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Abstract

UTILIZATION of edge devices has exploded in the last decade, with such

use cases as wearable devices, autonomous driving, and smart homes.

As their ubiquity grows, so do expectations of their capabilities. Simultane-

ously, their form factor and use cases limit power availability. Thus, improving

performance while limiting area and power consumption is paramount.

In this vein, in-Memory Computing (iMC) moves computation from the CPU

into the memory hierarchy. This has multiple benefits. First, reduced data

movement mitigates power consumption and latency. Second, the entire

memory array can be utilized to perform hundreds of concurrent operations.

iMC has been proposed in various technologies, such as in SRAM, DRAM,

and emerging Non-Volatile Memories (eNVRAMs). In particular, in-SRAM

Computing (iSC) benefits from integration into existing products such as

cache hierarchies, reducing area overhead and implementation complexity.

Further, iSC operations are generally digital in nature, as opposed to analog,

precluding the need for costly ADCs and improving application accuracy.

Conversely, iSC accelerators face challenges in avoiding memory corruption,

running at high frequencies, and kernel/application level integration.

This thesis exploits iSC while addressing the aforementioned challenges via a

BitLine Accelerator for Devices on the Edge (BLADE). BLADE can be imple-

mented in any SRAM system and utilizes local wordline groups to perform

computations at a frequency 2.8x higher than state-of-the-art iSC architec-

tures. BLADE is thoroughly simulated, fabricated, and benchmarked at the
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transistor, architecture, and software abstraction levels. Experimental results

demonstrate performance/energy gains over an equivalent NEON acceler-

ated processor for a variety of edge device workloads, namely, cryptography

(4x performance gain/6x energy reduction), video encoding (6x/2x), and

convolutional neural networks (3x/1.5x), while maintaining the highest fre-

quency/energy ratio (up to 2.2Ghz@1V) of any conventional iSC computing

architecture, and a low area overhead of less than 8%.

With BLADE implemented, the possibilities for enhancement are manifold,

with one such example being approximate computing. To this end, a CAr-

ryless Partial Product InExact Multiplier (CAPPIEM) halves multiplication

latency while incurring negligible area overhead. As a standalone multiplier,

CAPPIEM reduces the area/power-delay-product by 73/43%, respectively.

Further, CAPPIEM has the unique property of computing exact results when

one input is a Fibonacci encoded value. This property is exploited via a re-

training strategy which quantizes neural network weights to Fibonacci values,

ensuring exact computation during inference. Benchmarking on Squeezenet

1.0, DenseNet-121, and ResNet-18 demonstrate accuracy degradations of

only 0.4/1.1/1.7%, while improving training time by up to 300x.

A second BLADE enhancement is the use of SRAM/eNVRAM Hybrid Caches

(HCs). HCs increase capacity and power savings via eNVRAM’s small area

footprint and low leakage energy. However, eNVRAMs also incur long write

latency and limited endurance. In this context, this thesis presents SHyCache,

an HC architecture and supporting programming model. Variables with high

read/write access ratios can be explicitly allocated to the eNVRAM array. This

reduces access time, power consumption, and area overhead while maintain-

ing maximal utilization efficiency and ease of programming. Benchmarks

on a range of cache hierarchy variations using three deep neural networks

demonstrate a design space that can be exploited to optimize performance,

power consumption, or endurance, while demonstrating maximum perfor-

mance and power gains of 1.7/1.4/1.3x and 5.1/5.2/5.4x, respectively.

Keywords: in-memory computing, in-cache computing, machine learning,

artificial intelligence, neural networks, approximate computing, edge comput-

ing, edge AI, computing architectures, hybrid caches, SRAM memory, emerging

non-volatile memories



Résumé

L’UTILISATION des dispositifs périphériques a explosé au cours de la der-

nière décennie, avec des cas d’utilisation tels que les dispositifs por-

tables, la conduite autonome et les maisons intelligentes. Leur omniprésence

augmente, tout comme les attentes concernant leurs capacités. Simultané-

ment, leur facteur de forme et leurs cas d’utilisation limitent la disponibilité

de l’énergie. Il est donc primordial d’améliorer les performances tout en

limitant la surface et la consommation d’énergie.

Dans cette optique, le calcul en mémoire déplace le calcul de l’unité cen-

trale vers la hiérarchie de la mémoire. Cela présente de multiples avantages.

Premièrement, la réduction des mouvements de données entre le CPU et la

mémoire réduit la consommation d’énergie et la latence. Ensuite, la largeur

totale de la mémoire peut être utilisée pour effectuer des opérations SIMD

massives.

Le calcul en mémoire a été proposé dans diverses technologies, comme la

SRAM, la DRAM et la eNVRAM. En particulier, le calcul en SRAM bénéficie

de l’intégration dans des produits existants tels que les hiérarchies de cache,

ce qui réduit la surcharge de surface et la complexité de mise en œuvre.

En outre, les opérations in-SRAM sont généralement de nature numérique,

par opposition à l’analogique, ce qui évite le recours à des convertisseurs

analogiques-numériques coûteux et améliore la précision des applications.

À l’inverse, les accélérateurs in-SRAM sont confrontés à des difficultés pour
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éviter la corruption de la mémoire, pour fonctionner à des fréquences élevées

et pour intégrer les niveaux noyau/application.

Cette thèse exploite le calcul in-SRAM tout en relevant les défis susmention-

nés via BLADE. BLADE peut être implémenté dans n’importe quel système

SRAM et utilise des groupes de lignes de mots locaux pour effectuer des cal-

culs à une fréquence 2.8x plus élevée que les architectures de calcul in-SRAM

les plus récentes. BLADE est soigneusement simulé, fabriqué et évalué aux ni-

veaux du transistor, de l’architecture et de l’abstraction logicielle. Les résultats

expérimentaux démontrent des gains de performance/énergie par rapport

à un processeur accéléré NEON équivalent pour une variété de charges de

travail de dispositifs périphériques, à savoir la cryptographie (gain de per-

formance de 4 fois/6 fois la réduction d’énergie), le codage vidéo (6x/2x) et

les réseaux neuronaux convolutifs (3x/1,5x), tout en maintenant le rapport

fréquence/énergie le plus élevé (jusqu’à 2,2 GHz@1V) de toute architecture

de calcul in-SRAM conventionnelle, et un faible surcoût de surface de moins

de 8

Avec la mise en œuvre de BLADE, les possibilités d’amélioration sont mul-

tiples, l’un de ces exemples étant le calcul approximatif. À cette fin, CAPPIEM

réduit de moitié la latence de la multiplication tout en introduisant un sur-

coût de surface négligeable. Lorsqu’il est mis en œuvre en tant que multi-

plicateur autonome, CAPPIEM réduit le produit surface/ puissance-retard

de 73/43%, respectivement. En outre, CAPPIEM a la propriété unique de

calculer des résultats exacts lorsqu’une entrée est une valeur codée Fibonacci.

Cette propriété est exploitée par l’introduction d’une stratégie de réapprentis-

sage qui quantifie les poids du réseau neuronal en valeurs codées Fibonacci,

garantissant un calcul exact pendant l’inférence. L’évaluation comparative

sur Squeezenet 1.0, DenseNet-121 et ResNet-18 montre une dégradation

de la précision de seulement 0,4/1,1/1,7%, tout en améliorant le temps de

formation jusqu’à 300 fois.

Une deuxième amélioration de BLADE est l’utilisation de caches hybrides

composés de cellules binaires SRAM et eNVRAM. Les caches hybrides aug-

mentent la capacité et les économies d’énergie grâce à la faible empreinte de

la eNVRAM et à sa faible énergie de fuite. Toutefois, les eNVRAM présentent

également une longue latence d’écriture et une endurance limitée. Pour at-



ténuer ces inconvénients, cette thèse présente SHyCache, une architecture

de cache hybride et le modèle de programmation correspondant. SHyCache

améliore les performances en allouant explicitement des variables avec des

ratios élevés d’accès en lecture/écriture à la matrice eNVRAM, réduisant ainsi

le temps d’accès, la consommation d’énergie et la surcharge de surface tout

en maintenant une efficacité d’utilisation maximale et une facilité de pro-

grammation. Les tests de performance sur une gamme de variations de la

hiérarchie de cache utilisant trois réseaux neuronaux, à savoir Inception v4,

ResNet-50 et SqueezeNet 1.0, démontrent un espace de conception qui peut

être exploité pour optimiser la performance, la consommation d’énergie ou

l’endurance, tout en démontrant des gains de performance maximum de

1,7/1,4/1,3x et des réductions de consommation d’énergie de 5,1/5,2/5,4x.

Mots-clés : Calcul en mémoire, calcul en cache, apprentissage automatique,

intelligence artificielle, réseaux neuronaux, calcul approximatif, caches hy-

brides, SRAM, mémoires non volatiles émergentes, architecture des processeurs,

informatique en périphérie
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Introduction

1

EMBEDDED systems have seen explosive growth in the last decade. At a

market value of $86.5 billion and expected to grow to over $125 billion by

2025 [1], the embedded systems market has been driven by multiple factors,

such as the rise of autonomous driving [1] and the internet of things [2].

For the first time in 2020, there are more Internet of Things (IoT) devices

connected to the internet than non-IoT devices, as illustrated in Figure 1.1,

and this trend is only expected to continue [3]. The span of fields utilizing

edge devices is ubiquitous, ranging from industrial control to transportation

to medical [2]. As use cases increase, embedded systems are being tasked

with increasingly complex applications, such as computer vision, speech

recognition, seizure detection, and water and soil analysis, just to name

a few. As their ubiquity increases, embedded devices are also becoming

smaller and consuming less energy. This, coupled with the high cost of

wireless transmission and exponential increases in sensor networks and the

consequent "data explosion" [4] has led to the paradigm known as "edge

computing", where data is preprocessed at the embedded level before being

sent upstream to the cloud. This conflict of interest between enhanced

computing power and reduced energy consumption has spurred research

into innovative technologies that enhance embedded device capabilities

while maintaining a low power budget. This thesis proposes and develops

three such lines of research, namely, in-memory computing, hybrid memory

systems, and inexact arithmetic units. All three fields extend from a novel in-
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Chapter 1. Introduction

Figure 1.1: Devices connected to the internet. Embedded IoT devices
have seen a 10x increase in the last decade.

memory computing architecture designed by the author and coined BLADE,

or a BitLine Accelerator for Devices on the Edge, which will be the centerpoint

of this work.

1.1 Edge Devices and the von Neumann Bottleneck
As edge devices become more ubiquitous, they are being increasingly utilized

to perform compute intensive tasks traditionally reserved for servers with

access to standard accelerators such as Graphics Processing Units (GPUs) [5,

6]. The need to improve performance while maintaining low area and energy

overhead presents a unique challenge in embedded device research. This is

further complicated by the challenge faced by embedded and server devices

alike known as the von Neumann bottleneck [7], where limited I/O bandwidth

between the compute and storage elements in an architecture further limit

performance. To alleviate this bottleneck and improve embedded device

performance while maintaining low energy and area overhead, a plethora

of so-called smart memory device and strategies [8] have been proposed.

These devices function by computing at the point of data storage instead

of moving data to the Central Processing Unit (CPU). Such architectures
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CPU

Memory 
Array

Periph.

Near Mem. 
Logic

von Neumann

iMC
NMP

I/O

Figure 1.2: The various computing paradigms. The von Neumann archi-
tecture suffers from long access latency. Near Memory Processing (NMP)
performs computation in tightly coupled logic near the memory array.
in-Memory Computing (iMC) performs computation either directly in the
memory or in the periphery immediately surrounding the array.

are implemented alongside a variety of storage devices, including Dynamic

Random Access Memory (DRAM), Static Random Access Memory (SRAM),

and emerging Non-Volatile Memory (eNVRAM) devices such as Spin-Transfer

Torque Magnetoresistive Random Access Memory (STT-MRAM) or Phase

Change Memory (PCM). All smart memories share two inherent benefits,

namely, they reduce memory movement, and secondly, they enable massive

Single Instruction Multiple Data (SIMD) operations by computing on full

rows of data simultaneously.

When making design decisions for smart memories, balancing many com-

peting factors is necessary, including functionality and generalizability, inte-

gration and implementation details, and area and energy costs. Specifically,

three factors must be asked when considering the benefits and trade-offs of

such architectures, namely, where to compute, what type of computation to

perform, and what challenges arise in performing said computation.

1.1.1 Where to compute: NMP vs. iMC

Smart memories may be roughly broken into two categories, Near Memory

Processing and in-Memory Computing. Figure 1.2 illustrates the locations of

these compute paradigms relative to the CPU and memory array.
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1.1.1.1 Near Memory Processing (NMP)

Near Memory Processing (NMP) is the practice of placing compute logic near

memory in an effort to reduce data movement latency between said logic and

memory [9]. Many proposed NMP architectures allocate compute blocks on

the logic layer of Hybrid Memory Cube (HMC) DRAM [10–13]. Other works

couple GPU architectures with 3D stacked memories [14, 15]. Still others

utilize reconfigurable logic near the DRAM [16–18].

While NMP computing shows promise, there is still much research to be done

to validate its feasibility. First, from an integration standpoint, NMP poses a

challenge in regards to virtual-physical memory translation and managing

cache coherency [9]. Second, from an application viewpoint, few works pro-

vide potential solutions for optimizing algorithms to utilize NMP units while

accounting for data locality [15, 19]. Finally, the HMC logic layer area/power

budget is very constrained, thus limiting NMP logic complexity [11].

1.1.1.2 in-Memory Computing (iMC)

The definition of in-Memory Computing (iMC) is fuzzier than NMP. At its

core, it refers to computation done physically within the memory array. The

ambiguity in the term iMC arises when considering the amount of periphery

utilized to perform the computation. Some amount of periphery is always

necessary to interpret the array output, whether that be an Analog-to-Digital

Converter (ADC) for analog iMC devices, or logic gates for digital devices.

How much periphery is acceptable while still classifying a device as iMC is

debatable. The iMC device described in this work results in 8% periphery

area overhead, well under the overhead many iMC State-of-the-Art (SotA)

works incur, and therefore the term iMC is ascribed to this device.

In-memory computation can be accomplished in a variety of ways depending

on the memory technology. In eNVRAM devices such as STT-MRAM and

PCM, by far the most popular strategy to perform computation is the usage of

crossbar arrays composed of the variably resistive memory elements [20–22].

By injecting input values into this array, Kirchhoff’s circuit laws can be used

to multiply input values by values stored in the memory elements before

summing them on a single line and converting them into digital form via
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ADC. While this strategy has the advantage of potentially performing a huge

number of operations simultaneously, it has faced several long-standing

challenges In particular, device non-ideality resulting in erroneous results

leads to the necessity of area and energy hungry ADC.

On the other hand iMC performed in DRAM utilizes charge sharing between

bitcells by activating multiple rows simultaneously and sensing the relative

gain or drop in voltage on the bitline to perform majority functions [23].

Alongside the challenges of NMP introduced in the above section on NMP,

such a strategy introduces many further difficulties in regards to data place-

ment within the DRAM and the destructive nature of charge sharing. Thus,

the data must be copied to dedicated compute rows, mitigating the energy

and latency performance gains [23].

A final form of iMC is in-SRAM Computing (iSC). iSC architectures allocate

compute logic immediately adjacent to SRAM bitcell arrays, either in ded-

icated iSC accelerators or in the preexisting cache of the memory hierar-

chy. iSC architectures take advantage of the SRAM array’s BitLine/WordLine

(BL/WL) structure to perform massive SIMD computations at a small area/en-

ergy cost [24]. Many iSC architectures have been proposed [25–27], with each

demonstrating different aspects of the technology. These architectures ex-

ploit the inherent data locality found in applications such as Neural Networks

(NNs) to perform these operations, similar to other SIMD accelerators such

as ARM’s NEON [28] and Intel’s AVX [29] architectures. Further, when inte-

grated into a cache hierarchy, iSC architectures reduce energy consumption

by (a) taking advantage of the cache’s set/way allocation scheme to align data

and avoid unnecessary data movement, and, (b) reducing data movement

between the cache and the CPU. This is accomplished at a minimal area

overhead, as the iSC architecture augments preexisting hardware. However,

previous works suffer from various shortcomings in relation to simulation

methodology, electrical design, or application support. In particular, many

of the works lack thorough analysis of system-level integration implications,

as well as demonstration of functionality within a full software stack. Also,

data corruption within the SRAM array is a prominent problem for iSC ar-

chitectures [24, 30], and the solutions proposed so far within literature either

greatly reduce operating frequency [31] or area efficiency [25].
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Figure 1.3: Cache subarray with and/nor/xor bitline computing on values
A=0 and B=0. Bitwise operations are performed by first (a) precharging
the bitlines, then (b) activating multiple wordlines, thus discharging the
bitlines through the connected bitcells.

The devices described in this thesis are implemented in the domain of iSC.

The author prefers this form of iMC for various reasons, including the matu-

rity of SRAM technology, the digital nature of the computation, the straight-

forward implementation within the architecture, and easy integration with

the kernel and application. Therefore, the focus of the remainder of this thesis

will reside within the iSC domain.

1.1.2 What to compute: Simple vs. Arithmetic Operations

Choosing which operations to support in iSC architectures is not trivial, as

there is a complex interrelationship between operation complexity, latency,

throughput, and area overhead. Many iSC architectures support only bitwise

operations through a technique known as BL computing, first demonstrated
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by Jeloka et al. [31], and illustrated in Figure 1.3. BL computing operates simi-

larly to a standard cache read operation. A read operation involves precharg-

ing a pair of BLs for each bitcell to be read (Figure 1.3-a), and then activating

a single WL to connect the row of bitcells to the BLs, resulting in BL discharge

according to the row’s contents. In contrast, BL computing involves the si-

multaneous activation of multiple WLs (Figure 1.3-b), with the resulting BL

discharge computing two bitwise operations between the bits, with the BL

and BitLine Bar (BL ) producing and and nor operations, respectively. Aga et

al. extend this work by noring the two BLs, resulting in a xor operation [24].

This architecture forms the basis of many iSC publications [25, 32–36].

Conversely, multiple works support more complex workloads by implement-

ing BL logic that performs arithmetic operations. Analog solutions such as

those presented in [26, 37–40] modulate BL/WL voltages to perform arith-

metic operations and utilize analog circuitry implemented under the subarray

to sense and convert BL voltages to approximate digital results. On the other

hand, solutions such as [27,41,42], as well as the accelerator presented in this

work, utilize digital logic to compute exact solutions to arithmetic operations.

1.1.3 How to compute: iSC Architecture Challenges

The above iSC architectures have been successfully applied to a wide range of

applications including query processing and in-memory checkpointing [24],

cryptography [24, 32, 43], NNs [33, 37–40, 42, 43], finite state automaton [25],

and video encoding [43], thus demonstrating their performance and energy

benefits. However, iSC architectures face a variety of challenges at the system,

architectural, and electrical level that must be overcome for such architec-

tures to become widely adopted. These challenges include:

• Guaranteeing correct cache functionality at the electrical level.

• Supporting arithmetic operations such as addition and multiplication.

• Integration into the memory hierarchy while addressing issues such as

memory translation, coherency, etc.

• Accurate benchmarking on a full software stack.
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In the state-of-the-art literature, no single architecture succeeds in overcom-

ing all of the aforementioned challenges. This thesis’s contributions address

each of these challenges in detail.

1.2 Thesis Contribution
In this thesis, I present contributions to the aforementioned iMC/NMP chal-

lenges. Namely, I present a BitLine Accelerator for Devices on the Edge

(BLADE), an iSC accelerator that contains novel innovations allowing it to

perform arithmetic computations and run at higher operating frequencies

than previously reported in SotA works. I develop this architecture across the

entire HW/SW stack, allowing for further modifications and enhancements

from the hardware and architecture up to the kernel and application level.

With this flexible platform in place, I proceed to propose various further mod-

ifications and enhancements that reduce operation latency, improve capacity,

and improve application performance. Lastly, I provide insight on future

work for continued exploration in the iSC space.

1.2.1 BLADE: A BitLine Accelerator for Devices on the Edge

Chapter 2 presents BLADE, the primary contribution of this thesis. BLADE

is an iSC architecture targeted specifically for implementation in low-power

edge devices. It performs massive SIMD bitwise and arithmetic computations

required by emerging edge device workloads directly in-memory, obviating

the need for costly data movement or time-consuming CPU computation.

BLADE addresses each of the aforementioned shortcomings prevalent in

other iSC architectures. Design choices are motivated from the transistor,

architectural, and system levels in order to demonstrate the architecture’s

energy and performance characteristics at all levels of abstraction. BLADE

divides wordlines into isolated subgroups called local groups, eliminating

the risk of data corruption, and utilizes a carry lookahead adder and opera-

tion pipelining to improve iSC operating frequency by 2.3x-2.8x compared to

previous iSC architectures. BLADE maintains a low (8%) area overhead and

functions at the lowest operating voltage (0.6V) of any 6 Transistor (6T) bitcell

iSC architecture. It is integrated into an edge device cache hierarchy and

benchmarked within a fully functioning Linux environment, enabling con-
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sideration of system-level events such as cache misses, coherence requests,

and CPU/cache hierarchy pipeline stalls. BLADE is validated in 28nm CMOS

technology and benchmarked on the gem5-X architectural simulator using

three edge device workloads, namely, cryptography, image processing, and

NNs, demonstrating 4x/6x, 6x/2x, and 3x/1.5x performance/energy gains,

respectively.

Using BLADE as a base, many further strategies are possible for enhanc-

ing its in-memory computing capabilities. The next chapters of this thesis

implement and analyze two such possibilities, namely, hybrid caches, and

approximate computing.

1.2.2 CAPPIEM: in-Memory Approximate Computation

One of the major drawbacks of BLADE’s low area footprint is the high la-

tency of multiplication, the core operation of NNs. In an effort to reduce

multiplication latency, in Chapter 3 I introduce a CArryless Partial Product

InExact Multiplier (CAPPIEM), that can be implemented in BLADE at a small

area overhead, reducing multiplication latency by 2x. In order to mitigate

accuracy loss due to approximated products during inference, I take advan-

tage of a unique property of CAPPIEM, namely, if one of the operands has

no consecutive ones in its binary representation, the product will be exact.

By iteratively quantizing weights to such values, CAPPIEM acts as an exact

multiplier. This quantization strategy accelerates retraining by up to 300x

while reducing accuracy by <2% for three benchmarks. I also implement

CAPPIEM as a standalone approximate multiplier, reducing area footprint

and power-delay-product by 73/43%, respectively.

1.2.3 SHyCache: A Hybrid Cache Framework for NN Acceler-

ation

Since Alexnet in 2012, the depth of NNs has exploded, reaching for example

1000 layers in the ResNet series [44]. Recent years have seen smaller networks

coming back into fashion; however, the memory footprint of "small" NNs

often still measure in the order of MBs [45]. As such, larger capacity memory

arrays can help to improve runtime by reducing data movement. In this

9
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vein, Chapter 4 introduces a HW/SW Stack for Hybrid Caches (SHyCache),

a non-volatile/SRAM hybrid cache that increases the size of the cache avail-

able to the processor without increasing area overhead. A deterministic data

allocation strategy that takes advantage of the static nature of NNs’ weights

is also introduced, along with a C++ support library that can be integrated

into NN frameworks such as Pytorch or Tensorflow. I performed a design

space exploration over a wide range of cache hierarchies and capacities to

characterize SHyCache. Benchmarks of SHyCache with three NNs demon-

strate 1.4/1.3/1.7x performance gain and 5.1/5.2/5.4x power consumption

reduction. I finally provide suggestions for integration with BLADE in the

Future Work section.
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BLADE: A BitLine Accelerator for
Devices on the Edge

2

AS discussed in Chapter 1, BLADE is an iSC accelerator designed specifi-

cally for low power edge devices. The primary motivation in developing

BLADE was to create an iSC accelerator that could be implemented in mature

technology available on the market today. Hence, BLADE is implemented

in SRAM, as opposed to the emerging eNVRAMs currently being developed.

Development of a full hardware/software stack for BLADE accounts for each

level of abstraction from the transistor level design up to application design.

BLADE’s compute architecture utilizes BL computing as described in Sec-

tion 1.1.2, with further developments to run at high frequency and provide

enhanced compute capability.

A summary of this chapter’s contributions is presented as follows:

• BLADE is introduced. BLADE is a holistically designed and simulated

iSC architecture capable of arithmetic operations, designed specifically

for edge devices.

• BLADE utilizes local bitlines, operation pipelining, and carry-lookahead

addition to achieve the best voltage/frequency Pareto curve of any 6T

iSC architecture (0.6V/416MHz-1V/2.2GHz for bitwise operations). Its

electrical design is validated in 28nm CMOS technology.

• BLADE is situated within the cache hierarchy. Its controller functional-

ity and application level interface is detailed.
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• BLADE is benchmarked on the gem5-X architectural simulator via

three edge device workloads, namely, cryptography, image process-

ing, and neural networks, demonstrating 4x/6x, 6x/2x, and 3x/1.5x

performance/energy gains respectively.

The remainder of the chapter is organized as follows. Section 2.1 provides

motivation for the high-level design choices made when designing and im-

plementing BLADE. Section 2.2 details the subarray optimizations allowing

BLADE to run at high frequency with a low energy consumption while avoid-

ing data corruption. Section 2.3 explains how arithmetic operations are

supported. Section 2.4 provides information on BLADE’s electrical validation

as well as subarray designn space exploration results. Section 2.5 details

BLADE’s integration in the cache hierarchy and its interaction with the rest of

the architecture. Section 2.6 details the methodology for evaluating BLADE at

the system level. Section 2.7 illustrates benchmark results. Finally, Section 2.8

provides concluding remarks.

2.1 Motivation for BLADE Design Choices
The concept of BLADE was born as an answer to the question, "What can

be done to accelerate edge applications in a realistic, easily implementable

manner, while mitigating area and energy overhead?" Answering this question

led to a series of design choices that defined the parameters of BLADE. This

section seeks to provide a high-level overview of these choices before delving

into the specifics of the design.

2.1.1 Accelerating via iMC

In an effort to optimize edge devices, a wide variety of research is being per-

formed into a range of technologies, such as systolic arrays [46], Application

Specific Integrated Circuits (ASICs) [47], and simplified CPU pipelines [48]. A

challenge facing all the aforementioned research avenues is the need to move

data between memory and compute devices. On the other hand, as discussed

in Chapter 1, iMC differentiates itself from other strategies by performing

compute directly in-memory fabric. Such an architecture provides multiple

benefits.

12
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Namely, iMC:

• reduces data movement between memory and compute elements,

along with the associated latency and energy consumption.

• can reuse existing architecture elements, thus reducing area overhead.

• enables SIMD operations in-memory, capable of performing 100s-

1000s of simultaneous operations.

For these reasons, I chose to pursue an iMC solution in answering the above

question. Once this broad domain space was established, narrowing down

the type of iMC technology was addressed.

2.1.2 Implementing BLADE in the iSC Domain

As stated in Section 1.1.1.2, in-Memory Computing (iMC) accelerators can be

implemented alongside a variety of memory devices. When considering the

different options, namely SRAM, DRAM, and eNVRAMs, SRAM was chosen.

iSC has several benefits:

• SRAM is a mature technology, having been in use since the 1960’s [49].

Its well understood physical properties are widely supported via sim-

ulation tools and fabrication companies. SRAM designs are less com-

plicated to implement and characterize, simplifying integration into

existing commodity devices.

• SRAM is commonly found in architectures ranging from edge devices

up to server systems. This enables BLADE integration at all levels of sys-

tem complexity, Also, it enables reuse of existing components, greatly

reducing its area overhead in comparison to a dedicated accelerator.

• iSC most commonly utilizes digital logic circuits as opposed to analog.

While this reduces the number of possible operations per cycle, the lack

of need for ADC greatly reduces area overhead. Digital computation

also produces exact operation results, obviating the need to consider

the impact of device utilization on application accuracy.

13
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MemoryWL Decoder/Drivers

Subarray CTL Logic LG PeripheryBL Logic

Figure 2.1: BLADE fabricated on the Rosetta and Darkside chips in
collaboration with the Integrated Systems Laboratory (IIS) at ETHZ.

Beyond positioning BLADE in the SRAM domain, it is further targeted primar-

ily at the cache hierarchy. The reasons for this design decision are explained

in Section 2.5. It should be noted, however, that BLADE can indeed be im-

plemented alongside any SRAM subarray. This is demonstrated by the two

fabrication projects performed in collaboration with the Integrated Systems

Laboratory (IIS), illustrated in Figure 2.1, in which BLADE is implemented

in the chip’s tightly coupled scratchpad memory. Such an architecture has

the benefits of reduced area overhead due to the absence of tag arrays and

more control over data placement, in exchange for increased application

complexity. These fabrications will be further discussed in Chapter 5.

2.1.3 Full-Stack Analysis Environment

To make the most compelling argument possible for the utility of BLADE,

I decided early in the design process to address every level of the HW/SW

stack, from the hardware and circuit design level up to the application level.

This was to avoid any possible oversights that could occur by making assump-

tions about implementation at different levels in the stack, such as overly

optimistic hardware or architectural parameters, or simplistic benchmarks

unrepresentative of real-world applications.
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AbstractionLower Higher

McPATMcPAT
ARM ACL

Hardware Design Architecture Exploration Application Benchmarking

CACTICACTI

Figure 2.2: A variety of applications are utilized throughout this thesis
to implement and benchmark BLADE from the circuit level through the
architecture and kernel up to the application level.

Developing along the full stack requires a range of software to accomplish, as

illustrated in Figure 2.2:

• At the hardware level, Cadence Virtuoso and Innovus [50, 51] are used

to layout and Place and Route (PnR) full-custom designs. Sigasi [52]

is used to code semi-custom designs, and Modelsim [53] is used to

simulate all designs in pre-and post-PnR.

• At the architecture level, the architectural simulator gem5-X [54] is used

to integrate BLADE into a full-system architecture. Hewlett-Packard’s

McPAT [55] and Cacti [56] are used in conjunction with gem5-X activity

traces to calculate energy consumption during application runtime.

Energy values collected in hardware simulations are also used for this

analysis. Further information is provided in Section 2.5.5.

• At the application level, all applications are benchmarked in a modern

version of the Ubuntu Linux distro [57]. Applications are developed in

multiple frameworks, including PyTorch [58], the Arm Compute Library

(ACL) [59], and other sources. These benchmarks will be described in

more detail in the relevant sections.

Beginning from the base concept of BL computing described in Section 1.1.2,

the remainder of this chapter describes BLADE in increasing levels of abstrac-

tion, from the hardware implementation up to application development.
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2.2 Mitigating Data Corruption while Operating at

High Frequency

1 01 0

BLBLBL

0 10 1

1 01 0

BL

0 10 1

1 01 0

BL

Larger Bi tcel lData Corruption Reduced Frequency

(a) (b) (c)

0 10 1

BLBL BLBL

Figure 2.3: (a) Bitcell shorting may cause one of the activated bitcells to
flip. (b) avoids data corruption by lowering WL voltage, while (c) utilizes
8T bitcells to isolate bitcell contents.

One of the biggest challenges for iSC architecture’s based on BL comput-

ing as described in Section 1.1.2 is the avoidance of data corruption. When

activating multiple WLs in a conventional 6T SRAM array, as detailed in Sec-

tion 1.1.2, a short is produced between the activated bits. It is possible that,

due to process variation during fabrication, the runtime content of the cells,

or transistor aging and degradation, the contents of one bit can cause another

bit to flip, as illustrated in Figure 2.3-a. Preventing data corruption has been

achieved in previous literature via multiple methods. The first is to aggres-

sively limit WL voltage, as done in [24,31,38,41] and illustrated in Figure 2.3-b.

However, such a technique greatly reduces operating frequency, reported at

800MHz@1V [31] and 475MHz@1.1V [42]. Another method, demonstrated

in Figure 2.3-c, is the introduction of 8T or larger bitcells, which isolate the

bitcell’s contents from the BLs [25, 27, 32, 40], at the cost of a significantly less

area efficient SRAM subarray as 8T bitcells are up to 30% larger over 6T [60].

A third method is to use pulse width modulated WLs such that no two WLs

are active simultaneously [37], removing the danger of data corruption, but

at the cost of a 2.35x increase in periphery area. Finally, nonconventional
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technologies can be used, such as monolithic 3D in-

tegration [34, 35], or deeply depleted channel tech-

nology [61]. Emerging technologies present their

own challenges however; for example, deeply de-

pleted channel technology demonstrates stability

issues [62] and disturb risks, and results in poor per-

formance/voltage scaling, limiting the maximum

clock frequency to 100Mhz@0.6V.

In contrast to previous literature, BLADE utilizes

local bitlines to maintain a high operating frequency

and low area overhead, avoid data corruption, and

facilitate simple implementation in conventional 6T

SRAM arrays.

2.2.1 What are Local Bitlines?

Local BitLines (LBLs), illustrated in Figure 2.4, are a

cache optimization present in many architectures.

LBLs divide groups of WLs into Local Groups (LGs),

where all WLs in an LG share an LBL pair, which

is connected to the Global BitLine (GBL) pair via

I/O circuitry. LBLs reduce parasitic capacitance re-

sulting from excessively long GBLs, thus improving

cache energy efficiency and reducing delay. LBLs

also improve static noise margin by isolating bitcells

into small groups, reducing leakage interference.

For these reasons, LBLs are already implemented

in caches [63].

2.2.2 BLADE Methods of Operation

BLADE re-utilizes LBLs, taking advantage of the isolation provided to perform

high frequency iSC operations reliably. A BLADE enhanced cache can perform

three sets of memory operations, namely, standard read/write, slow same-

LBL iSC operations, and fast multi-LBL iSC operations.
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2.2.2.1 Standard Read/Write Operations

Accessing a single WL of the cache performs a standard read or write opera-

tion. In order to perform a read operation, the GBLs and the LBLs of the LG to

which the target set belongs are first precharged to Vdd. Then, when the WL is

activated, one of the LBLs discharges. This discharge is propagated through

the local read port to the GBLs (illustrated in Figure 2.4, where the discharge

is sensed by one of the two single-ended sense amplifiers attached to the

GBLs. The addition of local read ports in fact transforms the standard 6T

bitcells into pseudo two-port bitcells. Therefore, simultaneous read + write

operations are possible if the accessed words are located in different LBLs.

2.2.2.2 Standard iSC Operations

BLADE can also perform iSC operations in the manner described in Sec-

tion 1.1.2. However, when performing operations between bitcells in op-

posing states, there is a risk of flipping a bitcell if the PMOS transistor of

one bitcell is weaker than the access and pulldown transistors of the other

bitcell, as shown in Figure 2.3-a. To counteract this problem, it is necessary

to greatly reduce the WL voltages, resulting in a low operating frequency

(<1GHz) [24, 31].

2.2.2.3 LBL Enhanced iSC Operations

In order to avoid the aforementioned bitcell flipping while maintaining high

operating frequency, BLADE reuses LBLs and their resulting LGs. When WLs

belonging to different LGs are simultaneously activated, the local read ports

isolate bitcells from each other, eliminating the risk of bit flipping, as demon-

strated in Figure 2.4. Activating each WL results in a simple read operation

within the local group, which is propagated to the GBLs by local read ports,

resulting in an iSC operation between LGs, where the GBL represents an and
operation, while the Global BitLine Bar (GBL ) represents a nor. LGs allow

BLADE to maintain a high operating frequency without a reduction in WL

voltage, while still utilizing small 6T bitcells. It should be noted that introduc-

ing LBLs induces a data placement constraint, namely, that operands cannot

occupy the same LG, as discussed in Section 2.5.1.
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Figure 2.5: Transient simulations of bitwise operations @0.6V on (a)
previously published architectures, and (b) the BLADE architecture.

LBLs also enable iSC operation in low voltage environments. Figure 2.5

illustrates the difference in functionality between (a) standard iSC operations

and (b) LBL enhanced operations at a Vdd of 0.6V. LBL enhanced operations

complete 4x faster than standard operations, and in fact the and operation

fails to converge, due to excessive BL leakage.

2.2.3 LBL Enhanced iSC Cache Design Advantages

Utilizing LBLs to enable iSC operations provides multiple advantages over

state-of-the-art iSC architectures. As discussed in Section 2.2, most iSC archi-

tectures require a significant redesign of either the bitcell array or periphery
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to enable computation. BLADE, on the other hand, introduces minimal

changes to the cache architecture. The LBL design, as well as the use of

digital computation in contrast to analog, allow BLADE to function over a

large voltage range, thus easing implementation across a wide range of cache

architectures and making BLADE suitable for low power edge devices. Ease

of implementation is further facilitated by the fact that no modification to

the bitcell array organization is necessary to implement BLADE, as all com-

putation happens within the periphery. This greatly simplifies integration

into existing SRAM fabrication design flows, where the most aggressive and

complex design steps relate to the bitcell array. Finally, BLADE scales easily

to larger cache arrays/subarrays without major loss of performance or energy

savings, as LBL length is invariant with regard to subarray size, as will be

discussed in Section 2.4.2.

2.3 Logic to Support Arithmetic Operations
While bitwise operations enabled by simple bitline logic may be sufficient to

support applications such as cryptography or binary neural networks, more

complex workloads necessitate arithmetic operations.

As discussed in Section 1.1.2, iSC architectures can perform either simple

bitwise operations or arithmetic operations such as addition and multiplica-

tion. Supporting arithmetic operations introduces trade-offs in area overhead

and latency as the BL logic becomes more complex. Carry logic may have

to cross multiple BLs [27]. Alternatively, unorthodox methods of compu-

tation may be introduced, such as bit serial computation as in [41], which

stores and operates on data in a transposed manner, limiting extra BL logic

to a couple of latches, while also greatly increasing throughput. However,

latency is also drastically increased, even quadratically for multiplication.

Further, transposition presents challenges, requiring either extra hardware

in the form of transposition functional units in the cache controller, 8T bit-

cells with extra BLs/WLs [42], which decreases subarray area efficiency as

discussed in Section 2.2, or software transposition, introducing challenging

programming complexity. For analog solutions, area overhead is a significant

limitation, with reported overheads of 19% [37] and >30% [40], and the ac-

knowledgement that WL Digital-to-Analog Converters (DACs) double array

20



2.3 Logic to Support Arithmetic Operations

256x32 Local G
roup 1

256x32 Local G
roup 0

WL Drivers

High
Density 
Array

Border 
cells+
Spacing

Local 
Group
Periphery

SA+
BL Logic+
Latches+
WB+
MUXs+
WrA

4 BitLines
GRBL0 GRBL0 GRBL3 GRBL3

WriteBack 
(WB)

External
Data

To GWrL and GWrL
Mul�plexer 

(not represented)

Shi� Add NOR

GRBL Mul�plexer
Sense Amplifier (SA)

Cn

Cn-1

Write Amplifier (WrA)

GRBLGRBL

Carry 
Ripple 
Adder

XOR

NOR AND

XOR AND

NOR XOR AND
Cn-1

Addn-1

Addn

L L

L

LBL�

GRBL0

LBL�

PRE_L

WL�

WL31

Rd_EN

GRBL0

G
W

rBL

G
W

rBL

Local Group 0 

PRE_G

Local 
Group

Periphery

Local Group 1 

(a)

(b)

(c)

Addn-1

Figure 2.6: Layout of a 256×2×32 BLADE memory with schematic diagram
of the BLADE periphery.

21



Chapter 2. BLADE: A BitLine Accelerator for Devices on the Edge

W
D

0
M

SB
D

W
D

1

WL0

WL1

WLm-1

WLm

WLEN RPEN

PrechEN

e
n

co
d

ed
 W

L 0

PrechL0

PrechLm

RPLm

en
co

de
d

 W
L 1

MSBs

WD Fusion

RP0

Figure 2.7: Block schematic of the modified WL decoder used in this work.

periphery [38]. Analog designs also perform inexact computations, which

may be unacceptable for high precision applications, limiting generalizability,

and are very susceptible to process variation, temperature, and aging [39].

In order to accelerate the widest range of workloads possible, BLADE

supports common arithmetic operations, such as addition, subtraction,

multiplication, greater/less than, and shift. These operations are

implemented by augmenting the standard BL logic explained in Section 1.1.2

with carry and shift logic. By utilizing digital logic as opposed to analog,

BLADE guarantees calculation exactness, necessary for high precision

workloads.

2.3.1 Bitline Addition Architecture

Figure 2.6 illustrates BLADE’s BL logic, as well as the transistor layout of a 4

way, 256x64 bitcell SRAM array with two local groups, each containing 32 WLs.
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Algorithm 1 Modified add/shift multiplication for BLADE iSC computing.
Input: Op0: Multiplier, Op1: Multiplicand
Output: Res=Op0×Op1

1: Latch Op0

2: i = #Bi t sOp0 −1
3: while i ≥ 0 do
4: Res << 1
5: tmp =Op1 +Res
6: if Op0[i ] = 1 then
7: Res ← tmp
8: else
9: Res ← Res

10: i −−

In order to support addition, a carry ripple adder is implemented underneath

the array through the addition of two nor gates and a xor gate. Shift latches

are also implemented within the BLADE controller to allow one cycle shifting.

Each BL logic block receives a carry-in from the previous BL logic block, and

provides a carry-out to the next block.

In order to drive multiple WLs as required by iSC operations, two WL decoders

are utilized to simultaneously decode two WL addresses. A bitwise or is

performed on the decoded addresses before driving the WLs, as illustrated

in Figure 2.7. In an area-constrained environment, one decoder could be

omitted in exchange for latches placed before the WL drivers, with the WL

addresses decoded sequentially, similarly to the work presented in [27].

The implementation of addition logic enables many arithmetic operations,

achievable through series of simple operations. For example, subtraction

can be performed by negating the subtrahend by reading and storing the

GBL value, then performing an addition between the operands with the first

carry-in value set to 1.

Greater/less than is similarly computed by subtracting the operands and

sensing the Most Significant Bit (MSB). Multiplication can be performed via a

variation of the classic add and shift algorithm, as codified in Algorithm 1 and
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Figure 2.8: 4-bit shift-and-add multiplication as performed by BLADE.

illustrated in Figure 2.8, in which the product is shifted left each step (line

4) and the multiplier is processed from MSB to Least Significant Bit (LSB) to

evaluate which partial products must be accumulated (lines 6-9).

As memory I/O (sense amplifiers and writeback logic) and BL logic are pitched

under the memory array, cache associativity influences physical design layout.

During layout analysis demonstrates that a mux-4 array (4 way associative

cache, 2µm per 4 multiplexed BLs) enables the most efficient design for the

I/O and BL logic, as illustrated in Figure 2.6-c. However, as the BL logic is

pitched on 1µm, it is also possible to pitch the BL logic in a mux-2 ratio,

allowing twice the number of iSC computations per cycle, in exchange for

approximately a 2.5x area overhead increase (nonlinear due to increased inter-

connect complexity). The system-level implications of such a configuration

are explored in Section 2.7.
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2.3.2 Improving Operation Throughput

When performing arithmetic operations at longer word lengths, (e.g., 32/64

bit), the performance gains of BLADE are significantly mitigated by both the

delay of the ripple carry adder, as well as (in the case of multiplication) the

add and shift strategy, as demonstrated in Figure 2.10-a. To solve this prob-

lem, two optimizations are introduced to BLADE’s design; (1) multiplication

stage pipelining to reduce latency, and (2) a Manchester Carry Chain adder

implementation to reduce the addition critical path.

2.3.2.1 Manchester Carry Chain (MCC)

At longer word lengths, the critical path of the ripple-carry adder substan-

tially outpaces cache access times, reducing pipeline effectiveness. This effect

can be mitigated by implementing a fast carry adder based on a dynamic

Manchester Carry Chain (MCC) adder [64] in buffered 4-bits configuration,

illustrated in Figure 2.9. The Generate0:3 and Propagate0:3 signals are gener-

ated with a single nor gate thanks to bitline computing, greatly reducing the

area overhead typically associated with such an architecture.
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Figure 2.10: Timing diagrams of multiplication with (a) no optimization,
(b) MCC, (c) pipelining, and (d) add-forward line.

Four MCC blocks are needed per 16 bitcell columns, as columns are mux-4

multiplexed, with the remaining space used to fit inter-MCC signal buffers

as well as decoupling capacitors. Such a design provides nearly 80% perfor-

mance improvement versus standard carry ripple adder at 1V, and a 54%

improvement for 64-bit additions at 0.6V. Figure 2.10-b represents the re-

duced carry time on a multiplication shift-and-add cycle with an MCC adder.

2.3.2.2 Arithmetic Operation Pipelining

Shift and add multiplication can seriously mitigate performance if not prop-

erly implemented. In order to improve operation throughput, three optimiza-

tions that allow multiplication pipelining are proposed. First, latches after

the sense amplifiers isolate the carry logic from the read and writeback stages,

enabling these stages to be pipelined, as illustrated in Figure 2.10-c. Without

latches, the iSC and ripple carry operation must be completed in a single step

before performing writeback. Second, an add-forward line connecting the

addition output of one BL logic block to the writeback stage of the next BL

pair allows the shift and add operations to be performed in one cycle. Finally,
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as described in Section 2.2.2.1, BLADE-enhanced memory can perform a

writeback and iSC operation simultaneously, if the writeback target line is in

a different LG than those accessed for iSC. By first accumulating the product

in three partial sums, then summing these partial values, full pipelining of

the iSC, carry, and writeback stages of multiplication can be achieved, as

illustrated in Figure 2.10-d. This strategy constrains the cache geometry to

at least four LGs per subarray, one containing the multiplicand, which is

accessed every cycle, and three containing the partial products.

2.4 Electrical Validation and Design Space Explo-

ration
In order to verify the functionality of BLADE and the aforementioned opti-

mizations, layout and simulation of BLADE is performed at the transistor

level. A design space exploration is also carried out by varying cache geometry

parameters in order to illustrate energy, delay, and area trends.

2.4.1 Functional Validation of BLADE

BLADE’s layout methodology consists of implementation and simulation of

the critical paths of the memory array (bitcells, WLs, global and local BLs),

periphery (WL decoders and drivers), and iSC logic in 28nm bulk CMOS thin

oxide transistors provided by TSMC’s high performance technology PDK [65].

The periphery/iSC circuitry is implemented with the Low Voltage Threshold

(LVT) technology flavor to optimize performance, while the memory array

utilizes the Regular Voltage Threshold (RVT) technology flavor to limit static

leakage. The designed bitcell is based on the work presented in [66, 67],

achieving a bitcell pitch of 0.127µm, and the periphery is laid out with cus-

tom standard cells and pitched along the bottom and sides of the array with

a spacing of 500nm between the array/periphery to account for any spac-

ing required between SRAM and logic design rules. The simulated netlist

contains >8000 elements, is simulated at 300K for 10,000 Monte-Carlo runs,

and accounts for CMOS variability and post-layout parasitics. Memory and

periphery signal propagation time is modeled by equivalent circuits for the

lines with corresponding gates and extracted RC networks.
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Figure 2.11: Maximum frequency of bitwise operations vs. memory supply
voltage at 28nm CMOS.

Using this electrical characterization framework, BLADE area, timing, and

energy values are extracted for different subarray geometries. Figure 2.11

shows the maximum clock frequency of BLADE vs. other proposed iSC archi-

tectures at different supply voltages. The dotted blue line represents bitwise

iSC operation within a single LG, as described in Section 2.2.2.2, with similar

performance to other iSC architectures. The utilization of LGs, on the other

hand, enables significantly higher iSC operating frequencies, as illustrated by

the green, gray, and red curves. As can be seen, the utilization of LGs improves

operation frequency by 2.5x-3x depending on subarray geometry vs. standard

iSC architectures and extends the operating range down to 416MHz/0.6V.

Finally, Table 2.1 details the worst-case energy/frequency values for different

bitwise/addition iSC operations across different adder configurations. This

table shows that, without optimization, 8/16-bit addition can be completed

within 2.2GHz. However, reduced operating frequencies of 1.7/1.2GHz are

necessary to complete 32/64-bit addition, respectively. By utilizing an MCC

adder and carry logic pipelining, as explained in Section 2.3.2.2, a 2.2GHz

operating frequency can be regained for 64-bit additions.
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Table 2.1: Worst Case iSC Energy/Frequency Values in a 256×64 array
with 2 LGs.

Operation Rd Wr iSC Add
Width Bitwise 8b 16b 32b 64b

E/op[fJ] 23.5 25.9 23.8 20.7 41.6 83.3 167
MMC Carry

- - - 64 130 258 512
Prop. Time [ps]

Array
88.9 137 163

Leak./op [fJ]

Fr
eq

.[
G

h
z]

(CRA w/o
pipeline)

2.2 2.2 2.2 2.2 2.2 1.7 1.2

(CRA w/
pipeline)

2.2 2.2 2.2 2.2 2.2 2.2 1.0

(MCC w/
pipeline)

2.2 2.2 2.2 2.2 2.2 2.2 2.2

2.4.2 Subarray Design Space Exploration

There is a complex interrelationship between the parameters defining subar-

ray geometry and the subarray’s energy, delay, and area overhead. In order

to demonstrate these relationships, the design space defined by a subarray’s

number of BLs, WLs, and LGs is explored, with results displayed in Figure 2.12-

a. To more clearly illustrate tradeoffs between metrics, Figure 2.12-b illus-

trates the design space over a range of subarray geometries by normalizing

the maximum value for each metric to one.

Area overhead is primarily influenced by the number of WLs belonging to

each LG (LG size). In a 128x128 configuration, LG sizes of 16, 32, 64, and 128

result in area efficiencies of 55.6, 71, 84.4, and 91%, respectively. This is be-

cause larger LGs require less periphery per WL they contain, thus improving

area efficiency.

Delay is influenced primarily by the LG size, and secondarily by the length

of the WL. As LG size increases, parasitic capacitance increases and reduces

switching time. Similarly, the parasitic capacitance of the WL increases delay,

although this is partially offset by the reduced length of the GBL.
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Figure 2.12: (a) Energy, area, and delay variations across cache geometries.
(b) The normalized energy, area, and delay design space, with maximum
values for each metric equal to 1.
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2.5 System-Level Integration and Functionality

Finally, energy is also influenced by LG size and WL length. Similarly to delay,

energy consumption decreases with smaller LGs due to parasitic capacitance.

In contrast however, energy decreases as WL length increases, as only one WL

is activated for any number of BLs, meaning that the energy per bit decreases

with increasing numbers of BLs.

System-level factors also play a role in deciding cache geometry. As discussed

in Section 2.2.2.3, at least 2 LGs must be present in order to perform LBL-

enhanced iSC operations. More generally, smaller LGs translates to less

operand locality constraints on application data. Furthermore, 4 LGs are

necessary to pipeline multiplication, as explained in Section 2.3.2.2.

As simulations indicate, different use cases may necessitate different cache

geometries, whether it be low-power, low-area, or high-performance designs.

When benchmarking BLADE in this chapter, a 128x128 subarray with 4 LGs is

utilized. This subarray exceeds the 2.2GHz target operating frequency while

maintaining a low energy consumption and achieving a 71% area efficiency,

of which BLADE accounts for 8% area overhead. This design is comparable to

industry designs, as area efficiency of ≥70% while maintaining reliability and

good performance is optimistic for industrial high density SRAM arrays [68].

With BLADE’s circuit level design implemented and characterized, we can

now consider how BLADE can be integrated within the system architecture.

2.5 System-Level Integration and Functionality
The question of where to place an iSC architecture, how it integrates into the

memory hierarchy, and how applications invoke it is a nontrivial problem.

Problems such as virtual-physical memory translation, coherency, load/store

consistency, interaction with standard memory functionality, and communi-

cation with the CPU must all be addressed. However, the majority of current

literature focuses on the compute portion of the iSC architecture without dis-

cussing integration into the system architecture or system-level simulation.

While some works discuss programmer/ISA support [24, 25, 32, 41, 69], only a

few simulate their work in a full software stack environment [24, 32].
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Figure 2.13: a) BLADE implementa-
tion within the cache, represented by
highlighted boxes. b) BLADE imple-
mentation under Local Group (LG) way
multiplexers.

BLADE is implemented within the

cache hierarchy, as illustrated in Fig-

ure 2.13-a. Implementing BLADE

within the cache reduces energy con-

sumption resulting from data move-

ment, as operand data will often al-

ready be loaded into the cache for

use by the CPU. Also, in-cache im-

plementation reduces area overhead

by re-utilizing existing SRAM arrays.

As detailed in Section 2.3.1, in or-

der to reduce area overhead, the

BL logic is situated under a group

of four multiplexed columns of bit-

cells. The simplest implementation

of this architecture is to multiplex

the columns’ GBL pairs. However,

this strategy comes with the down-

side of the inability for operations

to be performed between the multi-

plexed columns. In the case of an in-

cache implementation of BLADE as

envisioned in this chapter, this cor-

responds to an inability to operate if

operands are in different ways. This

presents a problem, as control over

in which way a cache block is stored

is highly architecture dependent and

transparent to the application pro-

grammer. This challenge can be overcome via way multiplexing within the

LG periphery, as described in [70] and illustrated in Figure 2.13-b. Such an

architecture allows operands stored in different ways to interact with each

other, and also reduces area and energy overhead by 17.5%/22%, respectively.

Finally, retaining way multiplexing functionality also enables parallel tag-data
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Operation Type?
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Figure 2.14: Instruction flow in BLADE cache from time of issue by
processor to operation completion.

access, a strategy in which the tag and data array are accessed simultaneously

during a read, reducing overall read time at the cost of wasted energy in the

event of a read miss.

Within the cache hierarchy, BLADE is specifically implemented within the

private Level 1 (L1) cache, as this provides a favorable trade-off between area

footprint and functionality and simplifies cache coherence considerations,

in contrast to implementation in shared caches. BLADE can be implemented

in the Level 2 (L2) and lower level caches, providing an increase in the num-

ber of possible parallel operations. However, such an implementation will

increase coherence complexity in multi-CPU architectures, as modifications
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in shared lower level caches must be propagated to private caches. This

can be accomplished by extending the coherence protocol to the BLADE

controller, allowing it to invalidate cache blocks in the CPUs’ private caches

before performing computation, forcing the CPUs to reload the cache block.

Figure 2.14 illustrates the instruction flow from issue by the processor to the

BLADE controller until operation completion and return to the processor.

The following sections provide greater detail on iSC operation functionality.

2.5.1 Operand Locality Constraints

As mentioned previously, iSC operands must share BLs to be eligible for iSC

operations. Sets that can interact with each other are considered local, and

therefore the requirements placed upon operands can be called operand

locality constraints. These constraints depend on the geometry of the cache,

as factors such as cache size, subarray size, and associativity affect which sets

share BLs. However, all variations in cache geometry can be abstracted to

three constraints on the operand memory addresses:

• The offset bits between two operands must match, guaranteeing

operand alignment within a cache block.

• A certain number of set LSBs must match, guaranteeing that the

operands share the same subarray.

• A certain number of set MSBs must differ, guaranteeing that operands

belong to different LGs, thus avoiding data corruption, as explained in

Section 2.2.

The number of set LSBs that must match is quantified by the geometry value

V alg eo , which specifies the cache geometry properties over which different

sets do not share BLs, and therefore cannot interact with each other. This

value is calculated according to the following equation:

V alg eo = #banks ∗#subbanks ∗#subar r ay s ∗#spwl (2.1)

where each value represents a cache parameter. Nsubar r ay s equals the num-

ber of subarray rows in a subbank, and Nspwl is the number of sets per WL.
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Figure 2.15: The operands in sets 0 and 1 have matching offsets and set
LSBs, and differing set MSBs. Hence, they share BL logic, but not LGs.

By interleaving cache sets across these cache structures, as illustrated in

the example array in Figure 2.15, the number of set LSBs that must match

between operands is log2
(
V alg eo

)
. Moreover, any program compiled to

function within certain V alg eo will also function on any cache geometry of

the value of V alg eo or smaller. As the operands of this work’s benchmark

applications are page aligned, they can function on any cache geometry with

a V alg eo value of up to 64.

Next, it is necessary that a certain number of set MSBs do not match. This

constraint results from BLADE’s utilization of LBLs to run at high frequency

(2.2GHz@1V) while preventing data corruption, which necessitates that a

certain number of WLs NLBL in each subarray share one LBL pair, and two

operands in an iSC operation must not share the same LBL pair. This geome-
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try constraint can be guaranteed when NMSB s of the set bits of each operand

are different, with NMSB s defined as:

NMSB s = log2

(
Nset s

V alg eo ∗NLBL

)
(2.2)

where Nset s is the number of sets in the cache and NLBL is the number of WLs

sharing an LBL pair. Note that NMSB s cannot fall below 1, as this would result

in all WLs in a subarray sharing one LBL pair.

Figure 2.15 illustrates a simple cache with Nset s=16, Nbanks = Nsubbanks = 1,

Nsubar r ay s=NLBL= 2, and Nspwl =1, resulting in V alg eo and NMSB s values of 2.

Therefore, one set LSB must match while one MSB cannot match.

The maximum number of simultaneous individual operations that can be

performed per iSC operation can be calculated as follows:

#i _ops =
V alg eo ∗ si zecb

wi _op
(2.3)

where wi _op is the width of a single operation in bytes and si zecb is the size of

a cache block in bytes. Using Equation 2.3, one can calculate that the example

cache in Figure 2.15 can perform 128 simultaneous operations, assuming a

si zecb=64 bytes and wi _op =1 byte.

In order to guarantee that operands meet data locality constraints, applica-

tion data must be mapped to memory such that it is properly loaded to the

cache at runtime. Guaranteeing proper operand alignment is a challenge

that all iSC architectures face, with different solutions being proposed. For

example, Jeloka et al. [24] handle this challenge by ensuring operands are

page aligned and rely on future compiler extensions to guarantee this. On the

other hand, Eckert et al. [41] propose the use of a special transpose unit in the

cache controller for transposing and allocating data in-cache, and assume for

their micro-benchmark that application data is laid out in DRAM such that

it maps to the proper locations in SRAM. BLADE guarantees alignment by

reserving a portion of memory at kernel boot time that can be mapped by an

application at runtime. Because memory accessed in this way is guaranteed

to map to a specific location in physical memory, one can ensure operand lo-
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Figure 2.16: a) iSC operand parameter format. b) Passing BLADE
operands in ISA implementation mode utilizes both the address and data
bus.

cality by storing operand data in this reserved memory. The reserved memory

is cacheable, contrary to standard reserved memory mapping.

2.5.2 iSC Instruction Passing and ISA Support

To enable utilization at the application level, BLADE must be made visible

to the application developer. Two methods were explored for accomplishing

this task; memory mapping BLADE, and integrating BLADE into the ARM

Instruction Set Architecture (ISA).

2.5.2.1 Memory-Mapped Implementation

In the first implementation, the BLADE controller is memory addressable

and can be memory-mapped and written to via pointer. This method has the

advantage of being simple to implement, and its utilization will be familiar

to embedded system application programmers. The number of instructions

required to invoke BLADE depends on the number of operands required for
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the desired operation, with a pair of accesses representing each operand,

one for the address and one for the operand parameters, as illustrated in

Figure 2.16-a. The operand parameters consist of the following information:

• The opcode of the requested operation.

• The width of the operands (8/16/32 bit).

• Data unique to specific operations (e.g., the number of bits to shift for

a shift operation.)

• The number of successive operations to be performed.

When all operands and addresses have been set, writing to the start register

triggers the iSC operation. BLADE will delay the response packet until the

operation completes, sleeping the application and freeing the CPU for use by

other programs.

2.5.2.2 ISA Implementation

The second implementation involves adding a custom opcode to the ARM

ISA. This is accomplished by identifying and allocating a reserved NOOP code

in the ARMs’s ISA as a special memory request that is routed to BLADE. This

opcode can then be called in C/C++ using in-line assembly, which can be

made transparent to the application developer behind an API. This method is

more complex than the previously described method, but opens the path for

compiler optimization, especially in regards to data placement to meet data

locality constraints. It also reduces the number of memory access operations

that need to be performed, as both the address and data bus are used to pass

information to the BLADE controller, as illustrated in Figure 2.16-b.

Unlike the memory-mapped implementation, the CPU does not immediately

sleep when issuing iSC commands in this way. It is therefore necessary to

place a memory barrier before and after each set of commands to ensure

correct memory ordering.
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2.5.3 Issuing ISC Operations to Memory

Once received from the CPU, the BLADE controller breaks the iSC operation

into operations up to a cache block in length, and stores them in an operation

table. The operation table is responsible for confirming the operation’s eligi-

bility for in-cache computation as described in Section 2.5.1, fetching missing

operands, and tracking the status of the operation. iSC operations are limited

to a page in length to simplify address translation. Further, in cases where the

number of specified operations is different between operands, address ranges

of shorter operands will loop, allowing common operand reuse in cases such

as multiplying a large input range by a small filter. Once all operands have

been fetched and are present in the cache, the operation table issues the

operation to the relevant cache subarrays. After all operations are complete,

the BLADE controller alerts the CPU that the iSC operation has completed.

2.5.4 Fetching and Allocating Operands

The BLADE controller requests missing operands from memory. To simplify

memory access, the BLADE control logic is implemented as a master module

to the cache controller, similar to a CPU or Direct Memory Access (DMA)

controller. iSC operations received from the CPU are forwarded to the BLADE

controller. Then, all memory requests from BLADE are forwarded to the

cache controller, which handles them as standard requests in regards to

considerations such as coherency updating, evictions, or MSHR coalescing.

In order to guarantee correct memory coherency functionality, cache blocks

subject to a snoop request will be evicted, and the cache controller will inform

BLADE of the eviction. The block must be re-requested by BLADE in order to

resume functionality. However, multi-cycle operations such as multiplication

must be completed atomically, and therefore any snoop requests occurring

during such an operation are rejected and reissued.

2.5.5 Integration in the gem5-X Architecture Simulator

As the complexity of computer systems have increased, proper simulation

environments that accurately demonstrate the feasibility of an architectural

innovation are paramount [71]. The complex interdependence of individual
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blocks within an architecture necessitate simulations that take into account

a system-level view of the hardware and software environment. It is also

beneficial to demonstrate the level of generalizability of an innovation, which

requires a simulation framework that supports the ability to benchmark a

wide range of applications easily. To this end, BLADE is integrated inside the

gem5-X architectural simulator [54]. The gem5-X framework can be modified

to model various combinations of CPUs and memory hierarchies alongside

accelerators. gem5-X also provides a full system mode, which simulates a

bare metal architecture on which a Linux software stack can be run, allowing

any application to be run on top of an experimental architecture. With such a

simulator, BLADE can be benchmarked on a wide range of applications, as

will be demonstrated in Section 2.6.1.

In order to generate accurate performance statistics, timing values are ex-

tracted from BLADE’s transistor level design and converted into CPU cycle

values based on the simulated CPU’s target clock frequency. These are in-

jected into the gem5-X environment to perform realistic application-level

simulations.

2.6 System-Level Benchmarking
In order to demonstrate BLADE’s performance at the application level, BLADE

is integrated into the gem5-X architectural simulator and profiled with a

variety of emerging edge device workloads, enabling extraction of energy and

runtime performance trends across a range of cache geometries [54].

2.6.1 Edge Device Workloads

As BLADE is targeted specifically for edge level devices, three applications that

are becoming increasingly prevalent on edge devices are selected as bench-

marks. These benchmarks demonstrate how BLADE is uniquely positioned

for enhancing such devices.

2.6.1.1 Cryptography

One of the primary challenges the IoT industry faces as more and more

sensitive data is stored and transmitted by edge devices is data privacy and
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security [72]. Indeed, lightweight cryptographic algorithms suitable for edge

level devices are being developed [73], and many processors provide dedi-

cated accelerators for cryptography [74]. Given these motivations, the Secure

Hash Algorithm 3 (SHA3) integrity algorithm [75] is selected as a benchmark

to illustrate that BLADE can provide low-power execution for such algorithms.

2.6.1.2 HEVC Video Processing

In 2018, Youtube and Snapchat combined accounted for over 20% of all

mobile upstream traffic [5], and as more people broadcast their lives on so-

cial media, compression of upstream traffic will become a necessity on edge

devices. The advent of 4K cameras on mobile devices will exacerbate this chal-

lenge, with more compression required to efficiently transmit. Kvazaar [76],

one such application for High Efficiency Video Encoding (HEVC), is therefore

benchmarked in order to demonstrate BLADE’s capabilities in alleviating this

problem.

2.6.1.3 Convolutional Neural Networks

The ubiquity of Convolutional Neural Networks (CNNs) as a solution for a

variety of problems has led to increasing interest in implementing effective

CNN solutions on edge devices, with both algorithmic [77, 78] and hard-

ware [6, 79] innovations proposed. It is logical therefore to include CNNs

amongst BLADE’s application benchmarks. This benchmark is implemented

with the Arm Compute Library (ACL) [59], an API from ARM designed to

optimally utilize its NEON SIMD co-processor.

2.6.2 gem5-X Parameters

As stated in Section 2.5, iSC accelerators interact heavily with other compo-

nents of the system architecture. In order to acquire accurate performance

statistics while simulating such interactions, the gem5-X architectural sim-

ulator [54] with a full Linux software stack is utilized to benchmark BLADE.

gem5-X is calibrated with the parameters outlined in Table 2.2, which em-

ulates the ARMv8 A53 in-order core found on the ARM Juno development

board [80], and runs an Ubuntu 18.04 LTS software environment that demon-

strates less than 4% timing inaccuracy on profiling tests compared to physical
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Table 2.2: Simulator Parameters

Processor 2GHz, 4 stage pipeline, ARMv8 ISA in-order core, 7 entry LSQ

Co-processor NEON, 128-bit registers, 16 parallel 8-bit operations

L1-I Cache 32kB, 4-way, 1 cycle access

L1-D Cache 32kB, 4-way, 1 cycle access, BLADE

L2 Cache mostly-exclusive, 1MB, 4-way, 6 cycle access

Memory DDR3 2133MHz, 4GB

BLADE Max 1024/128 bitwise/8bit simultaneous operations

hardware. BLADE timing values are integrated into gem5-X by converting de-

lays calculated in Section 2.4.1 to cycle counts at 2GHz. The cache hierarchy

utilizes a typical 64 byte WL length, with the cache geometry designed such

that 1024 bitwise/128 8-bit iSC operations can be performed simultaneously.

Performance comparisons are made against a NEON SIMD co-processor [28],

a SIMD unit found on many edge devices.

2.6.3 McPAT Support

McPAT [81], an architectural framework for estimating the area and energy of

a specified architecture, is utilized in order to estimate energy consumption

of BLADE at a system level. For this work, McPAT is initialized with ARM

Cortex-A53 architectural parameters [82]. This model is then augmented

using the energy statistics specified in Section 2.4.1 to estimate the added

energy consumption of BLADE operations. gem5-X provides traces of all CPU,

memory, NEON, and BLADE operations, which are subsequently provided to

McPAT to compute application runtime energy consumption for NEON and

BLADE benchmarks.

2.7 Benchmark Results
During benchmarking, a wide range of hardware and algorithm parameters

are explored to demonstrate trends in performance and energy consumption

that vary depending on architecture design choices. Specifically, analysis

is made of how 1) the number of iSC operations performed, 2) the cache’s
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Figure 2.17: NEON/BLADE runtime/energy results on bitwise operations.

associativity, and finally 3) the cache size, affect performance and energy

consumption. Also, analysis is performed on how optimization for arithmetic

operations affects runtime of applications utilizing such operations.

2.7.1 Bitwise Operations/iSC Operation Count

In order to observe how the ratio between operations and memory accesses

of an application affects BLADE performance, the block permutation kernel

of the SHA3 algorithm is benchmarked. This kernel encrypts input data via

a large number of bitwise operations, specifically xor, shift, and and, in a

series of up to 24 rounds of permutation. By varying the count of bitwise oper-

ations being performed on input data, one can draw interesting conclusions

about BLADE’s effectiveness in accelerating such bitwise algorithms.

Figure 2.17 illustrates BLADE performance and energy improvement in com-

parison to NEON for bitwise operation/memory access ratios between 1 and

200 for 4096 bytes of data. As this figure shows, at lower ratios, memory access

dominates function time. However, as operation count per data access in-

creases, BLADE provides correspondingly increasing acceleration, saturating

at a ∼3.5x gain, achieved at 30 operations per access. As SHA3-256 performs

over 400 operations per access, BLADE demonstrates strong applicability to
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Figure 2.18: Runtime/energy results for NEON/BLADE on FIR operations.

such an application. BLADE’s maximum demonstrated performance gain

over NEON for bitwise operations is 4x.

Energy improvements follow a similar trend, with increasing energy gains

that saturate at 40 operations per access. Energy improvement results from

identical reasons as previously described; at higher operation/memory ac-

cess ratios, energy consumption due to compute and L1-CPU data transfer

become significant. BLADE eliminates L1-CPU transfers and reduces in-CPU

operations, providing up to 6x energy improvement over NEON.

2.7.2 FIR Filter/Cache Associativity

In the next benchmark, the effects of cache associativity on performance are

analyzed, as associativity directly impacts the number of simultaneous opera-

tions BLADE can perform, as discussed in Section 2.3.1. This is accomplished

by varying the associativity between 2 and 4 ways at an equivalent cache

capacity, while benchmarking Kvazaar’s FIR filter function. This function

uses four 8-tap FIR filters, filtering an input image first horizontally, then

vertically, to produce 16 filtered outputs, which are then normalized and

clipped between 0 and 255. Input images of four different sizes are accepted,

with progressively increasing memory and compute requirements.
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Figure 2.19: Runtime/energy results for NEON/BLADE on convolution
operations.

Figure 2.18 illustrates performance and energy consumption differences re-

sulting from the varying cache geometries. As this figure shows, a 4-way

associative cache provides slightly higher acceleration over a 2-way associa-

tivity for tile sizes of up to 1024 pixels, as the wide 4-way cache results in less

evictions of relevant data. However, at a tile size of 4096, compute require-

ments surpass those of memory, and therefore 2-way cache performance

surpasses that of 4-way. This is because, assuming constant cache capacity,

a 2-waache can perform twice the number of parallel operations. Overall,

BLADE provides up to a maximum of 6x performance gain over NEON for FIR

filtering. This can be attributed to the reduction of data movement between

the memory hierarchy and processor, as well as the fact that the multiplica-

tion, normalization, and clipping all occur in-memory in a SIMD manner.

In contrast to the bitwise benchmark, FIR filter energy gain is more muted.

This results from the fact that iSC multiplication is significantly more com-

putationally complex than bitwise operations and therefore consumes more

energy to execute. However, energy consumption due to L1-CPU data move-

ment is still reduced, and BLADE still achieves a maximum of 2x energy

reduction over NEON.

2.7.3 Convolution/Cache Capacity

In the next set of experiments, the effects of overall cache size on iSC perfor-

mance is evaluated by benchmarking BLADE with a convolutional layer of a
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CNN implemented in ACL. The convolutional layer has 32 input planes and

32 output planes, and performs 3x3 convolution at a stride of 1 with a padding

of 1 to maintain equivalent dimensions. Input/output data is stored in 32-bit

fixed-point notation and weights in 8-bit fixed-point notation, and input layer

width is varied between 16 and 256 pixels. Two cache sizes, 32kB and 128kB,

are utilized to demonstrate effects of cache size on BLADE effectiveness.

Figure 2.19 illustrates how cache size impacts performance. Performance

results for each cache follow similar trends, where both implementations

see performance drop-offs at larger image widths. This is due to the fact

that at larger input widths, the resulting output plane does not fit entirely

within the L1 cache, requiring a more complex kernel loop to satisfy operand

locality constraints as described in Section 2.5.1, and resulting in increased

data movement. However, by increasing cache size to 128kB, larger input

widths can be accommodated while avoiding performance drop-off; in this

case, 128kB caches can accommodate an input width of up to 64 pixels, as

opposed to 32 for a 32kB cache. Furthermore, these results demonstrate the

benefits of moving BLADE to higher capacity, lower level caches, as discussed

in Section 2.5. Overall, BLADE demonstrates a maximum performance gain

of 3x over NEON for a convolutional layer of a CNN.

Similarly to performance gain trends, a drop to below 1x energy gain is seen

at pixel widths of 64/128 for cache sizes of 32kB/128kB, due to increased

data movement resulting from ill-fitting kernels. Such trends indicate that

operand locality is an important factor in ascertaining the effectiveness of

a particular iSC architecture and cache geometry, Thus, not all kernels or

applications are well suited to such an architecture. As discussed in Chapter 5,

future work must be done to alleviate these constraints as much as possible.

Ultimately, a maximum of 1.5x energy gain is achieved for the convolutional

layer.

2.7.4 Arithmetic Logic Optimization

Lastly, analysis is made of how the arithmetic operation optimizations de-

scribed in Section 2.3.2 affect FIR filter and convolution benchmark perfor-

mance. Table 2.3 enumerates cycle counts for 8 and 32-bit iSC multiplications
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2.7 Benchmark Results

Table 2.3: Cycles for 8/32-bit multiplication at different pipeline levels
@2Ghz

Pipeline Level Multiplication Cycle Count (8/32 bit)

No Pipeline 40/126

with Add-Forward 14/72

with Latches 24/66

Full Pipeline 15/39
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Figure 2.20: Performance trends for different levels of arithmetic pipelining.

for the benchmark architecture. These results show that 8-bit multiplication

in fact completes in fewer cycles at 2GHz in an architecture without latches.

However, the carry logic delay for 32 bits requires 2 cycles at 2GHz, resulting

in a significant increase in cycle count for 32-bit multiplication. Figure 2.20

illustrates the effects of adding pipeline optimization to the BL logic for the

FIR filter and convolution benchmarks, and demonstrates that pipelining

provides significant performance improvement for a negligible area cost.
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2.8 Summary and Concluding Remarks
iSC architectures show great promise in accelerating a variety of workloads,

and are particularly interesting for edge devices due to their area and energy

constraints. In this context, in this chapter I have presented BLADE. BLADE

is an arithmetic iSC architecture whose utilization of industry standard 6T

bitcell arrays enables easy integration into current SRAM fabrication flows,

and its low power digital design makes it appropriate for accelerating emerg-

ing applications on edge devices. BLADE’s functionality is validated from

the electrical level up to the system level. At the electrical level, BLADE’s

enhanced cache design demonstrates how the use of local bitlines provides

the best voltage/frequency ratio (0.6V/415MHz-1V/2.2GHz) of any 6T iSC ar-

chitecture while maintaining a low area overhead of 8%. I presented a design

space exploration of BLADE’s electrical parameters, demonstrating tradeoffs

between area, energy, and latency, dependent on cache parameters such as

LG size and WL length. Next, at the architecture level, BLADE is integrated

into the cache hierarchy of an in-order CPU, accounting for system-level

interactions such as coherency and load/store consistency. Finally, BLADE

is benchmarked on a full software stack with three emerging edge device

workloads, and demonstrated 4x/6x, 6x/2x, and 3x/1.5x performance/energy

gains over a NEON SIMD co-processor, thus validating our iSC design at

the application level and demonstrating BLADE’s effectiveness for edge level

device acceleration. In the next chapters, I will explore further architectural

modifications that can be applied to BLADE to further enhance its utility on

edge devices.
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3

BLADE, as described in Chapter 2, is capable of performing SIMD bi-

nary and arithmatic operations at native operating frequency and with

low area overhead. One downside of BLADE is the shift-and-add nature of

multiplications. While partially mitigated through operation pipelining as

discussed in Section 2.3.2, multiplications still require at least N cycles to

complete, where N is the width of the smallest operand. Reducing multipli-

cation latency is critical to improving BLADE performance; therefore, this

chapter will explore one method for accomplishing this using approximate

computing.

The general objective of approximate multiplication is to reduce the area foot-

print, power consumption, and delay of a multiplier by approximating/sim-

plifying aspects of the architecture. Kulkarni et al. [83], for example, modifies

the Karnaugh Map of a 2x2 building block multiplier to halve its area. Another

approximation method is the reduction of the partial product summation

tree complexity, e.g., by performing partial product summation for only a

portion of product MSBs, while combining the LSBs via a low-cost combi-

natorial method [84]. Thirdly, the full adder blocks can be approximated

through a variety of methods [85]. Finally, the use of genetic algorithms to

generate Pareto optimal approximate multipliers has been demonstrated to

be effective [86, 87].
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A challenge of approximate computing is the errors they introduce into ap-

plications. In this context, approximate computing is well suited to NNs,

which are naturally robust against minor runtime perturbations [84]. As

such, various approximate computing architectures have been proposed

for enhancing NN efficiency. Even so, approximation error still degrades

accuracy, necessitating various solutions such as limited neuron approxima-

tion [86, 88], or ensemble networks [89]. Accuracy degradation can also be

mitigated through retraining while simulating Approximate Multiplier (AM)

functionality; however, such retraining cannot be efficiently accelerated by

employing GPUs as the properties of an approximate multiplier cannot be

parallelized across many simultaneous multiplications, thus drastically in-

creasing training time [87]. Further, many works do not utilize AMs uniformly

across the network [86, 87], reducing generalizability in the case of hardware

implementation.

In relation to BLADE, we would like to find an approximate computing so-

lution that can reduce the latency of multiplication while maintaining high

application accuracy. To accomplish this, I introduce a CAPPIEM. CAPPIEM

reduces multiplier latency by 2x in BLADE by enabling two multiplier bits to

be assessed simultaneously, while incurring negligible area overhead. CAP-

PIEM also stands on its own as an approximate multiplier, demonstrating

SotA improvements in latency, area, and energy consumption. By discarding

the carry bit during partial product summation, 58% of the multiplier’s full

adders can be converted into xor or or gates, greatly reducing area, power

consumption, and delay.

Beyond its area, energy, and latency savings, CAPPIEM also has a unique

property in that it computes exact values if at least one input is Fibonacci

encoded; that is, its binary form contains no consecutive ones. This property

differentiates CAPPIEM from the vast majority of AMs, whose approximate

output is dependent on both operands. This knowledge can be utilized to

eliminate accuracy degradation due to errors injected by the AM by imple-

menting a weight quantization strategy to guarantee exact multiplication

during inference, which is coined Fibonacci Codeword Quantization (FCQ).

First, FCQ encodes weights to Fibonacci code words, eliminating partial prod-

uct summation errors. Then Incremental Network Quantization (INQ) is
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used to retrain the remaining weights to eliminate accuracy loss due to FCQ.

As FCQ guarantees exact outputs from CAPPIEM, retraining can be perform

without AM simulation, drastically reducing retraining time. Three INQ strate-

gies are explored across three NNs, namely, ResNet-18, DenseNet-121, and

Squeezenet 1.0, on the CIFAR-100 dataset. Benchmark results demonstrate

the possibility to achieve full FCQ with only 0.4%, 1.1%, and 1.7% accuracy

degradation, respectively.

The contributions of this chapter are as follows:

• CAPPIEM is an Approximate Multiplier (AM) that halves BLADE multi-

plication latency while incurring negligible area overhead.

• CAPPIEM also functions as a standalone AM that replaces 58% of an 8-

bit standard multiplier’s full adder operations with or logic. CAPPIEM

is implemented in 65nm TSMC CMOS and provides area/power-delay-

product reductions of 73/43%, respectively, while maintaining a low

mean relative error distance of 0.054 in comparison to other AMs.

• Fibonacci Codeword Quantization (FCQ) is a strategy for weight quan-

tization such that weights produce exact results when multiplied via

CAPPIEM. FCQ reduces retraining time by 300x compared to retraining

with other AMs.

• Incremental Network Quantization (INQ) is used to recover accuracy

lost due to FCQ. Multiple INQ strategies are explored across three

benchmarks, namely, Squeezenet 1.0, DenseNet-121, and ResNet-18,

demonstrating full FCQ with accuracy losses of 0.4%/1.1%/1.7%, re-

spectively.

The remainder of this chapter is organized as follows. Section 3.1 details

the CAPPIEM implementation. Section 3.2 explains how FCQ eliminates

AM errors. Section 3.3 details the proposed INQ strategy for regaining accu-

racy. Sections 3.4 and 3.5 detail the benchmarking process and analysis, and

contextualize this work among other approximate NN publications. Finally,

Section 3.6 concludes this chapter.
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Figure 3.1: Karnaugh maps for an exact half adder, as well as or and xor
gates. While xor gates compute the sum value exactly in all instances,
or gates provide the least error when the carry value is considered.

3.1 CAPPIEM: A Carryless Partial Product Inexact

Multiplier
CAPPIEM is best illustrated by first describing it in respect to a traditional

carry-lookahead adder tree, then explaining how it is implemented in BLADE.

CAPPIEM is implemented in a standalone-adder by simplifying a portion

of Full Adders (FAs) within the adder tree to or or xor logic, as shown in

Figure 3.2-a. This modification greatly reduces multiplier area, power con-

sumption, and delay, at the cost of potentially introducing approximation

error. A weight quantization methodology for avoiding such errors is de-

scribed in Section 3.2.

3.1.1 Selection of Reduction Operator

When simplifying the FAs, two viable replacement options consist of or and

xor gates. A xor gate advantageously produces only one incorrect bit with

inputs ab = 11, as seen in Figure 3.1. In contrast, or gates require fewer

transistors and produce a closer exact value for ab = 11. Indeed, one finds

that for all input combinations for an 8-bit multiplier, the Mean Relative Error

Distance (MRED), or average distance between every approximate product

and its expected value, is 0.99 for a xor based AM, while the MRED of an or
based AM is only 0.054. An or vs. xor gate implementation of CAPPIEM is

also simpler to implement in BLADE, requiring only two extra transistors.

This work therefore utilizes or gates for partial product reduction [90].
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Figure 3.2: (a) 4-bit multiplication with carryless partial product summation
enabled by or gates. (b) 8x8 adder array with FA gates replaced by or
gates to reduce area and power consumption. The ratio of replaced adders
approaches a limit of 50% as bit width increases.
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Figure 3.3: 4-bit shift-and-add multiplication as performed by BLADE.
If the highest MSB is 1, a left-1 shifted multiplicand will be added to the

partial product. If the second highest MSB is 1, the original multiplicand will
be added. If both are 1, a or-ed combination of the two will be added.

3.1.2 CAPPIEM Hardware Implementation

Figure 3.2-b illustrates the CAPPIEM architecture applied to a carry save

multiplier. Initially, an n-bit carry save architecture contains (n −2)∗n FAs

and n −1 half adders. To implement CAPPIEM, the adders responsible for

partial product summation are replaced with or gates, visible as green boxes.

The remainder of adders, symbolized by blue and orange boxes, accumulate

the intermediate values into the final product and are left unchanged. Hence,

the number of FAs replaced can be calculated via the equation n2−n
2 . At 4

bits, the ratio of replaced FAs is 75%; this ratio decreases to 50% as multiplier

width is increased.

3.1.3 Implementation of CAPPIEM in BLADE

As BLADE utilizes a shift-and-add strategy to perform multiplication, an iter-

ative algorithm must be devised to utilize the concept of CAPPIEM. Figure 3.3

illustrates a sequential carryless partial product kernel that can be easily

implemented with minimal change to BLADE. The main difference to the

original shift-and-add kernel presented in Algorithm 1 is that, instead of only
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Figure 3.4: Embedded shift logic with CAPPIEM extension in green.
Extension performs an or operation between the current and previous bit
of the operand.

considering the first MSB of the multiplier, the first two MSBs are considered.

If the first MSB is one, the multiplicand is left-shifted one and added to the

partial product. On the other hand, if the second MSB is one, the unshifted

value of the multiplicand is added. If both MSBs are one, the multiplicand

is or-ed with a one-bit left-shifted copy of itself before being added to the

partial product. The approximation occurs when both MSBs are one. Note

that Figure 3.3 separates the shift and add operations into two steps to easier

highlight the addition functionality of CAPPIEM; these steps are collapsed

into one using the shifting logic described below.

CAPPIEM is implemented in BLADE by extending the embedded shift ar-

chitecture demonstrated in [70], which in turn is an extension of the feed-

forward line BLADE optimization presented in Section 2.3.2.2, and is illus-

trated in Figure 3.4. The base architecture, similar to that found in [70],

enables left shifting of up to two places by connecting the output of the LG to

the neighboring local sense amplifiers, resulting in a shifted output on the

GBLs. By adding two transistors to this base architecture, it is possible to

perform an or operation between BN and BN-1. This enables two bit shifted
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Figure 3.5: Embedded shift logic with CAPPIEM extension in green.
Extension performs an or operation between the current and previous bit
of the operand.

addition, as illustrated in Figure 3.5-a and resulting in the shift-and-add mul-

tiplicative kernel described in Figure 3.3. This algorithm produces an output

identical to the standalone AM described above.

Figure 3.5-b illustrates the shift control logic that controls the in-memory

shifting for the partial product and the multiplicand. In each shift-and-add

cycle, the partial product will shift two places, while the multiplicand will

shift one or zero spaces if either the first or second MSB of the multiplier is

1, respectively. If both bits are 1, the or logic embedded in the LG periphery

or-s the multiplicand with itself left-shifted one.

Interestingly, eliminating the extra transistors in Figure 3.4 and utilizing the

shift control logic described in [70] results in a similar AM that utilizes and
gates instead of or gates to perform carryless partial summation. Such an AM

makes little sense; however, the quantization strategy described in the next

sections works equally well for such an AM; it may therefore be beneficial to

consider such an AM if the use case is well defined and area overhead is a

tight requirement.

One setback of this (and indeed, most) AMs is their injection of approximation

errors into applications. It would be preferable to be able to predict for which

inputs an AM will produce exact or erroneous results. For CAPPIEM, such

prediction is possible, a fact which is exploited in the next section to enhance

neural networks with approximate multiplication while maintaining a high

output accuracy.
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Figure 3.6: Naive carryless partial product multiplication will lead to errors
and reduced accuracy (a). Such errors can be avoided by quantizing NN
weights according to Fibonacci code words (b).

3.2 Fibonacci Code Word Quantization for NNs

3.2.1 Motivation

The AM proposed in Section 3.1 provides significant reductions in area, power

consumption, and delay, which will be quantified in Section 3.5; however, its

naive utilization in a neural network would introduce unacceptable accuracy

degradation. It has been demonstrated previously that retraining an AM-

enhanced NN recoups lost accuracy [91]. However, in order to retrain the

network, it is necessary to simulate the functionality of the AM, for example

via a lookup table [87]. AM simulation while retraining prohibitively increases

training time (15 days for ResNet-18 retraining [87]) by precluding the use

of hardware components, such as vector processors or GPUs. While this has

proven a challenge for previous works, CAPPIEM enables a novel method of

retraining without AM simulation via Fibonacci code word quantization.

3.2.2 Countering Approximation Errors Via Fibonacci Code

Word Quantization

Approximate multipliers by their nature introduce errors into the product of

the operation. For CAPPIEM, the introduced error is illustrated in Figure 3.6-a,

namely, if two partial products contain overlapping ones, the resulting value
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will be incorrect. To avoid such errors, it is proposed to quantize weights

such that errors will not occur when reducing partial products. This is accom-

plished by quantizing weight values to the closest Fibonacci code word [92],

that is, the closest value such that no consecutive ones appear in the binary

representation of at least one of the operands, as illustrated in Figure 3.2.

The result of such a quantization is that the sum of any two partial products

is equivalent to a bitwise or operation between them, enabling them to be

summed exactly. Such a quantization and multiplication is illustrated in

Figure 3.6-b. Importantly, only one multiplier input needs be a Fibonacci

code word to guarantee an exact output; the other input can be any value

between 0 and 2n −1. This qualification is necessary for utilization in a NN

without needing to also modify layer inputs. This method of quantization is

coined Fibonacci Codeword Quantization (FCQ).

3.2.3 Quantization Parameters for Fibonacci Code Quanti-

zation

FCQ is based on the low-precision general matrix multiplication (gemm-

lowp) [93] method. In gemmlowp, a scale and zero-point value for the weights

of each layer are calculated such that the weight matrix can be scaled be-

tween minimum and maximum fixed-point values and the real value of 0 is

exactly representable. FCQ builds on gemmlowp by further quantizing the

fixed-point values to Fibonacci code words. A few considerations must be

made to ensure that FCQ can be co-implemented with gemmlowp.

First, when quantizing a network, the range of values to which the weights

are quantized must be considered. In gemmlowp, this is typically the range

of signed values a given n-bit binary value can represent, e.g., -128 to 127

for 8-bit signed values. In the case of FCQ, asymmetric quantization is used,

with a minimum value of 0 and a maximum value quantmax of 2n −1. This

is necessary as small two’s complement negative values contain many con-

secutive ones and thus are poorly represented as Fibonacci code words. Bias

values are not encoded to Fibonacci code words as they are not involved in

multiplication.
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Figure 3.7: Three incremental quantization strategies for Fibonacci incre-
mental retraining; (a) Random, (b) Proximal, and (c) Distant. In each
retraining step, a fraction of weight values are quantized to the nearest
Fibonacci code word and frozen, represented by green boxes.

FCQ imposes further constraints on the upper range of quantizable values,

as the maximum possible unsigned n-bit value Fmax a weight can take is ’10’

repeating for n/2 bits (e.g., 10101010 or 170 for 8-bit values), with any value

above this being clamped to Fmax . In order to maintain weight value variance

while preventing an excessive quantity of weights from being clamped to this

maximum value, a qmax value of (quantmax+Fmax )
2 is selected, midway between

the max quantized and max Fibonacci values (212 for 8-bit values).

Finally, in conjunction with asymmetric quantization, using max pooling

layers in contrast to average pooling layers provides higher network accuracy,

as such layers are less impacted by the elimination of negative values.

Extreme forms of quantization, e.g., FCQ as presented here, typically induce

unacceptable levels of accuracy loss if implemented in isolation. However,

this barrier can be overcome through the use of Incremental Network Quanti-

zation (INQ) [94] to recover lost accuracy due to FCQ.
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Algorithm 2 Incremental Fibonacci code quantization and retraining flow.
Input: f_model: Float Model, strategy: INQ Strategy, q_steps: INQ Steps,
r_epochs: # Retraining Epochs
Output: Fibonacci Code Quantized Model

1: def fib_quantize(f_model, strategy, q_steps, r_epochs):

2: q_model = quantize(f_model)
3: for i = 0; i < len(q_steps); i++ do
4: q_model = fib_enc_and_freeze(q_model, q_steps[i])
5: f_model = dequantize(q_model)
6: for j = 0; j < r_epochs; j++ do
7: f_model = train(f_model)

8: q_model = quantize(f_model)

9: return q_model

3.3 Improving Accuracy through Incremental Net-

work Quantization
In INQ, weight values are incrementally quantized to a range or set of values

and then frozen while the remainder of the network is retrained to mitigate

the subsequent loss in accuracy. In previous works, INQ as a method to

recover lost accuracy due to approximate multiplication would lead to pro-

hibitively long training times, as the AM must be simulated via a lookup table

during training [87]. However, as discussed in Section 3.2.2, the AM presented

in Section 3.1 necessitates that only one input value be a Fibonacci code

word, while the other input may take any value. This characteristic enables

us to retrain the network without needing to simulate the AM, as Fibonacci

quantized weights are guaranteed to produce exact products.

Algorithm 2 illustrates the proposed methodology for performing FCQ via

INQ. At each iteration (line 3), the algorithm quantizes the network to 8

bits, performs FCQ on a fraction of the weights, freezes their values (4), then

converts the model back to floating point (5). The remaining values are then

retrained to regain accuracy (7). These steps are repeated until FCQ has been

applied to all weights.

60



3.3 Improving Accuracy through Incremental Network Quantization

Table 3.1: Cumulative Fraction of Weights to Quantize at Each Incremental
Quantize-and-Retrain Step

Strategy Cumulative Fraction of Weights Quantized

Random
[0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,
0.55,0.60,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1.0]

Proximal
[0.3,0.4,0.5,0.6,0.7,0.8,0.85,0.9,0.95,0.98,0.99,
0.995,0.998,0.999,0.9995,0.9998,0.9999,1.0]

Distant
[0.001,0.0025,0.005,0.01,0.025,0.05,0.1,0.15,

0.2,0.25,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]

3.3.1 Incremental Quantization Strategies

In order to implement INQ, a strategy to iteratively quantize weights must be

selected. three such strategies are explored in this chapter, namely, random,

proximal, and distant, as illustrated in Figure 3.7.

Random allocates weights randomly to quantization steps. This has the ad-

vantage of being easy to implement, but is simplistic and can be optimized.

Proximal allocation first quantizes weights closest to the nearest Fibonacci

code word. This strategy results in less perturbation in the early training

stages, reducing the chance of placing the network in an unrecoverable state.

Distant allocation is the inverse of the proximal strategy. This strategy per-

forms most retraining in the early steps, allowing more potential for recover-

ing accuracy, as fewer weights are frozen during steps of greatest quantization.

For each quantization strategy, the cumulative fraction of weights to be quan-

tized at each step is defined. For the random strategy, the fraction of weights

increases uniformly from 0.0 to 1.0. For proximal, an aggressive approach is

taken towards initial quantization, as the first weights quantized are closer to

a Fibonacci code word. Conversely, for the distant strategy, initial quantiza-

tion is performed conservatively, as weights furthest from a Fibonacci code

word are first encoded. Table 3.1 details the fraction of weights to quantize at

each step for random, proximal, and distant FCQ strategies. The proportion

of weights quantized per epoch are adjusted depending on the impact the

quantization will have on the network. In other words, the early epochs of

the proximal strategy moves weights less, so more are quantized in the first

epochs, and vice versa for the distant strategy.
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3.4 Experimental Setup

Figure 3.8: Placed and routed 32 bit
CAPPIEM in 28nm CMOS.

A hardware assessment of CAPPIEM

is performed via implementation in

65nm TSMC CMOS [65] to allow

area, Power-Delay-Product (PDP),

and MRED comparisons against

state-of-the-art AM multipliers [85].

Figure 3.8 illustrates the place and

routed implementation of CAPPIEM.

A comparison is also made against

a subset of AMs from the EvoAp-

prox8b [95] library which are opti-

mized with respect to MRED and

power consumption. EvoApprox8b

is a set of Pareto-optimal evolved

AMs generated by genetic algo-

rithms that have been utilized in previous works to improve neural network

efficiency [87]. Finally, CAPPIEM is compared against a 6-bit incrementally

quantized network in which we quantize all weight values between 0 and 63,

as 6-bit weights enable 64 unique values, comparable to the 55 weight values

enabled by FCQ quantization.

To assess the proposed weight quantization and retraining strategy, FCQ-INQ

is implemented on the DenseNet-121 [96], Squeezenet 1.0 [97], and ResNet-

18 [98] NNs in PyTorch, over the CIFAR-100 database, and analyze accuracy

over random, proximal, and distant quantization strategies against standard

8-bit quantization. OneShot FCQ is also performed, in which all weights are

quantized in one go. A hyperparameter is defined, namely, Iterative Steps,

which contains the fraction of weights to quantize at each step, defined by the

values detailed in Table 3.1. The retraining stage commences with a learning

rate of 8E-4, decreasing by a factor of 0.2 when the loss value plateaus, and

stopping once either the learning rate drops below 1E-6 or 24 epochs are

completed. All trainings and inferences are performed with an NVIDIA Tesla

T4 GPU.
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3.5 Experimental Results and Analysis

3.5.1 Hardware Synthesis and Analysis

As CAPPIEM is implemented by modifying the partial product adder tree, it is

best compared against works described in [85], hereafter called the FA Approx

library, as well as AMs from the EvoApprox8b library. Area and PDP results

are illustrated in Figure 3.9-a. It should be noted that while the EvoApprox

library is implemented in 45nm CMOS, the relative area/PDP reductions

are still relevant to this analysis. Red points belong to the FA Approx library,

which contains two subsets of AMs, one with a fully approximated adder

tree, and the other with only LSB approximation. Blue points represent the

EvoApprox8b AMs. As can be seen, CAPPIEM provides area/PDP reductions

of 73/43%, respectively, with greater area reduction than any FA Approx AM

and all but the smallest Evo AM. These reductions are impressive given that

only 58% of the FAs were converted into or gates, whereas the works in

comparison with better reductions consist entirely of approximate FAs.

Figure 3.9-b illustrates the MRED of the AMs in comparison. As can be seen,

this work outperforms all fully and most partially approximate AMs from

the FA Approx library. Most EvoApprox AMs provide better MRED; however,

when taken in conjunction with Figure 3.9-a, this work provides a stronger

trade-off between area, PDP, and MRED. Even with a low MRED, retraining is

still necessary to recoup lost accuracy. Therefore, the next section analyzes

FCQ-INQ retraining features.

3.5.2 Retraining Analysis

In order to demonstrate the importance of FCQ for retraining purposes, infer-

ence is performed (representing the forward pass of retraining) via DenseNet-

121 on a set of 10000 images divided into 40 batches of 256 images each, while

simulating an AM from the FA Approx library via the technique described

in [87]. To complete the entire set with AM simulation takes ∼20 minutes. In

comparison, the same set of inferences without AM simulation takes only 4-5

seconds, or 240-300x faster. Through FCQ, AM simulation can be avoided,

and, hence, networks can be retrained without drastic slowdown.
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Figure 3.9: (a) Area and Power-Delay-Product (PDP) reduction compari-
son between this work against other AMs for 8x8 multiplier architectures.
(b) Mean Relative Error Distance (MRED) of this work in comparison to
other AMs. This work presents high area and PDP reductions in relation
to its low MRED.
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Figure 3.10: DenseNet-121 accuracy during the quantization/retraining
process utilizing the distant retraining strategy. Retraining enables to
recoup nearly all accuracy loss. Weights are quantized conservatively, as
described in Section 3.3.1. The blue line represents the percentage of
weights quantized at each step.

Figure 3.10 illustrates the accuracy loss during FCQ and subsequent recovery

during retraining for DenseNet-121. It is clear that retraining is necessary to

maintain network accuracy, as even FCQ for 0.1% of weight values reduces

accuracy by 62%. Via fast retraining, however, almost all lost accuracy is

recovered. The ability to fast retrain is nearly unique to the AM presented in

this work; all AMs in the FA Approx library, and all but 2 AMs in whole EvoAp-

prox8b library (totaling 46 multipliers) depend on both inputs to ascertain

the accuracy of the output, with the 2 Evo AMs that do meet this criterion

providing only 4/7% and 0.7/5% area/power reductions.

Table 3.2 details the results of FCQ on the selected benchmarks. As can be

seen, 8-bit weight quantization leads to little accuracy degradation. FCQ is

then performed using the aforementioned ICQ strategies. Accuracy degrada-

tion for the OneShot strategy is predictably poor, as only bias and batchnorm

hyperparameters can be retrained. Next, the random strategy provides rea-

sonable results across all networks. Interestingly, random FCQ performs

better than the proximal strategy, due to the aforementioned fact that little
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Table 3.2: Accuracy Degradation for quantization strategies after INQ

Network ResNet-18 DenseNet-121 Squeezenet 1.0

Float Acc. (%) 75.28 77.47 69.24
Quantized Acc. (%) 75.16 (-0.43) 76.37 (-0.10) 68.85 (-0.39)
6b Quant. Acc. (%) 73.78 (-1.5) 67.28 (-1.96) 71.42 (-6.05)

OneShot Acc. (%) 72.42 (-2.86) 64.76 (-12.71) 60.2 (-9.04)
Random Acc. (%) 73.05 (-2.23) 74.62 (-2.85) 66.83 (-2.41)
Proximal Acc. (%) 73.04 (-2.24) 71.64 (-5.83) 65.25 (-3.99)
Distant Acc. (%) 73.54 (-1.74) 76.37 (-1.1) 68.86 (-0.38)

training is done in the early retraining stages. In contrast, the distant strategy

recovers nearly all lost accuracy across all networks, resulting in degradations

of only 0.4%, 1.1%, and 1.7%. The distant strategy also converges in fewer

epochs, resulting in faster training. FCQ also generally outperforms 6-bit

quantization as the maximum value to which weights may be quantized to

is nearly tripled for FCQ than 6-bit quantization (170 vs. 63), allowing FCQ

quantized networks to better capture the variance of the original network.

3.5.3 Comparison to the State-of-the-Art

As the multiplication operation consumes a sizable portion of the total energy

cost of inference [87], significant research has been performed to implement

approximate multiplication for NNs. Several works [86, 87] utilize genetic

algorithms to explore the multiplier design space and simulate the impact of

approximation on each layer and neuron of the NN. These works utilize non-

uniform AM architectures across the network as well as in some examples

mixing AM architectures within a network, demonstrating impressive energy,

area, and delay values for the network and dataset but eliminating flexibility

to other networks and datasets when implemented in hardware. Many works

also require retraining during or after insertion of AMs [86, 88]. Such retrain-

ing requires that the approximate multiplier be simulated, precluding the

use of hardware optimizations for vectorized multiplication and increasing

inference time to hours or days for deeper networks [87]. Finally, partly as a
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Table 3.3: Comparison of this work to other approximate multiplier NNs

Work Dataset
Retrain/Uni./ Energy Accuracy

Depth Reduction Loss
ApproxANN [88] MNIST Slow / No / -35% -0.5%

2015 CIFAR-10 Unspecified -51% -0.5%
Jiao [99]

MNIST No / Yes / Low -48% -1.0%
2018

ALWANN [87]
2019

CIFAR-10 No / No / High -30%
-0.6%
-0.9%
-1.7%

This work CIFAR-100 Fast / Yes / High -39%
-0.4%
-1.1%
-1.7%

result of the prohibitive cost of retraining, most works thus far have targeted

simpler datasets, such as MNIST, CIFAR-10, or SVHN.

Therefore, this work differs from the majority of AM based NNs in 3 aspects:

1) the CAPPIEM architecture guarantees exact outputs when weight values

are properly quantized. This means that it is not necessary to simulate the

AM, which leads to the second benefit of this work,

2) network retraining can be performed with hardware optimizations via

standard vectorized multiplication. This enables for much deeper approx-

imated networks than has been demonstrated in the SotA, as well as fast

exploration of the hyperparameter design space, while still providing large

area and power reductions. Finally,

3) the design is applied uniformly across the network, and has thus been

demonstrated as generalizable to networks of various depths and feature

types, such as Squeezenet’s Fire modules and ResNet’s residual functions.

Table 3.3 compares this work with other state-of-the-art works across various

features, such as dataset, necessity of retraining, uniformity, and network

depth. As can be seen, the presented work demonstrates SotA accuracy while

maintaining hardware uniformity across the network. While incremental

retraining is utilized, it is performed with hardware acceleration, enabling

approximation even in deep networks.

67



Chapter 3. Accelerating iSC Operations via Approximate Computing

3.6 Conclusion
In this chapter, I have presented a hardware/software co-design solution

for reducing the area, power, and delay costs of NN multiplications. When

implemented as a standalone AM, CAPPIEM replaces over half of a multi-

plier’s full adders with or gates, reducing area and PDP by 73/43%. When

implemented in BLADE, CAPPIEM halves multiplication latency while only

requiring two extra transistors added to the LG periphery. CAPPIEM also has a

unique property in that it performs exact multiplications when one input is a

Fibonacci code word. I exploit this characteristic by incrementally Fibonacci

quantizing and retraining NN weights. The FCQ methodology reduces infer-

ence runtime during retraining by 240-300x, while the selected benchmarks,

Squeezenet 1.0, DenseNet-121, and ResNet-18, incur very small accuracy

losses of 0.4/1.1/1.7% for the CIFAR-100 dataset, while still benefiting from

approximate multiplication.
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Improving Capacity with Hybrid
Caches

4

WHILE the previous chapter described a method for reducing BLADE’s

latency through approximate multiplication, this chapter focuses

on improving the memory capacity available to the application at runtime.

Applications in general, and NNs in particular, have become increasingly

memory hungry as their levels of accuracy are improve. In an effort to enable

NNs on as many devices as possible, many optimizations to reduce NN

memory and compute overhead have been proposed, such as quantization,

pruning, and custom layers [94, 97, 100]. Even so, the memory footprint of

"small" NNs often still measure in the order of MBs [45]; therefore, memory

enhancements that exploit the invariant nature of these weights can continue

to improve NN performance on area-restricted devices.

In this regard, Figure 4.1 displays the read access to write access (read/write)

ratios of the memory blocks that account for 98% of total inference-time read

accesses for the SqueezeNet NN [97]. As can be seen, the memory blocks

with the highest read/write ratio contain weight values, as these blocks are

only written during line fills from lower memory levels during inference,

never from the processor. Weight values also account for almost 40% of all

memory accesses performed at runtime. It can be inferred that improving

processor read access to these weight values will result in overall application

performance gain.
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Figure 4.1: Read/write access ratios in relation to total read accesses.
Weight access accounts for nearly 40% of reads.

While it would be possible to simply increase SRAM subarray count or size,

another option is emerging Non-Volatile Memories (eNVRAMs). eNVRAMs

are being exploited for their unique iMC capabilities, which can be integrated

with BLADE. In this context, Hybrid Caches (HCs), consisting of SRAM and

eNVRAMs, can be used to accelerate NNs. eNVRAM’s low area footprint and

leakage energy enable more efficient execution of memory intense algorithms

by increasing cache capacity with little area overhead, while simultaneously

reducing power consumption. However, eNVRAMs also incur a high write

energy cost and have limited endurance. It is therefore necessary to opti-

mize write strategies to avoid unnecessary writes. Many works have proposed

heuristical, predictive placement strategies. In contrast, a deterministic cache

allocation strategy enables the utilization of eNVRAM allocated variables to

choose which values are written to eNVRAM and avoid unnecessary transfer

between SRAM and eNVRAM, thus providing maximum cache usage effi-

ciency. In the case of NNs, invariant weight values are an excellent candidate

for eNVRAM storage.
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To this end, I present a HW/SW Stack for Hybrid Caches (SHyCache), con-

sisting of a HC architecture and deterministic cache allocation strategy, sup-

ported by a programming model reminiscent of those utilized to enable GPU

computation, illustrated in Figure 4.2-a. SHyCache enables precise control

over data placement within the cache, and is compatible with heuristical

hybrid cache strategies. Then, I explore the HC design space by considering

various eNVRAM/SRAM HC ratios, and benchmark SHyCache in gem5-X on

a range of NNs of varying computational complexity and memory footprint.

I also demonstrate the integration of BLADE into SHyCache, enabling iSC op-

erations to be performed between weights stored in eNVRAM and activations

stored in SRAM via a memory bridge and pseudo-local groups.

The contributions of this chapter are as follows:

• I introduce SHyCache, an HC architecture with a deterministic alloca-

tion strategy allowing for precise data allocation within an HC. This

strategy is compatible with other hybrid cache allocation strategies.

• I develop a programming model with a C++ support library allowing

easy integration of SHyCache support into any existing application.

• I implement SHyCache in the gem5-X architectural simulator and ex-

plore the HC design space to optimize for performance, power, and en-

durance, demonstrating performance gains of 1.7/1.4/1.3x and power

consumption reductions of 5.1/5.2/5.4x for the Inception v4, ResNet-50,

and SqueezeNet 1.0 NNs, respectively.

• I propose a method for co-implementing BLADE and SHyCache to gain

the advantages of both iSC and eNVRAM in one system.

The rest of this chapter is organized as follows. Section 4.1 explores related

state-of-the-art work. Section 4.2 details SHyCache’s HC architecture. Sec-

tion 4.3 details SHyCache’s programming model and support library and dis-

cusses tandem implementation with other allocation strategies. Section 4.4

details the benchmarking methodology, while Section 4.5 discusses results.

Section 4.6 describes how BLADE and SHyCache can be co-implemented.

Finally, Section 4.7 concludes the chapter.
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Figure 4.2: SHyCache is a HW/SW stack (a) that enables efficient use of
a hybrid cache (b).

4.1 Related Work

4.1.1 Resistive Random Access Memory

Emerging nonvolatile memories, including phase change [101], resistive [102]

and spin-torque transfer [103] memories, have recently gained popularity

thanks to their small size, up to 4x smaller than 6T SRAM cells [104], and low

leakage energy due to their nonvolatility. However, eNVRAM also suffers from

long/high-energy write operations, and low endurance due to the underlying

physics of the technology. In order to efficiently utilize eNVRAM within

an architecture, eNVRAM-specific optimizations must be implemented to

magnify their advantages while mitigating or masking drawbacks.

4.1.2 Hybrid Cache Design and Allocation Strategies

One implementation of eNVRAM within the memory hierarchy involves

placement alongside standard SRAM cache arrays, creating a Hybrid Cache

(HC) hierarchy, as illustrated in Figure 4.2-b. This architecture increases

cache capacity while also reducing power consumption [105]. However, HCs

also inherit eNVRAM’s disadvantages as described above. Further, a naive

HC implementation may magnify these disadvantages, as the frequency of

cache writes, and therefore cache lifetime, is highly variant depending on

the application [106], as well as reducing performance even while not in use

due to slower access time. Many works have therefore proposed memory

management strategies [107] for allocating blocks in either SRAM or eN-

VRAM depending on a variety of factors. The majority of these strategies are
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heuristic [106, 108, 109] or compiler based [110, 111]. In contrast, this chapter

presents an application driven allocation strategy which obviates the need

for heuristics and takes advantage of cases in which an application’s data is

constant, such as neural networks.

4.1.3 Neural Networks

Neural Networks (NNs) are a class of applications that process inputs through

the use of consecutive compute layers and return an output, for example, the

class of the input. Each hidden layer consists of one or more "neurons" of vari-

ous function. The two most widely used neuron layers are the fully connected

and convolutional layer. Both layers perform multiply-and-accumulate oper-

ations between the outputs of the previous layer and an array of previously

trained weights. These layers require a massive number of weight values; the

classical Alexnet NN utilizes 3.78M weights (144MB for floating point weights)

in its first fully connected layer [112]. Convolutional layers reduce memory

footprint by using small (ex. 3x3) weight kernels that are convolved with

the layer input. While convolutional layers greatly reduce the NN’s memory

footprint, they are generally still large in an absolute sense; for example, the

SE-ResNeXt-50 NN achieves the highest Top-1 and Top-5% accuracy on the

ImageNet-1k database at a low operational complexity, yet still contains over

10MB of weights [45]. Managing such large quantities of weights is imperative

for efficient NN execution.

4.2 Hybrid Cache Architectural Design
SHyCache’s hybrid cache consists of arrays of two memory types, one being

standard 6T SRAM based memory and the other a flavor of eNVRAM, as

illustrated in Figure 4.2-b. Each bitcell array is indexed by a separate tag

array. The combined area of the tag array memory macros is equivalent to

a single tag array of an equivalently sized monolithic cache memory, plus

overhead for tag array periphery. As SHyCache’s data placement strategy

is deterministic, as described in Section 4.3, only one data/tag array needs

be accessed per read/write, reducing power consumption in comparison to

heuristic strategies that must check both arrays for the data as its location

is not known beforehand. In regards to cache access latency, it is important
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to note that, as only either the SRAM or eNVRAM is accessed, SHyCache’s

allocation strategy does not impact access latency of programs not utilizing

the eNVRAM, i.e. the system kernel, and thus does not impact standard

system performance. This is not necessarily the case if other heuristic or

compiler-based allocation strategies are implemented alongside SHyCache’s

allocation strategy, as discussed in Section 4.3.3.

As illustrated in Figure 4.2-b, HC configurations at both the L1 and L2 levels

are considered. An inclusive cache policy is utilized for reasons explained in

Section 4.5. The L1 cache utilizes parallel tag/data access to reduce access

time as described in Section 2.5, while the L2 uses sequential tag/data access

to reduce power consumption.

4.3 Integrating SHyCache’s Programming Model

into Neural Network Frameworks
Several characteristics of NN weights enable NNs to be accelerated by HCs.

The first is that, as previously mentioned, most NNs that achieve >80% Top-

5% accuracy utilize large amounts (in the order of MBs) of weights. Second,

weight values are calculated at training time and not modified during in-

ference. Finally, fully connected and convolutional layers result in spatially

local data accesses. These characteristics make eNVRAM suitable for storing

NN weights. High eNVRAM bitcell density allows more weights to be stored

without the need for eviction, while the long write latency of eNVRAM is

mitigated by the read-only nature of weights.

4.3.1 Enabling HC allocation at the Operating System Level

Most previous HC works utilize heuristic strategies to allocate data either in

the SRAM or eNVRAM bitcell arrays depending on various factors. In contrast,

because the location and value of NN weight values are deterministic, no

heuristic strategy is necessary for weight allocation in SHyCache. This is ac-

complished at the system level by reserving a portion of memory at operating

system startup that can be mapped by an application in the same manner

that peripherals can be mapped and accessed by user applications, similar to

the strategy detailed in Section 2.5.1. When variables allocated to the memory
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using namespace SHyCache ;
void loadWeights ( string weightsFile , size_t len) {

// Declare var to be stored to eNVRAM portion of
cache. Allocation handled by helper library .

float32_nv * weightsPtr = new float32_nv [len ];
// Open file containing pre - calculated weights .
ifstream wIn( weightsFile );
// Store weights to previously allocated memory .
wIn.read (( char *) weightsPtr ,len);
// ... Perform inference ...
// Clean up
delete weightsPtr ;

}

Listing 4.1: Allocating the hybrid cache is done by allocating the variable
pointer within the memory mapped region reserved for eNVRAM.

range reserved for eNVRAM caching are fetched into the cache hierarchy, an

address predecoder analyzes the MSBs of the incoming address. Addresses

within the reserved memory region will be automatically cached in eNVRAM

array when accessed. Such a strategy does not require any compiler modifi-

cation and minimal application modification. Architectural modifications

will depend on the nature of the architectures virtual-physical memory ad-

dress translation. If the reserved memory is virtual, when address translation

occurs the processor can tag the memory access with a bit to indicate if it is a

standard or eNVRAM memory access before passing the access to the cache

hierarchy. If the reserved memory is physical, or there is no virtual-physical

translation, for example in embedded systems that use tightly coupled mem-

ory [113], the type of memory access will be attained as a byproduct of the

address decoding that occurs during cache access, hence, no modification to

the processor architecture is necessary.

4.3.2 Enabling HC allocation at the Application Level

At the application level, the programmer utilizes SHyCache’s C++ data types

to instantiate variables that will be allocated to the eNVRAM, as seen in

the example function in Listing 4.1. The support library then facilitates the

allocation of variables to the eNVRAM memory region without further pro-

grammer intervention by allocating the variables to the memory mapped

region described in Section 4.3.1.
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Current NN frameworks, such as Tensorflow, Caffe, and ACL perform several

preprocessing stages upon weights before storing them in their final tensor,

after which this tensor is not modified during inference. Framework exten-

sion to support HCs consists therefore of redirecting the output of the final

preprocessing stage to store weight values in a tensor stored in the eNVRAM

cache, resulting in no extra data movement overhead. In this chapter, I extend

ACL with SHyCache’s C++ support library, however such extensions could be

applied to any of the aforementioned frameworks to enable HC support. It

should be noted that the use of a support library obviates the need for any

language compiler modifications, simplifying the deployment process.

4.3.3 Co-Implementing SHyCache with Other HC Allocation

Strategies

Many SotA works use heuristic methods for moving data between the SRAM

and eNVRAM memory domains depending on access patterns [106]. Other

works use compiler driven strategies that analyze applications at compile

time to choose the best domain for declared variables [110]. One advan-

tage of SHyCache is that it does not preclude the use of these HC allocation

strategies. Such strategies can be implemented in tandem by excluding the

memory region utilized by SHyCache from the data migration scheme. Even

a heuristic allocation strategy with oracle prediction abilities would benefit

from SHyCache, as, in order to maintain fast access times, the tag array (and

data array in the case of simultaneous tag/data access) of both the SRAM and

eNVRAM domains of the HC cache must be accessed simultaneously, as the

location of the data is unknown prior to access. On the other hand, SHyCache

determines the location of the data at compile time, and the address decoding

process routes data access to only the portion of cache in which the data is

located, reducing power consumption.

4.4 Experimental Setup
To assess SHyCache’s application level performance, gem5-X is extended to

support HC caches. three NNs of differing computational complexity and

memory footprint are benchmarked, and their performance, power, and

endurance trends across a range of HC geometries are analyzed.
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Table 4.1: Simulator Parameters

Processor 2GHz, 4 stage pipeline, ARMv8 ISA in-order core, 7 entry LSQ
Co-processor NEON, 128-bit registers, 16 parallel 8-bit operations

L1-I Cache 32kB, 4-way, 2 cycle access
L1-D Cache 32kB, 4-way, 2 cycle access

L2 Cache
1024/0kB SRAM, 0/4096kB STT-MRAM

mostly-inclusive, 16-way, 20 cycle access
STT-MRAM

50ns [103]
Write Time

Memory DDR3 2133MHz, 4GB

4.4.1 gem5-X Simulator Parameters and Hybrid Cache Ac-

cess Latency Simulation

An ARMv8 A53 in-order core is emulated by calibrating gem5-X with the simu-

lation parameters illustrated in Table 4.1, and simulating an Ubuntu 18.04 LTS

software environment. CPU and interconnect power statistics are extracted

via the McPAT power estimation framework [55]. SRAM timing and power val-

ues are extracted from an implemented subarray in 28nm using TSMC’s high

performance technology PDK [114], as described in Section 2.4.1. eNVRAM

power values are drawn from literature, with STT-MRAM [103] considered for

this chapter, however the allocation strategy is technology independent. In

order to illustrate SHyCache’s performance and power trends, performance

and power statistics are extracted across multiple HC hierarchies, in addition

to SRAM-only baseline simulations. Hybrid cache geometries are defined

by assuming a 4x area ratio between SRAM and eNVRAM bitcell arrays [104],

and then sweeping eNVRAM capacity between 0-128kB and 0-4096kB for the

L1/L2 caches, respectively, while maintaining an equivalent area footprint.

In order to accurately simulate HC access, SRAM and STT-MRAM access

latency is defined in cycles, as documented in Table 4.1. This access latency

represents the time to access a cache block through the decoding logic and

H-tree, and is pipelined in this implementation, allowing consecutive cache

accesses to overlap without blocking. Additionally, STT-MRAM write latency

includes an additional write time measured in ns, representing the time

taken to write a line of data to STT-MRAM. During this time, the subarrays
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Table 4.2: Neural Network Benchmark Parameters

Benchmark # Layers # Parameters
Weight Memory
Footprint (MB)

Inception v4 27 41.1M 156.8
ResNet-50 50 23.5M 89.6

SqueezeNet v1.0 18 1.25M 4.76

being written to cannot be accessed; therefore, this time is not pipelined

and subsequent accesses to busy subarrays are blocked. To mitigate this

effect, a buffer is implemented between the data bus and the eNVRAM array

that stores the latest access to the eNVRAM array and enables coalescing

of consecutive writes before the buffer is written to the eNVRAM array. As

SHyCache is deterministic in that only the SRAM or eNVRAM portions of the

memory need to be accessed for any given cache block, this added latency is

not present in standard SRAM accesses, and hence does not impact system

performance in cases where the eNVRAM is not accessed.

4.4.2 Neural Network Benchmarks

In order to benchmark SHyCache, three modern NNs of differing sizes are

implemented in ACL [59], namely, Inception v4 [115], ResNet-50 [98] and

SqueezeNet v1.0 [97], whose parameters are outlined in Table 4.2. These

networks enable benchmarking of SHyCache under a wide range of network

complexities and memory footprints. All weights and inputs are in floating

point, and input batch sizes are set to one.

4.5 Experimental Results and HC Optimization

Analysis
SHyCache’s experimental results reveal trends in relation to power consump-

tion, runtime performance, and eNVRAM endurance. Analyzing these met-

rics enables the architect to optimize the HC hierarchy for the system’s ex-

pected use case.
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Figure 4.3: Power consumption of all-SRAM, SRAM+eNVRAM, and all-
eNVRAM caches for Inception (I), ResNet (R) and SqueezeNet (S) NNs.

4.5.1 Power Results

First, SHyCache’s implications on power consumption are considered. Fig-

ure 4.3 provides an in-depth breakdown of the power consumption of pure

SRAM, pure L1 STT-MRAM, and pure L1/L2 STT-MRAM cache hierarchies. As

can be seen, while L1/L2 STT-MRAM write power is substantial, eliminating

the energy-leaking SRAM caches provides an excellent reduction in power

consumption. STT-MRAM read energy is on par with SRAM read energy, and

is too low to be visible in Figure 4.3 when compared to the static energy con-

sumption of the SRAM caches. Figure 4.4-b summarizes the results of the HC

design space, from which two trends can be drawn. First, regardless of the L2

cache, a spike in power reduction is seen at a 128kB pure SRAM cache. A slight

upward trend in power reduction can also be seen as the STT-MRAM/SRAM

ratio of the L2 cache increases, until a sudden jump at a pure STT-MRAM

cache. This is because in a pure STT-MRAM cache the power-hungry SRAM

bitcell array is replaced with a low leakage STT-MRAM bitcell array. A similar,

more pronounced power reduction occurs when replacing the L2 SRAM array

entirely with STT-MRAM. Overall, a maximum possible power reduction of

5.1/5.2/5.4x is achieved for Inception/ResNet/SqueezeNet, respectively.
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4.5.2 Performance Results

Next, the impact of SHyCache on NN runtime is considered. This is accom-

plished by performing inference with a batch size of one for the three NNs,

normalizing the results to pure SRAM cache hierarchies. The No-L2 portion

is normalized to a pure SRAM cache of 32kB, while all other portions are

normalized to a 32/1024kB L1/L2 pure SRAM cache hierarchy. Performance

as a function of HC architecture is illustrated in Figure 4.4-a

As can be seen, runtime acceleration varies widely across cache geome-

tries. On one hand, if solely the L1 cache is considered in Figure 4.4-a,

performance gains of up to 1.31/1.09/1.03x are measured for Inception/Res-

Net/SqueezeNet, respectively, as the STT-MRAM/SRAM HC ratio is increased

up to 64kB/16kB. However, increasing the size of the STT-MRAM array past

this point degrades performance, as less SRAM space remains for the re-

mainder of the application. Generally, a 128kB pure STT-MRAM L1 cache

results in a steep decrease in performance as all memory accesses, including

those with low read/write ratios, are relegated to STT-MRAM. It should also

be noted that performance gain attributable to L1 STT-MRAM decreases as

computational complexity and memory footprint increases, as the tiny L1

cache becomes insignificant in comparison to the size of the weights, as seen

by the decreasing gains for the deeper ResNet and Inception NNs in relation

to SqueezeNet.

On the other hand, if the L2 is also considered a very different trend develops.

Increasing the HC ratio consistently improves performance for all NN bench-

marks, up to a pure eNVRAM array of 4096kB. The larger cache size results

in fewer weight evictions, and the mostly-inclusive cache policy mitigates

the effects of constant L1 evictions. Additionally, having such a large ratio

between L2 and L1 STT-MRAM capacity (64 in the case of a 64kB L1 and

4096kB L2), reduces the negative effects of data repetition that results from

an inclusive cache policy. Overall, maximum possible performance gains

of 1.7/1.4/1.3x are achieved for Inception/ResNet/SqueezeNet, respectively,

when normalized against pure SRAM L1/L2 cache hierarchies.
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4.5.3 Endurance Results

Lastly, analysis is made on the number of bitflips that occur within the STT-

MRAM array at different cache geometries. eNVRAM life expectancy is tied to

its endurance with respect to bitcell value flips, or bitflips. This is measured

by counting every 1→0/0→1 flip during writes to the STT-MRAM arrays.

As eNVRAM technologies have significantly lower endurance compared to

CMOS-based memories, it is imperative to consider bitflip frequency of any

architecture utilizing eNVRAM.

Figure 4.5-a illustrates the STT-MRAM bitflip count at all L1 HC geometries

with no L2. Consistent with the performance results and reasoning presented

in Section 4.5.2, bitflip count drops for 64 and 96kB STT-MRAM caches, before

increasing again for pure STT-MRAM caches, with the bitflip reduction more

pronounced in the smaller SqueezeNet NN.

Meanwhile, Figure 4.5-b presents STT-MRAM bitflip count for all L2 HC

geometries with a pure SRAM L1 cache. The first point of note is that the

geometry with the highest bitflip count is not a pure STT-MRAM cache, but

in fact an HC of 512/896kB. This is consistent with the performance drop

seen across all NNs at this geometry in Section 4.5.2, and is a result of cache

thrashing due to the small cache size in relation to the number of weights.

Bitflip count then drops as the HC ratio increases and less cache blocks are

evicted. Finally, at a pure STT-MRAM cache, the bitflip count for the smaller

SqueezeNet NN spikes, as the whole application utilizes STT-MRAM. ResNet

and Inception’s larger weight footprints dilute this effect, as they gain more

from keeping weights in-cache.

This chapter considers only overall bitflip count, not flip counts for individual

bits. A drop in average flip per bit is observed as cache capacity increases;

however, this metric does not account for uneven intra-word flips skewed

toward the LSBs. Many works have explored various eNVRAM wear reducing

and leveling optimizations to alleviate this skew. These optimizations are

out of this thesis’s scope, however, and have not been applied; hence, the

numbers demonstrated here are worst case values, with room for future

optimization.
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Figure 4.5: STT-MRAM bitcell flips across varying L1 (a) and L2 (b)
cache sizes.

4.5.4 Optimizing HCs for Performance, Power, or Endurance

As seen in Sections 4.5.1-3, proper selection of HC geometry for the L1 and L2

caches depends on the system’s expected use case. Different geometries opti-

mize either performance, power, or endurance. For example, performance

is maximized with a 64/16kB L1 HC cache and a pure STT-MRAM 4096kB

L2 cache. However, such a configuration may have a poor endurance when

small NNs are the target application. In terms of power, a pure STT-MRAM

L1 and L2 provides significant power reduction; however, endurance suffers

greatly from such a configuration. From an endurance perspective, the highly
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active L1 cache accounts for nearly half of all bit-

flips during inference; a good trade-off between

performance, power, and endurance, therefore,

may be a pure SRAM L1 with a 2048/512kB L2

HC cache. This architecture provides perfor-

mance and power improvements of 1.6/1.1/1.1x

and 1.5/1.5/1.5x, respectively, while incurring

the lowest bitflip count of any architecture.

4.6 Integration with BLADE
SHyCache is also envisaged to be integratable

with BLADE. The advantages of such a configura-

tion would be to combine the larger capacity of

SHyCache with the SIMD capabilities of BLADE.

In order to integrate the two domains, the uti-

lization of pseudo-local groups is proposed.

4.6.1 Pseudo-Local Group Integra-

tion

In Chapter 2, local groups were introduced as

a method for isolating bitcells from each other

via read periphery. An interesting aspect of this

is that the internal circuitry of the local group

is opaque to the global bitline. This means that

basically any type of memory or logic can be

connected to the read periphery so long as the fi-

nal output consists of a single bit and its inverse.

This can be exploited in the case of SHyCache by

routing the output lines from an eNVRAM sub-

array to a so-called Pseudo-Local Group (PLG)

in an SRAM subarray, as illustrated in Figure 4.6-a. This PLG consists of read

ports attached to the GBL pairs of the SRAM subarray, enabling operations

between the eNVRAM and SRAM subarrays, as illustrated in Figure 4.6-b. This

strategy necessitates having an equal number of subarrays of equal width in
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each domain. The eNVRAM wordline decoder may also need to be modified

to allow enabling of a wordline in each subarray to take full advantage of

BLADE’s SIMD operations.

4.6.2 SHyCache/BLADE Operand Locality

The utilization of PLGs to co-implement SHyCache and BLADE obviates some

of the data locality constraints described in Section 2.5.1. Namely, since no

SRAM set can possibly share a local group with a set in the eNVRAM, the re-

striction on the MSBs of the set bits is lifted. However, it is still necessary that

the operands occupy matching bitline columns in sister subarrays. Therefore,

it is still necessary that the offset bits and n set LSBs match, where n equals

log2
(
V alg eo

)
with V alg eo defined as in Section 2.5.1.

4.7 Conclusion
This chapter presented SHyCache, a hybrid cache with a deterministic al-

location strategy and supporting programming model designed to improve

NN runtime while reducing power consumption. SHyCache enables NN

frameworks to explicitly allocate weight values to the eNVRAM cache, elim-

inating data transitions between SRAM and eNVRAM arrays and providing

maximal cache efficiency. In this chapter, I explained how SHyCache can be

implemented at the system and application level and in tandem with other

HC allocation strategies, I have developed a C++ support library allowing

implementation in current applications, and I benchmarked SHyCache on

three NN applications of varying computational complexity and memory

footprint. Analysis of experimental results have demonstrated maximum

performance gains of 1.7/1.4/1.3x and power consumption reductions of

5.1/5.2/5.4x, for the Inception/ResNet/SqueezeNet benchmarks, respectively.

I considered the implications of the demonstrated results for optimizing an

architecture based on expected use cases and proposed a middle-ground

solution that provides optimal trade-off between performance, power, and

endurance. Finally, I proposed a method for co-implementing SHyCache

and BLADE, accounting for architectural considerations and operand locality

constraints. Integration benchmarks shall be considered in future work.
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AS Moore’s law has slowed and Dennard scaling has ended in the last

years, innovative methods of continuing to scale runtime, energy con-

sumption and area footprint are being explored at every level of the HW/SW

stack. Among these, iMC, both in traditional and emerging memory, reduces

data movement while increasing the number of simultaneous operations

that can be performed, reducing runtime and energy consumption with min-

imal area overhead. As a relatively new field, the opportunities for further

research presented by iMC is manifold, from incremental changes to preex-

isting architectures to radical new designs that nearly entirely replace the

processor.

In this thesis, I introduced BLADE, an iMC accelerator that utilizes a number

of novel techniques for reducing area overhead and running at a frequency

higher than other SotA works of a similar nature. Further, I have explored

approximate computing and hybrid caches as methods for enhancing BLADE

by reducing multiplication latency and expanding memory capacity.

5.1 BLADE: A Base for Future iMC Exploration
BLADE as a platform has many benefits that set it apart from other works in

the iMC field. First, its low-overhead implementation in commodity SRAM

memory means it is easily and reliably testable and can be implemented in the

computer and embedded systems of today, as opposed to many works that
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rely on emerging technologies that are not yet well characterized. It supports

many bitwise and arithmetic operations, including multiplication, which is

necessary for many important kernels used in modern day algorithms. In

contrast to many SotA analog-based works, its digital nature means that it pro-

duces the same results as traditional von Neumann architectures, eliminating

the need to evaluate the impact of acceleration on application accuracy, a

key complexity that faces other approximate solutions. Simultaneously, the

innovative use of local groups and the proper in-memory arrangement of

operands enables BLADE to run at native memory frequency, up to 3x faster

than previous SotA iSC based works.

Not wanting to be constrained to any one level of the HW/SW stack, I have

explored and validated the benefits of BLADE from the hardware all the way

to application level:

• BLADE has been implemented in 28nm TSMC CMOS technology and

validated through a multitude of electrical simulations. Further, BLADE

has also been implemented and fabricated in 60nm TSMC CMOS, with

validation via electrical simulation and upcoming characterization of

the circuit pending return from the fabricator.

• I explored multiple methods of implementing BLADE into a system

architecture. Namely, I implemented BLADE in the L1 cache of a CPU,

performing architecture exploration via modification of the cache hi-

erarchy, geometry, and capacity. I also fabricated BLADE within the

tightly coupled memory found in the PULP platform, with further char-

acterization and application exploration planned in the near future.

• I developed multiple methods for integrating BLADE at the kernel level.

One such iteration treats BLADE as a memory mapped accelerator

tightly coupled to the memory hierarchy that could be mapped by

application developers for use in applications. This method has the

advantage of ease of use and familiarity to embedded system program-

mers. A second iteration utilizes ISA extensions to send operand in-

formation as memory read operations that are then decoded by the
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BLADE controller. This iteration has the advantage of more permanent

future integration with compiler support and optimizations.

• I implemented BLADE in the gem5-X architectural simulator, enabling

timing accurate application level simulations for ascertaining the util-

ity of BLADE at the application level. I analyzed applications utilizing

both bitwise and arithmetic operations to see how architectural modi-

fications affect functionality. Implementation in gem5-X highlighted

challenges not visible at the hardware level, such as data locality, and

provided insights into ways BLADE could be enhanced, such as em-

bedded shifting and way-agnostic applications, which were then imple-

mented in later iterations.

With BLADE implemented at the HW, architectural, and SW levels, many

avenues of further research are open for continuing to enhance its in-memory

computational capabilities.

5.2 Exploring Opportunities for Enhancing BLADE
Continuing my research, I developed various strategies for improving BLADE:

• In an effort to reduce multiplication cycle count, I developed a CAr-

ryless Partial Product InExact Multiplier (CAPPIEM) that can be im-

plemented in BLADE at a low area overhead, reducing multiplication

latency by 2x. CAPPIEM can also be implemented as a standalone

approximate multiplier, reducing area and power-delay-product by

73%/43%, respectively. CAPPIEM has a unique property among other

approximate multipliers in that if one operand is a Fibonacci codeword,

aka, if it has no consecutive ones in its binary representation, then

CAPPIEM produces an exact product value. With this knowledge, I de-

signed a retraining algorithm called Fibonacci Code Quantization, that

quantizes neural network weights to Fibonacci values over multiple

iterations, retaining network accuracy while eliminating approximate

product values during inference. This algorithm improves retraining

time by up to 300x, while incurring very small accuracy losses on NN

benchmarks.
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• As emerging non-volatile memories grow in popularity due to their

small area footprint, the concept of hybrid caches has also been

explored. In this vein, I have implemented a HW/SW Stack for

Hybrid Caches (SHyCache), a HW/SW co-designed hybrid cache

with deterministic data placement. Utilization of the C++ support

library allows the application designer to easily allocate static variables

to the eNVRAM domain of SHyCache, improving performance by

1.7/1.4/1.3x and reducing power consumption by 5.1/5.2/5.4x for three

deep neural network benchmarks. SHyCache can be further enhanced

by BLADE for greater improvements, and could even be extended by

one of the many in-eNVRAM computing implementations for further

performance gains.

5.3 Future Work
In the future, many improvements and further research could be performed

to make BLADE an even more effective accelerator. This is a list of just a few

avenues of future work that could be pursued.

5.3.1 Validation of BLADE Fabrication

During my PhD, our team fabricated BLADE in 65nm TSMC CMOS technology

on the Rosetta chip, illustrated in Figure 5.1-a, in collaboration with the

Integrated Systems Laboratory (IIS) at Swiss Federal Institute of Technology

in Zürich (ETHZ). BLADE was implemented in a 32kB, 16 local group SRAM

array alongside a RISCY [48] processor core. While the opportunity was

exciting and impossible to pass up, a tight time constraint of three months to

implement BLADE from the ground up in a new technology node resulted

in a faulty circuit. In 2021 we had a second opportunity to fabricate BLADE

in IIS’s Darkside chip, illustrated in Figure 5.1-b, building on the Rosetta

design and integrating further improvements. Darkside has been successfully

fabricated and will be characterized in the coming weeks. The Darkside

chip will be valuable for validating our previous works’ results, and also for

performing more complex application level analysis, as Darkside will execute

applications orders of magnitude faster than the gem5-X simulator.
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(a) Rosetta (b) Darkside

Figure 5.1: Chips fabricated in collaboration with the Integrated Systems
Laboratory (IIS) at Swiss Federal Institute of Technology in Zürich (ETHZ).

5.3.2 FPGA Implementation to Reduce Simulation Time

While a physical chip demonstrates that BLADE can be implemented outside

of simulation, it of course cannot be utilized for architectural exploration, as

its architectural parameters cannot be modified. gem5-X has proven useful

as a preliminary test platform for BLADE, but as application benchmarks

become more complex, the extremely low execution time has become a bar-

rier to further experimentation. Indeed, running a full deep neural network

benchmark, such as ResNet or Inception, takes hours to weeks, depending

on the parameters. In order to test full applications, it will be necessary to

re-implement BLADE on an FPGA with a softcore processor. Collaboration

with IIS-ETHZ and access to their PULP platform which has already been im-

plemented on-FPGA, as well as the implementation of the BLADE controller

in HDL for the Rosetta and Darkside projects, put this goal within reach in

the near future. FPGA implementation will also decrease development time

and reduce the incidence of bugs in future fabrication efforts, as the latest

iteration of BLADE will already be available and debugged in HDL.
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5.3.3 BLADE Compiler Support

At the current stage of development, two methods for instantiating BLADE

at the application level have been described; mapping BLADE as a memory

mapped device, and using custom opcodes for sending commands. The

second option is the beginning of another research avenue to be explored in

relation to BLADE, namely, compiler support and optimization. Currently, ap-

plication developers are responsible for allocating memory to conform with

data locality constraints, and must find any possible optimization themselves.

Compilers, on the other hand, are very adept at optimizing applications auto-

matically and reduce the workload on application developers significantly.

Particularly, optimizing data access and movement will be paramount to

allowing BLADE to be generalized quickly to a wider range of applications.

Such support could be implemented in LLVM or Clang, given the ease of

modification in comparison to GCC, and would represent the final piece in

true full stack support for BLADE.

5.3.4 Further Refinement/Enhancement of BLADE Hard-

ware and Architecture

Finally, the BLADE hardware presents numerous opportunities for improve-

ment. To name just a subset of promising research lines:

• While solvable to a degree at the compiler level, data locality constraints

pose a challenge for all types of iMC devices. Reducing these constraints

will make application development and deployment significantly easier.

As demonstrated in [70], small hardware changes can greatly reduce

constraints. While this work succeeded in removing the horizontal data

placement limitation imposed by ways, reducing vertical limitations

imposed by LGs and separate, non-communicating subarrays poses

another challenge. One such solution could be the PLGs described in

Chapter 4. These PLGs could be attached to other subarrays, allow-

ing inter-subarray operations, or the incoming data-in wires, allowing

lower level memory or the CPU to provide operands as well.
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• At the current stage, BLADE has only been implemented in the L1 cache.

This was decided upon to avoid the challenge of data coherence be-

tween multiple processors, but there is no reason why BLADE could

not be implemented at lower levels. Indeed, this would be greatly bene-

ficial for multiple reasons. First, multiple CPUs could share the same

BLADE accelerator, mitigating area overhead. Second, more and wider

subarrays translate to more operations performed per cycle, increas-

ing throughput. Third, the larger cache size reduces cache eviction

when working on kernels with large inputs, such as NN layers with

many channels. Finally, data movement is greatly reduced as data is

not moved further up the cache hierarchy than necessary. In order to

implement such an architecture, BLADE will have to be integrated into

the coherency subsystem of the target architecture in much the same

way as a DMA. The complexity of such an implementation is not com-

pletely trivial, but should be doable by a researcher with a competent

understanding of multiprocessor computer architecture.

• Increasing the number of supported operations will improve BLADE’s

flexibility to perform various kernels. While the current iteration sup-

ports bitwise operations, shifting, adding, and multiplication, many

other operations could be supported at various degrees of complex-

ity. Implementing not is relatively straight forward, opening the door

for subtraction, division, and comparison operators. The ReLU acti-

vation function used in many neural networks can be implemented

by checking the MSB of the value in question. Finally, implementing

right-shifting in a manner similar to [70] would enable faster divisions.

• While most operations can be performed in two cycles, multiplication

is still a high latency operation. This is mitigated by performing many

operations simultaneously; however, further reducing multiplication

latency should be a top priority going forward. Enhancements such as

the add-forward line presented in Chapter 2 and embedded shifting

as presented in [70] demonstrate two methods for reducing latency,

and further design space exploration will undoubtedly reveal more

possibilities. Implementing BLADE in larger SRAM arrays, e.g., at lower

cache levels, will also mitigate multiplication latency.
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