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Abstract

The Dolev-Reischuk bound says that any deterministic Byzantine consensus protocol has (at least) quadratic
communication complexity in the worst case. While it has been shown that the bound is tight in synchronous
environments, it is still unknown whether a consensus protocol with quadratic communication complexity can
be obtained in partial synchrony. Until now, the most efficient known solutions for Byzantine consensus in
partially synchronous settings had cubic communication complexity (e.g., HotStuff, binary DBFT).

This paper closes the existing gap by introducing SQuad, a partially synchronous Byzantine consensus
protocol with quadratic worst-case communication complexity. In addition, SQuad is optimally-resilient and
achieves linear worst-case latency complexity. The key technical contribution underlying SQuad lies in the
way we solve view synchronization, the problem of bringing all correct processes to the same view with a
correct leader for sufficiently long. Concretely, we present RareSync, a view synchronization protocol with
quadratic communication complexity and linear latency complexity, which we utilize in order to obtain SQuad.
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1 Introduction

Byzantine consensus [38] is a fundamental distributed computing problem. In recent years, it
has become the target of widespread attention due to the advent of blockchain [22, 4, 31] and
decentralized cloud computing [41], where it acts as a key primitive. The demand of these contexts
for high performance has given a new impetus to research towards Byzantine consensus with
optimal communication guarantees.
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Intuitively, Byzantine consensus enables processes to agree on a common value despite Byzantine
failures. Formally, each process is either correct or faulty; correct processes follow a prescribed
protocol, whereas faulty processes (up to f > 0) can arbitrarily deviate from it. Each correct process
proposes a value, and should eventually decide a value. The following properties are guaranteed:

Validity: If all correct processes propose the same value, then only that value can be decided by
a correct process.
Agreement: No two correct processes decide different values.
Termination: All correct processes eventually decide.
The celebrated Dolev-Reischuk bound [25] says that any deterministic solution of the Byzantine

consensus problem requires correct processes to exchange (at least) a quadratic number of bits
of information. It has been shown that the bound is tight in synchronous environments [10,
46]. However, for the partially synchronous environments [26] in which the network becomes
synchronous only after some unknown Global Stabilization Time (GST ), no Byzantine consensus
protocol achieving quadratic communication complexity is known.1 Therefore, the question remains
whether a partially synchronous Byzantine consensus with quadratic communication complexity
exists [20]. Until now, the most efficient known solutions in partially synchronous environments
had cubic communication complexity (e.g., HotStuff [56], binary DBFT [22]).

We close the gap by introducing SQuad, a partially synchronous Byzantine consensus protocol
with quadratic worst-case communication complexity, matching the Dolev-Reischuk [25] bound. In
addition, SQuad is optimally-resilient and achieves optimal linear worst-case latency.

Partially synchronous “leader-based” Byzantine consensus. Partially synchronous “leader-
based” consensus protocols [56, 55, 15, 13] operate in views, each with a designated leader whose
responsibility is to drive the system towards a decision. If a process does not decide in a view, the
process moves to the next view with a different leader and tries again. Once all correct processes
overlap in the same view with a correct leader for sufficiently long, a decision is reached. Sadly,
ensuring such an overlap is non-trivial; for example, processes can start executing the protocol at
different times or their local clocks may drift before GST , thus placing them in views which are
arbitrarily far apart.

Typically, these protocols contain two independent modules:
1. View core: The core of the protocol, responsible for executing the protocol logic of each view.
2. View synchronizer: Auxiliary to the view core, responsible for “moving” processes to new views

with the goal of ensuring a sufficiently long overlap to allow the view core to decide.
Immediately after GST , the view synchronizer brings all correct processes together to the view of
the most advanced correct process and keeps them in that view for sufficiently long. At this point,
if the leader of the view is correct, the processes decide. Otherwise, they “synchronously” transit to
the next view with a different leader and try again. In summary, the communication complexity of
such protocols can be approximated by n · C + S, where:

C denotes the maximum number of bits a correct process sends while executing its view core
during [GST , td], where td is the first time by which all correct processes have decided, and
S denotes the communication complexity of the view synchronizer during [GST , td].
Since the adversary can corrupt up to f processes, correct processes must transit through at

least f + 1 views after GST , in the worst case, before reaching a correct leader. In fact, PBFT [15]
and HotStuff [56] show that passing through f + 1 views is sufficient to reach a correct leader.
Furthermore, HotStuff employs the “leader-to-all, all-to-leader” communication pattern in each
view. As (1) each process is the leader of at most one view during [GST , td], and (2) a process sends

1 No deterministic protocol solves Byzantine consensus in a completely asynchronous environment [27].
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O(n) bits in a view if it is the leader of the view, and O(1) bits otherwise, HotStuff achieves C =
1 ·O(n) + f ·O(1) = O(n). Unfortunately, S = (f + 1) ·O(n2) = O(n3) in HotStuff due to “all-to-
all” communication exploited by its view synchronizer in every view.2 Thus, S = O(n3) dominates
the communication complexity of HotStuff, preventing it from matching the Dolev-Reischuk bound.
If we could design a consensus algorithm for which S = O(n2) while preserving C = O(n),
we would obtain a Byzantine consensus protocol with optimal communication complexity. The
question is if a view synchronizer achieving S = O(n2) in partial synchrony exists.

Warm-up: View synchronization in complete synchrony. Solving the synchronization problem
in a completely synchronous environment is not hard. As all processes start executing the protocol
at the same time and their local clocks do not drift, the desired overlap can be achieved without
any communication: processes stay in each view for the fixed, overlap-required time. However,
this simple method cannot be used in a partially synchronous setting as it is neither guaranteed
that all processes start at the same time nor that their local clocks do not drift (before GST ).
Still, the observation that, if the system is completely synchronous, processes are not required to
communicate in order to synchronize plays a crucial role in developing our view synchronizer
which achieves quadratic communication complexity in partially synchronous environments.

RareSync. The main technical contribution of this work is RareSync, a partially synchronous
view synchronizer that achieves synchronization within O(f) time after GST , and has O(n2)
worst-case communication complexity. In a nutshell, RareSync adapts the “no-communication”
technique of synchronous view synchronizers to partially synchronous environments.

Namely, RareSync groups views into epochs; each epoch contains f +1 sequential views. Instead
of performing “all-to-all” communication in each view (like the “traditional” view synchronizers [55]),
RareSync performs a single “all-to-all” communication step per epoch. Specifically, only at the end
of each epoch do all correct processes communicate to enable further progress. Once a process has
entered an epoch, the process relies solely on its local clock (without any communication) to move
forward to the next view within the epoch.

Let us give a (rough) explanation of how RareSync ensures synchronization. Let E be the
smallest epoch entered by all correct processes at or after GST ; let the first correct process enter
E at time tE ≥ GST . Due to (1) the “all-to-all” communication step performed at the end of the
previous epoch E− 1, and (2) the fact that message delays are bounded by a known constant δ after
GST , all correct processes enter E by time tE + δ. Hence, from the epoch E onward, processes do
not need to communicate in order to synchronize: it is sufficient for processes to stay in each view
for δ + ∆ time to achieve ∆-time overlap. In brief, RareSync uses communication to synchronize
processes, while relying on local timeouts (and not communication!) to keep them synchronized.

SQuad. The second contribution of our work is SQuad, an optimally-resilient partially synchronous
Byzantine consensus protocol with (1) O(n2) worst-case communication complexity, and (2) O(f)
worst-case latency complexity. The view core module of SQuad is the same as that of HotStuff; as
its view synchronizer, SQuad uses RareSync. The combination of the HotStuff’s view core and
RareSync ensures that C = O(n) and S = O(n2). By the aforementioned complexity formula,
SQuad achieves n ·O(n) + O(n2) = O(n2) communication complexity. SQuad’s linear latency is
a direct consequence of RareSync’s ability to synchronize processes within O(f) time after GST .

Roadmap. We discuss related work in §2. In §3, we define the system model. We introduce
RareSync in §4. In §5, we present SQuad. We conclude the paper in §6.

2 While HotStuff [56] does not explicitly state how the view synchronization is achieved, we have that S = O(n3)
in Diem BFT [55], which is a mature implementation of the HotStuff protocol.
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2 Related Work

In this section, we discuss existing results in two related contexts: synchronous networks and
randomized algorithms. In addition, we discuss some precursor (and concurrent) results to our own.
Synchronous networks. The first natural question is whether we can achieve synchronous
Byzantine agreement with optimal latency and optimal communication complexity. Momose and
Ren answer that question in the affirmative, giving a synchronous Byzantine agreement protocol
with optimal n/2 resiliency, optimal O(n2) worst-case communication complexity and optimal
O(f) worst-case latency [46]. Optimality follows from two lower bounds: Dolev and Reischuk
show that any Byzantine consensus protocol has an execution with quadratic communication
complexity [25]; Dolev and Strong show that any synchronous Byzantine consensus protocol has
an execution with f + 1 rounds [23]. Various other works have tackled the problem of minimizing
the latency of Byzantine consensus [2, 42, 45].
Randomization. A classical approach to circumvent the FLP impossibility [27] is using randomiza-
tion [9], where termination is not ensured deterministically. Exciting recent results by Abraham et

al. [5] and Lu et al. [43] give fully asynchronous randomized Byzantine consensus with optimal
n/3 resiliency, optimal O(n2) expected communication complexity and optimal O(1) expected
latency complexity. Spiegelman [53] took a neat hybrid approach that achieved optimal results for
both synchrony and randomized asynchrony simultaneously: if the network is synchronous, his
algorithm yields optimal (deterministic) synchronous complexity; if the network is asynchronous, it
falls back on a randomized algorithm and achieves optimal randomized complexity.

Recently, it has been shown that even randomized Byzantine agreement requires Ω(n2) expected
communication complexity, at least for achieving guaranteed safety against an adaptive adversary

in an asynchronous setting or against a strongly rushing adaptive adversary in a synchronous
setting [1, 6]. (See the papers for details.) Amazingly, it is possible to break the O(n2) barrier by
accepting a non-zero (but o(1)) probability of disagreement [18, 21, 35].
Authentication. Most of the results above are authenticated: they assume a trusted setup phase3
wherein devices establish and exchange cryptographic keys; this allows for messages to be signed
in a way that proves who sent them. Recently, many of the communication-efficient agreement
protocols (such as [5, 43]) rely on threshold signatures (such as [40]). The Dolev-Reischuk [25] lower
bound shows that quadratic communication is needed even in such a case (as it looks at the message
complexity of authenticated agreement).

Among deterministic, non-authenticated Byzantine agreement protocols, DBFT [22] achieves
O(n3) communication complexity. For randomized non-authenticated Byzantine agreement proto-
cols, Mostefaoui et al. [47] achieve O(n2) communication complexity—but they assume a perfect
common coin, for which efficient implementations may also require signatures.

We note that it is possible to (1) work towards an authenticated setting from a non-authenticated
one by rolling out a public key infrastructure (PKI) [11, 7, 29], (2) set up a threshold scheme [3]
without a trusted dealer, and (3) asynchronously emulate a perfect common coin [14] used by
randomized Byzantine consensus protocols [51, 47, 5, 43].
Other related work. In this paper, we focus on the partially synchronous setting [26], where
the question of optimal communication complexity of Byzantine agreement has remained open.
The question can be addressed precisely with the help of rigorous frameworks [28, 32, 33] that
were developed to express partially synchronous protocols using a round-based paradigm. More
specifically, state-of-the-art partially synchronous BFT protocols [55, 13, 56, 30] have been developed

3 A trusted setup phase is notably different from randomized algorithms where randomization is used throughout.
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within a view-based paradigm with a rotating leader, e.g., the seminal PBFT protocol [15]. While
many approaches improve the complexity for some optimistic scenarios [44, 52, 36, 37, 50], none of
them were able to reach the quadratic worst-case Dolev-Reischuk bound.

The problem of view synchronization was defined in [48]. An existing implementation of this
abstraction [30] was based on Bracha’s double-echo reliable broadcast at each view, inducing a
cubic communication complexity in total. This communication complexity has been reduced for
some optimistic scenarios [48] and in terms of expected complexity [49]. The problem has been
formalized more precisely in [12] to facilitate formal verification of PBFT-like protocols.

It might be worthwhile highlighting some connections between the view synchronization ab-
straction and the leader election abstraction Ω [16, 17], capturing the weakest failure detection
information needed to solve consensus (and extended to the Byzantine context in [34]). Leaderless
partially synchronous Byzantine consensus protocols have also been proposed [8], somehow indi-
cating that the notion of a leader is not necessary in the mechanisms of a consensus protocol, even
if Ω is the weakest failure detector needed to solve the problem. Clock synchronization [24, 54] and
view synchronization are orthogonal problems.
Concurrent research. We have recently discovered concurrent and independent research by
Lewis-Pye [39]. Lewis-Pye appears to have discovered a similar approach to the one that we present
in this paper, giving an algorithm for state machine replication in a partially synchronous model
with quadratic message complexity. As in this paper, Lewis-Pye makes the key observation that we
do not need to synchronize in every view; views can be grouped together, with synchronization
occurring only once every fixed number of views. This yields essentially the same algorithmic
approach. Lewis-Pye focuses on state machine replication, instead of Byzantine agreement (though
state machine replication is implemented via repeated Byzantine agreement). The other useful
property of his algorithm is optimistic responsiveness, which applies to the multi-shot case and
ensures that, in good portions of the executions, decisions happen as quickly as possible. We
encourage the reader to look at [39] for a different presentation of a similar approach.

3 System Model

Processes. We consider a static set {P1, P2, ..., Pn} of n = 3f + 1 processes out of which at
most f can be Byzantine, i.e., can behave arbitrarily. If a process is Byzantine, the process is
faulty; otherwise, the process is correct. Processes communicate by exchanging messages over an
authenticated point-to-point network. The communication network is reliable: if a correct process
sends a message to a correct process, the message is eventually received. We assume that processes
have local hardware clocks. Furthermore, we assume that local steps of processes take zero time, as
the time needed for local computation is negligible compared to message delays. Finally, we assume
that no process can take infinitely many steps in finite time.
Partial synchrony. We consider the partially synchronous model introduced in [26]. For every
execution, there exists a Global Stabilization Time (GST ) and a positive duration δ such that message
delays are bounded by δ after GST . Furthermore, GST is not known to processes, whereas δ is
known to processes. We assume that all correct processes start executing their protocol by GST .
The hardware clocks of processes may drift arbitrarily before GST , but do not drift thereafter.
Cryptographic primitives. We assume a (k, n)-threshold signature scheme [40], where k =
2f + 1 = n − f . In this scheme, each process holds a distinct private key and there is a single
public key. Each process Pi can use its private key to produce a partial signature of a message m by
invoking ShareSigni(m). A partial signature tsignature of a message m produced by a process Pi

can be verified by ShareVerifyi(m, tsignature). Finally, set S = {tsignaturei} of partial signatures,
where |S| = k and, for each tsignaturei ∈ S, tsignaturei = ShareSigni(m), can be combined

DISC 2022



11:6 Deterministic Byzantine Consensus is Θ(n2)

into a single (threshold) signature by invoking Combine(S); a combined signature tcombined of
message m can be verified by CombinedVerify(m, tcombined). Where appropriate, invocations of
ShareVerify(·) and CombinedVerify(·) are implicit in our descriptions of protocols. P_Signature
and T_Signature denote a partial signature and a (combined) threshold signature, respectively.
Complexity of Byzantine consensus. Let Consensus be a partially synchronous Byzantine con-
sensus protocol and let E(Consensus) denote the set of all possible executions. Letα ∈ E(Consensus)
be an execution and td(α) be the first time by which all correct processes have decided in α.

A word contains a constant number of signatures and values. Each message contains at least a
single word. We define the communication complexity of α as the number of words sent in messages
by all correct processes during the time period [GST , td(α)]; if GST > td(α), the communication
complexity of α is 0. The latency complexity of α is max(0, td(α)−GST ).

The communication complexity of Consensus is defined as

max
α∈E(Consensus)

{
communication complexity of α

}
.

Similarly, the latency complexity of Consensus is defined as

max
α∈E(Consensus)

{
latency complexity of α

}
.

We underline that the number of words sent by correct processes before GST is unbounded
in any partially synchronous Byzantine consensus protocol [53]. Moreover, not a single correct
process is guaranteed to decide before GST in any partially synchronous Byzantine consensus
protocol [27]; that is why the latency complexity of such protocols is measured from GST .

4 RareSync

This section presents RareSync, a partially synchronous view synchronizer that achieves synchro-
nization within O(f) time after GST , and has O(n2) worst-case communication complexity. First,
we define the problem of view synchronization (§4.1). Then, we describe RareSync, and present its
pseudocode (§4.2). Finally, we reason about RareSync’s correctness and complexity (§4.3).

4.1 Problem Definition

View synchronization is defined as the problem of bringing all correct processes to the same view
with a correct leader for sufficiently long [12, 49, 48]. More precisely, let View = {1, 2, ...} denote
the set of views. For each view v ∈ View, we define leader(v) to be a process that is the leader
of view v. The view synchronization problem is associated with a predefined time ∆ > 0, which
denotes the desired duration during which processes must be in the same view with a correct leader
in order to synchronize. View synchronization provides the following interface:

Indication advance(View v): The process advances to a view v.
We say that a correct process enters a view v at time t if and only if the advance(v) indication
occurs at time t. Moreover, a correct process is in view v between the time t (including t) at which
the advance(v) indication occurs and the time t′ (excluding t′) at which the next advance(v′ ̸= v)
indication occurs. If an advance(v′ ̸= v) indication never occurs, the process remains in the view v

from time t onward.
Next, we define a synchronization time as a time at which all correct processes are in the same

view with a correct leader for (at least) ∆ time.

▶ Definition 1 (Synchronization time). Time ts is a synchronization time if (1) all correct processes
are in the same view v from time ts to (at least) time ts + ∆, and (2) leader(v) is correct.



P.Civit,M.A.Dzulfikar, S. Gilbert, V.Gramoli, R.Guerraoui, J. Komatovic,M. Vidigueira 11:7

View synchronization ensures the eventual synchronization property which states that there
exists a synchronization time at or after GST .
Complexity of view synchronization. Let Synchronizer be a partially synchronous view synchro-
nizer and let E(Synchronizer) denote the set of all possible executions. Let α ∈ E(Synchronizer) be
an execution and ts(α) be the first synchronization time at or after GST in α (ts(α) ≥ GST ). We
define the communication complexity of α as the number of words sent in messages by all correct
processes during the time period [GST , ts(α)+∆]. The latency complexity ofα is ts(α)+∆−GST .

The communication complexity of Synchronizer is defined as

max
α∈E(Synchronizer)

{
communication complexity of α

}
.

Similarly, the latency complexity of Synchronizer is defined as

max
α∈E(Synchronizer)

{
latency complexity of α

}
.

4.2 Protocol

This subsection details RareSync (Algorithm 2). In essence, RareSync achieves O(n2) communica-
tion complexity and O(f) latency complexity by exploiting “all-to-all” communication only once
per f + 1 views.
Intuition. We group views into epochs, where each epoch contains f + 1 sequential views;
Epoch = {1, 2, ...} denotes the set of epochs. Processes move through an epoch solely by means of
local timeouts (without any communication). However, at the end of each epoch, processes engage
in an “all-to-all” communication step to obtain permission to move onto the next epoch: (1) Once
a correct process has completed an epoch, it broadcasts a message informing other processes of
its completion; (2) Upon receiving 2f + 1 of such messages, a correct process enters the future
epoch. Note that (2) applies to all processes, including those in arbitrarily “old” epochs. Overall, this
“all-to-all” communication step is the only communication processes perform within a single epoch,
implying that per-process communication complexity in each epoch is O(n). Figure 1 illustrates
the main idea behind RareSync.

Figure 1 Intuition behind RareSync: Processes communicate only in the last view of an epoch; before the
last view, they rely solely on local timeouts.

Roughly speaking, after GST , all correct processes simultaneously enter the same epoch within
O(f) time. After entering the same epoch, processes are guaranteed to synchronize in that epoch,
which takes (at most) an additional O(f) time. Thus, the latency complexity of RareSync is O(f).
The communication complexity of RareSync is O(n2) as every correct process executes at most a
constant number of epochs, each with O(n) per-process communication, after GST .
Protocol description. We now explain how RareSync works. The pseudocode of RareSync is
given in Algorithm 2, whereas all variables, constants, and functions are presented in Algorithm 1.

We explain RareSync’s pseudocode (Algorithm 2) from the perspective of a correct process Pi.
Process Pi utilizes two timers: view_timer i and dissemination_timer i. A timer has two methods:

DISC 2022



11:8 Deterministic Byzantine Consensus is Θ(n2)

1. measure(Time x): After exactly x time as measured by the local clock, an expiration event is
received by the host. Note that, as local clocks can drift before GST , x time as measured by the
local clock may not amount to x real time (before GST ).

2. cancel(): This method cancels all previously invoked measure(·) methods on that timer, i.e., all
pending expiration events (pertaining to that timer) are removed from the event queue.

In RareSync, leader(·) is a round-robin function (line 10 of Algorithm 1).
Once Pi starts executing RareSync (line 1), it instructs view_timer i to measure the duration of

the first view (line 2) and it enters the first view (line 3).
Once view_timer i expires (line 4), Pi checks whether the current view is the last view of the

current epoch, epochi (line 5). If that is not the case, the process advances to the next view of epochi

(line 9). Otherwise, the process broadcasts an epoch-completed message (line 12) signaling that it
has completed epochi. At this point in time, the process does not enter any view.

If, at any point in time, Pi receives either (1) 2f + 1 epoch-completed messages for some
epoch e ≥ epochi (line 13), or (2) an enter-epoch message for some epoch e′ > epochi (line 19),
the process obtains a proof that a new epoch E > epochi can be entered. However, before entering
E and propagating the information that E can be entered, Pi waits δ time (either line 18 or line 24).
This δ-waiting step is introduced to limit the number of epochs Pi can enter within any δ time
period after GST and is crucial for keeping the communication complexity of RareSync quadratic.
For example, suppose that processes are allowed to enter epochs and propagate enter-epoch
messages without waiting. Due to an accumulation (from before GST ) of enter-epoch messages
for different epochs, a process might end up disseminating an arbitrary number of these messages by
receiving them all at (roughly) the same time. To curb this behavior, given that message delays are
bounded by δ after GST , we force a process to wait δ time, during which it receives all accumulated
messages, before entering the largest known epoch.

Finally, after δ time has elapsed (line 25), Pi disseminates the information that the epoch E can
be entered (line 26) and it enters the first view of E (line 30).

4.3 Correctness and Complexity: Proof Sketch

This subsection presents a proof sketch of the correctness, latency complexity, and communication
complexity of RareSync.

In order to prove the correctness of RareSync, we must show that the eventual synchronization
property is ensured, i.e., there is a synchronization time ts ≥ GST . For the latency complexity, it
suffices to bound ts + ∆−GST by O(f). This is done by proving that synchronization happens
within (at most) 2 epochs after GST . As for the communication complexity, we prove that any

Algorithm 1 RareSync: Variables (for process Pi), constants, and functions

1: Variables:
2: Epoch epochi ← 1 ▷ current epoch
3: View viewi ← 1 ▷ current view within the current epoch; viewi ∈ [1, f + 1]
4: Timer view_timer i ▷ measures the duration of the current view
5: Timer dissemination_timer i ▷ measures the duration between two communication steps
6: T_Signature epoch_sigi ← ⊥ ▷ proof that epochi can be entered
7: Constants:
8: Time view_duration = ∆ + 2δ ▷ duration of each view
9: Functions:
10: leader(View v) ≡ P(v mod n)+1 ▷ a round-robin function
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Algorithm 2 RareSync: Pseudocode (for process Pi)

1: upon init: ▷ start of the protocol
2: view_timer i.measure(view_duration) ▷ measure the duration of the first view
3: trigger advance(1) ▷ enter the first view
4: upon view_timer i expires:
5: if viewi < f + 1: ▷ check if the current view is not the last view of the current epoch
6: viewi ← viewi + 1
7: View view_to_advance ← (epochi − 1) · (f + 1) + viewi

8: view_timer i.measure(view_duration) ▷ measure the duration of the view
9: trigger advance(view_to_advance) ▷ enter the next view
10: else:

11: ▷ inform other processes that the epoch is completed
12: broadcast ⟨epoch-completed, epochi, ShareSigni(epochi)⟩
13: upon exists Epoch e such that e ≥ epochi and ⟨epoch-completed, e, P_Signature sig⟩ is

received from 2f + 1 processes:
14: epoch_sigi ← Combine

(
{sig | sig is received in an epoch-completed message}

)
15: epochi ← e + 1
16: view_timer i.cancel()
17: dissemination_timer i.cancel()
18: dissemination_timer i.measure(δ) ▷ wait δ time before broadcasting enter-epoch
19: upon reception of ⟨enter-epoch, Epoch e, T_Signature sig⟩ such that e > epochi:
20: epoch_sigi ← sig ▷ sig is a threshold signature of epoch e− 1
21: epochi ← e

22: view_timer i.cancel()
23: dissemination_timer i.cancel()
24: dissemination_timer i.measure(δ) ▷ wait δ time before broadcasting enter-epoch
25: upon dissemination_timer i expires:
26: broadcast ⟨enter-epoch, epochi, epoch_sigi⟩
27: viewi ← 1 ▷ reset the current view to 1
28: View view_to_advance ← (epochi − 1) · (f + 1) + viewi

29: view_timer i.measure(view_duration) ▷ measure the duration of the view
30: trigger advance(view_to_advance) ▷ enter the first view of the new epoch

correct process enters a constant number of epochs during the time period [GST , ts + ∆]. Since
every correct process sends O(n) words per epoch, the communication complexity of RareSync is
O(n2) = O(1) ·O(n) · n. We work towards these conclusions by introducing some key concepts
and presenting a series of intermediate results.

A correct process enters an epoch e at time t if and only if the process enters the first view of e

at time t (either line 3 or line 30). We denote by te the first time a correct process enters epoch e.

Result 1: If a correct process enters an epoch e > 1, then (at least) f + 1 correct processes have

previously entered epoch e− 1.
The goal of the communication step at the end of each epoch is to prevent correct processes from
arbitrarily entering future epochs. In order for a new epoch e > 1 to be entered, at least f + 1
correct processes must have entered and “gone through” each view of the previous epoch, e− 1.
This is indeed the case: in order for a correct process to enter e, the process must either (1) collect
2f + 1 epoch-completedmessages for e− 1 (line 13), or (2) receive an enter-epochmessage for e,
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which contains a threshold signature of e−1 (line 19). In either case, at least f +1 correct processes
must have broadcast epoch-completed messages for epoch e− 1 (line 12), which requires them to
go through epoch e− 1. Furthermore, te−1 ≤ te; recall that local clocks can drift before GST .

Result 2: Every epoch is eventually entered by a correct process.

By contradiction, consider the greatest epoch ever entered by a correct process, e∗. In brief, every
correct process will eventually (1) receive the enter-epoch message for e∗ (line 19), (2) enter e∗

after its dissemination_timer expires (lines 25 and 30), (3) send an epoch-completed message for
e∗ (line 12), (4) collect 2f + 1 epoch-completed messages for e∗ (line 13), and, finally, (5) enter
e∗ + 1 (lines 15, 18, 25 and 30), resulting in a contradiction. Note that, if e∗ = 1, no enter-epoch
message is sent: all correct processes enter e∗ = 1 once they start executing RareSync (line 3).

We now define two epochs: emax and efinal = emax + 1. These two epochs are the main
protagonists in the proof of correctness and complexity of RareSync.

Definition of emax : Epoch emax is the greatest epoch entered by a correct process before GST ; if no

such epoch exists, emax = 0.4

Definition of efinal : Epoch efinal is the smallest epoch first entered by a correct process at or after

GST . Note that GST ≤ tefinal . Moreover, efinal = emax + 1 (by Result 1).

Result 3: For any epoch e ≥ efinal , no correct process broadcasts an epoch-completed message for e

(line 12) before time te + epoch_duration, where epoch_duration = (f + 1) · view_duration.
This statement is a direct consequence of the fact that, after GST , it takes exactly epoch_duration
time for a process to go through f + 1 views of an epoch; local clocks do not drift after GST .
Specifically, the earliest a correct process can broadcast an epoch-completedmessage for e (line 12)
is at time te + epoch_duration, where te denotes the first time a correct process enters epoch e.

Result 4: Every correct process enters epoch efinal by time tefinal + 2δ.

Recall that the first correct process enters efinal at time tefinal . If efinal = 1, all correct processes enter
efinal at tefinal . Otherwise, by time tefinal + δ, all correct processes will have received an enter-epoch
message for efinal and started the dissemination_timer i with epochi = efinal (either lines 15, 18
or 21, 24). By results 1 and 3, no correct process sends an epoch-completed message for an epoch
≥ efinal (line 12) before time tefinal + epoch_duration, which implies that the dissemination_timer
will not be cancelled. Hence, the dissemination_timer will expire by time tefinal + 2δ, causing all
correct processes to enter efinal by time tefinal + 2δ.

Result 5: In every view of efinal , processes overlap for (at least) ∆ time. In other words, there exists a

synchronization time ts ≤ tefinal + epoch_duration −∆.

By Result 3, no future epoch can be entered before time tefinal + epoch_duration. This is precisely
enough time for the first correct process (the one to enter efinal at tefinal ) to go through all f + 1
views of efinal , spending view_duration time in each view. Since clocks do not drift after GST
and processes spend the same amount of time in each view, the maximum delay of 2δ between
processes (Result 4) applies to every view in efinal . Thus, all correct processes overlap with each
other for (at least) view_duration−2δ = ∆ time in every view of efinal . As the leader(·) function is
round-robin, at least one of the f + 1 views must have a correct leader. Therefore, synchronization
must happen within epoch efinal , i.e., there is a synchronization time ts such that tefinal + ∆ ≤
ts + ∆ ≤ tefinal + epoch_duration.

Result 6: tefinal ≤ GST + epoch_duration + 4δ.

4 Epoch 0 is considered as a special epoch. Note that 0 /∈ Epoch, where Epoch denotes the set of epochs (see §4.2).
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If efinal = 1, all correct processes started executing RareSync at time GST . Hence, tefinal = GST .
Therefore, the result trivially holds in this case.

Let efinal > 1; recall that efinal = emax + 1. (1) By time GST + δ, every correct process receives
an enter-epoch message for emax (line 19) as the first correct process to enter emax has broadcast
this message before GST (line 26). Hence, (2) by time GST + 2δ, every correct process enters
emax .5 Then, (3) every correct process broadcasts an epoch-completed message for emax at time
GST+epoch_duration+2δ (line 12), at latest. (4) By timeGST+epoch_duration+3δ, every correct
process receives 2f + 1 epoch-completed messages for emax (line 13), and triggers the measure(δ)
method of dissemination_timer (line 18). Therefore, (5) by time GST + epoch_duration + 4δ,
every correct process enters emax + 1 = efinal . Figure 2 depicts this scenario.

Note that for the previous sequence of events not to unfold would imply an even lower bound
on tefinal : a correct process would have to receive 2f + 1 epoch-completedmessages for emax or an
enter-epochmessage for emax+1 = efinal before step (4) (i.e., before timeGST+epoch_duration+
3δ), thus showing that tefinal < GST + epoch_duration + 4δ.
Latency: Latency complexity of RareSync is O(f).
By Result 5, ts ≤ tefinal + epoch_duration −∆. By Result 6, tefinal ≤ GST + epoch_duration + 4δ.
Therefore, ts ≤ GST +epoch_duration +4δ +epoch_duration−∆ = GST +2epoch_duration +
4δ −∆. Hence, ts + ∆−GST ≤ 2epoch_duration + 4δ = O(f).
Communication: Communication complexity of RareSync is O(n2).
Roughly speaking, every correct process will have entered emax (or potentially efinal = emax + 1)
by time GST + 2δ (as seen in the proof of Result 6). From then on, it will enter at most one other
epoch (efinal) before synchronizing (which is completed by time ts + ∆). As for the time interval
[GST , GST +2δ), due to dissemination_timer ’s interval of δ, a correct process can enter (at most)
two other epochs during this period. Therefore, a correct process can enter (and send messages for)
at most O(1) epochs between GST and ts + ∆. The individual communication cost of a correct
process is bounded by O(n) words per epoch: O(n) epoch-completedmessages (each with a single
word), and O(n) enter-epoch messages (each with a single word, as a threshold signature counts
as a single word). Thus, the communication complexity of RareSync is O(n2) = O(1) ·O(n) · n.

Figure 2Worst-case latency of RareSync: ts + ∆ − GST ≤ 2epoch_duration + 4δ.

▶ Theorem 2. RareSync is a partially synchronous view synchronizer with (1) O(n2) communication

complexity, and (2) O(f) latency complexity.

5 SQuad

This section introduces SQuad, a partially synchronous Byzantine consensus protocol with optimal
resilience [26]. SQuad simultaneously achieves (1) O(n2) communication complexity, matching the
Dolev-Reischuk bound [25], and (2) O(f) latency complexity, matching the Dolev-Strong bound [23].

5 If emax = 1, every correct process enters emax by time GST .
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First, we presentQuad, a partially synchronous Byzantine consensus protocol ensuring weak
validity (§5.1). Quad achieves quadratic communication complexity and linear latency complexity.
Then, we construct SQuad by adding a simple preprocessing phase to Quad (§5.2).

5.1 Quad

Quad is a partially synchronous Byzantine consensus protocol satisfying the weak validity property:
Weak validity: If all processes are correct, then a value decided by a process was proposed.

Quad achieves (1) quadratic communication complexity, and (2) linear latency complexity. Inter-
estingly, the Dolev-Reischuk lower bound [25] does not apply to Byzantine protocols satisfying
weak validity; hence, we do not know whetherQuad has optimal communication complexity. As
explained in §5.2, we accompanyQuad by a preprocessing phase to obtain SQuad.

Quad (Algorithm 3) uses the same view core module as HotStuff [56], i.e., the view logic of
Quad is identical to that of HotStuff. Moreover, Quad uses RareSync as its view synchronizer,
achieving synchronization with O(n2) communication. The combination of HotStuff’s view core
and RareSync ensures that each correct process sends O(n) words after GST (and before the
decision), i.e., C = O(n) inQuad. Following the formula introduced in §1,Quad indeed achieves
n · C + S = n ·O(n) + O(n2) = O(n2) communication complexity. Due to the linear latency of
RareSync,Quad also achieves O(f) latency complexity.
View core. We now give a brief description of the view core module of Quad. The complete
pseudocode of this module can be found in [56].

Each correct process keeps track of two critical variables: (1) the prepare quorum certificate
(QC), and (2) the locked QC. Each of these represents a process’ estimation of the value that will be
decided, although with a different degree of certainty. For example, if a correct process decides a
value v, it is guaranteed that (at least) f + 1 correct processes have v in their locked QC. Moreover,
it is ensured that no correct process updates (from this point onward) its prepare or locked QC to
any other value, thus ensuring agreement. Lastly, a QC is a (constant-sized) threshold signature.

The structure of a view follows the “all-to-leader, leader-to-all” communication pattern. Specifi-
cally, each view is comprised of the following four phases:
1. Prepare: A process sends to the leader a view-change message containing its prepare QC.

Once the leader receives 2f + 1 view-change messages, it selects the prepare QC from the
“latest” view. The leader sends this QC to all processes via a prepare message.
Once a process receives the prepare message from the leader, it supports the received prepare
QC if (1) the received QC is consistent with its locked QC, or (2) the received QC is “more recent”
than its locked QC. If the process supports the received QC, it acknowledges this by sending a
prepare-vote message to the leader.

2. Precommit: Once the leader receives 2f + 1 prepare-vote messages, it combines them into a
cryptographic proof σ that “enough” processes have supported its “prepare-phase” value; σ is a
threshold signature. Then, it disseminates σ to all processes via a precommit message. Once a
process receives the precommit message carrying σ, it updates its prepare QC to σ and sends
back to the leader a precommit-vote message.

3. Commit: Once the leader receives 2f + 1 precommit-vote messages, it combines them into a
cryptographic proof σ′ that “enough” processes have adopted its “precommit-phase” value (by
updating their prepare QC); σ′ is a threshold signature. Then, it disseminates σ′ to all processes
via a commit message. Once a process receives the commit message carrying σ′, it updates its
locked QC to σ′ and sends back to the leader a commit-vote message.

4. Decide: Once the leader receives 2f + 1 commit-vote messages, it combines them into a
threshold signature σ′′, and relays σ′′ to all processes via a decide message. When a process
receives the decide message carrying σ′′, it decides the value associated with σ′′.
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As a consequence of the “all-to-leader, leader-to-all” communication pattern and the constant size
of messages, the leader of a view sends O(n) words, while a non-leader process sends O(1) words.

The view core module provides the following interface:
Request start_executing(View v): The view core starts executing the logic of view v and
abandons the previous view. Concretely, it stops accepting and sending messages for the
previous view, and it starts accepting, sending, and replying to messages for view v. The state
of the view core is kept across views (e.g., the prepare and locked QCs).
Indication decide(Value decision): The view core decides value decision (this indication is
triggered at most once).

Protocol description. The protocol (Algorithm 3) amounts to a composition of RareSync and the
aforementioned view core. Since the view core requires 8 communication steps in order for correct
processes to decide, a synchronous overlap of 8δ is sufficient. Thus, we parameterize RareSync
with ∆ = 8δ (line 3). In short, the view core is subservient to RareSync, i.e., when RareSync
triggers the advance(v) event (line 7), the view core starts executing the logic of view v (line 8).
Once the view core decides (line 9), Quad decides (line 10).

Algorithm 3Quad: Pseudocode (for process Pi)

1: Modules:

2: View_Core core
3: View_Synchronizer synchronizer ← RareSync(∆ = 8δ)
4: upon init(Value proposal): ▷ propose value proposal
5: core.init(proposal) ▷ initialize the view core with the proposal
6: synchronizer .init ▷ start RareSync
7: upon synchronizer .advance(View v):
8: core.start_executing(v)
9: upon core.decide(Value decision):
10: trigger decide(decision) ▷ decide value decision

Proof sketch. The agreement and weak validity properties of Quad are ensured by the view
core’s implementation. As for the termination property, the view core, and therefore Quad, is
guaranteed to decide as soon as processes have synchronized in the same view with a correct leader
for ∆ = 8δ time at or after GST . Since RareSync ensures the eventual synchronization property,
this eventually happens, which implies thatQuad satisfies termination. As processes synchronize
within O(f) time after GST , the latency complexity of Quad is O(f).

As for the total communication complexity, it is the sum of the communication complexity of (1)
RareSync, which is O(n2), and (2) the view core, which is also O(n2). The view core’s complexity
is a consequence of the fact that:

each process executes O(1) epochs between GST and the time by which every process decides,
each epoch has f + 1 views,
a process can be the leader in only one view of any epoch, and
a process sends O(n) words in a view if it is the leader, and O(1) words otherwise, for an
average of O(1) words per view in any epoch.

Thus, the view core’s communication complexity is O(n2) = O(1) · (f + 1) ·O(1) · n. Therefore,
Quad indeed achieves O(n2) communication complexity.

▶ Theorem 3. Quad is a Byzantine consensus protocol ensuring weak validity with (1) O(n2)
communication complexity, and (2) O(f) latency complexity.
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5.2 SQuad: Protocol Description

At last, we present SQuad, which we derive fromQuad.

Deriving SQuad from Quad. Imagine a locally-verifiable, constant-sized cryptographic proof
σv vouching that value v is valid. Moreover, imagine that it is impossible, in the case in which all
correct processes propose v to Quad, for any process to obtain a proof for a value different from v:

Computability: If all correct processes propose v to Quad, then no process (even if faulty)
obtains a cryptographic proof σv′ for a value v′ ̸= v.

If such a cryptographic primitive were to exist, then theQuad protocol could be modified in the
following manner in order to satisfy the validity property introduced in §1:

A correct process accompanies each value by a cryptographic proof that the value is valid.
A correct process ignores any message with a value not accompanied by the value’s proof.

Suppose that all correct processes propose the same value v and that a correct process Pi decides v′

from the modified version of Quad. Given that Pi ignores messages with non-valid values, Pi has
obtained a proof for v′ before deciding. The computability property of the cryptographic primitive
guarantees that v′ = v, implying that validity is satisfied. Given that the proof is of constant size,
the communication complexity of the modified version of Quad remains O(n2).

Therefore, the main challenge in obtaining SQuad fromQuad, while preservingQuad’s com-
plexity, lies in implementing the introduced cryptographic primitive.

Certification phase. SQuad utilizes its certification phase (Algorithm 4) to obtain the introduced
constant-sized cryptographic proofs; we call these proofs certificates.6 Formally, Certificate de-
notes the set of all certificates. Moreover, we define a locally computable function verify: Value×
Certificate→ {true, false}. We require the following properties to hold:

Computability: If all correct processes propose the same value v to SQuad, then no process
(even if faulty) obtains a certificate σv′ with verify(v′, σv′) = true and v′ ̸= v.
Liveness: Every correct process eventually obtains a certificate σv such that verify(v, σv) = true,
for some value v.

The computability property states that, if all correct processes propose the same value v to SQuad,
then no process (even if Byzantine) can obtain a certificate for a value different from v. The liveness
property ensures that all correct processes eventually obtain a certificate. Hence, if all correct
processes propose the same value v, all correct processes eventually obtain a certificate for v and
no process obtains a certificate for a different value.

In order to implement the certification phase, we assume an (f + 1, n)-threshold signature
scheme (see §3) used throughout the entirety of the certification phase. The (f + 1, n)-threshold
signature scheme allows certificates to count as a single word, as each certificate is a threshold
signature. Finally, in order to not disruptQuad’s communication and latency, the certification phase
itself incurs O(n2) communication and O(1) latency.

A certificate σ vouches for a value v (the verify(·) function at line 21) if (1) σ is a threshold
signature of the predefined string “any value” (line 22), or (2) σ is a threshold signature of v (line 23).
Otherwise, verify(v, σ) returns false.

Once Pi enters the certification phase (line 1), Pi informs all processes about the value it has
proposed by broadcasting a disclose message (line 3). Process Pi includes a partial signature of its
proposed value in the message. If Pi receives disclose messages for the same value v from f + 1
processes (line 4), Pi combines the received partial signatures into a threshold signature of v (line 6),
which represents a certificate for v. To ensure liveness, Pi disseminates the certificate (line 7).

6 Note the distinction between certificates and prepare and locked QCs of the view core.
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Algorithm 4 Certification Phase: Pseudocode (for process Pi)

1: upon init(Value proposal): ▷ propose value proposal
2: ▷ inform other processes that proposal was proposed
3: broadcast ⟨disclose, proposal, ShareSigni(proposal)⟩
4: upon exists Value v such that ⟨disclose, v, P_Signature sig⟩ is received from f + 1 processes:
5: ▷ a certificate for v is obtained
6: Certificate σv ← Combine

(
{sig | sig is received in a disclose message}

)
7: broadcast ⟨certificate, v, σv⟩ ▷ disseminate the certificate
8: exit the certification phase
9: upon for the first time (1) disclose message is received from 2f + 1 processes, and (2) not

exist Value v such that ⟨disclose, v, P_Signature sig⟩ is received from f + 1 processes:
10: ▷ inform other processes that any value can be “accepted”
11: broadcast ⟨allow-any, ShareSigni(“any value”)⟩
12: upon ⟨allow-any, P_Signature sig⟩ is received from f + 1 processes :
13: ▷ a certificate for “any value” is obtained
14: Certificate σ⊥ ← Combine

(
{sig | sig is received in an allow-any message}

)
15: broadcast ⟨certificate,⊥, σ⊥⟩ ▷ disseminate the certificate
16: exit the certification phase
17: ▷ a certificate for v is obtained; v can be ⊥, meaning that σv vouches for any value
18: upon reception of ⟨certificate, Value v, Certificate σv⟩:
19: broadcast ⟨certificate, v, σv⟩ ▷ disseminate the certificate
20: exit the certification phase
21: function verify(Value v, Certificate σ):
22: if CombinedVerify(“any value”, σ) = true: return true
23: else if CombinedVerify(v, σ) = true: return true
24: else return false

If Pi receives 2f + 1 disclose messages and there does not exist a “common” value received
in f + 1 (or more) disclose messages (line 9), the process concludes that it is fine for a certificate
for any value to be obtained. Therefore, Pi broadcasts an allow-any message containing a partial
signature of the predefined string “any value” (line 11).

If Pi receives f + 1 allow-any messages (line 12), it combines the received partial signatures
into a certificate that vouches for any value (line 14), and it disseminates the certificate (line 15).
Since allow-any messages are received from f + 1 processes, there exists a correct process that
has verified that it is indeed fine for such a certificate to exist.

If, at any point, Pi receives a certificate (line 18), it adopts the certificate, and disseminates it
(line 19) to ensure liveness.

Given that each message of the certification phase contains a single word, the certification phase
incurs O(n2) communication. Moreover, each correct process obtains a certificate after (at most)
2 = O(1) rounds of communication. Therefore, the certification phase incurs O(1) latency.

We explain below why the certification phase (Algorithm 4) ensures computability and liveness:
Computability: If all correct processes propose the same value v to SQuad, all correct processes
broadcast a disclose message for v (line 3). Since 2f + 1 processes are correct, no process
obtains a certificate σv′ for a value v′ ̸= v such that CombinedVerify(v′, σv′) = true (line 23).
Moreover, as every correct process receives f + 1 disclose messages for v within any set of
2f + 1 received disclose messages, no correct process sends an allow-any message (line 11).
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Hence, no process obtains a certificate σ⊥ such that CombinedVerify(“any value”, σ⊥) = true
(line 22). Thus, computability is ensured.
Liveness: If a correct process receives f + 1 disclosemessages for a value v (line 4), the process
obtains a certificate for v (line 6). Since the process disseminates the certificate (line 7), every
correct process eventually obtains a certificate (line 18), ensuring liveness in this scenario.
Otherwise, all correct processes broadcast an allow-any message (line 11). Since there are
at least 2f + 1 correct processes, every correct process eventually receives f + 1 allow-any
messages (line 12), thus obtaining a certificate. Hence, liveness is satisfied in this case as well.

SQuad = Certification phase +Quad. We obtain SQuad by combining the certification phase
with Quad. The pseudocode of SQuad is given in Algorithm 5.

Algorithm 5 SQuad: Pseudocode (for process Pi)

1: upon init(Value proposal): ▷ propose value proposal
2: start the certification phase with proposal
3: upon exiting the certification phase with a certificate σv for a value v:
4: ▷ inQuadcer , processes ignore messages with values not accompanied by their certificates
5: start executing Quadcer with the proposal (v, σv)
6: upon Quadcer decides Value decision:
7: trigger decide(decision) ▷ decide value decision

A correct process Pi executes the following steps in SQuad:
1. Pi starts executing the certification phase with its proposal (line 2).
2. Once the process exits the certification phase with a certificate σv for a value v, it proposes (v, σv)

toQuadcer , a version of Quad “enriched” with certificates (line 5). While executingQuadcer ,
correct processes ignore messages containing values not accompanied by their certificates.

3. Once Pi decides fromQuadcer (line 6), Pi decides the same value from SQuad (line 7).

▶ Theorem 4. SQuad is a Byzantine consensus protocol with (1) O(n2) communication complexity,

and (2) O(f) latency complexity.

6 Concluding Remarks

This paper shows that the Dolev-Reischuk lower bound can be met by a partially synchronous Byzan-
tine consensus protocol. Namely, we introduce SQuad, an optimally-resilient partially synchronous
Byzantine consensus protocol with optimal O(n2) communication complexity, and optimal O(f)
latency complexity. SQuad owes its complexity to RareSync, an “epoch-based” view synchronizer
ensuring synchronization with quadratic communication and linear latency in partial synchrony.
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