On the Advantages of P2P ML on Mobile Devices

Robert Basmadjian
Clausthal University of Technology
Clausthal-Zellerfeld, Germany
robert.basmadjian@tu-clausthal.de

Rachid Guerraoui
EPFL
Lausanne, Switzerland
rachid.guerraoui@epfl.ch

ABSTRACT

Many fields make use nowadays of machine learning (ML) enhanced
applications for cost optimization, scheduling or forecasting, in-
cluding the energy sector. However, these very ML algorithms
consume a significant amount of energy, sometimes going against
the whole purpose of their employment. To this day, solutions for
an energy-efficient execution of these algorithms have not been
addressed adequately. In this paper, we demonstrate the advantage
of executing ML algorithms on mobile devices (ARM) over a stan-
dard server machine (RISC), from the perspective of energy. To do
so, we first propose a novel methodology to quantify the amount
of energy consumed by an ML algorithm. Then, we compare the
energy consumption of existing algorithms running on mobile de-
vices and server machines. To motivate running ML algorithms on
mobile devices, we also propose a new peer-to-peer personalized
ML algorithm (P3) that shows better convergence properties than
related works, and provably converging to a ball centered at a criti-
cal point of a non-convex cost function, under mild assumptions.
Most importantly, we show that running the P3 algorithm on mo-
bile devices is extremely energy-efficient, consuming 2700x, 200x
and 20x less energy than centralized learning algorithms for 10,
100, and 300 peers respectively. Finally, unlike centralized learning
algorithms, the proposed P2P algorithm can generate personalized
models, and does not have issues of single-point-of-failure nor data
privacy. Thus, we give evidence on the supremacy of our proposed
P3 algorithm over the other state-of-the-art centralized ML ones.

CCS CONCEPTS

« Computing methodologies — Machine learning.

KEYWORDS

Karim Boubouh
UM6P
Benguerir, Morocco
karim.boubouh@umép.ma

Personalized models, peer-to-peer machine learning, energy-efficiency,

ARM and RISC processors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

e-Energy '22, June 28-July 1, 2022, Virtual Event, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9397-3/22/06...$15.00
https://doi.org/10.1145/3538637.3538863

338

Amine Boussetta
UM6P
Benguerir, Morocco
amine.boussetta@umép.ma

Alexandre Maurer
UMe6P
Benguerir, Morocco
alexandre.maurer@umép.ma

ACM Reference Format:

Robert Basmadjian, Karim Boubouh, Amine Boussetta, Rachid Guerraoui,
and Alexandre Maurer. 2022. On the Advantages of P2P ML on Mobile
Devices. In The Thirteenth ACM International Conference on Future Energy
Systems (e-Energy °22), June 28-July 1, 2022, Virtual Event, USA. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3538637.3538863

1 INTRODUCTION

Machine learning (ML) has gained a significant popularity among
industries, especially in the last decade where the volume and the
velocity of data generation reached outstanding levels. As a matter
of fact, companies like Google, Microsoft, Facebook or Amazon are
constantly using ML models to improve their services and conse-
quently, increase their profits. These ML models are often trained
in big data centers, most of the time relying on centralized schemes
where a server machine maintains a common model while commu-
nicating with other worker machines that perform the computation
locally. The Parameter Server [1] architecture introduced by Mi-
crosoft and the Federated Learning paradigm [2] introduced by
Google are two notorious examples of centralized learning.

While centralized schemes, coupled with the celebrated Stochas-
tic Gradient Descent optimization algorithm [3] (or its variants),
show a decent performance in large scale applications, many draw-
backs can be named at this point. First, these architectures suffer
from a single point of failure (SPOF), which is the server. Indeed,
solutions [1, 4] involving replication have been proposed to tackle
this problem. However, they come at the expense of time and com-
munication complexity, as well as require additional resources (i.e.,
storage). Moreover, the server machine constitutes a communi-
cation bottleneck since all workers (or a fraction of them in the
asynchronous case) are communicating with it in the same time.
Most importantly, server machines are famous for their huge en-
ergy consumption. In fact, these servers are mainly responsible
for the increase in energy consumption of data centers [5-8], as
the energy footprint associated with training ML models is now
rated in terawatts (e.g., Google 15.4 TWh and Microsoft 10.8 TWh
of consumed energy in 2020 [9]).

Decentralized architectures on the other hand solve most of
the limitations listed above. Peer-to-peer (P2P) ML is a classical
example of decentralized learning where a group of devices (peers)
collaboratively learn an ML model, without the need for a central
authority/orchestrator (i.e., a server). This very fact comes with
many advantages: first, peers can fail without hampering the global
execution of the P2P ML training (in other words, no SPOF). Second,

https://doi.org/10.1145/3538637.3538863
https://doi.org/10.1145/3538637.3538863

e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA

peers no longer need to trust a central authority/orchestrator and
only rely on a network of similar peers, which is an advantage in
terms of data privacy. Finally, since servers are not present in this
scheme, energy consumption is decreased and will only depend
on the type of the devices (e.g., computers, smartphones, tablets)
inside the network.

At this point, the reader may ask the following question: is
there a way to measure the energy consumption of ML algorithms
running on both aforementioned architectures? There have been
some attempts in the literature to estimate the energy consumption
of centralized ML algorithms [10-12]. However, it is still lacking
in the literature a generic methodology to quantify the amount of
energy for those algorithms. Furthermore, the energy consumed
by P2P ML algorithms has not yet been adequately addressed.

The major contribution of this paper is two-folded: we propose
a generic methodology that can be used to analyze the energy
consumed by the centralized and decentralized ML algorithms.
Furthermore, using the proposed methodology, we give evidence
that executing ML algorithms in the P2P fashion is much more
energy-efficient on ARM-based processors of mobile devices than
in the traditional way of running ML algorithms on RISC-based
processors of servers. To the best of our knowledge, this is the first
attempt to evaluate the energy consumption of P2P ML algorithms
based on resource-limited devices like mobile phones. Next, we
propose P3, a novel P2P personalized ML algorithm that can run
on mobile devices, saving thus huge amounts of energy compared
to centralized schemes without any performance loss. Essentially,
P3 allows collaboration between peers, in order to improve upon
locally pre-trained models. It is equipped with a filtering scheme in
the collaborative learning phase, so that each peer only aggregates
information (gradients, in our case) from similar peers in its neigh-
borhood, by adjusting the range of acceptance, which is based on
distance evaluation.

Theoretically, we prove that our algorithm converges to a ball
centered at a critical point of a non-convex cost function, as de-
scribed in Section 2.1. Unlike standard works, we assume that peers
produce biased estimate of gradients, following the fact that we do
not assume any specific partitioning of the data among peers, which
is usually heterogeneous in real applications. We also show the exis-
tence of a critical iteration step during the pre-training phase, after
which collaboration is no longer beneficial to peers (see Section
3.2). Our experimental results show that the P3 algorithm consumes
significantly less energy when running on ARM-based processors,
compared to the case where P3 and any other centralized learning
(CL) algorithms are executed on RISC-based ones. We show that P3
executed on mobile devices is extremely energy-efficient, consum-
ing 2700x, 200x and 20x less energy than CL algorithms for 10, 100,
and 300 peers, respectively. These savings are achieved while main-
taining decent convergence properties and solving the traditional
problems of CL algorithms, such as SPoF and data privacy.

The major contributions of our work are summarized as follows:

e We propose a new and generic methodology for evaluat-
ing the energy consumption of ML algorithms running on
servers and Android mobile devices.

o Motivated by the results of our energy analysis, we design a
new Personalized P2P (P3) algorithm with a parameterizable

339

Basmadjian and Boubouh, et al.

personalization degree and prove its convergence properties
for non-convex objectives.

e We empirically show the advantage of P2P algorithms (e.g.,
P3) against centralized schemes in terms of energy consump-
tion without altering convergence properties.

e We conduct extensive experiments on a spectrum of Non-IID
data partitioning and network settings to validate the supe-
riority of our proposed algorithm in terms of convergence
properties.

The rest of the paper is organized as follows. We first introduce
the preliminary concepts and the model setting in Section 2. Sec-
tion 3 describes our algorithm and its theoretical guarantees. In
Section 4, we describe the proposed methodology for our energy
analysis. Section 5 presents a selection of experiments demonstrat-
ing the superiority of the P3 algorithm against a classical state-of-
the-art centralized algorithm in terms of convergence properties
and energy requirements. Finally, Section 6 discusses related works,
and Section 7 concludes the paper. For space limitations, we defer
all the proofs as well as additional experiments to an appendix.

2 PRELIMINARIES

We consider a set of users aiming to train a machine learning model
based on their local data while taking into account the models of
other anonymous users over the network. For this, users join a
decentralized P2P network graph playing the role of a semantic
overlay connecting similar users sharing similar tasks and objec-
tives, without revealing their identity or sharing their private data.
Each user learns a personalized model that reflects her raw data
and personal learning objective, while benefiting from the network
of similar users to improve her model with other users’ data in a
privacy-preserving way.

2.1 Problem Setting

Formally, we consider a set of n users organized in an undirected
connected graph G = (V, E). The vertex set V contains a set of n
peers, while E denotes the set of weighted edges between these
peers. We associate with G a symmetric non-negative similarity
matrix W € R™" to describe the similarity between peers, as sug-
gested in [13, 14]. Given two peers i and j, Wj; is the weight of the
edge (i, j) € E representing the similarity between the objectives
of i and j. W;; tends to be large (resp. small) if i and j have similar
objectives (resp. dissimilar). Furthermore, if i is not linked to j, the
similarity is equal to zero (i.e., W;; = 0). We also set W;; = 0 if
i = j. In static network graphs, these pairwise similarity weights
can be derived from user profiles (e.g., diabetes type, etc.), com-
puted directly from the local datasets, or learned jointly with the
model during training [15]. However, in dynamic networks, sim-
ilarity weights can be learned while training and can be used to
improve the set of neighbors of the peer [16]. Finally, we assume
that each peer i only communicates with its neighborhood, denoted
by Ni = {j : Wi; > 0}. o

Each peer i € [n] holds a local dataset S; = {x{,y; }J:‘1 com-
posed of m; = |S;| training samples, independently drawn from
the data distribution of the personalized ML problem of the peer.
We consider a feature space X; and a label space Y; defining a per-
sonalized supervised learning task, with an unknown probability

m;

On the Advantages of P2P ML on Mobile Devices

distribution P(Xj, Y;), and a loss function /. Ideally, a peer would
like to minimize the expected risk, defined as follows:

R(w) = / I(w,x?,y7)dP(x', y7)
XxY
Since P(x,y) is unknown, the empirical risk is usually used as
an unbiased estimate of the expected risk. It simply consists in
summing the losses over the peer’s local data:

m;

Run () = = > (w,xl, y)

mj =

1

2.2 P2P Personalized Learning

Training models in isolation, relying only on local data, can result
in either (1) learning weak models, if the peer has little data, or (2)
learning models that generalize very poorly, in the case of peers
holding data that is not representative of the global data distribution
(i.e., non-IID data). Furthermore, peers can have limited processing
capabilities (e.g., IoT devices) and be unwilling to share their raw
data due to privacy or communication constraints. Our goal is to
allow peers to participate in a decentralized collaborative learning
scheme. Here, peers can improve upon their locally trained models
and benefit from the data of other peers, while maintaining accurate
and personalized models with respect to their local data.

While the empirical risk is a good estimate of the true expected
risk when data points are independent and identically distributed
(i.i.d.), and most importantly, of adequate size, it is generally not the
case in real environments. As a matter of fact, peers often have a
limited number of non-i.i.d. data points. In our work, we allow peers
to collaborate after a pre-training, in order to eventually improve
their local models, by completing their information on the true data
distribution, using the neighbors’ gradients. Our cost function is
defined as follows for each peer:

1

N @

Fi(w) = iR, (w) + (1=)= D (Wi ()
JEN;

where p € [0,1] is a personalization parameter to control the
effect of the network updates over the locally computed updates.
Large values of p prevent the model from diverging too much from
the local data, while small values enable greater contribution from
the network. Interestingly, (2) include two extremes case: when
p — 1, peers learn purely local models, and when p — 0, peers

learn a global model.

3 P3 ALGORITHM AND ITS THEORETICAL
GUARANTEES

In this section, we present P3, a new collaborative learning algo-
rithm for personalized machine learning. The P3 algorithm uses
semi-asynchronous communication to exchange updates within
the neighborhood of peers without having a global scope of the
network. Note that P3 does not wait for all messages to finish be-
fore performing an update. This allows peers to perform updates
if a neighbor disconnects, or even in the worst scenario where no
messages arrive. Finally, we assume that each peer becomes active
when its local clock ticks following a Poisson distribution.

340

e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA

P3 Algorithm

Input : Network graph G; aggregation rule A; learning rate y
Output : w; optimal personalized model for every peer i € G.

1: upon event < p2p.Init > do

2: for each peeri € G do
3: w? « locally trained model wfoc
4 broadcastUpdate(0);

5: end event

6: procedure broadcastUpdate(t)
epoch t € [T]

7 D; « Draw s random samples without replacement from
Si;

8: ol = Ve(wh Dy)

9: trigger < p2p Broadcast|neighbors, [0}] >;

> Trigger collaboration at

10: upon event < p2p.Receive|neighbor, [05] > do
Vvt~ vty {zz;}
if enough gradients received for epoch ¢ then
collaborativeUpdate(V?);
broadcastUpdate(t + 1);
: end event
16: procedure collaborativeUpdate(V")
17: for each gradient 21; eVlido

11:
12:
13:
14:

2
18: if ‘vf - vJ[H < o then

accepted «— accepted U {z}

v — ,uivl.t + (1 — pi)A(accepted) » p; is a personalization
parameter

t+1 t_
AR e (¢

3.1 P3 Algorithm

The P3 algorithm consists of two phases: a local learning phase
where each peer learns a model wf"c locally, and a collaboration
phase where peers collaborate to enhance their locally trained
models.

3.1.1
an initial model w

Local Training Phase. During the local training, peers learn
f"c representative of their local data. However,
this step can lead to overfitting if the model is overtrained, thus
preventing the peer from generalizing its model using the shared
knowledge of the network graph, as discussed in Section 3.2.2. Fur-
thermore, peers can suffer from computation and energy constraints
even if they had enough data points to learn an accurate model,
as local training is computationally expensive and consumes more

energy compared to collaborative training (see Table 3).

3.1.2 Collaborative Training Phase. Once a peer i completes its
local training phase, it can start collaborating with its neighbors
to improve its local model, and compensate for any lack of data or
computation power. At each timestamp ¢, a peer i wakes up and
performs the following consecutive steps:

e Communication step: Peer i samples a mini-batch of size
s from its local dataset S; and broadcasts its gradient Uf to
its set of neighbors N;.

e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA

e Update step: Upon receiving enough gradients, each peer
i evaluates the received gradients and only selects the close
ones, by computing the norm squared ||z)l.t - U; ||> and making
sure it is less than a given value o. Updates that satisfy this

condition will be accepted and used to calculate the next

model update as follows:

v — ,uivg + (1 — pi)A(accepted)
where the value of y; is a personalization parameter, accepted
is the set of accepted gradient updates, and A is the aggregation

rule used. In our context, we use simple averaging; however, the
algorithm can support any aggregation rule.

3.2 Theoretical Guarantees

Similarly to previous works, we prove that the parameter vector
sequence progresses towards a region near a critical point of the
cost function. We use the following standard assumptions in our
analysis.

3.2.1 Assumptions.

ASSUMPTION 1. (Smoothness) F is L—Smooth:
Vw’, w, HVF(W') - VF(W)H <L Hw' - w“

AssuMPTION 2. (Biased gradient) The computed gradients G(w, &)
have a close norm and point in the same direction as the true gradient
VF(W):

(VEw),EG(w,) = p IVF(w)]?

AsSUMPTION 3. (Bounded second moment) For all w € R?, there
exist (M, N) € R? such that:

E|IG(w,)|I> < M+ N [[VF(w)]|?

3.2.2 Convergence Analysis. As opposed to standard distributed
machine learning [17-19], personalized machine learning allows
each peer to learn a different model. We therefore conduct a peer-
wise analysis, and show that each peer converges near a critical
point of its personalized cost function. We first prove an upper
bound on the expected error of the aggregated vector in Lemma 1.

LEMMA 1. Let o be the threshold set by a peer i, and let AG(wy)
be the aggregated gradient at wy. For each wy € R4, we have:
E|IAG(wi) = VF(wi)II* < U+ V [IVF(wp) |
where U = 2((1 — p)?0% + M) andV = 2(1+ N — p).
Next, we show in Lemma 2 that this aggregated vector is in-
deed pointing in the same direction as the true gradient of the

personalized cost function. For convenience, we define the sub-
space ‘W c RY as follows:

W:={weRd

(1-V)|IVFw)|*-U > 0}

LEMMA 2. Let Assumptions 2 and 3 hold. When w € ‘W, the
expected aggregated vector E[AG(w)] points in the same direction
as the true gradient VF(w), and we have:

LA, VF(w) = 5 (1= V) IVFe)I? - U)

341

Basmadjian and Boubouh, et al.
We now state our main theorem, proving convergence for gen-
eral (non-convex) cost functions.

THEOREM 4 (NON-CONVEX CONVERGENCE). Let Assumptions 1, 2
and 3 hold. If y < % andV < 1, then

2(F(w!) — F(w.))
Ty(1-V)

U
1-V

min E||[VF(wp)|]? <
Znin B IVF)|

Collaboration initial point. Note that, in Theorem 4, we use
wlo¢ as a starting point, which may be different from the initial point
wy of the algorithm, depending on whether peers proceed to a local
training before collaboration or not. In fact, when a peer pre-trains
the model using its local data for a certain number of iterations,
then its parameter vector sequence {wy }r~¢ is already progressing
towards a critical point of the empirical risk minimization sub-
problem, and therefore: F(wg)—F(wy) > F(w!°¢)—F(w,). However,
it should be noted that, in order to benefit from collaboration with
neighbors, the pre-training must stop before learning "too much"
on the peer’s local data. This statement is supported formally in our
results: progress towards a critical point (positive scalar product
in Lemma 2) is expected only if the parameter vector wy is inside
the subspace ‘W, which means that the gradient norm is still big
enough to be improved (||VF(w)||? > %) In other words, the
number of pre-training iterations E is upper-bounded by Ep 4y,
defined as follows:

U
=

Personalization degree. The parameter p and the number of
pre-training iterations E are crucial when setting the type of our
algorithm. As a matter of fact, we can switch to a standard collabo-
rative learning by setting p = 1 for every peer and bypassing the
pre-training step. When we set y = 0 and allow the pre-training,
each peer learns a first model, then totally relies on its close neigh-
bors to improve it. p values anywhere between 0 and 1 offer an
intermediary personalization degree. The filtering parameter o has
also an important role in the personalization process. When ¢ = 0,
the peer does not accept any gradients, and only uses its own gra-
dient estimation to update the parameter vector. Any other value
for o will eventually allow a certain number of neighbors to be
accounted for during the aggregation step.

Emax = max {k‘ ”VF(Wk)”z < 1

REMARK 1. Peers are free to choose the parameter o; for the filtering
step, but we set a constant o for every peer, to simplify the analysis.
Although we consider an honest setting involving only correct peers,
our work can easily be extended to a Byzantine setting. In fact, our
filtering component is already defending against basic attacks, such as
crash failures, random values or extreme values, since vectors that are
far from a peer’s estimated gradient are discarded, depending on the o
value. When dealing with Byzantine attacks, filtering schemes based
on norms can easily be fooled [20]. We can modify our algorithm
by simply replacing averaging by a robust aggregation rule, in the
aggregation step [21-24].

4 METHODOLOGY

In this section, we describe our proposed methodology for comput-
ing the energy consumption of the experiments (i.e., ML algorithms)

On the Advantages of P2P ML on Mobile Devices

Table 1: Hardware and software characteristics of the consid-
ered server for the single-instance use case.

Component Technology Characteristics
CPU Intel Xeon W-21232 1.2 GHz of min and
3.6 GHz of max speeds
RAM DDR4 1600 Capacity of 32 GB
(O8] Linux Ubuntu 20.04 LTS

presented in Section 5.2. To this end, two different hardware config-
urations are considered: server and mobile devices. For the first case,
a single server executes the corresponding algorithm of peer-to-
peer learning (e.g., P3) and centralized learning (e.g., CL) separately.
Note that the peer-to-peer environment of the P3 algorithm is real-
ized by simulating it on this single server instance. For the second
case, the corresponding P3 algorithm is run on multiple mobile
devices, thus realizing the real peer-to-peer environment. Figure 1
illustrates the hardware (e.g., server, mobile devices) as well as soft-
ware (e.g., P3 and CL algorithms) setup of the two aforementioned
cases. Our goal is to highlight the advantage of P3 compared to
centralized learning from an energy perspective, as it can be fully
deployed on mobile devices.

REMARK 2. The methodology presented in this section is a general
approach that can be applied directly, or easily extended to evaluate
the energy consumption of any machine learning algorithm running
on a CPU for both servers and mobile phones.

4.1 Server

In this setting, the single-server instance is used to execute the cor-
responding peer-to-peer (e.g., P3) and centralized (e.g., CL) learning
algorithms under study.

4.1.1 Configurations and Dataset. For our experiments, the under-
lying server has the hardware and software characteristics given
in Table 1. The processor of the server is equipped with 4 physical
cores, whereas the implementation of the corresponding algorithms
is realized using Python 3.8, as well as the PyTorch 1.9, Numpy 1.19
and Scikit-learn 1.0 libraries. The algorithms under study generated
different models by considering the MNIST! (Modified National
Institute of Standards and Technology) dataset. Such a dataset con-
sists of 60k and 10k sample points, for training and testing purposes,
respectively. To study the impact of the dataset size on the energy
consumption of the P3 and CL algorithms, the size of the MNIST
dataset is increased by a factor of 4, 16 and 32, with respect to the
original size (e.g., 60MB). Additionally, the cases of 10, 100 and 300
peers were considered for the P3 algorithm, whereas the number
of iterations (e.g., epochs) of the algorithms are set to 2 and 10.

4.1.2 Power Monitoring. As mentioned above, the CPU of the cor-
responding server is equipped with 4 physical cores operated by
the DVFS technology [25, 26] , such that each core can operate be-
tween minimum and maximum frequencies. To identify the optimal
configuration of the CPU’s frequency from the energy consump-
tion perspective, the following steps were carried out: (1) using

Thttp://yann.lecun.com/exdb/mnist/

342

e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA

the Linux operating system’s "userspace" governor, the specific
core of the CPU was configured to operate in the three different
frequencies MIN (1.2 GHz), MID (2.4 GHz) and MAX (3.6 GHz);
(2) the powerstat® software package was used to monitor system-
and power-relevant information such as the average speed (e.g.,
frequency), utilization, as well as power-demand of the CPU. This
software package started and ended with the execution of the cor-
responding algorithms under study. Hence, the aforementioned
monitored values were written onto a log file once the correspond-
ing algorithm terminated. To reduce the overhead of the powerstat
software package, it was executed on a core different from the one
on which the algorithms were running.

4.1.3 Pinning, Shielding and Consumption Calculations. The exper-
iments were carried out by disabling the virtualization technology
of the processor. Furthermore, each of the algorithms under study
was pinned to a specific core of the underlying quad-core CPU. In
order to ensure that the algorithms were not disturbed by back-
ground routines of the operating system as well as other running
applications, the core on which the algorithms were pinned was
also shielded. Consequently, it is ensured that only the correspond-
ing algorithm ran on that specific core of the CPU. Finally, to ensure
that the energy consumption of the algorithms under study is cap-
tured adequately: first, the frequency of the 4 cores of the CPU
was set to the minimum (e.g., 1.2 GHz); then, the server was kept
for 10 minutes at the idle state, and the mean power of the whole
CPU was calculated. Afterwards, the algorithms under study were
executed on a specific core by pinning and shielding, as explained
above. The frequency of that core was set to the aforementioned
three options of MIN, MID and MAX, whereas the frequency of the
other three cores was set to the minimum of 1.2 GHz. As a matter of
fact, the powerstat software package reported an average frequency
of the CPU (e.g., 4 cores) of 1.2, 1.38 and 1.77 GHz for MIN, MID
and MAX settings, respectively. Subsequently, we obtain the mean
power demand of the corresponding algorithm for each setting.
This is done by calculating the difference between (1) the average
demand of the CPU of the corresponding setting (e.g., MIN, MID,
and MAX) and (2) the average demand of the CPU at the idle state.
Finally, the energy consumption (Joules) of the algorithms under
study is calculated by multiplying the execution time (seconds) by
the mean power demand (Watt).

4.1.4 Annotation-based Power Profiling. For a fine-grain monitor-
ing of the energy consumption of the corresponding algorithms, a
power-profiler software feature was developed based on the profil-
ing library* of Python. The corresponding profiler can be integrated
directly inside specific places of the algorithms, by means of an-
notations. To this end, at the highest level, two power-profiling
annotations were added for local training and collaborative learning
phases, for the case of the P3 algorithm. Furthermore, additional
annotations were added inside each of the aforementioned two
phases, in order to obtain further insights about the frequency and
the total amount of time for each method called in each phase. Con-
sequently, in this way, an in-depth overview can be obtained on the
most energy-consuming methods and phases of the P3 algorithm.

3https://manpages.ubuntu.com/manpages/xenial/man8/powerstat.8.html
“https://docs.python.org/3/library/profile.html

http://yann.lecun.com/exdb/mnist/
https://manpages.ubuntu.com/manpages/xenial/man8/powerstat.8.html
https://docs.python.org/3/library/profile.html

e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA

Basmadjian and Boubouh, et al.

Mobile Devices Server Server
P3 P3 P3
Algorithm Algorithm Algorithm q
felllzontim CL Algorithm
[Message Passing / Shared]
Memory

- - = [Multi-core] [e] [Multi-core J [e }

ngorithm Algorithm Algorithm / CPU / CPU /
Peer-to-peer learning Peer-to-peer learning Centralized learning

Figure 1: Graphical presentation of the proposed methodology for the single and multiple instances while executing peer-to-
peer (P3 algorithm) as well as centralized learning (CL algorithm).

4.2 Mobile Devices

Under this setting, the P3 algorithm was realized in a real peer-to-
peer environment using multiple mobile devices, as shown on the
left box in Figure 1.

4.2.1 Configurations and Dataset. It was assumed that all the nodes
(e.g., mobile phones) have similar hardware and software (e.g., op-
erating system version) characteristics, which are given in Table 2.
The P3 algorithm was implemented using Python 3.8 and Numpy
1.19 libraries. Regarding the dataset, we use the same source (e.g.,
MNIST) and the same configuration as the single server case (see
Section 4.1.1).

4.2.2 Power and Energy Monitoring. Each node participating in
the peer-to-peer learning runs the P3 algorithm locally. For the
purpose of monitoring and collecting the energy consumption of
the corresponding algorithm, an open-source Android-based moni-
toring system was developed. The main objective of this tool is to
collect, based on the configured time interval (e.g., every second),
relevant KPIs (key performance indicators) of the selected mobile
application. To this end, the monitoring system can log, for instance:
the voltage, the current, the utilization of the CPU, the frequency
of the CPU, to name it few. All those KPIs are then used to compute
the energy consumption of the P3 algorithm. More details on the
monitoring system can be found in Appendix B.1

4.2.3 Energy Consumption Estimation. To appropriately calculate
the energy consumption of the algorithm under study, we first
disable all the unnecessary components such as GSM, GPS and
Bluetooth. Then, we run the monitoring application for 10 minutes

Table 2: Hardware and software characteristics of the consid-
ered mobile devices.

Component Technology Characteristics
CPU Qualcomm SDM710 1.7 GHz of min and
Snapdragon 710 2.2 GHz of max speeds
RAM DDRy Capacity of 4 GB
0os Android Version 11

343

long under these conditions to calculate the mean power of the An-
droid device at the idle state. Afterward, the algorithm is executed
and monitored to get the power usage during execution. Finally, we
subtract the idle power to calculate the actual energy consumption
of the algorithm.

5 EVALUATION

In this section, we present an exhaustive set of experiments to il-
lustrate the practical significance of our P3 algorithm in terms of
convergence and energy efficiency. We evaluate P3 under several
configurations, and compare it with two other state-of-the-art al-
gorithms for reference, such as FedAvg [2] in a federated learning
scheme and Model Propagation [13] in a P2P scheme.

5.1 Performance Evaluation

We evaluate the performance of P3 on server instances and Android
mobile phones. In the following, we present the experimental setup,
the considered metrics, and the obtained results.

5.1.1 Experimental Setup. We consider a set of 100 peers connected
in a P2P network graph built using a random network generator
following the Erd6s-Rényi model. We randomly sample the number
of neighbors for each peer from a uniform distribution defined by
the graph density parameter p € [0, 1]. The weight W;; between
peer i and j is given by the random network generator or by using
the auxiliary information of the peers. The personalization param-
eter y; was set to 0.5, which gave the best results on a held-out set
of random problem instances. y; can be increased if the peer has
more confidence in its local data. The value of ¢ can be either (1)
set manually to control the computation complexity and the model
personalization threshold, (2) estimated during the local training
by calculating the median of the norm squared between model
updates, or (3) estimated in the collaborative phase by taking the
median of the received gradients in the first collaborative round.
In our experiments, we manually set the value of ¢ to 0.3 in the
IID partitioning, 5 in the balanced non-IID partitioning, and 1 in
the unbalanced non-IID partitioning. In all conducted experiments
for P3, we use two local epochs e = 2 for the local learning phase,
unless stated otherwise.

On the Advantages of P2P ML on Mobile Devices

e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA

1.0

o
@
o
)

o o
ES o
e e
IS o

o
N
e
N

Test Accuracy over all peers
Test Accuracy over all peers

P3,e=10

0.0 0.0

B

o
©

o
o

o
IS

— P3,e=0
--- P3,e=2
P3,e=10

o
N

Test Accuracy over all peers

P3,e=10

0.0

0 100 200 300

iterations

500 0 100

(a) IID data partitioning

200
iterations

(b) Balanced non-IID partitioning

300

400 500 0 100 200 300 400

iterations

(c) Unbalanced non-IID partitioning

Figure 2: Training a feed-forward neural network on the MNIST dataset, partitioned in different configurations over n = 100
peers. Each experiments is done with different local training epochs e to demonstrate its effect on the convergence rate.

We choose image classification as a learning task performed by
each peer. For this, we train a deep neural network using the MNIST
dataset. MNIST consists of 10 categories, including digits ranging
from 0 to 9, with a total of 70,000 data samples (60,000 for training
and 10,000 for testing). We divide the dataset between peers in three
different ways:

o IID data partitioning: The data is shuffled, and then evenly
partitioned between 100 peers, each receiving 600 samples.

e Balanced non-IID partitioning: The data is first sorted
by digit label. We divide it into 200 shards of size 300, and
assign 2 shards to each of the 100 peers. Each peer receiving
600 samples containing only two categories of digits.

¢ Unbalanced non-IID partitioning: The data is first sorted
by digit label; we divide it into 200 shards of size 300, and
assign a random number of shards to each of the 100 peers.

All peers are assigned the same test set to assess the quality of
the trained models. We use the mean test accuracy over all peers
for model evaluation, unless stated otherwise. The experiments in
this section were conducted on a server with the characteristics
described in Table 1, and an Android device with the characteristics
described in Table 2. The source code was written in Python 3.8,
and the machine learning models were built using PyTorch 1.9 for
the server and Numpy 1.19 for Android. The source code of our im-
plementation is available on https://anonymous.4open.science/r/P3-
86D3.

The focus of this set of experiments is to demonstrate that P3
can learn optimal personalized models under both IID and non-IID
settings. Furthermore, we compare P3 against various algorithms
that learn either global or personalized models, and we confirm its
advantage compared to traditional personalized schemes in terms
of final accuracy of the model.

5.1.2 Experimental Results.

Convergence rate. Figure 2a demonstrates that P3 converges to an
optimal model after a number of collaborative rounds. We observe
that the number of local training epochs e performed by peers be-
fore joining the collaboration greatly affects the convergence speed.
However, performing too many local training epochs will result in
overfitting to the local data, and poor generalization over the net-
work. Furthermore, as local training is computationally expensive

344

and energy-consuming, weak devices can skip the local learning
step and still converge to the same model (e.g., P3, e = 0) at the
expense of convergence time.

Convergence under heterogeneous partitioning. In a realistic P2P
setting, peers are likely to hold non-IID data. In this set of exper-
iments, we show that P3 converges even in the extreme case of
non-IIDness, where the peer’s data scope is limited to only two
label classes. Figure 2 tracks the mean test accuracy of the trained
models under different heterogeneous partitioning. We observe in
Figure 2b that P3 converges even if the data is extremely hetero-
geneous, and achieves an accuracy comparable to the IID setting
(Figure 2a) but with a slower convergence rate. However, Figure 2c
shows that in unbalanced non-IID partitioning (where peers may
have more than 2 categories of samples), the convergence rate is
comparable with the IID setting.

Convergence on Android devices. Figure 3a shows the accuracy of
the model running on the mobile device (P3,pije) in conjunction
with the rest of the 100 peers (P3serper). We observe that P3popile
converges similarly to all the other 99 peers running on a server
instance. The fluctuation in accuracy (blue area) is a result of ran-
dom samples and neighbors attributed to the mobile device in each
execution. Furthermore, the time required by the mobile device to
finish one iteration is greater than peers running on computers;
however, it is much more energy-efficient (See section 5.2.2).

Comparing P3 to prior works. In this experiment, we study the
convergence behavior of P3 with two different schemes, a federated
learning scheme using FedAvg[2] and a P2P scheme using Model
Propagation[13]. In the federated learning scheme, we rely on a
server to aggregate the received updates from all the clients and use
the aggregated models to learn a single global model. Every client
performs one local training epoch per iteration similar to the com-
putation performed by peers in P3. In contrast, Model Propagation
runs in a P2P network, and each peer learns its own personalized
model similarly to P3. Figure 3b investigates the convergence be-
havior of the three algorithms. We observe that P3 has a better
starting accuracy, thanks to the local training phase, and converges
faster compared to FedAvg. In comparison to Model Propagation
(MP), P3 converges to a better model under the same conditions.

https://anonymous.4open.science/r/P3-86D3
https://anonymous.4open.science/r/P3-86D3

e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA

Basmadjian and Boubouh, et al.

~ =)
e e
EY o

Test Accuracy
Test Accuracy

e
IS

0.2

— P3server (all peers)
=== P3wmobile (One device)

0.8

0.6

Test Accuracy

o
IS

— P3mn)
-== MP (20
FedAvg s

= p=0.01

100 200 300 100

iterations

400 500

(a) P3 running on a mobile device

200

iterations

(b) P3 vs. FedAvg and Model Propagation

300

400 500 100 200 300

iterations

400

(c) P3 under different values of graph density.

Figure 3: Convergence behavior of P3. (a) P3 while running on a mobile device compared with the full set of peers. (b) P3
compared to FedAvg and Model Propagation (MP). P3 achieves good results compared to both schemes. (c) P3 under different
values of graph density. P3 converges to optimal models if the graph is not extremely sparse.

Effect of network density. To study the effect of network density,
we consider an Erdés-Rényi graph generator with a graph density
parameter pe[g 1] to control the density of the generated graph.
Small values of p result in sparse graphs (i.e., few neighbors), while
increasing the values of p results in more dense graphs (i.e., more
neighbors). In a denser graph, peers will have to preform more
computation (implying a higher energy consumption). Figure 3¢
illustrates the effect of network density on the performance of P3.
If the graph is not extremely sparse, P3 can still converge to optimal
models with less computation overhead. However, in extremely
sparse graphs (e.g., p = 0.01) P3 tend to perform poorly.

5.2 Energy Analysis

In this section, different energy consumption comparisons are given.
In Section 5.2.1, we compare centralized (e.g., CL) and peer-to-peer
(e.g., P3) learning algorithms by considering a single server setting.
We present the results of the analysis and identify the most energy-
efficient execution of those two algorithms under this setting. In
Section 5.2.2, we go one step further and compare single-server
against multiple mobile devices settings of our P3 algorithm.

5.2.1 P3versus CL on a Server Setting.

Optimal Consumption. The main objective of this analysis is
to determine the most energy-efficient setup for the P3 and CL
algorithms. To achieve this, we consider the methodology of Section
4.1. With the three considered frequencies MIN, MID, and MAX of
the underlying CPU, the computed average power of the considered
algorithms was 4, 6.5 and 19.5 Watts, respectively.

Figure 4 shows the energy consumption results of the P3 and
CL algorithms by considering the aforementioned three frequency
ranges of the single server. Note that configuring the core of the
CPU at the middle frequency results in the most energy-efficient
processing both for our P3 and CL algorithms. All other experiments
showed the same results. However, due to space limitations, we
only give the results for the case of 2 epochs. Consequently, we
conjecture that the most energy-efficient way of executing the P3
and CL algorithms is to set the frequency of the CPU at the middle
value (e.g., 2.4 GHz in our case).

345

Head-to-head. Figure 5 illustrates the comparison of the most
energy-efficient execution of our P3 and CL algorithms, by con-
sidering a dataset 32 times larger than MNIST (1.87 GB) for 10
epochs. For the peer-to-peer environment of our P3 algorithm, we
consider the cases of 10, 100 and 300 peers. Note that this was the
maximum limit on the number of peers that can be simulated on
the considered single-server instance.

The CL algorithm has a constant energy consumption, due to
the fact that there is no notion of peers in the case of centralized
learning. More precisely, the CL algorithm generates one generic
model by considering the whole dataset. On the other hand, for
the case of our P3 algorithm, one can see that for number of peers
between 10 and 100, both algorithms have comparable energy con-
sumption, with the P3 algorithm consuming 1.2 and 1.4 times more
than the CL algorithm. For larger number of peers (i.e., 300), the
gap between the two algorithms in terms of energy consumption
becomes larger. This is because our P3 algorithm consists of local
and collaborative training phases.

To analyse the energy consumed by each of those two phases,
we monitored them using the power profiler of Section 4.1.4. Table
3 gives the results of the carried-out analysis. It can be seen that the
energy consumed by the local training phase for different number
of peers is almost identical. Furthermore, for small number of peers
(i.e., 10 and 100), local training is the predominant phase. However,
for large number of peers (i.e., 300), both phases have similar energy
consumption, such that the energy consumption of the collaborative
learning increases with increasing number of peers.

To conclude the comparison between those two algorithms with
the single server setting, we believe that our P3 algorithm will have
the advantage over the CL algorithm, when considering larger sizes
(e.g., 10 GB and above) of the corresponding dataset even in the
single-server setting. The reason is that, for the CL algorithm, the
time required to generate one generic model increases exponentially
with the size of data. This is not the case for our P3 algorithm, which
generates models based on a subset of the dataset.

Discussion. Unlike CL, our P3 algorithm can be run on multiple
servers, where each one can be considered as a peer. Furthermore,
under this setting, it can be assumed that the number of peers do

On the Advantages of P2P ML on Mobile Devices

10 Peers of 2 Epochs for P3

EMIN mMID mMAX

T 18000
3 16000
-
§ 14000
S 12000
£
3 10000
5
S 8000
& 6000
Q
& 4000
w0 gy D

MNIST MNISTx4 MNISTx16 MNISTx32

Energy Consumption [Joules]

e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA

2 Epochs for CL

EMIN mMID ®mMAX

MNIST

12000

10000

8000

6000

4000

2000

MNISTx4 MNISTx16 MNISTx32

Figure 4: Energy consumption of the P3 and CL algorithms, considering minimum (1.2 GHz), middle (2.4 GHz) and maximum

(3.6 GHz) frequencies of the single server.

Table 3: Energy consumption in Joules of the two components
of local and collaborative training of our P3 algorithm.

Number of Peers Local Training [J] Collab Training [J]

10 37792 771
100 40064 7070
300 48455 30979

not exceed 20. For instance, a group of companies or hospitals can
execute our P3 algorithm collaboratively. It is shown in Figure 5
that both our P3 and CL algorithms have a similar energy consump-
tion. However, our P3 algorithm does not have the well-known
drawbacks of centralized learning algorithms such as (1) single
point of failure, (2) data security issues and (3) data privacy issues.
Moreover, the proposed P3 algorithm has the advantage of deriving
personalized models for each peer, which is not possible in the
case of any centralized machine-learning algorithm. Considering
all this, we believe that the main use case of our P3 algorithm is its
execution on mobile devices.

5.2.2 Server versus Mobile Devices Settings. Figure 6 shows the
results of our comparison between our P3 algorithm, both with

MNISTx32 with 10 Epochs
mP3 mCL

80000
60000
40000

20000

Energy Consumption [Joules]

10 Peers

100 Peers 300 Peers

Figure 5: Energy consumption comparison between the P3
and CL algorithms for the MNISTx32 dataset and 10 epochs.

346

server and mobile device settings, and the CL algorithm with the
server setting. For all three considered scenarios, the size of the
dataset was about 1.87 GB. Additionally, for our P3 algorithm, we
considered settings with 10, 100, and 300 peers. The results for the
P3 algorithm with the mobile device setting were realized using
the configuration of Section 4.2.1 and the developed android-based
monitoring system of Section 4.2.2.

One can see that our P3 algorithm (P3-mobile), when running
on ARM-based processors of mobile devices, is extremely energy-
efficient compared to the two other scenarios (P3-server and CL-
server) when running on RISC-based processors of the server. To
understand the significant gain in energy-efficiency of our P3 al-
gorithm when running on mobile devices, Figure 7 gives the total
execution times of the three considered scenarios. Note that the
execution times for the CL algorithm are the same for 10, 100, and
300 peers. The reason is that, in the CL algorithm, there is no notion
of peers. Comparing the execution times of the three considered
scenarios, we can see that the P3 algorithm, when running on mo-
bile devices, has execution times close to those of the two other
scenarios running on a server setting. However, the major gain is
in the power demand, where the P3 algorithm on mobile devices

MNISTx32 with 10 Epochs

W P3-server MCl-server M P3-mobile
79434
80000

60000

32778

40000

20000

Energy Consumption [Joules]

10 Peers

100 Peers 300 Peers

Figure 6: Energy consumption comparison between the P3
and CL algorithms running on server setting, and the P3 algo-
rithm running on mobile devices setting, for the MNISTx32
dataset and 10 epochs.

e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA

W 10 Peers m 100 Peers m 300 Peers
20000
=
)
£ 15000
=
5
= 10000
3 o
Q
3 —
5000
0

P3-server P3-mobile CL-server

Figure 7: Execution times (in seconds) of the P3 and CL al-
gorithms running on the server setting, and P3 algorithm
running on mobile devices setting, for the MNISTx32 dataset

and 10 epochs.

has an average demand of 796 yW, 300 yW and 320 uW, for 10,
100, and 300 peers, respectively. On the other hand, both P3 and
CL algorithms, when running on the single server setting, have an
average demand of 6 W.

This leads us to the conclusion that peer-to-peer machine-learning
algorithms, like the one we proposed in this paper, can take ad-
vantage of being executed on ARM-based processors. In addition
to the advantages with respect to centralized machine learning
algorithms, our results show that peer-to-peer algorithms consume
significantly less energy than the centralized ones, that need to be
executed on RISC-based processors. In our case, P3-mobile requires
2700x, 200x and 20x less energy than CL-server for the cases of 10,
100 and 300 peers, respectively.

6 RELATED WORK

Most work in decentralized machine learning has focused on dis-
tributed optimization techniques to learn one global model that
minimizes the local losses of all peers [27-32]. In this paper, we con-
sider a P2P setting where peers have total control over the models
they want to learn according to their local datasets and personal-
ized objective. Considerable work [13-16, 33] has been published
in this area of research. For instance, [13] relies on alternative direc-
tion method of multipliers [34] to solve the decentralized objective
function. The authors in [14] tackled the privacy issue related to
gradient exchange and proposed a differentially private algorithm
to learn personalized models under strong privacy requirements.
[16] suggested a Robust algorithm to fight against malicious peers,
and extended his work to support dynamic networks where peers
can change their neighbors if they are malicious or have no ben-
eficial information. To achieve lower communication costs, [15]
proposed an algorithm to simultaneously learn the network graph
with the models. Nevertheless, none of these works analyzed the
energy requirements of their proposed algorithms.

As a matter of fact, machine-learning algorithms are traditionally
used to generate forecasting models for demand [35-37] and gener-
ation [38-40] in energy field. However, the topic of estimating the
energy consumption of machine-learning algorithms has not yet

347

Basmadjian and Boubouh, et al.

been studied adequately in the literature [41]. The authors in [10]
proposed a methodology based on Python programming language
to measure the power demand of deep neural networks. Similar to
our approach, the proposed methodology is based on annotation
markers to identify the energy consumption of the different layers
of the network. DeLight was proposed in [12], where the authors
took energy consumption as one of the optimization criteria while
inferring the deep neural network. In [11] the NeuralPower was
proposed, which is a collection of regression-based estimation mod-
els of energy consumption for the different layers of the network.
The corresponding estimation models were built by considering
real power demand values using nvidia-smi software tool. Unlike
this approach, we do not provide power and energy prediction mod-
els: in our experiments, we obtained real power values monitored
directly at the CPU level.

The main goal of our paper is to demonstrate the advantage
of peer-to-peer learning when running on mobile devices. Hence,
unlike the above-mentioned contributions, we propose a methodol-
ogy to calculate the energy consumption of the machine-learning
algorithms under study (i.e. P3 and CL), both for server and mobile
devices settings. The proposed methodology serves to carry out
a comparison between the two algorithms and identify the most
energy-efficient setting. To the best of our knowledge, this is the
first attempt in the literature to provide such a comparison and
analysis. Additionally, as one of the contributions of this paper,
we demonstrate through carried-out experiments that the energy
consumption of the peer-to-peer algorithm is significantly lower,
when running on mobile devices, than that of the server setting.

7 CONCLUSION

Decentralized algorithms are usually considered for their advan-
tages w.r.t. scalability, high availability (i.e., resilience to SPOFs),
and strong privacy guarantees. In this paper, we highlight another
major advantage over centralized architectures, namely: energy ef-
ficiency. To support our claim, we introduced a novel methodology
for estimating the energy requirements of ML algorithms running
on CPUs. To our best knowledge, this is the first work that pro-
poses a methodology for evaluating the energy consumption of P2P
algorithms. Motivated by the results of our energy analysis, we de-
signed P3, a new P2P algorithm to learn personalized models based
on every peer’s local data and computation capabilities (energy
requirements). We demonstrate, both theoretically and practically,
that P3 converges to optimal models under realistic assumptions. In-
terestingly, we show that running P3 on mobile devices is extremely
energy-efficient, consuming 2700x, 200x and 20x less energy than
classical centralized algorithms for a network of 10, 100, and 300
peers, respectively, without altering the convergence properties
(convergence rate and statistical error).

As future work, we plan to consider the presence of Byzantine
peers and support dynamic networks, where peers can join or leave
the network, or even disconnect from irrelevant neighbors. We
can also consider using GPUs instead of CPUs in the experiments
involving the server, since GPUs are notoriously known for their
energy efficiency.

On the Advantages of P2P ML on Mobile Devices

REFERENCES

(1]

(2]

[3

(4]

[9

=

[10]

(11

[12]

[13]

[14]

[17]

[18

[19]

[20

[21]
[22]

[23]

[24]

[25]

[26

[27]

[28]

M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. Andersen, and A. Smola, “Parameter
server for distributed machine learning,” in Big learning NIPS workshop, vol. 6,
2013, p. 2.

H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized data,” in
Artificial Intelligence and Statistics (AISTATS), 2017.

S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv
preprint arXiv:1609.04747, 2016.

M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long,
E. J. Shekita, and B.-Y. Su, “Scaling distributed machine learning with the pa-
rameter server,” in 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), 2014, pp. 583-598.

R. Basmadjian, “Flexibility-based energy and demand management in data centers:
a case study for cloud computing,” Energies, vol. 12, no. 17, p. 3301, 2019.

R. Basmadjian, P. Bouvry, G. Costa, L. Gyarmati, D. Kliazovich, S. Lafond, L. Lau-
rent, H. Meer, J.-M. Pierson, R. Pries et al., “Green data centers,” Large-Scale
Distributed Systems and Energy Efficiency: A Holistic View, pp. 159-196, 2015.

Y. Liu, X. Wei, J. Xiao, Z. Liu, Y. Xu, and Y. Tian, “Energy consumption and
emission mitigation prediction based on data center traffic and PUE for global
data centers,” Global Energy Interconnection, vol. 3, no. 3, pp. 272-282, Jun. 2020.
M. Avgerinou, P. Bertoldi, and L. Castellazzi, “Trends in data centre energy con-
sumption under the european code of conduct for data centre energy efficiency,”
Energies, vol. 10, no. 10, p. 1470, Sep. 2017.

D. Patterson, J. Gonzalez, U. Holzle, Q. Le, C. Liang, L.-M. Munguia, D. Rothchild,
D. So, M. Texier, and J. Dean, “The carbon footprint of machine learning training
will plateau, then shrink,” arXiv preprint arXiv:2204.05149, 2022.

C. F. Rodrigues, G. Riley, and M. Lujan, “Fine-grained energy profiling for deep
convolutional neural networks on the jetson TX1,” in 2017 IEEE International
Symposium on Workload Characterization (IISWC). IEEE, Oct. 2017.

E. Cai, D.-C. Juan, D. Stamoulis, and D. Marculescu, “NeuralPower: Predict and
deploy energy-efficient convolutional neural networks,” Oct. 2017.

B. D. Rouhani, A. Mirhoseini, and F. Koushanfar, “Delight: Adding energy dimen-
sion to deep neural networks,” in Proceedings of the 2016 International Symposium
on Low Power Electronics and Design, ser. ISLPED 16, 2016, p. 112-117.

P. Vanhaesebrouck, A. Bellet, and M. Tommasi, “Decentralized collaborative
learning of personalized models over networks,” in Artificial Intelligence and
Statistics (AISTATS), 2017.

A. Bellet, R. Guerraoui, M. Taziki, and M. Tommasi, “Personalized and private
peer-to-peer machine learning,” in Artificial Intelligence and Statistics (AISTATS),
2018.

V. Zantedeschi, A. Bellet, and M. Tommasi, “Fully decentralized joint learning of
personalized models and collaboration graphs,” in International Conference on
Artificial Intelligence and Statistics (AISTATS), 2020.

K. Boubouh, A. Boussetta, Y. Benkaouz, and R. Guerraoui, “Robust p2p personal-
ized learning,” in 2020 International Symposium on Reliable Distributed Systems
(SRDS). IEEE, 2020, pp. 299-308.

L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale
machine learning,” SIAM Review, vol. 60, no. 2, pp. 223-311, 2018.

S. Shalev-Shwartz and T. Zhang, “Stochastic dual coordinate ascent methods for
regularized loss,” J. Mach. Learn. Res., vol. 14, pp. 567-599, 2013.

R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and P. Richtarik,
“SGD: General analysis and improved rates,” in Proceedings of the 36th International
Conference on Machine Learning, vol. 97, 09-15 Jun 2019, pp. 5200-5209.

E. M. El Mhamdi, R. Guerraoui, and S. Rouault, “The hidden vulnerability of dis-
tributed learning in Byzantium,” in Proceedings of the 35th International Conference
on Machine Learning, J. Dy and A. Krause, Eds., vol. 80, 2018, pp. 3521-3530.

D. Yin, Y. Chen, K. Ramchandran, and P. Bartlett, “Byzantine-robust distributed
learning: Towards optimal statistical rates,” 2018.

C. Xie, O. Koyejo, and I. Gupta, “Phocas: dimensional byzantine-resilient stochas-
tic gradient descent,” 2018.

A. Boussetta, E.-M. El-Mhamdi, R. Guerraoui, A. Maurer, and S. Rouault, “AKSEL:
Fast Byzantine SGD,” in 24th International Conference on Principles of Distributed
Systems (OPODIS 2020), vol. 184, 2021, pp. 8:1-8:16.

C. Xie, O. Koyejo, and I. Gupta, “Generalized byzantine-tolerant sgd,” arXiv
preprint arXiv:1802.10116, 2018.

R. Basmadjian, F. Niedermeier, and H. de Meer, “Modelling performance and
power consumption of utilisation-based dvfs using m/m/1 queues,” in Proceedings
of the Seventh International Conference on Future Energy Systems, 2016, pp. 1-11.
R. Basmadjian and H. de Meer, “Modelling and analysing conservative governor
of dvfs-enabled processors,” in Proceedings of the Ninth International Conference
on Future Energy Systems, 2018, pp. 519-525.

J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for distributed
optimization: Convergence analysis and network scaling,” IEEE Transactions on
Automatic Control (TACON), pp. 592-606, 2012.

Z.Jiang, A. Balu, C. Hegde, and S. Sarkar, “Collaborative deep learning in fixed
topology networks,” in International Conference on Neural Information Processing

348

[35

[36

[37

(38]

[39]

[40

[41

e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA

Systems (NIPS), 2017, pp. 5906-5916.

H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “D2: Decentralized training over
decentralized data,” in International Conference on Machine Learning (ICML), 2018.
A. Nedic and A. E. Ozdaglar, “Distributed subgradient methods for multi-agent
optimization,” IEEE Transactions on Automatic Control (TACON), vol. 54, 2009.
S. S. Ram, A. Nedic, and V. V. Veeravalli, “Distributed stochastic subgradient
projection algorithms for convex optimization,” Journal of Optimization Theory
and Applications (JOTA), pp. 516-545, 2010.

E. Wei and A. E. Ozdaglar, “Distributed alternating direction method of multipli-
ers,” IEEE Conference on Decision and Control (CDC), pp. 5445-5450, 2012.

L. Almeida and J. M. F. Xavier, “Djam: Distributed jacobi asynchronous method
for learning personal models,” IEEE Signal Processing Letters (SPL), vol. 25, pp.
1389-1392, 2018.

S. P. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers,”
Foundations and Trends in Machine Learning, vol. 3, pp. 1-122, 2011.

S. Bouktif, A. Fiaz, A. Ouni, and M. Serhani, “Optimal deep learning LSTM
model for electric load forecasting using feature selection and genetic algorithm:
Comparison with machine learning approaches,” Energies, Jun. 2018.

N. Shabbir, R. Ahmadiahangar, L. Kutt, and A. Rosin, “Comparison of machine
learning based methods for residential load forecasting,” in 2019 Electric Power
Quality and Supply Reliability Conference (PQ) & 2019 Symposium on Electrical
Engineering and Mechatronics (SEEM). IEEE, Jun. 2019.

S. Jurado, A. Nebot, F. Mugica, and N. Avellana, “Hybrid methodologies for elec-
tricity load forecasting: Entropy-based feature selection with machine learning
and soft computing techniques,” Energy (Oxf.), vol. 86, pp. 276-291, Jun. 2015.
M. N. Rahman, A. Esmailpour, and J. Zhao, “Machine learning with big data an
efficient electricity generation forecasting system,” Big Data Research, 2016.

K. Mahmud, S. Azam, A. Karim, S. Zobaed, B. Shanmugam, and D. Mathur,
“Machine learning based pv power generation forecasting in alice springs,” IEEE
Access, vol. 9, pp. 46 117-46 128, 2021.

N. Sharma, P. Sharma, D. Irwin, and P. Shenoy, “Predicting solar generation from
weather forecasts using machine learning,” in 2011 IEEE International Conference
on Smart Grid Communications (SmartGridComm). IEEE, Oct. 2011.

E. Garcia-Martin, C. F. Rodrigues, G. Riley, and H. Grahn, “Estimation of energy
consumption in machine learning,” Journal of Parallel and Distributed Computing,
vol. 134, pp. 75-88, 2019.

e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA Basmadjian and Boubouh, et al.

A PROOFS OF THEORETICAL RESULTS

In this section, we present the proofs of our theoretical findings. For convenience, we restate the results, as appearing in the main paper.

A.1 Proof of Lemma 1
LEMMA 3. Let o be the threshold set by a peer i and AG(wy.) be the aggregated gradient at wy.. The following holds true for every wy € R%:
E | AG(wy) = VE(wio)II* < U + V IV (wp)[|*
where U = 2((1 — p)?0% + M) andV = 2(1+ N — p).
Proor. We first upper bound the error of a local gradient estimation. Let G;(wy) be the estimation of the gradient computed by peer i at
round k. We have then:
E|Gi(w) = VF(wi)lI* = ElIGi (wi)II* = (BIGi(wi)]. VF(wi)) + [IVF (wio) I
< M+ N IVE(w)lI? = p [IVE(wp)|I?
=M+ (1+N = p) [IVE(wp)|? ®)
We now derive an upper bound on the aggregated vector AG(wy) = uG;(wg) + (1 — p)A(wy), where A(wy) is the average of the accepted
gradients. Let p be the number of gradients A;(wy) that passed the angular filter. We have then:
E | AG(wk) = VF(wi)lI* = E [[nGi(wie) + (1 =) A(wg) = VF (wp)|*
2

p

= B |[1Gi(w) + (1 - 1) (% ZAj(Wk)) ~ VF(wg)
j=1

2

)
= E|luGi(wi) = Gi(wi) + Gi(wg) + (1= p) (% ZAj(Wk)) = VF(wg)
=1

2
»
=E|-(1-p)Gi(we) + (1 - p) (% ZAj(Wk)) +Gi(wi) = VF(wi)
j=1
2

P
= EB||(1-p) ((% ZAJ«wk)) - Gi(wk>) +Gi(wy) — VF(wy)
J=1

2

P
=EB||(1-p) (% 34w - Gi<wk>)) +Gi(wy) ~ VE(wy)

j=t
Using the inequality ||a — b]|? < 2||a||? + 2||b]|, we obtain:

2
P
B AG (wi) = VF(wi) |2 < 2E||(1 - p) (}7 D (Ajwe) - Gi(ww)) +2E[IGi(wg) - VF(wp) 1
J=1

2

_)2 p
32(117”) E Z(Aj(Wk)—Gi(Wk)) +2E[|Gi(wg) — VF(wp) |2
=

Applying Cauchy-Schwartz in the last inequality gives:

N2 P
EIAG(wy) = VE(wy)|I* < 2 (17") P D E[lA; () = GiCw)[) + 2B 1Gi (i) = VE(wi) I
j=1

By construction of the algorithm, a peer i only accepts vectors A;(wy) such that ||A j(wg) = G,~(wk)H2 < ¢2. Using this fact and Inequality
(3), we obtain:

BlIAG(wg) = VE(wp)lI? < 2(1 =)?0® +2(M + (14 N = p) [|[VF(wy)|1?)
=2((1-p?c® + M) +2(1+N = p) [[VF(wp)|I?

which concludes the proof. o

349

On the Advantages of P2P ML on Mobile Devices e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA

A.2 Proof of Lemma 2
We first define the subspace ‘W c R? as follows:

W = {w eR|(1=V) IVE(W) |2 -U > 0}

LEMMA 4. Let Assumptions 2 and 3 hold. When w € ‘W, the expected aggregated vector E[AG(w)] points in the same direction as the true
gradient VF(w), and we have:

BIAG(W] VEw) 2 (1= V) IVF() I - U)

Proor. Using Jensen’s Inequality, we have for all wy, € R? :
IBIAG(wie)] = VE(wi)I* < B [IAG(wy) = VE(w) |

<U+V||VE(wp)|?
N—————— —
r2

where the last inequality comes directly from Lemma 1.
The fact that |E[AG(wg)] — VF(wg) 1> < r2 means that E[AG(wg)] belongs to a ball centered at VF(wy) with radius . We have then:

IB[AG(wi)] = VE(wi) 1> = [B[AG(wio)][I = 2(BIAG (wi)], VF (w)) + [VF (wio) |* < r?
2(B[AG (wi)], VF(wi)) = [[E[AG(wi)ll|* + IVF (wi) 1> - r* 4)
Since wy, € ‘W, which means that U < (1 — V) ||[VF(wy)||?, we also have:
r
—— <1
IVF(wi)l

Let us define 0 € [0, 7] such that sin 0 = m. Furthermore, using the triangle inequality, we have ||[E[AG(wi]|| = [[VF((w)]| —r.
Therefore, ||[E[AG(w]|| = (1 —sin @) || VF((wg)||. Using this in (4), we obtain:

2(B[AG (wp)], F(wi)) = [IE[AG(wi)ll|* + IVF(wi) 1> - r®
> (1-sin6)* | VF(wi) > + | VE(wp) | = sin® 6 | VF (wy) ||
=2(1-sin0)? |[VF(wp)|I?.
and therefore:
(B[AG(wp)], VE(wg)) = (1= sin0)* | VF (wy)[I?
> (1 - sin8) ||[VF(wy)||% (since 0 < 1 —sinf < 1)
Substituting sin § = W above, we obtain:

(E[AG(wp)], VE(wi)) = IVF(wi)|I? = r [[VE(wy) |

> (19F w0 -)

\Y

\

Recall that 2 = U + V || VF(w) ||2. Substituting this above concludes the proof. o

A.3 Proof of the main theorem
THEOREM 5 (NON-CONVEX CONVERGENCE). Let Assumptions 1, 2 and 3 hold. Ify < % andV < 1, then
2(F(wh®) — F(w,)) U
Ty(1-V) 1-V

min E||VF z <
ke[erl] [IVF(wi)l

Proor. We proceed by upper bounding the norm of the gradient, depending on the parameter vector w’s membership in the subspace W.
Trivially, when w ¢ ‘W, we have, by construction of “W:

Yw e W, |[VF(w)? 5
weW, IVFwI < — ©)
We now analyze the case where w € “W. Under Assumption 1, we have:
L
F(wpy1) = F(wg = yAG(wy)) < F(wie) = y{F(wie), AG(wp)) +y* S IIAG (w1 (©)

350

e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA Basmadjian and Boubouh, et al.

Using the fact that ||[F(wg) — AG(wi)|1? = [F(wp)l|? = 2(F(wg), AG(wy)) + |AG (w2, (6) becomes
F(wiyq) < F(wg) = y(1 = yL)(F(wg), AG(wg))

7
#1722 (4G (we) = FOu I = IE w1 7
By taking the expectation E [-] on both sides in (7), we obtain:
E[F(wis1)] < F(wie) = y(1 = yL){F(w), E[AG(wi)])
8
+22 (B[14G(w) = Fw] = I1EGu)) ®
Using Lemma 1 and the fact that y < £, we obtain:
E[F(wit1)] < F(wg) = %Y(l —yD((1 =V [F(wp)lI? = U) o
9
+°% (B[IAG(w) = Fw] = I1FGu))
Using Lemma 2 in (9), we also have:
BIF(wgan)] < FOw) = 2v(1=yD) (1= V) IFGw |2 - U) (
10)
2 (U + v IFGOI?) = 1o 1P)
Rearranging the terms gives:
B[E(wgan)] < FOwg) = L=) IEGu P+ 2 (ay
which is equivalent to:

y(1-V) 1-V
Let E denote the total expectation taken with respect to the joint distribution of all random variables from iteration 1 to T. We have then:

2EBF(wi)] ~E[F(wir)D) U

E|VF 2< 1
IVF(wi)llI* < Y=V - (13)
By summing both sides through [1,-- -, T], we get:
T loc
2(E[F - E[F
P y(1-V) 1-V
Dividing the last inequality by T gives:
T locy _
2|23 RG] < 2 Bl U (15)
T & Ty(1-V) 1-v
And using the fact that E[F(wr41)] > F(ws), we obtain:
T loc
1 2(F(w) = F(wy)) U
E|= » IIVF 2l < 1
TkZ_l” (we)] <—ram v (16)
which also means that ,
. 2(F(w?°) —F(ws)) U
E[|IVF 7 < . 1
i [IVF(w)ll?] < 0=V — (17)
Finally, by combining (5) and (17), we obtain, Yw € RY:
) 2(F(w¢) = F(wy)) U U
E[IVF(w)I?] < 1
Sier [IIVF(wi)l?] _max{ Ty(1-V) 1-V'1-V (18)
2(F locy _ 5
_ (PG F(w) | U 9
Ty(1-V) 1-V
which concludes the proof. o

351

On the Advantages of P2P ML on Mobile Devices e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA

B ADDITIONAL DETAILS ON EXPERIMENTS
B.1 Energy Monitoring Application

Figure 8 presents screenshots of the implemented Android-based monitoring system. In the left picture, we can select which application
to monitor. Once an application is selected, the monitoring application switches to a new information screen, we can find the name
of the monitored application (e.g., the P3 algorithm in our case), the start time and the execution time. In the battery statistics part,
one can find information related to the voltage, current, power and energy consumption. Finally, the CPU and memory statistics part
illustrates the overall utilization of the CPU and memory occupation, respectively. The source code of the Power Monitor is available on:
https://anonymous.4open.science/r/PowerManager-7CB3/

Select an application you want to monitor Appicatoninfa .
Name P3 algorithm
Launch date 22/01 14:24:58
Execution time 3 seconds
Battery Statistics 39%
Battery capacity 3765.0 mAh
Battery status Discharging
Battery temperature 16.3 °C
| Cic o Battery voltage 3.735'V
=y Battery current 639 pA
Power demand 2386 pWatts
Energy consumption 8391 pJ
CPU Statistics 64 %
CPU cores 8 cores
CPU 0:1.21 Ghz (70%) CPU 1:1.21 Ghz (70%)
CPU 2:1.21 Ghz (70%) CPU 3:1.21 Ghz (70%)
CPU 4:1.52 Ghz (88%) CPU 5:1.52 Ghz (88%)
‘ - CPU 6: 652 Mhz (29%) CPU 7: 652 Mhz (29%)
Memory Statistics 67 %
Total memory 3.53GB
Used memory 2.4019 GB

Figure 8: The developed Android monitoring application.

B.2 Energy Consumption of FedAvg

In this experiment, we want to compare the energy consumption of our P3 algorithm with a federated learning (FL) scheme using the FedAvg
algorithm. FL has a hybrid architecture, as it relies on workers (i.e., mobile devices in our case) to do the actual training of the models locally
and a server parameter to aggregate the received updates.

For a given number of iteration, every worker trains the model on its local data for a given number of epochs. The higher the number of
train epochs, the more energy required from the worker to finish the task. In our experiment, each worker trains only for one epoch per
iteration.

We present in our experiment a lighter variant of FedAvg named e-FedAvg. Here, workers only draw random samples from the local data
similar to the broadcastUpdate() of P3 and train the received model for one epoch.

Figure 9 shows the results of our comparison between our P3 algorithm, both versions of the FL scheme (i.e., FedAvg and e-FedAvg) and
the CL scheme. We considered settings with 10 peers using MNISTX32. We observed that P3 consumes X591 times less energy than FedAvg
with one epoch. In contrast, e-FedAvg was much more efficient. Yet, P3 was X9 times more efficient than e-FedAvg.

352

https://anonymous.4open.science/r/PowerManager-7CB3/

e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA Basmadjian and Boubouh, et al.

MNIST X32 | 10 Peers

32778
35000

30000
25000
20000
15000
7687
10000

5000 13 116
A A

Energy consumption [Joules]

P3-Mobile e-FedAvg FedAvg CL

Figure 9: Energy consumption comparison between our P3 algorithm, FedAvg, e-FedAvg (lighter version of FedAvg) and CL. P3
and the workers in the federated learning (FL) scheme are running on mobile devices, while the aggregator for FL and CL are
running on a server.

353

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Setting
	2.2 P2P Personalized Learning

	3 P3 Algorithm and its Theoretical Guarantees
	3.1 P3 Algorithm
	3.2 Theoretical Guarantees

	4 Methodology
	4.1 Server
	4.2 Mobile Devices

	5 Evaluation
	5.1 Performance Evaluation
	5.2 Energy Analysis

	6 Related Work
	7 Conclusion
	References
	A Proofs of Theoretical results
	A.1 Proof of Lemma 1
	A.2 Proof of Lemma 2
	A.3 Proof of the main theorem

	B Additional details on experiments
	B.1 Energy Monitoring Application
	B.2 Energy Consumption of FedAvg

