.01),
which are randomly distributed in Ω0 such that Assumption 4.1.5 is satisfied. For the
sake of reproducibility, the values of the radii and centers of the features are entered in
Table 4.3. The exact domain Ω with all the 27 features, is represented in Figure 4.5a.

Suppose that we want to find a good approximation of the solution of Poisson problem (3.1)
in Ω, whose exact solution is shown in Figure 4.5c. That is, we consider the data
f(x, y) := −18e−3(x+y) in Ω0, gD(x, y) := e−3(x+y) on

ΓD :=
(
[0, 1)× {0}

)
∪
(
{0} × [0, 1)

)
,

g(x, y) := −3e−3(x+y) on ∂Ω0 \ΓD and g ≡ 0 on ∂F k for k = 1, . . . ,Nf . Thus we perform
the adaptive algorithm introduced in Section 4.5 starting from the fully defeatured
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Feature index k 1 2 3 4 5 6 7 8 9
Radius [·10−2] 8.13 6.64 3.89 7.40 8.18 6.00 0.85 9.22 0.54
Center [·10−2] 0.98 2.84 5.46 7.16 8.99 0.67 3.12 4.95 7.06

0.93 1.24 0.57 0.93 1.04 3.40 3.03 3.08 2.48
Feature index k 10 11 12 13 14 15 16 17 18
Radius [·10−2] 5.27 1.19 3.80 8.13 2.44 8.84 7.13 3.78 2.49
Center [·10−2] 8.86 0.67 3.28 5.01 7.44 8.93 1.10 2.44 5.45

2.90 5.35 4.46 5.09 4.88 5.07 6.93 6.78 7.73
Feature index k 19 20 21 22 23 24 25 26 27
Radius [·10−2] 2.53 6.67 0.50 6.85 6.20 7.47 8.77 2.00 1.00
Center [·10−2] 7.27 9.21 0.22 3.26 5.01 7.06 8.99 4.00 1.00

7.33 6.96 8.24 9.15 9.10 8.78 8.98 7.00 9.00

Table 4.3 – Numerical test 4.6.1.3 – Data of the 27 circular features.

1
2

3
4 5

6
7 8

9
10

11

12
13 14 15

16 17

18
19

20

21

22 23
24 25

26

27

(a) Exact domain Ω with 27 features.

1
2

3
4 5

6
8

13

16

(b) Partially defeatured domain Ω(i) at
iteration i = 7.

(c) Exact solution in Ω

Figure 4.5 – Numerical test 4.6.1.3 – Geometry with 27 features, considered exact solution,
and corresponding partially defeatured geometrical model at iteration i = 7.
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0 5 10 15 20 25

10−2

10−1

100

Number of features added to Ω(i)
0

∣∣∣u− u(i)
0

∣∣∣
1,Ω

ED
(
u

(i)
0

)

Figure 4.6 – Numerical test 4.6.1.3 – Behavior of the defeaturing error and estimator
with respect to the number of features in the defeatured geometrical model Ω(i)

0 equal to
27−N (i)

f . Each marker corresponds to the value at one iteration i ≥ 0.

domain Ω(0)
0 := Ω0, with marking parameter θ = 0.95. We recursively solve the partially

defeatured problem (3.3) in Ω(i)
0 at each iteration i ≥ 0, and we call u(i)

0 its solution.

The results are presented in Figure 4.6, and the sets of added features at each iteration
are the following: {1}, {2, 6}, {4, 16}, {8}, {3}, {5}, {13}, {12}, {17}, {22}, {11}, {10},
{15}, {23}, {24, 16}, {7}, {20, 27}, {18, 25}, {21}, {14}, {19, 9}. For instance, the error
is divided by 10 when 9 out of the 27 features are inserted in the partially defeatured
geometrical model, i.e., a third of total number of features; this happens at iteration
i = 7, and Ω(7)

0 is represented in Figure 4.5b. Remark that the iteration index is directly
linked to the number N (i)

f at each iteration i, that is, to the number of features that are
still missing in the simplified geometrical model Ω(i)

0 with respect to the 27 features in Ω.
Moreover, we can see that the effectivity index is independent of the number of features
that are not in the simplified geometrical model in which the problem is solved. Indeed,
ηeff remains around the same value at each iteration, between 2.1 and 3.8. This confirms
the theory developed in this chapter, in particular the reliability and efficiency results of
Theorems 4.2.3 and 4.2.4.

4.6.2 Three dimensional elastic structure

For this next numerical experiment, let us consider the exact domain Ω and the corre-
sponding defeatured domain Ω0 represented in Figure 4.7. More precisely, the base has
dimensions 200× 200× 20 [mm], and the cylinder has a height of 150 [mm]. Moreover
and in particular, the exact domain contains 20 features numbered as illustrated in
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(a) Exact geometry Ω and numbering of the 20 features (in color).

(b) Defeatured geometry Ω0

Figure 4.7 – Numerical test 4.6.2 – Exact and defeatured 3D domains; the colored
boundaries correspond to γk, for each feature k = 1, . . . , 20 as numbered in (a)
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Figure 4.7a:

• F 1 to F 4 are the four letters of the carved “EPFL” logo, in order (see also Figure 4.2
in which these features are more visible).

• F 5 to F 8 are the four holes in the stiffeners, counted counter-clockwise beginning
from the one on the left of the “EPFL” logo.

• F 9 to F 12 are the four holes in the vertical part of the structure, counted counter-
clockwise beginning from the one above the “EPFL” logo.

• F 13 to F 20 are the eight rounds present on the left and right diagonal angles of the
stiffeners, counted counter-clockwise beginning from the left round of the stiffener
on the left of the “EPFL” logo.

Rounds, holes and carved logos are three of the most typical features that finite element
analysis practitioners encounter in CAD designs. These features are interesting to analyze,
since they are usual candidates to be removed before creating a finite element mesh.

Taking the origin at the bottom lower left corner of the structure, let ΓD be the bottom
of the structure and ΓN := ∂Ω \ ΓD, let f = 0 [Pa], gD = 0 [mm], and

g [N ·mm−1] =

0 on ΓN \ Γtop

ex = (1, 0, 0)T on Γtop,

where Γtop is the top face of the cylinder. Then let u ∈ H1
0,ΓD(Ω) be the solution of

the linear elasticity problem given by (4.35), where the material properties correspond
to steel. That is, the Lamé parameters λ and µ are expressed in terms of the Young
modulus E = 210 · 109 [Pa] and Poisson’s ration ν = 0.3 [–] as

λ = Eν

(1 + ν)(1− 2ν) and µ = E

2(1 + ν) .

Now, let us extend f by 0 in all features so that f = 0 [Pa] in Ω0, and let g0 = 0 [N·mm−1]
on γ0 := ∂Ω0 \ ∂Ω. Then we compute the defeatured solution ud ≡ u0 ∈ H1

0,ΓD(Ω0)
given by problem (4.38). Finally, we compute the estimator ED(ud) defined in (4.43) by
computing each feature contribution E k

D(ud) for k = 1, . . . , 20 as in (4.44).

To numerically solve the exact and defeatured problems, we discretize them using
immersed isogeometric analysis thanks to the Igatools library, see [Pauletti et al., 2015].
For the geometric description of the structure and the features, and for the local meshing
process required, trimming techniques have been used, see e.g., [Antolín et al., 2019,
2022]. The interested reader is referred to Chapter 6 and to [Cottrell et al., 2009] for
a presentation of isogeometric analysis and advanced spline technologies. A rather fine
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Feature index k 1 2 3 4 5 6 7 8 9 10
E k
D(ud) [·10−3J] 5.540 8.255 8.617 3.632 196.9 196.9 196.9 196.8 176.1 74.05

Feature index k 11 12 13 14 15 16 17 18 19 20
E k
D(ud) [·10−3J] 176.1 74.05 25.00 42.17 41.76 25.21 25.52 41.88 41.93 25.58

Table 4.4 – Numerical test 4.6.2 – Feature contributions E k
D(ud) to the multi-feature

estimator ED(ud).

Iteration i 0 1 2 3 4
Marked features 5, 6, 7, 8 9, 11 10, 12 14, 15, 18, 19 17, 20
ED
(
u

(i)
d

)
[·10−3J] 487.7 283.5 139.8 91.16 47.29

Iteration i 5 6 7 8 9
Marked features 13, 16 3 2 1 4
ED
(
u

(i)
d

)
[·10−3J] 34.70 14.37 11.25 7.151 3.823

Table 4.5 – Numerical test 4.6.2 – Results of the adaptive defeaturing strategy for
nel = 128 elements.

mesh is used in order to reduce the error coming from numerical approximation. More
precisely, the bounding box of Ω0 is meshed with nel = 128 elements per direction, and
B-splines of degree 2 and regularity 1 are used. Results are presented in Table 4.4,
where we report each feature contribution E k

D(ud) for k = 1, . . . , 20. The obtained error
estimator is equal to ED(ud) = 4.877 · 10−1 [J]. Moreover, the magnitude of the solution
displacements u and ud, and the corresponding von Mises stress distributions are shown
in Figures 4.8 and 4.9, respectively.

We can first see that the absence of features F 5 to F 8 in the defeatured geometry
significantly affects the solution in the stiffeners. This is indeed reflected in the estimator:
the estimator contributions of those four features is very large, corresponding to around
half of the total error estimator. On the other hand, the solution is basically constant
around the “EPFL” logo, no deformation is observed around it. We can therefore expect
that the absence of features F 1 to F 4 in the defeatured geometry is not affecting much
the accuracy of the solution. This is indeed observed in the estimator contributions
of those features, as E 1

D(ud) to E 4
D(ud) are the lowest contributions of the estimator,

corresponding to around 1%− 2% of ED(ud). This is a typical situation that simulation
practitioners encounter daily: carved logos and trademarks are usually defeatured before
creating a finite element mesh, since they complicate the meshing process and increase
the number of elements, but they contribute little to the accuracy of the problem solution.
The proposed estimator identifies them straightaway.

Let us now run the adaptive algorithm introduced in Section 4.5 with θ = 0.99 as marking
parameter, until all features are added to the geometrical model. We call u(i)

d the solution
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Displacement magnitude [·10−3mm]
0.0 2.03.3 4.76.0 8.0

Von Mises stress [·106Pa]
0.0 2.84.6 6.48.2 11

Figure 4.8 – Numerical test 4.6.2 – Defeatured solution in the defeatured geometry Ω0.
The views correspond to Figure 4.7, and the deformed configuration is magnified [×5 ·103]
for visualization purposes.

Displacement magnitude [·10−3mm]
0.0 2.03.3 4.76.0 8.0

Von Mises stress [·106Pa]
0.0 2.84.6 6.48.2 11

Figure 4.9 – Numerical test 4.6.2 – Exact solution in the exact geometry Ω. The views
correspond to Figure 4.7, and the deformed configuration is magnified [×5 · 103] for
visualization purposes.
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Displacement magnitude [·10−3mm]
0.0 2.03.3 4.76.0 8.0

Von Mises stress [·106Pa]
0.0 2.84.6 6.48.2 11

Figure 4.10 – Numerical test 4.6.2 – Partially defeatured solution in the partially defea-
tured geometry obtained at iteration 4. The letters of the “EPFL” logo and the four
rounds F 13, F 16, F 17 and F 20 are the missing features in this geometry. The views
correspond to Figure 4.7, and the deformed configuration is magnified [×5 · 103] for
visualization purposes.

of the defeatured problem (4.38) at iteration i. In Table 4.5, we report the indices of the
features that are added to the defeatured geometrical model at each iteration, together
with the value of the estimator ED

(
u

(i)
d

)
. The magnitude of the solution displacement

and the corresponding von Mises stress distribution at iteration 4 are represented in
Figure 4.10. Comparing the values of the estimator at each iteration and the von Mises
stress distributions around each feature, we can see that the features that are added to
the geometrical model at each iteration seem to be the ones that are affecting the most
the solution accuracy, as one would expect. We can also see that to reduce the error
estimator by 90%, it is enough to consider 12 features out of the total 20 features of Ω
(see iteration 4, whose solution is represented in Figure 4.10).

For instance, the holes F 9 and F 11 are added before the holes F 10 and F 12 during the
adaptive process, because of the direction in which the structure is bending due to the
Neumann traction in the x-direction; this is reflected by the variation of the von Mises
stresses that are larger in F 9 and F 11 than in F 10 and F 12. By symmetry of the structure,
we can see that larger stresses are present around the rounds F 14, F 15, F 18 and F 19 than
around the other four rounds. This is again coming from the direction of the bending.
And very interestingly, the estimator is able to capture this effect, as rounds F 14, F 15,
F 18 and F 19 are introduced in the defeatured geometry after iteration 3, while the other
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Figure 4.11 – Numerical test 4.6.2 – Results of the adaptive defeaturing strategy for
different discretization parameters.

Iteration i 0 1 2 3 4 5 6 7 8 9
nel = 8 5, 6, 7, 8 9, 11 10, 12 14, 15, 18, 19 13, 16, 17, 20 1 2 3 4 ×
nel = 32 5, 6, 7, 8 9, 11 10, 12 14, 15, 18, 19 13, 16, 17, 20 3 2 1 4 ×
nel = 128 5, 6, 7, 8 9, 11 10, 12 14, 15, 18, 19 17, 20 13, 16 3 2 1 4

Table 4.6 – Numerical test 4.6.2 – Marked features at each iteration on different mesh
refinements.

rounds are introduced later, after iterations 4 and 5. Rounds are other typical examples
of features that are candidates to be removed. However in this case, the situation is
usually less clear. Indeed, from one hand, rounds complicate the meshing process and
increase the number of elements in the model. But on the other hand, depending on
the boundary conditions, removing rounds may lead to the creation of singularities in
the solution. The proposed estimator is able to determine the impact of removing those
rounds.

Finally, the numerical error has not been considered in this chapter. However, it is
interesting to note that the estimator is still able to drive the proposed adaptive strategy
on a coarser mesh. Indeed, this algorithm has been performed on multiple meshes
containing a different number nel of elements in each space direction of the bounding
box of Ω0. More precisely, we have considered nel = 8, 32 and 128. In all three cases, the
convergence of the estimator ED

(
u

(i)
d

)
is reported in Figure 4.11, and the features chosen

at each iteration are reported in Table 4.6. We can observe that except for features
whose error contributions are very close to one another, the adaptive algorithm is able to
correctly choose the important features, even on the coarsest mesh.
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Part IIA numerical framework for
analysis-aware defeaturing
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5 An adaptive finite element
defeaturing strategy

Finding the closed-form solution of a BVP can only be achieved in simplified scenarios,
even when the BVP is defined in a relatively simple geometry and is expressed in
variational form as in (2.12). As a consequence, an enormous amount of effort has
been put into the development of numerical methods that suitably approximate the
solution of BVPs. We concentrate in particular on Galerkin finite element methods,
which are techniques based on a discretization of the variational problem, and which
allow us to benefit from the computational power of modern computers. Moreover, the
interoperability between the design of complex objects and the numerical resolution of
PDEs on those objects has been a major challenge since the introduction of finite element
methods. Advanced numerical techniques have been developed to tackle this issue, and
IGA, introduced in Chapter 6, is one of the most successful methods advancing in this
direction. However, dealing with very complex geometries remains challenging, and even
the most recent and most efficient numerical methods may come at a prohibitive cost.

In this chapter, we therefore want to integrate the analysis-aware defeaturing framework
introduced in Part I of this thesis, into an adaptive finite element framework. More
precisely, in the context of Poisson’s problem, we generalize the geometric refinement
strategy of Chapter 4, Section 4.5, by introducing an adaptive algorithm which is twofold.
On the one hand, starting from a fully defeatured geometry on which the solution can
be computed, the adaptive strategy is able to perform some geometric refinement by
introducing previously removed features. This reduces the error due to defeaturing, as
in Chapter 4. On the other hand, the algorithm is also able to perform some standard
mesh refinement on the underlying finite element mesh. This allows a reduction of the
discretization error. To steer the adaptive strategy, we introduce an a posteriori estimator
of the overall error between the exact solution of the PDE defined in the exact domain,
and the numerical approximation of the solution of the corresponding PDE defined in
the defeatured domain. The proposed estimator is able to control both the defeaturing
error and the numerical error contributions to the overall error.
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The chapter is structured as follows. We first define the Galerkin approximation of a
Poisson problem in Section 5.1, and we shortly review the basics of finite element methods
in Section 5.2. Subsequently, the numerical approximation of the defeatured problem
is described in Section 5.3. Finally, in Section 5.4, we design a combined mesh and
geometric adaptive strategy in the context of analysis-aware defeaturing. This strategy
will be made more precise in the special case of THB-spline based IGA in the remaining
chapters of Part II of this thesis. The two last sections of this chapter closely follow
[Buffa et al., 2022a].

5.1 Galerkin approximation

One of the most successful numerical approaches to approximately solve BVPs is the
so-called Galerkin approximation, that we summarize in this section. In the following
derivation, we use Poisson problem (2.26) defined in an open Lipschitz domain D as
model problem, and we keep the same notation as in Example 2.4.4. However, the
presented results of this section are not only valid for Poisson problem (2.26), but for a
wider range of BVPs whose variational form writes as in (2.26) and verifies Lax-Milgram
theorem. To recall the possible generalization of the following study, we denote ‖ · ‖V
the norm on V := H1

0,ΛD(D) instead of ‖∇ · ‖0,D.

Let us consider a family {V h}h>0 of finite-dimensional subspaces of tV on which prob-
lem (2.12) is defined, i.e., for all h ∈ R, h > 0,

{0} 6=V h ⊂ V .

In case of inhomogeneous Dirichlet boundary conditions, i.e., uD 6≡ 0, we need to
address the unbalance of the spaces of test and admissible functions. So let us assume
for simplicity that there exists a known function zhs satisfying the prescribed Dirichlet
boundary conditions, such that there is ůhs ∈ V h which verifies

uhs = ůhs + zhs .

Moreover, we assume that for all v ∈ V ,

lim
h→0

inf
vh∈V h

‖v − vh‖V = 0. (5.1)

Then the Galerkin formulation of problem (2.26) reads:

find uhs = ůhs + zhs , where ůhs ∈ V h, such that

a
(
ůhs , vh

)
= f(vh)− a(zhs , vh) =: fzhs (vh), ∀vh ∈ V h. (5.2)

Now, let us state the following important stability and convergence result.
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Theorem 5.1.1 ([Ciarlet, 2002, Section 2.1]). Under the assumptions of Lax-Milgram
theorem stated in Section 2.4, there exists a unique solution uhs to (5.2), which furthermore
is stable since ∥∥∥uhs∥∥∥

V
≤ 1

a

∥∥∥fzhs ∥∥∥
V ∗

,

where a is the coercivity constant of the bilinear form a(·, ·), as defined in (2.19). Moreover,
if us is the solution of the exact variational problem (2.26), it follows that

∥∥∥us − uhs∥∥∥
V
≤ C

a
inf

vh∈V h

∥∥∥us − vh∥∥∥
V

, (5.3)

where C is the continuity constant of the bilinear form a(·, ·), as defined in (2.14). Hence
uhs converges to us, owing to (5.1).

Inequality (5.3), stating that the approximated solution uhs is the best approximation
of us in V h, is commonly referred to as Céa’s lemma.

Since V h is a finite-dimensional space, let N ∈ N denote its dimension, also called number
of degrees of freedom, and let Φ := [ϕ1,ϕ2, . . . ,ϕN ] denote one of its basis. This implies
that for all vh ∈ V h, there exist coefficients {vi}Ni=1 such that

vh =
N∑
i=1

viϕi = Φv,

where v ∈ RN is the vector of coefficients {vi}Ni=1. In particular, let zs := [z1, z2, . . . , zN ]
be the vector of known coefficients of zhs in the basis Φ. Then accordingly, one can
algebraically rewrite the Galerkin formulation (5.2) as:

find us = ůs + zs, ůs := [̊u1, ů2, . . . , ůN ]T ∈ RN such that
N∑

i,j=1
a(̊ujϕj , viϕi) =

N∑
i=1

f(viϕi)−
N∑

i,k=1
a(zkϕk, viϕi), ∀v = [v1, v2, . . . , vN ]T ∈ RN .

(5.4)

By exploiting the linearity of a(·, ·) and f(·) and since v is arbitrary, then (5.4) is equivalent
to the following problem:

find us = ůs + zs, ůs := [̊u1, ů2, . . . , ůN ]T ∈ RN such that
Aůs = fzs , (5.5)

where A ∈ RN×N and fzs := [fzs
1 , fzs

2 , . . . , fzs
N ] ∈ RN , and for all i, j = 1, . . . ,N ,

Aij := a(ϕj ,ϕi), fzs
i := f(ϕi)−Azs.
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Matrix A is referred to as the stiffness matrix, fzs is the right hand side vector, and
us = ůs + zs is the vector of solution coefficients.

5.2 Finite element methods

To correctly solve the Galerkin approximation (5.2) introduced in the previous section,
the choice of finite-dimensional space V h and basis Φ is crucial. To be able to develop a
systematic routine which can tackle arbitrarily complex differential problems, we aim at
defining Φ which:

• allows for geometrical flexibility,

• is suitable for a computer-based implementation,

• exhibits robust convergence properties, based on rigorous error bounds.

Let us also recall that Φ should be chosen so that V h is consistent with V , meaning that
V h should verify (5.1).

5.2.1 Finite element meshes

In a traditional finite element routine, the first step before defining a finite basis Φ
consists in constructing a mesh that covers the computational domain D. Based on
the definitions from [Ciarlet, 2002, Section 2.1], a mesh Q consists in a partition of (an
approximation of) D into a finite number of elements K. That is, if we assume that D is
a polyhedral domain,

D =
⋃
K∈Q

K,

where

• each K ∈ Q is a non-empty bounded open Lipschitz polyhedron,

• K1 ∩K2 = ∅ for each distinct K1,K2 ∈ Q,

• if E = K1 ∩K2 6= ∅ for some distinct K1,K2 ∈ Q, then E is a common entire face
or entire edge, or a common vertex of K1 and K2,

• each K ∈ Q is obtained from a reference polyhedron κ̂ via a bijective map
GK : κ̂→ K.

In this thesis, we restrict ourselves to quadrilateral and hexahedral elements, therefore
justifying the notation Q denoting the mesh, and we consider κ̂ := (0, 2π)2. The
illustration of a finite element mesh is given in Figure 5.1. In the sequel, edges are called
faces even when n = 2.

126



5.2. Finite element methods

K1

K3

K4

K2

vertex
face (or edge)
element

κ̂ = (0, 2π)2

GK4

Figure 5.1 – Illustration of a finite element mesh Q.

Moreover, we denote nel := #Q the number of elements in Q, and for all K ∈ Q, we
let hK be the diameter of K, and ρK be the diameter of the largest ball inscribed in K.
Then, we call mesh size the mesh parameter

h := max
K∈Q

hK . (5.6)

Let us introduce a final definition that will be used in the sequel.

Definition 5.2.1. A mesh Q is shape regular if there exists a constant δ > 0 such that
for all K ∈ Q,

hK
ρK
≤ δ.

To finish this section, let us state two trace inequalities on mesh elements.

Lemma 5.2.2. Let Q be a finite element mesh. Then for all K ∈ Q and for all
v ∈ H1(K),

‖v‖0,∂K ≤ C∗
(
h
− 1

2
K ‖v‖0,K + h

1
2
K ‖∇v‖0,K

)
,

where C∗ is a constant independent of h and hK , but which can depend on the shape of
K.

Proof. See [Di Pietro and Ern, 2011, Section 1.4.3].

Lemma 5.2.3. Let D ⊂ Rn be a Lipschitz domain, let Λ ⊂ Rn−1 be an (n − 1)-
dimensional hyper-surface intersecting D, and let Q be a finite element mesh on D. If
for all K ∈ Q such that ΛK := Λ ∩ K 6= ∅, we have hK < h0 for some fixed h0 > 0
(independent of K), then

‖v‖20,ΛK ≤ C
∗
(
h−1
K ‖v‖

2
0,K + hK ‖∇v‖20,K

)
, ∀v ∈ H1(K),
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where C∗ is a constant independent of v, K, h and of how Λ intersects K.

Proof. See [Guzmán and Olshanskii, 2018]. A proof under stronger assumptions can also
be found in [Hansbo and Hansbo, 2002, 2004].

5.2.2 Finite element spaces

Having at hand a suitable description of the geometry from the previous section, we can
now define the class of finite-dimensional subspaces V h ⊂ V called finite element spaces,
on which the Galerkin approximation (5.2) is defined. These spaces V h should result in
a suitable approximation of functions in V , verifying in particular property (5.1). The
fundamental aspect of FEM is to consider a piecewise polynomial space; more precisely,
for all K ∈ Q, the space

PK :=
{
vh|K : vh ∈ V h

}
(5.7)

consists of algebraic polynomials, see [Ciarlet, 2002].

To precisely characterize a polynomial space on an element K ∈ Q following [Ainsworth
and Oden, 1997], let us first denote ϕ̂1, ϕ̂2, . . . , ϕ̂N̂ the functions of a Lagrange basis
spanning the polynomial space QP (κ̂) of degree P ∈ N on the reference element κ̂. Note
that N̂ = N̂(P ) depends on the considered polynomial degree P . Given the bijective
geometric mappings GK : κ̂→ K introduced in Section 5.2.1, the basis functions can be
pushed forward to each element K ∈ Q of the physical space as follows:

ϕiK := ϕ̂i ◦G−1
K , for i = 1, . . . , N̂ .

Consequently, we can define the local (mapped) polynomial space in K for all K ∈ Q as

QP (K) := span
{
ϕiK : i = 1, . . . , N̂

}
. (5.8)

Let us now introduce the general definition of finite element, following [Ciarlet, 2002].

Definition 5.2.4. The triplet (K,PK , ΨK) is called finite element if

• K is an open bounded polyhedron with nonempty interior and Lipschitz boundary,

• PK is a finite-dimensional space of functions on K,

• ΨK := {Zi : PK → R, i = 1, . . . , N̂} is a set of linear forms such that the map

ZΨ : PK → R defined by ZΨ(φ) =
(
Zi(φ)

)N̂
i=1

for all φ ∈ PK is an isomorphism.
The linear forms Zi are called degrees of freedom associated with element K, and
the bijectivity of ZΨ is referred to as unisolvence.

Then, given a set of finite elements {(K,PK , ΨK) : K ∈ Q}, a finite element space V h

corresponding to Galerkin problem (5.2) is a space verifying:
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(i) for all K ∈ Q, PK is a finite-dimensional space such that

QP (K) ⊂ PK =
{
vh|K : vh ∈ V h

}
,

(ii) V h ⊂ H1
0,ΛD(D),

(iii) there exists a canonical basis Φ of V h, whose functions have “small” supports and
are easy to describe.

Let us state a result from [Ciarlet, 2002, Theorem 2.1.1] giving a sufficient condition
for (ii) to hold.

Theorem 5.2.5. Let W h be a finite-dimensional space and suppose that for all K ∈ Q,{
wh|K : wh ∈W h

}
⊂ H1(K).

If W h ⊂ C0(D), then

• W h ⊂ H1(D),

• and if ΛD is a union of faces of Q,

V h := {vh ∈W h : vh = 0 on ΛD} ⊂ H1
0,ΛD(D).

In view of this theorem and to simplify the analysis, we make the following assumption
for the remaining part of this thesis.

Assumption 5.2.6. When we consider the Galerkin approximation (5.2) of a Poisson
problem (2.25),

• the Dirichlet boundary ΛD is a union of faces of the considered mesh;

κ̂

ϕ̂1 ϕ̂2

GK3

K1

ϕ1 ϕ2

K2

ϕ3 ⊃ϕ1
K3

K3

ϕ2
K3
⊂ ϕ4

K4

ϕ5

Figure 5.2 – Illustration of the one-dimensional basis functions ϕ̂i on κ̂ for a polynomial
degree P = 1, and the corresponding one-dimensional finite element basis in a mesh with
four elements.
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• there exists a known and computable lifting zhs := RΛD(uD) of the Dirichlet
datum uD given by Theorem 2.2.1.

If this assumption were not satisfied, we would need to build an approximation uhD of
the Dirichlet datum uD from which a lifting zhs := RΛD(uhD) can be obtained, and we
would need to take into consideration the induced approximation error. For more details,
the reader is referred for instance to [Brenner and Scott, 2008].

The definition of the classical finite element space of degree P , also called conforming
finite element space, naturally follows from Definition 5.2.4 and from Theorem 5.2.5. It
is defined by

V h :=
{
vh ∈ C0(D) : vh|K ∈ QP (K), ∀K ∈ Q

}
, (5.9)

and its canonical basis Φ := [ϕ1,ϕ2, . . . ,ϕN ] is obtained by associating the functions
ϕiK , i = 1, . . . , N̂ , K ∈ Q, which are equal to 1 at the same vertex of the mesh. This is
illustrated in the one-dimensional example of Figure 5.2. For a detailed description and
analysis of the classical FEM, the interested reader is referred for instance to [Ciarlet,
2002; Brenner and Scott, 2008; Quarteroni and Valli, 2008]. In a later chapter about
IGA, we will build finite-dimensional spaces with larger global continuity, which allow
for instance the treatment of a wider set of engineering problems.

5.2.3 Some convergence results

In this section, we provide some classical a priori estimates on the convergence behavior
of FEM. For the sake of brevity, we only provide the most relevant results for this thesis,
and we refer to [Ciarlet, 2002] for more details and the missing proofs.

Let us first verify that finite element spaces satisfy the required consistency condition (5.1).
To do so, let us first provide a local result characterizing the approximation error on each
element K ∈ Q with respect to the smoothness of the considered function and to the
norm chosen to measure the error.

Theorem 5.2.7 ([Ciarlet, 2002, Theorem 3.1.6]). Let {(K,PK , ΨK) : K ∈ Q} be a
family of shape regular and affine finite elements whose reference element

{
κ̂, P̂κ̂, Ψ̂κ̂

}
satisfies the following inclusions: let the integer s ≥ 0 denote the greatest order of partial
derivatives occurring in the definition of Ψ̂κ̂, and let m ≥ 0 and k ≥ 0 be two integers,
such that

Hk+1(κ̂) ↪→ Cs(κ̂)

Hk+1(κ̂) ↪→ Hm(κ̂)

Qk(κ̂) ⊂ P̂κ̂ ⊂ H
m(κ̂).
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Then there exists an operator ΠK : Hk+1(K) → PK for all K ∈ Q and a constant
C
(
κ̂, P̂κ̂, Ψ̂κ̂

)
> 0 such that, for all finite elements K in the family, and all functions

v ∈ Hk+1(K),

‖v −ΠKv‖m,K ≤ C
(
κ̂, P̂κ̂, Ψ̂κ̂

)
hk+1−m
K |v|k+1,K . (5.10)

Building upon this result, it is possible to give a global approximation result for V h

defined in the entire domain D.

Theorem 5.2.8 ([Ciarlet, 2002, Theorem 3.2.1]). Let V h be a globally continuous finite
element space defined from a family {(K,PK , ΨK) : K ∈ Q} of shape regular and affine
finite elements whose reference element

{
κ̂, P̂κ̂, Ψ̂κ̂

}
satisfies the following inclusions:

let the integer s ≥ 0 denote the greatest order of partial derivatives occurring in the
definition of Ψ̂κ̂, and let k ≥ 0 and ` ≥ 0 be two integers with ` ≤ k, such that

Hk+1(κ̂) ↪→ Cs(κ̂)

Qk(κ̂) ⊂ P̂κ̂ ⊂ H
`(κ̂).

Then there exists an operator Πh : Hk+1(D)∩V → V h and a constant CΠ > 0 independent
of h such that for all functions v ∈ Hk+1(D) ∩ V ,

‖v −Πhv‖m,D ≤ CΠ h
k+1−m|v|k+1,D, 0 ≤ m ≤ min{1, `}. (5.11)

This results also shows the consistency condition (5.1) of V h with respect to V when
m = k = 0, in the context of Poisson problem (2.12). Finally, building upon the
approximation results of Theorems 5.2.7 and 5.2.8, it is possible to obtain the following
a priori estimate of the error coming from the Galerkin finite element approximation of
the Poisson solution defined in (5.2).

Theorem 5.2.9 ([Ciarlet, 2002, Theorem 3.2.2]). Let k+ 1 be the regularity of the exact
solution us of (2.12), and let uhs be its Galerkin finite element approximation (5.2). Then
under the same hypothesis as Theorem 5.2.8, there exists a constant c > 0 independent
of h such that ∥∥∥us − uhs∥∥∥1,D

≤ c hk|us|k+1,D. (5.12)

Even if in the following, we concentrate instead on the a posteriori error analysis of the
numerical error combined with defeaturing, this a priori result will allow us to verify
the convergence of the numerical error in the numerical experiments presented in the
remaining part of this work.
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5.3 Finite element formulation of the defeaturing problem

In this section, we employ the Galerkin method introduced in Section 5.1 to solve and
analyze the defeaturing problem defined in Part I. More precisely, let us consider Poisson
equation (3.1) defined in a geometry Ω containing Nf ≥ 1 features forming the set F,
and let us use the same notation and assumptions introduced in Chapter 4.

Then, let Q0 be a finite element mesh on the defeatured geometry Ω0 defined in (4.1),
and let V h(Ω0) ⊂ H1(Ω0) be a finite element space built from Q0, as introduced in
Section 5.2. Moreover, let

V h
0 (Ω0) := V h(Ω0) ∩H1

0,ΓD(Ω0),
and V h

gD
(Ω0) := V h(Ω0) ∩H1

gD,ΓD(Ω0).

Recall from Assumption 5.2.6 that for simplicity, the Dirichlet data gD ∈ trΓD
(
V h(Ω0)

)
,

where trΓD
(
V h(Ω0)

)
is the trace space of the discrete functions of V h(Ω0) on ΓD. Then,

the Galerkin formulation of the defeaturing problem (3.4) can be written as follows:

find uh0 ∈ V h
gD

(Ω0) such that for all vh0 ∈ V h
0 (Ω0),∫

Ω0
∇uh0 · ∇vh0 dx =

∫
Ω0
fvh0 dx+

∫
ΓN\γ

gvh0 ds+
∫
γ0
g0v

h
0 ds. (5.13)

When geometry Ω contains features F k, k = 1, . . . ,Nf , with a non-empty positive
component F kp , we need to extend the defeatured solution uh0 to simplified domains
F̃ kp containing F kp , in order to be able to suitably define the defeaturing error in Ω
(see Chapter 3). To do so, we also employ the Galerkin method to discretize the weak
extension problem (4.6) in F̃ kp ⊃ F kp , as for Ω0. More precisely, for all k = 1, . . . ,Nf , let
Q̃k be a finite element mesh defined on F̃ kp , and let

Q := Q0 ∪ Q̃ with Q̃ :=
Nf⋃
k=1
Q̃k. (5.14)

Furthermore, for all k = 1, . . . ,Nf , let V h
(
F̃ kp
)
⊂ H1

(
F̃ kp
)
be a finite element space

built from Q̃k that satisfies the following compatibility assumption.

Assumption 5.3.1. For all k = 1, . . . ,Nf , the finite-dimensional spaces V h(Ω0) and
V h
(
F̃ kp
)
satisfy

trγk0,p

(
V h (Ω0)

)
⊂ trγk0,p

(
V h
(
F̃ kp
))

,

so that trγk0,p

(
uh0
)
∈ trγk0,p

(
V h
(
F̃ kp
))

.

To take into account Dirichlet boundary conditions, let us introduce for all k = 1, . . . ,Nf
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the finite dimensional spaces

V h
0
(
F̃ kp
)

:= V h
(
F̃ kp
)
∩H1

0,γk0,p

(
F̃ kp
)

and V h
uh0

(
F̃ kp
)

:= V h
(
F̃ kp
)
∩H1

uh0 ,γk0,p

(
F̃ kp
)
.

Then, the Galerkin formulation of the extension problem (4.6) can be written as follows:

find uhk ≡ ũ
h,k
0 ∈ V h

uh0

(
F̃ kp
)

such that for all vhk ∈ V h
0
(
F̃ kp
)

,∫
F̃kp

∇uhk · ∇vhk dx =
∫
F̃kp

fvhk dx+
∫
γ̃k
g̃kvhk ds+

∫
γks

gvhk ds. (5.15)

Note that to lighten the notation in the multi-feature context, we write

uhk ≡ ũ
k,h
0 , (5.16)

similarly to uk ≡ ũk0 defined in (4.4). If Nf = 1, we will drop the upper index k = 1
and write ũh0 instead of ũ1,h

0 or uh1 . Furthermore, note that these extensions uhk can be
computed separately (and in parallel) for each feature F k, k = 1, . . . ,Nf .

Finally, let

uhd ∈W h := V h
gD

(Ω0)
∣∣∣
Ω?
⊕

Nf⊕
k=1

V h
uh0

(
F̃ kp
) ∣∣∣

Fkp

 ⊂ H1
gD,ΓD(Ω) (5.17)

be the discrete counterpart of ud introduced in (4.7). That is, it is the discrete extended
defeatured solution defined by

uhd = uh0

∣∣∣
Ω?

in Ω? = Ω \ Fp and uhd = uhk

∣∣∣
Fkp

in F kp for k = 1, . . . ,Nf . (5.18)

Then, we define the discrete defeaturing error (or overall error) as∣∣∣∣∣∣∣∣∣u− uhd∣∣∣∣∣∣∣∣∣Ω =
∥∥∥∇(u− uhd)∥∥∥0,Ω

=
∣∣∣u− uhd∣∣∣1,Ω

.

Remark 5.3.2. For each k = 1, . . . ,Nf , the only required compatibility between V h(Ω0)
and V h

(
F̃ kp
)
is Assumption 5.3.1. Moreover, note that Q0 and Q̃k are possibly overlap-

ping meshes, but both should have γk0,p as part of their boundary.

Remark 5.3.3. Note that the aim is to never solve the original problem (3.1) in the
exact geometry Ω. Indeed, we assume that one needs to remove the features of Ω since
solving a PDE in Ω is either too costly or even unfeasible (for instance, it could be
impossible to mesh Ω). Therefore in principle, the original problem (3.1) is never solved
in the discrete setting.
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5.4 An adaptive analysis-aware defeaturing strategy

In this section, we aim at generalizing the adaptive analysis-aware defeaturing strategy
presented in Chapter 4, Section 4.5, by considering the additional error coming from the
numerical approximation of the defeatured solution ud. In particular, starting from a
very coarse mesh Q and from a fully defeatured geometry Ω0, we want to precisely define
a strategy that determines:

• when and where the mesh needs to be refined (standard h-refinement, or numerical
adaptivity),

• when and which geometrical features that have been removed by defeaturing need
to be reinserted in the geometrical model (geometric adaptivity, see Chapter 4).

We consider Poisson problem (3.1) defined in a geometry Ω containing Nf ≥ 1 features,
whose defeatured problem has been discretized via a Galerkin finite element method as
described in Section 5.3.

Closely following the framework of adaptive finite elements from [Nochetto and Veeser,
2011] for elliptic PDEs, we extend and elaborate on the four building blocks composing
one iteration of the adaptive process developed in Chapter 4. Let us recall them here:

SOLVE ESTIMATE MARK REFINE

In particular, in Section 5.4.2, we propose an a posteriori estimator of the discrete
defeaturing error

∣∣∣u− uhd∣∣∣1,Ω
. Its reliability will be proven in Chapter 8 in the context of

IGA with THB-splines under reasonable assumptions.

Let i ∈ N be the current iteration index, and as in Chapter 4, let us begin the adaptive
process with Ω(0)

0 being the fully defeatured geometry defined as in (4.1). That is, Ω(0)
0

is the domain in which all features of Ω are removed: their positive component is cut
out, and their negative component is filled with material. Since some features will be
reinserted during the adaptive process, we denote Ω(i)

0 the simplified geometry at the
i-th iteration, and in general, we use the upper index (i) to refer to objects at the same
iteration. However, to alleviate the notation, we will drop the index (i) when it is clear
from the context. In particular, we will write Ω0 ≡ Ω(i)

0 .

5.4.1 Solve

Using suitable finite element spaces, we first solve Galerkin problem (5.13) defined in
the (partially) defeatured geometry Ω0. Then, we solve the local Galerkin extension
problem (5.15) for each feature having a non-empty positive component. We thus obtain
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the discrete defeaturing solution uhd ≡ u
h,(i)
d defined in (5.18), as an approximation of the

exact solution u of (3.1) at iteration i.

5.4.2 Estimate

In order to define the proposed a posteriori estimator E
(
uhd

)
of the discrete defeaturing

error
∣∣∣u− uhd∣∣∣1,Ω

, let us first introduce some further notation. For each σ ∈ Σ, let dσ
be the continuous defeaturing error term defined in (4.12), and let dhσ be its discrete
counterpart. That is, for all k = 1, . . . ,Nf where Nf ≡ N

(i)
f , and for all σ ∈ Σk where

Σk is defined in (4.11),

dhσ :=


g − ∂uhd

∂n if σ = γkn or σ = γkr

−
(
g0 −

∂uhd
∂nk

)
if σ = γk0,p.

(5.19)

Recall from Remark 4.2.1 that the average value of dσ over any σ ∈ Σ is a computable
quantity, as it is independent of the unknown exact defeatured solution ud.

If we define η ∈ R as the unique solution of η = − log(η), then recall from (3.10) that for
all σ ∈ Σ, we let

cσ :=

max
(
− log (|σ|) , η

) 1
2 if n = 2

1 if n = 3.
(5.20)

We can now define the overall error estimator as follows:

E
(
uhd
)

=
[
α2
DED

(
uhd
)2

+ α2
NEN

(
uhd
)2
] 1

2
, (5.21)

where αN > 0 and αD > 0 are parameters to be tuned,

ED
(
uhd
)2

:=
∑
σ∈Σ
|σ|

1
n−1

∥∥∥dhσ − dhσσ∥∥∥2

0,σ
+ E 2

C (5.22)

accounts for the defeaturing error as in Part I, with

E 2
C :=

∑
σ∈Σ

c2
σ|σ|

n
n−1

∣∣∣dσσ∣∣∣2

that accounts for the data compatibility conditions (see Remark 4.2.1), and EN
(
uhd

)
accounts for the numerical error that depends on the chosen finite element method. More
details are given below for the special case of IGA, see also Chapter 8 for an in-depth
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study of this case. More precisely,

EN
(
uhd
)2

:= E 0
N

(
uh0
)2

+
Nf∑
k=1

E k
N

(
uhk

)2
,

where E 0
N

(
uh0
)
is the numerical error estimator of uh0 in Ω0 corresponding to the discretized

problem (5.13), and for all k = 1, . . . ,Nf , E k
N

(
uhk

)
is the numerical error estimator of uhk

in F̃ kp corresponding to the discretized extension problem (5.15).

Remark 5.4.1. Let us make some observations on the overall error estimator (5.21).

• The numerical error contribution EN
(
uh0
)
to the estimator is computed on the

same meshes used for the discretization, in Ω0 and in F̃p. Instead, the defeaturing
error contribution ED

(
uh0
)
to the estimator considers boundary integrals which are

not necessarily union of faces of the mesh, i.e., the pieces of boundaries σ ∈ Σ are
in general not fitted by the mesh.

• If ud = u or in other words, without defeaturing error, the proposed estimator
corresponds to the standard numerical residual error estimator between u0 and uh0 in
Ω0, and between uk and uhk in F̃ kp for all k = 1, . . . ,Nf , that is, E

(
uhd

)
= EN

(
uhd

)
.

• If uh0 ≡ u0 in Ω0 and uk ≡ uhk in F̃ kp for all k = 1, . . . ,Nf , i.e., without numerical
error, then EN

(
uhd

)
= 0, and thus we recover the defeaturing error estimator

introduced in Chapter 3 and generalized in Chapter 4.

• Under the exact data compatibility condition dσ
σ = 0 for all σ ∈ Σ (see (4.15)),

the term EC vanishes. If EC is large with respect to the other terms of E
(
uhd

)
,

the defeaturing data should be chosen more carefully, i.e., the Neumann boundary
data g0 on γ0, g̃ on γ̃, and the right hand side extension f in Fn and in each Gkp,
k = 1, . . . ,Nf .

The discrete defeaturing error estimator E
(
uhd

)
introduced in (5.21) can easily be

decomposed into local contributions. Indeed, ED
(
uhd

)
(and EC) can readily be decomposed

into single feature contributions as follows:

E 2
C =

Nf∑
k=1

(
E k
C

)2
, ED

(
uhd
)2

=
Nf∑
k=1

E k
D

(
uhd
)2

, (5.23)

with
(
E k
C

)2
:=

∑
σ∈Σk

c2
σ|σ|

n
n−1

∣∣∣dσσ∣∣∣2
and E k

D

(
uhd
)2

:=
∑
σ∈Σk

|σ|
1

n−1
∥∥∥dhσ − dhσσ∥∥∥2

0,σ
+
(
E k
C

)2
, for k = 1, . . . ,Nf .
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Similarly, the numerical error estimator EN
(
uhd

)
can in general be decomposed into single

mesh element contributions EK
N

(
uhd

)
for K ∈ Q, in the form

EN
(
uhd
)2

=
∑
K∈Q

EK
N

(
uhd
)2

.

These local decompositions are necessary to guide the adaptive refinement, both in terms
of mesh and in terms of geometrical model.

In Chapter 8, we will analyze the particular case of IGA with C1-continuous splines, and
with a residual-based numerical error estimator. To define the numerical error estimator
in this context, we first introduce the interior residuals r and the boundary residuals j
as follows:

r :=

f + ∆uh0 in Ω0

f + ∆uhk in F̃ kp , ∀k = 1, . . . ,Nf ,
(5.24)

and

j :=



g − ∂uhd
∂n on ΓN \ (γn ∪ γr)

g0 −
∂uh0
∂n0

on γ0

g̃ − ∂uhk
∂ñk on γ̃k, ∀k = 1, . . . ,Nf .

(5.25)

Furthermore, recalling definitions (4.8) and (4.9) of Γ0
N and Γ̃N , let E0 be the set of faces

of Q0 that are part of Γ0
N , let Ẽk be the set of faces of Q̃k that are part of Γ̃kN for all

k = 1, . . . ,Nf , and let

E := E0 ∪ Ẽ , Ẽ :=
Nf⋃
k=1
Ẽk. (5.26)

For all E ∈ E , we denote hE := diam(E), similar to the notation hK for all K ∈ Q. Then,
assuming that the mesh Q fits the boundary of the simplified domain Ω0, the numerical
error estimator is given by

EN
(
uhd
)2

:=
∑
K∈Q

h2
K‖r‖20,K +

∑
E∈E

hE‖j‖20,E . (5.27)

Moreover, if we let EK := {E ∈ E : E ⊂ ∂K} for all K ∈ Q, then the corresponding local
contribution is

EK
N

(
uhd
)2

:= h2
K ‖r‖

2
0,K +

∑
E∈EK

hE ‖j‖20,E , ∀K ∈ Q. (5.28)

Under reasonable assumptions, the reliability of E
(
uhd

)
is demonstrated in Chapter 8 in
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this framework. That is, it is proven that∣∣∣u− uhd∣∣∣1,Ω
. E

(
uhd
)
,

where the hidden constant is independent of the mesh size h, the number L of hierarchical
levels of the mesh (see Chapter 6), the number Nf of features, and their size. The
generalization to trimmed and multipatch geometries is also discussed in Chapters 7
and 8.

Remark 5.4.2. If a standard C0-continuous finite element method is used, then the
normal derivative jumps contributions of uh0 and uhk should be added to EN

(
uhd

)
. This is

analogous to the jump contributions on the interfaces between patches appearing in the
multipatch case that will be analyzed in Chapter 8.

5.4.3 Mark

We present here a maximum marking strategy derived from (2.36), but a Dörfler strategy
as in (2.37) could also be easily derived in the same way. That is, recalling that Nf ≡ N

(i)
f

at the current iteration i, we select and mark elementsM⊂ Q to be refined, and features{
F km

}
km∈Im

⊂ F with Im ⊂
{

1, . . . ,N (i)
f

}
to be added to the (partially) defeatured geometry Ω0 ≡ Ω(i)

0 . That is, after choosing a
marking parameter 0 < θ ≤ 1, the marked elements Km ∈M and the marked features
F km for km ∈ Im verify

αN EKm
N

(
uhd
)
≥ θmax

(
αN max

K∈Q
EK
N

(
uhd
)
, αD max

k=1,...,Nf
E k
D

(
uhd
))

, (5.29)

αD E km
D

(
uhd
)
≥ θmax

(
αN max

K∈Q
EK
N

(
uhd
)
, αD max

k=1,...,Nf
E k
D

(
uhd
))

. (5.30)

In other words, the set of marked elements and the set of selected features are the ones
giving the most substantial contribution to the overall error estimator. The smallest is
θ, the more elements and features are selected. Note also that the largest is αN with
respect to αD in (5.21), the more importance is given to EN

(
uhd

)
with respect to ED

(
uhd

)
,

and vice-versa.

Remark 5.4.3. Note that without numerical error, or more precisely if EK
N

(
uhd

)
= 0

for all K ∈ Q, then the proposed marking strategy leads to the same marked features as
the marking strategy introduced in Section 4.5.2. Similarly, without defeaturing error, or
more precisely if E k

D

(
uhd

)
= 0 for all k = 1, . . . ,Nf , then the proposed marking strategy

leads to the same marked elements as the standard maximum marking strategy found in
the adaptive finite element literature, see e.g. [Nochetto et al., 2009].
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5.4.4 Refine

In the one hand, based on the setM of marked elements, the mesh Q is refined thanks
to an h-refinement procedure corresponding to the chosen finite element method. During
this refinement step, we need to make sure that Assumption 5.3.1 remains satisfied. In
the other hand, the defeatured geometry Ω(i)

0 is refined, meaning that the marked features{
F k
}
k∈Im

are inserted in the geometrical model. This is done exactly as in Section 4.5.3.

Once the mesh and the defeatured geometry have been refined, the modules SOLVE and
ESTIMATE, respectively presented in Sections 5.4.1 and 5.4.2 can be called again. To do
so, we update Ω0 as Ω(i+1)

0 , we define N (i+1)
f := N

(i)
f −#Im, we update the set of features

F as F \
{
F k
}
k∈Im

, and we renumber the features from 1 to N (i+1)
f . The adaptive loop

is continued until a certain given tolerance on the error estimator E
(
uhd

)
is reached.

Remark 5.4.4. One does not want to remesh the geometrical model when features
are added to it, as this would cancel the efforts made by standard h-refinement in the
previous iterations. Therefore, in order to avoid remeshing when some features are
added to the geometrical model, this adaptive strategy is designed to be used with
mesh-preserving methods such as fictitious domain approaches or immersed methods, for
which the computational domain is immersed in a background mesh, see e.g., [Hansbo
and Hansbo, 2002; Haslinger and Renard, 2009; Rank et al., 2012; Burman et al., 2015].
This refinement step will be made clearer in the context of IGA in Chapter 8. We
anticipate here that in general in IGA, the negative component of the added features can
be introduced to the geometrical model by trimming, while their positive component can
be introduced using multipatch geometry techniques. These advanced spline techniques
are introduced in Chapter 6.
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6 A review of isogeometric analysis
and spline technologies

B-spline functions and their NURBS generalization are some of the main building blocks
of CAD softwares, that have allowed the advent of isogeometric analysis. In this chapter,
we first review in Section 6.1 the construction of B-splines and their main features for
use in analysis. As the tensor-product structure of classical B-splines limit their use for
the numerical approximation of PDEs, then in Section 6.2, we introduce and discuss
two extensions that allow for local refinement, namely HB-splines and THB-splines.
Subsequently in Section 6.3, we show the advantages of employing spline functions in a
Galerkin discretization scheme by introducing IGA, first presented in the seminal work
[Hughes et al., 2005]. Finally in Section 6.4, we extend the application of IGA to more
general spline domains that are widely used in CAD, more specifically multipatch and
trimmed domains.

6.1 An introduction to B-splines

B-splines are piecewise polynomial functions with possible high global regularity. The
degree of the underlying polynomials is also called degree of the B-splines. In this
section, we provide a precise definition of B-splines, and we state some of their important
properties, following [Höllig, 2003]. The interested reader is referred to the seminal works
[De Boor, 1972; Piegl and Tiller, 1997; Rogers, 2001]. To begin with, let us consider two
strictly positive integers: let P denote the degree of the B-spline basis functions, and let
N denote their number, which will correspond to the number of degrees of freedom of
the corresponding B-spline space.

6.1.1 One-dimensional B-spline basis functions

Consider a non-decreasing sequence of N + P + 1 real values, called knot vector and
denoted

Ξ := {ξ1, ξ2, . . . , ξN+P+1} . (6.1)
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We call multiplicity the number of times a knot ξ ∈ Ξ is repeated in the knot vector, and
we call knot span each interval [ξi, ξi+1], i = 1, . . . ,N + P . Note that if ξi = ξi+1, then
the corresponding knot span is composed of a single point. As it is common practice
in standard CAD, we assume in this thesis that knot vectors are always open, meaning
that the first and last knots have multiplicity P + 1. This leads to an interpolatory
B-spline basis at both ends of the parametric interval [ξ1, ξN+P+1]. In the following, we
will always assume for simplicity, and without constituting any limitation, that ξ1 = 0
and ξN+P+1 = 1. Therefore, the parametric interval will always be [ξ1, ξN+P+1] = [0, 1].

It is now possible to recursively define the univariate B-spline basis corresponding to
the knot vector Ξ, using the following Cox-de Boor formula introduced in [De Boor,
1972]. The recursion starts for P = 0 with piecewise constant functions in [0, 1]: for all
i = 1, . . . ,N , the i-th B-spline basis function of degree 0 is defined by

β̂i,0(x̂) :=

1 if x̂ ∈ [ξi, ξi+1),
0 otherwise.

(6.2)

Then, using the convention 0
0 = 0 and setting β̂N+1,P−1 ≡ 0, B-spline basis functions of

degree P > 0 are defined for all i = 1, . . . ,N by

β̂i,P (x̂) := x̂− ξi
ξi+P − ξi

β̂i,P−1(x̂) + ξi+P+1 − x̂
ξi+P+1 − ξi+1

β̂i+1,P−1(x̂), for x̂ ∈ [0, 1], (6.3)

where β̂i,P denotes the i-th B-spline basis function of degree P . The corresponding
B-spline basis is denoted

B̂P :=
{
β̂i,P : [0, 1]→ R, i = 1, . . . ,N

}
. (6.4)

Note that for P = 0 and P = 1, the B-spline basis B̂P is identical to the classical finite
element basis made of piecewise constant and piecewise linear polynomials, respectively.
The most important properties of a B-spline basis are summarized in the following
proposition.

Proposition 6.1.1. Let kξ ∈ N denote the multiplicity of knot ξ ∈ Ξ. Then the B-spline
basis functions satisfy the following properties:

• they are CP−kξ-continuous in every ξ ∈ Ξ, and C∞-continuous everywhere else;

• they have local support over at most P + 1 knot spans;

• they are pointwise non-negative, i.e., β̂(x̂) ≥ 0 for all β̂ ∈ B̂P and all x̂ ∈ [0, 1];

• they satisfy the partition of unity property, i.e.,

N+P+1∑
i=1

β̂i,P (x̂) = 1, ∀x̂ ∈ [0, 1].
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β̂4,2
β̂5,2

β̂6,2
β̂7,2

β̂8,2

x̂

Figure 6.1 – One dimensional B-spline basis functions of degree P = 2 corresponding to
the knot vector Ξ = {0, 0, 0, 0.2, 0.4, 0.4, 0.8, 1, 1, 1}. Note that the basis has a reduced
continuity at the repeated knot 0.4.

To illustrate these properties, a quadratic B-spline basis is drawn in Figure 6.1.

6.1.2 One-dimensional non-uniform rational B-splines (NURBS)

Many free-form shapes can be easily described by the previously introduced B-spline
functions. However, B-splines do not allow for the representation of a wide variety of
important objects, mainly the ones which cannot be exactly represented by polynomials,
such as conical sections. To remedy this issue, NURBS basis functions were introduced.
Given a B-spline basis B̂P =

{
β̂i,P

}N
i=1

and some strictly positive reals {wi}Ni=1 called
weights, the univariate NURBS basis functions are defined for all i = 1, . . . ,N by

χ̂i,P (x̂) := β̂i,P (x̂)wi∑N
j=1 β̂j,P (x̂)wj

, for x̂ ∈ [0, 1]. (6.5)

When all weights equal to 1, then thanks to the partition of unity property of B-spline
bases, χ̂i,P ≡ β̂i,P for all i = 1, . . . ,N . Moreover, all properties of the underlying B-spline
basis stated in Proposition 6.1.1 are inherited by the corresponding NURBS basis. For a
geometric interpretation of NURBS functions as a projective transformation of B-splines
with projection weights {wi}Ni=1, the interested reader is referred to [Piegl and Tiller,
1997] and [Cottrell et al., 2009].

6.1.3 Multivariate B-spline and NURBS basis functions

Multivariate B-spline basis functions are straight-forwardly defined as a tensor-product
of univariate B-splines. More precisely, if n = 2 or n = 3 is the space dimension, then let
P = (P1, . . . ,Pn) be a vector of polynomial degrees, let N = (N1, . . . ,Nn) be a vector of
number of degrees of freedom in each space direction, let Ξj :=

{
ξji

}Nj+Pj+1

i=1
be the knot

vector corresponding to the parametric direction j, and let β̂ji,Pj be the i-th B-spline
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(a) Interpolatory boundary ba-
sis function.
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(b) Non-interpolatory bound-
ary basis function.

0 0.2 0.4 0.6 0.8 1 0

0.5

1

0

0.5

1

x̂1

x̂2

(c) Internal basis function.

Figure 6.2 – Example of bivariate quadratic B-spline basis functions.

basis function in the j-th direction, j = 1, . . . ,n. Then the multivariate B-spline basis of
degree P is given by

B̂P :=

β̂i,P : i ∈ I and β̂i,P :=
n∏
j=1

β̂jij ,Pj : [0, 1]n → R

 ,

where i = (i1, . . . , in) is a multi-index denoting a position in the tensor-product structure,
and I := {1, . . . ,N}n is the set of such indices. Some examples of bivariate B-spline basis
functions are drawn in Figure 6.2.

Moreover, multivariate NURBS basis functions are defined in a similar way as univariate
NURBS basis functions in (6.5), from a multivariate B-spline basis B̂P =

{
β̂i,P

}
i∈I

and from strictly positive weights {wi}i∈I. For the sake of simplicity, and without
constituting any limitation, we assume in this thesis that the degrees Pj are identical
in each parametric direction j, and therefore the vector P can be simplified to a single
scalar value P . In the sequel, the dependence on P of the spline bases is omitted, unless
explicitly needed in the exposition.

6.1.4 Parametric Bézier mesh

For j = 1, . . . ,n, let us consider the set Zj ⊂ Ξj of non-repeated knots in the j-th
direction, written Zj :=

{
ζj1 , . . . , ζjMj

}
with Mj ∈ N \ {0, 1}. The values of Zj are called

breakpoints, and they naturally partition the parametric domain (0, 1)n into a Cartesian
grid

Q̂ :=
{
K̂m :=

n×
j=1

(
ζjmj , ζ

j
mj+1

)
: m = (m1, . . . ,mn),

1 ≤ mj ≤Mj − 1 for j = 1, . . . ,n} .
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The grid Q̂ is called parametric Bézier mesh, and each K̂m is referred to as parametric
element, sometimes also called cell. Furthermore, let us define the support extension of a
parametric element K̂m. For all j = 1, . . . ,n, let ij be the index verifying Pj+1 ≤ ij ≤ Nj

such that we can uniquely rewrite the interval
(
ζjmj , ζ

j
mj+1

)
=
(
ξjij , ξ

j
ij+1

)
. Then the

support extension of K̂m is given by

Sext
(
K̂m

)
:=

n×
j=1

Sext
(
ζjmj , ζ

j
mj+1

)
, (6.6)

where Sext
(
ζjmj , ζ

j
mj+1

)
:=
(
ξji−Pj , ξ

j
i+Pj+1

)
.

6.1.5 Refinement strategies

Splines are successfully used in computations thanks to their capability of enriching the
approximation space without changing the underlying geometrical description. More
precisely, the following three different space refinement strategies can be used:

• Knot insertion. This consists in adding new knots to a given knot vector Ξ, thereby
creating a new augmented knot vector Ξ+ ⊃ Ξ. In each space direction, an extra
univariate basis function is introduced with every new knot. While one can see
strong similarities with the h-refinement (also called mesh refinement) strategy
of the classical C0-continuous FEM, it is worth noting that knot insertion allows
for a greater flexibility. Indeed, this procedure also allows to control the global
continuity of the B-spline basis: if knot insertion increases the multiplicity of some
original knots, then the resulting refined basis has lower global continuity than the
original one.

• Degree elevation. Similarly to the p-refinement strategy of classical FEM, the
underlying polynomial degree P is increased to P+ > P . However, while the
B-spline space is enriched, the global continuity of the functions is preserved.
Therefore, the original multiplicity kξ of every knot ξ ∈ Ξ is increased by P+ − P
to preserve the original continuity of order P − kξ = P+ − (kξ + P+ − P ).

• k-refinement. This consists in elevating the degree P to P+ > P , followed by the
insertion of some knots. This produces a new B-spline basis which has maximal
CP+−1-continuity at the newly inserted knots, and whose original continuity is
preserved at the previously already existing knots.

These different refinement strategies are illustrated in Figure 6.3. However in this thesis,
we only concentrate on knot insertion in the case in which it is equivalent to standard
mesh refinement, and we assume that both the B-spline degree and the global continuity
of the basis are fixed.
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(a) Initial linear B-spline basis associated with Ξ = {0, 0, 0.5, 1, 1}.
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(b) Knot insertion: B-spline basis with new knots 0.25 and 0.75,
i.e., Ξ+ = {0, 0, 0.25, 0.5, 0.75, 1, 1}.
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(c) Degree elevation: quadratic B-spline basis,
i.e., Ξ+ = {0, 0, 0, 0.5, 1, 1, 1}.
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(d) k-refinement: quadratic B-spline basis with new knots 0.25 and 0.75,
i.e., Ξ+ = {0, 0, 0, 0.25, 0.5, 0.5, 0.75, 1, 1, 1}

Figure 6.3 – Illustration of the different refinement strategies.
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Ξ1

Ξ2

Ξ1
+

Ξ2
+

Figure 6.4 – Illustration of the non-local refinement capability of multivariate B-splines
due to their tensor-product structure: for the B-spline mesh element in dark blue, all the
elements in light blue on the right also need to be refined.

6.2 Hierarchical B-splines and their truncated counterpart

The refinement strategies introduced in the previous section act globally on the whole
domain, and the tensor-product structure of multivariate B-splines does not allow for
local refinement, see Figure 6.4. To overcome this limitation, a vast variety of technologies
have been developed, among which we find

• hierarchical B-splines (HB-splines) [Forsey and Bartels, 1988; Greiner and Hormann,
1996; Kraft, 1997],

• truncated hierarchical B-splines (THB-splines) [Giannelli et al., 2012, 2016],

• T-splines [Bazilevs et al., 2010; Scott et al., 2012; Beirão da Veiga et al., 2013],

• subdivision surfaces [Peters and Reif, 2008],

• polynomial splines over T-meshes (PHT-splines) [Deng et al., 2008],

• LR-splines [Dokken et al., 2013; Bressan, 2013],

• U-splines [Thomas et al., 2018].

In the remaining chapters of this thesis, we work with HB-splines and their truncated
extension, since they are mathematically well-understood, conceptually simple, and easy
to implement.

6.2.1 Hierarchical B-splines

In this section, we introduce and motivate the use of HB-splines, following [Vuong et al.,
2011; Kraft, 1997]. Let D̂ := (0, 1)n denote the parametric domain, and let L ∈ N be
the number of hierarchical levels. Consider a sequence B̂0, B̂1, . . . , B̂L of multivariate
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B-spline bases defined on D̂, determined by their corresponding degree and knot vectors,
and such that

span
{
B̂0
}
⊂ span

{
B̂1
}
⊂ . . . ⊂ span

{
B̂L
}

. (6.7)

Let N ` denote the dimension of B̂`, for all ` = 0, . . . ,L. Moreover, let Q̂` be the Bézier
mesh corresponding to the B-spline basis B̂` for all ` = 0, . . . ,L. An element K̂ is a cell
of level ` if K̂ ∈ Q̂`, and we write lev

(
K̂
)

= `.

Then, let
D̂
L =

{
D̂0, D̂1, . . . , D̂L

}
(6.8)

be a hierarchy of nested sub-domains of D̂ of depth L, that is, such that

D̂ =: D̂0 ⊇ D̂1 ⊇ . . . ⊇ D̂L := ∅,

and such that D̂` is a union of elements of level `− 1, i.e.,

D̂` = int

 ⋃
K̂∈Q̂`−1

∗

K̂

 , Q̂`−1
∗ ⊂ Q̂`−1, ∀` = 1, . . . ,L.

We are now able to recursively define the HB-spline basis Ĥ = Ĥ
(
D̂
L
)
as follows:


Ĥ0 := B̂0;
Ĥ`+1 := Ĥ`+1

` ∪ Ĥ`+1
`+1, ` = 0, . . . ,L− 2;

Ĥ := ĤL−1,
(6.9)

where for all ` = 0, . . . ,L− 1,

Ĥ`+1
` :=

{
β̂ ∈ Ĥ` : supp

(
β̂
)
6⊂ D̂`+1

}
,

Ĥ`+1
`+1 :=

{
β̂ ∈ B̂`+1 : supp

(
β̂
)
⊂ D̂`+1

}
, (6.10)

and the supports are considered to be open. In other words, HB-spline basis functions of
level ` are the B-splines of level ` whose support is only constituted of elements of level
equal or higher than `, and of at least one element of level `. An example of HB-spline
basis is illustrated in Figure 6.5. We refer to a function β̂ ∈ Ĥ as an active function,
and to a function β̂ ∈ Ĥ ∩ B̂` as an active function of level `, for ` = 0, . . . ,L. For more
details on HB-splines, the interested reader is referred to [Garau and Vázquez, 2018].

6.2.2 Truncated hierarchical B-splines

HB-splines are missing some desirable properties such as for instance the partition of unity
property. In [Giannelli et al., 2012], the THB-spline basis has therefore been introduced as
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(a) Three levels of B-spline basis functions. Active elements and
active functions of each level are highlighted in color.
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(b) HB-spline basis functions corresponding to the hierarchy in (a).
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(c) THB-spline basis functions corresponding to the hierarchy in (a).
Dashed functions are the ones that have been truncated.

Figure 6.5 – Example of a HB-spline basis on three levels, with its corresponding truncated
counterpart.
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a variant of HB-splines which spans the same space and which has better properties from
a numerical standpoint. In particular, THB-spline basis functions satisfy the partition of
unity property, they have a smaller support with respect to their corresponding HB-spline
basis functions, and they possess strongly stable stability constants, see [Giannelli et al.,
2014]. Let us now introduce their definition.

Thanks to the nested property (6.7) of B-spline spaces forming a hierarchical space, it is
possible to write every β̂ ∈ B̂`−1 for all ` = 1, . . . ,L, with respect to the B-spline basis
functions of level `, that is, there exist some c`i(β̂) > 0 for all i = 1, . . . ,N `, such that

β̂ =
N`∑
i=1

c`i

(
β̂
)
β̂`i .

Then, let us define the truncation operator trunc` with respect to level ` as

trunc`β̂ :=
N`∑
i=1

ĉ`i

(
β̂
)
β̂`i for β̂ ∈ B̂`−1,

where

ĉ`i

(
β̂
)

=

0 if β̂`i ∈ Ĥ ∩ B̂`,
c`i

(
β̂
)

otherwise.

Note that truncLβ̂ = β̂ for all β̂ ∈ B̂L−1. If we recursively apply this truncation operator
to the HB-splines of Ĥ from (6.9), we obtain a different basis spanning the same space
as Ĥ, i.e., the THB-spline basis defined by

T̂ :=
{
truncL

(
. . .
(
trunc`+1β̂

)
· · ·
)

: β̂ ∈ B̂` ∩ Ĥ, ` = 0, . . . ,L− 1
}

.

An example of THB-spline basis is illustrated in Figure 6.5.

6.2.3 Parametric hierarchical mesh

Consider a domain hierarchy D̂
L as defined in (6.8), on which a HB-spline basis and its

corresponding THB-spline basis can be constructed. The parametric hierarchical mesh
associated to the hierarchy D̂

L is defined as the union of the active elements of each
level, that is,

Q̂ :=
L⋃
`=0
Q̂`A, with Q̂`A :=

{
K̂ ∈ Q̂` : K̂ ⊆ D̂`, K̂ 6⊆ D̂`+1

}
. (6.11)

We refer to a parametric element K̂ ∈ Q̂ as an active element (or active cell), and to an
element K̂ ∈ Q̂`A as an active element of level `, for ` = 0, . . . ,L.
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6.2. Hierarchical B-splines and their truncated counterpart

Moreover, recall definition (6.6) of the support extension Sext
(
K̂
)

of a parametric
element K̂, and let us extend it to the hierarchical context. The multilevel support
extension of a parametric element K̂ ∈ Q̂` with respect to level k, with 0 ≤ k ≤ ` ≤ L, is
defined by

Sext
(
K̂, k

)
:= Sext

(
K̂ ′
)

, with K̂ ′ ∈ Q̂k and K̂ ⊆ K̂ ′.

We are now able to define the notions of H- and T -admissibility of the hierarchical mesh
Q̂, following [Buffa and Giannelli, 2016; Buffa et al., 2021b]. To do so, let us consider
the auxiliary domains ω̂0

H = ω̂0
T := D̂0 = D̂, and for ` = 1, . . . ,L,

ω̂`H :=
⋃{

K̂ : K̂ ∈ Q̂`, Sext
(
K̂, `− 1

)
⊆ D̂`

}
,

ω̂`T :=
⋃{

K̂ : K̂ ∈ Q̂`, Sext
(
K̂, `

)
⊆ D̂`

}
.

In other words, domains ω̂`H, respectively ω̂`T , are the regions of D̂` where all the active
basis functions of level `− 1, respectively of level `− 1 truncated with respect to level `,
are equal to zero. With these notions in hand, let us introduce the following definition.

Definition 6.2.1. The mesh Q̂ is said to be H-admissible of class m ∈ {2, . . . ,L− 1},
respectively T -admissible of class m, if for all ` = m,m + 1, . . . ,L− 1,

D̂` ⊆ ω̂`−m+1
H , respectively D̂` ⊆ ω̂`−m+1

T .

From [Buffa and Giannelli, 2016, Proposition 9], this implies that the THB-spline basis
functions in T̂ which take nonzero values over any element K̂ ∈ Q̂ belong to at most m
successive levels. If this property is preserved in a mesh refinement procedure, then the
number of basis functions acting on any element of the mesh is guaranteed to remain
bounded. More precisely, the number of non-zero splines acting on any mesh element is
smaller than m(P + 1)n, where we recall that P is the degree of the splines.

Finally let us provide the following definition.

Definition 6.2.2 ([Bracco et al., 2018]). For all ` = 0, . . . ,L and all K̂ ∈ Q̂ ∩ Q̂`A, the
H-neighborhood, respectively T -neighborhood, of K̂ with respect to m ∈ {2, . . . ,L− 1} is
the set

NH
(
Q̂, K̂,m

)
:=


{
K̂ ′ ∈ Q̂`−m+1

A : K̂ ′ ∩ Sext
(
K̂, `−m + 1

)
6= ∅

}
if `−m + 1 ≥ 0,

∅ otherwise,

respectively

NT
(
Q̂, K̂,m

)
:=


{
K̂ ′ ∈ Q̂`−m+1

A : K̂ ′ ∩ Sext
(
K̂, `−m + 2

)
6= ∅

}
if `−m + 1 ≥ 0,

∅ otherwise.
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(a) B-spline curve in blue, control points and
corresponding control polygon in orange.
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(b) B-spline curve in blue, and corresponding
mesh in orange.

Figure 6.6 – Example of quadratic B-spline curve in R2, associated with the knot vector
Ξ = {0, 0, 0, 0.2, 0.4, 0.4, 0.8, 1, 1, 1} whose basis in drawn in Figure 6.1.

We will see in a later chapter that this set is used to define a mesh refinement algorithm
able to preserve the class of admissibility of the mesh, as in [Buffa and Giannelli, 2016].

6.3 Isogeometric analysis

In Sections 6.1 and 6.2, B-splines and their hierarchical extensions have only been
introduced in the parametric domain D̂ := (0, 1)n. More general spline geometries D can
be defined as linear combination of the (truncated hierarchical) B-spline basis functions
β̂i,p with some control points {Ci}i∈I ⊂ Rn of the physical domain, where the notation
i ∈ I is taken from Section 6.1.3. That is, D is the image of a mapping F : D̂ → Rn

defined by
F(x̂) =

∑
i∈I

β̂i,p(x̂)Ci for all x̂ ∈ D̂.

Note that in general, the control points are not interpolatory, which is a distinguishing
feature with respect to standard FEM nodes. However, since we are using open knot
vectors in each parametric direction, then the boundary vertices of the geometry are
interpolated. The example of a B-spline curve is drawn in Figure 6.6 with its corresponding
control points.

If D is a (TH)B-spline geometry determined by (the refinement of) a mapping F : D̂→ D,
we define the physical (hierarchical) mesh Q(D) corresponding to Q̂ as

Q(D) :=
{
K := F

(
K̂
)

: K̂ ∈ Q̂
}

, (6.12)

on which the following classical assumption is made (see e.g., [Beirão da Veiga et al.,
2014]).
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6.3. Isogeometric analysis

Assumption 6.3.1. The isogeometric mapping F : D̂→ D is bi-Lipschitz, its restriction
F|
K̂
∈ C∞

(
K̂
)
for every K̂ ∈ Q̂, and F−1|K ∈ C

∞(K) for every K ∈ Q(D).

All definitions that were previously introduced in the parametric domain D̂ are readily
transferred to the physical domainD, thanks to the isogeometric mapping F. In particular,
if (T)HB-splines are considered, Definition 6.2.1 is extended to the physical hierarchical
mesh Q(D) as follows.

Definition 6.3.2. The mesh Q(D) defined by (6.12) is said to be H-admissible of class
m ∈ {2, . . . ,L − 1}, respectively T -admissible of class m, if the underlying parametric
mesh Q̂ is H-admissible of class m, respectively T -admissible of class m.

Moreover, the notion of H- and T -neighborhood with respect to m ∈ {2, . . . ,L− 1} from
Definition (6.2.2) can also be easily transferred to a physical element as follows:

Definition 6.3.3. The H-neighborhood with respect to m ∈ {2, . . . ,L− 1}, respectively
T -neighborhood with respect to m of a physical element K ∈ Q(D) is the set of push-
forward elements of the H-neighborhood, respectively T -neighborhood, of the pull-back
F−1(K) ∈ Q̂. That is,

NH
(
Q(D),K,m

)
:=
{
K ′ := F

(
K̂ ′
)

: K̂ ′ ∈ NH
(
Q̂, F−1(K),m

)}
,

NT
(
Q(D),K,m

)
:=
{
K ′ := F

(
K̂ ′
)

: K̂ ′ ∈ NT
(
Q̂, F−1(K),m

)}
. (6.13)

Furthermore, the isogeometric paradigm consists in using the same basis functions for
the description of the computational domain and for the finite dimensional space on
which one seeks the Galerkin solution of a PDE. That is, in IGA, the numerical solution
of a PDE defined in the B-spline domain D, image of the isogeometric mapping F, is
sought in the finite dimensional space spanned by

B(D) :=
{
β := β̂ ◦ F−1 : β̂ ∈ B̂

}
. (6.14)

The space H(D), resp. T (D), can be similarly defined when D is a HB-spline domain,
resp. THB-spline domain, by replacing B̂ by Ĥ, resp. T̂ , in (6.14). That is,

H(D) :=
{
β := β̂ ◦ F−1 : β̂ ∈ Ĥ

}
, (6.15)

resp. T (D) :=
{
β := β̂ ◦ F−1 : β̂ ∈ T̂

}
. (6.16)

It can be shown that (T)HB-splines yield a linearly independent basis suitable for the
analysis. In the context of HB-splines, we refer the interested reader to [Höllig, 2003,
Section 4.5] for a proof, and we recall that

V h(D) := span {T (D)} = span {H(D)} .
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To finish this section, let us state the existence of a quasi-interpolant operator on the
(T)HB-spline space V h(D).

Theorem 6.3.4. Let D be a Lipschitz domain, and let Q(D) be a T -admissible hierar-
chical mesh on D. If Λ ⊂ ∂D if a union of full faces of the mesh Q(D), then there exists
a Scott-Zhang-type operator on D, that is, an operator

Ih : H1
0,Λ(D)→

{
vh ∈ V h(D) : vh|Λ = 0

}
(6.17)

such that for all v ∈ H1
0,Λ(D),∑

K∈Q(D)
h−2
K ‖v − I

h(v)‖20,K . ‖∇v‖20,D and
∑

K∈Q(D)
‖∇Ih(v)‖20,K . ‖∇v‖20,D. (6.18)

The latter implies that for all v ∈ H1
0,Λ(D),

∑
K∈Q(D)

∥∥∥∇(v − Ih(v)
)∥∥∥2

0,K
. ‖∇v‖20,D. (6.19)

The construction of such an operator can be found in [Buffa and Giannelli, 2021] and
[Buffa et al., 2021b, Section 6.1.3] in the case in which Λ = ∂D, but it readily generalizes
to the case in which Λ ⊂ ∂D is a union of full faces. The reader is also referred to [Lee
et al., 2000; Buffa et al., 2016] for more details on quasi-interpolants in spline spaces.

6.4 Advanced spline technologies: multipatch and trimmed
domains

The image of a single isogeometric mapping F as defined in Section 6.3, called patch,
limits the variety of domains one can define with splines: it only allows for geometries
that are images of the unit square if n = 2 or the unit cube if n = 3. Therefore in this
section, we extend the range of applications of IGA by considering more general B-spline
domains. We first consider domains defined by Np ≥ 1 patches, glued together with
C0-continuity. Then, we consider trimmed domains, corresponding to the active part of
a patch that is cut by some trimming curve or surface.

6.4.1 Multipatch isogeometric analysis

Multipatch domains are defined as

D := int

Np⋃
j=1

Dj

 , (6.20)
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D̂ = (0, 1)2 D

F2

F1

Figure 6.7 – Illustration of a multipatch isogeometric domain D with Np = 2 patches.

with Np ≥ 1, where each domain Dj is the image of an isogeometric mapping

Fj : (0, 1)n → Dj

satisfying Assumption 6.3.1. An illustration of a multipatch domain is given in Figure 6.7.
In this work, we assume that the patches do not overlap in the physical domain, that
is, Di ∩ Dj = ∅ for all i, j = 1, . . . ,Np such that i 6= j. In the case of a multipatch
isogeometric domain D, we define the corresponding multipatch mesh as

Q(D) :=
Np⋃
j=1
Q(Dj), (6.21)

where each Q(Dj) is defined as in (6.12). Moreover, we let B̂j denote the B-spline basis
associated with each mesh Q(Dj), j = 1, . . . ,Np.

To construct a suitable discrete space in a multipatch domain, we require the meshes
to be conforming at the interfaces between patches, and we impose a C0-continuity at
those interfaces. More precisely, let

Γi,j := ∂Di ∩ ∂Dj , for i, j = 1, . . . ,Np, i 6= j

denote the interfaces between patches, and assume that they satisfy the following
assumption.

Assumption 6.4.1. For all i, j = 1, . . . ,Np such that i 6= j,

• Γi,j is either empty, or a vertex, or the image of a full edge or a full face of (0, 1)n
for both parametrizations Fi and Fj ;

• for every B-spline basis function β̂i ∈ B̂i such that β̂i ◦ (Fi)−1 6= 0 on Γi,j , there
exists a unique B-spline basis function β̂j ∈ B̂j such that β̂i ◦ (Fi)−1 = β̂j ◦ (Fj)−1
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on Γi,j ;

• the control points associated to the interface functions of adjacent patches coincide.

This assumption allows us to ensure the C0-continuity of the discrete functions at the
patch interfaces, by associating the corresponding degrees of freedom on each side of the
interface. For more details, the reader is referred to [Buffa et al., 2021b, Section 3.2.2].

In this case, the IGA numerical solution of a PDE defined in a multipatch domain D is
sought in the finite dimensional space

V h(D) :=
{
vh ∈ C0(D) : vh|Dj ∈ span

{
Bj
}

, ∀j = 1, . . . ,Np

}
,

where for all j = 1, . . . ,Np,

Bj :=
{
β := β̂ ◦

(
Fj
)−1

: β̂ ∈ B̂j
}

.

Note that C0-continuity is imposed here between patches. The construction of spaces
with higher continuity is currently a very active area of research, see [Toshniwal et al.,
2017; Kapl et al., 2019; Bracco et al., 2020] for instance.

Finally, one can easily generalize the definition of (T)HB-splines basis functions of
Section 6.2 to multipatch domains. The corresponding discrete isogeometric spaces
defined in Section 6.3 can also easily be generalized to this setting, by considering on
each hierarchical level a multi-patch space satisfying Assumption 6.4.1. For more details,
we refer to [Buchegger et al., 2016] and [Garau and Vázquez, 2018, Section 3.4].

6.4.2 Isogeometric analysis in trimmed domains

Trimmed domains are obtained from a basic Boolean operation between standard (TH)B-
spline domains, and they are nowadays a standard in most commercial CAD software.
We consider the HB-spline basis functions in this section, but the same procedure can be
performed with standard B-splines or with THB-splines.

Suppose that Du ⊂ Rn is a domain defined as the image of an isogeometric mapping
F : (0, 1)n → Du, generated by a HB-spline basis Ĥ and satisfying Assumption 6.3.1.
Moreover, let {ωi}Nti=1 be a set of bounded open Lipschitz domains in Rn that are trimmed
away (i.e., cut) from Du to obtain D, the computational domain. That is,

D := Du \ ω, with ω := int
(
Nt⋃
i=1

ωi

)
. (6.22)

The boundary of the trimmed geometry D can then be decomposed into a part which
coincides with the boundary of the non-trimmed domain, ∂D∩ ∂Du, and a trimmed part
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Du

ω

(a) Non-trimmed rectangular domain Du

with a hierarchical mesh Q(Du).

Γt

D

(b) Trimmed domain D, trimming curve Γt,
and active hierarchical mesh in D.

Figure 6.8 – Example of a trimmed domain D obtained from trimming the blue domain ω
from the original non-trimmed rectangular domain Du.

Γt := ∂D \ ∂Du, called trimming curve or surface. An example of trimmed geometry is
illustrated in Figure 6.8.

Note that the underlying mathematical description of the original domain Du is not
altered by the trimming operation. Consequently, elements and basis functions are
built with respect to the non-trimmed domain Du, and the correction needed because of
trimming is handled at the integration level. In order to build suitable integration rules
for the analysis, we need the description of the trimming curve or trimming surface St

in the parameter domain (0, 1)n. Since in general, the inverse mapping F−1(St) is not
known analytically, integration is usually based on an approximation of the exact curve
(or surface) determined by a given geometric tolerance, see e.g., [Hohmeyer, 1993; Farin
et al., 2002]. Many techniques have been proposed in the literature to integrate trimmed
elements, and we refer for instance to [Parvizian et al., 2007; Müller et al., 2013; Kudela
et al., 2015]. In this thesis, the presented numerical examples use the re-parametrization
tool presented in [Antolín et al., 2019, 2022]. The idea behind this tool is to create a
high-order integration mesh on the cut elements, and to propertly distribute integration
points in the elements of this newly created mesh.

We can now generalize the isogeometric paradigm introduced in Section 6.3 to trimmed
geometries. That is, let H(Du) be defined as in (6.15), and let us consider the basis
H(D) of HB-spline basis functions whose support intersects D, i.e.,

H(D) := {β ∈ H(Du) : supp(β) ∩D 6= ∅} .

In [Coradello et al., 2020], using the work of [Höllig, 2003, Section 4.5], it is shown that
in the presence of trimming, (T)HB-splines yield a linearly independent basis suitable
for the analysis.

Finally, the IGA numerical solution of a PDE defined in a trimmed domain D is sought
in the finite dimensional space spanned by the HB-spline basis functions restricted to D,
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that is, in the finite dimensional space

V h(D) := span {β|D : β ∈ H(D)} . (6.23)

Remark 6.4.2. In an adaptive mesh refinement framework, we need to guarantee that
a function β ∈ H(D) is deactivated when all the elements in supp (β)∩D are refined (see
the recursive construction of HB-splines in (6.9)). To do so, we need to add the so-called
ghost elements to the set of elements to refine, following [Coradello et al., 2020]. That is,
when a trimmed element K is marked for refinement (see Section 5.4.3), all the elements
in {

K ′ ∈ Q(Du) :K ′ ∩D = ∅, lev(K) = lev(K ′)
and ∃β ∈ H(Du) such that K ∪K ′ ⊂ supp (β)

}
also need to be marked for refinement.

For more details about isogeometric methods in trimmed domains and some related open
challenges, the reader is referred to [Marussig and Hughes, 2018] and references therein.
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7 A posteriori error estimation:
trimmed geometries

Many research papers, reviewed in [Buffa et al., 2021b], have tackled the important
challenge of constructing locally refined splines, and using them within an adaptive
paradigm. Research has now reached an advanced maturity on the subject. However,
the use of locally refined splines on complex geometries defined by trimming operations
is still at its first steps. In this chapter, we are interested in the study of an adaptive
framework using (T)HB-splines in the context of trimmed geometries.

The use of THB-splines in the context of the Poisson problem and linear elasticity is
studied in [Marussig et al., 2018] and in [de Prenter et al., 2020], where an emphasis is put
on stability issues and bad conditioning of the system matrix caused by trimming, but no
study of error indicators is given. To provide an approximation of the error, an implicit
error estimator was introduced in [Coradello et al., 2020] in the context of (T)HB-spline
isogeometric analysis on trimmed surfaces, extending their previous work [Antolín et al.,
2020] on error estimation for linear fourth-order elliptic partial differential equations on
non-trimmed geometries. The estimator relies on the solution of an additional residual-
like system, but its reliability is not demonstrated. The contribution of this chapter
differs from the aforementioned works as we introduce an explicit residual a posteriori
estimator of the energy norm of the numerical error of the Poisson problem in trimmed
geometries, and a mathematical proof of its reliability is given. Driven by the proposed
estimator, and thanks to the local refinement capability given by HB-splines, we develop
a fully adaptive error-driven numerical framework for the Poisson problem in trimmed
geometries of arbitrary dimension. In this chapter, very general geometries are considered
since the only hypothesis required on the trimming boundary is to be Lipschitz. Moreover,
the reliability of the estimator is proven to be independent of the way the trimmed
boundaries cut the underlying mesh, and thus in particular, it is independent of the size
of the active part of the trimmed elements. Numerical examples are given to also show
the efficiency of the proposed estimator.

When dealing with geometric domains defined by trimming, the main challenge faced
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lies in the fact that the generated mesh is unfitted with the described physical domain.
Therefore, this work is strongly related to the immersed or unfitted mesh methods.
In particular, an implicit a posteriori estimator of the energy error due to numerical
approximation is introduced in [Sun et al., 2020] for any polynomial degree, but its
efficiency is only demonstrated numerically. In [He and Zhang, 2019], a reliable and
efficient residual-based a posteriori error estimator is studied for a partially penalized
linear immersed finite element method applied to elliptic interface problems. In the
context of the cut finite element method, an estimator is proposed in [Burman et al.,
2020] for an elliptic model problem with Dirichlet boundary conditions ensured by a
ghost penalty stabilization (see [Burman, 2010]). In that paper, to avoid the dependence
on the location of domain-mesh intersection, the efficiency for the term of ghost penalty
is shown globally. In both [He and Zhang, 2019] and [Burman et al., 2020], a linear finite
element basis is considered, while in the very recent work of [Chen et al., 2021], a reliable
and efficient hp-residual type error estimator is given in the case of high-order unfitted
finite element for interface problems in the framework of the local discontinuous Galerkin
method. The reliable estimator we introduce in the present article for any polynomial
degree is very similar to the one in [Chen et al., 2021] for two-dimensional domains,
but our contribution deals with more general two- and three-dimensional computational
domains. In particular, while the notion of “large element” is central in [Chen et al.,
2021], we do not require any particular assumption on the way the trimming boundary
intersects the underlying mesh. Thus in the proposed estimator, the scaling of the
residuals with respect to the size of the trimmed mesh elements needs to be adapted.

While introducing the notation used in this chapter, we first state in Section 7.1 the
considered model Poisson problem, and we precisely define the HB-spline based IGA
numerical approximation of its solution. The computational domain of interest is a
trimmed HB-spline domain. Subsequently, in Section 7.2, we introduce the a posteriori
estimator of the error coming from this numerical approximation, in the energy norm,
and its reliability is proven. In Section 7.3, we introduce the classical adaptive mesh
refinement strategy adapted to the framework of trimmed domains, before presenting
several numerical experiments in Section 7.4. This chapter closely follows [Buffa et al.,
2021a].

In this chapter, the symbol . indicates an inequality hiding a constant which does not
depend on the mesh size h, on the size of the active part of the trimmed elements, nor
on the number of hierarchical levels L (see Chapter 6). However, those inequalities may
depend on the shape of the mesh elements. Moreover, we will write A ' B whenever
A . B and B . A.
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Du

ΛD

Λu
N

(a) Non-trimmed domain Du.

D

ω

ΛD

Λu
N

Γt

(b) Trimmed domain D and ω := Du \D.

Figure 7.1 – Illustration of the notation used on the trimmed geometry D.

7.1 Trimming model problem

Let Du ⊂ Rn be a HB-spline domain as introduced in Chapter 6, i.e., it is the image of
an isogeometric mapping F : (0, 1)n → Du, generated by a parametric HB-spline basis Ĥ
and satisfying Assumption 6.3.1. Then, let D ⊂ Rn be a Lipschitz domain trimmed from
the HB-spline domain Du, as defined in (6.22). Moreover, let n be the unitary outward
normal to ∂D, and let ΛN , ΛD ⊂ ∂D be open such that ΛD ∩ ΛN = ∅, ΛD ∩ ΛN = ∂D

and ΛD 6= ∅. Note that since D is Lipschitz, then the trimming boundary

Γt := ∂D \ ∂Du

is also Lipschitz.

7.1.1 Continuous formulation

Let us consider Poisson’s problem of Example 2.4.4 defined in D, where we recall that
uD ∈ H

1
2 (ΛD) is the Dirichlet boundary condition imposed on ΛD, uN ∈ L2(ΛN ) is the

Neumann boundary condition imposed on ΛN , and f ∈ L2(D) is the considered right
hand side. That is, we want to find us ∈ H1

uD,ΛD(D) which satisfies for all v ∈ H1
0,ΛD(D),∫

D
∇us · ∇v dx =

∫
D
fv dx+

∫
ΛN

uNv ds. (7.1)

Notation is illustrated in Figure 7.1. From Example 2.4.4, problem (7.1) admits a unique
solution us ∈ H1

uD,ΛD(D) according to Lax-Milgram theorem.

To simplify the subsequent analysis, we assume that ΛD ∩ Γt = ∅, that is, we suppose
that the Dirichlet boundary is not part of the trimming boundary Γt. If it were not the
case, we would need to weakly impose the Dirichlet boundary conditions on ΛD ∩ Γt in
the discrete setting, and make use of stabilization techniques, see, e.g., [Burman, 2010;
Elfverson et al., 2019; Buffa et al., 2020].
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7.1.2 Isogeometric analysis formulation with hierarchical B-splines

Let Qu := Q (Du) be (a refinement of) the physical hierarchical mesh on Du as defined
in (6.12), and let Eu be the set of all faces of Qu. Recall that here and in the sequel,
edges are called faces even when n = 2, and assume that the Dirichlet boundary ΛD

is the union of full element faces. Moreover, let hK := diam(K) for all K ∈ Qu, let
hE := diam(E) for all E ∈ Eu, and let h := max

K∈Qu
hK .

Furthermore, let Q := Qcut ∪ Qact be the active mesh intersecting the computational
domain D, where

Qcut := {K ∈ Qu : K ∩D 6= K, |K ∩D| > 0}

is the set of cut (trimmed) elements, and

Qact := {K ∈ Qu : K ⊂ D}

is the set composed of the other active (non-trimmed) elements in D. Similarly, let
EN := Ecut ∪ Eact, where

Ecut := {E ∈ Eu : E ∩ ΛN 6= E} and Eact := {E ∈ Eu : E ⊂ ΛN} .

Note that EN is therefore the set of faces E of Eu such that |E ∩ ΛN | > 0.

Remark 7.1.1. Note that the definition ofQcut (respectively Ecut) is numerically unstable
and in practice, the condition |K∩D| > 0 (resp. |E∩ΛN | > 0) is replaced by |K∩D| > εcut
(resp. |E ∩ ΛN | > εcut) for some small εcut > 0. The value of εcut is determined by the
geometric modeling tool one uses to deal with trimmed elements, see [Antolín et al.,
2019], and the induced error is a consistency error that is assumed to be negligible in the
following analysis.

Recall that the trimming boundary is defined as Γt := ∂D \ ∂Du ⊂ ΛN , and for all
K ∈ Q, let

Γt
K := Γt ∩ int(K).

Note that for all K ∈ Qact, Γt
K = ∅. Also note that for all internal faces E ∈ EN such that

(E ∩ ΛN ) ⊂ Γt and (E ∩ ΛN ) ⊂ ∂ (K ∩D) for some K ∈ Q, then Γt
K ∩ (E ∩ ΛN ) = ∅,

that is, this internal face is not included in Γt
K . Or in other words,

ΛN = int

 ⋃
E∈EN

E ∩ ΛN

 ∪
 ⋃
K∈Qcut

Γt
K

 ,

where the intersection of any two elements of the union is empty, and each contribution
of the union only appears once.

162



7.1. Trimming model problem

Now, let us make the following assumptions on Qu.

Assumption 7.1.2. The mesh Qu is shape regular according to Definition 5.2.1. As a
consequence, hK ' hE for all K ∈ Qu and all E ∈ Eu with E ⊂ ∂K.

Assumption 7.1.3. The mesh Qu is T -admissible of some fixed class m ∈ N, m ≥ 2,
according to Definition 6.3.2.

Remark 7.1.4. Note that no further assumption on the trimming boundary Γt is
required, other than Γt to be Lipschitz. In particular, and as already pointed out in
[Guzmán and Olshanskii, 2018], the literature on unfitted finite elements commonly
imposes an additional restriction on how Γt intersects the mesh Qu. But we do not need
here this assumption which, in 2D, requires that Γt does not intersect an edge of the
mesh Qu more than once, and which is analogous in 3D, see, e.g., [Hansbo and Hansbo,
2002]. So for example, in this paper, Γt

K could be disconnected.

Following the isogeometric paradigm introduced and generalized to trimmed geometries
in Chapter 6, let us define

Hu :=
{
β := β̂ ◦ F−1 : β̂ ∈ Ĥ

}
,

H := {β ∈ Hu : supp (β) ∩D 6= ∅} , (7.2)

and let us also define the following approximation spaces:

V h(Du) := span {Hu} , V h(D) := span {β|D : β ∈ H} ,
V h

0 (Du) := V h(Du) ∩H1
0,ΛD(Du), V h

0 (D) := V h(Du) ∩H1
0,ΛD(D),

and V h
uD

(Du) := V h(Du) ∩H1
uD,ΛD(Du), V h

uD
(D) := V h(Du) ∩H1

uD,ΛD(D).

Note that a proof of the linear independence of the trimmed basis H in D can be found
in [Höllig, 2003, Section 4.5].

In the following, we assume that uD is the trace of a discrete function in V h(D), that we
still write uD by abuse of notation. Then, the Galerkin method with finite basis H is
used to discretize the weak problem (7.1), which reads as follows: find uhs ∈ V h

uD
(D) such

that for all vh ∈ V h
0 (D),∫

D
∇uhs · ∇vh dx =

∫
D
fvh dx+

∫
ΛN

uNv
h ds. (7.3)

In the following, we are interested in the a posteriori estimation of the energy error∥∥∥∇(us − uhs)∥∥∥0,D
=
∣∣∣us − uhs ∣∣∣1,D

(7.4)

in the trimmed geometry D.

Remark 7.1.5. The analysis is performed on this simple model Poisson problem for
simplicity, but it can be readily extended to the estimation of the energy error for
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a general steady elliptic diffusion-advection-reaction problem or to a linear elasticity
problem, as soon as they verify the assumptions of the Lax-Milgram theorem.

7.2 An a posteriori error estimator on trimmed domains

In this section, we derive an a posteriori estimator of the energy error in the trimmed
geometry D between the exact solution us and the discrete solution uhs , and we prove
its reliability. In the subsequent analysis, we assume for simplicity that the discrete
functions are C1-continuous. This assumption is not needed, but it allows us to simplify
the analysis while underlining the specificity of IGA with higher order B-splines. The
general case of C0-continuous basis functions could be treated in a similar way through
the introduction of appropriate jump terms, following the classical theory of the adaptive
finite element method. However, the addition of face jumps does not add any relevant
additional insight to the analysis.

So more precisely, let

δK :=

hK if K ∈ Qact

cK∩D|K ∩D|
1
n if K ∈ Qcut,

and δE :=

h
1
2
E if E ∈ Eact

cE∩ΛN |E ∩ ΛN |
1

2(n−1) if E ∈ Ecut,
(7.5)

where the constants cK∩D and cE∩ΛN are defined as in (3.10). Then in Theorem 7.2.3,
we will show that

EN
(
uhs

)
:=

∑
K∈Q

δ2
K

∥∥∥f + ∆uhs
∥∥∥2

0,K∩D
+
∑
E∈EN

δ2
E

∥∥∥∥∥uN − ∂uhs
∂n

∥∥∥∥∥
2

0,E∩ΛN

+
∑

K∈Qcut

hK

∥∥∥∥∥uN − ∂uhs
∂n

∥∥∥∥∥
2

0,Γt
K

 1
2

(7.6)

is a reliable a posteriori error estimator of the energy error (7.4).

7.2.1 Preliminary results on trimmed meshes

Before stating and proving the main theorem, let us state two lemmas which will allow
us to take care of the trimmed elements and faces.

Lemma 7.2.1. Let K ∈ Qcut, and let KD := K ∩D 6= ∅. Then for all v ∈ H1(K),

‖v‖0,KD
. cKD

|KD|
1
n

(
h−2
K ‖v‖

2
0,K + ‖∇v‖20,K

) 1
2 = δK

(
h−2
K ‖v‖

2
0,K + ‖∇v‖20,K

) 1
2 ,

where cKD
is defined in (3.10). The hidden constant is independent of the measures of

KD and of K.
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Proof. Let v ∈ H1(K) and let FK : κ̂→ K, where κ̂ := (0, 2π)n. That is, FK = F◦GK ,
where F is the isogeometric map defined in Section 6.3, and GK is a linear mapping
defined as in Section 5.2.1. So the Jacobian matrix of GK written ∇GK is diagonal, and
thanks to the shape regularity Assumption 7.1.2, each of its components (∇GK)ii . hK ,
i = 1, . . . ,n. Thanks to Assumption 6.3.1 on F, if ∇F denotes the Jacobian matrix
of F, then |det (∇F)| ' 1, ‖∇F‖L∞(F−1(K)) . 1, and ‖∇F−1‖L∞(K) . 1. So if we let
v̂ := v ◦ FK , then by the Hölder inequality, for all p ≥ 1,

‖v‖20,KD
≤ |KD|1−

1
p ‖v‖2L2p(KD) ≤ |KD|1−

1
p ‖v‖2L2p(K) . |KD|1−

1
p h

n
p

K ‖v̂‖
2
L2p(κ̂). (7.7)

By Sobolev embedding (see Theorem 2.3.1), we know that H1(κ̂) can be continuously
embedded in L2p(κ̂) for every 1 ≤ p <∞ if n = 2, or for every 1 ≤ p ≤ 3 if n = 3. So, if
n = 3, by taking p = 3 in (7.7) and by Sobolev embedding,

‖v‖20,KD
. |KD|

2
3hK ‖v̂‖21,κ̂ . |KD|

2
3hK

(
h−3
K ‖v‖

2
0,K + h−1

K ‖∇v‖
2
0,K
)

= c2
KD
|KD|

2
n

(
h−2
K ‖v‖

2
0,K + ‖∇v‖20,K

)
.

Let us now consider the case n = 2. From Lemma 2.3.3,

‖v̂‖L2p(κ̂) ≤ c
√
p‖v̂‖1,κ̂,

where c is a constant independent of p and of the measure of K. So by taking

p = max
(
− log (|KD|) , η

)
= c2

KD

in (7.7), then |KD|−
1
p . 1 and h

2
p

K ' |K|
1
p = |K|c

−2
KD ≤ |K|c

−2
K . 1, and thus

‖v‖20,KD
. p |KD|1−

1
p h

2
p

K ‖v̂‖
2
1,κ̂ . c2

KD
|KD|

(
h−2
K ‖v‖

2
0,K + ‖∇v‖20,K

)
= c2

KD
|KD|

2
n

(
h−2
K ‖v‖

2
0,K + ‖∇v‖20,K

)
.

Lemma 7.2.2. Let E ∈ Ecut, and let EN := E ∩ ΛN 6= ∅. Then for all v ∈ H 1
2 (E),

‖v‖0,EN . cEN |EN |
1

2(n−1)

(
h−1
E ‖v‖

2
0,E + |v|21

2 ,E

) 1
2

= δE

(
h−1
E ‖v‖

2
0,E + |v|21

2 ,E

) 1
2

,

where cEN is defined in (3.10). The hidden constant is independent of the measures of
EN and of E.

Proof. Note that this proof generalizes the one of Lemma 2.3.9, and it follows the same
ideas as in the proof of Lemma 7.2.1. Let v ∈ H

1
2 (E) and let FE : ε̂ → E, where

ε̂ := (0, 2π)n−1. That is, FE = F ◦GE , where F is the isogeometric map defined in
Section 6.3, and GE is a linear mapping. So the Jacobian matrix of GE written ∇GE is
diagonal, and thanks to the shape regularity Assumption 7.1.2, each of its components
(∇GE)ii . hE , i = 1, . . . ,n− 1. Thanks to Assumption 6.3.1 on F, if ∇F denotes the
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Jacobian matrix of F, then |det (∇F)| ' 1, ‖∇F‖L∞(F−1(K)) . 1, and ‖∇F−1‖L∞(K) . 1.
So if we let v̂ := v ◦ FE , then by the Hölder inequality, for all p ≥ 1,

‖v‖20,EN ≤ |EN |
1− 1

p ‖v‖2L2p(EN ) ≤ |EN |
1− 1

p ‖v‖2L2p(E) . |EN |
1− 1

p h
n−1
p

E ‖v̂‖2
L2p(ε̂). (7.8)

By Sobolev embedding (see Theorem 2.3.1), we know that H 1
2 (ε̂) can be continuously

embedded in L2p(ε̂) for every 1 ≤ p <∞ if n = 2, or for every 1 ≤ p ≤ 2 if n = 3. So, if
n = 3, by taking p = 2 in (7.8) and by Sobolev embedding,

‖v‖20,EN . |EN |
1
2hE ‖v̂‖21

2 ,ε̂ . |EN |
1
2hE

(
h−3
E ‖v‖

2
0,E + h−1

E |v|
2
1
2 ,E

)
= c2

EN
|EN |

1
n−1

(
h−2
E ‖v‖

2
0,E + |v|21

2 ,E

)
.

Let us now consider the case n = 2. From Lemma 2.3.2,

‖v̂‖L2p(ε̂) ≤ c
√
p‖v̂‖ 1

2 ,ε̂,

where c is a constant independent of p and of the measure of E. So by taking
p = max

(
− log (|EN |) , η

)
= c2

EN

in (7.8), then |EN |−
1
p . 1 and h

1
p

E = |E|c
−2
EN ≤ |E|c

−2
E . 1, and thus

‖v‖20,EN . p |EN |1−
1
p h

1
p

E ‖v̂‖
2
1
2 ,ε̂ . c2

EN
|EN |

(
h−2
E ‖v‖

2
0,E + |v|21

2 ,E

)
= c2

EN
|EN |

1
n−1

(
h−2
E ‖v‖

2
0,E + |v|21

2 ,E

)
.

7.2.2 Reliability of the a posteriori error estimator

Let us now state and prove the main theorem, stating the efficiency of the proposed a
posteriori error estimator.

Theorem 7.2.3. Let us be the exact solution of problem (7.1) in the trimmed geometry D,
and let uhs be its discretized counterpart that solves Galerkin problem (7.3). Moreover,
assume that the mesh Qu satisfies Assumptions 7.1.2 and 7.1.3 of shape regularity and
T -admissibility, and h < h0 for some fixed h0 > 0. Then the numerical error, in the
energy norm, is bounded in terms of the estimator EN

(
uhs

)
introduced in (7.6) as follows:

∥∥∥∇(us − uhs)∥∥∥0,D
. EN

(
uhs

)
.

Proof. Let e := us − uhs . Then for all v ∈ H1
0,ΛD(D), from (7.1),

∫
D
∇e · ∇v dx =

∑
K∈Q

[∫
K∩D

(
f + ∆uhs

)
v dx+

∫
ΛN∩K

(
uN −

∂uhs
∂n

)
v ds

]
. (7.9)
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Let us define the interior and boundary residuals as follows:

rK := f + ∆uhs ∈ L2(K ∩D), ∀K ∈ Q,

jE := uN −
∂uhs
∂n ∈ L

2(E ∩ ΛN ), ∀E ∈ EN ,

jK := uN −
∂uhs
∂n ∈ L

2(Γt
K), ∀K ∈ Qcut. (7.10)

So with the particular choice v = e, we can rewrite (7.9) as

‖∇e‖20,D =
∑
K∈Q

∫
K∩D

rKe dx+
∑
E∈EN

∫
E∩ΛN

jE e ds+
∑

K∈Qcut

∫
Γt
K

jKe ds. (7.11)

Moreover, recall that ω := Du \D (see Figure 7.1). Then, let eu ∈ H1
0,ΛD(Du) be the

extension of e to Du such that eu|D = e, and such that eu|ω ∈ H1
e,Γt(ω) is the weak

solution of ∫
ω
∇eu · ∇w dx = 0, ∀w ∈ H1

0,Γt(ω).

Since the measures of both ω and Γt are independent of h, then by continuity of the
elliptic solution on the data and by the trace inequality,

‖eu‖1,ω . ‖e‖ 1
2 ,Γt . ‖e‖1,D,

and thus by the Poincaré inequality,

‖∇eu‖0,Du .
(
‖eu‖21,D + ‖eu‖21,ω

) 1
2 . ‖e‖1,D . ‖∇e‖0,D. (7.12)

Furthermore, since the hierarchical mesh Qu is T -admissible, from Theorem 6.3.4, it is
possible to build a Scott-Zhang-type operator Ih : H1

0,ΛD(Du)→ V h
0 (Du) such that for

all v ∈ H1
0,ΛD(Du), ∑

K∈Qu
h−2
K ‖v − I

h(v)‖20,K . ‖∇v‖20,Du (7.13)

and
∑
K∈Qu

∥∥∥∇(v − Ih(v)
)∥∥∥2

0,K
. ‖∇v‖20,Du . (7.14)

Therefore, let
eu,h := Ih(eu) ∈ V h

0 (Du).

Since eu,h ∈ V h(Du), from (7.3) and by performing integration by parts,∫
D
feu,h dx+

∫
ΛN

uNe
u,h ds =

∫
D
∇uhs · ∇eu,h dx

=
∑
K∈Q

∫
K∩D

(
−∆uhs

)
eu,h dx+

∫
ΛN

∂uhs
∂n eu,h ds,

167



Chapter 7. A posteriori error estimation: trimmed geometries

and thus recalling the notation introduced in (7.10),

∑
K∈Q

∫
K∩D

rKe
u,h dx+

∑
E∈EN

∫
E∩ΛN

jE e
u,h ds+

∑
K∈Qcut

∫
Γt
K

jKe
u,h ds = 0.

Consequently, we can rewrite (7.11) as

‖∇e‖20,D =
∑
K∈Q

∫
K∩D

rK(e− eu,h) dx+
∑
E∈EN

∫
E∩ΛN

jE(e− eu,h) ds

+
∑

K∈Qcut

∫
Γt
K

jK(e− eu,h) ds. (7.15)

To begin the estimation of (7.15), let us consider the first term. Using the Hölder
inequality and the discrete Cauchy-Schwarz inequality,

∑
K∈Q

∫
K∩D

rK(eu − eu,h) dx

≤
∑
K∈Q

δK‖rK‖0,K∩D δ
−1
K

∥∥∥eu − eu,h
∥∥∥

0,K∩D

.

∑
K∈Q

δ2
K‖rK‖20,K∩D

1
2
 ∑
K∈Qact

δ−2
K

∥∥∥eu − eu,h
∥∥∥2

0,K
+

∑
K∈Qcut

δ−2
K

∥∥∥eu − eu,h
∥∥∥2

0,K∩D

1
2

.

(7.16)

Moreover, from Lemma 7.2.1, for all K ∈ Qcut,

δ−2
K

∥∥∥eu − eu,h
∥∥∥2

0,K∩D
. h−2

K

∥∥∥eu − eu,h
∥∥∥2

0,K
+
∥∥∥∇(eu − eu,h

)∥∥∥2

0,K
. (7.17)

Thus from (7.17), using property (7.13) of the Scott-Zhang-type operator Ih, and by the
continuous extension property (7.12),

∑
K∈Qact

δ−2
K

∥∥∥eu − eu,h
∥∥∥2

0,K
+

∑
K∈Qcut

δ−2
K

∥∥∥eu − eu,h
∥∥∥2

0,K∩D

.
∑

K∈Qact

h−2
K

∥∥∥eu − eu,h
∥∥∥2

0,K
+

∑
K∈Qcut

∥∥∥∇(eu − eu,h)
∥∥∥2

0,K
.
∥∥∥∇eu

∥∥∥2

0,Du
. ‖∇e‖20,D.

(7.18)

Therefore, combining (7.16) and (7.18),

∑
K∈Q

∫
K∩D

rK(eu − eu,h) dx .

∑
K∈Q

δ2
K‖rK‖20,K∩D

 1
2

‖∇e‖20,D. (7.19)
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Now, let us consider the second term of (7.15). Similarly as for the internal residuals,

∑
E∈EN

∫
E∩ΛN

jE(e− eu,h) ds ≤
∑
E∈EN

δE ‖jE‖0,E∩ΛN δ
−1
E

∥∥∥eu − eu,h
∥∥∥

0,E∩ΛN

.

 ∑
E∈EN

δ2
E‖jE‖20,E∩ΛN

 1
2
 ∑
E∈Eact

δ−2
E

∥∥∥eu − eu,h
∥∥∥2

0,E
+

∑
E∈Ecut

δ−2
E

∥∥∥eu − eu,h
∥∥∥2

0,E∩ΛN

 1
2

.

(7.20)

Moreover, from Lemma 7.2.2, for all E ∈ Ecut,

δ−2
E

∥∥∥eu − eu,h
∥∥∥2

0,E∩ΛN
. h−1

E

∥∥∥eu − eu,h
∥∥∥2

0,E
+
∣∣∣eu − eu,h

∣∣∣21
2 ,E

,

and thus ∑
E∈Eact

δ−2
E

∥∥∥eu − eu,h
∥∥∥2

0,E
+

∑
E∈Ecut

δ−2
E

∥∥∥eu − eu,h
∥∥∥2

0,E∩ΛN

.
∑
E∈EN

h−1
E

∥∥∥eu − eu,h
∥∥∥2

0,E
+

∑
E∈Ecut

∣∣∣eu − eu,h
∣∣∣21

2 ,E
. (7.21)

For all E ∈ EN , let KE be the element of Qu such that (E ∩ ΛN ) ⊂ ∂(KE ∩ D), and
note that by the shape regularity of Qu, hKE ' hE . Then for the first term of (7.21),
using the scaled trace inequality of Lemma 5.2.2, properties (7.13) and (7.14) of the
Scott-Zhang-type operator, and by the continuous extension property (7.12),

∑
E∈EN

h−1
E

∥∥∥eu − eu,h
∥∥∥2

0,E
.

∑
E∈EN

(
h−2
KE

∥∥∥eu − eu,h
∥∥∥2

0,KE
+
∥∥∥∇(eu − eu,h

)∥∥∥2

0,KE

)

.
∥∥∥∇eu

∥∥∥2

0,Du
. ‖∇e‖20,D. (7.22)

Furthermore, remarking that eu − eu,h ∈ H1
0,ΛD(Du), then the second term of (7.21) can

be estimated using trace inequalities, property (7.14) of the Scott-Zhang-type operator,
and the continuous extension property (7.12) as follows:∑

E∈Ecut

∣∣∣eu − eu,h
∣∣∣21

2 ,E
.

∑
E∈Ecut

∥∥∥eu − eu,h
∥∥∥2

1,KE
≤
∥∥∥eu − eu,h

∥∥∥2

1,Du

.
∥∥∥∇(eu − eu,h

)∥∥∥2

0,Du
.
∥∥∥∇eu

∥∥∥2

0,Du
. ‖∇e‖20,D. (7.23)

Therefore, combining (7.20), (7.21), (7.22) and (7.23),

∑
E∈EN

∫
E∩ΛN

jE(e− eu,h) ds .

 ∑
E∈EN

δ2
E‖jE‖20,E∩ΛN

 1
2

‖∇e‖0,D. (7.24)

Finally, let us consider the last term of (7.15): using the Hölder inequality and the
discrete Cauchy-Schwarz inequality, then
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∑
K∈Qcut

∫
Γt
K

jK(eu − eu,h) ds ≤
∑

K∈Qcut

‖jK‖0,Γt
K

∥∥∥eu − eu,h
∥∥∥

0,Γt
K

.

 ∑
K∈Qcut

hK‖jK‖20,Γt
K

 1
2
 ∑
K∈Qcut

h−1
K

∥∥∥eu − eu,h
∥∥∥2

0,Γt
K

 1
2

.

(7.25)

Moreover, by the local scaled trace inequality of Lemma 5.2.3, by properties (7.13)
and (7.14) of the Scott-Zhang-type operator, and by the continuous extension prop-
erty (7.12),∑

K∈Qcut

h−1
K

∥∥∥eu − eu,h
∥∥∥2

0,Γt
K

.
∑

K∈Qcut

(
h−2
K

∥∥∥eu − eu,h
∥∥∥2

0,K
+
∥∥∥∇(eu − eu,h

)∥∥∥2

0,K

)
.
∥∥∥∇eu

∥∥∥2

0,Du
. ‖∇e‖20,D. (7.26)

Therefore, inserting (7.26) in (7.25), we obtain

∑
K∈Qcut

∫
Γt
K

jK(eu − eu,h) ds .

 ∑
K∈Qcut

hK‖jK‖20,Γt
K

 1
2

‖∇e‖0,D. (7.27)

To conclude, we combine (7.15), (7.19), (7.24) and (7.27) and we divide by ‖∇e‖0,D on
both sides.

Remark 7.2.4. If problem (7.1) is discretized using the THB-spline basis instead of the
HB-spline basis, then Theorem 7.2.3 is still valid under the same hypothesis. In particular,
whether HB-splines or THB-splines are used, the mesh Qu only needs to be T -admissible,
which is a weaker assumption than H-admissibility (see Definitions 6.2.1 and 6.3.2).
Indeed, in the proof of Theorem 7.2.3, the T -admissibility is only needed to ensure
properties (7.13) and (7.14) of the Scott-Zhang-type operator Ih : H1

0,ΛD(Du)→ V h
0 (Du).

The construction of such an operator depends on the discrete space V h
0 (Du) but not

on the choice of basis for V h
0 (Du), so it does not depend on whether one considers a

HB-spline basis or its truncated counterpart. However, the sparsity and the conditioning
of the matrices involved in the computation depend on this choice.

Remark 7.2.5. The proof of Theorem 7.2.3 can be readily extended to the setting
of C0-continuous trimmed (T)HB-spline basis functions through the introduction of
appropriate jump terms, as the proof only relies on discretization-independent trace
inequalities and on the existence of a Scott-Zhang-type interpolation operator with
properties (7.13) and (7.14).

Remark 7.2.6. Similar arguments could be used to extend the proof of Theorem 7.2.3
to the more general case in which Dirichlet boundary conditions are also applied along
the trimming boundary Γt. Indeed, in this case, Dirichlet boundary conditions need to
be enforced weakly, using for instance Nitsche’s method, but then the discrete problem
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needs to be stabilized, following for instance [Burman, 2010; Burman and Hansbo, 2012;
Elfverson et al., 2019; Buffa et al., 2020]. However, some work remains to be done because
special care must to be given to the extra terms coming from the stabilized Nitsche’s
method, as they contain integrals over the trimmed Dirichlet boundary.

Remark 7.2.7. Theorem 7.2.3 states the reliability of the proposed error estimator but
it does not state its efficiency, as the efficiency proof presents some further challenges. For
instance, classical efficiency proofs on non-trimmed domains (see, e.g., [Verfürth, 1994;
Nochetto and Veeser, 2011; Buffa and Giannelli, 2016]) make use of cut-off polynomial
functions to localize the error in one element or in a patch of elements. Then, inverse
inequalities are used to bound each estimator’s residual contribution by a local error term.
However, polynomial cut-off functions, sometimes also called bubble functions, cannot
be defined in the (non-necessarily polygonal) active part of a trimmed element. Another
path one could take is to extend each trimmed element residual to the full non-trimmed
element, by considering the natural polynomial extension of the discrete solution and an
L2-extension of the source and Neumann boundary functions. Then, one could perform
the same standard steps of the efficiency proof by considering cut-off functions in the
non-trimmed elements. But in this case, the wrong element scalings would be obtained if
|K ∩D| � |K| for an element K ∈ Qcut.

7.3 An adaptive mesh refinement strategy on trimmed
geometries

Let us follow the framework of adaptivity introduced in Chapter 2, Section 2.5.3, in the
context of elliptic partial differential equations defined on trimmed hierarchical domains,
as initiated in [Coradello et al., 2020]. To do so, let us recall the four main building
blocks composing one iteration of an adaptive loop:

SOLVE ESTIMATE MARK REFINE

The first two modules of the iterative process, SOLVE and ESTIMATE, have been
elaborated in Sections 7.1 and 7.2, respectively. That is, given an underlying T -admissible
mesh Qu, we first approximate the exact solution us of problem (7.1) thanks to the
Galerkin method based on the HB-spline basis H defined in (7.2). We thus obtain the IGA
solution uhs solving problem (7.3). Then, we estimate the energy error

∥∥∥∇(us − uhs)∥∥∥0,D

thanks to the reliable estimator EN
(
uhs

)
defined in (7.6).

We remark that EN
(
uhs

)
can naturally be decomposed into local element contributions.

More precisely, if we define the following local sets of faces

EK := {E ∈ EN : (E ∩ ΛN ) ⊂ ∂(K ∩D)} ,
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then the estimator rewrites as

EN
(
uhs

)
:=

 ∑
K∈Qu

EK
N

(
uhs

)2
 1

2

,

where for all K ∈ Qu,

EK
N

(
uhs

)2
:=



δ2
K

∥∥∥f + ∆uhs
∥∥∥2

0,K
+
∑
E∈EK

δ2
E

∥∥∥∥∥uN − ∂uhs
∂n

∥∥∥∥∥
2

0,E∩ΛN
if K ∈ Qact

δ2
K

∥∥∥f + ∆uhs
∥∥∥2

0,K∩D
+
∑
E∈EK

δ2
E

∥∥∥∥∥uN − ∂uhs
∂n

∥∥∥∥∥
2

0,E∩ΛN

+hK

∥∥∥∥∥uN − ∂uhs
∂n

∥∥∥∥∥
2

0,Γt
K

if K ∈ Qcut

0 otherwise,

and δK and δE are defined in (7.5).

Therefore, the MARK module selects a set of elementsM⊂ Q according to some marking
strategy. In the following, we use a Dörfler strategy as in (2.37), but a maximum strategy
as in (2.36) could also be used. That is, given a fixed marking parameter θ ∈ (0, 1], the
setM of marked elements satisfies[ ∑

K∈M
EK
N

(
uhs

)2
] 1

2

≥ θEN
(
uhs

)
. (7.28)

This strategy guarantees that the elements inM give a substantial contribution to the
total error estimator EN

(
uhs

)
. Since for all K ∈ Qu \ Q, EK

N

(
uhs

)
= 0, then the elements

outside of the trimmed domain D will never be marked. But from the algorithmic point
of view, to guarantee that a basis function β ∈ H is deactivated when all the elements in
supp (β) ∩D are marked for refinement, we also need to enlargeM with the so-called
ghost elements, see [Coradello et al., 2020]. That is, when a trimmed element K ∈ Qcut
is marked for refinement, all the elements in{

K ′ ∈ Qu :K ′ ∩D = ∅, lev(K) = lev(K ′)
and ∃β ∈ Hu such that K ∪K ′ ⊂ supp (β)

}
are also added toM. Note that this is only needed for algorithmic reasons, while it does
not change the active refined basis determined by the marking strategy.

Finally, based on the setM of marked elements, the hierarchical mesh Qu is refined so
that its class of T -admissibility and its properties are preserved. That is, we need to make
sure that the refined mesh still satisfies Assumptions 7.1.2 and 7.1.3. Trimming influences
the marking step, but it does not influence the admissibility property of the mesh Qu.
Therefore, the REFINE module corresponds to the non-trimmed case developed in [Buffa
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and Giannelli, 2016] and summarized in Algorithms 1 and 2. The procedure is similar to
what can be found in [Gantner and Praetorius, 2022, Algorithm 3.7]. Remark that this
algorithm uses the notion of T -neighborhood NT (Qu,K,m) of a hierarchical element K
with respect to the admissibility class m, which has been defined in (6.13).

Algorithm 1
Qu = REFINE(Qu,M, m)
1: Qu = MARK_RECURSIVE(Qu,M, m)
2: Subdivide all K ∈M and update Qu by replacing K with its children.
3: return Qu

Algorithm 2
M = MARK_RECURSIVE(Qu,M, m)
1: repeat
2: U ←

⋃
K∈M

NT (Qu,K,m) \M

3: M←M∪U
4: until U = ∅

7.4 Numerical experiments

In this last section, we present a few numerical examples that illustrate the validity of
the proposed error estimator. Thanks to these experiments, we also demonstrate that the
adaptive mesh refinement procedure from Section 7.3 ensures the optimal convergence of
the numerical error

∣∣∣us − uhs ∣∣∣1,Ω
. In particular, and as it is now classical in non-trimmed

geometries, the adaptive strategy exhibits a substantial increase in accuracy with respect
to the number of degrees of freedom compared to a uniform mesh refinement strategy.

All considered meshes are built and refined to be and remain T -admissible of class m = P ,
where P is the degree of the B-splines considered in each experiment. Furthermore, we
call Ndof the number of active degrees of freedom, that is, the number of HB-spline basis
functions in H defined in (7.2).

7.4.1 Adaptive mesh refinement on a regular solution

As a first numerical experiment, we choose a regular problem defined in the unit square
Du = (0, 1)2 trimmed by two disks ω1 and ω2 of radius 0.1 centered at (0.25, 0.25)T and
(0.75, 0.75)T , respectively. The trimmed geometry D = (0, 1)2 \ (ω1 ∪ ω2) is illustrated
in Figure 7.2a. We choose the data f , uD and uN such that the exact solution of
Poisson problem (7.1) is us(x, y) = sin(3πx) + cos(5πy), with ΛD := (0, 1) × {0} and
ΛN := ∂D \ ΛD.

At the first iteration of the adaptive process presented in Section 7.3, the non-trimmed
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geometry Du is meshed with four elements in each direction, as represented in Figure 7.2a.
At each iteration, the differential problem is discretized using Galerkin method with
HB-splines of degree P = 2 on the trimmed mesh, as explained in Section 7.1.2, and the
numerical solution uhs of (7.3) is obtained. Subsequently, we compute the energy error∥∥∥∇(us − uhs)∥∥∥0,D

and the estimator EN
(
uhs

)
defined in (7.6). The latter is then used to

drive the mesh refinement strategy described in Algorithm 1, for which the elements to
refine are determined using the Dörfler marking strategy (7.28) with parameter θ = 0.8.
The iterative process is stopped whenever the number of degrees of freedom of the
HB-spline space exceeds 104.

The results are shown in Figure 7.2b, validating the theory presented in Section 7.2.
Indeed, we can observe that the estimator follows the behavior of the energy error, as
both of them have the same convergence rate of O

(
N
−P2
dof

)
= O

(
N−1

dof

)
. The effectivity

index defined by

ηeff :=
EN
(
uhs

)
∥∥∥∇(us − uhs)∥∥∥0,D

is nearly equal to 10, that is, it is very similar to the effectivity index observed in the
case of a residual estimator on non-trimmed geometries, see e.g., [Buffa et al., 2021b].

ΛD

ω1

ω2

(a) Trimmed domain D and original mesh
(in gray).
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1
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(
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)
∣∣∣us − uhs ∣∣∣1,D

(b) Convergence of the energy error and of the esti-
mator with respect to the total number of degrees of
freedom.

Figure 7.2 – Numerical test 7.4.1 – Trimmed geometry and convergence of the error and
estimator on a regular problem.
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(a) Trimmed domain D, original mesh (in gray),
and highlighted cut elements with active part
of measure ' ε2.

(b) Final active mesh obtained with adaptive
mesh refinement.
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(c) Uniform mesh refinement. .
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(d) Adaptive mesh refinement.

Figure 7.3 – Numerical test 7.4.2 – Trimmed pentagon geometry and convergence of the
energy error and estimator with respect to the number of degrees of freedom.

7.4.2 Independence from the size of the active parts of the trimmed
elements: regular solution

The aim of this second numerical experiment is to verify that the effectivity index ηeff
is independent of the measure of the active part of the trimmed elements, that is of
the measure of K ∩D for every K ∈ Q. To verify this, let D be the pentagon obtained
by trimming away a triangle from the unit square Du := (0, 1)2. More precisely, the
trimming curve is the straight line passing through the points (0, 0.25) and (0.75, 1),
as represented in Figure 7.3a. We choose the data f , uD and uN such that the exact
solution of Poisson problem (7.1) is us(x, y) = arctan

(
15(x− y+ 0.25)

)
, where we define

ΛD :=
(
(0, 1)× {0}

)
∪
(
{1} × (0, 1)

)
and ΛN := ∂D \ ΛD.

At the first iteration of the adaptive process of Section 7.3, the non-trimmed geometry
Du is meshed with four elements in each direction such that the internal knot lines are
the lines defined by x = k

4 + ε and y = k

4 − ε for k = 1, 2, 3 and ε > 0 small. In this way,
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the trimmed mesh has elements whose active triangular part have a measure proportional
to ε2, as shown in Figure 7.3a. We solve the Galerkin problem (7.3) with HB-splines of
degree P = 3 in each direction and with ε = 10−t for t = 5, 6, 7, and we denote uhε the
obtained discretized solution. Note that the mesh depends on ε, but not the geometry D

itself. Both uniform refinement and the adaptive refinement described in Section 7.3 with
θ = 0.9 are performed. The algorithm stops when the number of degrees of freedom of the
HB-spline space exceeds 104. The results are given in Figure 7.3c and 7.3d, respectively,
and the final mesh obtained with adaptive refinement is represented in Figure 7.3b.

As in the first example, we can see that under both uniform and adaptive refinement, the
estimator follows well the behavior of the energy error in the trimmed geometry, both
of them having a convergence rate of O

(
N
−P2
dof

)
= O

(
N
− 3

2
dof

)
. Moreover, the presented

results confirm the fact that the effectivity index ηeff is independent of ε, that is, it is
independent of the measure of the active part of the trimmed elements. Indeed, for the
different chosen values of ε, the curves representing the estimator are almost superposed,
and this is also the case for the curves representing the numerical error. At the first
iteration, where ε � h, the effectivity index is equal to 11.9 in all cases. Once the
asymptotic regime is attained, and for every value of ε, the effectivity index is equal to
11.0 when uniform refinement is performed, while it is equal to 7.3 when the proposed
adaptive refinement strategy is performed.

7.4.3 Independence from the size of the active parts of the trimmed
elements: singular solution

To perform a more severe test with respect to the previous one, let us consider a
problem whose solution presents a corner singularity, on a trimmed geometry with
small active trimmed elements around that corner. To do so, let us consider the L-
shaped domain D obtained by trimming the square (0.5, 1) × (0, 0.5) from the unit
square (0, 1)2, as illustrated in Figure 7.4a. We choose the data f , uD and uN such
that the exact solution of Poisson problem (7.1) is us(r,ϕ) = r

2
3 sin

(2ϕ
3

)
in the polar

coordinate system (er, eϕ) centered at (0.5, 0.5)T , as represented in Figure 7.4a, with
ΛD :=

(
(0, 1)× {1}

)
∪
(
{0} × (0, 1)

)
and ΛN := ∂D \ ΛD.

At the first iteration of the adaptive process, the non-trimmed geometry Du is meshed
with 4 elements in each direction such that the internal knot lines are the lines defined
by x = k

4 − ε and y = k

4 + ε for k = 1, 2, 3 and ε > 0 small. In this way, the active part
of the trimmed mesh elements are very thin, and their measure is proportional to εh, see
Figure 7.4a. We solve the Galerkin problem (7.3) with HB-splines of degree P = 2 in
each direction and with ε = 10−t for t = 5, 6, 7, and we denote uhε the obtained discrete
solution. As before, note that the mesh depends on ε, but not the geometry D itself.
As in the previous numerical experiment, both uniform refinement and the adaptive
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(a) Trimmed parametric L-shaped domain D
and original mesh (in gray).

(b) Final active mesh on D obtained with adap-
tive mesh refinement.

er
eϕ

ΛD

(c) Trimmed mapped L-shaped domain DF and
mapped original mesh (in gray).

(d) Final active mesh on DF obtained with
adaptive mesh refinement.

Figure 7.4 – Numerical tests 7.4.3 and 7.4.4 – Parametric and mapped L-shaped domains,
with their corresponding final active meshes obtained with adaptive mesh refinement.

refinement described in Section 7.3 with θ = 0.9 are performed. The algorithm stops
either when the number of degrees of freedom of the HB-spline space exceeds 104, or
when the number of hierarchical levels exceeds 12. The results are given in Figure 7.5a
and 7.5b.

As in the previous example, under both uniform and adaptive refinement, the estimator
follows well the behavior of the energy error in the trimmed geometry, and no dependence
on ε is observed. Indeed, for the different values of ε, the corresponding curves are almost
superposed. Moreover, the chosen differential problem presents a singularity at the corner
(0.5, 0.5). In particular, it can be shown that the exact solution us ∈ Hβ−δ(D) with
β = 5

3, for every δ > 0. Therefore, one expects a convergence rate of O
(
h

2
3
)

= O
(
N
− 1

3
dof

)
under uniform h-refinement, see Theorem 5.2.9. This is indeed what is observed both for
the estimator and for the error, with a small effectivity index nearly equal to 2.4 and
independent of ε. As it is now standard in adaptivity, we can see in Figure 7.5b that the
optimal asymptotic convergence rate of O

(
N
−P2
dof

)
= O

(
N−1

dof

)
is recovered when the

mesh is adaptively refined. In this case, the effectivity index is very small while still being
independent of ε: it is nearly equal to 1.7 once the asymptotic regime is attained. The
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(d) Adaptive mesh refinement in the
mapped L-shaped domain DF.

Figure 7.5 – Numerical tests 7.4.3 and 7.4.4 – Convergence of the energy error and
estimator with respect to the number of degrees of freedom in the parametric and
mapped L-shaped domains, under uniform and adaptive mesh refinements.

adaptive strategy exhibits a substantial increase in accuracy with respect to the number
of degrees of freedom, in comparison with the uniform refinement strategy. Therefore,
this test validates the theory presented in Section 7.2, and in particular, it validates
the fact that the estimator is independent of the type of cut from which the trimmed
geometry is obtained.

7.4.4 Singular solution in a mapped trimmed domain

In this last numerical experiment, we consider the geometry DF obtained from the
geometry D of the previous example, mapped with an isogeometric mapping F (see
Section 6.3). This numerical test was presented in [Bracco et al., 2018]. More precisely
and as represented in Figure 7.4c, F(Du) is the surface ruled between the arcs centered
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at (2, 0)T of radius 3 and 1, whose angle spans between 7π
8 and 9π

8 . The curve that trims
F(Du) to obtain DF is the image of the trimming curve defining D in the parametric
domain. That is, it is the line

(
(0, 1) × {0}

)
∪ A, where A is the arc centered at

(2, 0)T of radius 2, whose angle spans between π and 9π
8 . Therefore, DF presents a

re-entrant corner of angle π

2 in (0, 0)T . We choose the data f , uD and uN such that

the exact solution of Poisson problem (7.1) is us(r,ϕ) = r
2
3 sin

(2ϕ
3

)
in the polar

coordinate system (er, eϕ) centered at (0, 0)T , and represented in Figure 7.4c. We
consider ΛD := F

(
(0, 1)× {1}

)
∪ F

(
{0} × (0, 1)

)
and ΛN := ∂D \ ΛD.

At the first iteration of the adaptive process, the considered mesh is the same as in the
previous parametric L-shaped domain example, so that the active part of the trimmed
mesh elements are very thin, and their measure is proportional to εh. We solve the
Galerkin problem (7.3) with HB-splines of degree P = 3 in each direction and with
ε = 10−t for t = 5, 6, 7, and we denote uhε the obtained discrete solution. As before,
note that the mesh depends on ε, but not the geometry DF itself. As in the previous
numerical experiment, both uniform refinement and the adaptive refinement described in
Section 7.3 with θ = 0.9 are performed. The algorithm stops either when the number of
degrees of freedom of the HB-spline space exceeds 104, or when the number of hierarchical
levels exceeds 12. The results are given in Figure 7.5c and 7.5d.

As expected, the results are very similar to the ones of the previous experiment. Indeed,
under both uniform and adaptive refinement, the estimator follows well the behavior of
the energy error in the trimmed mapped geometry, and no dependence on ε is observed.
Moreover, since the considered differential problem presents a corner singularity in
(0, 0), then as previously, one expects a convergence rate of O

(
N
− 1

3
dof

)
under uniform

refinement, while one expects to recover the optimal asymptotic convergence rate of
O
(
N
−P2
dof

)
= O

(
N
− 3

2
dof

)
under adaptive refinement. This is indeed the case for the

uniform refinement strategy, and a small effectivity index nearly equal to 4.1 and
independent of ε is obtained. However, a faster convergence is observed for the adaptive
refinement strategy, both for the error and for the estimator: this is a common behavior
when the asymptotic regime is not reached yet. Also in this case, a small effectivity index
is obtained, being nearly equal to 2.3 and independent of ε.
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8 A reliable adaptive isogeometric
analysis defeaturing strategy

A combined mesh and geometric adaptive strategy has been introduced in Chapter 5, in
the context of analysis-aware defeaturing. In principle, this algorithm could be used with
any (mesh-preserving) finite element method which provides a Galerkin approximation
of the defeaturing problem. The only required ingredient is a corresponding numerical
error estimator, which can be decomposed into local mesh contributions. However,
IGA naturally comes as an interesting numerical method of choice to treat defeaturing
problems. Indeed, and as highlighted in Chapter 6, IGA was introduced to reduce the
gap between the phase of designing complex objects, and the analysis phase in which
one solves PDEs that are defined on these objects. Therefore in this chapter, we precise
the adaptive strategy of Chapter 5 in the framework of (T)HB-spline based IGA.

To do so, we first introduce in Section 8.1 the IGA formulation of the considered
defeaturing problem. In particular, we concentrate on Poisson’s equation as model
problem. Then, we introduce and prove in Section 8.2 the reliability of the a posteriori
estimator of the IGA discrete defeaturing error, under some reasonable assumptions.
This estimator is able to drive the adaptive strategy introduced in Chapter 5. But
since this algorithm is designed to be used with mesh-preserving numerical methods, we
subsequently discuss in Section 8.3 the extension of the adaptive procedure to trimmed
and multipatch geometries in IGA. To finish, in Section 8.4, various numerical experiments
are presented to illustrate the proposed adaptive strategy with IGA, and to validate and
extend the presented theory. This chapter closely follows [Buffa et al., 2022a].

In this chapter, the symbol . is used to mean any inequality which is independent of the
size of the features, of their number, of the mesh size h, and of the number of hierarchical
levels (see Chapter 6). However, those inequalities may depend on the shape of the
features and of the mesh elements. Moreover, we will write A ' B whenever A . B and
B . A.
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Figure 8.1 – Illustration of the notation for a geometry with one complex feature.

8.1 Isogeometric analysis formulation of the defeaturing
problem

Let us consider the defeaturing framework discussed in Chapter 4 in the context of
Poisson’s equation, and let us use the same notation. In particular, the notation
corresponding to the considered geometric domains and boundaries is illustrated in
Figure 8.1, which reproduces Figure 3.6. We assume that the defeatured geometry Ω0
defined in (4.1) is a THB-spline domain generated by a THB-spline basis T (Ω0), see
Section 6.2.2. Let Q0 := Q(Ω0) be the hierarchical mesh as defined in (6.12) on which
the basis T (Ω0) is built, and let V h(Ω0) be the finite dimensional subspace of H1(Ω0)
defined by

V h(Ω0) := span {T (Ω0)} .

Recall that Nf denotes the number of features present in the exact geometry, and similarly,
assume that for all k = 1, . . . ,Nf , the positive component extension F̃ kp of feature F k is
a THB-spline domain generated by a THB-spline basis T

(
F̃ kp
)
. Let Q̃k := Q

(
F̃ kp
)
be

the hierarchical mesh as defined in (6.12) on which the basis T
(
F̃ kp
)
is built, and let

V h
(
F̃ kp
)
be the finite dimensional subspace of H1

(
F̃ kp
)
defined by

V h
(
F̃ kp
)

:= span
{
T
(
F̃ kp
)}

.
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8.1. Isogeometric analysis formulation of the defeaturing problem

Note that in this section, we assume that Q0 and Q̃k are fitted to the simplified geometries
Ω0 and F̃ kp , respectively, and recall the definition of the global mesh

Q := Q0 ∪ Q̃ with Q̃ :=
Nf⋃
k=1
Q̃k

from (5.14). Furthermore, let us make the following shape regularity assumption.

Assumption 8.1.1. For all k = 1, . . . ,Nf , the meshes Q0 and Q̃k are shape regular,
according to Definition 5.2.1.

Under Assumption 8.1.1, we say that Q is shape regular by abuse of terminology. As a
consequence of Assumption 8.1.1, |K| 1n ' hK ' hE for all K ∈ Q and all E ∈ E ∩ ∂K,
where E is the set of Neumann boundary faces as defined in (5.26). Moreover, specific to
IGA with THB-splines, we also make the following assumption on Q.

Assumption 8.1.2. Q is T -admissible of class m for some m ∈ N, m ≥ 2. That is, Q0
and Q̃k are T -admissible of class m for all k = 1, . . . ,Nf , according to Definition 6.3.2.

Finally, we recall that for all k = 1, . . . ,Nf , the discrete spaces V h(Ω0) and V h
(
F̃ kp
)

should have compatible traces on γk0,p, following Assumption 5.3.1. Then, referring to
Chapters 4 and 5 for the notation, we solve problem (5.13) in the simplified geometry Ω0
to obtain the discrete defeatured solution uh0 ∈ V h

gD
(Ω0), followed by problem (5.15) in F̃ kp

for all k = 1, . . . ,Nf to obtain the discrete defeatured solution extensions uhk ∈ V h
uh0

(
F̃ kp
)
.

This allows us to define uhd, the discrete defeatured solution approximating the exact
solution u ∈ H1

gD,ΓD(Ω), as in (5.18). That is,

uhd = uh0

∣∣∣
Ω?

in Ω? = Ω \ Fp and uhd = uhk

∣∣∣
Fkp

in F kp for k = 1, . . . ,Nf . (8.1)

In the subsequent analysis, we make the following assumption for simplicity.

Assumption 8.1.3. V h(Ω0) ⊂ C1(Ω0) and V h
(
F̃ kp
)
⊂ C1

(
F̃ kp
)
for all k = 1, . . . ,Nf .

Remark 8.1.4. This assumption is not needed, but it allows us to simplify the analysis
by avoiding normal derivative jump terms between elements. The general case could be
treated in a similar way following the classical theory of the standard adaptive finite
element method; it is also analogous to the multipatch case that will be analyzed in
Section 8.3.

Furthermore, as a consequence of Assumption 8.1.2, it is possible to build Scott-Zhang-
type operators

Ih0 : H1
0,ΓD(Ω0)→ V h

0 (Ω0)

and Ĩhk : H1
0,γk0,p

(
F̃ kp
)
→ V h

0
(
F̃ kp
)
, ∀k = 1, . . . ,Nf ,
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Chapter 8. A reliable adaptive isogeometric analysis defeaturing strategy

having the following properties (see [Buffa and Giannelli, 2021], [Buffa et al., 2021b,
Section 6.1.3]): for all v ∈ H1

0,ΓD(Ω0), for all k = 1, . . . ,Nf and all w ∈ H1
0,γk0,p

(
F̃ kp
)
,

∑
K∈Q0

h−2
K

∥∥∥v − Ih0 (v)
∥∥∥2

0,K
. ‖∇v‖20,Ω0 and

∑
K∈Q0

∥∥∥∇Ih0 (v)
∥∥∥2

0,K
. ‖∇v‖20,Ω0 , (8.2)

∑
K∈Q̃k

h−2
K

∥∥∥w − Ĩhk (w)
∥∥∥2

0,K
. ‖∇w‖20,F̃kp

and
∑
K∈Q̃k

∥∥∥∇Ĩhk (w)
∥∥∥2

0,K
. ‖∇w‖20,F̃kp

.

(8.3)

Note that the right equations imply that for all v ∈ H1
0,ΓD(Ω0), for all k = 1, . . . ,Nf and

all w ∈ H1
0,γk0,p

(
F̃ kp
)
, ∑

K∈Q0

∥∥∥∇(v − Ih0 (v)
)∥∥∥2

0,K
. ‖∇v‖20,Ω0 , (8.4)

∑
K∈Q̃k

∥∥∥∇(w − Ĩhk (w)
)∥∥∥2

0,K
. ‖∇w‖20,F̃kp

. (8.5)

Finally, we recall the isotropy Assumption 3.3.3 on all σ ∈ Σ, where Σ is defined in (4.11),
and the definition of sub-domains Ωk given by the separability Assumption 4.1.5. Let us
now make the following technical assumption on the features.
Assumption 8.1.5. For all k = 1, . . . ,Nf , let Ωk

?, Ωk
0 and Ω̃k be the sub-domains of,

respectively, Ω?, Ω0 and Ω̃, relative to Ωk. More precisely,

Ωk
? := Ωk ∩ Ω?, Ωk

0 := int
(
Ωk
? ∪ F kn

)
and Ω̃k := int

(
Ωk ∪Gkp

)
= int

(
Ωk
? ∪ F̃ kp

)
. (8.6)

Then for all k = 1, . . . ,Nf , we assume that there exist generalized Stein extension
operators

EΩk?→Ωk0
: H1

0,ΓD∩∂Ωk
(
Ωk
?

)
→ H1

0,ΓD∩∂Ωk
(
Ωk

0
)
, (8.7)

EΩk→Ω̃k : H1
0,ΓD∩∂Ωk

(
Ωk
)
→ H1

0,ΓD∩∂Ωk
(
Ω̃k
)
, (8.8)

EΩk?→Ω̃k : H1
0,ΓD∩∂Ωk(Ωk

?)→ H1
0,ΓD∩∂Ωk

(
Ω̃k
)

(8.9)

which are bounded, that is, they satisfy the following properties: for all w ∈ H1
0,ΓD∩∂Ωk

(
Ωk
?

)
and all v ∈ H1

0,ΓD∂Ωk
(
Ωk
)
, ∥∥∥∇EΩk?→Ωk0

(w)
∥∥∥

0,Ωk0
. ‖∇w‖0,Ωk? , (8.10)∥∥∇EΩk→Ω̃k(v)

∥∥
0,Ω̃k . ‖∇v‖0,Ωk , (8.11)∥∥∥∇EΩk?→Ω̃k(w)
∥∥∥

0,Ω̃k
. ‖∇w‖0,Ωk? . (8.12)

Note that such operators are built for a large class of domains in [Sauter and Warnke,
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8.2. Reliability of the discrete defeaturing error estimator

Θ
(
F̃p
)

(a) Example of domain Θ
(
F̃p
)
.

Θ(Gp)

Θ(Fn)

(b) Example of domains Θ(Fn) and Θ(Gp).

Figure 8.2 – Illustration of Assumption 8.1.5, where the different domains correspond to
the ones of Figure 3.6.

1999], based on the Stein operator introduced in [Stein, 2016]. For example in [Sauter
and Warnke, 1999], using the notation corresponding to EΩk?→Ωk0

, the construction is
given for all domains such that there exists an open set Θ = Θ

(
F kn
)
⊂ Ωk

0 satisfying:

• F kn ⊂ Θ,

• Θ \ F kn is a simply connected Lipschitz domain,

•
∣∣∣∂F kn ∩Θ

∣∣∣ 6= 0,

• dist
(
∂Θ, ∂F kn

)
' diam

(
F kn
)
,

as illustrated in Figure 8.2b. The domains Ωk
0 and F kn can be respectively replaced by Ω̃k

and F̃ kp , or by Ω̃k and Gkp (see definition (4.3) of the different domains), and the same
statement remains valid. The corresponding open sets Θ

(
F̃ kp
)
⊂ Ω̃k and Θ

(
Gkp
)
⊂ Ω̃k

are also illustrated in Figures 8.2a and 8.2b. In the same article, it is proven that a
bounded generalized Stein extension operator exists for a wider class of domains such
as domains containing long and thin holes as in Figure 8.3, but the construction of the
extension operator has to be adapted to each considered situation. In Figure 8.4, it is
represented a domain for which the required extension operator does not exist, in the
sense that for all continuous extension operator, the hidden constant in (8.10) is not
bounded.

8.2 Reliability of the discrete defeaturing error estimator

In this section, we use the special case of IGA with THB-splines to analyze the a
posteriori discrete defeaturing error estimator E

(
uhd

)
introduced in (5.21) on a given

(fixed) defeatured geometrical model Ω0, from which Nf ≥ 1 features are missing. In
particular, we show that the proposed estimator is reliable in the case in which the mesh
is fitted to the simplified geometry, and under reasonable assumptions. That is, we
show that it is an upper bound for the discrete defeaturing error between the analytic
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Chapter 8. A reliable adaptive isogeometric analysis defeaturing strategy

Figure 8.3 – Domain with a long and
thin hole for which Assumption 8.1.5 is
satisfied.

0

1

1 + δ

F = Fn

Ω = Ω?

Figure 8.4 – Domain for which Assump-
tion 8.1.5 is not satisfied since for all ex-
tension operator, the hidden constant C
in (8.10) is such that C & δ−

1
2 , with δ >

0 (see [Sauter and Warnke, 1999]). Here,
Ω? = Ω := Ω0 \F , Ω0 := (−1−δ, 1+δ)n
and F = Fn := (−1, 1)d.

solution u of the exact Poisson problem (3.2) and the discrete numerical solution uhd of
the defeatured problem defined in (5.18), in the energy norm. We first demonstrate it in
the simplest single feature case (Nf = 1) in which the only feature F is negative, and
then we use this result to derive and prove the reliability of the estimator when F is a
generic complex feature. Finally, we generalize the proof to multi-feature geometries for
which Nf ≥ 1.

8.2.1 Geometry with a negative feature

In this section, we analyze the proposed estimator in the case of a single negative feature
F of Ω, meaning that the positive component Fp = ∅. Since we concentrate on the single
feature case, we drop the upper index k everywhere, and since the feature is negative,
then γ = γn, γ0 = γ0,n, Ω? = Ω, Q = Q0, and uhd = uh0

∣∣∣
Ω
. Let us recall the definitions of

the continuous and discrete defeaturing error terms dγ ∈ L2(γ) and dhγ ∈ L2(γ) from (3.9)
and (5.19), that is,

dγ := g − ∂u0
∂n and dhγ := g − ∂uh0

∂n , (8.13)

and let us recall the definitions of the interior and boundary residuals r ∈ L2(Ω0) and
j ∈ L2

(
Γ0
N

)
from (5.24) and (5.25) with Γ0

N := (ΓN \ γ) ∪ γ0, that is,

r := f + ∆uh0 and j :=


g − ∂uhd

∂n on ΓN \ γ

g0 −
∂uh0
∂n0

on γ0.
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8.2. Reliability of the discrete defeaturing error estimator

Then in this context, the discrete defeaturing error estimator defined in (5.21) writes as
follows:

E
(
uh0
)

:=
[
α2
DED

(
uh0
)2

+ α2
NEN

(
uh0
)2
] 1

2
, (8.14)

where

ED
(
uh0
)2

:= |γ|
1

n−1
∥∥∥dhγ − dhγγ∥∥∥2

0,γ
+ E 2

C with E 2
C := c2

γ |γ|
n
n−1

∣∣∣dγγ∣∣∣2 ,

EN
(
uh0
)2

:=
∑
K∈Q0

h2
K‖r‖20,K +

∑
E∈E0

hE‖j‖20,E ,

and αD and αN are parameters to be tuned.

Let us now state and prove the main theorem of this section under the following technical
hypothesis.

Assumption 8.2.1. Let hF := diam(F ) and

hmin
F := min {hK : K ∈ Q0, K ∩ F 6= ∅} .

Then we assume that hF . hmin
F , that is, F is either smaller or about the same size as

the mesh that covers it.

This assumption means that asymptotically, the number of elements intersecting the
feature cannot grow indefinitely. In the context of adaptivity with defeaturing, this
hypothesis is quite natural. Indeed, if the number of feature elements grows, it means
that the error is concentrated in the feature. More precisely, it either means that the
defeaturing data f in F and g0 in γ0 are badly chosen, or that the feature is important
to correctly approximate the exact solution u in Ω. In the first case, EC will be large
and the defeaturing data needs to be more accurately chosen. In the second case, feature
F will be added by the adaptive algorithm defined in Chapter 5, and thus no refinement
will be needed anymore in F . In Section 8.4, numerical experiments will show that this
intuition is correct.

Theorem 8.2.2. In the framework presented in Section 8.1, let u and uh0 be the weak
solutions of problems (3.2) and (5.13), respectively, where Ω is a geometry containing
one negative feature F . Then under Assumption 8.2.1, the energy norm of the discrete
defeaturing error is bounded in terms of the estimator E

(
uh0
)
introduced in (8.14) as

follows: ∣∣∣u− uh0 ∣∣∣1,Ω
. E

(
uh0
)
.

Proof. For all v ∈ H1
0,ΓD(Ω), let us first use integration by parts on the exact domain Ω
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Chapter 8. A reliable adaptive isogeometric analysis defeaturing strategy

to treat the discrete defeatured solution uh0 ∈ V h
0 (Ω0) ⊂ C1(Ω0), i.e.,

∫
Ω
∇uh0 · ∇v dx = −

∫
Ω

∆uh0v dx+
∫

ΓN

∂uh0
∂n v ds. (8.15)

Then, let e := u− uh0 . Using (3.2), we obtain

∫
Ω
∇e · ∇v dx =

∫
Ω

(
f + ∆uh0

)
v dx+

∫
ΓN

(
g − ∂uh0

∂n

)
v ds

=
∫

Ω
rv dx+

∫
ΓN\γ

jv ds+
∫
γ
dhγv ds. (8.16)

The idea is to suitably extend v to Ω0 to be able to correctly treat the elements and
faces that are only partially in Ω. So by choosing Ω1 := Ω as we are considering the
single feature case, and since Ω? = Ω as we are considering the negative feature case, let
v0 := EΩ→Ω0(v) ∈ H1

0,ΓD(Ω0) be the generalized Stein extension of v as defined in (8.7),
and recall that Γ0

N := (ΓN \ γ) ∪ γ0. Then, to deal with the elements and faces that are
only partially in Ω, we add and subtract terms to (8.16) as follows:∫

Ω
∇e · ∇v dx = I + II, with I =

∫
Ω0
rv0 dx+

∫
Γ0
N

jv0 ds,

II =−
∫
F
rv0 dx−

∫
γ0
jv0 ds+

∫
γ
dhγv ds. (8.17)

As term I is defined in Ω0 and since Q0 is fitted to Ω0, then term I, which accounts for the
numerical error, is defined in a union of full elements. Term II accounts for the discrete
defeaturing error and for the corresponding compatibility condition (see Remark 3.2.1),
and its contributions come from the presence of feature F .

Let us first consider I and treat it using the Scott-Zhang-type operator Ih0 introduced
in (8.2). To do so, let vh0 = Ih0 (v0) ∈ V h

0 (Ω0), and by adding and substracting vh0 , we can
rewrite

I =
∫

Ω0
r
(
v0 − vh0

)
dx+

∫
Γ0
N

j
(
v0 − vh0

)
ds+

∫
Ω0
rvh0 dx+

∫
Γ0
N

jvh0 ds. (8.18)

Using (3.4) and (5.13), integrating by parts, and since vh0 ∈ V h
0 (Ω0), then by Galerkin

orthogonality, ∫
Ω0
rvh0 dx+

∫
Γ0
N

jvh0 ds =
∫

Ω0
∇
(
u0 − uh0

)
· ∇vh0 = 0. (8.19)

Thus from (8.19), using Hölder inequality and the discrete Cauchy-Schwarz inequality,
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8.2. Reliability of the discrete defeaturing error estimator

term (8.18) can be estimated as follows:

I =
∑
K∈Q0

∫
K
r
(
v0 − vh0

)
dx+

∑
E∈E0

∫
E
j
(
v0 − vh0

)
ds

≤
∑
K∈Q0

hK‖r‖0,K h
−1
K

∥∥∥v0 − vh0
∥∥∥

0,K
+
∑
E∈E0

h
1
2
E‖j‖0,E h

− 1
2

E

∥∥∥v0 − vh0
∥∥∥

0,E

≤

 ∑
K∈Q0

h2
K‖r‖20,K

 1
2
 ∑
K∈Q0

h−2
K

∥∥∥v0 − vh0
∥∥∥2

0,K

 1
2

+

∑
E∈E0

hE‖j‖20,E

 1
2
∑
E∈E0

h−1
E

∥∥∥v0 − vh0
∥∥∥2

0,E

 1
2

.

Then, using property (8.2) of the Scott-Zhang-type operator since Q0 is T -admissible,
and property (8.10) of the generalized Stein extension v0 of v, we get

∑
K∈Q0

h−2
K

∥∥∥v0 − vh0
∥∥∥2

0,K
. ‖∇v0‖20,Ω0 . ‖∇v‖20,Ω.

Moreover, for every E ∈ E0, let KE ∈ Q0 be the element such that E ⊂ ∂KE , and
note that by the shape regularity of Q0, hKE ' hE . Then using the scaled trace
inequality of Lemma 5.2.2, properties (8.2) and (8.4) of the Scott-Zhang-type operator,
and property (8.10) of the generalized Stein extension v0 of v, we obtain

∑
E∈E0

h−1
E

∥∥∥v0 − vh0
∥∥∥2

0,E
.
∑
E∈E0

(
h−2
KE

∥∥∥v0 − vh0
∥∥∥2

0,KE
+
∥∥∥∇ (v0 − vh0

)∥∥∥2

0,KE

)
. ‖∇v0‖20,Ω0

. ‖∇v‖20,Ω.

Therefore, from the last three inequalities,

I .

 ∑
K∈Q0

h2
K‖r‖20,K +

∑
E∈E0

hE‖j‖20,E

 1
2

‖∇v‖0,Ω = EN
(
uh0
)
‖∇v‖0,Ω . (8.20)

Now, let us consider term II of (8.17). First, note that by integration by parts, for any
constant c ∈ R,

∫
F
rcdx+

∫
γ0
jc ds+

∫
γ

∂
(
u0 − uh0

)
∂nF

cds =
∫
F
∇
(
u0 − uh0

)
· ∇cdx = 0. (8.21)
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Thus, adding (8.21) to II with the choice of constant c := vγ , we obtain

II = −
∫
F
rv0 dx−

∫
γ0
jv0 ds+

∫
γ
dhγv ds

= −
∫
F
r (v0 − vγ) dx−

∫
γ0
j (v0 − vγ) ds+

∫
γ
dhγv ds+

∫
γ

∂
(
u0 − uh0

)
∂nF

vγ ds

= −II1 + II2, (8.22)

with II1 :=
∫
F
r (v0 − vγ) dx+

∫
γ0
j (v0 − vγ) ds,

II2 :=
∫
γ
dhγv ds+

∫
γ

∂
(
u0 − uh0

)
∂nF

vγ ds.

Moreover, recalling the definition of dγ from (8.13), we note that

dhγ +
∂
(
u0 − uh0

)
∂nF

= dγ .

Using this, we can rewrite II2 of (8.22) as

II2 =
∫
γ

(
dhγ − dhγ

γ)
v ds+ dhγ

γ
∫
γ
v ds+ 1

|γ|

∫
γ

∂
(
u0 − uh0

)
∂nF

ds
∫
γ
v ds

=
∫
γ

(
dhγ − dhγ

γ) (v − vγ) ds+ 1
|γ|

∫
γ

dhγ +
∂
(
u0 − uh0

)
∂nF

 ds
∫
γ
v ds

=
∫
γ

(
dhγ − dhγ

γ) (v − vγ) ds+ dγ
γ
∫
γ
v ds.

These terms can be estimated exactly as in the proof of Theorem 3.2.3, that is,

II2 .
(
|γ|

1
n−1

∥∥∥dhγ − dhγγ∥∥∥2

0,γ
+ c2

γ |γ|
n
n−1

∣∣∣dγγ∣∣∣2) 1
2
‖∇v‖0,Ω = ED

(
uh0
)
‖∇v‖0,Ω . (8.23)

Finally, let us consider term II1 of (8.22). Remark first that vγ = v0γ since v0 = v on γ
by definition. Thus,

II1 =
∫
F
r (v0 − v0

γ) dx+
∫
γ0
j (v0 − v0

γ) ds

≤ ‖r‖0,F ‖v0 − v0
γ‖0,F + ‖j‖0,γ0 ‖v0 − v0

γ‖0,γ0
.

Furthermore, by Friedrichs inequality of Lemma 2.3.5, since γ ⊂ ∂F ,

‖v0 − v0
γ‖0,F . hF ‖∇v0‖0,F ,

and thus by the trace inequality of Lemma 2.2.2,

‖v0 − v0
γ‖0,γ0

≤ ‖v0 − v0
γ‖0,∂F .

(
h−1
F ‖v0 − v0

γ‖20,F + hF ‖∇v0‖20,F
) 1

2 . h
1
2
F ‖∇v0‖0,F .
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8.2. Reliability of the discrete defeaturing error estimator

Therefore, combining the last three inequalities and using property (8.10) of the general-
ized Stein extension v0 of v, we obtain

II1 .
(
hF ‖r‖0,F + h

1
2
F ‖j‖0,γ0

)
‖∇v0‖0,F .

(
h2
F ‖r‖20,F + hF ‖j‖20,γ0

) 1
2 ‖∇v‖0,Ω. (8.24)

From Assumption 8.2.1, hF . hmin
F , that is, for all K ∈ Q0 such that K∩F 6= ∅, hF . hK .

Consequently, inequality (8.24) can be rewritten as follows.

II1 ≤

h2
F

∑
K∈Q0
K∩F 6=∅

‖r‖20,K + hF
∑
E∈E0
E∩γ0 6=∅

‖j‖20,E


1
2

‖∇v‖0,Ω

.

 ∑
K∈Q0
K∩F 6=∅

h2
K‖r‖20,K +

∑
E∈E0
E∩γ0 6=∅

hE‖j‖20,E


1
2

‖∇v‖0,Ω

≤ EN
(
uh0
)
‖∇v‖0,Ω. (8.25)

To conclude, we plug (8.20), (8.23) and (8.25) into (8.22) and (8.17), and thus for all test
functions v ∈ H1

0,ΓD(Ω),

∫
Ω
∇e · ∇v dx .

[
ED
(
uh0
)2

+ EN
(
uh0
)2
] 1

2
‖∇v‖0,Ω ' E

(
uh0
)
‖∇v‖0,Ω. (8.26)

We conclude by choosing v = e ∈ H1
0,ΓD(Ω) in (8.26), and by simplifying ‖∇e‖0,Ω on

both sides.

Remark 8.2.3. Without Assumption 8.2.1, i.e., in the case in which the size of the
feature is greater than the mesh size on it, hF � hmin

F , then term II1 estimated by (8.24)
is sub-optimal as the scaling of F is present in front of the residual terms instead of the
mesh size.

Remark 8.2.4. Note that the estimation of term I in (8.18) gives an alternative proof
to the one of [Buffa and Giannelli, 2016, Theorem 11] in the case of mixed boundary
conditions.

8.2.2 Geometry with a complex feature

In this section, we extend the result of Section 8.2.1 by stating and proving the reliability
of the proposed a posteriori estimator of the discrete defeaturing error in a geometry
with one complex feature. So let F be the only complex feature of Ω, i.e., a feature
containing both a negative component Fn and a positive component Fp, and let us recall
the notation introduced in Chapter 5. In particular, recall that in the single feature
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framework, ũh0 is the numerical approximation of the Dirichlet extension of uh0 in F̃p,
where F̃p is a simple extension of the feature’s positive component, see (5.15). In this
case, we recall the definition of the discrete defeatured solution uhd,

uhd = uh0

∣∣∣
Ω?

in Ω? = Ω \ Fp and uhd = ũh0

∣∣∣
Fp

in Fp. (8.27)

Moreover, recall definitions (3.29) and (5.19) of the continuous and discrete defeaturing
error terms dσ ∈ L2(σ) and dhσ ∈ L2(σ) for all σ ∈ Σ := {γn, γ0,p, γr}, that is,

dσ :=


g − ∂ud

∂n if σ = γn or σ = γr

−
(
g0 + ∂ud

∂nF

)
if σ = γ0,p,

and dhσ :=


g − ∂uhd

∂n if σ = γn or σ = γr

−
(
g0 −

∂uhd
∂nF

)
if σ = γ0,p,

(8.28)

and recall definitions (5.24) and (5.25) of the interior and boundary residuals of uh0 ,
denoted r ∈ L2(Ω0) and j ∈ L2

(
Γ0
N

)
with Γ0

N := (ΓN \ γ) ∪ γ0, and of the interior and
boundary residuals of ũh0 , denoted r ∈ L2

(
F̃p
)
and j ∈ L2

(
Γ̃N
)
with Γ̃N := γs ∪ γ̃, that

is,

r :=

f + ∆uh0 in Ω0

f + ∆ũh0 in F̃p,

and j :=



g − ∂uhd
∂n on ΓN \ (γn ∪ γr)

g0 −
∂uh0
∂n0

on γ0

g̃ − ∂ũh0
∂ñ on γ̃.

In this context, the discrete defeaturing error estimator defined in (5.21) writes as follows:

E
(
uhd
)

:=
[
α2
DED

(
uhd
)2

+ α2
NEN

(
uhd
)2
] 1

2
, (8.29)

where

ED
(
uhd
)2

:=
∑
σ∈Σ
|σ|

1
n−1

∥∥∥dhσ − dhσσ∥∥∥2

0,σ
+ E 2

C with E 2
C :=

∑
σ∈Σ

c2
σ|σ|

n
n−1

∣∣∣dσσ∣∣∣2 ,

EN
(
uhd
)2

:=
∑
K∈Q

h2
K‖r‖20,K +

∑
E∈E

hE‖j‖20,E , (8.30)
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and αD and αN are parameters to be tuned.

Let us now state and prove the main theorem of this section under the following technical
hypothesis, generalizing Assumption 8.2.1.

Assumption 8.2.5. For S ∈
{
Fn,Gp, F̃p

}
, let hS := diam(S), let

QS =

Q0 if S = Fn

Q̃ otherwise,

and let
hmin
S := min {hK : K ∈ QS , K ∩ S 6= ∅} .

Assume that hS . hmin
S , that is, the feature is either smaller or about the same size as

the mesh that covers it.

As already discussed in the negative feature case, and as suggested by some numerical
experiments presented in Section 8.4, we will see that this assumption can be removed in
practice.

Theorem 8.2.6. In the framework presented in Section 8.1, let u be the weak solution
of problem (3.2), and let uhd be the discrete defeaturing solution defined in (8.27), for
which Ω is a geometry containing one complex feature F . Then under Assumption 8.2.5,
the energy norm of the discrete defeaturing error is bounded in terms of the estimator
E
(
uhd

)
introduced in (8.29) as follows:

∣∣∣u− uhd∣∣∣1,Ω
. E

(
uhd
)
.

Proof. Let e := u − uhd. We are looking for a characterization of the error similar to
the one in (8.16). To do so, consider the exact problem (3.1) restricted to Ω? with the
natural Neumann boundary condition on γ0,p, that is, the restriction u|Ω? ∈ H1

gD,ΓD(Ω?)
is the weak solution of 

−∆ (u|Ω?) = f in Ω?

u|Ω? = gD on ΓD
∂ (u|Ω?)
∂n = g on ΓN \ γp

∂ (u|Ω?)
∂n0

= ∂u

∂n0
on γ0,p.

(8.31)

By abuse of notation, we omit the explicit restriction of u to Ω?. Then, for all test
functions vn ∈ H1

0,ΓD(Ω?),∫
Ω?
∇u · ∇vn dx =

∫
Ω?
fvn dx+

∫
ΓN\γp

gvn ds+
∫
γ0,p

∂u

∂n0
vn ds. (8.32)
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Then from (8.32) for u and from integration by parts for uh0 as in (8.15), for all functions
vn ∈ H1

0,ΓD(Ω?),

∫
Ω?
∇e · ∇vn dx =

∫
Ω?

(f + ∆uh0)vn dx+
∫

ΓN\γp

(
g − ∂uh0

∂n

)
vn ds+

∫
γ0,p

∂
(
u− uh0

)
∂n0

vn ds

=
∫

Ω?
rvn dx+

∫
ΓN\γ

jvn ds+
∫
γn
dhγnvn ds+

∫
γ0,p

∂
(
u− uh0

)
∂n0

vn ds.

(8.33)

Moreover, in a similar fashion as in (8.31), consider the exact problem (3.1) restricted
to Fp with the natural Neumann boundary condition on γ0,p. By abuse of notation and
as previously, we omit the explicit restriction of u to Fp. So u ∈ H1(Fp) is one of the
infinitely-many solutions (up to a constant) of∫

Fp
∇u · ∇vp dx =

∫
Fp
fvp dx+

∫
γp
gvp ds+

∫
γ0,p

∂u

∂nF
vp ds, ∀vp ∈ H1(Fp). (8.34)

Recall that ∂Fp = γp∪γ0,p and γp = int (γs ∪ γr), where γs is the part of γp that is shared
with ∂F̃p while γr is the remaining part of γp, see Figure 8.1. Then for all vp ∈ H1(Fp),
using (8.34) for u and by integration by parts for ũh0 ,

∫
Fp
∇e · ∇vp dx =

∫
Fp

(
f + ∆ũh0

)
vp dx+

∫
γp

(
g − ∂ũh0

∂n

)
vp ds+

∫
γ0,p

∂
(
u− ũh0

)
∂nF

vp ds

=
∫
Fp
rvp dx+

∫
γs
jvp ds+

∫
γr
dhγrvp ds+

∫
γ0,p

∂
(
u− ũh0

)
∂nF

vp ds. (8.35)

Moreover, before combining (8.33) and (8.35), let us consider the sum of some of their
terms, or more precisely, the sum of the terms integrating over γ0,p. That is, since
n0 = −nF on γ0,p, then for all v ∈ H 1

2 (γ0,p),

∫
γ0,p

∂
(
u− uh0

)
∂n0

v ds+
∫
γ0,p

∂
(
u− ũh0

)
∂nF

v ds

=
∫
γ0,p

(
g0 −

∂uh0
∂n0

)
v ds+

∫
γ0,p

(
−g0 −

∂ũh0
∂nF

)
v ds

=
∫
γ0,p

jv ds+
∫
γ0,p

dhγ0,pv ds. (8.36)

Therefore, recalling the definition of Γ0
N := (ΓN \ γ) ∪ γ0 where γ0 = int (γ0,n ∪ γ0,p) and

the definition of Σ := {γn, γr, γ0,p}, let us combine (8.33) and (8.35), using (8.36). That
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8.2. Reliability of the discrete defeaturing error estimator

is, for all v ∈ H1
0,ΓD(Ω), taking vn := v|Ω? in (8.33) and vp := v|Fp in (8.35), we obtain∫

Ω
∇e · ∇v dx =

∫
Ω?
∇e · ∇v dx+

∫
Fp
∇e · ∇v dx

=
∫

Ω?
rv dx+

∫
Fp
rv dx+

∫
Γ0
N\γ0,n

jv ds+
∫
γs
jv ds+

∑
σ∈Σ

∫
σ
dhσv ds.

(8.37)

Let us now fix v ∈ H1
0,ΓD(Ω). As in the proof of Theorem 8.2.2, the idea is to suitably

extend the function v to Ω0 and to F̃p in order to correctly treat the elements and faces
that are only partially in Ω, and to be able to use Galerkin orthogonality in the simplified
domains Ω0 and F̃p. However, recalling (5.15), Galerkin orthogonality in F̃p is only
valid for discrete functions that vanish on γ0,p. Therefore, using the generalized Stein
extensions of Assumption 8.1.5 with Ω1 := Ω as we are considering the single feature
case, let

v0 := EΩ?→Ω0 (v|Ω?) ∈ H1
0,ΓD(Ω0),

ṽ := EΩ→Ω̃(v) ∈ H1
0,ΓD

(
Ω̃
)
,

and ṽ? := EΩ?→Ω̃ (v|Ω?) ∈ H1
0,ΓD

(
Ω̃
)
.

In particular, we note that

v0 = v on γn, ṽ = v on γr, ṽ = ṽ? = v on γ0,p. (8.38)

Thus if we define w := ṽ|F̃p
− ṽ?|F̃p

, then from (8.38), w ∈ H1
0,γ0,p

(
F̃p
)
. Moreover, using

properties (8.10)–(8.12) of the extension operators, then

‖∇v0‖0,Ω0
. ‖∇v‖0,Ω? , ‖∇ṽ‖0,Ω̃ . ‖∇v‖0,Ω and ‖∇ṽ?‖0,Ω̃ . ‖∇v‖0,Ω? . (8.39)

And since F̃p ⊂ Ω̃ and Ω? ⊂ Ω, then using (8.39),

‖∇w‖0,F̃p
≤ ‖∇ṽ‖0,F̃p

+ ‖∇ṽ?‖0,F̃p
≤ ‖∇ṽ‖0,Ω̃ + ‖∇ṽ?‖0,Ω̃

. ‖∇v‖0,Ω + ‖∇v‖0,Ω? . ‖∇v‖0,Ω. (8.40)

Consequently, since v = v0 on Ω? and v = ṽ on Fp, then (8.37) can be rewritten as∫
Ω
∇e·∇v dx =

∫
Ω?
rv0 dx+

∫
Γ0
N\γ0,n

jv0 ds+
∫
Fp
rṽ dx+

∫
γs
jṽ ds+

∑
σ∈Σ

∫
σ
dhσv ds. (8.41)

Then, similarly to (8.17) and since Ω? = Ω0 \ Fn and Fp = F̃p \Gp, we add and subtract
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terms to (8.41), and then we rearrange them, as follows:

∫
Ω
∇e · ∇v dx =

(∫
Ω0
rv0 dx−

∫
Fn
rv0 dx

)
+
(∫

Γ0
N

jv0 ds−
∫
γ0,n

jv0 ds
)

+
(∫

F̃p
rṽ dx−

∫
Gp
rṽ ds

)
+
(
−
∫
F̃p
rṽ? dx+

∫
F̃p
rṽ? ds

)

+
(∫

γs∪γ̃
jṽ ds−

∫
γ̃
jṽ ds

)
+
(
−
∫
γs∪γ̃

jṽ? ds+
∫
γs∪γ̃

jṽ? ds
)

+
∑
σ∈Σ

∫
σ
dhσv ds

=
∫

Ω0
rv0 dx+

∫
Γ0
N

jv0 ds−
∫
Fn
rv0 dx−

∫
γ0,n

jv0 ds

+
∫
F̃p
r (ṽ − ṽ?) dx−

∫
Gp
rṽ ds+

∫
F̃p
rṽ? ds

+
∫
γs∪γ̃

j (ṽ − ṽ?) ds−
∫
γ̃
jṽ ds+

∫
γs∪γ̃

jṽ? ds+
∑
σ∈Σ

∫
σ
dhσv ds.

= I0 + Ĩ + IIn + ĨIp + IIp, (8.42)

where, recalling that Γ̃N := γs ∪ γ̃ and w := ṽ|F̃p
− ṽ?|F̃p

, and by simple rearrangement
of the terms,

I0 =
∫

Ω0
rv0 dx+

∫
Γ0
N

jv0 ds,

Ĩ =
∫
F̃p
rw dx+

∫
Γ̃N

jw ds,

IIn =−
∫
Fn
rv0 dx−

∫
γ0,n

jv0 ds+
∫
γn
dhγnv ds,

ĨIp =−
∫
Gp
rṽ dx−

∫
γ̃
jṽ ds+

∫
γr
dhγrv ds,

IIp =
∫
F̃p
rṽ? dx+

∫
Γ̃N

jṽ? ds+
∫
γ0,p

dhγ0,pv ds.

As terms I0 and Ĩ are defined in Ω0 and F̃p, respectively, and since Q0 is fitted to Ω0 and
Q̃ is fitted to F̃p, then terms I0 and Ĩ, which account for the numerical error, are defined
in unions of full elements. Moreover, terms IIn, IIp and ĨIp account for the discrete
defeaturing error and for the corresponding compatibility conditions (see Remark 3.4.2),
and their contributions come from the presence of feature F ; more specifically, they come
from the presence of the negative component Fn, the positive component Fp, and the
extension F̃p of the latter.

Term I0 can be estimated exactly as term I of (8.17), using Galerkin orthogonality coming
from (3.4) and (5.13), properties (8.2) and (8.4) of the Scott-Zhang-type operator Ih0 ,
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and property (8.39) of the generalized Stein extension v0 of v, leading to

I0 .

 ∑
K∈Q0

h2
K‖r‖20,K +

∑
E∈E0

hE‖j‖20,E

 1
2

‖∇v‖0,Ω? .

Since w ∈ H1
0,γ0,p

(
F̃p
)
from (8.38), then term Ĩ can be estimated in the same manner.

That is, let us use Galerkin orthogonality coming from (3.7) and (5.15), properties (8.3)
and (8.5) of the Scott-Zhang-type operator Ĩh, and the generalized Stein extension
property (8.40) of w, to obtain the following estimate:

Ĩ .

∑
K∈Q̃

h2
K‖r‖20,K +

∑
E∈Ẽ

hE‖j‖20,E

 1
2

‖∇w‖0,F̃p
.

Now, let us consider term IIn of (8.42). It can be estimated exactly as term II of (8.17)
using the decomposition given in (8.22), replacing F , Ω, γ and γ0 by Fn, Ω?, γn and γ0,n
respectively. Therefore, using integration by parts in Fn, using the proof of Theorem 3.4.4,
Friedrichs inequality of Lemma 2.3.5, the trace inequality of Lemma 2.2.2, and since
v0 = v on γn, we obtain

IIn .
(
|γn|

1
n−1

∥∥∥dhγn − dhγn

γn
∥∥∥2

0,γn
+ c2

γn |γn|
n
n−1

∣∣∣dγn
γn
∣∣∣2) 1

2
‖∇v‖0,Ω?

+
(
h2
Fn‖r‖

2
0,Fn + hFn‖j‖20,γ0,n

) 1
2 ‖∇v‖0,Ω? .

After observing that Gp := F̃p \ Fp can be seen as a negative feature of the geometry Fp
for which γ̃ is the simplified boundary replacing γr, and for which γ0,p is the Dirichlet
boundary, then term ĨIp can be estimated in the same manner as term IIn. That is,
using integration by parts in Gp, using the proof of Theorem 3.4.4, Friedrichs inequality
of Lemma 2.3.5, the trace inequality of Lemma 2.2.2, and since ṽ = v on γr, we obtain

ĨIp .
(
|γr|

1
n−1

∥∥∥dhγr − dhγr

γr
∥∥∥2

0,γr
+ c2

γr |γr|
n
n−1

∣∣∣dγr
γr
∣∣∣2) 1

2
‖∇v‖0,Ω

+
(
h2
Gp‖r‖

2
0,Gp + hGp‖j‖20,γ̃

) 1
2 ‖∇v‖0,Ω.

Finally, since

dhγ0,p −
∂
(
ũ0 − ũh0

)
∂nF

= dγ0,p

and since ṽ? = v on γ0,p from (8.38), we can again apply the same steps to estimate
IIp. To do so, we replace F , Ω, γ and γ0 by F̃p, Ω?, γ0,p and Γ̃N , respectively, in the
estimation of II from (8.22). Therefore, using integration by parts in F̃p, using the
proof of Theorem 3.4.4, Friedrichs inequality of Lemma 2.3.5 and the trace inequality of
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Lemma 2.2.2, we obtain

IIp .
(
|γ0,p|

1
n−1

∥∥∥dhγ0,p − dhγ0,p

γ0,p
∥∥∥2

0,γ0,p
+ c2

γ0,p |γ0,p|
n
n−1

∣∣∣dγ0,p
γ0,p
∣∣∣2) 1

2
‖∇v‖0,Ω?

+
(
h2
F̃p
‖r‖20,F̃p

+ hF̃p
‖j‖20,γ0,p

) 1
2 ‖∇v‖0,Ω? .

Consequently, plugging in the last five inequalities into (8.42), since Ω = int
(
Ω? ∪ Fp

)
,

using the discrete Cauchy-Schwarz inequality, and recalling the definition of E
(
uhd

)
in (8.29), we get ∫

Ω
∇e · ∇v dx .

[
E
(
uhd
)2

+ III2
] 1

2
‖∇v‖0,Ω, (8.43)

where the terms of I0 and Ĩ contribute to the numerical error part EN
(
uhd

)
of the estimator,

the first terms in IIn, ĨIp and IIp contribute to the defeaturing error part ED
(
uhd

)
(and

thus EC) of the estimator, while their last terms are collected in III, which is defined as

III2 := h2
Fn‖r‖

2
0,Fn + hFn‖j‖20,γ0,n + h2

Gp‖r‖
2
0,Gp + hGp‖j‖20,γ̃ + h2

F̃p
‖r‖20,F̃p

+ hF̃p
‖j‖20,γ0,p .

From Assumption 8.2.5, hS . hmin
S for all S ∈

{
Fn,Gp, F̃p

}
. Thus for all K ∈ Q0 such

that K ∩ Fn 6= ∅, hFn . hK , for all K ∈ Q̃ such that K ∩ Gp 6= ∅, hGp . hK , and for
all K ∈ Q̃ such that K ∩ F̃p 6= ∅, hF̃p

. hK . Consequently, term III from (8.43) can be
rewritten as (8.25) for the negative feature case, leading to

III . EN
(
uhd
)
. (8.44)

Therefore, combining (8.43) and (8.44),

∫
Ω
∇e · ∇v dx .

[
E
(
uhd
)2

+ EN
(
uhd
)2
] 1

2
‖∇v‖0,Ω ' E

(
uhd
)
‖∇v‖0,Ω. (8.45)

To conclude, we choose v = e ∈ H1
0,ΓD(Ω) in (8.45), and we simplify ‖∇e‖0,Ω on both

sides.

8.2.3 Geometry with multiple features

In this section, we further extend the result of Section 8.2.2 by stating and proving the
reliability of the proposed a posteriori estimator of the discrete defeaturing error in a
geometry with multiple complex features. So let

F :=
{
F k
}Nf
k=1

198



8.3. The adaptive defeaturing strategy on complex spline geometries

be the set of Nf ≥ 1 complex features of Ω, and let us use the notation of Section 8.1.
In particular, we recall that the multi-feature notation is similar to the one used in the
previous Section 8.2.2, but the upper index k is added to every quantity referring to
feature F k, for all k = 1, . . . ,Nf . We also recall that

Σ := {γkn , γk0,p, γkr : k = 1, . . . ,Nf}.

In this context, the discrete defeaturing error estimator has already been defined in (5.21),
that is,

E
(
uhd
)

:=
[
α2
DED

(
uhd
)2

+ α2
NEN

(
uhd
)2
] 1

2
, (8.46)

where ED
(
uhd

)
and EN

(
uhd

)
are defined as in (8.30), and αD and αN are parameters to

be tuned as in the single feature case.

Let us now state and prove the main theorem of this section, in the case in which every
feature in F verifies Assumption 8.2.5.

Theorem 8.2.7. In the framework presented in Section 8.1, let u be the weak solution
of problem (3.2), and let uhd be the discrete defeaturing solution defined in (8.1), where Ω
is a geometry containing Nf ≥ 1 complex features satisfying Assumptions 4.1.5 and 8.2.5.
Then, the energy norm of the discrete defeaturing error is bounded in terms of the
estimator E

(
uhd

)
defined in (8.46) as follows:

∣∣∣u− uhd∣∣∣1,Ω
. E

(
uhd
)
. (8.47)

Proof. The proof is very similar to the one of Theorem 8.2.6. That is, following the same
steps and letting e := u− uhd, we can write for all v ∈ H1

0,ΓD(Ω),
∫

Ω
∇e · ∇v dx = I0 +

Nf∑
k=1

(
Ĩk + IIkn + ĨIkp + IIkp

)
, (8.48)

where I0 is defined as in (8.42), and for all k = 1, . . . ,Nf , Ĩ
k, IIkn, ĨIp and IIkp are defined

as Ĩ, IIn, ĨIp and IIp from (8.42), but for feature F k. Then, these terms can be estimated
as in the proof of Theorem 8.2.6. In particular, for the hidden constant in (8.47) to be
independent of Nf , we use Assumptions 4.1.5 and 8.1.5 and the discrete Cauchy-Schwarz
inequality.

8.3 The adaptive defeaturing strategy on complex spline
geometries

In the previous section, we assumed that the considered mesh was fitting the boundary
of the simplified domain Ω0. In a geometric adaptive setting as presented in Chapter 5,
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adding a new feature would require re-meshing the domain in order to satisfy this
assumption. To avoid this, the REFINE step presented in Section 5.4.4 is designed to
be used with a mesh-preserving method, which allows to take advantage of the efforts
made by standard h-refinement in the previous iterations. In this section, we study
how the adaptive analysis-aware defeaturing strategy presented in Chapter 5 can be
performed in the special case of IGA with THB-splines. In particular, we use two
mesh-preserving methods introduced in Chapter 6, which are trimming and multipatch
geometry techniques.

To illustrate this section, let us take the example of an exact geometry Ω that contains
at least two complex features (with both a positive and a negative component), and
such that at some iteration of the adaptive strategy presented in Chapter 6, one feature
is required to be added to the defeatured geometrical model Ω0. Then, the negative
component of this feature is added by trimming, while its positive component is added
with an extra (possibly trimmed) patch. Therefore, Ω0 is a trimmed multipatch domain
at the next iteration, and the adaptive strategy needs to be precised in this case.

Considering trimmed multipatch domains also considerably extends the range of fully
defeatured geometries that one can treat in the presented adaptive IGA defeaturing
framework. Indeed, the image of a single isogeometric mapping F (see Chapter 6), called
patch, limits the definition of Ω0: it only allows for geometries that are images of the
unit square if n = 2 or the unit cube if n = 3. However, the previously introduced
setting can easily be generalized to open connected domains defined by Np ≥ 1 trimmed
patches, glued together with C0-continuity. Consequently, we explain in this section
the required modifications of the SOLVE and ESTIMATE steps in the case of IGA in
trimmed domains, and then we discuss its generalization to trimmed multipatch domains.
To finish this section, we provide details of the REFINE step, in the most general context
of trimmed multipatch defeatured geometries Ω0 for which the exact geometry Ω contains
multiple features.

8.3.1 Defeaturing trimmed multipatch domains

In this section, we first discuss the generalization of Section 8.2 and of the discrete
defeaturing error estimator (8.46) to a single patch trimmed geometry Ω0, relying on
Chapter 7. The main differences come from the fact that the discrete spline space contains
functions whose support are cut by the trimming boundary. In the numerical contribution
of the error estimator E (uhd), one therefore needs to adapt the mesh-dependent scaling
factors in front of the residuals.

To do so, let us assume that Ω contains Nf ≥ 1 complex features, and that its corre-
sponding defeatured geometry Ω0 is a domain trimmed from Ωu

0 ⊂ Rn, as illustrated in
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Ωu
0

(a) Non-trimmed domain Ωu
0

with a hierarchical mesh Qu
0 .

Γt
0

Ω0

ω

ΓD

(b) Trimmed defeatured do-
main Ω0 with the hierarchi-
cal mesh Qu

0 and the trimmed
curve Γt

0.

ΩF γ

Γ0
NΓ

(c) Exact domain Ω with a
negative feature F , and the
active mesh Q0 correspond-
ing to Ω0.

Figure 8.5 – Example of a trimmed defeatured geometry with the corresponding notation.

Figure 8.5. That is,
Ω0 := Ωu

0 \ ω ⊂ Rn, (8.49)

where ω is a union of bounded open domains in Rn. For simplicity, assume that Neumann
boundary conditions are imposed on the trimmed boundary, i.e.,

Γt
0 := ∂Ω0 \ ∂Ωu

0 ⊂ Γ0
N . (8.50)

Otherwise, the imposition of Dirichlet boundary conditions on the trimmed boundary
must be performed in a weak sense, and it would require stabilization techniques, see
e.g., [Buffa et al., 2020].

Moreover, let Qu
0 := Q(Ωu

0) from (6.12) be (a refinement of) the hierarchical physical
mesh on Ωu

0 , and let Eu
0 be the set of faces E of Qu

0 such that
∣∣E ∩ Γ0

N

∣∣ > 0. Furthermore,
for all k = 1, . . . ,Nf , let the positive component extension F̃ kp of feature F k be a

standard THB-spline domain as in Section 8.1, let Q̃k := Q
(
F̃ kp

)
be (a refinement of)

the hierarchical mesh on F̃ kp , and let Ẽk be the set of faces of Q̃k that are part of Γ̃kN
for all k = 1, . . . ,Nf , as in (5.26). We suppose that Qu

0 and Q̃k, k = 1, . . . ,Nf , satisfy
Assumptions 8.1.1 and 8.1.2. Then we redefine

Q := Qcut ∪Qact (8.51)

to be the union of the active mesh elements (i.e., the elements intersecting Ω0 and all
F̃ kp ), where

Qcut := {K ∈ Qu
0 : K ∩ Ω0 6= K, |K ∩ Ω0| > 0}

is the set of cut (trimmed) elements, and

Qact := {K ∈ Qu
0 : K ⊂ Ω0} ∪ Q̃ with Q̃ :=

Nf⋃
k=1
Q̃k
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is the set composed of the other active (non-trimmed) elements in Ω0 and in all F̃ kp .
Similarly, let

E := Ecut ∪ Eact,

where

Ecut :=
{
E ∈ Eu

0 : E ∩ Γ0
N 6= E

}
and Eact :=

{
E ∈ Eu

0 : E ⊂ Γ0
N

}
∪ Ẽ with Ẽ :=

Nf⋃
k=1
Ẽk. (8.52)

Finally, for all K ∈ Q, let

Γt
K := Γt

0 ∩ int(K) and ΩK :=

Ω0 if K ∈ Q0

F̃p if K ∈ Q̃,
(8.53)

and for all E ∈ E , let

ΓEN :=

Γ0
N if E ∈ E0

Γ̃N if E ∈ Ẽ .
(8.54)

In this framework, one can SOLVE the defeaturing problem as presented in Section 5.4.1.
Then, to ESTIMATE the error, the numerical error contribution EN

(
uhd

)
of the discrete

defeaturing error estimator E
(
uhd

)
defined in (8.46) needs to be redefined as follows:

EN
(
uhd
)2

:=
∑
K∈Q

δ2
K‖r‖20,K∩ΩK +

∑
E∈E

δE‖j‖20,E∩ΓEN
+

∑
K∈Qcut

hK‖j‖20,Γt
K

, (8.55)

where

δK :=

hK if K ∈ Qact

cK∩ΩK |K ∩ ΩK |
1
n if K ∈ Qcut,

and δE :=

h
1
2
E if K ∈ Eact

cE∩ΓEN

∣∣∣E ∩ ΓEN
∣∣∣ 1

2(n−1) if E ∈ Ecut,
(8.56)

and cK∩ΩK and cE∩ΓEN
are defined as in (5.20). Term ED

(
uhd

)
of the estimator (8.46)

remains unchanged.

Then with the help of Chapter 7, the proof of Theorem 8.2.7 can straightforwardly
be generalized to this framework under the following technical assumption replacing
Assumption 8.2.5:
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Assumption 8.3.1. For S ∈
{
F kn ,Gkp, F̃ kp

}Nf
k=1

, let hS := diam(S), let

QS =

Q0 if S = F kn for some k = 1, . . . ,Nf

Q̃k if S = Gkp or S = F̃ kp for some k = 1, . . . ,Nf ,

and let
δmin
S := min {δK : K ∈ QS , K ∩ S 6= ∅} .

Assume that hS . δmin
S , that is, each feature is either smaller or about the same size as

the trimmed mesh that covers it.

Unfortunately, in the trimmed case, this technical assumption affects the generality of
the result since δmin

S depends on the trimming boundary. As in the non-trimmed case,
and as suggested by some numerical experiments presented in Section 8.4, we will see
that this assumption can be removed in practice.

Remark 8.3.2. The feature extension F̃ kp could also be a trimmed domain for some
(or all) k = 1, . . . ,Nf , and this section easily extends to this case. However, since F̃ kp
is chosen to be a simple domain containing F kp , then it is more naturally thought as a
non-trimmed domain.

Now, assume that Ω0 is a trimmed multipatch geometry, for which patches are glued
together with C0-continuity. Then we need to include the jumps between patches
of the normal derivative of uhd, in the numerical contribution (8.55) of the discrete
defeaturing error estimator (8.46). Under Assumption 8.3.1, and if we assume that
the trimmed boundary does not intersect the interfaces between patches, the proof of
Theorem 8.2.7 could easily be adapted to this framework. Indeed, its generalization to
trimmed geometries has just been discussed. And if one is able to build a Scott-Zhang
type operator as in Theorem 6.3.4 but on a multipatch domain, then it would be enough
to add the normal derivative jump contributions to all terms in (8.48) (or equivalently
in (8.42)), and the proof of Theorem 7.2.3 from Chapter 7 would readily be extended in
the same way. Even if details are not given, the construction of such a Scott-Zhang type
operator for (T)HB-splines on multipatch domains is discussed in [Buffa et al., 2021b,
Section 6.1.5].

Remark 8.3.3. Not only Ω0, but also the feature extension F̃ kp could be a (possibly
trimmed) multipatch domain for some k = 1, . . . ,Nf . In fact, since F̃ kp is chosen to be a
simple domain containing F kp , then it is more naturally thought as a single patch domain.
But since its definition requires γ0,p ⊂ ∂F̃ kp and F kp ⊂ F̃ kp , then one sometimes has to
build it as a multipatch geometry; an example is given in Figure 8.6.

203



Chapter 8. A reliable adaptive isogeometric analysis defeaturing strategy

γn

γp

Ω

Fp

Fn

(a) Domain with a general complex feature.

γ0,p

Ω?

F̃p

(b) Domain Ω? with the simplified extension
F̃p of the positive component Fp.

Figure 8.6 – Example of domain containing one feature whose simplified positive compo-
nent F̃p cannot be represented by a single patch.

8.3.2 Refine by preserving properties of meshes and discrete spaces

In this section, we make more precise the REFINE step of the adaptive analysis-aware
defeaturing strategy presented in Chapter 5, in the context of IGA on multipatch trimmed
geometries. First, we develop on the mesh refinement step; then, we develop on the
update of the (partially) defeatured geometrical model. Note that one could equally
choose to refine the geometrical model first, and then refine the mesh.

8.3.2.1 Mesh refinement step

To start the adaptive strategy, we always assume that the simplified domains Ω0 and
F̃ kp for all k = 1, . . . ,Nf are defined over the coarsest possible hierarchical mesh and
not on a refinement of it, so that coarsening is not needed during the adaptive process.
Then, we need to make sure that at each iteration, the refined meshes and corresponding
discrete spaces satisfy Assumptions 5.3.1 and 8.1.2. That is, for all k = 1, . . . ,Nf ,
we need to enforce the compatibility of traces on γk0,p between V h(Ω0) and V h

(
F̃ kp
)
,

and we need to preserve the class of T -admissibility of all meshes, Q0 and Q̃k. To do
so, we extend the mesh refinement strategy presented in [Buffa and Giannelli, 2016]
and exposed in Chapter 7, that ensures the refined mesh to be of the same class of
T -admissibility m as the original mesh. More precisely, if we decompose the set of marked
elements asM =M0 ∪ M̃, whereM0 ⊂ Q0 and M̃ := ⋃Nf

k=1 M̃k with M̃k ⊂ Q̃k for all
k = 1, . . . ,Nf , and if we recall the definition (6.13) of T -neighborhood of an element,
then the refinement procedure that guarantees Assumptions 5.3.1 and 8.1.2 is given in
Algorithm 3.

Algorithm 2 from Chapter 7 is called on lines 1 and 6 of Algorithm 3: it serves the scope
of preserving the class of T -admissibility of the given mesh, and it is called for all meshes
Q0 and Q̃k, k = 1, . . . ,Nf . We recall that it finds the elements that are not originally
marked, but which need to be refined in order to preserve the class of T -admissibility.
These elements are added to the original set of elements to be refined.
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Algorithm 3[
Q0, Q̃

]
= REFINE(Q0, Q̃,M0,M̃,m, γ0,p)

1: M0 ← MARK_RECURSIVE(Q0,M0,m)

2: for all k = 1, . . . ,Nf do
3: for each K̃ ∈ Q̃k such that there exists K ∈M0 with ∂K ∩γk0,p = ∂K̃ ∩γk0,p 6= ∅
4: M̃k ← M̃k ∪

{
K̃
}

5: end for

6: M̃k ← MARK_RECURSIVE(Q̃k,M̃k,m)
7: Subdivide all K ∈ M̃k and update Q̃k by replacing K with its children.
8: end for

9: Subdivide all K ∈M0 and update Q0 by replacing K with its children.
return

[
Q0, Q̃

]

Q0

Q̃
γ0,p

(a) Meshes Q0 and Q̃ before refinement.
Marked elements are in gray.

Q0

Q̃
γ0,p

(b) Meshes Q0 and Q̃ after refinement. Re-
fined elements are in gray. The element of
Q̃ has been refined since the corresponding
element of Q0 on the other side of γ0,p is
refined.

Figure 8.7 – Illustration of the refinement procedure.

Moreover, lines 3 to 5 of Algorithm 3 are added to the standard algorithm in order to take
care of the positive component of feature F k, for all k = 1, . . . ,Nf . More precisely, for
each element of Q0 which has a face on γk0,p and which is marked for refinement (either
because it belongs toM0, or because it is used to preserve the class of T -admissibility of
Q0), we also mark for refinement the corresponding element of Q̃k which is on the other
side of the face, if any. This is illustrated in Figure 8.7. Note that it is not necessary to
do this in the other direction, i.e., if we refine an element of Q̃k which has a face on γk0,p,
we do not need to refine the corresponding element of Q0 which is on the other side of
the face, if any.
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8.3.2.2 Geometric refinement step

Let Ω(i)
0 be the partially defeatured domain at iteration i of the adaptive procedure of

Chapter 5, and from the set of marked features
{
F k
}
k∈Im

, we follow (4.94) and (4.95) to

build the partially defeatured domain Ω(i+1)
0 at iteration i+ 1. That is, in the first half

step (4.94), domain Ω(i+ 1
2)

0 is built by trimming as in (6.22): the negative part of marked
features ⋃k∈Im F kn is trimmed from Ω(i)

0 to obtain Ω(i+ 1
2)

0 . Then from definition (4.3) of
Gkp, for all k ∈ Im,

F kp = F̃ kp \Gkp.

So F kp is built by trimming as in (6.22), that is, Gkp is trimmed from F̃ kp to obtain F kp .

Finally, in the second half step (4.95), we glue together the patches of Ω(i+ 1
2)

0 with the
patches of F kp for all k ∈ Im with C0-continuity as in (6.20), and we obtain Ω(i+1)

0 .

8.4 Numerical experiments

In this section, we perform numerical experiments to illustrate the validity of the
proposed a posteriori discrete defeaturing error estimator (8.46), generalized to trimmed
multipatch domains in Section 8.3. Thanks to these experiments, we also demonstrate
that the adaptive procedure introduced in Chapter 5, and made more precise in the IGA
framework in the present chapter, ensures the convergence of the discrete defeaturing
error

∣∣∣u− uhd∣∣∣1,Ω
. The proposed strategy combining mesh and geometric adaptivity has

been implemented on top of the already-existing THB-spline based isogeometric mesh
refinement strategy of GeoPDEs [Vázquez, 2016]. In particular, a specific module has
been created for defeaturing, that takes care of the estimation of the contribution ED

(
uhd

)
,

and of the adaptive construction of partially defeatured geometries using multipatch and
trimming techniques.

If not otherwise specified, THB-splines of degree P = 2 are used in this section. Moreover,
we call Ndof the total number of active degrees of freedom of the considered geometrical
model Ω0. More precisely, Ndof accounts for the number of active degrees of freedom in Ω0,
from which we add the number of active degrees of freedom in F̃ k for all k = 1, . . . ,Nf . If
at some point, all features are added to the geometrical model, that is, if the geometrical
model is the exact geometry Ω, then Ndof accounts for the total number of active degrees
of freedom in Ω.

8.4.1 Convergence of the discrete defeaturing error and estimator

With the two numerical experiments presented in this section, we analyze the convergence
of the proposed estimator with respect to the mesh size h and with respect to the size of a
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0.5

ε

(a) Exact domain Ωε. (b) Patches (in black) and initial elements (in
gray) used for the geometrical description of Ω0.

Figure 8.8 – Numerical test 8.4.1.1 – Exact and defeatured domains used for the conver-
gence analysis.

given feature. We also compare the convergence of the estimator with the convergence of
the discrete defeaturing error. The first experiment is performed in a geometry with one
negative feature, while the second one is performed in a geometry containing one positive
feature. In both experiments of this section, we only consider global mesh refinements
without performing the proposed adaptive strategy yet, and we consider αD = αN = 1.

8.4.1.1 Negative feature

In this experiment, we consider a geometry with one negative feature. More precisely,

for k = −3,−2, . . . , 6, let ε = 10−2

2k and let Ωε := Ω0 \ Fε, where Ω0 is the disc centered
at (0, 0)T of radius 0.5, and Fε is the disc centered at (0, 0)T of radius ε < 0.5. The
geometry is illustrated in Figure 8.8a. In other words, Ω0 is the defeatured geometry
obtained from Ωε by filling the negative feature Fε.

We consider Poisson problem (3.1) solved in Ωε, we take f ≡ −1 in Ωε, gD ≡ 0 on
ΓD := ∂Ω0, and g ≡ 0 on ΓN = γ := ∂Fε = ∂Ωε \ ∂Ω0. The exact solution of
problem (3.1) in Ωε is given by

u(x, y) = ε2

2

[
log

(1
2

)
− log

(√
x2 + y2

)]
+ x2 + y2

4 − 1
16.

Then, we solve the defeatured Poisson problem (3.3) in Ω0, where f is extended by −1
in Fε = Ω0 \ Ωε. The exact defeaturing solution u0 is given in Ω0 by

u0(x, y) = x2 + y2

4 − 1
16.

So in particular, the exact defeaturing error, i.e., without discretization error, is given by

‖∇ (u− u0)‖0,Ω =
√
π

2 ε
2
[
log

(1
2

)
− log (ε)

] 1
2
∼ ε2 |log(ε)|

1
2 . (8.57)
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(c) In blue circles, ε = 1.5625 · 10−4; in gray
squares, ε = 2.5 · 10−3; in orange triangles,
ε = 8 · 10−2.
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(d) In blue circles, h = 2.7621 · 10−3; in gray
squares, h = 1.1049 · 10−2; in orange triangles,
h = 4.4194 · 10−2.

Figure 8.9 – Numerical test 8.4.1.1 – Convergence of the discrete defeaturing error and
estimator with respect to the mesh size h under global h-refinement, and with respect to
the feature size ε. In (a) and (b) are two different views on the surface error and on the
surface estimator (the first one being below the second one). In (c), convergence with
respect to h for three fixed values of ε. In (d), convergence with respect to ε for three
fixed values of h.

Now, Ω0 is divided into five conforming patches as illustrated in Figure 8.8b, and we

consider 4j elements in each patch, for j = 0, . . . , 5. Thus in this experiment, h =
√

2
2j+1 ,

and we solve the defeatured Galerkin problem (5.13) using B-spline based IGA. Therefore,
we look at the convergence of the discrete defeaturing error and estimator with respect
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to the size of the mesh, subject to global dyadic refinement, and with respect to the
size of the feature ε. Note that we never need to numerically create and mesh the exact
geometry Ωε. Indeed, we do not perform adaptivity in this experiment, thus Ω0 remains
the geometrical model in which the PDE is solved, and for the computation of the error,
the exact solution u is already known.

The results are presented in Figure 8.9. When ε is fixed and small, the numerical
component of the error dominates over its defeaturing component, and thus the overall
error converges as hP = h2, as expected. When ε is fixed and large, the defeaturing
error dominates and thus the overall error does not converge with respect to h, and we
observe a plateau. Similarly, when h is fixed and small, the numerical component of the
error is negligible with respect to the defeaturing component, and thus the overall error
converges as ε2 |log(ε)|

1
2 , also as expected from (8.57). But when h is fixed and large,

the numerical error dominates and thus the overall error does not converge with respect
to ε, and we observe a plateau.

The exact same behavior and convergence rates are observed for the discrete defeaturing
error estimator, confirming its reliability proven in Theorem 8.2.2, and showing also
its efficiency. The effectivity index in the numerical-error-dominant regime is larger
(around 5.8) than the one in the defeaturing-error-dominant regime (around 1.5), as
expected from the literature (see e.g., [Buffa et al., 2021b] and Part I). Finally, the change
of behavior between the two different regimes happen when ε ≈ h, both for the overall
error and for the proposed estimator.

8.4.1.2 Positive feature

In this experiment, we consider a geometry with one positive feature. That is, for

k = −5,−4, . . . , 4, let ε = 10−2

2k and let Ω0 := Ωε \ Fε, where Ω0 an L-shaped domain
and Fε is a fillet of radius ε rounding the corner of the L-shaped domain, as illustrated
in Figure 8.10. Or in other words, Ω0 is the defeatured geometry obtained from Ωε by
removing the positive feature Fε.

We consider Poisson problem (3.1) solved in Ωε with

ΓD :=
(
(0, 1)× {0}

)
∪
(
{0} × (0, 1)

)
as illustrated in Figure 8.10, and ΓN := ∂Ωε \ ΓD. We choose the data f , g and gD
such that the exact solution is given by u(x, y) = sin(2πx) sin(2πy) in Ωε. Then, we
solve the defeatured Poisson problem (3.3) in Ω0, where g0 is chosen on γ0 so that the
exact defeatured solution is also given by u0(x, y) = sin(2πx) sin(2πy) in Ω0. That is,
we do not introduce any error coming from defeaturing in Ω0. However, we solve the
extension problem (3.6) in F̃ε, the bounding box of Fε, choosing g̃ ≡ 0 on γ̃, and naturally
extending f in F̃ε. That is, we consider f(x, y) = 8π2 sin(2πx) sin(2πy) in Ω0 and in F̃ε.
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ΓD
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γ = γr
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0.5

(0, 0)T

ε

(
0.5 + ε

0.5 + ε

)

(a) Exact domain Ωε.

Ω0 Fε

Gε

(b) Simplified domain Ω0,
feature Fε and feature ex-
tension Gε.

γ̃

γ0

F̃ε

(c) Four patches of Ω0, and
extended feature F̃ε as a
single patch.

Figure 8.10 – Numerical test 8.4.1.2 – L-shaped domain with a positive fillet feature and
its extension.

Therefore, the defeaturing component of the overall error comes from the bad choice of
Neumann boundary condition g̃ in γ̃, which does not correspond to the exact solution u.

Then, Ω0 is divided into four conforming patches as illustrated in Figure 8.10c, while F̃p
is a single patch. Moreover, we consider 4j elements in each patch, for j = 2, . . . , 7, so

that in this experiment, h =
√

2
2j+1 . We solve the Galerkin problems (5.13) and (5.15),

respectively corresponding to the defeatured and extension problems, using B-spline
based IGA. Therefore, we look at the convergence of the discrete defeaturing error
and estimator both under global dyadic refinement, and with respect to the size of the
feature ε.

The results are presented in Figure 8.11. As for a negative feature, when ε is fixed and
small, the numerical component of the error dominates over its defeaturing component,
and thus the overall error converges as hP = h2, as expected. When ε is fixed and large,
the defeaturing component of the error dominates and thus the overall error does not
converge with respect to h, and we observe a plateau. Similarly, when h is fixed and
small, the numerical error is negligible with respect to the defeaturing component of
the error, and thus the overall error converges as ε2 |log(ε)|

1
2 , also as expected from the

previous numerical experiment and from Chapter 3. But again, when h is fixed and large,
the numerical error dominates and thus the overall error does not converge with respect
to ε, and we observe a plateau.

The overall estimator E
(
uhd

)
follows the exact same behavior and convergence rates

as the error. This numerical test shows that the reliability of the estimator proven in
Theorem 8.2.6 can be extended to non-Lipschitz features such as Fε, and it also shows
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(a) A view on the error (lower surface) and
estimator (upper surface).
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(b) Another view on the error (lower surface) and
estimator (upper surface).
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(c) In blue circles, ε = 6.25 · 10−4; in gray
squares, ε = 2 · 10−2; in orange triangles,
ε = 1.6 · 10−1.
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(d) In blue circles, h = 5.5243 · 10−3; in gray
squares, h = 2.2097 · 10−2; in orange triangles,
h = 1.7678 · 10−1.

Figure 8.11 – Numerical test 8.4.1.2 – Convergence of the discrete defeaturing error and
estimator with respect to the mesh size h under global h-refinement, and with respect to
the feature size ε. In (a) and (b) are two different views on the surface error and on the
surface estimator (the first one being below the second one). In (c), convergence with
respect to h for three fixed values of ε. In (d), convergence with respect to ε for three
fixed values of h.

the efficiency of the estimator. In this case, the effectivity index in the numerical-error-
dominant regime is slightly larger (around 10.7) than the one in the defeaturing-error-
dominant regime (around 9.7), as expected from the literature. Indeed, in Chapter 3, we
have seen that the effectivity index coming from the defeaturing component of the error
estimator is larger in the case of an extended positive features, as the extension Gε of Fε
can itself be seen as a negative feature whose simplified geometry is F̃ε.
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Chapter 8. A reliable adaptive isogeometric analysis defeaturing strategy

(a) Exact domain Ω (hole not at scale). (b) Patches (in black) and initial elements (in
gray) of Ω0.

Figure 8.12 – Numerical test 8.4.2.1 – Exact and initial defeatured domains used for the
adaptive strategy analysis.

8.4.2 Convergence of the adaptive strategy

In the following experiments, we analyze the convergence of the adaptive strategy
proposed in Chapter 5 and specialized to the isogeometric framework in the present
chapter. The analysis is first performed in a geometry containing a negative feature,
then in a geometry containing a positive feature. Moreover, we compare the proposed
strategy with the standard adaptive algorithm which only performs mesh refinement,
and which does not consider the defeaturing error contribution. The latter algorithm is
indeed widely used nowadays, because of the lack of a sound discrete defeaturing error
estimator as the one proposed in this work.

8.4.2.1 Negative feature

Let us first consider a half disc with a circular hole, i.e., a geometry containing a negative
feature. More precisely, and as illustrated in Figure 8.12, let

Ω0 :=
{
x = (x, y)T ∈ R2 : ‖x‖`2 <

1
2, y < 0

}
,

F :=
{
x = (x, y)T ∈ R2 : ‖x‖`2 < 5 · 10−3, y < 0

}
,

Ω := Ω0 \ F .

We consider Poisson problem (3.1) in Ω, with f ≡ −1, gD ≡ 0 on

ΓD :=
{
x = (x, y)T ∈ R2 : ‖x‖`2 = 1

2, y < 0
}

,

and g ≡ 0 on ΓN := ∂Ω \ ΓD. The exact solution of this problem is given by

u(x, y) = −5 · 10−5

4 log
(

2
√
x2 + y2

)
+ x2 + y2

4 − 1
16, for all (x, y) ∈ Ω.

Then, we consider the defeatured problem (3.3) in Ω0, where f is extended by −1 in F ,
and g0 ≡ 0 on γ0 = ∂F \ ∂Ω. We solve it using THB-spline based IGA, with Ω0 being
divided into 4 conforming patches, each of which is initially divided into 4 elements, as
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Figure 8.13 – Numerical test 8.4.2.1 – Convergence of the discrete defeaturing error and
estimator with respect to the number of degrees of freedom. In blue circles, we consider
the adaptive strategy presented in Chapter 5 and specialized to IGA in this chapter, for
which the feature is added after iteration 4. In orange squares, we only consider mesh
refinements, i.e., the feature is never added to the geometry.

illustrated in Figure 8.12b.

We first perform the adaptive strategy of Chapter 5. Then, we perform the same adaptive
strategy but we never add the feature F =: F 1 to the geometrical model. This is done by
not taking into account the contribution ED

(
uhd

)
= E 1

D

(
uhd

)
in the MARK module (see

Section 5.4.3). That is, we only perform standard mesh refinement steps by neglecting the
defeaturing error contribution, while still computing the overall error and the proposed
estimator. In this experiment, we use αN = αD = 1, that is, we give the same weight
to the contribution of the numerical part of the error estimate as to the one of the
defeaturing part of the error estimate. Moreover, we choose the marking parameter
θ = 0.5. When performing the REFINE module presented in Section 5.4.4, we impose
the mesh to be T -admissible of class 2, and the mesh is dyadically refined. Moreover,
when the feature F is marked for refinement, it is added to the geometrical model by
trimming as explained in Section 8.3. Both adaptive strategies are stopped whenever the
number of degrees of freedom exceeds 104.

The results are presented in Figure 8.13, and the final meshes obtained with each
refinement strategy are drawn in Figure 8.14. Even if the exact solution is radial and
the numerical solution is C1-continuous in every patch, the obtained meshes are highly
influenced by the interfaces between patches, on which the basis functions are only
C0-continuous. Let us first analyze the results obtained with the adaptive strategy of
Chapter 5, represented as blue lines with circles in Figure 8.13. In particular, the feature
is added after the third iteration, and the overall error converges as the inverse of the
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Chapter 8. A reliable adaptive isogeometric analysis defeaturing strategy

(a) Final mesh obtained with the adaptive
defeaturing strategy presented in Chapter 5,
where the feature has been added by trimming.

(b) Final mesh obtained with a standard IGA
mesh refinement strategy, without geometric
refinement.

Figure 8.14 – Numerical test 8.4.2.1 – Final meshes obtained with adaptive defeaturing,
and with a standard mesh refinement strategy without geometric refinement.

number of degrees of freedom Ndof, that is, as N
−P2
dof , as expected. We verify that the

geometrical feature is not added too late, otherwise we would first observe a plateau in
the overall error followed by a large drop, followed again by a normal convergence. At the
opposite, if the feature were added too early in the geometrical model, the convergence
would not be affected, but it would be computationally more costly. Moreover, the
discrete defeaturing error estimator follows very well the behavior of the error with a
relatively low effectivity index of 9.41 on average, confirming once again its efficiency
and reliability.

Then, we compare the results with the ones obtained with the adaptive strategy in which
the feature is never added to the geometrical model, represented as orange lines with
squares in Figure 8.13. We observe a plateau of the overall error with respect to the
number of degrees of freedom beginning after the third iteration. This indicates that
the feature should be added to the geometrical model after the third iteration, since
the plateau would otherwise begin later. Thus the proposed combined adaptive strategy
does not add the feature too early nor too late. Indeed, starting from iteration 4, the
defeaturing component of the error dominates over the numerical component, and even
if one continues to refine the mesh, the overall error cannot decrease any further if the
geometrical model is not refined. Furthermore, the discrete defeaturing error estimator
follows the behavior of the error, and in particular, the effectivity index in the last
iterations is smaller than the one in the first iterations. This is coherent with what
has been observed in the previous numerical experiments of Section 8.4.1, since the
defeaturing contribution of the error dominates in the last iterations. We finally remark
that the classical mesh adaptive strategy without geometric refinement does not see
the feature, and therefore, it cannot be used to estimate the error in the presence of
defeaturing.
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Figure 8.15 – Numerical test 8.4.2.2 – Convergence of the discrete defeaturing error and
estimator with respect to the number of degrees of freedom. In blue circles, we consider
the adaptive strategy of Chapter 5 and specialized to IGA in this chapter, for which the
feature is added after iteration 4. In orange squares, we only consider mesh refinements,
i.e., the feature is never added to the geometry.

8.4.2.2 Positive feature

Let us now consider the same problem setting as in Section 8.4.1.2, i.e., a defeaturing
problem on an L-shaped domain containing a positive fillet feature, and let us fix ε = 0.1.
As in the previous Section 8.4.2.1, we first perform the adaptive strategy proposed in
Chapter 5; then, we perform the classical mesh refinement adaptive strategy without
geometric adaptivity, that is, the feature F := Fε is never added to the geometrical
model. In both cases, we start with a mesh containing one element per direction and
per patch (see Figure 8.10c for the patch decomposition of Ω0), and the algorithm is
stopped whenever the total number of degrees of freedom Ndof exceeds 104. If F is not in
the geometrical model, recall that the total number of degrees of freedom Ndof accounts
for the number of degrees of freedom of problem (5.13) in Ω0, from which we add the
number of degrees of freedom of problem (5.15) in F̃ := F̃ε. If the positive fillet F is
marked for refinement, then it is added to the geometrical model as a trimmed patch, the
considered patch being its bounding box F̃ as in Figure 8.10. In this case, we recall that
Ndof accounts for the number of active degrees of freedom of the discrete problem in the
exact (multipatch trimmed) domain Ω := Ωε. In this experiment, we use αN = αD = 1,
and we choose the marking parameter θ = 0.5. During the refining phase, we impose the
mesh to be T -admissible of class 2, and the marked elements are dyadically refined at
each iteration.

The results are presented in Figure 8.15. The fillet is added after the third iteration
of the adaptive strategy of Chapter 5, whose results are represented as blue lines with
circles in Figure 8.15. As for the previous numerical experiment of Section 8.4.2.1, we can
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Chapter 8. A reliable adaptive isogeometric analysis defeaturing strategy

see that the feature is not added too late, as there is no plateau nor a large drop in the
convergence of the error and estimator. The overall error converges as the inverse of the
number of degrees of freedom Ndof, that is, as N

−P2
dof , as expected. Moreover, the discrete

defeaturing error estimator follows very well the behavior of the overall error with a
relatively low effectivity index of 8.6 on average, confirming once again its efficiency and
reliability.

Then, we compare the results with the ones obtained with the adaptive strategy in which
the feature is never added to the geometrical model, represented as orange lines with
squares in Figure 8.15. Beginning from iteration 4, we observe a plateau in the overall
error with respect to the number of degrees of freedom, as the defeaturing component of
the error starts to dominate over the numerical component. The overall error cannot
decrease any further if the geometrical model is not refined, i.e., the fillet should be
added. The discrete defeaturing error estimator follows the behavior of the error, and in
particular, the effectivity index in the last eight iterations is equal to 12.6 in average. This
is coherent with what has been observed in the numerical experiment of Section 8.4.1.2.

8.4.3 Impact of the feature size on the adaptive strategy

In this section, we consider the numerical approximation of the experiment presented
in Chapter 3, Section 3.5.1.2. Thanks to this experiment, we study the impact of the
size of the features on the discrete defeaturing error estimator, while validating the
theory developed in Section 8.2. In particular, as the defeaturing error contribution of
the estimator depends upon the size of the features and upon the size of the solution
gradients “around” the feature, we show that the proposed adaptive strategy is able to
tell when small features count more than big ones, also in the presence of numerical error.
We also show that the numerical error estimator EN

(
uhd

)
is not a reliable estimator in

the presence of defeaturing.

To do so, recall that the considered exact geometry Ω reproduced again in Figure 8.16a,
contains two holes: a small one F 1 which is two orders of magnitude smaller than the

F 1

F 2

Ω

(a) Exact domain Ω with two features (not at scale). (b) Exact solution in Ω.

Figure 8.16 – Numerical test 8.4.3 – Geometry with two features of different size, and
exact solution.
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Figure 8.17 – Numerical test 8.4.3 – Convergence of the overall error estimator and of its
numerical error component, with respect to the number of degrees of freedom. In blue
circles, we consider the adaptive strategy of Chapter 5, specialized to IGA in this chapter.
Feature F 1 is added after iteration 4 while F 2 is never added, and the overall error
estimator and its numerical error component are basically superposed. In orange squares,
we consider the standard adaptive mesh refinement strategy, that is, the adaptive process
is only steered by the numerical contribution of the overall error estimator, and features
are never added to the geometry.

other one F 2. Let Ω0 := (0, 1)2 be a single patch with 2 elements in each direction to
start the adaptive algorithm, where Ω0 is obtained by filling the holes of Ω. We also
recall that the solution to the considered exact Poisson problem (3.1) solved in Ω has
a very high gradient near F 1, and it is almost constantly zero near F 2, as it can be
observed in Figure 8.16b. Therefore, one can expect:

• the mesh to be refined close to F 1,

• and the presence of F 1 to be more important than F 2 with respect to the solution
accuracy, even if F 1 is notably smaller than F 2.

As for the numerical experiments of Section 8.4.2, we first perform the adaptive strategy
described in Chapter 5. Then, we perform the same adaptive strategy but without
geoemtric refinement, that is, we never add any of the two features F 1 and F 2 to the
geometrical model. To do so, we do not take into account the defeaturing contributions
E 1
D

(
uhd

)
and E 2

D

(
uhd

)
in the MARK module (see Section 5.4.3). In this experiment, we

use αN = 1 and αD = 4 in both cases, and we choose θ = 0.5 as marking parameter.
For the REFINE module precised for IGA in Section 8.3.2, we impose the mesh to be
T -admissible of class 2, and the mesh is dyadically refined. Moreover, when a feature is
marked for refinement, it is added to the geometrical model by trimming, as explained in
Section 8.3.
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(a) Final mesh obtained with the adaptive de-
featuring strategy of Chapter 5, where only F 1

has been added by trimming.

(b) Final mesh obtained with a standard IGA
mesh refinement strategy, without geometric
refinement.

Figure 8.18 – Numerical test 8.4.3 – Final meshes obtained with adaptive defeaturing
and with a standard mesh refinement strategy.

Results are reported in Figure 8.17, and we reproduce in Figure 8.18 the meshes obtained
when the total number of degrees of freedom exceeds 500. The blue line with circles
corresponds to the adaptive strategy of Chapter 5. The small feature F 1 is added
after the third iteration, while the large one, F 2, is never added to the geometry. This
confirms our intuition on the problem and this is coherent with the results obtained in
Section 3.5.1.2, even if F 1 is two orders of magnitude larger than F 2. Moreover, the final
mesh is refined around F 1 as one would also observe when performing a standard mesh
refinement algorithm. During of the fully adaptive strategy, the overall error converges
as the inverse of the number of degrees of freedom Ndof , i.e., as N

−P2
dof , as expected. In

Figure 8.17, the numerical error contribution EN
(
uhd

)
is basically superposed to the

overall error estimator.

Furthermore, the orange lines with squares in Figure 8.17 correspond to the results of
the standard mesh refinement adaptive strategy, in which the defeaturing component
of the error is not considered. We can observe that the convergence of the overall error
estimator is lost, because the defeaturing error contribution of the estimator remains
high, even if the numerical error contribution EN

(
uhd

)
keeps converging as N−

P
2

dof . The
obtained final mesh is refined around the lower left corner, reflecting the high gradient
of the solution in this area. However, if the feature is not added to the geometry, there
is no hope to obtain a more accurate solution since the numerical error estimator does
not see the feature. In particular, the numerical error contribution EN

(
uhd

)
goes almost

two orders of magnitude below the overall error estimator, at the end of the adaptive
loop. Therefore, the only numerical error estimator is not a reliable error estimator in
the presence of defeaturing.
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8.4.4 Fully adaptive strategy in a geometry with many features

In this last numerical experiment, we analyze the proposed fully adaptive strategy in a
geometry with many features. More precisely, let Ω0 := (0, 1)2 be the fully defeatured
domain, and let Ω := Ω0 \

⋃Nf
k=1 F

k, where Nf = 27 and the features F k are some circular
holes of radii in the interval (0, 5 · 10−3), distributed with some randomness in Ω0, as
illustrated in Figure 8.19a. For the sake of reproducibility, the values of the centers of the
features are the same as in Table 4.3, and the radii are halved with respect to the ones
reported in this table. Note in particular that this geometry satisfies Assumption 4.1.5.

We are interested in the solution of problem (3.1) defined in Ω, and we solve the Galerkin
approximation (5.13) of the corresponding defeatured problem (3.3) in Ω0. We consider
a similar Poisson’s problem as in the previous numerical experiment, that is, we let
f(x, y) := −128e−8(x+y) in Ω0, gD(x, y) := e−8(x+y) on

ΓD :=
(
[0, 1)× {0}

)
∪
(
{0} × [0, 1)

)
,

the bottom and left sides, g(x, y) := −8e−8(x+y) on ∂Ω0 \ ΓD, and finally g ≡ 0 on ∂F k
for all k = 1, . . . ,Nf . That is, as illustrated in Figure 8.19b, the exact solution u has a
high gradient close to the bottom left corner, and it is almost constantly zero in the top
right area of the domain.

As for the previous numerical experiments, we first perform the adaptive strategy
described in Chapter 5, starting from the fully defeatured domain Ω0 and from a uniform
mesh of 16×16 elements in Ω0, as illustrated in Figure 8.19c. Then, we perform the same
adaptive strategy but without geometric refinement, that is, with this second strategy,
holes are never added to the geometrical model. In this experiment, we use THB-splines
of degree P = 3, we consider αN = 1 and αD = 4, and we choose θ = 0.3 as marking
parameter. For the REFINE module precised for IGA in Section 8.3.2, we impose the
mesh to be T -admissible of class 3, and the mesh is dyadically refined. Moreover, when
a feature is marked for refinement, it is added to the geometrical model by trimming, as
explained in Section 8.3.

The mesh and geometry obtained at iteration 9, and the final mesh and geometry obtained
with both adaptive strategies when the total number of degrees of freedom exceeds 103

are represented in Figure 8.19. Results are reported in Figure 8.20. The blue lines
with circles correspond to the adaptive strategy of Chapter 5, and the sets of marked
features at each iteration are the following: {1}, {2, 6}, ∅, ∅, {3}, {4, 8, 11, 16}, {5}, ∅,
{7, 12, 17}, {10, 13, 22}, {15}, {9, 14, 21, 23, 26, 27}. For instance, the error estimator
is divided by 10 with the addition of only 4 out of the 27 features in the geometrical
model, and with a number of degrees of freedom increased by slightly more than a third.
Moreover, the overall estimator and its numerical and defeaturing contributions converge
as N−

3
2

dof = N
−P2
dof , as expected. Furthermore, the final mesh, represented in Figure 8.19f,
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(a) Exact domain Ω with 27 features. (b) Exact solution in the exact domain.

(c) Initial mesh. (d) Final mesh obtained without geometric re-
finement.

(e) Mesh and geometry obtained with the com-
bined refinement strategy at iteration 9.

(f) Final mesh and geometry obtained with the
combined refinement strategy.

Figure 8.19 – Numerical test 8.4.4 – Considered geometry, initial mesh, and intermediate
and final meshes and geometries obtained with adaptive strategies, with and without
geometric refinement.
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Figure 8.20 – Numerical test 8.4.4 – Convergence of the discrete defeaturing estimator
with respect to the number of degrees of freedom. In blue circles, we consider the adaptive
strategy of Chapter 5 in which features are iteratively added to the geometric model.
Note that the dashed and solid blue curves are basically superposed. In orange squares,
we only consider mesh refinements, i.e., the feature is never added to the geometry. In
this case, note that the dotted and solid orange curves are basically superposed.

is refined towards the lower left angle of the domain, and the first selected features are
also the ones closer to that angle. This is indeed expected as the exact solution has a
high gradient around that corner.

The orange lines with squares in Figure 8.20 correspond to the results of the adaptive
strategy without geometric refinement, i.e., when the defeaturing component of the error
is not considered. We can observe that convergence is lost, because the defeaturing
error contribution of the estimator is and remains very high, even if the numerical error
contribution keeps converging as N−

P
2

dof . The obtained final mesh is refined around the
lower left corner, reflecting the high gradient of the solution in this area, but if we do not
add any feature to the geometry, one cannot obtain a more accurate solution. This is
reflected by the proposed discrete defeaturing error estimator, validating the developed
theory.
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9 Concluding remarks and future
outlook

This thesis provides a mathematical framework and some new understanding of analysis-
aware defeaturing. The main findings leading towards this objective are summarized in
the following, and further research directions are discussed.

9.1 Scientific contributions

The scientific contributions of this thesis are based on a published paper [Buffa et al.,
2022b], a manuscript currently under review for publication [Buffa et al., 2021a], and two
articles in preparation [Antolín and Chanon, 2022; Buffa et al., 2022a]. In the following,
we systematically summarize the main findings of this work.

9.1.1 Contributions in Part I

In the context of Poisson, linear elasticity and Stokes equations, we have introduced a
mathematical framework to study the accuracy impact of removing features in geometries
in which the solution of a PDE is sought. In particular, we have defined a novel a
posteriori energy error estimator for the analysis-aware geometric defeaturing of

• two- and three-dimensional geometries,

• containing an arbitrary number of negative, positive or generally complex features,

• on which Neumann boundary conditions are imposed.

The proposed defeaturing error estimator ED has the following properties:

• it is not only driven by geometrical considerations, but also by the differential
problem at hand;

• it is able to weight the impact of defeaturing in the energy norm, and its effectivity
index is independent of the size of the geometrical features and of their number;
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• it is able to determine whether the defeaturing error comes from the choice of
defeaturing data (right hand side and Neumann boundary conditions), or if it
comes from the importance of the presence of the feature itself;

• it is proven to be reliable and efficient up to oscillations;

• it is naturally decomposed into single feature contributions;

• it is simple, naturally parallelizable and computationally cheap;

• it has been tested on an extensive set of numerical experiments: in all of them, the
estimator acts as an excellent approximation of the defeaturing error.

With the help of this error estimator, we have been able to design a geometric refinement
strategy taking into account the defeaturing errors. More precisely, starting from a fully
defeatured geometry, features are iteratively added to the geometrical model when their
absence is responsible for most of the solution accuracy loss. That is, the strategy is able
to build a (partially) defeatured geometric model containing few features, for which the
defeaturing error is below a prescribed tolerance. Presented numerical experiments have
demonstrated the convergence of the defeaturing error during the adaptive loop.

9.1.2 Contributions in Part II

Taking Poisson’s equation as driving problem, we have considered a finite element ap-
proximation of the defeatured problem, and we have integrated the induced additional
numerical error in the defeaturing framework of Part I. More precisely, we have first devel-
oped a fully adaptive scheme taking into account the discretization and the defeaturing
errors, which performs both standard mesh refinements and geometric refinements. To
steer this adaptive strategy, we have introduced a novel a posteriori estimator E of the
energy norm of the discrete defeaturing error, i.e., the error between the exact solution
computed in the exact domain and the numerical solution computed in the defeatured
domain.

The adaptive process is designed to be performed with any mesh-preserving Galerkin FEM,
as soon as the method provides a numerical error estimator which can be decomposed
into local mesh element contributions. Since (T)HB-spline based IGA appears as a
natural method to numerically solve PDEs in the context of adaptive analysis-aware
defeaturing, the remaining part of this work consisted in making the proposed strategy
more precise in the case in which IGA is the numerical method of choice.

Since the designed adaptive strategy requires a mesh-preserving numerical method with
a reliable error estimator, we have first analyzed the numerical error in the absence of
defeaturing error, in the following situation:

• (T)HB-spline based IGA is used to approximate Poisson’s problem,
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• in two- and three-dimensional trimmed domains,

• Neumann boundary conditions are imposed on the trimming curve or surface,

• the underlying hierarchical mesh is T -admissible.

More precisely, we have introduced a novel a posteriori residual estimator of the numerical
approximation error for (T)HB-spline based IGA in trimmed domains. The proposed
numerical error estimator EN has the following properties:

• it is proven to be reliable;

• its effectivity index is independent of the type of cut, and in particular, it is
independent of the measure of the active part of the trimmed elements;

• it is naturally decomposed into local (trimmed and non-trimmed) element contri-
butions;

• it has been tested on a wide range of numerical experiments, showing that it acts
as an excellent approximation of the numerical error;

• it is able to drive an adaptive mesh refinement strategy on trimmed geometries.

The proposed mesh refinement strategy strongly relies on the adaptive strategies in-
troduced for non-trimmed geometries, which also require an admissibility assumption
of the underlying mesh. We have tested the adaptive process on different numerical
experiments which exhibit both smooth and singular solutions. Optimal asymptotic rates
of convergence are recovered with respect to the total number of degrees of freedom.
Compared to uniform refinement, the adaptive strategy exhibits a substantial increase
in accuracy with respect to the number of degrees of freedom, as it is now classical in
non-trimmed geometries.

The previous findings have finally been combined in order to make more precise the
fully adaptive strategy combining geometric and mesh refinements, in the context of
(T)HB-spline based IGA. In particular, we have proven the reliability of the a posteriori
estimator E of the overall error coming from the combination of defeaturing and numerical
approximation. The proof is given for (T)HB-spline based IGA in mesh-fitted computa-
tional domains. Then, to perform the fully adaptive strategy, we have considered trimmed
and multipatch domains as mesh-preserving methods, thanks to the numerical error
estimator EN defined for trimmed (T)HB-spline domains. Several numerical experiments
have been performed to test the overall error estimator E and the related full adaptive
strategy. In all of them, the overall error estimator provides an excellent approximation
of the discrete defeaturing error, and it is able to correctly steer the adaptive process. In
particular, it is able to correctly weight the impact of defeaturing with respect to the
numerical approximation of the defeatured solution.
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9.2 Future research directions

This thesis is only the tip of an iceberg of open problems in analysis-aware defeaturing.
However, we believe that the presented results provide solid foundations for the upcoming
research in the field. In the following, we propose several research directions which would
be interesting extensions of this work, or whose findings would overcome some of its
limitations.

9.2.1 Monotone error reduction of the combined adaptive strategy

In the proposed adaptive algorithm combining mesh and geometric refinements, monotone
error reduction is not guaranteed. This comes in particular from the fact that the addition
of a feature in the geometrical model introduces a discontinuity in the evaluation of
the discretization error, first evaluated without the feature, and then with it. Finding
strategies to alleviate this effect and obtain a monotone behavior would be interesting.

Moreover, and linked to the first point, the error estimation and the marking steps are
controlled by some user-defined parameters αN and αD. These weights aim at balancing
the respective numerical and defeaturing error contributions in the discrete defeaturing
error estimator. More precisely, the two parameters αN and αD are necessary because
of the different unknown constants linking both contributions with the overall error.
Numerically, taking αN and αD such that αD

αN
= 4 seems to be a good rule of thumb,

since a classical effectivity index for the numerical error has a value around 10, while a
standard effectivity index for the defeaturing error has a value around 2 or 3. However,
the precise values of the effectivity indices are different for each problem at hand, and
they may also change at each iteration of the adaptive loop as the geometric model gets
refined. Therefore, it would be necessary to find a technique to approximate (the ratio
between) these constants at each iteration. This task is closely related to [Gerasimov
et al., 2015].

9.2.2 Generalization of the problem setting

In this thesis, we suppose that Neumann boundary conditions are imposed on the features’
boundaries. For a complete study, it would be interesting to generalize the analysis to
Dirichlet and mixed boundary conditions on the features. In this case, we still expect
to obtain a representation of the defeaturing error solely involving (Dirichlet or mixed)
error terms on the boundary of the features.

In the multifeature setting, we assumed that features are separated from one another.
Therefore, the treatment of a geometry in which the boundary is complex everywhere is
not treated, and its study in a defeaturing framework would be of great interest (see also
Section 9.2.5).
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9.2. Future research directions

Moreover, this work focuses on the global energy norm of the error, which is an important
first step to understand the impact of defeaturing in analysis. Studying defeaturing using
a local goal-oriented error measure would however be a further step attracting a broader
industrial interest.

Finally, only linear elliptic PDEs are considered in this monograph. Based on this first
step, an interesting extension would be the analysis of more complex problems, such as
parabolic, hyperbolic, or non-linear PDEs.

9.2.3 A different defeaturing approach through coarsening

In our approach of defeaturing, we assume that one has decided a priori what to consider
a feature and has access to a fully defeatured geometry Ω0. However, we make the
following three observations:

• in practice, defeaturing a (CAD) geometry may not be an easy task, see for instance
[Thakur et al., 2009];

• the technical complexity of an immersed simulation is not mainly due to the number
of features in the computational domain or to how complex they are, but rather on
the possibility to construct a local reparametrization for integration purposes, see
e.g. [Antolín et al., 2022] and references therein;

• the methodology developed in this work seems to be able to correctly select
important features even on a coarse (immersed) mesh, see Section 4.6.2.

Therefore, one could try a different approach to hope for a better unified design-through-
analysis workflow. More precisely, a first simulation could be ran on the exact geometry Ω,
in which a very coarse immersed mesh is defined. Then, one could derive a geometric
coarsening estimator which selects the features that can be removed while keeping the
error below a prescribed tolerance. Finally, one could create a better (possibly boundary
fitted) model of the partially defeatured geometry, in which mesh adaptivity is performed.

9.2.4 Geometric coarsening and time-dependent problems

Similar to strategies combining mesh refinement and coarsening [Carraturo et al., 2019],
and linked to the previous section, it would be interesting to develop an adaptive
algorithm that combines geometric refinement with geometric coarsening. This would be
of particular interest when treating time-dependent problems. To illustrate this, let us
consider for instance the wave equation in a domain containing a feature in its center.
Before the wave approaches the feature, and some time after the wave has overcame
it, the presence of the feature may not be needed to obtain an accurate solution; the
computational domain could be defeatured. Instead, when the wave hits the feature, the
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(a) Exact geometry with complicated
hierarchical boundary.

(b) Example of defeatured hierarchical
geometry.

Figure 9.1 – Illustration of hierarchical defeaturing.11

presence of the latter may be crucial to obtain an accurate solution, and thus it would
not be advised to remove that feature. Therefore, we would need geometric refinement
just before the wave hits the feature. Then, some computational time would be saved if
geometric coarsening is performed some time after the wave overcomes the feature, in
order to remove the latter from the geometric model.

9.2.5 Hierarchical analysis-aware defeaturing approach

In this thesis, features are assumed to be separated from one another, and defeaturing
has been approached as an on/off switch: either the considered geometric model contains
a certain feature, or it does not. However, another approach is possible, combined with
the approximation properties of (T)HB-splines [Bracco et al., 2022]. More precisely,
geometrical features may not only be seen as discrete holes and protrusions, but also as
complicated continuous boundary patterns, such as oscillating or fractal-like boundaries.
Therefore, given a hierarchical B-spline geometry Ω whose description requires a mesh
on L > 0 hierarchical levels, a defeaturing method could consist in approximating Ω
on a coarser mesh. A lower number 0 < L0 ≤ L of hierarchical levels would be used
in the mesh regions in which a precise geometric model is not necessary to obtain an
accurate solution, and vice versa. This idea is illustrated in Figure 9.1. An adaptive
geometric refinement algorithm can be seen as a mesh refinement strategy in this case,
and another mesh could be defined as a refinement of the geometric mesh for numerical
approximation.

11Image courtesy to Alessandra Arrigoni and Jochen Hinz.
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