

# Motion Style Transfer: Modular Low-Rank Style Transfer for Deep Trajectory Forecasting



Danya Li

Supervisors: Parth Kothari, Yuejiang Liu,

Advisor: Prof. Alexandre Alahi

### I. OVERVIEW

#### Challenge

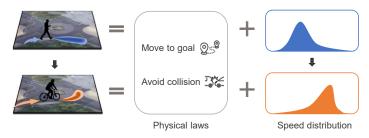
Despite great success on large-scale datasets, deep forecasting models suffer from inferior performance when they encounter unseen novel scenarios.



#### Research Problem

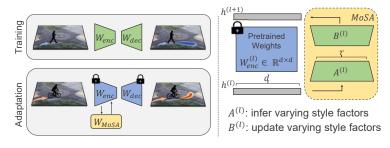
Efficiently adapt a forecasting model pretrained on source domain with sufficient data to a target domain.

#### **Contributions**


- 1. Formulate motion adaptation as style transfer.
- Motion style adapters to model the style shifts.
- Modularized strategy to improve sample efficiency.

### II. MOTION STYLE TRANSFER

Motion style: The way an agent interacts with its surroundings, e.g., preferred speed, social distance.

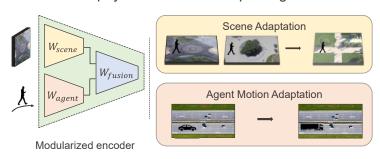

#### **Decoupling motion dynamics**

- Physical laws behind motion dynamics are invariant.
- Only need to account for the changes in motion style.



We view adaptation as learning style shifts  $(S \rightarrow S')$ .

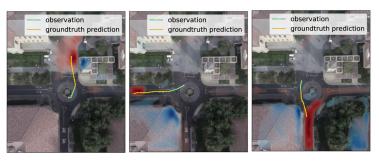
### III. MOTION STYLE ADAPTERS




- Freeze pre-trained model → Invariant physical laws.
- Motion style adapters → Model underlying style shifts.

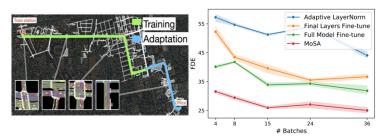
Hypothesis: Style shifts reside in a low-dimensional space resulting in our bottleneck design ( $r \ll d$ ).

### IV. MODULARIZED ADAPTATION


We factorize physical context from past agent motion.



MoSA can be flexibly injected to different encoders.


### V. EXPERIMENTS

### Agent Style Transfer on SDD ( ♣ → ೩)



- For cyclists, the red region has increased focus in prediction after adaptation, while blue region has decreased probability of moving there.
- MoSA reduces generalization error by 30% using 30 samples while updating 0.5% additional parameters.

#### Scene Style Transfer on Level 5



- Trained on the green route, adapted to blue route.
- MoSA outperforms competitive baselines by > 20%.

#### Modularized Adaptation on inD

## Agent Transfer Scene Transfer Generalization Generalization ---- Fine-tuning 10.8

- Module updates:  $S \rightarrow scene$ ,  $A \rightarrow agent$ ,  $F \rightarrow fusion$ .
- Modularization strategy leads to performance gains.