
1. Introduction
River inflows carry sediments, contaminants, and nutrients into reservoirs, lakes, or oceans (Branch et al., 2020; 
Lamb et al., 2010; Pope et al., 2022; Scheu et al., 2018). The present paper focuses on river inflows that have a 
higher density (ρ0) than the receiving waters (ρa), hereinafter referred to as hyperpycnal (negatively buoyant) river 
inflows. The excess density may result from lower temperatures (Hogg et al., 2013; Spigel et al., 2005), suspended 
sediments (De Cesare et  al.,  2001; Kostaschuk et  al.,  2018; Wright et  al.,  1986), or both (Best et  al.,  2005). 
Understanding how hyperpycnal river inflows transport and how they mix with ambient waters is essential for 
predicting and modeling the fate of fluvial materials (e.g., dissolved salts, heat, chemicals, biological particles, 
and sediment) and thus for determining how they will affect water quality, local ecosystems, and morphological 
evolution.

Upon entering the receiving water body, the hyperpycnal discharge displaces ambient water and then plunges 
below the surface at the plunge location (x = xp), which is determined by a balance between the momentum of the 
inflow and the baroclinic pressure resulting from the density difference (e.g., Figure 6.18 of Fischer et al., 1979; 
see also Figures 1 and 2). After plunging, the hyperpycnal plume transforms into an underflow at distance xud 
from the river mouth. Thus, the plunge region can be divided into two parts: from the river mouth to the plunge 
location (0 < x ≤ xp) and from the plunge location to the location where the plunging plume has transformed into 
an underflow (xp < x ≤ xud). The underflow progresses along the bottom boundary (e.g., Kostaschuk et al., 2018) 
and may detach from the bottom at the level of neutral buoyancy (e.g., Cortés et al., 2014).

Sediment-laden hyperpycnal plumes can cause turbidity currents. If the hyperpycnal plume gradually loses 
momentum, suspended sediment can settle out (Lamb et al., 2010), which reduces the excess density. On the other 
hand, the hyperpycnal plume can also pick up sediment from the bottom and thereby increase its excess density, 
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potentially leading to self-acceleration (Parker et al., 1986; Sequeiros et al., 2009). Both sediment deposition and 
pick-up can induce morphological modifications in the receiving water body.

The dynamics of the hyperpycnal plume are dominated by its buoyancy and momentum. Buoyancy is expressed 
as the depth-averaged relative density difference Rd, and momentum by the Froude number Fr. From the river 
mouth to the plunge location, Rd and Fr are defined as Rd = (ρd − ρa)/ρa and Fr = 𝐴𝐴 𝐴𝐴∕

√

𝑔𝑔𝑔𝑔  . Here, U and ρd are, 
respectively, the depth-averaged velocity and density of the hyperpycnal current, H is the local water depth and 
g is the magnitude of gravitational acceleration. Fr and Rd are often combined in the densimetric Froude number 
Frd (e.g., Akiyama & Stefan, 1984; Sequeiros, 2012),

Fr𝑑𝑑 =
Fr

𝑅𝑅𝑑𝑑

=
𝑈𝑈

√

𝑔𝑔𝑔𝑔 (𝜌𝜌𝑑𝑑 − 𝜌𝜌𝑎𝑎) ∕𝜌𝜌𝑎𝑎

|

|

|

|

|

|𝑦𝑦∕𝐵𝐵0=0

 (1)

These parameters are calculated at the central plane (y/B0 = 0; B0 is the width of the river channel at the mouth 
and y is the distance along the transverse axis in a Cartesian coordinate system, Figure 1a). The subscript “0” 
denotes initial parameters at the river mouth. Most previous laboratory studies focused on laterally confined 
receiving waters (Akiyama & Stefan, 1984; Arita & Nakai, 2008; Fleenor, 2001; Lamb et al., 2010; Lee and 

Figure 1. (a) Sketch of the confined plunging process on a sloping bed with inflow discharge Q0 and underflow discharge 
Qud. (b) Sketch of the central plane (y/B0 = 0, B0 is the width of the inflow) identified by the blue dashed-dotted lined box in 
panel (a). The orange line indicates the limits of the plunging plume and the blue arrows indicate entrainment. This sketch 
also describes the central plane of unconfined plunging (Figure 2). The transversal planes passing through (a-a, b-b, and c-c) 
are the locations of the particle image velocimetry sheets in the laterally unconfined experiments, the results of which are 
shown in Figure 5. (c) Plan view sketch of the confined plunging process.

Figure 2. (a) Aerial view of the Rhône River mouth (inflow) in Lake Geneva taken on 1 May 2017 at 16:34 (local time). The 
mean surface triangular pattern (red-dashed lines) of the unconfined plunging and vertex plunge point was determined from 
the difference in colors of the turbid sediment-laden river flow and the clear ambient water. The gray circular structure is a 
floating barrier (about 1 m deep) used to retain driftwood. (b) Plan view sketch of an unconfined plunging river plume.
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Yu, 1997; Singh & Shah, 1971, Figure 1), where plunging occurs when Frd decreases from Frd−0 at the river 
mouth to a critical value called the plunging densimetric Froude number, Frd−p (e.g., Akiyama & Stefan, 1984). 
Laterally confined configurations may occur in river-dammed reservoirs where the original river bed formed 
a subaqueous channel and the reservoir is laterally confined by the slowly diverging river valley, for example, 
the Beznar Reservoir, Spain (Cortés et al., 2014), and Xiaolangdi Reservoir, China (Kostaschuk et al., 2018). 
For constant-width geometries and no sediment deposition, the variation of Frd until the plunge location can be 
expressed as (Arita & Nakai, 2008)

Fr𝑑𝑑(𝑥𝑥) = Fr𝑑𝑑−0

(

𝐻𝐻0

𝐻𝐻0 + 𝑥𝑥 tan 𝛽𝛽

)3∕2

 (2)

where β is the bottom slope. To determine the plunge location, a layer-averaged thickness hc(x) that describes the 
vertical extent of the confined hyperpycnal plume was defined by Lee and Yu (1997):

ℎ𝑐𝑐 =

(

∫
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 (3)

where zb represents the depth of the bottom boundary and zo denotes the depth of the position where 𝐴𝐴 𝑢𝑢 , the 
time-averaged longitudinal velocity, decreases to zero. In confined plunging, hc(x) first increases because of the 
sloping boundary, then reaches a local maximum. Thereafter, it decreases to a local minimum, before finally 
again increasing due to the entrainment of ambient water (Lee and Yu, 1997). The location of the local maximum 
of hc(x) defines the location of the plunge (x = xp), while its local minimum defines the location where the plung-
ing plume is transformed into an underflow (x = xud). The plunging densimetric Froude number Frd−p is calculated 
from Equation 1 with parameters at the plunge location. Hereinafter, the subscript “p” denotes the parameters 
at x = xp. In confined plunging, it is often assumed that Frd−p is a constant with a value close to 0.5, although 
values in the range 0.4–0.8 have been reported in the literature (Akiyama & Stefan, 1984; Fleenor, 2001; Lamb 
et al., 2010; Lee & Yu, 1997; Parker & Toniolo, 2007; Singh & Shah, 1971).

Different inlet and boundary conditions inside the plunging hyperpycnal plume cause two different types of 
flow (Arita & Nakai, 2008; Spigel et al., 2005): (a) the plume attaches to the bottom boundary or (b) the plume 
separates from the bottom and forms a recirculation zone below it. Based on laboratory experiments, Arita and 
Nakai (2008) concluded that the latter case occurs when Frd−0 > 1.4 and β > 7°.

During the plunging process, the hyperpycnal plume entrains ambient waters. As a result, the underflow discharge 
Qud at x = xud is larger than the inflow discharge. The underflow discharge can be obtained from

𝑄𝑄ud = ∫
𝐴𝐴

𝑢𝑢𝑢𝑢𝐴𝐴 at 𝑥𝑥 = 𝑥𝑥ud (4)

where A represents the cross-sectional area of the hyperpycnal plume defined by a specific density contour (e.g., 
Tseng and Chou, 2018). The entrainment coefficient, E, describes the amount of ambient water transported across 
the density interface into the hyperpycnal plume during plunging:

𝐸𝐸 = (𝑄𝑄ud − 𝑄𝑄0) ∕𝑄𝑄0 (5)

Laboratory experiments on confined plunging reported values for E in the range 0.02–0.2 (Farrell & Stefan, 1988; 
Fleenor, 2001; Lamb et al., 2010; Lee & Yu, 1997).

In lakes or oceans, river inflow can develop laterally after leaving the inflow channel (Figure 2); thus, the plung-
ing of a hyperpycnal inflow can be three-dimensional (3D). Examples of unconfined plunging are the Lillooet 
River entering Lillooet Lake (Canada; Best et al., 2005), the Slims River flowing into Kluane Lake (Canada; 
Crookshanks & Gilbert, 2008), and the Rhône River plunging into Lake Geneva (Switzerland; Piton et al., 2022; 
Soulignac et al., 2021). Figure 2a gives an aerial view of the Rhône River mouth showing a triangular pattern 
on the water surface. A sketch of the unconfined plunging process is shown in Figure 2b. In unconfined plung-
ing, Hogg et al. (2013) defined the plunge location as the place on the surface where the ambient waters from 
both sides of the progressively plunging plume meet, that is, the vertex of the surface triangle. Hereinafter, this 
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location is referred to as the vertex plunge point in the unconfined case to distinguish it from the plunge location 
in confined plunging. Hogg et al. (2013) presented a theoretical approach to predict the shape of the triangle and 
the vertex plunge point as a function of the inflow parameters for the case of a horizontal bottom.

Thus far, no detailed measurements of the velocity and density fields in the unconfined plunging zone are avail-
able in the literature. Yet, such data are needed to quantify the main characteristics of unconfined plunging, that 
is, the location of the vertex plunge point, plunging densimetric Froude number, and entrainment coefficient and 
how they are related to control parameters, such as the inflow densimetric Froude number Frd−0 and bottom slope 
β. Laboratory experiments were conducted by Hauenstein and Dracos (1984) using dye and fine sediments to 
visualize the spreading of unconfined plunging plumes over a sloping bottom. They proposed an integral model 
to estimate the lateral spreading and entrainment of the hyperpycnal plume. Johnson, Ellis, et al. (1987), Johnson, 
Farrell, et al. (1987), Johnson et al. (1989), and Stefan and Johnson (1989) experimentally investigated plunging 
currents in diverging channels (3–90°) with a horizontal bottom. They observed that the plunging current sepa-
rates from the sidewalls and becomes laterally unconfined when the diverging angle exceeds 25°, while Frd−p 
depends on Frd−0 and the diverging angle. Chen et al. (2013) and Tseng and Chou (2018) showed numerically that 
the dynamics of the plunging are substantially modified by a sloping bottom. However, their (Reynolds-averaged) 
models were validated only with laboratory data from confined experiments.

In this paper, results from a unique set of laboratory experiments and numerical modeling of unconfined plunging 
are presented. These allow for a systematic characterization of this 3D process. The detailed velocity and density 
fields obtained from the experiments are used to quantify the main characteristics of the plunging plume and to 
validate the numerical model. The validated model is then applied to investigate an extended range of initial and 
boundary conditions for additional quantitative analyses (e.g., to determine the role of control parameters). The 
results for unconfined 3D plunging are also compared with results from laterally confined, two-dimensional (2D) 
cases. In particular, we focus on the following questions:

1.  How do 3D flow patterns in unconfined plunging differ from 2D-confined plunging patterns?
2.  How does the flow inside the unconfined plunging hyperpycnal plume develop? Does flow separation occur 

near the bottom boundary?
3.  What are the control parameters of the unconfined plunging process and how do they affect the plunging 

dynamics?
4.  Do characteristics of confined plunging, such as constant Frd−p and limited entrainment E < 0.2, also apply to 

unconfined plunging?

Figures and text with the prefix S, which provide details and clarifications of topics discussed in the main text, 
are found in the Supporting Information (SI) section.

2. Materials and Methods
2.1. Control Parameters and Their Investigated Range

The dynamics of unconfined plunging depends on g, B0, H0, β, ρ0, ρa, U0, and the kinematic viscosity υ. Accord-
ing to the Buckingham Π theorem (Garrett, 1960), these can be grouped into independent nondimensional param-
eters, for example, the aspect ratio H0/B0, the bottom slope β, the Reynolds number Re0 = U0H0/υ, the Froude 
number Fr0, and the relative density excess R0. The latter two can be combined into Frd−0 (Equation 1). It is 
important to determine whether Frd−0 is the only dominant control parameter or if both of its constituents Fr0 and 
R0 must be considered. The range of investigated control parameters in the present laboratory experiments and 
numerical investigations is summarized in Table 1.

This investigation was motivated by ongoing ECOL field studies of the negatively buoyant Rhône River inflow 
into Lake Geneva (e.g., Piton et al., 2022; Soulignac et al., 2021). The river channel aspect ratio H0/B0 = 0.04 
and lake bottom slope of β = 8° were reproduced in the laboratory experiments. Four experimental cases were 
investigated with a relative density difference R0 ranging between 8 × 10 −4 and 4 × 10 −3, and with two Froude 
numbers Fr0 (0.08 and 0.13), resulting in two sets of Frd−0 values (2 and 3, Cases 1–4, Table 1, A). The corre-
sponding inflow Reynolds numbers in laboratory experiments are inherently several orders of magnitude smaller 
than those under field conditions. The values of Re0 between 6,000 and 9,000 are, however, large enough to 
guarantee turbulent flow conditions.
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After the numerical model was validated with the experimental data (Table 1, A), it was applied to expanded 
ranges of control parameters (Table 1, B) and also a confined configuration (Table 1, C):

1.  Frd−0 values from 2 to 6 were investigated based on a variety of combinations of Fr0 and R0 values. This range 
of Frd−0 values is representative of the Rhône River inflow into Lake Geneva. Only cases with Frd−0 > 1 
were considered since the plunge is expected to occur inside the inlet channel if Frd−0 < 1 (Johnson, Farrell, 
et al., 1987; Spigel et al., 2005).

2.  The influence of the bottom slope angle β was investigated numerically by also considering a smaller bottom 
slope (β = 4°) and a horizontal bottom (β = 0°).

3.  Confined plunging was simulated using the validated numerical model for the same range of Frd−0 (from 2 to 
6) for a comparison with unconfined plunging.

2.2. Laboratory Experiments

The laboratory experiments were carried out in the Coriolis Platform, a 13-m diameter by 1.2-m deep circular 
tank at Laboratoire des Écoulements Géophysiques et Industriels (LEGI), Université Grenoble Alpes, CNRS, 
Grenoble, France). A sketch of the experimental setup is shown in Figure 3a; more details are given in Text S1 
and Figure S1.1 in Supporting Information S1. The Rhône River inflow into Lake Geneva was simulated at a 
scale of 1:60 by a 2-m wide by 4-m-long straight inflow channel with a rectangular cross-section and horizontal 
bottom that was positioned 0.67 m above the bottom of the tank. The water depth inside the inlet channel was 
maintained at H0 = 0.08 m, resulting an aspect ratio H0/B0 = 0.04. The channel's downstream end was centered 
with respect to an inclined flat plate (β = 8° slope, 8-m wide by 4.75-m long).

Case Q0 (l s −1) 10 3R0 Frd−0 Fr0 Re0 β (°)

A. Experimental and corresponding numerical cases for unconfined plunging

 1 12 1.9 2 0.08 6,000 8

 2 18 4.09 2 0.13 9,000 8

 3 12 0.8 3 0.08 6,000 8

 4 18 1.9 3 0.13 9,000 8

B. Extended numerical cases for unconfined plunging

 5 6 0.45 2 0.04 3,000 8

 6 24 7.2 2 0.17 12,000 8

 7 6 0.2 3 0.04 3,000 8

 8 24 3.2 3 0.17 12,000 8

 9 12 0.45 4 0.08 6,000 8

 10 12 0.29 5 0.08 6,000 8

 11 6 0.05 6 0.04 3,000 8

 12 12 0.2 6 0.08 6,000 8

 13 18 0.45 6 0.13 9,000 8

 14 24 0.8 6 0.17 12,000 8

 15 12 1.9 2 0.08 6,000 4

 16 12 1.9 2 0.08 6,000 0

C. Numerical cases for confined plunging

 17 12 1.9 2 0.08 6,000 8

 18 12 0.8 3 0.08 6,000 8

 19 12 0.45 4 0.08 6,000 8

 20 12 0.29 5 0.08 6,000 8

 21 12 0.2 6 0.08 6,000 8

Table 1 
Summary of Parameters Used in Experimental and Numerical Cases
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During the experiments, the tank was first filled with water with density ρ0. After that, saline water with density 
ρa was fed at the upstream end of the inlet channel via two lateral injectors (Figure 3a). In order to produce a 
near-uniform velocity distribution across the channel width, a rectangular manifold consisting of an array of 
full-depth plastic grids (Figure 3a) was installed, followed by a 0.5-m-thick honeycomb placed 1.5-m upstream 
from the discharge plane. With a constant water discharge Q0, a stable water flow in the inlet channel was estab-
lished and verified in preliminary tests (Text S1.1 in Supporting Information S1). A constant water depth in the 
basin was maintained by extracting water (at rate Q0) from outlets in the bottom of the tank. These outlets were 
positioned at the side and below the sloping boundary to minimize perturbations to the hyperpycnal plume. More 
details of the experimental procedure are given in Text S1 in Supporting Information S1. The Cartesian coordi-
nate system used in this study (x: longitudinal, y: transversal, z: vertical) has its origin (0, 0, 0) on the centerline 
of the inlet channel at the beginning of the sloping boundary and at the water surface (Figure 3a). The respective 
time-averaged 𝐴𝐴

(

𝑢𝑢𝑢 𝑣𝑣𝑢𝑤𝑤
)

 and transient velocities (u, v, w) are in the (x, y, z) directions. A second Cartesian coordi-
nate system (xs, ys = y, zs) with corresponding velocities 𝐴𝐴

(

𝑢𝑢𝑠𝑠, 𝑣𝑣𝑠𝑠 = 𝑣𝑣,𝑤𝑤𝑠𝑠

)

 and (us, vs = v, ws) was applied as shown 
in Figure 1b. For this “s” coordinate system, the longitudinal and vertical coordinates are, respectively, parallel 
and perpendicular to the bottom slope of the inclined flat plate.

For Cases 1 and 3 (Table 1), flow visualization was realized by injecting fluorescent dye (Rhodamine 6G) at 
different times during the experiment. A 25-W Yag laser operating at a wavelength of λ = 532 nm was set hori-
zontally and moved vertically (from z = −0.04 to −0.29 m) to scan the whole volume of the hyperpycnal plume. 
Images were captured with GoPro and Nikon D5 cameras.

Figure 3. Sketches of the Coriolis Platform (Laboratoire des Écoulements Géophysiques et Industriels, Université Grenoble 
Alpes) and the numerical domain. (a) The experimental setup consists of injectors, an inlet channel, a sloping bottom plate 
(inclination 8°), and three drains. The origin of the coordinate system is at the surface of the inlet channel. The large green 
triangle represents the particle image velocimetry laser sheet. (b) Numerical domain for unconfined plunging composed of 
an inlet channel with a horizontal bottom and a receiving domain with a sloping bottom. (c) Numerical domain for confined 
plunging composed of a 4-m-long inlet channel and a 12-m channelized receiving domain.
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Particle image velocimetry (PIV) was used for flow visualization and instantaneous velocity determination. The 
PIV measurements in the plunge region started when this region reached a steady state, which was 3 min after 
the onset of the experiment. Velocity fields were computed from PIV measurements using a cross-correlation 
PIV algorithm encoded with the UVMAT software (http://servforge.legi.grenoble-inp.fr/projects/soft-uvmat). 
For this purpose, an adaptive multi-pass routine was used, starting with an interrogation window of 45 × 31 pixels 
and a final window size of 31 × 21 pixels, with a 70% window overlap. Each element of the resulting vector field 
represents an area of roughly 0.01 × 0.01 m. The maximum instantaneous velocity error is estimated to be ∼3%. 
Detailed information about the PIV configuration is provided in Text S1.3 in Supporting Information S1.

2.3. Numerical Model

A numerical model based on the open-source CFD package OpenFOAM (De Lorenzis & Düster,  2020; 
Jasak, 2009; Weller et al., 1998) was developed to simulate the experimental configurations using a transient 
solver “BuoyantBoussinesqPimpleFoam” for incompressible turbulent flow. The geometry used in the model 
represents the relevant geometry of the laboratory experiment, consisting of an inlet channel plus a receiving tank 
with an 8° bottom slope (Figure 3b). The mass and momentum conservation equations are, respectively:

∇ ⋅ ⟨𝐮𝐮⟩ = 0 (6)

𝜕𝜕⟨𝐮𝐮⟩

𝜕𝜕𝜕𝜕
+ ∇ ⋅ (⟨𝐮𝐮⟩⊗ ⟨𝐮𝐮⟩) = −∇

(

⟨𝑝𝑝⟩

𝜌𝜌𝑎𝑎

)

+
1

𝜌𝜌𝑎𝑎
∇ ⋅ (𝜏𝜏 + 𝜏𝜏𝐭𝐭) + (⟨𝑅𝑅⟩ + 1) 𝐠𝐠 (7)

where 〈...〉 denotes the LES space scale filter, u the velocity vector, t time, p pressure, τ the resolved stress 
tensor, τt the sub-grid scale (SGS) turbulent stress tensor, ρ the local density, R = (ρ − ρa)/ρa the relative density 
difference, and g the gravitational acceleration. The momentum equation is based on the Boussinesq approxima-
tion, that is, density variations are considered only in the buoyancy term (e.g., Gray & Giorgini, 1976; Mayeli 
& Sheard, 2021). Transport of salt was computed using the incompressible mass diffusion equation (Cantero 
et al., 2007),

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝐮𝐮 ⋅ ∇𝜕𝜕 = ∇2 (𝛼𝛼eff𝜕𝜕) (8)

where αeff = υ/Sc + υt/Sct is the effective diffusivity with Sc = υ/D being the Schmidt number and Sct = υt/K 
the turbulent Schmidt number. Here, υ is kinematic viscosity, υt is turbulent viscosity, D is molecular diffusiv-
ity, and K is eddy diffusivity. Following previous studies on density currents (e.g., Cantero et al., 2007; Härtel 
et al., 2000; Ooi et al., 2009; Özgökmen et al., 2004), Sc is assumed to be unity, which has almost no effect on 
the numerical results if R ≪ 1 (Ooi et al., 2009), since molecular diffusion is negligible. Most previous studies 
took the turbulent Schmidt number, Sct, in the range 0.7–0.9 (Tominaga & Stathopoulos, 2007). Here, Sct = 0.85 
was applied.

The computational domains for the unconfined and confined geometries are shown in Figure 3. Comparisons 
of the unconfined and confined plunging were likewise performed with the domain shown in Figure 3c for the 
latter case. The domain for confined plunging is a 2-m-wide channel with two sections: a 4-m-long inlet with a 
horizontal bottom and a 12-m-long receiving section with an 8° sloping bottom. Additional details of the numer-
ical model setup (e.g., numerical schemes, treatment of boundary conditions, and grid independence test) are 
provided in Text S2 in Supporting Information S1.

3. Results and Discussion
3.1. Main Features of Velocity and Density Patterns

In all experimental and numerical cases investigated (Table 1), qualitatively similar results of velocity and density 
patterns were obtained. In this section, details of the flow field and the density field development will first be 
shown for Case 3 as a representative example to present the 3D flow patterns of unconfined plunging. There-
after, results from all cases will be combined to determine the parameters that control the plunging process in 
Sections 3.2 and 3.3.

http://servforge.legi.grenoble-inp.fr/projects/soft-uvmat
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3.1.1. Density Field at Different Vertical Levels

Figure 4a shows the dye-visualized images at three depths in experimental Case 3. For comparison, the density 
distributions at the same planes calculated from the numerical model are illustrated in Figure 4b. Figures 4a 
and 4b presents the changes in the structure of the plunge region below the water surface. With increasing depth, 
the core of the triangular surface pattern gradually decreases due to buoyancy-induced plunging of the inflow and 
entrainment of ambient water. The numerical model also provides a more detailed 3D shape of the plunge region 
for a specific isopycnic surface (R = 0.2R0) as shown in Figure 4c. The hyperpycnal plume converges toward the 
centerline near the water surface after entering the ambient waters (Figure 4). It forms a triangle at the surface, 
but spreads laterally close to the bottom (Figure 4c). This behavior is markedly different from confined plunging.

3.1.2. Comparison of Measured and Modeled Mean Velocity Fields

Figures 5a–5c presents the time-averaged (over 50 s) velocity distributions on different planes for Case 3. The 
location of the vertex plunge point (xp) and the location where the plunging plume transforms into an underflow 
(xud) are discussed in more detail in Section 3.2. Since the inlet flow and the plunging process can be assumed to 
be symmetrical (Hauenstein, 1982; Hauenstein & Dracos, 1984), the symmetry of each panel in Figure 5 illus-
trates the good agreement between the numerical model results and the experimental data. The distribution of 
longitudinal velocities at z = −0.5H0 is also triangular (Figure 5a). The boundary of the triangle extracted from 
the dye-visualized images (uppermost layer in Figure 4a) is plotted for comparison (red stars; for details refer to 
Text S3 in Supporting Information S1). In the deeper section at z = −2H0 (Figure 5b), a larger triangle is identi-
fied. Inside this triangle, a region with reduced velocity (low-velocity region) exists, marked by the brown-dashed 
lines. Close to the bottom (Figure 5c), this low-velocity region is still evident in the plunging region (0 < x ≤ xud). 
In the underflow region after plunging (x ≥ xud) (Figure 5c), the largest longitudinal velocities are located at the 
centerline (y/B0 = 0) and the current spreads laterally outward on both sides.

Figure 4. (a) Dye-visualized images of the hyperpycnal plume taken at three different depths in experimental Case 3 
(Table 1). (b) Density patterns of the hyperpycnal current on the same three planes calculated from the numerical model. 
(c) 3D shape of the hyperpycnal current as delineated by an isopycnic surface (R = 0.2R0) in the numerical model. The 
blue arrows in the plots indicate the inflow direction. In panel (a), the color bar presents the dimensionless gray scales, 
nondimensionalized by the maximum gray scales of each image. In panel (b), the color bar presents the density ratio R/R0.
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Figures 6a and 6b compare the velocity along the centerline on the plane a-a (z = −0.5H0) and 0.04 m above 
the sloping bottom on plane c-c. On plane a-a, the horizontal velocity decreases with distance from the end of 
the inlet channel due to loss of momentum and eventually reaches zero. Near the bottom, the centerline current 
velocity parallel to the bottom slope first decreases rapidly and then increases again, indicating the zone with 
reduced velocity inside the plunging plume, marked by brown-dashed lines in Figure 5c. In the underflow region 
(x ≥ xud), the longitudinal velocity 𝐴𝐴 𝑢𝑢𝑠𝑠 near the bottom at the centerline tends toward a constant value (Figures 5c 
and 6b) due to the combined effect of acceleration (Rgsinβ) and entrainment.

Transversal profiles of the longitudinal, transversal, and vertical velocity components at x = 0.5xp and z = −0.5H0 
are plotted in Figure 6c. In this panel, the longitudinal velocity has a nearly constant value inside the triangular 
region and decreases quickly outside it. On each side, the transversal velocity points inward toward the centerline 

Figure 5. Longitudinal (time-averaged) velocity distribution for Case 3 in the: (a) first plane (z = −0.5H0, plane a-a in 
Figure 1b), (b) deeper plane (z = −2H0, plane b-b in Figure 1b), and (c) near-bottom-inclined plane parallel to the slope 
(0.04 m above the bed, plane c-c in Figure 1b). The red stars in panel (a) indicate the triangular pattern obtained from 
dye-visualized images (for details, see Text S3 in Supporting Information S1). The low-velocity region inside the plunging 
current is marked by the brown dashed lines in panels (b and c). The black dashed-dotted vertical lines present the locations 
of x = 0.5xp inside the plunge region, x = xp at the vertex plunge point, and x = xud where the plunging plume transforms 
into an underflow. The top half of each panel presents numerical modeling results, and the bottom half, experimental results. 
Black arrows give the mean flow direction and color bars, the range of velocity. The resolution of this figure is 0.01 × 0.01 m.
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with maximum (positive) and minimum (negative) values located near the edge of the surface triangle. This 
inward transversal velocity results from the transverse lock-exchange-type flow generated by the lateral pressure 
gradient between the hyperpycnal plume and ambient water as discussed in Hogg et al. (2013) and Tseng and 
Chou (2018). The superposition of the longitudinal and inward transversal velocity components results in a veloc-
ity direction that follows the edge of the surface velocity triangle at the interface (Figure 5a). The vertical velocity 
(green line, Figure 6c), obtained from the numerical model, is directed downward in the whole transect with 
two peaks near the edges of the surface triangle. Figure 6d presents the near-bottom downslope velocity profiles 
(plane c-c) at x = 0.5xp and x = xud. At x = 0.5xp, inside the plunging region (purple), two local velocity maxima 
delimit a lower velocity region near the centerline. Again, this behavior is due to the low-velocity zone observed 
in Figures 5b and 5c. At x = xud (orange), however, the current is an underflow and the velocity profile only has 
one maximum at the centerline. The 3D shape of the low-velocity zone can be visualized by the iso-surface of 

𝐴𝐴 𝑢𝑢  = 0.6U0 in Figure 6e (numerical results).

Figure 6. Comparison of numerical results (lines) and experimental results (circles and squares) for Case 3: (a) Centerline 
longitudinal velocity at z = −0.5H0. (b) Centerline velocity parallel to and 0.04 m above the sloping bottom. The locations of 
the vertex plunge point (xp) and where the plunging plume transforms into an underflow (xud) are marked by the black dashed 
lines. (c) Transversal profiles of velocities at (x/xp = 0.5; z/H0 = −0.5). Red and blue present the longitudinal and transversal 
velocities, respectively. For the vertical velocity, only numerical data are available (green line). (d) Transversal profiles of 
experimental and numerical 𝐴𝐴 𝑢𝑢𝑠𝑠 at 0.04 m above the bottom (plane c-c, Figure 1) inside the plunge region at x = 0.5xp (purple) 
and in the underflow region at x = xud (orange). (e) 3D shape of the low-velocity zone defined by the iso-surface of 𝐴𝐴 𝑢𝑢  = 0.6U0 
based on the numerical results. Note that the axes have different ranges in the panels.
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3.1.3. Modeled Mean Velocity Fields in the Central Plane and Cross Sections

Model results for the velocity distribution clearly show a low-velocity zone around the centerline (Figures 7a 
and 7b). However, the time-averaged relative density field (𝐴𝐴 𝑅𝑅 ) in the corresponding sections indicates that the 
density in this low-velocity zone is uniform (= R0; Figures 7c and 7d). The low-velocity zone is created by flow 
separation that occurs when the slope changes at the junction of the inlet channel and the sloping bed of the 
receiving waters. Blanckaert (2015) divided the flow separation process into two stages: In the first stage, the 
velocity profile develops a deficit but remains oriented downward, followed by the second stage where flow 
reversal occurs near the boundary and a recirculation zone develops. Only the first-stage separation occurs in the 
cases considered here. The density distribution remains uniform within the plunging flow, whereas it is diluted 
due to entrainment of ambient water across the interface (Figures 7c and 7d). Figure 7b presents the transverse 
and vertical velocities at x = 0.5xp. Near the bottom, the density difference between the hyperpycnal plume and 
ambient water causes a lateral pressure gradient. This results in an outward transversal flow on both sides near 
the bottom (red dashed-lined boxes). As a consequence, similar to lock-exchange flow (e.g., Shin et al., 2004), 
an inward transversal flow toward the centerline is generated near the surface (red dotted-lined boxes) to keep 
the mass balance. Interestingly, transverse velocities converging toward the center of the plunging flow are also 
observed in the region −0.3 < y/B0 < 0.3 near the bottom as already reported in the numerical study of Tseng 
and Chou (2018) and confirmed by our experimental data in Figure 5c. In the area 0.25 < x/B0 < 0.5, −0.3 < y/
B0 < −0.1, the quiver plot shows transverse velocities directed toward the centerline. These near-bottom converg-
ing velocities occur due to the much higher downward velocity at the two sides (y/B0 ≈ ±0.3) compared with the 
centerline.

After plunging, the hyperpycnal plume flows down the slope in the underflow region. Figures 7e and 7f present the 
density and velocity fields at x = xud. Most of the dense fluids are found in a thin layer at the bottom (Figure 7e). In 

Figure 7. Numerically determined velocity and density fields for Case 3. (a) Velocity and (c) density fields in the central 
plane y/B0 = 0. The three black dashed-dotted lines mark the locations where x = 0.5xp, x = xp, and x = xud. (b) Velocity 
and (d) density fields in the cross section at x = 0.5xp. (e) Density and (f) velocity fields in the cross section at x = xud. (g) 
Vorticity in the cross section at x = 0.5xp and (h) vorticity at x = xud. Circles in panels (b) and (f–h) show suggested secondary 
circulations.
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contrast to the plunging region (Figure 7d), only downward-outward second-
ary velocities were observed inside the hyperpycnal plume (Figure 7f), which 
explains the lateral spreading of the underflow (Figure 5c).

In both cross sections, at x = 0.5xp and x = xud, secondary circulations at 
the dense/ambient flow interfaces are observed, highlighted by the circles 
in Figures  7b and  7f (clockwise on the left side and counterclockwise on 
the right). Figures  7g and  7h present the time-averaged vorticity field, 

𝐴𝐴 𝜔𝜔𝑖𝑖 = 𝜕𝜕𝑤𝑤∕𝜕𝜕𝜕𝜕 − 𝜕𝜕𝑣𝑣∕𝜕𝜕𝜕𝜕 , in these two sections. High values on both sides of the 
hyperpycnal plume indicate rotating secondary circulations.

3.2. Determination of Parameters xp, xud, Frd−p, and E

Although the location of the vertex plunge point can be estimated from 
specific contours of velocity and/or density at the surface, the results will 
depend on the threshold value used in the definition. In confined plunging, 
Lee and Yu (1997) suggested that xp and xud can be determined from vari-
ation of the layer-averaged thickness of the hyperpycnal plume hc(x) along 
the central plane (y/B0 = 0) (details in Section 1). In the present study, this 

method is also applied to the numerical unconfined cases. Figure 8 illustrates the variation of hc(x) in the uncon-
fined numerical Case 3. The local maximum of hc(x) gives the value of xp, while the local minimum gives the 
location where the plunging plume transforms into an underflow (xud). After xp and xud are determined, the 
plunging densimetric Froude number is calculated using Equation 1 and the entrainment coefficient is obtained 
by Equations 4 and 5 using 𝐴𝐴 𝑅𝑅  = 0.2R0 to determine the cross-sectional area A.

3.3. Parameters Dominating the Plunging Process

Since the results obtained for all cases were similar to those of Case 3 discussed above, they were combined in 
order to determine their dependence on Fr0, R0, Frd−0, β, and the lateral confinement, which are assumed to be 
the main controls.

3.3.1. Influence of Fr0, R0, and Frd−0

Figure 9a shows half of the modeled density contour (𝐴𝐴 𝑅𝑅 = 0.95R0) at z = −0.5H0, for cases with different values 
of Frd−0, Fr0, and R0 (Table 1). Experimental data from the dye-visualized images are also depicted in this figure 
for comparison (gray scales of the dye images are approximately linked to the density; see Text S3 in Support-
ing Information S1 for details). Figure 9b presents half of the velocity contour (𝐴𝐴 𝑢𝑢  = 0.3U0) at z = −0.5H0 in the 

Figure 8. Modeled variations of layer-averaged hyperpycnal current thickness 
in the central section of Case 3. The red cross indicates the vertex plunge 
point (xp) and the blue cross marks the location where the plunging plume 
transforms into an underflow (xud).

Figure 9. (a) Points on the density contours 𝐴𝐴

(

𝑅𝑅 = 0.95𝑅𝑅0

)

 at z = −0.5H0 for Cases 1–14 (Table 1). (b) Points on the velocity 
contours 𝐴𝐴

(

𝑢𝑢 = 0.3𝑈𝑈0

)

 at z = −0.5H0 for Cases 1–4. In both panels, each case is identified by Case, Fr0, and Frd−0 values in the 
legend (corresponding R0 values are given in Table 1). Open and filled symbols present the numerical and experimental data, 
respectively. Symbols indicate cases with different Fr0, and colors give cases with different Frd−0.
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experiments compared with the corresponding numerical cases. It is evident that the size of the triangle strongly 
depends on Frd−0. As Frd−0 increases, the vertex plunge point moves further away from the river mouth, resulting 
in a larger xp.

Although different combinations of Fr0 and R0 can result in the same Frd−0, the size of the surface triangle does not 
change (Figure 9) for given values of Frd−0. Figure 10 presents the measured and modeled centerline longitudinal 
velocity at z = −0.5H0 for Cases 1–4. Similar to the surface triangle size, the variation of this centerline velocity 
is again dependent only on Frd−0 rather than Fr0 and R0. Furthermore, the length of the low-velocity zone inside 
the plunging plume also increases with Frd−0 (Figure 11).

3.3.2. Influence of the Bottom Slope

Figure 12 presents the modeled surface density contour 𝐴𝐴

(

𝑅𝑅  = 0.95R0) for three numerical cases with the same 
inlet condition (Fr0 = 0.08, Frd−0 = 2), but with different bottom slopes (β). Investigated bottom slopes include a 
horizontal bottom, a bottom slope of 4°, and the experimentally investigated bottom slope of 8°. A large differ-
ence between the surface triangles is apparent in Figure 12, which shows that the unconfined hyperpycnal plume 
plunges closer to the river mouth when the bottom boundary slope is larger, as was previously observed by Tseng 
and Chou  (2018). A similar result was reported in confined cases (Arita & Nakai,  2008). The results of the 
numerical simulation of the horizontal case were compared with the analytical prediction of the surface triangle 
by Hogg et al. (2013):

𝑦𝑦 = ±

(

𝐵𝐵0

2
−

𝑥𝑥
√

𝑔𝑔′
0
𝐻𝐻0

2𝑢𝑢os

)

 (9)

where 𝐴𝐴 𝑢𝑢os denotes the inlet velocity at the surface. The numerical results of this study agree well with their model 
(Figure 12). Equation 9 is based on the assumptions that the centerline velocity on the water surface remains 
almost constant up to the vertex plunge point and that the lateral converging velocity of the surface triangle 
follows the law obtained from lock-exchange density currents: 𝐴𝐴 𝑣𝑣𝑒𝑒 =

√

𝑔𝑔′
0
𝐻𝐻0∕2 . Both of these assumptions are 

invalid if the bottom boundary is inclined. A comparable analytical solution 
to Equation 9 for a nonzero bottom slope is not available.

3.3.3. Influence of Lateral Confinement

Figure 13a presents the variation of Frd in confined numerical cases with an 
8° bottom slope and Fr0 = 0.08. Frd is calculated based on the velocity and 
density data in the central plane (Equation 1). In the longitudinal direction, 
Frd decreases due to the bottom slope following Equation 2 as suggested by 
Arita and Nakai (2008). The numerical simulations indicate that the plunge 
occurs when Frd decreases to a critical value close to 0.5, which is consistent 
with the value obtained by Lamb et al. (2010) using the theoretical model of 
Parker and Toniolo (2007). When Frd−0 increases, the plunge occurs further 
away from the river mouth. The decrease of Frd is slower in unconfined 

Figure 10. Measured and modeled centerline longitudinal velocity at z = −0.5H0 for (a) Cases 1 and 2 and (b) Cases 3 and 
4 (identified by Case, Fr0, and Frd−0 values in the legend, Table 1). Symbols represent experimental data, while lines are 
numerical results. The vertical dotted lines locate the vertex plunge point (xp) obtained numerically. Note that the x/B0 axes 
have different ranges.

Figure 11. Variation of the length of the low-velocity zone in the central 
plane, defined by the contour 𝐴𝐴 𝑢𝑢  = 0.6U0, in unconfined plunging for numerical 
cases with Fr0 = 0.08.
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plunging than in confined plunging (Figures  13a and  13b), implying that 
Equation  2 is not valid in unconfined cases. Equation  2 is based on the 
assumption that the discharge per unit width in the central plane (qc) remains 
constant before the plunge location, that is, U0H0 = Uc(x)H(x). This is valid 
in confined plunging, for example, in Case 21, where qc/qc−0 remains nearly 
constant at around unity (Figure 13c, black circles). However, in unconfined 
plunging, qc increases longitudinally since the transversal secondary veloc-
ity is directed toward the centerline as shown in Figure 7b. The increase of 
qc slows down the decrease of Frd. As a result, Frd at the location where 
the confined hyperpycnal plume plunges is still greater than 0.5 in the 
corresponding unconfined case (same value of Frd−0, compare Figures 13a 
and 13b). Thereafter, Frd continues to decrease in the unconfined case. At 
the vertex plunge point, Frd−p in the unconfined cases is still substantially 
greater than the critical value of ∼0.5 that is characteristic of confined plung-
ing. Moreover, Frd−p is found to increase with Frd−0 and can be larger than 
unity. These results indicate that the unconfined plunge is not only controlled 
by a critical value of Frd−p, but also by the three-dimensional flow patterns 
inside the plunge region. Indeed, the plunge occurs where the two sides of 
the hyperpycnal plume meet at the centerline on the surface even though Frd 
is still greater than the critical value for confined cases.

Figure 14a presents the increase of discharge in the plunge region (from x = 0 to x = xud) due to entrainment 
in four unconfined numerical cases with the same Frd−0  =  3, but different combinations of Fr0 and R0. For 
the cases considered, Fr0 and R0 have no influence on the entrainment since Frd−0 does not change. Figure 14b 
shows the variation of the entrainment coefficient E with Frd−0 in confined and unconfined numerical cases with 
Fr0 = 0.08. In confined plunging, E values are found within a narrow range (0.05–0.15), which are similar to 
results reported in previous experimental studies ranging from 0.02 to 0.2 (Farrell & Stefan, 1988; Fleenor, 2001; 
Lamb et al., 2010; Lee & Yu, 1997). In unconfined plunging, however, E values are not only significantly larger, 
but also increase with increasing Frd−0 from 0.4 to 0.7 (Figure 14b). The increase of E with Frd−0 in unconfined 
cases can be explained by the downstream shift of the vertex plunge point with increasing Frd−0. This results in 
a larger interface area along which the entrainment between the riverine inflow and the ambient water occurs.

3.4. Generalization of Results

Field measurements of unconfined temperature-induced plunging were made in the Canale Italsider mouth (Lake 
Iseo, Italy) by Hogg et al.  (2013) and in the Tokaanu Tailrace mouth (Lake Taupo, New Zealand) by Spigel 
et al. (2005). The related geometry and inlet conditions are listed in Table 2. Numerical simulations for Lake Iseo 
and Lake Taupo were performed using simplified geometries similar to Figure 3b based on geometric (1:20 scale) 
and Froude similarity (Table 2). The numerical model predicts xp/B0 = 0.8 for the Canale Italsider mouth, consist-
ent with the range of 0.6–1.0 reported by Hogg et al. (2013). Hogg et al. (2013) applied Equation 9 to estimate the 

vertex plunge point 𝐴𝐴

(

𝑥𝑥up = 𝑢𝑢os𝐵𝐵0∕
√

𝑔𝑔′
0
𝐻𝐻0 ; they further assumed that 𝐴𝐴 𝑢𝑢os = 𝑈𝑈0 ), resulting in xp/B0 = 2.4, which is 

more than double the measured value. This overestimation of xp is due to the simplifying assumption that the lake 
bottom is horizontal. For the Tokaanu Tailrace mouth, the numerical model gave xp/B0 = 1.0, which agrees with 
the range (xp/B0 = 0.8–1.0) reported by Spigel et al. (2005). They calculated an entrainment coefficient E = 1.9, 
which is about double the value (E = 1.1) determined numerically using Equation 4 to calculate Qud. This differ-
ence is due to the different methods used to obtain Qud. Spigel et al. (2005) assumed that Qud = discharge per unit 
width in the central plane × plume width, which overestimates Qud since the velocity in the central plane of the 
underflow region is considerably higher than on the two sides as shown in Figure 5c. If their method is applied to 
the numerical data, E = 1.7 is obtained that is quite close to the value (E = 1.9) they reported.

The inflow of the Rhône River (Lake Geneva) is sediment-laden and both the suspended sediment and tempera-
ture contribute to the excess density of the hyperpycnal plume. Figure 2a shows the surface triangle at the Rhône 
River mouth. This image was taken on a day when Frd−0 ≈ 3.2 and gives an estimation of the vertex plunge 
point as xp/B0 ≈ 1.0. The numerical and experimental Case 3 have an Frd−0 value close to this and further that xp/
B0 = 0.75. The underestimation of xp may result from sediment deposition that is not included in the experiments 

Figure 12. Surface density contours 𝐴𝐴

(

𝑅𝑅 = 0.95𝑅𝑅0

)

 for the numerical cases 
with the same Fr0 = 0.08 and Frd−0 = 2, but with different bottom slopes (i.e., 
0°, 4°, and 8° for Cases 16, 15, and 1 (Table 1), respectively, as indicated by 
the colors in the legend). The black dashed-dotted lines are the prediction of 
Equation 9 for the horizontal bottom Case 16.



Water Resources Research

SHI ET AL.

10.1029/2022WR032633

15 of 18

or the numerical model. As the hyperpycnal plume develops, it loses momen-
tum, which leads to the deposition of larger-sized suspended sediment, reduc-
ing the relative density difference (Piton et  al.,  2022). Sedimentation may 
also reduce the bottom slope angle. Both of these mechanisms can lead to a 
larger xp in hyperpycnal plunging.

4. Summary and Conclusions
By combining detailed laboratory measurements of the velocity fields and 
3D numerical modeling, this study allowed the first characterization of 3D 
unconfined plunging of a hyperpycnal river plume over a sloping bed and 
its lateral spreading. The numerical modeling was based on a computational 
fluid dynamics (CFD) model, which was validated with the experimental 
results, thus demonstrating that the model is suitable for realistically simulat-
ing the unconfined plunging process.

The results of this study reveal that the 3D unconfined plunging process is 
different from confined (essentially 2D) plunging. In the unconfined plung-
ing process, 3D flow structures are observed: As the hyperpycnal plume is 
advected longitudinally, currents in the cross sections are directed downward 
and form transversal lock-exchange type flows on each side of the plunge. 
This causes the current to converge toward the centerline on the surface creat-
ing a triangular shape of velocity/density fields, while spreading laterally 
near the bottom. The near-bottom lateral spreading further generates second-
ary circulations on both sides of the hyperpycnal plume.

Inside the unconfined plunging plume, a low-velocity zone exists due to flow 
separation induced by the transition from the horizontal bottom of the inflow 
channel to the sloping bed of the receiving waters.

Similar to confined plunging, the inflow densimetric Froude number Frd−0 
and the bottom slope β in the receiving water body are the dominant control 
parameters in unconfined plunging. The same value of Frd−0 can be obtained 
from different combinations of its constituents Fr0 and R0. The results show 
that plunging characteristics only depend on Frd−0 irrespective of Fr0 and R0. 
Decreasing Frd−0 or increasing the bottom slope causes plunging to occur 
closer to the river mouth.

In confined plunging, the plunge occurs when the densimetric Froude number 
Frd−0 decreases to a critical value close to 0.5 and the amount of ambient 
water entrained into the hyperpycnal plume is quite limited. In unconfined 
plunging, however, the vertex plunge point is where the two sides of the 
hyperpycnal plume meet at the centerline on the surface even if Frd is still 
larger than the critical value of unconfined plunging. Since ambient waters 

can be entrained from both sides into the hyperpycnal current, the entrainment coefficient E in unconfined plung-
ing is found to be much larger than in confined plunging.

This study has made evident the following similarities and differences between confined and unconfined plunging:

Similarities:

1.  From the river mouth, the layer-averaged thickness hc of the hyperpycnal current in the central section first 
increases and then decreases rapidly after the initiation of plunging, followed by another increase due to 
entrainment. The variations of hc can be applied to determine xp and xud.

2.  The distance from the river mouth to the plunge location (or the vertex plunge point) increases with increasing 
Frd−0 and decreasing bottom slope β.

Figure 13. Variation of Frd in the central plane from the river mouth to 
the plunge location (or the vertex plunge point) in the (a) confined and (b) 
unconfined numerical cases with Fr0 = 0.08. The end point (star) of each curve 
marks xp (Figure 1). (c) Modeled variations of discharge per unit width qc in 
the central plane of the unconfined cases with Fr0 = 0.08. Modeled variations 
of qc in the confined case with Frd−0 = 6 and Fr0 = 0.08 (black circles, Case 
21, Table 1) are also included and compared with the theoretical result qc 
(x) = qc−0 (black dashed-dotted line).
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Differences:

1.  Unconfined (3D) plunging flow patterns are different from those of confined (2D) cases.
2.  The discharge per unit width at the central section qc increases longitudinally in unconfined plunging but is 

constant in confined cases.
3.  In confined plunging, the plunge occurs when Frd decreases to the critical value (i.e., Frd−p ≈ 0.5). In uncon-

fined cases, however, the vertex plunge point is located where the two sides of the hyperpycnal plume meet 
at the centerline on the surface.

4.  In unconfined plunging, much more entrainment takes place resulting in significantly larger entrainment coef-
ficient E values than in confined cases.

The numerical model results agreed well with previous field observations of unconfined plunging flow. This 
unique combination of laboratory experiments, numerical modeling, and previous field observations improves 
the understanding and the characterization of unconfined hyperpycnal river plunging dynamics.

Unconfined hyperpycnal river plume plunging is often observed in lakes. Taking into consideration unconfined 
plunging processes allows for better understanding of how plunging inflows transport materials and how they mix 
with ambient waters, and as a result, how they affect water quality, local ecosystems, and morphological evolu-
tion. Therefore, the results of the present study can contribute to the development of effective lake management 
concepts. These findings can also be expected to be applicable to other water bodies where unconfined hyperpy-
cnal river-plume plunging occurs.

Figure 14. (a) Variations of the normalized discharge Q/Q0 in four unconfined numerical cases with Frd−0 = 3 but different 
combinations of Fr0 and R0. The black dashed lines give the vertex plunge point and the location where the plunging plume 
has transformed into an underflow. (b) Comparison of the entrainment coefficient E between the confined (blue, Cases 
17–21, Table 1) and unconfined (red, Cases 1, 3, 9, 10, and 12) numerical cases with the same Fr0 = 0.08.

U0 (m s −1) H0 (m) B0 (m) ρa (kg m −3) ρ0 (kg m −3) β (˚) xp/B0 Frd−0 E Scale

Canale Italsider mouth (Hogg et al., 2013)

 Field 0.48 1.7 49 997.3 999.4 4.6 0.6–1.0 2.6 – 20

 NUM 0.107 0.085 2.45 997.3 999.4 4.6 0.8 2.6 0.5

Tokaanu Tailrace mouth (Spigel et al., 2005)

 Field 0.63 1.42 96 999.56 999.98 5.5 0.8–1.0 8.2 1.9 a 20

 NUM 0.141 0.071 4.8 999.56 999.98 5.5 1.0 8.2 1.1 (1.7 a)

Rhône River mouth

 Field 0.14 4.8 120 999.76 999.80 8 1.0 3.2 – 60

 aEntrainment coefficient using the method in Spigel et al. (2005) to estimate Qud.

Table 2 
Comparison Between the Numerical Model and Field Measurements
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Data Availability Statement
Data reported in this paper and the original image of the Rhône River mouth (Figure 2a) can be downloaded from 
https://doi.org/10.5281/zenodo.6940788 or https://gitlab.epfl.ch/hashi/wrrdata.git. The Supporting Information 
file contains more detailed information of the experiments and numerical modeling.
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