
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Hardware and Software Support for RPC-Centric
Server Architecture

Mark Johnathon SUTHERLAND

Thèse n° 8017

2022

Présentée le 5 septembre 2022

Prof. M. Jaggi, président du jury
Prof. B. Falsafi, Prof. A. Daglis, directeurs de thèse
Prof. M. Silberstein, rapporteur
Dr S. Reinhardt, rapporteur
Prof. E. Bugnion, rapporteur

Faculté informatique et communications
Laboratoire d’architecture de systèmes parallèles
Programme doctoral en informatique et communications

To my darling Laurianne.

Acknowledgements

Completing a PhD has unequivocally been the most challenging thing I have ever done,

and moreover the journey was a task for which I was undoubtedly not mentally prepared to

undertake. Entering the program, I naïvely expected only academic and intellectual growth.

Upon leaving, I now realize that the personal growth required to complete the journey has

reached almost every area of my character. It was only possible for me to finish this work with

the support of my advisors, and a great many friends, family members, and colleagues, whom

all are owed an extreme debt of gratitude and I will thank by name throughout this section.

However, I wish to begin this section by mentioning the most important lesson I learned in

the past six years, from the most influential person in my life.

If anyone would be first,

let him be last of all,

and servant of all.

— Jesus of Nazareth

It is only now, on the far side of the PhD journey, that I realize the depth and practical impli-

cations of Jesus’ teaching in that statement. Although the value of this was difficult to see at

first, and attempting to embody it was even more difficult, I look forward to attempting to

live and work with as much of an “others-focused” mindset as I can possibly muster. To those

readers who know me, and have tolerated my many lapses towards a selfish attitude, I want to

thank you for your patience and forgiveness! To those who do not, I can only say that I have

benefitted from many people who have sought my good over or beside their own, and those

experiences are the ones I am most thankful for and wish to create for others.

i

Acknowledgements

At this point, I wish to thank my two advisors, Babak and Alex, for all of their effort, collab-

oration, and perseverance in working with me and helping me grow as a professional and

researcher. Babak and I share the trait of perfectionism, and his method of doing research

results in some of the most consistently high-quality output that I know of. From him, I

learned how to communicate ideas much more clearly, focus only on the important questions,

and prioritize all the various interests and possibilities bouncing around in my brain. Although

these lessons were undoubtedly important for me, I am the most thankful for two specific

moments where he encouraged me to keep pushing, despite my lack of belief that I could

reach the finish line. I am also grateful for the fact that Babak plays as hard as he works. All

of his students get to enjoy arguably the best coffee at EPFL (and maybe even beyond), lab

dinners, ski trips, and movie nights, all of which objectively made my PhD experience more

enjoyable. He also made sure that we absolutely never needed to worry about funding our

research, freeing us up to work in any direction for which we can make a strong case.

Alex is one of the most knowledgeable and well-rounded people I have ever met, and I am very

thankful that he joined my PhD journey as an official co-advisor in my fourth year. He was

kind enough to invest a major amount of his time into working with me and improving my

research, all in addition to his own students at Georgia Tech. Additionally, being my immediate

predecessor in the lab working on the systems and networking research angle, I benefitted

significantly from his insights in both of those areas. In particular, Alex had a knack for asking

questions about my ideas or results that revealed shortcomings in the work, with a remarkable

degree of prescience. We also were extremely productive in working together, and found that

our writing styles meshed extremely well. Alex is also the closest person I know to attaining

five nines of availability – there were many times I wrote to him at five in the morning on a

Sunday, not expecting a response for days, and I heard back within hours. I have no idea how

he keeps going, but I know that I am thankful for all those responses. His students are very

blessed to have an advisor like Alex.

The next two people I wish to thank were my first contacts in the world of computer archi-

tecture: Natalie Enright Jerger and Andreas Moshovos, at the University of Toronto. Natalie

was kind enough to extend an offer to me to supervise my Master’s thesis, and consistently

exceeded my expectations in treating me like a colleague and a fellow researcher even though

ii

Acknowledgements

I was not a PhD student. Natalie’s expertise, demeanour, and infectiously positive attitude

made my first research experience outstanding. Without the phenomenal experience I had in

her group, I might not have continued on in the research world. She also continues to stay

in touch even long after I left her group in Toronto. Andreas taught me to love the intimate

details of out-of-order processor microarchitecture (and everything related to speculation!),

and even gave me the opportunity to help teach it by assisting his class. His recommendation

to choose EPFL over other offers helped me become the person I am today.

As one can see, I have been blessed with a great number of outstanding instructors, from

Toronto to EPFL. At EPFL, I wish to thank Ed Bugnion, George Candea, and Katerina Argyraki

for teaching me about computer systems, and broadening my horizons beyond traditional

computer architecture. From the first few days of their course called “Principles of Computer

Systems” (POCS), I knew that I wanted to work on systems for the long term. During my PhD, I

had the opportunity to be part of POCS three times – once as a student and twice as a teaching

assistant – and I learned a huge amount each time. I cannot say enough about how rich my

POCS experience was; it was without a doubt the best course I have ever taken.

I would also like to thank the many collaborators I had who reside a bit further abroad than

my immediate EPFL orbit. Specifically, I would like to thank Dionisios Pnevmatikatos at

NTUA, and Virendra Marathe at Oracle Labs. Both of them graciously gave their time to help

me during my first publication, Dionisios from a network perspective and Virendra from a

distributed memory one. Additionally, I thank my thesis committee members Ed Bugnion,

Mark Silberstein, and Steve Reinhardt for graciously investing their time in reviewing my thesis

proposal, giving me feedback, and helping guide my final two years towards a more productive

conclusion. Thank you also to Martin Jaggi for agreeing to serve as my thesis jury president on

such short notice.

Next, I have to thank the people in two labs at EPFL, beginning with all of my fellow PARSA

students. We are all walking the same journey, and although I was slightly less connected

to the lab’s social life than others were, I greatly appreciated the moments where we were

able to share in the positives and negatives of the PhD life together. In particular, I want to

thank Arash Pourhabibi and Dmitrii Ustiugov, who were my two most frequent collaborators

iii

Acknowledgements

other than my advisors. As a completely green first-year student, I will never forget my first

experience of trying to do high-impact research work with Dmitrii. Dmitrii is probably the

only person with whom I can technically argue at levels of intensity that would usually be

considered far too high-volume for an office environment, and still have both of us come out

smiling and believing we had a productive meeting. He is also one of the most persistent

people I have ever met – he will never, ever give up. I am so proud of his many career successes,

and I look forward to continuing to try to convince him of the concept of objective morality in

our lunch meetings to come!

Arash and I worked together daily for two of the last three years of my PhD, and shared two

publications. He is the exact opposite of Dmitrii in his level of personal intensity, but no less

in his level of technical proficiency and persistence. I will always remember how the two of

us worked in completely opposite time zones, both in the dark – me before the sunrise, and

him after the sunset. During our years of working together, I learned a lot about software

development that I would have not encountered otherwise – in particular, I have tried to take

onboard his love for testing and good development practices even when it is inconvenient.

Finally, Arash knows about good food, where to find it, and how to make legitimately good

dishes, which I have been lucky enough to share many times. I am thankful for the time we

spent working together and look forward to more in the future.

Next, I want to thank the rest of the students that were co-running threads during my time in

PARSA: Javier, Mario, Hussein, Sid, Ognjen, Simla, Nooshin, Ali, Shanqing, Yuanlong, Rafael,

Zilu, Dina, Canberk, and Fatih. Javier was the only other student as obsessed with out-of-order

microarchitecture as me, until Ali came along... Javier, put that coffee down! Mario was our lab’s

resident programming languages expert and the only other person in the lab who followed the

NHL. I still can’t understand half the languages he knows, or how he knows more about hockey

than Canadians. Sid is the master of getting from A to B, no matter the cost. If something must

be done, and he is convinced of the need, he will give you a positive result on time. If I had

to choose one person to get something done under a deadline with major consequences for

failure, I am picking him with no hesitation.

Hussein and Ognjen were two students I shared many discussions about FPGAs with – Hussein

iv

Acknowledgements

because of his love for them, and Ognjen because of his frustration. Although Hussein moved

on to the enterprise world early, we shared a good year with our desks in the lab lounge – I

will never forget being hit on the head many times with a rubber ball in the middle of work,

because he decided to throw it at me from across the room without calling out. Ognjen might

be the only person I know who worries about everything as much as me, and I am really

thankful for the long discussions we had in an attempt to stop overthinking many issues. I

really enjoyed all my lunch discussions with Rafael about finance and geopolitics, and arguing

about subjects on which we both were objectively uneducated. Although I did not have as

many interactions with Nooshin, Simla, Shanqing, Yuanlong, Zilu, Canberk, Dina, and Fatih as

I would have liked, I enjoyed the few good times we had, such as at lab dinners.

I also thank the administrative and technical staff that keep PARSA running on a day-to-day

basis. In particular, I want to acknowledge Stéphanie and Valérie for handling scheduling,

travel, administration, and even sometimes translation. Both of them are not only helpful, but

they do their jobs with a smile, which was more appreciated than they perhaps know. For the

short time we were in PARSA together, I saw the wizardry of Rodolphe as a sysadmin. Then,

when he moved on to new opportunities and left me the task of maintaining the infrastructure,

I saw his wizardry even more clearly...

I want to also thank the students in the other labs that I was close to: Marios, Adrien, Rishabh,

and Georg. Marios was sometimes like a third advisor to me, who was interested in incredibly

similar problems and technical ideas. Like clockwork, I would think of a system connection to

one of my ideas, and he had either considered the exact same and rejected it for solid reasons,

or could give me helpful advice on the spot. Thank you Marios for all the time you spent

answering my questions and early stage ideas. Adrien was one of the most open people I have

ever met, almost brutally honest about himself and others. I think he is the only other EPFL

student I know who is as emotional as me, something that I greatly appreciated. Rishabh has

always impressed me with his ability to dive into a completely different research field than he

originally intended to study, and still publish top-tier papers. Although I didn’t get the chance

to work with either of them much, I am looking forward to staying in touch in the future, and

I am extremely grateful for the time they spent with me when I was completing the last few

chapters of this thesis. Their feedback made the work objectively better. Georg, I appreciated

v

Acknowledgements

our connection in my first year very much, particularly your spontaneous invitations – this

made me feel very welcome as a North American new to Europe.

I am also incredibly indebted to the wonderful people I met through Westlake Church Lau-

sanne. When I first arrived in Lausanne on a Saturday, I searched on Google for “english

speaking church Lausanne”, showed up the next day, and have hardly missed a Sunday morn-

ing since then. It is not an exaggeration to say that without the many connections I made

through Westlake, I would not have reached the end of my PhD, or have the life I have today. If

I tried to list every person who encouraged me, or every conversation I enjoyed, I would go

on for twenty pages. Let me just say that I love all of you, our church community, and hope

that I can continue to be an encouragement to all of you for the long run. Among the many

people I have come to know at Westlake, I have to specifically thank my closest friends for

standing with me through every circumstance, friends that are so close I think of them like

family: Ruan, Iddo, Anne-Lize, Clara, Noel, and the Rizzos.

During the past six years, Ruan and Iddo have been like the brothers I never had in my family,

with whom I could share my competitive nature and intensity, but also my soft side. I have

always been able to count on Ruan to be a calming influence, for relentless support, for our

shared obsession with cycling and riding up mountains, and our many times of prayer at all

hours of the day. I am deeply honoured that he stood with me as the best man at my wedding.

Iddo’s thoughtfulness and skill in active listening has always impressed me, in addition to

his honesty in sharing the lessons which he learned from his father with all of us. Also, I

could always count on Iddo to appreciate a nice bottle of red wine together. I will always

treasure our conversations during the multiple times you came to visit, as well as on our shared

holidays. Thank you both for all your support, and I very much look forward to the future of

our friendship.

Anne-Lize, Noel, and Clara have become big and little sisters to me, who were there for me

during many occasions. All three of them have always been a major encouragement to me

in their attitude, faith, and kindness. In particular, I want to acknowledge Anne-Lize and her

family, who probably prayed more for me than I did myself. Also, the shared obsession Noel

and I have for Bible Project podcasts and videos led to many diversions from this thesis work

vi

Acknowledgements

that refreshed my concentration and motivation. I have the privilege of being one of Tom

and Karen Rizzo’s many pseudo-adopted children, and I want to thank them as well as their

daughter Fiona, and son-in-law Adrian for being there for me when recovering from a sudden

hospitalization (twice). I will never forget the support and care I felt from all of them.

Next, I want to thank my parents, Gord and Kathy, as well as my sister Sam, for all of their

support and patience while I was on my PhD journey, especially because I moved so far away

from small-town Alberta to do it. My parents taught me almost everything foundational that

helped me grow into the person that I am. Additionally, I am fortunate enough to not just have

them as parents, but also now more so as friends. My dad was one of the earliest sources of my

involvement with computers, and probably he did not ever imagine that I would one day be

receiving a PhD in computer science because of our home PC on which I played Minesweeper,

Rogue, and Clusterball. He taught me the importance and dignity of hard work, the value

of showing up and being there for others, and was there countless times as support when I

moved away from home to study, and then even further away to do a PhD. I imagine my mom

did not much appreciate my spending time inside staring at a screen, but her patience with

that part of my young life definitely was a foundation in me choosing computers as a career.

Also, I am grateful that my mom and I share an interest in exercise physiology and sports

science, which we often have long text conversations about. Sam has been a constant source

of humility to me, and although that may seem to be a cliché, I actually deeply appreciate

it. Without her, I might have still believed that I could be an athlete. Despite carrying some

disadvantages from our family’s unfortunate lack of height, her work ethic almost got her to

the Canadian national women’s hockey team, and I am so proud of her.

Last, and certainly not least, I want to say thank you to my wife Laurianne and everyone

in the Imhof, Eberli, and Geiser families. I was probably not the one they were expecting

for Laurianne, but they welcomed me with an extreme amount of kindness and patience,

particularly in view of all the struggles I have with expressing myself in French. However, they

made me feel welcome, accepted, and like a member of their family even before Laurianne

and I made the membership official. Laurianne joined my PhD journey in my third year, and

stuck with me through all my self-doubt and difficulty, even though it was initially incredibly

confusing for her to understand the many demands of completing a PhD. I could not have

vii

Acknowledgements

imagined having a more caring girlfriend, fiancé, and now wife, and for that I am eternally

grateful. Her consistent support through 5:30AM phone calls for prayer, and her presence with

me through many late nights helped me more than she will ever comprehend. Nothing can

make me more joyful than thinking about spending the rest of our lives together, and about

how I can make her the happiest person in the world.

Finally, I would also like to thank the many individuals and organizations that financially

supported my PhD journey through funding arrangements. I would like to acknowledge

the EPFL, the Swiss National Science Foundation (SNSF), and the Swiss citizens in general

whose taxes supported my work. This thesis was funded by the following grants, projects, and

awards: EPFL graduate student funding from the Computer Science department, the SNSF’s

“Memory-Centric Server Architecture for Datacenters” and “Hardware/Software Co-Design

for In-Memory Services” projects, Facebook’s “Full-System Accelerated & Secure ML Collabo-

rative Research” program, a Google Faculty Research Award, and Oracle Labs’ Accelerating

Distributed Systems grant.

Lausanne, August 17, 2022 – MJS.

viii

Abstract

Online services have become ubiquitous in technological society, the global demand for which

has driven enterprises to construct gigantic datacenters that run their software. Such facilities

have also recently become a substrate for third-party organizations due to the advantages of

moving infrastructure to the cloud. The task of developing, releasing, and maintaining software

at datacenter scale has given rise to a software architecture employing many independent

microservices, each accomplishing a single role and communicating using an enforced API,

the most common of which is Remote Procedure Calls (RPCs). As microservices have become

standard practice for datacenter-scale software, the datacenter’s underlying components must

support them efficiently.

The increasing adoption of microservice architectures implies a drastic growth in network

communication, because each microservice receives and creates many RPCs that often execute

for only a few microseconds (µs). Therefore, delivering users an interactive, low latency

service becomes more challenging, because each request involves more interactions with the

components implementing the communication stack. It is particularly difficult to ensure the

latency of the slowest responses, called the “tail latency”, is acceptable to the service’s users.

Datacenter system design is therefore undergoing a rapid shift to enable programmers to reap

the benefits of microservices without their performance quandaries.

Handling RPCs from µs-scale software at the line rates of today’s NICs – delivering up to

400Gbps – is an open challenge, which will require designing all layers of the communication

stack to natively offer support for RPC semantics. Although the performance of the network

and protocol layers has drastically improved by prioritizing RPCs as a primary design objective,

server hardware has not yet done so. Therefore, we posit that now is the time for an RPC-

centric server architecture to emerge to allow server endpoints to match the performance of

their surrounding system components.

ix

Abstract

To that end, this thesis introduces hardware and software support for RPC-centric server

architecture. We first make the case that today’s hardware-terminated network transport

protocols grossly over-provision buffering because they are agnostic to the latency constraints

inherent in each RPC – simply exposing such RPC-level information to hardware allows 1.25−
2.2× better performance. Motivated by prior work demonstrating the RPC stack’s burdensome

cost, we then show how a previously proposed RPC stack accelerator can be integrated with

the implementation of our aforementioned NIC protocol. Finally, we propose new NIC-

driven load balancing policies that boost microservice throughput via improved locality, while

simultaneously maintaining tail latency guarantees. Our proposals improve 99th% tail latency

in data stores by 2−5.5×, and reduce instruction cache misses in stateless microservices by

1.1−1.8×. In summary, we present evidence that designing and implementing a server’s NIC

hardware to natively support RPC semantics removes protocol scalability bottlenecks and

enables microservices to enjoy further performance benefits.

Keywords: datacenters, servers, microservices, remote procedure calls, hardware, load

balancing, tail latency, network protocols, queueing theory, co-design

x

Résumé

Les services en ligne sont devenus omniprésents dans la société technologique forçant ainsi

les grandes entreprises à construire des centres de données dédiés à ces services. Les tâches

de développement, publication et gestion de logiciels à l’échelle d’un centre de données

ont conduit à un paradigme divisant les services en plusieurs « microservices », chacun

étant responsable d’un seul rôle et communiquant au moyen d’une interface applicative, la

plus répandue prenant la forme d’appels de procédures à distance (RPC). Les microservices

s’imposant aujourd’hui comme la norme pour le développement de logiciels à l’échelle d’un

centre de données, les infrastructures doivent évoluer afin d’en favoriser l’exécution.

L’utilisation croissante de microservices augmente considérablement le trafic interne au

centre de données. Chaque microservice reçoit et envoie plusieurs RPCs qui, pour la plupart,

ne prennent que quelques microsecondes à s’exécuter. Par conséquent, il devient de plus en

plus difficile de fournir aux utilisateurs un service en ligne interactif et rapide : chaque requête,

aussi simple soit-elle, nécessite de nombreuses interactions sur le réseau. Il devient alors

particulièrement difficile de garantir la latence des requêtes les plus lentes, aussi appelée «

latence de queue ». La conception de systèmes pour les centres de données fait par conséquent

l’objet d’une transformation visant à permettre le développement de microservices avec de

bonnes performances et garanties de latence.

La gestion de RPCs à l’échelle des microsecondes sur des cartes réseau modernes - avec des

débits allant jusqu’à 400 Go/s – est un véritable défi, qui ne peut être adressé qu’en exposant

un support pour les RPCs à chaque couche de la pile de communication réseau. La mise en

place de système de priorités associés aux RPCs permet déjà de meilleures performances.

Cependant, le manque de support pour de tels mécanismes dans d’autres composants du

centre de données empêche des gains encore plus grands. Nous suggérons qu’il est temps,

pour l’architecture des serveurs, de s’adapter aux microservices et de libérer le plein potentiel

xi

Résumé

de certains de leurs composants.

Dans ce but, cette thèse présente la conception à la fois logiciel et hardware (matériel électroni-

que) de serveur dédié à l’exécution de RPCs et favorisant les meilleures performances possibles.

D’abord, nous montrons que l’implémentation en hardware de la terminaison de protocoles

de communications approvisionnent excessivement les mémoires tampons dû à leur manque

de compréhension des contraintes de latence de chaque RPC. Nous montrons qu’il suffit

d’exposer ces informations de la couche RPC au hardware afin d’améliorer la performance

par 1.25-2.2x. Ensuite, motivés par des études préexistantes montrant le coût considérable

de la couche RPC, nous montrons comment un accélérateur RPC peut s’intégrer avec la mise

en oeuvre de notre interface réseau. Enfin, nous proposons des techniques d’équilibrage de

charge entre les cœurs d’un serveur, permettant aux microservices d’exécuter plus rapidement

et simultanément, tout en maîtrisant la latence de queue. Ces propositions améliorent la

latence de queue au 99eme centile par 2-5.5x pour les microservices qui stockent des données,

et réduisent les « cache miss » d’instructions par 1.1-1.8x pour ceux qui sont « stateless ».

En résumé, nous démontrons que la conception et l’implémentation de l’architecture des

serveurs avec un support direct pour les RPCs supprime les goulots d’étranglement de ces

protocoles, permettant ainsi de meilleures performances pour les microservices.

Mots-clefs : centres des données, serveurs, microservices, appels de procédure à distance,

materiel, équilibrage de charge, latence de queue, protocoles de réseau, co-conception,

théorie des files d’attente

xii

Contents

Acknowledgements i

Abstract (English/Français) ix

List of Figures xix

List of Tables xxiii

List of Equations xxv

1 Introduction 1

1.1 Thesis Goals . 5

1.2 Thesis Statement . 6

1.3 Thesis Contributions . 6

1.4 Thesis Organization . 8

1.4.1 Bibliographic Notes . 9

2 Why Design Server Architecture for RPCs? 11

2.1 Microservices and µs-Scale RPCs . 12

2.2 Datacenter Networks and RPC Transport Protocols 13

2.3 Optimized Systems Software . 15

2.4 Curtailing Queueing with Inter-Core Load Balancing 17

2.5 Network-Compute Co-Design . 19

I Designing an RPC-Centric Server 23

3 System Overview 25

3.1 Novel Design Features . 25

xiii

Contents

3.1.1 In-Cache RPC Placement . 26

3.1.2 Fully-Featured RPC Layer with Hardware Acceleration 28

3.1.3 Enhanced Load Balancing . 31

3.2 Applicability of RPC-Centric Design Extensions 32

3.3 System Modelling Techniques . 34

4 In-Cache RPC Traffic Management 39

4.1 Current Obstacles: Load Imbalance and Bandwidth Interference 40

4.1.1 Modelling Imbalance and Interference . 43

4.1.2 System Configurations . 46

4.1.3 Results Discussion . 47

4.2 Designing the NEBULA Architecture . 49

4.2.1 Achieving LLC-Resident Queues . 50

4.2.2 Steering RPC Payloads to L1 Caches . 54

4.3 NEBULA Operational Walkthrough . 56

4.4 Chapter Summary . 57

5 Locality-Aware Load Balancing 59

5.1 How Can Load Balancing be Improved? . 60

5.2 Temporal Instruction Locality in Microservices 62

5.2.1 Boundary Conditions for Function Thrashing 64

5.2.2 Towards Dynamic Function Partitioning 66

5.3 Load Balancing for Write-Intensive Key-Value Workloads 71

5.3.1 Why Target Write-Intensive Workloads? . 73

5.3.2 KVS Concurrency Control Challenges and Opportunities 76

5.4 Enhancing Load Balancing with C-4 . 80

5.4.1 Write Balancing for W Iuni Workloads . 80

5.4.2 Write Compaction for RWsk Workloads . 82

5.5 Architectural Extensions for Improved Load Balancing 86

5.5.1 Locality-Aware Balancing on SmartNICs 89

5.6 Chapter Summary . 93

xiv

Contents

II Implementation and Evaluation of an RPC-Centric Server 95

6 Building NEBULA on Scale-Out NUMA 97

6.1 Baseline Architecture . 97

6.2 Architectural Additions . 99

6.3 RPC Software Interface . 100

6.4 NIC Extensions for Buffer Management . 102

6.5 NIC Extensions for RPC Reassembly . 104

6.5.1 Reduced Associativity . 106

6.6 NIC-to-Core RPC Steering . 108

6.7 Methodology . 109

6.8 Evaluation . 112

6.8.1 Removing Bandwidth Interference . 112

6.8.2 Impact of Varying Workload Parameters 113

6.8.3 Performance Benefits of NIC-to-Core Steering 115

6.9 Chapter Summary . 117

7 Microarchitecture for Integrated RPC Protocol Accelerators 119

7.1 Why Couple NICs and RPC Accelerators? . 119

7.2 Functional Overview of RPC Processing in CEREBROS 122

7.3 The Architecture of CEREBROS . 123

7.3.1 Multi-Buffer Management . 125

7.3.2 Distributing the RPC Processing Components 127

7.4 NIC Pipelines for CEREBROS . 129

7.4.1 Request Generation Pipeline . 129

7.4.2 Remote Request Processing Pipeline . 130

7.5 Chapter Summary . 135

8 The Benefits of Locality-Aware Load Balancing 137

8.1 Adding Affinity-Based Load Balancing to CEREBROS 137

8.2 Evaluating Affinity-Based Load Balancing . 139

8.2.1 Methodology . 139

xv

Contents

8.2.2 Availability of Instruction Cache Locality 141

8.2.3 Eliminating Further Instruction Cache Misses 142

8.3 Implementing Cooperative Concurrency Control 144

8.3.1 NIC-Software Interface Modifications . 145

8.3.2 Instantiating Hardware Support for Write Balancing 146

8.3.3 Software Support for Compaction . 147

8.4 Cooperative Concurrency Control in Action . 148

8.4.1 Methodology . 148

8.4.2 Dynamic Write Partitioning . 150

8.4.3 Software Write Compaction . 153

8.4.4 Sensitivity Analysis . 156

8.5 Chapter Summary . 157

III Related and Future Work 159

9 Related Work 161

9.1 Towards Cache-Resident Network Traffic . 161

9.1.1 Leaky DMA and Bandwidth Interference 161

9.1.2 RPC Scalability Over Connected Transports 163

9.1.3 Network-Compute Co-designs . 165

9.1.4 Latency-optimized Systems Software . 166

9.1.5 Hardware Support for Packet Placement 167

9.2 RPC Framework and Hardware Enhancements 168

9.2.1 Other Systems Targeting RPC Acceleration 168

9.2.2 Reducing CPU-Accelerator Control Overhead 171

9.3 Application-Aware Load Balancing . 172

9.3.1 Instruction Supply in Servers . 172

9.3.2 Task Scheduling for Cache Affinity . 173

9.3.3 Application-Driven Scheduling Policies . 174

9.3.4 Improved KVS Designs . 175

9.3.5 Advanced Concurrency Control and Synchronization 177

xvi

Contents

10 Future Research Directions 179

10.1 Virtualized and Multi-Tenant Deployments . 179

10.2 Towards Asynchronous Microservices . 180

10.3 Improved Server Simulation Methodologies . 181

10.4 RPC Scheduling Based on End-to-End Latencies 184

11 Conclusions 187

Bibliography 189

Curriculum Vitae 223

xvii

List of Figures

3.1 System overview of an RPC-centric server architecture, with colour coding to

indicate logically grouped components that implement specific functionalities. 26

3.2 The architecture of a microservice and a production RPC stack, and an example

of a function’s specification in an Interface Description Language. 28

3.3 Modelling techniques and their respective use-cases for studying RPC-centric

server architectures. 35

3.4 Unified emulation and simulation stack, using QEMU and QFlex. 36

4.1 Queueing system model of the memory hierarchy interactions associated with

handling incoming RPCs. 43

4.2 Discrete-event simulation results, showing the impact of load imbalance and

memory bandwidth interference on the throughput and tail latency of µs-scale

RPCs. 47

4.3 Relationship between offered load and E
[
N̂q

]
for two different core counts (k). 51

4.4 Walkthrough of the process of RPC reception in NEBULA. 56

5.1 Load vs. latency curves for different function partitioning strategies, assuming

an SLO of 10 units (10× S̄). 67

5.2 Simulated queueing network for JBSQ(D) with history. 68

5.3 Results demonstrating the availability of affinity at RPC dispatch time, for a

16-core system. 70

5.4 KVS workload taxonomy, showing regions targeted by this thesis in blue. 74

5.5 Queueing model for a server running a KVS. 76

5.6 Throughput and tail latency of concurrency control policies compared to an ideal

system with no synchronization overhead. Uniform key popularity distribution. 78

xix

List of Figures

5.7 Throughput of a CREW KVS with and without write compaction, normalized to

an ideal system with no synchronization overhead. 79

5.8 Load balancing additions required to realize Dynamic CREW (d-CREW). 81

5.9 Design of write compaction in C-4. 83

5.10 Executions showing linearizable compaction. 85

5.11 Design of NIC extensions and software API for locality-aware load balancing. . 88

5.12 Queueing system model to study the impacts of load balancing unit proximity. 90

5.13 Load vs. latency curves showing performance attainable by load balancing units

of various proximities to the workers they serve. 92

6.1 The baseline transport and load balancing architecture for NEBULA. 98

6.2 Location of implemented NEBULA extensions, and updated system operation. 100

6.3 Pseudocode of an RPC-handling event loop. 101

6.4 NIC RPC reassembly and buffer management. 102

6.5 Relationship between reassembler associativity and upper bound on RPC con-

flict probability. 107

6.6 Tail latency and bandwidth for all evaluated systems, using a 50/50 GET/SET

query mixture. 112

6.7 Performance of RPCValet and NEBULA varying the MICA value size, using a

50/50 GET/SET query mix. 115

6.8 Comparison of NEBULA prefetching policies. MICA uses 512B values and a

50/50 GET/SET query mix. 116

7.1 RPC stack layers, and the underlying runtime hardware operations. 120

7.2 Block diagram depicting the stages of an RPC as it is processed by CEREBROS. . 122

7.3 NIC-interfaced RPC accelerator design. 124

7.4 Chip-level integration of CEREBROS. 128

7.5 RGP microarchitecture. Shaded structures are new in CEREBROS. 129

7.6 RRPP microarchitecture. Shaded structures are new in CEREBROS. 131

7.7 Microarchitecture of the Locality-Aware Load Balancing Table, showing associa-

tive lookup array and RAM storage. 134

xx

List of Figures

8.1 Frontend behavior of microservices. 142

8.2 Breakdown of the USR microservice’s functions into execution time and instruc-

tion cache misses. 143

8.3 Modified NIC request assignment pipelines. The shaded portions are used to

implement C-4. 146

8.4 KVS throughput under SLO with uniform key popularity and fwr = 50%. The

vertical axis terminates at the KVS’ SLO. 150

8.5 KVS throughput under relaxed SLO, using the same workload as Figure 8.4. . . 151

8.6 Comparison of KVS throughput under SLO with varied fwr , using uniform key

popularity. 152

8.7 System performance comparison for a RWsk workload with γ= 1.25 and fwr =

5%. 153

8.8 Per-thread throughput, using the same RWsk workload as previously (γ= 1.25,

fwr = 5%). 154

8.9 Performance for RWsk with γ= 0.99, fwr = 50%. 155

xxi

List of Tables

3.1 Scope of applicability of contributions towards RPC-centric server architecture.

Asterisks indicate that implementing a feature is possible, with reduced benefit. 34

4.1 99th% of the number of queued requests, for a many-core server at maximum

load under 10× SLO. 52

5.1 Number of functions that can be entirely contained in basic and predictor-driven

CPU frontends without incurring I$ thrashing. 65

5.2 Values of N in JBSQ(N) for various communication channel latencies and service

time distributions. 91

6.1 Parameters used for cycle-accurate simulation of NEBULA on QFlex. 110

6.2 Sensitivity to various MICA GET/SET query mixtures. 113

8.1 USR Microservice function IDs, names, and functionalities. 140

8.2 Parameters used for cycle-accurate simulation of locality-aware load balancing. 141

8.3 Impact of item size on write compaction. 157

xxiii

List of Equations

4.1 NIC Traffic Miss Probability for Queueing Analysis. 45

4.2 Expected number of queued requests at a many-core server with an exponential

service time distribution. 51

5.1 Threshold condition for microservice functions to cause thrashing in a CPU core’s

L1 instruction cache. 65

5.2 Software speedup potential from software write compaction. 83

6.1 Probability of a conflict in any possible bin, assuming independence. 107

xxv

1 Introduction

Online services have become a multi-trillion dollar industry, with e-commerce corporations

boasting a combined market capitalization of 9.9 trillion USD in 2019 [89] and the single

biggest player generating global sales of 386 billion USD [15]. These massive profits have led

to tremendous investments in hyperscale datacenters, to a degree that a single facility often

consumes more than 100MW of electricity [31, §4]. In the drive to attract more customers,

service providers are continually enhancing their first-party services with personalized user

recommendations, curated advertisements, social network connections, and logging each

action taken for legal privacy compliance [238]. Offering such features requires not only

development effort, but also the necessary staff to debug, deploy, and maintain the entire

service in situ while it is live. It is an understatement to say that such a task is merely complex.

In addition to the first-party online services that gave rise to today’s hyperscale datacenters,

software vendors operating at smaller scales have begun to shift their services to the cloud.

The benefits of migrating to cloud-native software for small- to medium-scale enterprises are

numerous. Not only is acquiring and managing dedicated hardware now unnecessary, but

programmers can now take advantage of low-cost system infrastructure such as Amazon’s

plethora of Software-as-a-Service offerings [13, 14, 262] or simplified programming models

such as serverless computing [5, 124]. The end result of the move to cloud-native software is

an ongoing confluence between traditional first-party datacenter workloads (e.g., web search)

and private enterprise applications now running in datacenters. Both styles of applications

are beginning to share the same underlying software services [248] and platforms [31, §2.7.1],

1

Chapter 1. Introduction

and experience the same scalability and cost-reduction benefits.

As first-party and cloud-native applications continue to grow in scale and complexity, software

architecture best practices have changed to match. In particular, datacenter providers and

third-party enterprises have both turned towards using a software architecture that employs

many independent microservices, which are modular and interact with each other to commu-

nally implement the online service’s functionality. Each microservice is traditionally developed

by a small independent team to maximize programmer productivity. A microservices architec-

ture provides significant benefits for fault tolerance, scalability, debuggability, and perhaps

most importantly, deployment velocity [31, 127, 179]. As such architectures mandate strict

modularity between each component, they rely on a shared communication API to interact,

the most common of which is Remote Procedure Calls (RPCs). Therefore, it is becoming com-

monplace for online service providers to develop a custom RPC layer which is used across the

entire organization and exposed to third-party tenants – examples include Google’s gRPC [92]

and Facebook’s own fork of Apache Thrift [19, 72].

The ongoing growth of RPC-connected microservices implies drastic growth in communi-

cation between microservices, and hence the performance of each server’s communication

stack is absolutely paramount. In particular, as every single message between microservices

must traverse the RPC and transport protocol layers, as well as the datacenter network itself,

the performance of all three modules is directly manifested to the end user. Compounding the

challenge is the well-known fact that users are sensitive to even slightly delayed responses.

For example, Akamai reports that a 100ms delay in page load time reduces sales conversion

rates by 7% [7] and Google executives report that 0.5-second delays in search results reduce

user traffic by 20% [91]. The common practice of auto-scaling each microservice across many

servers [190] further complicates the task of providing a seamlessly interactive user experience,

due to a challenge dubbed the “Tail at Scale”. The Tail at Scale principle dictates that as the

number of servers involved in handling a user request increases, it becomes highly proba-

ble that the slowest individual servers will dictate the latency experienced by the user [59].

Tail-tolerant computing has become one of the key challenges in the datacenter space, and

has created a significant research impetus to curtail sources of tail latency in all layers of the

system stack [54, 98, 163, 193, 223].

2

Although cross-stack research and development has delivered substantial performance gains

in response to the need for rapid network communication, such innovations have exposed

server-side inefficiencies as performance bottlenecks for datacenter-wide microservice deploy-

ments. In particular, optimized topologies [90, 243] and production rollouts of multi-hundred

gigabit NICs [153] have created a growing gap between server packet processing capabilities

and what the network can supply. The fact that the roadmaps for future Ethernet and In-

finiBand fabrics forecast bandwidth growth to 1Tbps [112, 252] in the face of slowing silicon

density scaling [57] will only make the gap more cavernous, especially considering that future

optical networks promise richer connectivity with round-trip times of just a few nanosec-

onds [28]. The need to bridge the gap between network and server capabilities has prompted

the development of fully customized protocol stacks to replace legacy TCP/IP (e.g., Google’s

Snap [178]), or at-scale deployments of hardware terminated protocols [44, 93]. As systems as-

pire to allow communication-intensive microservices to operate as near to the hardware’s raw

capabilities as possible, server architecture itself will inevitably become an equally important

optimization point.

In this thesis, we posit that in order for microservices to take advantage of current and future

developments in networking technology, server architectures must also evolve to contain

support for the underlying operations that comprise RPCs. We argue for such architectural

adjustments on three grounds. Firstly, microservices are beginning to exhibit microsecond-

scale runtimes; prominent applications such as data stores [54, 129, 176], software-defined

network functions [274], state-machine replication [132], and user management [276] only

occupy the CPU for a few µs at a time. This trend is not a problem by itself. However, recent

work has shown that the computation cost of the software RPC protocols repeatedly invoked

by such microservices is comparable to the runtime of the applications themselves [159,

276]. Therefore, it is logical to consider deploying specialized hardware accelerators for RPC

processing [222]. Any RPC processing accelerator directly and repeatedly interacts with the

server’s NIC, memory hierarchy, and on-chip fabric, and therefore these components should

be co-designed to function well together.

Secondly, the core counts of server processors have continued to grow, and therefore so does

the importance of load balancing RPCs among those cores. Advances in chiplet manufacturing

3

Chapter 1. Introduction

technology have made it possible for CPU vendors to construct many-core CPUs without

prohibitive cost or yield concerns [134], and therefore many processors already feature 64

or more physical cores [36, 209, 266]. It is rigorously established that minimizing tail latency

requires aggressively limiting the queueing time of RPCs, and that any load imbalance between

CPU cores worsens with increased total core count. Therefore, deploying microservices with

strict tail-latency constraints on such many-core servers mandates RPC load balancing to be a

primary design concern, particularly because there is growing evidence that simple shortest-

queue load balancing policies are not optimal for all applications [61, 182]. In particular, the

fact that common microservices often haveµs-scale latencies creates an emerging opportunity

– an enhanced load balancing policy with the capability to improve cache locality while

simultaneously limiting queueing delays can significantly boost the performance of such short

RPCs.

Thirdly, the fact that underlying datacenter transport protocols have begun to be designed

around the specific semantics and constraints of RPCs [150, 153, 193] creates opportunities

for drastic server-side performance optimizations. In particular, hardware-terminated pro-

tocols that are agnostic to such RPC semantics contain significant inefficiencies in buffer

management and data placement, which can be remedied by natively offering RPC support

and exposing the application’s tail latency goals to the NIC. We therefore conclude that it is

time for an RPC-centric server architecture to emerge to complement the combination of

latency-critical µs-scale software, improved networks and protocols with native RPC support,

and powerful many-core server hardware.

To that end, this thesis leverages the power of integrating network and compute logic, a trend

that is gaining traction in both academia [108, 109, 137, 199] and industry [121, 204, 207]. Our

work begins with a highly optimized, integrated network interface baseline that has already

eliminated common bottlenecks such as the server’s I/O interconnect [199] and core-to-NI

interactions [53]. Such a baseline is the ideal substrate for realizing the full benefits of an

RPC-centric server architecture.

4

1.1 Thesis Goals

1.1 Thesis Goals

Our primary goal is to design a bespoke server architecture which is purpose-built to support

the needs of communication-intensive microservices relying on RPCs. We begin by investi-

gating the tradeoffs inherent in deploying hardware-terminated protocol stacks at datacenter

scale, because such protocols have begun to see large-scale deployments as a response to

demands for increased bandwidth at lower latency [44, 93]. We find that the immense band-

width of today’s NICs can create memory bandwidth interference with the CPU cores when

RPC payloads spill out of the server’s caches and into its DRAM. Furthermore, we identify

that the source of the problem is the buffer bloat created by scaling hardware-terminated

protocols to many communicating nodes, and show that the resulting bandwidth contention

can reduce the throughput of a server by 2×. Although it is possible to remove bandwidth

interference with existing NIC technology, it comes at the cost of sacrificing inter-core load

balancing. Therefore, we set out to remove bandwidth contention while maintaining the

ability to balance load between a CPU’s many cores.

We then turn our attention to the co-design of emerging RPC protocol accelerators with inte-

grated network interfaces. Although multiple prior works have proposed hardware accelerator

designs that remove the cost of production RPC layers [136, 276], we remark that such ac-

celerators must explicitly be designed alongside the server’s NIC or much of their potential

performance will be lost due to pathological inefficiencies when interacting with the host

server’s memory hierarchy. Specifically, performance is lost due to excessive task offloading

from the CPU to the accelerator, or the need to shuffle requests between CPU cores in software

to implement RPC load balancing. In agreement with prior work that shows RPC accelerators

must be directly interfaced with the NIC [276], the second goal of this thesis is to dovetail such

support into the pipelines of an integrated network interface.

Finally, we study load balancing policies for RPC-centric servers, in the context of µs-scale

applications where cache locality is critical and can drastically reduce application runtime.

Although cache locality has already been discussed as a critical factor for software packet

processing workloads [76], we look beyond such applications and demonstrate specifically how

improved locality exists in stateless microservices comprised of many independent functions,

5

Chapter 1. Introduction

and well known data caching layers. However, identifying sources of locality is not enough

to ensure improved performance under tail latency constraints. Our final goal is therefore to

enhance load balancing policies with the aforementioned sources of locality in mind, while

simultaneously maintaining the microservice’s tail latency guarantees.

1.2 Thesis Statement

Judicious design of a server’s NIC hardware around RPC semantics removes bottlenecks to

deploying microservices at datacenter-scale, and facilitates load balancing enhancements that

boost throughput under tight tail-latency guarantees.

1.3 Thesis Contributions

Our work proposes modifications to both NIC hardware and microservice software to form

the first RPC-centric server architecture. The first contribution of our work is NEBULA, a set

of NIC hardware and protocol extensions that unblock hardware-terminated protocols from

incurring memory bandwidth interference while retaining the flexibility of inter-core load

balancing. The key insight enabling NEBULA is that a given microservice’s tail latency target

is effectively an implicit constraint on the queue depth that a particular RPC can experience.

Therefore, the buffer growth associated with scaling hardware-terminated protocol stacks is

unnecessary and can be shrunk without introducing excess tail latency. Under heavy load,

RPCs that would have arrived at the end of a long queue are eagerly rejected, and clients are

informed that their tail latency would have been violated.

Our second contribution extends prior work that designs an accelerator for the de-serialization

operations underlying production RPC layers [275] to implement CEREBROS, a NIC-integrated

accelerator that is capable of executing the entire RPC stack. CEREBROS is specifically designed

to dovetail into the pipelines of NEBULA and its state-of-the-art Manycore Network Inter-

face [53], so that the raw performance potential of existing de-serialization accelerators can be

preserved in the context of many-core chips and multi-hundred gigabit NICs. Specifically, we

demonstrate how CEREBROS can be architected and implemented across many distributed NIC

components. A critical feature of CEREBROS is that it provides full visibility into the protocol

6

1.3 Thesis Contributions

headers of incoming RPCs, making it an ideal substrate for our final contribution: enhancing

state-of-the-art load balancing policies to account for application-level cache locality based

on RPC header fields.

Finally, our third contribution proposes architectural and software extensions to integrated

NICs in order to facilitate load balancing decisions for increased application-level cache

locality. We show that although existing NIC technologies can be employed to enhance the

cache locality of microservices, current best-case designs can only employ static policies

that sacrifice load balancing, and therefore tail latency guarantees, by design. In contrast,

we contribute the insight that knowledge of the state of each thread’s input queue of RPCs

is sufficient to develop locality-aware load balancing policies that reduce the microservices’

processing times while maintaining tail latency.

Concretely, we demonstrate the following two scenarios: firstly, for microservices that primar-

ily execute stateless application logic, instruction cache (I$) locality is plentiful but hidden

by current policies that interleave the executions of various RPCs on the cores. Making load

balancing decisions based on the temporal state of each CPU core’s input queue reveals the

hidden I$ locality, reducing cycles stalled on I$ misses and improving RPC throughput. Sec-

ondly, for microservices that cache data in key-value stores, locality manifests itself through

concurrency control. Current policies treat all write requests equally, regardless of whether

they are truly conflicting or not; we show that this decision leads to unnecessarily inflated tail

latency and reduced throughput depending on the workload. We therefore introduce C-4, a

simple NIC extension and matching software optimization which allows independent write

requests to be balanced across cores, and creates batches of dependent writes that are applied

as one to reduce synchronization events.

We implement and evaluate all the above contributions on top of the Scale-Out NUMA network

protocol stack [199], extending its Remote Memory Controller to become a fully-fledged, RPC

stack-terminating endpoint. Our evaluation focuses on throughput under tight 99th% latency

constraints, showing that judicious hardware and software support for RPC-centric server

architecture indeed fulfills our thesis design goals. In particular, we show that RPC-centric

server architectures reap the following benefits:

7

Chapter 1. Introduction

1. Evaluated on a simple key-value store microservice, NEBULA grants 1.9× improved

throughput under 99th% tail latency constraints, which is within 12% of the theoretical

maximum our software stack can reach.

2. The RPC protocol acceleration of CEREBROS allows load balancing decisions to be made

on fields comprising an RPC’s header at the line rate of the server’s NIC. Setting instruc-

tion cache locality as the primary goal reduces I$ misses by 1.1−1.8× in a representative

microservice taken from the DeathStarBench suite [81].

3. When deployed with C-4’s hardware support to balance independent writes and soft-

ware support for write batching, it is possible for key-value store microservices to attain

2−5.5× better 99th% latency and 1.3−1.7× higher throughput.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. First, Chapter 2 makes the case for why

server architecture should evolve to become RPC-centric, focusing on five critical software

and technology trends. Then, we present the design, implementation, and evaluation of our

work in three parts:

• Part I presents the design of an RPC-centric server architecture. Chapter 3 covers an

overview of the architecture, the role of each contribution, and its relevant motivating

trend(s) covered in Chapter 2. Chapter 4 then explains the design of NEBULA, beginning

with the quandary between memory bandwidth interference and load imbalance before

explaining the mathematical insights underpinning our proposed set of NIC and proto-

col extensions. Finally, Chapter 5 shows how locality-aware load balancing policies can

do much more than simply limit RPC queueing, namely reduce the processing times of

a microservice’s RPCs themselves.

• Part II presents our implementation and evaluation of the design contributions in

Part I. Chapter 6 lays out how we build NEBULA on top of Scale-Out NUMA, enabling its

integrated NIC and lean protocol stack to terminate traffic from thousands of communi-

cating nodes without experiencing bandwidth interference. Chapter 7 demonstrates

how existing accelerators for RPC de-serialization can be unified with NEBULA to form

8

1.4 Thesis Organization

CEREBROS, a full RPC accelerator. CEREBROS is a key enabler for locality-aware load

balancing policies because it grants access to each RPC’s header fields as they arrive at

the NIC’s load balancer. Finally, Chapter 8 concretely instantiates hardware support for

the locality-aware load balancing policies in Chapter 5 and evaluates their effectiveness.

• Part III discusses the rich field of related work in Chapter 9, and presents future research

directions in Chapter 10. We conclude the thesis in Chapter 11.

1.4.1 Bibliographic Notes

This thesis was conducted under the supervision of my advisors: Babak Falsafi (EPFL), and

Alexandros Daglis (Georgia Institute of Technology). Portions of it are based on collaboration

with multiple colleagues: Arash Pourhabibi, Siddharth Gupta, Virendra Marathe, and Dion-

isios Pnevmatikatos. Chapters 4 and 6 are based on a publication in the Proceedings of the

47th International Symposium on Computer Architecture (ISCA) in 2020 [250]. Chapter 7, and

parts of Chapters 5 and 8 are based on a publication in the Proceedings of the 54th Interna-

tional Symposium on Microarchitecture (MICRO) in 2021 [276], which is shared between this

thesis and “Hardware-Software Co-Design of an RPC Processor” [222]. The contributions of

CEREBROS presented in this thesis are the microarchitectural integration with NEBULA, and

locality-aware load balancing. Finally, the remaining parts of Chapters 5 and 8 are based on a

publication which has been accepted and will appear in the 2023 International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS).

9

2 Why Design Server Architecture

for RPCs?

In this section, we provide a background on current trends in the datacenter hardware and

software environment that form supporting pillars to our contribution of an RPC-centric

server architecture. First, we discuss the trend of software decomposition, and explain how

the choice to adopt a microservices architecture results in a single user request generating

hundreds or thousands of fine-grained RPCs with only a few microseconds (µs) of runtime

each. We then describe how datacenter networks and systems software have evolved to sup-

port such applications, by proposing latency-optimized topologies and protocols to reduce

round-trip times. The confluence of these two trends implies that server-side latency will

form the majority of the service’s execution time, as traditional bottlenecks such as protocol

processing and network traversal disappear. Systems software optimizations have exacerbated

the increasing contributions of server-side latency by providing user-level network I/O and

removing sources of latency jitter. Next, we identify that server architectures are increasingly

characterized by high core counts, which increases the importance of request-level load bal-

ancing, and motivate further considerations for enhancing current policies with the notion of

application-level locality. Finally, we note that the emerging industry and academic trend to-

wards network-compute co-design is a powerful tool to enable specializing server architecture

to handle challenging µs-scale RPCs at the bandwidth of today’s NICs, with tight tail latency

guarantees.

11

Chapter 2. Why Design Server Architecture for RPCs?

2.1 Microservices and µs-Scale RPCs

Online service providers are faced with the challenging task of architecting highly available,

interactive services that scale to billions of users, with new features being added weekly or

daily [31]. To simultaneously achieve these challenging goals, software engineers are increas-

ingly turning towards decomposing their services into many independent software modules

which interact with each other to synthesize responses [81, 127]. When taken to the extreme,

such software decomposition results in a microservice architecture, where each module per-

forms only a single task and is isolated from the rest of the surrounding services by means

of enforced modularity. Although microservices architectures are drastically more scalable

and simpler to maintain, they rely heavily on a lightweight and scalable communication API,

the most common of which is the Remote Procedure Call (RPC); examples of company-wide

libraries include Google’s gRPC [92] and Facebook’s own fork of Apache Thrift [19, 72].

Despite the benefits of microservice architectures for developers and cloud providers, deploy-

ing software in such a manner creates new performance challenges. The first challenge is that

common microservice software tiers are becoming increasingly fine-grained, with runtimes as

short as a few µs for applications such as data stores [54, 129, 176], network function virtualiza-

tion [274], state-machine replication [132], and simple user management business logic [276].

Fine-grained applications like these increase the amount of time spent in the layers of the

computing stack that support the microservices, rather than the microservices themselves,

increasing the importance of rapid network communication.

Structuring applications as microservices also increases the difficulty of providing guarantees

known as “Service Level Objectives” (SLOs) on the latency of the online service’s slowest

responses [59]. Each additional software layer in the microservice graph complicates the

process of controlling the service’s tail latency, because a single user interaction will have a

higher chance of experiencing a transient event (e.g., a context switch) [81, §8]. The depth

to which production services are layered is profound, with Amazon reporting that a single

page load typically accesses more than 150 internal services [60], and the request tree that is

generated on a single Google search reportedly spanning across 1000 servers [58, 227]. Each of

these numerous inter-microservice RPCs must transit multiple software and hardware queues,

12

2.2 Datacenter Networks and RPC Transport Protocols

introducing additional latency and the potential for significant delays due to the well known

non-linear behaviour of queueing systems.

Fine-grained applications also imply that traditionally non-consequential server-side events

(e.g., context switches, TLB misses, interrupts) may now form tail events resulting in SLO

violations at higher layers of the overall service. To illustrate, consider the Masstree in-memory

data store, which employs a hybrid trie-tree as an index to all key-value pairs it contains [176].

The sequential nature of the tree traversal implies that a simple get RPC may encounter

TLB misses for multiple tree nodes, each of which costs 200–400ns, depending on page table

caching, DRAM latency, and the number of levels in the architecturally-defined page table. As

the measured mean service time for gets is approximately 1.25µs [54], multiple TLB misses

can easily result in response latencies falling in the latency tail; other events such as context

switches or interrupts would have an even greater effect.

Summary. Although microservices and tiered architectures significantly improve ease of

deployment, debuggability, and fault tolerance for software engineers, the commensurately

decreasing software runtimes and growing network communication costs will inevitably result

in worse average and tail latency. Therefore, systems architects have commenced a hunt for

the “killer microseconds” [32] across the datacenter system stack, particularly focusing on the

layers providing inter-microservice communication.

2.2 Datacenter Networks and RPC Transport Protocols

In order to provide the requisite capacity for the internet services they support, today’s dat-

acenter fabrics have been rapidly scaling their capacity, because bandwidth demands are

doubling every 12-15 months [243]. Today’s hyperscale datacenter owners architect their

networks using custom topologies that all resemble a multi-stage Clos network with many

layers of aggregation [8, 90, 229, 243]. This is done in order to provide enough path diversity

in the network core so that all server-to-server communication patterns can attain uniform

high capacity, i.e., the rate of transmission should only be dictated by the available bandwidth

of the endpoint NICs. Server NICs themselves have also rapidly been scaling in bandwidth,

with current products already shipping that offer up to 400Gbps Ethernet bandwidth [208]

13

Chapter 2. Why Design Server Architecture for RPCs?

and 220M IOPS [206], up from the 40Gbps products that saw deployment in Google datacen-

ters in 2012 [243]. Furthermore, the bandwidths of future NICs is likely to continue steady

growth, because both Ethernet and InfiniBand consortia have publicly released roadmaps

towards achieving 1.2-1.6Tbps NICs [112, 252]. These tremendous line rates raise challenges

for server and switch architects alike because the time interval between small packets is just a

few nanoseconds, and the networking hardware must be specifically designed to keep pace in

order to maintain non-blocking communication.

Although next-generation switch hardware will be able to accommodate increased endpoint

bandwidth (e.g., ASICs such as the Broadcom Trident 4 providing 32 ports of 400Gb/s Ethernet)

[41], the primary metric of interest for µs-scale software is round-trip time (RTT), because

every µs spent traversing the network counts towards the overall service’s latency. To that end,

datacenter operators have already begun to deploy hardware-assisted solutions like RDMA

Over Converged Ethernet (RoCE) [93] and its derivatives (e.g., OmniPath) [114], and custom

protocols like Microsoft’s Catapult [44]. Hardware protocol termination not only shrinks

end-to-end latency by delivering packets directly to the application layer and bypassing

protocol processing, but drastically reduces the impact of tail-inducing events such as timeouts

or retransmissions that occur because of traffic bursts [93]. Instead of deploying RoCE or

custom FPGA hardware at scale and bearing the associated cost, alternative protocols such

as Homa [193] and NDP [96] have been proposed to provide single-µs RTTs with software

protocol termination.1

Whether hardware- or software-terminated, the key feature of emerging latency-optimized

transports which is synergistic with the needs of microservices is that they are explicitly de-

signed around the abstraction of an RPC. Exposing the notion of an RPC to the transport layer

allows the transport to optimize for latency in multiple ways: optimizing for short messages

over long flows [193], dynamically allocating in-network priorities, or using the receivers to ac-

tively pull new packets from senders [96]. The combination of the aforementioned techniques,

and others not mentioned, has allowed RPC-centric transports to deliver datacenter-wide

RTTs of 2-15µs, 100x better than traditional TCP/IP at the 99th percentile [193, §5.1].

A network with µs-scale RTTs makes it much more attractive to deploy applications as mi-

1NDP has even been realized in hardware by the NanoPU project to further reduce latency [108].

14

2.3 Optimized Systems Software

croservices, because the network’s increased uniformity provides greater RPC performance

predictability. Hence, individual service tiers can make heavier use of distributed systems

techniques such as replication, auto-scaling, and even memory disaggregation when the

underlying system software and network’s performance allows it [168, 239]. Foundational re-

search has already proposed network requirements to allow applications to act as distributed,

disaggregated systems [82], and prototypes have already been proposed that implement

network support for foundational techniques such as fault-tolerant state-machine replica-

tion [148]. We argue that such developments will permit application developers to be less

constrained by the latency of network traversals, and excess latencies at the server endpoints

will become far more impactful.

Summary. The combination of escalating NIC bandwidths, latency optimized network topolo-

gies, and protocols that provide µs-scale message delivery times provides a substrate for

multi-tiered microservices to be deployed on any of the hundreds of thousands of servers

making up a datacenter. In such a context, the burden lies squarely on the hardware and

software at the network endpoints (i.e., the individual servers) to handle incoming traffic at

the rates sustainable by the network itself. We now shift to discussing the specific trends in

systems software that directly target this challenge.

2.3 Optimized Systems Software

An ecosystem whose applications already generate µs-scale requests, using networking hard-

ware that provides single-digit µs round-trip times, must inevitably embrace a redesign of

legacy network software to provide performance commensurate with the surrounding layers.

Recent industry and academic systems have already made this shift, launching solutions that

range from user-space network stacks (e.g., DPDK [171]) to software dataplanes such as IX [33]

and Arrakis [217]. Each of these software architectures adopts similar principles, the most

important of which is the choice to run requests to completion before moving on to other

work; in contrast, standard Linux runs network processing in a fashion decoupled from the

application requests, because it is designed for multiple-flow processing where single-request

latency is not the primary concern. In order to benefit from the insights originating from

academic proposals of RPC-oriented transports [96, 193], current work has even begun to

15

Chapter 2. Why Design Server Architecture for RPCs?

implement such protocols in the Linux kernel [213].

Server-side latency overheads are not only contained to transport protocol termination. Prior

work has identified operating system overheads, available NIC offloads, interrupt routing and

delivery, CPU power modes, and multi-socket NUMA latencies as factors that can induce

excess server-side latency [163, 167]. However, a survey of related work in this area shows

that system designers have already eliminated the critical latency bottlenecks for µs-scale

RPCs through heavy optimization. For example, kernel-bypass solutions such as IX [33]

or Google’s Snap microkernel [178] remove commodity operating systems from the critical

path, enabling servers to run richly featured network stacks at network line rates. These

designs make heavy use of the multi-queue features of modern NICs such as RSS or Flow

Director [120], which are simple means to map incoming packets to network queues (and thus

application threads which are often paired in a one-to-one fashion) without requiring kernel

demultiplexing. Additionally, the impacts of interrupt affinity, NUMA latencies and CPU

power-saving modes can be addressed with existing software for core and memory placement

policies (e.g., numactl).

Although the above solutions have been developed in the context of traditional Ethernet NICs,

we argue that the techniques are equally applicable to emerging network stacks featuring hard-

ware termination, because the only fundamental difference between the two systems is the

hardware-software interface. We classify the interfaces of hardware- and software-terminated

network stacks into two families. Traditional interfaces use Tx/Rx queues in hardware and

employ ring buffers (RingBufs) to specify DMAs between hardware and software. In contrast,

interfaces derived from the Virtual Interface Architecture (VIA) [66], such as InfiniBand and

RDMA, use sets of in-memory queue pairs (QPs) as the interface between the NIC and soft-

ware threads. The VIA was originally designed to support protected, zero-copy user-level I/O

between multiple closely-interconnected nodes, which are principles increasingly adopted

by the kernel-bypass dataplanes previously mentioned. The only difference between the two

families is that the VIA often imposes the restriction that each QP is connected in a one-to-one

fashion to another QP [66] whereas RingBuf-style designs simply specify work-lists of DMAs

posted by the user or kernel driver to be performed by the NIC hardware.2 Regardless of

2This one-to-one connection restriction comes from the InfiniBand specification for RC and UC transports, but

16

2.4 Curtailing Queueing with Inter-Core Load Balancing

interface, the only fundamental requirement for µs-scale remote communication is for each

core to have synchronization-free, zero-copy access to the memory which contains incoming

and outgoing packets. As this requirement is achievable regardless of whether multi-queue

Ethernet [33] or InfiniBand/RoCE NICs [111] are used, we consider either style as a valid

interface for a server architecture designed for µs-scale RPCs.

Summary. Prior research has already proposed a re-think of legacy network stacks to eliminate

traditional operating system overheads. With many frameworks available that deliver RPC

traffic directly to user-level threads, the remaining factors resulting in excess latency can

fall into two categories: queueing created at the thread handling the RPC, or interactions

between the NIC and the server’s memory system itself. We next discuss the state-of-the-art in

server-side load balancing and queue management.

2.4 Curtailing Queueing with Inter-Core Load Balancing

The rise of fine-grained microservice architectures (§2.1) implies further attention must be

paid to the Tail-at-Scale problem [59], because more richly connected microservice graphs

increase the probability of a long-tail event. In a microservice graph, the most latency-critical

services are the leaves (which are often data stores), because every long-latency event prop-

agates to all the tiers above them. Although improvements in datacenter transports (§2.2)

and systems software (§2.3) have indeed eliminated many sources of tail latency, achieving

tight guarantees on tail latency requires limiting server-side queueing time before an RPC

is processed. In emerging contexts where the applications receive requests directly from a

hardware-terminated protocol, the task of limiting queueing time resolves to a simple decision:

to which application thread should an incoming RPC be assigned?

From a theoretical perspective, queueing theory rigorously demonstrates that for RPCs whose

processing time distribution has low variance, achieving optimal tail latency requires imple-

menting a single-queue, first-come-first-served policy, where all serving units (i.e., CPU cores)

actively pull requests from that queue one at a time [267]. High-dispersion distributions

require a degree of preemption to be added [61, 126, 267]. Although the theoretical answers

does not necessarily imply that each QP is assigned to a single thread only. We do not consider QP sharing as a
use-case for our systems because of its well-documented effects on latency [65].

17

Chapter 2. Why Design Server Architecture for RPCs?

to tail-optimized scheduling are fairly well known, implementing such policies with existing

hardware is a challenging task with a plethora of tradeoffs, particularly for today’s server

CPUs featuring many cores in a single socket. Representative products at the time of writing

have roughly 64 cores, namely Intel’s Sapphire Rapids [95, 170], AMD’s Milan [94], Amazon’s

Graviton [266], and Huawei’s Kunpeng [270]. NVIDIA’s recently launched Grace CPU has the

highest currently available single-socket core count at 144 [209]. As core counts grow, any

load imbalance exposed by a suboptimal queueing model or its implementation will result in

greater relative under-utilization.

The key tradeoff that is faced by all RPC load balancing frameworks is how to achieve single-

queueing while simultaneously meeting the message arrival rates possible in today’s NICs.

Realizing single-queueing in software requires mutual exclusion to be enforced on a single

centralized queue of RPCs or the use of a single software dispatch thread. Both choices

drastically limit throughput and cannot scale to the bandwidths of emerging server NICs –

when a centralized queue is used, contention on the queue grows proportionally to incoming

load, and therefore the system is bound by synchronization overhead and not the CPU cores’

maximum service rate. With a single dispatch thread, as used by RAMCloud [214] and designs

that offload request assignment to SmartNICs [106, 172], the dispatcher becomes a bottleneck

even at 10-20Gbps network rates.

In contrast, the multi-queue capabilities of modern hardware NICs allows eliminating any

synchronization among CPU cores for incoming RPCs, allowing a server to drive its NIC at its

line rate at the cost of giving up single-queue load balancing. Examples of such capabilities

include Receive-Side Scaling (RSS) [189] and Flow Director [120], used by the optimized

systems software previously discussed (§2.3) to apply static rules mapping RPCs to many

incoming queues (e.g., using the TCP 5-tuple or UDP port number). As such rules are static

and do not account for runtime information, they are fundamentally vulnerable to load

imbalance by design – consider the case where a short RPC is blocked behind a long one

because they both happen to map to the same queue. However, state-of-the-art proposals

propose to break this tradeoff using hardware support to realize inter-core single-queue load

balancing at the network’s full throughput [54, 150]. Such proposals rely on the presence of a

single hardware unit on the critical path of all incoming and outgoing requests, in order to

18

2.5 Network-Compute Co-Design

keep up-to-date load information pertaining to each CPU participating in the RPC context,

and therefore make dynamic load-balancing decisions.

A growing body of evidence shows that single-queue balancing with added preemption is

not optimal for every type of microservice, and bespoke per-application policies have the

potential to deliver better performance. For example, Demoulin et al. show that it is actually

beneficial for tail latency and throughput to allow some of a server’s cores to remain idle and

ready to accept new RPCs, rather than greedily starting RPCs and having to later preempt

them [61]. Additionally, it is highly unlikely that single-queueing will be optimal in the case

where incoming RPCs have data dependencies between them. In this thesis, our focus is on

how load balancing policies should be enhanced to take into account application-level locality.

Current load balancers act at the interface between the transport and application layer, which

is agnostic to two critical server-side factors: inter-thread synchronization, and cache locality.

However, these factors have the potential to drastically impact the performance of µs-scale

RPCs both positively and negatively. Assigning an RPC to a core which has just accessed a

piece of data, or executed a shared code library, will result in higher L1 cache hit rates and

increased application-level throughput compared to a locality-agnostic policy. The inverse is

true when considering synchronization – an RPC that blocks because it cannot acquire a lock

temporarily wastes a CPU core that could handle other requests.

Summary. The increased importance of tail latency in microservice-oriented software archi-

tectures, combined with the steady growth of server core counts, means that inter-core load

balancing will become an absolutely critical feature in next-generation server architectures.

Although today’s best load-balancing frameworks propose hardware-driven synchronization-

free implementations of single-queue policies, they lack any knowledge of application-level

locality – which we expect to have significant impacts for microservice software exhibiting

µs-scale RPCs.

2.5 Network-Compute Co-Design

Due to the increased importance placed on network communication, both industry and

academia have experienced a strong architectural trend shift towards co-designing network

19

Chapter 2. Why Design Server Architecture for RPCs?

and compute hardware. A well-established example of this trend is technology that enables

I/O traffic to be served directly from server caches rather than passing through system memory,

such as Intel’s DCA/DDIO [105,119] or ARM’s Cache Stashing [21]. Both these techniques allow

the host to achieve higher network bandwidths and lower per-packet processing latencies.

In addition to features in existing processors designed to support commodity NICs, significant

prior work has already argued for the need to go further, and integrate the network interface

directly with its codependent compute logic. By doing so, system architects generally target

one of the following two goals: either reducing communication latency by eliminating the

round-trip time of traditional I/O interconnects such as PCI-Express [199], or offloading

functionality traditionally performed on the host CPU in order to free up cycles for useful

application-level work [70]. Academic architectures advocating for integrated NICs include

Scale-Out NUMA [53, 199], L-NIC [109], NanoPU [108], and the open-source FAME-1 Rocket

Chip SoC [137, § 3.2] from UC Berkeley’s RISC-V ecosystem. Industry examples of network

interface integration include Mellanox/NVIDIA’s BlueField SmartNIC [204], NVIDIA’s NVLink

technology for inter-GPU RDMA [207], and Intel’s Xeon-D chips which already integrate the

Ethernet L2 MAC logic on-die [121].

Network-compute integration is a key enabler for RPC-centric server architecture, because the

layers surrounding a server’s network interface (i.e., the network protocol beneath the NIC and

the systems software above it) are capable of delivering RPCs to the server at latencies similar to

the NIC’s raw line rate itself. As §2.2 and §2.3 have already showed, these conditions are already

fulfilled, and therefore we expect future servers to operate in a similar environment where NICs

are designed to handle RPCs natively. Prior work in network-compute co-design illustrates

this fact by showing that it is logical to now perform operations such as load balancing [54],

de-serialization [275], and concurrency checks [55] at the NIC, because the transport and

network layers are now fast enough to expose these operations as a bottleneck.

Tighter network integration also means that application-level metrics can be exposed to

the server’s NIC, allowing wiser load balancing decisions to be made by taking into account

application locality. For example, emerging accelerators designed for common RPC layer

operations expose the fields of an RPC’s header directly to hardware [122, 136, 275, 276],

20

2.5 Network-Compute Co-Design

which can then be used as proxies for reasoning about application-level locality or potential

synchronization. Although request headers have already been used to statically differentiate

between request types (e.g., GETs and SETs in NetCache [123] and R2P2 [150], as well as point-

queries vs long-running requests in Persephone [61]), we expect that fine-grained metrics

such as synchronization and cache locality will require tightly integrated NICs, because

disseminating information about the server’s load to the NIC at µs-scale latencies is only

possible with integration. We demonstrate the load balancing benefits of NIC integration in

§5.5.1 by comparing the performance of an integrated load balancing unit versus one residing

on a commodity PCIe-attached SmartNIC. Our results show that commodity devices can only

expect to attain 50-80% of the performance of an integrated design due to reduced proximity

to the CPU cores, further motivating the benefits of network-compute integration.

Finally, we expect the trend towards hardware component specialization and application-level

disaggregation to create further challenges for server architectures not designed expressly

for RPCs. The end of Dennard scaling and the rise of accelerator-centric computer architec-

ture [100] will inevitably result in the widespread deployment of specialized chips for common

workloads such as the Google Tensor Processing Unit (TPU) for matrix operations in machine

learning [125]. Deploying these accelerators in a datacenter cost-effectively mandates that they

be network-attached and utilizable by many clients; the alternative means that accelerators

are rigidly coupled to the host CPU, meaning that they cannot be provisioned independently

and thus will inevitably suffer from periods of low utilization. Microsoft cites this exact rea-

son when describing the motivation for their Catapult 2.0 accelerator architecture [44], in

addition to benefits in cabling and fault tolerance. Operating system models have already

been designed to manage datacenters architected around disaggregated, network-attached

hardware components [239], of which the TPU would be one of many. Both these trends would

mean that a single network-attached accelerator can expect traffic arriving to it from many

server endpoints – creating a similar trend to that exhibited by a single server which sends and

receives RPCs to and from microservices on many other servers.

Conclusions. Servers must evolve if they are to support the demands of today’s microservice

software architectures, and tomorrow’s accelerator-centric datacenters at the bandwidths

of upcoming NICs. As datacenter topologies and transports, systems software, and load-

21

Chapter 2. Why Design Server Architecture for RPCs?

balancing frameworks have already drastically advanced and pushed the remaining bottle-

necks to the servers themselves, in this thesis we target three critical remaining challenges:

(1) a server architecture whose hardware-terminated protocol can receive RPC traffic from

hundreds to thousands of endpoints, (2) a NIC-driven load balancing design which takes

into account application-level locality, and (3) a NIC architecture and implementation that

dovetails into existing accelerators for production RPC layers.

22

Part IDesigning an RPC-Centric Server

23

3 System Overview

In this chapter, we present a high-level overview of our proposed RPC-centric server archi-

tecture, describing the key modifications to existing hardware and software and highlighting

the outstanding trends that motivate our additions. We also describe the modelling and

simulation techniques we developed to study RPC-centric server architecture, allowing rapid

experimental result generation as well as detailed architectural simulation. Throughout the

chapter we use Figure 3.1 as a guideline, which shows the three server subsystems in the

scope of this thesis: the NIC, the memory hierarchy comprising L1 caches, a shared LLC, and

DRAM, and the CPU cores that run RPC-dependent software. All unmodified subsystems are

simple outlines and remain unshaded, and our proposed changes are colour-coded to show

the components involved in accomplishing each addition.

3.1 Novel Design Features

In this work, we propose three key additions shown in Figure 3.1 to form an RPC-centric

server architecture. Firstly, our proposed RPC-centric server architecture contains hardware

components (red) and protocol extensions (green) that exist on the data plane of network

traffic and handle data placement for incoming and outgoing RPCs. Secondly, we architect our

design to permit tight integration of state-of-the-art RPC protocol accelerators (grey), which

are key enablers to allow software to be deployed using fully-featured production RPC stacks

(e.g., gRPC) [92] and operate at the full underlying rate of the NIC. Finally, we propose hardware

25

Chapter 3. System Overview

Server Chip

NIC

RPC
Accel.

LLC

DC Network

RPC Req. …

RPC Resp.…
RPC Buffer

Manager

C

L1$
Prefetch
Control...

C

Load
Balancing Unit

RPC Queues

Transport API

RPC Layer

µService App.

...

Hardware Extensions
Protocol Messages
Load Balancing Support
RPC Acceleration

Figure 3.1: System overview of an RPC-centric server architecture, with colour coding to
indicate logically grouped components that implement specific functionalities.

to support single-queue load balancing with application-level locality considerations (blue),

and the matching software modifications (also blue) to inform the load balancing unit of RPC

completion events. These components are decoupled from RPC payload data placement, and

act as a “control plane” that assigns incoming RPCs to threads by means of in-memory queues.

We now provide a conceptual overview of the functionality of each feature proposed by this

thesis.

3.1.1 In-Cache RPC Placement

The combination of µs-scale software with high bandwidth NICs and optimized systems soft-

ware (see Chapter 2) has resulted in at-scale deployments using hardware-offloaded protocol

stacks for latency-critical datacenter services. Examples such as Microsoft’s Catapult [44]

and Google’s 1RMA [244] are industry examples of how hardware-terminated stacks have

already made their way into production datacenters. However, protocol offload is not a

panacea towards attaining lower latency, as evidenced by the numerous prior works demon-

strating the amount of careful engineering required to obtain acceptable performance on

top of existing NICs (e.g., with RDMA) [47, 65, 129–132, 201, 257]. In particular, several such

works identify the server’s I/O interconnect (e.g., PCI-Express) as a key bottleneck that im-

poses constraints on how existing RDMA verbs must be used, and threads can be connected

together [65, 129, 130, 257].

As network-compute integration sweeps over server architectures (see §2.5), ensuring that

at-scale deployments of hardware-terminated protocol stacks can continue to keep pace with

26

3.1 Novel Design Features

the network and the plethora of serving units (i.e., cores or accelerators) will require ensuring

that RPC traffic is judiciously handled in the server’s memory hierarchy itself. Current trends

towards larger, deeper, and more heterogeneous memory hierarchies that are connected by

the server’s on-chip network imply that previously neglected sources of RPC queueing may

be exposed as previous bottlenecks such as protocol processing dissipate. In particular, we

identify queueing at the server’s memory controllers as an emerging performance quandary,

that can result in a significant fraction of server-side RPC latency occurring before the RPC is

even processed.

Queueing at the memory controllers occurs because hardware-terminated stacks use per-

endpoint buffer provisioning, where every connected pair of servers allocates a dedicated set

of buffers in which the NIC can place traffic. With high numbers of connected endpoints being

the common case for today’s online services (see §2.1), per-endpoint provisioning causes RPC

buffers to overflow the server’s LLC into main memory despite the existence of DDIO/DCA

technology. Allowing network buffers large enough that they spill into DRAM is not only an

unnecessary source of latency and excess DRAM bandwidth, but is problematic when the

application competes for bandwidth with the NIC. Prior work has shown that bandwidth

contention often leads to unacceptable performance degradation for server applications [173].

Our work solves the problem of memory bandwidth contention by proposing hardware and

protocol extensions that eliminate RPC buffers spilling out of the server’s LLC, ensuring that

compute logic can access them from fast on-chip SRAM. The key insight that drives our work

is that when a software architect places a tight SLO on a microservice, they are essentially

stating that incoming RPCs must be handled from short queues, and therefore per-endpoint

buffer provisioning is fundamentally excessive and should be relaxed. Relaxing per-endpoint

buffer provisioning requires that the server NIC must dynamically assign RPCs a receive buffer

at arrival time, and reject those which cannot be received. We perform such operations with a

hardware module shown in Figure 3.1 as the “RPC Buffer Manager” (colour-coded red), whose

protocol messages are shown in green. Furthermore, we advance the state-of-the-art in RPC

data placement from simply loading data into the LLC (as is done by Intel DDIO [105, 119, 152]

and ARM Cache Stashing [21]), to placing RPC buffers directly in the CPU’s L1 caches just

before the thread running on a core accesses them. We perform L1-cache data placement via

27

Chapter 3. System Overview

MovieReviewService

UploadMovieReview

ReadMovieReviews

Media Online Service

µ

µ
µ

µ

µ …

(a) A microservice and its functions.

Function Code

Processor

Wire Protocol

Transport

(De)ser.

NIC interaction

IDL

Network

list<Rev> ReadMovieRevs (
1: i64 req_id,
2: string movie_id,
3: i64 start,
4: i64 stop,
5: map<string,string> carrier

) throws (1: Exception se)

(b) Intra-RPC stack layering, with generated code in grey.

Figure 3.2: The architecture of a microservice and a production RPC stack, and an example of
a function’s specification in an Interface Description Language.

a simple prefetch controller component at the back side of each L1 cache which generates

prefetches for incoming RPC payloads, virtually ensuring the cores can access them in just a

few cycles. Figure 3.1 also shows the “Prefetch Control” component attached to each core in

red. Chapter 4 covers the design of these extensions in detail, and Chapter 6 describes their

implementation and evaluation.

3.1.2 Fully-Featured RPC Layer with Hardware Acceleration

The rapid proliferation of microservices as the software architecture of choice for online

service developers naturally implies that RPC-centric servers should be expressly designed to

match, because custom RPC libraries are commonly used as a glue to connect microservices.

Examples of company-wide libraries include Google’s gRPC [92] and Facebook’s own fork of

Apache Thrift [19, 72]. Supporting such libraries with RPC-centric architecture provides a

single common point for optimization and the addition of functionality, so that all the benefits

provided by the improved architecture apply to every programming team. In this thesis, we

therefore target support for fully-featured, production-ready RPC layers.

Figure 3.2 presents a visual representation of the architecture of a microservice and the underly-

ing RPC API on which it depends.1 The depicted microservice is called MovieReviewService,

1Our example uses terminology from the publicly available version of Thrift [19], but the same operations are
present in gRPC [92].

28

3.1 Novel Design Features

and is taken from the “Media” application in the DeathStarBench suite of microservices [230].2

Each microservice represents a single piece of the business logic of the full online service,

which in this case represents a media streaming service like Netflix. MovieReviewService

handles all movie reviews submissions and lookups. Going down one layer, this microservice

consists of multiple underlying functions, which are specified by the programmer similarly

to class method declarations in programming languages like C++. Figure 3.2a shows that

MovieReviewService consists of two functions: UploadMovieReview and ReadMovieRevs.

Production RPC stacks are comprised of a multi-layered architecture, where the upper layers

are auto-generated with programmer assistance, and the lower layers interact with the sur-

rounding system (e.g., the network). When writing MovieReviewService, the programmer

will use an Interface Description Language (IDL) to declare all the microservice’s functions,

and the desired interface for each function. The programmer needs to specify the name of the

function, its arguments and their corresponding types, and the final return value. Figure 3.2b

shows the Thrift IDL for the ReadMovieRevs function. Then, at compile time, the RPC frame-

work generates all the code to expose a service with an API matching the IDL. The programmer

can implement the function in any language as long as it adheres to the generated API.

The Processor layer is analogous to what is seminal RPC literature calls an RPC stub [35]. By

generating a Processor instance which exports an interface compliant with the programmer-

specified IDL, the programmer does not have to concern themselves with any specifics of

threading, data framing, or network interactions. It also allows multiple Processor types to be

implemented depending on the needs of the application itself: for example, choosing between

a Processor with a thread pool or a single-threaded version. In between the Processor layer

and the Wire Protocol layer, the RPC stack must take the RPC’s arguments defined in the

IDL and perform serialization (in case of sending a request), or de-serialization (in case of a

new request arriving). We refer to this process hereafter as (de)serialization for brevity. After

(de)serialization takes process, and the wire format of the RPC is generated, the next layer to

be traversed is the Transport itself, which can interface with any protocol it wishes, from

traditional TCP/IP or specialized stacks such as the custom hardware-terminated transport

proposed in this thesis.

2This diagram matches commit hash 55f3696d2ee6f22b30bb3518d9c835eee65e511e.

29

Chapter 3. System Overview

Although the many-layered architecture of production RPC stacks provides generality and

convenience to users, that functionality comes at a high cost. At the breakneck speeds at-

tainable by today’s hardware-terminated network stacks, particularly with support for data

placement in the cores’ L1 caches, the µs-scale operations that make up production RPC

layers are a crippling overhead for application throughput. Prior work has already observed

that the functionality included in production-ready RPC layers costs between 20−80% of

total on-server time for an open-source suite of microservices [159, 275]. Fundamentally, this

entire cost is paid because of the modularity demanded by the microservices architecture

(see §2.1) and does not contribute to application goodput. Although a naïve solution may

be to simply dedicate cores to RPC layer processing, this is an unacceptable solution for

datacenter providers because silicon density scaling has reached a near-standstill [57, 71],

and CPU cores are a key resource that must be monetized. Fortunately, prior works exist to

accelerate production RPC layers by providing support for the most common operations in

hardware [122, 268, 275, 276]. However, the integration of such designs with state-of-the-art

network interfaces has not yet been sufficiently considered.

As prior work has already shown that integrated network interfaces need to be distributed

to scale to the needs of many-core servers [53], we remark that any proposed RPC protocol

accelerator also needs to be designed to match. There are two particular challenges involved

in such a co-design: firstly, the RPC’s payload processing components need to be distributed

across the many nodes of the server’s on chip network. Secondly, the order that operations

are performed in the RPC stack needs to be changed in order to support NIC-driven load

balancing. In this thesis, we demonstrate an implementation that allows a previously pro-

posed accelerator for RPC layer operations [276] to dovetail into our hardware-terminated

protocol stack, forming a full RPC protocol accelerator. In Figure 3.1, we graphically display

the inclusion of an RPC protocol accelerator (RPA) by the additional NIC component shaded

in grey. Chapter 7 discusses the implementation and microarchitecture of a NIC supporting

RPC protocol acceleration.

30

3.1 Novel Design Features

3.1.3 Enhanced Load Balancing

When handling µs-scale requests, cache locality matters, because the bandwidths of current

NICs imply that small-sized RPCs can arrive faster than all but a server’s smallest SRAM

caches [254]. With already-available 400Gbps NICs [208], a 64-byte RPC can arrive every

∼ 1.5ns, meaning that effort must be made to minimize memory accesses to enable a server’s

compute units to maximize their rate of RPC handling. In this thesis, we argue that an

RPC-centric server architecture needs support to assign incoming requests weighing both

load balancing and locality metrics. As previously discussed in §2.4, numerous prior works

have studied transport-level load balancing, where incoming RPCs are assigned to threads

based on policies opaque to cache locality. However, the fact that emerging applications

are often characterized by runtimes ranging from less than one µs to a few µs, means that

significant throughput improvements would be available if the unit(s) assigning RPCs to cores

can enhance application-level locality. This claim about the importance of cache locality is

also corroborated by prior work that investigates nanosecond-level savings for software packet

processing frameworks [75, 76] and NIC-to-core data transfer [108].

We specifically target two types of application locality for RPC-centric server architectures.

First, our work improves instruction-cache locality, which presents itself as various RPCs

invoke different functionality on the server and leave their code working sets in the CPU’s L1

instruction caches. Second, we improve the performance of concurrency control mechanisms

in microservices that cache application data, by assigning requests to threads that already

possess exclusive access rights for certain regions of memory. Integrated RPC accelerators are

a strong enabler for locality-aware load balancing, because they provide the load balancing

module knowledge of each RPC’s headers and arguments (e.g., the movie_id in Figure 3.2b)

which can be used to make code- or data-locality aware decisions.

Figure 3.1 shows the enhanced load balancing unit we propose for RPC-centric server architec-

tures, which is co-designed along with the hardware units handling incoming RPC data (see

§3.1.1). The additional hardware we propose in this thesis is roughly comparable to the size

and complexity of a TLB, and has drastic positive impacts on application locality. Despite the

simplicity of our design, we demonstrate up to an 18× reduction in cycles stalled on instruc-

31

Chapter 3. System Overview

tion cache misses, and up to 1.7× higher system throughput due to improved concurrency

control. Chapter 5 covers our design for locality-aware load balancing, and our evaluation in

Chapter 8 demonstrates its performance benefits.

3.2 Applicability of RPC-Centric Design Extensions

As the work in this thesis is cross-layer and involves many server system components, this

section lays out the scope and server hardware prerequisites for each feature just introduced.

In particular, we describe the deployment horizon for each feature, demarcated by the type of

NIC that is available as a baseline in the host server. Shifting more functionality to the NIC

from the host node will increase performance when designed well, but is also likely to increase

capital cost to deploy more advanced network devices. Therefore, this section breaks down

the contributions of this thesis by their ability to be deployed on the following three types of

NIC architectures.

First, we consider traditional off-chip NICs that are attached over I/O interconnects like

Peripheral Component Interconnect Express (PCIe). Except for limited functionality such

as TCP Generic Segmentation Offload or support for packet checksums, such devices can

be primarily viewed as high-bandwidth DMA engines, that move data to and from host

memory and inform software of DMA completions. Due to the limited application-level

information that can be taken into account on existing devices, the opportunities for RPC-

centric enhancements are equally limited. The only contribution in this thesis that can apply

to such devices is a concurrency control enhancement that only requires host-side software

modifications (proposed in §5.4.2 and evaluated in §8.4.3).

With increased opportunity for network-compute co-design in the datacenter, multiple ven-

dors have launched “SmartNIC” products that support more advanced functionality, the most

well known being Mellanox/NVIDIA’s BlueField [202, 204]. Any hardware support for RPC

protocol operations integrated into traditional NICs would also fall into this category. These

enhanced NICs often contain application-programmable logic (e.g., small FPGAs or full CPU

cores), and are able to run entire application-layer protocols like NVMe and cooperate with

virtualization software. The additional capabilities of such devices opens up many more

32

3.2 Applicability of RPC-Centric Design Extensions

possibilities for the techniques we propose.

In particular, a subset of our proposed hardware and protocol extensions for in-cache RPC data

placement (see Chapter 4) could be implemented on the programmable devices in SmartNICs,

granting the host node the ability to serve requests from hardware-terminated protocols at

large deployment scales. Additionally, our proposed policies for enhanced NIC-driven load

balancing (see Chapter 5) could also be realized in SmartNIC programmable logic. The caveat

of a SmartNIC-based design for load balancing is that the reduced proximity between the NIC

and CPU cores will result in reduced performance for tail-latency critical software, compared

to a cutting-edge design with full network-compute integration. §5.5.1 quantifies the degree

of performance reduction when implementing load balancing on any off-chip device.

Finally, the most advanced (and highest cost) architectures are those that feature full network-

compute integration. In these devices, which are beginning to become more commonplace in

both academia and industry, the entire scope of work in this thesis would be possible, due to

the ability to adapt the host’s architecture for the specific network operations we propose. In

addition to all the features above, the full scope of our proposal for in-cache data placement

becomes possible. The NIC would then be able to place data into the CPU cores’ private L1

caches (see §4.2.2). Importantly, due to the host node and NIC sharing the same memory

hierarchy without an I/O interconnect dividing them, full RPC acceleration becomes feasible

(see Chapter 7).

With full integration, locality-aware load balancing will now be able to reach its full potential,

because the NIC and host can exchange fine-grained statistics and metadata about the ap-

plication’s real time state, which can be used to make improved load balancing decisions. In

particular, tighter integration will specifically benefit our proposed techniques for instruction-

cache aware load balancing (see §5.2) and NIC-assisted concurrency control (see §5.3.2),

because they both target RPCs whose latencies are on the order of 1µs or less.

Summary. Table 3.1 displays a summary of which contributions of this thesis are possible

and effective on various NIC architectures. Commodity NICs are available at the lowest

price, but their relative lack of features at layers above the network transport means that

they can only implement a single software-only change we propose. Although SmartNICs

33

Chapter 3. System Overview

Contribution Commodity NIC SmartNIC Integrated

Chapters 4 and 6
In-Cache RPC Placement ×

+ L1 Prefetching × ×
Chapter 7 RPC Acceleration × **

Chapters 5 and 8
NIC-Driven Load Bal. × **

+ Locality-Aware Policies SW-only (§5.4.2) **

Table 3.1: Scope of applicability of contributions towards RPC-centric server architecture.
Asterisks indicate that implementing a feature is possible, with reduced benefit.

bring multiple contributions into scope, their off-chip location reduces the performance

of two key contributions, namely RPC protocol acceleration and NIC-driven locality-aware

load balancing. Fully integrated designs are naturally the most feature rich and highest

performance, which is logical as they require the highest expenditure and implementation

effort.

3.3 System Modelling Techniques

Simulating a full RPC-optimized server architecture in complete cycle-accurate detail is not

just a challenging implementation task, but also prohibitively slow in terms of results turn-

around time. To quantify, full-system cycle-accurate simulation is known to proceed roughly

six orders of magnitude slower than real hardware [265]. Although statistical sampling is a

time-tested method for measuring the impacts of microarchitectural techniques on server

workload throughput [269], it is unclear how sampling techniques can be applied when tail

latency is the metric of interest, because accurately computing tail latency percentiles requires

many full requests to be run to completion [149].

Therefore, we have developed a family of three techniques to model and study RPC-optimized

server architectures, that provide different levels of detail depending on what metric is being

studied. In Figure 3.3a, we show the techniques used in this thesis, and their respective use-

cases and applicability. The highest level is a simple event-driven queueing simulator which

allows reasoning about system bottlenecks and estimating the improvements of particular

optimization techniques, without requiring any system implementation or application porting.

We find that queueing systems are sufficient to model not just the impacts of load balancing

policies (as seen in ZygOS [223], RPCValet [54], and Shinjuku [126]), but also bottlenecks in

34

3.3 System Modelling Techniques

Queueing System

Functional Emulation

Cycle Accurate
Simulation

• Hypothesis Testing
• Bottlenecks

• Software Porting
• Debugging

• Performance Results
• Hardware Models

informs

prepares

(a) Techniques developed in this thesis.

C

…LB
N
I
C

Load
balancing

Request
creation Cores & Distributions

PD
F

RPC Lat .

Workload
Ø Request Mix
Ø Arrival Rate

(b) An abstract queueing system, further instantiated in
each subsequent chapter.

Figure 3.3: Modelling techniques and their respective use-cases for studying RPC-centric
server architectures.

lower-level cache and DRAM behaviour (seen in Chapter 6).

Our model is built in Python 3, and uses the SimPy discrete event simulation framework [242]

as its underlying implementation for the events’ priority queue and all interactions between

system entities. We instantiate various system components like CPU cores, load balancers, or

DRAM channels as simple event generators and consumers. To illustrate, in Figure 3.3b we

show an abstract representation of a server CPU comprised of a NIC, a load balancer, and cores

connected by a queueing network. Individual RPCs are passed between these components,

and latencies are assigned based on statistical distributions, which we choose to model the

desired system behaviour. For example, a CPU core’s latency distribution can be shifted to

model increased locality. We have extensively used this methodology in our work, and have

open-sourced it for future research.3

The second modelling and simulation technique developed in this thesis and shown in Fig-

ure 3.3a is functional protocol emulation. After a reasonable system performance expectation

is obtained by hypothesis testing with our queueing simulator, confirming the results with a

real system simulation is the next step. However, before any results can be obtained, it is nec-

essary to implement any hardware and protocol changes in the simulator, and simultaneously

port the application software to run on top of the aforementioned protocol. In the early stages

of our work, we found this task to be extremely error-prone, because it is difficult to isolate the

source of correctness or performance problems when all layers from the application to the

3The repository can be found at https://github.com/parsa-epfl/queue_flex.

35

https://github.com/parsa-epfl/queue_flex

Chapter 3. System Overview

Application
Threads

…

User library

Queue
Pairs

…

QEMU Protocol
Emulation Thread

Kernel Driver

QFlex
Simulator

ioctl
Mem.
r/w

Figure 3.4: Unified emulation and simulation stack, using QEMU and QFlex.

hardware have been modified. Therefore, we sought a method that would allow us to develop

protocol extensions and application software more rapidly, while maintaining compatibility

with the cycle-accurate simulator and avoiding the need to support multiple platforms.

Our functional protocol emulator is inspired by the Scale-Out NUMA emulation platform [199,

§7.1], but uses QEMU [51] instead of the Xen hypervisor. The critical benefit of our system

over the emulation platform developed by Novaković et al. is that our cycle-accurate simulator

uses the same QEMU emulator with an enhanced set of timing models, meaning that all

software ported to the emulator functions equivalently on the simulator. Additionally, all guest

checkpoints are usable by both the functional emulator and cycle-accurate simulator, and we

only need to support a single version of the integrated NIC’s kernel driver and RPC library.

Figure 3.4 shows the architecture of our unified emulation and simulation platform, where

the host system is a commodity server and the guest is a virtual machine (VM) running in

QEMU’s full virtualization mode (i.e., KVM is not currently supported). We modify QEMU’s

virt machine type to expose our proposed NIC to the guest operating system as a special

type of PCIe device, and wrote a loadable kernel driver which exposes that NIC to user-

mode applications through sysfs. To send and receive RPC traffic to and from our NIC, an

application first opens /dev/sonuma_rmc, then allocates memory for incoming and outgoing

RPC buffers and its in-memory Queue Pairs, and finally informs the kernel driver of their

respective locations in its address space using regular ioctl system calls. Once the application

invokes ioctl with a specific “magic” value, the emulator then spawns a new thread which

36

3.3 System Modelling Techniques

implements the NIC’s protocol by reading and writing the guest VM’s memory accordingly.

During this thesis we heavily leaned upon protocol emulation for application porting and

solving correctness issues, because we are unaware of any debugging tools that are able to

debug the guest VM’s state when running in cycle-accurate level of detail. In contrast, protocol

emulation runs quickly enough to allow the use of indispensable tools such as ASAN and

QEMU’s gdbstub to inspect guest memory, single-step the guest VM, and inject faults by

writing to guest memory locations.

Finally, we relied on cycle-accurate full-system simulation for generating all the experimental

evaluation results for our RPC-optimized server architecture. We use the QFlex simulator [216]

which extends the QEMU emulator with a “timing-first” mode of execution whose base

implementation is derived from the SimFlex simulator [265]. After the cycle-accurate simulator

models the detailed execution of an instruction in its out-of-order (OoO) CPU cores, it instructs

the emulator to advance by executing a single instruction, and then returns control to the

timing model. QFlex also contains a detailed set of memory consistency, on-chip network, and

cache coherence models, which allow us to study in detail the hardware extensions required

to support our proposed architecture. All the baseline libraries and NIC timing models were

derived from the Scale-Out NUMA project, which we extended and ported to QFlex. For any

other details on Scale-Out NUMA, we refer the interested reader to [52].

Summary. Our proposed RPC-optimized server architecture contains three novel design

features: 1) Hardware and protocol extensions for handling all RPC traffic from the server’s

existing memory hierarchy, 2) tight integration with previously proposed accelerators for

RPC-layer operations, and 3) enhanced load balancing that improves application-level locality.

In order to model, develop, and evaluate our proposed architecture, we used a variety of

techniques at different layers of abstraction. Having summarized our proposed architec-

ture’s features, we now proceed to discuss the first addition – support for in-cache traffic

management.

37

4 In-Cache RPC Traffic Management

The importance of limiting queueing delays to deliver minimal latency is an insight that spans

many layers of the datacenter stack, and has resulted in proposals attempting to eradicate

queueing in subsystems from network switches [96] to operating systems [150,223]. Due to the

impacts of queueing on the performance of microservice meshes (§2.1), and the body of work

that reduces queueing in the network (§2.2) and systems software (§2.3), this chapter focuses

on server-side queueing that forms as packet buffers transit the server’s memory hierarchy

during µs-scale RPCs.

Bandwidth contention arises when incoming network packets generate memory accesses that

interfere with the accesses from the application itself, forcing them to queue up at the memory

controllers and directly impacting RPC tail latency. This chapter studies the queueing network

of a server’s memory hierarchy and identifies a yet-unaddressed source of delays for servers

handling µs-scale RPCs: bandwidth contention that occurs at the server’s memory controllers.

For a server running µs-scale microservices, we find that such queueing reduces throughput

under strict SLOs by up to 2×.

We therefore argue that RPC-centric server architectures merit specific extensions to ensure

that RPC traffic is does not overflow the server’s SRAM caches, eliminating bandwidth con-

tention and improving latency. To achieve this goal, we introduce one simple insight: network

endpoints should provision only enough buffering to cover the number of requests which

could theoretically meet the application’s SLO, rather than traditional approaches like the

39

Chapter 4. In-Cache RPC Traffic Management

number of endpoints or the bandwidth-delay-product between endpoints. Using insights

from queueing theory, we show that the number of requests that can be queued and still

meet a given SLO is extremely limited, and therefore buffer provisioning for latency-critical

µs-scale RPCs can be shrunk down to an amount which can easily reside in the server’s SRAM

(10s of KBs in our experiments). Furthermore, because the requisite buffering is so limited,

simple architectural extensions can also accelerate RPC startup time by placing packets into

the matching L1 cache of the core about to handle the incoming RPC; this capability is made

possible by leveraging an on-chip integrated NIC (§2.5).

The rest of this chapter presents the motivation for such architectural extensions, the theoreti-

cal foundations for our idea to shrink buffer sizes for µs-scale RPCs, and the design of NEBULA,

our proposed set of architectural extensions for in-cache management of RPC traffic.1

4.1 Current Obstacles: Load Imbalance and Bandwidth Interference

The future of network fabrics is certain to be characterized by tremendous bandwidth, as both

the InfiniBand and Ethernet standards have released roadmaps to achieve link rates greater

than 1Tbps [112,252]. Such abundant bandwidth will directly affect server design, as incoming

network traffic will become a non-trivial fraction of a server’s available bandwidth. For proof of

this trend, consider the evolution in memory architecture of state-of-the-art switch ASICs (e.g.,

Broadcom’s Jericho 2) that already have the capability to support ∼ 10Tbps of I/O (12 ports

each offering full-duplex 400Gbps). Providing 10 Tbps of I/O bandwidth requires Broadcom

to use in-package High-Bandwidth Memory (HBM) modules [40] that have up to 1TB/s of

bandwidth.

In contrast, server-side memory bandwidth has historically been so much greater than network

bandwidth that network traffic has not impacted memory architecture; however, the explosive

growth of network bandwidth (see §2.2) indicates that server memory architecture must adapt.

To quantify, the original MICA key-value store requires eight 10Gbps NICs to saturate two

octa-core Xeon E5-2680’s [166], and follow-on work from the same authors argued that a 60-

core server socket can support a 300Gbps NIC using six DDR4 memory controllers providing

1NEBULA is a portmanteau for NEtwork BUffer LAcerator.

40

4.1 Current Obstacles: Load Imbalance and Bandwidth Interference

115GB/s of total memory bandwidth [165]. In their final proposed system, full-duplex 300Gbps

operation consumes up to 65% of the total memory bandwidth. Such memory bandwidth

consumption from the NIC indicates that the CPU cores can perform a maximum of four

memory accesses per RPC (on average) to not exhaust the available bandwidth. Despite the

possibility of provisioning more memory bandwidth headroom by dedicating more chip pins

to DRAM channels or using emerging technologies such as HBM, these decisions would drive

up cost unnecessarily compared to a solution which handles the NIC’s traffic from the server’s

existing SRAM.

Although current server products are equipped with Data-Direct I/O (DDIO) technology

that presumably ameliorates the challenge of memory bandwidth consumption by allowing

I/O devices to directly pass traffic through a server’s LLC [119], today’s user-level network

stacks complicate the task of in-cache buffer management due to their buffer provisioning

requirements. Providing zero-copy and synchronization-free message reception fundamen-

tally requires network receive buffers to be provisioned on a per-endpoint basis (i.e., per

connection), so that the server can receive a message from any other connected endpoint

at any time. This requirement is more challenging in the case where dedicated hardware

terminates the network protocol (e.g., in RDMA), because a buffer must be already be al-

located to the receiving connection for the incoming packet’s DMA to succeed.2 Note that

although support has been proposed for handling incoming DMA page faults [161], buffers

still must be pre-allocated before being faulted in. Such connection-oriented provisioning

creates two fundamental scalability problems, because it wastes precious DRAM resources

and raises performance problems in existing RPC stacks when QP entries cannot be cached

on the NIC [65, 131, 132, 201].

The buffering requirements of hardware-terminated stacks directly impacts application per-

formance, because the multi-client interleaving of incoming requests results in unpredictable

access patterns when incoming packets are written to network buffers. Effectively, the ac-

cesses for incoming requests are pseudo-random, minimizing the probability that they hit

the server’s LLC and thus inflating DRAM bandwidth consumption. This previously negligible

2Although we refer to connection-oriented transports, the same is true for unconnected ones like UDP or
RDMA’s UD transport.

41

Chapter 4. In-Cache RPC Traffic Management

effect significantly hurts the latency of µs-scale RPCs, particularly when incoming network

traffic is a significant fraction of DRAM bandwidth. We hereafter refer to this behaviour as

memory bandwidth interference.

Aiming to avoid the memory capacity waste of connection-oriented provisioning, InfiniBand

(IB) offers an option called Shared Receive Queue (SRQ), which enables multiple network

endpoints to share receive buffers posted to a common software structure. 3 The use of SRQ

implicitly ameliorates memory bandwidth interference because its reduced buffer footprint

would have increased LLC residency. Another approach to preventing buffers from overflowing

into DRAM is to statically limit the quantity of buffers available for the network stack to allocate.

This choice is made by prior work such as ResQ [256] and eRPC [132], which impose static

limitations on system scale based on the fraction of the LLC that the NIC can use for its DMAs.

However, SRQ, ResQ, and eRPC are vulnerable to load imbalance between the CPU cores, as

they correspond to multi-queue systems by design: clients must specify the connection on

which each RPC is sent and no server-side load balancing is possible. The same multi-queue

limitation is inherent to Receive-Side Scaling (RSS) [189] support, often used for inter-core

load distribution [33, 217, 223].

As discussed in §2.4, load balancing between a CPU’s many cores is critical for tail-latency

constrained systems, and therefore systems like SRQ are not a panacea because they cannot

provide load balancing. However, recent proposals have demonstrated system support to allow

the server’s many cores to serve requests in a single-queue fashion [126, 223]. However, such

approaches inevitably incur the cost of synchronization when re-balancing RPCs between

cores - which can be comparable to the RPC service time itself for µs-scale tasks. For the most

challenging RPCs with single-digit µs runtimes that we consider in this thesis, the throughput

loss corresponding to unavoidable software synchronization motivates including hardware

support for load balancing [54, 106]. Unfortunately, the buffer provisioning requirements

of hardware-terminated stacks bring back the problem of memory bandwidth interference,

exposing a fundamental tradeoff: either accepting load imbalance, or excess DRAM traffic that

can degrade application performance.

Conclusions: Current RPC systems are amenable to either memory bandwidth interference or

3IB uses the VIA interface as in §2.3, and therefore the endpoints are Queue Pairs.

42

4.1 Current Obstacles: Load Imbalance and Bandwidth Interference

N
IC

RPC
arrival

1

Memory

Dirty block
writebacks

C

…

C

Demand
accesses

3

2

RPC to core
assignment

Application data Receive buffersLegend:

60

6
…

LLC

4

Figure 4.1: Queueing system model of the memory hierarchy interactions associated with
handling incoming RPCs.

load imbalance, particularly when deployed at datacenter scale with thousands of communi-

cating nodes. Eliminating memory bandwidth interference mandates limiting deployment

scale or the number of outstanding RPCs per server, while eliminating load imbalance re-

quires accepting the overheads of software synchronization. We now move to quantify the

performance impacts of each factor, and then present the design of system extensions that

simultaneously deliver both benefits.

4.1.1 Modelling Imbalance and Interference

To study the implications of the tradeoff between bandwidth interference and load imbalance,

we use our discrete-event simulation methodology proposed in §3.3. Our work begins with

well-known queueing systems used to study load balancing, and adds a simple model of a

server’s LLC and DRAM to allow us to take into account the impacts of memory bandwidth

interference. We expect that such models are sufficient to capture the high-level bottlenecks,

and as practical engineering overheads are systematically reduced, the accuracy of theoretical

predictions should more closely track the behaviour of the real system.

In Figure 4.1, we show a concrete instantiation of our queueing simulator that models the

following components of a server CPU: the NIC, LLC, system memory, multiple cores, and

the RPC-to-core assignment policy. Without loss of generality, we assume a multi-core CPU

and on-chip integrated NIC that places packets directly into the LLC, similar to existing DDIO

NICs [119]. To model the steps involved as RPCs transit the server’s memory hierarchy from

the NIC to the cores, and responses being created, we take into account the following four

43

Chapter 4. In-Cache RPC Traffic Management

interactions: 1 traffic arriving from the NIC which is then placed into the LLC, 2 assigning

RPCs to cores, 3 memory accesses created by the cores during the RPC itself, and 4 write-

backs of dirty blocks from the LLC to memory. Step 2 pertains to load imbalance, while

Steps 1 , 3 , and 4 pertain to memory bandwidth interference.

When a new RPC arrives in the system in Step 1 , the NIC creates cache block requests

matching the RPC’s size that arrive at the LLC. Based on the relative size of the receive buffers

compared to the size of the LLC, the RPC’s buffers have a chance to hit in the LLC - if the access

is deemed to be a miss, they are write-allocated from the DRAM, creating memory bandwidth.

The RPC is then dispatched to one of the processing cores in Step 2 , according to one of the

load balancing or distribution policies we considered. During the RPC’s service time in Step

3 , it creates a number of memory requests which themselves reach the LLC, check for a hit,

and generate memory bandwidth if they miss. Finally, at each of Steps 1 and 3 , we model

double the memory bandwidth to represent the newly allocated block’s future eviction from

the LLC (Step 4) if and only if the access is both a write and determined to be a miss. We

now explain how we model each of the above components.

NIC: The model’s load is driven by the NIC component, which generates new RPC arrivals

following a Poisson process. The rate parameter of the distribution, denoted λar r is the input

variable to our model as it defines the average inter-arrival time between two requests. Each

RPC is broken down into a number of cache-block writes Nw for the RPC’s payload, which

we assume can all proceed independently through the server’s cache and memory hierarchy.

The NIC component then creates an RPC dispatch message and places it into one of the CPU

cores’ input queues; our queueing model supports both single- and multi-queue models,

following prior work that studies load imbalance between cores when handling RPCs. We

do not penalize the single-queue model with any additional service time due to the cores

accessing the single-queue, as multiple implementations have been published which achieve

synchronization-free single-queueing [54, 150].

LLC: We model an LLC with a deterministic service time, µLLC . Each access to the LLC is

modelled as an independent Bernoulli trial, with the “success” condition defined as an LLC

miss that creates memory bandwidth. Depending on whether the access comes from the CPU

44

4.1 Current Obstacles: Load Imbalance and Bandwidth Interference

cores or NIC, we attach a corresponding miss probability. For accesses coming from the NIC,

we calculate the miss probability as:

pN = 1−mi n

(
LLC capaci t y

Net . bu f . si ze
,1

)
(4.1)

Where both the LLC capacity and network buffer sizes are configurable characteristics of the

modelled server. We assume that incoming requests are abundantly interleaved from all the

clients communicating with this server, and thus there is negligible reuse - this leads to our

estimation of pN which scales inversely with the amount of provisioned network buffers. Also

note that our model for pN optimistically assumes the NIC can use the entire LLC, whereas

Intel servers place a default (but configurable) limit at 10% of the LLC [119].

CPU cores: The CPU cores receive dispatch messages from the NIC, and model a generalized

service time as follows. As the key variable we are interested in studying is the impact of

memory bandwidth interference on the RPCs service times, we split the service time into two

components. The first component takes place purely on-core, and the second depends on the

memory access time that changes with incoming load and bandwidth interference. Therefore,

the service time of each RPC can be modelled as

S̄ = tc + (Nacc ∗ AM AT)

where tc is a fixed amount of on-core computation, Nacc is the number of serialized memory

accesses per RPC, and AM AT is the average memory access time. We set AMAT to 45ns at

zero load, so it is only affected by input queueing due to bandwidth interference. Under this

model, each type of RPC will have its own number for Nacc .

Memory channels: Under Kendall’s notation, each memory controller in our model is mod-

elled as an G/D/k/FC F S system. This corresponds to a system with a generalized arrival

distribution, deterministic service times, k workers/outstanding requests, and first-come,

first-served memory scheduling. The arrival distribution is dependent on the system load, the

LLC model, as well as the RPC service time model. We assume a deterministic service time of

45ns once a request is served by the memory controller, and first-come first-served memory

scheduling which is common. Using a fixed service time for each memory access, we calculate

45

Chapter 4. In-Cache RPC Traffic Management

that each modelled memory controller must be able to serve k = 15 requests in parallel to

match the desired bandwidth of a DDR4-2666 channel (~21GB/s). Each parallel request in

principle represents an independent DRAM bank - as today’s modules can reach 32 banks per

DIMM [187], our model is conservative.

Experimental setup: With a model for each component as described above, we can answer

the question: how does excess traffic at the memory controllers impact the latency percentiles

of the RPCs? Due to our interest in latency-critical requests that are potentially impacted

by memory bandwidth interference, we consider key-value requests as a basic class of RPCs

that are both latency critical and generate significant memory bandwidth. Therefore, we

parametrized our queueing simulator with values that reproduce the current best-performing

server architecture, specifically architected for key-value serving: 60 CPU cores, 45MB of LLC,

six DDR4 memory channels, and a 300Gbps NIC [165]. Today’s high-end servers such as Intel

Xeon Gold [170], Amazon Graviton2 [16], and Qualcomm Centriq [169] also have similar values

for core count, LLC, and DRAM, and production NICs can already deliver bandwidths up to

400Gbps [208].

For the RPCs themselves, we model their execution following the MICA key-value store, as it is

still the best-performing software system for in-memory key-value serving [166]. As all MICA

accesses first perform a hash-index lookup (64B read) followed by reading/writing the payload

from/to the data store, this gives us Nacc = 2. For this experiment, we use 512B values. We

measured the average service time of MICA SETs to be S̄ = 630ns on an Intel Xeon E5-2680v3,

and additionally confirmed this value on our simulation platform. Therefore, we set tc = 540ns

for the fixed on-core computation time.

4.1.2 System Configurations

Using the queueing simulator just described, we study the following four system configurations

as a “spanning set” of the design space of highly optimized RPC systems:

1. RSS. A multi-queue system with uniform assignment of incoming RPCs to cores and

136MB of receive buffers (see §6.7 for sizing details). As discussed in §4.1, RSS suffers

from load imbalance and memory bandwidth interference.

46

4.1 Current Obstacles: Load Imbalance and Bandwidth Interference

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Offered Load (Max = 1.0)

0

2

4

6

99
th

%
 L

at
en

cy
 (u

s)

RSS
RPCValet
SRQ

NeBuLa
BW - RSS/RPCValet
BW - SRQ/NeBuLa

0

40

80

120

160

M
em

or
y

B
W

 (G
B

/s
)

Figure 4.2: Discrete-event simulation results, showing the impact of load imbalance and
memory bandwidth interference on the throughput and tail latency of µs-scale RPCs.

2. RPCValet. Single-queue load balancing of RPCs to cores with equivalent receive buffer

provisioning to RSS. Although RPCValet solves load imbalance, it still suffers from

bandwidth interference.

3. SRQ. Like RSS, a multi-queue system with uniform distribution of incoming RPCs to

cores, but assumes ideal buffer management, where all network buffers are reused in

the LLC, eliminating bandwidth interference.

4. NEBULA. Combines the best traits of RPCValet and SRQ: single-queue load balancing

and ideal buffer management.

We emphasize that these configurations represent an ideal deployment of each respective

system, and we do not penalize any of them for implementation-specific details. This is

most applicable to SRQ - we do not model any latency penalty for synchronization between

threads when posting buffers to the SRQ data structure, although a real system must incur this

overhead. Our model therefore slightly over-estimates SRQ’s performance compared to a real

deployment.

4.1.3 Results Discussion

Figure 4.2 shows the 99th% latency of the MICA RPCs and the total memory bandwidth

utilization of each modelled system. We assume an SLO of 6.5µs (≃ 10× S̄), following prior

47

Chapter 4. In-Cache RPC Traffic Management

work that studies RPC load balancing in the relevant context of µs-scale computing [150, 223].

The systems with connection-oriented buffer bloat (RSS and RPCValet) saturate early at a load

of 0.61, because they exhaust the server’s memory bandwidth by generating 127GB/s of traffic.

Although RPCValet attains sub-µs 99th% latency until saturation—an order of magnitude

lower than RSS at a load of 0.56—thanks to improved load balancing, it only supports 61% of

the maximum possible load because of its memory bandwidth bottleneck.

SRQ scales beyond RSS and RPCValet, meeting the SLO up to a load of 0.76. SRQ outperforms

RPCValet despite load imbalance because its network buffers are always reused in the LLC,

thus eliminating all traffic from Step 1 of Figure 4.1 and also writebacks of dirty network

buffer blocks in Step 4 . Effectively, network contention for memory bandwidth is removed

from the accesss in Step 3 .

Despite SRQ’s improved performance, it still leaves 24% of the server’s maximum throughput

unprocured, due to its inability to balance load across cores. SRQ’s lost throughput would

increase proportionally to RPC service time variance. The parameterization of §4.1.2 and

Figure 4.2 models the service times of the MICA in-memory data store, which we have observed

have a narrow variance similar to an exponential distribution. NEBULA combines the best of

RPCValet and SRQ, attaining near-optimal 99th% latency up to a load of 0.97, only saturating

when it becomes CPU bound. Even at maximum load, NEBULA only consumes ∼ 50% of the

server’s maximum memory bandwidth.

Conclusions: Our model shows that RPC-centric server architectures must address both

load balancing and memory bandwidth interference. Although load balancing has been

extensively addressed in prior work from both architectural [54] and operating system [150,

223] perspectives, our models demonstrate that memory bandwidth contention is also a

primary performance determinant. Next, we present the principles guiding our design to

address memory bandwidth interference and attain the performance of Figure 4.2’s best-

performing configuration.

48

4.2 Designing the NEBULA Architecture

4.2 Designing the NEBULA Architecture

To begin the NEBULA design process, we begin with a server and network architecture

featuring a hardware-terminated, user-level network protocol, with an on-chip integrated

NIC [53, 199]. The fundamental reason we chose to target hardware-terminated, user-level

protocol stacks is their suitability for the most challenging, µs-scale RPCs (see §2.5). NEBULA’s

prerequisites from the underlying network protocol are the following two characteristics.

Prerequisite 1: RPC-oriented transport. Recent work advocates for RPC-oriented transports

as a better fit than conventional byte-stream transports in datacenters, because they enable

improved flow control [193], latency-aware routing [96], and inter-server load balancing [150].

As RPC transports expose the abstraction of an RPC in the transport layer, the NIC can make

decisions pertinent to the application-level unit that an RPC represents, rather than the limited

view of packets as mere chunks of bytes. With RPC as a native network abstraction, the NIC can

multiplex the buffers of a single network endpoint among all its clients. Therefore, combining

RPC-oriented transports with hardware-terminated stacks allows reducing the theoretical

minimum number of buffers for N RPC clients from N to one.

Prerequisite 2: NIC-driven load balancing. NEBULA relies on a synchronization-free mecha-

nism to load-balance RPCs between a server’s many cores, allowing the cores to reach their

highest possible throughput. Otherwise, in the presence of load imbalance, a server could

begin violating the application’s SLO due to increased application-layer queueing, hitting an

earlier bottleneck than bandwidth interference, as shown by the behaviour of the SRQ system

in our analysis in §4.1.

Design Insights. NEBULA’s enabling insight to break the tradeoff between memory bandwidth

interference and load imbalance is the realization that by placing tight constraints on the SLO

of the system, the system designer is effectively stating that RPCs must be served out of short

queues. Conversely, RPCs which are idling in deeper queues will almost surely violate the

SLO; therefore, it is sufficient for a server to only provision enough space for queue depths not

corresponding to SLO violation. In theory, such short queues would easily be accommodated

in the SRAM resources already existing in a server chip. The next section shows that this exact

scenario is attainable for a variety of request processing time distributions. We leverage this

49

Chapter 4. In-Cache RPC Traffic Management

insight to relax both buffer provisioning and hardware requirements, achieving a performance

gain of up to ∼ 2× on our evaluated system.

Given the insight that an SLO-abiding queue depth should be small enough to trivially reside

in a server’s LLC, we identify a further optimization to improve the performance of the RPCs

themselves – an integrated NIC that handles RPC load balancing has the ability to place

incoming RPC payloads directly into the various cores’ L1 caches, because it knows the exact

core that will process each RPC. Therefore, the RPC’s payload will be accessible in just a few

cycles when the core is ready to process it, rather than reading it from an LLC location which

is potentially many network hops away. Our design agrees with prior motivation showing

on-chip interactions can indeed matter when payloads are just a few cache blocks [53, 76].

Next, we present the theoretical underpinnings that inform NEBULA’s critical design feature:

an analysis that shows the queues for latency-critical RPCs can indeed be fully SRAM-resident,

simultaneously eliminating bandwidth interference and enabling the performance benefits of

RPC steering into L1 caches.

4.2.1 Achieving LLC-Resident Queues

Our work in this thesis targets latency-sensitive online services with a strict tail-latency SLO,

and therefore responses that violate the SLO have limited value. We leverage this qualitative

characteristic to relax buffer provisioning. Bounding queue depths by taking SLO constraints

into account allows the network buffers to shrink and achieve greater LLC residency. This

observation leads to the natural questions: how long are the queues of a server which is

operating under its SLO target, and could those queues be made to reside in LLC, thus elimi-

nating bandwidth interference? In order to answer these questions, we conduct the following

theoretical queueing analysis.

Let a single server’s RPC response time be tr = tq + ts , where tq and ts represent an average

RPC’s queueing and service time, respectively. Assuming an SLO of 10× ts as is common in

the literature [54, 223] constrains queueing time to tq ≤ 9ts . To respect the SLO, a hypothetical

server with a single processing unit must be operating at a load point where the 99th% of the

distribution of the number of waiting RPCs is ≤ 9.

50

4.2 Designing the NEBULA Architecture

0.0 0.2 0.4 0.6 0.8 1.0
Normalized System Load

0

25

50

75

100

125

E
xp

.
Q

u
eu

e
D

ep
th

(E
[N̂

q
])

k = 16

k = 64

Figure 4.3: Relationship between offered load and E
[
N̂q

]
for two different core counts (k).

To generalize this observation to a many-core server, consider a k-core server modelled after

an M/G/k queueing system, assuming Poisson arrivals and a general service time distribution.

The answer to our question about queue depth lies in the percentiles of the distribution N̂q

that represents the number of queued RPCs under a system load A = λ
µ , where λ is the arrival

rate of new requests, and µ is the per-core service rate (stability condition: λ< k ×µ). When

the service time distribution is exponential, E [N̂q] is given by Equation (4.2) [279], where

Ck (A) is the Erlang-C formula:

E [N̂q] =Ck (A)
A

k − A
(4.2)

In Figure 4.3, we plot E [N̂q] for k = 16 and k = 64, to represent a server CPU with a medium-

and high-core count. Note that although E [N̂q]
A→k−−−→∞, solving the equation for high system

load results in E [N̂q] values approximately equal to k. For example, for a 64-core CPU at an

extreme load of A = 63(λ= 0.984), E [N̂q] = 54. This result shows that server queue depths at

the 50th% are approximately equal to the number of cores k, and therefore under stable load

will easily fit in a server’s LLC.

Ideally, we would be able to analytically solve for the 99th% of the N̂q distribution, but closed-

form expressions for the various percentiles of N̂q are not known, especially in the case of

generalized arrival and service time distributions. Therefore, to study the queue depths at the

99th% of N̂q , we return to the queueing system previously described in §4.1.1 to collect values

51

Chapter 4. In-Cache RPC Traffic Management

Distribution Max Load at SLO 99th% Queue Depth at SLO
Deterministic 0.999 54
Exponential 0.995 319

Bimodal 0.940 410

Table 4.1: 99th% of the number of queued requests, for a many-core server at maximum load
under 10× SLO.

for N̂q during the simulation’s runtime. For this experiment, we use k = 64 and replace the

service time distribution of MICA RPCs with the following distributions taken from ZygOS [223],

to represent distributions with low and high dispersion:

• Deterministic: P [X = S̄] = 1

• Exponential: P [X] =λe−λx (S̄ = 1
λ = 1)

• Bimodal: P [X = S̄
2] = 0.9, P [X = 5.5× S̄] = 0.1

In Table 4.1 we show the maximum load meeting an SLO of 10× S̄, and the 99th% of N̂q at that

load. The results corroborate the intuition that as the service time dispersion grows (e.g., for

bimodal), the peak load under SLO drops and the 99th% queue depth increases. In contrast,

the deterministic distribution’s 99th% is equal to E [N̂q], because there is no variability in the

rate at which cores drain requests from the queue. This analysis shows that even at extremely

high loads, the number of RPCs waiting in the queue is small enough to easily fit inside a

server’s existing SRAM resources. Assuming each RPC is provisioned 1KB of payload buffering,

a microservice exhibiting a bimodal service time distribution would require less than 500KB

of buffering.4 This amount is easily accommodated in modern server LLCs that often exceed

1-2MB of space per CPU core [16, 170]. Provisioning for deeper queueing is effectively useless,

because RPCs landing in queues deeper than the upper bound demonstrated by our analysis

will violate the SLO anyway.

Design Implications. Our above analysis shows that even at the 99th%, the number of queued

RPCs is small enough to be resident in the server’s LLC. However, if the buffers are full (e.g.,

during spikes of incoming load) the transport protocol can either signal a “failure to deliver” or

negative acknowledgement (NACK) to the client, or silently refuse to receive the RPC. Silently

490% of all flows in Facebook’s datacenters are less than 1KB [229].

52

4.2 Designing the NEBULA Architecture

dropping requests means that the clients must perform proactive load monitoring for requests

that were rejected as expected SLO violations, because the transport protocol does not provide

active feedback. We argue that exposing queueing failures through NACKs to the client is a

superior choice, because it follows the end-to-end principle in systems design [234]: the client

application is best equipped to handle such violations and should be informed immediately.

Furthermore, actively “shedding load” is one of the critical principles in designing systems

that rely on dynamic resource allocation [157, §5].

For the NEBULA architecture, we choose to give clients the responsibility to react to receiving

NACKs from the servers; example policies might include retrying the RPC or sending it to a

different server, as proposed by Kogias et al. [147]. This policy is also synergistic with existing

tail-tolerant software techniques, which eagerly retry [59] or reject [97] requests predicted

to be delayed. The use of an RPC-oriented transport (Prerequisite 1) strongly enables such

policies.

Moving from connection- to RPC-oriented transports means that packets belonging to various

multi-packet RPCs are intermingled in the network, and the protocol controllers at both

endpoints must demultiplex the RPCs into destination buffers in the correct order. Given our

basic assumption of a hardware-terminated protocol, such demultiplexing and reassembly

needs to be handled by the NIC. Therefore, NEBULA requires the addition of NIC extensions

to perform the following three tasks:

1. Assign buffer addresses dynamically to incoming RPCs, because the transport-level con-

nection no longer dictates where the hardware controller writes the RPC into memory.

2. Reassemble fragmented messages into the buffers that each RPC is allocated.

3. Send extended protocol messages to clients indicating that an incoming RPC is NACKed,

when sufficient buffers are not available on the server.

Server architectures featuring on-chip integrated NICs exacerbate the dynamic buffer as-

signment and reassembly challenges in two ways. First, the on-chip resources that can be

dedicated to the NIC’s buffer assignment and reassembly hardware are limited by tight power

and area constraints, as well as by the use of existing interfaces to the server’s memory sys-

tem. Second, because architectures with integrated NICs often use small MTUs (e.g., 64B in

53

Chapter 4. In-Cache RPC Traffic Management

Scale-Out NUMA [199]), the fraction of RPCs that are fragmented and need reassembly is

large.

Although most RPCs in the datacenter are small, many are still larger than 64B [26, 193].

Prior work circumvented these reassembly challenges by allocating dedicated buffers for

messaging per node pair [54], leading to the buffer bloat implications detailed in §4.1. As

NEBULA drastically reduces buffering requirements and shares buffers between endpoints,

we employ a protocol-hardware co-design to support efficient packet reassembly, even at

futuristic network bandwidths. Having described the insights and architectural additions

required to virtually guarantee that NIC traffic is handled from the server’s caches rather than

system memory, we now shift to discuss how an integrated NIC can increase RPC throughput

by judiciously placing RPC payloads into the server’s L1 caches.

4.2.2 Steering RPC Payloads to L1 Caches

In a system where all network traffic can be handled from the server’s cache hierarchy (as

discussed in the prior section), the performance of that cache hierarchy lies on the critical

path, and therefore the numerous on-chip interactions involved in the delivery of an RPC to a

core directly impact the server’s attainable throughput. Therefore, steering an incoming RPC

from the network to a core’s L1 cache, rather than having the core read it from memory or

the LLC, can noticeably accelerate the RPC’s startup. However, such an action has to be both

accurate and timely to avoid adverse effects.

A key challenge of NIC-to-core RPC steering is that the NIC generally does not know a priori

which core will handle a given incoming RPC, and inaccurate steering would be detrimental

to performance. A second peril is potentially over-steering RPCs, because storing several

incoming RPCs in a core’s L1 cache before the core consumes them could lead to cache thrash-

ing. DDIO avoids these complications by conservatively limiting network packet steering to a

configurable fraction of the LLC [119] and not further up the cache hierarchy, but exposes the

latency of the server’s distributed LLC to each RPC.

The existence of NIC-driven load balancing mechanisms (Prerequisite 2) is actually an implicit

solution to the complications of NIC-to-core steering, because the NIC is the module that

54

4.2 Designing the NEBULA Architecture

chooses which core will handle an RPC. Therefore, an RPC’s payload can be steered to the

core’s L1 cache with no accuracy concerns, except in the rare case where the operating system

migrates an RPC-handling thread to a core C j after RPC payloads are steered to its previous

core Ci and before it accesses those payloads. However, we do not consider this case as a

primary design requirement because we expect it to be exceedingly rare. As threads handling

latency-critical RPCs will likely be running on dedicated cores, such rescheduling events are

limited by design. Furthermore, RPC payload steering does not introduce any correctness

implications for the application or operating system scheduler, and is completely transparent

to both layers.

Successful NIC-to-core RPC steering requires breaking RPC handling into two distinct steps:

arrival and dispatch. The goal of the arrival step is payload placement in an LLC-resident set

of buffers to mitigate memory bandwidth interference, which we have discussed in §4.2.1.

The dispatch step’s responsibility is to take this fully-reassembled RPC, and assign it to a core

based on the NIC’s particular load balancing policy. Steering that RPC’s payload from the LLC

to a core’s L1 cache can be done in parallel with the dispatch step, sufficiently before that core

starts processing the RPC; therefore, the challenge of NIC-to-core steering is no longer which

core to dispatch to, but when to steer the payload.

Ensuring that payload steering happens in a timely fashion requires overlapping the execution

of one RPC with the payload steering of another, and hence it is no longer possible to achieve

true single-queueing because each core has multiple requests assigned to it at the same time.

It is intuitive that the shorter the length of each core’s private queue, the closer the overall

system approximates single-queueing. Prior work has shown that allowing this limited multi-

queue effect is actually mandatory to hide the communication latency between the CPU cores

and the load balancing component [54, 150]. We therefore repurpose the design decision to

allow two outstanding requests per core for the purposes of NIC-to-core steering – as the first

request is executing, the second request’s payload is being steered into the L1 cache. Next, we

present an end-to-end overview of how RPC traffic flows through NEBULA’s data plane.

55

Chapter 4. In-Cache RPC Traffic Management

Cores

L1 caches

PF Ctrl.

LLC

Buffer
Manager

Reassembly

First

Rest

1

2

0xbadd1

0xbadd2

- RPC Packets1 - RPC Packets2

Figure 4.4: Walkthrough of the process of RPC reception in NEBULA.

4.3 NEBULA Operational Walkthrough

In Figure 4.4, we display the three additional hardware components previously discussed in

this section, that collectively make up the NEBULA architecture. Note that the proposed design

does not assume any specific network stack implementation, and its only two prerequisites are

the two previously discussed in §4.2. Figure 4.4 shows the system in a state where it is currently

processing two RPCs – RPC 1 that is undergoing arrival and reassembly, and RPC 2 that

has already exited the transport layer and is in the process of having its payload steered to the

CPU core.

When the first packet comprising RPC 1 arrives at the server, it interacts with the component

which assigns the RPC a set of buffers from a pool exposed to the NIC – this component is

labelled “Buffer Manager” in Figure 4.4. To know how large the RPC is and therefore how

much space must be reserved for it, the buffer manager reads the transport protocol’s headers

which contain the RPC’s size. We expect RPC sizes to be readily available at the transport

layer, because all emerging RPC transports we are aware of contain the RPC’s size as a header

field. Knowledge of the RPC’s size and number of fragmented packets enables features such

as in-network prioritization in Homa [193], load balancing triggered by an RPC’s first packet

in R2P2 [150], and payload trimming in NDP [96]. In NEBULA, exposing the RPC’s size and

number of incoming packets at the transport layer has a similar benefit, allowing the NIC to

trigger new buffer reservations on the first packet.

RPC 1 ’s subsequent packets interact with the component labelled “Reassembler”, whose

responsibility is to ensure the RPC is arranged contiguously in the server’s memory so that

56

4.4 Chapter Summary

it is readable by the software. The Reassembler component does this by calculating the

correct cache block address for each RPC payload packet with a simple addition from the

base address originally returned by the Buffer Manager. Once again, exposing the RPC’s size

and packetization allows the Reassembler to handle each packet independently, simplifying

the underlying hardware implementation because no intermediary storage components are

required (e.g., to re-shuffle the packet’s ordering). All the RPC’s packets are written into the

server’s memory hierarchy in the exact same way that the NIC would usually do so (e.g., with

DDIO’s write-allocate, write-update policy [105, 119]). NEBULA does not impose any specific

requirements on this process, leaving the caches and coherence protocol unmodified for

simplicity.

Finally, once an RPC is completely reassembled by the previous two components, NIC-to-

core payload steering takes place. NEBULA performs payload steering by augmenting the

pre-existing NIC-driven load balancer (Prerequisite 2). All such load balancers need to com-

municate the existence of new RPC arrivals with the CPU cores through some kind of metadata,

whether through a dedicated interface as in NanoPU [108] or in-memory queues as in RPC-

Valet [54]. Therefore, it is sufficient to achieve payload steering via a simple prefetch controller

that parses these metadata messages and generates the appropriate cache coherence protocol

requests that load the payload’s data into the L1 cache. Figure 4.4 shows the prefetch controller

component (PF Ctrl.) generating a prefetch request for RPC 2 , that has one of its two payload

packets already present in the displayed L1 cache.

4.4 Chapter Summary

In this chapter, we have presented the motivation and design of the NEBULA architecture,

which breaks the tradeoff we identify between load imbalance and memory bandwidth inter-

ference in hardware-terminated network protocol stacks. The underlying insight that drives

the design of NEBULA is that meeting strict SLOs requires shallow server-side RPC queues.

Our queueing analysis and simulations show that under such SLO goals, server-side queues

are shallow enough to easily fit inside a server’s LLC. Thus, system designers can leverage this

observation to provision drastically reduced buffering, eliminating excess memory footprint

for RPC buffers, and by extension, the latency implications of memory bandwidth interference.

57

Chapter 4. In-Cache RPC Traffic Management

RPC buffers can also be accurately prefetched into the L1 caches of the server’s CPU cores,

boosting throughput even further. In the second part of this thesis (Chapter 6), we propose a

concrete implementation of the NEBULA architecture and demonstrate that it yields up to

2× higher RPC throughput under SLO. NEBULA ensures that hardware-terminated protocol

stacks can scale to the line rates of future NICs and thousands of communicating endpoints

without incurring excess on-server latency, enabling µs-scale software deployments at full

datacenter scale.

58

5 Locality-Aware Load Balancing

Designing a RPC-centric server architecture requires not just taking into account the unique

constraints of µs-scale RPCs, but also the unique opportunities they expose. In Chapter 4, we

discussed an emerging performance quandary in handling RPCs with µs-scale runtimes. In

contrast, this chapter presents an emerging opportunity – enhancing load balancing policies

to take into account locality available in the RPCs themselves, reducing latencies at both the

average and tail.

We first study two classes of microservice applications, and identify which locality metrics each

one benefits from. Specifically, for microservices that primarily execute stateless application

logic, we show that the most salient form of locality presents itself in the CPU cores’ instruction

caches. In contrast, microservices that primarily store or cache data are more impacted by

improved concurrency control because they are often bottlenecked by synchronization.

Based on modelling the load balancing tradeoffs inherent in both above metrics, we claim that

existing systems are unable to effectively implement locality-aware load balancing because

the relevant application-level metrics (e.g., the RPC’s type that dictates instruction-cache

locality) are exposed at the wrong layer. Clients themselves are aware of these RPC-level

metrics, but are only able to implement simple static policies that sacrifice tail latency by

design. In contrast, hardware components that can perform load balancing (e.g., SmartNICs

or emerging integrated designs) are agnostic to RPC semantics and only use transport-level

information, meaning that their shortest-queue load balancing policies cannot benefit from

59

Chapter 5. Locality-Aware Load Balancing

the opportunities we identify.

We therefore argue that the use of RPC-oriented transport protocols (Chapter 4) and the

inclusion of RPC protocol acceleration (Chapter 3) provide the ideal substrate for enabling

locality-aware load balancing algorithms at individual servers. To achieve this goal for an

RPC-centric server architecture, we introduce a simple insight – knowing the content of each

application’s RPC queue, in addition to its length, is sufficient to realize improved locality-

aware load balancing. We use this insight to show that NIC-driven load balancing policies can

simultaneously reduce RPC execution times while maintaining tail latency guarantees.

The remainder of this chapter first explains the motivation for improved load balancing for mi-

croservices, demonstrates the two specific opportunities we identify to improve microservice

performance, and finally proposes a simple set of NIC extensions which fit well into the con-

straints of on-chip integrated designs. We demonstrate the implementation and evaluation of

our set of extensions in Chapter 8.

5.1 How Can Load Balancing be Improved?

In a server ecosystem characterized by µs-scale RPCs, hardware-terminated protocols, and

continually growing core counts (see Chapter 2), inter-core load balancing is of critical impor-

tance. Due to the cost of acquiring and maintaining server hardware, datacenter operators

typically attempt to ensure that their systems are as highly utilized as possible without violating

end-to-end Service Level Objectives (SLOs). A deployment that experiences significant load

imbalance contradicts this objective by needing to be under-utilized to control tail latency,

even with sufficient incoming load to theoretically utilize all the CPU cores. It is therefore

important that RPC-centric server architectures can maximize the utilization of various classes

of microservices while controlling tail latency via the use of state-of-the-art load balancing

policies (see §2.4).

The critical shortcoming of state-of-the-art load balancing frameworks is that they are funda-

mentally application agnostic, and primarily deal with RPCs as opaque tasks with independent

service time distributions. However, it is intuitive that application-level constraints also have

a significant part to play in the performance of a load balancing policy. For example, assigning

60

5.1 How Can Load Balancing be Improved?

two RPCs to different cores is counterproductive when they need to enter the same critical

section – knowing this information at load balancing time would allow such pathological

decisions to be avoided. Furthermore, assigning a RPC to a core that already has that request’s

instructions and/or data in its L1 cache can reduce service time. Implementing such policies

may create scenarios where it is beneficial to artificially create queueing rather than to avoid

it at all costs. In this chapter we therefore ask: how can a load balancing policy actually im-

prove the service times of the RPCs themselves while simultaneously maintaining tail latency

constraints?

Our answer to this question is that every application’s constraints are unique, and therefore

load balancers need to expose an interface to software that allows per-application policies to

be expressed and cooperatively implemented. In this chapter, we identify and quantify two

application-specific policies that can indeed improve RPC service times through improved

locality, boosting microservice performance by 1.2−1.8×. First, we focus on microservices

that primarily perform stateless computations of the application’s business logic. We show

that the instruction working sets of individual RPCs are small enough to be resident in the

L1 instruction caches, but such near-ideal cache behaviour is prevented by a load balancing

policy that is locality-agnostic and thus assigns multiple RPC types to the same CPU core,

inducing instruction cache capacity misses. Next, we change our focus to microservices which

store data (e.g., caching layers), and identify that improved concurrency control can drastically

improve performance and data cache locality. In particular, we show that state-of-the-art

concurrency control algorithms for in-memory data stores expose significant inefficiencies

when handling write-heavy workloads, which result in up to 5× worse 99th% latency or up to

2× reduced throughput. Through the use of analytical modelling and event simulation, we

show that both above opportunities result in the same fundamental tradeoff and the benefits

of an improved policy.

Furthermore, we claim that current systems are unable to benefit from either above locality

opportunity, because all currently available system support to improve locality results in RPCs

being permanently partitioned among server cores. Such permanent partitioning directly

contradicts the well-accepted goal of minimizing RPC queueing, and would result in a final

deployment that sacrifices tail latency by design because it eliminates the possibility of load

61

Chapter 5. Locality-Aware Load Balancing

balancing. For example, although it would be possible to improve instruction locality by

partitioning RPC types across TCP connections and enforcing connection-to-core affinity, the

server would be unable to re-balance RPCs to other cores in the case of long-latency events.

Adding the functionality for cores to shuffle connections among themselves as in ZygOS [223]

would improve tail latency in such cases, but the overheads of core-to-core communication

quickly become prohibitive with small µs-scale tasks. ZygOS’ authors report that with 5µs

tasks, ZygOS can only achieve ∼ 60% of the maximum theoretical load [223, Fig.7], which can

be attributed to the cost of software work stealing.

The critical factor that enables us to enhance current load balancing policies with application-

level metrics is the combined presence of hardware acceleration for the network protocol

stack, RPC protocol unit, and NIC-CPU interface. We employ hardware termination at both

the transport and RPC protocol layers to extract certain fields of the RPC’s header at the NIC’s

line rate, and a hardware load balancing module to dispatch requests from the server’s NIC.

Microservice software running on the CPU cores sends feedback messages to the NIC to

aid it to make load balancing decisions with knowledge of each core’s real-time state. We

now present the first opportunity that we identify to improve RPC throughput – increasing

instruction-cache locality in microservices with many independent functions.

5.2 Temporal Instruction Locality in Microservices

Recall that in §3.1.2, we introduced the software architecture of a representative microservice,

which exposes a set of user-visible functions that perform various tasks. Our new insight in

this section is that significant temporal instruction locality exists among the functions making

up a microservice, and that enhancing the system’s load balancing policy with the notion of

instruction locality can drastically reduce the runtimes of the functions themselves. Improved

function performance translates to higher throughput under the programmer-specified SLO

limit or equivalently, lower tail latency at the same load.

The instruction supply problem in servers is a well-known problem stretching back decades.

Despite ongoing attempts from both the software and hardware fields to eliminate these issues,

servers at Google still waste between 15−30% of their pipeline slots due to inefficiencies in

62

5.2 Temporal Instruction Locality in Microservices

the CPU’s front-end [133], reportedly forming a multi-million dollar problem [27]. We studied

the microservices from DeathStarBench [81] and measured that their working sets ranged

from 64−150KB, roughly 20× smaller than those of traditional cloud applications studied by

seminal work from Ferdman et al. [78] and later corroborated by industry [133]. We expect the

microservices’ instructions to still spill out of the L1 instruction caches (I$s), because their

working sets are roughly 2−4× larger than the I$s of today’s server processors (e.g., Intel’s Ice

Lake [255] or AMD’s EPYC v3 [36]). Current work confirms that the frontend inefficiencies

remain considerable – the authors of DeathStarBench report that the pipeline slots wasted due

to frontend stalls are between 20−40% [81, Fig. 10]. As a result, CPU front-end stalls remain

an important bottleneck to address for microservices.

The inclusion of accelerators for RPC protocol operations [136, 275] that offload the Wire

Protocol and Transport layers of the RPC stack implies means that all the code comprising

those layers disappears completely, leaving only the actual function code behind. In our

experiments, removing these two layers shrinks the code footprint of our studied microservices

by 50−75%, meaning that the working sets of some microservices are small enough to be L1

I$-resident. However, for microservices consisting of numerous functions, we have observed

that the aggregate working set again outstrips the L1 I$ and thus frontend stalls reappear.

These stalls are a form of function thrashing in the L1 I$, which is attributable to the fact that

the same core is handling all the microservice’s functions.

We argue that a sufficient solution to this problem is to form “function partitions” whose

aggregate resources are within the capacity of the CPU’s frontend. Creating such partitions

with NIC-driven load balancing means only assigning requests for a function to the cores that

are part of its respective partition, minimizing function thrashing and increasing the CPU’s

throughput. We hereafter refer to this as affinity-based load balancing, following seminal

literature in OS scheduling based on data cache footprints [245]. However, forming static

partitions creates the potential for load imbalance to arise between them, as a result of the

mixture of incoming requests sent by clients. The resulting tradeoff between minimizing

function thrashing and preserving load balancing flexibility begs the question: despite the

increased service rate from static affinity-based load balancing, is it truly effective when the

tail latency of the microservice is the metric of interest?

63

Chapter 5. Locality-Aware Load Balancing

Answering the above question requires estimating two factors for the microservice under

consideration. First, one needs to determine the relative size of each function partition –

the more functions comprising a partition before function thrashing occurs, the more load

balancing is inherently preserved in a partitioned deployment. Second, given a set of function

partitions, one needs to determine the per-core throughput recouped from various function

partitioning strategies. In the next section, we propose a basic analytical model that estimates

the size of the function partitions required for a microservice.

5.2.1 Boundary Conditions for Function Thrashing

The size of a microservice’s function partition is primarily dependent on the frontend microar-

chitecture of the CPU on which it executes. We simplify the plethora of microarchitectural

factors that can impact a given microservice’s performance (e.g., I$ size and associativity,

choice of prefetcher, and instruction issue width), by classifying the design space of CPU

frontends into two categories based on whether they implement branch predictor-driven I$

prefetching or not. We choose this characteristic as the principal delimiter because it dictates

which frontend resource comes under stress when many functions run on a single core.

Function thrashing should induce instruction stalls in basic frontends (e.g., those with simple

next-line prefetching) mainly due to limited cache capacity, as the aggregate working set of

the functions spills out of the cache, and limited misses can be covered. In contrast, frontends

with state-of-the-art predictor-driven prefetching (e.g., designs such as Boomerang [155] or

Shotgun [154]) can speculatively explore the program’s future control flow, and cover misses if

and only if the BTB attains a high hit rate. Such designs will shift the capacity limitations from

the cache itself to the predictor’s metadata stored in the BTB.

Knowledge of the functions’ working sets makes it possible to calculate the boundary condition

beyond which a particular grouping of functions will begin producing contention. For basic

frontends, the threshold for producing function contention can be calculated as the number

of functions F that satisfies the following inequality:

F∑
i=0

(Wi −L) > SL1 −L (5.1)

64

5.2 Temporal Instruction Locality in Microservices

Frontend Type L = 5KB L = 10KB L = 15KB
Basic 1 2 3

Predictor-Driven 3 5 9

Table 5.1: Number of functions that can be entirely contained in basic and predictor-driven
CPU frontends without incurring I$ thrashing.

Where SL1 is the instruction cache capacity, Wi is the working set of function i , and L is the

amount of shared code (e.g., due to libraries) between all functions. This analysis assumes a

priori knowledge of L, which itself can be calculated as the intersection of all working sets for

the functions i as follows: L = {W0 ∩W1 · · ·∩Wi }. We choose the unit of each term to be the

number of instructions and not bytes, to facilitate the following comparison.1

For frontends featuring predictor-driven prefetching, an expression similar to Equation (5.1)

applies, replacing SL1 with SBT B , the capacity of the BTB. Assuming the well known rule of

thumb that 1
5 of instructions are branches, both Wi and L are therefore scaled down by a factor

of 5. The two expressions are equivalent when SL1 = 5SBT B , meaning that a predictor-driven

frontend has 5× higher function capacity than the instruction cache because it only stores

branch instructions.

In Table 5.1, we report the values of F for both CPU frontend types, assuming homogeneous

20KB functions, a 32KB I$, and a 3K-entry BTB. Our model indicates that for CPUs with basic

frontend designs, contention can occur with as few as two functions concurrently residing

on the same core. In contrast, advanced frontends can support more functions due to the

bottleneck shifting from the instruction cache to the more space-efficient BTB. Note that the

values for the predictor-driven frontend are not simply equal to 5× the value of the basic

frontend, because our assumptions of L1 I$ and BTB sizes give SL1 ≃ 2.5SBT B . As the amount

of library code grows, contention naturally drops and more functions can co-exist before

contention occurs. These results are conservative, as we have observed that the working sets

of some functions are much larger than 20KB and will lead to more contention.

Using the above model as a guide, frontend contention can be eliminated by ensuring that each

core receives requests corresponding to no more than F unique function types. To form the

1NB: In modern ISAs such as ARM64 and RISC-V, instructions are fixed-length, so the two terms are related by
dividing size by instruction width.

65

Chapter 5. Locality-Aware Load Balancing

partitions, the system designer needs knowledge of the CPU microarchitecture, the functions’

working sets, and the library code shared among them. While the former is simple to discover

through architecturally-exposed registers, the latter requires some form of profiling. We expect

that for datacenter software which is deployed at scale, the required profiling support could

be built as an extension of production systems that aggregate performance counters across

machines [27]. With the aid of our model allowing us to estimate the size of a microservice’s

function partitions to minimize function thrashing, we now can answer whether function

partitioning is indeed effective under tail latency constraints.

5.2.2 Towards Dynamic Function Partitioning

To study whether the improved execution times from static function partitioning outweigh

the sacrifice in load balancing flexibility, we return to our queueing simulator (§3.3). We

conduct a simple experiment that models a 16-core server running a single microservice

with 16 functions, each having exponentially distributed service times. Incoming RPCs are

generated with exponentially distributed inter-arrival times, and we assume that functions are

uniformly popular. Our experiment compares the following partitioning strategies:

• None - this design represents the baseline system where any function can be run on

any core, and therefore represents single-queue load balancing. Therefore, we set the

average service time of each function to be S̄ = 1.

• Full - in this design point, the function partition size is equal to one, thus each function

must be assigned to a single core. This partitioning strategy corresponds to the case of a

basic CPU frontend running functions with little common code (see Table 5.1).

To model the increased instruction locality, we assume that recouping all the wasted

frontend slots leads to a 20% performance increase, and thus we set S̄ = 0.8.

• Partial - this design creates four partitions of four functions each, which either corre-

sponds to a basic frontend with significant code sharing, or an advanced frontend.

We use S̄ = 0.9 for Partial to model less locality than Full partitioning.

• Ideal - this best-case design combines the superior load balancing of None, with the

service time reduction of Full partitioning. For this system we set S̄ = 0.8 and allow

single-queue load balancing.

66

5.2 Temporal Instruction Locality in Microservices

0.00 0.25 0.50 0.75 1.00

Load (Norm. to Ideal)

0.0

2.5

5.0

7.5

10.0
L

at
en

cy
(T

im
e

U
n

it
s)

Avg.

0.00 0.25 0.50 0.75 1.00

Load (Norm. to Ideal)

0.0

2.5

5.0

7.5

10.0
99th%

Full

Partial

None

Ideal

Figure 5.1: Load vs. latency curves for different function partitioning strategies, assuming an
SLO of 10 units (10× S̄).

Although other choices are possible (e.g., two partitions of eight functions each), we omit them

for brevity as the results would fall between the above strategies and the theoretical optimum.

Figure 5.1 plots the average and 99th percentile RPC latency for each system. The results

for average latency show the additional throughput granted by the Full and Partial function

partitioning strategies, as both attain a higher load than the baseline policy (i.e., ≥ 0.76)

without reaching instability. However, despite a 10−20% reduction in service time, neither

partitioning strategy provides significant benefits when throughput under 99th percentile SLO

is concerned. The system with Full partitioning violates the microservice’s SLO at a load of

just 0.63 because of load imbalance when new requests must queue at occupied cores due to

the strict partitioning policy. In contrast, adding a modicum of load balancing with Partial

partitioning achieves nearly identical throughput under SLO as None, as they both violate the

SLO at a load between 0.76 and 0.8. Partial partitioning does grant reduced 99th% latency in

low-load regimes (i.e., when load is beneath 0.58). Naturally, the Ideal system provides both

benefits, attaining 20% higher throughput while only violating the SLO at loads beyond 0.93.

Based on these results, we conclude that although static partitioning strategies do provide

higher throughput, a 10-20% reduction in service time due to instruction locality does not

significantly improve throughput under tight SLO constraints. Static function partitioning

may be attractive for microservices which are not bound by tight SLOs, particularly because

such partitioning can be completely realized in software. A sample design could be to re-

organize the intermediary layers of the RPC protocol stack to create a unique Transport-level

67

Chapter 5. Locality-Aware Load Balancing

C

CLoad
Balancer
... N

HD

- type 1
- type 2

Figure 5.2: Simulated queueing network for JBSQ(D) with history.

connection for each function partition, and then using support from Intel’s Flow Director [120]

to ensure that all requests on this connection are processed by a certain set of cores. To make

such as strategy valuable, the SLO either needs to be relaxed, or the instruction locality benefits

need to be larger than what we assume. However, we set our goal to design a policy that attains

improved I$ locality without sacrificing tail latency, like the Ideal policy shown in Figure 5.1.

The key deficiency of static partitioning is that it does not take advantage of all the information

available to the NIC’s load balancing stages. As the NIC has knowledge of which core every

incoming request has been assigned to, in principle it can assign requests while taking into

account load balancing and the I$ locality this function will experience on the selected core.

At low load, it can prioritize sending incoming requests to cores with more I$ locality, and

minimize tail latency at high load by choosing cores with the shortest queues of incoming

requests. It is also possible to choose a core having affinity among multiple possibilities with

the same queue length. We refer to this policy as dynamic affinity, and note that it is similar to

the way irqbalance maps interrupts to cores in Linux [103].

Intuitively, no policy can ever attain perfect load balancing and perfect instruction locality

– achieving one means yielding some of the other. Therefore, it is natural to ask how near a

hypothetical load balancing policy can come to the performance of a system like the Ideal

one modelled above. The critical variables dictating the performance of such a policy are (i)

the fraction of decisions for which affinity is available, and (ii) the choices made by the load

balancer to schedule requests based on affinity or limiting queue depth.

To study (i), we hypothesize that for common deployments, the fraction of decisions with

available affinity is high. We base this hypothesis on the insight that the number of “recently

68

5.2 Temporal Instruction Locality in Microservices

dispatched” functions is large enough to find a single core which has recently served this

function, or is about to serve it from its input queue. Furthermore, the affinity potential

of a particular deployment should be insensitive to the incoming load. To explain these

insights, Figure 5.2 shows a queueing network representing a system with a centralized load

balancer having an unbounded queue, and N cores each having a private queue of depth D

and a “history” of the H most recently executed functions. This model represents a system

using the state-of-the-art Join-Bounded Shortest Queue load balancing policy, with depth D

(JBSQ(D)) [54, 150].

Recall that previously, we used a known result from queueing theory to show the expected

number of queued RPCs is approximately equal to the number of cores at high but stable load

(see Equation (4.2)). Therefore, it follows that with a shortest-queue load balancing policy,

each core’s input queue should be of length ≃ 1. It then follows that when the distribution of

function popularity is uniform, the majority of load balancing decisions should encounter

at least one core with potential affinity, under the condition that the number of functions is

less than or equal to the number of cores. At low load when many of the private queues will

be empty, the location where affinity will be found shifts from the cores’ input queues to the

function history.

To confirm this expectation, we simulated the queueing network in Figure 5.2 and collected

statistics for the number of load balancing decisions where potential affinity was found.

We consider that affinity is available when the ID of the function dispatched from the load

balancer’s unbounded queue matches one of the first F unique function IDs in any private

queue, where each queue is processed starting from the tail. The parameter F can be selected

in accordance with the analytic model in §5.2.1, but we use F = 1 because it corresponds to the

worst-case for affinity. For example, in Figure 5.2, a new load balancing decision for function

type 2 needs F ≥ 2 to find affinity in the upper core, whereas a function of type 1 would find

affinity in both cores. We simulated a host system with 16 cores at a load of A = 12, and do not

modify the load balancer’s decisions to avoid biasing the results.

Figure 5.3 shows the fraction of load balancing decisions with affinity, for both uniform and

skewed function popularity distributions. In particular, Figure 5.3a shows that when the

69

Chapter 5. Locality-Aware Load Balancing

0

20

40

60

80

100

1 4 8 10 16 18 24 32%
 o

f L
oa

d
Ba

l.
De

ci
sio

ns

Number of Functions

Uniform
Skewed, Zipf = 0.9

(a) Affinity to one or more cores.

0

20

40

60

80

100

1 4 8 10 16 18 24 32%
 o

f L
oa

d
Ba

l.
De

ci
sio

ns

Number of Functions

Uniform
Skewed, Zipf = 0.9

(b) Affinity to strictly more than one core.

Figure 5.3: Results demonstrating the availability of affinity at RPC dispatch time, for a 16-core
system.

number of functions is less than or equal to the number of cores, over 80% of load balancing

decisions have the potential to find affinity to at least one core. When the number of functions

is smaller than the number of cores, function popularity does not significantly affect the results

as expected. Furthermore, the existence of skew positively influences the available affinity

where the number of functions is beyond the number of cores. Finally, we confirm that these

results are insensitive to load – sweeping the load between 10–90% (A ∈ [1.5,14.4]) results in

less than a 1% change in available affinity.

We also display the fraction of decisions that have potential affinity to strictly more than one

core in Figure 5.3b. This result is important as it indicates whether available affinity is plentiful

enough so that load balancing among multiple affinity-having cores can also be considered.

Similar to the results in Figure 5.3a, we see that the vast majority of load balancing decisions

have the opportunity to choose among multiple affinity-having cores. In this experiment,

popularity skew between the functions positively impacts the availability of affinity when the

number of functions is larger than the number of cores (16). Figure 5.3b shows that decisions

with potential affinity to more than one core increase by 9−25% with function popularity

skew, which is logical as the most popular functions will be more likely to be found in many

cores’ input queues. Also, the gap between the uniform and skewed distributions grows with

function count, which is logical because the popularity relationship between items in a Zipf

distribution increases with item count.

Given the abundance of affinity in the above experiment, we remark that a simple proof-

70

5.3 Load Balancing for Write-Intensive Key-Value Workloads

of-concept load balancing policy is sufficient to grant most functions affinity benefits while

retaining significant load balancing flexibility. By retaining the function IDs that have recently

been assigned to each core, the NIC’s load balancer can select a subset of the cores at each new

RPC arrival that have affinity to the function being requested in the RPC. Then, the NIC can

select the core with the shortest queue length from among the affinity-having subset, falling

back to the shortest global queue if the cores with affinity have queue depths exceeding a

pre-defined maximum (e.g., D −1).

We remark that such a basic policy is by no means exhaustive, and microservices with specific

characteristics may need other factors to be considered. In particular, microservices having

orders-of-magnitude differences in function execution times would benefit from concrete

policy enhancements to avoid queueing functions with “short” execution times behind those

that are “long”. A policy like DARC [61] would be sufficient for such cases, and we believe

that hybridizing such designs with affinity-enhanced load balancing would be interesting for

future work.

In this section, we have shown that despite the pervasiveness of instruction supply issues in

microservice workloads, it is possible to use function partitioning to alleviate I$ contention. Us-

ing analytical modelling and queueing simulation, we conclude that software-driven function

partitioning is only effective at relaxed SLOs, and that dynamic policies should be investigated

for tight SLOs. Finally, we present evidence that a simple proof-of-concept load balancing

policy is sufficient to allow RPCs to execute with improved I$ locality, while maintaining

load balancing flexibility. We now turn to demonstrate the second technique with which we

propose to enhance load balancing – improved data locality through enhanced concurrency

control for microservices that serve data.

5.3 Load Balancing for Write-Intensive Key-Value Workloads

Key-Value Stores (KVS) are a backbone for online services, forming the leaf nodes of most mi-

croservice graphs and even serving as underlying infrastructure for software such as message

queues [220] and publish-subscribe systems [4]. For proof of their continued importance,

consider that four of the six microservices comprising DeathStarBench contain caching layers

71

Chapter 5. Locality-Aware Load Balancing

in front of nearly every single database [81, Figs. 4-7], and industry papers are continually being

published to gain more insight into the evolution of key-value workloads [43, 246, 271]. Not

only are KVS ubiquitous in production, but they are extremely performance-critical because

their response latency is on the critical path of user-facing queries that must meet real-time

interactivity requirements [59]. This combination of commonality and stringent performance

needs has driven major research and development efforts to optimize the layers underlying

KVS [33, 150, 166, 193], or even employ dedicated hardware [123, 162] for the goal of boosting

KVS performance.

The load balancing policy and concurrency control algorithm are intimately connected in a

system running a KVS, because the load balancer must not create the possibility of threads

executing in a manner disallowed by the concurrency control policy. To illustrate, a shortest-

queue load balancing algorithm like JBSQ assigns requests to workers without regard for the

synchronization events taking place among the workers themselves. It is trivial to see that

balancing two requests to different workers may be a suboptimal decision if those requests

need to serialize based on a lock. Therefore, it is common practice for KVS architects to design

bespoke policies that use in-network support to enforce concurrency control invariants – for

example, the state-of-the-art MICA KVS uses Flow Director to partition requests for certain

objects among cores [166] and the R2P2 protocol employs a sticky mode to direct write requests

to a master node while spreading reads across replicas [150].

We claim that existing contracts between load balancers and KVS concurrency control algo-

rithms cannot effectively handle write-intensive workloads, for the same underlying reason that

we saw in the case of permanent function partitioning. Partitioning writes in KVS is commonly

done to attain higher throughput via reduced synchronization overheads, but gives up the

flexibility of single-queue load balancing and thus sacrifices 99th% latency. As we have already

shown in § 4.1.3 and 5.2.2, sacrificing load balancing flexibility introduces the need to run the

KVS at lower load to control tail latency. It is therefore eminently desirable to be able to design

a KVS that can utilize a server’s many cores as much as possible, because handling a given

load can be done with fewer total servers, minimizing consistency and replication concerns as

well as inter-partition load balance [102, 104]. The trend towards better KVS load balancing is

important enough that researchers have even begun to advocate for pooling memory across

72

5.3 Load Balancing for Write-Intensive Key-Value Workloads

traditional socket and server node boundaries [84, 200]. In the remainder of this section, we

focus on the single-server case, and demonstrate how simple extensions to NIC-driven load

balancing allow a practically implementable system to approach the performance of an ideal

single-queue system with no synchronization overheads.

5.3.1 Why Target Write-Intensive Workloads?

In today’s datacenters, KVS have transcended their traditional use-cases such as in-memory

caching of disk-resident data [42, 81, 198]. Due to the extreme cost of keeping data in-

memory [67,259], system designers must maximize the performance of every provisioned CPU

core. Therefore, it is logical for KVS to adopt state-of-the-art proposals promising reduced

network delay, kernel-bypass protocols, and first-class load balancing [33, 54, 150, 193, 223].

State-of-the-art KVS systems are often expressly designed around read-mostly workloads with

considerable item popularity skew [123, 162, 165, 166, 200]. Emerging studies of production

KVS data have revealed the prevalence of workloads that are more write-intensive and/or

more severely skewed than previously assumed [43, 271], leading to a natural question: what

bottlenecks prevent today’s KVS from performing ideally on such workloads? We answer this

question with the aid of a taxonomy of KVS workloads, that allows us to intuitively explain the

bottlenecks created by each one.

KVS Workload Taxonomy

A given KVS workload can be represented by its location on the cross-product of two axes

representing its skewness and write fraction—knowing a workload’s location is enough to

describe the challenges it will face. Figure 5.4 shows these two axes and identifies four regions

that serve as a “spanning set” of the space. Regions are identified using the nomenclature

{R|RW |W I }(sk|uni), where the leading letter(s) represent(s) whether the workload is read-

mostly, read-write, or write-intensive, and the subscript represents whether the data popularity

distribution is skewed or pseudo-uniform.

The two regions lying beneath the dashed line are well-studied in KVS literature. Runi work-

loads are the least challenging - providing a high-throughput KVS is possible with production

73

Chapter 5. Locality-Aware Load Balancing

Skewness

W
rit

e
Fr

ac
tio

n
Runi

Rsk

WIuni

RW
sk

Figure 5.4: KVS workload taxonomy, showing regions targeted by this thesis in blue.

systems such as memcached [185]. Adding popularity skew moves the workload to the Rsk re-

gion, where performance is primarily determined by the maximum throughput for reading the

hottest items. Absorbing the workload’s skew requires KVS to use a concurrency control policy

supporting concurrent lock-free readers, such as MICA [166], Masstree [176], RackOut [200],

KV-Direct [162], and ccKVS [84].

In contrast, workloads above the dashed line are largely unaddressed by current research. The

fundamental challenge in both workload regions is that the increased prevalence of writes

creates a tradeoff between achieving high system throughput and creating load imbalance

across threads. When writes are plentiful, achieving high throughput mandates a concurrency

control policy that partitions writes across threads to avoid synchronization overheads (known

as Concurrent Read, Exclusive Write—CREW [166]), but such partitioning necessarily creates

load imbalance that leads to increased tail latency or throughput bottlenecks.

W Iuni workloads (i.e., those with ≥ 50% writes) will experience inflated tail latencies on today’s

KVS’ simply because write partitioning precludes any load balancing framework [54, 150, 223]

from acting on 50% or more of the requests. A recent characterization from Twitter has

shown that more than 35% of their production workloads can be classified as W Iuni [271],

motivating additional work to handle them with improved tail latency. Facebook also reports

the prevalence of extremely write-dominated workloads (i.e., having 92% writes) that store ML

statistics [43, §4.1].

RWsk workloads also lack write load balancing, and face two additional challenges. First, the

write load on a small group of items can be high enough to overwhelm the hottest thread.

74

5.3 Load Balancing for Write-Intensive Key-Value Workloads

Although this challenge has been identified in prior work, the issue has been understood

to apply to RWsk workloads with ∼ 50% writes [123, 165, 200]. However, in light of recent

work showing that skew coefficients are far higher than previously studied [271], static write

imbalance becomes a far more common bottleneck which we demonstrate can occur even

with single-digit write fractions. Second, the read-write nature of the workload creates high

contention on the hottest partition’s cache lines, further decreasing per-thread throughput.

Our insight is that concurrency control designs based around static write partitioning are the

underlying cause of both problems. A theoretically optimal system would allow any thread to

serve reads and writes, leading to completely balanced load. However, enabling concurrent

writers has been shown to reduce KVS throughput by 2× due the need for writer-writer

synchronization, and assumed costs in cache coherence [166].

Furthermore, although emerging frameworks exist that target writer concurrency and thus

support write load balancing [146, 180], they are unlikely to yield benefits for in-memory KVS

with µs-scale service times. Despite drastically improving scalability, the additional per-RPC

overhead from these frameworks’ use of software transactional memory techniques (e.g.,

version-chaining and garbage collection) would translate to limited performance gains. We

confirmed this by porting a hash table-based KVS to the Multi-version Read-Log-Update

(MV-RLU) framework [146], and observed that read and write latencies increased by 1.75×
and 2−40× respectively. Therefore, instead of pursuing true write concurrency, we contribute

the following insights allowing write partitioning to serve as an enabling factor rather than an

impediment.

Insight 1: Static write partitioning is overly conservative, and can be relaxed in the vast majority

of cases. The only time write partitioning is strictly mandatory is when two writes to the same

partition are outstanding at the same time—there is no reason for a write to partition PX to

queue behind one to PY when X ̸= Y . Load balancing of independent writes would allow

W Iuni workloads to have nearly identical tail latency to Runi ones.

Insight 2: Write partitioning naturally creates batches of queued writes that can be compacted

into a single update. In RW sk workloads at high load, mandatory write partitioning is the

common case, creating an optimization opportunity at the writer thread—software can com-

75

Chapter 5. Locality-Aware Load Balancing

…

Partition

…LBƛ

2 Load
balancing

1 Request
creation 3 Workers & KVS

- Thread - Write - Read

Figure 5.5: Queueing model for a server running a KVS.

pact all the writes into a single update, reducing reader-writer synchronization and cache line

access latency. Write compaction has been previously applied to kernel data structures [39],

LSM-based KVS [11], and commutative transactions [195], but never in the context of KVS with

µs-scale tail-latency Service Level Objectives (SLOs). Having described the challenges created

by common concurrency control choices, we now develop a high-level model to estimate the

benefits of improved concurrency control for W Iuni and RWsk workloads.

5.3.2 KVS Concurrency Control Challenges and Opportunities

To quantify the performance impacts of the aforementioned two insights, we once again use

our discrete-event simulator, and construct a queueing system modelling a many-core server

running a KVS, whose design is shown in Figure 5.5. In Step 1 , our load generator component

creates new requests according to a Poisson process, with configurable inter-arrival times. We

model workloads from Figure 5.4’s regions by varying the percentage of writes, and model

the popularity skew according to a Zipfian distribution with configurable γ, as is standard

in KVS literature [162, 165, 166, 200]. Step 2 models a load balancer (LB) component which

assigns requests to threads. If the KVS’ concurrency control policy allows load balancing for

this type (e.g., for reads in CREW), the LB assigns the request to a thread according to the

JBSQ(2) policy [150]. If not, the LB assigns the request by hashing the key.2

Step 3 concerns the worker threads and the KVS itself. We model the KVS as a set of abstract

partitions, each containing a version number to allow us to model optimistic concurrency

control – when readers fail versioning, they must re-run the entire request. Each request’s

2We use random strings as keys, and the sha256 hash algorithm inside Python3’s hashlib.

76

5.3 Load Balancing for Write-Intensive Key-Value Workloads

service time is modelled as S̄ = Tkv s +T f i xed , where Tkv s represents the KVS’ run-time, and

T f i xed represents interacting with the load balancer and network stack. We choose Tkv s

as uniformly distributed in the interval [400,800]ns to model in-memory data stores, and

T f i xed = 100ns to model a hardware-terminated protocol. More methodology details can be

found in §8.4.1.

Dynamic Write Partitioning

To demonstrate the effects of Insight 1 for W Iuni workloads, we parametrize the model with

64 worker threads, one million keys with a uniform popularity distribution, and vary the

write fraction fwr from 0−100%. Borrowing terminology from MICA [166], we study three

concurrency control policies:

• Exclusive Read, Exclusive Write (EREW): A fully partitioned system with no load balanc-

ing because each partition is exclusively assigned to a single core using static key-to-

partition hashing for every incoming request.

• Concurrent Read, Exclusive Write (CREW): This system allows concurrent readers and

hence load balancing of reads, but uses partitioned writes. All state-of-the-art KVS we

are aware of implement some variant of CREW [84, 162, 165, 166, 200].

• Dynamic: Maintains concurrent readers, and only treats a partition PX as being in

“exclusive write” mode as long as a write is still outstanding to it. After the write is

completed, future writes to the same partition can be served by any thread. Allows load

balancing of independent writes disallowed by EREW and CREW.

Figure 5.6a shows the maximum throughput each policy can attain under SLO, and Figure 5.6b

shows the resulting excess 99% latency over an ideal system that allows both concurrent reads

and writes without any synchronization overheads. In this experiment, we continue to use a

99th% latency target of 10× S̄. Each point in Figure 5.6b is calculated by taking the maximum

throughput under SLO of each policy, and normalizing the 99th% latency at that load point to

the ideal system. This methodology does not artificially penalize the non-ideal policies if they

reach lower throughput than the ideal system (e.g., CREW for fwr ≥ 80%).

The additional load balancing flexibility granted by the CREW and Dynamic policies impacts

77

Chapter 5. Locality-Aware Load Balancing

0 20 40 60 80 100
wr_frac

0.50

0.75

1.00

Pe
ak

 T
pu

t.
@

 S
LO

EREW CREW Dynamic

(a) Throughput under SLO.

0 20 40 60 80 100
Write Fraction

0
1
2
3
4
5
6

99
th

%
 N

or
m

.
to

 Id
ea

l

(b) Tail latency.

Figure 5.6: Throughput and tail latency of concurrency control policies compared to an ideal
system with no synchronization overhead. Uniform key popularity distribution.

both achievable throughput and tail latency. EREW’s inability to balance load leads to system

saturation at 80% of the ideal system’s throughput, regardless of fwr . By allowing concurrent

reads, CREW matches the ideal system’s throughput for fwr < 80%. As fwr approaches 100%,

the performance of CREW converges to EREW due to queueing of write requests. Thus, even

with CREW concurrency control, the KVS must be run at lower load to control tail latency. The

Dynamic policy is not constrained by this tradeoff, and matches the performance of the ideal

system regardless of fwr .

Figure 5.6b shows that CREW’s tail latency matches the ideal system for a read-only workload,

and increases proportionally with fwr . For W Iuni workloads with ≥ 50% writes, the static

write partitioning of CREW and EREW inflates tail latency by 2−5.5×. In contrast, the Dynamic

policy delivers near-identical tail latency to the ideal system because of its strictly greater load

balancing ability than CREW. Our model shows that a dynamic partitioning policy following

Insight 1 can deliver the tail latency of an unattainable ideal system with full concurrency and

no synchronization overheads.

78

5.3 Load Balancing for Write-Intensive Key-Value Workloads

Wr. Frac.

0 20 40 60
Zipf

. C
oe

ff

1.0
1.2

1.4

Tp
ut

. @
 S

LO

0.00
0.25
0.50
0.75
1.00

0.0

0.2

0.4

0.6

0.8

1.0

(a) CREW baseline.

Wr. Frac.

0 20 40 60

Zipf
. C

oe
ff

1.0
1.2

1.4

Tp
ut

. @
 S

LO

0.00
0.25
0.50
0.75
1.00

0.0

0.2

0.4

0.6

0.8

1.0

(b) Compaction enabled.

Figure 5.7: Throughput of a CREW KVS with and without write compaction, normalized to an
ideal system with no synchronization overhead.

Write Compaction

To show the impacts of static write imbalance for RWsk workloads and the benefits of write

compaction (Insight 2), we enhance Step 3 of our queueing system with the following

process: i) upon receiving a new write request, a worker scans its request queue for writes to

the same key, ii) if found, the writes are buffered into a private log, and iii) the worker initiates

a timer as the beginning of a “compaction window”. When the timer approaches the KVS’

specified SLO, the worker closes the compaction window and sends replies to all requests

collected in the log.3 While a compaction window is open, any writes that are collected in

its private log have service time S̄comp = T f i xed +Tcomp , where Tcomp = 100ns. We set Tcomp

by measuring the latency of adding a small struct representing the compacted request to a

pre-sized std::vector on a Xeon E5-2680 CPU. An RWsk workload can arise from various

parameter combinations in Figure 5.4’s design space, as long as the write load on the hottest

partition(s) is approximately equal to 1/N where N is the number of workers. Due to the fact

that higher write load implies greater compaction opportunity, we study the entire design

space defined by γ ∈ [0.9,1.4] and fwr ∈ [0,80].

Figure 5.7a shows the throughput under SLO of a CREW KVS, normalized to the same ideal

system in §5.3.2. Our results show that write partitioning becomes a clear bottleneck for the

vast majority of workloads making up the RWsk region, as the heavy skew simply overwhelms

3We discuss consistency considerations in depth in §5.4.2.

79

Chapter 5. Locality-Aware Load Balancing

the KVS’ hottest worker with writes. For example, a workload with (γ, fwr) = (0.99,35%) only

attains 56% of its ideal maximum throughput. Our model shows that write partitioning even

leads to load imbalance and thus a throughput bottleneck with fwr in the low single digits for

the highest skews. For (γ, fwr) = (1.4,5%), our model shows that the KVS only attains 66% of

its maximum.

In comparison, Figure 5.7b shows the throughput of a KVS with write compaction. Compaction

allows a workload with γ= 0.99 to match the ideal system’s performance up to fwr = 55%, and

provides a 1.56× speedup for the extremely skewed workload with γ= 1.4 and fwr = 5%. The

above opportunities are in fact conservative, because our queueing system does not consider

cache or memory access times. In a real deployment, the CREW baseline would experience

significant cache contention on the hottest partition(s), degrading performance faster than

shown in Figure 5.7a and granting compaction even greater relative improvements.

In summary, our models show evidence that static write partitioning is not necessarily a

bottleneck for KVS performance. Contrary to the inherent limitations of current systems,

dynamic write partitioning makes it possible for W Iuni workloads to attain near-ideal tail

latency. In addition to dynamic write partitioning, software write compaction can boost

throughput under SLO by 1.5−2× for RWsk workloads. Following these key insights, we now

introduce C-4, a Cooperative Concurrency Control Co-design of NIC-driven load balancing

hardware and KVS software to break the tradeoff between static write partitioning and load

imbalance.

5.4 Enhancing Load Balancing with C-4

5.4.1 Write Balancing for W Iuni Workloads

In §5.3.2, we demonstrated the tail latency benefits of a concurrency control policy that

enables load balancing for writes, under the invariant that a partition can only be written by

a single thread at a time. It is straightforward for a load balancer to maintain this invariant

using a set of ephemeral partition-to-thread mappings and dispatch requests accordingly:

partitions with an active mapping are in “exclusive mode”, and all writes to them must be sent

80

5.4 Enhancing Load Balancing with C-4

T1

Partition
Mappings

Load Balancer𝜆

W1 → P1

T2

1

2W2 → PN

3b

4

…
PN+1

Pm

P1

PN …3a

Figure 5.8: Load balancing additions required to realize Dynamic CREW (d-CREW).

to the mapped thread. Requests to other partitions can be freely load-balanced. We call this

policy “dynamic Concurrent Read, Exclusive Write” (d-CREW).

Figure 5.8 displays our proposed design to realize d-CREW in today’s NICs, by showing two

writes W1 and W2 that target KVS partitions P1 and PN . We assume CREW’s static partitioning

maps both partitions to thread T1, shown by double line separating the partitions, meaning

the load balancer must assign both W1 and W2 to thread T1. In contrast, d-CREW allows the

requests to be balanced across threads T1 and T2, as long as the load balancer has knowledge

of the partition being accessed by each write request.

With d-CREW, the NIC in Figure 5.8 unpacks each write’s application-level header and deter-

mines the writes target partitions P1 and PN (Step 1). The load balancer then looks into its

active partition-to-thread mappings for the requested partitions, finds no active match (Step

2), meaning that the NIC’s load balancing policy can freely assign the requests to any thread.

The NIC then creates two new partition-to-thread mappings for P1 and PN , placing them in

exclusive mode (Step 3a) and making them “sticky” to threads T1 and T2 as long as each

write is outstanding. The writes are then sent to the threads (Step 3b) for processing. When

the threads send responses to the writes, the partitions are no longer in exclusive mode and

the NIC can free the two respective partition mappings (Step 4), allowing incoming writes to

P1 and PN to again be assigned to any thread.

Introducing d-CREW into the NIC means that the state requirements for storing partition-to-

thread mappings must be small enough to result in acceptable hardware provisioning, and low

enough access times to meet the NIC’s peak sustainable throughput. To illustrate, a KVS serving

a workload with 75% writes at an aggressive ∼ 200MRPS where each request takes ∼ 600ns

81

Chapter 5. Locality-Aware Load Balancing

(see §5.3.2) has roughly 90 writes outstanding at any given time. Even with overprovisioning to

absorb transient fluctuations, storing a few hundred mappings only requires a few KBs, which

today’s NICs could easily accommodate and access in nanoseconds.

Implementing “exact match” operations between incoming requests and existing mappings is

more difficult than storing the mappings, because it traditionally requires Content Addressable

Memories (CAMs) [261]. However, our basic estimate above (confirmed in §8.4.2) reveals the

number of mappings to be similar to the size of a CPU TLB. Therefore, we believe it is feasible

to implement partition-mapping hardware using existing CAM technology. In the worst case

where the system exhausts all the hardware’s partition mappings, the drastic mismatch in

request arrival and processing rates indicates a load spike requiring flow control mechanisms

to throttle or drop requests [49, 249, 250] as we demonstrated in Chapter 4.

5.4.2 Write Compaction for RWsk Workloads

C-4’s second mechanism, write compaction, addresses both bottlenecks in RWsk workloads,

namely: i) static load imbalance created by the write fraction and skewness that overwhelms a

single writer, and ii) contention between writer and reader threads for the cache lines com-

prising the hottest partition(s). C-4 does so while maintaining the baseline KVS’ consistency

model.

To absorb the load created by highly skewed workloads, C-4 must achieve drastic speedups

for the single thread serving the hottest partition. The authors of NetCache similarly observed

that a single unit serving requests on behalf of many workers must provide orders of magni-

tude higher throughput to handle skewed workloads [123, §2]. However, in our context the

hottest thread is not required to handle both read and write load, because the NIC balances

reads across all other threads. Therefore, the requisite speedup for the hottest thread drops

significantly. As our design takes advantage of the NIC’s ability to load-balance reads and

independent writes, the request queue of the overwhelmed thread will therefore be full of

writes to only the hottest partition(s), creating opportunities for compacting these writes into

a single batched update.

Intuitively, compacting a given write into a private batch is faster than writing into the KVS’

82

5.4 Enhancing Load Balancing with C-4

vNIC
P

EW
Private Log

…

…
CR

1
2

3

- Individual Writes

- Compacted Write

Figure 5.9: Design of write compaction in C-4.

underlying data store, because it is unnecessary to take any locks or write shared cache lines.

We estimate that the possible acceleration A of such compaction is:

A ≃ Tb +T f

Tb
N +Tc +T f

(5.2)

Where Tb , T f , Tc , and N represent the baseline service time, the fixed time to reply to a

request (see §5.3.2), the time required to collect a single write into an ongoing batch, and the

number of compacted requests, respectively. Using a software compaction microbenchmark,

we measured values for each time parameter that indicate A ≃ 3 is attainable in an unloaded

system. Furthermore, as read-write contention on hot partitions grows at high loads, the value

of Tb will increase while Tc remains unaffected because the writer thread dirties no shared

cache lines as it gathers writes into a batch. Our evaluation studies these parameters in §8.4.3.

Figure 5.9 shows the cooperation required between the NIC and the KVS threads to achieve

write compaction. The NIC’s responsibility is to implement the CREW (or d-CREW) policy,

spreading read load among all the threads and creating opportunities to compact dependent

writes. When the KVS thread pulls a write request from its private queue, it scans a limited

number of extra queue slots to search for any matching writes to the same item (Step 1). If

found, the thread opens a new “compaction window”, and collects all incoming writes to this

item into a single update until the window closes (Step 2). When the compaction window

closes, the thread performs the single combined write to the KVS’ partition (Step 3) and

sends all the responses to the compacted writes (not shown).

The length of the compaction window permitted defines the achievable acceleration—the

higher the number of compacted writes N , the greater the value of A. We observe that KVS’

tail latency constraint creates an opportunity to finish all the compacted writes “just in time”

83

Chapter 5. Locality-Aware Load Balancing

before the SLO expires. Even with a stringent SLO of 10× the average service time, it is possible

to compact upwards of 10 writes into a single window because the compacting thread is

significantly accelerated. However, introducing compaction implies that all the writes are now

invisible to the readers, until the window closes and the final update is applied. We now discuss

how C-4 maintains strong consistency guarantees in the presence of write compaction.

Maintaining Consistency Under Compaction

We target a baseline KVS providing linearizability, a strong consistency guarantee that re-

quires a total write order and that the system’s behavior respects the real-time ordering of

requests [101]. Note that linearizability is a local property, which only applies to single ob-

jects (in our context, keys) in isolation. We do not consider consistency across multiple keys

in this work for two reasons. First, the vast majority of KVS do not support multi-key up-

dates [84, 162, 165, 166, 176, 200, 272], following the system design principle to “make it fast,

rather than general or powerful” [157]. Such tasks are better implemented in higher layers such

as transaction lock managers, which have their own set of related but different consistency

models. Indeed, attaining atomically visible multi-key updates requires either serializability

or strict serializability. We argue that because C-4 maintains linearizability, it is an equivalent

candidate to an existing KVS for inclusion in a transactional system.

Figure 5.10 displays three possible executions of a KVS with write compaction that demonstrate

our key insight necessary to maintain linearizability. Each operation is expressed as Op(Ar g s) :

C l i ent , where Op represents a KVS get, set or response, Ar g s contains the arguments

passed to the KVS (e.g., the key being accessed, and its associated value for sets/responses),

and C l i ent is the client thread requesting this operation from the KVS.

To argue that C-4 maintains linearizability, we focus on the specific scenario induced by

the addition of write compaction—when a compaction window is opened for key K with

simultaneous outstanding read requests to K . Informally, a system’s execution E can be

linearized if it can be transformed into E ′ where two criteria are respected: (1) E ′ is sequential,

meaning that each invocation is immediately followed by its corresponding response, and

(2) the order of operations in E ′ respects all partial orderings in E [101]. A partial ordering

84

5.4 Enhancing Load Balancing with C-4

v

E1 : Illegal E2 : Legal E’ : Linearization
set(K=1): A

resp: A
get(K): C

set(K=2): B

resp: B
resp(K=0): C

set(K=1): A

resp: A

get(K): C
set(K=2): B

resp: B

resp(K=0): C

… set(K=1): A
resp: A

get(K): C

set(K=2): B
resp: B

resp(K=0): C
…

!
✓

C ordered after A. A,B,C are concurrent.

Figure 5.10: Executions showing linearizable compaction.

is created when the response to an operation R1 appears in the execution E before another

operation R2’s invocation – all operations that are not partially ordered are concurrent. Our

key insight is criterion (2) allows such concurrent operations to be re-ordered in E ′, because

they are not constrained by orderings emanating from E .

To demonstrate, consider the execution E1 in Figure 5.10. In this execution, clients A and

B both attempt to write key K with two different values, while client C reads K . E1 is not

linearizable because C’s get could return the initial value K = 0 only if it executed before both

A and B’s sets; however, in E1 C’s get is partially ordered after A’s set, therefore a linearizable

system must return either K = 1 or K = 2 to C. A naive write compaction implementation can

result in the exact violation in E1. If a thread opens a compaction window for K after A’s set

and responds to A, any future read operations will return the value in the KVS’ underlying data

store, despite needing to return the value set by A.

To preserve linearizability, C-4 delays responding to the writes in a compaction window until

it closes, and therefore reads during the compaction window are considered concurrent and

can legally return the value in the KVS’ data store. To illustrate, E2 in Figure 5.10 contains the

same operations as E1 with the response to A deferred until the compaction window closes.

Therefore, C’s get is concurrent with both A and B’s sets and is not required to be ordered

after either one. Then E ′ is a sequential execution meeting both criteria for linearizability: C’s

get executes “first”, before A and B’s sets, which close the compaction window and set K = 2.

For reads that are ordered before or after a compaction window, C-4’s design is no different

from the baseline KVS, so we omit these cases for brevity.

85

Chapter 5. Locality-Aware Load Balancing

Conclusions. Write-intensive key-value workloads are ripe for improved load balancing. Our

modelling results indicate that improving KVS throughput and tail latency rests on the ability

of the load balancing unit to distinguish writes into those that are independent, and those that

must be serialized. Independent writes do not have any fundamental reason preventing them

from being balanced across cores, whereas dependent ones can expose additional software

optimizations when they are executed on the same core. Following these two insights, we

propose the C-4 policy, which addresses independent write balancing with d-CREW and

dependent write load with compaction. In a sense, NEBULA can be viewed as a hardware-

supported delegation system [175, 228]; the NIC’s support for d-CREW determines which

threads currently have exclusive access to partitions, and “delegates” writes to those threads

via its load balancing mechanism. Software then combines the dependent writes without the

overhead of shuffling requests between threads in traditional delegation systems.

5.5 Architectural Extensions for Improved Load Balancing

The fundamental commonality between the two use-cases we have considered and modelled

is that static approaches to improving application-level performance (e.g., via permanent

write or function partitioning) necessarily trade-off tail latency to achieve their goals. Evidence

gathered from our discrete-event simulations indicates that it is indeed possible to break

the tradeoff between increasing application locality and sacrificing load balancing flexibility

using runtime information. Therefore, we argue that RPC-centric server architectures should

contain the requisite NIC and software extensions to enable load balancing policies that collect

such information and apply it to target both improved locality, and flexible load balancing.

Integrated support for RPC protocol acceleration in hardware is a strong enabler for collecting

such application-level information, because after the RPA finishes unpacking RPCs into

application-readable format, it is able to extract specific fields of the RPC’s arguments and

pass them to the load balancing unit.

Both application-level load balancing enhancements we propose can be implemented with

the same set of NIC and software extensions. First, both policies need a small amount of

dedicated on-NIC storage to track the contents of the application’s input queues, enabling

the load balancing unit to make decisions based on queue state in addition to queue length.

86

5.5 Architectural Extensions for Improved Load Balancing

For dynamic function affinity, the NIC would use this extra storage to contain the history of

functions executed by each core. For dynamic write partitioning, the storage contains the list

of partition IDs (or application-level keys at finer granularity) to which writes are currently

outstanding, and which core is writing them.

Second, the API between the NIC and software needs to be enhanced to support explicit

modification of the on-NIC load balancing state via control messages. Such control APIs can

be used by applications to inform the NIC’s load balancer to free certain entries (e.g., when a

core completes a write), or direct the NIC to assign certain cores preferential treatment for

certain RPC types. The operating system can also use such an API to indicate a thread has

migrated, and existing mappings must be updated.

Unlike the static policies we studied in §5.2.2 and §5.3.2, dynamic function affinity and write

partitioning are stateful and thus should be implemented server-side. Although static designs

can be trivially implemented wherever the function ID or KVS partition is known (e.g., on the

clients themselves [166] or in programmable networking hardware [150, 278]), rapid changes

in the set of outstanding writes and per-core function histories would require constantly

updating the static mappings at every participating entity. As servers often receive requests

from thousands of concurrent clients [198, §3.1], broadcasting such updates is clearly not

scalable.

In-network load balancers such as RackSched [278] are an attractive alternative to client-side

solutions, because their centralized nature removes the need to broadcast updates. How-

ever, the increased distance between the load balancer and server threads implies the load

balancer’s information about server-side queueing is more stale, because application mes-

sages that modify entries in the load balancer’s tables must traverse the network. As prior

work has explicitly demonstrated that tail latencies increase with load balancer-to-server

distance [150], we conclude that dynamic policies will yield superior performance when

implemented server-side than in-network designs.

In Figure 5.11, we show the high level architecture of the NIC extensions and software API we

propose to realize locality-enhanced load balancing policies. The left side of Figure 5.11 shows

the layers an RPC passes through when it arrives from the network. After it exits NEBULA’s

87

Chapter 5. Locality-Aware Load Balancing

NeBuLa Interaction

Load Balancing

Shortest
Queue

Locality-Aware
LB Table

Core
Select

…
RPC Accel

Transport

DC Network

Function Code

Control

Func. ID Key RPC Payload

Figure 5.11: Design of NIC extensions and software API for locality-aware load balancing.

transport protocol, it passes through hardware RPC protocol acceleration, and then enters

the load balancing stage(s) of the NIC which are expanded and shown in detail. We propose a

small additional on-NIC component called the “Locality-Aware Load Balancing Table” (LLBT),

which can be configured to store and look up any fields from the RPC’s header and return a

core (or list of cores) as potential dispatch candidates. These candidates are then filtered with

queue length metrics (e.g., the shortest queue among them) before the final core selection

is made. Application threads place control messages in their queue pairs to inform the NIC

to modify entries in the LLBT (e.g., to free an entry), using the same queues for scheduling

network transactions.

To describe how the extensions we propose are used to implement our enhanced load bal-

ancing policies, consider the d-CREW policy described in §5.4.1. The NIC stores its set of

ephemeral KVS partition mappings in the LLBT, and all load balancing decisions for write

requests look up the LLBT using the field in the RPC header corresponding to the KVS’ hashed

key. When KVS software completes the write, it places a feedback message in its Queue Pair

which is processed by the NIC like any other request for a network transaction. This special

feedback message indicates to the NIC that this core is relinquishing exclusive access to this

partition, and that the mapping in the LLBT is now free to be re-used. A nearly identical

process can be performed to implement dynamic function partitioning for multi-function

microservices, with the main difference being that the LLBT now stores a FIFO list of function

IDs per core, rather than the set of exclusive partitions to implement d-CREW.

We want to expressly mention that we are not the first to propose NIC support for mak-

ing packet processing and scheduling operations. In particular, pioneering work from the

88

5.5 Architectural Extensions for Improved Load Balancing

networking and systems communities has led to the wide adoption of P4-enabled network

switches [38, 115], and research prototypes already exist that use such support for RPC load

balancing [150, 278] as well as object steering in KVS [139]. If support for primitives like P4

materializes in future integrated NICs, our design could trivially be adapted to use a P4-based

implementation. Our contribution is rather to demonstrate that server-side NIC load bal-

ancing can deliver increased RPC throughput without sacrificing 99th% latency, and identify

two common use-cases in datacenter microservices (i.e., temporal instruction locality and

dynamic write partitioning).

5.5.1 Locality-Aware Balancing on SmartNICs

Although we argue for an RPC-centric server with an integrated network interface (see §2.5),

the architectural support we propose for locality-aware load balancing could also be imple-

mented on commodity SmartNICs such as NVIDIA’s BlueField [202, 204] and Innova [203], or

Netronome’s Agilio [196]. These products contain various compute units (e.g., ARM cores or

programmable FPGA blocks) that can be used to implement JBSQ load balancing, as well as

the LLBT and surrounding logic we propose. A successful load balancing implementation

on a commodity NIC would be able to improve the throughput of latency-critical services on

current servers at much lower deployment cost.

The architecture of today’s SmartNICs creates two challenges to realize locality-aware load

balancing, both because of the relatively large latency of the host’s I/O interconnect when

compared to µs-scale RPCs. First, the reduced proximity between the NIC’s load balancing

modules and the host’s CPU cores limits the effectiveness of the load balancing policy itself,

because a higher-latency I/O interconnect mandates that more requests must be queued at

each core [150, §3.3]. Second, implementing RPC acceleration on a SmartNIC creates repeated

and unnecessary µs-scale delays when (de)serializing RPC objects, because each pointer

access in such objects incurs the full latency of the I/O interconnect [275, 276]. Emerging

technologies such as Intel’s Coherent Express Link (CXL) promise an order of magnitude lower

latency than commodity PCIe, and would be sufficient to drastically shrink the performance

detriment of both challenges.4 However, at the time of writing, no combination of SmartNIC

4Although still PCIe-based, early CXL specifications reportedly require that pin-to-pin transfers for cache-

89

Chapter 5. Locality-Aware Load Balancing

C

…LB

Load
balancing unit Queues & Cores

Communication
Channel

ƛ

Nlatch

- Incoming RPC - Feedback Msg.

Figure 5.12: Queueing system model to study the impacts of load balancing unit proximity.

and host CPU hardware is available supporting CXL. Therefore, we conduct a study using

our discrete-event simulator (see §3.3) to show the limitations and potential of off-chip

implementations of locality-aware load balancing. This study does not take into account the

limitations of performing dependent pointer accesses across an I/O interconnect, which we

leave for future work.

Our simulation models a similar system to those in Figures 4.1 and 5.5, with the addition of a

finite-latency communication channel between the load balancing module and the worker

units. Changing the latency of the communication channel allows us to study the performance

of locality-aware load balancing on current SmartNIC platforms as well as future technology

developments. This enhanced queueing model is shown in Figure 5.12. Requests arrive

according to a Poisson process with configurable arrival rate, and the load balancing unit

implements the Join-Bounded-Shortest-Queue (JBSQ) policy [150]. The depth of each worker’s

private queue (shown as N in Figure 5.12) is chosen empirically. We begin with a heuristic value

of N proposed by the creators of the JBSQ policy, namely N = ⌈2∗l atch

S̄
⌉ where l atch represents

the one-way channel latency, and S̄ is the average service time of the requests. Then, we

increase N to the minimum value required to reach the highest attainable system throughput.

We parameterize the model with various communication channel latencies and service time

distributions. For channel latencies, we choose the following:

• Current SmartNIC: 2.5µs. This configuration represents work done by Humphries et al.

that builds a load balancing unit on a Broadcom Stingray SmartNIC [106]. Section 5.1 of

coherence snoops and responses should be less than 50 nanoseconds [50, §13.0]. Such latency improvements are
reportedly made possible by carefully engineering lower-overhead transaction and link layers [194].

90

5.5 Architectural Extensions for Improved Load Balancing

System Exponential Bimodal

Current 15 18
PCIe Bound 8 8

Emerging 2 2
Integrated 2 2

Table 5.2: Values of N in JBSQ(N) for various communication channel latencies and service
time distributions.

their work reports the latency between the load balancing unit and workers.

• PCIe SmartNIC Bound: 800ns. This configuration represents our expected lower bound

that could be attained by a PCIe-based SmartNIC with the required engineering effort

to remove the overheads present in current designs. We use the latency reported by

Neugebauer et al. in their in-depth study of PCIe-attached network devices [197].

• Emerging: 20ns. Represents emerging coherent interconnects (e.g., CXL) that attain

drastically lower off-chip transfer latencies than current PCIe-based technology. We

choose 20ns to represent a SmartNIC connected using cxl.cache, achieving 50ns pin-

to-pin latency [50, §13.0], and assume 10ns of that latency is spent on the CPU host to

access the coherence directory.

• Integrated: 15ns. Represents an integrated design, where the NIC and CPU are part of

the same on-chip network. The latency of 15ns is calculated as the average latency of

sending a single flit-sized message on a 64-node mesh network, operating at 1GHz.

For this experiment, we model exponential and bimodal service time distributions, both

having S̄ = 500ns. The bimodal distribution is the same as used in §4.2.1, defined as P [X =
S̄
2] = 0.9, P [X = 5.5× S̄] = 0.1.

In Table 5.2, we report the ideal value of N for JBSQ from our empirical event simulations, for

both distributions. As expected, the integrated and emerging designs have the lowest value

of N , where the designs with longer I/O interconnect latency require deeper private queues.

Even with an idealized implementation, PCIe interconnect latencies require each worker’s

request input queue to be 4× longer than with an integrated design. Growing private queues

in this manner will inevitably translate to reduced load balancing effectiveness, particularly for

service time distributions with higher dispersion. In contrast, emerging technologies should be

91

Chapter 5. Locality-Aware Load Balancing

0.0 0.2 0.4 0.6 0.8 1.0

Load (Max CPU = 1.0)

0

2

4

6

8

10

99
th

%
L

at
en

cy
(µ
s)

SLO = 10× µ

Current
PCIe Bound

Emerging
Integrated

(a) Exponential service times.

0.0 0.2 0.4 0.6 0.8 1.0

Load (Max CPU = 1.0)

0

2

4

6

8

10

99
th

%
L

at
en

cy
(µ
s)

SLO = 10× µ

Current
PCIe Bound

Emerging
Integrated

(b) Bimodal service times.

Figure 5.13: Load vs. latency curves showing performance attainable by load balancing units
of various proximities to the workers they serve.

able to match the performance of integrated designs if production latencies meet expectations,

because a 20ns interconnect is fast enough to make the load balancer seem “integrated”. Such

conclusions are in accordance with the emerging trend towards NIC-compute co-design, as

significant engineering investment has gone into tighter integration between off-chip and

host-side resources, to the point where cache coherence can be offered between off- and

on-chip memory.

Figure 5.13 shows the throughput attainable under SLO for the various I/O interconnect tech-

nologies, for both service time distributions, using the values of N reported in Table 5.2. The

tail latency of the “Current” configuration representing today’s SmartNIC products degrades

quickly because of the batching required to amortize the lengthy round-trip times between the

load balancer and workers. Our model predicts that such devices could only attain 0.34 and

0.21 of the maximum theoretical load for exponential and bimodal service times under a 10×
SLO. In contrast, the “PCIe Bound” system performs better, due to its roughly 3× improvement

in load balancer-worker communication latency. The increased proximity roughly halves the

queue depth needed for maximum throughput, allowing the PCIe Bound configuration to

attain loads of 0.87 and 0.5, respectively.

For exponentially-distributed service times, Figure 5.13a shows that Emerging and Integrated

designs provide only 9% higher load under SLO than the PCIe Bound system, because the

exponential distribution does not have a heavy tail. The Emerging and Integrated designs

are still able to provide 2.5× reduced 99th percentile latency at a load of 0.87 compared to

92

5.6 Chapter Summary

the PCIe Bound system. In the case of the bimodal distribution, which has a much heavier

tail, the increased flexibility of the two designs with shorter input queues becomes apparent.

Specifically, Figure 5.13b shows these two designs provide 46% higher throughput under SLO

than PCIe Bound. Finally, the Emerging and Integrated designs deliver SLO-compliant loads

of up to 0.96 for both service time distributions, because they only require a private queue of 2

slots per worker.

Our study shows the importance of designing an RPC-centric server architecture that can

run the shortest input queues possible when SLO-constrained performance is of primary

concern. Although integrated designs deliver the best performance, the latency reduction of

emerging cache-coherent interconnects like CXL would make them performance-competitive

for load balancing purposes, assuming the requisite engineering effort to attain the same level

of flexibility as integrated designs. However, a lower-latency emerging interconnect would not

transparently solve the throughput challenges inherent in (de)serializing pointer-based RPC

objects, as each data access would still incur an overhead roughly comparable to a full off-chip

memory read. The combination of these two challenges would render a SmartNIC-based

implementation of RPC protocol acceleration and load balancing a very impactful result if

attained. For this thesis, we chose to target an integrated load balancing system because of

the clear limitations of today’s designs shown in Figure 5.13, and because integration many

synergies with the extensions for in-cache network traffic management in Chapter 4.

5.6 Chapter Summary

In this chapter, we have presented our case for enhancing RPC-centric server architectures

with architectural support for realizing application locality-aware load balancing policies.

We first showed two independent opportunities for improving RPC performance via im-

proved load balancing – instruction cache locality in microservices with multiple underlying

functionalities, and improved concurrency control in microservices storing data. We then

argued that both scenarios in fact resolve to the same underlying tradeoff between improving

throughput with permanent partitioning, or maintaining load balancing flexibility. Finally, we

demonstrated that it is possible to preserve load balancing and improve throughput for both

scenarios, with the addition of a single on-NIC component to track the state of each core’s RPC

93

Chapter 5. Locality-Aware Load Balancing

queues, and the software feedback messages to modify and free entries in this table. Using

discrete-event simulations, we argued that an integrated load balancing module will provide

significantly better throughput under tail latency constraints than today’s SmartNIC-based

implementations. Accordingly, Chapter 8 demonstrates a concrete implementation of the NIC

extensions to enable locality-enhanced load balancing, and evaluates the performance of an

RPC-centric server architecture in both scenarios that we identified in this chapter.

94

Part IIImplementation and Evaluation

of an RPC-Centric Server

95

6 Building NEBULA on Scale-Out NUMA

In Chapter 4, we introduced the NEBULA architecture, a set of architectural extensions to a

hardware-terminated protocol stack that ensure RPC traffic is served out of the CPU’s caches

rather than spilling into DRAM. This chapter describes a concrete implementation of NEBULA,

beginning with our architectural baseline and proceeding to describe our modifications to

the software’s RPC layer, and additions of a hardware buffer manager, RPC reassembler, and

dispatch pipeline for L1 cache steering, respectively.

6.1 Baseline Architecture

We use Scale-Out NUMA (soNUMA) [199] as our baseline architecture. soNUMA combines

a lean user-level, hardware-terminated protocol with on-chip NIC integration and a high-

performance network fabric to provide rapid remote memory accesses. Applications schedule

soNUMA operations (e.g., send) using a VIA-like memory-mapped Queue Pair (QP) interface.

Although we target soNUMA as our baseline in this thesis, we emphasize that our set of design

extensions are not directly tied to soNUMA, and could also be implemented on a variety of

other architectures that feature tightly integrated network interfaces. Academic examples in-

clude the NanoPU [108] and the FAME-1 RISC-V RocketChip SoC [137]; commercial examples

include Intel’s Xeon-D servers with integrated Ethernet controllers [121].

To use soNUMA in the context of a modern server chip featuring many cores, we make use of

the “Manycore Network Interface” NIspl i t implementation proposed by Daglis et al. [52, 53].

97

Chapter 6. Building NEBULA on Scale-Out NUMA

Ne
tw

or
k

Ro
ut

er

NI frontend NI backend

(a) A Manycore Network Interface-equipped server.

. . .

Cores

L1 caches

LLC

Memory

NIC FEs
N

IC
 BE

RPC
payload
buffers

1 RPC
arrival

Enqueue
RPC

3

Core
available

4 RPC
dispatch

N
etw

ork

2

(b) Operation of the RPCValet system.

Figure 6.1: The baseline transport and load balancing architecture for NEBULA.

Figure 6.1a shows a server equipped with the NIspl i t architecture, which divides the server’s

NIC into multiple discrete entities, called NIC frontends (FEs) and backends (BEs). The former

handles the control plane (i.e., QP interactions) and is co-located with each core; the latter

handles the network packets and data transfers between the network and memory hierarchy

and is located at the chip’s edge. Being that soNUMA is an architecture expressly designed for

remote memory accesses and not RPC-like communication, it does not meet either design

prerequisite introduced in §4.2 – its transport protocol handles independent cache block

read/writes, and it does not support load balancing.

The RPCValet [54] system is an extension of soNUMA that rectifies both issues – it enables

native messaging support using the same integrated NIC as soNUMA, and also supports

NIC-driven load balancing. RPCValet balances incoming RPCs across the cores of a multi-core

server in a single-queue, synchronization-free fashion by coordinating the NIC FEs and BEs.

Figure 6.1b provides a high-level demonstration of its operation. When a new RPC arrives

1 the NIC BE writes its payload in the LLC, creates an RPC arrival notification 2 —which

contains a pointer to the RPC’s payload—and stores it in a dedicated queue which is processed

in FIFO order. As soon as a core becomes available to process a new RPC, its corresponding NIC

FE notifies the NIC BE 3 , which, in turn, dequeues the first entry from the arrival notification

queue and writes it in the core’s Completion Queue (CQ) 4 . The core receives the RPC arrival

98

6.2 Architectural Additions

notification by polling its CQ, and then follows the pointer in the notification message to

read the RPC’s payload from the LLC. This greedy load assignment policy corresponds to

single-queue behaviour.

As discussed in §4.1, the use of hardware-terminated stacks either implies memory band-

width interference or load imbalance – and the RPCValet system shares this restriction. When

RPCValet creates a software “messaging domain”, the system provisions enough messaging

slots to cover the NIC’s full duplex bandwidth for every other participating node. Concretely,

a 1024-node system with a maximum message size of 512B implies 136MB of buffer alloca-

tions, outstripping all but the largest LLCs at the time of writing (AMD’s recently launched 3D

V-Cache could contain buffers of this size, having an initial claimed capacity of 768MB) [3].

We now present our implementation of NEBULA’s architectural extensions to shrink unneces-

sary server-side buffering, and break the tradeoff between bandwidth interference and load

imbalance.

6.2 Architectural Additions

With the baseline N Ispl i t architecture, NEBULA’s Buffer Manager and Reassembler must be co-

located with the NIC BEs because they are data plane components, involved with RPC payloads

themselves. The Prefetch Controller for NIC-to-core payload steering is co-located with the

FEs, which is logical because it interacts with each core’s L1 cache to bring RPC payloads into

it. In Figure 6.2a, we show our implementation of NEBULA’s requisite NIC extensions on top

of the N Ispl i t baseline. It is immediately apparent that the logically centralized components

previously introduced in §4.3 are now physically distributed due to the arrangement of the

components making up the baseline N Ispl i t architecture. We discuss the implications of

distributing each component when their implementations are introduced in the upcoming

sections.

Figure 6.2b highlights NEBULA’s operational modifications in red. The first operational change,

marked as A and detailed in §6.4 and §6.5, is NEBULA’s in-LLC network buffer management.

Steps 1 - 3 occur identically to the baseline shown in Figure 6.1b, with the modification

that the RPC’s buffer mapping is created by the combination of the Buffer Manager and

99

Chapter 6. Building NEBULA on Scale-Out NUMA

N
et

w
or

k
Ro

ut
er

Buffer manager &
reassembler

NI frontend NI backend
Prefetch Controller

(a) Implementation of NEBULA on a Split-NI.

Memory

N
IC

 BE

RPC payload
buffers

5

A

6

. . .

Cores

L1 caches

LLC

NIC FEs

(b) NEBULA protocol operation.

Figure 6.2: Location of implemented NEBULA extensions, and updated system operation.

Reassembler. The assigned buffers are nearly guaranteed to reside in the LLC because of two

factors. First is their drastic size reduction, which is visible in Figure 6.2b as a reduced number

of in-memory buffers. Second is their increased reuse because an RPC’s assigned buffer is

no longer a function of the client’s connection ID, leading to less interleaving – this factor is

visible in Figure 6.2b as sequential RPC buffer mappings.

The second operational change is NEBULA’s NIC-to-core RPC steering, which extends Step 4

in the baseline protocol’s operation.1 NEBULA extends the sequence of RPC arrival notification

actions with payload steering, shown in Steps 5 - 6 and detailed in §6.6. Both steps are

accomplished by the Prefetch Controller component, integrated with N Ispl i t ’s NIC FE.

6.3 RPC Software Interface

We implement an RPC layer on top of soNUMA’s send operation, maintaining RPCValet’s

messaging interface [54]: all nodes of the same service join the same messaging domain,

which includes the buffers and data structures defining where incoming RPCs are placed in

memory. Every node participating in a messaging domain allocates a receive buffer in its

memory to hold the payloads of incoming RPCs. We change RPCValet’s underlying connection-

oriented buffer management to achieve NEBULA’s key goal of handling all traffic within the

1Numerical references in Figure 6.2b are extended from Figure 6.1b.

100

6.3 RPC Software Interface

while (true):
payload_ptr = wait_for_RPC(msg_domain)
//process the received RPC and build response...

free_buffer(buffer_ptr, buffer_size)

RPC_send(resp_buffer_ptr, buffer_size,
target_node, msg_domain)

Figure 6.3: Pseudocode of an RPC-handling event loop.

server’s caches. In NEBULA’s case, after the receive buffers are allocated and initialized by

software, they are managed by the NIC. We first focus on the software interface and detail

hardware modifications later in this section.

Figure 6.3 demonstrates the three functions the NEBULA RPC interface exposes to applications

within a sample RPC-handling loop. A server thread waits for incoming RPCs using the

wait_for_RPC function, which can be blocking or non-blocking. The NIC sends RPC arrivals

to this thread via the thread’s CQ that is associated with the incoming RPC’s messaging

domain. After completing the RPC, the application invokes the free_buffer function to let

the NIC reclaim the buffer. Finally, the application sends a response in the form of a new RPC,

specifying the messaging domain, target node, and local memory buffer that contains the

outgoing message. RPC_send has a return value indicating whether the outgoing RPC was

accepted by the remote end or not, which only clients use to check whether their requests are

NACKed by the server. In a well-designed system, the server does not use the return value, as

clients should always provision sufficient buffering for responses to their own outstanding

requests.

soNUMA acknowledges all messages in its hardware-terminated transport layer. NEBULA

extends this mechanism with negative acknowledgements (NACKs), which are responses to

send operations if the receiving end cannot accommodate the incoming RPC. In response to

a NACK reception, the application layer receives an error code. The most appropriate reaction

to an error code is application-specific, and can range from simple retry of the same send at a

later time, to arbitrarily sophisticated policies.

101

Chapter 6. Building NEBULA on Scale-Out NUMA

(snid, tid) Recv buf
address

NIC

LLC

(0, 123)
(42, 7)

X
Y

RPC tail

bitvector

Reassembler

head
snid: 3
tid: 5
size: 192B
pkt_idx: 1

new head

(3, 5)

... Receive
buffer

Z

address Z

12
free buf.

3

...

Figure 6.4: NIC RPC reassembly and buffer management.

6.4 NIC Extensions for Buffer Management

NEBULA’s NIC manages a receive buffer per established messaging domain. After the software

sets up and registers these buffers with the NIC, the NIC must dynamically allocate them to

incoming RPCs, and place incoming packets appropriately. The buffer manager’s role is to

reserve enough space in the receive buffers for each RPC, ensuring each core has zero-copy

access to the buffer until the application explicitly permits the NIC to reclaim it after the RPC

is completed. As the allocator must operate at line rate, simplicity is paramount. The NIC

therefore uses a chunk allocation algorithm that manages each receive buffer as an array of

consecutive slots in host memory. In allocators of this style, performing a new allocation

is as simple as returning the next available slot(s). Figure 6.4 shows the functionality and

implementation of NEBULA’s buffer manager component, which is replicated at each NIC BE.

The buffer manager uses a bit-vector built into the NIC, containing a bit for every cache

block-sized (64B) slot in the receive buffer. Bits corresponding to allocated slots are set to 1

(shaded in Figure 6.4). Upon a new RPC arrival, the NIC advances the receive buffer’s head

pointer by ⌈RPC _si ze/64B⌉ slots and sets the corresponding bits in the bit-vector. In Step 1

of Figure 6.4, the arrival of a new RPC with 128B < si ze ≤ 192B would trigger the head pointer

to advance three slots to new head. As this RPC’s size is greater than one cache block and

will be fragmented into multiple packets, it also adds an entry to the reassembler. We defer

description of the reassembler to later in §6.5.

Applications free slots by sending a free_buffer message specifying a buffer address and

length to the NIC (see §6.3), which resets the bit-vector’s corresponding bits (Step 2). After

102

6.4 NIC Extensions for Buffer Management

each free_buffer message, the buffer manager checks whether the tail pointer can advance,

thus reclaiming receive buffer space. In Figure 6.4’s example, the tail cannot advance because

the slot(s) immediately in front of tail are still allocated. If the head pointer reaches the tail

pointer, the receive buffer is full and the NIC NACKs any new RPCs.

As receive slots are freed out of order by the applications, a naive implementation can suffer

from internal fragmentation and thus excess NACKs in the case of a rare long-latency event

(e.g., the OS quantum expires while handling an RPC). We nevertheless expect chunk alloca-

tion to still function well in the common case, as queueing theory proves that the tail pointer

(used to free slots) will advance at least as quickly on average as the head (used to allocate).

This is because that in a stable system, the average arrival rate of new RPCs must be less

than the maximum service rate of the cores. To cover transient events where that relation-

ship temporarily reverses itself, we implement scrubbing logic, where the hardware pointers

quickly skip through the bit-vector to find a contiguous available range of slots. Scrubbing

is triggered when the head meets the tail pointer and is performed off the critical path of

new allocation and freeing. If any allocation or free message operations modify the bit-vector

during scrubbing, it is cancelled and restarted.

To size the receive buffer (and thus the bit-vector), we rely on our analysis in §4.2.1. We

provision for 10×E [Nq] queued RPCs, which conveniently covers the 99% depth of even

the bimodal distribution considered in Table 4.1. Factoring in the RPC size as well, we size

the receive buffer to 10×E [Nq]×av g _RPC _si ze bytes. As per §4.2.1’s example, assuming a

64-core server at load A = 63 and an average RPC size of 1KB, our provisioning results in a

540KB buffer. This choice results in a 1KB bit-vector, a modest SRAM cost for a large server

chip.

The above explanations have assumed a buffer manager which is logically centralized, and

covers the entire set of receive buffers that are allocated by the software. However, because the

buffer managers are distributed across the chip’s many NIC BEs, it is necessary to divide the

receive buffer space between them, and ensure that all packets making up an RPC arrive at

the same NIC BE. Although it may appear that such division raises concerns about unequal

distribution of incoming traffic across the BEs that could lead to excess NACKs, the underlying

103

Chapter 6. Building NEBULA on Scale-Out NUMA

soNUMA communication protocol allows us to alleviate such issues by ensuring a uniform

spread of incoming RPCs across NIC BEs. Hence, the many distributed buffer managers and

reassemblers will have uniform number of RPCs, ensuring that the allocated receive buffer

space is well occupied in the average case.

In the original N Ispl i t implementation of the soNUMA protocol, incoming transfers are

unrolled into cache line-sized requests, and statically address-interleaved across the NIC BEs.

This is done because the target of these transfers is local memory and hence the goal is to

minimize the number of on-chip hops for each cache-block sized request to reach its home

LLC tile [53]. The N Ispl i t design accomplishes its interleaving by choosing a set of bits in the

cache line address contained in the incoming request, and then steering the incoming request

to the NIC BE which is nearby to the matching LLC tile. In contrast, the target of RPC traffic

is a CPU core, and the primary role of the NIC BE is to reassemble the RPC so it can then be

steered into that core’s L1 cache.

To ensure that all packets of an RPC arrive at the same NIC BE, we use the RPC clients – when

a client sends an RPC, it only specifies which node of the system the RPC is for, and the NIC

BE can be selected by the protocol controller. Therefore, we implement a simple random-BE

selection policy at all clients for all RPC traffic being sent over the soNUMA transport protocol.

As RPC packets exit the network router, we modify the existing hardware logic that interleaves

memory requests across the BEs, to steer all traffic identified as comprising an RPC to the

specific BE indicated by the client.

6.5 NIC Extensions for RPC Reassembly

Incoming RPCs exceeding the network MTU in size are fragmented at the transport layer; thus,

they must be reassembled before being handed to the application. In a hardware-terminated

protocol, such reassembly has to be performed in the NIC’s hardware. The specific challenges

for designing such reassembly hardware for NEBULA are the baseline architecture’s small

MTU (64B) and the NIC being an on-chip component. The former implies high reassembly

throughput requirements (e.g., every ∼ 6ns for a 100Gbps endpoint), the latter implies tight

area and power budgets.

104

6.5 NIC Extensions for RPC Reassembly

In many emerging transport protocols for RPCs, all the packets of the same message carry

a unique identifier (tid) assigned by the originating node [54, 150, 193]. Thus, an incoming

packet’s combination of tid and source node ID (snid) uniquely identifies the message the

packet belongs to. The reassembly operation can be described as performing an exact match

between the (snid,tid) pair found in each incoming packet’s header, and an SRAM-resident

“database” of all RPCs that are currently being reassembled. Returning to Figure 6.4’s example,

assume that the second packet of the RPC which previously arrived in Step 1 reaches the NIC

in Step 3 . The packet’s header contains the pair (3,5), which is looked up in the reassembler

and receive buffer address Z is returned. Being the second packet of this RPC (pkt_idx=1),

the NIC writes the payload to address Z+64.

The most common solution for exact matching at high throughput is to use CAMs [261], which

are power-hungry due to the large number of wires that must be charged and discharged

each cycle. Contrary to our initial expectation, deploying a CAM is a feasible solution. Just

as NEBULA’s design decision to bound the queue depth of incoming RPCs shrinks receive

buffer provisioning requirements, it also sets an upper limit for the number of incoming

RPCs that may be under reassembly. Consequently, NEBULA sets an upper size limit on the

CAM required for RPC reassembly purposes. With §6.4’s 64-core configuration as an example,

NEBULA requires deploying 8 CAMs (one at each NIC BE) with
10×E [Nq]

8 = 78 entries each.

Each entry contains a 58 bit receive buffer address and a single 8 bit counter to indicate the

number of packets remaining to be reassembled in this RPC.2 The tags are (snid,tid) pairs,

which are 20 bits wide each.

To model the hardware cost of these CAMs, we use CACTI 6.5 [164] and configure it to model

built-in ITRS-HP device projections, a 22nm process, and dynamic power optimization with

the constraint of meeting a 2GHz cycle time. We choose such an aggressive cycle time to

target a futuristic 1Tbps network endpoint—i.e., a packet arrival every ∼ 0.5ns and therefore

a potential reassembly every 1ns. Each CAM has a reported dynamic power of 4.08mW, a

leakage power of 0.05mW and an SRAM area of 3920µm2. In total, this translates to a power

overhead of 0.012% for a 64-core server chip whose power draw reaches 280W, like AMD’s EPYC

7763 [94]. We therefore conclude that the power of using CAMs does not seem prohibitive.

2We use 58 bits rather than 64 bits because the reassembler always returns cache-block aligned addresses.

105

Chapter 6. Building NEBULA on Scale-Out NUMA

6.5.1 Reduced Associativity

Due to the end of Dennard scaling [62] circa 2005 [37, 71], and more recently the impend-

ing end of transistor density scaling [57], CMOS technology projections are an increasingly

uncertain domain. It is therefore possible that the power drain of NEBULA’s reassembly

CAM would be significantly higher than forecasted by CACTI’s technology assumptions. We

therefore investigate the use of a set-associative design as an alternative design for NEBULA’s

reassembler.

The tradeoff of using a set-associative reassembler is that it introduces the potential for conflict

misses when enough RPCs under reassembly map to the same set. When a set is full, RPCs

whose (snid,tid) pair maps to that set cannot be accepted and must be NACKed. Evidently

this is an undesirable scenario, because the server may now reject RPCs even in the absence of

queueing. Despite this possibility, we argue it is still possible to attain the same performance

as a CAM-based reassembler as long as the probability of a conflict falls below the application’s

desired SLO percentile.

We conduct a simple mathematical analysis to show the required associativity to bound the

probability of reassembly conflict, given a set-associative structure with S sets, W ways, and T

concurrently outstanding RPCs requiring reassembly. A conflict occurs when any one of the

sets has more than W RPCs mapped to it. This problem statement is identical to a foundational

question in computing, the “balls into bins” formulation, which has been extensively studied

by theoreticians. To calculate the probability of a conflict, we must analyze the probability of

any one of S total bins containing more than W balls, given T throws. Note that this analysis

applies to all the reassemblers equally, because of the uniform distribution of requests between

them.

First, let Xi be a random variable denoting the number of balls in a single bin i . It is evident

that X has a binomial distribution, and so Xi = Bi n
(
T ; 1

S

)
. Therefore, the probability of having

no conflict in the i th bin is given by P (Xi ≤W). To generalize P (Xi ≤W) to the reassembler’s

many sets, we apply a known technique for “balls into bins” problems known as the Poisson

approximation [192]. Under the Poisson approximation, the distribution of Xi is given by a

Poisson distribution with Xi ∼ Poi s(T /S), and each of the i bins are independent even though

106

6.5 NIC Extensions for RPC Reassembly

1 2 3 4 5 6 7 8
Associativity

10−3

10−2

10−1

100
C

on
fl

ic
t

P
ro

b
.

T=3 T=6 T=10 T=20

(a) 64-entry reassemblers.

1 2 3 4 5 6 7 8
Associativity

10−3

10−2

10−1

100

C
on

fl
ic

t
P

ro
b

.

T=3 T=6 T=10 T=20

(b) 128-entry reassemblers.

Figure 6.5: Relationship between reassembler associativity and upper bound on RPC conflict
probability.

the random variables {X0, . . . ,XS} are stochastically related through the constraint that the sum

of all balls must add up to T . With this assumption of independence, we have the probability

of conflict Pc in any bin as unity minus the probability of all bins having no conflict:

Pc = 1−
S∏

i=0
P (Xi ≤W) (6.1)

The power of the Poisson approximation is that any event Pc in the case of independent bins

has an upper-bound probability of Q ≤ 2∗Pc in the real stochastic system [192], when the

event Pc has monotonically increasing probability with T . This approximation is extremely

useful for designing NEBULA’s reassembler, as we can calculate Q as an upper bound on the

conflict probability and know that the real conflict probability will be smaller than Q in the

deployed system.

In Figure 6.5a, we plot the value of Q for various values of W and T , with the invariant that

each configuration has a total of S ×W = 64 entries. Note that we allow values of W that are

not powers of two in this theoretical analysis for clarity of the results. Ensuring that reassembly

conflicts do not impact an application-level SLO at the 99th percentile is equivalent to ensuring

that the conflict probability is no greater than 10−2. To select the values of T that are of interest,

it is simple to apply Little’s Law to determine the number of concurrently reassembled RPCs.

Assuming a futuristic 1Tbps NIC, the RPC arrival rate at each of NEBULA’s reassemblers ranges

107

Chapter 6. Building NEBULA on Scale-Out NUMA

from 15.6MRPS with 1KB RPCs, to 128MRPS with 128B RPCs.3 Using a reassembly time of

100ns, this gives an approximate range for T from 2-20.

For small values of T , we note that the associativity requirements are modest. With T = 6,

using a 5-way reassembler is sufficient to meet the application’s SLO guarantee, whereas with

T = 10, the associativity requirements grow to seven ways. Where all RPCs are minimum-sized

giving T = 20, the reassembler needs more than eight ways to reach a conflict probability

of 10−2. As a real server will encounter a mixture of RPC sizes, we believe that the results

with T = 10 are reasonable even for a 1Tbps network. Depending once again on technology

projections and available manufacturing technologies, associativity may need to be reduced

further. In this case, over-provisioning the reassembler by increasing S effectively trades off

area for associativity requirements. Figure 6.5b plots Q for S ×W = 128, corresponding to a 2×
overprovisioning. In this case, seven ways are required to grant a conflict probability upper

bound of 10−2 in the most demanding case with T = 20, and only five ways for T = 10. Finally,

we remind the reader that our analytical results are derived using an upper bound, and a real

deployed system will have more relaxed requirements.

6.6 NIC-to-Core RPC Steering

RPCValet’s mechanism to assign RPCs to cores involves metadata only: the NIC places a

pointer to the buffer containing the next RPC’s payload in the CQ of the thread that will service

that RPC. NEBULA extends this mechanism to also trigger a dispatch of the RPC’s payload to

the target core’s L1 cache. If this payload dispatch completes in a timely fashion, it reduces the

RPC’s execution time. The accuracy of such RPC payload prefetching is not probabilistic, as it

is based on prescience rather than prediction: the hardware leverages the semantic information

of an RPC arrival and assignment to a core to trigger payload prefetches in the correct L1 cache,

accelerating RPC startup.

NEBULA’s NIC-to-core steering mechanism is implemented as a sequence of additional steps

after RPCValet’s normal operation. First, we modify RPCValet’s RPC arrival notifications

that are shown in Figure 6.1b Step 4 : in addition to the pointer to the RPC’s payload, the

3NB: RPCs of sizes less than or equal to the MTU of 64B do not require reassembly.

108

6.7 Methodology

notification also includes the payload’s size. As soon as a new RPC is assigned to a core for

processing, its NIC FE reads the payload buffer’s base address and size from the notification

message and forwards them to the core’s L1 cache controller as a prefetch hint (Figure 6.2b,

Step 5). The cache controller uses this information to prefetch the whole RPC payload before

the core starts processing the RPC (Figure 6.2b, Step 6).

For RPC-to-core steering to successfully accelerate RPC startup, the payload prefetches must

reach the correct L1 cache in a timely fashion. This timeliness requirement necessitates some

overlap time between the process of assigning an RPC to a core, and the core beginning its

processing. In order to ensure that L1 prefetches arrive in time, we configure NEBULA to allow

two RPCs instead of one to be queued at the NIC FE, thus giving the cache controller ample

time to prefetch the second RPC’s payload while the first one is being processed by the core.

Such slight deviation from true single-queue RPC balancing corresponds to the JBSQ(2) policy

proposed by Kogias et al. [150], and has been shown to preserve tail latency in an on-chip

setting [54].

Summary. Implementing NEBULA requires the following targeted changes to the RPCValet

system: (i) software support for handling NACK’ed messages, (ii) a buffer manager which

distributes incoming receive buffers to RPCs, and (iii) a packet reassembler which handles

data placement for RPCs whose packets have been fragmented by the network layer. Our

implementation realizes the buffer manager with a simple chunk allocator in hardware. For

the reassembly unit, we use a CAM and surrounding hardware logic; our implementation has

limited power drain thanks to our observation that shows the number of concurrent RPCs is

bounded by the SLO (§4.2.1). Next, we evaluate the NEBULA architecture.

6.7 Methodology

System organization. To evaluate the NEBULA system, we simulate one ARMv8 server running

Ubuntu Linux in full-system, cycle-level detail, using the QFlex cycle-accurate simulator [216].

As introduced in §3.3, QFlex is a fork of QEMU [34, 51], which enhances its emulation capabili-

ties with the cycle-level timing models of the Flexus simulator [265]. Table 6.1 summarizes the

simulation parameters we used. We chose our server’s LLC, DRAM, and NIC parameters to

109

Chapter 6. Building NEBULA on Scale-Out NUMA

Cores
ARM Cortex-A57; 64-bit, 2GHz, OoO, TSO

3-wide dispatch/retirement, 128-entry ROB

L1 Caches
32KB 2-way L1d, 48KB 3-way L1i, 64B blocks
2 ports, 32 MSHRs, 3-cycle latency (tag+data)

LLC
Shared block-interleaved NUCA, 16MB total

16-way, 1 bank/tile, 6-cycle latency
Coherence Directory-based Non-Inclusive MESI

Memory 45ns latency, 2×15.5GBps DDR4
Interconnect 2D mesh, 16B links, 3 cycles/hop

Table 6.1: Parameters used for cycle-accurate simulation of NEBULA on QFlex.

follow the state-of-the-art system tuned for in-memory key-value serving [165], which provi-

sions 118GB/s of DRAM bandwidth, a 300Gbps NIC, and a 60MB LLC for 60 CPU cores. To

make simulation practical, we scale the system down to a 16-core CPU, maintaining the same

LLC size and DRAM bandwidth per core; thus, we provision 31GB/s of DRAM bandwidth and

a 16MB LLC. Commensurately scaling the NIC bandwidth indicates provisioning an 80Gbps

NIC. However, we found that under the most bandwidth-intensive workloads, NEBULA could

saturate the full 80Gbps while still having ~15% idle CPU cycles; therefore, we increased NIC

bandwidth to 120Gbps to permit NEBULA to reach the CPU cores’ saturation point.

Application software. We use the MICA in-memory key-value store [166] with the following

modifications: (i) we ported its networking layer to soNUMA, (ii) for compatibility reasons

with our simulator, we ported the x86-optimized MICA to ARMv8. We deploy a 16-thread

MICA instance with a 819MB dataset, comprising 1.6M 16B/512B key/value pairs. We use

the default MICA hash bucket count (2M) and circular log size (4GB). Larger datasets would

further reduce the LLC hit ratio, exacerbating the memory bandwidth interference problem

that NEBULA alleviates.

We build a load generator into our simulator, which generates client requests at configurable

rates using a Poisson arrival process, uniform data access popularity, and the following

GET/SET query mixtures: 0/100, 50/50, 95/5. Unless explicitly mentioned, results are based

on the 50/50 query mixture.

Evaluated configurations. We evaluate five different designs to dissect NEBULA’s benefits:

110

6.7 Methodology

• RPCValet: We use RPCValet [54] as a baseline architecture, which features NIC-driven

single-queue load balancing, optimized for tail latency. RPCValet provisions its packet

buffers in a static connection-oriented fashion, resulting in buffer bloat with high con-

nection counts. Assuming a cluster size of 1024 servers, a maximum per-message size of

512B, and 256 outstanding messages per node pair, RPCValet’s buffers consume 136MB,

significantly exceeding the server’s LLC size. This provisioning represents any RPC

system that allocates buffer space per endpoint, such as those using RDMA [131] and

UDP [132].

• RSS: A representative of the Receive Side Scaling (RSS) [189] mechanism available in

modern NICs. Our implementation optimistically spreads requests to cores uniformly.

Like RPCValet, RSS suffers from buffer bloat, and also suffers from load imbalance

because it is a multi-queue system.

• NEBULA base : This configuration retains RPCValet’s load-balancing capability and adds

NEBULA’s protocol and hardware extensions for in-cache buffer management. Follow-

ing our analysis in §6.4, NEBULA base allocates 81KB of buffering for incoming RPCs,

corresponding to 10×E [Nq] = 160 slots of 512B each.

• SRQemu : A proxy for InfiniBand’s Shared Receive Queue (SRQ) mechanism, enabling

buffer sharing among endpoints (threads) to tackle the buffer bloat problem. We opti-

mistically assume the same hardware-based buffer manager as NEBULA base without

any software overheads normally involved when the threads post free buffers to the

SRQ. Therefore, our evaluation over-estimates the performance of SRQ. Unlike NEBULA

base , existing SRQ implementations do not feature hardware support for load balanc-

ing. Hence, SRQemu represents an RSS system without buffer bloat, or, equivalently, a

NEBULA base system without hardware support for single-queue load balancing.

• NEBULA: The full set of our proposed features, namely NEBULA base plus NIC-to-core

RPC steering.

Evaluation metrics. We evaluate NEBULA’s benefits in terms of throughput under SLO. Our

SLO is a 99th% latency target of 10× the average RPC service time [223]. All of our measure-

ments are server-side: each RPC’s latency measurement begins as soon it is received by the

NIC, and ends the moment its buffers are freed by a core after completing the RPC. As NEBULA

111

Chapter 6. Building NEBULA on Scale-Out NUMA

0 5 10 15 20 25 30
Load (MRPS)

0

2

4

6

99
th

%
 L

at
en

cy
 (u

s)

RSS
RPCValet

SRQ_emu
NeBuLa_base

(a) 99th percentile latency.

0 5 10 15 20 25 30
Load (MRPS)

0

10

20

30

To
ta

l M
em

 B
W

 (G
B/

s)

RSS/RPCValet
SRQ_emu/NeBuLa_base

(b) Total memory bandwidth.

Figure 6.6: Tail latency and bandwidth for all evaluated systems, using a 50/50 GET/SET query
mixture.

can NACK incoming RPCs under high load, we conservatively count NACKs as ∞ latency in

our final calculation.

6.8 Evaluation

6.8.1 Removing Bandwidth Interference

We start by evaluating §6.7’s first four designs to quantify the impacts of load imbalance and

memory bandwidth interference. Figure 6.6 shows 99th% latency and memory bandwidth as

a function of load. Figure 6.6b groups the series for RSS/RPCValet and SRQemu/NEBULAbase

together, because they are effectively identical. RSS performs the worst because it suffers

from both load imbalance and bandwidth contention. Although RPCValet delivers 2.6× lower

99th% latency than RSS at 10MRPS due to superior load balancing, both systems saturate

beyond 11.4MRPS.

Figure 6.6b sheds light on the source of the performance gap between SRQemu and the two

systems suffering from buffer bloat. RSS and RPCValet utilize 25.3GB/s of memory bandwidth

at 11.4MRPS, greater than 80% of the server’s maximum of 31GB/s. In contrast, SRQemu

consumes less than 75% of that bandwidth at 20MRPS and therefore delivers 1.75× higher

load than RSS/RPCValet, corroborating our claim that memory bandwidth contention can

negatively impact latency. SRQemu ’s performance, combined with the small difference be-

112

6.8 Evaluation

GET/SET
Mix

RPCValet
MRPS

RPCValet
BW@SLO

NEBULA

MRPS
NEBULA

BW@SLO
0/100 11.4 24.5 GB/s 26.7 22.6 GB/s
50/50 11.4 25.3 GB/s 22.2 21.1 GB/s
95/5 11.4 24.8 GB/s 22.2 20.9 GB/s

Table 6.2: Sensitivity to various MICA GET/SET query mixtures.

tween RPCValet and RSS, may seem to suggest that load balancing is unimportant. However,

we demonstrate next that as soon as the bandwidth bottleneck is removed, load balancing has

a major performance impact.

NEBULA base is the only system of the four that avoids both destructive bandwidth contention

and load imbalance, attaining a throughput under SLO of 22.2MRPS with a sub-2µs 99th%

latency. We measured the mean zero-load service time of MICA RPCs using 512B payloads to be

∼630ns, which corresponds to a throughput bound of 25.3MRPS. Thus, NEBULA base is within

12% of the theoretical maximum. Before saturation, NEBULA base ’s minimal 81KB of buffers

are adequate and we observe no NACK generation, which concurs with our theoretical analysis

suggesting that 10×E
[
Nq

]
receive buffer slots suffice for a server operating under strict SLO.

Beyond ∼22MRPS, the system quickly becomes unstable, server-side queues rapidly grow,

and the number of NACKs escalates. We consider this to be a non-issue, because operating a

server beyond its saturation point is not a realistic deployment scenario. Overall, NEBULA base

outperforms SRQemu by 1.2× in terms of throughput under SLO and by 2.2× in 99th% latency

at a load of 16MRPS, due to improved load balancing.

6.8.2 Impact of Varying Workload Parameters

We now study the sensitivity of NEBULA base and RPCValet to different workload behaviors by

varying the GET/SET query mix. Table 6.2 reports the maximum throughput under SLO and

the memory bandwidth consumption at peak throughput for each query mix we experimented

with. We find that both systems are largely insensitive to query mixture, as RPCValet reaches

the same saturation point for all three workloads, remaining bottlenecked by memory band-

width contention in all cases. As the fraction of GETs increases, the NIC-generated bandwidth

drops because GET payloads only carry a key, as compared to SETs that carry a 512B value.

113

Chapter 6. Building NEBULA on Scale-Out NUMA

Despite less NIC-generated bandwidth, the cores’ aggregate bandwidth commensurately rises,

because they must copy 512B values out of the data store into the buffer holding the response

to the GET. Ultimately, memory bandwidth usage per query remains roughly constant.

In contrast, NEBULAbase experiences a 19% throughput increase for the 0/100 mix compared

to 50/50, because the mean service time drops by 70ns. This improvement happens because

of a change in the direction that MICA copies data. For a SET, the core loads the incoming

value from the NIC’s small on-chip cache or the LLC (where the payload buffer resides after

the NIC writes it), and then must write it to the DRAM-resident MICA log. As the payload

buffer is already on-chip, the time that the core’s LSQ is blocked on the payload’s data is a

single remote cache read. In contrast, GETs first must fetch the value from the MICA log, and

write it to the response buffer; thus, GETs block the core for a longer period of time.

Next, we evaluate the impact of varying MICA’s item size. Figure 6.7 shows the maximum

throughput under SLO and memory bandwidth of RPCValet and NEBULA base with 64B,

256B and 512B items. Items smaller than 64B (cache line size) result in the same memory

bandwidth utilization as 64B items. As item size shrinks, RPCValet’s throughput under SLO

commensurately increases, reaching 16MRPS with 256B items and 26.7MRPS with 64B items:

smaller items naturally result in less memory bandwidth generated from both the NIC and

the CPU cores, alleviating memory bandwidth contention. For item sizes larger than 64B,

RPCValet becomes bandwidth-bound, capping throughput under SLO at ∼ 21MRPS.

NEBULA base ’s performance also improves with smaller items. Cores are less burdened with

copying data to/from the MICA log, reducing the mean RPC service time by 9% and 19%

with 256B and 64B items, respectively. The shorter service time results in a saturation point

of 33.3MRPS with 64B items. This is 1.16× higher than RPCValet even when bandwidth

contention is not a factor, because NEBULA base eliminates the costly step of write-allocating

payloads into the LLC before an RPC can be dispatched to a core. Finally, we emphasize that

due to efficient buffer management, NEBULA base attains equal throughput under SLO as

RPCValet, handling items 4× larger (256B vs. 64B).

114

6.8 Evaluation

64 256 512
Item Size (B)

0

10

20

30

Tp
ut

. a
t S

LO
 (M

R
PS

)
RPCValet_TPS
NeBuLa_TPS
RPCValet_BW
NeBuLa_BW

0

10

20

30

B
W

 a
t S

LO
 (G

B
/s

)

Figure 6.7: Performance of RPCValet and NEBULA varying the MICA value size, using a 50/50
GET/SET query mix.

6.8.3 Performance Benefits of NIC-to-Core Steering

Finally, we evaluate NEBULA’s NIC-to-core steering mechanism. Our expectation is that NEB-

ULA should trim ∼ 50 cycles (25ns) from each RPC’s runtime, hiding the latency of fetching the

remotely cached RPC payload that is needed to access MICA’s hash index. This improvement

should only show at the tail of the latency distribution, because in the average case, the cores

only have one RPC in their CQ without a “next RPC” to prefetch.

We additionally compare NEBULA to a software-prefetching solution, which uses a modified

RPC-handling loop (Figure 6.3) to prefetch any future RPCs found waiting in the CQ. As the

code needed to realize such software prefetching is on the critical path before the RPC’s actual

processing begins, we hand-optimized the software prefetch code to minimize its overhead.

Our first prefetch implementations (e.g., a simple loop with compiler hints such as GCC’s

__builtin__prefetch(...)) were catastrophic for performance, reducing throughput by

roughly 50% under MICA’s tight SLO. Our final optimized configuration used handwritten

assembly code to search 8 slots in the CQ (which fit in a single cache block and thus avoid

incurring a cache miss) for a valid RPC to prefetch. As the NIC never dispatches more than

two requests to a core at any time (§6.6), the prefetch degree is therefore one.4 We measure

the overhead of our optimized code as 60ns.

The latency improvements due to NIC-to-core steering are directly proportional to the average

4Note that although there are only two possible incoming RPCs, the CQ is also used for signalling to the core
that outgoing requests have been served by the NIC, so we must scan more than two slots.

115

Chapter 6. Building NEBULA on Scale-Out NUMA

0 5 10 15 20 25 30
Load (MRPS)

0

2

4

6
99

th
%

 L
at

en
cy

 (u
s)

NeBuLa_SWPref
NeBuLa_base

NeBuLa

15.5 23
1

2

Figure 6.8: Comparison of NEBULA prefetching policies. MICA uses 512B values and a 50/50
GET/SET query mix.

remote cache access latency, because all incoming payloads will by default be fetched from

the small cache which is co-located near the on-chip network interface. The most important

factor controlling this latency is the average hop count of the server’s network-on-chip (NoC).

Prior work has shown that the impacts of on-chip latencies on the performance of cross-

node memory accesses [53] are particularly costly in emerging CPUs with many cores. When

designing hardware for latency-critical RPC services, NEBULA’s NIC-to-core steering offers an

alternative to deploying exotic NoC topologies to reduce hop count.

Figure 6.8 compares NEBULA base (no prefetching), NEBULA (NIC-to-core steering enabled)

and NEBULASW Pr e f , our configuration with software prefetching. Below 16MRPS, all con-

figurations perform identically, because each core only has one RPC outstanding, and by

definition there is no opportunity to prefetch incoming RPCs. Additionally, the overhead of

our prefetching code is small enough to complete before the next RPC arrival, and thus has no

negative impact. Above 16MRPS, the software overhead begins to manifest itself, causing a

31% increase in 99th% latency compared to NEBULAbase at 22MRPS. As 60ns represents ∼ 10%

of MICA’s service time, we conclude that prefetching at such high loads requires hardware

support to eliminate the overhead of determining prefetch addresses in software.

Between 16 and 22MRPS, NEBULA improves the 99th% latency by 64ns, i.e., a 10% reduction in

RPC service time. We attribute the roughly 2× difference with our expectation to the increased

cache subsystem latencies in the loaded system. Therefore, the benefit of removing the longer

116

6.9 Chapter Summary

wait for the RPC’s payload from the critical path via timely prefetching increases. As a result,

NEBULA outperforms NEBULA base by 3MRPS. At high load, the fraction of RPCs dispatched

to a core with CQ depth >= 1 grows to 75%, making NEBULA’s 10% service time reduction the

common case.

We also repeated the same experiment with 64B payloads, which have reduced on-core service

times of 510ns. NEBULA SW Pr e f ’s overhead grows to > 10% of the service time, and therefore

NEBULA delivers 3× lower 99th% latency at 22.2MRPS. NEBULA delivers the same 3MRPS

throughput benefit for both 64B and 512B payloads. Finally, we expect that repeating this

experiment with the full-scale system, rather than our scaled-down version with only 16 cores,

would result in greater performance benefits for NIC-to-core steering due to a larger NoC

diameter.

6.9 Chapter Summary

NEBULA is designed holistically to manage network traffic directly in the cache hierarchy

of a many-core server and eliminate memory bandwidth interference. By observing that

SLO constraints in principle declare that server-side queueing must be limited, NEBULA

shrinks the amount of buffering provisioned to easily fit in server SRAM, and proposes a

hardware/software co-design to eagerly report “queueing failures” to clients. With three non-

intrusive network interface enhancements, NEBULA achieves the goal of in-SRAM handling

of network traffic. Employing all of its features, NEBULA improves throughput under SLO

over current multi-queue (SRQ) and single-queue (RPCValet) systems by 1.25× and 2.19×
respectively. We show that for both 512B and 64B MICA RPCs, the system is CPU-bound and

NEBULA does not leave significant performance headroom.

117

7 Microarchitecture for Integrated RPC

Protocol Accelerators

In Chapters 2 and 3, we introduced the importance of Remote Procedure Calls for microservice

architectures, and motivated the need to specifically target a bespoke server architecture for

production-ready RPC layers that can provide cross-language interoperability. This chapter

demonstrates our implementation of CEREBROS, an RPC accelerator capable of executing

an entire production RPC layer autonomously, that is integrated directly into the NEBULA

protocol stack which we described and implemented in Chapter 6. We begin by describing the

need to co-design RPC protocol acceleration with the server’s NIC architecture, proceed to

describe the logical flow of RPC processing in our implemented system, and finally describe

the microarchitecture of CEREBROS’ pipelines.

7.1 Why Couple NICs and RPC Accelerators?

Recall that production RPC stacks are comprised of multiple layers and heavily employ gen-

erated interface code (§3.1.2). Figure 7.1a shows the software layering of production RPC

stacks, with generated code layers shaded in grey, while Figure 7.1b shows the functional

diagram of the three common operations that are exercised by these generated code layers

at runtime. Recall that first, a programmer uses an Interface Description Language (IDL) to

specify all the microservice’s functions and their desired interfaces. After a new RPC is deliv-

ered by the Transport, the first task is to parse the application-level header, which indicates

the function this RPC is requesting. Next, the RPC stack dispatches this new request to the

119

Chapter 7. Microarchitecture for Integrated RPC Protocol Accelerators

Function Code

Processor

Wire Protocol

Transport

(De)ser.

NIC interaction

IDL

Network

list<Rev> ReadMovieRevs (
1: i64 req_id,
2: string movie_id,
3: i64 start,
4: i64 stop,
5: map<string,string> carrier

) throws (1: Exception se)

(a) Intra-RPC stack layering, with generated code in grey.

RPC Layer

Transport

DC Network

Function Code

Header
Parsing

Dispatch

Payload
deser. Header

Creation

Payload
ser.

Function

Transport

(b) Runtime operations exercised when receiving RPC re-
quests and sending responses.

Figure 7.1: RPC stack layers, and the underlying runtime hardware operations.

correct Processor, which contains all the logic to handle function requests of this type. The

software then performs a de-serialization operation on the payload corresponding to the

incoming request, converting the format generated by the Wire Protocol into an object

which is parseable by the function. Finally, the Function Code itself runs and processes the

request; any nested RPCs which this function calls to other microservices go through the same

process in reverse, evidently without the need for dispatch.

Due to the drastic overheads associated with full RPC layers, multiple designs have already

been proposed to either accomplish parts [136, 160, 225, 268] or the entire layer [276] in

dedicated hardware. We note that two current trends in many-core server architecture dictate

that such RPC accelerators (RPAs) need to be co-designed with the server’s NIC itself. First,

server CPU manufacturers have embraced designs which are comprised of many tiles (in the

case of Intel’s Xeon Scalable), or independent dies (for AMD’s EPYC), connected by an on-chip

fabric. As tile and die counts rise, on-chip network latencies between the server NIC and

the CPUs will in all likelihood become a more significant factor of server-side RPC response

time. Therefore, ensuring low RPC latency will inevitably require explicitly designing a server’s

network interface to minimize the time taken for all NIC-software interactions corresponding

to an RPC to transit the server’s on-chip fabric. As all RPCs processed by a server pass through

the RPC accelerator on their way to/from the NIC, the location and design of said accelerator

are key components in the latency-minimizing equation.

The second trend motivating NIC-RPC accelerator co-design is the sheer number of cores that

120

7.1 Why Couple NICs and RPC Accelerators?

modern servers contain. As we have introduced in §2.4, load balancing among these cores

is of primary concern because the amount of load imbalance in a queueing system scales

proportionally to the number of workers. Given the existence and benefits of NIC-driven load

balancing frameworks [54, 150, 182], it is logical that integrating an RPC accelerator should

support NIC-driven load balancing policies, as well as the locality-aware enhancements which

we introduced in Chapter 5.

All existing efforts to accelerate RPC stacks create one of two pitfalls: either by incurring excess

cost in offloading individual operations to the RPA, or in re-shuffling RPCs among cores with

software-based load balancing. In this thesis, we summarily mention that the cumulative costs

of offloading individual header parsing, creation, and (de)serialization operations cripple the

performance of an RPA that can accelerate all of those operations. Further argumentation and

evidence to demonstrate this claim can be found in “Hardware-Software Co-Design of an RPC

Processor” [222].

In contrast, RPA designs which are tightly coupled to the core’s pipeline, such as the recent

protobuf accelerator from Google [136], limit offload overheads to a minimum by offering

an ISA-level interface to RPC software. However, such direct integration comes at the cost of

obviating locality-aware load balancing policies, because the RPC’s header fields are not visible

to the NIC until the header parsing step takes place. With a tightly-coupled RPA, incoming

messages first exit the Transport layer in Figure 7.1b, and are assigned to cores according

to the NIC’s implemented load distribution or balancing policy (e.g., RSS). After the core

invokes its integrated RPA to parse the RPC’s header, it then has the knowledge of the various

header fields and could apply locality-aware load balancing. Such a system architecture incurs

all the overheads that come with reshuffling requests between cores in software, such as

synchronization on shared task queues and passing cache lines back and forth between L1

caches that are potentially far away in the on-chip fabric. Therefore, our goal in this thesis is

to design a system that “does not hide the power” [157] of the NIC’s presence on the path of

incoming RPCs, and its capability to handle the RPC stack and apply load balancing without

software involvement. We begin with a functional overview of the steps involved in CEREBROS’

workflow when processing an RPC.

121

Chapter 7. Microarchitecture for Integrated RPC Protocol Accelerators

From
Network

(2)

(2)

ReassemblyBuffer
Allocation

Header
Deserialize Dispatch Payload

Deserialize

µServ
Function

Notify
Core

Payload
Serialize

Header
Serialize

Send
Response To

Network
Nested RPCs

Free Network Bufs

Update Load &
Free Application Bufs

Figure 7.2: Block diagram depicting the stages of an RPC as it is processed by CEREBROS.

7.2 Functional Overview of RPC Processing in CEREBROS

Figure 7.2 shows the workflow of all operations executed by CEREBROS during the process of

handling an incoming RPC. Stages which are shaded exist in NEBULA but have been modified,

while unshaded stages represent unmodified stages from the RPC stack accelerator [222].

Upon receiving a new request from the network layer, NEBULA first performs buffer allocation

for both the transport and application-level buffers, using the allocators previously described

in §6.4. While new packets continue to arrive for this RPC, the Reassembly stage performs data

placement (see §6.5), ensuring that the RPC is presented to the next stage as one contiguous

and properly ordered buffer. After Reassembly completes, the modified NEBULA invokes the

first RPA stage, providing it pointers to the transport and application buffers.1

The RPA receives both buffer pointers, and begins by de-serializing the RPC layer’s header

and writing it to the start of the application-layer buffer which will be presented to the core.

Additionally, the header de-serialization stage extracts the function’s ID from the header and

provides it to the Dispatch stage as its input. CEREBROS’ Dispatch stage uses the incoming

RPC’s function ID for two tasks: (i) to decide which core will serve the RPC according to the

dynamic affinity policy of §5.2, and (ii) to determine the data layout of this RPC’s payload,

as specified by the programmer’s IDL (see Figure 7.1a). Next, CEREBROS de-serializes the

RPC payload in accordance with the data layout supplied to it by the Dispatch stage. Once

the writes to the application-level buffer are completed, the RPA’s payload de-serialization

stage can then send a feedback message to the Buffer Allocation stage, which allows the

1We discuss how NEBULA calculates the size of the application buffer to allocate in §7.4.

122

7.3 The Architecture of CEREBROS

transport-level buffer to be freed and re-used.

At this point in the flow of an incoming RPC, the selected core now needs to be notified of the

new RPC arrival, so the software can begin processing it. CEREBROS uses a similar mechanism

to NEBULA for this purpose, with slight modifications to account for the extra control-flow

transfer that must take place on the core. Recall that when the RPC layer happens in software,

there exists a control-flow transfer during the Dispatch stage to the Processor object that is

responsible for the incoming function. However, with CEREBROS, that control transfer must

happen after the notification is received. To facilitate this jump, CEREBROS provides an address

to which control must be transferred along with each entry delivered to a core in its QP. Once

the core receives an RPC arrival notification, it jumps to the address provided by CEREBROS,

and begins executing the function code – note that all arguments can be guaranteed to be

resident in the selected core’s L1 cache by using NEBULA’s L1 steering feature (see §6.6).

After the function’s execution completes, it goes through a subset of the RPC reception process

in reverse, to send the response value back to the client. The RPA is first invoked to serialize

the response payload, then create a correctly formatted header, and finally NEBULA sends the

response on the network. At this stage, NEBULA sends two feedback messages. The first goes

to the Buffer Allocator, indicating that it can free the application-level buffer that it previously

allocated for this RPC. The second goes to CEREBROS’ Dispatch stage, indicating that this

core has finished processing a request, so the Dispatch stage can update its snapshot of the

system’s queues. An additional possibility is that the actual function execution involves RPCs

that are nested within each other, where the currently executing function must perform RPCs

to another microservice to retrieve data. These RPCs would be handled in the same way as

what is depicted in Figure 7.2 on the server which hosts the target microservice. Next, we

discuss how we integrate CEREBROS into a server chip.

7.3 The Architecture of CEREBROS

To limit offload overheads and simultaneously enable locality-based load balancing, we adopt

a NIC-interfaced RPA design with two critical features. First, the endpoint of the Transport

layer exists at the RPA itself rather than at a CPU core, and second, the control transfer

123

Chapter 7. Microarchitecture for Integrated RPC Protocol Accelerators

App-Ready RPC5

C

Network Msg.

NIC

Header
Parsing

Payload
Parsing

App Function
6

Dispatch

(De)ser

2 4

3

RPA

1

Figure 7.3: NIC-interfaced RPC accelerator design.

operation that occurs between the NIC’s interface and Function Code is deferred until after

the entire process of receiving the new message is complete. Figure 7.3 shows the design of

CEREBROS we propose as part of an RPC-centric server architecture. The NIC directly interacts

with the RPA and thus removes the excess data transfer and invocation costs from the CPUs, as

well as enables enhanced load balancing: it receives incoming RPC requests directly from the

NIC (1) and processes the RPC layer without the CPU’s involvement, starting with header

parsing (2). It then performs the dispatch module using hardware, by reading the function

ID from the parsed header and looking it up in a dispatch table to find the metadata describing

how to parse the corresponding payload type (3). Using this information, the accelerator

parses the payload (4) and dispatches an application-readable RPC to the CPU (5) that

executes the requested function (6). Additionally, as the RPA already has knowledge of the

requested function ID from header parsing (2), its load balancing policy can use any fields

that have been extracted from the incoming header to implement any policy (e.g., those we

introduced in Chapter 5).

Pushing the dispatch layer’s control transfer to the final step of the RPC handling process

requires the addition of a single function pointer to the notification that the CPU receives when

a new RPC is available. All that the core must do is perform an indirect jump to that function

pointer, with the arguments provided by the RPA, to start executing the incoming function.

Having presented our design to unify the NIC hardware with existing RPC accelerators, we

now discuss the implications for the NIC’s architecture as well as the RPA itself.

124

7.3 The Architecture of CEREBROS

7.3.1 Multi-Buffer Management

Existing research on RPC systems generally assumes zero-copy network I/O, where the RPC

payload written into memory is directly consumed by the application layer, without any

intermediary operations being done on it [54,131,150,159]. However, fully-featured RPC stacks

inherently require header and data manipulation, implying that the payload delivered by the

transport layer is accessed and rewritten by the RPC stack itself. This functional difference

mandates two changes to the buffer management structure of today’s hardware-terminated

network stacks:

1. Both the send and receive paths are no longer trivially zero-copy.

2. The combination of NIC and RPA needs to consume multiple variable-sized buffer

locations per outstanding RPC (one for the wire format, and another for the application

format).

We do not expect that the addition of a (de)serialization copy will form a significant perfor-

mance problem for systems which provision buffers for LLC-residency such as ResQ [256]

or NEBULA. First, the combination of a hardware-terminated transport with an RPA implies

that the CPU is not involved in this copy, avoiding the well-known inefficiencies of software

memcpy [246, Figs. 2-3]. Additionally, cache bandwidth is plentiful in today’s servers; assuming

100Gbps of incoming RPC traffic which must be transformed and delivered to the cores, this

translates to a cache bandwidth requirement of ∼ 25GB/s. This demand can easily be met by

today’s caches, which can reach bandwidths of 128GB/s for an L1 that serves two indepen-

dent 64B cache blocks every cycle, as demonstrated by current profiling and characterization

work [17].

Even in a pathological case where the RPA’s private cache is thrashed and begins to spill some

blocks back to the server’s shared caches, the multi-tile LLC should not be a bottleneck as

each tile would have a bandwidth of ∼ 45GB/s assuming 12ns latency and 8 MSHRs [17]. We

calculate these values based on the private L2 cache latency, rather than the LLC, of the AMD

EPYC 7571 because our evaluation assumes roughly 1MB/core of LLC, which is 2× the size

of AMD’s private L2. Therefore, we believe doubling the 6ns measured latency [17] of the

EPYC 7571 is a reasonable proxy for the latency of a 1MB LLC tile. We conclude that cache

125

Chapter 7. Microarchitecture for Integrated RPC Protocol Accelerators

bandwidth is not an issue for the RPA’s (de)serialization stages and therefore focus on the

second challenge: allowing the NIC/RPA to consume multiple buffers for one incoming RPC.

The existence of two independent stages of buffering – in the Transport and Wire Protocol

layers – implies that buffer exhaustion can happen in either disparate stage; creating addi-

tional hardware complexity to maintain strict layering when hardware controllers accomplish

each stage. When software handles application-layer protocol processing, it can return a

failure notification to the sender using the underlying transport protocol. Although hardware-

terminated transports already contain support for handling cases where transport-layer op-

erations fail [191], independently handling failure notifications with the RPA would require

additional logic for the RPA to send unsolicited messages to clients and an extra interface in

the NIC hardware that is distinct from its regular interface to the CPU cores.

We argue that a more efficient alternative is to unify the two stages of buffer management and

make them “all-or-nothing” atomic. This decision to allocate both buffers together avoids the

need for creating an additional interface in the NIC which is likely to be complex and costly.

With unified buffer allocation and an RPC-oriented transport (§4.2), one request generates

exactly one success/fail response using the NIC’s existing pipelines which are already designed

to handle RPCs natively.

Our design performs the following steps to guarantee that both the transport and application

layers have enough buffer space for their respective operations. First, upon the arrival of a new

RPC request, the NIC allocates a transport-layer buffer for it dictated by the “size” field carried

in the transport header. If this request is of the type that requires RPA processing, the NIC

further allocates an application-layer buffer for it. Once transport processing has completed,

the NIC passes the address of the application-layer buffer down the pipeline to the RPA stages.

The two buffers can be allocated with a variety of hardware implementations. In a scenario

where the NIC has bespoke buffer management logic, as in NEBULA, it can reserve two buffers

with the exact sizes that are required. We defer discussion of the sizing of application-level

buffers to §7.4. It is also possible to perform multi-buffer management in an architecture

where the CPU makes memory available to the NIC through a shared ring buffer (e.g., in

Ethernet). In this scenario, the NIC must consume entries from the ring until the total size

126

7.3 The Architecture of CEREBROS

meets or exceeds that required for the transport and application layers.

7.3.2 Distributing the RPC Processing Components

In a server ecosystem characterized by continued network-compute integration (see §2.5)

and growth in the number of components making up the server’s on-chip fabric, it is critical

to design the network interface to match the rest of the server’s components. Multiple prior

works have already shown that a failure to consider the specific characteristics of the server’s

memory hierarchy and on-chip fabric can lead to performance bottlenecks for operations

such as remote memory accesses [53] and RPC (de)serialization [275, 276]. We therefore argue

that it is logical to implement CEREBROS on top of the NEBULA transport protocol, because

it already contains the requisite architecture to efficiently pass messages between the NIC

and CPU cores. Although the use of NEBULA and its underlying Manycore Network Interface

(mNI) [53] is not mandatory to implement CEREBROS, we choose it because of the performance

benefits, particularly in view of future physical-layer bandwidths that will demand the NI to

scale commensurately.

In a NEBULA-equipped server, it is immediately apparent that the logically centralized architec-

ture of CEREBROS shown in Figure 7.3 needs to be implemented on a physically decentralized

transport substrate – meaning that there need to be multiple disparate units for (de)serial-

ization, dispatch, and core-NIC interaction. Our decentralized architecture of CEREBROS is

enabled by the insight that the majority of operations comprising an RPC’s data path do not re-

quire any coordination between the NIC’s many components. The only operation that requires

centralization is the RPC’s dispatch stage, to avoid suboptimal decisions being made with

respect to load balancing and locality. Prior work already has solved this issue by designating

a single NIC component as the unique dispatcher, and enforcing that all other components

must inform the dispatcher once the protocol processing component of the RPC has been

completed [54].

Figure 7.4 shows the distributed, high-level architecture of CEREBROS, and its integration into

a NEBULA-equipped server architecture. NEBULA’s components are shown in maroon, with

127

Chapter 7. Microarchitecture for Integrated RPC Protocol Accelerators

N
et

w
or

k
Ro

ut
er

NeBuLa – Reassembler
& Buffer Manager

NI frontend NI backend
RPC Accelerator

Figure 7.4: Chip-level integration of CEREBROS.

the additional architectural components for RPC acceleration in blue.2 CEREBROS’ design

only requires modifications to NEBULA’s NI backend components, as they are the ones that

handle RPC data placement and load balancing. To keep payload de-serialization coordination

free, CEREBROS implements a split dispatcher, where each of the RPAs can independently

supply the correct payload format, and then core assignment is performed by the centralized

dispatcher after payload de-serialization is completed. Replicating the payload formats across

all of the NI backends is possible because the formats are read-only, and few in number as

most microservices have only a few tens of functions at maximum.

CEREBROS shares a single MMU and small private cache with NEBULA, which is coherent with

the rest of the server’s on-chip cache hierarchy. Having both components share an MMU and

cache is logical because once outgoing messages are written into NEBULA’s transport-level

buffers, CEREBROS’ RPA components will immediately access that data for header parsing and

de-serialization. These accesses will almost always hit the cache. For the inverse process of

serializing an outgoing RPC, the same principle is true except the cache hits will occur when

NEBULA reads the serialized payload data to encapsulate it into a transport buffer.

Each NI backend comprises two independent pipelines: the Request Generation Pipeline

(RGP) and the Remote Request Processing Pipeline (RRPP). The RGP is responsible for creating

new RPC requests or sending nested RPCs, while the RRPP handles new incoming requests.

2We omit NEBULA’s prefetch controllers for clarity, but note that they are still part of the final implementation.

128

7.4 NIC Pipelines for CEREBROS

QP
Table

QP
ID

+1

base

RMC $

QP Select Address
Calculate

Load
WQ Entry

Request
Initialization

RPA
Invocation

Request
Unrolling

Payload
Attachment

ITT
Free list

tail

WQ Tail

RGP
Load

Queue
valid

tid

WQ Entry

+1

ITT-1 ITT-2

tid

WQ Tail

=

To QP
Select

=

Buffer
Allocator

To
RPA

From
RPA

Unroll
Logic

RGP Data
Load Queue

To LLC

RPC or
RWRITE

RPC
Req

Data

RREAD

To
 N

et
w

or
k

RGP Frontend Stages RGP Backend Stages

RPC Pair
Table

Figure 7.5: RGP microarchitecture. Shaded structures are new in CEREBROS.

As the RPA and its surrounding logic is involved with both incoming and outgoing RPCs, we

add hardware queues at specific stages of the RGP and RRPP to create new operations for the

RPA(s). We now present our modifications to each pipeline to build CEREBROS.

7.4 NIC Pipelines for CEREBROS

In this section, we walk through the microarchitectural changes required to NEBULA’s NIC

pipelines. The original pipeline implementations are based on the Scale-Out NUMA Remote

Memory Controller (RMC) [199].

7.4.1 Request Generation Pipeline

Figure 7.5 shows the microarchitecture of CEREBROS’ modified RGP. Beginning from the QP

Selection stage, each RGP polls the WQ of its associated core, and sends new valid requests

down the pipeline. Each protocol-level request is identified by a unique ID which comes from

the structure called the Inflight Transaction Table (ITT). Once the WQ entry arrives at the RGP

BE, the changes to the RGP are minimal, only involving the addition of an extra pipeline stage

that invokes the RPA and receives responses from it. In addition to the SRAM structures used

by the existing RGP, CEREBROS requires an extra buffer allocator and surrounding logic, to

allocate space for the RPA to create the serialized version of the request. The serialized-buffer

space is freed after the last stage of the RGP sends out each packet corresponding to this

outgoing request, indicating that the data no longer must be held at the sending RGP.

129

Chapter 7. Microarchitecture for Integrated RPC Protocol Accelerators

In the original design of the NEBULA architecture in Chapter 6, the total amount of space

available to the buffer allocators was sized by the number of outstanding RPCs at the 99th

percentile of the latency distribution (see §4.2.1). The same insight applies when dedicating

space for buffering in the RPA, with the exception that the RGP does not have the option to

“NACK” a request based on an expected SLO violation. If the buffers become exhausted, the

RGP will simply stall and cause backpressure in the WQ itself. Applying Equation (4.2) to an

RPA which can support eight outstanding requests (giving k = 8) at an extreme load of A = 7.5

yields an expected queue depth of 12, and therefore a total buffering space of a few KBs would

likely suffice. Note that this buffer space does not need to come from dedicated SRAM but can

be mapped from the microservice’s regular virtual memory space, and then registered with

the RGP in the same fashion as receive buffers in NEBULA.

CEREBROS also relies on an additional structure called the RPC Pair Table (RPT). Compared

to other transactions supported by the soNUMA communication protocol, RPCs contain the

additional requirement that each application-level response must be paired with the exact

matching request. Although the mNI architecture already tracks outstanding network transac-

tions in the ITT, its intention is to match network-layer requests and replies as demanded by

the soNUMA protocol [199]. For CEREBROS, we add the RPT to perform the same functionality

but now corresponding to the RPC layer. When a new RPC request is passed to the RPA invoca-

tion stage, a unique identifier for it is stored in the RPT along with the QP id that is expecting a

response. CEREBROS uses the same unique identifier for RPCs as NEBULA: the concatenation

of the source node ID (snid) and the network transaction ID (tid) generated by the Request

Initialization stage.

7.4.2 Remote Request Processing Pipeline

The majority of CEREBROS’ hardware additions take place in the RRPP because it must handle

new incoming requests, interact with the RPT, and also consume entries in the RPT created by

the RGP. Figure 7.6 shows the microarchitecture of the modified RRPP in CEREBROS. Control

logic for sending feedback messages to the buffer allocators is not shown.

The first modification needed for CEREBROS is the addition of an extra buffer allocator, visible

130

7.4 NIC Pipelines for CEREBROS

Decode
Packet

Reassemble
RPC

VA
Computation

Address
Translation

Memory
Access

RPA
Invocation

TLB

(2)op

RPC
Req

To
RPA

From
RPA

Decode
Logic

From
Network

6*

* Fields decoded:
op, snid, tid, ctxt, offset, payload

<<
snid

tid

RPC
Reassembler

hit

idx

Buffer
Allocators

Recv buf.
Address Table hit

E

E

-1 pkts

6 7**
buf

addrs

7

MMU

PA
VA

RRPP
Load

Queue

=

E

rd?

E
8†

PA

RRPP
Store

Queue RMC $
R/W

8=

pkt =

0

(2)

Generate
Reply

8

data

To
Network

Request or
Response

= 8Format
Packet

op
disp

Assign to Core
(Split Dispatch-II)

Core Load
Table

Locality-Aware
LB Table

E

E

Arbiter

8
f-id

affinity

shortest queue

Prepare
CQ Message

Format
Packet

Inject Packet
to NoC

** Field added to bus: pkts rem. in RPC
† Field added to bus: reply from RMC $

RPC Pair
Table

E

(snid,tid)

final
core

resp core

resp?

Figure 7.6: RRPP microarchitecture. Shaded structures are new in CEREBROS.

in the Virtual Address Computation stage. This allocator has the same function and structure

as the existing one, but allocates memory for the de-serialized RPC as previously discussed.

Both allocators are only enabled after an incoming RPC has incurred a miss in the reassembly

table. The addresses of the newly allocated memory are written to the receive buffer address

table (for transport layer buffers) or added to the control bus and sent down the pipeline to

the RPA Invocation stage.

Unlike the transport layer where the message’s size is carried along with it in the header (e.g.,

in UDP [221], R2P2 [150, Fig. 3], or NEBULA), the Wire Protocol of the RPC stack does

not include the size of the incoming payload in its application-ready format. Even if whole-

message compression is disabled, RPC arguments are actually shortened depending on their

values – for example, Google Protobuf uses a type called varint where a full 8 byte integer can

be compressed all the way down to 1 byte if its value is less than 128.3 Furthermore, the RPC

software must introduce metadata into the raw wire format in order to demarcate each field,

and denote if the field itself is a complex data type such as the Map of Figure 3.2b. Therefore, it

is impossible to determine a priori the exact size of the application-level data which is to be

3NB: The maximum value is 127 and not 255 because the 8th bit is needed to signify whether the receiver needs
to continue reading if the integer is larger than 1 byte.

131

Chapter 7. Microarchitecture for Integrated RPC Protocol Accelerators

(de)serialized – however, to guarantee that network buffers are not over-written, the NIC must

ensure that there is enough space for the RPA to write the message into.

To solve what seems like a circular dependence between the allocation stage and (de)seri-

alization process, we apply a mathematical insight to bound the maximal application-level

buffer size. In the scenario where a new message is received and must be de-serialized, the

total message size is provided by the transport layer as mentioned above. The maximum

application size can be calculated by assuming the message has the maximal number of fields,

and each field is maximally compressed. We observe that the maximal compression for a field

is a strict 4×, in the case where an 8B varint becomes 2B in the network format: one byte for

the data itself, and one byte for a metadata tag used by the RPA to de-serialize the message.

All other fields (e.g., strings, booleans, floats, and compound types such as Map) will incur a

lower compression ratio, and therefore we believe that it is a sufficient solution to allocate an

application-level buffer of 4× the transport size.

This observation also can be used in the RGP, when RPC is being sent and must be serialized to

its wire format. The RGP’s allocator makes the conservative assumption that the transport size

is no smaller than the application size, and allocates a buffer which is equal to the application

size. The RPA can then inform the NIC of the final size to be used by the transport protocol to

avoid bandwidth inflation.

Returning to the RRPP, the last added stage in the pipeline is the split dispatcher, whose job

it is to assign incoming requests or responses to cores following the chosen load balancing

policy. The first half of the split dispatcher resides in the RPA itself, which extracts the function

ID from the parsed header and creates the correct de-serialization task. Choosing the core

for an incoming request or response is based on three pieces of information: (i) the depth

of each core’s input queue, which dictates load balancing. (ii) The fields of the RPC’s header

that dictate potential locality and affinity (see Chapter 5). (iii) Whether this response must be

paired exactly with a previously sent request.

The simplest dispatch tasks correspond to RPC responses. The RRPP accesses its RPT with

the pair of (snid,tid) as an index, and returns the core which originally sent the request –

this information was placed there by the RGP. However, if the incoming work corresponds to a

132

7.4 NIC Pipelines for CEREBROS

new RPC request, the dispatcher chooses a core based on factors (i) and (ii) above. First, it

looks up the Core Load Table and Locality-Aware Load Balancing Table (LLBT) in parallel. The

Core Load Table stores the depth of each core’s input queue, and is unchanged from NEBULA.

Depending on the exact policy which is desired by the software, the LLBT returns a set of

one or more cores that can execute the incoming RPC with improved locality. For example,

if I$ affinity is the policy of choice, the LLBT must return all the cores which have recently

executed this function (see §5.2.2). Finally, the policy arbiter chooses the core which will

execute the RPC, deciding between to the baseline JBSQ policy, or any of the locality-aware

policies introduced in Chapter 5.

Locality-Aware Load Balancing Table Microarchitecture.

To implement both locality-aware load balancing policies we proposed in Chapter 5, the

LLBT needs to support two fundamental operations. First, to support d-CREW it needs to

provide the ability to match KVS keys of incoming requests against a set of partitions that are

in exclusive mode (see §5.3.2). Second, for dynamic function affinity to increase I$ locality, it

needs to support storage of a per-core history of executed RPC functions (see §5.2.2). Both

modes require a different memory organization; supporting d-CREW requires an “exact match”

operation that is trivial to achieve with a Content Addressable Memory (CAM), whereas the

per-core history mode needs to be indexed by the core ID.

We claim that both memory organizations can actually be achieved with the same CAM struc-

ture by exploiting its internal microarchitecture. In Figure 7.7, we show the microarchitectural

organization of the LLBT, following traditional CAM designs that are split into an associative

portion which is the “tag array” and a direct-mapped RAM structure storing the data associ-

ated with each entry [215]. When a new lookup operation occurs, the value being searched

for is placed on all the CAM’s search lines, and then all matching entries are sent to a priority

encoder at the output. The encoder then outputs the index of the chosen match (if there

is more than one), which is then used to look up the direct-mapped RAM and output the

matching data. It is trivial to implement d-CREW with such an organization by storing the

KVS’ partitions that are in exclusive mode in the CAM array, and the core which has “locked”

them in the RAM.

133

Chapter 7. Microarchitecture for Integrated RPC Protocol Accelerators

Exact Match Tag 0

…
Exact Match Tag N

Associative Lookup (CAM)
Data 0

…
Data N

Direct-Mapped RAM

Tag Search

… …

Values OutPer-Core
Mode

Index

Enable

Core
Indices

0

4

…

0

4

…

Figure 7.7: Microarchitecture of the Locality-Aware Load Balancing Table, showing associative
lookup array and RAM storage.

To implement a per-core function history with the structure shown in Figure 7.7, we use only

the RAM and clock-gate the associative tag storage section. Each entry in the RAM is used to

store the function history of a single core, which can be directly accessed by presenting the

core’s ID as the index value to the RAM array. Although the simple design that we propose

operates the LLBT in a binary fashion that uses either exact matching or per-core storage, the

CAM organization itself does not prevent both modes from being simultaneously supported.

For example, in a virtualized deployment where half of the server’s cores wish to use dynamic

function affinity and the other half are running a d-CREW KVS, the LLBT’s RAM entries could

be split accordingly.

Supporting dynamic function affinity with the aforementioned LLBT structure requires every

row of the LLBT’s RAM to be read out at each dispatch decision, which must be implemented

at the rate of incoming requests. Assuming we target a 64 core CPU with RPCs requiring 500ns

of computation, the LLBT has a limit of 16 cycles to read all its entries, assuming the server is

running at its maximum sustainable load. Such a time limitation requires four reads per cycle,

which can be implemented by adding multiple output buses to the LLBT’s RAM stage at the

cost of higher RAM array power. All other load balancing tables are accessed in parallel to the

LLBT (as shown in Figure 7.6) to allow all outputs to be presented at the arbiter in time.

To model the area and power cost of the LLBT design we propose, we use CACTI 6.5 [164]

configured to model a 22nm process with built-in ITRS-HP device projections and a 2GHz

cycle time. We provision an LLBT with 128 entries to target a server with 64 cores, where each

associative tag in the CAM portion is 30 bits wide, and each entry in the RAM portion is 64 bits.

We choose a 64-bit data size because it is large enough to store the core ID for d-CREW, and a

134

7.5 Chapter Summary

history of function ID’s for dynamic affinity load balancing (e.g., a function history of 8 entries

with 8-bit IDs). The LLBT requires only 0.0073mm2 of chip area due to its limited amount

of data stored (<1.5KB in total despite over-provisioning). Operating the full CAM structure

with its associative lookup structure enabled requires 15.1mW of power, even pessimistically

assuming it is accessed every single cycle. In the context of a 64 core server such as the EPYC

7763 [94] whose power is 280W, adding the LLBT incurs a 0.001% overhead, which we believe

is an extremely modest cost for the performance gains it enables.

When operating in its per-core mode with the associative array clock-gated, the LLBT con-

sumes less power than the CAM structure even accomplishing four reads per cycle. Our CACTI

simulations show that only accessing a single row of the LLBT per cycle consumes 3.2mW –

a conservative estimate of the requirements of multiple reads per cycle is to quadruple the

power, leading to a maximum consumption of 12.8mW . We believe such a cost is reasonable

given that enabling the LLBT’s CAM array actually results in a higher power consumption of

15.1mW .

In conclusion, we reiterate that the pipeline modifications to NEBULA for implementing

CEREBROS are limited. The sum of all the modifications can conceptually be described as a

set of tables to reserve pre-allocated memory in which RPC (de)serialization takes place, and

logic to assign RPCs to cores.

7.5 Chapter Summary

In this chapter, we architect and implement CEREBROS, a fully-integrated accelerator for

production RPC stacks that fits directly into NEBULA. We argue that because current designs

either incur excessive overheads to offload tasks to RPC accelerators [276], or prohibit NIC-

driven load balancing, RPC accelerators must be co-designed with the server NICs. Our

implementation handles RPC traffic in a fully distributed fashion, and only uses a centralized

component for the load balancing stage, allowing CEREBROS to scale to the high bandwidths

of future NICs. We rely on our implementation for the remainder of this thesis as a substrate

for evaluating locality-aware load balancing.

135

8 The Benefits of Locality-Aware Load

Balancing

This chapter demonstrates a concrete implementation of both locality-aware load balancing

policies we motivated and designed in Chapter 5. We build our implementations on top of our

hardware-terminated network and RPC protocol stacks which were introduced in Chapters 6

and 7. Although we use our own baseline to implement and evaluate locality-aware load bal-

ancing, the prerequisites to realize such policies are more general and allow implementations

on any hardware-terminated protocol stack that has NIC-driven load balancing. The most

plausible candidate systems that could integrate support for locality-aware load balancing

would be the NanoPU [108], or SmartNICs such as NVIDIA/Mellanox’ BlueField [204], or

Netronome’s Agilio LX 100 [196]. The remainder of this section is structured as follows: for

each load balancing enhancement, we walk through our specific implementation of the hard-

ware and software extensions required to realize it, introduce our simulation methodology,

and then evaluate its performance.

8.1 Adding Affinity-Based Load Balancing to CEREBROS

In order to implement affinity-based load balancing as described in Chapter 5, we specifically

configure the Locality-Aware Load Balancing Table (LLBT) so that it stores and returns the

function types that have been assigned to each core.1 We refer to this particular configuration

of the LLBT as a “function map”. The function map only uses the RAM portion of the LLBT, and

1The design and implementation of the LLBT were introduced in §5.5 and §7.4.2 respectively.

137

Chapter 8. The Benefits of Locality-Aware Load Balancing

clock-gates the CAM portion of it to save power. Each entry in the function map corresponds

to a single CPU core, and stores a FIFO list of recently executed function IDs for that core.

When a new RPC is assigned to a core, the function ID is shifted in the head of the core’s list,

and the tail is shifted out. Our implementation only stores a single entry per core, so that a

core is only considered as having affinity if it has just executed the exact same function – with

the provisioning of the LLBT in §7.4.2, it is possible to support a history of up to eight functions

per core. Further policy optimizations using deeper histories (e.g., in the case where multiple

functions have constructive code sharing) are interesting extensions to the proof-of-concept

policy we evaluate in this thesis.

Selecting a core for a new RPC involves the following steps: first, each entry in the function

map must be read out of the LLBT’s RAM and compared against the incoming function ID.

Matching the function map’s entries with the incoming function ID is implemented with a

simple array of comparators, whose width must be equal to the product of: (1) the number

of parallel function map entries read per cycle, and (2) the depth of each function history.

Our configuration only requires 32 bits of comparisons per cycle (four function map entries

where each is eight bits wide). Scaling the function map to deeper function histories or higher

parallel read throughput would naturally require more comparators and increased hardware

provisioning. In a particular deployment where such a cost becomes prohibitive, alternative

storage methods can be considered – for example, using the function ID as the index to the

function map, and storing a list of cores which have affinity in the RAM array. Such a design

would trade off reduced hardware cost with an approximate notion of affinity; questions

related to the performance of such an approximate policy may be interesting directions for

future work.

At the same time as the function map and surrounding comparators are generating the set of

cores with affinity to the incoming function, the Core Load Table outputs the core with the

global shortest queue, which is used as a fallback option. Next, the function map and the Core

Load Table forward their outputs to the arbiter (see Figure 7.6) to make the final core selection

decision. The arbiter chooses the core with the shortest queue from all the affinity-having

cores coming from the function map, or the fallback core if the shortest queue among the

affinity-having cores is greater than two requests long.

138

8.2 Evaluating Affinity-Based Load Balancing

After the load balancing policy selects the core, NEBULA’s NIC pipelines create a metadata

structure containing the corresponding request buffer, the incoming message’s layout, and

a function pointer that indicates the program counter where the core must begin executing.

NEBULA notifies the selected core of a new incoming request, passing the metadata to it via a

QP entry. Once the core receives the notification, it begins executing the function indicated in

the metadata structure.

In the load balancing policy we evaluate for I$ locality, there is no explicit need for software to

explicitly control the function map’s contents, because the microservices we study do not have

inter-function dependencies or synchronization. Therefore, the only messages exchanged

between the NIC and software occur when the two components notify each other when new

RPCs arrive and complete processing so that their RPC buffers may be freed. The above

exchanges are identical to what we have described in Chapter 6, so we do not discuss them

further here.

8.2 Evaluating Affinity-Based Load Balancing

To evaluate the benefits of dynamic affinity-based load balancing, we first break down the

instruction cache locality characteristics of a set of microservices. We then specifically evaluate

the dynamic affinity-based load balancing policy proposed in §5.2.2. A detailed evaluation

expressly showing the benefits of RPC protocol acceleration in isolation can be found in

“Hardware-Software Co-Design of an RPC Processor” [222].

8.2.1 Methodology

Microservices and RPC Processing. We evaluated the following six microservices from Death-

StarBench [81], chosen because they represent the various “classes” of microservices in the

entire suite: UniqueId (UID), User (USR), URLShorten (URL), SocialGraph (SG), and Com-

posePost (CP). These microservices are comprised of one, six, one, seven, and six underlying

functions, respectively. Many other microservices in this benchmark suite behave identically

or similarly to those we evaluated. In Table 8.1, we further break down the six functions

comprising the USR microservice.

139

Chapter 8. The Benefits of Locality-Aware Load Balancing

Function ID Name Tasks

F0 RegisterUser Create a new user in a social network.
F1 RegisterUserWithID Create a new user with pre-defined ID.
F2 Login Process user login requests.
F3 UploadCreatorWithUsername Upload the creator of a post’s username.
F4 UploadCreatorWithID Upload the creator of a post’s user ID.
F5 GetUserID Lookup a user’s ID.

Table 8.1: USR Microservice function IDs, names, and functionalities.

All microservices use Apache Thrift [19, 72] as their RPC layer, to which we have added a

new hardware-terminated transport protocol based on NEBULA [250]. To measure the cache

behaviour of each microservice in isolation, we create mock components for all other microser-

vices surrounding the one being measured, which respond immediately with pre-constructed

messages. To estimate instruction working set sizes, we apply the methodology used for profil-

ing workloads in Google datacenters [133]: we collect the trace of executed instructions and

measure how many unique cache lines cover 99.9% of the trace when ranked by popularity.

We use an RPC layer that implements a synchronous request processing model, where each

microservice polls for incoming requests and executes them to completion. If a microservice

performs nested RPCs as part of its function execution, it also synchronously polls for the

results of those RPCs, which CEREBROS guarantees will be returned to the same thread via its

RPC Pair Table (see Chapter 7). Running the microservices in this fashion is both an intentional

optimization, and implementation necessity for the time being. First, it ensures that when

a specific RPC is assigned to a core by the load balancer, it executes there to completion,

ensuring that affinity-based load balancing’s benefits are not hidden by an asynchronous

request processing model. Second, support for asynchronous RPCs is still an open research

and development problem [247], as using this pattern required a complete software rewrite at

the time this work was completed. Our model for affinity-based load balancing still applies to

an asynchronous request processing model, with the caveat that a function no longer remains

in a core’s input queue until it is completed. The software is responsible in this case to use the

enhanced control messages we propose in §5.5 to inform the NIC that the core can handle

another request.

140

8.2 Evaluating Affinity-Based Load Balancing

Cores
ARMv8, 4-wide issue OoO @ 2GHz

128-entry ROB, TSO, Next-line I$ Prefetcher

L1 Caches
64KB 4-way L1-D and L1-I, 64B blocks

2 ports, 32 MSHRs, 4-cycle lat. (tag+data)

LLC
Shared block-interleaved NUCA, 1MB/core

16-way, 1 bank/tile, 11-cycle lat. (tag+data)

Coherence Directory-based Non-Inclusive MESI

Memory 45ns latency, 2×25.6 GB/s DDR4-3200

Interconnect 2D mesh, 16B links, 3 cycles/hop

Table 8.2: Parameters used for cycle-accurate simulation of locality-aware load balancing.

System Organization. We evaluate the performance of dynamic function affinity-based load

balancing using cycle-accurate full-system simulation. We use the QFlex simulator [216] to

simulate a 16-core ARMv8 CPU running Ubuntu Linux 18.04, whose parameters are summa-

rized in Table 8.2. All workloads are pinned on 15 cores, leaving one core for system tasks and

interrupt processing. We limit UID to four cores because lock contention limits its scalability.

Our simulator includes a load generator that creates incoming requests based on a given

popularity distribution, dictated by the structure of the microservice [222, §6.1], and delivers

notifications to the CPU through the NEBULA transport stack.

8.2.2 Availability of Instruction Cache Locality

To clearly demonstrate the availability of instruction cache locality in our evaluated microser-

vices, we measure their working set sizes and MPKI values in two configurations: when the

RPC layer is performed by the CPU and when it is offloaded to CEREBROS. Figure 8.1a shows

the instruction working sets of our evaluated microservices. In the baseline CPU system, the

bloated RPC layer results in working sets that exceed the I$’s capacity by up to 3×. In contrast,

CEREBROS’ RPC layer offload reduces the working set by 27–68%, which naturally translates to

a higher I$ hit rate. The working sets are most visibly reduced for SG and CP, because they have

little business logic in their functions and their instruction footprints correspond mostly with

RPC layer code due to their large number of nested RPCs and complex message types. Hence,

when the RPC layer is offloaded to CEREBROS, we see an instruction working set reduction

141

Chapter 8. The Benefits of Locality-Aware Load Balancing

In
st

. W
or

ki
ng

 S
et

 (
K

B)

0

50

100

150

200

Microservices

UID USR URL SG CP

CPU Cerebros

(a) Instruction working set.

L1
-I

M
PK

I

0
2
4
6
8

10
12
14

Microservices

UID USR URL SG CP

CPU Cerebros

(b) I$ miss rates.

Figure 8.1: Frontend behavior of microservices.

of more than 60%. On the contrary, UID includes only one nested RPC and uses simpler

messages, while the function itself is roughly 43KB in size. Even then, offloading UID’s RPC

layer to CEREBROS shrinks the instruction working set by 38%.

Figure 8.1b depicts the I$ Misses Per Kilo Instruction (MPKI) before and after RPC layer offload.

The working set reduction achieved by CEREBROS directly affects the core’s frontend perfor-

mance, virtually eliminating instruction misses for four of the microservices and reducing

CPU cycles wasted on instruction misses by 5–93%.

USR benefits the least among all microservices because it includes two functions with working

sets larger than 90KB in size. Naturally, it also experiences the smallest reduction in the

instruction working set, as shown in Figure 8.1a. In such cases where the aggregate working

set of all the functions still outstrips the L1 I$, even fully offloading the RPC layer to CEREBROS

provides limited benefits to the CPU’s frontend. We now evaluate the performance of affinity-

based load balancing that ameliorates CPU frontend inefficiencies in these exact cases.

8.2.3 Eliminating Further Instruction Cache Misses

Although the aggregate working set of the USR microservice when using CEREBROS is ∼140KB,

four of its six functions are small enough to fully reside in a 64KB instruction cache if running

in isolation. However, the working sets of the other two functions are >90KB. When the NIC’s

142

8.2 Evaluating Affinity-Based Load Balancing

Fu
nc

tio
n

La
te

nc
y 

(N
or

m
. T

o
C

er
eb

ro
s)

0.00

0.25

0.50

0.75

1.00

USR Function - Hardware Configuration

F0
 -

 C
F0

 -
 C

A

F1
 -

 C
F1

 -
 C

A

F2
 -

 C
F2

 -
 C

A

F3
 -

 C
F3

 -
 C

A

F4
 -

 C
F4

 -
 C

A

F5
 -

 C
F5

 -
 C

A

Execution I$ Misses

Figure 8.2: Breakdown of the USR microservice’s functions into execution time and instruction
cache misses.

core selection policy does not take into account function locality, all six functions will compete

for I$ capacity, resulting in the high number of instruction misses visible in Figure 8.1b even

after CEREBROS’ RPC layer offload. This phenomenon particularly hurts the performance of

functions for which I$ misses account for a large fraction of total execution time.

Figure 8.2 breaks down the CPU time of USR’s six functions into execution time and time

stalled on instruction misses and compares a CEREBROS baseline (C) against CEREBROS with

affinity-based load balancing (CA). In the affinity-agnostic baseline, USR’s functions are stalled

on instruction misses for 15–44% of their total runtime. Function 2 is the only strongly

compute-bound function, spending the majority of its time hashing strings after its working

set is first loaded into the I$. All other functions have their CPU times divided roughly equally

between execution and instruction stalls.

With affinity-based load balancing enabled, the fraction of time stalled on I$ misses drops by

1.05−18×, with the larger benefits being applicable to the most commonly executed functions,

F3–F5. We measured that ∼98% of requests were steered to a core that had just executed

the same function type, demonstrating evidence for our hypothesis that function affinity

is plentiful. For F3–F5, affinity-based balancing virtually eliminates I$ misses, leading to a

1.8−2× reduction in CPU time. These functions benefit drastically because their instruction

working sets are between 20–25KB, which are easily accommodated by our CPU’s 64KB I$.

Affinity-based balancing allows F3–F5 to execute with zero I$ misses for 94% of requests.

143

Chapter 8. The Benefits of Locality-Aware Load Balancing

Despite their high number of I$ misses in the baseline, F0–F1 benefit only marginally from

affinity-based steering because their I$ misses primarily come from limited cache capacity,

not inter-function contention. We have verified this with an experiment enforcing that these

two functions execute on dedicated cores to eliminate any contention from other functions.

Even in this best-case scenario, F0–F1’s CPU times are within 3% of what we observe with

affinity-based request steering.

Aggregated across all the functions, affinity-based request steering reduces average CPU time

for the USR microservice by 8.7%. The fact that USR’s two largest functions (F0–F1) have

execution times ∼180× larger than its most popular functions (F3–F5) skews the average

downwards. In contrast, the median CPU time drops by 33% because F3–F5 comprise 70% of

total incoming requests and experience greater speedups.

Conclusions. Our evaluation above shows that even after CEREBROS shrinks a microservice’s

instruction working set via offloading the RPC stack to hardware, certain microservices still

experience function thrashing in the I$, as we argued and studied analytically in §5.2.1. In

these particular cases, we show that even a simple locality-aware load balancing policy is

sufficient to execute RPCs whose instruction working set is small enough to be I$-resident,

with zero instruction misses for the vast majority of invocations. As we have only studied a

very simple microservice in detail whose functions are trivial to separate and have very little

overlap, we believe that the applicability of affinity-based load balancing far exceeds what we

have introduced in this thesis.

8.3 Implementing Cooperative Concurrency Control

Having finished evaluating our proposed load balancing optimizations for instruction cache

locality, we turn to implement and evaluate the C-4 policy proposed in §5.4. C-4 consists

of its d-CREW load balancing support as well as a single additional software module for

write compaction (see § 5.4.1 and 5.4.2). Our implementation of C-4 requires modifications

to CEREBROS’ request assignment stage to implement enhanced load balancing, additional

message types in the NIC-software interface used to control entries in the NIC’s load balancing

tables, and software modifications for C-4’s write compaction optimization.

144

8.3 Implementing Cooperative Concurrency Control

8.3.1 NIC-Software Interface Modifications

Both mechanisms comprising C-4 require the NIC-software interface to specify whether

requests and their responses correspond to KVS reads or writes. The NIC requires such

information for the d-CREW policy, to keep track of when a given partition enters and exits

exclusive mode and update its set of partition-thread mappings. The KVS must communicate

two additional pieces of information to the NIC to enable creation of exclusive mappings: first,

how to identify the fields in the application header corresponding to the key and request type

(i.e., read or write), and second, how to transform the application’s key to a partition identifier.

The key and type field identification information (expressed as offsets and lengths within

request packets’ application-level headers), is communicated to the NIC during the NEBULA

stack’s “setup phase” where the application’s threads inform the NIC of their active queues

and packet buffers using ioctl system calls. For simplicity’s sake, we implement a proof-of-

concept system which assumes the KVS’ headers are available at fixed offsets known a priori

in the incoming RPC payload, similar to what prior work assumes [132, 139, 166]. However, if

the KVS is ported to a production-ready RPC layer with variable wire formats (e.g., Protocol

Buffers [87]), extracting the correct offsets could be done with CEREBROS’ full RPC protocol

accelerator to extract the desired fields in each RPC’s header [275].

To convert the incoming request’s key to a partition ID, C-4 assumes knowledge of the function

f () used by the KVS software to map keys into logical partitions. The granularity of partitions

implicitly dictates C-4’s load-balancing flexibility. Coarser-grained partitions create more load

imbalance as more unrelated keys are conservatively considered to be in exclusive mode [63].

C-4 chooses the f () used by the KVS software to select hash buckets, meaning that the minimal

load-balancing unit is a few tens of keys. C-4 communicates the number of buckets to the

NIC during the setup phase.

A partition mapped to a thread by C-4 can only be re-assigned after being released by the

application. We therefore modify the RPC layer so that the function for sending an RPC

response takes one more argument indicating whether the application is releasing exclusive

access. Our implementation always releases exclusive mappings upon completing a write to

maximize load-balancing opportunities; retaining mappings longer than strictly necessary to

145

Chapter 8. The Benefits of Locality-Aware Load Balancing

2

RPCs From
NeBuLa

KVS Header
Extraction

JBSQ

LLBT

Part. ID IDX
PN 0
…

TID N Reqs
T1 1 → 2
…

W1 → PNW2 → PN 1

To
NISplit

3

CAM
RAM

30b
6b 6b

Figure 8.3: Modified NIC request assignment pipelines. The shaded portions are used to
implement C-4.

potentially increase temporal item locality is an interesting future direction.

8.3.2 Instantiating Hardware Support for Write Balancing

Figure 8.3 shows how CEREBROS’ existing pipelines implement d-CREW in C-4, using the

example of two conflicting writes that pass through the load balancing stage. We implement

C-4’s set of outstanding active mappings, described in §5.3.2, with the LLBT. For C-4, we use

the CAM-matching functionality of the LLBT, where the associative search array stores active

partition IDs that are matched against incoming RPCs. In the data array, each active entry

stores the ID of the thread holding this partition in exclusive mode, and a counter tracking

how many writes are outstanding to it. When W1 arrives at the load-balancing stage (Step

1), dedicated logic extracts the KVS’ headers to determine if this request is a write, and what

partition must be looked up in the LLBT. As there is no active entry for PN , the partition is

unassigned and C-4 assigns the request to T1 using JBSQ. C-4 then allocates a new entry in

the LLBT for PN , initializing its counter value to one outstanding write, and the owner thread

to T1 (Step 2). When W2 arrives, its lookup of PN hits the LLBT and thus C-4 assigns W2 to

T1 (Step 3) and increments the outstanding write counter.

After T1 processes both writes, it releases exclusive access to PN using the RPC response

interface of §8.3.1. Each message triggers an access to the LLBT for PN to decrement the

outstanding write counter (not shown). C-4 frees the LLBT entry after W2’s response, enabling

writes to PN to be load balanced again.

146

8.3 Implementing Cooperative Concurrency Control

Figure 8.3 also shows the information stored in each field of the LLBT. We use the LLBT’s

full 30-bit tag width as the partition ID, and six bits of the data storage array for each of the

outstanding request counter and thread identifier. Such provisioning allows C-4 to support

up to 64 threads, with each partition supporting up to 64 concurrently outstanding writes.

If desired, the request counter and thread identifier widths can be increased without any

concerns for the LLBT’s cycle time or power consumption, because the LLBT contains up to

64 bits of storage in each entry. Furthermore, it is simple to match the throughput of the NIC

given that only one LLBT entry is read per cycle.

8.3.3 Software Support for Compaction

Our software implementation of write compaction is a single module residing between NEB-

ULA’s RPC layer and the KVS itself. To allow this layer to scan the incoming RPC queue for

compaction opportunities, we add an interface to NEBULA’s RPC layer allowing the caller to

apply a lambda function on each valid request in the queue, similar to BPF [181]. C-4 scans

for compactions on every incoming write request. When a compaction is detected, C-4 opens

a compaction window, records the key being compacted, and begins buffering all incoming

writes to it. Each compacted request also stores two pieces of information to allow C-4 to send

a matching RPC response when the compaction window closes: i) the request’s buffer address

and size in memory, which NEBULA’s transport layer later reclaims, and ii) the sender’s node

ID to whom the response will be sent.

To maintain the KVS’ SLO guarantees, we use the abstraction of a monotonic hardware clock

provided by most modern processors, that has a known frequency and is readable from user

mode with limited overhead [138]. For example, AMD64 provides the tsc instruction [113,

§17.17] and ARMv8 provides the architecturally visible Generic Timer [22, §D7.1.2]). Upon

opening a compaction window, C-4 snapshots the current clock value and sets the window’s

expiration time as Texp = Tcur + (SLO −1)× S̄, where we assume the SLO and service time (S̄)

are known. C-4 checks the current clock value upon each request’s completion to determine if

the compaction window must be closed. When the expiration deadline is reached, C-4 applies

the final compacted value to the data store and then creates an RPC response for each of the

buffered writes. As this operation is on the critical path of future requests, we optimized it to

147

Chapter 8. The Benefits of Locality-Aware Load Balancing

the point of being able to send a response in ∼ 150 cycles. As closing compaction windows

was not a bottleneck in our workloads, we did not need to further optimize it. We note that the

task of creating many similar NIC-software descriptors in parallel is a perfect match for SIMD

or vectorized instructions if further optimization would be needed.

8.4 Cooperative Concurrency Control in Action

We evaluate C-4 by focusing individually on the two challenging regions of the KVS workload

space described in §5.3.1, and the C-4 mechanisms introduced for each one: d-CREW for

write-dominated, uniform workloads (denoted W Iuni) and write compaction for read-write,

heavily skewed ones (denoted RWsk). Therefore, we present experiments showing the impact

of each technique on its respective region of applicability, and show that both techniques have

limited impact outside the target region.

8.4.1 Methodology

System Organization. To evaluate the impacts of C-4 on system performance, we use cycle-

accurate full-system simulation of a 64-core processor running Ubuntu Linux 18.04, using

the QFlex simulator [216]. We use the same simulation parameters as those in Table 8.2,

except we increase the core count to 64, and the DRAM organization to eight DDR4-3200

channels to match. Our high-core count CPU is representative of today’s server products such

as Intel’s Xeon Scalable [95, 170], AMD’s EPYC [94], Amazon’s Graviton [16, 266], and Huawei’s

Kunpeng [270]. C-4’s performance benefits scale with core count, because load imbalance

between workers in a queueing system increases with worker count. We expect core counts to

modestly grow in the near term with developments in chiplet manufacturing and inter-socket

interconnects.

We evaluate a NIC bandwidth up to 500Gbps, because our experiments showed C-4 was not

able to reach its CPU IOPS bound before saturating NIC bandwidth for non-minimally sized

KV items. Such per-server network bandwidth will be available in the near future, given the

current availability of 400GigE products [208] and sufficient I/O interconnect bandwidth (e.g.,

an AMD EPYC 7763 has 128× PCIe 4.0 lanes, delivering 2Tbps of I/O bandwidth).

148

8.4 Cooperative Concurrency Control in Action

KVS Software. We use the MICA in-memory KVS [166], starting from the eRPC project’s

implementation [128, commit 1bfc7ec], porting it to NEBULA and ARMv8 for simulator com-

patibility, and adding C-4’s compaction layer, requiring only 105 lines of code. All experiments

use a 64-thread instance with a 819MB dataset of 1.6M items having 16B keys and 512B values

in 1M hash buckets. We employ a workload generator which generates client requests at a

configurable arrival rate, a Zipfian popularity skew with exponent γ, and write fraction fwr ,

using a Poisson arrival process. We measure all latencies server-side using cycle-accurate

timestamps inside the simulator. Latency measurement begins when the request’s first packet

arrives at the NIC, and ends when the corresponding response’s last packet leaves the NIC.

Evaluated Configurations. We study six different system configurations to dissect C-4’s

benefits:

1. Baseline: The unmodified MICA KVS, running on the NEBULA stack and using CREW

concurrency control.

2. EREW: Same as Baseline but using EREW.

3. RLU: A modified version of MICA that uses the RLU framework [180] to provide con-

current readers and writers without read-side locking, thus representing an improved

version of CRCW. RLU uses commit-deferral with degree 16.

4. MV-RLU: An improved version of RLU that uses true multi-versioning rather RLU’s

restricted dual-versioning, granting further writer concurrency [146]. MV-RLU also

adopts the ORDO primitive to remove global logical clock contention [138] for improved

multi-core scalability.

5. d-CREW: Uses the same KVS as Baseline, and adds C-4’s requisite extensions to support

d-CREW. Targeted towards W Iuni workloads.

6. Comp: Enables C-4’s software compaction support, while keeping the static CREW

concurrency policy. Targeted towards RWsk workloads.

Performance Metrics. We evaluate C-4’s performance in terms of maximum throughput

under a 99th percentile latency SLO. We set a target tail latency of 10× the average request

service time [54, 126, 150, 223, 250]. As write compaction exposes a tradeoff between the

duration of a compaction window and the performance benefit of C-4, we also show a slightly

149

Chapter 8. The Benefits of Locality-Aware Load Balancing

0 20 40 60 80 100
Load (MRPS)

0
1
2
3
4
5

99
th

%
 L

at
en

cy
 (

s)

EREW
Baseline

RLU
Comp

d-CREW
Ideal

Figure 8.4: KVS throughput under SLO with uniform key popularity and fwr = 50%. The
vertical axis terminates at the KVS’ SLO.

relaxed 20× SLO in the results for write compaction (see §8.4.3).

8.4.2 Dynamic Write Partitioning

We begin by evaluating the tail latency benefits of C-4’s d-CREW policy. Figure 8.4 compares

all of §8.4.1’s system configurations, except for MV-RLU, using a W Iuni workload with uniform

key popularity and fwr = 50%. We also plot baseline CREW with a read-only workload, labelled

“Ideal” due to its maximal load balancing flexibility and zero software synchronization.

Only d-CREW closely tracks Ideal up to 91MRPS, because it provides the greatest load-

balancing flexibility, only falling back to the baseline’s behaviour if there is a true write-write

conflict. In contrast, all other systems incur excess queueing as load increases. RLU can only

support 10MRPS under a tight 10× SLO, due to its costly commit process to write-back logged

values – writes that promote logs run for 10–20µs despite RLU’s commit deferral, inducing

deep queues that lead to SLO violations. EREW fares better, delivering 76MRPS under SLO,

but only reaches 80% of Ideal’s throughput because it lacks load-balancing support. Although

EREW eschews all software synchronization, static partitioning results in excess queueing and

suboptimal performance compared to the systems supporting load balancing.

Our results confirm the intuition that write compaction is ineffective for W Iuni workloads.

In fact, Comp performs 4MRPS worse than the baseline, because each thread incurs the

additional cost of scanning its request queue for potential writes to compact, which is usually

150

8.4 Cooperative Concurrency Control in Action

0 20 40 60 80 100
Load (MRPS)

10 1

100

101

102

103

99
th

%
 L

at
en

cy
 (

s)
10x SLO

EREW
Baseline

RLU
MV-RLU

d-CREW
Ideal

Figure 8.5: KVS throughput under relaxed SLO, using the same workload as Figure 8.4.

fruitless in W Iuni workloads. Such overheads grow at high loads—seen as a widening gap

between Comp and Baseline (CREW)—due to more entries to scan in deeper queues. The best-

performing systems, CREW and d-CREW, achieve the same throughput under SLO (91MRPS),

with d-CREW achieving a 1.3× 99th% latency reduction compared to CREW, by relaxing

unnecessary queueing—essentially approaching the superior queueing model of an Ideal

system without the associated costs of software synchronization. Our simulations closely track

the expectations set by our queuing model in §5.3.2.

To better compare the systems using multi-versioning to those that do not, Figure 8.5 shows

the same results as before, substituting MV-RLU for Comp. We run the same workload as

Figure 8.4, and show both a tight SLO of 10× MICA’s average service time, and a relaxed SLO

of 100µs. Note the logarithmic y-axis increases the highest latency shown to two orders of

magnitude larger than Figure 8.4. MV-RLU cannot even meet the tight SLO at 4MRPS because

its process to clean up versions involves long version chain traversals, and complex garbage

collection algorithms using watermarks. However, the true multi-versioning in MV-RLU shows

benefits when a relaxed SLO is acceptable, providing a 2.5× performance increase over RLU.

We measured that the KVS deployments using the RLU and MV-RLU versioning techniques

exhibit mean latencies that are 1.36× and 1.58× higher than the non-versioned baselines.

Therefore, the best performance that can be expected for software optimizations that address

the long-tail events during version cleanup would be between 56-66MRPS. Our experience

porting and studying a KVS with these frameworks indicates that the common impediment for

151

Chapter 8. The Benefits of Locality-Aware Load Balancing

0 20 40 60 80 100
Load (MRPS)

0
1
2
3
4
5

99
th

%
 L

at
en

cy
 (

s)

EREW
Ideal

Base: 50%
Base: 85%

d-CREW: 50%
d-CREW: 85%

Figure 8.6: Comparison of KVS throughput under SLO with varied fwr , using uniform key
popularity.

both techniques is simply the software overhead of version management, which is also in line

with observations from the original authors of these frameworks. For example, RLU’s designers

show that the software overheads of object duplication upon writing to a hash table leads to a

2× performance overhead compared to a non-duplicating implementation [180, §4.4], and

therefore such techniques primarily grant benefit when it is possible to increase concurrency

for read-mostly workloads. We conclude that for write-intensive KV workloads, it is unlikely

that such techniques can close the 3× performance gap even to the EREW baseline, which

widens to 3.6× for d-CREW.

Increased Write Fractions. Figure 8.6 shows the throughput under SLO of the baseline (CREW)

and d-CREW systems, with a W Iuni workload as fwr increases from 50% to 85%. We show

a single line for EREW because it is insensitive to the workload’s fwr . As we predicted using

our queueing simulator (see §5.3.2), the baseline policy’s load-balancing potential diminishes

with greater fwr , approaching EREW and translating to increased 99th% latency and reduced

throughput under SLO.

In contrast, d-CREW’s benefits increase with higher fwr : for 85% writes, baseline CREW cannot

balance the vast majority of the requests, leading to a reduced peak throughput of 83MRPS

and 5× higher 99th% latency compared to Ideal. These results also closely track our queueing

model, which predicts 4.5× excess 99th% compared to Ideal, and a corresponding throughput

loss of 9%. In contrast, d-CREW nearly matches Ideal’s performance until its CPU saturation

152

8.4 Cooperative Concurrency Control in Action

0 20 40 60 80 100 120 140
Load (MRPS)

0
2
4
6
8

10
12

99
th

%
 L

at
en

cy
 (

s)

10x SLO

20x SLO

Baseline Comp

(a) Throughput under SLO.

0 20 40 60 80 100 120 140
Load (MRPS)

0

250

500

750

1000

Av
g.

 S
er

vi
ce

 T
im

e
(n

s) Baseline Comp

(b) Hottest thread’s average service times.

Figure 8.7: System performance comparison for a RWsk workload with γ= 1.25 and fwr = 5%.

point. Overall, d-CREW provides 87MRPS under SLO compared to CREW’s 83MRPS, and 3.1×
lower 99th% latency at a higher absolute load. Under a load of 90MRPS, the Locality-Aware

Load Balancing Table (LLBT) has an average of 30 active entries with fwr = 50% and 52 with

fwr = 85%, confirming our simple estimate in §8.3.2 for the LLBT’s limited size. We measured

a maximum LLBT size of 64 and 90 for fwr = 50% and 85%, respectively.

8.4.3 Software Write Compaction

We now evaluate C-4’s write compaction support, targeting RWsk workloads. Figure 8.7 com-

pares baseline CREW and C-4 with write compaction enabled, for a highly skewed workload

with γ= 1.25 and 5% writes. Despite the workload being read-dominated, Figure 8.7a shows

that the baseline saturates at 76MRPS, because a single thread is overloaded by writes to a

single partition. In contrast, with write compaction, C-4 scales to 125MRPS under a 10× SLO,

and 142MRPS with a relaxed 20× SLO.

To further explain these performance gains, Figure 8.7b plots the average on-core service

time of requests assigned to the hottest thread. As load increases, the baseline’s service time

grows exponentially because of increased time to access cache lines for the partition’s version

number and corresponding data. At 76MRPS, the hottest thread’s service time increases by

2.4× to 908ns, and remains roughly constant beyond 80MRPS because the network stack’s

flow control mechanism begins rejecting incoming requests as the KVS saturates. The same

trend also occurs for the rest of the threads, whose average service time grows by 1.6× because

the KVS’ hottest items are repeatedly invalidated from their L1 caches due to frequent writes.

153

Chapter 8. The Benefits of Locality-Aware Load Balancing

0 20 40 60
Thread Rank

0.0
0.5
1.0
1.5
2.0
2.5

Th
ro

ug
hp

ut
 (M

RP
S)

Baseline Comp

0.5
0.6
0.7
0.8
0.9

Ut
iliz

at
io

n

Figure 8.8: Per-thread throughput, using the same RWsk workload as previously (γ= 1.25, fwr

= 5%).

In contrast, C-4’s write compaction policy inverts the aforementioned trend: as load increases,

the hottest thread’s service time decreases because it directly mitigates the overheads as-

sociated with contention between the single writer and multiple readers. Beyond 40MRPS,

Figure 8.7b shows that the hottest thread begins to open compaction windows and effectively

batch writes, resulting in an average service time reduction. Therefore, lock and cache line

contention does not increase despite higher offered load, reaching a minimum service time

of 243ns. To compare these results to our compaction performance model in Equation (5.2),

we measured a 3.7× service time reduction for the hottest thread with write compaction,

where our model predicts 3.9×. We attribute the difference to software overheads in managing

compaction window metadata, such as reading the hardware system timer and checking on

each request for an impending SLO violation.

Finally, Figure 8.8 compares the throughput and core utilization for a subset of the KVS threads,

sorted by decreasing throughput, taken at 76MRPS for the baseline and 125MRPS for C-4.2

In the baseline system, both throughput and utilization are roughly uniform across threads,

with all threads except the overloaded writer attaining ∼ 1.28MRPS. The overloaded writer

(Figure 8.8’s rightmost data point) attains < 1MRPS at near-maximal utilization due to its

inflated service times (see Figure 8.7b).

With C-4, both reader and writer threads attain drastically higher throughput. The 3.7× service

time reduction for the hottest thread translates to lower relative utilization, in contrast to

2We show a subset of the threads for readability. Omitted threads fall between the displayed points.

154

8.4 Cooperative Concurrency Control in Action

0 20 40 60 80 100 120
Load (MRPS)

0
2
4
6
8

10
12

99
th

%
 L

at
en

cy
 (

s)

10x SLO

20x SLO

Baseline Comp

Figure 8.9: Performance for RWsk with γ= 0.99, fwr = 50%.

the baseline where only the hottest thread utilizes its core while others are idle. This trend is

visible by comparing the utilization of the hottest writer thread in Figure 8.8. With compaction

enabled, the hottest writer’s throughput improves from 0.92MRPS to 1.66MRPS and sees its

utilization fall to 47% even at higher system load, because it handles writes more efficiently.

Other threads with ranks between 55–63 show the same trend in C-4: rapid write compaction

creates idle periods where other requests could be handled.

We verified that C-4 saturates not because of write overload, but due to reads saturating the

threads in Figure 8.8, which are already serving > 2.3MRPS and operating near 100% utilization.

Therefore, our implementation could scale to modestly higher throughput by harvesting the

extra cycles made available by C-4’s write skew absorption via compaction. Modifications to

the underlying NEBULA stack for such purposes are possible, but we leave such optimizations

for future work.

Figure 8.9 evaluates a workload with γ= 0.99 and 50% writes, used by prior work [123,165,166]

due to its challenging nature. Due to less cache-resident hot data, the baseline only attains

56MRPS under SLO, compared to 76MRPS in Figure 8.7a. However, the single overloaded

writer thread is the bottleneck for both workloads. In contrast, C-4 attains 58MRPS under

an identical 10× SLO, and 100MRPS under a 20× SLO. C-4’s drastic jump in tail latency

beyond 10MRPS is because compaction events immediately form the 99th% of this workload.

However, increasing load from 20MRPS to 80MRPS only causes the 99th% to increase by

∼ 300ns, indicating that the compaction windows at lower load are often opened but collect

155

Chapter 8. The Benefits of Locality-Aware Load Balancing

very few writes. This behavior is an artifact of our implementation, which only closes a window

upon an impending SLO violation; a software modification to close compaction windows early

under low load would resolve the early jump in 99th% latency.

8.4.4 Sensitivity Analysis

Finally, we evaluate the impact of varying MICA’s key and value sizes on the performance

of C-4’s write compaction. We compare our previous results using the same workload in

Figures 8.7 and 8.8, to a workload with the same
(
γ, fwr

)
using 8B/8B KV pairs (called Tiny)

and one using 16B/128B pairs (Medium). In all workloads, we scaled the number of KV pairs

to keep the same total dataset size, so that the same overall data fraction is cache-resident.

Table 8.3 compares the CREW baseline and C-4 in terms of maximum throughput under 10×
SLO, as well as the speedups of the KVS’ hottest compacting thread and the remaining threads.

As the item size shrinks, the baseline system’s performance increases by 1.8× for Medium and

3.5× for Tiny items, because threads spend less time per request accessing data. C-4 benefits

from these service time reductions to a lesser degree (e.g., by 1.5× for Medium items) because

threads only write the underlying data structure once per compaction window, and compact

all other requests locally, which is less sensitive to item size.

The hottest-thread speedup granted by C-4 drops with smaller KV pairs, as the baseline

system’s service times approach the latency of appending writes to an open compaction

window. As the speedup granted to the hottest thread reduces, the impact on readers becomes

the critical performance driver. The hottest thread only attains 1.1× speedup with Tiny items

because our compaction implementation trades off increased compute latency for reduced

coherence activity. Compaction has higher compute requirements because it requires many

instructions to create the requisite metadata and compact its private logs, whereas the baseline

can write a single 8B KV item with a single store instruction. In summary, C-4 provides robust

throughput benefits across item sizes, improving throughput under SLO by 1.4× and 1.33× for

Tiny and Medium items, respectively.

Conclusions. Our evaluation shows that despite the necessity of limiting synchronization

events through partitioning writes to KVS, it is possible to attain nearly optimal tail latency by

156

8.5 Chapter Summary

Tput. @ SLO (MRPS) Thread Speedup

Key/Value Sizes (B) Base Comp Hottest Others
8/8 (Tiny) 266 363 1.1× 1.3×

16/128 (Med) 142 190 1.3× 1.3×
16/512 (Lg) 76 125 1.6× 1.6×

Table 8.3: Impact of item size on write compaction.

leveraging runtime knowledge of which KVS partitions are being actively updated. Further-

more, even when true write conflicts are frequent, simple software optimizations are possible

to drastically boost throughput while maintaining strong consistency guarantees.

8.5 Chapter Summary

Enhancing NIC-driven load balancing algorithms with application-level metrics has proved

to be a fruitful direction. In this chapter, we have shown that adding a TLB-sized table

to a NIC’s load balancing stages is sufficient to realize dramatic improvements in server

throughput while maintaining tail latency. Specifically, when a microservice’s functions

result in I$ thrashing, affinity-based load balancing reduces instruction stalls by up to 18×,

improving the performance of the function’s µs-scale RPCs by up to 2×. Similarly, when a KVS

microservice is exposed to a write-heavy workload, C-4 reduces 99th% latency by up to 5×
and improves throughput by up to 1.7×. We believe that such policies are ideal for inclusion in

next-generation server NICs to increase their effectiveness in handling emerging microservice

workloads.

157

Part IIIRelated and Future Work

159

9 Related Work

In this chapter, we discuss the rich field of related work that this thesis either improves upon,

or is inspired by. The chapter is organized by contribution: §9.1 discusses other works that

progress towards cache-resident RPC traffic, §9.2 touches on design and implementation

tradeoffs for RPC protocol acceleration, and §9.3 covers locality-based load balancing.

9.1 Towards Cache-Resident Network Traffic

9.1.1 Leaky DMA and Bandwidth Interference

ResQ [256] encounters the “leaky DMA” problem, which is similar to the bandwidth inter-

ference problem we study. ResQ’s authors observe that when deploying co-located NFV

workloads using DPDK, the LLC space required by DDIO exceeds its default limit, and memory

traffic multiplies. ResQ ameliorates memory traffic by statically limiting DPDK’s buffer alloca-

tion to 10% of the LLC. In contrast, our work establishes a mathematical bound on the number

of required buffers, based on queueing theory. While we share the intuition that limiting out-

standing buffers can reduce excessive memory traffic, NEBULA targets hardware-terminated

transports and demonstrates that mere KBs of buffering space are sufficient to handle µs-scale

RPCs. NEBULA also maintains inter-core load balancing, a factor beyond ResQ’s scope.

The leaky DMA problem is also observed in the context of the Shenango runtime scheduler

for latency-sensitive datacenter workloads [212]. Shenango foregoes zero-copy I/O to hand

161

Chapter 9. Related Work

buffers back to the NIC as soon as possible, increasing LLC reuse by DDIO. In contrast, NEBULA

maintains zero-copy I/O, because we find that all useful packet buffers can be accommodated

in the LLC when operating under a tight SLO.

Disk|Crypt|Net [177] makes the observation that the asynchronous design of Netflix’ special-

ized I/O stack results in file pages and encryption/socket buffers thrashing a server’s LLC,

leading to excessive memory bandwidth and high CPU utilization. Their solution, Atlas, is a

software pipeline which improves LLC reuse by performing disk I/O, encryption, and network

I/O synchronously. Our work operates in a similar regime where network I/O activity creates

excessive memory bandwidth, particularly with high connection counts, but we focus on

latency-critical µs-scale RPCs rather than streaming traffic that is primarily concerned with

throughput.

Characterizing and Optimizing Intel DDIO

The rapid growth of NIC bandwidth has resulted in many research works that characterize,

reverse-engineer, and propose optimizations to Intel’s DDIO technology. Multiple published

works from Farshin et al. have studied Intel DDIO in depth in the context of optimizing

low-latency networked applications (e.g., software NFV) [75–77]. CacheDirector [76] improves

RPC latency by modifying DDIO to steer the header of each network packet into the LLC tile

closest to the core that will process the packet. We go further by steering the whole packet

all the way into the core’s L1 cache. In the past, placing network data in L1 caches has been

avoided due to pollution concerns, which NEBULA addresses by steering only a single RPC at

a time.

Additionally, they closely study DDIO platforms and identify a similar problem to NEBULA –

that application code and/or data can conflict with incoming network traffic placed in the

server LLC by DDIO [77].1 We distinguish our ideas in three ways. First, their discussion is

primarily in the context of minimizing dropped packets, and maximizing achievable network

throughput. Second, we remark that the two works differ in their system design assumptions.

NEBULA considers a system unrestricted by existing DDIO implementation details, where the

1We note that NEBULA and their work appearing in the 2020 Usenix Annual Technical Conference are concurrent
publications, with NEBULA appearing just one month earlier.

162

9.1 Towards Cache-Resident Network Traffic

NIC can make use of the entire LLC in a general fashion, where their design targets improved

performance on today’s platforms.

Third, their work argues that statically limiting the amount of network buffering state is not a

scalable solution to future NIC rates, because the amount of buffering needs to cover delays

in incoming packet processing. The authors of IAT arrive at the same conclusion after their

study of DDIO, attributing the throughput losses observed when shrinking NIC RX buffers to

application-level tail events and load imbalance between cores [273]. Although our insight

that an application’s SLO allows queue depths to be statically limited seems to be in direct

contradiction with their work, the reconciling factor becomes clear when considering that our

work is concerned with hardware-terminated protocols. Using a hardware-terminated stack

implies that packet processing delays are extremely limited in duration (e.g., a few tens of ns if

RPC buffers happen to experience a longer-latency cache access), and our work does indeed

provision enough buffer state to cover not just protocol delays, but also application tail-events

(see §4.2.1).

A follow-up work from Farshin et al. proposes PacketMill, a deeply optimized software packet

processing stack that identifies packet copying and type conversion in between the DPDK

and user-level packet representations (e.g., in the Click framework) as a critical source of

inefficiency [75]. Their proposed solution, X-Change, embeds packet modification and type

conversion functions directly into the DPDK stack, eliminating copies and thus increasing

application-level cache locality. X-Change is largely orthogonal to our work, because it op-

erates at the API between the software-driven transport protocol (e.g., DPDK or Linux) and

the application-layer framework for software NFV. A combination of NEBULA and X-Change

would simultaneously allow L1 cache residency and the capability to deliver packets directly

to NFV applications with no copying or conversion.

9.1.2 RPC Scalability Over Connected Transports

HERD [129], FaSST [131] and FaRM [65] all propose optimizations in order to alleviate the scal-

ability issues of InfiniBand’s connected transports. FaSST uses solely unconnected datagram

transports to reduce the number of Queue Pairs that must be cached in the NIC [131], while

163

Chapter 9. Related Work

FaRM accepts the inherent performance loss of some connection sharing [65]. Storm [201]

shows that at rack scale (i.e., up to 64 nodes), the newest generation of ConnectX-5 NICs

have significantly improved in scalability, and hence designs a transaction API prioritizing

RDMA operations which require connected transport. Our work targets datacenter-scale

deployments and applies to any software with µs-scale RPCs.

eRPC [132] improves buffer scalability by using multi-packet receive queue descriptors in-

troduced in Mellanox ConnectX-4 NICs. These descriptors keep NIC-resident state con-

stant with the number of connected nodes. However, eRPC’s server-side buffering state still

scales with the number of connections, as it allocates memory for each pair of connected

threads [132, §3.1]. We show that although server memory is plentiful, µs-scale RPCs require

buffers to be kept to LLC-resident sizes in order to avoid memory bandwidth interference and

meet tight SLOs.

The problem of transport protocol state overflowing beyond a particular memory size has

also been observed by Eran et al. in the process of building a driver for network-attached

accelerators [69]. Limited on-chip storage state for accelerators is particularly problematic,

because provisioning more memory requires the architect to trade off chip space that would

be used for enhancing the accelerator’s compute capability. FlexDriver specifically targets

the amount of on-chip storage required to store transmit/receive buffers and metadata rings,

and leverages the insight that the accelerator’s network driver can store that metadata in

a compressed, internal representation which is different from what the NIC’s vendor has

defined [69, §5.2]. The insights presented in FlexDriver are largely orthogonal to NEBULA,

because our baseline NIC model shares its virtual memory with the host server and virtualizes

all its transport protocol queues in that memory. On the contrary, the FlexDriver model

operates in a regime where each accelerator possesses its own NIC-invisible SRAM. One could

in principle design a server where NEBULA operates between the NIC and CPU cores, and

FlexDriver operates between the same NIC and PCIe-attached accelerators.

164

9.1 Towards Cache-Resident Network Traffic

9.1.3 Network-Compute Co-designs

The importance of KVS in datacenters has resulted in multiple proposals for KVS-optimized

hardware [165, 167]. SABRes [55] leverages coherent on-chip NIC integration to introduce a

NIC extension for atomic remote object access, alleviating versioning overheads using one-

sided RDMA reads for low latency. Li et al. [165] study MICA’s performance characteristics and

propose a bespoke CPU for KVS whose parameters we adopt as our simulation baseline. Their

work also observes the primacy of in-LLC buffer management, and empirically sizes the LLC

based on simulation to minimize miss rate. They do not observe the same DRAM bandwidth

contention as we do, because their use of UDP means the amount of network state in their

system would not scale with the number of communicating servers [166]. Achieving similar

throughput with an order of magnitude lower latency, as we attempt to do, requires hardware-

terminated network stacks and brings back the challenge of scaling dedicated per-endpoint

state. NEBULA therefore begins with a hardware-terminated protocol, and demonstrates that

packet buffering state should be sized based on SLO rather than system scale.

At the time of writing, Google’s 1RMA [244] is the most similar published work to NEBULA.

The designers of 1RMA wish to deploy their datacenter-scale storage and data serving systems

on top of a hardware-terminated transport protocol like RDMA, and realize as we do that

scalability to thousands of connected nodes is a critical problem for such transports. Among

other design features (e.g., encryption and co-designed congestion control), 1RMA ensures

< 50µs transfer latency using a nearly identical fail-fast approach to NEBULA. Both systems use

server-generated NACKs that are returned to the client in the case of excess queueing, allowing

them to react via arbitrary policies (e.g., retry after exponential backoff) [244, §4.1]. We

differentiate our contributions by noting that 1RMA focuses on remote memory reads/writes

rather than RPCs, meaning that the concept of an SLO is not a primary concern in their work.

Therefore, the concept of an acceptable queue length is not explicitly defined – the authors

of 1RMA focus on network fabric RTT rather than end-to-end application time [244, §6]. In

NEBULA, we define a server’s acceptable queue length based on its application-level SLO,

because we focus on RPCs rather than one-sided RDMA-like remote memory operations.

We note that 1RMA and NEBULA are concurrent publications, with NEBULA appearing for

publication in June 2020 and 1RMA in August 2020.

165

Chapter 9. Related Work

NanoTransport [23] implements a transport protocol for low-latency message-based RPCs,

using programmable NICs supporting the P4 language [38]. Their implementation of the

Homa and NDP RPC transports require reassembly and buffer management modules, which

are achieved in extremely similar fashion to NEBULA. We take their work as further evidence

that implementations of RPC reassembly and buffer management are feasible to accomplish

in dedicated hardware.

Daglis et al. [53] studied the on-chip latency implications of the VIA/RDMA network pro-

gramming model [66], and proposed NIC decomposition and passing messages between NIC

components to avoid multi-hop coherence interactions. We have similar insights regarding

the on-chip data path of RPC payloads under µs-scale SLOs, and propose a solution that

uses the NIC’s role in RPC dispatch to accurately prefetch payloads without cache coherence

modifications.

9.1.4 Latency-optimized Systems Software

The need for low latency has led systems designers to aggressively limit queueing in the

transport and RPC protocol stacks themselves [10, 147]. Kogias et al. [147] also observe that

limiting server-side queueing is critical for µs-scale RPCs, and use TCP flow control to limit

the number of requests per connection based on the application’s SLO. Breakwater [49] shares

much of its motivation and design with NEBULA, because it targets overload control for

systems handling µs-scale RPCs with thousands of communicating clients, and employs

Active Queue Management (AQM) to drop requests that would incur excessive server-side

queueing.2 The critical difference from NEBULA is that Breakwater employs a credit-based

RPC flow control scheme where the server explicitly issues grants to RPC clients, similar to

emerging schemes for congestion control [193, 211], and dropping requests based on AQM is

the fallback rather than the primary mechanism. Breakwater’s authors primarily avoid AQM

because of the resulting server-side overheads in software-terminated protocols [49, §2.2].

Since NEBULA performs buffer management for hardware- rather than software-terminated

protocols, it is feasible to use AQM as a primary mechanism for admission control, eliminating

2As before with 1RMA, we note that NEBULA and Breakwater were concurrent publications, with NEBULA

appearing publicly in June 2020 and Breakwater in November 2020.

166

9.1 Towards Cache-Resident Network Traffic

the need for per-endpoint RPC flow control as a side effect.

Thomas et al. [254] observe that at 100Gbps+, packet inter-arrival times drop below DRAM

latency, and that applications performing memory accesses will inevitably backpressure the

NIC and lead to dropped packets. They propose CacheBuilder, a slab allocator using Intel

cache partitioning technology [145] to guarantee the application’s dataset is LLC- rather

than memory-resident. CacheBuilder therefore only benefits applications with LLC-resident

datasets, whereas NEBULA considers SLO-constrained applications with memory-resident

datasets.

9.1.5 Hardware Support for Packet Placement

Other Approaches to Steer RPC Payloads

NEBULA employs a prefetch hint mechanism to steer the payload of an incoming RPC to

its target core. Payload prefetches differ from regular cache accesses that are triggered by

front-side demand accesses, because they are initiated by the cache itself. Our work chooses

to use prefetch hints because payload prefetches can be transformed into regular front-side

initiated operations, keeping both the cache controllers and coherence protocol unmodi-

fied. Intel’s DCA mechanism also leverages prefetch hints to load data into the LLC [151].

Other mechanisms such as direct injection (which is used by DDIO’s write-allocate/update

policy [119]) and Curious Caching [48] have been proposed to support back-side initiated

operations. NEBULA could be trivially adapted to use these mechanisms if supported by the

cache controller, because every step after NEBULA communicates the incoming RPC’s payload

address and size to the NIC FE uses the existing cache hierarchy.

The NanoPU is a recent full-system proposal which goes one step further than NEBULA,

arguing that RPC traffic should transit dedicated on-chip wires into the CPU cores’ register files,

rather than the existing on-chip network and the L1 caches [108]. Assuming a system where

such radical changes to CPU microarchitecture are desirable, the authors themselves write that

such changes are most beneficial to applications with nanoseconds of on-CPU time [108, §4].

NEBULA instead chooses to maintain traditional CPU and cache microarchitecture, re-using

existing resources and lowering implementation complexity. Under the assumption of further

167

Chapter 9. Related Work

software decomposition to nanosecond-level RPCs, we believe the destination of RPC traffic is

an interesting question to revisit, particularly in the context of large server chips with hundreds

of cores where on-chip network diameter is of primary importance [174].

Network Packet Decomposition

In our work, we only consider RPCs whose payloads will be either partially or fully accessed

by the CPU cores that run them. However, multiple concurrent works have observed that a

second class of applications exists that only transform a packet’s header metadata and leave

the payload untouched [88, 219, 235]. Therefore, it is possible to decompose an RPC into

its header and data, and have the NIC treat them differently. For example, NFSlicer [235]

and nmNFV [219] both propose packet decomposition for NFV workloads which exclusively

operate on headers. In their designs, the NIC forwards the packet’s header to the CPU cores

and keeps the payload in its own dedicated off-chip memory, which is then re-spliced with

the modified header after the CPU completes the NFV task. PayloadPark proposes a similar

approach but uses programmable switch logic instead of SmartNICs [88].

Our work is orthogonal to such approaches, and we expect the two would have an additive

effect. In particular, NEBULA’s NIC-to-core steering would still reduce the latency of header

processing by virtually ensuring an NFV applications’ memory accesses hit the L1 cache.

Such approaches based on “packet slicing and splicing” [235] would most clearly benefit

microservices in the business logic tier of an online service, because we have observed that

many of these microservices simply receive and create new RPCs, placing them in the category

of applications that only process RPC headers.

9.2 RPC Framework and Hardware Enhancements

9.2.1 Other Systems Targeting RPC Acceleration

The prevalence of RPC-connected microservices in the datacenter has led to a plethora of

proposals to use production NICs, equipped with FPGAs or their own CPU cores, to accelerate

application-level tasks such as the RPC layer. Dagger [160] is the only other work we are aware

of which proposes to offload the full RPC layer to hardware. They target the integrated FPGA

168

9.2 RPC Framework and Hardware Enhancements

in an Intel Broadwell platform and build a customized RPC layer inspired by the Thrift [19]

software stack. Similarly, NICA proposes a programming model and runtime to accelerate

application-level tasks on FPGA-enhanced NICs [70], citing message (de)serialization as a

potential application. Neither Dagger nor NICA currently supports the underlying modules

of production RPC layers we describe in §7.2, because they lack support for the header and

payload manipulation modules in production Thrift [160, §4.5]. Dagger and NICA share our

use of hardware-terminated transport protocols, but still leave header/payload manipulation

(and therefore RPC dispatch) to the host CPU.

Adding support for manipulation tasks to designs based on commodity NICs would require

co-design with the host’s DMA engine, because common-case objects cannot be deserialized

on the NIC and then DMA’ed to the host without rewriting all the object’s pointers. Although it

may be possible to realize such a design in the future, as argued by Wolnikowski et al. [268]

and Raghavan et al. [225], the hardware required will likely be similar to CEREBROS, and

therefore we believe an on-chip design is more logical. Additionally, executing the RPC stack

on FPGA-enhanced NICs will inevitably incur the overhead of transferring objects between

the FPGA accelerator and the host’s CPU cores. Dagger and NICA contain a highly customized

communication stack to transfer objects while minimizing the latency of the FPGA-to-host

interconnect—another form of offload overhead that CEREBROS does not incur due to its use

of an on-chip NIC.

Due to the prevalence of data (de)serialization frameworks in hyperscale datacenters [87, 133],

Google has recently open-sourced the implementation of a hardware accelerator for Proto-

col Buffers [136].3 There are two key differences between their design proposal and what

we achieve with CEREBROS. First, their design specifically targets the header and payload

manipulation modules of the RPC stack, similar to the RPA design of Optimus Prime [275],

leaving the dispatch module to the CPU. They justify their work by claiming that in Google’s

entire server fleet, “we find that only 16.3% of deserialization cycles are from the RPC stack

and only 35.2% of serialization cycles are from the RPC stack. This challenges the common

assumption that a protobuf accelerator should be placed on a PCIe-attached NIC. Instead,

3Note that their work and CEREBROS were concurrently published papers, appearing in the exact same confer-
ence (MICRO’21).

169

Chapter 9. Related Work

it is clear that other serialization and deserialization users (e.g. storage users) must be ac-

counted for when deciding where to place a protobuf accelerator in the system” [136, §3.4].

However, such a system design creates inefficiencies for RPC use-cases, because it assumes

that the server’s transport protocol endpoints are at the CPU cores, regardless of whether

the transport is software- or hardware-terminated. Therefore, locality-aware load balancing

becomes implausible for µs-scale RPCs.

Although purely transport-level load balancing can be implemented over RPC-oriented proto-

cols such as Homa [193, 213] or Snap [178], locality-aware load balancing can only take action

after the RPC’s de-serialized fields are already known. Hence, the workflow of incoming RPCs

would proceed as follows: (1) RPCs arrive at the NIC, and are load-balanced at the transport

level. (2) After the chosen CPU core receives the RPC and de-serializes the header, it can

choose to implement locality-aware load balancing in software or with further hardware. (3)

Potentially, the RPC must now be assigned to a different core based on the chosen policy.

Whenever Step (3) takes place, the RPC is handled inefficiently because of the additional

overhead required to shuffle requests between cores, as well as the fact that the core which

received the transport-level message has its L1 cache polluted by RPC payload data which

it will never actually consume. In contrast, we argue that RPC-centric server architectures

should handle such tasks transparently, with a fully NIC-interfaced RPA. Our design supports

both locality-aware load balancing and NEBULA’s support for steering RPC payloads to the

L1 caches of the cores which will actually process the RPCs, rather than relying on request

reassignment between cores.

Customized RPC frameworks such as Cap’n Proto [143] or FlatBuffers [86] use a pre-flattened

RPC message format, which inherently removes the aforementioned challenges with pointer-

based objects. However, such frameworks sacrifice object mutability, generate larger wire-

format objects, and experience higher latencies during costly object creation [225]. We believe

these trade-offs are particularly burdensome for microservices with many nested RPCs be-

cause message objects are often modified on every nested call. CEREBROS can even benefit

such frameworks by accelerating header parsing and with locality-aware load balancing.

Optimus Prime [275] introduces a data transformation accelerator (DTA) to perform RPC

170

9.2 RPC Framework and Hardware Enhancements

payload manipulation at rates matching a high-end server NIC. CEREBROS builds on Optimus

Prime’s DTA architecture and transformation schema to perform both payload and header

manipulation, and shows that a further 23× reduction in RPC processing time is possible

compared to merely targeting payload manipulation. CEREBROS also performs dispatch in

hardware, thus eliminating CPU involvement altogether.

9.2.2 Reducing CPU-Accelerator Control Overhead

The work which is most closely related to CEREBROS’ need to limit RPC offload overheads

is a recent proposal for “autonomous NIC offloads” by Pismenny et al. [218]. Their work

is motivated by the fact that even though today’s NICs contain support to offload specific

transport processing operations (e.g., Large Segment and Large Receive Offloads for TCP), it

is not possible to offload L5 protocol operations to NICs without performing the entire L4

transport protocol on the NIC as well. Implementing commodity protocol stacks like TCP or

UDP on fixed-function hardware has generally been rejected for security and debuggability

reasons [253], and therefore NICs are prohibited by design from integrating offloads for

L5 protocol functionality. Our work in this thesis targets a different deployment scope –

where the latency-critical nature of datacenter applications makes it feasible to offload the

transport protocol to dedicated hardware. We note that such hardware-offloaded protocols

have already reached production deployments [44, 93, 244]. Additionally, we note that the

production RPC stacks we studied do not meet the requirements for autonomous offload.

In particular, they require that L5 protocol operations never add or remove bytes from the

transport stream [218, §3.1], which is not true for RPC stacks that use variable sized integer

coding, field repetition, and optional values.

Shao et al. have observed that data movement between CPUs and accelerators limits per-

formance, and propose optimizations to pipeline data transfers with computation [240].

Although such techniques could reduce some of the offload overhead we identify, they cannot

eliminate it due to the complex pointer dependencies inherent to the messages in production

RPC formats. M3-X provides support for accelerators to access OS services and communicate

with rescheduled threads [24]. Systems such as Morpheus-SSD [258], GPUfs [241], and NVIDIA

GPUDirect [205] address performance losses arising from CPU-mediated transfers between

171

Chapter 9. Related Work

peripherals, and all use peer-to-peer DMA to eliminate CPU time spent moving data through

system memory. CEREBROS shares the motivation of removing the CPU from the accelerator’s

path of work, but operates at nanosecond timescales instead of milliseconds.

9.3 Application-Aware Load Balancing

9.3.1 Instruction Supply in Servers

The instruction supply problem is both well known and deeply studied for server workloads [6,

142]. Due to the drastic performance improvements available, a plethora of microarchitectural

solutions exist to address instruction supply bottlenecks [18, 79, 140, 141, 154, 155, 226]. All of

these purely hardware-based solutions share a common mechanism: storing and accessing

prefetching metadata. For microservices with many functions or large working sets, the

required metadata to cover their misses will outgrow the CPU’s storage capacity and reduce

coverage.

In §5.2.1, we argued that function state can thrash more than just the core’s L1 I$, but also the

prefetching metadata (e.g., the BTB in case of Boomerang and Shotgun) [154, 155]. Deploying

affinity-based load balancing in the presence of an advanced prefetching proposal would actu-

ally increase the prefetcher’s effectiveness when the CPU handles microservice deployments

whose characteristics are sufficient to cause function thrashing. For example, Schall et al.

propose Jukebox, a record-and-replay prefetcher for the instructions of lukewarm serverless

functions [236]. Affinity-based load balancing would increase Jukebox’ effectiveness because

the prefetcher needs to fetch fewer overall cache lines, and thus can look further ahead into

the anticipated future instruction fetch stream.

In contrast to purely hardware-oriented solutions for improved instruction supply, profile-

guided solutions such as AsmDB [27] and I-SPY [144] trade off changing server microarchitec-

ture with the need to collect and analyze datacenter-wide traces. Our work on affinity-based

load balancing is done completely online and does not require datacenter-wide profiling or

application recompilation.

172

9.3 Application-Aware Load Balancing

9.3.2 Task Scheduling for Cache Affinity

Significant prior work has studied the possibility of scheduling system tasks based on their

cache footprints. For example, Squillante and Lazowska’s seminal work proposes six different

practical scheduling policies to increase cache affinity [245]. Their Fixed Processor (FP)

and Last Processor (LP) policies are in spirit very similar to what we have proposed and

evaluated as static and dynamic affinity-based load balancing. However, our work considers a

fundamentally different processor execution model – we consider a server running RPC tasks

to completion, not a processor executing a multiprogrammed workload. The analytical model

developed in their work would be a highly useful building block to estimate the overheads of

reloading the I$ if an asynchronous RPC processing model is used, because such deployments

imply that other RPCs can execute on a given core while a specific RPC is still processing.

Salehi et al. further formulated the problem of affinity scheduling to consider network protocol

processing, and mentioned code affinity as a primary design concern [231–233]. In contrast

to their work which targets improving the execution of parallel network protocol processing

tasks with pseudo-uniform compute requirements, we focus on RPCs that have varying

functionalities. Additionally, we make 99th% latency a prime goal for our affinity-based load

balancing solution due to the SLO-bound nature of microservices, whereas their work focuses

primarily on mean latency. Our conclusions about the prime importance of load balancing

to minimize queueing delay agree with their empirical results showing that packet-stream

affinity (equivalent to hard function partitioning) yields higher latency due to queueing, but

improved maximum throughput (see Figure 5.1).

Cohort scheduling is a software-only technique that proposes to execute multiple similar stages

of a server workload’s computation together, improving cache locality for each stage [158]. In

the context of RPC-dependent microservices, affinity-based load balancing is orthogonal to

cohort scheduling for two reasons. First, forming a cohort fundamentally requires that certain

operations are forced to block until the cohort is ready to execute, introducing application-

level queueing delays. The type of queueing that we consider in this thesis is restricted to the

input queues holding RPCs that are ready to execute. Therefore, it would be possible to deploy

affinity-based load balancing to minimize input queueing as well as minimize cache misses

173

Chapter 9. Related Work

for the software layer forming cohorts. Second, cohort scheduling requires replacing a thread-

based programming model of a system with a network of connected, asynchronous stages

which have scheduling autonomy. Such a requirement implies that user-level scheduling

support needs to be added, which has implications for RPC-to-thread mappings and thus

the hardware-software interface in CEREBROS. We believe that adding such support on top of

production RPC layers would be possible, with the requirement that a lightweight threading

package such as Arachne [224] is used to limit the cost of context switching. Finally, as the

compute time of each stage shrinks, as would be the case for µs-scale microservices, the

overheads of creating the underlying closures and continuations used to represent stages will

inevitably grow as a fraction of useful execution time, potentially necessitating the inclusion

of hardware-support for task scheduling such as Carbon [251].

9.3.3 Application-Driven Scheduling Policies

The shrinking runtimes of traditional server applications into µs-scale tasks has begat a

significant shift in design focus for systems scheduling research. Datacenter providers have

already begun to specialize their network and scheduler implementations for latency-critical

µs-scale requests. For example, Google’s Snap microkernel provides user-level networking

and a custom scheduling design that allows various packet processing tasks to be grouped

into one of three scheduling modes [178]. Emerging studies have gone further, arguing for

exposing application-driven scheduling hints to kernel space, thus allowing various policies to

be implemented without requiring multiple kernel versions or fleet-wide upgrades [107]. Such

works are also orthogonal to our proposal for locality-aware load balancing, because our goal

is to improve a given server’s theoretical optimum throughput via improved RPC locality rather

than pursue system integration of existing load balancing policies into production systems.

iPipe proposes a scheduling algorithm to minimize tail latency for microservices offloaded

to SmartNICs [172]. Their work assumes that applications are constructed according to the

actor model, and proposes a formalized hybrid scheduling policy to determine whether to run

incoming actors on the SmartNIC itself, or on the host. In a hybrid SmartNIC-host system,

combining locality-aware load balancing with a scheduler such as iPipe’s would provide

performance benefits to actors.

174

9.3 Application-Aware Load Balancing

Finally, recent work from McClure et al. has demonstrated a comparative analysis of the wide

variety of scheduling policies that are implementable on existing and emerging NICs [182].

They conclude the following regarding the optimality of load balancing techniques: “In general,

work stealing was consistently the best performing load balancing policy when given the

same number of cycles as other approaches even as overheads and workload parameters

vary... Ultimately, absent new hardware, work stealing is the best option for load balancing

approaches among those we evaluated” [182, §4.2.1]. Therefore, we believe that the use of

new hardware that supports locality-aware load balancing policies, such as the ones we have

studied in this thesis, is the next logical step for systems architects to take to further improve

server throughput for µs-scale RPCs. We also believe that an RPC-centric server architecture

with support for locality-aware load balancing is a perfect platform for further scheduling

policy research.

9.3.4 Improved KVS Designs

We group KVS systems into two categories: software-only or NIC-assisted. Representatives of

the former include memcached [185], MemC3 [73], Masstree [176], and MICA [165, 166]. All

of these systems reach their peak performance with Runi or Rsk workloads—in fact, MICA’s

authors [165] propose using frequency scaling on the overloaded core to alleviate the static

write imbalance bottleneck in RWsk workloads. Frequency scaling alone is insufficient to

absorb RWsk ’s load imbalance, but could be added to C-4 for even greater performance gains.

The Minos KVS targets improved assignment of items to cores based on their sizes, observing

that requests for large items can consume orders of magnitude more CPU time than small

ones [64]. Their insight is that queueing induced by large items can be avoided by reserving a

specific core (or set of cores) to handle processing long-running requests, leaving the rest of

the CPU cores to handle shorter requests for smaller items. Minos’ solution can be viewed

as a special-case predecessor of the Perséphone scheduler. C-4 solves an orthogonal prob-

lem to Minos, and we note that our baseline implementation of load balancing in hardware

would implicitly solve load imbalance due to item size concerns – short requests are balanced

around long requests regardless of the reason for the queueing delay. Additionally, in order to

implement Minos, the authors need to give up the MICA’s lightweight optimistic concurrency

175

Chapter 9. Related Work

control, and revert to spin-locks on each hash bucket [64, §4.2]. In contrast, C-4’s d-CREW pol-

icy retains both lightweight concurrency control and load balancing even for write-intensive

workloads.

NIC-assisted designs enhance the KVS with RDMA, FPGA, or programmable switch support.

However, the vast majority of such designs do not perform well on write-intensive work-

loads. The two best performers in this space are NetCache [123] and KV-Direct [162] because

dedicated hardware performs the entire KVS’ functionality instead of using CPU cores. RDMA-

enabled designs include FaRM [65], HERD [129], ccKVS [84], RackOut [200], and DrTM [45, 46].

The write imbalances we identify in §5.3.1 in a single-node context would be strictly worse in

the multi-node distributed KVS settings targeted by these RDMA-assisted designs.

Emerging SmartNIC frameworks propose a split-KVS design, where a small amount of NIC

memory stores the KVS’ hottest items [70, 219], embodying the “small cache, big effect” prin-

ciple [74]. Like NetCache [123], such designs focus on reads and are inefficient for the write-

intensive workloads that C-4 targets (as shown by [70, Table 3] and [219, Fig. 16]), because

writes are handled on a slow path to keep the CPU’s main memory up-to-date.

LSM-based KVS like LevelDB [11] and RocksDB [186] optimize for write performance by buffer-

ing writes in memory before they are later flushed to storage. In contrast, our work targets

in-memory KVS, whose throughputs are often orders of magnitude greater. Nevertheless,

some similarities exist between state-of-the-art LSM-based KVS and C-4, particularly in our

proposed design for in-memory write compaction of dependent writes to the same item(s).

The authors of FloDB observe that despite the presence of an in-memory component to mask

long storage latencies, the data structures and algorithms used to provide concurrent writes to

that in-memory component simply do not scale to high degrees of concurrency [30]. Therefore,

FloDB adds another level to the LSM data structure hierarchy – an even smaller in-memory

buffer which can provide better update performance by supporting rapid random accesses.

In C-4, we discuss an orthogonal concurrency bottleneck that occurs in systems where the

in-memory buffer is effectively the entire KVS. Put another way, a hypothetical configuration

of FloDB where the storage component is removed and the entire KVS operates with a single

in-memory component would experience both bottlenecks we identify for write-intensive

176

9.3 Application-Aware Load Balancing

workloads in §5.3.1, and could benefit from the approaches we propose in C-4. TRIAD pro-

poses to solve the limitations in handling skewed workloads by preventing popular keys from

being compacted and flushed back to the storage layer [29]. Such an approach would push

the overall KVS system further into the regime we study where concurrency in the in-memory

data structures is the bottleneck.

9.3.5 Advanced Concurrency Control and Synchronization

The most applicable techniques for the KVS workloads we target are those that can enable

write load balancing (for W Iuni), and lock-free readers in the presence of frequent writes

(for RWsk). For W Iuni workloads, switching the KVS to a Concurrent Read, Concurrent Write

policy and rewriting the software for Hardware Transactional Memory [117] or hardware-

supported synchronization such as QOLB [156] should deliver similar performance to C-4

because true data conflicts are rare. However, both such designs come with drastically higher

hardware implementation complexity, as evidenced by the fact that RTM is still disabled on

Intel processors due to ordering violations [116], and is planned to be removed from most

future Intel products [83]. In contrast, C-4 does not require changes to the caches or memory

ordering hardware, only needing a small set of NIC extensions. Additionally, HTM or QOLB

would not benefit RWsk workloads, where true read-write conflicts between concurrent RPCs

are the common case. For RWsk workloads, C-4’s combination of d-CREW and compaction is

necessary for boosting performance.

RCU [183], RLU [180] and MV-RLU [146] enable both write balancing and lock-free reads by

forcing writes to create new copies of data and make them visible to readers after a quiescent

period. Our evaluation shows that the cost of versioning in RLU and MV-RLU versioning is

prohibitive for µs-scale KVS, even with very few true conflicts. Delegation-based approaches

such as ffwd [228], Flat Combining [99], and Remote Core Locking [175] could enable NIC-

driven write balancing, but software threads now must re-shuffle requests so that critical

sections execute on one core—essentially implementing CREW in software with extra shuffling

overheads.

Both OpLog [39] and Doppel [195] propose similar designs to C-4’s write compaction. OpLog

177

Chapter 9. Related Work

targets update-heavy kernel data structures by creating per-core update logs, which readers

scan and apply lazily. Similarly, Doppel executes conflicting transactions by creating per-core

values that are later merged upon commit. Applying OpLog to a KVS would simply move

synchronization bottlenecks from the KVS’ data structure to the per-core logs, and Doppel

would incur similar overheads to MV-RLU at commit time (see §8.4.2). In contrast, C-4’s

compaction logs are invisible until the compaction window closes, and avoids costly copies

and reconciliations.

178

10 Future Research Directions

10.1 Virtualized and Multi-Tenant Deployments

Virtualization and workload co-location is the common case for applications in today’s dat-

acenters, for both public-cloud serverless functions [5, 260] and first-party workloads de-

veloped by the datacenter owner [133, 263]. Not only does virtualization help datacenter

service providers monetize their expensive hardware, but it also is a foundational underlying

technology that helps enable microservices to be fungible through encapsulation and live

migration. In contrast, our work in this thesis is limited to considering a simple deployment

model where a server runs a single microservice whose threads are statically pinned to CPU

cores. We believe this model is quite reasonable for deployments that are latency-critical

and where µs-scale events matter, as prior work has shown that such applications benefit

drastically from dedicated cores [163]. However, support for multiple co-located workloads is

critical to usher in the adoption of RPC-centric architectures in real production systems.

Supporting multi-tenancy raises interesting challenges in both systems layering and server

architecture. First, the existence of a hypervisor layer providing resource multiplexing and

isolation between microservices implies that this layer must maintain full control of all addi-

tional features we propose in this thesis, allowing resource bindings to be created and broken

as microservices are brought up and taken offline. This requirement raises challenges for

designs which rely heavily on application-level information to implement certain policies at

the underlying layers, as our work does. For example, we make the case that it is unnecessary

179

Chapter 10. Future Research Directions

to receive any RPCs that would experience queues deeper than an application’s SLO-abiding

queue depth in Chapter 4. When multiple applications are co-located, multiple SLOs must be

simultaneously expressed to the NIC by the respective microservices, multiple RPC buffers

provisioned, and protocol messages demultiplexed into different sets of Queue Pairs. The same

principle applies for locality-aware load balancing policies. We believe that an exokernel-like

architecture [68] is a promising approach to allow each application to express its respective

constraints and optimization metrics.

Secondly, the underlying NIC architecture must be able to export the underlying design exten-

sions to the aforementioned hypervisor, as well as implement all of the application-defined

policies simultaneously. Today’s server NICs already contain hardware-assisted virtualization

techniques like SR-IOV [118] as standard for this exact reason – they expose multiple virtual

copies of themselves that can be used by software as if they were separate physical cards, while

the hypervisor maintains control of the bindings. However, the current set of abstractions

exported by NICs are primarily based on the PCIe standard, containing things like Base Ad-

dress Registers, descriptor queues, doorbells, and interrupt lines. Revisiting the abstractions

exposed by the NICs of RPC-centric server architectures is an interesting question for further

work, which we believe would yield interesting design and implementation insights.

10.2 Towards Asynchronous Microservices

In this thesis, we have exclusively considered a synchronous, run-to-completion RPC execu-

tion model. This is logical for microservices that exist as leaf nodes in the overall service’s

dependence graph, and also allows the execution flow of interior nodes to be simplified, at

the cost of imposing restrictions on concurrency. We believe that it is very logical for mi-

croservices that are placed in the interior “business logic tier” of the service graph to use an

asynchronous execution model as there is already evidence to show that such models provide

greater throughput. In particular, µTune shows that asynchronous threading models provide a

42% improvement in saturation throughput and a 12% reduction in 99th% tail latency across

four microservices [247]. Moving in this direction creates two research opportunities.

First, asynchronous programming is notoriously difficult. Barroso et. al report that the

180

10.3 Improved Server Simulation Methodologies

simplicity of synchronous programming outweighs the potential benefits of asynchronous

models [32], and the authors of µTune mention that implementing their asynchronous mi-

croservices required four months of work, compared to three weeks for the synchronous

ones [247, §3.1]. However, we have noted that in certain circles of the software community,

there already exist open source frameworks to ease the process of expressing the dependencies

and message types being passed among multiple microservices of asynchronous, event-driven

software architectures, such as AsyncAPI [25]. Although such frameworks are most commonly

proposed for services built around message queues rather than request-response RPC seman-

tics, we believe that their approach to automatic code generation is a logical first step to reduce

the programming complexity inherent in manually defining state machines for asynchronous

microservices.

Secondly, services with asynchronous execution models allow interesting questions to be

asked regarding the optimality of load balancing policies for RPCs that can yield their execu-

tion voluntarily (e.g., when generating their own nested RPCs). The existence of asynchronicity

in RPC executions means that existing metrics such as queue depth are not necessarily the

best predictor of queueing time. For example, assigning an RPC to an application thread

that has an empty input queue but is currently running a non-yielding compute task may

actually result in worse tail latency than assigning it to a thread whose input queue is full of

RPCs that yield. We believe that asynchronous execution models may be able to be studied

using queueing theoretic insights related to policies employing processor sharing, because

in a sense an RPC that yields its execution can be seen as a form of voluntary preemption.

Our event simulator is an ideal platform for such future work, as it is simple to create asyn-

chronous execution models without the complexity of implementing the full service. However,

evaluating any load balancing policy for asynchronous services would require an improved

simulation infrastructure, leading to our next future direction.

10.3 Improved Server Simulation Methodologies

Simulating and modelling client-server workloads is a challenging task to say the least. Not

only does it require deep knowledge of all levels of the server stack, but it also presents a

complex set of methodological choices to the researcher whose answers are non-obvious,

181

Chapter 10. Future Research Directions

particular when tail latency is concerned. For example, even when measuring the performance

of real server hardware, one must answer various questions about the workload being gener-

ated and if the measured latency percentiles are statistically sound [149, 237]. This challenge

becomes more complex and more time consuming in cycle-accurate simulation, because

running enough full requests to reach a statistically sound final conclusion may require days

or weeks of simulation time. For throughput-oriented applications, statistical techniques

such as systematic sampling have reduced simulation time by orders of magnitude, and have

been proven to accurately reflect server performance [265]. However, it is not clear how such

statistical techniques can be applied to server architectural optimizations intended to benefit

tail latency.

Furthermore, microservices are fundamentally distributed systems, where a single service is

interconnected with many others through a complex dependency graph [81, 264]. The chal-

lenge in studying such architectures in cycle-accurate detail is that to study one microservice

in isolation, the characteristics of the surrounding microservices must also be modelled in

order to preserve the characteristics of the system as a whole. Consider the simple example of

a microservice using the nginx web server, running PHP scripts which are JIT-compiled to

machine code using a framework such as HHVM [2, 210]. A common deployment pattern is

for the PHP scripts to first access a caching layer such as memcached or MICA to request data,

and only access a backend relational database if the cache misses [42, 198]. If one is interested

in architectural-level research or characterization of any comprising microservice, which we

hereafter refer to as the “microservice under test” (MuT), maintaining simulation fidelity

requires either simulating the entire microservice graph in cycle-level detail, or creating a

higher-level abstraction for all microservices that surround the MuT.

The former approach seems to be more straightforward, because it does not require reducing

complex service graphs to higher-level models, and creating alternative abstractions for peer

microservices inside the simulator. However, as one of the fundamental tenets of datacenter

software architecture is for services to be scalable, fault-tolerant, and fungible [248], we expect

microservices to be deployed on many server nodes. Hence, the resulting simulation speeds

will either slow down linearly with the number of microservices surrounding the MuT if a

single host is used, or require use of large clusters to simulate all the nodes in parallel on

182

10.3 Improved Server Simulation Methodologies

multiple hosts, while synchronizing time among them. Tools such as dist-gem5 [9] and

FireSim [137] take the latter approach, performing detailed simulation of all server nodes in

the system.

We argue that a combination of high-level modelling and cycle-accurate simulation is a

promising direction to enable researchers to simulate microservices without the need for large

clusters. In our proposed approach, the MuT is isolated in cycle-accurate simulation, while all

surrounding microservices are modelled as simple latency distributions connected by queues,

similar to how we modelled the internal components of a server node in this thesis (see §3.3).

Although previous systems have employed the use of queueing simulators to study system-

level tradeoffs at scale, they do not consider the use of hybrid designs where a particular

service is simulated at a higher level of fidelity [184, 277]. Therefore, these systems are not

appropriate for modelling architectural or micro-architectural optimizations because they

simply do not capture the required level of detail (e.g., by modelling cache accesses) [184, §1].

In contrast, a hybrid approach would enable a single server node to be simulated in full detail

while maintaining coarse-grained modelling of the surrounding microservices to ensure the

applicability of the simulation results in the entire system context. Successfully building such

a model would allow drastically higher simulation density than existing approaches that use

giant parallel simulations for a single experiment, and the ability to perform architectural

studies of individual server nodes in a distributed system.

The use of hybrid cycle-accurate and queueing simulations raises many interesting questions

from both methodological and systems performance perspectives. For example, when replac-

ing a surrounding microservice’s cycle-accurate execution with a simple latency distribution,

how constant will that distribution remain when the MuT’s performance is improved due

to a research technique? Additionally, what level of network modelling should be done in

our proposed hybrid approach? Prior works tend to either completely remove the network

from consideration altogether [184, 277], or simulate the entire network itself in painstaking

cycle-accurate detail [9]. However, as significant work in the networking community has

called for a rethink of datacenter topologies [90] and protocols [193, 244] in order to support

latency-critical microservices, we argue that such protocol optimizations certainly need to be

included in microservice simulations. Fortunately, state-of-the-art protocols can readily be

183

Chapter 10. Future Research Directions

simulated at packet- or flow-level using open source tools, and could be integrated into our

hybrid methodology if desired. One may also ask whether the network itself can be replaced

with its own statistical distribution, obviating the need for detailed protocol simulation at the

cost of some fidelity.

Overall, we argue for a forward-looking, cross-disciplinary approach to server systems mod-

elling that takes into account the rapid pace of improvements at each system layer. A critical

open question is the level of simulation fidelity which is acceptable for the system layers

surrounding the one being tested, which we believe will be a fruitful area of research and tool

development. We believe that designing and building an open-source simulation methodol-

ogy that allows the user to substitute various levels of detail for each system component will

have dramatic impact to improve the pace of systems research that includes hardware modifi-

cations, and fit in well with current community initiatives to enhance the reproduceability of

research results [1].

10.4 RPC Scheduling Based on End-to-End Latencies

As we have mentioned frequently in this thesis, the continual push to deliver low latency

has led to a plethora of research contributions to optimize various modules in the operating

system [126, 150, 212, 223], network stack [56, 80, 96, 153, 178, 193], and NIC hardware [20].

Despite the continued improvements granted by current research proposals, a common

pattern is to study a particular module of the datacenter stack in isolation, and optimize

it under an SLO corresponding to the time a request spends in that module. Datacenter

operators use such quantifiable SLOs in order to set a service-level agreement (SLA), which is

a legal contract concluded with their customers. The difference between SLOs and SLAs is that

SLAs are expressed as end-to-end guarantees that are measured at the client’s interface to the

service [12, 188], whereas SLOs are often internal metrics such as network latency or storage

availability. For online services deployed across many servers, there is currently a dilemma

between setting a local SLO on each underlying module (which must always be conservative),

versus a dynamic SLO that evolves on a per-request basis based on that request’s client-visible

latency (directly linked to the SLA).

184

10.4 RPC Scheduling Based on End-to-End Latencies

Due to the importance of tail-tolerant computing, there already exist research works that

attack this problem through a proactive approach. Both GrandSLAm [135] and Parslo [190]

seek to derive local SLOs for the various microservices comprising a larger-scale online service

according to a combination of theoretical system models and empirical measurements. In the

case where user requests begin to experience SLA violations, Parslo proposes to make use of

automatic auto-scaler frameworks that can adjust the number of instances of a microservice,

or its number of allocated resources, to decrease its latency. However, such current work has

two important limitations: first, the models they propose only apply to a restricted class of

microservice applications – Parslo’s authors write that their techniques only apply to stateless

microservices which are unconcerned with factors like data consistency, replication, and load

balancing. Second, neither system can react to requests that are approaching their end-to-end

SLA deadlines and treat them differently than those which are less time-critical.

We believe that there is room for an orthogonal and also important set of research contribu-

tions, towards the goal of reactively prioritizing requests which are approaching their SLA

in an attempt to reduce the number of end-to-end tail latency events. Such work would

make use of open questions such as: which “deadline-approaching requests” are actually

worth prioritizing, and which requests are simply a lost cause and should be allowed to fail?

Additionally, prioritizing certain requests over others implies that the FIFO request processing

model of most current load balancing frameworks needs to be reconsidered. Finally, any solu-

tion that utilizes reactive request prioritization has need of a system that allows each request

to track its cumulative processing delay across microservices and the datacenter network.

Contributions leveraging NIC timestamping (e.g., PTP) [110] or low-overhead software clock

synchronization [85] seem to be ideal candidates to enable reactive request prioritization

based on cumulative latency.

185

11 Conclusions

Decomposing software stacks into datacenter-deployed microservices is leading to an ever-

increasing demand for network communication through RPCs. Furthermore, the continuous

performance improvements delivered by network fabrics, systems software, and protocol

termination innovations have collectively brought the individual server nodes in a datacenter

closer together, meaning that overheads and inefficiencies on each server are continually

becoming more problematic. Therefore, in order for RPC-dependent microservices to take

advantage of the raw performance made available by the underlying network stack, server

architecture must evolve in a matching fashion to support the underlying operations com-

prising RPCs. To meet this need, this thesis introduces the design and implementation of an

RPC-centric server architecture, containing cross-stack innovations to improve the through-

put and tail latency of multiple types of microservices. As hyperscale datacenter providers

continue to enter the hardware business, as seen with Google’s TPU, Amazon’s Graviton CPU,

and Microsoft’s Catapult project, we believe that RPC-centric architectural patterns are ideal

candidates for inclusion in future server processors.

187

Bibliography

[1] ACM. (2020) Artifact Review and Badging – Current. (Version 1.1, retrieved on May 13,

2022.). [Online]. Available: https://www.acm.org/publications/policies/artifact-review-

and-badging-current Cited on page 184.

[2] K. Adams, J. Evans, B. Maher, G. Ottoni, A. Paroski, B. Simmers, E. Smith, and O. Ya-

mauchi, “The hiphop virtual machine.” in Proceedings of the 29th Annual ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA), 2014, pp. 777–790. Cited on page 182.

[3] Advanced Micro Devices, Inc. (2022) AMD 3D V-Cache Technology. [Online]. Available:

https://www.amd.com/en/campaigns/3d-v-cache Cited on page 99.

[4] A. Adya, G. Cooper, D. Myers, and M. Piatek, “Thialfi: a client notification service for

internet-scale applications.” in Proceedings of the 23rd ACM Symposium on Operating

Systems Principles (SOSP), 2011, pp. 129–142. Cited on page 71.

[5] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer, P. Piwonka, and D.-M.

Popa, “Firecracker: Lightweight Virtualization for Serverless Applications.” in Proceed-

ings of the 17th Symposium on Networked Systems Design and Implementation (NSDI),

2020, pp. 419–434. Cited on pages 1 and 179.

[6] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “DBMSs on a Modern Processor:

Where Does Time Go?” in Proceedings of the 25th International Conference on Very Large

Databases (VLDB), 1999, pp. 266–277. Cited on page 172.

[7] Akamai Technologies. (2018) Akamai Online Retail Performance Report: Milliseconds

Are Critical. [Online]. Available: https://www.akamai.com/newsroom/press-release/

189

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.amd.com/en/campaigns/3d-v-cache
https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report
https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report
https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report

Bibliography

akamai-releases-spring-2017-state-of-online-retail-performance-report Cited on

page 2.

[8] Alexey Andreyev. (2014) Introducing data center fabric, the

next-generation Facebook data center network. [Online]. Avail-

able: https://engineering.fb.com/production-engineering/introducing-data-center-

fabric-the-next-generation-facebook-data-center-network Cited on page 13.

[9] M. Alian, U. Darbaz, G. Dózsa, S. Diestelhorst, D. Kim, and N. S. Kim, “dist-gem5: Dis-

tributed simulation of computer clusters.” in Proceedings of the 2017 IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS), 2017, pp. 153–162.

Cited on page 183.

[10] M. Alizadeh, A. G. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta,

and M. Sridharan, “Data center TCP (DCTCP).” in Proceedings of the ACM SIGCOMM

2010 Conference, 2010, pp. 63–74. Cited on page 166.

[11] Alphabet Inc., “LevelDB,” March 2022. [Online]. Available: https://github.com/google/

leveldb Cited on pages 76 and 176.

[12] Amazon Web Services Inc. (2019, July) Amazon S3 Service Level Agreement. [Online].

Available: https://aws.amazon.com/s3/sla/ Cited on page 184.

[13] ——. (2022) Amazon ElastiCache. [Online]. Available: https://aws.amazon.com/

elasticache/?did=ap_card&trk=ap_card Cited on page 1.

[14] ——. (2022) Amazon Simple Storage Service. [Online]. Available: https://aws.amazon.

com/s3/?did=ap_card&trk=ap_card Cited on page 1.

[15] Amazon.com Inc. (2021) Amazon.com Announces Financial Results and CEO

Transition. [Online]. Available: https://ir.aboutamazon.com/news-release/news-

release-details/2021/Amazon.com-Announces-Fourth-Quarter-Results/ Cited on

page 1.

[16] Amazon Announces Graviton2 SoC Along With New AWS Instances. AnandTech.

[Online]. Available: https://www.anandtech.com/show/15189/amazon-announces-

190

https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report
https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report
https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report
https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report
https://engineering.fb.com/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network
https://engineering.fb.com/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network
https://github.com/google/leveldb
https://github.com/google/leveldb
https://aws.amazon.com/s3/sla/
https://aws.amazon.com/elasticache/?did=ap_card&trk=ap_card
https://aws.amazon.com/elasticache/?did=ap_card&trk=ap_card
https://aws.amazon.com/s3/?did=ap_card&trk=ap_card
https://aws.amazon.com/s3/?did=ap_card&trk=ap_card
https://ir.aboutamazon.com/news-release/news-release-details/2021/Amazon.com-Announces-Fourth-Quarter-Results/
https://ir.aboutamazon.com/news-release/news-release-details/2021/Amazon.com-Announces-Fourth-Quarter-Results/
https://www.anandtech.com/show/15189/amazon-announces-graviton2-soc-along-with-new-aws-instances-64core-arm-with-large-performance-uplifts
https://www.anandtech.com/show/15189/amazon-announces-graviton2-soc-along-with-new-aws-instances-64core-arm-with-large-performance-uplifts
https://www.anandtech.com/show/15189/amazon-announces-graviton2-soc-along-with-new-aws-instances-64core-arm-with-large-performance-uplifts

Bibliography

graviton2-soc-along-with-new-aws-instances-64core-arm-with-large-performance-

uplifts Cited on pages 46, 52, and 148.

[17] Amazon’s ARM-Based Graviton2 Against AMD and Intel: Comparing Cloud Compute.

AnandTech. [Online]. Available: https://www.anandtech.com/show/15578/cloud-

clash-amazon-graviton2-arm-against-intel-and-amd Cited on page 125.

[18] A. Ansari, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Divide and Conquer Frontend Bottle-

neck.” in Proceedings of the 47th International Symposium on Computer Architecture

(ISCA), 2020, pp. 65–78. Cited on page 172.

[19] Apache Software Foundation. Thrift. [Online]. Available: https://thrift.apache.org/

Cited on pages 2, 12, 28, 140, and 169.

[20] M. T. Arashloo, A. Lavrov, M. Ghobadi, J. Rexford, D. Walker, and D. Wentzlaff, “Enabling

Programmable Transport Protocols in High-Speed NICs.” in Proceedings of the 17th

Symposium on Networked Systems Design and Implementation (NSDI), 2020, pp. 93–109.

Cited on page 184.

[21] (2021) Arm DynamIQ Shared Unit Technical Reference Manual. Arm Limited. Rev.

r3p0. [Online]. Available: https://developer.arm.com/documentation/100453/0300/

functional-description/l3-cache/cache-stashing Cited on pages 20 and 27.

[22] ARM Architecture Reference Manual for A-profile architecture. Version H.a, ARM Limited,

February 2022. Cited on page 147.

[23] S. Arslan, S. Ibanez, A. Mallery, C. Kim, and N. McKeown, “NanoTransport: A Low-

Latency, Programmable Transport Layer for NICs.” in Proceedings of the Symposium on

SDN Research (SOSR), 2021, pp. 13–26. Cited on page 166.

[24] N. Asmussen, M. Roitzsch, and H. Härtig, “M³x: Autonomous Accelerators via Context-

Enabled Fast-Path Communication.” in Proceedings of the 2019 USENIX Annual Techni-

cal Conference (ATC), 2019, pp. 617–632. Cited on page 171.

[25] AsyncAPI. (2022) AsyncAPI Generator Tool. [Online]. Available: https://www.asyncapi.

com/tools/generator Cited on page 181.

191

https://www.anandtech.com/show/15189/amazon-announces-graviton2-soc-along-with-new-aws-instances-64core-arm-with-large-performance-uplifts
https://www.anandtech.com/show/15189/amazon-announces-graviton2-soc-along-with-new-aws-instances-64core-arm-with-large-performance-uplifts
https://www.anandtech.com/show/15189/amazon-announces-graviton2-soc-along-with-new-aws-instances-64core-arm-with-large-performance-uplifts
https://www.anandtech.com/show/15189/amazon-announces-graviton2-soc-along-with-new-aws-instances-64core-arm-with-large-performance-uplifts
https://www.anandtech.com/show/15189/amazon-announces-graviton2-soc-along-with-new-aws-instances-64core-arm-with-large-performance-uplifts
https://www.anandtech.com/show/15578/cloud-clash-amazon-graviton2-arm-against-intel-and-amd
https://www.anandtech.com/show/15578/cloud-clash-amazon-graviton2-arm-against-intel-and-amd
https://thrift.apache.org/
https://developer.arm.com/documentation/100453/0300/functional-description/l3-cache/cache-stashing
https://developer.arm.com/documentation/100453/0300/functional-description/l3-cache/cache-stashing
https://www.asyncapi.com/tools/generator
https://www.asyncapi.com/tools/generator

Bibliography

[26] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Workload analysis of a

large-scale key-value store.” in Proceedings of the 2012 ACM SIGMETRICS International

Conference on Measurement and Modeling of Computer Systems, 2012, pp. 53–64. Cited

on page 54.

[27] G. Ayers, N. P. Nagendra, D. I. August, H. K. Cho, S. Kanev, C. Kozyrakis, T. Krishnamurthy,

H. Litz, T. Moseley, and P. Ranganathan, “AsmDB: understanding and mitigating front-

end stalls in warehouse-scale computers.” in Proceedings of the 46th International

Symposium on Computer Architecture (ISCA), 2019, pp. 462–473. Cited on pages 63, 66,

and 172.

[28] H. Ballani, P. Costa, R. Behrendt, D. Cletheroe, I. Haller, K. Jozwik, F. Karinou, S. Lange,

K. Shi, B. Thomsen, and H. Williams, “Sirius: A Flat Datacenter Network with Nanosec-

ond Optical Switching.” in Proceedings of the ACM SIGCOMM 2020 Conference, 2020, pp.

782–797. Cited on page 3.

[29] O. Balmau, D. Didona, R. Guerraoui, W. Zwaenepoel, H. Yuan, A. Arora, K. Gupta, and

P. Konka, “TRIAD: Creating Synergies Between Memory, Disk and Log in Log Structured

Key-Value Stores.” in Proceedings of the 2017 USENIX Annual Technical Conference (ATC),

2017, pp. 363–375. Cited on page 177.

[30] O. Balmau, R. Guerraoui, V. Trigonakis, and I. Zablotchi, “FloDB: Unlocking Memory in

Persistent Key-Value Stores.” in Proceedings of the 2017 EuroSys Conference, 2017, pp.

80–94. Cited on page 176.

[31] L. A. Barroso, U. Hölzle, and P. Ranganathan, The Datacenter as a Computer: Design-

ing Warehouse-Scale Machines, Third Edition, ser. Synthesis Lectures on Computer

Architecture. Morgan & Claypool Publishers, 2018. Cited on pages 1, 2, and 12.

[32] L. A. Barroso, M. Marty, D. A. Patterson, and P. Ranganathan, “Attack of the killer mi-

croseconds.” Commun. ACM, vol. 60, no. 4, pp. 48–54, 2017. Cited on pages 13 and 181.

[33] A. Belay, G. Prekas, M. Primorac, A. Klimovic, S. Grossman, C. Kozyrakis, and E. Bugnion,

“The IX Operating System: Combining Low Latency, High Throughput, and Efficiency in

a Protected Dataplane.” ACM Trans. Comput. Syst., vol. 34, no. 4, pp. 11:1–11:39, 2017.

Cited on pages 15, 16, 17, 42, 72, and 73.

192

Bibliography

[34] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator.” in USENIX Annual Techni-

cal Conference, FREENIX Track, 2005, pp. 41–46. Cited on page 109.

[35] A. Birrell and B. J. Nelson, “Implementing Remote Procedure Calls,” ACM Trans. Comput.

Syst., vol. 2, no. 1, pp. 39–59, 1984. Cited on page 29.

[36] Bob Wheeler, “Ryzen 5000 Rides Zen 3 to the Top,” Linley Group Microprocessor Report,

November 2020. Cited on pages 4 and 63.

[37] M. Bohr, “A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper,” IEEE Solid-

State Circuits Society Newsletter, vol. 12, no. 1, pp. 11–13, 2007. Cited on page 106.

[38] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Ta-

layco, A. Vahdat, G. Varghese, and D. Walker, “P4: programming protocol-independent

packet processors.” Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, 2014. Cited on

pages 89 and 166.

[39] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich, “OpLog: a library for

scaling update-heavy data structures,” Massachussetts Institute of Technology, Tech.

Rep., 2014. [Online]. Available: https://dspace.mit.edu/handle/1721.1/89653 Cited on

pages 76 and 177.

[40] Broadcom Corporation, “StrataDNX 10 Tb/s Scalable Switching Device Product Brief,”

https://docs.broadcom.com/docs/88690-PB100, 2018, (Date retrieved: 10 March 2020).

Cited on page 40.

[41] ——, “High-Capacity StrataXGS Trident 4 Ethernet Switch Series,” https://www.

broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-

series, 2019. Cited on page 14.

[42] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding, J. Ferris, A. Giardullo,

S. Kulkarni, H. C. Li, M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and V. Venkataramani,

“TAO: Facebook’s Distributed Data Store for the Social Graph.” in Proceedings of the 2013

USENIX Annual Technical Conference (ATC), 2013, pp. 49–60. Cited on pages 73 and 182.

[43] Z. Cao, S. Dong, S. Vemuri, and D. H. C. Du, “Characterizing, Modeling, and Benchmark-

ing RocksDB Key-Value Workloads at Facebook.” in Proceedings of the 18th USENIX

193

https://dspace.mit.edu/handle/1721.1/89653
https://docs.broadcom.com/docs/88690-PB100
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series

Bibliography

Conference on File and Storage Technologies (FAST), 2020, pp. 209–223. Cited on pages

72, 73, and 74.

[44] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman, S. Heil,

M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo, T. Massengill, K. Ovtcharov, M. Papamichael,

L. Woods, S. Lanka, D. Chiou, and D. Burger, “A cloud-scale acceleration architecture.” in

Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), 2016, pp. 7:1–7:13. Cited on pages 3, 5, 14, 21, 26, and 171.

[45] H. Chen, R. Chen, X. Wei, J. Shi, Y. Chen, Z. Wang, B. Zang, and H. Guan, “Fast In-Memory

Transaction Processing Using RDMA and HTM.” ACM Trans. Comput. Syst., vol. 35, no. 1,

pp. 3:1–3:37, 2017. Cited on page 176.

[46] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen, “Fast and general distributed transactions

using RDMA and HTM.” in Proceedings of the 2016 EuroSys Conference, 2016, pp. 26:1–

26:17. Cited on page 176.

[47] Y. Chen, Y. Lu, and J. Shu, “Scalable RDMA RPC on Reliable Connection with Efficient

Resource Sharing.” in Proceedings of the 2019 EuroSys Conference, 2019, pp. 19:1–19:14.

Cited on page 26.

[48] D. Chiou, “Extending the reach of microprocessors: column and curious caching.” Ph.D.

dissertation, Massachusetts Institute of Technology, Cambridge, MA, USA, 1999. Cited

on page 167.

[49] I. Cho, A. Saeed, J. Fried, S. J. Park, M. Alizadeh, and A. Belay, “Overload Control for

µs-scale RPCs with Breakwater.” in Proceedings of the 14th Symposium on Operating

Systems Design and Implementation (OSDI), 2020, pp. 299–314. Cited on pages 82

and 166.

[50] Compute Express Link (CXL) Specification, Compute Express Link Consortium Inc.,

October 2020, protocol Revision 2.0. Cited on pages 90 and 91.

[51] S. F. Conservancy and the QEMU Leadership Committee. QEMU: the FAST! processor

emulator. [Online]. Available: https://gitlab.com/qemu-project/qemu Cited on pages

36 and 109.

194

https://gitlab.com/qemu-project/qemu

Bibliography

[52] A. Daglis, “Network-compute co-design for distributed in-memory computing,” Ph.D.

dissertation, EPFL, Lausanne, 2018. [Online]. Available: http://infoscience.epfl.ch/

record/256864 Cited on pages 37 and 97.

[53] A. Daglis, S. Novakovic, E. Bugnion, B. Falsafi, and B. Grot, “Manycore network inter-

faces for in-memory rack-scale computing.” in Proceedings of the 42nd International

Symposium on Computer Architecture (ISCA), 2015, pp. 567–579. Cited on pages 4, 6, 20,

30, 49, 50, 97, 104, 116, 127, and 166.

[54] A. Daglis, M. Sutherland, and B. Falsafi, “RPCValet: NI-Driven Tail-Aware Balancing of

µs-Scale RPCs.” in Proceedings of the 24th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), 2019, pp. 35–48.

Cited on pages 2, 3, 12, 13, 18, 20, 34, 42, 44, 48, 50, 54, 55, 57, 69, 73, 74, 98, 100, 105,

109, 111, 121, 125, 127, and 149.

[55] A. Daglis, D. Ustiugov, S. Novakovic, E. Bugnion, B. Falsafi, and B. Grot, “SABRes: Atomic

object reads for in-memory rack-scale computing.” in Proceedings of the 49th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), 2016, pp. 6:1–6:13.

Cited on pages 20 and 165.

[56] M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta, B. Fahs, D. Rubinstein, E. C.

Zermeno, E. Rubow, J. A. Docauer, J. Alpert, J. Ai, J. Olson, K. DeCabooter, M. de Kruijf,

N. Hua, N. Lewis, N. Kasinadhuni, R. Crepaldi, S. Krishnan, S. Venkata, Y. Richter, U. Naik,

and A. Vahdat, “Andromeda: Performance, Isolation, and Velocity at Scale in Cloud

Network Virtualization.” in Proceedings of the 15th Symposium on Networked Systems

Design and Implementation (NSDI), 2018, pp. 373–387. Cited on page 184.

[57] David Brooks. (2018) What’s the future of technology scaling? [Online]. Available:

https://www.sigarch.org/whats-the-future-of-technology-scaling/ Cited on pages 3,

30, and 106.

[58] J. Dean, “Building Software Systems at Google and Lessons Learned,” 2010, Talk

at Stanford University. [Online]. Available: https://www.youtube.com/watch?v=

modXC5IWTJI Cited on page 12.

195

http://infoscience.epfl.ch/record/256864
http://infoscience.epfl.ch/record/256864
https://www.sigarch.org/whats-the-future-of-technology-scaling/
https://www.youtube.com/watch?v=modXC5IWTJI
https://www.youtube.com/watch?v=modXC5IWTJI

Bibliography

[59] J. Dean and L. A. Barroso, “The tail at scale.” Commun. ACM, vol. 56, no. 2, pp. 74–80,

2013. Cited on pages 2, 12, 17, 53, and 72.

[60] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Siva-

subramanian, P. Vosshall, and W. Vogels, “Dynamo: amazon’s highly available key-value

store.” in Proceedings of the 21st ACM Symposium on Operating Systems Principles

(SOSP), 2007, pp. 205–220. Cited on page 12.

[61] H. M. Demoulin, J. Fried, I. Pedisich, M. Kogias, B. T. Loo, L. T. X. Phan, and I. Zhang,

“When Idling is Ideal: Optimizing Tail-Latency for Heavy-Tailed Datacenter Workloads

with Perséphone.” in Proceedings of the 28th ACM Symposium on Operating Systems

Principles (SOSP), 2021, pp. 621–637. Cited on pages 4, 17, 19, 21, and 71.

[62] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc,

“Design of ion-implanted mosfet’s with very small physical dimensions,” IEEE Journal of

Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974. Cited on page 106.

[63] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri, “Practical Skew Handling

in Parallel Joins.” in Proceedings of the 18th International Conference on Very Large

Databases (VLDB), 1992, pp. 27–40. Cited on page 145.

[64] D. Didona and W. Zwaenepoel, “Size-aware Sharding For Improving Tail Latencies in In-

memory Key-value Stores.” in Proceedings of the 16th Symposium on Networked Systems

Design and Implementation (NSDI), 2019, pp. 79–94. Cited on pages 175 and 176.

[65] A. Dragojevic, D. Narayanan, M. Castro, and O. Hodson, “FaRM: Fast Remote Memory.”

in Proceedings of the 11th Symposium on Networked Systems Design and Implementation

(NSDI), 2014, pp. 401–414. Cited on pages 17, 26, 41, 163, 164, and 176.

[66] D. Dunning, G. J. Regnier, G. L. McAlpine, D. Cameron, B. Shubert, F. Berry, A. M. Merritt,

E. Gronke, and C. Dodd, “The Virtual Interface Architecture.” IEEE Micro, vol. 18, no. 2,

pp. 66–76, 1998. Cited on pages 16 and 166.

[67] A. Eisenman, D. Gardner, I. AbdelRahman, J. Axboe, S. Dong, K. M. Hazelwood, C. Pe-

tersen, A. Cidon, and S. Katti, “Reducing DRAM footprint with NVM in facebook.” in

Proceedings of the 2018 EuroSys Conference, 2018, pp. 42:1–42:13. Cited on page 73.

196

Bibliography

[68] D. R. Engler, M. F. Kaashoek, and J. W. O. Jr., “Exokernel: An Operating System Archi-

tecture for Application-Level Resource Management.” in Proceedings of the 15th ACM

Symposium on Operating Systems Principles (SOSP), 1995, pp. 251–266. Cited on page

180.

[69] H. Eran, M. Fudim, G. Malka, G. Shalom, N. Cohen, A. Hermony, D. Levi, L. Liss, and

M. Silberstein, “FlexDriver: a network driver for your accelerator.” in Proceedings of the

27th International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2022, pp. 1115–1129. Cited on page 164.

[70] H. Eran, L. Zeno, M. Tork, G. Malka, and M. Silberstein, “NICA: An Infrastructure for

Inline Acceleration of Network Applications.” in Proceedings of the 2019 USENIX Annual

Technical Conference (ATC), 2019, pp. 345–362. Cited on pages 20, 169, and 176.

[71] H. Esmaeilzadeh, E. R. Blem, R. S. Amant, K. Sankaralingam, and D. Burger, “Dark silicon

and the end of multicore scaling.” in Proceedings of the 38th International Symposium

on Computer Architecture (ISCA), 2011, pp. 365–376. Cited on pages 30 and 106.

[72] Facebook Inc. Facebook Thrift. [Online]. Available: https://github.com/facebook/

fbthrift Cited on pages 2, 12, 28, and 140.

[73] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Compact and Concurrent Mem-

Cache with Dumber Caching and Smarter Hashing.” in Proceedings of the 10th Sym-

posium on Networked Systems Design and Implementation (NSDI), 2013, pp. 371–384.

Cited on page 175.

[74] B. Fan, H. Lim, D. G. Andersen, and M. Kaminsky, “Small cache, big effect: provable load

balancing for randomly partitioned cluster services.” in Proceedings of the 2011 ACM

Symposium on Cloud Computing (SOCC), 2011, p. 23. Cited on page 176.

[75] A. Farshin, T. Barbette, A. Roozbeh, G. Q. M. Jr., and D. Kostic, “PacketMill: toward

per-Core 100-Gbps networking.” in Proceedings of the 26th International Conference

on Architectural Support for Programming Languages and Operating Systems (ASPLOS),

2021, pp. 1–17. Cited on pages 31, 162, and 163.

197

https://github.com/facebook/fbthrift
https://github.com/facebook/fbthrift

Bibliography

[76] A. Farshin, A. Roozbeh, G. Q. M. Jr., and D. Kostic, “Make the Most out of Last Level

Cache in Intel Processors.” in Proceedings of the 2019 EuroSys Conference, 2019, pp.

8:1–8:17. Cited on pages 5, 31, 50, and 162.

[77] ——, “Reexamining Direct Cache Access to Optimize I/O Intensive Applications for

Multi-hundred-gigabit Networks.” in Proceedings of the 2020 USENIX Annual Technical

Conference (ATC), 2020, pp. 673–689. Cited on page 162.

[78] M. Ferdman, A. Adileh, Y. O. Koçberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak, A. D.

Popescu, A. Ailamaki, and B. Falsafi, “Clearing the clouds: a study of emerging scale-out

workloads on modern hardware.” in Proceedings of the 17th International Conference

on Architectural Support for Programming Languages and Operating Systems (ASPLOS),

2012, pp. 37–48. Cited on page 63.

[79] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Temporal in-

struction fetch streaming.” in Proceedings of the 41st Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), 2008, pp. 1–10. Cited on page 172.

[80] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. Andrewartha, H. Angepat,

V. Bhanu, A. M. Caulfield, E. S. Chung, H. K. Chandrappa, S. Chaturmohta, M. Humphrey,

J. Lavier, N. Lam, F. Liu, K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre, M. Shaw,

G. Silva, M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair, D. Bansal, D. Burger, K. Vaid,

D. A. Maltz, and A. G. Greenberg, “Azure Accelerated Networking: SmartNICs in the

Public Cloud.” in Proceedings of the 15th Symposium on Networked Systems Design and

Implementation (NSDI), 2018, pp. 51–66. Cited on page 184.

[81] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu, B. Ritchken,

B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy, C. Colen, F. Wen, C. Leung, S. Wang,

L. Zaruvinsky, M. Espinosa, R. Lin, Z. Liu, J. Padilla, and C. Delimitrou, “An Open-Source

Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud

& Edge Systems.” in Proceedings of the 24th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), 2019, pp. 3–18.

Cited on pages 8, 12, 63, 72, 73, 139, and 182.

198

Bibliography

[82] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal, S. Ratnasamy, and

S. Shenker, “Network Requirements for Resource Disaggregation.” in Proceedings of the

12th Symposium on Operating Systems Design and Implementation (OSDI), 2016, pp.

249–264. Cited on page 15.

[83] Gareth Halfacree. The Register: Intel sticks another nail in the coffin of TSX with

feature-disabling microcode update. [Online]. Available: https://www.theregister.com/

2021/06/29/intel_tsx_disabled/ Cited on page 177.

[84] V. Gavrielatos, A. Katsarakis, A. Joshi, N. Oswald, B. Grot, and V. Nagarajan, “Scale-out

ccNUMA: exploiting skew with strongly consistent caching.” in Proceedings of the 2018

EuroSys Conference, 2018, pp. 21:1–21:15. Cited on pages 73, 74, 77, 84, and 176.

[85] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum, and A. Vahdat, “Exploiting a

Natural Network Effect for Scalable, Fine-grained Clock Synchronization.” in Proceed-

ings of the 15th Symposium on Networked Systems Design and Implementation (NSDI),

2018, pp. 81–94. Cited on page 185.

[86] Google. FlatBuffers. [Online]. Available: https://google.github.io/flatbuffers/ Cited on

page 170.

[87] ——. Protocol Buffers. [Online]. Available: https://developers.google.com/protocol-

buffers/ Cited on pages 145 and 169.

[88] S. Goswami, N. Kodirov, C. Mustard, I. Beschastnikh, and M. I. Seltzer, “Parking packet

payload with P4.” in Proceedings of the 2020 ACM Conference on Emerging Networking

Experiments and Technology (CoNEXT), 2020, pp. 274–281. Cited on page 168.

[89] Grandview Research. (2021) E-commerce Market Size, Share and Trends Analysis Report

By Model Type. [Online]. Available: https://www.grandviewresearch.com/industry-

analysis/e-commerce-market Cited on page 1.

[90] A. G. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel,

and S. Sengupta, “VL2: a scalable and flexible data center network.” in Proceedings of

the ACM SIGCOMM 2009 Conference, 2009, pp. 51–62. Cited on pages 3, 13, and 183.

199

https://www.theregister.com/2021/06/29/intel_tsx_disabled/
https://www.theregister.com/2021/06/29/intel_tsx_disabled/
https://google.github.io/flatbuffers/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://www.grandviewresearch.com/industry-analysis/e-commerce-market
https://www.grandviewresearch.com/industry-analysis/e-commerce-market

Bibliography

[91] Greg Linden. (2006) Marissa Mayer at Web 2.0. [Online]. Available: http://glinden.

blogspot.com/2006/11/marissa-mayer-at-web-20.html Cited on page 2.

[92] P. Grosu, M. Rehman, E. Anderson, V. Pai, and H. Miller. gRPC. [Online]. Available: https:

//github.com/heathermiller/dist-prog-book/blob/master/chapter/1/gRPC.md Cited

on pages 2, 12, 25, and 28.

[93] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn, “RDMA over Com-

modity Ethernet at Scale.” in Proceedings of the ACM SIGCOMM 2016 Conference, 2016,

pp. 202–215. Cited on pages 3, 5, 14, and 171.

[94] L. Gwennap, “AMD Milan Extends Server Lead,” Linley Group Microprocessor Report,

March 2021. Cited on pages 18, 105, 135, and 148.

[95] ——, “Sapphire Rapids Spans Tiles,” Linley Group Microprocessor Report, September

2021. Cited on pages 18 and 148.

[96] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore, G. Antichi, and M. Wójcik,

“Re-architecting datacenter networks and stacks for low latency and high performance.”

in Proceedings of the ACM SIGCOMM 2017 Conference, 2017, pp. 29–42. Cited on pages

14, 15, 39, 49, 56, and 184.

[97] M. Hao, H. Li, M. H. Tong, C. Pakha, R. O. Suminto, C. A. Stuardo, A. A. Chien, and

H. S. Gunawi, “MittOS: Supporting Millisecond Tail Tolerance with Fast Rejecting SLO-

Aware OS Interface.” in Proceedings of the 26th ACM Symposium on Operating Systems

Principles (SOSP), 2017, pp. 168–183. Cited on page 53.

[98] M. E. Haque, Y. H. Eom, Y. He, S. Elnikety, R. Bianchini, and K. S. McKinley, “Few-to-

Many: Incremental Parallelism for Reducing Tail Latency in Interactive Services.” in

Proceedings of the 20th International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS), 2015, pp. 161–175. Cited on page

2.

[99] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir, “Flat combining and the synchronization-

parallelism tradeoff.” in Proceedings of the 22nd ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA), 2010, pp. 355–364. Cited on page 177.

200

http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
https://github.com/heathermiller/dist-prog-book/blob/master/chapter/1/gRPC.md
https://github.com/heathermiller/dist-prog-book/blob/master/chapter/1/gRPC.md

Bibliography

[100] J. L. Hennessy and D. A. Patterson, “A new golden age for computer architecture.”

Commun. ACM, vol. 62, no. 2, pp. 48–60, 2019. Cited on page 21.

[101] M. Herlihy and J. M. Wing, “Linearizability: A Correctness Condition for Concurrent

Objects.” ACM Trans. Program. Lang. Syst., vol. 12, no. 3, pp. 463–492, 1990. Cited on

page 84.

[102] Y.-J. Hong and M. Thottethodi, “Understanding and mitigating the impact of load

imbalance in the memory caching tier.” in Proceedings of the 2013 ACM Symposium on

Cloud Computing (SOCC), 2013, pp. 13:1–13:17. Cited on page 72.

[103] N. Horman, P. Waskiewicz, A. Arapov, and et al. IRQBalance Linux Daemon. [Online].

Available: http://irqbalance.github.io/irqbalance/ Cited on page 68.

[104] Q. Huang, H. Gudmundsdottir, Y. Vigfusson, D. A. Freedman, K. Birman, and R. van

Renesse, “Characterizing Load Imbalance in Real-World Networked Caches.” in Pro-

ceedings of the 13th ACM Workshop on Hot Topics in Networks (HotNets-XIII), 2014, pp.

8:1–8:7. Cited on page 72.

[105] R. Huggahalli, R. R. Iyer, and S. Tetrick, “Direct Cache Access for High Bandwidth Net-

work I/O.” in Proceedings of the 32nd International Symposium on Computer Architecture

(ISCA), 2005, pp. 50–59. Cited on pages 20, 27, and 57.

[106] J. T. Humphries, K. Kaffes, D. Mazières, and C. Kozyrakis, “Mind the Gap: A Case for

Informed Request Scheduling at the NIC.” in Proceedings of the 18th ACM Workshop on

Hot Topics in Networks (HotNets-XVIII), 2019, pp. 60–68. Cited on pages 18, 42, and 90.

[107] J. T. Humphries, N. Natu, A. Chaugule, O. Weisse, B. Rhoden, J. Don, L. Rizzo, O. Rom-

bakh, P. Turner, and C. Kozyrakis, “ghOSt: Fast & Flexible User-Space Delegation of

Linux Scheduling.” in Proceedings of the 28th ACM Symposium on Operating Systems

Principles (SOSP), 2021, pp. 588–604. Cited on page 174.

[108] S. Ibanez, A. Mallery, S. Arslan, T. Jepsen, M. Shahbaz, C. Kim, and N. McKeown, “The

nanoPU: A Nanosecond Network Stack for Datacenters.” in Proceedings of the 15th

Symposium on Operating Systems Design and Implementation (OSDI), 2021, pp. 239–256.

Cited on pages 4, 14, 20, 31, 57, 97, 137, and 167.

201

http://irqbalance.github.io/irqbalance/

Bibliography

[109] S. Ibanez, M. Shahbaz, and N. McKeown, “The Case for a Network Fast Path to the CPU.”

in Proceedings of the 18th ACM Workshop on Hot Topics in Networks (HotNets-XVIII),

2019, pp. 52–59. Cited on pages 4 and 20.

[110] IEEE Standards Association. (2019) IEEE Standard 1588-2019. (Date retrieved: 18 May

2022). [Online]. Available: https://standards.ieee.org/ieee/1588/6825/ Cited on page

185.

[111] Infiniband Trade Association, “InfiniBand Architecture Release 1.3.1,” https://www.

infinibandta.org/ibta-specifications-download, 2016, (Date retrieved: 6 March 2020).

Cited on page 17.

[112] InfiniBand Trade Association, “InfiniBand Roadmap,” https://www.infinibandta.org/

infiniband-roadmap/, 2018. Cited on pages 3, 14, and 40.

[113] Intel Corp. Intel 64 and IA-32 Architectures Software Developer’s Manuals. [Online].

Available: https://www.intel.com/content/www/us/en/developer/articles/technical/

intel-sdm.html Cited on page 147.

[114] Intel Omni-Path Architecture Driving Exascale Computing and HPC. https:

//www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-

path-driving-exascale-computing.html. Intel Corp. Cited on page 14.

[115] Intel Corp. Intel tofino 2 p4 programmable ethernet switch. [On-

line]. Available: https://www.intel.com/content/www/us/en/products/network-

io/programmable-ethernet-switch/tofino-2-series.html Cited on page 89.

[116] ——. Performance Monitoring Impact of Intel® Transactional Syn-

chronization Extension Memory Ordering Issue. [Online]. Avail-

able: https://www.intel.com/content/dam/support/us/en/documents/processors/

Performance-Monitoring-Impact-of-TSX-Memory-Ordering-Issue-604224.pdf Cited

on page 177.

[117] ——. RTM Overview. [Online]. Available: https://www.intel.com/content/www/

us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/

compiler-reference/intrinsics/intrinsics-for-avx2/intrinsics-for-tsx/intrinsics-for-

202

https://standards.ieee.org/ieee/1588/6825/
https://www.infinibandta.org/ibta-specifications-download
https://www.infinibandta.org/ibta-specifications-download
https://www.infinibandta.org/infiniband-roadmap/
https://www.infinibandta.org/infiniband-roadmap/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-driving-exascale-computing.html
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-driving-exascale-computing.html
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-driving-exascale-computing.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/dam/support/us/en/documents/processors/Performance-Monitoring-Impact-of-TSX-Memory-Ordering-Issue-604224.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/Performance-Monitoring-Impact-of-TSX-Memory-Ordering-Issue-604224.pdf
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2/intrinsics-for-tsx/intrinsics-for-restrict-transactional-mem-ops/restricted-transactional-memory-overview.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2/intrinsics-for-tsx/intrinsics-for-restrict-transactional-mem-ops/restricted-transactional-memory-overview.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2/intrinsics-for-tsx/intrinsics-for-restrict-transactional-mem-ops/restricted-transactional-memory-overview.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2/intrinsics-for-tsx/intrinsics-for-restrict-transactional-mem-ops/restricted-transactional-memory-overview.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2/intrinsics-for-tsx/intrinsics-for-restrict-transactional-mem-ops/restricted-transactional-memory-overview.html

Bibliography

restrict-transactional-mem-ops/restricted-transactional-memory-overview.html

Cited on page 177.

[118] (2011) PCI-SIG SR-IOV Primer. Intel Corp. (Date retrieved: 18 March 2022). Cited on

page 180.

[119] (2012) Intel Data Direct I/O Technology. Intel Corp. [Online]. Available: https:

//www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html Cited

on pages 20, 27, 41, 43, 45, 54, 57, and 167.

[120] (2014) Introduction to Intel Ethernet Flow Director and Memcached Perfor-

mance. https://www.intel.com/content/dam/www/public/us/en/documents/white-

papers/intel-ethernet-flow-director.pdf. Intel Corp. (Date retrieved: 6 March 2020).

Cited on pages 16, 18, and 68.

[121] (2016) Intel Xeon Processor D-1500 Product Family. https://cdrdv2.intel.com/v1/dl/

getcontent/333423. Intel Corp. (Date retrieved: 6 March 2020). Cited on pages 4, 20,

and 97.

[122] J. Jang, S. Jung, S. Jeong, J. Heo, H. Shin, T. J. Ham, and J. W. Lee, “A Specialized Architec-

ture for Object Serialization with Applications to Big Data Analytics.” in Proceedings of

the 47th International Symposium on Computer Architecture (ISCA), 2020, pp. 322–334.

Cited on pages 20 and 30.

[123] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica, “NetCache:

Balancing Key-Value Stores with Fast In-Network Caching.” in Proceedings of the 26th

ACM Symposium on Operating Systems Principles (SOSP), 2017, pp. 121–136. Cited on

pages 21, 72, 73, 75, 82, 155, and 176.

[124] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu, V. Shankar,

J. Carreira, K. Krauth, N. Yadwadkar, J. E. Gonzalez, R. A. Popa, I. Stoica, and D. A.

Patterson. (2019) Cloud programming simplified: A berkeley view on serverless

computing. [Online]. Available: https://arxiv.org/abs/1902.03383 Cited on page 1.

[125] N. P. Jouppi, C. Young, N. Patil, D. A. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,

N. Boden, A. Borchers, R. Boyle, P. luc Cantin, C. Chao, C. Clark, J. Coriell, M. Daley,

203

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2/intrinsics-for-tsx/intrinsics-for-restrict-transactional-mem-ops/restricted-transactional-memory-overview.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2/intrinsics-for-tsx/intrinsics-for-restrict-transactional-mem-ops/restricted-transactional-memory-overview.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2/intrinsics-for-tsx/intrinsics-for-restrict-transactional-mem-ops/restricted-transactional-memory-overview.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2/intrinsics-for-tsx/intrinsics-for-restrict-transactional-mem-ops/restricted-transactional-memory-overview.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://cdrdv2.intel.com/v1/dl/getcontent/333423
https://cdrdv2.intel.com/v1/dl/getcontent/333423
https://arxiv.org/abs/1902.03383

Bibliography

M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann,

C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,

H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary,

Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,

R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps,

J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter,

D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,

R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-Datacenter Performance Analysis

of a Tensor Processing Unit.” in Proceedings of the 44th International Symposium on

Computer Architecture (ISCA), 2017, pp. 1–12. Cited on page 21.

[126] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Mazières, and C. Kozyrakis, “Shinjuku:

Preemptive Scheduling for usecond-scale Tail Latency.” in Proceedings of the 16th Sym-

posium on Networked Systems Design and Implementation (NSDI), 2019, pp. 345–360.

Cited on pages 17, 34, 42, 149, and 184.

[127] G. Kakivaya, L. Xun, R. Hasha, S. B. Ahsan, T. Pfleiger, R. Sinha, A. Gupta, M. Tarta,

M. Fussell, V. Modi, M. Mohsin, R. Kong, A. Ahuja, O. Platon, A. Wun, M. Snider, C. Daniel,

D. Mastrian, Y. Li, A. Rao, V. Kidambi, R. Wang, A. Ram, S. Shivaprakash, R. Nair, A. War-

wick, B. S. Narasimman, M. Lin, J. Chen, A. B. Mhatre, P. Subbarayalu, M. Coskun, and

I. Gupta, “Service fabric: a distributed platform for building microservices in the cloud.”

in Proceedings of the 2018 EuroSys Conference, 2018, pp. 33:1–33:15. Cited on pages 2

and 12.

[128] eRPC Repository. [Online]. Available: https://github.com/erpc-io/eRPC Cited on page

149.

[129] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA efficiently for key-value

services.” in Proceedings of the ACM SIGCOMM 2014 Conference, 2014, pp. 295–306.

Cited on pages 3, 12, 26, 163, and 176.

[130] ——, “Design Guidelines for High Performance RDMA Systems.” in Proceedings of the

2016 USENIX Annual Technical Conference (ATC), 2016, pp. 437–450. Cited on page 26.

204

https://github.com/erpc-io/eRPC

Bibliography

[131] ——, “FaSST: Fast, Scalable and Simple Distributed Transactions with Two-Sided (RD-

MA) Datagram RPCs.” in Proceedings of the 12th Symposium on Operating Systems

Design and Implementation (OSDI), 2016, pp. 185–201. Cited on pages 26, 41, 111, 125,

and 163.

[132] ——, “Datacenter RPCs can be General and Fast.” in Proceedings of the 16th Symposium

on Networked Systems Design and Implementation (NSDI), 2019, pp. 1–16. Cited on

pages 3, 12, 26, 41, 42, 111, 145, and 164.

[133] S. Kanev, J. P. Darago, K. M. Hazelwood, P. Ranganathan, T. Moseley, G.-Y. Wei, and D. M.

Brooks, “Profiling a warehouse-scale computer.” in Proceedings of the 42nd International

Symposium on Computer Architecture (ISCA), 2015, pp. 158–169. Cited on pages 63, 140,

169, and 179.

[134] A. Kannan, N. D. E. Jerger, and G. H. Loh, “Enabling interposer-based disintegration

of multi-core processors.” in Proceedings of the 48th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), 2015, pp. 546–558. Cited on page 4.

[135] R. S. Kannan, L. Subramanian, A. Raju, J. Ahn, J. Mars, and L. Tang, “GrandSLAm:

Guaranteeing SLAs for Jobs in Microservices Execution Frameworks.” in Proceedings of

the 2019 EuroSys Conference, 2019, pp. 34:1–34:16. Cited on page 185.

[136] S. Karandikar, C. Leary, C. Kennelly, J. Zhao, D. Parimi, B. Nikolic, K. Asanovic, and

P. Ranganathan, “A Hardware Accelerator for Protocol Buffers.” in Proceedings of the

54th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2021,

pp. 462–478. Cited on pages 5, 20, 63, 120, 121, 169, and 170.

[137] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee, N. Pemberton, E. Amaro,

C. Schmidt, A. Chopra, Q. Huang, K. Kovacs, B. Nikolic, R. H. Katz, J. Bachrach, and

K. Asanovic, “FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in

the Public Cloud.” in Proceedings of the 45th International Symposium on Computer

Architecture (ISCA), 2018, pp. 29–42. Cited on pages 4, 20, 97, and 183.

[138] S. Kashyap, C. Min, K. Kim, and T. Kim, “A scalable ordering primitive for multicore

machines.” in Proceedings of the 2018 EuroSys Conference, 2018, pp. 34:1–34:15. Cited

on pages 147 and 149.

205

Bibliography

[139] A. Kaufmann, S. Peter, N. K. Sharma, T. E. Anderson, and A. Krishnamurthy, “High

Performance Packet Processing with FlexNIC.” in Proceedings of the 21st International

Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), 2016, pp. 67–81. Cited on pages 89 and 145.

[140] C. Kaynak, B. Grot, and B. Falsafi, “SHIFT: shared history instruction fetch for lean-

core server processors.” in Proceedings of the 46th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), 2013, pp. 272–283. Cited on page 172.

[141] ——, “Confluence: unified instruction supply for scale-out servers.” in Proceedings of

the 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),

2015, pp. 166–177. Cited on page 172.

[142] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W. E. Baker, “Performance

Characterization of a Quad Pentium Pro SMP using OLTP Workloads.” in Proceedings

of the 25th International Symposium on Computer Architecture (ISCA), 1998, pp. 15–26.

Cited on page 172.

[143] Kenton Varda, Sandstorm.io. Cap’n Proto. [Online]. Available: https://capnproto.org

Cited on page 170.

[144] T. A. Khan, A. Sriraman, J. Devietti, G. Pokam, H. Litz, and B. Kasikci, “I-SPY: Context-

Driven Conditional Instruction Prefetching with Coalescing.” in Proceedings of the 53rd

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2020, pp.

146–159. Cited on page 172.

[145] Khang Nguyen. Usage Models for Cache Allocation Technology in the Intel Xeon Pro-

cessor E5 v4 Family. [Online]. Available: https://www.intel.com/content/www/us/en/

developer/articles/technical/cache-allocation-technology-usage-models.html Cited

on page 167.

[146] J. Kim, A. Mathew, S. Kashyap, M. K. Ramanathan, and C. Min, “MV-RLU: Scaling Read-

Log-Update with Multi-Versioning.” in Proceedings of the 24th International Conference

on Architectural Support for Programming Languages and Operating Systems (ASPLOS),

2019, pp. 779–792. Cited on pages 75, 149, and 177.

206

https://capnproto.org
https://www.intel.com/content/www/us/en/developer/articles/technical/cache-allocation-technology-usage-models.html
https://www.intel.com/content/www/us/en/developer/articles/technical/cache-allocation-technology-usage-models.html

Bibliography

[147] M. Kogias and E. Bugnion, “Flow control for Latency-Critical RPCs.” in Proceedings of

the 2018 Workshop on Kernel-Bypass Networks (KBNETS@SIGCOMM), 2018, pp. 15–21.

Cited on pages 53 and 166.

[148] ——, “HovercRaft: achieving scalability and fault-tolerance for microsecond-scale dat-

acenter services.” in Proceedings of the 2020 EuroSys Conference, 2020, pp. 25:1–25:17.

Cited on page 15.

[149] M. Kogias, S. Mallon, and E. Bugnion, “Lancet: A self-correcting Latency Measuring

Tool.” in Proceedings of the 2019 USENIX Annual Technical Conference (ATC), 2019, pp.

881–896. Cited on pages 34 and 182.

[150] M. Kogias, G. Prekas, A. Ghosn, J. Fietz, and E. Bugnion, “R2P2: Making RPCs first-class

datacenter citizens.” in Proceedings of the 2019 USENIX Annual Technical Conference

(ATC), 2019, pp. 863–880. Cited on pages 4, 18, 21, 39, 44, 48, 49, 55, 56, 69, 72, 73, 74, 76,

87, 89, 90, 105, 109, 121, 125, 131, 149, and 184.

[151] A. Kumar and R. Huggahalli, “Impact of Cache Coherence Protocols on the Processing of

Network Traffic.” in Proceedings of the 40th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO), 2007, pp. 161–171. Cited on page 167.

[152] A. Kumar, R. Huggahalli, and S. Makineni, “Characterization of Direct Cache Access

on multi-core systems and 10GbE.” in Proceedings of the 15th IEEE Symposium on

High-Performance Computer Architecture (HPCA), 2009, pp. 341–352. Cited on page 27.

[153] G. Kumar, N. Dukkipati, K. Jang, H. M. G. Wassel, X. Wu, B. Montazeri, Y. Wang, K. Spring-

born, C. Alfeld, M. Ryan, D. Wetherall, and A. Vahdat, “Swift: Delay is Simple and Effec-

tive for Congestion Control in the Datacenter.” in Proceedings of the ACM SIGCOMM

2020 Conference, 2020, pp. 514–528. Cited on pages 3, 4, and 184.

[154] R. Kumar, B. Grot, and V. Nagarajan, “Blasting through the Front-End Bottleneck with

Shotgun.” in Proceedings of the 23rd International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), 2018, pp. 30–42. Cited

on pages 64 and 172.

207

Bibliography

[155] R. Kumar, C.-C. Huang, B. Grot, and V. Nagarajan, “Boomerang: A Metadata-Free Ar-

chitecture for Control Flow Delivery.” in Proceedings of the 23rd IEEE Symposium on

High-Performance Computer Architecture (HPCA), 2017, pp. 493–504. Cited on pages 64

and 172.

[156] A. Kägi, D. Burger, and J. R. Goodman, “Efficient Synchronization: Let Them Eat QOLB.”

in Proceedings of the 24th International Symposium on Computer Architecture (ISCA),

1997, pp. 170–180. Cited on page 177.

[157] B. Lampson, “Hints and principles for computer system design,” 2020, retrieved May

3, 2022. [Online]. Available: https://arxiv.org/abs/2011.02455 Cited on pages 53, 84,

and 121.

[158] J. R. Larus and M. Parkes, “Using Cohort-Scheduling to Enhance Server Performance.”

in USENIX Annual Technical Conference, 2002, pp. 103–114. Cited on page 173.

[159] N. Lazarev, N. Adit, S. Xiang, Z. Zhang, and C. Delimitrou, “Dagger: Towards Efficient

RPCs in Cloud Microservices With Near-Memory Reconfigurable NICs.” IEEE Comput.

Archit. Lett., vol. 19, no. 2, pp. 134–138, 2020. Cited on pages 3, 30, and 125.

[160] N. Lazarev, S. Xiang, N. Adit, Z. Zhang, and C. Delimitrou, “Dagger: efficient and fast

RPCs in cloud microservices with near-memory reconfigurable NICs.” in Proceedings of

the 26th International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 2021, pp. 36–51. Cited on pages 120, 168, and 169.

[161] I. Lesokhin, H. Eran, S. Raindel, G. Shapiro, S. Grimberg, L. Liss, M. Ben-Yehuda, N. Amit,

and D. Tsafrir, “Page Fault Support for Network Controllers.” in Proceedings of the 22nd

International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2017, pp. 449–466. Cited on page 41.

[162] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and L. Zhang, “KV-Direct:

High-Performance In-Memory Key-Value Store with Programmable NIC.” in Proceedings

of the 26th ACM Symposium on Operating Systems Principles (SOSP), 2017, pp. 137–152.

Cited on pages 72, 73, 74, 76, 77, 84, and 176.

208

https://arxiv.org/abs/2011.02455

Bibliography

[163] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble, “Tales of the Tail: Hardware, OS, and

Application-level Sources of Tail Latency.” in Proceedings of the 2014 ACM Symposium

on Cloud Computing (SOCC), 2014, pp. 9:1–9:14. Cited on pages 2, 16, and 179.

[164] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “CACTI-P: Architecture-level

modeling for SRAM-based structures with advanced leakage reduction techniques.” in

Proceedings of the 2011 IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), 2011, pp. 694–701. Cited on pages 105 and 134.

[165] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kaminsky, D. G. Andersen, S. O, S. Lee, and

P. Dubey, “Architecting to achieve a billion requests per second throughput on a single

key-value store server platform.” in Proceedings of the 42nd International Symposium

on Computer Architecture (ISCA), 2015, pp. 476–488. Cited on pages 41, 46, 73, 75, 76,

77, 84, 110, 155, 165, and 175.

[166] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “MICA: A Holistic Approach to Fast

In-Memory Key-Value Storage.” in Proceedings of the 11th Symposium on Networked

Systems Design and Implementation (NSDI), 2014, pp. 429–444. Cited on pages 40, 46,

72, 73, 74, 75, 76, 77, 84, 87, 110, 145, 149, 155, 165, and 175.

[167] K. T. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch, “Thin servers with

smart pipes: designing SoC accelerators for memcached.” in Proceedings of the 40th

International Symposium on Computer Architecture (ISCA), 2013, pp. 36–47. Cited on

pages 16 and 165.

[168] K. T. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ranganathan, and T. F. Wenisch,

“System-level implications of disaggregated memory.” in Proceedings of the 18th IEEE

Symposium on High-Performance Computer Architecture (HPCA), 2012, pp. 189–200.

Cited on page 15.

[169] Linley Group, “Centriq Aces Scale-Out Performance,” Microprocessor Report, November

2017. Cited on page 46.

[170] ——, “Xeon Scalable Reshapes Server Line,” Microprocessor Report, July 2017. Cited on

pages 18, 46, 52, and 148.

209

Bibliography

[171] “Data Plane Development Kit,” https://www.dpdk.org/, The Linux Foundation Projects.

Cited on page 15.

[172] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta, “Offloading dis-

tributed applications onto smartNICs using iPipe.” in Proceedings of the ACM SIGCOMM

2019 Conference, 2019, pp. 318–333. Cited on pages 18 and 174.

[173] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis, “Improving Resource

Efficiency at Scale with Heracles.” ACM Trans. Comput. Syst., vol. 34, no. 2, pp. 6:1–6:33,

2016. Cited on page 27.

[174] P. Lotfi-Kamran, B. Grot, and B. Falsafi, “NOC-Out: Microarchitecting a Scale-Out

Processor.” in Proceedings of the 45th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), 2012, pp. 177–187. Cited on page 168.

[175] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller, “Remote Core Locking: Migrating

Critical-Section Execution to Improve the Performance of Multithreaded Applications.”

in Proceedings of the 2012 USENIX Annual Technical Conference (ATC), 2012, pp. 65–76.

Cited on pages 86 and 177.

[176] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast multicore key-value storage.”

in Proceedings of the 2012 EuroSys Conference, 2012, pp. 183–196. Cited on pages 3, 12,

13, 74, 84, and 175.

[177] I. Marinos, R. N. M. Watson, M. Handley, and R. R. Stewart, “Disk|Crypt|Net: rethinking

the stack for high-performance video streaming.” in Proceedings of the ACM SIGCOMM

2017 Conference, 2017, pp. 211–224. Cited on page 162.

[178] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer, C. Contavalli, M. Dalton,

N. Dukkipati, W. C. Evans, S. Gribble, N. Kidd, R. Kononov, G. Kumar, C. Mauer, E. Mu-

sick, L. E. Olson, E. Rubow, M. Ryan, K. Springborn, P. Turner, V. Valancius, X. Wang, and

A. Vahdat, “Snap: a microkernel approach to host networking.” in Proceedings of the

27th ACM Symposium on Operating Systems Principles (SOSP), 2019, pp. 399–413. Cited

on pages 3, 16, 170, 174, and 184.

210

https://www.dpdk.org/

Bibliography

[179] Matt Ranney. (2021) Lessons Learned From Scaling Uber To 2000

Engineers, 1000 Services, And 8000 Git Repositories. [Online]. Avail-

able: http://highscalability.com/blog/2016/10/12/lessons-learned-from-scaling-uber-

to-2000-engineers-1000-ser.html Cited on page 2.

[180] A. Matveev, N. Shavit, P. Felber, and P. Marlier, “Read-log-update: a lightweight syn-

chronization mechanism for concurrent programming.” in Proceedings of the 25th ACM

Symposium on Operating Systems Principles (SOSP), 2015, pp. 168–183. Cited on pages

75, 149, 152, and 177.

[181] S. McCanne and V. Jacobson, “The bsd packet filter: A new architecture for user-level

packet capture.” in USENIX Winter, vol. 46, 1993. Cited on page 147.

[182] S. McClure, A. Ousterhout, S. Shenker, and S. Ratnasamy, “Efficient scheduling policies

for Microsecond-Scale tasks,” in 19th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 22). Renton, WA: USENIX Association, Apr. 2022, pp. 1–18.

[Online]. Available: https://www.usenix.org/conference/nsdi22/presentation/mcclure

Cited on pages 4, 121, and 175.

[183] P. E. McKenney and J. D. Slingwine, “Read-copy update: Using execution history to solve

concurrency problems,” in Parallel and Distributed Computing and Systems, vol. 509518,

1998. Cited on page 177.

[184] D. Meisner, J. Wu, and T. F. Wenisch, “BigHouse: A simulation infrastructure for data cen-

ter systems.” in Proceedings of the 2012 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), 2012, pp. 35–45. Cited on page 183.

[185] Memcached: A Distributed Memory Object Caching System. [Online]. Available:

https://memcached.org/ Cited on pages 74 and 175.

[186] Meta Inc. RocksDB GitHub. [Online]. Available: https://github.com/facebook/rocksdb

Cited on page 176.

[187] (2018) MT40A1G8 DDR4 SDRAM Datasheet. Micron Technology

Inc. (Date retrieved: 26 July 2020). [Online]. Available: https:

//media-www.micron.com/-/media/client/global/documents/products/data-

211

http://highscalability.com/blog/2016/10/12/lessons-learned-from-scaling-uber-to-2000-engineers-1000-ser.html
http://highscalability.com/blog/2016/10/12/lessons-learned-from-scaling-uber-to-2000-engineers-1000-ser.html
https://www.usenix.org/conference/nsdi22/presentation/mcclure
https://memcached.org/
https://github.com/facebook/rocksdb
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/16gb_ddr4_sdram.pdf?rev=ad85f83238d84f2d920b4ae0d3892638
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/16gb_ddr4_sdram.pdf?rev=ad85f83238d84f2d920b4ae0d3892638
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/16gb_ddr4_sdram.pdf?rev=ad85f83238d84f2d920b4ae0d3892638
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/16gb_ddr4_sdram.pdf?rev=ad85f83238d84f2d920b4ae0d3892638

Bibliography

sheet/dram/ddr4/16gb_ddr4_sdram.pdf?rev=ad85f83238d84f2d920b4ae0d3892638

Cited on page 46.

[188] Microsoft Azure. (2020) SLA for Azure Cosmos DB. [Online]. Available: https:

//azure.microsoft.com/en-ca/support/legal/sla/cosmos-db/v1_3/ Cited on page 184.

[189] Microsoft Corp., “Receive Side Scaling,” http://msdn.microsoft.com/library/windows/

hardware/ff556942.aspx. Cited on pages 18, 42, and 111.

[190] A. Mirhosseini, S. Elnikety, and T. F. Wenisch, “Parslo: A Gradient Descent-based Ap-

proach for Near-optimal Partial SLO Allotment in Microservices.” in Proceedings of the

2021 ACM Symposium on Cloud Computing (SOCC), 2021, pp. 442–457. Cited on pages

2 and 185.

[191] R. Mittal, A. Shpiner, A. Panda, E. Zahavi, A. Krishnamurthy, S. Ratnasamy, and

S. Shenker, “Revisiting network support for RDMA.” in Proceedings of the ACM SIG-

COMM 2018 Conference, 2018, pp. 313–326. Cited on page 126.

[192] M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algorithms

and Probabilistic Analysis. Cambridge University Press, 2005. Cited on pages 106

and 107.

[193] B. Montazeri, Y. Li, M. Alizadeh, and J. K. Ousterhout, “Homa: a receiver-driven low-

latency transport protocol using network priorities.” in Proceedings of the ACM SIG-

COMM 2018 Conference, 2018, pp. 221–235. Cited on pages 2, 4, 14, 15, 49, 54, 56, 72, 73,

105, 166, 170, 183, and 184.

[194] Morgan, Timothy Prickett. The CXL Roadmap Opens Up The Memory Hierarchy.

[Online]. Available: https://www.nextplatform.com/2021/09/07/the-cxl-roadmap-

opens-up-the-memory-hierarchy/ Cited on page 90.

[195] N. Narula, C. Cutler, E. Kohler, and R. T. Morris, “Phase Reconciliation for Contended

In-Memory Transactions.” in Proceedings of the 11th Symposium on Operating Systems

Design and Implementation (OSDI), 2014, pp. 511–524. Cited on pages 76 and 177.

212

https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/16gb_ddr4_sdram.pdf?rev=ad85f83238d84f2d920b4ae0d3892638
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/16gb_ddr4_sdram.pdf?rev=ad85f83238d84f2d920b4ae0d3892638
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/16gb_ddr4_sdram.pdf?rev=ad85f83238d84f2d920b4ae0d3892638
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/16gb_ddr4_sdram.pdf?rev=ad85f83238d84f2d920b4ae0d3892638
https://azure.microsoft.com/en-ca/support/legal/sla/cosmos-db/v1_3/
https://azure.microsoft.com/en-ca/support/legal/sla/cosmos-db/v1_3/
http://msdn.microsoft.com/library/windows/hardware/ff556942.aspx
http://msdn.microsoft.com/library/windows/hardware/ff556942.aspx
https://www.nextplatform.com/2021/09/07/the-cxl-roadmap-opens-up-the-memory-hierarchy/
https://www.nextplatform.com/2021/09/07/the-cxl-roadmap-opens-up-the-memory-hierarchy/

Bibliography

[196] “Netronome NFP-6000 Flow Processor,” https://www.netronome.com/media/

documents/PB_NFP-6000-7-20.pdf, Netronome, 2022, (Date retrieved: 16 May 2022).

Cited on pages 89 and 137.

[197] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-Buedo, and A. W. Moore,

“Understanding PCIe performance for end host networking.” in Proceedings of the ACM

SIGCOMM 2018 Conference, 2018, pp. 327–341. Cited on page 91.

[198] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy, M. Paleczny,

D. Peek, P. Saab, D. Stafford, T. Tung, and V. Venkataramani, “Scaling Memcache at

Facebook.” in Proceedings of the 10th Symposium on Networked Systems Design and

Implementation (NSDI), 2013, pp. 385–398. Cited on pages 73, 87, and 182.

[199] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot, “Scale-out NUMA.” in Pro-

ceedings of the 19th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2014, pp. 3–18. Cited on pages 4, 7, 20, 36,

49, 54, 97, 129, and 130.

[200] ——, “The Case for RackOut: Scalable Data Serving Using Rack-Scale Systems.” in

Proceedings of the 2016 ACM Symposium on Cloud Computing (SOCC), 2016, pp. 182–

195. Cited on pages 73, 74, 75, 76, 77, 84, and 176.

[201] S. Novakovic, Y. Shan, A. Kolli, M. Cui, Y. Zhang, H. Eran, B. Pismenny, L. Liss, M. Wei,

D. Tsafrir, and M. K. Aguilera, “Storm: a fast transactional dataplane for remote data

structures.” in Proceedings of the 12th ACM International Conference on Systems and

Storage (SYSTOR), 2019, pp. 97–108. Cited on pages 26, 41, and 164.

[202] NVIDIA BlueField-3 DPU. NVIDIA Corp. [Online]. Avail-

able: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/

documents/datasheet-nvidia-bluefield-3-dpu.pdf Cited on pages 32 and 89.

[203] NVIDIA/Mellanox Innova-2 Flex SmartNIC. NVIDIA Corp. [Online]. Available:

https://network.nvidia.com/files/doc-2020/pb-innova-2-flex.pdf Cited on page 89.

213

https://www.netronome.com/media/documents/PB_NFP-6000-7-20.pdf
https://www.netronome.com/media/documents/PB_NFP-6000-7-20.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://network.nvidia.com/files/doc-2020/pb-innova-2-flex.pdf

Bibliography

[204] (2020) BlueField-2 I/O Processing Unit Product Brief. https://www.mellanox.com/

related-docs/prod_adapter_cards/PB_BlueField-2_IPU.pdf. NVIDIA Corp. (Date re-

trieved: 6 March 2020). Cited on pages 4, 20, 32, 89, and 137.

[205] (2020) Developing a Linux Kernel Module using GPUDirect RDMA. NVIDIA Corp.

[Online]. Available: https://docs.nvidia.com/cuda/gpudirect-rdma/index.html Cited

on page 171.

[206] (2020) NVIDIA ConnectX-6 DX SmartNIC. https://www.nvidia.com/en-

us/networking/ethernet/connectx-6-dx/. NVIDIA Corp. Cited on page 14.

[207] (2020) NVLink and NVSwitch. https://www.nvidia.com/en-us/data-center/nvlink/.

NVIDIA Corp. (Date retrieved: 6 March 2020). Cited on pages 4 and 20.

[208] (2022) NVIDIA ConnectX-7 400G Ethernet. https://nvdam.widen.net/s/srdqzxgdr5/connectx-

7-datasheet. NVIDIA Corp. (Date retrieved: 19 April 2022). Cited on pages 13, 31, 46,

and 148.

[209] (2022) NVIDIA Grace CPU SuperChip. https://www.nvidia.com/en-us/data-center/

grace-cpu/. NVIDIA Corp. (Date retrieved: 19 April 2022). Cited on pages 4 and 18.

[210] G. Ottoni, “HHVM JIT: a profile-guided, region-based compiler for PHP and Hack.” in

Proceedings of the ACM SIGPLAN 2018 Conference on Programming Language Design

and Implementation (PLDI), 2018, pp. 151–165. Cited on page 182.

[211] A. Ousterhout, A. Belay, and I. Zhang, “Just In Time Delivery: Leveraging Operating

Systems Knowledge for Better Datacenter Congestion Control.” in Proceedings of the

11th workshop on Hot topics in Cloud Computing (HotCloud), 2019. Cited on page 166.

[212] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan, “Shenango: Achieving

High CPU Efficiency for Latency-sensitive Datacenter Workloads.” in Proceedings of the

16th Symposium on Networked Systems Design and Implementation (NSDI), 2019, pp.

361–378. Cited on pages 161 and 184.

[213] J. K. Ousterhout, “A Linux Kernel Implementation of the Homa Transport Protocol.” in

Proceedings of the 2021 USENIX Annual Technical Conference (ATC), 2021, pp. 99–115.

Cited on pages 16 and 170.

214

https://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField-2_IPU.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField-2_IPU.pdf
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/grace-cpu/
https://www.nvidia.com/en-us/data-center/grace-cpu/

Bibliography

[214] J. K. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri, D. Ongaro, S. J.

Park, H. Qin, M. Rosenblum, S. M. Rumble, R. Stutsman, and S. Yang, “The RAMCloud

Storage System.” ACM Trans. Comput. Syst., vol. 33, no. 3, pp. 7:1–7:55, 2015. Cited on

page 18.

[215] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory (CAM) circuits

and architectures: a tutorial and survey.” IEEE J. Solid State Circuits, vol. 41, no. 3, pp.

712–727, 2006. Cited on page 133.

[216] Parallel Systems Architecture Lab (PARSA), “QFlex,” March 2020. [Online]. Available:

https://qflex.epfl.ch Cited on pages 37, 109, 141, and 148.

[217] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy, T. E. Anderson, and

T. Roscoe, “Arrakis: The Operating System Is the Control Plane.” ACM Trans. Comput.

Syst., vol. 33, no. 4, pp. 11:1–11:30, 2016. Cited on pages 15 and 42.

[218] B. Pismenny, H. Eran, A. Yehezkel, L. Liss, A. Morrison, and D. Tsafrir, “Autonomous NIC

offloads.” in Proceedings of the 26th International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), 2021, pp. 18–35. Cited

on page 171.

[219] B. Pismenny, L. Liss, A. Morrison, and D. Tsafrir, “The benefits of general-purpose

on-NIC memory.” in Proceedings of the 27th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), 2022, pp. 1130–

1147. Cited on pages 168 and 176.

[220] Pivotal Software. RabbitMQ: Persistence Configuration. [Online]. Available: https:

//www.rabbitmq.com/persistence-conf.html Cited on page 71.

[221] J. Postel. RFC768: User Datagram Protocol. [Online]. Available: https://tools.ietf.org/

html/rfc768 Cited on page 131.

[222] A. Pourhabibi Zarandi, “Hardware-software co-design of an rpc processor,” Ph.D.

dissertation, EPFL, Lausanne, 2021. [Online]. Available: http://infoscience.epfl.ch/

record/289984 Cited on pages 3, 9, 121, 122, 139, and 141.

215

https://qflex.epfl.ch
https://www.rabbitmq.com/persistence-conf.html
https://www.rabbitmq.com/persistence-conf.html
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc768
http://infoscience.epfl.ch/record/289984
http://infoscience.epfl.ch/record/289984

Bibliography

[223] G. Prekas, M. Kogias, and E. Bugnion, “ZygOS: Achieving Low Tail Latency for

Microsecond-scale Networked Tasks.” in Proceedings of the 26th ACM Symposium on

Operating Systems Principles (SOSP), 2017, pp. 325–341. Cited on pages 2, 34, 39, 42, 48,

50, 52, 62, 73, 74, 111, 149, and 184.

[224] H. Qin, Q. Li, J. Speiser, P. Kraft, and J. K. Ousterhout, “Arachne: Core-Aware Thread

Management.” in Proceedings of the 13th Symposium on Operating Systems Design and

Implementation (OSDI), 2018, pp. 145–160. Cited on page 174.

[225] D. Raghavan, P. A. Levis, M. Zaharia, and I. Zhang, “Breakfast of champions: towards

zero-copy serialization with NIC scatter-gather.” in Proceedings of the 18th Workshop on

Hot Topics in Operating Systems (HotOS-XVIII), 2021, pp. 199–205. Cited on pages 120,

169, and 170.

[226] G. Reinman, B. Calder, and T. M. Austin, “Fetch Directed Instruction Prefetching.” in Pro-

ceedings of the 32nd Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), 1999, pp. 16–27. Cited on page 172.

[227] Richard L. Sites, “IC Colloquium : Finding Datacenter Software Tail Latency,” 2017,

dept. of Computer Science and Communications Colloquium at EPFL. [Online].

Available: https://memento.epfl.ch/event/ic-colloquium-finding-datacenter-software-

tail-lat/ Cited on page 12.

[228] S. Roghanchi, J. Eriksson, and N. Basu, “ffwd: delegation is (much) faster than you think.”

in Proceedings of the 26th ACM Symposium on Operating Systems Principles (SOSP), 2017,

pp. 342–358. Cited on pages 86 and 177.

[229] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the Social Network’s

(Datacenter) Network.” in Proceedings of the ACM SIGCOMM 2015 Conference, 2015, pp.

123–137. Cited on pages 13 and 52.

[230] SAIL Group, Cornell University. DeathStarBench GitHub. [Online]. Available:

https://github.com/delimitrou/DeathStarBench Cited on page 29.

[231] J. D. Salehi, J. F. Kurose, and D. F. Towsley, “Scheduling for Cache Affinity in Parallelized

Communication Protocols.” in Proceedings of the 1995 ACM SIGMETRICS International

216

https://memento.epfl.ch/event/ic-colloquium-finding-datacenter-software-tail-lat/
https://memento.epfl.ch/event/ic-colloquium-finding-datacenter-software-tail-lat/
https://github.com/delimitrou/DeathStarBench

Bibliography

Conference on Measurement and Modeling of Computer Systems, 1995, pp. 311–312.

Cited on page 173.

[232] ——, “The Performance Impact of Scheduling for Cache Affinity in Parallel Network

Processing.” in Proceedings of the Fourth IEEE International Symposium on High Perfor-

mance Distributed Computing, 1995, pp. 66–77. Cited on page 173.

[233] ——, “The effectiveness of affinity-based scheduling in multiprocessor network protocol

processing (extended version).” IEEE/ACM Trans. Netw., vol. 4, no. 4, pp. 516–530, 1996.

Cited on page 173.

[234] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-To-End Arguments in System Design,”

ACM Trans. Comput. Syst., vol. 2, no. 4, pp. 277–288, 1984. Cited on page 53.

[235] A. Sarma, H. Seyedroudbari, H. Gupta, U. Ramachandran, and A. Daglis. (2022) NFSlicer:

Data Movement Optimization for Shallow Network Functions. [Online]. Available:

https://arxiv.org/abs/2203.02585 Cited on page 168.

[236] D. Schall, A. Margaritov, D. Ustiugov, A. Sandberg, and B. Grot, “Lukewarm serverless

functions: characterization and optimization.” in Proceedings of the 49th International

Symposium on Computer Architecture (ISCA), 2022, pp. 757–770. Cited on page 172.

[237] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open Versus Closed: A Cautionary

Tale.” in Proceedings of the 3rd Symposium on Networked Systems Design and Implemen-

tation (NSDI), 2006. Cited on page 182.

[238] A. Shah, V. Banakar, S. Shastri, M. Wasserman, and V. Chidambaram, “Analyzing the

Impact of GDPR on Storage Systems.” in Proceedings of the 11st USENIX Workshop on

Hot Topics in Storage and File Systems (HotStorage-XI), 2019. Cited on page 1.

[239] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “LegoOS: A Disseminated, Distributed OS for

Hardware Resource Disaggregation.” in Proceedings of the 13th Symposium on Operating

Systems Design and Implementation (OSDI), 2018, pp. 69–87. Cited on pages 15 and 21.

[240] Y. S. Shao, S. L. Xi, V. Srinivasan, G.-Y. Wei, and D. M. Brooks, “Co-designing accelerators

and SoC interfaces using gem5-Aladdin.” in Proceedings of the 49th Annual IEEE/ACM

217

https://arxiv.org/abs/2203.02585

Bibliography

International Symposium on Microarchitecture (MICRO), 2016, pp. 48:1–48:12. Cited on

page 171.

[241] M. Silberstein, B. Ford, I. Keidar, and E. Witchel, “GPUfs: integrating a file system with

GPUs.” in Proceedings of the 18th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), 2013, pp. 485–498. Cited on

page 171.

[242] Simpy repostory. [Online]. Available: https://gitlab.com/team-simpy/simpy Cited on

page 35.

[243] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai,

B. Felderman, P. Germano, A. Kanagala, H. Liu, J. Provost, J. Simmons, E. Tanda, J. Wan-

derer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: a decade of clos topologies and

centralized control in Google’s datacenter network.” Commun. ACM, vol. 59, no. 9, pp.

88–97, 2016. Cited on pages 3, 13, and 14.

[244] A. Singhvi, A. Akella, D. Gibson, T. F. Wenisch, M. Wong-Chan, S. Clark, M. M. K. Martin,

M. McLaren, P. Chandra, R. Cauble, H. M. G. Wassel, B. Montazeri, S. L. Sabato, J. Scher-

pelz, and A. Vahdat, “1RMA: Re-envisioning Remote Memory Access for Multi-tenant

Datacenters.” in Proceedings of the ACM SIGCOMM 2020 Conference, 2020, pp. 708–721.

Cited on pages 26, 165, 171, and 183.

[245] M. S. Squillante and E. D. Lazowska, “Using Processor-Cache Affinity Information in

Shared-Memory Multiprocessor Scheduling.” IEEE Trans. Parallel Distributed Syst.,

vol. 4, no. 2, pp. 131–143, 1993. Cited on pages 63 and 173.

[246] A. Sriraman and A. Dhanotia, “Accelerometer: Understanding Acceleration Opportuni-

ties for Data Center Overheads at Hyperscale.” in Proceedings of the 25th International

Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), 2020, pp. 733–750. Cited on pages 72 and 125.

[247] A. Sriraman and T. F. Wenisch, “µTune: Auto-Tuned Threading for OLDI Microservices.”

in Proceedings of the 13th Symposium on Operating Systems Design and Implementation

(OSDI), 2018, pp. 177–194. Cited on pages 140, 180, and 181.

218

https://gitlab.com/team-simpy/simpy

Bibliography

[248] C. Staff, “A second conversation with Werner Vogels.” Commun. ACM, vol. 64, no. 3, pp.

50–57, 2021. Cited on pages 1 and 182.

[249] L. Suresh, P. Bodík, I. Menache, M. Canini, and F. Ciucu, “Distributed resource manage-

ment across process boundaries.” in Proceedings of the 2017 ACM Symposium on Cloud

Computing (SOCC), 2017, pp. 611–623. Cited on page 82.

[250] M. Sutherland, S. Gupta, B. Falsafi, V. Marathe, D. N. Pnevmatikatos, and A. Daglis,

“The NEBULA RPC-Optimized Architecture.” in Proceedings of the 47th International

Symposium on Computer Architecture (ISCA), 2020, pp. 199–212. Cited on pages 9, 82,

140, and 149.

[251] D. Sánchez, R. M. Yoo, and C. Kozyrakis, “Flexible architectural support for fine-grain

scheduling.” in Proceedings of the 15th International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), 2010, pp. 311–322. Cited

on page 174.

[252] The Ethernet Alliance, “The 2018 Ethernet Alliance Roadmap,” https://ethernetalliance.

org/the-2018-ethernet-roadmap/, 2018. Cited on pages 3, 14, and 40.

[253] The Linux Kernel Foundation. (2016) TOE. (Date retrieved: 25 May 2022). [Online].

Available: https://wiki.linuxfoundation.org/networking/toe Cited on page 171.

[254] S. Thomas, R. McGuinness, G. M. Voelker, and G. Porter, “Dark packets and the end of

network scaling.” in Proceedings of the 2018 Symposium on Architectures for Networking

and Communication Systems (ANCS), 2018, pp. 1–14. Cited on pages 31 and 167.

[255] Tom R. Halfhill, “Ice Lake Debuts 10nm, New Cores,” Linley Group Microprocessor Report,

August 2019. Cited on page 63.

[256] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. J. Argyraki, S. Ratnasamy, and S. Shenker,

“ResQ: Enabling SLOs in Network Function Virtualization.” in Proceedings of the 15th

Symposium on Networked Systems Design and Implementation (NSDI), 2018, pp. 283–

297. Cited on pages 42, 125, and 161.

219

https://ethernetalliance.org/the-2018-ethernet-roadmap/
https://ethernetalliance.org/the-2018-ethernet-roadmap/
https://wiki.linuxfoundation.org/networking/toe

Bibliography

[257] S.-Y. Tsai and Y. Zhang, “LITE Kernel RDMA Support for Datacenter Applications.” in

Proceedings of the 26th ACM Symposium on Operating Systems Principles (SOSP), 2017,

pp. 306–324. Cited on page 26.

[258] H.-W. Tseng, Q. Zhao, Y. Zhou, M. Gahagan, and S. Swanson, “Morpheus: Creating

Application Objects Efficiently for Heterogeneous Computing.” in Proceedings of the

43rd International Symposium on Computer Architecture (ISCA), 2016, pp. 53–65. Cited

on page 171.

[259] D. Ustiugov, A. Daglis, J. Picorel, M. Sutherland, E. Bugnion, B. Falsafi, and D. N. Pnev-

matikatos, “Design guidelines for high-performance SCM hierarchies.” in Proceedings of

the 2018 International Symposium on Memory Systems (MEMSYS), 2018, pp. 3–16. Cited

on page 73.

[260] D. Ustiugov, P. Petrov, M. Kogias, E. Bugnion, and B. Grot, “Benchmarking, analysis, and

optimization of serverless function snapshots.” in Proceedings of the 26th International

Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), 2021, pp. 559–572. Cited on page 179.

[261] G. Varghese, Network Algorithmics: An Interdisciplinary Approach to Designing Fast

Networked Devices. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2004.

Cited on pages 82 and 105.

[262] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta, R. Mittal, S. Krishnamurthy,

S. Maurice, T. Kharatishvili, and X. Bao, “Amazon Aurora: Design Considerations for

High Throughput Cloud-Native Relational Databases.” in SIGMOD Conference, 2017, pp.

1041–1052. Cited on page 1.

[263] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes, “Large-scale

cluster management at Google with Borg.” in Proceedings of the 2015 EuroSys Conference,

2015, pp. 18:1–18:17. Cited on page 179.

[264] W. Vogels. (2019) Modern applications at AWS. [Online]. Available: https://www.

allthingsdistributed.com/2019/08/modern-applications-at-aws.html Cited on page

182.

220

https://www.allthingsdistributed.com/2019/08/modern-applications-at-aws.html
https://www.allthingsdistributed.com/2019/08/modern-applications-at-aws.html

Bibliography

[265] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and J. C. Hoe,

“SimFlex: Statistical Sampling of Computer System Simulation.” IEEE Micro, vol. 26,

no. 4, pp. 18–31, 2006. Cited on pages 34, 37, 109, and 182.

[266] B. Wheeler, “Graviton3 Debuts Neoverse V1,” Linley Group Microprocessor Report, Jan-

uary 2022. Cited on pages 4, 18, and 148.

[267] A. Wierman and B. Zwart, “Is Tail-Optimal Scheduling Possible?” Oper. Res., vol. 60,

no. 5, pp. 1249–1257, 2012. Cited on page 17.

[268] A. Wolnikowski, S. Ibanez, J. Stone, C. Kim, R. Manohar, and R. Soulé, “Zerializer: towards

zero-copy serialization.” in Proceedings of the 18th Workshop on Hot Topics in Operating

Systems (HotOS-XVIII), 2021, pp. 206–212. Cited on pages 30, 120, and 169.

[269] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “SMARTS: Accelerating Mi-

croarchitecture Simulation via Rigorous Statistical Sampling.” in Proceedings of the 30th

International Symposium on Computer Architecture (ISCA), 2003, pp. 84–95. Cited on

page 34.

[270] J. Xia, C. Cheng, X. Zhou, Y. Hu, and P. Chun, “Kunpeng 920: The First 7-nm Chiplet-

Based 64-Core ARM SoC for Cloud Services.” IEEE Micro, vol. 41, no. 5, pp. 67–75, 2021.

Cited on pages 18 and 148.

[271] J. Yang, Y. Yue, and K. V. Rashmi, “A large scale analysis of hundreds of in-memory cache

clusters at Twitter.” in Proceedings of the 14th Symposium on Operating Systems Design

and Implementation (OSDI), 2020, pp. 191–208. Cited on pages 72, 73, 74, and 75.

[272] J. Yang, Y. Yue, and R. Vinayak, “Segcache: a memory-efficient and scalable in-memory

key-value cache for small objects.” in Proceedings of the 18th Symposium on Networked

Systems Design and Implementation (NSDI), 2021, pp. 503–518. Cited on page 84.

[273] Y. Yuan, M. Alian, Y. Wang, R. Wang, I. Kurakin, C. Tai, and N. S. Kim, “Don’t Forget the

I/O When Allocating Your LLC.” in Proceedings of the 48th International Symposium on

Computer Architecture (ISCA), 2021, pp. 112–125. Cited on page 163.

221

Bibliography

[274] Y. Yuan, Y. Wang, R. Wang, and J. Huang, “HALO: accelerating flow classification for

scalable packet processing in NFV.” in Proceedings of the 46th International Symposium

on Computer Architecture (ISCA), 2019, pp. 601–614. Cited on pages 3 and 12.

[275] A. P. Zarandi, S. Gupta, H. Kassir, M. Sutherland, Z. Tian, M. P. Drumond, B. Falsafi, and

C. Koch, “Optimus Prime: Accelerating Data Transformation in Servers.” in Proceedings

of the 25th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS), 2020, pp. 1203–1216. Cited on pages 6, 20, 30,

63, 89, 127, 145, 169, and 170.

[276] A. P. Zarandi, M. Sutherland, A. Daglis, and B. Falsafi, “Cerebros: Evading the RPC Tax in

Datacenters.” in Proceedings of the 54th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), 2021, pp. 407–420. Cited on pages 3, 5, 9, 12, 20, 30, 89, 120,

127, and 135.

[277] Y. Zhang, Y. Gan, and C. Delimitrou, “µqSim: Enabling Accurate and Scalable Simulation

for Interactive Microservices.” in Proceedings of the 2019 IEEE International Symposium

on Performance Analysis of Systems and Software (ISPASS), 2019, pp. 212–222. Cited on

page 183.

[278] H. Zhu, K. Kaffes, Z. Chen, Z. Liu, C. Kozyrakis, I. Stoica, and X. Jin, “RackSched: A

Microsecond-Scale Scheduler for Rack-Scale Computers.” in Proceedings of the 14th

Symposium on Operating Systems Design and Implementation (OSDI), 2020, pp. 1225–

1240. Cited on pages 87 and 89.

[279] M. Zukerman. (2018, Dec.) Introduction to Queueing Theory and Stochastic Teletraffic

Models. arXiv. ArXiv:1307.2968. Cited on page 51.

222

MARK JOHNATHON SUTHERLAND
Parallel Systems Architecture Lab, INJ 239 (Bâtiment INJ), Station 14, 1015 Lausanne | +41 78 685 18 95 | mark.sutherland@epfl.ch

EDUCATION
Doctor of Philosophy (PhD) in Computer Science Sept. 2016 – Aug. 2022
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Thesis: Hardware and Software Support for RPC-Centric Server Architecture
Advisors: Profs. Babak Falsafi (EPFL) and Alexandros Daglis (Georgia Institute of Technology)
Research Interests:
• Server architecture
• Datacentre systems and networking
• Concurrency and parallelism

MASc in Computer and Electrical Engineering Sept. 2014 – Jul. 2016
University of Toronto, Toronto, Ontario

Thesis: Co-Locating Code and Data for Energy Efficient CPUs
 Advisor: Prof. Natalie Enright Jerger
 GPA: 4.0/4.0

BASc in Engineering Science Sept. 2009 – May 2014
University of Toronto, Toronto, Ontario

Thesis: Security At What Price: Investigating the Hardware Cost of Physical Layer Security in MIMO
Wireless Communication Systems
Advisors: Profs. Vaughn Betz (ECE) & Ashish Khisti (Communications)

EMPLOYMENT
Research Assistant, EPFL September 2016 – present
Lausanne, Switzerland

• Contributed to several projects on hardware-software co-design for datacenter server architecture.
• Supervised younger students, course projects, and interns.
• Core contributor and maintainer of the open-source QFlex project.

IPTV Applications Architect, Intern May 2012 – August 2013
Bell Canada Video Innovation Centre, Ottawa, Ontario

• Created Python scripts that reduced the firmware testing cycle from 2-3 weeks to 1-2 days.
• Verified proper functionality of Bell DSL/Fiber CPE, as well as various components of Bell’s backend

video network at multiple layers of the TCP/IP stack.

PEER-REVIEWED PUBLICATIONS

Cooperative Concurrency Control for Write-Intensive Key-Value Workloads
Mark Sutherland, Babak Falsafi, and Alexandros Daglis. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS'23).
Vancouver, Canada. 2023. (Paper accepted and will appear.)

Cerebros: Evading the RPC Tax in Datacenters
Arash Pourhabibi, Mark Sutherland, Alexandros Daglis, Babak Falsafi. In Proceedings of the 54th Annual
International Symposium on Microarchitecture (MICRO’21). Athens, Greece. 2021.
DOI: https://doi.org/10.1145/3466752.3480055

223

2	 Mark	J.	Sutherland	
	

The NeBuLa RPC-Optimized Architecture
Mark Sutherland, Siddharth Gupta, Babak Falsafi, Virendra J. Marathe, Dionisios Pnevmatikatos, Alexandros
Daglis. In Proceedings of the 47th Annual International Symposium on Computer Architecture (ISCA’20).
Barcelona, Spain. 2020.
DOI: https://doi.org/10.1109/ISCA45697.2020.00027

Optimus Prime: Accelerating Data Transformation in Servers
Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Sutherland, Zilu Tian, Mario Drumond, Babak
Falsafi and Christoph Koch. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’20). Lausanne, Switzerland. 2019.
DOI: https://doi.org/10.1145/3373376.3378501

RPCValet: NI-Driven, Tail-Aware Balancing of µs-Scale RPCs
Alexandros Daglis, Mark Sutherland, and Babak Falsafi. 2019. In Proceedings of the 2019 Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS ’19), April 13–17 2019,
Providence, RI, USA.
DOI: https://doi.org/10.1145/3297858.3304070

Design Guidelines for High-Performance SCM Hierarchies
Dmitrii Ustiugov, Alexandros Daglis, Javier Picorel, Mark Sutherland, Edouard Bugnion, Babak Falsafi, and
Dionisios Pnevmatikatos. 2018. In Proceedings of the International Symposium on Memory Systems
(MEMSYS '18). Washington, DC, USA.
DOI: https://doi.org/10.1145/3240302.3240310

Near Data Processing at Runtime
Mark Sutherland and Natalie Enright Jerger
The 1st International Workshop on Architecture for Graph Processing (AGP-1)
As Part of: ISCA 2017

Not Quite My Tempo: Matching Prefetches to Memory Access Times
Mark Sutherland, Ajaykumar Kannan, and Natalie Enright Jerger
The 2nd Data Prefetching Championship (DPC-2)
As Part of: ISCA 2015

Texture Cache Approximation on GPUs
Mark Sutherland, Joshua San Miguel, and Natalie Enright Jerger
The Workshop on Approximate Computing Across the Stack (WAX 2015)
As Part of: PLDI 2015

PATENTS

Data Transformer Apparatus. (US Patent PCT/EP2019/072783 pending). A. Pourhabibi, S. Gupta, H. Kassir, M.
Sutherland, Z. Tian, M. Drumond, B. Falsafi, C. Koch.

RESEARCH GRANTS
Virtual Memory for Post-Moore Servers 2021

• PIs: Babak Falsafi, David Atienza, Abhishek Bhattacharjee, Boris Grot, Mathias Payer
• Proposal ranked #1 by Intel Corp. globally.

224

3	 Mark	J.	Sutherland	
	

TEACHING
(EPFL) CS471 – Advanced Multiprocessor Architecture September – December 2021
(EPFL) CS212 – Systems Programming Project February – June 2021
(EPFL) CS522 – Principles of Computer Systems September – December 2020
(EPFL) CS322 – Introduction to Database Systems February – June 2020
(EPFL) CS323 – Operating Systems September – December 2019
(EPFL) EE490 – Lab in Data Science February – June 2019
(EPFL) CS522 – Principles of Computer Systems September – December 2018
(EPFL) CS112 – Programming II February – June 2018
(EPFL) CS307 – Introduction to Multiprocessor Architecture September – December 2017
(EPFL) MAT232 – Probability and Statistics January – June 2017
(Toronto) ECE552 – Computer Architecture September – December 2015
(Toronto) ECE243 – Computer Organization January – April 2015

STUDENT SUPERVISION

Leyi Sun (Master’s student at EPFL) February - June 2022
- I supervised Leyi on a project studying the instruction cache behaviour of web serving software, with the

goal of comparing current software stacks to previous research results.

Henry Tseng (Master’s student at EPFL) February - June 2022
- I supervised Henry on a project comparing the performance of cutting-edge ARM and x86 servers for a web

search workload.

Setu Gupta (Summer@EPFL Intern) May – August 2021
- I supervised Setu during the duration of his internship, to build and integrate a unit testing framework for the

QFlex simulation project.
- Performed design document assistance, quality control, and final code review.

CS471 Research Project Mentoring September – December 2021
- Over the course of the semester, CS471 students are required to conduct a research project.
- I proposed and supervised approximately fifteen projects over three months, on a broad range of topics.

Sample projects include: analyzing Cloud Gaming as a workload for modern GPUs, evaluating the
performance impacts of architectural (ARM Memory Tagging) and software framework (serverless
programming) changes on microarchitectural behaviour, and applying gradient compression to the Hybrid
Block Floating Point encoding method for AI training.

PROFESSIONAL SERVICE
Web Submissions Co-Chair – 2018 International Symposium on Computer Architecture

Web link: http://iscaconf.org/isca2018/
I served as the Submissions Co-Chair for ISCA’18, alongside my colleague Mario Drumond. We were
responsible for the functionality and integrity of the HotCRP conference review system, as well as
providing feedback and input on the overall review distribution and paper ranking process. You can
read our post-mortem on the entire conference process here: https://bit.ly/2Xeo2tP

QFlex – A Quick and Flexible Rack-Scale Simulator

Web link: https://parsa-epfl.github.io/qflex/
QFlex is an open-source simulator that is specifically designed to accurately model the execution of
a modern rack-mounted server. Other open-source simulators lack the vertical scope of QFlex, as it
provides the ability for researchers to perform full-device modelling, detailed network simulation,
and micro-architectural level studies. To this end, QFlex uses the following open source tools with
active communities to provide the modelling fidelity lacked by other simulators: QEMU for device

225

4	 Mark	J.	Sutherland	
	

emulation, and NS-3 for network modelling. QFlex also integrates the SMARTS sampling framework,
to drastically reduce simulation turnaround times by using statistical sampling theory to simulate a
subset of the program while remaining highly accurate in its measurements. I am the ongoing code
maintainer for our modified version of QEMU, which contains extensions to make it suitable for full-
system simulation at the cycle-accurate level.

CloudSuite – A Benchmark Suite For Online Services

Web link: http://cloudsuite.ch/
Cloud computing has essentially replaced private enterprise servers for the vast majority of data-
intensive online applications. Due to that trend, computer systems researchers have launched many
efforts to model realistic scale-out deployments in their publications and research efforts, rather
than using traditional benchmarks such as SPEC. CloudSuite is an open source, community
supported collection of eight applications which have been specifically selected due to their
popularity in today’s datacentres; it contains well known applications like Web Search and Data
Caching, as well as emerging services such as In-Memory Data Analytics using Apache Spark.
CloudSuite is packaged and deployed using Docker containers, an increasingly popular choice for
modern datacentre providers.

Organizing Committee - The 2nd Cache Replacement Championship (CRC-2)
Workshop link: http://crc2.ece.tamu.edu/
CRC-2 was a workshop co-located with the 2017 International Symposium on Computer
Architecture, and was a competition for researchers to develop the best last-level cache
replacement policy under a set of constraints. I served as part of the technical committee that
organized the simulation infrastructure and workload trace generation process, focusing on the
addition of CloudSuite, an open-source set of benchmarks that is representative of modern
datacentre services. Additionally, I applied the SMARTS sampling methodology to demonstrate that
the supplied traces operated with statistically bounded errors of less than 5% (at 2𝜎).

TECHNICAL SKILLS
Programming

• Proficient languages: C/C++ (10 years experience), Python (5 years experience)
• Other languages: x86/ARM Assembly, Rust, Java, bash/zsh (elementary proficiency)
• Development and deployment of multi-container services with Docker & Kubernetes (2 years experience).
• Continuous integration and testing frameworks: TravisCI, GitHub Actions (2 years experience).

Hardware Design
• Full system simulation with various infrastructures (QFlex, SimFlex, gem5).
• Experience designing FPGA hardware using Verilog inside Altera Quartus II/ModelSim environment.
• Utilized SUE/MAX/Cadence First Encounter CAD tools to perform full custom ASIC layout.
• Layout modeling and power analysis with CACTI.

Computer Networking
• Practical experience testing and debugging large TCP/IP networks.
• WireShark and AirPcap for packet capture and analysis.

AWARDS AND HONOURS
Teaching Excellence Award – EPFL School of Computer Sciences 2021

Course: Advanced Multiprocessor Architecture
Teaching Excellence Award – EPFL School of Computer Sciences 2017

Course: Introduction to Multiprocessor Architecture
 Winner, Orbis Entrepreneurship Challenge 2014

Shaw Engineering Scholarship 2009 – 2012
Alberta Premier’s Citizenship Award 2009

226

5	 Mark	J.	Sutherland	
	

Valedictorian – Cochrane High School 2009

LANGUAGES
English – Native language.
French – Basic working proficiency, Level B2.
 Attained and passed the DELF tout public examination, Level B1/B2, Spring 2016.

227

	Acknowledgements
	Abstract (English/Français)
	Contents
	List of Figures
	List of Tables
	List of Equations
	Introduction
	Thesis Goals
	Thesis Statement
	Thesis Contributions
	Thesis Organization
	Bibliographic Notes

	Why Design Server Architecture for RPCs?
	Microservices and us-Scale RPCs
	Datacenter Networks and RPC Transport Protocols
	Optimized Systems Software
	Curtailing Queueing with Inter-Core Load Balancing
	Network-Compute Co-Design

	I Designing an RPC-Centric Server
	System Overview
	Novel Design Features
	In-Cache RPC Placement
	Fully-Featured RPC Layer with Hardware Acceleration
	Enhanced Load Balancing

	Applicability of RPC-Centric Design Extensions
	System Modelling Techniques

	In-Cache RPC Traffic Management
	Current Obstacles: Load Imbalance and Bandwidth Interference
	Modelling Imbalance and Interference
	System Configurations
	Results Discussion

	Designing the NeBuLa Architecture
	Achieving LLC-Resident Queues
	Steering RPC Payloads to L1 Caches

	NeBuLa Operational Walkthrough
	Chapter Summary

	Locality-Aware Load Balancing
	How Can Load Balancing be Improved?
	Temporal Instruction Locality in Microservices
	Boundary Conditions for Function Thrashing
	Towards Dynamic Function Partitioning

	Load Balancing for Write-Intensive Key-Value Workloads
	Why Target Write-Intensive Workloads?
	KVS Concurrency Control Challenges and Opportunities

	Enhancing Load Balancing with C-4
	Write Balancing for Write-Intensive Workloads
	Write Compaction for Extremely-Skewed Workloads

	Architectural Extensions for Improved Load Balancing
	Locality-Aware Balancing on SmartNICs

	Chapter Summary

	II Implementation and Evaluation of an RPC-Centric Server
	Building NeBuLa on Scale-Out NUMA
	Baseline Architecture
	Architectural Additions
	RPC Software Interface
	NIC Extensions for Buffer Management
	NIC Extensions for RPC Reassembly
	Reduced Associativity

	NIC-to-Core RPC Steering
	Methodology
	Evaluation
	Removing Bandwidth Interference
	Impact of Varying Workload Parameters
	Performance Benefits of NIC-to-Core Steering

	Chapter Summary

	Microarchitecture for Integrated RPC Protocol Accelerators
	Why Couple NICs and RPC Accelerators?
	Functional Overview of RPC Processing in Cerebros
	The Architecture of Cerebros
	Multi-Buffer Management
	Distributing the RPC Processing Components

	NIC Pipelines for Cerebros
	Request Generation Pipeline
	Remote Request Processing Pipeline

	Chapter Summary

	The Benefits of Locality-Aware Load Balancing
	Adding Affinity-Based Load Balancing to Cerebros
	Evaluating Affinity-Based Load Balancing
	Methodology
	Availability of Instruction Cache Locality
	Eliminating Further Instruction Cache Misses

	Implementing Cooperative Concurrency Control
	NIC-Software Interface Modifications
	Instantiating Hardware Support for Write Balancing
	Software Support for Compaction

	Cooperative Concurrency Control in Action
	Methodology
	Dynamic Write Partitioning
	Software Write Compaction
	Sensitivity Analysis

	Chapter Summary

	III Related and Future Work
	Related Work
	Towards Cache-Resident Network Traffic
	Leaky DMA and Bandwidth Interference
	RPC Scalability Over Connected Transports
	Network-Compute Co-designs
	Latency-optimized Systems Software
	Hardware Support for Packet Placement

	RPC Framework and Hardware Enhancements
	Other Systems Targeting RPC Acceleration
	Reducing CPU-Accelerator Control Overhead

	Application-Aware Load Balancing
	Instruction Supply in Servers
	Task Scheduling for Cache Affinity
	Application-Driven Scheduling Policies
	Improved KVS Designs
	Advanced Concurrency Control and Synchronization

	Future Research Directions
	Virtualized and Multi-Tenant Deployments
	Towards Asynchronous Microservices
	Improved Server Simulation Methodologies
	RPC Scheduling Based on End-to-End Latencies

	Conclusions

	Bibliography
	Curriculum Vitae

