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Abstract

The learning process depends on the nature of the learning environment,

particularly in the case of open-ended learning environments, where the learning

process is considered to be non-linear. In this paper, we report on the findings

of employing a multimodal Hidden Markov Model (HMM) based methodology

to investigate the temporal learning processes of two types of learners that have

learning gains and a type that does not have learning gains in an open-ended

collaborative learning activity. Considering log data, speech behavior, affective

states and gaze patterns, we find that all learners start from a similar state of

non-productivity, but once out of it they are unlikely to fall back into that state,

especially in the case of the learners that have learning gains. Those who have

learning gains shift between two problem solving strategies, each characterized

by both exploratory and reflective actions, as well as demonstrate speech and

gaze patterns associated with these strategies, that differ from those who don’t

have learning gains. Further, the teams that have learning gains also differ

between themselves in the manner in which they employ the problem solving

strategies over the interaction, as well as in the manner they express negative

emotions while exhibiting a particular strategy. These outcomes contribute to

understanding the multiple pathways of learning in an open-ended collaborative

learning environment, and provide actionable insights for designing effective
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interventions.
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1. Introduction

Learning does not occur in a single moment, but is rather a dynamic process

that evolves over time (Reimann, 2009; Kapur, 2011). This process, especially in

open-ended learning environments such as inquiry-based learning and problem-

based learning environments, is non-linear (Brooks & Brooks, 1993; Schulte,

1996; Chow et al., 2015). Researchers have proposed that learning contexts

are in fact complex systems where elements at different levels, such as cogni-

tive, intrapersonal and interpersonal, interact and this results in the emergence

of learning (Jacobson et al., 2016). Therefore, understanding the conditions

for the emergence of learning in this complex system is important, as this will

help identify those moments when an intervention could potentially be effec-

tive in improve learning. Within computer-supported collaborative learning

(CSCL) research, there is now an emphasis to focus on how the CSCL process

unfolds (Lämsä et al., 2021).

Further, learning is not a unimodal process and involves the interplay of cog-

nition, emotions and actions. This is especially true in the case of collaborative

learning which requires learners to sustain and regulate their cognition, emo-

tions and actions in order to attain their goals (Järvelä et al., 2020). Previous

research suggests that multimodal analysis can provide richer insights into the

learning process compared to unimodal analyses (Blikstein & Worsley, 2016;

Spikol et al., 2017; Nasir et al., 2021a). For instance, Olsen et al. (2020) found

that combining eye gaze and audio modalities in a temporal analysis provides

a more accurate prediction of collaborative learning than using single modali-

ties alone. In Sinha (2021a), a multimodal learning analytic pipeline allows to

not only infer the affective states that arise in a problem-solving followed by
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instruction (PS-I) activity, but also helps understand the temporal dynamics of

such states and how they vary as the scaffolding strategies are manipulated.

While pre and post-tests help ascertain how much knowledge a learner has

gained, they do not help understand how this knowledge was gained in a partic-

ular context, i.e., the temporal and multimodal aspects of the learning process.

These aspects of the learning process have been previously studied using meth-

ods such as microgenetic analysis (Siegler & Crowley, 1991), interaction analysis

(Jordan et al., 1995) and interactional ethnography (Castanheira et al., 2000)

of learner discourse and actions, which track students conceptual development

across an individual or collaborative learning activity. In an extensive review

done by Chen et al. (2022) on the increasing use of Artificial Intelligence (AI)

technologies in education, discourse analysis in CSCL was identified to be one

of the most common trends and topics. However these qualitative methods can

be time intensive. With technology-based learning contexts and multisensory

data becoming increasingly widespread, researchers are making use of multiple

sources of behavioral data such as interaction logs, audio, video, eye gaze and

physiological data, along with machine learning methods, to understand the

process of learning as a function of time (Engelmann & Bannert, 2021; Olsen

et al., 2020). For example, in Lämsä et al. (2020), the authors make use of log

data and lag sequential analysis to highlight the potential of temporal analy-

sis to identify differences in the inquiry-based learning processes of scaffolded

and non-scaffolded groups. Specifically, they discover three temporally distinct

inquiry-based learning transition patterns among the three experimental groups

that indicate different ways of using the scaffolds that could explain their learn-

ing. Further, in Csanadi et al. (2018), the authors show that their proposed

methodology accounting for temporality, provides more insights than the tra-

ditional code-and-count strategies to characterize the socio-cognitive activities

of learning in CSCL environments. Specifically, they found that ‘evaluating

evidence’ was a core epistemic practice for dyads but not for individuals, sug-

gesting that students collaborating argued in a more evidence-focused manner

compared to individuals.
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As demonstrated by the aforementioned studies, there is an increasing em-

phasis of AI in Education (AIEd). More specifically, authors in Chen et al.

(2020), which is a systematic review of influential AIEd studies, found that

“there was a lack of studies that both employ AI technologies and engage deeply

with educational theories” and suggest to put more emphasis on understanding

the relationship between learners answers (actions) and the underlying concepts.

In this paper, our goal is then to develop such a temporal and multimodal un-

derstanding of the learning process in an open-ended collaborative activity seen

in Figure. 1. Our work builds on our previous work Nasir et al. (2021c) which

is grounded in theories of impasse-driven collaborative learning. Therefore, we

propose a Hidden Markov Model (HMM) based temporal analysis of multimodal

behavioral data to unfold the differences and similarities between the collabora-

tive learning processes of groups who learn and those who do not. Our choice of

using HMMs is motivated by the fact that HMMs allow us to model learning

as a latent process based on our observations of student interaction with the

learning activity, thus establishing a relationship between learner multimodal

data and their collaborative learning.

In the upcoming section, we first review the literature regarding temporal

and multimodal analysis methods for learning. Then in Section 3, we elaborate

on the participants, the activity and the dataset used in this work, the experi-

mental setup, as well as the adopted analysis methodology. This is followed by

results, discussion, and conclusion in Section 4 and 5, respectively.

2. Literature Review

When embedded in a learning activity, intelligent agents must intervene at

the right moment and in the right manner to enhance the learners’ learning

gains. Recent research suggests that student populations are diverse based on

their levels of motivation, anxiety, autonomy, discipline and life experience (Lim,

2020). Therefore, we expect that these diverse populations learn in diverse

ways and hence need to be supported differently from each other. Further,
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Figure 1: A team interacting in a open-ended collaborative activity JUSThink

novel approaches to learning in the digital era such as citizen science initiatives

(Ciasullo et al., 2022) and social media (Hosen et al., 2021) can result in different

learning processes. As a result, in order to support learners better, we must

have an ongoing comprehensive and deep understanding of the learners and

learning situation. Temporal analysis of learners’ data, either their performance

or behaviors, can provide such an understanding.

2.1. Performance Based Systems

2.1.1. Knowledge Tracing

In Knowledge Tracing (KT) systems, temporal learner understanding is de-

veloped by estimating the learner’s knowledge from their performance on past

problems (Desmarais & Baker, 2012; Corbett & Anderson, 1994). Bayesian

Knowledge Tracing (BKT) determines if and when the learning of a skill

occurs during problem-solving steps (Desmarais & Baker, 2012). It assumes a

two-state learning model where each skill is either in the learned or unlearned

state. Assuming that each step of each problem calls for a single skill, the stu-

dent can either succeed or fail the step, and the tutor updates its estimate of the
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learners knowledge on the skill accordingly (Desmarais & Baker, 2012; Corbett

& Anderson, 1994). BKT has been applied both in the form of a Hidden Markov

Model as well as in the form of a Knowledge Tracing algorithm (van de Sande,

2013). While these approaches have been applied successfully to model student

knowledge in well-structured problem-solving, they fail at more complex open-

ended learning activities (Wang et al., 2021). Hence, to increase the representa-

tional power and better model complex problem structures, Käser et al. (2017)

suggest a Dynamic Bayesian Network (DBN) model that incorporates skill

topologies. In this, different skills of a learning domain are considered within

a single model capturing the dependencies between them. Incorporating skill

hierarchies yields a significant improvement in predicting students’ knowledge

during complex problem solving, more accurately compared to the traditional

KT models.

Further, Deep Knowledge Tracing (DKT) Piech et al. (2015), an ap-

plication of recurrent neural networks, has been shown to be able to learn the

latent structure in skill concepts without the need for explicit human coding

of domain knowledge. For this reason, it demonstrates a drastic improvement

on the well-known BKT models over several data sets. Nonetheless, similar to

BKT, the DBN model as well as DKT assume that each problem-solving step

or action maps to an underlying skill that could be either learned or unlearned,

which is not necessarily the case in open-ended learning environments. More-

over, these approaches assume that an incorrect answer implies not learning or

“slipping”. However, it has been found that learners’ actions that may seem

to suggest failure vis-à-vis conventional standards of efficiency, accuracy, and

performance quality may still lead to learning gains (Kapur & Kinzer, 2009).

Thus, indicators other than in-task performance should be considered to model

the learning process in open-ended learning activities. In Ramachandran et al.

(2019a), the authors suggest a link between motivation, actions, and the learn-

ing outcomes that underlies the learning process. They propose creating more

effective tutoring interactions by finding observable behaviors that correspond

to motivational factors and employing a robot to respond to these behaviors.
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In Nasir et al. (2021a), the authors found that teams achieving higher learning

gains in a robot-mediated human-human collaborative learning activity, may

not necessarily perform well in the task. However, their speech, actions and

emotions are distinctive as compared to the teams with lower learning gains.

Thus, behavioral analysis could allow for better discrimination between high

and low learners which will be the focus of our next sub-section.

2.2. Behavior Based Systems

2.2.1. Qualitative Methods

When analyzing the learning process using learners’ behaviors, both quali-

tative and quantitative approaches have been employed. Qualitative methods

have been used to analyze, mainly, learners’ gestures and speech to see how

their learning is evolving. For instance, Jordan & McDaniel Jr (2014) employ

discourse analysis to describe the issues about which learners experienced un-

certainty as they pursue collaborative learning projects that include a cognitive

feeling of uncertainty. They identified how language was used in these partic-

ular social contexts to create and reflect meaning and structure. In Voutsina

et al. (2019), authors used microgenetic task analysis to analyze the change in

children’s verbal reports when their overall solving approach appears to remain

stable during a mathematical problem-solving task. They found that in fact

the phases of stability are underlain by dynamic changes in the way the same

strategy is communicated and conceptualized.

Although qualitative methods make it possible to contextualize and inter-

pret the data based on human perception and analysis of the learning scenario,

they sometimes overlook hidden factors that human observation cannot capture.

Additionally, these methods are time and effort intensive, and as a result, do

not scale up efficiently. With the development of sensors that capture data that

is not perceivable by humans and the advancement in machine learning analysis

techniques, there has been an increase in the deployment of quantitative ap-

proaches. Desmarais & Baker (2012) argue that as more and more learner data

becomes available and methods for exploiting that data improve, there is po-

7



tential for constant improvement of learner models. In this regard, researchers

have attempted to gain an understanding of the learning process by considering

multiple modalities and machine learning (ML) techniques as discussed below.

2.2.2. Quantitative Methods

Perera et al. (2009) apply sequential pattern mining (SPM) on learn-

ers’ log actions in a collaborative learning environment to extract sequences of

frequent events. This analysis revealed interesting patterns, such as the pres-

ence of frequent task-focused communication, characterizing the teams ending

up with positive and negative outcomes. Successful groups exhibit patterns

suggestive of members giving frequent updates to the group while working on

a task; such patterns are not present in the weaker groups. Kinnebrew et al.

(2014) used SPM algorithms along with an hierarchical clustering algorithm

to study the temporal evolution of the sequential patterns throughout the in-

tervention, and compare the similarities and differences of their use between

the experimental groups interacting with distinct versions of the software. The

mined patterns allow for identifying and interpreting students’ cognitive skills

and learning behaviors. Besides, comparing these mined patterns with perfor-

mance and context information, and tracking their temporal evolution better

characterizes these behaviors as effective versus ineffective learning strategies.

For instance, the importance of solution evaluation behaviors in complex learn-

ing tasks, is identified as one of the effective learning strategies.

Process Mining (PM) has also been applied to behavioral data to examine

the learning process. This technique was adopted to discover the underlying

problem solving or learning process model from the learning activity interaction

sequence. Paans et al. (2019) employs a fuzzy miner algorithm, on sequences of

encoded verbal utterances within dyads in a collaborative learning activity and

find that repeated occurrences of social challenges during collaboration harm

the learning outcomes. Here social challenges are defined as the failure to get

along, a lack of joint attention, being highly critical, and so on. In fact, pairs,

who repeatedly have disagreements, are more easily distracted, more easily go
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off-topic, have trouble getting back on topic again, and thus, are at risk for

lower assignment quality.

Further, research suggests including more than one modality in the anal-

ysis because incorporating multimodal techniques would allow researchers

to examine unscripted, constructionist, complex tasks in more holistic ways

(Blikstein, 2013). Emerson et al. (2020) investigate this by analyzing log ac-

tions, facial expression of emotions, and eye gaze both separately and combined,

and find that models utilizing multimodal data either perform equally well or

outperform models utilizing unimodal data to predict learners’ posttest perfor-

mance and interest in a game-based learning environment. Olsen et al. (2020)

further incorporate data temporality by using a Long Short-Term Memory

(LSTM) model on log, gaze, audio, and dialog temporal data to predict teams’

performance in a collaborative learning activity. The results indicate that com-

bining various data streams from different time scales may be more beneficial

than unimodal data. They also highlight the value of accounting for temporal

aspects of the learning process as the temporal analysis of the gaze and audio

measures provided accurate prediction of the normalized learning gain, while

the averages and counts based analysis on the same features provided no in-

formation. Further, Giannakos et al. (2019) highlight how fused multimodal

data, consisting of eye tracking, EEG, video, and wrist band data in addition

to click stream data, can considerably reduce the prediction error for learning

performance as compared to when only click streams are used in the design of

learning technology. Lastly, in Yang et al. (2021), the authors have modelled

the joint visual attention and with that the cognitive engagement of dyads using

eye gazes and eye blinks data, and suggest that this multimodal temporal ap-

proach gives more and accurate insights into the collaborative problem solving

engagement.

Another ML technique that has been used to temporally model the learn-

ing process with multimodal data is the Hidden Markov Model (HMM). In

Sharma et al. (2020), the authors use a combination of HMMs and the Viterbi al-

gorithm to predict learners’ effortful behaviors throughout the learning activity.
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They consider the effort categories as the hidden states and multimodal data-

driven clusters as the observations. Results show that the suggested method

outperforms the contemporary classification algorithms in classifying learners’

behavioral patterns as effortful or effortless. Furthermore, this methodology

highlights the exact moments when feedback is needed during the learning ac-

tivity.

Literature suggests several data-driven multimodal ML approaches that could

be used to analyze temporal data. Choosing a particular approach depends on

the assumptions made about the measured data and the learning process un-

derlying it, the nature of the data, the volume of available data, the purpose

of the analysis, and the interpretability of the obtained models. The purpose

of our analysis is to build a multimodal temporal model of the underlying pro-

cess of learning as it happens in an open-ended collaborative learning activity.

Sequence mining, sequential pattern analysis, and stochastic methods such as

lag-sequential analysis, for instance, do not include the assumption of a latent

learning process governing the sequence of observations (Bannert et al., 2014).

Thus, we do not consider such methods for our temporal multimodal behavioral

data analysis. Process mining, on the other hand, does account for latent pro-

cesses; however, it is usually used to identify, confirm, or extend process models

on sequential event data, which are sequences of discrete data, and thus, are

different in nature from the data we investigate, which includes multivariate

continuous features. Then, Recurrent Neural Networks (RNN), particularly

LSTMs, have been broadly employed in order to analyze temporal multimodal

behavioral data while complying with the assumption of a hidden process con-

trolling the sequence of observations. Although promising (Spikol et al., 2018),

these neural networks lack the interpretability for multi-variable data regarding

variable importance and variable-wise temporal importance due to their opaque

hidden states (Guo et al., 2019). HMMs however offer more interpretability as

the hidden states are well defined by their transition probabilities and emissions

distributions. Therefore, they allow for a better understanding of the latent

learning process during the learning activity.
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Therefore, in this paper, we adopt the approach of building a Hidden Markov

Model of the learning process, trained on learners’ multimodal behavioral data.

Our goal is to examine how these behaviors evolve throughout the activity

and lead to learning gains during an open-ended collaborative learning activity.

Broadly, our research question is, “How do the learning behaviors of different

types of learners evolve across an open-ended collaborative learning activity?”

3. Methods

3.1. Participants

We make use of data from a previous study conducted with a robot-mediated

open-ended collaborative learning activity called JUSThink (Nasir et al., 2020).

The study was conducted in two international schools in Switzerland over two

weeks. A total of 96 learners aged 9 to 12 years old participated in the study.

The participants were organized in teams of two, resulting1 in a total of 48

teams. However, to ensure data completeness and homogeneity, only data from

32 teams were used for this analysis. Specifically, all teams with incomplete

or lost data in terms of log actions, audio or video data, pre/post tests were

removed, leaving us with 34 teams (from which we generated our dataset elabo-

rated in a section 3.4). Further, we removed two more teams that were outliers

in terms of their behaviors (based on data driven behavior profiles that were

generated in an earlier work as will be explained in section 3.5).

3.2. Activity

JUSThink aims to:

• improve children’s computational skills by providing intuitive knowledge

about minimum-spanning-tree problems

• promote collaboration among the team via its scripted design.

1This study received the approval of the university’s ethics committee with reference

number HREC No.: 051-2019
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The learning task introduces the minimum-spanning tree problem through a

gold mining scenario based on a map of Switzerland, where mountains represent

gold mines and are nodes that should be connected by railway tracks, represent-

ing the edges, that each have a cost to build. The robot, playing the role of

the CEO of a gold-mining company, restates the problem by asking learners to

help it collect the gold by connecting the mines with railway tracks. The par-

ticipants must collaboratively construct the solution by connecting the mines

while spending as little money as possible on building the railway tracks. Our

motivation for choosing the minimum spanning tree problem and computational

thinking skills as the domain for this collaborative activity is based on the recent

push towards introducing CT skills in early education (Menon et al., 2019) as

well as the idea that robots could be one possible effective tool for advancing

these skills (Chalmers, 2018). Further, in the process of organizing this study,

we received feedback from various teachers that such an activity can be com-

plementary to the curriculum on optimization problems taught to the targeted

age range; hence, this motivated our choice for the age range of students as

mentioned in Section 3.1.

We chose to have an open-ended collaborative activity where learners col-

laborate to solve an open-ended problem without receiving direct guidance, and

this is inspired by the inherent characteristic of such problem-solving followed

by instruction (PS-I) activities that encourage the awareness of knowledge gaps,

stimulate knowledge construction processes and lead to increased learning gains

(Loibl et al., 2017; Sinha & Kapur, 2021). Additionally, it is known that col-

laborative activities need to be scripted for better collaboration and learning

(Kollar et al., 2006; Vogel et al., 2017). Therefore, we designed a script based

on partial information, role switching and complementarity. Concretely we im-

plemented it by having two different views in the task: a figurative view and

an abstract view, which provide complementary functionality as each gives only

partial information to the user. On the one hand, the nodes and edges of the

graph are shown as mountains and railway tracks in the figurative view. In this

view, one can build and erase tracks. On the other hand, the abstract view
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has nodes and edges as circles and solid lines respectively, and deleted railway

tracks are shown with dashed lines along with their cost so that one can view

the cost of every track ever added (costs are revealed only when a track is first

added). The learners can also access previous solutions and their costs and

bring back a previous solution. Given the nature of the problem and the num-

ber of views, collaboration in twos was optimal for this scenario. Hence we had

teams of two, with these two views being swapped between participants every

two moves, enabling both team members to experience the thought process that

comes with the view. Given this collaborative script, team members need to

communicate in order to use the information in both the views, make decisions

and build the solution. Furthermore, they need to agree on a solution span-

ning the whole graph, as they both need to press the submit button for it to

be submitted to the robot for evaluation. The robot intervenes intermittently

during the learning task to provide feedback on the progress, give hints, and

lend support through minimal verbal and non-verbal behaviors. More on the

task can be found in (Nasir et al., 2020).

Teams of two children each took part in the activity that lasted approxi-

mately 50 minutes. First, the robot welcomes the children and explains the

goal of the task. Participants then take an individual pre-test. Following the

pre-test, the robot introduces the two game views and their functionalities. The

learning task then begins and lasts around 25 minutes, after which, children

complete an individual post-test and a self-assessment questionnaire. Finally,

the robot greets them goodbye. The robot thus mediates and automates the

entire activity by giving instructions and by moving the activity from one stage

to the next as required. It also provides some motivational feedback along the

way.

The pre and post-tests consist of questions with a context other than the

learning task scenario and are based on variants of the graphics in the muddy

city problem2.

2 https://classic.csunplugged.org/activities/minimal-spanning-trees/
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3.3. Experimental setup

As seen in Figure 1, the two team members sit across from each other with

a touch screen placed horizontally in front of each one. They are separated by

a barrier so as to be able to see each other but not each other’s screen. The

humanoid robot (QTrobot) is placed on the side visible to both children. Data

was collected throughout the activity using one environment camera to capture

the whole interaction scene, two RGB-D front cameras, one for each participant

to capture the face up-close, and two lavalier microphones to capture audio data.

Two computers, connected to the screens and the robot, manage the activity

and the synchronous recording of the sensors.

Each team member interacts with an instance of the JUSThink application.

A separate robot application manages the robot. All of the applications com-

municate via Robot Operating System (ROS). Participants’ and robot’s actions

are recorded using Rosbags.

3.4. Dataset

We make use of our open-source dataset PE-HRI-Temporal (Nasir et al.,

2021b) generated from the data collected in the study mentioned in section 3.1.

In the data set, for each team, the interaction of around 20-25 minutes is or-

ganized in windows of 10 seconds; hence, we have a total of 5048 windows of

10 seconds each. We report team level log actions, speech behavior, affective

states, and gaze patterns for each window. More specifically, within each win-

dow, 26 features are reported in two formats; hence, giving a total of 52 values.

We make use of the non-incremental format of the 26 features which means we

look at the value of a feature in that particular time window without carrying

any information from previous time windows. For more details, please see Nasir

et al. (2021b). The 26 features are listed in Tables. 1, 2, and 3. The ratio-

nale for using these features to analyse learning are explained in our previous

publication (Nasir et al., 2021a).

In addition to the features mentioned in the Table 1, each window also in-

cludes a normalized time feature which refers to the time when this window
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Table 1: Log features from our PE-HRI-Temporal dataset

Log Features

Feature Name Description

T add The number of times a team added an edge on the map in that window

T remove The number of times a team removed an edge from the map in that window

T ratio add rem The ratio of addition of edges over deletion of edges by a team in that window

T action The total number of actions taken by a team (add, delete, submit, presses on

the screen) in that window

Redundant exist The number of times the team had redundant edges in their map in that window

T hist The number of times a team opened the sub-window with history of their pre-

vious solutions in that window

T1 T1 add The number of times either of the two members in the team followed the pattern

consecutively: I delete an edge, I add it back in that window

T1 T1 rem The number of times either of the two members in the team followed the pattern

consecutively: I add an edge, I then delete it in that window

T1 T2 add The number of times the members of the team followed the pattern consecu-

tively: I delete an edge, you add it back in that window

T1 T2 rem The number of times the members of the team followed the pattern consecu-

tively: I add an edge, you then delete it in that window

T help The number of times a team opened the instructions manual in that window
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Table 2: Video based features from our PE-HRI-Temporal dataset

Video Features: Affective states and Gaze

Feature Name Description

Positive Valence The average value of positive valence for the team in that window

Negative Valence The average value of negative valence for the team in that window

Difference in Valence The difference of the average value of positive and negative valence for the team

in that window

Arousal The average value of arousal for the team in that window

Gaze at Partner The average of the the two team member’s gaze when looking at their partner in

that window where each individual member’s gaze is calculated as a percentage

of time in that window.

Gaze at Robot The average of the the two team member’s gaze when looking at the robot in

that window where each individual member’s gaze is calculated as a percentage

of time in that window.

Gaze other The average of the the two team member’s gaze when looking in the direction

opposite to the robot in that window where each individual member’s gaze is

calculated as a percentage of time in that window.

Gaze at Screen Left The average of the the two team member’s gaze when looking at the left side of

the screen in that window where each individual member’s gaze is calculated as

a percentage of time in that window.

Gaze at Screen Right The average of the the two team member’s gaze when looking at the right side

of the screen in that window where each individual member’s gaze is calculated

as a percentage of time in that window.

Gaze Ratio of

Screen Right and

Screen Left

The average ratio of a team member looking at the right side of the screen over

the left side in that window
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Table 3: Audio based features from our PE-HRI-Temporal dataset

Audio Features: Speech

Feature Name Description

Speech Activity The average of the two team member’s speech activity in that window

where each individual member’s speech activity is calculated as a percent-

age of time that they are speaking in that window.

Silence The average of the two team member’s silence in that window where each

individual member’s silence is calculated as a percentage of time in that

window.

Short Pauses The average of the two team member’s short pauses over their speech ac-

tivity in that window. Each individual member’s short pause refers to a

brief pause of 0.15 seconds and is calculated as a percentage of time in that

window.

Long Pauses The average of the two team members long pauses over their speech activity

in that window. Each individual member’s long pause refers to a pause of

1.5 seconds and is calculated as a percentage of time in that window.

Speech Overlap The average percentage of time the speech of the team members overlaps

in that window.

Overlap to Speech Ratio The ratio of the speech overlap over the speech activity of the team in that

window.
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occurred with respect to the total duration of the task for a particular team.

The dataset also consists of team level learning and performance metrics, where

performance is measured based on the cost of a current solution relative to

the optimal solution, while learning gains (absolute, relative or joint-absolute)

are calculated by looking at the difference between the students scores on their

post-tests and pre-tests. More detailed definitions are provided at Nasir et al.

(2021b). Please note again that this dataset provides data for 34 teams, but

for our current analysis we make use of data from 32 teams, as mentioned pre-

viously, giving us 4676 windows. Lastly, considering learning analytics and/or

educational human-robot interaction studies with a robot, similar or even lower

sample sizes are the norm (Belpaeme et al., 2018; Ramachandran et al., 2019b;

Gordon et al., 2016), as is the case with the type of analysis that we do in this

work (for example, see Sharma et al. (2020).

3.5. Analysis Methodology

Since the methodology of this paper builds on the outcomes of our previ-

ous work (Nasir et al., 2021c), we briefly describe it here. In the earlier work,

we generated behavioral profiles based on the same features described above in

section 3.4, but aggregated across the entire activity. We found differences in

the behaviors between those who learn, i.e., gainers and those who do not end

up learning, i.e., non-gainers. Further, we also observed behavioral differences

in the two types of gainers (Nasir et al., 2021c). We saw that while speech

behavior was a discriminatory factor between gainers and non-gainers, it was

actually the interplay between problem solving strategies and emotional expres-

sivity that distinguished the different ways in which gainers learned. Based on

that, we identified the two types of gainers as Expressive Explorers and Calm

Tinkerers, and the non-gainers as Silent Wanderers. In this paper, we retain

the same terminology. While the aforementioned behavioral profiles highlight

the aggregate differences between all types of learners, in order to identify the

differences between the learning process of those who learn and those who do

not, we employ HMMs to generate multi-modal temporal behavioral profiles
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for each type of learners. This enables us to understand how the multimodal

behaviors of each type of learners evolve throughout the interaction.

An HMM is a doubly stochastic model with an underlying stochastic process

that is not observable, but can only be observed through another set of stochastic

processes that produce the sequence of observed symbols. It is specified by a set

of N states, an initial probability distribution, a transition probability matrix,

and a sequence of emission probabilities. Additionally, HMMs require three

assumptions: firstly, that the next state is dependent only on the current state,

secondly, that the state transition probabilities are independent of the time of

transition and finally, that the current observations are statistically independent

of the previous outputs. In our case, our data is grouped into independent 10

second windows, with each window containing behaviors occurring in those 10

seconds alone, and thus assumption 3 holds. Further, each hidden state of the

HMM manifests a set of significantly different behaviors by which the state is

characterized; this set of behaviors together signify a particular approach to

learning. Hence, the next state or the approach to learning taken next by a pair

of learners depends only on the current state (assumption 1) and the probability

of transitioning to a different approach to learning is independent of when in

the activity it occurs (assumption 2). Thus all the assumptions required to do

an HMM analysis are valid for our data and learning context; hence, allowing

us to proceed with HMM modeling. Our analysis consists of four main steps:

3.5.1. Step1: Preprocessing

As our features come from different kinds of behavioral modalities, they are

on different scales. So we begin by applying a min-max scaler to normalize our

data.

3.5.2. Step2: Behaviors Clustering

In order to have a starting point for the number of states of the HMM, we

perform a clustering of the temporal behavioral features to identify significantly

different behavioral clusters. We then assume that these clusters are emitted by
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Figure 2: Behaviors Clustering step

distinct hidden states, and so the number of states is the same as the number

of behavioral clusters. For clustering, a Principal Component Analysis (PCA)

is conducted to compute the principal components, the first components are

kept based on the elbow method on the proportion of variance explained. The

Principal Components are then clustered using the K-Means algorithm. The

number of clusters is optimized based on the elbow method on inertia and the

silhouette score. In order to confirm that the obtained clusters are actually

different in terms of multimodal behaviors, we perform a Kruskal-Wallis test on

the clusters’ behavioral features. This test further serves as a means to identify

behaviors that significantly distinguish a cluster from the other. This step is

summarized in Figure 2.

3.5.3. Step3: the HMM

Since our temporal behavioral features are multivariate and most of them

have continuous values, our emission probability distribution should be contin-

uous multivariate. Thus, for this step, we use the GMMHMM model provided

by the hmmlearn library3, as it accounts for the aforementioned condition by

representing the emission distribution as a mixture of multiple Gaussian densi-

3hmmlearn is a set of algorithms for unsupervised learning and inference of Hidden Markov

Models, https://hmmlearn.readthedocs.io/
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Figure 3: The HMM step

ties.

We set the number of hidden states to the number of clusters found in the

previous step. The HMM is then trained using the Expectation-Maximization

algorithm on the set of the teams’ sequences. Each sequence consists of all the

observations of a team sorted in increasing order of time, where an observa-

tion consists of the normalized multimodal behavioral features and time at a

given time window. We then apply the Viterbi algorithm on these sequences

to recognize at which hidden state each observation is emitted. As a result,

for each hidden state, we can construct the set of observations emitted by that

state. Finally, we perform a Kruskal-Wallis test on each feature between each

pair of these sets with the significance threshold set to 0.01. For each of the

significantly different features between a pair of sets, we further compare the

mean values across the sets and label the mean value of each set with one of

the labels {Highest, High, Medium, Low, Lowest} based on a generated score

in the following manner:
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For a significantly different feature x, we first define:

min(x) = minimumof mean values of x across all sets

max(x) = maximumof mean values of x across all sets

Then, for a set i, we generate a score for the feature x as:

score(x, i) =
(mean of x in i−min(x))

(max(x)−min(x))

Lastly, the feature x in i is labeled with:

• ‘Highest’, if score(x, i) = 1.

• ‘High’, if 2/3 ≤ score(x, i) < 1.

• ‘Medium’, if 1/3 ≤ score(x, i) < 2/3.

• ‘Low’, if 0 < score(x, i) < 1/3.

• ‘Lowest’, if score(x, i) = 0.

The significantly different features and their labels for a set i represent the

manifestation of the hidden state corresponding to the set i and we subsequently

use these labeled features to represent the state. This enables us to interpret the

progression of the hidden learning states in terms of the values of the significantly

differing observed behaviors. Figure 3 outlines the processes employed to train

and interpret the model.

In conclusion, in this step, the HMM is trained in order to learn the hidden

states that emit the observed multimodal behavioral features, and the signifi-

cantly different features that characterize each state are identified. Interpreting

these results allows for building the learning profiles that dyads go through

during the activity. Furthermore, the model allows for learning the initial prob-

ability distribution as well as the probabilities to transition from one state to

the other, which allows for building the temporal profile.
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This entire pipeline, as summarized in Figure 4, is adopted to identify the

temporal profiles for each type of learners separately. Its implementation is

publicly available in the following Github repository 4.

Figure 4: The Analysis Methodology

4. Results

This section presents the results of the analysis methodology applied to the

temporal multi-modal datasets of the Expressive Explorers, the Calm Tinkerers,

and the Silent Wanderers. The clustering analysis, as discussed in the previous

section, applied for the Expressive Explorers, the Calm Tinkerers, and the Silent

Wanderers suggests the following number of components [PCs = 4, PCs = 4,

PCs = 5 respectively] and the following number of clusters [ K=2, K=3, K=3

respectively], based on the elbow method on inertia and the silhouette scores.

These are considered as a starting point for the number of hidden states, and

we further train Hidden Markov models with K+1 states to identify whether

other non trivial states exist or not, that eventually suggests that we have three

hidden states for each of these groups. Hence, we define the following naming

convention for the hidden states in each of the groups’ models:

• InitialState : the state with the highest initial probability.

4https://github.com/chili-epfl/justhink-HMM
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• MoreProbableState : the state with the highest transition probability

from the initial state.

• LessProbableState : the state with the lowest transition probability from

the initial state.

We further define the following conventions for the state diagrams:

• The size of a state in the state diagrams is representative of its initial

state probability. That is, the bigger the circle representing the state, the

bigger its initial probability is.

• The size of the font of the transition probabilities in the state diagrams

is illustrative of its magnitude. Explicitly, higher transition probabilities

have bigger font sizes.

For each of the three groups, their HMM model, trained on sequences of ob-

servations of the respective group and the number of states set to three, is repre-

sented by the state diagrams in Figure 5, 6, and 7, respectively. For all groups,

the probabilities suggest that once in InitialState, staying in that state has the

highest probability compared to other possible transitions. However, once out

of this state, going back to the InitialState from the LessProbableState and

MoreProbableState generally has lower transition probabilities. The probabili-

ties are especially low in the case of Expressive Explorers from both of the other

states, and for both Calm Tinkerers and Silent Wanderers from the LessProb-

ableState. On the other hand, the Silent Wanderers can still transition from

MoreProbableState to InitialState with a non-trivial probability of 0.305 which

is higher than the probability of going to LessProbableState from MoreProba-

bleState. Similarly, the Calm Tinkerers also have a relatively higher transition

probability to go back to the InitialState from their MoreProbableState; how-

ever, they still have a higher probability to transition to their LessProbableState

from this state. Furthermore, the findings from the Kruskal-Wallis analysis com-

paring the values of the multi-modal behavioral features between each pair of

states, for each group of learners, is shown in tables next to the respective HMM
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Figure 5: HMM State diagram for the Expressive Explorers

models. The tables include the features which represent the manifestation of

the hidden states. Note that the features that do not differ significantly be-

tween the states are not shown in these tables. This does not mean the absence

of that feature in a state, rather that the feature does not differ significantly

between states, i.e., the value of that feature does not oscillate between states

significantly. We discuss further on these results in the upcoming section.

5. Discussion

5.1. Temporal Multimodal behavioral Profiles

In this section, we describe the higher level understanding that the temporal

analysis, based on the HMMs identified in the previous section, provides us

of how the multi-modal behaviors of each group of learners evolve during the

collaborative learning activity and what this says about their learning process.

Based on the findings in Section 4, we observe two kinds of problem solving

(PS) strategies namely:
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Figure 6: HMM State diagram for the Calm Tinkerers

Figure 7: HMM State diagram for The Silent Wanderers
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• Global PS Strategy: This strategy includes global level exploration and/or

reflection characterized by addition actions and looking at past solutions

(history).

• Local PS Strategy: This strategy includes local level exploration and/or

reflection characterized by deletion actions and addition followed by dele-

tion actions or vice versa.

Previously, in the results section, we name our states on the basis of ini-

tial probability (InitialState) or transition probabilities from the initial state

(LessProbableState, MoreProbableState). In this section, we try to understand

the nature of the states and consequently, we name them based on their:

1. Productivity

2. Problem solving strategy

With respect to 1, in our previous work (Nasir et al., 2021c), we found that

the quantity and quality of speech was able to discriminate between productive

and non-productive teams in terms of learning. Additionally, we found that

when the behaviors were averaged across the entire interaction for each team,

there were two problem solving strategies (Global PS Strategy and Local PS

Strategy) that emerged and overall, one group of gainers displayed only one

strategy, while the other group of gainers displayed the other. However, the

temporal profiles of each group of learners help elaborate these findings further.

Please note that in the upcoming figures of the profiles, the strength of

the transition probabilities is represented by the strength of the arrows and

the unproductive, semi-productive and productive states and transitions are

represented by the different colors as described in the legend of the figures.

5.1.1. Expressive Explorers

The temporal profile for Expressive Explorers is shown in Figure 8 from

which we see that these learners start, with the highest probability, at a state

characterized by more technical help-seeking, fewer actions with the learning
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activity, and high silence. For these reasons, it appears to be a state of non-

productivity. As opposed to the averages and frequency analysis in Nasir et al.

(2021c), which suggests that Expressive Explorers learned by following a more

global problem solving strategy, this temporal analysis indicates that once they

go out of the non-productive state, they employ both of the problem solving

strategies: in the more probable state they follow a global problem solving

strategy of adding edges and looking more at their previous solutions, and a

less probable state where they follow a local problem solving strategy consisting

of more removals in general, and removing each other’s last added edges in

particular. What is interesting is that the latter state is more likely to occur

at later times in the activity than the global problem solving state, suggesting

that these students begin with a more global problem solving approach and

move on to a more local strategy of making quick changes. This transition is

also characterized by increasing negative emotions, such as frustration, that is

perhaps brought on by the awareness of reaching the end of the activity and

the allotted time. In the states of non-productivity (while trying to understand

the activity) and global problem solving (while adding edges), the learners gaze

at the screen is high, while in the state of local problem solving while removing

edges, and in particular each others’ edges, the learners gaze at their partners is

highest. However, both of the problem solving states are characterized by high

speech and speech overlap which signifies good collaboration (Viswanathan &

Vanlehn, 2018). Once Expressive Explorers reach a productive state, it is highly

unlikely to get back to the non-productive one.

5.1.2. Calm Tinkerers

Calm Tinkerers as shown in Figure 9 start, with the highest probability,

at a state characterized by high technical help-seeking, fewer actions, and high

silence. Due to these behaviors, it seems to be a state of non-productivity. Sim-

ilar to Expressive Explorers, the temporal analysis done in this paper gives a

richer insight into these learners behaviors. Contrary to the aggregate analysis

which suggested that these learners adopt a local problem solving strategy, this
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Figure 8: Temporal profile for Expressive Explorers

analysis suggests that these type of gainers too go through two states of produc-

tivity: a less probable state of local problem solving and a more probable state of

global problem solving. In the state of local problem solving, Calm Tinkerers do

most removal actions, particularly removing each other’s last added edges, show

lesser negative emotions, and their speech is at its highest. In the state of global

problem solving, these learners do more addition actions, are more frustrated

and their speech decreases but is still relatively high. Contrary to Expressive

Explorers, we find that in Calm Tinkerers the state of local problem solving is

more likely to occur earlier in the activity than the state of global problem solv-

ing, suggesting that these learners begin with a local problem solving approach.

However, similar to the Expressive Explorers, these learners change in problem

solving strategies is also accompanied with an increase in negative emotions.

In the state of non-productivity while trying to understand the activity, the

Calm Tinkerers gaze at their partner as well as the right side of the screen is
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Figure 9: Temporal profile for Calm Tinkerers

high, in the state of global problem solving while adding edges the learners gaze

on both sides of the screen is high and in the state of local problem solving while

removing edges, including each others’ edges, the learners gaze at the robot and

the left side of the screen is highest. We must note that the only difference

between the left and the right sides of the screen is that if a previous solution

is opened, it is displayed on the right side; whereas, the information on the

total number of nodes and the number of edges currently present on the map

is on the left side. Similar to Expressive Explorers both the productive states

are characterized by high speech signifying good collaboration in both states

(Viswanathan & Vanlehn, 2018). Further, similar to Expressive Explorers, the

speech in the local PS state is highest and this is likely because this state in-

volves the highest removal of each others’ edges which requires discussion and

agreement among both partners, thus increasing the speech activity. Lastly, dif-

ferent from Expressive Explorers, these learners still have a medium probability
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Figure 10: Temporal profile for Silent Wanderers

to fall back to the unproductive state from the state of global problem solving

strategy.

5.1.3. Silent Wanderers

Similar to the two gainer groups, the Silent Wanderers start with the high-

est probability at a non-productive state characterized by more technical help-

seeking, high silence, and low actions with the learning activity. They go

through a more probable state, occurring in the middle of the activity (sug-

gested by medium normalized time), where they adopt a global problem solving

strategy in which their speech increases and they do more addition actions.

However there is no change in their reflective actions in this state, either in

terms of looking at their previous solutions or removing their own or their part-

ners added edges. Even from this state of productivity, they can still fall back

to the state of non-productivity with a high transition probability. In the less

probable state, which is more likely to occur towards the end of the activity
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Table 4: Interplay between stages of problem solving strategies and behaviors of speech, gaze,

and affect

When employing a global problem solving strategy

Behavior Expressive Explorers Calm Tinkerers Silent Wanderers

Speech High High Medium

Gaze towards partner and/or robot Lowest Lowest Highest

Gaze towards the screen High High High

Affect Medium Negative Highest both Highest Positive

When employing a local problem solving strategy

Behavior Expressive Explorers Calm Tinkerers Silent Wanderers

Speech Highest Highest Highest

Gaze towards partner and/or robot Highest High Medium

Gaze towards the screen Lowest Medium Medium

Affect Highest Negative Medium both High Positive

and is characterized by a more local problem solving strategy, non-gainers do

more removals and few additions. We may infer that this is a more reflective

phase although their reflection, unlike the gainers, does not include a significant

increase in the use of the solution history or each other’s last actions. However,

this state is characterized by their highest speech.

In terms of gaze, in the non-productive state while trying to understand the

activity these learners gaze at the left side of the screen is highest and this could

be because the information on the number of nodes and the number of edges

currently present on the map is located on the left. In the more probable state

of doing additions, their gaze at their partner and the right side of the screen

is highest, where the history is also located and it could be that learners were

accessing their past solutions. Finally, in the less probable state of removing

edges, their gaze at the right side of the screen is high, which could again indicate

learners accessing their history. Interestingly, we find no difference in the learn-

ers frustration between the three states, indicating that their negative emotions

were relatively stable regardless of whatever they were doing in the activity.

Thus our analysis reveals that non-gainers go through a “slower” learning path-

way characterized by an intermediate semi-productive state where actions on
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the activity and speech increases, but reflection is generally unchanged. While

they do reach a productive state of reflective problem solving and higher amount

of discourse, it is reached late in the activity. However, this suggests that given

time even the non-gainers could achieve higher learning gains since once they

reach this productive state, similar to gainers, the probability of going back to

the non-productive states is low. We hypothesize that the lack of reflection in

the intermediate state could be the reason why non-gainers do not have higher

learning gains as it is known that reflection plays a crucial role in learning from

problem solving (Do-lenh, 2012; Hmelo-Silver, 2004).

Together our findings suggest that not only are there multiple behavioral

profiles of learning (Nasir et al., 2021c), there are multiple behavioral pathways

for learning, and learners who have learning gains do not adopt a single problem

solving strategy, global or local, but indeed a combination of both. Further,

they modify strategies based on the status of the problem solving and feedback

obtained from the environment. Our findings also suggest an interplay between

PS strategies and other behaviors which we explore in-depth in the next section.

5.2. Interplay between PS Strategies and other behaviors

Now that the temporal learning profiles have been explained for each group,

we would like to focus on how speech, affect and gaze evolve for each of these

groups and interplay with the global vs the local problem solving strategies

i.e., while performing addition actions predominantly or when removal actions

are more frequent, respectively. This interplay between the problem solving

strategies and behaviors of speech, gaze, and affect is shown in Table. 4, which

has been synthesized based on our results described in section 5.1. We note

that this table does not include those behaviors that stayed consistent for a

certain group of learners between the two strategies. For example, for Silent

Wanderers, the fact that we do not see negative affect in the table indicates that

there were not any significant oscillations for their negative valence between the

two strategies, i.e., their negative emotions were more consistent irrespective of

which problem strategy they used.
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When doing global problem solving consisting predominantly of additions,

the two gainer groups Expressive Explorers and Calm Tinkerers have high

speech, while Silent Wanderers speak relatively less. In this phase, the two

gainer groups gaze at their screen is high, while the gaze towards their part-

ner or the robot is lowest. On the other hand, for the non-gainer group Silent

Wanderers, while the gaze towards the screen is high, their gaze towards their

partner is highest in this phase. Lastly, in terms of affect, Expressive Explor-

ers express medium level of negative emotions, Calm Tinkerers display both

highest levels of positive as well as negative emotions in this phase, while the

non-gainer group Silent Wanderers are associated with their highest levels of

positive emotions in this phase.

Next, we observe that when using the local problem solving strategy, i.e.,

more removals, an action indicative of reflection, each group’s speech activity is

at their highest. In terms of gaze behavior, the two gainer groups Expressive Ex-

plorers and Calm Tinkerers gaze at their partners as well as the robot is high in

this phase, while Silent Wanderers gaze towards their partner is lesser. Further-

more, Expressive Explorers gaze towards the screen is the lowest in this phase,

while the other two groups gaze at the screen is medium. Lastly, Expressive Ex-

plorers show most negative emotions during this strategy, Calm Tinkerers are

associated with medium emotions, while Silent Wanderers lean towards high

positive emotions while removing.

It is interesting to note that irrespective of the phase of problem solving, both

gainer groups maintain a high level of verbal interaction as opposed to the non-

gainer group Silent Wanderers who speak less during global problem solving

and speak the most while in the local problem solving phase. This suggests

that verbal interactions are important to be maintained during both the global

and local problem solving phases, i.e. both when making additions, as well as

when doing removals. The need for communication itself is not surprising as

the collaborative problem solving task requires learners to share information for

building a common ground and improving their understanding to construct a

solution, monitor and reflect on the solution (Roschelle & Teasley, 1995; Barron,
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2003; Chang et al., 2017; Hausmann et al., 2004). Our analysis reiterates the

need for communication throughout collaborative problem solving, regardless

of the PS strategy being applied. Nevertheless some phases may demand a

higher level of interaction between partners. For instance, literature suggests

an increase in interaction between participants during phases of socially shared

regulation of learning which involves reflection, monitoring the solution that

has been built and evaluating whether to revise it (Isohätälä et al., 2017; Sinha

et al., 2015; Rogat & Linnenbrink-Garcia, 2011). We also find similar behaviors

in that we see an increase in speech activity of all learners in their most reflective

phase of problem solving, which in our case is the local problem solving that

involves continuously evaluating whether an added edge satisfies the requirement

of minimising cost and removing it if not. This requires partners to share the

information on their respective screens and discuss it with respect to the overall

solution, thus leading to increase in speech.

In terms of affect, all groups oscillate between different affective states and/or

different levels of affect. Expressive Explorers oscillate between medium and

very high negative valence levels during global and local phases respectively,

i.e., showing a higher frustration during the local strategy. On the other hand,

the second type of gainers, Calm Tinkerers oscillate between higher to medium

level of arousal, with a mix of both positive and negative valence, when mov-

ing respectively between global and local problem solving, i.e, displaying higher

levels of both excitement and frustration during the global strategy. Lastly, for

Silent Wanderers, the oscillation is more in terms of arousal, that shifts between

their relative levels of highest to high positive valence between global and local

problem solving, respectively, i.e, being more excited during global problem solv-

ing. The changing dynamics of affective states over the entire problem solving

is supported by the work of D’Mello & Graesser (2012); however, what is inter-

esting is that both gainer groups experience negative emotions during both global

and local problem solving phases. A meta-analysis of discrete affective states

during learning with technology indicates that negative states such as anger,

contempt, sadness, anxiety, fear, etc. are relatively infrequently experienced
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when students engage with technology-enhanced learning contexts (D’Mello,

2013). However, these learning contexts are guided discovery learning contexts

that usually employ success-driven scaffolding to nudge the learners towards the

correct solution. Sinha (2021b), in a recent work suggested that in a problem-

solving followed by instruction (PS-I) context, where the problem-solving phase

is “naturally designed to be ill- structured and afford the generation of multi-

ple suboptimal solutions (Kapur & Bielaczyc, 2012)”, some levels of negative

emotions can in fact be beneficial as they can “keeps one alerted of challenges

requiring more focused attention, and assists in comprehending conflicting in-

formation (Ivtzan et al., 2015; Kashdan & Biswas-Diener, 2014)”. Since our

open-ended activity is also designed as a PS-I activity, the surfacing of abso-

lute medium levels of negative emotions among gainers (the mean values can be

seen in the Tables in the appendix; note that the labels highest, high, medium,

low, lowest are relative within a group) can be considered as supporting what

was reported in Sinha (2021b). In this work, we additionally point out when

negative emotions increase during problem-solving, relative to other phases.

Another point of interest is that while the interplay between problem solving

strategy and affect was highlighted in our previous work (Nasir et al., 2021c),

this work highlights that a particular affect is not strictly associated with a type

of problem solving strategy but it also depends on the phase of the activity

and a particular problem solving strategy applied at the later stages of the

activity can lead to more negative emotions than would be otherwise observed.

In D’Mello & Graesser (2012), the authors highlight that moving from a state of

equilibrium or flow to a state of disequilibrium results in negative emotions such

as confusion and frustration. Our findings of gainers emotions also suggests a

similar behavior; for instance when Expressive Explorers change strategies from

a global to a local one, it is accompanied by an increase in negative emotions

and when Calm Tinkerers shift from a local to a global strategy they show an

increase in negative emotions. This change in negative emotions in not very

prominent among Silent Wanderers which could be because they did not pay as

much attention to the task at hand or notice the gaps in their prior knowledge
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and the need for reflection (Sinha, 2021b).

Oscillation of gaze between the partner and the screen, and the robot and

the screen, is particularly interesting as we observe that for both gainer groups,

they look the least at their partner or at the robot when employing the global

PS strategy but highest during the local PS strategy. On the contrary, the

non-gainer group looks more to their partner and the robot when exhibiting

global PS strategy compared to the local PS strategy. Literature suggests that

gaze is a means of action monitoring, predicting intention, action co-ordination

and planning in order to establish a common ground that can lead to better

collaboration (Huang et al., 2015; Sebanz et al., 2006). Together our findings

and literature suggest that in an environment that has both social (a partner)

and task elements (screens), looking at your partner during the local PS strategy,

which involves mostly removing what the team has already built and requires

agreeing on which edges to remove, can support joint action. Since in this

work we do not distinguish between moments when both partners are looking

at each other and when one partner is looking at the other (both are considered

when computing the feature “gaze at partner”), eye gaze could either be a

way to confirm agreement on a bilaterally decided course of action or a way to

negotiate to reach a consensus when a unilateral decision was taken. On the

other hand, during the global PS strategy which involves series of additions, it

is more productive to look at the screen rather than at the partner as the plan

is already agreed on (global reflection/planning).

5.3. Connections to Computer-supported Collaborative Learning Literature

Within CSCL literature the temporal analysis of computer-supported collab-

orative learning (Lämsä et al., 2021) has predominantly focussed on the content

of learners verbal communication/interaction/discussion and how it evolves dur-

ing the learning activity, with the non-verbal activities such as actions within

the technology-based learning environment, serving to complement the analy-

sis of verbal communication. In our work, we employ multimodal features to

understand how pairs of students learn by working on an open-ended scripted

37



collaborative problem-solving activity. For this, we consider the pair as a sin-

gle unit and examine how their collective behaviors (speech activity, problem-

solving actions, eye gaze and affect) change across the activity as they learn by

problem-solving. Our analysis does not include any measure of the quality of

the verbal discussion, but studies the temporal evolution of this units’ learn-

ing behaviors using only fully quantitative data and methods. Similar methods

have been used in (Martinez-Maldonado et al., 2013) where the authors were

able to distinguish between high and low collaborating groups based on their

action and speech sequences and our work adds to this literature by additionally

considering affect and eye gaze, and modeling the temporal learning process of

different types of learners.

Further, using the quality of speech, with and without problem-solving ac-

tions, has allowed researchers to understand how learners temporally regulate

their open-ended problem-solving (Kapur, 2011; Malmberg et al., 2015; Sobocin-

ski et al., 2017; Chang et al., 2017; Emara et al., 2021) in face-to-face collab-

orative conditions. For instance, researchers identified that increased socially

shared regulation across time corresponded with increased use of more system-

atic action sequences (Emara et al., 2021) and higher performance (Malmberg

et al., 2015). Similarly, Sobocinski et al. (2017) found that in low challenge

sessions, learners transitioned between the forethought and performance phases

of self-regulated learning only once, while in high challenge sessions they tran-

sitioned between forethought and performance phases more frequently. Chang

et al. (2017) identified that successful groups discourse transitioned more fre-

quently from monitoring to formulating and exploring, along with doing ex-

ploratory actions, as opposed to less successful groups whose discourse sug-

gested a more trial-and-error strategy. While we did not explicitly identify

socially shared regulation, our findings did agree with the above findings in

that increased speech activity was overall associated with increased reflective

problem-solving actions, both global and local. In addition, our work offers a

complementary view of how collaborative open-ended problem-solving proceeds,

in terms of problem-solving strategies (local vs global) rather than problem-
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solving phases (exploring, formulating, planning and monitoring). The global

problem solving strategy can be considered as one in which planning, exploring,

formulating and monitoring happens on the scale of the entire problem. The lo-

cal problem solving strategy is one in which the planning, exploring, formulating

and monitoring happens on the scale of the next step towards the solution. Our

work thus adds to CSCL literature by suggesting that learners seamlessly in-

tertwine these two strategies in their productive collaborative problem-solving,

and that neither is at the outset “better” than the other.

5.4. Implications for Design of Adaptive Learning Interventions

In this subsection, we highlight some implications of the findings discussed

above for the design of adaptive learning interventions, both at a broader level

for the CSCL community, and at the specific level of the intervention in our

study. To summarize our observations from the temporal profiles, we find that:

1. All learner groups have the highest probability to start with and stay in

a state of non-productivity. However, once out of it, all learners have the

lowest probability to return to this state.

2. The non-gainers transition between states of non-productivity and produc-

tivity in a smoother manner with an intermediate semi-productive state

in terms of time. In contrast, gainers’ transitions are sharper, in that they

transition from the non-productive state to one of the two productive

states.

3. Expressive Explorers and Calm Tinkerers do not exclusively adopt a global

or a local PS approach respectively throughout the activity, as suggested

by the aggregate behavioral profiles in Nasir et al. (2021c). This analysis

reveals that both these gainer types adopt both these approaches and

switch between them throughout the interaction. One key difference is the

stages of the interaction in which the two groups employ the strategies,

with the Expressive Explorers adopting the global strategy earlier and
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then the local strategy, while the Calm Tinkerers adopting the reverse

approach.

4. Further, for the two gainer groups, each of the two problem solving strate-

gies is associated with speech, gaze and affect in a unique way, that is in

some ways comparable (speech and gaze) and in other ways opposing (af-

fect). Diving deeper, the relationship of affect with a particular problem

solving strategy does not seem to be as straightforward as suggested by

aggregate behavioral analysis in Nasir et al. (2021c). Both types of gainers

seem to have increased emotional behavior relative to themselves towards

the later part of the interaction irrespective of which problem solving

strategy they are using.

Following up from the above observations, (1) suggests that adaptive inter-

ventions should start early in the interaction, irrespective of the group. For

example, all groups speak the least in the non-productive state and have yet

not established either of the problem solving strategies. An effective interven-

tion could then be to try to induce communication between the dyad earlier in

the interaction, that eventually could help with mitigating confusion, building

a common ground, resolving conflict and pushing the team towards a more re-

flective set of behaviors, i.e., to follow either a global or local problem solving

strategy.

Further, going back more often (i.e., with a higher probability) into a non-

productive state of low speech (as Silent Wanderers as well as Calm Tinkerers

did) might suggest that the students have not yet established a shared under-

standing of the problem. Without an appropriate intervention, the relevant

team may take longer to have productive interactions or transition to a pro-

ductive state. Such a unstable behavior of moving back and forth between the

non-productive and productive states need to be mitigated by an intervention

targeted at inducing behaviors that would increase the chances of building a

shared understanding. Further, observation of Silent Wanderers suggests that

it is the lack of reflective actions such as looking back at their previous solutions
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and observing their own or their partners action, that might be the cause of a

delayed shared understanding of the problem. Hence, such actions can be ad-

ditionally suggested by an intelligent agent if the team is observed to be going

back often to a state of lower speech that suggests being in a non-productive

state.

Lastly, as highlighted by (3) and (4), identification of a team as following a

local or global PS strategy at the early stages of the interaction should be taken

with caution. Instead continuous identification of the teams current PS strategy

is necessary as the teams shift between multiple PS strategies and each problem

solving strategy elicits different speech, gaze and affective behavior in learners.

Therefore, it is important to inform the mechanism behind interventions of

this sophisticated interplay and suggest interventions accordingly. For example,

Expressive Explorers increase in their intensity of negative emotions as they

move from global to local PS strategy and vice versa for the Calm Tinkerers;

however, when looking at the time axis, in both cases this increase is towards the

later phase of the interaction. Hence, the adaptive intervention system does not

always need to mitigate frustration, especially towards the end of the interaction

as this level of frustration may be conducive to more productive behaviors.

This can be an interesting avenue for further investigation by the community.

As another example, both gainer groups looking more at the partner when

moving from global to local PS strategy seems to suggest better collaboration

quality; therefore, the adaptive intervention system can try to induce relevant

gaze behaviors when the associated PS strategy is detected among learners

potentially by sharing gaze among the peers as has been shown to be effective

Schneider et al. (2018).

6. Conclusion

Concluding on our discussion, in this paper we contribute by applying an

HMM based methodology to model and understand the collaborative learning

process of gainer and non-gainer teams. However, there are some limitations
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with the current study. Firstly, in order to generalize the outcomes and infer-

ences to collaborative settings in open-ended environments, there is a need of

carrying out even more extensive studies, i.e., with more teams. Then, the cur-

rent data is skewed when it comes to non-gainer teams, that is we have lesser

non-gainer teams in our data than gainer teams and that can add to making

our results less straightforward to generalize. Lastly, since the study is done

at international schools in Switzerland, the students are from a selective pool

coming from a certain economic and social background; hence, this requires us

to be careful about the group we generalize it to.

In our future work, our goal is to use these findings to build an adaptive

intervention mechanism for a robot that can observe the multimodal behaviors

of the students in soft real-time and provide effective interventions. With such

a robot, we plan to collect more data to account for the aforementioned limi-

tations, by both testing the effectiveness of our adaptive system, refining it as

well as observing if the new data generalizes to similar (and even additional)

profiles.
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Table .5: Features’ Mean values in each of the Expressive Explorers’ states

Feature InitialState MoreProbableState LessProbableState

T add 1.102 384× 10−9 3.573 773× 10−1 0.040 838

T ratio add rem 4.183 066× 10−9 9.999 993× 10−1 0.018 960

T action 3.870 495× 10−2 9.699 460× 10−2 0.044 758

normalized time 2.029 434× 10−1 5.387 081× 10−1 0.626 040

Speech Overlap 2.723 118× 10−1 4.758 125× 10−1 0.567 795

Overlap to Speech Ratio 5.461 976× 10−1 6.965 724× 10−1 0.804 408

Speech Activity 4.099 696× 10−1 5.986 744× 10−1 0.665 616

Silence 6.541 648× 10−1 4.866 740× 10−1 0.410 024

T remove 9.325 293× 10−10 3.182 062× 10−7 0.126 406

Gaze at Robot 4.343 753× 10−2 9.518 764× 10−3 0.045 563

redundant exist 3.763 263× 10−3 6.830 674× 10−3 0.002 477

T1 T1 rem 1.027 991× 10−17 3.735 072× 10−20 0.116 683

Gaze at Partner 7.156 486× 10−2 6.737 566× 10−2 0.117 361

T help 7.807 358× 10−2 6.557 370× 10−3 0.014 712

T1 T2 rem 1.478 677× 10−15 4.773 094× 10−7 0.043 755

T hist 5.047 627× 10−3 5.044 131× 10−3 0.001 290

Gaze at Screen Right 5.915 012× 10−1 5.912 295× 10−1 0.585 986

Gaze at Screen Left 3.447 677× 10−1 3.441 521× 10−1 0.306 201

Long Pauses 4.414 569× 10−3 1.723 356× 10−2 0.002 917

Arousal 2.705 875× 10−1 3.101 827× 10−1 0.375 027

Short Pauses 1.685 203× 10−1 1.542 912× 10−1 0.116 228

Negative Valence 2.056 995× 10−1 2.568 086× 10−1 0.308 619

Positive Valence 3.375 673× 10−1 3.469 566× 10−1 0.412 408

Gaze Other 8.812 433× 10−2 5.841 153× 10−2 0.062 550

T1 T2 add 0.000 000 0.000 000 0.000 000

Difference in Valence 5.507 043× 10−1 5.013 340× 10−1 0.513 887

T1 T1 add 0.000 000 0.000 000 0.000 000
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Table .6: Features’ Mean values in each of the Calm Tinkerers’ states

Feature InitialState MoreProbableState LessProbableState

T ratio add rem 2.673 037× 10−10 1.000 000 4.172 444× 10−3

T add 6.682 594× 10−10 3.166 667× 10−1 1.043 111× 10−2

Speech Overlap 3.282 486× 10−1 5.413 534× 10−1 5.921 923× 10−1

Speech Activity 4.855 440× 10−1 6.827 465× 10−1 7.096 177× 10−1

Silence 5.495 654× 10−1 3.864 979× 10−1 3.520 730× 10−1

T action 1.260 936× 10−2 5.866 667× 10−2 2.662 700× 10−2

Overlap to Speech Ratio 6.216 050× 10−1 7.520 540× 10−1 7.951 161× 10−1

normalized time 3.205 108× 10−1 5.447 131× 10−1 5.415 407× 10−1

T remove 1.266 331× 10−2 3.999 698× 10−15 1.701 398× 10−2

T1 T1 rem 1.168 974× 10−12 8.479 291× 10−18 6.258 666× 10−2

T1 T2 rem 1.347 584× 10−7 2.299 210× 10−21 2.086 218× 10−2

redundant exist 1.747 415× 10−3 1.458 333× 10−2 5.336 480× 10−3

Positive Valence 3.665 011× 10−1 4.497 916× 10−1 4.121 070× 10−1

Arousal 3.269 324× 10−1 3.862 492× 10−1 3.702 702× 10−1

Gaze at Robot 1.162 740× 10−2 5.383 023× 10−3 1.723 160× 10−2

Negative Valence 2.549 870× 10−1 2.911 126× 10−1 2.905 847× 10−1

T help 1.132 622× 10−2 7.855 360× 10−22 1.394 327× 10−2

Gaze at Screen Right 5.173 883× 10−1 5.228 333× 10−1 4.819 030× 10−1

Short Pauses 6.129 101× 10−2 6.038 230× 10−2 5.266 563× 10−2

Difference in Valence 5.511 903× 10−1 6.026 717× 10−1 5.586 536× 10−1

Gaze at Partner 1.790 690× 10−1 1.355 978× 10−1 1.555 657× 10−1

Gaze at Screen Left 4.294 050× 10−1 4.452 297× 10−1 4.510 707× 10−1

Long Pauses 1.474 565× 10−2 9.933 266× 10−3 1.916 058× 10−3

T1 T2 add 3.027 555× 10−32 1.666 667× 10−2 9.423 054× 10−19

Gaze Other 5.388 054× 10−2 7.411 003× 10−2 6.656 883× 10−2

T hist 9.891 350× 10−3 8.333 333× 10−3 2.176 802× 10−2

T1 T1 add 0.000 000 0.000 000 0.000 000
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Table .7: Features’ Mean values in each of the Silent Wanderers’ states

Feature InitialState MoreProbableState LessProbableState

T ratio add rem 1.312 014× 10−2 9.999 978× 10−1 6.729 559× 10−3

T add 3.644 306× 10−2 3.281 263× 10−1 1.682 390× 10−2

Speech Overlap 6.135 501× 10−2 1.679 682× 10−1 4.213 296× 10−1

Speech Activity 2.082 582× 10−1 3.460 734× 10−1 5.755 465× 10−1

Overlap to Speech Ratio 1.891 342× 10−1 3.170 220× 10−1 6.084 412× 10−1

Silence 7.586 753× 10−1 6.372 338× 10−1 4.604 999× 10−1

T action 5.638 728× 10−2 1.191 416× 10−1 5.272 196× 10−2

normalized time 3.157 809× 10−1 4.738 481× 10−1 7.326 249× 10−1

T remove 1.092 886× 10−1 1.552 110× 10−6 1.347 397× 10−1

redundant exist 3.997 135× 10−2 5.468 935× 10−2 2.257 087× 10−2

Gaze at Screen Right 5.556 238× 10−1 6.204 418× 10−1 6.182 313× 10−1

Gaze at Screen Left 2.746 859× 10−1 2.511 985× 10−1 2.227 564× 10−1

Positive Valence 2.501 105× 10−1 2.826 254× 10−1 2.784 481× 10−1

T help 3.497 000× 10−2 6.249 981× 10−3 1.707 482× 10−10

Gaze at Partner 1.141 224× 10−1 1.443 724× 10−1 1.290 232× 10−1

Difference in Valence 3.721 043× 10−1 3.680 229× 10−1 3.831 570× 10−1

Arousal 2.464 960× 10−1 3.058 044× 10−1 2.857 545× 10−1

T1 T1 rem 2.914 167× 10−2 1.625 856× 10−13 1.646 490× 10−12

T1 T2 rem 6.827 181× 10−5 4.079 701× 10−11 3.360 833× 10−2

Gaze Other 4.831 607× 10−2 1.046 721× 10−1 5.910 927× 10−2

Gaze at Robot 8.571 055× 10−2 4.328 244× 10−2 4.276 117× 10−2

T1 T1 add 0.000 000 0.000 000 0.000 000

Negative Valence 2.408 355× 10−1 3.125 240× 10−1 2.792 128× 10−1

Short Pauses 2.230 099× 10−1 1.495 351× 10−1 1.287 077× 10−1

T1 T2 add 5.158 890× 10−15 6.249 980× 10−2 6.094 868× 10−10

Long Pauses 2.606 827× 10−2 6.442 913× 10−3 9.601 131× 10−3

T hist 7.199 166× 10−3 2.083 376× 10−2 3.378 669× 10−2
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Table .8: p-values from Kruskal-Wallis test on the Expressive Explorers’ states

LessProbableState- LessProbableState- MoreProbableState- LessProbableState-

Feature MoreProbableState InitialState InitialState MoreProbableState-

InitialState

T add 6.459 889 × 10−272 7.786 821 × 10−7 7.321 670 × 10−241 0.000 000

T ratio add rem 0.000 000 8.011 061 × 10−7 6.043 280 × 10−301 0.000 000

T action 3.229 241 × 10−62 1.116 775 × 10−12 1.255 941 × 10−128 2.724 522 × 10−134

normalized time 6.573 843 × 10−13 1.588 430 × 10−118 2.121 637 × 10−76 2.268 858 × 10−127

Speech Overlap 1.823 268 × 10−20 4.726 497 × 10−96 4.636 181 × 10−33 1.145 578 × 10−91

Overlap to Speech Ratio 2.359 913 × 10−16 4.714 581 × 10−82 2.061 077 × 10−29 8.026 889 × 10−78

Speech Activity 1.878 127 × 10−18 1.021 272 × 10−76 9.454 754 × 10−27 1.719 850 × 10−74

Silence 4.052 784 × 10−11 1.423 945 × 10−69 4.624 967 × 10−33 8.671 185 × 10−69

T remove 1.923 088 × 10−30 8.584 127 × 10−11 3.403 098 × 10−8 1.086 990 × 10−34

Gaze at Robot 2.408 710 × 10−20 2.522 376 × 10−1 1.119 077 × 10−13 4.107 882 × 10−21

redundant exist 6.323 133 × 10−13 5.619 846 × 10−1 5.410 339 × 10−12 5.495 916 × 10−18

T1 T1 rem 1.071 271 × 10−9 1.175 112 × 10−6 NaN 7.707 447 × 10−14

Gaze at Partner 8.078 957 × 10−11 4.279 389 × 10−8 8.546 495 × 10−1 1.426 036 × 10−11

T help 5.077 449 × 10−2 1.210 030 × 10−5 5.427 370 × 10−10 1.167 470 × 10−10

T1 T2 rem 3.871 818 × 10−7 6.822 129 × 10−4 7.513 610 × 10−2 2.112 531 × 10−8

T hist 9.259 736 × 10−6 2.101 519 × 10−6 3.011 715 × 10−1 1.159 495 × 10−7

Gaze at Screen Right 3.147 718 × 10−7 6.138 099 × 10−2 1.809 002 × 10−3 8.358 584 × 10−7

Gaze at Screen Left 5.380 571 × 10−6 3.960 269 × 10−4 6.152 767 × 10−1 8.665 531 × 10−6

Long Pauses 3.314 372 × 10−4 1.312 236 × 10−3 9.461 985 × 10−1 4.948 046 × 10−4

Arousal 4.132 118 × 10−3 4.371 238 × 10−4 3.136 678 × 10−1 7.750 580 × 10−4

Short Pauses 1.013 922 × 10−2 2.814 769 × 10−4 1.729 218 × 10−1 8.445 037 × 10−4

Negative Valence 3.444 524 × 10−3 5.710 819 × 10−3 8.727 249 × 10−1 3.942 160 × 10−3

Positive Valence 1.202 900 × 10−1 8.595 192 × 10−3 1.684 401 × 10−1 2.711 117 × 10−2

Gaze Other 6.718 909 × 10−1 6.410 131 × 10−2 1.878 263 × 10−2 5.268 550 × 10−2

T1 T2 add 1.782 952 × 10−1 NaN 2.607 401 × 10−1 2.148 112 × 10−1

Difference in Valence 1.769 718 × 10−1 7.301 056 × 10−1 3.636 468 × 10−1 3.731 152 × 10−1

T1 T1 add 7.361 626 × 10−1 2.372 005 × 10−1 1.682 336 × 10−1 4.040 213 × 10−1
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Table .9: p-values from Kruskal-Wallis test on the Calm Tinkerers’ states

InitialState- InitialState- MoreProbableState- InitialState-

Feature MoreProbableState LessProbableState LessProbableState MoreProbableState-

LessProbableState

T ratio add rem 1.046 633 × 10−214 3.203 160 × 10−15 1.448 010 × 10−209 2.208 200 × 10−300

T add 8.825 740 × 10−194 2.671 724 × 10−15 1.084 962 × 10−136 2.779 006 × 10−241

Speech Overlap 2.486 453 × 10−26 1.140 660 × 10−105 4.815 798 × 10−22 3.079 549 × 10−103

Speech Activity 2.699 760 × 10−26 4.539 962 × 10−96 4.068 440 × 10−19 1.789 244 × 10−94

Silence 6.369 222 × 10−31 1.859 685 × 10−91 9.868 460 × 10−16 7.739 133 × 10−92

T action 2.530 858 × 10−96 9.718 553 × 10−15 3.560 970 × 10−28 2.236 893 × 10−84

Overlap to speech ratio 1.266 769 × 10−19 1.470 592 × 10−84 9.053 385 × 10−20 1.396 038 × 10−82

Normalized time 9.962 378 × 10−23 1.277 583 × 10−57 2.040 765 × 10−10 3.391 638 × 10−59

T remove 4.195 097 × 10−14 3.443 724 × 10−19 4.953 212 × 10−44 3.040 368 × 10−51

T1 T1 rem 3.566 311 × 10−1 6.479 934 × 10−18 4.254 322 × 10−16 2.402 922 × 10−30

T1 T2 rem 1.921 375 × 10−1 1.517 800 × 10−9 2.073 554 × 10−9 6.086 552 × 10−16

Redundant exist 7.350 425 × 10−13 2.140 998 × 10−2 2.082 055 × 10−7 1.988 810 × 10−13

Positive Valence 1.140 000 × 10−4 8.498 930 × 10−11 2.452 327 × 10−2 5.318 031 × 10−10

Arousal 5.355 177 × 10−2 1.451 686 × 10−9 1.509 734 × 10−4 5.760 692 × 10−9

Gaze at robot 9.302 748 × 10−8 4.740 781 × 10−3 4.274 607 × 10−3 5.047 403 × 10−7

Negative Valence 7.412 760 × 10−1 3.148 931 × 10−6 3.576 009 × 10−5 1.455 941 × 10−6

T help 6.274 225 × 10−5 2.649 523 × 10−4 3.834 952 × 10−1 5.631 461 × 10−6

Gaze at screen right 3.407 637 × 10−4 9.740 129 × 10−2 3.593 597 × 10−6 5.796 425 × 10−6

Short pauses 4.721 115 × 10−3 9.175 213 × 10−7 9.540 181 × 10−2 6.114 326 × 10−6

Difference in Valence 4.211 367 × 10−6 6.285 657 × 10−3 5.459 578 × 10−2 2.763 204 × 10−5

Gaze at partner 1.282 025 × 10−1 6.511 073 × 10−5 2.696 452 × 10−2 3.242 851 × 10−4

Gaze at screen left 1.130 881 × 10−3 4.568 822 × 10−1 1.584 547 × 10−2 4.372 545 × 10−3

Long pauses 6.461 623 × 10−1 1.588 477 × 10−2 3.468 741 × 10−3 8.647 671 × 10−3

T1 T2 add 4.872 548 × 10−3 2.015 286 × 10−2 5.295 830 × 10−1 2.237 594 × 10−2

Gaze other 8.545 218 × 10−1 8.659 117 × 10−2 1.429 300 × 10−1 1.664 223 × 10−1

T hist 7.147 372 × 10−1 3.024 626 × 10−1 1.804 699 × 10−1 3.499 533 × 10−1

T1 T1 add 8.703 039 × 10−1 5.027 353 × 10−1 4.142 353 × 10−1 7.077 864 × 10−1
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Table .10: p-values from Kruskal-Wallis test on the Silent Wanderers’ states

InitialState- InitialState- LessProbableState- InitialState-

Feature LessProbableState MoreProbableState MoreProbableState LessProbableState-

MoreProbableState

T ratio add rem 4.589 301 × 10−1 5.220 515 × 10−122 6.663 973 × 10−130 5.535 321 × 10−183

T add 4.577 846 × 10−1 6.010 859 × 10−100 2.610 590 × 10−114 2.388 349 × 10−160

Speech overlap 5.892 624 × 10−97 7.100 573 × 10−18 9.712 381 × 10−31 2.760 344 × 10−98

Speech Activity 8.477 783 × 10−90 2.493 802 × 10−20 7.562 644 × 10−23 1.735 427 × 10−89

Overlap to speech ratio 7.595 498 × 10−72 3.505 213 × 10−11 6.190 938 × 10−30 1.645 284 × 10−75

Silence 3.187 753 × 10−70 1.142 510 × 10−13 2.080 269 × 10−19 4.649 497 × 10−69

T action 1.056 353 × 10−1 3.188 625 × 10−32 1.079 551 × 10−44 3.200 090 × 10−49

Normalized time 1.518 080 × 10−46 3.510 905 × 10−9 5.506 350 × 10−15 2.159 810 × 10−46

T remove 6.971 572 × 10−1 1.116 435 × 10−11 6.037 973 × 10−11 1.127 712 × 10−10

Redundant exist 3.512 804 × 10−1 1.635 185 × 10−6 3.081 867 × 10−9 1.046 462 × 10−9

Gaze at screen right 4.238 118 × 10−1 2.854 616 × 10−7 1.300 446 × 10−5 4.386 002 × 10−7

Gaze at screen left 1.959 077 × 10−4 2.097 955 × 10−6 1.816 661 × 10−1 3.475 313 × 10−6

Positive Valence 4.477 664 × 10−5 8.188 481 × 10−1 3.719 569 × 10−5 8.771 086 × 10−6

T help 2.145 970 × 10−4 4.619 297 × 10−3 5.533 612 × 10−1 1.305 032 × 10−4

Gaze at partner 6.836 966 × 10−5 3.239 169 × 10−1 8.317 920 × 10−3 2.405 678 × 10−4

Difference in Valence 5.798 869 × 10−4 7.765 849 × 10−1 4.280 245 × 10−3 9.162 789 × 10−4

Arousal 3.133 786 × 10−2 2.050 905 × 10−1 4.771 730 × 10−4 2.053 134 × 10−3

T1 T1 rem 2.168 625 × 10−1 4.151 916 × 10−3 3.627 620 × 10−2 1.568 344 × 10−2

T1 T2 rem 6.483 012 × 10−1 1.048 949 × 10−2 4.416 490 × 10−3 2.137 952 × 10−2

Gaze other 1.069 325 × 10−2 4.460 858 × 10−2 8.001 324 × 10−1 2.297 604 × 10−2

Gaze at robot 1.107 108 × 10−1 8.746 928 × 10−3 2.324 421 × 10−1 2.894 125 × 10−2

T1 T1 add NaN 1.155 100 × 10−1 9.639 491 × 10−2 7.286 920 × 10−2

Negative Valence 9.084 048 × 10−1 6.888 763 × 10−2 3.284 085 × 10−2 8.004 833 × 10−2

Short pauses 3.175 136 × 10−1 9.025 873 × 10−2 2.226 728 × 10−1 1.799 852 × 10−1

T1 T2 add 5.001 169 × 10−1 2.773 726 × 10−1 8.430 488 × 10−2 1.889 137 × 10−1

Long pauses 6.990 590 × 10−1 1.992 827 × 10−1 2.787 486 × 10−1 3.964 593 × 10−1

T hist 3.746 288 × 10−1 9.370 430 × 10−1 3.645 077 × 10−1 5.606 479 × 10−1
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