Revisiting Tendermint: Design Tradeofts,
Accountability, and Practical Use

Ethan Buchman
Informal Systems
ethan@informal.systems

Zarko Milosevic
Informal Systems
zarko@informal.systems

Abstract—Tendermint is a deterministic consensus protocol
and is one of the most mature implementations of its kind.
This implementation is used as the core for building State
Machine Replication (SMR) platforms with Byzantine fault-
tolerant (BFT) guarantees. A noteworthy deployment of Ten-
dermint has been in continuous operation since 2019 within
a blockchain called Cosmos Hub. The Cosmos Hub supports
the development of decentralized applications, and stands as
one of the largest and most stable ongoing deployments of
a BFT SMR platform.

While successful in practice, the Tendermint consensus
protocol has no definitive description in the literature. It is
not clear what makes this protocol unique or how it fits into
a blockchain protocol stack. In this short paper, we revisit
Tendermint. We contrast Tendermint with other major con-
sensus algorithms, examining its unique design choices. We
also focus on the requirements which dictated Tendermint’s
design. Lastly, we briefly analyze the accountability support
which Tendermint provides.

I. INTRODUCTION

Current blockchain systems, such as Bitcoin [20] or
Diem [24], are modern distributed systems that solve the
state machine replication problem [18]. This problem corre-
sponds to the theoretical concept of atomic broadcast [19].
Blockchains typically take the approach of solving atomic
broadcast by doing iterated invocations to a fault-tolerant
consensus algorithm, where each consensus instance de-
cides on the next block, and each block commonly contains
application-level transactions.

Some of the most prominent use-cases of blockchains
consist of financial applications [4], [20]. Participants in
the consensus protocol may therefore have financial incen-
tives to deviate from protocol in an adversarial manner,
e.g., by generating a diverging history of transactions in
an attempt to send the same money to two distinct ad-
dresses (double-spending). The classic notion of a Byzantine
fault [22] captures this kind of behavior abstractly. It is
well-understood [22] that tolerating Byzantine faults requires
certain resilience conditions, usually that less than a third of
the processes can be faulty. The crucial problem of Byzantine
fault-tolerant applications in environments that are ruled by
financial incentives is how one can ensure that two thirds of

Rachid Guerraoui
Ecole Polytechnique Fédérale de Lausanne
rachid.guerraoui@epfl.ch

Dragos-Adrian Seredinschi
Informal Systems
adi@informal.systems

Jovan Komatovic
Ecole Polytechnique Fédérale de Lausanne
jovan.komatovic@epfl.ch

Josef Widder
Informal Systems
josef@informal.systems

the participants follow the protocol, that is, that they behave
correctly, although they can benefit by deviating.

Proof-of-stake platforms address the incentive problem
with a threat, informally speaking: Any financial gains that a
participant may extract by misbehaving can result in a sub-
sequent financial loss upon being caught. In the Tendermint
protocol, for instance, the consensus participants are called
validators, and they have to put money on the line, i.e., they
stake. Once misbehavior is detected, proof of the misbehavior
is submitted, and (a fraction of) tokens owned by the guilty
validator(s) are burned.

Tendermint was among the first deterministic consensus
protocols introduced specifically for use in a blockchain
context [16]. It is for this reason that Tendermint includes
an accountability mechanism [17] and relies inherently on a
gossip building block — unlike most classic BFT SMR protocols
that build on point-to-point links [3].

Discussions of Tendermint in the literature are scarce, yet
the protocol adoption in practice is very successful. One of
the most important deployments of Tendermint, for example,
has been in continuous operation since 2019, executing on
125 nodes, within a blockchain called Cosmos Hub, and has
a market cap of 8 bil. US$.! Motivated by its success, as well
as by the gap in the literature, we revisit the Tendermint
protocol in this paper. Our contributions are: (1) we provide
a clear picture of the design tradeoffs that set Tendermint
apart from alternative consensus algorithms; (2) we briefly
discuss the accountability support of Tendermint; and (3) we
clarify how Tendermint is used in practice.

Roadmap. We first provide an overview of Tendermint
(§II), and then examine the algorithmic tradeoffs and unique-
ness, as well as the accountability support of this proto-
col (§III). Next, we briefly discuss how Tendermint is used
in practice (§IV). Finally, we conclude in §V.

II. OVERVIEW

As a consensus protocol, Tendermint draws inspiration
from two landmark results in the field: the work of Dwork,

!https://coinmarketcap.com/currencies/cosmos/

———-=Round @ (proposer: re)——

N NIRRT

PROPOSAL i PREVOTE

Fig. 1: Tendermint consensus protocol pattern. An important
part of the story of Tendermint consensus algorithm is that there
is no view-change sub-protocol or additional communication —
these three steps is all there is. Additionally, protocol messages pass
over a gossip overlay, not pairwise (point-to-point) links.

Lynch, and Stockmeyer (DLS) [12], and the PBFT protocol
of Castro and Liskov [6]. Tendermint adopts from DLS the
insight of rotating processes in the role of proposer as part
of common-case processing. This enables the protocol to
account for stakes and achieve more equity, or fairness.
Proposer selection is a deterministic process in Tendermint.
Essentially, there is a predefined function that ensures round-
robin rotation of proposers, similar to earlier work on BFT
consensus [6], [12], but with the important addition that
processes are weighted in proportion to their stake. One
potential drawback of this approach is the determinism—
proposers are known well in advance, so an attacker can
easily target them (e.g., through DDoS). Such an attack poses
a significant threat; there is an ongoing effort to make pro-
poser selection randomized in Tendermint, and a promising
direction relies on verifiable random functions [15].

While DLS calls a single communication step a
(communication-closed) round, in Tendermint a round con-
sists of a sequence of three protocol steps having a cer-
tain process as the proposer. The three protocol steps in
Tendermint are proposal, prevote, and precommit. Figure 1
provides an overview of the algorithm, describing a round
(with process 7o as proposer), and the three steps within
that round leading up to a decision. Note that process
rs3 is slow (or faulty), thereby not sending any message.
This communication pattern resembles the well-known PBFT
algorithm, which means that, under favorable timing condi-
tions, Tendermint terminates in three message delays.

Akin to DLS and PBFT, Tendermint offers determinis-
tic guarantees and assumes a partially synchronous net-
work [12]. In contrast to Bitcoin, whose set of participants is
unknown and open [20] (i.e., permissionless), Tendermint is a
permissioned protocol, in so far as all of the participating
processes know each other at the consensus layer (this
mechanism is further discussed in §IV).

IIIl. DESIGN & TRADEOFFS IN TENDERMINT

In this section, we examine protocol tradeoffs that Tender-
mint exhibits, and analyze the uniqueness of this protocol.
We focus on three aspects: communication layer (§III-A),
termination mechanism and how this differs from other
consensus protocols (§III-B), and accountability (§III-C).

A. Communication Layer

As already mentioned, a distinguishing feature of the
Tendermint consensus algorithm is that processes commu-

nicate via a gossip-based communication layer. This stands
in sharp contrast with the standard assumption in BFT proto-
cols, namely, that processes exchange messages via pairwise
links [7], [12]. Gossip has been explored in the context of
consensus algorithms from a theoretical standpoint [8], and
we also observe that more recent work on consensus systems
is starting to rely on gossip [2]. However, to the best of
our knowledge, Tendermint innovated as the first real-world
BFT SMR system to build and deploy on a gossip-based
communication layer.

Building a consensus algorithm on top of gossip has two
significant consequences. First, a gossip layer is a higher-level
primitive than pairwise links. This layer exposes a broad-
cast/deliver interface (instead of send/deliver), and imple-
ments a reliable broadcast abstraction [5]. Building on such
an abstraction represents a stronger assumption; yet, this
allows for a simpler logic at the higher layer (i.e., consensus).
For instance, the consensus algorithm in Tendermint does not
require a separate view-change (i.e., recovery) sub-protocol,
being substantially easier to understand and more concise
than similar algorithms. Second, gossip-based communication
methods are well-known for their flexibility and scalability,
which helps Tendermint accommodate growth and flexibility
in the connectivity of its participating processes.

B. Termination Mechanism Tradeoffs

To understand precisely how Tendermint is innovative in
its termination mechanism, we contrast this protocol with
PBFT [7] and HotStuff [25]. We discuss the three protocols
from the point of view of a single consensus instance.

We start by observing a commonality among these algo-
rithms: they all incorporate a synchronous delay, or time-
out T, towards overcoming non-graceful periods (e.g., due to
malicious proposers or asynchrony). A synchrony assump-
tion (i.e., timeout) is a classic way to circumvent the impos-
sibility of progressing under asynchrony [13]. Intuitively, if T’
time elapses without progress, each protocol interprets this as
a trigger to change the proposer; consequently, some process
ro becomes the new proposer and processes transition from
some round i into round i+1. We use the term recovery phase
to denote the protocol steps having ry as a newly elected
proposer; the critical difference between the protocols lies
exactly in this phase.

The recovery phase in PBFT consists of the view-change
sub-protocol, having a bit complexity of O(n3) [7]. Essen-
tially, the new proposer ry has to collect messages from
other processes to rebuild the state of round i and determine
which value to propose in round i+1. Each of the messages
received by ro contains a “proof of locking” of size O(n)
bits as it contains signatures from a quorum of processes.
Moreover, the proposer 7, along with the selected value,
includes a vector of received proofs of locking, implying that
the proposal message contains O(n?) bits. Since the proposal

2Note that the gossip layer does not ensure that all correct processes
receive the identical message from a faulty sender, i.e., it does not ensure
consistency.

message is broadcast to all processes, we reach the cubic bit
complexity of the view-change sub-protocol of PBFT.

The recovery phase in HotStuff embodies the same pattern
as PBFT, and calls this sequence of two steps a prepare
phase [25, §4.1]. In HotStuff (as in PBFT), each round has a
different proposer; thus, recovery happens at the beginning
of every round (hence the name prepare). The upside is that
HotStuff is optimized to change proposers regularly, and does
so more efficiently than PBFT, since recovery has O(n) bit
complexity (due to the use of threshold signatures and the
fact that a proof of locking for only the selected value is
included in the leader’s message) and two one-way message
delays. The first downside is that HotStuff has latency of
7 message delays since it relies exclusively on all-to-leader
and leader-to-all communication pattern in order to achieve
linear bit complexity. Another drawback is that the cost of
recovery is paid with every round. Importantly, both HotStuff
and PBFT guarantee responsiveness: Once recovery begins,
the new proposer rg of round i+1 never waits on any timeout
to guarantee progress (assuming that synchrony holds).

The recovery phase in Tendermint is entirely comprised
of local computation, requiring no message exchanges. Once
in round i+1, proposer 7y can propose a value without
coordinating with the others. This is because every process,
during round i, stores in their local state the most up-to-date
value that could be decided; doing so is a part of the common-
case protocol. Upon becoming proposer in the succeeding
round i+1, this is the value which process ¢ proposes.

To obtain this zero-complexity recovery, Tendermint builds
on the following insight: To transition correctly between
rounds i and i+1 implies a timeout 7, as we established
earlier; this time window 7' allows processes to witness
messages circulating in the system towards determining in
round i+1 the value to propose. Intuitively, the gossip layer
guarantees that processes witness a common view of the
system in round i while waiting to transition into i+1. This
minimalist approach does not come for free: Tendermint
sacrifices responsiveness, since waiting is on the critical
path of ry before this process becomes a proposer and can
effectively propose a value.

It is important to note that PBFT, HotStuff, and Tendermint
all make identical synchrony assumptions. PBFT is perhaps
the most optimized to extract performance from a stable pro-
poser; HotStuff is primed to execute frequent recovery and to
switch proposers by paying in modest complexity regularly;
Tendermint optimizes for minimality of coordination, and has
zero-complexity recovery.

C. Accountability in Tendermint

As already mentioned, Tendermint is a variant of the
seminal algorithm by Dwork, Lynch and Stockmeyer [12]. It
shares the property that, if less than a third of the processes
are faulty, agreement is guaranteed. If there are more than
two thirds of faulty processes, they have control over the
system. The question we are interested in is whether in the
area between, while we cannot prevent disagreement [9],

we can ensure to collect evidence of misbehavior of (some)
culprits if a disagreement occurs.

It has been shown in [14] that, if there are between one
third and two thirds of faulty processes, every attack on
Tendermint consensus that leads to violation of agreement is
either the “double-vote” attack or the “amnesia” attack. The
double-vote attack happens if a process sends two conflicting
messages (e.g., one voting for block a and one voting for
block a’) in the same round of a consensus instance. The
amnesia is a violation of the locking mechanism introduced
in [12]: a process locks a value in a round if the value is
supported by more than two thirds of all processes. A process
that has locked a value can only be convinced to release
that lock if more than two thirds of the processes have a
lock formed in a later round. In the case of less than a third
faults, if a process decides value v in a round 7, the algorithm
ensures that more than two thirds have a lock on value v for
that round. As a result, once a value is decided, no other
value w will be supported by enough processes. However, if
there are more than a third faults, adversarial processes may
lock a value v and in a later round “forget” about that and
support a different value.

Currently, Tendermint does not punish amnesia. The main
reason for this is that the only way to identify the mis-
behaving processes is via a query-response protocol where
processes that have changed their opinion from v to w are
requested to prove that they did that following the protocol,
that is, they need to present more than two thirds messages
that supported w after v was decided. If a process can do so,
the two thirds of the processes that supported w now need to
be queried whether they changed their mind in a sound way,
etc. The major drawbacks of this solution are that it requires
synchrony and it does not “produce” proof of misbehavior
of faulty processes. Indeed, a faulty process that invalidly
unlocks its value might simply avoid answering the query.

Being inspired by [23], we observe that a slight modifica-
tion of Tendermint allows it to detect (and punish) amnesia
attacks. Namely, the idea is to ensure that every conducted
amnesia attack implies sending of conflicting messages, thus
“transforming” amnesia into double-vote attacks. Such a
transformation demands that every prevote message incorpo-
rates some information about the received proposal message
that triggered it. In that way, every amnesia attack would
require faulty processes to send invalid prevote messages,
which are self-evident proofs of their misbehavior. Obtaining
accountability guarantees for Tendermint demands a similar
transformation to the one presented in [23] and applied to
HotStuff [25]; due to the lack of space, we leave the formal
treatment of the accountability-enabling transformation of
Tendermint as future work.

IV. PrAcTICE MEETS THEORY

As a consensus engine, Tendermint is designed to be a
general core for implementing BFT SMR. The state machine,
i.e., application, communicates with the consensus engine
over the application blockchain interface (ABCI). Tendermint

can thus be used with different applications. An application
running on top of Tendermint needs to provide some control
information to the consensus engine. For instance, it needs to
provide the validator set, that is, the participants in the next
consensus instance, which are identified by their public key.
Moreover, the application assigns to each validator a voting
power, which is a positive integer, representing the amount
of stake this validator possesses.

In classic consensus algorithms, rules are typically guarded
by threshold expression, e.g., if n is the number of processes,
one needs to receive more than 2n/3 messages. In other
words, a quorum commonly consists of a certain number of
processes. Tendermint replaces the number of processes by
their cumulative voting power. If all validators have voting
power 1, then we fall back to the classic case. Additionally, in
each consensus instance, the validators of the next consensus
instance are decided. Thus, the validator set can change
completely between two consensus instances (i.e., blocks).

In Tendermint, the mapping from a round to its proposer is
done in a weighted round-robin fashion. Specifically, during
a sequence of n rounds, each validator is a proposer in S
rounds, where S represents the voting power of the validator.

One instance of Tendermint running in production is the
Cosmos main chain called Cosmos Hub. Here, the application
contains a staking module. Validators can transfer and stake
(self-delegate) Atoms (the native currency) and any user can
delegate its Atoms to a validator. The sum of the delegated
Atoms represents the voting power of a validator. In each
block, the staking module (currently) picks the top 125
validators according to voting power to constitute the next
validator set. Therefore, (in practice) the validator set changes
over time, but, due to this rule, only mildly, while the top
validators are pretty stable as the cost of becoming a validator
in top-125 is substantial.

Besides validators, any deployment of Tendermint (includ-
ing the Cosmos Hub) presumes other kinds of additional
processes. Most importantly, every validator is protected by
multiple sentry processes [10]. A sentry acts as a proxy
between the validator and the rest of the network, hence the
rest of the Internet, protecting the validator from inbound
traffic or DDoS attacks. The sentry-based architecture ties
in with the choice of gossip as a building block, since the
gossip network can accommodate an arbitrary amount of
peers (e.g., sentry processes, or other kinds of processes [11]),
which can join the network and observe all messages, but
cannot produce consensus protocol messages since they are
not validators. This architecture has two consequences: (1)
the gossip network itself is permissionless, so any process
may join as a non-validator, observe the network, replay the
protocol, and report misbehavior if they detect it, and (2) the
overall network is substantially more extensive than just the
set of validators. For a concrete example, observations from
Cosmos Hub reveal that there are roughly 570 peers that are
discoverable by their IP, while the network is estimated to
count around 900 total peers [1], [21].

V. CONCLUSION

We have reviewed Tendermint, a Byzantine-fault tolerant
consensus algorithm that is the core of the Cosmos eco-
system of blockchains. The algorithm is designed for the
wide area network with high number of mutually distrusted
processes that communicate over a gossip-based peer-to-peer
network. We contrasted Tendermint with two other major
BFT consensus algorithms and highlighted its unique design
tradeoffs. Moreover, we discussed the accountability support
of Tendermint, as well as how Tendermint is used in practice.

REFERENCES

[1] Artias, C., 2021. https://atlas.cosmos.network/nodes.

[2] Bairp, L. Hashgraph consensus: fair, fast, byzantine fault tolerance.
Swirlds Tech Report, Tech. Rep. (2016).

[3] BucHMAN, E., KwoN, J., AND MiLosEvIC, Z. The latest gossip on BFT
consensus. arXiv preprint arXiv:1807.04938 (2018).

[4] ButeriN, V. Ethereum: A next-generation smart contract and decen-
tralized application platform. https://github.com/ethereum/wiki/wiki/
White-Paper, 2014. Accessed: 2018-07-11.

[5] CacHIN, C., GUERRAOUI, R., AND RODRIGUES, L. Introduction to Reliable
and Secure Distributed Programming. Springer Science & Business
Media, 2011.

[6] CasTrO, M., AND Liskov, B. Practical Byzantine Fault Tolerance and
Proactive Recovery. In Proceedings of the 3rd Symposium on Operating
Systems Design and Implementation (Feb. 1999).

[7] CasTrO, M., AND Liskov, B. Practical Byzantine Fault Tolerance and
Proactive Recovery. ACMTCS (2002).

[8] CHLEBUS, B. S., AND KowaLsk1, D. R. Gossiping to Reach Consensus.
In Proceedings of the Fourteenth Annual ACM Symposium on Parallel
Algorithms and Architectures (New York, NY, USA, 2002), SPAA 02,
ACM, pp. 220-229.

[9] Crvit, P., GILBERT, S., AND GrRAMOLL, V. Polygraph: Accountable

Byzantine Agreement. In 2021 IEEE 41st International Conference on

Distributed Computing Systems (ICDCS) (2021), IEEE, pp. 403-413.

Docs, T. C., 2021. https://docs.tendermint.com/master/nodes/validators.

html.

Docs, T. C,

#node-types.

DwoRrk, C., LyNcH, N., AND STOCKMEYER, L. Consensus in the Presence

of Partial Synchrony. JACM (1988).

FiscHER, M. J., LyncH, N. A., AND PATERsSON, M. S. Impossibility of

Distributed Consensus with one Faulty Process. JACM (1985).

Gatrors, . Tendermint Ivy Proofs. https://github.com/tendermint/spec/

tree/master/ivy-proofs.

Kim, S. Randomized Leader Election in Tendermint using

VREF. https://research.codechain.io/t/randomized-leader-election-using-

vrf/17.

Kwon, J. Tendermint: Consensus without Mining. Draft v. 0.6, fall 1

(2014), 11.

KwoN, J., AND BucHMAN, E. Cosmos: A network of distributed ledgers.

Whitepaper (2018), 1-41.

LaMPORT, L. Time, Clocks, and the Ordering of Events in a Distributed

System. Commun. ACM (1978).

9] LyncH, N. Distributed Algorithms. Morgan Kaufman, 1996.

0] Nakamoro, S. Bitcoin: A Peer-to-Peer Electronic Cash System, 2009.

1]

2]

2021. https://docs.tendermint.com/master/nodes/

OPERATOR, C. H. V. private communication, 2021.

PEASE, M., SHOSTAK, R., AND LAMPORT, L. Reaching Agreement in the
Presence of Faults. Journal of the ACM 27, 2 (1980), 228-234.

SHENG, P., WANG, G., NAYAK, K., KANNAN, S., AND VISWANATH, P. BFT
Protocol Forensics. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security (2021), pp. 1722-1743.
Team, T. D. DiemBFT v4: State Machine Replication in the Diem
Blockchain.

YiN, M., MaLkHI, D., REITER, M. K., GUETA, G. G.,, AND ABRAHAM, I.
HotStuff: BFT Consensus with Linearity and Responsiveness. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing (New York, NY, USA, 2019), PODC ’19, ACM, pp. 347-356.

