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Abstract

Timely insights lead to business growth and scientific breakthroughs but require analytical

engines that cope with the ever-increasing data processing needs. Analytical engines relied on

rapid CPU improvements, yet the end of Dennard scaling stopped the free lunch and resulted

in a heterogeneous hardware landscape that challenges existing analytical engines. First, each

device has its own specialized execution model and architecture, impeding interoperability.

Second, the diversity in device microarchitectures requires a diverse range of optimizations.

Third, while the multitude of devices provides additional acceleration opportunities, moving

the data across devices is costly. Finally, with networking bandwidths similar to intra-server

device connections, the server boundaries are blurred, providing optimization opportunities

and requiring careful orchestration to avoid wasting resources.

In this thesis, we aim for engines tailored for heterogeneous hardware: abstracting out hard-

ware heterogeneity to enable efficient execution across the devices despite their diversity. To

this end, we design and implement techniques that are i) scalable through accelerator-level

parallelism, and ii) efficient through query execution customization to the underlying acceler-

ators and data transfer paths.

Regarding scalability, we propose a unifying execution model and a throughput-oriented

system view to enable on-the-fly multi-device orchestration without requiring knowledge

about hardware specifics. In addition, by decoupling data and control flow, this thesis enables

late and direct data transfers within and across servers.

Regarding efficiency, we provide an execution model that limits operator instances to specific

devices, enabling operators to customize themselves to a single device without concern for

multi-device effects. In addition, by providing interconnect-aware transfer methods, this

thesis minimizes the cost of offloading operations across devices.

This thesis redesigns analytical engines to exploit hardware heterogeneity. Instead of trad-

ing hardware efficiency for accelerator-level scalability, this thesis embraces heterogeneity.

Our design enables scalable analytics across CPU-GPU hardware and achieves the analyti-

cal performance of optimally combining a CPU- and a GPU-optimized engine. As a result,

users benefit from faster insights without requiring large clusters of machines. The proposed
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Abstract

accelerator-centric design paves the way toward analytical engines that benefit from hard-

ware improvements across the hardware spectrum – instead of relying on single-processor

advancements.

Keywords: database management systems, analytical query processing, execution engine,

code generation, heterogeneous hardware, accelerator-level parallelism, parallel execution,

accelerators, GPU, RDMA
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Résumé

Des informations opportunes mènent au développement commercial et aux avancées scienti-

fiques, mais nécessitent des moteurs d’analyse capables de gérer les besoins de traitement des

données toujours plus nombreuses. Les moteurs analytiques se basaient sur des améliorations

rapides du processeur (CPU), pourtant la fin de la mise à échelle de Dennard a abouti à un envi-

ronnement hétérogène du hardware qui défie les moteurs analytiques existants. Tout d’abord,

chaque appareil a son propre modèle d’exécution et d’architecture spécialisées, entravant l’in-

teropérabilité. Deuxièmement, la diversité des microarchitectures des appareils nécessite une

gamme variée d’optimisations. Troisièmement, alors que la multitude d’appareils offre des

opportunités d’accélération supplémentaire, le déplacement des données entre les appareils

est coûteux. Enfin, avec des bandes passantes réseau similaires à des connexions intra-serveur

des appareils, les limites du serveur sont floues, offrant des opportunités d’optimisation et

nécessitant une orchestration minutieuse afin d’éviter le gaspillage des ressources.

L’objectif de cette thèse est l’adaptation des moteurs à l’hétérogénéité du hardware : abstraire

l’hétérogénéité du hardware pour permettre une exécution efficace sur tous les appareils

malgré leur diversité. A cette effet, nous concevons et mettons en œuvre des techniques qui

sont : i) évolutives grâce au parallélisme au niveau de l’accélérateur, et ii) efficaces grâce à la

personnalisation de l’exécution des requêtes sur les accélérateurs sous-jacents et les voies de

transfert de données.

Concernant la scalabilité, nous proposons un modèle d’exécution unificateur et un vue sys-

tème orientée rendement pour activer l’orchestration des nombreuses appareils à la volée

sans nécessiter la connaissance des spécificités du hardware. De plus, en découplant les flux

de données et de contrôle, cette thèse permet les transferts de données tardifs et directs au

sein et entre les serveurs.

En ce qui concerne l’efficacité, nous fournissons un modèle d’exécution qui limite les instances

de l’opérateur à des appareils spécifiques, permettant aux opérateurs de se personnaliser sur

un seul appareil sans se préoccuper des effets multi-appareils. De plus, en fournissant des

méthodes de transfert compatibles avec les interconnexions, cette thèse minimise le coût des

opérations de déchargement entre les appareils.
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Résumé

Cette thèse redéfinit les moteurs analytiques pour exploiter l’hétérogénéité du hardware. Au

lieu d’échanger l’efficacité du hardware pour une scalabilité au niveau d’accélérateur, cette

thèse embrasse l’hétérogénéité. Notre modèle permet des analyses évolutives sur le hard-

ware CPU-GPU et atteint les performances analytiques d’une combinaison optimale d’un

processeur et d’un moteur optimisé pour le GPU. En conséquence, les utilisateurs bénéficient

d’informations plus rapides sans nécessiter de gros clusters de machines. Le modèle proposé

centré sur les accélérateurs ouvre la voie à des moteurs analytiques qui bénéficient d’amélio-

rations hardware sur l’ensemble du spectre hardware - au lieu de compter sur les avancées

d’un seul processeur.

Mots clés : systèmes de gestion de base de données, traitement analytique des requêtes, mo-

teur d’exécution, génération de code, l’hétérogénéité du matériel informatique, parallélisme

au niveau de l’accélérateur, exécution parallèle, accélérateurs, GPU, RDMA
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1 Introduction

The demand for real-time intelligence increases as businesses from a wide range of domains

increasingly require interactive data analytics to make insightful decisions in fast-breaking

situations. As the amount of data accumulated by applications continues to grow faster than

Moore’s law, achieving real-time intelligence requires a computational infrastructure that can

sift through billions of rows in milliseconds.

To optimize query execution, analytical query engine designs became hardware-conscious and

specialized to the homogeneous multi-CPU architectures [6, 15, 47, 51, 60, 63, 78, 95]. State-of-

the-art analytical engines use hardware-conscious algorithms [14, 78, 90, 92] that match the

CPU microarchitecture. Techniques like vector-at-a-time execution [15] and just-in-time code

generation [45, 46] reduce the query execution overheads, while the Exchange [30] operator

and HyPer’s Morsels [51] parallelize query execution in multi-core and multi-CPU configura-

tions. Such parallelization techniques [30, 51] rely on the efficiency of CPU characteristics like

cache coherence, efficient system-wide atomic operations, and shared memory.

Still, such approaches fall short in the new era of heterogeneous CPU-GPU hardware: The

introduction of loosely coupled server architectures consisting of multiple accelerators, such

as GPUs, breaks the traditional assumption of homogeneous CPU resources – bringing new

challenges for hardware-efficient analytical processing. The heterogeneous devices come

with a mix of shared and shared-nothing regions, even more acute NUMA effects, various

programming models, and the closing bandwidth difference between intra- and inter-server

interconnects breaks the traditional locality assumptions.

Figure 1.1 shows the throughput (working set size over time) of different systems when running

all the SSB [71] queries1. We use two scale factors, SF=1000 for a working set that is bigger than

the available GPU memory and SF=100 for a dataset that fits in the aggregated GPU memory.

The performance of GPU-based DBMS highly depends on whether the data can fit in the GPU

memory and the engine implementation. For example, the GPU commercial system is faster

1Exact experimental setup in Section 4.4
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Figure 1.1: Relative throughput of different systems and the unrealized potential of hybrid CPU-
GPU engines. The reported throughputs are normalized, per data size, over the corresponding
throughput of the CPU commercial DBMS.

than the CPU-based one when the data reside in the GPU memory. As a result, the preferred

underlying devices depend on both the engine efficiency and the current system state, e.g.,

the data placement at query start time.

More importantly, CPU-only and GPU-only engines underutilize the hardware as they leave

idle resources: the black bars represent the expected throughput of an ideal CPU-GPU integra-

tion. We observe that there is a 20%-80% throughput waste just due to idle resources.

To leverage the processing capabilities of such heterogeneous servers, the analytical query

engine must 1) be flexible to scale across the diverse hardware resources and 2) efficiently

use each of the underlying hardware devices, but without requiring manual optimization of

the full stack for each target architecture. A key ingredient to achieving the aforementioned

flexibility and efficiency is using accelerator-level parallelism [38] and customizable opera-

tors. For accelerator-level parallelism, multi-device execution must be decoupled from the

internal device characteristics to enable arbitrary combinations of accelerators; for portable

but efficient pipelines to be realized, the engine must abolish static hardware-dependent

implementations in favor of dynamic pipeline specialization to the underlying hardware.

1.1 Motivation

Existing analytical engine designs rely on specific, system-wide available features to achieve

efficient execution on CPUs. As a result, 1) their design inherently fails to exploit the available

accelerator-level parallelism, and 2) the fate of analytical performance improvements depends

on continuous CPU improvements. This section discusses how these two artifacts generalize

to the heterogeneous hardware case.
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1.2 Pitfalls of Hardware Heterogeneity

Specializing for a single type of processor, e.g., CPUs, seems the most straightforward ap-

proach for analytical engines, especially given the CPU ubiquity. However, this creates three

main problems for analytical engines. First, there is up to 20%-80% performance penalty due

to idle resources, as seen in Figure 1.1. Second, most of the recent hardware improvements

are on specialized hardware, threatening a stagnation of the analytical engine performance,

despite the continuous increase in data processing needs. Third, specialization to a single pro-

cessing unit or feature relies on the survivability of a specific technology, risking invalidating

today’s specialization attempts if hardware vendors abandon this feature. In summary, ana-

lytical engines that rely on the features of a single processor risk underutilizing the available

hardware resources, seeing limited performance improvements compared to the increased

demand for analytics and observing technological lock-in.

Aiming for universal portability is the next straightforward alternative for analytical engines.

In this case, the engine avoids specific hardware features and operates under minimal as-

sumptions about hardware features. However, the pessimistic viewpoint toward hardware

characteristics leaves significant performance unexploited. First, in contrast to CPU-only

hardware-oblivious approaches, specialized hardware, like GPUs, imposes a higher penalty

for deviating from its intended use or not considering its peculiarities. Second, such oblivious

approaches have to rely on a minimal set of hardware characteristics: if, for example, one de-

vice does not support system-wide cache coherence or shared memory, then the entire engine

has to operate without it, even if some of the available hardware devices support it. Third, the

set of hardware characteristics supported by all the devices shrinks as the engine targets more

types of processors. In summary, analytical engines that aim for universal portability observe

diminishing returns as they have to abandon optimizations to support more accelerator types.

This thesis investigates the impact of hardware heterogeneity on analytical engines through the

use case of GPU acceleration. GPUs provide an architectural platform that is relatively generic

and ubiquitous but still has significant differences from the traditional CPU architectures.

These differences range from microarchitectural and memory hierarchy differences to how

they connect with the rest of the server processors, making it an ideal testbed. In the rest of

this thesis, we use the terms device/accelerator interchangeably and to mean “either a CPU

or a GPU”, except if otherwise stated. This naming conversion aligns with our approach of

treating heterogeneous devices equally for inter-device execution, independently of whether

they are CPUs or GPUs.

1.2 Pitfalls of Hardware Heterogeneity

Databases are typically optimized for specific hardware – most commonly for the CPU – and

make static assumptions about the system architecture, such as the existence of specific hard-

ware features, the collocation of the fast memory tier with the processing units, and even the
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meaning of data locality. However, the presence of heterogeneous hardware complicates the

hardware behavior of modern servers, and existing static designs threaten to leave significant

hardware resources underutilized.

Parallelization over heterogeneous CPU-GPU hardware. Modern server hardware is increas-

ingly heterogeneous as hardware accelerators, such as GPUs, are used together with multicore

CPUs to meet the computational demands of modern data-intensive workloads. Unfortu-

nately, query parallelization techniques used by analytical database engines are designed for

homogeneous multicore servers, where query plans are parallelized across CPUs to process

data stored in cache-coherent shared memory. Thus, these techniques are unable to fully

exploit accelerator-level parallelism available across heterogeneous devices, where one needs

to combine the task-parallelism of CPUs and data-parallelism of GPUs for processing data

stored in a deep, non-cache-coherent, disaggregated memory hierarchy with widely varying

access latencies and bandwidth.

Hardware-consciousness across heterogeneous CPU-GPU hardware. Existing analytical

engines are highly optimized for the CPU architecture to provide efficient and fast analytics:

hardware-conscious operators use advanced CPU features, like vectorization, and are special-

ized for the CPU cache hierarchy and task-parallel architecture. However, GPUs come with

a different programming model as well as different microarchitectural features. From their

single instruction multiple threads execution model to the cache hierarchy, and their in-order

instruction processing, GPUs fundamentally differ from CPUs in a variety of performance-

critical features that are core to many hardware-conscious algorithms and state-of-the-art

execution models. Furthermore, even hardware-oblivious analytical engine proposals rely

on advanced CPU features absent in GPUs, such as data prefetching, big per-thread caches,

and out-of-order execution. As a result, existing analytical engine solutions introduce a sharp

tradeoff between portability and performance: either reoptimize and manually specialize the

analytical engines for each device type or waste significant analytical performance relying on

suboptimal but generic operations.

Data access on heterogeneous CPU-GPU hardware. The shared-memory, cache-coherent

multi-socket CPU architecture has been a cornerstone for efficient analytics and their par-

allelization. However, diverse accelerators introduce additional processor boundaries. The

devices are interconnected with a variety of special- or general-purpose interconnects. While

these interconnects have seen significant bandwidth improvements over recent years, they are

still orders of magnitude slower than accessing device-local memory, amplifying the NUMA

effects. Furthermore, the device heterogeneity has, counterintuitively, changed a fundamental

assumption on the importance of sending data over interconnects: traditionally, the processor

homogeneity has provided 1) little reason for crossing slow interconnects without a functional

need and 2) little processing gain, as the processor on the other side had similar capabilities.

However, the advent of GPUs and their on-chip high-bandwidth memory (HBM) creates a

different landscape: crossing a slow connection can provide significant analytical throughput
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gains due to the processor on the other side. As a result, existing NUMA-aware solutions

designed with the implicit assumption that crossing a slow connection should be avoided are

now challenged by the new architecture that shifts the trade-off in a per-query case.

Disaggregation on heterogeneous CPU-GPU hardware. Current analytical engines scale out

of a single machine as a necessity originating from limited single-server resources. Further-

more, scaling out has a performance penalty: whenever significant data-shuffling is required,

the low network bandwidth and the relatively similar computational resources on the other

side of the network highly penalize small-scale clusters compared to scale-up solutions. As

a result, analytical engines face an uncanny valley where small numbers of machines could

result in worse performance than scale-up alternatives. GPU-acceleration, however, combined

with high-bandwidth networking solutions, fundamentally changes the prior assumptions

about the networking overheads and the importance of data local computations as 1) the

bandwidth of accessing remote data and processors is close to the intra-server bandwidth, and

2) significant analytical power is available remotely. However, existing designs for scale-out

analytical engines fundamentally rely on servers as the unit of operation, providing poor

scalability and load-balancing capabilities in the case of internally heterogeneous CPU-GPU

servers.

1.3 Thesis Statement and Contributions

Hardware heterogeneity significantly limits the efficiency and scalability of existing analytical

engine solutions. Further, as hardware improvements shift from general-purpose advances to

hardware specialization, existing analytical query processing techniques see reduced benefits.

This thesis redesigns the analytical query execution engine so that execution across multiple,

heterogeneous devices can be efficiently composed and orchestrated, with minimal effort

for porting operator code across devices. The end goal is to enable efficient and scalable

analytics by harnessing the available accelerator-level parallelism while maintaining the

operator specification device-independent.

Thesis Statement

As hardware heterogeneity is increased, the trade-off between portability and performance of

analytical query engines becomes more acute. Monolithic execution models are unable to fully

exploit compute and memory devices. We can achieve both portability and performance by

decoupling the execution model from device-specific characteristics while hiding the modularity

and inter-connectivity overhead.
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1.3.1 The End Goal: Efficient and Scalable Analytics on CPU-GPU Hardware

Composability and orchestration of query execution on CPU-GPU hardware. While diverse

hardware architectures bring new features into a hardware platform, they also (i) reduce the

set of features supported by all the system processors and (ii) limit device interoperability.

However, this clashes with existing parallelization techniques that rely on advanced CPU

features, such as techniques that depend on efficient system-wide atomic operations, shared

memory, or independent task execution. We present a parallelization framework that encap-

sulates hardware heterogeneity to enable efficient orchestration of the available CPU-GPU

hardware resources while at the same time allowing subparts of the execution to use advanced

processor-specific capabilities.

Portability and customization of query execution to underlying CPU-GPU hardware. We

present a system design that bridges the gap between operator portability and operator effi-

ciency. We leverage the hardware and pipeline boundaries to enable the analytical engine to

customize execution pipelines for each targeted microarchitecture independently. Further-

more, we provide operator portability by delegating operator specialization to device-specific

backends and leveraging code generation to erase this modularity cost. As a result, we pro-

vide an intra-device execution model tailored to each device while minimizing the necessary

manual operator specialization.

Data volume reduction and device cooperation on CPU-GPU hardware. While the hardware

heterogeneity provides an adaptive execution environment where the workload is distributed

across the devices depending on the query requirements, the interconnectivity of such devices

limits the actual performance improvements and offloading flexibility. We provide a solution

that efficiently uses the available interconnects by combining the byte-addressability provided

by inter-device interconnects and the pre-filtering capabilities of near-data processing power.

As a result, we build analytical engines that operate on datasets well beyond the GPU-memory

capacity, with efficient bandwidth utilization, despite such architectures’ highly NUMA setup.

Scalability and hierarchical composability on disaggregated CPU-GPU hardware. Analytical

engines rely on scaling out to overcome single-server deployments’ limited memory capacity

and analytical throughput. But, GPU acceleration challenges existing CPU scale-out solutions.

Specifically, scalable analytics on CPU-GPU clusters require efficient coordination and direct

point-to-point data transfers to exploit the disaggregated hardware. However, the server

boundaries introduced by shared-nothing multi-server architectures conflict with the coordi-

nation and direct transfer requirements of such intra-server asymmetric architectures. We

introduce a hierarchically scalable analytical engine design that reconciles distributed analyt-

ics with hardware accelerators by decomposing the orchestration decisions into a multi-step,

throughput-optimized process. Lastly, we show how this architecture repurposes CPUs into a

near-data processor in the presence of GPUs and high-bandwidth, RDMA-enabled NICs.
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1.3.2 Thesis Roadmap

The rest of the thesis is organized as follows:

• Chapter 2 introduces the necessary background.

• Chapter 3 proposes a decomposition of the analytical engine design space that drives

the rest of the thesis.

• Chapter 4 proposes a parallelization framework that encapsulates the hardware hetero-

geneity to enable composable scale-up execution and CPU-GPU orchestration.

• Chapter 5 introduces an analytical engine design that optimizes intra-device query

execution by providing portable, specialized operators coupled with an efficient intra-

device execution model.

• Chapter 6 presents an optimization technique that reduces the inter-device data transfer

volume. Specifically, it exploits byte-addressability and in-CPU pre-filtering opportuni-

ties to avoid wasteful transfer over the interconnect.

• Chapter 7 investigates the impact of shared-nothing architectures and high-bandwidth

networking on GPU-accelerated analytics. Specifically, it shows how high-bandwidth

networking distorts the traditional data locality definition and its effect on the role of

CPUs and GPUs in data analytics. Then, it proposes a new analytical engine design

that achieves scalable query execution and hierarchical composability by reconciling

inter-server device orchestration.

• Chapter 8 concludes the thesis and presents future directions.
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2 Background

In this chapter, we overview the typical hardware setup of today’s heterogeneous compute

servers and summarize related work on parallelizing query execution, hardware-conscious

operators to set the context for our work.

2.1 Heterogeneity in Modern Servers

Modern servers incorporate numerous accelerators – typically multiple GPUs, connected to

each CPU socket via a PCIe, NVLink, or similar interconnect. Servers can also increase the

number of available devices per socket using PCIe/NVLink switches. However, if the server

relies on switches to connect multiple GPUs to a CPU socket, the per-switch GPUs have to

share the PCIe bandwidth whenever they concurrently trigger PCIe traffic.

As a result, besides hardware heterogeneity, modern servers must cope with non-uniform

memory access topologies. CPUs experience additional memory access latency when access-

ing the memory of another socket – a phenomenon dubbed NUMA (non-uniform memory

access) [50]. Introducing GPUs exacerbates NUMA effects. When GPUs access CPU memory,

they transfer data through the aforementioned interconnects, whose bandwidth is limited

compared to CPU’s local DRAM bandwidth (a few 100s of GBps) and to the bandwidth of a

GPU’s device memory (up to a few TBps). Specifically, a 16-lane PCIe 3.0 connection – typical

for CPU-GPU connectivity – offers ∼12.8GBps data bandwidth, while PCIe 4.0 used by more

recent GPUs offer ∼25GBps. IBM Power 8 and 9 CPUs support CPU-GPU communication

through NVLink – an NVIDIA-specific interconnect that achieves up to 75 GBps CPU to GPU

communication.
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2.2 Parallel Query Execution on CPUs

Volcano and Exchange. When a query reaches a database system, it is processed by a query

planner / optimizer, resulting in an algebraic query execution plan. This plan, is generally

expressed in the form of a tree, where each node is an operator, and it was traditionally

interpreted using the Volcano iterator model [30]. Every operator of the plan exposes a general

API, consisting of open(), next() and close() functions. When an operator’s next() method is

called, a request for a new tuple is sent to the operator’s children.

The Exchange operator introduced in Volcano has been the standard approach for parallelizing

a query plan. The Exchange operator encapsulates all three different types of parallelism

(horizontal, vertical, and bushy) by exposing the same (iterator) interface as other operators in

an interpreted query plan. Inserting an Exchange operator in a query plan splits it into two

parts, with the sub-plan above the Exchange becoming the consumer and the sub-plan below

being its producer. The Exchange operates as an asynchronous queue between the producer

and the consumer. The producer inserts its results into the queue, while the consumer removes

them and processes them. Both the producer and the consumer are not aware of the queue,

and they interface with the Exchange operator in the same way as with any other operator. As

both the producer and the consumer can execute in parallel on different processors, Exchange

enables vertical parallelism. In addition, the Exchange controls the degree of parallelism of

consumers and producers by spawning multiple instances of them and routing intermediary

results between the different instances, introducing this way horizontal parallelism. Producers’

results are either routed based on a policy to exactly one consumer or broadcasted to all of

them. Lastly, introducing Exchange operators on both sides of a join creates bushy parallelism:

each input of the join runs concurrently.

JIT compilation and exposing parallelism. Albeit Exchange makes it possible to parallelize

sequential, single-threaded operator implementations without any code changes; it has cer-

tain drawbacks that limit its applicability as the mechanism of choice for parallelizing query

execution in the modern in-memory data processing context. Interpreted query execution

penalizes performance as the next() function is called for every tuple, resulting in frequent

branch misprediction and poor code locality [46, 72].

State-of-the-art in-memory analytical engines avoid such interpretation overhead by es-

chewing interpreted execution in favor of JIT compilation [45, 46, 72]. JIT-based in-memory

database engines split the query plan into non-blocking pipelines and use a compilation

framework to translate a sequence of operators into straight-line code that loops over data one

tuple at a time. Thus, these systems enable register-pipelining: a collection of non-blocking

operators can be applied in one shot to a tuple stored in CPU registers. CPU-based JIT compi-

lation techniques also do not use the traditional Exchange-based parallelism where operators,

other than Exchange, are essentially sequential in nature. Instead, the typical approach, as

exemplified by HyPer’s morsel-driven parallelism [51], compiles and generates parallelization-
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aware operators using atomic instructions in generated code for synchronizing access to

shared data structures. Such code can then be executed in a task-parallel manner across

multiple CPUs by using a thread pool.

CPU parallelism in heterogeneous servers. Unfortunately, the aforementioned approaches

for parallelism can not be used in modern heterogeneous servers to parallelize queries across

CPUs and GPUs. The traditional Exchange was not designed to work in heterogeneous parallel

processing environments: pipelining across different processors requires Exchange’s asyn-

chronous queues of the operator to be placed such that they can be efficiently accessed by

all processors. Morsel-based JIT-based Morsel parallelization requires system-wide, efficient

cache coherence as it relies on atomic operations for synchronizing access to producer–

consumer queues, or other shared data structures like joins’ hash tables during the build

phase. While these assumptions hold in homogeneous multicore CPU servers, in the general

case, they are invalidated in heterogeneous servers with CPUs and GPUs due to a lack of global

cache coherence.

Furthermore, unlike CPUs, executing an operator on the GPU requires moving the input data

to GPU memory, launching a kernel to process the input, and potentially moving out the

output data. As moving data is an expensive operation, it is important to move enough data

so that the benefit gained from processing data on the GPU outweighs the data movement

cost. Similarly, since kernel launches are expensive and slow, it is also important to minimize

the number of kernel launches. Unlike a CPU-based JIT compiler, which has to generate

executable code for just one processor, a GPU-based JIT compiler should generate both

kernels that are executed on the GPU, and CPU code that invokes these GPU kernels. Thus,

modern servers with heterogeneous CPU–GPU parallelism require rethinking traditional query

execution and compilation strategies.

2.3 Parallel Query Execution on GPUs

Operator-at-a-time execution. The inability of the commodity CPU to achieve unconditional

scalability has led to numerous research and industrial efforts that utilize GPU co-processors

for the acceleration of analytical database workloads [16, 35, 37, 44, 73, 76, 102]. Most GPU-

powered DBMS operate as follows: The DBMS expresses the query plan as a sequence of

(micro-)operators [16, 35, 37, 44, 102], and then translates each operator into a kernel – a

data-parallel function. The DBMS then executes the kernels, one after the other, on a GPU,

fully materializing intermediate results in order to provide them as input to the next kernel.

Initially, such “operator-at-a-time” GPU DBMS [16, 37] required every kernel to have its input

available at operator invocation time, and thus complicated the overlap of (GPU) compu-

tation and (CPU-to-GPU) data transfer. Subsequent systems thus introduce the following

optimizations. First, they overlap data transfer with computation to mask the data transfer

cost as much as possible. For example, GPUDB [102] uses Unified Virtual Addressing (UVA),

an NVIDIA CUDA feature that allows a GPU to directly access memory of the CPU side, while
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Rui and Tu [89] use CUDA memory copies and CUDA streams for a similar purpose. Stehle

et al. [96] propose CPU-GPU co-processing to accelerate sorting tasks; their approach par-

allelizes the production of sorted runs and interleaves it with data transfers to and from the

GPU. Sioulas et al. [94] propose a CPU-GPU co-processing radix join that uses the high CPU

DRAM bandwidth to apply an initial partitioning before transferring the inputs to the GPU for

the join. This partitioning step allows bigger-than-GPU-memory tables to be broken down

to co-partitions that fit in GPU memory and thus perform the join with a single pass over

the PCIe. Second, modern GPU DBMS have followed the MonetDB/X100 [15] paradigm to

reduce materialization overheads [72] between GPU kernel invocations; every kernel operates

over a subset (i.e., a vector) of the input and produces a vector as its output. Intermediate

vectors fit in GPU memory for the next kernel to read, and the DBMS avoids unnecessary

data transfers of intermediate results to the CPU. Still, result materialization – even when

amortized using cache-resident vectors between kernel invocations – is wasteful in terms

of memory bandwidth [27]; the GPU DBMS has to flush GPU registers and shared memory

between kernel invocations, thus hurting locality. In addition, the vector-at-a-time paradigm

requires multiple passes, further wasting (GPU) memory bandwidth.

Pipelined GPU execution. An alternative to vector-at-a-time processing is performing as

much work as possible over data that already resides in GPU registers / shared memory. Such

pipelined query execution typically reduces the number of kernels per query plan. GPL [73]

pipelines operators by having each one of them running on a separate kernel and having the

kernels communicate and transfer data through OpenCL 2.0 pipes [31]. HAWK [19] is a query

compiler that generates OpenCL which can execute on a variety of parallel processors, such as

CPUs and GPUs, but on only one of these platforms at a time. HorseCQ [27] departs from the

use of data-parallel algorithms for operations such as reductions, and instead implements

pipelined versions of said algorithms using GPU atomic instructions. Kernel Weaver [101]

is a compiler that automatically tries to fuse multiple relational operations together into a

single kernel, in order to i) reduce data movement and ii) enable additional compiler opti-

mizations over the fused operators. Finally, MapD [2] ports the paradigm of CPU-based query

compilation [63] in the context of GPU DBMS. MapD uses the LLVM compiler infrastructure

to generate the code for its kernels just in time; the kernels contain code which is specialized

for the current query, and try to minimize the amount of intermediate results per query.

GPU engines on heterogeneous servers. Most GPU-powered DBMS adopt one point in the

design spectrum and make one or more of the following simplifying assumptions: First, they

rely on the input dataset being GPU-resident or copartitioned to avoid the PCIe transfer

overhead for input and intermediate data [2]. Second, they support query execution on a

single GPU instead of multiple ones [35]. Third, their mechanisms for parallelizing queries

are strictly GPU-tailored. This leaves a substantial amount of CPU-based processing capacity

underutilized when used on heterogeneous servers, and misses out on potential co-processing

opportunities where a query can be parallelized across CPUs and GPUs simultaneously. The

few engines that support executing queries on both CPUs and GPUs [44] rely on wasteful full

materialization. Finally, in HAPE [24] we envision specializing device-oblivious operators to
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each device to achieve efficient, heterogeneity-aware execution, via code generation. HAPE

assumes an abstraction that encapsulates inter-device execution and provides only an abstract

system blueprint. In HetExchange we materialize these abstractions. We discuss both in the

following sections.

2.4 Hardware-conscious Operators

While hardware-oblivious algorithms simplify the optimization process and the execution

over heterogeneous hardware, tuning algorithms for the underlying hardware can produce

significant performance benefits. For modern CPUs, most previous studies take three archi-

tectural characteristics into account: cache hierarchy, TLBs and SIMD instructions. These

dimensions are analyzed in conjunction with the available memory bandwidth and latency.

Prior work has introduced hardware-conscious variants of several operators. including scan-

like operators, sort-based operations and index scans [39, 77, 105]. As a heavyweight operator,

the join has been studied and tuned extensively for modern CPUs, resulting in multiple

variants of the radix hash-join [8, 9, 14, 90, 92]. Specifically, Shatdal et al. [92] proposed a

cache-conscious variant that introduces a partitioning step. The two input tables are co-

partitioned such that for each partition pair, the hash table fits in cache. Then, all hash-table

accesses during the probing phase are in cache, and cache misses are averted. Boncz et

al. [14] observed that for the high number of output partitions, the performance is impacted

by TLB misses. As a solution, they advocate the use of multiple partitioning passes, each

producing a smaller number of partitions, reducing TLB misses at the expense of extra passes

over the input. Schuh et al. [90] argue that the common denominator is that these works try to

minimize the effects of random memory accesses by minimizing cache and TLB misses. Still,

Blanas et al. [13] argue in favor of hardware-oblivious hash-joins as they require less parameter

tuning and can outperform hardware-conscious implementations in some scenarios.

In contrast to CPUs, modern GPUs have a significantly different microarchitecture, including

all three aforementioned characteristics. First of all, GPUs depart from the linear memory

hierarchy of CPUs and adopt a fatter cache hierarchy (Figure 2.1), with a hardware-managed

L1-like cache, called shared memory, which is a software-managed scratchpad, and other

more specialized caches, like a constant cache. In addition, GPUs target different workloads

and thus size their caches and TLBs differently to CPUs. Karnagel et al. [43] experimentally

showed that GPU TLBs have 2MB pages to support the high number of threads and pack more

addressable space per TLB entry. Finally, in the GPU SIMT model, each GPU thread has an

independent register file, but, in contrast with the SIMD model, thread divergence is handled

in hardware. As for CPUs, hardware-conscious algorithms that consider the GPU hardware

improve performance. Karnagel et al. [43] take into consideration the TLBs to improve hash-

based group-by operations, while partitioned hash-join [42, 89] implementations use shared

memory to store histograms and per-partition hash-tables.

13



Chapter 2. Background

CPU GPU

Register 
File

L1

L2

L3

CPU DRAM

Register 
File

Constant
Cache

Texture
Cache

Shared
Memory L1

L2

GPU SDRAM

PCIe

Figure 2.1: CPU and GPU data cache hierarchy.

A limiting factor for GPU algorithms is GPU memory size. Prior work makes simplifying

assumptions about the types of workloads handled; [89] only addresses the case that at least

one of the tables fits in GPU memory. Kaldewey et al. [42] use Unified Virtual Addressing

(UVA) to join arbitrarily large data by accessing data over the interconnect. Still, interconnect

bandwidth is an order of magnitude slower than GPU memory bandwidth, greatly impacting

multi-pass algorithms such as radix joins.

Inter-device co-processing can reduce unnecessary interconnect traffic. Stehle and Jacob-

sen [96] present an efficient sorting algorithm that consists of two steps: generating sorted

runs in GPU and merging them in CPU. Merging in the CPU side allows for a single pass, per

direction, over the scarcest resource, the interconnect. Sioulas et al. [94] exploited the CPU

memory bandwidth to partition the inputs of a partition-based hash-join before sending them

to the GPU. The initial partitioning breaks down big relations into partitions that fit in the

GPU memory, while its small fan-out allows for high throughput on the CPU side. On the GPU

side, they further partition the inputs to fit the final partitions in the scratchpad and minimize

the effect of random accesses.
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3 Overview: Design Space of a Hybrid
CPU-GPU Execution Engine

Designing query engines for heterogeneous HW

6Decomposition of design space to find sweet spot

Hardware

Oblivious
Hardware

Conscious

PerformancePortability

Figure 3.1: Conceptual trade-off between portability
and performance.

Existing analytical engines have been

designed and optimized for specific

compute units, usually the CPU. Yet,

as the hardware becomes more di-

verse, the well-known trade-off between

portability across microarchitectures

(hardware-obliviousness) and perfor-

mance (hardware-consciousness) be-

comes more acute. Analytical engines

for heterogeneous hardware need to:

i) execute efficiently on multiple types of

devices, which requires taking into con-

sideration both the programming model

of each device as well as its microarchi-

tecture, ii) be portable and modular to

allow the reuse of subcomponents be-

tween heterogeneous devices without introducing overheads in the critical path of execution,

and iii) orchestrate execution across multiple heterogeneous devices, despite the possibly

limited interoperability across the devices. To achieve that, we decompose the design space

into three independent axes to achieve portability and independence while optimizing for

each dimension.

Decoupling the design space. Our proposal embraces heterogeneity by separating analytical

query execution into two logical layers: intra- and inter-device execution. This separation

aligns the optimization requirements with the execution concerns. Optimizing based on a

specific microarchitectural feature can improve performance but also reduce the optimized

code’s applicability to architectures with the corresponding feature. On the one hand, tuning

intra-device execution can improve efficiency; however, it provides little gain for inter-device

operations. On the other hand, microarchitectural obliviousness improves the scalability
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OLAP in heterogeneous servers: design space
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Figure 3.2: Design axes for CPU-GPU OLAP engines.

of inter-device execution by enabling it to target more devices; however, it penalizes intra-

device efficiency. By decoupling intra- and inter-device execution, we can treat each layer

independently – aligning our design with the hardware to get the best of both worlds. As a

result, the intra-device layer handles each device separately and in isolation to enable localized

hardware awareness. The inter-device layer virtualizes devices into a unified generic model,

embracing hardware obliviousness to facilitate portability.

Intra-device execution still has to consider the microarchitectural differences, but the above

separation allows reducing the problem to optimizing query execution in each device sepa-

rately instead of concurrently optimizing for all devices. To achieve portability across devices,

we further decompose intra-device execution into two subproblems: intra-operator execu-

tion and inter-operator. The former focuses on optimizing the relational operators to each

microarchitecture, while the latter optimizes for portability across devices by modularizing

the intra-operator solutions and reducing overheads introduced by this modularization.

Inter-device execution is concerned with execution at the granularity of devices. It focuses

on inter-device pipelining and concurrent execution based on the system topology, NUMA

nodes, and each device’s current load. Device types are hidden from inter-device components,

except for the components that are responsible for synchronizing between heterogeneous

devices. In addition, by encapsulating the traits of heterogeneous execution in operators,

we allow the query optimizer to argue about data and computation transfers. Lastly, to load

balance between devices, inter-device execution can ignore most of the microarchitectural

characteristics of the heterogeneous devices and, instead, rely on macro-characteristics of

query execution, such as task throughput.
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Efficient and scalable inter-device execution has three requirements by itself: First, analytical

engines need to parallelize execution across the heterogeneous devices of a single server.

Second, to avoid the capacity limitations of a single server, analytical engines for hetero-

geneous hardware need to scale to multiple machines and orchestrate devices across the

server boundaries without introducing wasteful data transfers. Third, data movement across

devices is a key factor in offloading to the most appropriate devices; however, it has significant

bandwidth requirements, requiring careful consideration of the transfer policies. To address

all three requirements, we start with presenting a parallelization framework (Chapter 4) for

single-server execution that we then extend to multiple servers (Chapter 7), and independently

optimize its data transfers (Chapter 6).

Intra-device execution is concerned with increasing the efficiency of pipelines running in

each device as well as the portability of the operators between different devices (Section 5.1).

To allow re-using relational operators across devices, the operators are modularized with

respect to their memory mappings, how they use the memory hierarchy of each type of device,

and common primitives, such as how to perform thread synchronization or atomic updates.

Memory mappings depend on both the operators and the target device, while the common

primitives depend on the device.

While this modularization increases the portability of operators, it introduces overheads due

to the portability in the critical path and requires support for virtual function calls. To avoid

these overheads, we employ just-in-time code generation that injects, through the memory

mappings and the primitives, device specific-knowledge to portable operators. The generated

code is specialized to the target device, and the modularization cost is reduced.

Intra-operator execution. Traditionally, hardware-conscious operators take into consider-

ation the microarchitecture of the targeted compute units, and thus they can not be reused

across different devices (Section 5.2). We argue that many hardware-conscious operators can

be decomposed into an algorithmic part that focuses on how to mitigate a specific overhead

(e.g., partitioning in radix-based join to mitigate overheads due to random accesses) and a

resource-oriented part that assigns specific parts of the memory hierarchy to specific data

structures (e.g., using L1 for storing intermediate partitions). The algorithmic part can be

reused across devices, while the memory mappings are device-specific. We take advantage of

this differentiation to increase the portability of hardware-conscious operators.

17





4 Inter-device: Encapsulating Heteroge-
neous CPU-GPU Parallelism

This chapter presents HetExchange–a framework that encapsulates the heterogeneous par-

allelism in modern servers to enable analytical query execution across multiple CPUs and

GPUs. Similar to traditional Exchange [30], HetExchange encapsulates parallelism and pro-

vides a uniform interface to connect producers and consumers in a pipelined plan together

with the memory infrastructure. However, unlike traditional Exchange, which dealt only

with homogeneous parallelism across CPUs, HetExchange encapsulates heterogeneous par-

allelism across CPUs and GPUs. Additionally, unlike Exchange, which connects individual

operators in an interpreted execution environment, HetExchange connects subpipelines in a

JIT-compiled execution environment. Thus, HetExchange provides a framework that can be

used by JIT-compiled engines to parallelize sequential, single-threaded code on multiple CPUs

and single-GPU kernels across multiple GPUs, or even a single query plan across both CPUs

and GPUs in a coprocessing fashion. In doing so, HetExchange shares the benefits of the two

popular parallelization techniques without the disadvantages. By encapsulating heterogeneity,

HetExchange proposes a single abstraction that can be used to encapsulate heterogeneous

parallelism without making assumptions about hardware characteristics, like the availability

of globally cache-coherent shared memory.

Contributions. The contributions of this work are the following:

• We introduce HetExchange–a novel parallel query execution framework that encapsu-

lates heterogeneous parallelism and enables query plan deployment across i) CPUs, ii)

GPUs, and iii) a mix of CPUs and GPUs.

• We integrate HetExchange in Proteus and evaluate our prototype against state-of-the-art

CPU and GPU engines; showing up to 1.5x and 5x speed-up, respectively, when restricted

to the same compute units, while, by using all the available units, we achieve up to 5.1x

and 11.4x speed-up and linear scalability.
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Flow Scope Trait Operators

Control
Delegation Heterogeneous Parallelism device crossing

Routing Homogeneous Parallelism router

Data
Transfer Data Locality mem-move

Granularity Execution Granularity pack

Table 4.1: Execution traits in a heterogeneous server

4.1 The HetExchange Framework

Fully utilizing the devices in heterogeneous servers requires exploiting both intra-device data

parallelism offered by GPUs, inter-core task-parallelism offered by CPUs, and cross-device

heterogeneous parallelism across multiple CPUs and GPUs. In addition, the engine must use

the fast node-local memory available in CPUs and GPUs while working around the limitation

of non-cache-coherent shared memory.

HetExchange redesigns the classical Exchange operator to parallelize pipelines on multicore

CPUs, multiple GPUs, and across CPUs and GPUs. In a heterogeneous parallel query execution

engine, execution has to be routed between different devices. Traditionally, analytical engines

use the Exchange operator to perform such control flow routing between consumers and

producers running on CPUs. On heterogeneous platforms, producers and consumers are

not guaranteed to be of the same nature: they may be CPU cores, GPUs, or a mix of CPUs

and GPUs. To enable heterogeneous control flow transfers, HetExchange uses two control

flow operators: device crossing and router operators. In addition to control flow, an Exchange

operator should also deal with data flow, to ensure that data is transferred between producers

and consumers in a pipelined fashion. HetExchange enables cross-device data flow transfers

via two operators, namely, mem-move and pack.

There is a one-to-one match between the proposed operators and traits that characterize part

of query execution on a heterogeneous server, as the operators are converters of the traits. The

device-crossing operator is responsible for pipelining/delegating work between different types

of devices, while the router is responsible for load-balancing, scheduling based on affinities,

and parallelizing across different streams of execution. The mem-move operator is responsible

for bringing data locally to compute, if necessary, and the pack operator is responsible for

converting between different execution granularities (i.e., block-at-a-time to tuple-at-a-time).

In addition, by encapsulating the four traits, the proposed operators allow a traditional query

optimizer to argue about them. To introduce the operators, we will use a running example of a

scan-filter-aggregate query, in which we want to execute part of it on GPUs and part of it on

CPUs (green and blue nodes, respectively).
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4.2 Control Flow Operators

Figure 4.1: Step by step introduction of HetExchange operators.

4.2 Control Flow Operators

HetExchange decomposes control transfers into two types: transitions between exactly one

producer and one consumer of different types, and transitions between an arbitrary number of

homogeneous producers and consumers. HetExchange uses two operators, a device-crossing

and a router, to handle each type of transfer. This separation provides a modular division

of labor across the two control flow operators. Transitions between arbitrary numbers of

heterogeneous units involve a combination of the two operators.

Device-crossing operators enable pipelining across heterogeneous hardware. Except from

these operators, all other operators are oblivious to hardware heterogeneity and always execute

on a single device. More specifically, HetExchange uses two device-crossing operators for CPU-

GPU co-processing, called cpu2gpu and gpu2cpu. Cpu2gpu copies the CPU context to the

GPU and transfers control flow by launching a GPU kernel, while gpu2cpu transfers the GPU

context to the CPU and starts a CPU task. In contrast with launching a GPU compute kernel

from the CPU, GPU programming frameworks do not support launching CPU tasks in the

middle of the execution, which prevents fully pipelined execution across devices. HetExchange

implements this functionality by breaking the gpu2cpu operator into two parts, each one

running on a different device. These parts communicate using an asynchronous queue. When

a GPU kernel is ready to send a task to the CPU, the gpu2cpu operator inserts the task into the

queue. On the CPU side, the second part of the operator receives and executes it.

Router operators encapsulate parallelism across multiple processors. As in the classical

Exchange, for vertical parallelism, router operates as an asynchronous queue between a

producer and a consumer. For horizontal parallelism, it instantiates multiple instances of the

consumers and asynchronously routes tasks between consumers and producers. In contrast
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to the traditional Exchange, a parallel query plan consisting of routers is a directed acyclic

graph: the router may have multiple parents, each of them targeting different devices. Each

router’s parent and child are instantiated multiple times to achieve the necessary degree of

parallelism in each device type. The router implements various routing policies: hash-based

routing for use in hash joins, round-robin/range routing for partitioning inputs to multiple

consumers, and union routing for merging inputs from multiple producers.

In contrast with the classical Exchange, router only operates on the control plane. A task refers

to the target input data via a block handle. The router transfers the block handle from the

producer to the consumer but not the actual data. When needed, the data flow operators

handle the block creation and its transfer, as described in Section 4.3. This division of labor

between the router and data-flow operators enables the router to connect producers and

consumers without making assumptions about data location or accessibility.

While the router avoids data transfers by operating with block handles, in some cases, the

router itself needs access to the tuple values. For example, a hash-based routing policy uses

the hash value of input tuples to determine their consumers. Due to the heterogeneity of

memory access in CPU–GPU servers, such data might not be directly accessible by the router,

as can be the case for a router running on the CPU that attempts to access a GPU resident

block of data. Thus, performing routing would force the router to either transfer the data to

evaluate the routing policy, or operate on multiple device types to run locally with respect

to the target block of data. None of the solutions is modular, as they would duplicate data

movement in the router and data flow operators.

HetExchange uses an approach tailored to heterogeneous servers to handle such cases. Instead

of having the router access tuples for determining policies, HetExchange pushes the policy

mechanism down to the data flow operators (described in Section 4.3) that have access to the

data. For example, in order to use a hash-based routing policy over blocks of tuples, we require

each block to have only tuples with the same hash value. This is achieved by enforcing the

data flow operator that produces these blocks to maintain this invariant during the creation of

each block. Each block handle provided by the data flow operator is then forwarded to the

router operator with the corresponding hash value. Thus, the hash-based routing policy can

decide without having access to individual tuples.

Another difference between the router and classical Exchange is that the router does not

perform broadcasts. Efficiently executing a broadcast depends on both the memory topology

and the initial location of the data. For example, it may be possible to just share data between

the targets or use some multi-cast capability of the interconnect. In addition, broadcasts are

inherently data flow operations, as they duplicate data flow inside the plan. On the contrary,

assigning the different flows to different execution streams is a control flow operation. Thus,

broadcast, in the sense of data duplication, is left to the mem-move operator, described in

Section 4.3. For this case, the mem-move operator produces as output one block handle per
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broadcast target and a value, the target id. Then the router routes the block based on the target

id, without caring about how the data were actually broadcasted. For the router, this is similar

to a hash-based policy.

Encapsulating heterogeneous parallelism example. Combining the router with the device

crossing operators creates all the necessary control flow manipulations to enable all three

types of parallelism across multiple heterogeneous compute units. Device crossing operators

are placed between heterogeneous producers and consumers to move execution across device

types. Routers are placed at strategic points before device crossing operators to parallelize

query plans. We use a reduction over the results of an equijoin of two filtered tables as a

running example to illustrate how control-flow operators work. Figure 4.1(a) depicts a physical

plan for such a query, generated for sequential CPU-only execution.

In the running example, placing three device crossing operators is enough to move the exe-

cution of the hash-join to the GPU. An example of such a plan is shown in Figure 4.1(b). A

cpu2gpu operator is placed on the left to kick-start the execution of the left-hand scan and

filtering pipeline on the GPU. This cpu2gpu operator transfers execution from the CPU to

the GPU and as a result, feeds the hash-join build phase on the GPU. The scan and filter

operations for the probe table are executed on the CPU in this example. As the filter selects

some tuples, it forwards them to the cpu2gpu operator above it which then transfers it to

the probe phase of the GPU join. Similarly, the cpu2gpu above the hash-join transfers the

execution back to the CPU side for the final reduction.

Figure 4.1(c) extends 4.1(b) with router operators. The example uses five routers in order to

parallelize the hash-join over all the CPUs and GPUs. In the left-hand side, the segmenter

will split the input file into small block-shaped partitions, that are treated as normal blocks.

Partitions’ block handles will be propagated to the router, which instantiates the scan-filter-

gpu2cpu consumer multiple times and routes partitions to consumers, while load-balancing.

Each of the GPU scans will read the partitions which are propagated to it by the router, via the

cpu2gpu operator. The filter performs predicate evaluation and propagates passing tuples to

its corresponding gpu2cpu operator, which in turn forwards them to the router. This router

unions the results from the GPU – which are then filtered and distributed to its consumers.

This router has two parents in the plan, one of them to execute the hash-join on GPUs and

the other to execute it on CPUs. Each parent is instantiated multiple times, for example, the

first one as many times as the number of available GPUs, and the second as many times as

the number of available CPU cores. As the results are routed between the consumers, the join

ends up running in a mix of CPUs and GPUs. After the joins, a local reduction happens in each

device and the output of each local reduction is sent to the union-like router which gathers all

of them into a single thread to produce a final global aggregation.
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4.3 Data Flow Operators

As a heterogeneous server usually has multiple memory nodes, query execution has to deal

with the accessibility of each operator to its input. For example, depending on the exact hard-

ware of the server, GPU memory is not directly accessible through CPU load/store instructions

and, in some cases, might not be accessible by other GPUs. While the control flow operators

enable parallel and pipelined execution across multiple heterogeneous devices, none of them

actually considers whether the input data are accessible by consumers.

Mem-move operator. The mem-move operator is responsible for moving data between

node-local memory of producers and consumers. It receives a block handle from its child

that contains information about the sources and targets for each data block that it must

move. Using this information, the mem-move ensures that data have been transfered and are

accessible before the data consumer is executed.

Mem-move encapsulates the logic to drive the transfers over the interconnects as well as to

take decisions based on the topology and the initial location of the data. In case the data

are already local to the consumer, it only forwards the block handle, without doing any data

transfers. In situations where a CPU producer must be connected to a GPU consumer, or vice

versa, it is responsible for launching the necessary DMA transfers over the PCIe to move data

from CPU host memory to GPU device memory. As the mem-move abstracts away memory

heterogeneity issues, all other operators can be data-location agnostic. Thus, other operators

do not have to be programmed to perform explicit data transfers or data accessibility checks.

Based on the information mem-move has regarding the data flow from the query plan, it

automatically prefetches data to consumer’s local memory before the consumer accesses

them.

Memory transfers happen asynchronously to computation. Mem-move internally consists

of two parts, one that resides on the producer and one that resides on the consumer. When

the producer’s part of mem-move receives a block handle from the producer, it schedules

the transfer and returns back to the producer, to allow it to generate the next block. The

consumer part of mem-move waits for transfers to complete. When a transfer completes, it

pushes the block to the consumer. As a result, both the consumer and the producer execute

asynchronously with respect to the memory transfer. Mem-move is also responsible for multi-

casting. For certain operations, like a broadcast-based hash-join, it is common that copies of

the same chunk of data should be sent to multiple consumers. Multi-casting is essentially a

special case of data transfer and multiple interconnects support it. Thus, mem-move bears the

responsibility of broadcasting and implementations can potentially exploit the capabilities of

the underlying interconnects to do it efficiently.

Pack/unpack operators. Moving data is expensive and is often the bottleneck in GPU query

processing. HetExchange amortizes the data transfer cost by executing transfers at block

granularity instead of tuple granularity. However, block-at-time execution of operators on
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the GPU is suboptimal due to materialization overhead compared to fusing operators into

a few kernels using JIT compilation, and having each GPU thread perform tuple-at-a-time

execution with register pipelining [27].

HetExchange uses the pack operators to encapsulate the difference between block-at-a-time

data movement and tuple-at-a-time execution. The two basic operators of this set are pack

and unpack. The pack operator groups tuples into a block and flushes it to the next operator

whenever it fills up. The unpack operator takes a block of tuples as input and feeds them one

tuple at a time to the next operator. HetExchange also uses the pack operator to create blocks

with interesting properties. When used to pack/unpack data for a consumer that is a GPU

operator, these operators ensure that the grouping of tuples enables different GPU threads to

read data in a coalesced manner. When used to pack/unpack data for a hash join, the pack

operator generates blocks whose tuples have the same hash value by maintaining one block

per hash value, that is flushed to the next operator whenever it’s full. As all the tuples in a block

have the same hash value, consumer operators, like the router, can operate over the whole

block, without accessing individual tuples.

Encapsulating heterogeneous memory access example. We extend the running example

shown in Figure 4.1(c) by placing mem-move operators in order to move the data to the point

of their consumption. Figure 4.1(d) shows a plan that is distributing the data based on their

hash values for the join. In the left-hand side of the plan, a mem-move is placed after the

router responsible for distributing the input segments. As input segments are pushed from the

segmenter to the router and routed to the different GPUs, the mem-move after the router will

make sure that the data are accessible by the target GPU. For example, if a block is routed to a

GPU but residents on another one or on the CPU, mem-move will transfer it to this GPU. If it is

already on the destination node, it will propagate the block handle without transferring data.

Figure 4.1(e) extends 4.1(d) by adding pack/unpack operators. Notably, the scan operators

of Figure 4.1(d) are replaced by unpack operators in Figure 4.1(d) to highlight the fact that

each unpack operator processes multiple blocks of input. In addition, as the data shuffling

between the filtering and join phases is in blocks, unpack operators are placed in each device

to translate between blocks and tuples. For the same reason, both filters are followed by

packing operators.

The query plan uses two hash-packs to hash-partition the inputs of the join. Each time the

hash-pack outputs a block, it also outputs the hash value of the block elements. In the left-

hand side of the plan, the hash-pack pushes block handles and the hash-value to the gpu2cpu

operator, which propagates both of them to its CPU side and then to the router, which routes

blocks based on the hash-value.
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In this specific plan, all the consumers start with a mem-move. Thus, when a mem-move

receives a block handle, it transfers the block data to the target device, if necessary. Then,

mem-move forwards the handle to the cpu2gpu operator. Cpu2gpu will launch a kernel to

consume this block, which will start by distributing and scanning the block to the different

GPU threads using the unpack.

4.4 Evaluation

Experimental Setup. We implement HetExchange in Proteus [45] and compare it against

state-of-the art commercial analytical engines DBMS C and DBMS G for CPU and for GPU

execution. DBMS C is a columnar database that uses SIMD vector-at-a-time execution,

similar to MonetDB/X100 [15], and supports multi-CPU execution. DBMS G uses JIT code

generation, operates over columnar data and supports multi-GPU execution. We use various

configurations of Proteus (i.e., CPU-only, GPU-only, and hybrid execution) to showcase its

versatility and its ability to execute queries efficiently regardless of where data is originally

located – i.e., the CPU or the GPU memory. We warm up each system by executing multiple

queries before the measurements. The experiments run on a two Intel Xeon E5-2650L v3 CPU

machine, running at 1.8GHz with 12 physical cores per socket. The server has 256GB of DRAM

occupying 8 out of the 12 memory channels, with 128GB of DRAM local to each CPU socket.

Each CPU socket has one NVIDIA GeForce GTX 1080 GPU attached via a dedicated PCIe 3.0

x16 connection and each GPU has 8GB of local memory. We measure a maximum bandwidth

of ∼12GBps on each interconnect, on an idle server.

We compare the behavior of Proteus against DBMS C and DBMS G, using the SSB decision

support benchmark, and scaling it up to factor 1000. We examine scenarios in which data is

either CPU- or GPU-resident, as well as configurations of Proteus that allow it to use i) only

GPU(s), ii) only CPUs, or iii) both. We use the Star Schema Benchmark [71] to compare three

configurations of Proteus against DBMS G and DBMS C. Proteus GPU and DBMS G use the two

GPUs available, Proteus CPU and DBMS C use the two CPU sockets and Proteus Hybrid uses

both the GPUs and the CPU sockets. For Proteus Hybrid, we select plans that parallelize all the

relational operators across all the available CPUs and GPUs. While it is possible to pin parts of

the plan to specific processors, we leave optimizer-driven plan generation with different parts

of a plan running on different processor sets as future work.

Methodology. We use scale factor SF=1000 for SSB [71], which generates ∼600GB of data. For

all the queries the working set exceeds the aggregate device memory of the two GPUs. So,

both Proteus GPU and DBMS G transfer the working set from CPU to GPU memory during

query execution. Thus, their throughput is upper bounded by the PCIe bandwidth (∼24GBps),

shown as a dotted line in Figure 4.2. Proteus Hybrid load balances the work between GPUs and

CPUs and thus transfers only part of the dataset to the GPUs. While Proteus supports datasets

that are partially preloaded in GPU memory, for this experiment we disable this functionality

to simulate worst-case transfer times. Figure 4.2 plots the results.
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Figure 4.2: SSB with non-GPU-fitting working sets that are pre-loaded in CPU memory for all
systems.

Proteus GPU achieves ∼21GBps CPU-to-GPU bandwidth for all the queries except Q3.1,

efficiently utilizing the interconnects. In Q3.1, the increased selectivity of the first joins of

the query increases the number of probes in the next joins and random accesses become a

bottleneck, reducing the overall throughput to 16GBps. In addition, HetExchange successfully

pipelines transfers and execution and, combined with the efficient generated code, manages

to completely overlap them.

In contrast, DBMS G does not reach the interconnect’s throughput, as it is not optimized for

non-GPU resident datasets and places the dataset into pageable memory. This limits the

achievable transfer bandwidth to less than half of the available one and limits overlapping. As

a solution, DBMS G proposes to use enough GPUs to fit the working set in GPU memory. For

SF1000 and GPUs like the ones used in the experiment, this translates to 9-15 more GPUs. For

Q2.2, DBMS G reverts to CPU-only execution and takes more than 1 hour to complete, while

for Q4.3 it fails to perform a cardinality estimation that is required to execute the query, due to

insufficient GPU memory.

The two CPU-only systems achieve similar performance, and their trends follow the ones of

SF100. In contrast with the previous experiment, the GPU systems are bounded by the data

transfers. Thus the CPU systems outperform the GPU ones, whenever they can achieve higher

throughputs than the interconnects. For SSB, both Proteus CPU and DBMS C only manage to

overcome the 24GBps mark for Q1.1-Q1.3 and Q3.4, thus in most queries Proteus GPU prevails.

The dimensional table joined in the single join of queries Q1.1-Q1.3 is small enough to fit in the

caches of the CPU and thus the CPU systems achieve a throughput of 38-72GBps, or 1.5x-3x

the available bandwidth for the two GPUs to access the CPU-resident datasets. Similarly, the

very high selectivity of Q3.4 allows both DBMS C and Proteus CPU to exceed the 24GBps

landmark and thus run faster than their GPU counterparts.
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Figure 4.3: Scalability of Proteus on SSB SF=1000.

HetExchange allows Proteus Hybrid to parallelize its execution across all the CPUs and GPUs

of the system and benefit in each case from the most appropriate compute units. When

Proteus CPU and Proteus GPU have a significant performance difference, Proteus Hybrid’s

execution times are close to the fastest one, as most of the load will be directed to the fastest

compute units. The highest speed-ups for Proteus Hybrid are achieved when Proteus CPU and

Proteus GPU have similar performance, as in Q4.3. In these cases HetExchange balances the

load evenly between CPUs and GPUs. In contrast with Proteus GPU, part of the load is served

by CPUs and thus Proteus Hybrid is not bounded by the transfer time.

In addition, we measure the throughput of the three configurations of Proteus as the size of

the working set over the execution time. On average, Proteus Hybrid throughput is 88.5% of

the sum of the throughputs of Proteus CPU and Proteus GPU, showing that HetExchange suc-

cessfully manages to distribute and balance work between the heterogeneous compute units.

Summary. HetExchange allows efficient use of the interconnects while the JIT compilation

allows efficient code to be generated for each device. Even for working sets that do not fit

in GPU memory, when Proteus is restricted to specific types of devices its performance is

comparable or better than state-of-the-art DBMS specialized for these devices. In addition,

by using all CPUs and GPUs, Proteus Hybrid outperforms both DBMS in all the queries of

SSB SF1000. Specifically, Proteus Hybrid achieves 1.5-5.1x and 3.4-11.4x speed-up against the

CPU-based and GPU-based homogeneous DBMS respectively, and up to 5.6x and 3.9x against

its own CPU- and GPU-restricted configurations.
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4.4.1 Scalability

Methodology. For each SF=1000 SSB query group and the three configurations of Proteus,

Figure 4.3 plots the speed up in total query execution time compared to single threaded

execution of the same query group. For all the measurements, we interleave the CPU cores

between the two sockets and on the x-axis we report the degree of parallelism on the main

part of the query.

The CPU-only configurations have almost linear scalability up to approximately 20 CPU

threads and a very limited interference when reaching the number of physical cores, due

to lightweight threads like the segmenter at the bottom of the plan. Group 1 has the best

scalability for the CPU-only configurations with an average coefficient of 87.5% per CPU

core, due to its simplicity and the small cache-friendly size of its join’s build side. The worst

scalability is achieved by query group 2, with a coefficient of 65% per CPU core, due to the

high selectivity of its joins. Groups 3 and 4 achieve a coefficient of 74% and 77%, respectively.

Enabling GPUs improves Proteus’ performance. Query group 1 exhibits the smallest relative

improvements, as the GPUs provide a relatively limited support on its effective utilization of

the CPU resources and its high throughput. Two GPUs provide a speed up similar to 8-10 CPU

cores. Query groups 2-4, have a higher relative performance improvement from adding two

GPUs, equivalent to adding 3.5-5 extra CPU sockets. In groups 2-4, the joins achieve a CPU

throughput smaller than the PCIe bandwidth and therefore these queries benefit more than

group 1 from additional GPUs.

Summary. HetExchange improves performance across all query groups almost linearly as

the number of CPU cores assisting the GPUs are increased, up to approximately 16 cores.

For groups 2-4, the benefit of adding more than 16 threads is offset by the interference they

cause to threads that handle memory transfers and kernel launches. Using CPU cores is more

efficient in query group 1, and therefore this group’s performance continues to scale.

4.4.2 Microbenchmarking

Methodology. In the rest of this section, we micro-benchmark Proteus to evaluate the ef-

ficiency of HetExchange. Our evaluation uses two queries: i) a sum over a column and ii)

a count of the results of a non-partitioned 1:N join. The first query is bandwidth intensive

and thus CPU-friendly, as the GPU is behind the much-slower-than-memory-bus PCIe. The

second query is GPU-friendly, as the random accesses impact the CPU side more than the

GPU side. We use single-column inputs for the queries to stress out HetExchange overheads.

For all the cases, the dataset is loaded and evenly distributed to the sockets. Non-HetExchange

GPU Proteus overlaps transfers and computations using UVA, as in [102].

Scale-up. The first microbenchmark measures HetExchange’s execution time for the two

queries and plots the results for different combinations of CPU and GPU degrees of parallelism

in Figure 4.4. For the sum query and the probing side of the join query we use a single column
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Figure 4.4: Proteus scalability. Top: sum, Bottom: join.

of 23GB, while the build side of the join uses a 7.7MB column. We repeat the experiment

and measure the execution time of Proteus without the HetExchange operators, using only

its JIT infrastructure and executing on a CPU and a GPU. The results are plotted presented

using dashed lines that extend to all the degrees of parallelism to emphasize the functionality

provided by the proposed operators: without them, Proteus does not scale up.

Single CPU and single GPU Proteus exhibits a very small overhead for using the operators. For

the sum query, the HetExchange augmented Proteus scales almost linearly up until approxi-

mately 16 cores. At more than 16 cores, it operates with an input throughput of 89.7GBps which

is very close to the maximum theoretical memory bandwidth we obtain from the machine

(90.6GBps), given that only 66% of the memory slots are occupied. Adding two GPUs increases

the throughput by 19GBps, which slowly diminishes as the number of CPU cores increases,

due to exhausting the input memory bandwidth, yielding the same peak performance when

the Proteus is trying to use the whole server. When using only one GPU, the peak throughput

is smaller, as the routing policy schedules some blocks residing on the remote-to-GPU socket

to the GPU and thus causes interference to the intermediate socket.

In the join query, the performance is bottlenecked by random accesses. Thus, each additional

GPU provides a significant speed-up for HetExchange, due to the high memory bandwidth

provided by each GPU. Further, HetExchange continues to scale even after 16 cores. Adding

a single CPU core to the GPU-only configuration causes a performance drop as the GPUs

wait for the CPU hash-join’s building phase – time which is not replenished by the added

performance of a single core. Adding cores eventually pays back, especially in the single-GPU

Hybrid mode.
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Figure 4.5: HetExchange for DOP=1. Top: sum, Bottom: join.

Size-up. For the same queries, we repeat the experiment and zoom in on the overheads of

HetExchange in sequential execution to stress the framework even more. Figure 4.5 plots

the execution times for Proteus with and without HetExchange, for varying input sizes. For

the HetExchange-enabled configuration, we force the optimizer to add all the HetExchange

operators, despite that normally it would avoid routers for sequential execution. We restrict the

router’s degree of parallelism to 1, to match the sequential execution mode of bare Proteus. For

the join query we keep the build table size fixed to 7.7MB as in the previous microbenchmark.

In both queries, the performance is almost identical (at most 10% relative difference) for

input sizes more than 512MB, as the overheads of the operators are amortized due to their

block-at-a-time nature. For input sizes of 512MB and below, the difference is increased by

up to 50% in the case of the summation query on the GPU and input size of only 64MB.

For these small input sizes, the high throughput of the generated code makes our current

implementation of a router’s initialization and thread pinning (that take ∼10ms) to become a

significant overhead. For such small inputs, an optimizer would normally opt for disabling

parallelization. HetExchange’s modular operator-level design allows the optimizer to do that

by removing the routers, which yields identical performance between the two Proteus flavors

even for small inputs.

Summary. HetExchange allows Proteus to scale up and use the available hardware resources

and our microbenchmarks show that it adds only a minimal overhead, visible only for small

input sizes.
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4.5 Conclusion

This chapter presents HetExchange, a framework that encapsulates the main characteristics of

a modern multi-CPU, multi-GPU server and allows parallelization of query plans over all the

CPUs and GPUs of the system. The rest of the operators remain agnostic to the heterogeneity

of the server. HetExchange also enables the encoding of the heterogeneity into the plan and

describes a mechanism to enforce the policies about query parallelization on the available

hardware, resulting in an infrastructure that is flexible enough to either be directed to selected

compute units or left unrestricted to use all of them.
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conscious Pipelines

While HetExchange allows efficient parallelization across accelerators and decouples the query

execution models of different devices, the operators and execution models for intra-device

execution still have to be specialized for the different devices. To improve on that, we combine

HetExchange a just-in-time code generation infrastructure to allow using modular, device-

independent, operators that are specialized, just-in-time, to the target devices. In Section 5.1,

we discuss how HetExchange generates specialized code for each pipeline, Section 5.2 dis-

cusses how operators differ across devices and how the per-pipeline code generation enabled

by HetExchange allows operators to specialize themselves to each device. We describe the

integration of the proposed solutions and HetExchange to Proteus in Section 5.3. We conclude

an experimental comparison of our proposal with state-of-the-art alternatives in Section 5.4.

5.1 Inter-operator: Generating Heterogeneous Pipelines

This section discusses the lifetime of a query in a HetExchange augmented JIT DBMS and uses

an aggregation over a filtered table as a running example. Figure 5.1 depicts the different stages

in the lifetime of the query. When a query is submitted, it is first converted into a physical

plan that is agnostic to the heterogeneity and parallelism of the server (Figure 5.1(a)). The

physical plan is then augmented with the HetExchange operators, described in the previous

section, to produce a heterogeneity-aware plan (Figure 5.1(b)): the resulting plan dictates

which parts of the plan will be (partially or fully) offloaded, when will the data be moved, or

materialized, and any differences between the physical GPU and CPU plan. As a result, the

resulting plan parallelizes the query over the mix of CPUs and GPUs available on the system.

Then, through JIT compilation the DBMS produces machine code specialized for the server’s

devices as described in Section 5.1. When invoked, the generated code controls the number of

instances of its different parts to efficiently utilize the server.

During code generation the query plan is split into pipelines, and specialized code is generated

for each pipeline. Operators that force materialization of intermediate results are typically

called pipeline breakers [63], and produce code that i) materializes results emitted by the
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Figure 5.1: Pipelines and affinities of a hybrid plan.

pipeline before the pipeline breaking point (marshalling), and ii) triggers result iteration in

the pipeline after the breaking point (demarshalling). As HetExchange operators are handling

execution over multiple devices and memories, they are inherently pipeline breakers: they

have to materialize the results out of the registers into memory to offload tasks and data

across devices. Still, they emit output in batches, without having to first process the entire

input. Specifically, in contrast with fully-blocking materialization points that wait for their

full input before proceeding to the next phase, HetExchange operators operate in a streaming

mode. That is, any materialization happens in small batches and, as soon as a batch is filled

up, it is immediately pushed to the next operator without waiting for all the batches to be

produced. Overall, this reduces the space required for intermediary results and allows dynamic

orchestration of the tasks across the devices.

The code generation phase outputs a set of pipelines, where each pipeline is the result of fusing

operators between pipeline breakers into tight segments of code. Pipelines corresponding to

the leaves of the query plan trigger the entire generated code; every other pipeline is invoked

as a result of invoking these ones.

Traditionally, in a JIT DBMS engine, operators are code generation modules that expose two

functions [45, 63]: produce() and consume(). Produce() is called recursively by every operator

in top-down fashion (i.e., starting from the root of the query plan): every operator asks its

children to produce their result tuples. Consume() is called recursively by every operator in

bottom-up fashion: every operator asks its parent to consume the tuples just pushed to it,

essentially triggering the parent to generate its implementation.
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5.1 Inter-operator: Generating Heterogeneous Pipelines

Device Provider Methods
allocStateVar get/releaseBuffer #threadsInWorker
freeStateVar malloc/free threadIdInWorker
storeStateVar convertToMachineCode loadMachineCode
loadStateVar workerScopedAtomic<T, Op>

Table 5.1: Functions overloaded in device providers, per device.

In the running example, when the router at the bottom of the plan is about to generate code,

it will call the produce() method of the segmenter, so that the latter generates its code first.

The segmenter is a leaf operator, so it will proceed with code generation without further

produce() calls. Instead, the segmenter will generate code similar to lines 1–3 of Listing 5.1:

The segmenter’s generated code comprises a nesting of two loops, which gather the list of

memory segments of relation T, and break them into blocks. Then, the segmenter will call the

router’s consume() method, triggering the router to produce its physical implementation. The

router will then produce its implementation (lines 4–8) to evaluate the policy on each block,

and, based on the result, it will send the block handle to a specific consumer that is either an

instance of pipeline 5 or 11.

JIT on multiple devices: The missing pieces. Directly mapping traditional JIT techniques

to the case of heterogeneous servers would require having multiple implementations of the

same high-level operators, with each implementation targeting a different device. Such a

design causes increased programming and maintenance efforts. For example, a relational

reduce operator would require a different implementation and code generation procedure

per device, thus hindering the extensibility of such an architecture. In addition, in order to

achieve inter-device task parallelism, the JIT infrastructure has to be able to handle transitions

between different device type targets; otherwise, the generated code will target only one device

type.

JIT on multiple devices with HetExchange. HetExchange simplifies multi-device code gener-

ation in three steps: First, it decomposes the query plan into multiple parts, each of which

is specific to a device type. Second, the aforementioned device crossing operators of HetEx-

change also encapsulate the transitions between compilation targets. Finally, HetExchange

redesigns the produce() and consume() methods of each operator to enable them to gener-

ate code that is device-specific, yet not specializing their implementation to a device, by

parameterizing each method with a device-specific provider.

Device providers. Even if a JIT DBMS generates code for a single device, it should ideally rely

on a collection of utility functions as building blocks for its implementation. These utility

functions should handle operations such as the following: i) locating a pipeline’s state, such

as pointers to data structures, ii) acquiring/releasing device memory, iii) acquiring/releasing

locks, and performing atomic operations, and iv) retrieving device-specific characteristics,
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such as the grid and block size used by a GPU kernel. Further, isolating them from the main

operator code eases the operator portability as the implementation of these utilities differs

across target architectures.

HetExchange groups the collection of all the utility functions into a device-independent

interface, and offers a collection of device providers implementing said interface; a CPU- and a

GPU-specific provider at the moment. Device crossing operators are the ones specifying which

device provider every pipeline should use; each pipeline’s operators then use the provider

given to them when appropriate. Thus, if a pipeline targets, for example, a GPU device, the

methods of the pipeline’s operators will make calls to a GPU provider to generate GPU-specific

stubs. The same pipeline could generate code for a CPU with no changes other than being

instantiated with a different provider as input. The overall implementation of the produce()

and consume() methods per operator will thus remain agnostic to the device properties.

Aside from their other responsibilities, the device providers also guide the final steps of the

compilation in order to optimize the generated code and produce machine code for the target

device. Upon completing the code generation of a pipeline, it is optimized, compiled down to

machine code and loaded into the running instance of the DBMS. The device provider of each

pipeline is responsible for specifying how each of these steps is achieved.

JIT code for heterogeneous servers example. As already described in the running example

of Figure 5.1(c), the segmenter and the producer part of the bottom router will be fused into

pipeline 6 which sends block handles to pipelines 5 and 11. Both of these pipelines wait for

handles from the router, as part of the code generated by the consumer part of the router.

Then, mem-move will generate code that checks for each received handle if the block is on

the target memory node. If it isn’t, the generated code requests a new block on that node

and spawns an asynchronous DMA transfer to copy the data to it. In any case, mem-move

propagates to the next pipeline a block handle that is on the local-to-the-consumer memory

node together with information about which transfer the consumer should wait for, if any. In

the beginning of pipelines 10 and 4, the two mem-moves inject code to receive these handles

and wait for the transfer to complete (lines 22–27 of listing 5.1). Then, pipeline 4 will unpack

the block, check the filter and update the accumulator, based on the code generated by the

unpack, filter and consumer part of reduce respectively. Pipeline 10 will schedule a GPU kernel

of pipeline 9 with the received block as argument, due to the code generated by the producer

part of the cpu2gpu operator.

Listing 5.1 shows, in pseudocode, a simplified version of the generated code for pipeline 9 of

the running example. The four participating operators are fused into a simple GPU kernel that

scans each block, evaluates the filtering predicate and increments the accumulator accordingly.

The consumer part of the cpu2gpu operator specifies the arguments of the pipeline and the

unpack generates the scanning. For each tuple, the code generated by the filter and the reduce

in lines 34–39 is executed.
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1 def pipeline 6 ( )
2 for each segment in f i l e // segmenter
3 for each block in segment // unpack
4 /* Use a routing policy to decide the target // router
5 * (based on block metadata and queue sizes)
6 * and send to corresponding consumer: */
7 c ← evaluate policy on block
8 send handle of block to consumer c
9

10 def pipeline 11()
11 for each received block handle b // router
12 /* If the block is not on the target device, move it. // mem-move
13 * Either way, push it to the following instance of the
14 * consumer instance (“inst”). */
15 i f b not on destination
16 d ← get block handle on destination
17 schedule DMA copy from b to d
18 send d to consumer ( pipeline 10) instance
19 e l s e
20 send b to consumer ( pipeline 10) instance
21
22 def pipeline 10()
23 /* Wait for blocks from the producer (pipeline 11) // mem-move
24 * and for each block wait for the corresponding
25 * transfer, if any, to complete: */
26 for each received block handle b
27 wait DMA t r a n s f e r for b to f i n i s h
28 schedule pipeline 9(b) for GPU execution // cpu2gpu
29
30 def pipeline 9( data_block [N] , s t a t e )
31 l o c a l _acc ← 0 // reduce
32 for i =threadIdInWorker to N−1 with step #threadsInWorker // unpack
33 t ← data_block [ i ]
34 i f t . a > 42 // filter
35 l o c a l _acc ← l o c a l _acc + t . b // reduce
36 /* Hierarchically reduce across worker threads: */ // reduce
37 nh_acc ← neighborhood_reduce ( l o c a l _acc )
38 i f thread neighborhood leader
39 atomic_add( s t a t e . acc , nh_acc )

Listing 5.1: Pseudo-code for pipelines 6 and 9-11.
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Figure 5.2: Providers specialize code to the target device type.

Pipeline 8 will read the final result of the aggregation and insert it in the queue of the gpu2cpu

operator. On the consumer side, the gpu2cpu operator generates code to wait for input in the

queue and when values are written, it reads them and propagates them to the router, which

will send them to its single consumer, the single instance of pipeline 2. Similarly pipeline

3 reads the result of the CPU reduction and sends it to the same instance of pipeline 2 via

the router’s queues. Pipeline 2 waits for the partial aggregations to arrive via the router and

accumulates them. Pipeline 1 will read the final aggregation which is the query result.

In the running example, pipeline 9 is associated with the GPU provider, as it targets GPU execu-

tion. The provider will translate threadIdInWorker into the thread id and #thr ead sInW or ker

to the number of GPU threads in the kernel. When memory is allocated for the g l obal _acc

accumulator in the state, the provider will generate a call to the GPU memory allocator in

order to allocate the state in GPU memory. In addition, the neighborhood considered by

nei g hbor hood_r educe will be a GPU thread-block and the worker-scoped atomic add will

be translated into the corresponding GPU atomic instruction. Lastly, the provider will optimize

the pipeline after its generation, then compile it down to machine code for the GPU and load

it into the GPUs. Pipelines 9 and 8 target GPU execution and thus are associated with the GPU

provider. All other pipelines are associated with the CPU provider.

Figure 5.2 shows an example of a pipeline that results in different code depending on the

provider it uses. The pipeline depicted on the left-hand side of the figure is provider-agnostic

and generic enough to be specialized for a CPU or a GPU. The code loops through thread

workers with increments of a given step, it evaluates a filtering condition and increases the

value of a thread-local variable when the condition is successful. Once the loop completes,

the operator accumulates the thread-local variables into per-warp variables, and then the

leader of each warp updates a worker-scoped accumulator atomically. If HetExchange was

not using device-specific providers, pipelines 4 and 9 would result in similar code, which

is suboptimal for CPU execution, because it is overly complex. Instead, through the use of
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CPU and GPU providers, HetExchange specializes code to the target device, while keeping

the operator “blueprints” the same for both devices: For example, the thr ead I d InW oker

will be set to 0 for the CPU provider, while it will be set to the GPU grid-wide thread id for

the GPU provider. Similarly, #thr ead sInW or ker will be set to 1 for the CPU provider and to

g r i dSi ze for the other one. More importantly, as there is a single thread in the CPU case, the

worker-scoped atomic and the neighborhood-local reduction will be optimized out.

5.1.1 Controlling Parallelism and Affinity

In a HetExchange-augmented DBMS, the router controls the horizontal degree of parallelism

for the query plan operators above it. At code generation time, depending on its policy (e.g.,

hash- or round-robin-based) and the intended degree of parallelism, the router is responsible

i) for producing multiple pipelines on its consumer side, and ii) for triggering code generation

for these pipelines. An additional source of complexity is that while the classical Exchange

has one parent and one child operator which are instantiated multiple times, the router has

multiple parents and children to parallelize the rest of the plan to a mix of compute units.

Given that the pipeline instances to be generated are almost identical, it would be inefficient

to trigger code generation from scratch for every one of them. Thus, the router generates a

parameterizable version of the pipeline in question per device (instead of per thread), and

then initializes multiple instances from this “pipeline template” (i.e., performs state creation

for each one).

As only the router controls parallelism, it is also responsible for pinning pipelines to specific

devices, based on pluggable policies. When a router instantiates its consumers, it locks them

to specific devices. For the policies to be able to control pipelines not attached to a router

(e.g., pipelines 9 & 4 of the running example), HetExchange forces pipelines to inherit both

the degree of parallelism and the affinity of their instantiator. Assigning both a CPU and GPU

affinity to all pipelines, but using only the appropriate one, allows routers to control the affinity

of pipelines even after multiple device crossings (e.g. the bottom router controls the affinity of

pipeline 7; the information is not lost by the device crossings).

In its current form, the router specifies operator affinity, degree of parallelism and routing

policy statically at query time. Future work involves making such decisions dynamically and

integrating existing work in this direction such as dynamic schedulers [100] and opportunistic

task stealing between different pipelines [51].

Parallelism and affinity example. As in the running example of Figure 5.1(d) pipeline 6 is a leaf

pipeline, it runs single-threaded. The bottom router injects code in pipeline 6 to instantiate

pipelines 11 and 5, two and four times respectively. In addition, the router will pin the first

instance of pipeline 11 to CPU core 1 and GPU 1, and the second instance to core 4 and GPU 2.

Each instance of pipeline 11 will create an instance of pipeline 10 and the latter will copy its
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instantiator’s affinity. Similarly, pipelines 7-11 will have two instances with the corresponding

instances pinned to the same compute units. The GPU affinities will be considered only for

pipelines 8 & 9, while all other pipelines use the CPU ones.

5.1.2 Memory Management and Data Transfers

During query execution, memory is used either to store operator state, like hash-join’s hash

table, or to stage blocks of intermediate results before transferring them across devices. HetEx-

change distinguishes between the two and has a different manager for each of them. State

memory is served by memory managers, while staging memory is served by block managers.

Both memory and block managers are organized as a set of independent, local components –

one per memory node. Requests by the pipelines are always served by their closest (appropri-

ate) manager.

While memory managers only manage local memory, block managers frequently handle data

operations that involve remote devices. Also, block managers need to be thread-safe, yet

existing synchronization primitives are very expensive due to the absence of global, cache-

coherent shared memory. HetExchange tackles these challenges in the following ways: Firstly,

at system initialization time, the block managers pre-allocate memory (block) arenas, to avoid

memory allocation costs at query execution time. Secondly, to circumvent the absence of

coherence, HetExchange allows only local devices to acquire blocks from a block manager

and opts for device-local synchronization primitives. To serve requests for remote blocks,

managers acquire blocks by launching small tasks to the remote node. As this can become

costly, HetExchange accelerates the common cases by i) having each local block manager

maintain a cache of acquired blocks per remote manager, and ii) batching requests for block

acquisition and release from remote nodes.

5.2 Intra-operator: Operator Portability

The proposed design allows decomposing execution into execution in homogeneous sub-

systems and the optimizer to opt for hardware-conscious operators tuned for the specific

target device alongside the range of supported hardware-oblivious operators. As discussed

in Section 2.4, this brings the potential for significant performance benefits over generic

hardware-oblivious operators.

Using target-specific hardware-conscious operators has the potential to boost performance.

Prior work optimizes data movement and access patterns with respect to the device’s caches [14,

15, 95, 96], including TLBs, and their characteristics. Other works consider properties and

functionalities of processing units such as the instruction level parallelism (ILP), branch pre-

dictors, SIMD instructions for CPUs, as well as warp-wide execution and shuffles in GPUs.

Operator implementations need to exploit properties of the underlying hardware and explore

the available opportunities within the design space to achieve high performance.
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Common design, different specialization. Despite the microarchitectural differences, the

exploration of hardware-conscious operator designs is similar across different devices. When

optimizing operators for each device, the challenges are the same (eg. avoiding random access

overheads) and thus similar algorithmic solutions can be applied to a range of device types.

The hardware-conscious radix join [94] is an indicative case: independently of CPU or GPU

execution, random accesses are the main bottleneck of a non-partitioned hash-join, as they

waste memory bandwidth due to over-fetching. In both CPUs and GPUs, similar algorithmic

approaches can mitigate the problem by, for example, partitioning the input to fit the per-

partition hash-tables in a memory (cache) with a higher bandwidth. On the CPU side, the

partitioning fanout is restricted by the TLB size while, on the GPU side, it is restricted by the

size of the cache used for write offsets and store consolidation. In both cases, the end result is

a multi-pass partitioned hash-join.

In GPUs, Sioulas et al. [94] avoid random accesses to L1 that waste bandwidth due to over-

fetching by using the scratchpad instead. More specifically, Sioulas et al. load the smaller

partition to the scratchpad, build the hash-table using atomic operations and probe with the

tuples of the corresponding partition. The scratchpad is organized into banks and is capable of

serving a different word from each bank per warp-wide request, independently of its location

in the bank. Thus, the scratchpad only penalizes accesses to the same bank, but does not waste

bandwidth by over-fetching. The scracthpad has a similar size to L1, and thus careful tuning

is needed to fit the output partitions in the scratchpad. In the CPU case, the partitioning is

tuned to reduce the TLB misses and improve the cache locality of the output. Similarly, in

the GPU case, tuning aims at reducing the sparsity of stores but the fanout is restricted by the

memory available for consolidating the stores, which also happens using the scratchpad.

While the CPU and GPU hardware-conscious radix joins are tuned for the specific memory

hierarchy of each device, the skeleton of the algorithm remains the same for both CPUs and

GPUs. Thus, the design of hardware-conscious operators has two components: the algorithmic

skeleton and the hardware-specific fine-grained building blocks that change between different

device types, such as caching the hash table in the scratchpad. This allows re-using the

algorithms across devices and separating hardware-consciousness from device-consciousness:

algorithms may be capable of solving different hardware-specific device-invariant problems

(e.g., random accesses through multiple partitioning steps), but the exact mappings to the

hardware may differ per device (e.g., fanout based on TLB versus scratchpad capacity).

5.3 System

We integrate HetExchange and its system architecture to Proteus [45], an analytical query

engine that utilizes LLVM-based code generation. Proteus originally generated CPU-specific

and single-threaded code. Therefore, we extended Proteus’s infrastructure to allow GPU-

specific code generation, by introducing code generation components for single-GPU opera-
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tors. Enabling Proteus to operate over multiple CPUs and GPUs requires i) extending its code

generation infrastructure to produce code for parallel execution, and ii) coupling Proteus with

HetExchange non-intrusively.

LLVM is capable of compiling code for multiple architectures by using a different back-end for

each target, like the x86_64 back-end that is used by Proteus for code generation targeting Intel

CPUs. In addition, LLVM has back-ends for both NVIDIA and AMD GPUs. For the evaluation

of HetExchange we use the NVPTX back-end to generate code for NVIDIA GPUs. While our

methods are applicable to AMD GPUs, we leave the implementation as future work.

In Proteus, the providers use LLVM’s code generation interface for the low-level code gen-

eration, such as load and store operations, while for the high-level functionality, like state

manipulation and memory allocations, they are emitting the relevant code. Generated code is

optimized using LLVM. The CPU provider uses LLVM to compile the IR down to machine code

and loads it in the running instance, while the GPU provider uses LLVM to compile the IR to

PTX [70], an assembly language for NVIDIA GPUs, and the CUDA driver API to compile PTX to

machine code.

Similarly to Figure 5.1, upon receiving a query, the extended Proteus parses and optimizes it in

order to produce a single-threaded CPU-only physical plan, like the one in Figure 4.1a. This

plan is then extended with the HetExchange operators to a heterogeneity-aware plan like the

one in Figure 4.1e. The heterogeneity-aware plan describes which devices will be used in each

part of the generated code. Then, based on the heterogeneity-aware plan, Proteus generates

code for the query and start executing it. In our implementation, part of the query optimization

is handled by Apache Calcite [11]. We opted for this three step query optimization process

(logical → physical → heterogeneity-aware plan) as a proof of concept, but integrating the two

last steps into a single one is also possible. Selecting between this two options is a trade-off

between plan optimality and query optimization times. While producing heterogeneity-aware

plans is a topic worth as much research as enforcing them, we leave it as future work and for

this evaluation we heuristically add the HetExchange operators. For this work, we opted for

the three step process, as between these two options, it creates the smallest overhead to the

query optimizer.

5.4 Evaluation

Methodology. To evaluate the proposal of this chapter, we focus on the single-device-type

performance. Further, to avoid distorting the experimental results with the cost of data

transfers, we pre-load the data to the devices under evaluation, e.g., for GPU execution we

preload the data in GPU memory. We use the same experimental setup as in Section 4.4. To

evaluate the code generation and pipeline specialization, we evaluate query execution on

data that are already resident to the device memory. Specifically, for each SSB SF100 query,
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Figure 5.3: SSB with GPU-fitting working sets. Data in GPU memory for GPU systems.

Proteus GPU and DBMS G preload the necessary columns in the aggregate device memory of

the two GPUs (16GB). DBMS C and Proteus CPU configurations operate over columnar data

that are pre-loaded in CPU memory.

Proteus GPU randomly partitions each table between the two GPUs. We profiled DBMS G and

noticed an absence of cross-GPU PCIe traffic during query execution; therefore, DBMS G either

performs co-partitioning of the fact and the dimension tables, or broadcasts (dimension)

tables to both GPUs a priori. For all queries, the optimizer of Proteus opts for broadcast-hash-

join-based plans; HetExchange broadcasts the dimension table columns involved in joins

to both GPUs. DBMS G opts for a star-join-specific join implementation: It conceptually

treats each dimension table as a dense array di mt abl e[], where the value di mt able[ke yi ]

corresponds to the tuple whose key column value is ke yi . DBMS G performs the (star) join

by iterating over the fact table and fetching the corresponding values from the dimension

tables/arrays via array index lookup.

Figure 5.3 depicts results for SF100; HetExchange enables Proteus to seamlessly parallelize its

execution across computational units. Q1.1 - Q1.3 are the simplest SSB queries; they perform

a single join of the fact table with the dates table. Proteus GPU and DBMS G outperform the

CPU-based systems, because the GPU devices offer high memory bandwidth (320GB/s) and

number of hardware threads. Proteus GPU utilizes the resources of the GPU devices more

efficiently and thus outperforms DBMS G. Specifically, every thread block that DBMS G triggers

on the GPU devices allocates double the number of GPU registers than Proteus GPU. Thus,

DBMS G launches fewer simultaneous execution units and underutilizes the large number of

available GPU hardware threads.

Q2.1 - Q2.3 increase the number of joins between the fact table and dimension tables to three;

the effect of hardware underutilization becomes more visible for DBMS G, thus its difference

from Proteus GPU increases, and its performance resembles that of DBMS C. DBMS G fails to

execute Q2.2’s string inequalities.
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Q3.1 - Q3.4 also have three joins, with each consecutive query being more selective than

the previous; Proteus GPU is consistently faster. For Q3.1 and Q3.2, Proteus CPU is faster

than DBMS C because the operators of DBMS C have to either materialize a result vector or a

bitmap vector, whereas Proteus CPU operates as much as possible over CPU-register-based

values to avoid materialization costs. Q3.3 and Q3.4 are more selective, therefore the gap

between Proteus CPU and DBMS C becomes minimal. In addition, although the star-join

implementation of DBMS G turns joins into inexpensive array lookups, DBMS G also opts to

apply filtering predicates after the completion of the star-join, so that the dimension tables

resemble sorted, dense arrays at join time, and the star-join turns into a sequence of array

index lookups. Thus, DBMS G’s benefit from selective filtering predicates is minimal.

Q4.1 - Q4.3 increase the number of joins to four, with each consecutive query being more

selective, and are the most challenging part of SSB. All systems except DBMS G benefit from

queries being more selective. Proteus configurations outperform their CPU/GPU counterparts

due to the minimal generated code that comprises every query pipeline that Proteus executes

and the better utilization of GPU hardware resources.

Summary. HetExchange enables Proteus to parallelize queries across multiple CPUs and

GPUs and operate over different initial data placements, in the same infrastructure, without

loss of generality or performance. Proteus is comparable or outperforms state-of-the-art

DBMS that target CPUs or GPUs. When the working set fits in the aggregate GPU memory,

Proteus achieves up to 2x and 10.8x versus CPU- and GPU-based alternatives, respectively.

5.5 Conclusion

Designing HetExchange and incorporating it into our system required considering a number

of challenges related to i) encapsulation of parallelism, ii) encapsulation of hardware hetero-

geneity and iii) choice of execution model for analytical queries; tackling these challenges led

us to a number of observations that can be useful as guidelines to database system architects.

Separation of concerns. The design space for a system that can execute queries over both

CPUs and GPUs is significantly wide. Picking and changing the degree (and type) of paral-

lelism, transferring data between processors, and handling arbitrary data placement across

processors’ memories, are a few of the concerns to be resolved. HetExchange deals with this

design space explosion by enforcing a clear separation of concerns: Explicit operators deal

with orthogonal issues such as cross-device transfers, parallelism encapsulation, and memory

affinity. Such compartmentalization allows for a generic and extensible system; extending

HetExchange to another type of processor in the future would be non-trivial with a monolithic

design, while the current design only requires an extra device provider and two device crossing

operators.
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Vectorization vs. compilation. Despite being coupled with a JIT-compiled architecture in

this work, HetExchange can enable execution over heterogeneous processors for any type

of query execution engine, be it interpreted or compiled. Still, implementing a real-world

system required considering a type of execution engine to pick. Given the performance bene-

fits they bring in analytical query processing, our main considerations were vectorized [15]

and pipelined, compiled engines [46]. If HetExchange targeted CPU processors exclusively,

vectorized execution would have been a great fit as well, as there are families of operations for

which it can even outperform compiled execution [47, 60, 95]. In addition, implementing a

vectorized engine is more straightforward than a JIT-compiled one. However, vector-at-a-time

execution can be wasteful in the context of GPU processing; the materialization overhead it en-

tails becomes more pronounced when (cache) memory is scarce: GPUs have lower per-thread

cache capacity compared to CPUs. Also, relying on code generation infrastructure allows the

resulting system to have a single, unified code base of pipelined operators instead of a CPU-

and a GPU-family of vectorized ones. Lastly, our design is compatible with the work of Menon

et al. [60] which introduces SIMD vectorization in CPU JIT engines.

The compiler (sometimes) knows better. Writing code to be executed on a GPU can be a

very subtle process [18, 22, 27, 42]. Conventional knowledge has it that a developer needs to

explicitly reason about numerous low-level details, such as, among others, i) the organization

of GPU threads in thread blocks, and of thread blocks in grids, ii) thread divergence within a

thread warp, and iii) avoiding atomic operations. When this source of complexity is coupled

with the complexity of implementing a code-generating engine, the end result can be very

burdening to a developer. During the coupling of HetExchange with Proteus, we observed that

the compiler has become significantly better in optimizing code that has not been meticulously

fine-tuned to the device-specific “magic numbers” required for thread block size, etc., to the

degree that a lot of the conventional GPU coding wisdom [22] has become obsolete for modern

GPUs. Thus, choosing to offload a part of the GPU code optimization to the compiler reduces

developer effort and focuses on the bigger system picture instead of micro-optimizations.
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6 Efficient Interconnect Utilization

Fast analytics are essential for generating timely business intelligence. In the previous chap-

ters, we showed that hybrid CPU-GPU processing significantly accelerates analytical query

processing. However, as datasets increase in size, the limited GPU memory capacity forces

in-memory analytical engines to store the data in CPU memory. As a result, offloading tasks to

the GPU also requires accessing the corresponding data over the interconnect – limiting the

potential acceleration despite potentially idle GPU resources.

To overcome the interconnect limitation, multiple approaches have been proposed in the

literature. First, some GPU analytical engines rely on hardware scaling: either they suggest a

sufficient number of GPUs to cache the datasets in GPU memory [2], or they use integrated

GPUs that reside on the same package as the CPU and have access to memory at full CPU

memory bandwidth [36]. However, increasing the number of GPUs comes at a significant

monetary cost compared to using the existing CPU memory, and integrated GPUs are generally

weaker, resulting in lower analytical performance [44, 87]. Second, prior work has used data

compression to increase the number of tuples kept in GPU memory [44] and reduce the

data transfer volume by streaming compressed pages and decompressing them on the GPU

side [88]. However, such approaches rely on the data distribution to reduce the data volume

instead of the actual query – potentially missing additional optimization opportunities for

selective queries. Third, Pirk et al. [75] propose fixed, data- and query-agnostic compression

methods that send and store approximate data representations in the GPU. These approximate

methods allow the GPU to produce an initial query result set that is then refined by the CPU.

Such approaches have the potential to avoid the interconnect; however, the proposed methods

rely on the approximate structures fitting in the GPU memory and the refinement step to

introduce minimal CPU overhead. Lastly, Yuan et al. [102] rely on UVA and the interconnect

to access the corresponding data, causing significant data overfetching and relying on the

GPU kernels being able to hide the corresponding data stalls. Overall, existing techniques

rely either on the data distribution enabling sufficient compression or hardware primitives

providing sufficient bandwidth.
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In this work, we propose Laconic, a set of data access methods that reduce the overhead of

data fetching during data transfers for GPU-accelerated analytics. Laconic exploits the query

selectiveness and the fine-grained in-memory data accesses. First, we evaluate the impact of

the interconnect and GPU technology in offloading data analytic tasks to the GPUs, and model

the throughput overhead of fine-grained data accesses. Based on expression selectivities, we

eagerly prefetch columns used in expressions that provide limited filtering, reducing data

stalls associated with over-the-interconnect data fetches. Then, we identify the curse of the

first column: GPUs have to pull in at least one entire column to benefit from highly selective

conditions, which limits the performance benefits of selectively pulling data into the GPUs

even for highly selective queries. Lastly, we propose a CPU-GPU push-based access method

that reduces data transfers over the interconnect and avoids the curse of the first column by

pushing lightweight prefiltering operations to the CPU. Overall, Laconic optimizes the data

transfers over the interconnects based on the query selectivity and reduces the data transfer

cost required to benefit from GPU acceleration.

In summary, Laconic makes the following contributions:

• We show that GPU-accelerated analytics are bottlenecked by interconnect transfers and

model the overhead of lazy pull-based data transfers.

• We optimize data transfers by exploiting over-the-interconnect fine-granularity data ac-

cesses combined with near-data prefiltering techniques to accelerate even very selective

queries.

• We integrate Laconic into Proteus and show that GPU acceleration benefits even very

selective queries, with Laconic achieving up to 13x and 4.6x speed-up versus GPU-

accelerated query processing that uses eager data transfers and lazy direct memory

accesses, respectively.

Overall, Laconic reduces over-the-interconnect data transfers – one of the main performance

bottlenecks for CPU-GPU analytical query processing. As a result, Laconic increases the

spectrum of analytical queries that benefit from accelerator-level parallelism.

6.1 The Role of the Interconnect in CPU-GPU Analytics

In-GPU Query Processing: Capacity-Limited Acceleration. The data-parallel nature of ana-

lytics and the high-bandwidth GPU memory make them a great match. However, the GPU

memory is optimized for iterative workloads that exhibit data locality. Thus, hardware vendors

prioritize high bandwidth over high capacity when sizing the on-package GPU memory. As a

result, GPU memory is often on-package, faster than CPU memory, but also much smaller –

typically less than 100 GB. As a consequence, in-GPU query processing on GPU-resident data

is capacity limited, and for bigger workloads GPU-accelerated engines have to stream input

data from the CPU memory.
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Figure 6.1: In-GPU query execution using an eager (Oblivious) data transfer method, versus
transferring only the qualifying tuples

GPU-accelerated Analytics: Processing on the Other Side. Still, the high bandwidth of the

GPU memory combined with the big register files and the high number of on-the-fly memory

requests is a great fit even for random-access-heavy operations. For example, sequences of

non-partitioned hash joins can stream tuples from the CPU side and spawn multiple probes

in the local GPU memory. Given the ratio of interconnect-to-GPU-memory bandwidth, most

GPUs can sustain at least a few consecutive joins before becoming GPU-memory bound.

However, given the available local memory bandwidth, the analytical GPU power is often

highly underutilized as the interconnect limits the data bandwidth available for offloading

data to GPUs.

Interconnect: The Narrow Waist. With the interconnect bandwidth being a known constraint

of existing GPU systems, many new solutions and standards have been proposed. The most

common standard for CPU-to-GPU communication is PCIe, which provides 12.8 GBps CPU-

to-GPU data bandwidth at PCIe 3.0 x16. NVIDIA also has its own specialized interconnect,

NVLink, which is generally available only for GPU-to-GPU communications. Still, some CPUs,

like IBM Power 8 & 9, and the upcoming NVIDIA Grace CPU provide support for CPU-to-GPU

communication over NVLink. In version 2.0, NVLink provided up to 75 GBps CPU-to-GPU

bandwidth. While high-bandwidth interconnects improve the data transfer bandwidth, they

are still an order of magnitude slower than the GPU memory and almost 2x slower than

the CPU memory. As a result, to efficiently use the GPUs, we must improve the input-data

streaming efficiency.
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Figure 6.2: GPU query execution on CPU-resident SSB (SF=1000) across different GPU archi-
tectures & interconnects

The ideal transfer. To access the CPU data, GPU-accelerated engines typically transfer the in-

put, in chunks, to the GPU for the actual processing, to avoid excessive, over-the-interconnect

latencies in the critical path of execution and guarantee that the accessed memory during GPU

execution is accessible [23]. In Figure 6.1, we plot, in grey, the query execution time for each

SSB query (scale factor 100) when using the PT server of our experimetanl setup (Section 6.7).

Despite the diverse selectivity of these queries, the execution time is relatively stable, especially

when considering that the last three queries only see an increase in execution time because

they transfer two more columns. In a utopic scenario, the analytical engine would only transfer

the tuples that pass through all the conditions. We plot the time for transferring only those

tuples in pink to make it visible. In the rest of this work, we discuss: (i) how the different

interconnects and GPUs affect these results, and (ii) how different approaches for accessing

the input data, including direct memory accesses over PCIe, and CPU-GPU coprocessing,

enable Laconic to reduce the execution time significantly.

Data transfers and GPU (under-)utilization. GPU-accelerated analytical engines access the

CPU-resident data via the interconnect, making it a central component and a critical factor

for the performance profile of the engine: First, the interconnect bandwidth imposes a hard

limit on analytical throughput because the engine must transfer the to-be-scanned columns

to the GPU for any analytical processing. Second, interconnect utilization consumes memory

bandwidth and serves as a resource-sharing metric between the CPU and GPU parts of the

analytical engine.
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6.2 Laconic: Minimizing Data Transfers for CPU-GPU Analytics

Figure 6.2 presents the impact of the execution time for executing queries Q2.1, Q2.2, and

Q2.3, which have the same query template and decreasing selectivities from Q2.1 to Q2.3,

across server-grade GPUs with PCIe and NVLink as well as consumer-grade GPUs with PCIe.

The dashed lines represent the time required for transferring the working set of the queries

(9.2 GB) to the GPUs using different interconnect technologies, specifically PCIe (black) and

NVLink (green). Based on this experiment, we observe the following properties hold for

GPU-accelerated data management systems:

• GPU Underutilization. GPU-accelerated query processing is interconnect-bound. Fig-

ure 6.2 shows that the execution time for all queries is at most 11% higher than the

transfer time that the interconnect requires for the given configuration. For PCIe-based

configurations, upgrading the GPUs from consumer-grade GTX 1080 (320 GB/s) to

server-grade V100 (900 GB/s) brings a marginal performance improvement of 0.5−2.7%.

By contrast, upgrading the interconnect from PCIe to NVLink in a V100-based con-

figuration yields a speedup of 3.94−5.42. The interconnect bandwidth dictates the

query execution time, whereas the processing capabilities of the GPU are underutilized,

especially for slower interconnects. Recent work shows that even expensive queries are

interconnect-bound when PCIe is used [23, 24, 94].

• Selectivity-Insensitive Performance. The size of the working set determines the execu-

tion time of the query. Figure 6.2 shows that the execution time of the query is roughly

constant, even though the selectivity is decreasing. The observation is counter-intuitive:

The expectation is that queries with more selective filters have a shorter time to re-

sult. While this expectation holds for CPU-based analytical systems which access CPU

memory directly at a fine granularity, it does not hold for GPU-accelerated systems that

eagerly transfer the whole working set of the query over the interconnect, one vector at

a time.

These two properties of GPU-accelerated OLAP engines are undesirable. It indicates that the

analytical engine fails to fully take advantage of the hardware and workload characteristics in

the execution environment.

6.2 Laconic: Minimizing Data Transfers for CPU-GPU Analytics

We propose Laconic, a novel data fetching approach designed to optimize GPUs’ effective

input data access bandwidth for CPU-resident datasets. Laconic minimizes unnecessary data

transfers over the interconnect to enable efficient GPU acceleration for analytics. Specifically,

Laconic: (i) combines word-level data accesses and page transfers to lazily pull only the

necessary data over the interconnect without introducing unnecessary data stalls, (ii) uses the

coprocessing and the near-data nature of CPUs to further reduce over-the-interconnect data

transfers, even for the first column, and (iii) packs to-be-transferred data to avoid overfetching.
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Sparse GPU data pulling. In data-centric pipelined execution, operator sequences and ex-

pression conjunctions in filters and operator sequences are evaluated in a pipelined manner

for each tuple, attributes that participate in expressions later in those sequences are less

likely to be needed. For example, consider a filter followed by a join and then a projection.

For each tuple, attributes partitipating in this sequence are needed with a probability that

reduces as the attribute’s first-seen position appears later into this sequence. Laconic uses this

observation to judiciously select between fine-granularity pulling of input data to the GPU

and proactive coarse-grained data pushing.

Prefiltering on the CPU. While the interconnect restricts the bandwidth available for accessing

CPU-resident input data from the GPU, the CPU can access them at full memory bandwidth.

Laconic pushes lightweight prefiltering operations to the CPU to reduce the data input. As a

result, Laconic overcomes the traditional requirements of pull-based approaches that need to

send at least the first column over the interconnect.

Densification. While sparseness on which input elements are required for the different steps

of the query evaluation has the potential to reduce the data fetched to the GPU, it also causes

overfetching: direct memory accesses fetch full interconnect lines and thus bring unnecessary

data. Laconic selectively packs the input elements after the prefiltering steps to reduce

overfetching and improve the interconnect bandwidth utilization.

6.3 Fine-granularity Accesses Without Regret

Eager transfers. Although the cost of transferring data is high, GPU-accelerated DBMS eagerly

transfer data to GPUs before processing. Prefetching blocks of data has multiple advantages.

First, it guarantees to the subsequent operations that the data are in an accessible memory, as

depending on the hardware configuration, a GPU may not have direct access for reading data

in any other memory location in the system. Second, the access pattern over the interconnect

is sequential, and thus, it allows full utilization of the available bandwidth. Third, kernels

access data stored in GPU memory and benefit from the high memory bandwidth and low

memory latency as a result. Fourth, the copy of the data in the GPU memory can be used

multiple times within the lifetime of a query. However, despite the benefits of asynchronously

prefetching data to the GPU, the approach tends to over-fetch by transferring data that is not

required. Query performance becomes insensitive to selectivity.

Lazy transfers. Modern GPUs have a unified address space and allow on-demand access

to data in the CPU memory. The mechanism constitutes a lazy way of transferring data by

pulling into the GPU and can bring significant benefits to GPU query processing. Primarily, it

reduces the amount of transferred data for highly selective queries by leveraging the higher

granularity of interconnect accesses. The kernels load columns accessed after the evaluation

of predicates only partially. Furthermore, the memory footprint of query processing decreases

because intermediate buffers are unnecessary. Finally, lazy accesses allow optimizations such

as compression and invisible joins.
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SemiLazy transfers. We extend our system to support a hybrid transfer strategy that enforces

a transfer policy at the column level. We route, transfer, and process data in blocks, which are

logical horizontal partitions. A data transfer operator copies the eagerly transferred columns of

the block, or any columns inaccessible from the GPU, to GPU memory and forwards a pinned

main memory pointer for the lazily transferred columns. Then, during execution, the GPU

transparently reads the former from the GPU memory and the latter over the interconnect

using the UVA. With the proposed design, we achieve more flexible reconstruction policies

that deliver better performance than both pure eager and pure lazy transfer strategies because

we optimize for each column judiciously, without adding extra complexity to the query engine

design.

Summary and data transfers outlook. Still, even with these fine-granularity transfers, signifi-

cant bandwidth may be used for transferring tuples that will be filtered out. Consider as an

example the case of SSB Q3.4. While the query has an overall selectivity of 0.00000076 over the

lineorder fact table [71], the engine has to transfer the first column to the GPU and do the first

join probe to reduce the number of fetches for the rest of the columns. This means that even

completely ignoring the cost of bringing the rest of the columns into the GPUs, the engine has

to fetch 25% of the query input – more than six orders of magnitude more tuples than bringing

only the qualifying ones.

The rest of this chapter, (i) mathematically models the expected gains from the above pull-

based approaches and quantifies the impact of the “curse of the first column”, (ii) describes

how Laconic uses the near-data positioning of the CPU to prefilter the transferred data using

bloom filters, and (iii) concludes with an approach that combines prefiltering lazy transfers to

minimize the overfetching cost.

6.4 Modeling Pull-based Accesses

The presented pull-based methods, Lazy and SemiLazy, reduce the input size by relying

on fine granularity accesses and query selectivity. However, often hardware components

are optimized for workloads with temporal and spatial locality. Specifically, the over-the-

interconnect access granularity, the cache lines, and memory management highly affect the

performance of the two pull-based approaches. In the rest of this section, we model the

performance of the proposed pull-based approaches.

Both approaches fully scan the first column to reduce the transferred volume of data. Then,

they apply the first selective condition, e.g., a filter or a join-probe, before moving to the

following condition. For simplicity, we will assume that the filter/joins are applied in a most-

to-less selective sequence, although the discussion holds even when the query optimizer picks

a different, e.g., more cache-friendly, operation order.
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Moving to the next condition does not imply materialization: the data-parallel GPU design,

combined with the high number of active contexts, allows the GPU to maintain multiple tuples

in the – big relative to the CPU – GPU register files. Thus, all the above operations happen in a

pipelined manner through operator fusion.

Then, using the result of the first evaluated condition, the GPU has to fetch the attribute

required for the next condition. For example, consider the fact table A with foreign keys b1 and

b2 referencing tables B1 and B2, respectively. First, attribute b1 will be requested by the GPU,

representing the first column access, and, as a result, it will bring into the GPU, in chunks, the

full first column. Depending on whether a Lazy or Semilazy approach is used, the engine will

fetch the first column through direct accesses or an eager data transfer. Then, for the tuples

that had a match in the join, the GPU will request attribute b2.

Ideally, the request for the second attribute would be as expensive as reading exactly the

corresponding memory bytes from memory and nothing more. However, there are multiple

hardware components between the GPU threads requesting the corresponding data and the

actual CPU-resident data that affect this process. Specifically, the GPU thread is going to

schedule the load instructions, which will, in turn, pass through the in-GPU cache hierarchy,

then into the PCIe ports and links, to reach the CPU socket and then the CPU memory. GPUs

like the NVIDIA V100 Tesla GPU of our experiments have multiple (32 B) sectors per L1 cache-

line (128 B). As per NVIDIA, cache “management” [69] happens in 128 B. Then PCIe operations

pass through the L2, and each read PCIe transaction has a 16 B header.

As lazily fetching the second attribute requires passing through all those layers, it’s subject

to overfetching and communication overheads. While the attribute may be only a few bytes,

many of these hardware components operate at a different, potentially higher granularity (e.g.,

32B sectors), causing extra data to be fetched. Similarly, communicating over the PCIe requires

the header information, adding additional overhead. Furthermore, the GPU cache combines

multiple load instructions into the minimal number of fetches when communicating between

the cores and the cache with the L2. As a result, this propagates to the PCIe controlling

mechanism, and thus consecutive reads are combined into a single one.

Overall, each requested data has an overhead similar to a traditional overfetch: requesting

a specific byte brings a potentially bigger, fixed-size memory range, while two consecutive

accesses to the same region will result in a single request, independently of whether the

requests originate from the same or adjacent threads. Specifically, assuming an F bytes

fetching granularity, requesting an attribute of size S bytes will result in fetching F bytes, while

requesting multiple S-sized attributes that reside on the same F -sized region will also result in

a single F -sized fetch.

Pessimistically assuming no temporal correlation between consecutive tuples and their first

condition qualification, then if k tuples reside on each F -sized region and the first condition

selectivity is s, then the probability of bringing an F -sized region from the CPU memory to the
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6.5 Heterogeneity to Overcome the Curse of the First Column

GPU is:

pF− f etched = 1− (1− s)k . (6.1)

Thus, in the running example, Pb2 = pF− f etched Nb2 (bytes) will be (over)fetched for column

b2 as the GPU evaluates the query, where Nb2 is the overall size of column b2 (in bytes). While

the size F , to the best of our knowledge, is not directly documented by NVIDIA, we observe

that our GPU uses F = 128B . This value aligns with the assumption that the request happens

at cache-management-size granularity, and the read optimistically requests more bytes than

actually needed to minimize the PCIe header overhead for the common case of sequential

data fetches. Furthermore, the 128 B aligned reads do not cross TLB boundaries and thus

create no invalid page faults.

The same pattern holds for consecutive lazy data fetches. Specifically, the effective data fetch

size for column bi is given by

Pbi =
1−

(
1−

i−1∏
j=0

s j

)ki
Nbi , (6.2)

where s j is the selectivity over the j-th fetched attribute (and s j = 1 if that attribute is to be

combined with another attribute before a condition) and ki =Fi /Si . Overall,
∑

Pbi bytes will

be transferred over the interconnect, resulting in a GPU execution time that is the maximum

of the in-GPU time if all the data were GPU-reside and the time needed to transfer the
∑

Pbi

bytes over the interconnect.

Note that Pb0 is always the entire column: to reduce the data fetched over the interconnect,

both pull-based approaches rely on accessing the first column. As a result, pull-based ap-

proaches have the “curse of the first column”: even if they filter everything out after accessing

the first column, e.g., because of a query with no qualifying tuples, counter-intuitively, they

still have to transfer an entire column over the interconnect to benefit from GPU acceleration.

6.5 Heterogeneity to Overcome the Curse of the First Column

To overcome the curse of the first column and benefit from GPU acceleration, we use the

hybrid CPU-GPU processing capabilities. Specifically, we exploit the near-data position of

the CPU to push down pre-filtering operations: while the CPU’s low memory bandwidth

sets it into a disadvantageous position compared to GPUs, the CPU is not restricted by the

interconnect in terms of input data access for data that are bigger than the GPU-memory

capacity.
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To reduce the over-the-interconnect data transfers, we push filters to the CPU side and intro-

duce small bloom filters to filter data before the join. For the filter evaluation, the CPU can

access data at memory bandwidth. Similarly, for the bloom filters, while the CPU may not be

able to sustain its memory bandwidth in terms of throughput, small bloom filters can take

advantage of the CPU cache and the local DRAM random access throughput.

As a result of the pre-filtering, tuples are filtered early, and only the ones that pass the prefilter-

ing stages are transferred over the interconnect. Effectively, the accesses to the columns that

participate only in the prefiltering are pushed to the CPU-side – before the interconnect. More

importantly, Pb0 , the access to the first column, is executed on the CPU, releasing Laconic

from the curse of the first column. In modeling terms, the filters that are pushed into the CPU

use the CPU overfetching size instead of the over-the-interconnect overfetching parameter

F . Furthermore, while for over-the-interconnect overfetching the time was driven by the

interconnect bandwidth, in the CPU overfetching case, the corresponding bandwidth is the

CPU memory bandwidth.

In contrast to CPU-only approaches, there is more cache memory available to keep the

bloom filter cache-resident and performant. Traditional CPU-only approaches still share the

caches and the random access bandwidth with the potential bloom filters and the rest of the

operations like the join. Instead, Laconic only runs the first filters in the CPU. The rest are

offloaded to the GPUs, so random accesses that would otherwise happen inside the CPU are

now offloaded to the GPU, leaving the rest of the CPU memory bandwidth available for the

bloom filters. Similarly, while joins highly benefit from in-cache hash tables and traditionally

compete with the bloom filters for the cache, Laconic pushes those hash table probes to the

GPU, releasing cache memory pressure.

Overall, pushing the first filters to the CPU side as lightweight (bloom) filters enables the

GPU to overcome the limitation of having to transfer a full column. Still, there is significant

overfetching over the interconnect even with the bloom filter.

6.6 Pushing The Overfetch Away

To reduce the last part of the redundant overfetching, Laconic provides two alternatives to

the execution engine: either use the lazy access method to fetch the rest of the data or offload

the input repacking to the CPU. For the latter, instead of lazily accessing all columns from

the GPU, we combine the idea of SemiLazy with filter push downs to pre-filter and pack data

before offoading the rest of the query to the GPU.

Specifically, we convert the (bloom) filter into an unpack-filter-pack operation: it scans the

input, filters it using the (bloom) filter and then materializes its output into packed blocks.

These blocks are then transferred to the GPU for the random-access-heavy operations, e.g.,

joins. Despite the CPU scanning and writing more data, the accesses are predictable, and,
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depending on the amount of the repacked columns, the corresponding overhead is lower

than doing the equivalent operation over the interconnect as the CPU has more input data

bandwidth.

Lastly, as the bloom filter reduces the cost of performing the corresponding join, the in-GPU

execution is also impacted. First, we rewrite the in-GPU plan to push the join(s) corresponding

to the push-down operations later into the plan. Second, as the corresponding join will be of a

lower cost, the GPU execution is further accelerated – a benefit of using the accelerator-level

parallelism of the machine.

6.7 Evaluation

In this section we evaluate the impact of the interconnect for GPU-accelerated analytics. Sec-

tion 6.7.1 evaluates the impact of different interconnects and GPU architectures. Section 6.7.2

compares the different Laconic’s access methods and the accuracy of our modeling technique,

showing how Laconic minimizes wasteful data transfers.

Hardware. To study the effects across consumer- and server-grade GPUs connected over

relatively slow and fast interconnects, we executed our experiments on three different servers.

The first and the second server have 2 x 12-core Intel Xeon Gold 5118 CPU (Skylake) clocked at

2.30 GHz with HyperThreads, that is, 48 logical threads and a total of 376 GB of DRAM. The

first server has 2 x NVIDIA GeForce 1080 GPUs (consumer-grade), whereas the second one

has 2 x NVIDIA Tesla V100 GPUs (server-grade) over PCIe 3 in both cases. The third server

is based on IBM POWER9 equipped with 2x16-core SMT-4 CPUs clocked at 2.6 GHz, a total

of 128 logical threads, and 512 GB of DRAM. Like the second server, it hosts NVIDIA Tesla

V100 GPUs; however, it has four of them, and they are connected to CPUs over NVLink 2.0

interconnect with three links per GPU. For symmetry in all the experiments, we use 2 GPUs,

one local to each CPU socket, even for the IBM server. In the rest of the section, we will refer

to these servers as PG for the first one, PT for the second one and NT for the third one. We use

the first letter, P and N, to signify the interconnect standard (PCIe/NVLink) and the second, G
and T, for the GPU architecture (GeForce/Tesla). Currently, there is no consumer-grade GPU

with support for NVLink.

We use the three hardware configurations to show how the evolution of GPU architectures and

interconnects affect the performance of the access methods. By comparing PG with PT, where

we change only the GPU architecture, we observe how the increased GPU capabilities affect

performance. Then, by comparing PT with NT, we keep the same GPUs, but we change the

interconnect from PCIe to NVLink, thereby evaluating the effect of the interconnect on the

query performance. Migration from Intel to POWER CPU architecture was necessary since

NVLink is available as a CPU-GPU interconnect only on IBM POWER 8 & 9 servers, to the best

of our knowledge.
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Software. We implement our methods in our in-house code-generation-based CPU-GPU

database engine, Proteus [23, 24]. Proteus uses the HetExchange framework for parallelizing

query execution across heterogeneous devices. Lazy transfers are enabled by extending the

mem-move operations to avoid transfers when the input is already in memory accessible by

the target device (for the columns that should be lazily accessed). Furthermore, we hint to

the compilation layer that data accesses to the various attributes should happen as late as

possible so that there are no unnecessary data fetches. We rely on the per-thread software-

based loop-interleaving and the GPU hardware to hide the increased latency introduced by

the over-the-interconnect load operations. For all the experiments of this section, we use

2-GPUs, one per NUMA node, and force all main join operations to a GPU-only execution

mode to isolate the benefits and challenges introduced by having to transfer CPU-resident

data over the interconnect to benefit from GPU-acceleration. We evaluate our methods using

the Star Schema Benchmark (SSB) [71] with a scale factor 100, so that we can compare against

in-memory execution on GPU-resident data.

6.7.1 Pull-based Data Accesses

Methodology. Figure 6.3 evaluates the performance of different data transfer techniques

across two axes: the interconnect characteristics and the query selectivity. First, we show

how the interconnect bandwidth affects query execution and then evaluate the performance

gain achieved by lazily accessing the input. Each query fetches the required data over the

interconnect, and any transfer sharing or caching is disabled to simulate the case of reading

fresh data from the CPU. Eager prefetches all the data to the GPU memory. In the lazy method,

all data are accessed directly from the GPU threads during execution, without an explicit bulk

copy. As a result, during kernel execution, GPU threads experience a higher latency during

load instructions for input data compared to the eager method, where data are accessed from

the local GPU memory. To reduce requests to remote data and the actual transferred volume,

all read requests are pushed as high into the query plan as possible in the generated code. For

the SemiLazy method, we prefetch the firstly accessed column of the fact table for each query

and access the rest of the working set using the lazy approach. For query groups 2-4, the first

column is the foreign key used in the first join, while for query group 1, the first column that

filters the fact table before the first join, we prefetch the two columns that are used in the filter

predicates.

Eager access methods achieve throughput (working set size over execution time) very close

to the interconnect bandwidth for all three hardware configurations. The only exception is

Q3.1 on NT, which has the lowest selectivity and, combined with the multiple joins stressing

the GPU caches, it causes high memory stalls. The bandwidth of the PCIe interconnect is low

enough that these stalls have a minimal impact on the execution time, as they are hidden by

the transfer time. In contrast, the ∼5x higher bandwidth of NVLink 2 makes transfer times

slower than kernel execution times, causing the stalls to become the new bottleneck. For all

other queries, kernel execution is overlapped and hidden by data transfers.
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Figure 6.3: Performance of the different access methods on SSB (SF=100) on the three different
configurations.
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Lazy access methods allow for reducing the transferred volume. SSB queries are highly

selective, and thus performance improves in almost all queries, except for query 3.1. As Q3.1

is compute-heavy, its performance degrades due to the increased latency that materializes

as memory stalls. Inside each query group, the benefit compared with the Eager method

increases as queries become more selective.

SemiLazy improves upon Lazy by reducing the main penalty for lazy access methods. While

laziness reduces the transferred data, it does so at the cost of higher memory latency. Never-

theless, some columns are accessed almost entirely. Prefetching those columns decreases the

overhead of laziness at the expense of fetching extra tuples. The higher effect of SemiLazy

is on the low-end GPU, where compute resources are limited compared to the server-grade

GPUs. Additionally, while Lazy improves mostly the performance of very selective queries,

SemiLazy access methods improve queries that are less selective and have multiple dependent

operations, like Q2.1. The smaller latency of NVLink, compared to PCIe, reduces the impact of

this method.

Summary. Eager methods reduce memory stalls during execution and allow more oppor-

tunities for caching data transferred to the GPUs. However, eager transfers unnecessarily

move data and penalize query execution on selective queries. On the other hand, Lazy ac-

cess methods reduce the execution time of highly selective queries by avoiding unnecessary

transfers at the expense of memory stalls and data dependencies which are combined with

partially transferred columns that impede column reusability. SemiLazy adapts between the

two to achieve the best of both worlds by using a different method for each column: if a query

touches most of a column, it will be prefetched eagerly, while columns that are only accessed

depending on evaluated conditions are lazily accessed. This results in SemiLazy adapting

between the two methods and improving the performance of queries that are selective but

also compute-intensive.

6.7.2 Cooperative Data Accesses

Modeling Pull-based Accesses. Figure 6.4 plots the execution time of SemiLazy for the differ-

ent SSB queries against the execution time predicted by the proposed model. The prediction

closely follows the actual execution time. However, its error is constantly one-sided due to

two reasons. First, the proposed model assumes that no access to the same overfetched line

happens twice. In practice, this only holds when threads do not diverge, or they diverge and

soon thereafter reconverge, causing part of the misprediction. Second, the proposed model

assumes no start-up cost and that the actual processing is not affected by the data access.

However, over-the-interconnect data fetches introduce additional latency that by itself can

cause a slight slowdown and thus affect the prediction of the model.

Prefiltering: Repacking versus Lazy Reconstruction. Figure 6.5 shows the execution time

for the SSB queries for the push-based approach. We plot two variants of this push-based

approach: combining the pushdowns with i) eager repacking (solid bars) and ii) lazy data
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Figure 6.4: Comparison of SemiLazy to the interconnect modeling (“ideal”)
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Figure 6.5: Bloom filter push-down with and without repacking

fetching (dashed outline bars). We push fact table filters, when applicable, and a bloom

filter for the first join to the CPU for the pre-filtering. We use a single-hashing bloom filter

to reduce the CPU overhead, and we manually select the filter size that provides the best

overall execution time for each configuration. For most queries, the high selectivity of the

SSB queries makes the difference minimal. However, for queries that are less selective on the

first condition, like the first query of each group, eagerly repacking has a substantial impact.

Specifically, by eagerly repacking after the first column, Q3.1 sees a 1.6x speedup, as 1) the

overall query selectivity is distributed across the first two joins (20% selectivity each), while

the third one drops very few tuples (85.7% selectivity), 2) the selectivity of the first condition is

not significant to avoid the majority of the F -sized line accesses: for F = 128B and 4B items,

there is only 0.1% chance to skip an F -sized line for the second column, without repacking.

In contrast, for the same query, repacking allows for sending only 20% of each transmitted

column over the interconnect.
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Figure 6.6: Push- vs Pull-based data accesses on SSB SF=100

Push- versus Pull-based Access Methods. Figure 6.6 compares the push- and pull-based

methods against the data-oblivious eager transfers and the time required to eagerly transfer

the first column. Both the push- and pull-based approaches outperform the eager data transfer

as they exploit the query selectivity. However, the pull-based approach is 1) slower than the

push-based alternative as it does not benefit from the pre-interconnect data reduction, and 2)

the performance of the pull-based approach cannot exceed the “1st col” line, as it needs to

fetch the first data column to select which elements to fetch for the second one. In contrast,

the push-based approach exploits the high selectivity of the SSB queries to outperform even

sending a single column over the interconnect for 7/13 queries.

6.8 Conclusion

This chapter shows that the interconnect bandwidth significantly limits analytical GPU perfor-

mance. Further, it shows that using fine-granularity data fetches over the interconnect reduce

the data volume for selective queries. Still, there is overhead caused by data overfetching,

which we model and build Laconic to overcome it. Laconic uses the CPU to prefilter and

pack data before sending them to the GPU for the actual processing – essentially treating

the CPU as a lightweight near-data processor. We show that prefiltering CPU-resident data

before sending them to the GPUs results in up to 4.6x speed-up versus the GPU pulling the

data during query execution – showcasing the importance of workload-aware data transfer

methods over workload-oblivious ones.
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Recent advances in hardware accelerators and networking technologies have rendered servers

with high-bandwidth networks and Graphics Processing Units (GPUs) mainstream. With

an order of magnitude higher internal memory bandwidth than CPUs [41], GPUs provide

increased analytical throughput, even in the presence of random accesses [43, 58, 83, 94]. As a

result, analytical engines can benefit from offloading complex operations to GPUs, even at the

expense of sequential data transfers over the relatively slow PCIe bus [18, 23, 35]. Similarly,

high-bandwidth networks coupled with Remote Direct Memory Access (RDMA) offer fast,

low-latency data transfers across servers with minimal CPU overhead, allowing CPU-based

analytics to expand their memory capacity and scale across multiple servers [5, 55, 85]. How-

ever, despite GPU and networking advances, existing analytical engines fall short in efficiently

combining accelerators at rack scale.

Traditionally, analytical engines relied on the multi-core CPUs and the memory bandwidth

available from multiple machines by combining scale-up and rack-scale execution. The

standard deployment setup considers that the CPU is the sole compute unit type in every

machine and, hence, the CPU is responsible for all operations on the data. As a result, state-of-

the-art CPU-only rack-scale engines optimize the communication channels using RDMA [12,

56] while relying on the symmetry of CPU memories to handle intra-server NUMA effects

through work-stealing [84].

However, GPUs question the CPU-only deployments as they (i) provide additional processing

power and memory bandwidth, introducing non-uniformity inside the servers, and (ii) are

placed behind slow interconnects, further amplifying NUMA effects. Scale-up multi-CPU-

multi-GPU deployments rely on data locality and timely, globally available, relative device

throughput information to maximize the interconnect utilization [18, 23, 24, 58, 83]. As a

result, CPUs are no longer in the critical path of every data processing operation, and the

bottleneck shifts to the CPU-GPU interconnect.
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Rack-scale multi-CPU-multi-GPU deployments bring new challenges compared to both scale-

out CPU-only and scale-up multi-CPU-multi-GPU ones. First, the asymmetry of the memory

hierarchy in scale-up deployments is further amplified from the network connection, question-

ing the fundamental assumption of the symmetric memory hierarchy in scale-out CPU-only

approaches. Second, the relative device throughput information derived and leveraged in

scale-up deployments cannot be aggregated timely and with low overhead at rack scale. Given

the above challenges, existing works (i) cannot fully benefit from GPU acceleration due to

the implicit assumption of homogeneous intra-server resources [12, 56, 84] or are bound to

single-server execution by relying on a shared global accelerator load view [23]; (ii) focus on

GPU-only execution and do not consider the high memory capacity and data locality that

CPUs can offer [28, 53]; (iii) statically shuffle the data through the CPU [54], causing inter-

connect and CPU memory bandwidth interference; (iv) split processing based on tasks [97]

executed in coarse-grain stages on either CPU-only or GPU-only mode, resulting in high

sensitivity to workload, execution time predictions, data locality, and skew.

This chapter proposes RuSH, an analytical engine that enables scalable analytics through

CPU-GPU rack-scale acceleration. RuSH employs a dataflow execution model to overcome

the inherent processing skew and scalability challenges raised by hardware heterogeneity.

It decomposes the parallelization operations to enable load balancing while holding data

transfers until the target device is known, thereby avoiding unnecessary data transfers. Overall,

RuSH enables analytical engines to exploit the heterogeneous CPU-GPU hardware of modern

rack-scale deployments.

In summary, RuSH makes the following contributions:

• We identify that the inherent processing skew and reduced processor visibility in multi-

server CPU-GPU deployments result in poor scalability of analytical engines in rack-

scale deployments (Section 7.1).

• We propose RuSH, a novel design (Section 7.2) that overcomes the scalability limita-

tions and achieves fast execution, effective orchestration, and transparent resource

management of CPU-GPU racks (Section 7.3).

• We describe the key challenges of orchestrating the CPU-GPU hardware in a multi-server

setup (Section 7.4), and we propose composable orchestration (Section 7.5) and network

management mechanisms (Section 7.6).

• We integrate RuSH in our in-house DBMS engine (Section 7.7), and we demonstrate

scaling over InfiniBand, where CPU-GPU systems achieve up to 1.8x speedup against

CPU-only counterparts by exploiting the direct GPU-to-network and fast intra-server

interconnects (Section 7.8).
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Overall, our design enables analytical engines to avoid excessive data transfers and static

offloading decisions that cause wasteful hardware utilization. Instead, our proposal efficiently

exploits the available CPU-GPU hardware in rack-scale RDMA-enabled configurations by

orchestrating the device and data transfers based on data locality, query, and relative device

throughput.

7.1 Scalability of CPU-GPU Analytics

The scalability of GPU-accelerated engines is addressed either in scale-up or scale-out deploy-

ments. GPU-accelerated scale-up engines go beyond the limitations of traditional, CPU-only

architectures, but they are limited to single-server setups, and specifically: 1) they rely on

shared memory, 2) they require a global view of the device utilization for load-balancing, or

3) their buffer management is static, forbidding inter-server load-balance, or dynamic but

requires expensive, low-latency coordination that is prohibitive across servers. On the other

hand, scale-out engines underutilize the available hardware, and specifically: 1) they use only

a single type of processor per server, 2) they decouple inter- from intra-server execution at the

expense of intermediary data transfers that are wasteful for internally heterogeneous servers,

or 3) they are unable to load balance across the multitude of devices.

Analytics on modern CPUs. CPUs have been the main processing unit for analytical engines.

To exploit their modern capabilities, analytical engines have long employed techniques like

code generation [63], vectorization [15, 77], parallelization [25, 30, 51], prefetching [21, 78, 79],

and combinations thereof [32, 60, 93]. Still, while state-of-the-art CPU analytical engines are

highly optimized for the modern CPU features, the server hardware landscape evolves towards

heterogeneous CPUs [26, 34], CPUs made of chiplets [62], and hardware accelerators [38, 65].

GPU-accelerated scale-up analytics. In addition, recent work has explored the benefits of

running analytics on GPUs to exploit their high parallelism [18, 23, 43, 61, 76, 91, 99, 102].

However, whether the CPUs or GPUs are more appropriate for each query depends on multiple

factors, including the initial data placement, the system topology, and the query itself. As a

result, recent work proposes partitioning algorithmic steps across the devices [58, 83, 94, 96]

as well as orchestrating the heterogeneous devices for whole-query CPU-GPU coprocessing [7,

23]. The latter inspects the processing throughput of the different devices to route tasks based

on the relative device processing throughputs. However, such approaches require: 1) global

view of device utilization to effectively route the tasks despite the processor heterogeneity,

2) centralized resource managers to satisfy the resource requirements and exchanges of the

different devices, thus limiting them to single-server configurations.

Scale-out analytical engines. To overcome the scalability limitations of a single server, analyt-

ical engines have scaled out to multiple servers by introducing parallelization meta-operators

into the query plan [30]. However, the advent of high-bandwidth networks introduced new

challenges and opportunities [5, 12, 98, 106]. Liu et al. [56] propose a data shuffling operator

that encapsulates the complexities of managing the low-level queues and buffer management
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required for achieving the bandwidth offered by the hardware. Rödiger et al. [84] decompose

inter-server and intra-server parallelization through a two stage-parallelization strategy: intra-

server, they use morsel-driven parallelism to exploit the multi-core CPUs but, inter-server, they

use a traditional exchange-based [30] parallelization strategy. While the proposed two-stage

parallelization strategy reduces the communication overheads and the required number of

active connections, it is prone to execution skew as remote servers have reduced observability

of the load of remote cores and sockets. Specifically, they distribute incoming data equally

across the homogeneous CPU sockets in a round-robin, skew-oblivious, manner and any

execution skew is resolved through inter-socket data accesses over the UPI/QPI during the

intra-server execution load balancing. However, with GPUs, 1) the processor heterogeneity

introduces inherent execution skew as different devices operate at different rates, 2) given the

high interconnect bandwidth in existing servers, accessing data during rebalancing results in

significant memory bandwidth interference – one of the scarcest resources during analytical

query processing. As a result, existing analytical engine designs cannot efficiently use the

available accelerator-level parallelism offered by GPUs.

Summary. While analytical engines can efficiently combine scale-up and scale-out approaches

to use internally-homogeneous servers, GPUs accelerators break the fundamental assumption

of processing uniformity inside each server. Exploiting the analytical processing capabilities of

GPUs can provide significant acceleration opportunities; however, existing analytical engines

have to select between efficiently using a single server’s CPU-GPU hardware or scaling to

multiple servers but being prone to processing skew.

7.2 RuSH: Rack-Scale Hybrid Analytics

We propose RuSH, a novel in-memory analytical engine design that achieves efficient query

execution over heterogeneous CPU-GPU hardware without compromising scalability. RuSH

uses multiple GPUs to achieve high analytical processing throughput and CPUs to allow fast

near-data processing of in-memory data. To avoid wasted processing throughput, RuSH:

(i) orchestrates execution to offload tasks to devices based on the overall throughput gains,

(ii) increases the offloading opportunities using the high-bandwidth networking, and (iii) de-

couples path and data binding from task scheduling to allow scalable orchestration despite

the heterogeneity and limited memory resources.

Fast analytics. To achieve fast analytics, RuSH considers three key dimensions that affect

the overall response time: processing throughput, data access throughput, and scheduling

flexibility. By combining CPUs, GPUs, and high-bandwidth NICs, we innovate across these

three dimensions to improve the overall performance.

Orchestration. RuSH coordinates all the involved devices and optimizes data transfers across

them to reach the maximum performance of the processing resources, despite the data

path complexity. RuSH represents execution as a data flow to build an execution graph that

66



7.3 GPUs and RDMA in Modern Racks

allows load awareness and composable load-balancings. It combines dataflow execution

with a decomposed version of the parallelization operations to allow multi-stage scheduling

decisions as well as direct data transfers to the final data consumer.

Resource management. The increased NUMA effects of CPU-GPU hardware and the limited

memory capacity of GPUs amplify the memory pressure and scalability issues of rack-scale

buffer management. RuSH improves the scalability of the buffer management through tight

integration to the decomposed parallelization operators. As a result, RuSH minimizes the

remote buffer allocations without compromising the affinity of the allocated buffers or creating

scheduling artifacts due to suboptimal allocations.

7.3 GPUs and RDMA in Modern Racks

This section describes the usefulness of the CPU, GPU, and RDMA technologies in rack-scale

analytics. Further, it explains why their combination provides a unique set of tools that we

leverage to achieve scalable CPU-GPU analytics.

7.3.1 Performance Bottlenecks in Analytics

The data-intensive and parallel nature of analytics make their performance susceptible to

three system parameters.

Requirement #1: Analytical processing throughput. Optimizing the throughput of operations

like joins, aggregations, and sorting has gained a lot of focus [9, 10, 13, 28, 42, 43, 48, 58, 78, 89,

90, 94, 96] as their irregular access patterns highly affect the overall query response time. Such

methods optimize memory accesses to reduce unnecessary data stalls and off-chip memory

accesses using the caches and memory-level parallelism. Still, the hardware diversity results

in a significant performance difference depending on the target device.

Requirement #2: Data access throughput. Besides quickly accessing hash tables and other

intermediary data structures, processors also need to sustain a corresponding bandwidth to

access the input data – otherwise, waiting for the input data wastes the quick to intermedi-

ary ones. The disaggregated nature of memory resources in multi-server and multi-device

(CPUs/GPUs) setups increases the importance of input memory bandwidth. In traditional

in-memory databases, the input data are placed near the CPUs, the only processing unit.

However, with faster but lower capacity tiers and devices (i.e., GPUs), different devices observe

different input access bandwidths.

Requirement #3: Scheduling flexibility and offloading. Both input and processing imbal-

ances can cause underutilization and skew for static work assignments. The imbalances

are exacerbated by the heterogeneity of processing resources and memory disaggregation

while modeling the interplay of multiple, heterogeneous devices can be challenging [58].
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For analytical engines to achieve efficient execution, they need to handle imbalances by

flexibly scheduling the analytical processing across the available resources, considering the

corresponding offloading overheads.

The three pitfalls of one-processor-rules-them-all analytics. While CPUs have long powered

analytical engines, three hardware trends necessitate the transition to hardware-accelerated

engines designed to efficiently and cooperatively combine CPUs with GPUs and RDMA: First,

CPUs have a low ratio of random-access-throughput to interconnect-bandwidth: As we in-

crease the number of random accesses performed in CPU memory per cache line read sequen-

tially over the interconnect, the limited CPU memory bandwidth quickly makes the random

accesses the bottleneck, despite the random versus sequential access pattern. Thus, CPUs

are often unable to catch up with the incoming data rate and results in poor scalability, as

additional machines cause unnecessary shuffling [84]. Second, CPU-only engines assume that

sending data to a remote processing unit has a performance penalty. However, access band-

widths to remote and local devices have greatly improved, flattening the hierarchy. Therefore,

the distance between the processing unit and the data has shrunk, and the computational

capacity has increased; thus, the cost of what was considered expensive shuffles is significantly

reduced. Third, CPU-only designs assume uniform processing throughput per CPU, which

does not hold in the presence of hardware accelerators that exhibit significantly different

performance profiles than CPUs. On the other hand, GPU-only engines prefer to store data

in the GPU memory to exploit its high bandwidth. However, the GPU memory has a much

smaller capacity than the CPU memory, limiting such approaches’ applicability. As a result,

there is no single solution matching every possible case. Instead, data locality needs to be

considered to achieve efficient analytics, essentially rendering the CPU a near-data processor.

The rest of this section analyzes the benefits of different accelerators and how they address

the above challenges.

7.3.2 Optimizing for the Performance Bottlenecks

Modern CPUs, GPUs and RDMA-enabled NICs provide a unique arsenal for reducing the

impact of the above challenges on analytical query response times; however, each comes with

its limitations.

GPUs: high analytical throughput. With approximately an order of magnitude higher memory

bandwidth than CPUs and a design optimized for data-parallel applications, server-grade

GPUs outperform CPUs for most analytical experiments as long as the data fits in the GPU

memory [23, 102]. However, in the general case, data do not fit in the GPU memory. Then,

the data have to be stored in the CPU memory, providing fast access by the CPUs, but GPUs

access them over the interconnect [83]. As a result, whether the CPU or the GPU is faster is

query specific and depends on the relative performance of the two as well as the interconnect

bandwidth [23, 58, 73, 83].
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CPUs: the new near-data processor. Traditionally, CPUs have been the main processing

unit for analytical engines. In the presence of GPUs and RDMA-enabled NICs, their main

benefits for data-parallel analytical tasks stem from their position near DRAM, as they have

fast and fine-grained access to the in-memory storage. On the other hand, while PCIe attached

devices can still access CPU memory at subpage granularity, their bandwidth is limited by

the interconnect. As a result, in the presence of hardware accelerators, CPUs are turning into

powerful near-data processors for in-memory analytical engines.

NICs: fast and flexible interconnectivity. Traditionally, the CPU was placed in the center of

query execution, and all incoming data passed through its memory, requiring at least one extra

transfer to offload any incoming data to the accelerators. Instead, RDMA not only enables

zero-copy and CPU-free data transfers but also allows direct transfers between PCIe devices

like GPUs. Thus, incoming data can be written to either a PCIe-enabled accelerator or to the

CPU. Furthermore, the same interconnect technology used for CPU-to-GPU connections is

also used for GPU-to-NIC and CPU-to-NIC, thus ending up with the same communication

bandwidth across the devices, enabling new load-balancing and offloading opportunities.

GPUs-NICs-CPUs: a complementary set. While device heterogeneity increases the design

spectrum and requires careful consideration of the role of every device in query execution,

each of the devices comes with its own benefits: GPUs provide high analytical throughput,

NICs allow remote devices to be accessed with bandwidths comparable to local devices, and

CPUs provide fast access to local, in-memory data. Furthermore, combining all the devices

provides constructive interference: hybrid execution can combine the best of each device

to accelerate analytical query processing by load balancing based on the query and data

placement at hand.

7.4 Coordination in CPU-GPU Racks

This section describes the challenges that prevent existing engines from exploiting the ad-

vantages of both CPUs and GPUs without the scalability limitations of operating on a single

server.

Challenge #1: Processing skew is the rule, not the exception, under heterogeneity. Dif-

ferent devices have different execution characteristics and response times. Furthermore,

their relative performance depends not only on the hardware characteristics but also on

the task-at-hand and runtime factors such as the current data placement [23, 44]. Thus, to

achieve efficient device utilization, aka minimal idle device time, tasks need to be distributed

across the devices unevenly, in such a way that minimizes the overall response time. To

effectively route tasks across the heterogeneous resources, scale-up engines rely either on cost

estimation [44] or on routing operations having a global view of the device load [23, 49, 58].

However, exploiting the accelerator-level parallelism requires multi-server analytics to handle

intra-server heterogeneity both when processing local tasks and during offloading to remote

servers.
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Challenge #2: Intra- and inter-server execution orthogonality causes CPU interference,

under heterogeneity. Load rebalancing operations required for decoupling inter- and intra-

server execution become prohibitive in the presence of heterogeneity. In the case of internally

homogeneous servers, assigning tasks in a round-robin manner across the server sockets

inside each server is sufficient to make intra-server rebalancing the exception, allowing im-

proved scalability by delaying intra-server load-balancing into a second independent step [84].

Specifically, given the low occurrence of rebalancing operations, Rödiger et al. [84] show that

this two-step process is overall beneficial as the scalability benefits outweigh the overall little

rebalancing cost. However, as heterogeneous hardware creates intra-server processing im-

balances, rebalancing operations become commonplace, resulting in round-robin solutions

requiring frequent data transfers across the interconnects to compensate for the multi-step

task handling.

Rebalancing operations are expensive as they use interconnect bandwidth, which is a scarce

resource. The advent of high bandwidth networks amplifies their performance penalty: with

PCIe 4.0, up to five 16-lane PCIe slots per CPU socket, and each NIC/GPU saturating a PCIe 4.0

x16 slot, simply staging data through an AMD Epyc 7413’s CPU memory can take more than

60% of the available CPU memory bandwidth, effectively starving data-intensive CPU tasks,

and that is using each PCIe link just in a single direction.

Challenge #3: Increased network buffers pressure due to diverse paths and limited memory,

under heterogeneity. Each data transfer across two machines requires at least two buffers to

be active for the duration of the data transfer: the source buffer in the sender and the target

buffer in the receiver. Concurrent transfers require multiple buffers to be active on each side

simultaneously. Furthermore, even if a transfer finishes, the buffers can not be released back

to the engine until the corresponding notification arrives, which can be delayed, e.g., due to

notification batching.

In internally homogeneous servers, the NUMA node of the target buffer was of little impor-

tance, as rebalancing was less frequent and the relative penalty small. As a result, existing

approaches were sharing the buffer pool of each server across multiple connections, assigning

a limited number of buffers to handle a big group of incoming data streams – the routing

of those buffers to the corresponding processors was without any data movement. Device

heterogeneity, however, i) amplifies the NUMA effects due to the interconnects and the variety

in memory bandwidth across CPU and GPU memories, ii) requires different incoming rates

for each input and target device stream to operate optimally, as even when the server-inbound

data are transmitted at line rate, inside the server, they should be distributed across the devices

based on their relative performance, and iii) low memory capacity devices (GPUs) have a

low number of GPU-resident network buffers, despite the high-bandwidth network needing

only a few seconds to write to their full memory. Thus, data shuffling must carefully manage

the limited network buffers per device, without exhausting the device memory and while

supporting a variety of offloading rates.
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Summary. GPUs offer both additional analytical processing power to CPUs but also processing

skew across the devices and diverse capabilities that cause different queries to exhibit different

acceleration benefits. As a result, efficient and scalable analytical engines must i) efficiently

load balance tasks across the devices, despite the server boundaries, ii) minimize unnecessary

interference caused by the orchestration mechanisms, and iii) efficiently manage the limited

system buffers, despite the diversification of the buffer types.

7.5 Composable CPU-GPU Orchestation

RuSH overcomes the communication and coordination challenges imposed by heterogeneity

by representing query execution as a dataflow execution graph, combined with a separation of

concerns across the OLAP components. Specifically, RuSH is based on three key observations:

i) bulk data transfers have a sequential access pattern that, based on the current interconnect

and memory bandwidths, often challenges the status-quo of preferring local data processing,

ii) the bulk processing throughput dictates whether a local device is overloaded or not, and iii)

using asynchronous bounded queues of pending tasks allows composable load-balancing.

7.5.1 Dataflow for Heterogeneous Processing

RuSH uses a dataflow execution model to enable load-balancing across the CPU-GPU device

of multiple servers. Specifically, the query plan is treated as a dataflow graph [3, 20, 29, 40, 103,

104], composed of multiple pipelines that are connected to each other. Tasks flow through

the pipelines: a task enters a pipeline and results in the pipeline producing zero, one or more

output tasks, depending on the operations in the pipeline, that enter the next pipeline in the

graph.

Each pipeline is instantiated multiple times, creating multiple flows. Each instance runs in

a specific machine and processing unit. Routing points control the exchange of tasks across

pipeline instances and, due to the flow-centric execution, they can differentiate between

fast and slow paths, even if the stagnation happens in a later part of the flow. To support

different execution sub plans for CPUs and GPUs, we allow the query execution plan to diverge

from a traditional tree structure into a directed graph with potentially different paths for each

compute target, similar to prior work [23, 76]. The paths may converge, even in the middle of

the plan, and split again, for example, to reshuffle tasks across devices.

Each node pushes its output to the next one, one at a time, but the output can be a full rowset

(block-at-a-time execution mode), similarly to vectorized execution [15]. However, operators

may as well output single tuples through the same interface, as long as the next operator

supports it. The query plan leaves are segmenters [23]: special nodes that output the available

input chunks – essentially a set of rowsets. Relational operators, like join and aggregations,

logically operate in a tuple-at-a-time mode; however, as we fuse consecutive operators during

code generation, the result is tight loops between (un)packing [23, 60] and pipeline breaking
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points [27, 63]. Except for very low-cardinality cases, the execution plans transmit a block-at-

a-time near the device-crossing points to amortize communication overheads. Note, though,

that passing a block across two operators does not imply a data movement: this is delayed

until an actual mem-move operator [23]. Similarly, data access to the contents of a block is

delayed until there is an unpack operation.

We instantiate each path multiple times, with each instance creating a logical execution flow,

similarly to a pipeline. The number of instances depends on each path’s degree of worker

parallelism and uses routing points to merge and split control flows, similarly to HetExchange.

Each flow passes through a specific sequence of devices; for example, a flow may be passing

through CPU1 of server 3, followed by GPU0 of server 3, CPU1 of server 3, but it would not

be possible for the same flow to pass conditionally from GPU0; instead, for conditional use

of the GPU, a different flow would be created and a routing point before the flows would be

responsible for selecting the corresponding path. This flow linearity enables RuSH to estimate

the relative throughput of each flow. Thus in routing points, it can distinguish between

logically-equivalent flows (flows that apply the same operations) but physically distinct ones

(flows that use different device sequences) that exhibit different performance.

Asynchronous operations for overlapping and parallelization. To exploit the available paral-

lelism and hide system latencies, all operations that cross-device or server boundaries operate

asynchronously: when a routing point receives a task from one of its input flows, it will route

it to one of its outputs and immediately return control to its input flow, without waiting for

the task to be picked up by the output flow that will consume it. As a result, multiple output

tasks of a routing point may be pending as well as run in parallel: the routing point receives

the input, places it into a queue, and returns, while another thread of the routing point is

responsible for handling the rest of the tasks’ work. Furthermore, this asynchronicity allows

RuSH to hide latency that would otherwise be incurred for waiting for tasks to be sent over the

network, scheduled into devices (e.g., GPU kernel launch), and completed.

Bounded queues for composable load-balancing. RuSH bounds asynchronicity to enable

composable load-balancing across the servers and despite the hardware heterogeneity or

reduced load visibility across servers. Specifically, by having infinite queues, RuSH would

invalidate the flow linearity benefits as every asynchronous point would look like an infinite

throughput flow, resulting in no visible difference between fast and slow paths. To avoid that,

RuSH uses bounded queues in all asynchronous points: the operation is asynchronous as

long as the number of pending tasks does not exceed a specific threshold – if it does, then the

operation stalls until a free slot is created. This way, the input flow is frozen, and the processor

can be used for another flow if any. Even more importantly, if a flow stalls, its input flow will

eventually also have to stop sending tasks into the stalled flow, as the queue in between will

fill up. Similarly, if all devices inside a server become overwhelmed, all the flows will stall

and the queues towards that server will also fill up, resulting in a composable load-balancing

beyond the server boundaries: if a server has to slow down due to the load, this information is

implicitly captured by the number of pending tasks in the queues towards that server.
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Figure 7.1: The operators orchestrating execution of two servers. Cloud: a data chunk gener-
ated on one of the GPUs. Red & purple arrows: a control message and a data fetch.

Implicit and explicit resource sharing. Each server hosts multiple devices; thus, multiple

flows share the same resources, such as an inbound NIC connection. This can result in the

processors behind the NIC having available cycles, the network being saturated, and still,

none of the ingress flows to the server to seem congested as they underutilize the bandwidth,

creating a scheduling issue. Our design aligns the queues with the hardware resources to

propagate backpressure not only for explicitly used resources but also implicitly shared ones

like interconnects. Specifically, with servers pulling their input, the queue of pending tasks

for the operations pulling the data will fill up and notify its input that it is too busy to handle

tasks, pushing backpressure below the inter-server routing.

7.5.2 Delayed Data Transfers

Decoupling data- and control-flow. For efficient execution, data should be offloaded to a

remote device only when they are going to be processed faster than in the local device. Such a

decision requires knowing: (i) whether the data-local device has enough processing capacity

to consume them and, (ii) which one is the target device. The former depends on hardware

characteristics, data and operations to be performed, while the latter depends on the load of

remote devices and the interconnects in-between.

A traditional approach would keep track of the load of each device in the system and perform

global optimization to decide where to offload the task. Global optimization requires every

server to report the data chunks that it consumes. However, as the internal bandwidth of

each server can reach up to terabytes per second, communication on the data chunk granu-

larity quickly introduces unnecessary monitoring and synchronization: instead of globally

optimizing based on how exactly each server consumes its tasks, we only need to know if a

server has the processing capacity to accept tasks from another server and, e.g., details on

how it processed its own tasks are unnecessary. Thus, we split the decision-making into local

decisions with the observation that devices behind an interconnect can be abstracted as a

single device for the scope of deciding whether to offload the task – enabling RuSH to reduce
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the monitoring requirements. Specifically, contrary to a global optimizer, RuSH 1) only sends

peer-to-peer messages, 2) only for offloaded tasks, and 3) it sends no inter-node notifications

for tasks consumed in their initial node.

We enable local decisions while avoiding excessive transfers by decoupling the control-flow

from the data-flow to allow delayed data fetching. Specifically, we create a three step-decision

process that aligns each decision with the hardware boundaries: First, a rack-scale router

operator decides whether a data chunk should be consumed on the local machine or whether

it should be sent to a remote one, similar to an Exchange [30] operator. Then, the rack-scale

router on the target server redirects the task to a local router [23] that selects a local compute

unit for consuming the task. If the task requires data transfers, the router on the target server

redirects the task to a rack-scale mem-move operator that fetches data directly from the source

device to the consuming one. Finally, while load-based task-offloading is an interesting case,

the rack-scale router has various policies to decide the offload target, including locality-based

policies to prioritize local processing and hash-based policies for partition-based shuffling.

The rack-scale router keeps track of how many tasks it has offloaded to remote servers as

well as to the local machine. Further, it collects completion notifications from remote rack-

scale routers about tasks it offloaded. These notifications are used for load-balancing: when

deciding where to offload a task, it avoids machines that have too many uncompleted tasks.

Thus, machines with fewer uncompleted tasks represent faster machines with respect to

the current server, regardless of whether they are faster because the rest are busier or have

fewer processing resources. Essentially, the amount of offloaded but uncompleted tasks

represents the throughput that a given machine can achieve by offloading tasks since instead

of measuring throughput in terms of line bandwidth, and it encapsulates the load of work and

how appropriate the remote server is for the offloaded tasks. Finally, each rack-scale router

receives tasks from remote instances, and hence it is also responsible for notifying them as

soon as it pushes a task to the next operator.

In contrast to the Exchange operator [30], the separation into multiple steps allows fine-

grained decisions, with each part of the decision-taking place on a different server, allowing

access to server-local information about interconnects and device utilization. Furthermore,

while HetExchange [23] follows a similar control- and data-flow separation, our multi-stage

decision process breaks the dependency of the HetExchange’s router operator to a global,

inter-server state. Finally, while Rödiger et al. [84] also separate intra-node and inter-node

routing decisions, they rely on the processor uniformity inside each server to prepare to receive

buffers in a round-robin manner across the NUMA nodes and use work-stealing to handle

intra-server load imbalance. Instead, RuSH uses the router to decide the next device/NUMA

node receiving the data based on runtime information.

For example, Figure 7.1 shows two servers, each with two NICs (brown boxes) and two GPUs

(green boxes). A plan that uses both servers would contain a rack-scale router to move the

control flow across the two servers, followed by a router to orchestrate the execution internally
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to each server and a rack-scale mem-move to transfer data across the servers. Each of the

two router operators would be instantiated once per server, while the rack-scale mem-move

would be instantiated, in each server, as many times as the parallelism dictated by the router

before it. The rack-scale router is depicted in the middle of the figure, as the two instances

would be interconnected and exchange task descriptions. Assume now that the left-hand

side server decides to offload a task to the second server, and the data corresponding to that

task are loaded on the GPU memory (red cloud). First, it will send a message to the rack-

scale router instance on the other server, with the description of the task and the references

to the corresponding data chunks, but without moving the data chunks themselves. The

instance on the right-hand side server will receive the task and push it to the local router. If the

router is too busy with pending tasks, it will block waiting for the server to complete enough,

incurring back-pressure to the rack-scale router, which would eventually propagate to the

remote server’s router. As soon as the router gets a free slot, it will receive the task from the

rack-scale router, and the latter will notify its counterpart on the other side that the task is

completed. Then, the router will inspect the intra-server load and decide on a device to offload

the task, pushing it to the corresponding mem-move. If the mem-move is busy, it will stall the

router, generating the aforementioned back-pressure towards the remote server. Otherwise, it

will trigger an asynchronous RDMA read to fetch the data directly from the left-hand side GPU

to the right-hand side one. As soon as RDMA reads complete, mem-move will push the task

to the next operator, possibly a CPU-to-GPU operator, to transfer execution to the GPU and

consume the task.

Data movement. In contrast to traditional architectures that try to minimize data movements,

the memory and interconnect ratios generate data flows from the main, in-memory, CPU-

resident, storage to other devices in the system. With the inter-server interconnects achieving

similar bandwidth as intra-server ones, GPU-accelerated analytical engines are often called to

efficiently transfer the data across servers so that queries can use remote devices as if they are

local.

To encapsulate the data transfers across servers, we use the rack-scale mem-move operator.

The rack-scale mem-move is responsible for overlapping data transfers as well as picking the

most appropriate data path to transfer the data. Specifically, when a rack-scale mem-move

receives a task that requires data chunks from a remote server, the operator decides which

NICs to use to fetch the data based on the system topology: The router dictates the target

device, and the mem-move finds the closest, in terms of interconnect bandwidth, NIC that

has access to the target device memory. Then, it spawns the transfer and registers itself for

a notification completion, as described in Section 7.6. While waiting for the notification,

rack-scale mem-move continuous to the next input entry to allow multiple on-the-fly transfers

and thus achieve better network bandwidth utilization. For load-balancing purposes, however,

it limits the number of pending notifications for each instance, thus creating back-pressure

to the previous operators and causing work to shift towards alternative paths, if the operator

becomes overloaded. As soon as a completeness notification arrives, rack-scale mem-move

pushes the now local data chunks to the next operator.
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Data pulling and task pushing. Operations that pull data perform read operations: they

allocate a local buffer and pull the remote data. Then they are free to release the source

staging area. Operations that push data are seen in two variants: the data broadcasting

operation, which multicasts the source buffer to multiple other machines and thus it has to

allocate remote staging areas, and the task offloading operations that communicate offloading

requests to remote machines through writes to a predetermined remote ring-buffer and thus

only require remote memory allocation during the opening of a pipeline.

7.5.3 Buffer Allocations and Message Directionality

The high-bandwidth networking combined with the limited memory of accelerators means

that staging areas are a scarce resource. With 48 GB GPU memory and ~12 GB/s of network

bandwidth available to each GPU, the GPU memory can only withstand 3 seconds of ingress

traffic without consuming it. Considering that under the general case the same memory is

used for holding hash tables and other data structures, with a 10% allocation of the memory

space to staging, the ingress time is already down to 0.3 seconds. A naive implementation that

partitions this region across the connected servers would drop this number down to 100 ms

even with a cluster of 4 machines. If, on the other hand, we partition these buffers across the

devices of the cluster, with four devices per node, we get 25 ms. Meaning that careful staging

area management is needed to hide irregularities in ingress traffic and avoid idle time on the

critical system resources.

Data-flow through one-sided RDMA operations to control target buffer. Network manage-

ment and maintaining multiple on-the-fly operations introduce overhead to both the receiver

and the sender side. To reduce the overhead, rack-scale mem-move relies on a one-sided

RDMA read operation to bypass the remote CPU and directly read from the remote CPU/GPU

memory to the local one. Furthermore, while big data chunks and fully materializing stages

simplify communication, they harden load-balancing and impose memory capacity restric-

tions which are amplified by the scarce memory on the accelerator. Thus, RuSH relies on data

chunks that are small enough to allow load-balancing and require only partial materialization

by the stages before the data exchange, but also big enough to amortize the communication

overheads. In our implementation, we inject partially materializing operators that generate

rowsets in a columnar format (containing only the required columns), in chunks of approx-

imately a huge page (although the exact size depends on the relative size of the attributes).

Thus, each task arriving at the rack-scale mem-move is a set of MB-sized chunks, over which

the rack-scale mem-move amortizes the network management cost.

The task arriving at a rack-scale mem-move contains a data handle and a source server for

each of them. When the rack-scale mem-move sees that a block is on a remote server, it

spawns an RDMA read operation and puts a handle that keeps track of the operation into the

task descriptions. The task description is then placed into the queue that resides between the

producer and consumer part of the rack-scale mem-move. The producer is then allowed to
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return to its caller to generate the next task. The consumer pulls tasks from the queue and

waits for their completion. If when the producer tried to place a task into the queue and the

queue is full, then it stalls to create backpressure for the linearity described above.

Regardless of the overlapping degree, however, architectural choices in current hardware

may limit the bandwidth available for some paths. To overcome such limitations, rack-scale

mem-move provides two alternative operation modes for transfers to/from GPUs: (i) direct

transfer mode that transfers data directly to the target device and, (ii) hybrid transfer mode

that uses intermediary hops to recover lost bandwidth due to the GPU-direct accesses. The

direct transfer mode minimizes the interference to CPU memory, and it’s the optimal one if

the NIC-to-GPU communication can use the full bandwidth. Nevertheless, the hardware [68],

like some CPU IOH, limits the available bandwidth, in which case rack-scale mem-move

reverts into hybrid transfer mode. In hybrid transfer mode, RuSH takes advantage of the

throughput-oriented execution nature of analytical tasks: it sends part of the traffic through

the CPU memory, introducing an intermediary staging area and additional latency, albeit

achieving the NIC-to-GPU transfers at the bandwidth of NIC-to-CPU ones by overlapping the

CPU-to-GPU transfer step with the next NIC-to-CPU data transfer.

While one-to-one data transfers are handled as late as possible to improve load balancing,

broadcast operations, e.g., for a broadcast-based join, know a-priori the target machines. Thus

we improve the network usage by performing broadcasts eagerly. Specifically, we send the

broadcasted data once to each machine and let a consecutive local operation broadcast them

across the machine devices later on. While sending the data, the rack-scale broadcast invokes

one-sided RDMA write operations to each machine to write the data without interrupting the

remote CPUs. For all but GPU-only execution, the broadcast performs the RDMA write to the

remote memory with the highest source-memory-to-network-to-memory bandwidth, which

is the CPU memory in all our configurations. As the normal data transfers, the broadcast oper-

ation also performs the operations asynchronously to allow queuing consecutive operations

and hiding the network latency.

Back to Figure 7.1, if the rack-scale mem-move supports up to two on-the-fly operations,

then all routers will send the tasks to the same rack-scale mem-move. Therefore, there will

be three tasks originating from the left-hand side server. The first two tasks will arrive at the

rack-scale mem-move, which will trigger the RDMA reads to read the corresponding data

chunks from the remote memory directly to the local GPU memory without the intervention of

the remote CPU. If the third task reaches the rack-scale mem-move before any of the transfers

are complete, then the mem-move will hold the tasks and wait for a transfer to complete,

before returning to the router by signaling the oversubscription and applying back-pressure to

the previous operators, essentially notifying them that they should preferably pick a different

path. As soon as all RDMA reads for a task are complete, the mem-move will push the task

to the next operator, replacing the remote data chunk handles with the corresponding local

77



Chapter 7. Inter-server: Rack-Scale Analytics through Accelerator-Level Parallelism

ones. Furthermore, it will release the ownership of the remote data chunks back to the remote

server, and it will continue with the chunks for the third task. If any of the chunks are already

local, it will skip the remote data transfers, and it will do the local data transfers if any.

Control-flow through two-sided send/recv communication to avoid remote buffer allo-

cations. RuSH minimizes the remote buffer allocations that are required for control-flow

operations using two-sided communication. In contrast to data-intensive memory moves,

task offloading by itself only transmits a short description containing the task & connection

identifiers and the data chunk handles, but not the data itself. Furthermore, control messages

are always be handled by the CPUs, and due to their small message size, receiving the message

to a CPU socket different from the one that will process the offload requests has a negligible

performance impact compared to the overheads of sending many small messages for buffer

allocations and message notifications. RuSH exploits the insensitivity of the offload message

affinity to offload message receival to the network manager: control-messages are sent and

received using two-sided communication, with the network manager preparing a receive

buffer for such messages – as a result, buffer allocation for receiving tasks is done locally on

the receiving end.

7.6 Inter-server Infrastructure

To support the high-level operations described in Section 7.5, we build a network manager

tailored to the GPU and InfiniBand requirements for high bandwidth data access. Specifically,

both GPUs and InfiniBand NICs require memory to be registered and page-locked to allow

efficient access and address translations across the different units. To reduce the registration

overhead and allow efficient data transfers, despite the uncertainty of which data chunks will

be transferred internally or outside the server, we co-design the networking infrastructure with

an accelerator-oriented block manager that provides access to transfer-optimized memory.

When PCIe devices communicate between them or access CPU memory, they require: (i) that

the memory is page-locked so that it is not, for example, swapped out without the knowledge

of the accessing device and, (ii) in the case of a virtual address, they require the translation

from the virtual to the physical memory for during access. To guarantee the first one as

well as prepare any relevant accelerator-specific metadata, both GPUs and InfiniBand NICs

either require pre-registering accessed memory or more recently, allow potentially more

expensive, on-demand registration and paging. For example, NVIDIA CUDA allows allocating

pre-registered memory or registering pre-allocated memory. Similarly, InfiniBand verbs

provide an interface to register memory and retrieve an access key that remote devices use to

access local memory.

The delayed decision making about data transfers conflicts with the requirement for placing

to-be-transferred data without unnecessary copies into memory which is optimized for the

transfers, since the information about whether and where the data will be transferred is

unknown at (partial) materialization time. To overcome this limitation while avoiding costly
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registrations in the critical path, we maintain a block pool per NUMA node (including GPU

NUMA nodes) that serves as a memory pool of memory registered with both the GPUs and the

NICs. Furthermore, for InfiniBand registrations, the corresponding keys are distributed to the

participating OLAP engine instances. Maintaining this memory allows operations to write in

any block allocated from this pool without any registration overhead to get memory that will

allow full bandwidth transfers independently of whether they are inter- or intra-node.

Operations like the RDMA write performed during the broadcast require remote memory that

is also pre-registered. While an operation could fetch such a handle, the network manager

periodically prefetches blocks from remote nodes to serve operations with remote block

handles without incurring a network round-trip. Specifically, for each remote NUMA node, the

network manager maintains a pool of remote blocks that, from the perspective of the remote

machine, appear allocated, but the local network manager can directly provide them to local

operators requiring remote blocks. As our current implementation never requires a remote

GPU block, we only prefetch CPU-resident blocks to reduce GPU memory pressure.

Finally, our data-flow design has multiple rack-scale routing operators active at the same time,

requiring a varying number of connections per query and time step. To avoid the connection

setup and managing overheads, we instantiate one connection per pair of NIC devices and

virtualize multiple flows over the same connection. For example, if a plan has three rack-

scale routers requiring communication between NIC A and B, all the communications would

happen across the same InfiniBand connection, and the network manager will multiplex them

to both batch notifications and avoid creating unnecessary short-lived connections.

7.7 System

We implement RuSH in Proteus, a code-generation-based DBMS. To integrate RuSH, we

introduced the new operators, the networking manager and update the block management

infrastructure to register the blocks with the GPUs and InfiniBand.

Code generation. Proteus uses LLVM to generate code: the operators generate LLVM IR,

calling into CPU and GPU backends for low-level operations that are common for both device

types but specialized differently for each of them. The final LLVM IR for both the CPU and the

GPU is passed through the compiler passes of LLVM and then CPU code is directly compiled to

binary and loaded for execution, while GPU code is converted to PTX and passed through the

CUDA driver API for the final compilation steps, before loading it for execution. The generated

operators call interface with the network manager by calling into C++ code. Specifically,

RuSH’s meta-operators generate thin interfaces that extract or invoke the offloaded tasks and

then call into generic C++ code as there is little specialization for those – except for injecting

the routing policies. Then, the meta-operators’ C++ code calls into the managers to execute

the actions described above.
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Placement into the system architecture. RuSH optimized the runtime performance of the

analytical engine. To that end, it adds the infrastructure for scalable analytics through the

code generation modules for the new operators, the network manager. RuSH plugs into the

block manager as an additional registration call to register the transfer-optimized blocks with

the InfiniBand and GPU runtimes. The new operators are currently placed into the plan

through simple heuristic plan shapers exactly above the segmenters and after aggregation

steps; however, our design is compatible with existing approaches for placing the operators

during query optimization. Lastly, RuSH installs a routine in the Proteus to listen to remote

query invocations instead of waiting for commands from the default local query planner and

the corresponding call on the arrival of a new query into a node.

7.8 Evaluation

Experimental setup. To evaluate RuSH, we integrate it in Proteus, an analytical engine that

uses LLVM to generate code for the available CPUs and GPUs. The experiments use a four-

machine cluster interconnected through InfiniBand EDR. Each machine has two Intel Xeon

Gold 5118 CPUs @ 2.30GHz, with 12 physical cores per socket. Each CPU socket has an NVIDIA

Tesla V100S GPU with 32 GBs of memory and a dual-port Mellanox MT27800 ConnectX-5

EDR InfiniBand NIC, both connected to the local CPU through a dedicated PCIe 3.0 x16 link,

totaling two GPUs, four 4x EDR links per server and 376 GB CPU memory. While the NICs are

dual-ports, the second port is built for redundancy as the maximum bandwidth each NIC can

achieve is limited by its PCIe 3.0 x16 link to 12.5 GB/s, effectively the same as a single port

switch. Furthermore, one of the machines uses NVIDIA Tesla V100 GPUs instead of V100S.

Methodology. Similar to prior work on GPU-accelerated analytics [18, 23, 102], we use the Star

Schema Benchmark [71] (SSB) as well as scan-heavy aggregation queries to evaluate RuSH

against CPU-only and GPU-only execution, both in data shuffling, potential acceleration,

scalability as well as the adaptiveness of rack-scale hybrid execution across the different

configurations. For all the SSB experiments, we use scale factor (SF) 1000, and 4-byte columns

– generating a total of 24 GB of binary data per column. We do not employ any compression; all

data are warmed-up in CPU memories before the first measurement and equally distributed, in

a collocated manner, across the servers. All plans use broadcast-based joins, with shared hash-

tables across the CPU cores, similar to morsel-driven parallelism [51]. Parallelization across

the devices happens, inter-server, through the rack-scale router, and intra-server through

simple routers. For the CPU- and GPU-only baselines, we use the same system and prune the

unnecessary paths during the instantiation of the plan. Specifically, for CPU-only execution,

we prune the device crossing operators and all routers consider only CPUs. Similarly, for

GPU-only execution, we force all relational operators to execute on the GPUs, by adding

a device crossing operator below the first relational operator. During code generation, we

specialize each pipeline to its target device, similar to HetExchange [23] our code generation

specializes each pipeline to the target device. While our implementation supports zero-copy

caching of the transferred input data to the target machine, we disable it to force each query to

80



7.8 Evaluation

Figure 7.2: Execution time vs network bandwidth

transfer its data. We report the average execution time of prepared plans across five iterations.

As a baseline, except if otherwise mentioned, we use HetExchange [23] augmented with lazy

CPU-to-GPU transfers [83] and Morsel-driven [51] parallelism for the in-CPU workers of

HetExchange.

7.8.1 Evaluating the CPUs-GPUs-NICs Interplay

GPUs. To illustrate the GPU potential, Figure 7.2 shows for how many queries each of the

CPU, GPU, and Hybrid execution is faster than sending the data over the network (black line).

For all configurations, we preloaded all data in the CPU memory. In all cases, the engine is

NUMA-aware, and while it prefers local data consumption, it load-balances to send data out of

an overloaded device, when applicable. The CPU is faster than the network only for SSB query

group 1 and the very selective ones. For queries with lower selectivity and more join probes

(accounting for the selectivity of the first joins that reduce the probes perform for subsequent

joins), CPU-only execution takes more time than transferring the input data over the network.

Instead, GPU and hybrid execution are faster than sending the data over the network.

NICs. Figure 7.3 shows the theoretical maximum access bandwidth achieved by different

CPU, GPU, and Hybrid execution configurations, for data fetched from (i) CPU memory, (ii)

GPU memory, (iii) data evenly distributed across the two memories, (iv) data placement

that maximizes input bandwidth for each case, and (v) over remote data fetching over the

network. For simplicity, the reported access bandwidths assume a standard configuration with
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Execution model (GB/s)
Data CPU Hybrid GPU Capacity
CPU 100 100 12.5 1-10 TB
GPU 12.5 1000 1000 16-80 GB
C+G (50%-50%) 22.2 200 24.7 <160 GB
C+G (Per-Config Opt) 100 1100 1000 varies
Remote 12.5 12.5 12.5 Inf

Figure 7.3: Bandwidths for various data placements and execution models, assuming PCIe 3
x16 and InfiniBand EDR 4x

one GPU and one NIC per CPU socket, assuming 1TB/s GPU memory bandwidth, 100GB/s

CPU memory bandwidth, and 12.5GB/s per-device interconnect and networking bandwidth –

similarly to the Intel Xeon Skylake CPU, NVIDIA V100S GPU, and NVIDIA Mellanox EDR NIC of

our main cluster. All numbers are reported per CPU socket. For newer hardware generations,

similar values (multiplied by a factor) hold at the moment: PCIe 4 has double the bandwidth

of PCIe 3, NVIDIA A100 has double the GPU memory bandwidth, HDR InfiniBand doubles the

EDR bandwidth, and Intel Xeon Ice Lake reaches almost 190GB/s.

Capacity-wise, CPU memory can hold up to a few TBs of data. In contrast, existing GPUs

can host a few 10s of GBs, with NVIDIA A100 and H100 GPUs providing configurations with

80 GB device memory. The evenly partitioned data configurations are capped to 160 GB

– double the GPU memory, by definition. While such a configuration improves the access

bandwidth for both GPU-only and Hybrid execution compared to CPU-resident datasets, it is

still slower than accessing GPU-resident data for Hybrid execution: the CPU consumes only

10% of its data by the time the GPU is done with its local data. Then, the execution waits

for the CPU to finish and even pulling data to the GPUs will not improve the bandwidth as

the memory bus is the bottleneck. Instead, tuning the percentage of the data distribution

based on the execution model (fourth line) provides the highest access bandwidth for all

three execution methods: CPU-only execution benefits from CPU-resident data, GPU-only

execution from GPU-resident data, and hybrid execution from distributing the data reversely

proportional to the access bandwidth of each device to its local memory. However, each of

these configurations provides a different capacity: CPU-only and GPU-only are capped by the

CPU and GPU memory respectively, while Hybrid is capped by the GPU memory plus the 10%,

as the CPU has approximately an order of magnitude less bandwidth to its local memory than

the GPU to its local memory.

Over-the-network data fetches are performed with almost the same bandwidth for both CPU

and GPU accesses. In addition, for device-local data, the GPU outperforms the CPU by

almost an order of magnitude additional bandwidth, while hybrid execution outperforms

both by combining the different, independent, memory bandwidths. Essentially, from a

throughput perspective, in a well-balanced, in terms of accelerators, modern server, it is better
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Figure 7.4: Various execution methods and placements: i) an aggregation across 4 columns
(left), ii) a 3-join query (right).

for incoming remote data to reach the GPU that has the high memory bandwidth, than the

slower-memory CPU which only serves as a higher capacity memory tier for large intermediate

results.

CPUs. Figure 7.4 shows how the query complexity and data placement affect the effectiveness

of CPU-only and GPU-only configurations. Specifically, we run a scan-and-sum query over 4

SSB columns (Figure 7.4.i) and a 3-join query (SSB Q3.1, Figure 7.4.ii), for three data placement

configurations: CPU-resident data (dashed lines), GPU-resident data (thick dash-dotted lines)

and CPU-GPU-resident data (solid lines). For the latter, we split the dataset horizontally and

place up to 24 GB of data into each GPU and the rest, if any, on CPU memory. CPU-resident

data provide the highest access bandwidth, with only two exceptions: (i) the capacity-limited,

GPU-resident data case and, (ii) the CPU-GPU-resident case where the benefit depends on

the fraction of the data that fit in the GPU memory; naturally, as the dataset size increases, the

GPU fraction becomes smaller, and the benefits over CPU-resident datasets diminish. While

for the simple scan-and-sum query CPU-only execution has a consistent performance near

the optimal regardless of the input size, with three joins the overhead of random accesses

causes up to 2.4x slowdown versus hybrid execution.

7.8.2 Data Shuffling and Saturating the Network

Methodology. In Figure 7.5, we use the Star Schema Benchmark and force each server to shuf-

fle its local data to a specific server, to evaluate: i) the potential of each of the execution modes

to saturate the network bandwidth for shuffling-heavy queries, ii) whether any execution

mode is slower than the network bandwidth and, iii) the potential of RuSH to overlap data

transfers with execution. Specifically, we distribute the input data equally across the servers,

and provide a query plan that makes each server receive data from exactly one other server.

For all queries, the plan contains a local pre-aggregation per (CPU core/GPU device) after the

joins and the final result is collected at a single server for the final aggregation.
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Figure 7.5: SSB (SF1000) with forced fact table shuffling to introduce network pressure.

The rack-scale router handles inter-server control transfers, and the rack-scale mem-moves

handle the data transfers. As we force the rack-scale router to send its data to a specific

node, load-balancing across servers is effectively disabled; nevertheless, inside each server,

the local router load balances across the available devices: in the CPU-only and GPU-only

execution modes, the router load-balancing across the CPU cores and the GPUs, respectively,

while for Hybrid execution, the router has to load balance across both CPUs and GPUs. In

all cases, the rack-scale mem-moves have to consider the NUMA locality (including whether

the memory node is on a CPU or GPU) to transfer the data based on the intra-server load-

balancing decisions. Given that the working set for each of the Q1.1-Q3.4 is 96 GB and for

Q4.1-Q4.3, it is 144 GB, we have 8 EDR links (2 links per server). As we force remote, eager data

transfers, given the optimal transfer rate of ∼12.5 GB/s×8=100 GB/s, the minimal execution

time is the time to transfer the data over the line. That is, 0.96 s and 1.44 s for queries of groups

1-3 and 4, respectively.

CPU-only execution achieves near-line-speed execution times for most of the queries, but

not all, as shown by the blue bars of Figure 7.5. For queries Q3.1, Q4.1 and Q4.2, CPU-only

execution is bottlenecked by the random accesses performed by the join: while there is enough

network bandwidth to send/receive data, the join causes the CPU to have a throughput lower

than the incoming data throughput when probing the hash-tables with tuples from the fact

table. In contrast, their more selective counterparts (Q3.2-4 and Q4.3) join the same tables

but due to the higher selectivity of the first joins they prune random accesses required by the

latest joins reducing the memory bus load. Essentially, these three queries would benefit from

additional CPU memory bandwidth, but keeping the aggregated CPU memory bandwidth

constant and adding additional network links would provide little benefit. For the rest of the

queries, CPU-only execution saturates the network bandwidth, becoming bottlenecked by

incoming data transfer rates. There is, however, a small deviation from the line-speed rates in

multiple queries, including queries of groups 3 and 4. This deviation is caused by the pipelines

used to build the hash-tables for the joins: while the input data for the hash-tables are orders

of magnitude smaller than the big fact-table, when scaling to 4 servers, the building time

becomes non-negligible.
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GPU-only execution (green) has a consistent behavior with respect to the network bandwidth

across the SSB SF1000 queries; nevertheless, it’s still far from optimal: CPU-to-GPU transfers

do not always saturate the EDR 4x links due to IOH limitations. Overall, in queries Q1.1-Q3.4,

GPU-only execution achieves a throughput (input data over execution time) of 8.7-9.6 GB/s

per EDR link, similar to the Linux RDMA perftest utility. Q4.1-Q4.3 sees a lower throughput

(6 GB/s) due to the increased overhead of build phases and broadcasts happening between

the GPUs for the hash-table allocation and creation.

To overcome the bandwidth limitation imposed by the IOH of our hardware, we allow GPU-

only execution with Hybrid data transfers: instead of using GPU-direct transfers, the rack-scale

mem-move stages data through the CPU memory. This allows the full network bandwidth

that the NIC-CPU connection allows, with GPU’s reliability in overlapping computations with

network transfers – resulting in the best of both worlds.

Lastly, with Hybrid execution, RuSH is responsible for not only transferring the data across

the nodes and load-balancing between homogeneous resources but also selecting the most

appropriate execution units (rate of tasks consumed by CPUs versus GPUs) on each server.

As in all the queries of Figure 7.5, executing the query at network line speed is the optimal

execution time, Hybrid would have the optimal performance if it achieves the same execution

time as GPU-only with Hybrid transfers. In all the queries, Hybrid achieves execution times

similar to GPU-only execution; nevertheless, it sees some small performance penalties due to

i) having to build hash-tables on the CPU-side, which is slower than building them only on

the GPU-side, causing most of the Hybrid queries to the aforementioned penalty and, ii) an

additional overhead in queries where the CPU-only execution is significantly slower than GPU-

only. When CPU-only execution is significantly slower than GPU-only execution, then tasks

scheduled to the CPU can cause long tails in execution times, hardening the load-balancing

task of the routers. Nevertheless, even for queries, like Q3.1, Q4.1, and Q4.2, where the CPU

is significantly slower, Hybrid execution sees only slightly slower execution than GPU-only,

despite the additional load-balancing complexity it handles.

7.8.3 Locality-aware Rack-scale Execution

Methodology. In Figure 7.6, we use the Star Schema Benchmark and, this time, allow RuSH

to load balance based on the workload and data locality, to evaluate: i) the performance

of each execution model on a rack-scale environment, ii) the orchestration decisions and,

iii) the capabilities of the load-balancing and direct transfers employed by Hybrid execution

to appropriately combine the different device types. Similar to the previous experiment, we

pre-load the data into CPU memory before the first query execution. The optimal execution

for the current setup, however, given that the data are equidistributed and uniform, is to

execute each data chunk locally and only load balance between the heterogeneous devices.
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Figure 7.6: SSB (SF1000) with CPU-resident data.

CPU-only execution has a similar behavior as the previous experiments, with queries that

were not saturating the bandwidth seeing a small speed-up compared to the data-shuffling

case: ∼25 GB/s per CPU socket that were previously used to send and receive data across the

servers are now available to the CPU to speed up the joining operation for queries Q3.1, Q4.1,

and Q4.2 that were starving for additional memory bandwidth. GPU-only execution sees a

similar pattern: the queries that were previously bottlenecked by the incoming data fetches

can now use fine granularity accesses to fetch their data over the PCIe interconnect, from CPU

memory, overcoming the 12.5 GB/s throughput when selectiveness increases.

Hybrid execution achieves a similar execution time to the best of CPU-only and GPU-only

execution and even better performance when CPU-only and GPU-only execution have similar

throughput, e.g., Q1.2, Q1.3, Q3.3, Q3.4, as it allows combining their throughputs. Similar to

the shuffling case, the high selectivity of the SSB queries combined with the high-throughput

execution, however, leaves little room for load-balancing mistakes, penalizing Hybrid execu-

tion in queries like Q3.1 and Q4.* where sending a task to the slower execution unit can create

tail in execution.

7.8.4 Impact of Different Features

Methodology. RuSH combines a variety of optimizations to achieve efficient execution on

multi-server CPU-GPU platforms. To showcase the impact of each optimization, we incremen-

tally enable the different performance-related features and plot in Figure 7.7 the speed-up

over the single-server CPU-only execution for SSB Q3.1. We use two configurations: i) a

single-server setup to showcase how RuSH’s implementation combines multiple ideas from

prior-art for single-server CPU-GPU query execution and set the baseline for multi-server

execution, and ii) a multi-server setup where we artificially create skew across the machines

by placing 90% of the data in one machine and equidistributing the rest of the data to the

remaining three machines.

Inside a single-server, RuSH uses ideas from HetExchange [23] to parallelize execution across

CPUs and GPUs, providing 2.3x speed-up by enabling the execution engine to exploit the

available GPU processing capabilities. Combined with lazy transfers [83, 102], we observe a

3.8x speed-up as GPU-acceleration benefits from the selectivity of the first joins to reduce the
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Figure 7.7: Breakdown of the impact of different features

data transferred to the GPU. HetExchange’s execution model has each CPU worker be a single

thread and parallelization across workers happens through the router. In contrast, RuSH

follows a Morsel-like [51] approach for CPU workers: (CPU) join instances collaboratively

build and share the hashtable to reduce the execution time for the build pipelines.

For the multi-server configuration, Figure 7.7 uses a configuration with skewed data (90% of

the fact table resides on one machine). As a result, a “multi-server CPU-only” configuration

with a policy that consumes all (fact-table) data on the server where they initially reside sees

almost no speed-up compared to single-server execution. Specifically, for this query, any

acceleration on query execution is offset by the overhead of running the network management,

(de)initializing the communications paths, and gathering data/synchronizing at the end of

the query. In contrast, replacing CPUs with GPUs provides significant speed-up, similarly to

the single-server case – however, as one server has 10% less data than in the single-server case,

multi-server GPU execution is faster than the single-server case. Furthermore, in contrast with

the CPU-only multi-server configuration, the GPU-only configuration sees even less overhead

from the network management, as network management runs on the CPU.

With the GPU having a high advantage over the CPU for Q3.1, the selected setup stresses

hybrid execution: the diversity in processing resources across CPUs and GPUs makes routing

tasks across the two, even inside each server of the multi-server setup, crucial in achieving

efficient execution. RuSH’s two-step offloading such task routing: instead of treating all

devices equally, RuSH offloads first to a remote server and as a second step to a device. As a

result, even when forcing server-local offloading, the ‘+hybrid’ bar can achieve performance

close to combining the throughput of the GPU and CPU probe pipelines – the overhead that

hiders it from achieving a speed-up greater than the GPU-only configuration is time spent on

the build pipelines. Specifically, while the GPU-only execution only builds the hash-table in
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the GPUs, hybrid execution has to also construct the CPU-side hashtables, which becomes

a (relatively to the speed-up) significant overhead as overall execution time decreases with

more servers.

Lastly, the skewed data distribution across the servers creates a load imbalance. Combining

RuSH’s two-stage offloading with its delayed data transfers enables the overloaded server to

push tasks to remote devices, resulting in the speedup shown by ‘+load-balancing’. The first

offloading stage recognizes that the current server, while overloaded, it has an opportunity

to push out data to another server. Specifically, the local GPUs pull data through the lazy

accesses generating a specific throughput on the flows that pass through them. The local CPU

also accesses the local data at a specific, albeit lower, throughput. However, the rackscale

router above these two flows, sees that the flows towards the remote servers have available

capacity that can be used and thus it starts assigning tasks to these flows whenever the local

flows have more than a number of pending tasks. As a result, periodically, tasks are pushed

out to remote servers. In terms of the hardware resources of the server with the 90% of the

data, the PCIe bus to the local GPUs is used to selectively pull data, the bus to the local NICs

is used to sequentially transfer data to remote servers, and the local CPUs use part of the

remaining memory bus capacity for the local in-CPU processing. As there is only one NIC

per CPU socket in our configuration and each NIC has the same PCIe bandwidth as a GPU,

the best someone would expect for Q3.1 from load-balancing would be 2x – as much as using

the NICs to reach out to an equal number of remote GPUs. However, this assumes eager

CPU-to-GPU transfers while GPUs access CPU data in smaller granularity to benefit from

the query selecivity [83, 102], through zero-copy lazy accesses. In contrast, network transfers

require coarser accesses and thus benefit less from the query selectivity. As a result, the

acceleration opportunity from carefully offloading to remote GPUs for the specific query is

approximately equal to the selectivity of the first join (20%), assuming all time is spent on the

probing pipeline. RuSH achieves 10% speedup, with the majority of the missing speed-up due

to the non-scalability of the build-pipelines.

7.8.5 Adaptivity and Scalability

Methodology. To show the potential of RuSH, we evaluate the performance of Hybrid rack-

scale execution. While SSB has multiple joins, combined with its high selectivity, it makes

GPU-only execution near-optimal, misrepresenting CPU-only execution when GPU execution

is performing lazy transfers [83] as the CPU execution is penalized for random access due

to its low-memory bandwidth and GPU execution is accelerating PCIe transfers through

fine-grained and lazy data fetching. Thus, we use a set of mixed SSB and scan-heavy queries.

To showcase the importance of CPU execution, we perform a scalability experiment and plot

the speed-up over single-server CPU-only execution when varying the number of servers for

three different cases: i) SSB queries, in Figure 7.8a, ii) scan-heavy query shown in Figure 7.8b,

and iii) a mix of 50% SSB AND 50% scan-heavy queries, in Figure 7.8c. In the case of scan-
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(a) SSB (SF1000) queries (b) Scan-heavy query (c) Mix of queries

Figure 7.8: Scalability on various workloads

heavy queries, CPU-only execution benefits from the local CPU-memory bandwidth while

the GPU performance is limited as all data are remote to the GPUs, providing execution times

significantly faster than GPU-only execution. In contrast, GPU-only execution benefits in the

random-access heavy SSB queries due to the high internal memory bandwidth. In both cases,

Hybrid achieves similar performance to the best of both, and when using a mixed workload,

it overcomes the limitations of both approaches, providing consistently better execution

times. Overall, all methods achieve near-linear scalability, showing that RuSH does not impose

significant overheads and it efficiently parallelizes execution across servers and heterogeneous

accelerators.

7.9 Related Work

Parallel query execution on CPUs. Traditionally there have been two common analytical

query parallelization strategies: using and orchestrating operators, that are parallelism-

agnostic, through the Volcano’s exchange operator [30], or manually optimizing the parallel

versions of the relational operators [4, 8, 13, 48, 81, 90]. Leis et al. [51] propose morsel-driven

parallelism to consolidate the two approaches: parallel operator versions are used in conjunc-

tion with work-stealing and orchestration of operator pipelines.

RuSH is compatible with the above execution modes for intra-server CPU parallel execution.

However, the aforementioned approaches are tailored for uniform CPU architectures and

architectures that either observe little intra-server rebalancing penalty. In contrast, RuSH

expands to GPU-accelerated architectures, uses a dataflow execution model to allow load-

balancing across heterogeneous processors, and optimizes the resource management for

the highly NUMA configurations of CPU-GPU servers by supporting late data binding and

decentralized network buffer management.

Scale-up analytical query processing on GPUs. Similar to the CPU case, there has been a

substantial effort in using GPUs to parallelize query execution [17, 87, 91], both in terms of

offloading specific operators [43, 57–59, 61, 74, 86, 99], performing pre-query data placement

based on query patterns [18], operator placement for column-at-a-time execution [44] and

full query execution with Ocelot [37] providing a GPU backend for MonetDB, Voodoo [76] pro-
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viding a vector algebra that allows running analytical queries to either CPUs or GPUs, through

the same fronted, SiliconDB [25] aiming accelerators with limited functionality, HAPE [24] spe-

cializing operators to different devices and HetExchange [23] providing multi-CPU, multi-GPU

hybrid query execution.

RuSH builds on top of the above GPU-accelerated engines, but 1) alleviates operators from the

responsibility of managing multiple servers and CPUs, in addition to the GPUs, and 2) does not

require globally accessible memory. Furthermore, while it builds on GPU-accelerated engines,

it provides hybrid multi-CPU, multi-GPU execution, and load balances across the devices.

RuSH uses a streaming model and thus it does not require full (intermediary) materializations.

Lastly, RuSH builds on HetExchange and relies on variants of its operators for intra-server

orchestration. Thought, RuSH also extends HetExchange to rack-scale, modifies its memory

move operators and buffer management to support non-shared-memory architectures and

limited inter-server observability.

Rack-scale query execution and RDMA. Volcano’s exchange operator [30] allows parallel and

distributed query execution across servers as its message-passing-friendly nature makes it

appropriate for shared-nothing scale-out architectures. Binnig et al. [12] discuss how fast

networks affect existing DBMS designs and opportunities for improvement. Liu et al. [55, 56]

proposed using RDMA to alleviate the network stack overheads and propose a data shuffling

operator. Furthermore, they proposed encapsulating the RDMA-awareness in a shuffling

operator. However, Rödiger et al. [84] demonstrate that traditional exchange-based solutions

do not scale in high-speed networks due to overheads caused by the network stack, poor intra-

server load balancing, and high memory requirements. In addition, they use RDMA to reduce

the number of intermediate copies and a hybrid parallelization technique that uses i) an

exchange-based approach across servers, and ii) a Morsel-based approach inside each server.

The inter-server exchange-based approach allows for shared-nothing architectures, while

the Morsel-based approach, which allows data structure sharing across operator instances,

requires cache-coherence and shared memory.

RuSH builds on Rödiger et al.’s two-stage parallelization strategy and on Liu et al.’s data

shuffling operation by further decoupling the inter-server exchange operation to enable

efficient and direct data transfers through late memory binding. Specifically, while Liu et al.

[55] rely on multiple connections and Rödiger et al. [84] rely on round-robin assignment of the

receiving buffers across NUMA nodes on the target servers, RuSH selects the target (CPU/GPU)

NUMA nodes based on the current load. Thus, RuSH avoids rebalancing operations that would

be frequent for a round-robin policy.

Distributed GPU execution. Gao and Sakharnykh [28] scale a GPU radix join to more than a

thousand GPUs over InfiniBand. RuSH is complementary to the thousand-GPU-join as the

thousand GPU joins shows the feasibility of large-scale GPU joins, while RuSH shows the
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benefits of hybrid CPU-GPU execution in rack-scale analytics. RAPIDS [97] allows offloading

Spark operations to GPUs; however, RuSH also allows dynamic load-balancing between CPUs

and GPUs during query execution.

7.10 Conclusion

We show that analytical engines can efficiently scale to multiple CPU-GPU servers and utilize

the available hardware accelerators to offer fast analytics despite heterogeneity-imposed

scalability challenges. Using the combination of CPUs, GPUs, and high-bandwidth NICs,

RuSH provides linear scalability over single-server hybrid CPU-GPU analytical engines. In

addition, dataflow execution combined with delayed data transfers and bounded queues

provide composable load-balancing despite the limited inter-server load visibility and that

multiple accelerators share the same networking resources. Overall, we show that RuSH

achieves up to 2.1x speedup over single-processing-unit rack-scale analytical engines and up

to 8.2x over scale-up alternatives over a query sequence.
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This thesis investigates the impact of modern CPU-GPU server architectures on analytical

query execution. Existing analytical engine designs target a specific set of processors, e.g.,

CPUs, despite the evolving hardware landscape introducing multiple accelerators into the

server hardware. While such approaches can use hardware-conscious implementations to

optimize execution for the target accelerator, they scale suboptimally with the hardware

improvements: accelerator-specific optimizations cannot be ported to different hardware.

Further, the engines that rely on hardware-oblivious approaches and generic implementations

have an improved potential for utilizing hardware accelerators like GPUs through generic

programming models. However, they generally waste hardware resources as advanced microar-

chitectural features are not used. In summary, existing monolithic analytical engine designs

face a tradeoff between hardware efficiency and scalability to different accelerators. Thus,

they are unable to utilize the full potential of the underlying hardware platform efficiently.

This thesis makes the case for heterogeneous-hardware engines: analytical engines that

abolish static execution models tuned for single microarchitectures and instead encapsulate

heterogeneity and decouple inter- from intra-device execution to achieve efficient execution

on heterogeneous hardware. Through this decoupling, heterogeneous-hardware engines i)

allow intra-device execution to be tuned independently for each target device, and ii) unify exe-

cution on heterogeneous devices to enable orchestration of the inter-device execution. During

per-device tuning, heterogeneous-hardware engines use code generation to fuse generic oper-

ators with accelerator-specific primitives to enable operator specialization without the cost

of modularity. In addition, heterogeneous-hardware engines enable composable execution

across devices and servers by further decomposing inter-device execution to 1) model the

devices based on their query-instance-specific throughput, 2) delay data transfers until the last

moment to avoid unnecessary transfers, and 3) enable generic load-balancing and hierarchical

orchestration. Lastly, to minimize the task offloading cost, heterogeneous-hardware engines

use fine-granularity data accesses and coordinated prefiltering.
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The ultimate goal of heterogeneous-hardware engines is to decouple the operators and orches-

tration from the underlying hardware and still provide the performance of an engine designed

ground-up for the specific hardware. This chapter summarizes this thesis’ contributions and

discusses some ongoing efforts to expand the principles of heterogeneous-hardware engines

beyond pure analytics, and into the full database management system for holistic accelerator

use.

8.1 Heterogeneous Hardware: Efficient and Scalable Analytics

Our work optimizes the analytical engine for the modern CPU-GPU hardware through a

three-step process: first, we decompose (Chapter 3) the analytical design space into three inde-

pendent axes, inter-device, inter-operator, and intra-operators. Then, we achieve scalability by

focusing on inter-device execution and virtualizing the hardware devices during orchestration.

For efficiency, we use the decomposition to independently optimize for each device during

inter- and intra-operator optimizations, while inter-device efficiency optimizations focus only

on reducing data transfers.

Regarding scalability, we focus on the first axis, inter-device execution, and provide an en-

capsulation of the main heterogeneity-related hardware traits of a server (Chapter 4). This

encapsulation enables heterogeneous-hardware engines to control the traits independently

and optimize for each of them separately, through a meta-operator per trait. Then, we use a

data-flow-like execution model to capture the performance of the different devices generi-

cally despite the asynchronous execution model. Further, the separation of the traits allows

separate handling of the control and the data flow of our execution graph – a property that en-

ables late and direct data transfers. We then extend the single-server concepts into rack-scale

deployments (Chapter 7). We show how high-bandwidth RDMA-enabled networks impact

GPU-accelerated analytics, including the amplification of the role of the CPU as the near-data

processor in GPU-accelerated architectures, and extend our execution model to enable a

hierarchical device orchestration capable of maintaining point-to-point data transfers without

sacrificing orchestration scalability.

Regarding efficiency, we specialize execution in two steps: operator execution and data

transfers. In the first step, we use our decomposition combined with the heterogeneity encap-

sulation to generate a different pipeline instance per target device (Chapter 5). Specifically, we

enable operators to consider only one device at a time, and, during code generation, we fuse

them and produce code specific to this device – optimizing over the inter-operator axis. Fur-

ther, we i) identify key similarities of operators across CPUs and GPUs, and ii) provide device

backends with simple primitives that are common across operators to increase the operator

portability – optimizing over the intra-operator axis. Then, the generated code is instantiated

across the devices and orchestrated through the operators described in the previous paragraph.
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In the second step, we use the query selectivity, over-the-interconnect byte-addressability, and

coprocessing capabilities to reduce the data transfer and overfetching across the interconnect

– resulting in a reduced barrier to benefit from GPU acceleration (Chapter 6).

8.2 Looking Ahead: Heterogeneous Hardware beyond Analytics

Out-of-memory Analytics on High-bandwidth Storage. This thesis focuses on in-memory

analytics, where input data are stored across the CPU and GPU memories. However, the

available single-server in-memory space is currently limited to a few TBs of input data. After

that point, to increase the input data capacity, the analytical engine either has to scale out,

similarly to Chapter 7, or rely on out-of-memory data. Still, scaling out to increase the input

capacity is wasteful in scenarios where the server’s accelerators and interconnects are idle.

Directly attached NVMe arrays [33, 64] provide significant storage bandwidth when enough

storage devices are used, reaching tens of GBps of input bandwidth for sequential data

scans. Our proposed HetExchange framework (Chapter 4) is a natural fit for integrating

GPU-accelerated analytics with PCIe storage devices, like NVMes. The mem-move operators

can invoke direct NVMe-to-GPU or NVMe-to-CPU data transfers through GDS [52, 66], while

the router operator would orchestrate execution. As a result, a HetExchange-augmented ana-

lytical engine could be coupled with NVMe storage arrays to provide CPU-GPU acceleration

for out-of-memory workloads and instead use the CPU memory for latency-critical tasks, like

transactions, or intermediary data structures, like hash tables.

Data Caching for GPU-accelerated Analytical Engines. NVMe arrays provide a straightfor-

ward way to satisfy GPU-accelerated analytics’ input data bandwidth requirements for datasets

that do not fit in memory. However, combining NVMe arrays and GPU acceleration also in-

troduces significant caching challenges. First, NVMe arrays can provide similar bandwidth

as inter-device communication and direct NVMe-to-GPU access – creating a new landscape

where a storage device streams data to multiple, single-server but disaggregated processing

units. Second, the page caching location provides significantly diverse cache hit gains: hits on

GPU memory have an order of magnitude more data access bandwidth than a CPU memory

hit. Still, there is considerably less available GPU memory capacity than CPU. Third, given the

high storage bandwidth of NVMe arrays, some queries may be unable to sustain the available

input bandwidth [64]; thus, caching the corresponding inputs into memory is wasteful.

The central concept underlying the orchestration methods proposed in Chapters 4 and 7

is the throughput-oriented view of the pipelines that allows modeling the relative device

performance for load-balancing purposes. For analytics on disk-resident data, the same

concept can be used to direct the data streams originating from the NVMe arrays to the CPU-

GPU processing units. For data caching of disk-resident data, in HPCache [64], we extend

the throughput-oriented system view to infer the benefit of different caching policies for

CPU-only setup. Specifically, we cache column proportions by analyzing the in-memory

pipeline throughput versus the available storage bandwidth. Then, we tune the cached
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column proportions to minimize the overall execution time across a set of queries, relying on

the pipeline throughputs. As each accelerator has a different performance profile, extending

HPCache to CPU-GPU setups requires considering the alternative pipeline throughputs,

device memory constraints, and the interconnect interference generated by shared GPUs

and NVMes paths. With the limited GPU memory capacity, combining HPCache and GPU-

accelerated analytics has the potential to increase the in-GPU caching benefits.

GPU-accelerated Analytics in DRAM-as-a-device Configurations. Over the past years, hard-

ware vendors introduced multiple interconnects and refreshed past standards: PCIe reached

version 6.0 in 5 years, after seven years in version 3; NVIDIA implemented multiple iterations

of NVLink, and multiple vendors backed up CXL [1] as interconnect for “memory expansions

and accelerators”, that includes byte-addressable far-memory pools. Such far-memory setups

and diverse interconnectivity standards will likely increase the memory capacity available on

servers and push CPU architectures towards on-package High-Bandwidth Memory (HBM),

similar to the upcoming NVIDIA Grace CPU [67].

While the discussion in this thesis revolves around the CPU memory being the high-capacity,

byte-addressable memory, the proposed device-centric analytical engine designs make no

actual distinction between CPU and GPU memory. In fact, the more the memories that

support fine-granularity accesses, the more acute the impact of Lazy and SemiLazy accesses

introduced in Chapter 6. Further, as the interconnect and memory bandwidths increase, for

example, with the new NVLink and PCIe iterations, the higher the impact of direct point-to-

point transfers and local routing discussed in Chapter 7, as unnecessary transfers and data

staging cause higher interference.

Hybrid Transactional and Analytical Query Processing. This thesis focuses on analytical

query processing and treats the input data as up-to-date snapshots. However, timely business

intelligence requires incorporating fresh data into the analytical snapshots or accessing the

transactional storage. Further, due to the task-parallel nature of transactional workloads, the

transactional engine usually runs and generates the fresh data on the CPU side. Still, naively

integrating both can result in significant resource interference [80].

For a symbiotic coexistence of the transactional engine that generated the data and the

bandwidth-hungry analytical engine, Proteus currently relies on the Caldera [7] to drive the

computational resources of the two engines, and a two-tiered multi-versioning storage [83]

that maintains a two-versioned storage in the tier responsible for sharing snapshots across the

transactional and analytical engine. This allows GPU-based analytical query processing to

operate in a non-blocking way and with controlled interference between the two engines [83]

by employing the pull-based data access methods of Chapter 6 for accessing the snapshot from

the GPUs. However, as Laconic uses both CPU and GPU processing resources, it can increase

the OLTP-OLAP interference. Extending the resource scheduling techniques of RDE [82]

is a promising direction towards reducing interference by adapting the snapshot update

mechanism based on the amount of fresh data and competing tasks.
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