Distributed Computing (2022) 35:305-331
https://doi.org/10.1007/s00446-022-00427-9

®

Check for
updates

Genuinely distributed Byzantine machine learning

El-Mahdi EI-Mhamdi' - Rachid Guerraoui' - Arsany Guirguis'® - L&-Nguyén Hoang' - Sébastien Rouault’

Received: 1 December 2020 / Accepted: 11 April 2022 / Published online: 26 May 2022
© The Author(s) 2022

Abstract

Machine learning (ML) solutions are nowadays distributed, according to the so-called server/worker architecture. One server
holds the model parameters while several workers train the model. Clearly, such architecture is prone to various types of
component failures, which can be all encompassed within the spectrum of a Byzantine behavior. Several approaches have been
proposed recently to tolerate Byzantine workers. Yet all require trusting a central parameter server. We initiate in this paper the
study of the “general” Byzantine-resilient distributed machine learning problem where no individual component is trusted.
In particular, we distribute the parameter server computation on several nodes. We show that this problem can be solved
in an asynchronous system, despite the presence of % Byzantine parameter servers (i.e., npy > 3 fps + 1) and % Byzantine
workers (i.e., ny, > 3 f,), which is asymptotically optimal. We present a new algorithm, ByzSGD, which solves the general
Byzantine-resilient distributed machine learning problem by relying on three major schemes. The first, scatter/gather, is a
communication scheme whose goal is to bound the maximum drift among models on correct servers. The second, distributed
median contraction (DMC), leverages the geometric properties of the median in high dimensional spaces to bring parameters
within the correct servers back close to each other, ensuring safe and lively learning. The third, Minimum-diameter averaging
(MDA), is a statistically-robust gradient aggregation rule whose goal is to tolerate Byzantine workers. MDA requires a loose
bound on the variance of non-Byzantine gradient estimates, compared to existing alternatives [e.g., Krum (Blanchard et al.,
in: Neural information processing systems, pp 118-128, 2017)]. Interestingly, ByzSGD ensures Byzantine resilience without
adding communication rounds (on a normal path), compared to vanilla non-Byzantine alternatives. ByzSGD requires, however,
a larger number of messages which, we show, can be reduced if we assume synchrony. We implemented ByzSGD on top
of both TensorFlow and PyTorch, and we report on our evaluation results. In particular, we show that ByzSGD guarantees
convergence with around 32% overhead compared to vanilla SGD. Furthermore, we show that ByzSGD’s throughput overhead
is 24-176% in the synchronous case and 28—-220% in the asynchronous case.

Keywords Distributed machine learning - Robust machine learning - Byzantine fault tolerance - Byzantine parameter servers

1 Introduction
1.1 The fragility of distributed ML
Distributing machine learning (ML) tasks seems to be the

only way to cope with ever-growing datasets [16,39,49]. A
common way to distribute the learning task is through the

An early version of this paper [23] appeared in the 39th Symposium
on Principles of Distributed Computing (PODC), 2020.
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now classical parameter server architecture [45,46]. In short,
a central server holds the model parameters (e.g., weights of
a neural network) whereas a set of workers perform gradi-
ent computation (e.g., using backpropagation [35]), typically
following the standard optimization algorithm: stochastic
gradient descent (SGD) [55], on their local data, using the
latest model they pull from the server. This server in turn
gathers the updates from the workers, in the form of gradi-
ents, and aggregates them, usually through averaging [40].
This scheme is, however, very fragile because averaging does
not tolerate a single corrupted input [11], whilst the multi-
plicity of machines increases the probability of a misbehavior
somewhere in the network.

This fragility is problematic because ML is expected to
play a central role in safety-critical tasks such as driving and
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flying people, diagnosing their diseases, and recommending
treatments to their doctors [25,43]. Little room should be
left for the routinely reported [10,29,50] vulnerabilities of
today’s ML solutions.

1.2 Byzantine-resilient ML

Over the past few years, a growing body of work, e.g., [4,8,11,
15,20,60,63,67], took up the challenge of Byzantine-resilient
ML. The Byzantine failure model, as originally introduced
in distributed computing [42], encompasses crashes, soft-
ware bugs, hardware defects, message omissions, corrupted
data, and even worse, hacked machines [9,64]. So far, all
the work on Byzantine-resilient ML assumed that a fraction
of workers could be Byzantine. But all assumed the central
parameter server to be always honest and failure-free." In
other words, none of the previous approaches considered a
genuinely Byzantine-resilient distributed ML system, in the
distributed computing sense, where no component is trusted.
Consider a multi-branch organization with sensitive data,
e.g., a hospital or a bank, that would like to train an ML
model among its branches. In such a situation, the worker
machines, as well as the central server, should be robust to
the worst: the adversarial attacks.

A natural way to prevent the parameter server from being
a single point-of-failure is to replicate it. But this poses
the problem of how to synchronize the replicas. The clas-
sical synchronization technique, state machine replication
[13,56] (SMR), enforces a total order for updates on all
replicas through consensus, providing the abstraction of a
single parameter server, while benefiting from the resilience
of the multiplicity of underlying replicas. Applying SMR to
distributed SGD would however lead to a potentially huge
overhead. In order to maintain the same state, replicas would
need to agree on a total order of the model updates, inducing
frequent exchanges (and retransmissions) of gradients and
parameter vectors, that can be several hundreds of MB large
[39]. Given that a distributed ML setup is network bound
[36,70], SMR is impractical in this context.

The key insight underlying our paper is that the general
Byzantine SGD problem, even when neither the workers nor
the servers are trusted, is easier than consensus (which is
based on SMR in the distributed computing sense), i.e., total
ordering of updates is not required in the context of ML
applications; only convergence to a good final accuracy is
needed. We thus follow a different route where we do not
require all the servers to maintain the same state

I Some works, e.g., [34], used multiple servers to do multi-party com-
putation (MPC) to solve the problem of untrusted servers. Although
MPC achieves privacy, it is not Byzantine-resilient: it tolerates honest-
but-curious servers but not Byzantine (e.g., malicious) servers.
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. Instead, we allow mildly diverging parameters (which
have proven beneficial in other contexts [5,71]) and present
new ways to contract them in a distributed manner.

1.3 Contributions

In short, we consider, for the first time in the context of dis-
tributed SGD, the general Byzantine ML problem, where no
individual component is trusted, in the context of i.i.d. local
data distributions. First, we show that this problem can be
solved in an asynchronous setting. We then show how we
can utilize synchrony to boost the performance of our asyn-
chronous solution.

Our main algorithm, ByzSGD, achieves general resilience
without assuming bounds on communication delays, nor
inducing additional communication rounds (on a normal
path), when compared to a non-Byzantine resilient scheme.
We prove that ByzSGD tolerates % Byzantine servers (i.e.,
nps > 3fps+1)and % Byzantine workers (i.e., ny > 3 fy),
which is asymptotically optimal in an asynchronous setting.
ByzSGD employs a novel communication scheme, Scat-
ter/Gather, that bounds the maximum drift between models
on correct servers. In the scatter phase, servers work inde-
pendently (they do not communicate among themselves)
and hence, their views of the model could drift away from
each other. In the gather phase, correct servers communicate
and apply collectively a Distributed Median-based Contrac-
tion (DMC) module. This module is crucial for it brings
the diverging parameter vectors back closer to each other,
despite each parameter server being only able to gather a frac-
tion of the parameter vectors. Interestingly, ByzSGD ensures
Byzantine resilience without adding communication rounds
(on a normal path), compared to non-Byzantine alternatives.
ByzSGD requires, however, a larger number of messages
which we show we can reduce if we assume synchrony.
Essentially, in a synchronous setting, workers can use a novel
filtering mechanism we introduce to eliminate replies from
Byzantine servers without requiring to communicate with all
servers.

ByzSGD? uses a statistically-robust gradient aggregation
rule (GAR), which we call Minimum-diameter averaging
(MDA) to tolerate Byzantine workers. Such a choice of
a GAR has two advantages compared to previously-used
GARs in the literature to tolerate Byzantine workers, e.g.,
[11,65]. First, MDA requires a loose bound on the variance
of the non-Byzantine gradient estimates, which makes it
practical.3 Second, MDA makes the best use of the variance

2 We use the same name for our asynchronous and synchronous variants
of the algorithm when there is no ambiguity.

3 In Sect. 7, we report on our experimental validation of such a require-

ment. We compare the bound on the variance require by MDA to the
one required by Multi-Krum [11], a state-of-the-art GAR. For instance,
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reduction resulting from the gradient estimates on multiple
workers, unlike Krum [11] and Median [65].

We prove that ByzSGD guarantees learning liveness and
safety despite the presence of Byzantine machines, be they
workers or servers. We implemented ByzSGD on top of
TensorFlow [1] and PyTorch [51], while achieving trans-
parency: applications implemented with either framework
need not to change their interfaces to be made Byzantine-
resilient. We also report on our evaluation of ByzSGD. We
show that ByzSGD tolerates Byzantine failures with a rea-
sonable convergence overhead (~ 32%) compared to the
non Byzantine-resilient vanilla SGD deployment. Moreover,
we show that the throughput overhead of ByzSGD ranges
from 24 to 220% compared to vanilla SGD. The code used
in our experiments is based on Garfield [31], which is open-
sourced and accessible from https://github.com/LPD-EPFL/
Garfield.

The paper is organized as follows. Section 2 provides
some background on SGD and Byzantine resilience. Sec-
tion 3 describes the problem settings and the threat model.
Section 4 describes our ByzSGD algorithm. Section 5 depicts
its correctness proof. Section 6 discusses how ByzSGD lever-
ages synchrony to boost performance. Section 7 reports on
our empirical evaluation of ByzSGD. Section 8 concludes
the paper by discussing related work and highlighting open
questions.

2 Background
2.1 Stochastic gradient descent

Stochastic gradient descent (SGD) [55] is a widely-used opti-
mization algorithm in ML applications [1,16,45]. Typically,
SGD is used to minimize a loss function L () € R, which
measures how accurate the model 6 is when classifying an
input. Formally, SGD addresses the following optimization
problem:

arg min L (6) (1)
peRd

SGD works iteratively and consists, in each step ¢, of:

1. Estimating the gradient VL (9(’), & ) with a subset & of
size b of the training set, called mini-batch. Such a gra-

dient is a stochastic estimation of the real, uncomputable
one VL (6©).

(Footnote 3 continued) we show that with a batch-size of 100 and assum-
ing 1 Byzantine failure, the requirement of MDA is satisfied in our
experiments, while that of Multi-Krum is not.

2. Updating the parameters following the estimated gradi-
ent:

0D =60 — VL (69,¢) 2)
The sequence {n; € R} is called the learning rate.

2.2 The parameter server architecture

Estimating one gradient is computationally expensive, as it
consists in computing b estimates of VL (0, &), where &;
is the ith pair (input, label) from the mini-batch, and where
each VL (0, &) might involve one backpropagation compu-
tation [35] (in the case of training a neural network). Hence,
the amount of arithmetic operations to carry out to estimate
VL (0,&) ~ VL (0V)is O (b-d).

However, this gradient estimation can be easily dis-
tributed: the » computations of VL (), &;) can be executed
in parallel on n machines, where the aggregate of such com-
putations gives VL (9(’), & ) This corresponds to the now
standard parameter server architecture [46], where a central
server holds the parameters 6.

Each training step includes 2 communication rounds: the
server first broadcasts the parameters to workers, which then
estimate the gradient VL (9, &) (i.e., each with a mini-
batch of %). When a worker completes its estimation, it sends
it back to the parameter server, which in turn averages these
estimations and updates the parameters 6, as in Eq. 2.

2.3 Byzantine machine learning

The Byzantine failure abstraction [42] models any arbitrary
behavior and encompasses software bugs, hardware defects,
message omissions, or even hacked machines. We then typi-
cally assume that a subset of the machines can be Byzantine
and controlled by an adversary whose sole purpose is to
defeat the computation.

A Byzantine machine can, for instance, send a biased
estimate of a gradient to another machine, which leads to
a corrupted learning model accordingly or even to learning
divergence [7]. Byzantine failures also abstract the data poi-
soning problem [9], which happens when a machine owns
maliciously-labeled data. This may result in learning a cor-
rupted model, especially-crafted by the adversary. Clearly,
assuming a central machine controlling the learning process
(as with the standard parameter server architecture [46]) is
problematic if such a machine is controlled by an adver-
sary, for this machine can write whatever it wants to the final
model, jeopardizing the learning process.
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2.3.1 Byzantine-resilient aggregation

Robust aggregation of gradients is the key for Byzantine
workers’ resilience. To this end, gradients are processed by a
gradient aggregation rule (GAR), which purpose is to ensure
that output of aggregation is as close as possible to the real
gradient of the loss function.

In the general theory of stochastic gradient descent (SGD)
convergence, a typical validity assumption is that the gradient
estimator is unbiased [12]. The role of a GAR is to ensure a
relaxed version of this assumption in order to accommodate
for the presence of malicious workers (whose gradients are
potentially biased).

Definition 1 gives such a relaxation, which we adapt from
[11,24] and which was used as a standard for Byzantine
resilience, either explicitly, e.g.in [33,34,37,52,57,65-67,69]
or implicitly, by replacing the angle criterion by a distance
criterion, e.g. in [47].

Definition 1 Let 0 < a < 5 be any angular value and 0 <
f =< q with q the total number of input vectors to the GAR
and f the maximum number of Byzantine vectors. Let g be
an unbiased estimate of the true gradient VL (computed by
at least ¢ — f honest workers), i.e., Eg = VL.

A GAR (whose output noted as F) is robust (said to be
(o, f)-Byzanitne resilient) if

(EF,VL) > (1 —sina) - |[VL]3 > 0.

Briefly, Definition 1 ensures that the aggregated gradient
(using F) is not very far from the true gradient VL, i.e., the
angle between both is at most «. We follow the same notion
of («, f)-Byzantine resilience in this paper, i.e., we show
that ByzSGD is («, f)-Byzantine resilient.

2.4 ByzSGD’s GARs

ByzSGD uses two GARs: Minimum-diameter averaging* and
coordinate-wise Median [65]. Note that although GARs are
typically used to aggregate gradients (as suggested by the
name), we use the coordinate-wise Median to aggregate mod-
els. Simply, in this case, the input is a set of models rather
than a set of gradients. In this section, we present these two
GARs in detail.

2.4.1 Minimum diameter averaging (MDA)

MDA is a GAR that ensures resilience against a minority
of Byzantine input gradients. Mathematically, this function
was introduced in [54] and its Byzantine resilience proof was
given in [24]. MDA satisfies the («, f) Byzantine resilience
guarantees introduced in [11]. Formally, let X be the set

4 Basically, any GAR that satisfies such a form of resilience, e.g. [11,
24,65], can be used with ByzSGD; MDA is just an instance.
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of input gradients (all follow the same distribution), out of
them f are Byzantine (with |X'| = ¢), and y be the output of
the Byzantine resilient GAR. Then, the following properties
hold:

—

. Ey is in the same half-space as EX’, and

2. the first 4 statistical moments of y are bounded above by
a linear combination of the first 4 statistical moments of
x ~ X.

Such conditions are sufficient to show that the output of
this GAR guarantees convergence of the learning procedure.
More formally, these conditions enable the GAR to have a
proof that follows from the global confinement proof of SGD
[12].

In order to work, MDA assumes the following:

Ik €], +oo, ¥ (i,1,0) €[l ... q — f1x Nx R,

. V8f \/E (‘

q-1rf
where 6 is the model state at the training step ¢, g is the
total number of input gradients, f is the maximum number
of Byzantine gradients, g; is an unbiased estimate of the
gradient at step ¢, and L is the loss function. Note that towards
convergence to a local minimum, such a condition is not
guaranteed to hold. Yet, this is an evident limitation for all
similar GARs that are used in the ML context. For example,
Krum [11] and Multi-Krum [17] guarantee convergence only
to a ball around the local minimum. Moreover, El-Mhamdi
et al. have shown in [22] that this condition is necessary
for Byzantine resilience, i.e., it is impossible to guarantee
convergence if this condition is not satisfied.

The MDA function works as follows. Consider that the
total number of gradients is ¢ and the maximum number of
Byzantine gradients is f withg > 2 f 4+ 1. MDA enumerates
all subsets of size ¢ — f from the input gradients and finds
the subset with the minimum diameter among all subsets of
this size, i.e., ¢ — f. The diameter of a subset is defined as
the maximum distance® between any two elements of this
subset. The output of the MDA function is the average of
gradients in such a subset. More formally, the MDA function
is defined as follows:

Let (g1...8¢) € (R, and X £ {g1...g,} the set
containing all the input gradients.

Let R 2 {Q|QC X,|Q =g — f} the set of all the
subsets of X with a cardinality of ¢ — f, and let:

g —Egl

2
)=leh. ©

max

S £ arg min
(8i8/)eQ?

QeR

(o —gjnz)).

> In this paper, we always consider the £, distances.
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Then, the aggregated gradient is given by:

1
MDA (g1...84) & —— > g.
A B

Notably, MDA carries an exponential asymptotic com-
plexity of (’)((?) + qzd). Yet, its assumptions about vari-
ance (Eq. (3)) are weaker than other GARs including Median
and Multi-Krum.

2.4.2 Coordinate-wise Median
We formally define the median as follows:

quN—{O},V(x]...xq)eRq,

median (x1 .. .xq) £y eR

such that with sorted (x1 . xq),

Xs =)C|'q'| ifqiSOdd
Ygrrgo .
Xy = ——5= if g is even,

where ¢ is the total number of input gradients.
We formally define the coordinate-wise median as fol-
lows:

Vdq) e (N= (0D ¥ (x1...x) € (R)",

median (x1 .. .xq) Ly € RY

such that:

Vi €[l ...d],xgi] = median (x;[i]...xqli])
Coordinate-wise median, hereafter simply: Median, requires
q > 2f + 1 and its Byzantine resilience was proved in [65].
3 System model

3.1 Overview

We build on the standard parameter server model, with two
main variations (Fig. 1).

1. We assume a subset of the nodes (i.e., machines) involved
in the distributed SGD process to be adversarial, or
Byzantine, in the parlance of [11,15,24]. The other nodes
are said to be correct. We denote such nodes by #, i.e.,
hw =ny — fyand hypg = nps — fps (see Table 1 for all

Legend

Parameter Parameter j

server A server B Node
E i Network
Parameter Parameter
Byzantine

server C server D

nodes

Covert
network

Worker A Worker B Worker C ]
Worker D Worker E Worker F j
Worker G Worker H ] Worker T ]

Fig.1 A distributed ML setup with 4 parameter servers and 9 workers,
including respectively 1 and 3 Byzantine nodes, which all can be viewed
as a single adversary

the notations). Clearly, which node is correct and which
is Byzantine is not known ahead of time.

2. We consider several replicas of the parameter server (we
call them servers), instead of a single one, preventing it
from being a single point-of-failure, unlike in classical
ML approaches.

In our new context, workers send their gradients to all
servers (instead of one in the standard case), which in turn
send their parameters to all workers. Periodically, servers
communicate with each other, as we describe later in Sect. 4.
We consider bulk-synchronous training: only the gradients
computed at a learning step ¢ are used for the parameters
update at the same step ¢. This upper-bounds the space com-
plexity at any node by O(n,d) (assuming n,, > np). Put
differently: if a node is executing learning at step ¢, it dis-
cards any result obtained (by itself or by any other node) at
step < ¢. This is safe for both workers and parameter servers.
For example, if an honest worker w is stuck at iteration 7y,
due to its slowness, while the majority of honest workers
managed to execute iterations up to #; (with 11 >> fg), w
does not need to store intermediate models and/or gradients
of all steps € [f, #1]. Instead, w; should only fetch the latest
model (of #1) from a majority of honest parameter servers.
The same goes for a parameter server ps;, who may be at
iteration #(, and receive gradients of iterations #; > #y. In this
case, ps| may then safely skip its current iteration and move
to iteration 71. We consider an asynchronous network: there
is no upper bound on the time it takes to receive a message
from other nodes in the system.

3.1.1 Adversary capabilities
The adversary is an entity that controls all Byzantine nodes

(Fig. 1), and which goal is to prevent the SGD process from
converging to a state that could have been achieved if there

@ Springer
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Table 1 The notations used throughout this paper

N ps Total number of parameter servers

Ips Declared, maximal number of Byzantine parameter servers

qps Number of parameter vectors a node waits for from servers, 2 f),s +2 < gps < nps — fps
nw Total number of workers

fuw Declared, maximal number of Byzantine workers

qu Number of gradients a node waits for from workers, 2 f,, + 1 < gy < ny — fu
d Dimension of the parameter space R?

L Loss function we aim to minimize

l Lipschitz constant of the loss function

Gt(i) Parameter vector (i.e. model) at the parameter server i at step ¢

Q,(i) Gradient distribution at the worker i at step ¢

g,(i) Stochastic gradient estimation of worker i at step ¢

VL (0) Real gradient of the loss function L at 6

G;i) Aggregated gradient of worker i at step ¢

9:21 2 Parameter vector of server 7, right after update using Gfi)

Gfi) Effective gradient, combining scatter and gather

N Learning rate at step ¢

g" Gradient estimation error, i.e., £ = g’ — VL )

Without loss of generality in the analysis, we note:
[1 c My — fp_g] the indexes of the correct servers
[1...ny — ful the indexes of the correct workers

was no adversary. Asin [11,15,24], we assume an omniscient
adversary that can see the full training datasets as well as the
packets being transferred over the network (i.e., gradients
and models). However, the adversary is not omnipotent: it
can only send arbitrary messages from the nodes it controls,
or force them to remain silent. We assume nodes can authenti-
cate the source of a message, so no Byzantine node can forge
its identity or create multiple fake ones [14]. Note that there
is a tradeoff between the adversary power and the resilience
cost. In this paper, we assume that the strongest adversary can
only hack a minority of the machines and cannot control the
network. We believe this is reasonable in some practical sce-
narios. For example, assume a multi-branch bank which train
a model to predict future investments. Each branch is having
its own independent security system, where the network com-
munication is provided by a trusted third party. In this case,
an adversary can hack some of these security systems of the
independent branches (hopefully only a minority) without
being able to hack the network provider. The same argument
can be made for multiple organizations which decide to solve
a similar problem together via training some ML model on
their local data.

Let ¢; x (k)@ denote the subset of size k of some set

;“t(l)...gl(q)} delivered by node a at step t. To high-

light the fact that such a subset can contain up to f
arbitrary (Byzantine) vectors, we will also denote it by
(¢ x(k — £)@, ¢ x(f)@). The exact value of ¢ depends
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on the context: in the proof, it will always be ¢,, when g“t(i)
denotes a gradient, and g, otherwise.

3.2 Byzantine resilience conditions

We follow the classical conditions for convergence in non-
convex optimization [12]. For instance, we assume that the
training data is identically and independently distributed
(i.i.d) over the workers, and gradient estimations at honest
workers, i.e., Vt € N, g,fl) o g,("“"ff"’) are mutually inde-
pendent. Moreover, we assume that such estimations have a

bounded standard deviation:

Jo' e Ry, VG, 1) e[l ...ny — ful XN,

E|g" —Eg”| <o )

,

Note that to realize this assumption, the mini-batch size
Q («/3) Previous
approaches, e.g., [38], theoretically proved that leveraging
momentum reduces variance and prevents Byzantine attacks
without increasing the batch size Furthermore, typical vari-
ance reduction techniques, e.g., [3], can be employed to
guarantee Eq. 4. The upper-bound on the estimate of the
gradient is constant, i.e., we do not assume vanishing gradi-
ent error. These estimates, of the true gradient, are unbiased

should be lower-bounded, ie., ~
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with sufficiently low variance (to satisfy MDA’s condition,
namely Eq. 3).

Such an equation bounds the ratio of the standard deviation
of the stochastic gradient estimations to the norm of the real
gradient with hw_ This assumption is now classical in the

V8 fw
Byzantine ML literature [11,34,52,65]. We also empirically
verify this assumption in our experimental setup (see Sect. 7).

Let 1, be the learning rate at the learning step ¢ € N with

the following specifications:

1. The sequence of learning rates 7, is decreasing® with 7,
ie., if t, > 1, then, n;, < ny. Thus, the initial learn-
ing rate 71 is the largest value among learning rates used
throughout the learning phase. In fact, to prove Byzantine
resilience in Sect. 5, werequire n; = 1/t%, with« e]%, 1].

2. The sequence of learning rates 1, satisfies ), 7, = oo
and ), n,> < 0.

We assume the loss function L to be positive, 3-times
differentiable with continuous derivatives, and /-Lipschitz
continuous, i.€.,

2
d
>0, Y(x,y) e (R) , )
IVL(x) = VLI, <llx—=yll,.

Such standard /-Lipschitz continuity assumption [6,53,62]
acts as the only bridge between the parameter vectors 0,(1)
and the stochastic gradients gt(i) at a given step ¢. This is a
liveness assumption: the value of / can be arbitrarily high and
is only used to bound the expected maximal distance between
any two correct parameter vectors.

We also follow the standard assumptions of [11,12] as
follows. We assume (1) bounded statistical moments Vr €
[2...4]1,3(A,, B) e R2V(i,1,0) € [1 ... ny — ful X

. r
NxRLE g < A+ B |0
loss beyond a certain horizon:

2, and (2) convexity of

AD € R, V0 e R?, ||16]|3 > D,

T
3(e.p) € Ry x [0.Z[IVL @)l = &,
(6. VL (©) = cos (B) 16112 IVL )]l

The latter assumption was first adapted from [12] by
[11,18,24] to account for Byzantine resilience. It intuitively
says that beyond a certain horizon, the loss function is “steep
enough” (lower bounded gradient) and “convex enough”
(lower bounded angle between the gradient and the param-
eter vector). The loss function does not need to be convex,

6 In fact, it is sufficient that the sequence is decreasing only once every
T steps, with T = ﬁ where [ is the Lipschitz constant of the loss
function.

but adding regularization terms such as ||0||> ensures such an
assumption, since close to infinity, the regularization dom-
inates the rest of the loss function and permits the gradient
VL(0) to point to the same half space as 6. The original
assumption of [12] is that (9, VL (9)) > 0;1in [11,24] it was
argued that requiring this scalar product to be strictly positive
is the same as requiring the angle between 6 and VL (6) to
be lower bounded by an acute angle (8 < 7 /2).

Regarding the network, we assume no (pattern of) net-
work partitioning among the correct servers lasts forever.
This ensures that eventually the correct parameter servers can
communicate with each other in order to pull their views of
the model back close to each other; this is crucial to achieve
Byzantine resilience. Formally, consider S the probability
distribution over delivering configurations, and X ~ S a
random set that follows the probability distribution S. We
assume that

Vse S, P(X=s)>0. 6)

We denote p = minges P(X = s) the probability of least
likely configuration. Since the set S of configurations is finite,
our key assumption equivalently says that p > 0. Based on

that definition, we assume for any server j, VL <9t(j )) H2 >

36h,0" + %, for some constant C.

Finally, ByzSGD requiresn,, > 3 fy+1landn s > 3 fs+
2. This is asymptotically optimal. El-Mhamdi et al. proved
in [22] that Byzantine resilience is impossible withn < 3 f
in asynchronous networks. The proof relies on the fact that
in asynchronous networks, machines should wait for only
q = n — f replies and hence, we have ¢ < 2f. With f
Byzantine nodes, we can expect at most f honest replies.
In this case, it is impossible to distinguish between honest
and Byzantine replies and hence, Byzantine resilience is not
guaranteed. Note that this result holds even with i.i.d data as
in our case.

Some works, e.g., [32,67] in the literature claimed that
Byzantine resilience can be achieved with arbitrary number
of failures, i.e., with 0 < f < n. The main idea is to let each
worker train a local model with its local data to minimize
Eq. 1, and then to report the trained model to the parameter
servers, which can then apply majority voting to choose the
correct model. Such idea will work only with convex opti-
mization functions, i.e., with one unique minimizer. Since
we aim for non-convex functions, local training for workers
might lead to different local minima, and it will be impos-
sible to differentiate between honest and Byzantine models,
i.e., Byzantine resilience cannot be guaranteed.

4 ByzSGD: general Byzantine resilience

We present here ByzSGD, the first algorithm to tolerate
Byzantine workers and servers without making any assump-
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tions on node relative speeds and communication delays.
ByzSGD does not add, on the normal path, any communi-
cation rounds compared to the standard parameter server
communication model (Sect. 2.2). However, periodically,
ByzSGD adds one communication round between servers to
enforce contraction, as we show in this section.

We first describe the fundamental technique to toler-
ate Byzantine servers: Distributed Median-based Contrac-
tion (DMC). Then, we explain the overall functioning of
ByzSGD, highlighting our novel Scatter/Gather communi-
cation scheme. ByzSGD uses MDA to tolerate Byzantine
workers.

4.1 Distributed median-based contraction

The fundamental problem addressed here is induced by the
multiplicity of servers and consists of bounding the drift

among correct parameter vectors 6, . ..Qt(”’”if” 'v), as t

grows. The problem is particularly challenging because of the
combination of three constraints: (a) we consider a Byzan-
tine environment, (b) we assume an asynchronous network,
and (c) we do not want to add communication rounds, com-
pared to those done by vanilla non-Byzantine deployments,
given the expensive cost of communication in distributed
ML applications [36,70]. The challenging question can then
be formulated as follows: given that the correct parameter
servers should not expect to receive more than n — f — 1
messages per communication round, how to keep the correct
parameters close to each other, knowing that a fraction of the
received messages could be Byzantine?

Our solution to this issue is, what we call, Distributed
Median-based Contraction (DMC), which goal is to decrease
the expected maximum distance between any two honest
parameter vectors (i.e., contract them). DMC consists of
(1) the application of coordinate-wise Median (which is
Byzantine-resilient as soon as g s > 2 fps + 1) on the param-
eter vectors and (2) the over-provisioning of 1 more correct
parameter server (i.e., gps > 2fps + 2); both constitute
the root of what we call the contraction effect. Assum-
ing each honest parameter server can deliver a subset of
qps — fps — 1 honest parameters, the expected median of
the gathered parameters is then both (1) bounded between
the gathered honest parameters and (2) different from any
extremum among the gathered honest parameters (as 1 cor-
rect parameter server was over-provisioned). Since each
subset of the gathered honest parameters contains a subset of
all the n; — fps honest parameters, the expected maximum
distance between two honest parameters is thus decreased
after applying DMC.

@ Springer

Algorithm 1 Worker Algorithm 2 Server

1: Get seed 1: Get T & seed

2: m < init_model(seed) 2: m < init_model(seed)

3: g « compute_grad(m) 3: 1«0

4: t <+ 0 4: repeat

5: repeat 5. gs < read_gradients()
6: ms <+ read_models() 6: m.update(MDA(gs))
7: m.set(Median(ms)) 7:  if ¢t mod T'= 0 then
8: g < compute_grad(m) 8: m < read-models()
9 t+t+1 9: m < Median(ms)
10: until ¢ > max_steps 10: end if

11: t—t+1
12: until ¢ > max_steps

Fig.2 ByzSGD: worker and parameter server logic

4.2 The ByzSGD algorithm

Algorithms 1 and 2 (Fig. 2) depict the training loop applied
by workers and servers respectively. ByzSGD operates iter-
atively in two phases: scatter and gather. One gather phase
is entered every T steps (lines 8—11 in Algorithm 2); we call
the whole T steps the scatter phase.

4.2.1 Initialization

As an initialization step, correct servers initialize their local
model with the same random values, i.e., using the same
seed. Concretely, each correct parameter server i and worker
Jj starts (at step ¢ = 0) with the same parameter vector:

Vie[l . nps— fps], 08 26,
Viell ...ny— ful,60 26,

Additionally, honest servers compute the value of 7', where
workers compute gradients based on the initial model.

4.2.2 Training loop

Each training step ¢ € N, the following sub-steps are exe-
cuted sequentially (unless otherwise stated).

1. Each parameter server i requests gradient estimations g,
from all workers and then applies the MDA function on
the received gradients (whose number might not exceed
ny — fy gradients), computing the aggregated gradient
G,"”. Then, each server uses its own computed Gl') to
update the model as follows: 9:_'21 n= Gt(i) - nth(i) (line 6
in Algorithm 2).

2. Each worker j then asks for the updated models from
all servers; yet, it does not expect to receive more than
nps — fps replies. The worker j then computes Median

on the received models to obtain #/). In normal (i.e.,

G4y T
scatter) steps, worker j sets Gt(fl = Gt(fl 5 (line 7 in
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Algorithm 1). The worker then uses the updated model to
compute a gradient for the new training step.

3. To bound the drifts between parameter vectors at correct
servers, each 7 = 3117 steps, a global gather phase is
entered on the server side by completing the Distributed
Median-based Contraction module. During this phase,
the following happens: each server i sends to all other
servers its current view of the model Qt(l). After gathering
models from n,; — fps servers, each server i aggregates
such models with Median, computing 6" “*$”_ After the
conclusion of the gather phase, each worker j pulls the
model Qt(i(agg)) from n,s — fps servers and aggregates
the received models using Median. Finally, each worker
Jj then uses the aggregated model to compute the new gra-
dient, and the algorithm continues normally from step 1.

5 Correctness of ByzSGD

This section presents the proof of (¢, f)-Byzantine resilience
of ByzSGD. To do so, we first prove that for ¢ large enough,
all honest servers’ parameters will be arbitrarily close to
one another. Thus, their individual behavior will be well
described by the behavior of the average of these parame-
ters. We then show that the average parameter ét satisfies
(o, f)-Byzantine resilience, i.e.,

_ _ 3 -
[EG,.VL())= ;[VL@)]3 ™

Finally, we will show that the moments of the average effec-
tive gradient (_;t undergone by G_t are bounded, as required
by the standard proof of SGD convergence [12], where the
average effective gradient is defined as follows:

G, = +—=1 (8)

Note that for simplicity, we focus, in our correctness proof,
on the case where we apply a gather step in each iteration,
i.e., T = 1. Later, we show the bound on T to ensure safe
convergence, and we show empirically the effect of changing
T on performance in Sect. 7.

5.1 Safety of Median

The first key element of the proof is to prove that Median
contracts the servers’ parameters in expectation, despite the
Byzantines’ attacks. This turns out to be nontrivial. In fact, the
diameter of servers’ parameters does not decrease monoton-
ically. The trick is to follow the evolution of another measure
of the spread of the servers’ parameters, namely the sum

of coordinate-wise diameters. We prove that, using Median,
Byzantines can never increase this quantity.

The diameter notion denotes the maximum distance
between any two vectors in a set of correct/honest vectors.
We call such a set of vectors: family of vectors. Interestingly,
the diameters satisfy the triangle inequality, as shown by the
following lemma.

Lemma 1 The diameters and coordinate-wise diameters sat-
isfy the triangle inequality. Namely, for any two families of
vectors X and 'y, we have the following inequality

AT (x+y) = AMX) + AT(Y). ©)

As an immediate corollary, by triangle inequality of norms,
forany r € [1, 00], we also have AT (x +y) < A" (x) +
ASY(y). We also have A, (x +y) < Ap(X) + Ar(y).

Proof For any coordinate i € [d], the following holds:

A (x +y)[i] = max )xU)[i] O] — x P[] — y(k)[i]’ (10)
J.kelh]

D1 +®y; D1 — v®r;
< max (D10 - 00 + [yt - 5011} (1n)
D1 ©p; G171 = yEDyg
fjfi‘é‘ff”"‘ [i]—x [t]’+j,f1/r€1,a€>[<h]‘y [i(1—y [,]’ (12)
= AV X)[i]+ A (y)[i]. (13)

which concludes the proof for coordinate-wise diameters.
The proof for ¢, diameters is similar. O

Let Ax the sum of coordinate-wise diameters. For instance,
Ag, is defined as:

d
Ao, =Y max 0\ 1i1 — 07111

i=1 j,kE[l e Nps—fps

(14)

Assuming that all delivering configurations can occur with
a positive probability, we can show that there will be contrac-
tion in expectation.

Let (d, f,n,q) € (N—{0})? x N2 such that 2 f +2 <
g < L";W + f+1,anddenote h £ n — f.7

Denote Ot(fl 5 € R¢ the parameter vector held by param-
eter server j at step ¢ (just after robustly aggregating the
gradients), ®, P the parameter vectors from correct param-
eter servers that were delivered by parameter server j at step
t, and zfj) = (zil’j), o, zif’j)) the Byzantine parameter
vectors® that were delivered by parameter server j at step 7,

where each zgk’j ) e RY.

7 This whole subsection is about the behavior of the parameter servers
hence, we remove the subscript ps from all variables, e.g., n £ ps-

8 A Byzantine parameter server can send different parameter vectors to
each correct parameter server at each step 7, hence the notation.
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The updated vector of parameter server j at step ¢ is then
given by

) J) )
0,11 = Med’a”( 1720 Otz z’ ) . (15)

In the following, we prove that the updated parameters

QSF)] Gt +1 have been contracted compared to parameters
Qt(}r)l 2 Gt(ﬁ)l /o~ It turns out that this claim does not actu-

ally hold for naive measures of how “contracted” a set of
parameters are. In particular, the diameter of the vectors
QSF)] ...Gt(Jhr)l ’s measured in, say, £, norm, does not neces-
sarily get contracted.

The key trick of our analysis is to focus instead on

coordinate-wise diameters. More precisely, denote:

A (O)re k) -
AO,H/Z, = ]Ykg}?’f 01211 = 0,4 poli]
the diameter of vectors Qt(l)l /2 Q(h +1/2 along coordinate i.

We can then add up these coordmate wise diameters to obtain
the measure Ag, = > ici1..a) A0 +1/z’f which is still a

measure of how spread the vectors 9; +1 2 ’s are. One key
result of this subsection is that this measure decreases expo-
nentially, i.e.,

E[Ag,, 1 =mAg

t+1/2° ( 1 6)
for some contraction parameter m € [0, 1[, and where the
expectation is taken over X ~ S. More precisely, in expec-
tation over random delivering configurations, no matter how
Byzantines attack the different workers, the spread of the
parameter servers parameters decrease exponentially.

The following lemma shows that bounding this measure
is sufficient to control the diameter of servers’ parameters.

Lemma 2 We have the following inequalities:

o® H

H9z+1/2 Ors1)2

J, kE
0(])

(k)
2 =0

1+1/2 H = A9r+1/2

(k)
9t+1/2 H

< max
j.kell...h

)
9t+1/2

<d max
jokell...h]

)

3/2 )
<d 9:+1/2 t+1/2 ”

J.kell..

Proof Let j* and k* two servers whose parameters are most
distant, i.e., such that

9(/)

(k)
12— O

(j*
1172 ” 9

t+l/2

max +1/2 [i1-

Jokell...h]
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Clearly, the latter term is upper-bounded by

d

E max |6
— J.kell...h]
=

which is exactly the sum of coordinate-wise diameters
(AQH . ,,)- The first inequality is derived from the well-known
equality lzll; < llzll;.

Note that a coordinate-wise distance is smaller than the £
distance. Therefore,

20,11 Zmax

() k) .
z+1/2[] 9z+1/2[’]»

(@i .
6 ]1/2[11 r+1/2[’]‘

g/ g® H
t+l/2

— ) o®
=d- H]?E}} H9r+1/2 t+1/2 H

We then conclude by using the inequality ||z||; < Jd Izl7-
O

Let x,,n[i] and x4+ [i] the minimum and maximum i-

coordinate of correct vectors 91(4131 2 93’31 52's

Lemma 3 A91+l’i < A91+1/2*i with probability 1. In other
words, there can be no dilation of the diameter along a coor-
dinate.

Proof Since g > 2f +2 > 2f, we know that a strict major-
ity of vectors delivered to j are correct, and thus belong
to [Xminli], Xmax[i]]. Therefore, Qt(i)l[ ] must belong to this
interval too. Since this holds for any parameter server j, we

know that A9t+1’l’ < Xmaxli] — Xminli] = A9r+1/2vi' ]

Now along each coordinate, we separate the set of workers
along two subsets left[i] and right[i], defined by

left[i]:{je[l...h]

right[i] =1[1 ... h]

0\, ,li] < - +xm[z‘1>}
+1/2 ) ,

— leftli]

We then go on showing that the minority subset has a positive
probability of making a significant step towards the other
side. First, we quantify the size of this large possible step.

Lemma4 If X; C rightli], then

9(])

1
t+1[ i]1> 1 B xminli] + Xmax[i1) -

Moreover, if X C left[i], then

9(])

t+1[ i1 < = (Cminli] + 3 Ximax[i]) -

4>|~
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Proof Assume X; C right[i]. Since g > 2 f 4 2, we know —-E [A9r+1~i X # s]) P(X =)
that ‘j U Xj‘ >q — f > q/2+ 1 contains a strict majority 3A
of the inputs to compute Gt(i)l [i]. Thus the median is at least < Ay P+ 0t Ly i e
the average of two smallest coordinates i of points | JUX;|, e 4 e
which is at least P
= <1 - Z) A0t+1/2’i’
(Ve 1 : :
, 0,11 2li] + 5 Kminli] + Xmax[i1)
t(—{-)l [i] = anrc 2 ;m - which concludes the proof. O

\

= % B xminli] + xpmax[i])

The second bound is proved similarly. O

Lemma5 We can then show expected strict contraction
along every coordinate i, i.e.,

o
E I:Aewl’i] = (1 - Z) A9r+1/2vi'

Proof Note that right[i] 4+ left[i] = h. Thus at least one
of the two subsets has at most |4#/2] elements. Since g <
"L+ f 41 = [h/2] + f + 1, we know that g — f <
Lh/2] + 1. This means that there is a subset so of left[i] or
of right[i] with at least g — f elements.

Without loss of generality, assume s9 C [left[i] with
cardinal ¢ — f, and let s; = so — {j}. Then the tuple
s = (s1,...,8,) € S is a delivering configuration. By
virtue of our key assumption (Equation 6), we know that
P(X=s)>p>0.

But then‘, by the previous lemma, in the event X = s,
we have Qt(i)l [i] > A—IL B xminli] + xmax[i]) for all servers j.
Since, moreover, we can easily verify that 9:@1 [i]1 < xmaxlil,
we conclude that

Ag

1+

1
o < Xmax[i] — Z B xminli] + xpmaxi])

= — (Xmax[i] — Xminli])

4
3A

LAy

4

The same bound can be derived for the case so C right[i].
Now note that in the event X # s, by Lemma 3, we still

have A@H i = A9t+ e We can now take the average of the

two above cases, which yields

E[Ag, ] = E [Agw,- X = s] P(X =)
+E[ A, i | X #5] (1= PX =)
= E[Ag,,i| X #5]
+ (IE [A%,,- X = s]

Lemma 6 Despite any Byzantine attack z (X) that reacts to
the random choice of delivering configuration X ~ S, there
is a strict contraction of the sum of coordinate-wise diame-
ters, l.e.,

VZ’ }EXNS [A9t+l] = mA6[+1/2’

where m < 1 only depends on the probability distribution S.

Proof We simply use the linearity of the expectation, which
yields

d d
E[A)] =) ElAg, 1<) (l - 2) A6,y o
i=1

i=1
0
= (1 - Z) A91+1/2’

which is a key lemma in our proof. O

Unfortunately, this is still not sufficient to guarantee the
contraction of the servers’ parameters, because of a potential
drift during learning. However, as the learning rate decreases,
we show that contraction eventually becomes inevitable.

In the following, we show that the drift among honest
parameter servers is bounded. Concretely, there exists con-
stants A and B such that £ [Agm] < (m+ Any)Ag, + Bn;.
Here, the expectation is over delivering configurations, from
parameter servers to workers, from workers to parameter
servers and in-between parameter servers. The expectation
is also taken over stochastic gradient estimates by workers,
and for any attacks by the Byzantines.

5.2 Eventual contraction of parameters

Consider parameters 6; at time 7. Notice that this parameter
will undergo three operations, each of which will be attacked
by Byzantines.

First, each worker j will be delivered a subset of param-
eters. It will need to compute the median of the parameters,
to obtain a model Ot('/ ). Tt will then compute an estimate g,(j )
of the gradient VL (0,(j )), which will then be broadcast to

parameter servers. We make the following critical observa-
tions.
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Lemma 7 For any two workers j and k, the noises on gradi-
ent estimates is bounded

Hgt(j) - Et(k) HZ = 2(7/\/ hy.

E max
Jokell .. hy]

Proof Since a + /a is a concave function, Jensen’s
inequality asserts that E+/X < +/EX. Using in addition the
inequality (a — b)2 < 2a? + 2b%, we obtain

(]) St(k) H _ E\/ max
Jokelhy]
(17)

S Ly T W e

2
)
=2 [E }(. 19
,-2‘[%’;] & 5 (19)

We now use the fact that the maximum over nodes j € [Ay,]
is smaller than the sum over nodes j € [h,,], yielding

E  max
jokell .. hyl

. 2
k
‘éf’) _ %‘,( >H2

EJvkerPla}hw] Hgt(j) _ r(k) HZ
2 5L @
J€lhwl
=2| Y E ngm Hi N
N\ jelhwl

<2/ Z 02 =20"\/hy, (22)
J€lhwl

where the last inequality uses the assumption on bounded
variance among gradient estimations. O

Lemma 8 For any two workers j and k, the delivered gradi-
ents satisfy

0 _ (k)H <2ho! +IA
J kel o bl &1 e ]|, = w +id0

where the expectation is over the random delivering config-
uration of parameters from servers to workers and over the
random estimation of the gradients.

Proof Note that

k
0] g[< )H

81 Hg,(]) -

L),
") =),
") -5l

v
n HVL (9<
n HVL (e<
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As a result, we know that

) _ <k>H
]kerﬂ s 8t 8t
9 9
<2 ma VL(e )H
- je[l..ﬁzw] 8 AP
max (@) =ve ()], @
JKEll ] 2

We now use the fact that

E max
Jell..hw]

o).

v (@),
-3 Hgf” -vL (o)),
j=1

Using our assumption of unbiased gradient estimator with
uniformly bounded error o/, we see that

E max
JELL ... hy]

o =vL(6)] =huo

To bound the second term of Eq. (23), we now use the fact that
9,(]) — Qt(k) ” < Ag,.Since VL isl-Lipschitz, we

1+1/2
thus have

Jve (o) = ve (o) = 12

This equation holds in particular for the maximum of the
left-hand side, as we vary j and k. This concludes the proof
of the lemma. O

We now move on to the guarantee with respective to the
second attack of Byzantines, which occurs as servers aggre-
gate workers’ estimations of the gradient. This guarantee is
provided by the Byzantine resilience of MDA.

First, we note that MDA ensures that its output gradient
lies within the correct set of gradients submitted to a correct
server, as stated by the following lemma.

Lemma 9 The diameter of the aggregations of gradients by
MDA is at most three times the diameter of correct gradients.
Denote with G;" ) the aggregated gradient at server j, we

have:
() (k) (r) (s)
max G, -G H <3 max
j,ke[l...hm]’ ! N P ] SR

(24)

Proof Let us first focus on the computation of G;j ) Recall
that it is obtained by gathering ¢,, vectors gt(r) from workers,
including at most f,, Byzantines, and computing the MDA
of the the collected vectors. Recall that MDA averages the
subset of vectors of minimal diameter. Let X'* a subset of



Genuinely distributed Byzantine machine learning

317

gradients of size q,, — f;, that minimizes the diameter of the
gradients.

Note that the diameter of delivered correct gradients is
necessarily at most the diameter of all correct gradients,
which we shall denote

)

k
D(g) = max g — g .

25
Jokell o Bl (25)

Since gy > 2 f, + 1, there is a subset of size g, — f;, that

only contains correct gradients, and whose diameter is thus
at most D(g;).

Therefore the subset X'* must have diameter at most
D(g;). But since q,, > 2 f,, + 1, we know that at least one

correct gradient g,r 2 belongs to this subset. This means
that all gradients collected by X* must be at distance at most

D(g;) from g, : (j)). In other words, for any G;j ), there exists
a correct gradient gt(r () such that H G;'/) - gt(r v Hz =

D(gr).
But then, we have

o9 -0], = Jo "]

() (k)
|

+|

*(k
+[a" - ar

2 9
which is at most 3D (g;). O

Recall that each server j’s parameters are now updated
by adding —n;G ,(] ) 1o 9,(] ). We can bound the drift that this
update causes as follows.

Lemma 10 We have the following inequality:
E[Ag—nc,]| < 6dnihywo’ + (14 3dn,l) Ag,,

where the average is taken over delivering configurations
and stochastic gradient estimates.

Proof Note that, on each coordinate i, for any two servers j
and k, we have

(6911 - n G 10) - (60111 = 6P|

< |01 - 0P| + n [ 6111 - 61
< |- 6| +n |6 -6
. ./ k/
< Aglil+n,  max ‘Gt(])—Gt() .
JHE[L s ] 2

Note that the right-hand side is now independent from j and
k, and is thus unchanged as we take the maximum over all j

and k’s. Summing over all coordinates i yields

max
JOKE[1 s ]

6~ 6,

Ag—n,G, < Ap, +du;

We now take the average, and invoke the two previous lem-
mas to derive the result. O

Finally, we can combine the result with the contraction
property of the Median.

Lemma 11 We have the following inequality:

E[Aq,,] < (1 +3dnl — %) Ag, + 6dnihyo’.

Proof This is an immediate application of Lemmas 5 and 10,
and using (1 +a)(1 —b) <1+a—bfora,b > 0. m]

We are now almost there. We will need this elementary
lemma to conclude.

Lemma 12 Letk € [0, 1[and d; > 0be apositive decreasing
sequence such that 8; — 0. Then there exists constants C >
0, which depend on k and &, such that

t
‘ 5
S ks < CkI? 4 % (26)

i=1
In particular, the left-hand side converges to zero.

Proof We divide the sum between elements before than s =
|#/2] and elements after this threshold. This yields:

t s—1 t
Zktfiai — Zktfiai + Z kl*i&.
i=1 i=1

i=1+s
s—1 ) t—s )
<KTS0> Tk 80 > K
Jj=1 i=0
80k1+t7& 83
< .
- 1—k + 1—k

Since l +t—s <14t —(t/2—1) =1t/2, defining C =
8o/(1 — k) allows to conclude. ]

Finally, we can derive the gathering of ByzSGD.

Lemma 13 (Gathering of ByzSGD) If learning rates go to
zero (n; — 0), then servers converge to the same state, and
their diameter is of the order of the learning rate. More pre-
cisely, there exists a constant C > 0 and a time ty such that,
fort > t,

24d1n 2

E max

12
P) n
Joke[1. hpg]

=), ze(1-4
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Proof Assume 0 < u;+1 < (1 4+ Ad8; — 2&)u; + 8;, where
e = p/8, 8 = 3dnl and A = ﬁ Since 8, — 0, we
know that there is a time 79 such that for t > 9, we have
Cé; < e.Fort > 1y, we then have u;1 < ku; + 8;, where
k<1—p/8 < 1and§, — 0.But then, we observe that, for
s >0,

N
i—1
Ustry = ksuto + Zkl 5t0+s—i

i=1

s
= ksut() + st_](st()—l-l-j'
j=1

Using Eq. (26), we conclude that, for ¢ = s+19 > #p, we have
u, < CkU—0/2 4 %_1'%. Applying this to u; = E[Ag, ],
redefining the constant C and noting that 7o — 1 + |s/2] >

L(s + t0)/2], implies the bound of the lemma.
We can finally conclude by noting that

max

‘9t(j)—9t(k)u < Ay,
Joke[ 1 hps] 2

O

In particular, assuming, say n, = 1/t“, the expected diam-
eter is of the order (9(:7{,).

Theorem 1 (Eventual contraction of Median) As a corollary,
assuming n; — 0, we have E[Ag ] — 0.

Proof This comes from the eventual contraction of Ag,. Note
that it implies that some other measures of the spread of
servers’ parameters, like their diameter measured in £, also
converge to zero. O

5.2.1 Estimating the gathering frequency

Given Lemma 9, we can show that the distance between
aggregated gradients on two correct parameter servers, at
any time ¢, is bounded. Hence, SGD, with MDA, alone would
converge.

Now, to satisfy the required assumption by MDA (Eq. 3,
Sect. 2.4), models at correct parameter servers should not go
arbitrarily far from each other. Thus, a global gather phase
(step 3 in the ByzSGD algorithm) is executed once in a while
to bring the correct models back close to each other. Yet,
the question is: how many iterations per scatter step can be
executed without breaking such an assumption? We quantify
the maximum number of steps that can be executed in one
scatter phase before executing one gather phase. Hence, the
goal is to find the maximum possible distance between cor-
rect models that still satisfies the requirement of MDA on the
distance between correct gradients (Eq. 3).
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Without loss of generality, assume two correct parameter
servers x and z starting with the same initial model 6,. After
the first step, their updated models are given by:

X 1 Ny
2 1 Ny

Thus, the difference between them is given by:

9()‘) _ 9(2)
H 1 Ul

1 w 1 w
= n MDA(gi)...gfn ))Z—MDA<gi)...gin )>

X

2

In a perfect environment, with no Byzantine workers, this dif-
ference is zero, since the input gradients to the MDA function
at both servers are the same (no worker lies about its gradient
estimation, i.e., there is no equivocation), and the MDA func-
tion is deterministic (i.e., the output of MDA computation on
both servers is the same). However, a Byzantine worker can
send different gradients to different servers while crafting
these gradients carefully to trick the MDA function to include
them in the aggregated gradient (i.e., force MDA to select the

9 l(x) B sz)
is not guaranteed to be zero. Based on Eq. (24), the differ-

ence between the result of applying MDA in the same step is
bounded and hence, such a difference can be given by:

malicious gradients in the set S). In this case, ‘

”91()0 _ 01(1)

<3om max Hgg” — g H2 27)

(i,j)eH

Following the same analysis, the updated models in the sec-
ond step at our subject parameter servers are given by:

1 w
08 = 0" — MDA (g ... g ))x
657 = 67 — naMDA (g;“ . .gé”“’))z
Thus, the difference between models now will be:

1 w
o =52

- (elm — n2MDA (gél) - génw))) H

< oot

+ 2 HMDA (gél) .. .gé"w))x

). |
z

The bound on the first term is given in Eq. (27) and that on
the second term is given in Eq. (24) and hence, the difference

— MDA (..
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between models in the second step is given by:

ngm _ 92(1)

< 3.1 . max H G _ (j)H
, =0 (i.j)eH T8,

+3-1 - max Hgg)—géj)H (28)
(i,j)eH 2

By induction, we can write that the difference between mod-
els on two correct parameter servers at step t is given by:

H gt(x) _ 0[(1)

T
< 3.1, - max ‘ @ _ oW H 29
) = t_Zl Nt e 8t 8 5 (29)

Since g,(i) and g,(j ) are computed at different workers, they
can be computed based on different models Qt(l) and 0,0 ),
Following the Lipschitzness of the loss function,

7 =s0], 51 o),

Noting that the sequence 7; is monotonically decreasing with
t — o0, Eq. (29) can be written as:

T
<3.m-l max

Q(X) _ 6(7)
! P} )

(@) )
6" =6/’ Hz

Assuming that the maximum difference between any two
correct models is bounded by /C (this is enforced anyway by
the algorithm through entering frequently the gather phase),
this difference can be written as:

” 9t<x> _ 9[<z)

253.,,1.1./@.;

Now, to ensure the bound on the maximum difference

< K.
2

At this point, the number of steps T = T should be bounded

from above as follows:

between models, we need the value of HG,(X) — o H

1
3.-mp-1

T < (30)

T here represents the maximum number of steps that are
allowed to happen in the scatter phase, i.e., before enter-
ing one gather phase. Doing more steps than this number
leads to breaking the requirement of MDA on the variance
between input gradients, leading to breaking its Byzantine
resilience guarantees. Thus, this bound is a safety bound that
one should not pass to guarantee contraction. One can do
less number of steps (than T') during the scatter phase for
a better performance (as we discuss in Sect. 8). Moreover,
this bound requires that the initial setup satisfies the assump-
tions of MDA. Having a deployment that does not follow such
assumptions leads to breaking guarantees of our protocol (as
we show in Sect. 7).

5.3 Liveness of server parameters

The previous section showed that eventually, the parameters
will all have nearly identical values. Let us now use the results
of the previous lemmas to show that, while gathering, the
trajectory of parameters Qt(] ) is nearly a stochastic gradient
descent. The trick to do so will be to determine that the actual
update of the parameters after contraction satisfies the («, f)-
Byzantine resilience condition of [11]. This actual update is
what we call the the effective gradient.

Definition 2 The (stochastic) effective gradient ét(j ) of node
Jj is defined by

) )
6’t] B 0?‘{’1
Uh '

G = 31)
In particular, we shall focus on the effective gradient of the
average parameter, which turns out to also be the average
effective gradient, that is,

_ 1 n 6.—0
G2 — Y GV =1 (32)

The fundamental property of the average effective gradient
is to be pointing, under our assumptions, strictly in the same
direction as the true gradient, for large enough values of ¢,
i.e.,

Ja >0, EG-VL(5,) = (1 —sin’a) |VL (8)]5.

To prove this for « = /6, we first show that for ¢ large
enough, all servers receive roughly the same gradients, using
the previous lemmas.

Lemma 14 The following bound holds:

E max
JE[1 .. hps)

‘ij) - VL (9_!)

L < 3huo’ +3144,

Proof Note that, for any server j and worker k, we have
. _ ‘ .
|6 - v @), = |e” - o],

o =L ()],

+ ”VL (9}")) - VL)),

+

(33)

Because we use MDA, by virtue of Lemma 9, we know that
the first term is upper bounded by 24,0 4-1 Ay, . The second
term is bounded by the assumption on the size of the noise,
while the last term is bounded using the Lipschitz continu-
ity of the gradient, and the fact that the maximal distance
between two models is upper-bounded by Ag,. Combining it
all yields the lemma. O
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Lemma 15 The following bound holds:

E e ‘G(” VL (5,) H2 <3hyo'+ (34)
hpr
/2 24dl
3 (c (1 - —) n M) . (35)
8 P
Proof Combing Lemma 13 with Lemma 14 yields the result.
O

Lemma 16 The diameters of the servers’ updates after apply-
ing gradients is upper-bounded as follows:

N Ty |

ke[l ...,
< 6nhyo’ + (Bl +1)Aq,.

Proof This is derived from the triangle inequality and from
previous lemmas. O

Lemma 17 Assuming n, = 1/t%, after applying gradients
and after contraction, the distance between the overall
motion of parameters of server j and the true gradient is
upper-bounded as follows:

EG,-VL(6,)=|VL (@)

<9h "+ %) IvL (6,)],.

where C is a constant.

)
Proof Note that 6, |

updated parameters 9,(k) - n,ng). By the guarantee of
Median, we know that the £, diameter of the (attacked) out-
puts is at most the diameter of the input. This implies that

is obtained by taking Median over

) ) )
0,11 — (Qtj -G,/ >H2 < Ag,—nG,

From this, and using the previous lemmas, we derive the fact
that

E (o] - 6)- VL (5)

Gy VL (8) = Ao, | VL (5],

n | VL (9_:)”;

— (9o’ n; + (61 + 1) Ag,) HVL (9'].;) H2

Taking the average over honest parameter servers, dividing

by 1, and factoring in the bound on Ay, , we obtain the lemma.
]

v

v

Theorem 2 (Liveness and safety of parameter servers) Under

our assumptions for any parameter server j, (EG,, VL (0})) >

Hve ()]
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Proof Lemma 17 shows that tzhere exists K such that
(EG,.VL(3)) = HVL (9}”)”2 ~-K|vL (9}”)”2. But

by assumption, we know that K < ”VL (@U)) ”2 /4. Com-
bining the two inequalities yields the theorem. O

5.4 Bounded moments for ByzSGD

Finally, we show three lemmas which are important in the
classic convergence proof of SGD [12].

Lemma 18 (Bounded moments of effective gradient) We
show that

E |Gy = 4.+ B[] (36)

/10

Proof We define the following notation:
91‘(.{_)]/2 4 (9(]) ntG(]))

We know that G, = g, — +-(§, 0,11/,) and hence we

+1
have,
= _ 1 - _
1G], = [& — — (6151 — Or11/2) (37)
Nt 2
<&l + = |6+1 = 01102 H2 (38)
3
<&, + - A20r12) (39)
t
3
= ”gt ”2 + 77_ (6d’7thw‘7/ + (1 + 3d77tl)A2(9t)) ,
t

(40)

where A gives the £, diameter. Note that in the last two equa-
tions, we use the bound imposed by MDA (Lemmas 9), 10,
and the triangle inequality of diameters (Lemma 1). Recall
Lemma 13, we have

24dll7[t/2J
0

mwp=c(1-2)"+ @n

Based on the bounded moments and the bounded variance
assumptions, we then have for some constants A and B,

E |G, <a+B]6],+C" (42)
.16,

We can now define a new constant A’ as follows:

3
A=A+ H<6dmhwa' + (1 + 3dnil)

(o324,
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Thus, we have By assumption:
E |G|, <A +B|§,],. (43) _ .
£,10, 1G], 161, HVL (sz)” . V8 fu o > NG s, (52)
2 hy hy
Noting that [la + bll5 < ¢ (r) (lally + I1b15). where () = _ VBfu (1-2)" 24d1% 112 53)
Z r -3 -
Zie{o_._r_l} (C) then, we have w 0
m}

E 16l = (4 + B3]y

<p(r)A" +¢(r)B"|0,],. (44)

Setting A. = ¢(r)A” and B, = ¢ (r)B" yields the lemma.
O

Lemma 19 (Bounded variance to gradient norm) Noting

, , N
o) & \/]E (‘ ¢ VL (9’(])>H2) and o, £ mingepp, ]

(0,(k)), the norm of gradient at the average of local param-

eters is lower bounded by:

V8fu

w

<E[VL(6,)

N2 24d1%n
) - = I,

o —Cl (1 -5
45)
Proof From Lemma 13, we can bound the distance between

the average parameter and Vj € [h,] honest parameter as
follows:

_ . it 24dIn):
E5,-67| =c(1-£2)° P £ (46)
2 8 P
By Lipschitz continuity of the loss, V (x, y) € (Rd)z:
IVL (x) = VL D)l = 1llx = yl2- (47)

Then, using the reverse triangular inequality:

IIVL )2 = IVL () l2| < IVL (x) = VL (D)5
<Ilx -yl (48)
= [IVL (x)lly > IVL (0l = Lllx—ll5.

(49)
So, with the honest parameters and linearity of E:
B|vL @), zE|ve (47)],
—IE|g - 9}””2 (50)
=B |vL (o)},
L 24d1*n) .
P2 15]
—ca(1-8)" + 6

Lemma 20 (Global confinement of the parameter vector) For
any value of t, and V' j € [hps], 9,(" ) is almost surely confined
within a bounded region.

Proof Given Lemmas (17, 19), the average effective gradient
G always points to the same direction of the real gradient,
which always points to the origin. Then, given the bound
on the parameters diameter (Lemma 13) and the bound on
the moments of the effective gradient (Lemma 18), it is evi-
dent that correct parameter vectors remain confined beyond
a certain horizon D, as a direct consequence of [11]. m]

Combining all these lemmas together shows that ByzSGD
achieves (o, f) Byzantine resilience. We can say more.
First, based on Lemma 13, the parameter vectors on correct
nodes get closer to each other as ¢ increases, i.e., lim;_, o
A (0;) = 0. This property enables having the abstraction of
a centralized setup (i.e., with one parameter vector), which
is well understood and already shown to be converging in
the literature. Moreover, based on Lemma 8, we learn that
gradients on correct nodes get closer to each other. Second,
based on Lemma 14, the effective gradient is always close
to the true gradient (while both always pointing to the same
direction) and further, the distance between both decreases
as t increases. Hence, based on these elements, our algorithm
fulfill the requirements of almost-sure convergence as given
by [11] (Proposition 2), which is adapted from the classical
SGD proof [12] regardless of the identity of the (correct)
parameter server.

6 ByzSGD: reducing messages with
synchrony

We show here that assuming network synchrony, we can
boost ByzSGD’s performance while keeping the same
resilience guarantees. In particular, the number of communi-
cated messages can be reduced as follows: instead of pulling
an updated model from g servers (line 6 in Algorithm 1),
each worker pulls only one model and then checks its legit-
imacy using two filters: Lipschitz and Outliers filters. In
this case, ByzSGD requires n,, > 2f,, + 1 while keeping
Nps = 3f ps T 2.
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6.1 Lipschitz filter

Based on the standard Lipschitz continuity of the loss
function assumption [11,12], previous work used empirical
estimations for the Lipschitz coefficient to filter out gradients
from Byzantine workers in asynchronous learning [18]. We
use a similar idea, but we now apply it to filter out models
from Byzantine servers. The filter works as follows: consider
a worker j that owns a model 9,(] )and a gradient it computed
g,(j ) based on that model at some step t. A correct server i
should include g,(j ) while updating its model 9,(i), given net-

work synchrony. Worker j then: (1) estimates the updated
M)
91+1

from a parameter server i. If server i is correct
9(1' )
: t+
local gradient gt(j )) should be close to that of the estimated
local model 91(4]-(11 2 , based on the guarantees given by MDA.
Such a growth rate is encapsulated in the Lipschitz coeffi-
cient of the loss function. If the pulled model is correct then,
the worker expects that the Lipschitz coefficient computed
based on that model be close to those of the other correct
models received before by the worker. Concretely, a worker

computes an empirical estimation of the Lipschitz coefficient

model locally

(i)
amodel 0, e

then the growth of the pulled model

based on its own gradient and (2) pulls

| (with respect to the

R
G _ )
‘ O~ H 2

dition k < K, £ quantiles,,—s,s {K}, where K is the list of

and then, ensures that it follows the con-

all previous Lipschitz coefﬁcipénts k (i.e., with zp,0p < 1).

The Lipschitz filter, by definition, accepts on average
nps — fps models for every pulled n ,; models. Such a bound
makes sense given the round robin fashion of pulling models
from servers (by workers) and the existence of (at most) f
Byzantine servers. Based on this filter, each worker pulls,
on average, nps + fps €ach np, steps. Due to the presence
of fps Byzantine servers, this is a tight lower bound on the
communication between each worker and parameter servers
to pull the updated model. The worst attack an adversary can
do is to send a model that passes the filter (looks like a legit-
imate model, i.e., very close to a legitimate model) that does
not lead to computing a large enough gradient (i.e., leads to
minimal learning progress); in other words: an attack that
drastically slows down progress. For this reason, such a filter
requires 1, > 3 f},5. With this bound, the filter ensures the
acceptance of at least f},; + 1 models for each pulled 7,
models, ensuring a majority of correct accepted models any-
way and hence, ensuring the progress of learning. Moreover,
due to the randomness of choosing the value r (line 3 in Algo-
rithm 3) and the round robin fashion of pulling the models,
progress is guaranteed in such a step, as correct and useful
models are pulled by other workers, leading to computing
correct gradients.
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6.2 Outliers filter

Although the Lipschitz filter can bound the model growth
with respect to gradients, a server can still trick this filter
by sending a well-crafted model that is arbitrarily far from
the other correct models [7]. To overcome this problem, we
use another filter, which we call Outliers filter, to bound the
distance between models in any two successive steps.
Without loss of generality, consider a correct worker j that
pulls models from parameter servers 6"Vi ¢ [1...np]in
a round robin fashion. In each step # > 1, the worker com-
putes a local estimation of the next (to be received) model
Ql(j ™) based on the latest model it has 9,(1 )1 and its own gra-

dient estimation gl(J_ )1. The local model estimation is done as
follows:

‘1 , .
et(j( ) — et(i)] _ nt—]gt(j_)] . (54)

Without loss of generality, assume that worker j pulls the
model from some server i in step ¢. If such a server is correct,
it computes the new model 9,(1) as follows:

Qz(i) _ et(i)l — 1,—1MDA (gt(i)l .. .gt(fulz)) . (55)

Thus, the difference between the local model estimation at
worker j and the received model from server i (if it is correct)
is given by:

H@W)) _ Qtu')

B ) )
,= H (9t71 - ntflgt—l)
. l w
— (00 = nmpA (g2, g")) |

:

M (nw) )
MDA (gkl 8 ) - &7 H2 .

<

) (@)
gt—l - 0[—1

+ M-

Based on the guarantees given by MDA [24], the following
bound holds:

‘ h
1 w
”MDA (g,( ). ..gl(n )) - g,(/) ”2 = ﬁ
w

Based on the results shown before, the maximum distance

between two correct models just after a gather phase is:

i | L7
TS (T-(t mod T)) || 8(T-(t mod T)) e

2 IED

By induction, we can bound 01(1 (ll)) — Gt(i)l H2 and hence, we

can write:
Het(](l)) . Qt(t)

= I(T-(t mod T)) Hg(r(z mod T)) H2

X (2((t mod T) — 1) + %) .

(57)
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Thus, a received model 9t(i) that satisfies Eq. (57) is consid-
ered passing the Outliers filter. Such a model is guaranteed
to be in the correct cone of models in one scatter phase. Note
that such a filter cannot be used alone without the Lipschitz
filter. A Byzantine server can craft a model that satisfies such
a filter (i.e., the Outliers filter) while being on the opposite
direction of minimizing the loss function. Such a model then
will be caught by the Lipschitz filter.

Combining the Lipschitz filter and the Outliers filter guar-
antees that the received model at the worker side is close to
the correct one (at the current specific scatter phase), rep-
resenting a reasonable growth, compared to the latest local
model at the worker.

Algorithm 3 ByzSGD: worker logic (synchronous)

1: Calculate the values of T & seed

2: model <« init_model(seed)

3: r < random_int(1,n ,y)

4:1t <0

5: grad < compute_grad(model)

6: repeat

7 local_model < apply_grad(model,grad)

8 if t mod 7' = 0 then

9: models < read_models()

10: model < Median(models)

11:  else

12: i <0

13: repeat

14: new_model < read_model((r +#+i) mod 7 )
15: new_grad <— compute_grad(new_model)
16: i<—i+1

17: until pass_filters(new_model)

18: model < new_model

19: grad < new_grad

20:  end if

21: t<—t+1
22: until 7 > max_steps

6.3 ByzSGD: the synchronous version

Keeping the parameter server algorithm as is (Algorithm 2),
Algorithm 3 presents the workers’ training loop in the syn-
chronous case. We focus here on the changes in the ByzSGD
algorithm, compared to the asynchronous case (Sect. 4.2).

Inthe initialization phase, each worker j chooses arandom
integer r; with 1 < r; < n,, before estimating the gradient
at the initial model.

While parameter servers are updating the model (line 7 in
Algorithm 2), each worker j speculates the updated model
by computing a local view of it, using its local computed
gradient and its latest local model (line 7 in Algorithm 3).
Then, each worker j pulls one parameter vector from server
i where, i = (rj +t + 1) mod n . Such a worker computes
the new gradient based on the pulled model. Based on this
computation and the local estimate of the updated model,
the worker applies the Lipschitz and the Outliers filters to

Table 2 Models used throughout the evaluation

NN architecture # parameters Size (MB)
MNIST_CNN 79510 0.3
CifarNet 1756426 6.7
Inception 5602874 214
ResNet-50 23539850 89.8
ResNet-200 62697610 239.2
Transformer 11866786 453

check the legitimacy of the pulled model. If the model fails
to pass the filters, the worker j pulls a new model from the
parameter server iy, where i1 = (r; + ¢ + 2) mod n ;.
This process is repeated until a pulled model passes both
filters. Every T steps (i.e., in the gather phase), each worker
Jj pulls models from all servers and aggregates them using
Median, completing the DMC computation.

7 Experimental evaluation

We implemented our algorithms on top of TensorFlow [1] and
PyTorch [51], and we report here on our empirical results,
showing the resilience of ByzSGD against Byzantine attacks
and highlighting the efficiency of its synchronous variant.

7.1 Evaluation setting
7.1.1 Testbed

We use Grid5000 [30] as an experimental platform. We
employ up to 20 worker nodes and up to 6 parameter servers.
Each node has 2 CPUs (Intel Xeon E5-2630 v4) with 10
cores, 256 GiB RAM, and 2x 10 Gbps Ethernet.

7.1.2 Applications

We consider two ML applications for our evaluation: image
classification and language modeling. We chose these tasks
due to its wide adoption as a benchmark for distributed ML
systems, e.g., [16,68]. For the first task, we use MNIST [44]
and CIFAR-10 [41] datasets. MNIST consists of handwritten
digits. It has 70,000 28 x 28 images in 10 classes. CIFAR-10
is a widely-used dataset in image classification [58,70]. It
consists of 60,000 32 x 32 colour images in 10 classes. We
use image classification as our default application. For the
second task, we use the Wikipedia dataset [19] with all the
English words as the vocabulary.

For image classification, we employ several NN architec-
tures with different sizes ranging from a small convolutional
neural network (CNN) for MNIST, training < 100k param-
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Fig.3 Convergence in a 0.7
non-Byzantine environment
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eters, to big architectures like ResNet-200 with around 63M
parameters (see Table 2). We use CIFARIO (as a dataset)
and CifarNet (as a model) as our default experiment. For the
language modeling task, we the Transformer model [61].

7.1.3 Metrics

We evaluate the performance of ByzSGD using the following
standard metrics.

1. Accuracy (top- 1 cross-accuracy) The fraction of correct
predictions among all predictions, using the test dataset.

2. Loss The total loss value using the test dataset. We
measure both the accuracy and the loss with respect to time
and model updates (or epochs).

3. Throughput The total number of updates that the
deployed system can do per second.

7.1.4 Baseline

We consider vanilla SGD as our baseline. Given that such a
baseline does not converge in Byzantine environments [17],
we use it only to quantify the overhead in non-Byzantine
environments.

7.2 Evaluation results

First, we show ByzSGD’s performance, highlighting the over-
head, in a non-Byzantine environment. Then, we compare the
throughput of the synchronous variant to that of the asyn-
chronous variant in a Byzantine-free environment. Finally,
we report on the performance of ByzSGD in a Byzantine
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mini-batch size = 100

environment, i.e., with Byzantine workers and Byzantine
servers. For the Byzantine workers, we show the effect of
arecent attack [7] on ByzSGD, and then we show the results
of 4 different attacks in the case of Byzantine servers. In all
experiments, and based on our setup, we use 7 = 333. We
discuss the effect of changing T on ByzSGD’s performance
later in this section.

7.2.1 Non-Byzantine environment

Figure 3 shows the convergence (i.e., progress of accu-
racy) of all experimented systems with both time and model
updates (i.e., training steps). We experiment with two batch
sizes and different values for declared Byzantine servers and
workers (only for the Byzantine-tolerant deployments). Fig-
ure 3a shows that all deployments have almost the same
convergence behavior, with a slight loss in final accuracy
for the Byzantine-tolerant deployments, which we quantify
to around 5%. Such a loss is emphasized with the smaller
batch size (Fig. 3c). This accuracy loss is admitted in previ-
ous work [65] and is inherited from using statistical methods
(basically, MDA in our case) for Byzantine resilience. In par-
ticular, MDA ensures convergence only to a ball around the
optimal solution, i.e., local minimum [24]. Moreover, the
figures confirm that using a higher batch size gives a more
stable convergence for ByzSGD. Figure 3a and c show that
both variants of ByzSGD almost achieve the same conver-
gence.

The cost of Byzantine resilience is more clear when con-
vergence is observed over time (Fig. 3b), especially with
the lower batch size (Fig. 3d). We define the convergence
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overhead by the ratio of the time taken by ByzSGD to reach
some accuracy level compared to that taken by vanilla SGD
to reach the same accuracy level. For example, in Fig. 3b,
vanilla SGD reaches 60% accuracy in 268 s which is around
32% better than the slowest deployment of ByzSGD. We draw
two main observations from these figures. First, changing the
number of declared Byzantine machines affects the progress
of accuracy, especially with the asynchronous deployment
of ByzSGD. This is because servers and workers in such
case wait for replies from only n — f machines. Hence,
decreasing f forces the receiver to wait for more replies,
slowing down convergence. Second, the synchronous variant
always outperforms the asynchronous one, especially with
non-zero values for declared Byzantine machines, be they
servers and workers. Such a result is expected as the syn-
chronous algorithm uses less number of messages per round
compared to the asynchronous one. Given that distributed
ML systems are network-bound [36,70], reducing the com-
munication overhead significantly boosts the performance
(measured by convergence speed in this case) and the scala-
bility of such systems.

7.2.2 Throughput

We do the same experiment again, yet with different state-
of-the-art models so as to quantify the throughput gain of the
synchronous variant of ByzSGD. Figure 4 shows the through-
put of synchronous ByzSGD normalized by the throughput of
the asynchronous ByzSGD in each case. From this figure, we
see that synchrony helps ByzSGD achieve throughput boost
(up to 70%) in all cases, where such a boost is emphasized
more with large models. This is expected because the main
advantage of synchronous ByzSGD is to decrease the num-
ber of communication messages, where bigger messages are
transmitted with bigger models.

7.2.3 Byzantine workers

We study here the convergence of ByzSGD in the presence of
Byzantine workers. We experiment first with different vari-

—— No Attack
10
— =~ Reversed
I Partial Drop
; — = Random
—
8
7
0 5 - 15 20 25 30 35
Training epochs
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) — No Attack
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Fig.5 Convergence of training, using our language modelling task, in
the presence of Byzantine workers

ants of workers’ misbehavior using our language modelling
application. Such variants include message drops, random
gradients, or reversed gradients; such misbehavior are typi-
cally used to test Byzantine-resilient GARs, e.g., [65]. Then,
we focus on a more recent attack, using the image classifica-
tion task, that is coined as A little is enough attack (LIE) [7].
This attack focuses on changing each dimension in gradients
of Byzantine workers to trick some of Byzantine-resilient
GARs, e.g., [11,24].

Figure 5 shows the progress of the loss with different
kinds of attacks compared to the vanilla case with no attacks.
In all cases, we employ 3 servers with f,; = 1 (but with
no actual attack) and 10 workers with f,, = 1 (with the
attack starting from the beginning of training). Figure Sa
shows that ByzSGD can tolerate all the experimented Byzan-
tine attacks: all deployments achieve comparable loss values
after 35 epochs. This indicates the effectiveness of our GARs
against such attacks and confirms empirically the Byzantine
resilience of ByzSGD. Figure 5b shows that although Byzan-
tine behavior can be tolerated, this resilience comes at the
cost of delayed convergence. We can see that simple behav-
ior like putting random data or reversing the gradient would
have lower effect on delaying convergence compared to a
stronger attack like LIE.

We focus now on the LIE attack. We apply this attack to
multiple deployments of ByzSGD. In each scenario, we apply
the strongest possible change in gradients’ coordinates so as
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Fig.6 Convergence in the presence of Byzantine workers

to hamper the convergence the most. We study the effect of
this attack on the convergence of ByzSGD with both the ratio
of Byzantine workers to the total number of workers (Fig. 6a)
and the batch size (Fig. 6b). We use the deployment with no
Byzantine behavior (No Attack) as a baseline.

Figure 6a shows that the effect of the attack starts to appear
clearly when the number of Byzantine workers is a significant
fraction (more than 20%) of the total number of workers. This
is intuitive as the attack tries to increase the variance between
the submitted gradients to the parameter servers and hence,
increases the ball (around the local minimum) to which the
used GAR converges (see e.g., [11,24] for a theoretical anal-
ysis of the interplay between the variance and the Byzantine
resilience). Stretching the number of Byzantine workers to
the maximum ( f,, = 8) downgrades the accuracy to around
40% (compared to 67% in “No Attack” case). This can be
explained by the large variance between honest gradients,
above what MDA requires, as we discuss in Sect. 7.

Increasing the batch size not only improves the accuracy
but also the robustness of ByzSGD (by narrowing down the
radius of the ball around the convergence point, where the
model will fluctuate as proven in [11,24]). Figure 6b fixes the
ratio of f,, to ny, to the biggest allowed value to see the effect
of using a bigger batch size on the convergence behavior.
This figure confirms that increasing the batch size increases
the robustness of ByzSGD. Moreover, based on our experi-
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ments, setting 25% of workers to be Byzantine while using
a batch size of (up to) 256 does not experimentally satisfy
the assumption on the variance of MDA in this deployment,
which leads to a lower accuracy after convergence.

7.2.4 Byzantine servers

Figure 7 shows the convergence of ByzSGD in the presence of
1 Byzantine server. We experimented with 4 different adver-
sarial behaviors: (1) Reversed: the server sends a correct
model multiplied by a negative number, (2) Partial Drop: the
server randomly chooses 10% of the weights and set them to
zero (this simulates using unreliable transport protocol in the
communication layer, which was proven beneficial in some
cases, e.g., [17]), (3) Random: the server replaces the learned
weights by random numbers, and (4) LIE, an attack inspired
from the little is enough attack [7], in which the server mul-
tiplies each of the individual weights by a small number z,
where |z — 1| < & with § close to zero; z = 1.035 in our
experiments. Such a figure shows that ByzSGD can toler-
ate the experimented Byzantine behavior and guarantee the
learning convergence to a high accuracy.

7.2.5 Convergence with multiple Byzantine servers

Figure 8 shows the convergence with different numbers of
declared Byzantine servers. To allow for (up to) 3 Byzantine
servers, we use a total of 10 servers in this experiment. Such
figures show that changing the number of Byzantine servers
does not affect the the number of steps required for conver-
gence (Fig. 8a). Yet, deployments with a higher value for
fps require slightly more time to converge. Note that in this
experiment we have not employed real attacks nor changed
the total number of machines (for both servers and workers)
used.

7.2.6 Effect of changing T

The value of T denotes the number of steps done in one scat-
ter phase (i.e., before entering one gather phase). Figure 9
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shows the effect of changing the value of T on convergence
with both time and model updates in both a Byzantine and a
Byzantine-free environments. Figure 9a shows that the value
of T" almost does not have any effect on the convergence w.r.t.
the model updates. This happens because models on correct
servers almost do not drift from each other (as all the servers

are correct). Interestingly, Fig. 9b shows that using a higher
value for T helps converge faster. This is because increasing
T decreases the communication overhead, achieving faster
updates and higher throughput. However, it is important to
note that as the value of 7' increases, the expected drifts
between models on correct servers increases, and it becomes
easier for the Byzantine server to trick the workers. Figure 9c
and d show the convergence with different values for 7 under
the Reversed attack (in which the Byzantine machine reverses
the direction of the correct vector). Though setting 7 = 1
slows down the convergence, this case shows the most sta-
ble convergence behavior (especially towards the end when
approaching a local minimum; see Fig. 9c). Yet, higher val-
ues for 7 lead to increased noise and oscillations towards the
end of convergence. Notably, testing with 7" < 333 is safe in
this setup and that is why convergence is reached in all cases.

7.2.7 Filters false negatives

ByzSGD'’s filters (in the synchronous case) may have false
negatives, i.e., falsely-reject correct models (at workers) from
correct servers. This leads to wasted communication band-
width and possibly slows down the convergence. We observe
the number of rejected models on workers after 500 learning
steps. Figure 10 shows the ratio of false negatives to the total
number of submitted models in different scenarios.

Figure 10a shows such a ratio with different values for T
while no attack is employed yet, with f},; = 1.In general, the
ratio of false negatives never exceeds 1% in this experiment,
and it is almost stable with increasing 7. Note that 333 is the
maximum value allowed for 7 in this setup (to follow the
safety rules of ByzSGD). With T = 1, the false negatives are

Fig.9 The effect of changing T 0.7 0.7
on performance 0.6 0.6 .
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Fig. 10 False negative percentage with different scenarios

always zero, simply because the filters do not work in this
setup (i.e., the gather phase is entered in every step). Such
a figure shows that our filtering mechanism is effective in
not producing many false negatives and hence, do not waste
communication rounds (when a model is rejected, the worker
asks for another model from a different server).

We repeated the same experiment yet with employing
the Reversed attack from the Byzantine server; results in
Fig. 10b. Such an attack is effective (in terms of bandwidth
waste), especially with 7 > 50. Yet, the wasted bandwidth is
upper bounded by 25% in all cases, which is the ratio of the
number of Byzantine servers to the total number of servers
1:4. Figure 10c shows that other attacks are not that effective
in wasting the bandwidth, as the filters can successfully filter
out only the Byzantine models and accept the correct ones.
Other than the Reversed attack, the false negatives ratio in
this experiment do not exceed 3.5%.

7.2.8 Validating the bounded gradients variance to norm
ratio assumption

To make progress atevery step, any Byzantine-resilient GAR,
that is based on statistical robustness, requires a bound on the
ratio % of the correct gradient estimations. Intuitively,
not having such a bound would allow the correct gradients
to become indistinguishable from some random noise. This
is problematic, since such GARs, e.g., [11,24,59,66] rely on
techniques analogous to voting (i.e., median-like techniques
in high-dimension): if the correct majority does not agree
(appears “random”), then the Byzantine minority controls
the aggregated gradient. For example, not satisfying these
bounds makes the used GARs vulnerable against recently-
proposed attacks like A little is enough attack [7] (see Fig. 6).
Such a bound is to ensure that, no matter the received Byzan-
tine gradients, the expected value of the aggregated gradient
does lie in the same half-space as the real gradient, leading for
every step taken to more optimal parameters (smaller loss).

Here, we try to understand when this assumed bound on
the variance to normratio (Eq. (3)) holds and when it does not.
The most straightforward way to fulfill such an assumption
is to increase the batch size used for training. The question
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is then what the minimum batch size (that can be used while
satisfying such a bound) is, and whether it is small enough
for the distribution of the training to still make sense.

Methodology. We use the same setup and hyperparame-
ters as used in our evaluation of ByzSGD. We estimate over
the first 100 steps of training the variance to norm ratio
of correct gradient estimations for several batch sizes. We
plot the average (line) and standard deviation (error bar)
of these ratios over these 100 steps (Fig. 11). We show the
bound required by two Byzantine-resilient GAR: MDA, and
Multi-Krum [11]. We find Multi-Krum a very good exam-
ple on a widely-used GAR that unfortunately does not seem
to provide any practical’ guarantee, due to its unsatisfied
assumption.'® We also experimented with two values of the
number of declared Byzantine workers: f = 1, 5. Increas-
ing the value of f calls for a tighter bound on the variance to
norm ratio.

Results. Figure 11 depicts the relation between the vari-
ance (of gradients) to norm ratio with the batch size.
According to such a figure, Multi- Krum cannot be safely used
even with the largest experimented batch size, i.e., 256. Oth-
erwise, the variance bound assumption such a GAR builds on
isnot satisfied and hence, an adversary can break its resilience
guarantees [7]. MDA gives a better bound on the variance,
which makes it more practical in this sense: typical batch size
of 128 for example can be safely used with f = 1. However,
MDA is not safe to use with f = 5 even with the largest
experimented batch size (b = 256). This is confirmed in
our experiments, where we show that an adversary can use
such a vulnerability (due to the unsatisfied assumption) to
reduce the learning accuracy. Having the optimal bound on
variance while guaranteeing Byzantine resilience and con-
vergence remains an open question.

9 At least on our academic model and dataset.

10 1t needs very low variance to norm ratio of correct gradient estima-
tions, e.g. 0.08 for (n, f) = (18, 5).
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can be used with batch-size=32 with f = 1, but not with f = 5 (as
the real % value is higher than the MDA threshold)

8 Concluding remarks
8.1 Summary

This paper is the first step towards genuinely distributed
Byzantine-resilient Machine Learning (ML) solutions that do
not trust any network component nor assume any bound on
communication or computation delays. We present ByzSGD
that guarantees Byzantine resilience, to both Byzantine
servers and workers, in the case of i.i.d. local data distri-
butions. Through the introduction of a series of novel ideas,
the Scatter/Gather protocol, the Distributed Median-based
Contraction (DMC) module, and the filtering mechanisms,
we show that ByzSGD works in an asynchronous setting,
and we show how we can leverage synchrony to boost per-
formance. We built ByzSGD on top of both TensorFlow and
PyTorch, and we show that it tolerates Byzantine behavior
with 32% overhead compared to vanilla SGD.

8.2 Related work

With the impracticality (and sometimes impossibility [28])
of applying exact consensus to ML applications, the approx-
imate consensus [27] seems to be a good candidate. In

approximate consensus, all nodes try to decide values that
are arbitrarily close to each other and that are within the
range of values proposed by correct nodes. Several approx-
imate consensus algorithms were proposed with different
convergence rates, communication/computation costs, and
supported number of tolerable Byzantine nodes, e.g., [2,21,
26,48].

Inspired by approximate consensus, several Byzantine-
resilient ML algorithms were proposed yet, all assumed
a single correct parameter server: only workers could be
Byzantine. Three Median-based aggregation rules were pro-
posed to resist Byzantine attacks [65]. Krum [11] and
Multi-Krum [17] used a distance-based algorithm to elim-
inate Byzantine inputs and average the correct ones. Bulyan
[24] proposed a meta-algorithm to guarantee Byzantine
resilience against a strong adversary that can fool the
aforementioned aggregation rules. Draco [15] used coding
schemes and redundant gradient computation for Byzan-
tine resilience, where Detox [52] combined coding schemes
with Byzantine-resilient aggregation for better resilience and
overhead guarantees. Kardam [18] uses filtering mechanisms
to tolerate Byzantine workers in an asynchronous learning
setup. ByzSGD augments these efforts by tolerating Byzan-
tine servers in addition to Byzantine workers.

8.3 Open questions

This paper opens several interesting questions.

First, the relation between the frequency of entering the
gather phase (i.e., the value of 7') and the variance between
models on correct servers is both data and model dependent.
In our analysis, we provide safety guarantees on this relation
that always ensure Byzantine resilience. However, we believe
that in some cases, entering the gather phase more frequently
may lead to a noticeable improvement in the convergence
speed. The trade-off between this gain and the corresponding
communication overhead is an interesting open question.

Second, the Lipschitz filter requires n,; > 3 fps. There
is another tradeoff here between the communication over-
head and the required number of parameter servers. One
can use Byzantine-resilient aggregation of models, which
requires only 7, > 2 f), yet requires communicating with
all servers in each step. In our design, we strive for reducing
the communication overhead, given that communication is
the bottleneck [36,70].

Third, given that the distributed ML problem is com-
munication bound and that ByzSGD introduces additional
communication overhead, it is now interesting to explore
the interplay between compression and/or quantization tech-
niques with Byzantine resilience.

Fourth, we leave open the question of designing a
Byzantine-resilient algorithm that have desirable privacy
preservation properties. Such an algorithm would be useful in
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cases where privacy of workers should not be compromised
by the servers in an environment with Byzantine servers and
workers.

Fifth, ByzSGD assumes synchronous SGD. Following
the asynchronous SGD regime opens new challenges and
attacks. For example, in such a regime, a strong adversary
can control the order of messages the different nodes receive,
possibly hindering models on such nodes to contract. The
question of how to ensure contractness and convergence in
such a case is also left open.
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