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Notation

pk, qk Vector elements

p,q Vectors

P,Q Matrices

Mr1 Embedding vector of item i using embedding matrix M

θ Model parameters

σ Sigmoid function σ(x) = 1
1+exp−x

K Dimensionality of the model

R Interaction matrix ∈ R|U |×|I|

I Item set

U User set

|U |; |I| Number of users and number of items

uj User uj ∈ U

ik Item ik ∈ I

x̂ujik Model prediction for user uj and item ik

H(·) Heaviside step function

iii





Abstract

Personalized ranking methods are at the core of many systems that learn to produce
recommendations from user feedbacks. Their primary objective is to identify relevant
items from very large vocabularies and to assist users in discovering new content. These
techniques have proven successful in stationary regimes, but the transition to an interactive
and social Web, and the rise of user-generated content, increasingly require learning
from dynamic factors. Existing approaches, based on distributed vector representations,
notoriously fail in fast-changing contexts and sparse regimes; their static representation of
users and items prevents them from adapting to contextual changes. Given this limitation,
this thesis focuses on introducing new methods to make predictions based on contextual
variables, exploit rich (social, temporal) signals, and maintain model consistency over
time.
First, we study a recommendation task on a live-streaming platform with a dynamically
evolving set of available items. In this context, users have to choose from a limited subset
of creators that are currently streaming content. To model this setting, we introduce a
self-attentive approach that draws a dependency between available options and re-ranks
the most promising candidates. We also show that repeat consumption, and the time at
which it occurs, are predictive factors that we incorporate into our model.
Second, we propose a dynamic embedding scheme to maintain a latent space consistent
over multiple temporal slices of a dataset, by penalizing unnecessary differences between
successive solutions of the model. In order to highlight the potential for analysis of
our approach, we apply our methodology to a dataset of news production. Thanks to
its ability to propagate information over several time epochs, our model sheds light on
important changes in news coverage induced by acquisitions of media companies.
Third, we propose an approach for modeling reciprocal interest on a bartering platform
where users exchange goods, for which we design a trade recommendation system. We
find that the social ties between members have a strong influence, as does the time at
which they trade, therefore we extend our model to be socially- and temporally-aware.
Finally, we study the collaboration between users on Reddit Place, a social experiment
where users drew together on a virtual canvas. We propose to use personalization methods
to model user actions, capture the latent structure of this emergent collaborative effort
and provide an interpretable representation of its social structure.

Keywords: personalized ranking, collaborative filtering, recommender systems, temporal
dynamics, social dynamics, context-aware methods
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Résumé

Les méthodes de classement personnalisées sont utilisées par de nombreux systèmes de
recommandation. Ces systèmes identifient les intérêts des utilisateurs dans le but de leur
présenter des éléments susceptibles de les intéresser (vidéos, musiques, produits, etc.) et
de les aider à découvrir de nouveaux contenus. Si ces approches ont fait leurs preuves
dans les régimes stationnaires, la transition vers un Web interactif et social nécessite de
plus en plus de tenir compte de facteurs dynamiques. En effet, les approches existantes,
basées sur des représentations vectorielles distribuées, sont inadaptées à des contextes en
évolution rapide ; leur représentation statique des utilisateurs les empêche de s’adapter
aux changements contextuels. Cette thèse se concentre sur l’introduction de nouvelles
méthodes prédictives qui impliquent des variables contextuelles, exploitent des signaux
riches (sociaux, temporels) et permettent de maintenir la cohérence d’un modèle dans le
temps.
Tout d’abord, nous proposons un système de recommandation dans un contexte où les
éléments à recommander ont une disponibilité dynamique. Nous étudions ce scénario sur
une plateforme de streaming où les chaînes ne sont disponibles qu’aux moments où leurs
créateurs diffusent du contenu. Nous introduisons un modèle auto-attentif qui établit une
dépendance entre les éléments disponibles, afin de contextualiser les prédictions. Nous
montrons également que la consommation récurrente de contenu joue un rôle important
dans la prise de décision des utilisateurs.
Deuxièmement, nous proposons une méthode qui tend à maintenir un espace latent
cohérent lors d’un apprentissage sur plusieurs tranches temporelles d’un jeu de données.
Pour ce faire, nous pénalisons les différences inutiles entre les solutions successives du
modèle. Nous appliquons cette méthodologie à un jeu de données relatif à la couverture
de sujets d’actualité par différents médias. En particulier, notre modèle met en lumière
les changements importants induits dans la ligne éditoriale de ces médias par les fusions
et acquisitions des chaînes d’actualité.
Troisièmement, nous proposons de modéliser l’intérêt réciproque sur une plateforme en
ligne où les utilisateurs troquent des biens. Nous constatons que les liens sociaux entre
les membres ont une forte influence sur les échanges. Nous tenons également compte
du moment auquel ces échanges s’effectuent. Nous proposons un modèle permettant de
capturer ces dynamiques sociales et temporelles.
Enfin, nous étudions la collaboration des utilisateurs dans un environnement virtuel. Nous
proposons d’utiliser des méthodes de personnalisation pour modéliser la collaboration
entre les utilisateurs de Reddit. Notre méthode capture la structure latente de cet effort
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Chapter 0 Résumé

collaboratif émergent et fournit une représentation de sa structure sociale interprétable.

Keywords: classement personalisé, filtrage collaboratif, systèmes de recommandation,
dynamiques temporelles, dynamiques sociales, modélisation du contexte
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1 Introduction

Since its inception, the Web has evolved from a small set of static pages to a massive
network of interconnected services that reflect most facets of human activities. As an
increasing amount of content is available online, the rate at which humans can possibly
process information is still limited. Therefore, methods to access, search and browse
through large databases have been extensively researched and engineered through the
years. Search engines, in particular, have become the primary mean of accessing the Web
by letting users explicitly describe what they are looking for using keywords. However,
there exist many scenarios in which query systems are unsuited for retrieving content.
For example, identifying a book or a movie that a user might like is difficult to describe
in words. Similarly, it is difficult to formulate queries for users that expect the system to
provide some level of unexpectedness, typically because they are unaware of most items
in a large database. Finally, there are many scenarios in which we cannot afford to ask
users for feedback (e.g. there is little incentive for users to rate articles on a news feed)
and therefore, must infer user interests from their natural interactions with the platform.
Personalization methods represent a family of methods designed to solve these problems,
by providing predictions with a subjective notion of correctness, i.e. predictions that are
tailored from user history, user characteristics, or contextual factors.

Despite their pervasive use on the Web, personalization methods have notorious short-
comings. For example, they fail in “cold-start” settings, in which new users are introduced
in the system, and have little to no historical data for the model to learn from. They
also show their limitations in dynamic environments, for example when user decision
processes evolve with time or when the items they interact with are not static. The
high interactivity of the modern Web made this problem more apparent because of the
fast pace at which content is created. Social media, for example, are built around user-
generated content: new posts, images, or videos are constantly added to the platforms,
which breaks the assumption of a static set of items made by traditional personalization
methods. Moreover, items might not always be available at all times, such as channels
on a video-streaming platform, that are only active for a few hours per day or per week.
Items are also increasingly represented as dynamic objects that evolve over time, e.g.
forum posts on a Q&A website that evolve with the quantity and the quality of user
answers.

1



Chapter 1 Introduction

In this work, we argue that the transition to an interactive and social Web, and the advent
of user-generated content, require modeling an increasing range of dynamic contextual
factors since static embedding representations are unsuited to dynamic settings. To better
position our work in the literature, we provide, in this section, an intuitive explanation of
what the term dynamic refers to in our work. Specifically, we distinguish three cases of
dynamic personalization.

1. Items with dynamic characteristics: We describe items as dynamic if their
content, their characteristics or their availability evolves over time. Dynamic
characteristics of items, such as their price, might affect user decisions if they are
sensitive to these fluctuations [131]. Similarly, items with dynamic availability might
not always be available for users to consume, for example on any real-time media
(see Chapter 3). The content itself might also be dynamic and evolve over time.
For example, under this definition, recommending a Wikipedia article to an editor
is a dynamic task, since the content of the page is frequently edited.

2. Items in evolving contexts: Interactions occur in dynamic contexts if user
decisions are modified by social or temporal factors. Social factors measure the
influence of other users on one’s decisions. In this work, we only consider direct
relationships between pairs of users, e.g. friendship relationships predicting user
interests [71], but our definition also applies to herding phenomena [66], social
influence [89] or group dynamics [18]. Temporal factors generally take the form of
decay of interest after the creation of an item [20]. For example, social media posts
are frequently approximated by epidemic models that predict the propagation of a
particular behavior which spikes during contagion (social factor) and decays over
time (temporal factor).

3. Drifting preferences: We consider user preferences as dynamic if they drift over
time. Traditionally, temporal dynamics are incorporated into preference models to
capture evolving trends in item consumption [59], and are categorized into short-
and long-term dynamics [45]. Evolving decision schemes might also affect content
creation, for example on social media [54] and in news media (see Chapter 4).

In this thesis, we propose personalization models suited for dynamic settings. We build
upon traditional methods that capture item semantics through static representations
(what is the item?) and incorporate dynamic factors, such as temporal signals (when
is the item created?) and social signals (who interacted with it?). We also propose
novel model architectures that account for dynamically available content, i.e. items
that aren’t always available for users to consume. We finally introduce models that
maintain temporally consistent embedding spaces over multiple retraining, which enables
the analysis of long-term trends in the evolution of user decisions.

2



Introduction Chapter 1

1.1 Potential Benefits and Applications

The advent of user-generated content increases the volume, frequency, and diversity of
available content online. Web services and platforms exploiting this highly dynamic type
of content are the main domain of application of our work.

First, our work finds applications in any two-sided platform that matches content creators
with audiences, since the relevance and popularity of content heavily depend on dynamic
factors. These platforms exist for various types of content, such as videos, podcasts,
artworks, or newsletters. Methods in Chapter 3 are particularly suited for empowering
real-time media, such as live-streaming platforms. A particular case of dynamic matching
is discussed in Chapter 5, where social media users exchange second-hand goods on a
social platform.

Second, our work finds applications in collaborative systems [82] where a multitude of
users contributes locally to a global effort. For example, on Wikipedia, recommender
systems are used to recommend pages that require a contribution from editors. The
content of a Wikipedia page is a good example of dynamic personalization since it evolves
over time, is often in cold start settings, and is affected by social factors (e.g. conflicts
between editors). Similarly, recommending questions on a Q&A website (e.g. Stack
Overflow) is often used as an incentive for domain experts to participate in the discussion.

Finally, our work also finds applications in the news domain. For example, we show in
Chapter 4, a method that captures the decision process of news channels when filtering
news events. Our method helps monitoring and mitigating a specific bias (e.g. news
diversity). We believe that such a method could be applied to any news aggregation
system to avoid misrepresenting the importance of news topics.

1.2 Contributions and Outline

Our main contribution lies in the design of personalized ranking models suited to dynamic
settings, in order to make more accurate recommendations. Additionally, we aim to build
bridges between recommender systems and social dynamics studies. On one hand, we
borrow well-documented social phenomena from the literature, that we leverage in the
development of personalization methods. On the other hand, we study those phenomena
in novel scenarios and applications and investigate the use of personalization methods for
analyzing user decisions in complex social systems. Finally, our work aims to study novel
applications for personalization methods in dynamic contexts. Since the lack of datasets is
frequently mentioned as a barrier to the development of novel recommendation methods,
we commit to share multiple datasets with influential social and temporal factors.

3
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Considering the above, we summarize our technical contribution into three high-level
research questions.

• RQ1: How to adapt model architectures when items are dynamic? We seek methods
to recommend items that evolve in their structure, content, or availability over time.

• RQ2: How to exploit social, temporal signals to improve recommendations? We
investigate approaches to incorporate signals that go beyond pure item semantics
into predictions. Social signals capture the social activity around an item, while
temporal signals capture its temporal relevance.

• RQ3: How to leverage personalization methods to analyze the evolution of social
systems? We exploit personalization methods to capture long-term trends in
preferences schemes and user decisions.

The rest of this thesis if organized as follows. In Chapter 2, we introduce important
concepts, methods and notations that are relevant to all other chapters. We also introduce
more specific background work in chapters 3 to 6.

In Chapter 3, we propose a new model that computes a personalized ranking of a
dynamically evolving set of available items. Additionally, this model accounts for repeat
consumption of the same item by modeling time intervals between occurrences. We
validate our approach on a large dataset collected from a live-streaming platform and
show our method to outperform various strong baselines in ranking the currently available
content. This chapter relates to the ranking of dynamically available items (RQ1) and to
the modeling of temporal factors (RQ2).

In Chapter 4, we leverage personalized ranking methods to analyze content production.
We characterize news channels by their editorial decisions, i.e. the world events they
decide to cover. We introduce a dynamic embedding model that encourages temporal
consistency and provided an interpretable representation. We demonstrate the monitoring
potential of our approach by shedding light on important changes in programming induced
by mergers and acquisitions, policy changes, or network-wide content diffusion. We also
propose methods to re-rank news selection to reduce the... This chapter relates to the
analysis of a content-production system (RQ3).

In Chapter 5, we study recommendations for exchange platforms, where users exchange
second-hand goods. Since those goods represent scarce resources and since their availability
on the platform is limited in time, we propose a ranking method that estimates cross-
preferences between trade partners and recommend potential exchanges. Bartering
requires us to understand not just users’ preferences, but also the social dynamics of who
trades with whom, and the temporal dynamics of when trades occur. Regarding the social
aspect, we incorporate a directed social bias, that favors trades with peers that already

4
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traded together. Regarding temporal dynamics, we devise a method that captures the
recent level of user activity and decreases the relevance of users that haven’t traded in a
long period. We evaluate our approach on trades covering books, video games, and beers,
where we obtain promising empirical performance compared to existing techniques. (RQ2)

In Chapter 6, we use personalization methods to model emergent collaboration in a virtual
sandbox. In particular, we perform a study on a dataset comprising more than 16M user
actions, recorded on the online collaborative sandbox Reddit r/place. Participants had
access to a drawing canvas where they could change the color of one pixel, every 5 minutes.
We investigate models to predict future user actions and infer user relationships from
their interactions in the environment. This chapter relates to the modelling of dynamic
items (RQ1), influenced by social signals (RQ2).

1.2.1 Selected Publications

This thesis is based on the following research papers.

• Jérémie Rappaz, Maria-Luiza Vladarean, Julian McAuley, and Michele Catasta.
“Bartering books to beers: a recommender system for exchange platforms”. The
International Conference on Web Search and Data Mining (WSDM), 2017.

• Jérémie Rappaz*, Dylan Bourgeois*, and Karl Aberer. “Selection bias in news
coverage: learning it, fighting it”. The Web Conference (WWW), 2018.

• Jérémie Rappaz, Michele Catasta, Robert West, Karl Aberer. “Latent structure
in collaboration: the case of Reddit R/place”. The International AAAI Conference
on Web and Social Media (ICWSM), 2018.

• Jérémie Rappaz*, Dylan Bourgeois*, and Karl Aberer. “A dynamic embedding
model of the media landscape”. The Web Conference (WWW), 2019.

• Jérémie Rappaz, Julian McAuley, and Karl Aberer. “Recommendation on Live-
Streaming Platforms: Dynamic Availability and Repeat Consumption” The ACM
Conference on Recommender System (RecSys), 2021.

Authors with an asterisk contributed equally to the paper. The ideas for these research
papers originated from the first author. Most experiments have been conducted by first
and second authors. Other authors had advisory roles and helped with writing and
proofreading.
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2 Background

The idea of making personalized and automated recommendations traces back to the 1970s.
For example, an early line of research used questionnaires to collect user characteristics,
in order to automatically recommend books they might be interested in [102]. It if only
from the 1990s that researchers explored the idea of learning user profiles from historical
data [6], mostly because of the publication of large industrial datasets. Since then, a
wide variety of approaches has been explored and most of these methods are all based on
the same key principle: they exploit similarities between users, in order to filter relevant
content and make personalized recommendations.

Recommender systems make the underlying assumption that, if multiple users made
similar decisions in the past, they are likely to make similar decisions in the future. For
example, two users having expressed strong interest for a specific type of action movies
are likely to have tastes in common. One could then exploit this similarity in order to
make predictions: if one of the two users has seen a movie and has a very positive feeling
about it, this movie probably represents a good recommendation for the other user. This
principle is often referred to as collaborative filtering, since large dataset are filtered, for a
specific user, using knowledge from the entire user population. The role of personalization
methods is to apply this principle at scale by learning from large historical dataset.

Early lines of research focused on heuristic-based approaches. Despite their simplicity,
these method are still relevant today and provided surprisingly competitive results,
especially in sparse data regimes. Since this work focus exclusively on parametrized
approaches, we omit the formal definition of these techniques and focus on machine
learning approaches. In this chapter, we introduce important personalization concepts
and notations. First, we describe different family of supervised models, then we discuss
various personalization tasks and loss functions.

2.1 Models

We first describe relevant machine-learning models without yet specifying the nature of
their predictions.
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Figure 2.1 – Example visualization of items in embedding space (t-SNE projection): items
are colors liked by users on https://www.colourlovers.com/. Even if the method does not
model content (i.e. color values), similar colors are grouped together by user interactions:
the embedding space structure is shaped by user preferences. Experiment performed on
3M user likes.

Matrix Factorization Methods: Matrix Factorization (MF) [62] is a supervised
machine learning method that has been largely popularized by the Netflix Prize [14],
a challenge proposed by the movie rental company to improve their recommendation
algorithm. Earlier heuristic-based approaches were using similarity functions to either
compare items (item-based approaches) or users (user-based approaches). MF-based
models have the advantage to learn a representation instead of using similarity metrics
over raw inputs, but also they jointly represent users and items by projecting them in
a common latent space. In particular, each user u and each item i is represented as an
embedding vector of k dimensions pu, qi ∈ Rk. For any user-item pair, we generate a
predicted score x̂u,i using a dot product operation,

x̂u,i = pu · qTi =
∑
k

pu,kqi,k. (2.1)

Since the combination function is user-defined, the knowledge about users and items
is fully delegated to the latent space representation. User and item embedding vectors
can be visualized (see Fig. 2.1). One popular framework is proposed by t-SNE [125], for
visualization in a 2-dimensional space.
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User history

Predicted sequence

Input sequence

Self-attention layer

Feed-forward layer

Embedding layer

Figure 2.2 – Illustration of sequential recommender systems. The full sequence is fed into
the network as a single forward-backward pass: each step i predicts the next step i+ 1 in
the sequence. The self-attentive layer learns from all previous entries in the sequence,
while future entries of the sequence are masked.

Neural Approaches As in many other fields, deep learning based approaches have
become a popular modelling paradigm. One of the first successful attempts [48] replaces
the dot product operation by a neural architecture to model arbitrary – potentially
non-linear – interaction functions between users and items.

Recently, there has been a growing interest in sequential recommender systems. These
models are inspired by the field of natural language processing; sequences are treated
like sentences. Originally designed with recurrent neural networks [49], attention-based
methods [55] and BERT-like approaches [120] have become popular because of their
attention mechanisms that help the model focusing on specific parts of the sequence.
Sequential models are interesting because they can learn complex inter-relationships
between the elements of a sequence and can learn (potentially long-term) sequential
dynamics. Sequence-based models have also efficient training procedures since they
can learn from a full sequence in a single forward-backward pass (see Fig. 2.2). Most
approaches rely on scaled dot-product attention [128] (see Eqn. 2.3), and use the same
objects as queries, keys and values. In particular, each item in the sequence is embed
using an embedding matrix E (we denote embedded items as Ê). This representation is
transformed through linear projections using three matrices WQ, WK and W V .

Q = ÊWQ K = ÊWK V = ÊW V (2.2)

Attention(Q,K, V ) = softmax(
QKT

√
d

)V. (2.3)

The product between Q and K represents an attention score between any pair of elements
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in the sequence. These scores are mapped to an output space using the values in V (each
row represents an item). The term

√
d prevents large values in the inner product QKT .

Other forms of architecture have been explored, such as graph-based approaches [141,
138, 135]. The flexibility of deep learning architecture also provide natural was to model
user interaction with images [46, 47] or texts [122, 51].

2.2 Feedbacks and Loss Functions

There exists different types of user feedbacks, that require different types of optimization
schemes. We treat these two concepts jointly in this section.

Explicit Feedbacks: early lines of work were focused on learning from explicit feedbacks
generated from a system asking users to provide their opinion about an item (e.g. on a
five-stars scale). This family of methods is optimizing a reconstruction error. The model
minimizes the difference between the observed score of a user towards an item rui and a
model prediction x̂u,i.

min
θ?

∑
u,i

(rui − x̂u,i)2 + λ||θ||2 (2.4)

A regularization term λ||θ||2 is generally added to discourage complex solution and,
therefore, prevent overfitting. The original formulation use the `2-norm over θ, the full
set of model parameters.

Implicit Feedbacks: ratings are a scarce resource. This observation motivates the
modeling of other signal types, such as the number of times an item has been clicked on or
the percentage of a video watched by a user. These types of signal are generally referred
to as implicit feedbacks and could be seen as the data that a user generate while naturally
interacting with a platform. This source of signal is, of course, much noisier than its
explicit counterpart. Various ways to mitigate this uncertainty has been proposed, such
as the addition of a confidence parameter in the loss function [52].

One-class Feedbacks: in this thesis, we focus on a setting called one-class collaborative
filtering [86] where we learn from a specific type of implicit feedback made of binary
observations. A positive interaction represents a user action, e.g. bookmarking an item
or clicking on a link. Negative interactions represent user inactions that could either be
interpreted as users having no interest in an item or simply being unaware of its existence.
This uncertainty about negative signals, and the typical extreme sparsity of positive
interactions, require adapted optimization schemes.

10
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Bayesian Personalized Ranking: Until now, we only considered methods that optimize
a reconstruction error by using a regression loss. In this setting, models are trained to
best approximate a numerical score representing the interest of users towards specific
items. This training procedure has proven to work well in practice but there exists
a discrepancy between the optimization of a regression loss and the recommendation
task: most real-world applications focus on ranking items, in order to provide users with
a relevant item list. This observation motivates the direct optimization of a ranking
criterion, as proposed by the Bayesian Personalized Ranking (BPR) [98] framework.

The overall objective of BPR is to provide users with a personalized ranking of all items
in a dataset. They learn from one-class user feedbacks where only positive interactions
are observed. Let i ∈ I+

u be the set of positive items consumed by user u and j ∈ I−u be
the set of remaining items with which u never interacted. Given an arbitrary model (we
denote by Θ its set of parameters) and the preference scheme of user u denoted as >u,
we seek to maximize P (i >u j|Θ), the likelihood of user u to prefer item i over item j.
In an ideal scenario, the model should output a probability of 1 for Pr(i >u j|Θ) and a
probability of 0 for Pr(j >u i|Θ). Defining x̂u,i as the predicted score for user u and item
i, this can be modeled as H(x̂uij) where x̂uij = x̂ui − x̂uj and H(·) is the Heaviside step
function. This function is not differentiable, and needs to be adapted to a gradient descent
learning procedure. BPR approximates H(·) by using the logistic sigmoid function σ,

Pr(i >u j|Θ) := σ(x̂uij(Θ)) = σ(x̂ui − x̂uj) (2.5)

Then, we could derive the log-likelihood maximum posterior estimator, BPR-OPT, that
maximizes this probability.

BPR-OPT :=
∑

(u,i,j)∈Ds

lnσ(x̂uij)− λΘ||Θ||2 (2.6)

Here, Ds is defined as a training dataset set of size |U | × |I| × |I|, made of (user, positive,
negative) triplets. The method maximizes the difference between the predicted score of
a positive and a negative example that are sampled during training. Since BPR-OPT
directly learn to rank all positive interactions higher than their negative counterpart,
there is a direct analogy between this formulation and the Area Under the Curve (AUC)
that is generally used as a ranking quality metric.
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3 Dynamic Availability and Repeat
Consumption

Live-streaming platforms broadcast user-generated video in real-time. Recommendation
on these platforms shares similarities with traditional settings, such as a large volume
of heterogeneous content and highly skewed interaction distributions. However, several
challenges must be overcome to adapt recommendation algorithms to live-streaming
platforms: first, content availability is dynamic which restricts users to choose from only
a subset of items at any given time; during training and inference we must carefully
handle this factor in order to properly account for such signals, where ‘non-interactions’
reflect availability as much as implicit preference. Streamers are also fundamentally
different from ‘items’ in traditional settings: repeat consumption of specific channels
plays a significant role, though the content itself is fundamentally ephemeral.

In this chapter, we study recommendation in this setting of a dynamically evolving set
of available items. We propose LiveRec, a self-attentive model that personalizes item
ranking based on both historical interactions and current availability. We also show that
carefully modelling repeat consumption plays a significant role in model performance.
To validate our approach, and to inspire further research on this setting, we release a
dataset containing 475M user interactions on Twitch over a 43-day period. We evaluate
our approach on a recommendation task and show our method to outperform various
strong baselines in ranking the currently available content.

3.1 Introduction

Video streaming platforms, such as Twitch or Youtube Live, are increasingly becoming
a major part of people’s daily lives. As of February 2020, Twitch reported 3 million
broadcasters monthly and 15 million daily active users.I The increasing volume of
concurrent broadcasts, the growing audience, as well as the long-tail of niche content,
suggest the need for systems designed specifically for such platforms.

On live-streaming platforms, content creators broadcast video in real-time on their

Ihttps://en.wikipedia.org/wiki/Twitch_(service)
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respective channels. The broadcast of real-time contentII implies that videos can only be
consumed at specific points in time. This dynamically evolving availability of streams
presents challenges for traditional methods. Implicit feedback methods, trained to
capture preference signals from positive interactions, make an underlying assumption
that positive observations outrank those items the user never interacted with; when
availability is dynamic this assumption no longer holds. Therefore, the explicit modelling
of availability signals is required to distinguish between ‘non-interaction’ resulting from
implicit preferences and from unavailable items.

A live-streaming model should also account for repeat consumption that represents a
large portion of observed interactions, since users repeatedly consume content produced
by the same streamers. This contrasts with typical recommendation domains (e.g. movies,
e-commerce) that generally assume one-off user-item interactions. At the same time,
it contrasts with existing lines of work on repeat consumption [8], since the content of
channels is dynamic and differs at each new interaction.

In this chapter, we introduce the task of live-streaming recommendation with temporally
evolving availability. We first provide preliminary experiments that demonstrate why
existing methods are unsuited to this setting and, in particular, why naive sampling
strategies are insufficient to capture user preferences. In light of these experiments,
we introduce a self-attentive model, LiveRec, that learns to recommend live-streaming
channels under availability constraints. Our model first selects candidates from the pool
of available items at a specific point in time. These candidates are fed into a self-attention
block that parametrizes relationships among available items. Historical interactions are
modelled using a sequence encoder that is both used to select candidates and compute
the final predictions, thus making the approach fully end-to-end. In order to validate
our approach, we introduce a large dataset of interactions from Twitch containing the
consumption of logged-in users over a 43 day period. We identify key characteristics that
differentiate our data from traditional settings, such as the high prevalence of recurring
consumption, that we incorporate in our approach. To the best of our knowledge, this
is the first publicly available dataset of content consumption detailing individual users’
watching habits. We show that strong sequential baselines don’t apply straightforwardly
to this setting, and that our adaptations are necessary to achieve substantially better
performance. We conclude with an in-depth analysis of the results and a discussion of
the dynamics of live-streaming platforms.

3.2 Related Work

In this section, we first review relevant lines of work from the literature on streaming
platforms. Then, we describe relevant lines of work in the field of recommendation with

IIOn some platforms, the content is also available on-demand, but we only consider the strict live-
streaming setting in this work.
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Figure 3.1
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Left: CDF percentage of the top-1k streamers (items) in the dataset. The top-5 most
popular streamers account for around 4% of the dataset. Center: CDF percentage of the
top-100 games in the dataset. Right: Count of individual user-item pairs in the dataset.

an emphasis on sequential methods.

Streaming Platforms have been studied from a social dynamics perspective. The
work from Hamilton et al. [44] investigates user motivations in joining live streaming
channels. They conclude that, similar to on-demand video services, users are interested
in a particular type of content, but also engage with the interactive characteristics of
the service. Hilvert-Bruce et al. [50] report that compared to mass media, motivations
of viewers on Twitch have a stronger social and community basis. They also suggest
that viewers preferring small channels are more motivated by social engagement than
users preferring large channels. Kaytoue et al. [56] characterize audience dynamics on the
Twitch platform. Pires et al. [90] highlight the difficulty of identifying popular segments
early on and show that there is no trivial solution to this problem. Nascimento et al. [81]
identify several characteristic behaviors, such as the large audience drop at the end of
a stream, investigate spectators assiduity and characterize the volume of comments in
stream chats.

Temporal dynamics play a key role in the analysis of content consumption and have
been studied in different scenarios. Early attempts focus on the modelling of long-term
preference drifts [59, 140]. More recent approaches model evolving trends within the
community of users in the context of fashion recommendation [46]. Another line of work
focus on learning and inferring from temporally ordered data streams [16]. Several lines
of work study the impact absolute position in the sequence and relative time intervals
on performance [67, 143]. The CTA model [136] captures both temporal and contextual
information by incorporating users’ browsing activity. Wang et al. [133] incorporate various
temporal patterns of repeat consumption using Hawkes processes. Wan et al. [132] model
complementarity, compatibility and loyalty towards products in the grocery shopping
domain. They propose AdaLoyal, a learning algorithm that explicitly account for users’
must-buy purchases in addition to their overall preferences and needs. Anderson et al. [8]
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Bench. Full

#Users 100k 15.5M

#Streamers 162.6k 465k

#Interactions 3M 474.7M

Watch time [h] 800k 124M

Density 9.2e-5 1.9e-5

Table 3.1 – Datasets statistics. Watch time is estimated by
considering periods of 5 minutes (half the duration of a round).

analyze the repeat consumption patterns on different social platforms. They propose a
hybrid model that predicts user choice based on a combination of recency and quality.
In this study, we consider repeat consumption of the same channel broadcasting new
content, which differs from what past work has considered.

Recommendation systems model relationships between users and items [61, 100, 52]
for explicit [62] and implicit feedback settings [98]. Sequential approaches infer user
preferences from sequences of interactions. Recently, neural approaches have become
popular for they high expressivity. Various research lines have attempted linear [48],
recurrent [49], convolutional and graph approaches [141, 138, 135]. More recently, self-
attention mechanisms, inspired by the field of natural language processing [128], have
been investigated in the context of recommendation [55, 120, 139, 17, 134]. They generally
do not model users explicitly and only learn from sequences of items. In Section 3.5.2, we
discuss ranking refinement techniques that have been explored in the context of entity
linking [137, 22].

3.3 Data

In this section, we describe our data collection on Twitch in July 2019 over a 43-day period
and give general statistics about the resulting dataset. In order to discover available
channels, we queried the public Twitch API in rounds to list all available streams. The
number of live streams ranged from around 20k to 75k for a single round during data
collection. In each round, we also queried each available stream to get a list of connected
users and the currently played game. In order to have sufficient time to query each stream
in a single round, we set a 10 minute interval between each round. The final dataset was
collected over 6,148 rounds. Our dataset will be released in two formats: the full version,
that contains all collected data and is more suited to data analysis tasks; and a benchmark
version, that contains all interactions from 100k uniformly sampled users and that is used
to compare the performance of different methods. All performance evaluations reported
in this work use the benchmark version. Statistics before and after pre-processing can
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Figure 3.4
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Left: Number of available items for the first 1000 time steps of 10 minutes. Right: Time
interval distribution (normalized) of repeated user-item interactions.

be found in Table 3.1. Both anonymized versions shall be made available at publication
time. Both datasets exhibit skewed interaction distributions over items. For example, in
the full version of the dataset, the most popular streamer drives more than 1% of the
total interactions (see Fig. 3.1) and the most popular game drives 14.6% of the total
interactions (see Fig. 3.2). Datasets contain absolute timestamps but we only consider
relative time interval in this work, thus mitigating time zones related side effects.

Repeat consumption is a common scenario in our dataset (see Fig. 3.3). Since Twitch
is a social platform, content providers aim to grow and retain their respective audiences.
We measure time intervals between any two interactions for the same user with the same
streamer. We observe both daily and weekly dynamics, as seen in Fig. 3.5. We also
observe short-term repeated interactions to be prevalent in our dataset.

3.4 What is different in Live-Streaming Recommendation?

Live-streaming differs from traditional scenarios in terms of the semantics of both positive
and negative interactions. In this setting, negative examples can reflect either latent
preferences, or simply the unavailability of a particular item (streamer) at interaction
time. Additionally, several items appearing in a user history could become available
simultaneously, which requires one to rank positive interactions among themselves. This
differs from traditional settings where positive interactions included in the training set
are discarded from the testing set. In this section, we present preliminary experiments
that demonstrate the limitations of existing methods in this particular setting. Then, we
propose an availability-aware sampling strategy that accounts for these observations.

17



Chapter 3 Dynamic Availability and Repeat Consumption
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3.4.1 Defining Items

On a streaming platform, items could have different definitions: one could define items as
streams, that are unique segments during which a streamer broadcasts uninterruptedly.
The main problem of this case is the fact that streams only happen at a single point in
time which lets the model learn in extremely sparse regimes. Alternatively, one could
define items as streamers, that typically broadcast content multiple times. The main
problem of this case is the fact that the model has to learn from multiple occurrences of
the same user-item interaction, even if a streamer constantly broadcasts new content and
evolves over time. In this work, we consider items representing streamers and discuss on
how to account for repeat consumption during training and evaluation.

3.4.2 Preliminary Experiment: Repeat Consumption

When splitting our dataset in the temporal dimension,III around 65% of user-item
interactions observed in the testing period are also present in the training set. In such a
setting, a model shall not only learn to accurately predict novel interactions but also to
balance between novel and repeated interactions. Without yet considering extra features
for distinguishing among repeated interactions (e.g. time, content), a simple model could
balance interactions by their frequency, by favoring interactions occurring more often
during training. A natural way to incorporate repetition information into a model is to
develop a sampling strategy accounting for item frequencies.

We demonstrate the challenge of balancing between novel and repeat interactions through

IIIConsidering the same setting as the experiments in Section 3.6, the last 250 rounds of 10 minutes
(4%) of the dataset are withheld for testing.
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a preliminary experiment: we train a simple matrix factorization model with 20 latent
dimensions using a ranking criterion [99] in a non-sequential setting. During training, for a
user u and a positive item i, we sample negative examples from the pool of items consumed
by u in the training set with a probability Prepeat and from a uniform distribution over
all items with probability (1− Prepeat). In other terms, the model learns to better rank
positive examples among themselves by learning to rank a pair of positive items, e.g. two
items appearing in the training sequence, with probability Prepeat . During testing, we
evaluate the model on its capacity to rank interactions with new streamers (Fig. 3.6), as
well as its capacity to rank streamers appearing in the training sequence of the considered
user (Fig. 3.7). We observe that increasing the value of Prepeat leads to an increase in
performance for repeat interactions and to a decrease in performance for novel interactions
(as shown by blue lines in Fig. 3.6 and Fig. 3.7). The best overall performance (0.157)
is obtained at Prepeat = 0.5. This score represents a relative improvement of 16.1%
over a uniform sampling strategy when Prepeat = 0 (0.135). This observation shows the
importance of accounting for repeat consumption when positive instances require to be
ranked among themselves and not only against negative samples. We also observe that
our sampling strategy deteriorates predictions for novel items as Prepeat increases, which
demonstrates the difficulty of balancing between novelty and repetition.

3.4.3 Preliminary Experiment: Availability

Availability signals are important to capture the meaning of ‘non-interactions’; most
recommendation systems relying on implicit feedback assume that the choice of item i

over item j only reflects an implicit preference for i, since they also assume all items being
available at all times. In a live-streaming setting, non-interaction with item j can reflect
a preference for item i as much as item j simply being unavailable at interaction time.

In this experiment, we demonstrate the importance of accounting for availability during
training. We first precompute an availability matrix of size n× tmax where the columns
represent the set of available items at any point in time. Here, n is the total number
of items and tmax is the total number of time steps of 10 minutes in our dataset (see in
Fig. 3.8). Instead of sampling negative examples from all items, we sample a negative
example j from the pool of available items at interaction time. As such, negative samples
are more likely to result from user decisions instead of being the result of streamers being
offline. We evaluate this strategy on temporally disjoint training and testing sets, in order
to avoid the model learning the availability matrix directly. We observed this strategy
to provide 21.3% (0.190) of relative improvement over the best performing sampling
strategy presented in the last section (as shown by red lines in Fig. 3.6 and Fig. 3.7). We
select this sampling strategy in all further experiments.
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Figure 3.9 – Illustration of the LiveRec architecture that encodes an input sequence of
user interactions (left) ranks all available items at interaction time (center) and draws a
dependency between a top-k selection of available items using a self-attention mechanism
(right).

3.5 Methods

Until now, we discussed ways to incorporate repeat consumption and availability informa-
tion implicitly, through different sampling strategies. In this section, we discuss how to
account for those signals by specific changes in model architecture.

3.5.1 Sequence Encoder

Let s = (sp1 , sp2 , . . . , sp`) be a fixed-length user sequence, where sp represents the p-th
item entry. Sequences shorter than ` are padded with a null token and sequences longer
than ` are cropped. The first key component of our model is a sequence encoder that
converts each step sp into a hidden representation vector hsp . We use vector hsp−1 , that
represents all previous entries in the sequence, for predicting the p-th item entry. We use
an existing encoding technique, SASREC [55], even though our framework is not tied to
this specific encoding scheme. First, we embed each item in s using an embedding matrix
M of size Rn×h where n is the number of items and h is the dimensionality of our latent
space. We also encode positions in the sequence with an embedding matrix P of size
R`×h that we learn during training. The resulting matrix Ê is computed as the sum of
item embeddings and positional embeddings:

Ê =


Ms1 + P1

Ms2 + P2

· · ·
Msl + P2

 (3.1)

Then, we pass the embeddings Ê into two query-key-value self-attention layers in order
to learn a relationship between elements of the sequence. Similar to the original imple-
mentation [55], we use layer normalization and apply a causality mask that prevents the
model from learning from future interactions.
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3.5.2 Modelling Availability

We seek a method that learns from the set of available items at interaction time. Con-
sidering a user interacting with item i at time t, we learn from a set Ht containing all
available items at t. Attention-based methods are typically of quadratic complexity and
learning from the set Ht would generally be impractical, due to the large number of
concurrently available items on a streaming platform. Instead, we learn from a limited
set of candidate items. Candidates are dynamically retrieved by computing a relevance
score s(·) for each available item in Ht. For predicting the p-th item entry, this score is
obtained from a dot product operation between the sequence embedding and the item
embedding vector.

s(i, p, t) = hp−1 ·Mi, i ∈ Ht (3.2)

Then, we sort all items in Ht by their score s(·), select the top-k highest scoring items
and represent them as a sequence (r1, r2, . . . , rk). We use matrix M to embed each of
the top-k elements into a matrix Mav ∈ Rk×h. Our objective is to learn an attention
function f : Rk×h 7→ Rk×h over Mav, in order to draw a dependency between each of the
k-selected items. We adopt the widely used query-key-value form of self-attention and
use the matrix Mav as input for queries, keys and values

Attention(Q,K, V ) = softmax(
QKT

√
d

)V (3.3)

Q = K = V = Mav =


Mr1

Mr2

· · ·
Mrk

 (3.4)

The factor
√
d is introduced to avoid overly large values of the inner product QKT [128].

We use layer normalization, residual connections and dropout similar to SASREC [55].
We experimented with this approach with one and two layers of attention (see Section 3.6).
Because the absolute position in the sequence (r1, r2, . . . , rk) is irrelevant to the task, we
do not encode positions and do not use any masking in this attention stage.

3.5.3 Modelling Repeat Consumption

We design an encoding scheme that distinguishes between novel and repeated interactions.
In the repeat case, our scheme also encodes recency: for an item i ∈ Ht, we retrieve the
time tj of its last occurrence prior to t. We define qi ∈ {0, 1}z+1, a one-hot encoded
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Figure 3.10 – Illustration of the time interval embedding module for candidate items
i2, i4, i5, i6 ∈ Ht. Items i2 and i5 have no previous occurrences in the sequence and are
considered as novel entries. Time interval embeddings for items i4 and i6 are computed
from a time difference with their last respective occurrences.

vector that represents a mapping from the time interval |t − tj | to a bucket index in
the range [1, z]. Based on our observations in Section 6.3, we divide time intervals into
buckets of 24 hours and clip the maximum time interval to 20 days. We keep index zero
of qi for representing novel item entries with no previous occurrences in the sequence.
We embed time intervals represented by qi using an embedding matrix T ∈ R(z+1)×h.
Then, we combine the corresponding time interval embedding vector to the candidate
item vector using element-wise addition (see Fig. 3.10). We use this new representation
for the selection of candidates and the attention stage,

s(i, p, t) = hp−1 · (Mi + qiT ), i ∈ Ht (3.5)

Q = K = V = Mav+rep =


Mr1 + qr1T

Mr2 + qr2T

· · ·
Mrk + qrkT

 . (3.6)

Time interval embeddings are added prior to the self-attention stage for the model
to learn from temporal dependencies among candidates. The self-attention module
outputs, for each candidate item, a new representation that encodes a relationship
with other candidates. We compute the final score x̂u,i,t for each of the k candidates
by computing a dot product between hp−1 and each of the k rows of matrix O =

Attention(Mav+rep,Mav+rep,Mav+rep), O ∈ Rk×h.

3.5.4 Training

Following existing sequential recommendation approaches, we compute predictions using
mini-batches of sequences. During training, the model predicts the next item of each
sequence step in a single forward pass. We train the model to maximize the difference

22



Dynamic Availability and Repeat Consumption Chapter 3

in score between positive and negative instances through negative sampling. Instead of
sampling items uniformly, and according to our observations in Section 3.4, we draw
negative examples from a set Hi,t for a positive item i at time t,

Hi,t = {j ∈ At ∧ j 6= i}. (3.7)

Given a positive i and a negative items j that fulfill the constraint described above, we
adopt the following cross entropy loss to train the model:

−
∑
s

∑
(i,t)∈s

log(σ(x̂u,i,t)) +
∑
j∈Hi,t

log(1− σ(x̂u,j,t)). (3.8)

During training, we use vector hp−1 for both selecting candidates and predicting the next
entry in the sequence which makes the approach fully end-to-end.

3.6 Experiments

3.6.1 Evaluation

In order to avoid learning from future interactions, we split the dataset in three distinct
time intervals. We withhold 250 time steps for validation and 250 time steps for testing,
both by splitting from the end of the dataset. We evaluate all approaches using the
metrics hit@1, hit@10 and NDCG@10 on the last interaction of each sequence s in the
testing period.

Additionally, we break down this score into a Hit-new score and a Hit-rep score in
Table 5.3. By doing so, we evaluate the model on its capacity to repeat an interaction
from the input sequence, as well as its capacity to recommend serendipitous content. A
testing interaction falls into rep if the item appears in the testing input sequence, and
in new otherwise. For a sequence length of 16, the percentage of repeat consumption is
equal to 51%.

Our experiments are conducted with different variants of our model.

LiveRec + rep is a variant that only uses time interval embeddings on top of a sequence
encoder. LiveRec + av is a variant including self-attention over a top-k selection of
items. LiveRec + rep + av is our final model, as described in Section 3.5, using both
self-attention and time interval embedding. LiveRec + rep does not use any candidate
selection strategy and ranks all available items Ht instead of a top-k selection.
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3.6.2 Baselines

In this section, we compare various baselines with our approach in order to evaluate
existing methods in a live-streaming setting (see Section 3.4) and demonstrate the benefits
of the proposed architecture.

• REP is a simple model that predicts a score equal to the number of appearances of
an item in the input sequence. REP is a strong predictor of repeated interactions
but it is unable to recommend new items.

• POP this model gives a score equal to the popularity of an item in the training set.
It does not consider the interaction sequence to compute predictions.

• MF-BPR is a matrix factorization model trained with a ranking criterion, as
in [98]. This model does not account for sequential or temporal dynamics.

• FPMC is a sequential recommendation method that models transitions in terms
of the last entry in the sequence [99]. The model is trained using a BPR loss [98].

• SASREC is a self-attentive recommendation method. Multiple query-key-value
attention layers are stacked together to capture relevant information from the
interaction sequences. Positional encoding is used to help the model encoding
temporal information. We referred to as SASREC - uniform a model trained with
negative samples drawn uniformly over all items.

• BERT4REC is a recent adaptation of the BERT language model. We modified
a publicly available implementationIV in order to run the model using the same
experimental setting. Similar to the original training environment, we define
the masking probability ρ and predict masked items only. In order to be fair
towards other approaches, we implement a masked cross-entropy loss that only
backpropagates over available items.

3.6.3 Experimental Setting

We train all models until the score does not improve for 10 epochs on the validation
set and store the model at each epoch. Then, we test with the checkpoint having the
highest (validation) hit@1 and evaluate performance on the testing set. We consider `2-
regularization in the range `2 = {0.0001, 0.001, 0.01, 0.1, 1.0}. All models are implemented
in Pytorch and trained using the Adam optimizer with a learning rate of 0.0005. All
attention-based approaches are trained with a fixed dimensionality of 128. Other methods
are trained with a dimensionality in the range {16, 32, 64, 128}. Batch size is fixed to 100.
For BERT4REC, we consider ρ in the range {0.25, 0.5, 0.75} and results are reported with

IVhttps://github.com/jaywonchung/BERT4Rec-VAE-Pytorch

24



Dynamic Availability and Repeat Consumption Chapter 3

ρ = 0.25. We filter out users with fewer than 5 interactions and streamers with fewer
than 3 interactions. If the input testing sequence is shorter than the maximum length
l, we append interactions from the validation and the training set. All code and data is
publicly available V.

Model H@1 H@1-new H@1-rep. H@10 H@10-new H@10-rep. NDCG@10
POP 0.0317 0.0237 0.0387 0.1350 0.1006 0.1650 0.0754
REP 0.3698 0.0166 0.6776 0.5347 0.0424 0.9637 0.4630
MF-BPR 0.0363 0.0279 0.0436 0.1537 0.1182 0.1848 0.0879
FPMC 0.0690 0.0372 0.0968 0.2515 0.1662 0.3258 0.1529
SASREC - uniform 0.1994 0.0721 0.3103 0.5827 0.3888 0.7517 0.3733
SASREC 0.3004 0.1180 0.4593 0.7221 0.5156 0.9021 0.5014
BERT4REC 0.3517 0.1018 0.5694 0.7089 0.4668 0.9199 0.5237
LiveRec + rep 0.3655 0.0686 0.6241 0.7581 0.4907 0.9912 0.5615
LiveRec + av 0.3357 0.1067 0.5352 0.7363 0.5222 0.9229 0.5303
LiveRec + rep + av 0.4122 0.0920 0.6913 0.7655 0.4998 0.9970 0.5893

Table 3.2 – Results for all considered approaches. The best performing method in each
column is boldfaced.

3.6.4 Overall Performance Comparison

In this section, we discuss the results obtained by various architecture in Table 5.3. We
first notice that REP, which only predicts future interactions by repeating elements from
the input sequence, provides a reasonably competitive score. Since repeated interactions
account for more than 50% of the testing data, REP represents an effective strategy for
recommending content without a parametrized method, despite its inability to recommend
new content. This result also shows the importance of measuring the two metrics Hit-new
and Hit-rep individually.

LiveRec rep + av provides the best overall score. However, we notice that SASREC
leads to a higher Hit@1-new and that LiveRec + av leads to a higher Hit@10-new.
This result shows that there is still margin for improvement in balancing between novel
and repeated interactions. Compared to the sequence encoder alone (SASREC ), the
additional modelling of repeat consumption (rep) and availability (av) lead to a relative
improvement of 21.7% and 11.8%, respectively. The combination of the two leads
to a relative improvement of 37.2% over the sequence encoder alone (SASREC ). The
introduction of the time interval embedding (rep) encourages the model to favor repeated
interactions which hurts novelty (Hit@1-new). However, incorporating self-attention (rep
+ av) over available items mitigates this effect. Compared to REP, LiveRec scores a
higher Hit@1-rep, which suggests a better capacity to rank multiple repeat consumption
options than a simple frequency-based ranking.

Vhttps://github.com/JRappaz/liverec
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BERT4REC provides higher performances than SASREC. This observation in accordance
with the original paper [120]. We notice that the gain in performance comes primarily
from a better capacity to model repeat consumption. We also emphasize that masking
unavailable items in the loss function is critical to obtain this result. In order to compare
results with our observations from Section 3.4, we trained SASREC with two different
sampling strategies: uniform sampling and availability sampling. We observe a significant
improvement by sampling negative interactions from the set of currently available items,
in accordance with our preliminary results.

3.6.5 Analysis

In light of the results presented in Table 5.3, we seek to further elaborate on the influence
of various factors on performance through the following questions.

Question 1: What is the influence of the number of candidates k on performance?

The number of candidates k is a critical parameter of our approach since only candidate
items are considered in the final ranking. Therefore, this parameter should be sufficiently
large to cover a broad spectrum of candidate items, the ranking of which will be refined
by the self-attention module. We obtain the best results with k = 128 VI (see Fig. 3.12).
We also experiment with 1 and 2 attention layers. A single layer module performs better
for small values of k but fails to scale to a larger number of candidates. We hypothesize
this phenomenon to be due to the self-attention module being only distantly personalized:
it is trained on a selection of candidate items instead of raw interactions, a complex
mapping that could be successfully captured with multiple layers of attention.

Question 2: What is the influence of sequence length on performance?

Increasing sequence lengths monotonically increases performance for our model (see
Fig. 3.13). This gain diminishes, as we increase sequence length, since the average
sequence length of the training dataset is equal to 28 and sequences shorter than this
maximum length are padded. The results presented in Table 5.3 are consistent over all
sequence lengths in Fig. 3.13. However, as we increase sequence length, we also increase
the percentage of repeated interactions between users and streamers. For simplicity,
we perform the full evaluation, presented in Table 5.3, at around 50% of repeated
interactions and leave as future work a more in-depth analysis of the impact of this ratio
on performance.

Question 3: What is the popularity distribution of recommended items with LiveRec?

Mitigating popularity bias has become a concern in the recommender systems litera-

VIIn our case, the maximum value that can fit on a single GPU
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ture [41, 73, 118]; recommendation algorithms are known for recommending popular items
frequently while ignoring items in the long tail. This situation could be problematic in a
live-streaming setting, where the interaction distribution over items is already extremely
skewed (see Fig. 3.1). Therefore, we investigate the relationship between the introduc-
tion of the self-attention mechanism presented in Section 3.5.2 and the popularity of
recommended items.

In general, the introduction of the attention mechanism leads to a decrease in popularity
of the recommended content. Specifically, we observe a reduction in the average popularity
of recommended items of 17.1% with the introduction of self-attention (av) and 20.3%
with time interval embedding (av + rep), compared to the sequence encoder alone
(SASREC ). As one can observe in Fig. ??, the introduction of rep + av leads to a
popularity distribution of recommended items that matches the observed distribution of
interactions more closely.

Question 4: What types of dynamics are captured by time interval embeddings?

In order to characterize temporal patterns captured by LiveRec, we compute the similarity
matrix between embedding vectors after a full training phase (see Fig. 3.10). First, in
accordance with our observations in Section 6.3, the first bucket, representing a time
interval of less than 12 hours, is different from all other vectors. This observation suggests
the dynamics of repeated interactions during the same day to be governed by distinct
temporal dynamics (e.g. users returning to the same stream after a few minutes). Second,
we observe a visible pattern for intervals of less than one week. This observation is in
keeping with the weekly dynamics observed in Section 6.3. Finally, vectors representing
time intervals of more than one week become increasingly similar as time intervals
increase, which suggests that the model captures a unified representation of long-term
repeat patterns.
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Figure 3.14 – Example of self-attention over available items: the top-1k most popular
items are projected using t-SNE (right) and are used as an input for the attention module;
the attention weights are displayed after the softmax operation (left). The four selected
clusters shown in the projection correspond to the rows (queries) and columns (keys) of
the weight matrix.

Question 5: What types of dynamics are captured by the attention module over available
items ?

Specifically, we are looking for evidences that the attention module can capture dynamics
beyond the semantic relatedness of items captured by the encoder. We compare item
embeddings, learned from user sequences, and attention weights (av), learned from the
context of available items. We embed 1k items using matrix M and provide those
items as (query, key, value) inputs of the self-attention module. The attention weights
between query and key items are shown in Fig. ?? (left). In order to observe the semantic
relatedness of those items, we also show a 2D projection (t-SNE [124]) of their embedding
vectors and select 4 clusters (center). We observe each cluster of items exhibiting a distinct
patterns of attention: attention weights are consistent within clusters but strongly vary
from one cluster to another. We also observe the model being able to give attention weight
to query and key items with low content similarity (i.e. belonging to different clusters),
which shows the ability of the model to learn this relationship between semantically
unrelated items. Considering that the attention module (av) is only distantly supervised,
since it only learns from a candidate selection of items, our observations suggest that
it captures a different, and more global availability context compared to the sequence
embedding module.

3.7 Discussion and Future Work

The growing audiences of live-streaming platforms emphasize the need for efficient retrieval
and recommendation methods. In this work, we focused our modelling efforts on a dataset
of limited size. Scaling our approach, especially to a production environment, would
require extra considerations. First, the fast retrieval of available items represents a
barrier to large scale studies. For the training on the benchmark dataset, we maintained
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availability sets in memory but this approach might reach its limits with larger applications
and would require a more scalable design for retrieving and sampling available items.
Second, the additional attention module (av) increases the complexity of the model,
even though the module has the same architecture as the sequence encoder, making the
additional complexity a constant factor. For example, introducing av in the modelVII

reduces the training speed from 8.5 it/s to 5 it/s. In order to account for this observation,
one must carefully select sequence length, as well as the number of candidate items,
in order to balance between accuracy and training time. Finally, scaling the approach
to larger datasets might require more complex training strategies. For example, semi-
supervised learning could be employed to first learn item representations on a large
dataset, before fine-tuning a more costly approach on a smaller subset of data.

To the best of our knowledge, our work is the first attempt at modelling view dynamics on
live-streaming platforms and many challenges remain. First, content-based methods have
not yet been investigated. For example, visual features could potentially be exploited to
characterize the various segments of a stream. Second, we believe that user dynamics
could be further exploited. In this work, we focused on sequential methods that model
item-to-item relationships. The dual scenario, the modelling of user-to-user interactions,
remains unexplored. In particular, we believe that the modelling of users currently
watching a stream could help improving performance. Since the number of users is, by an
order of magnitude, higher than the number of streamers, future research should design
efficient methods to learn from user interactions. Third, during our analysis, we noticed
bursts of activity around specific channels. We believe that the traditionally static notion
of item popularity could be adapted to a dynamic setting. For example, the number of
concurrent users watching a stream could be exploited at inference time. Fourth, while
we focus on SASREC for encoding historical data, our framework is not tied to any

VIIFor a sequence length of 16 and a 16 candidate items.
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specific method for learning from interaction sequences. Future research could swap the
encoder with a different encoding method (e.g. graph-based) to capture a richer context.
Finally, many social aspects on live-streaming platforms remain to be explored. Our
dataset could help to better understand the social dynamics taking place on a streaming
platform. Going beyond the live-streaming setting, we believe that our approach could
be leveraged for other types of applications, such as digital TV, and in settings where
items only remain available for a limited period of time, such as the front page of a news
website.

3.8 Summary

In this chapter, we introduced live-streaming recommendation, a scenario in which items
are not always available for users to consume. We showed that a sampling strategy
simulating this evolving availability is crucial to capture user preferences. Moreover, we
described how to incorporate the notion of availability into our model architecture by
performing an explicit comparison among available items. In order to account for the
large number of concurrent broadcasts, we made this process efficient by comparing only
on a subset of candidate streams. We also investigated repeated user interactions with
streamers and proposed a way to model this phenomenon with time interval embeddings,
which we show to improve performance. With the release of a large dataset of user
interactions on Twitch, the various improvement over existing methods, our study paves
the way for new research in live-streaming recommendation.
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4 Dynamic Embedding

Online media select and filter the coverage they broadcast through their respective
channels. The subjective nature of this filtering induces biases due to, among other
things, resource constraints, ideological affinities, or even the fragmented nature of the
information at the source’s disposal. The magnitude and direction of these biases are
difficult to characterize because of the lack of ground truth. In this chapter, we introduce
a methodology, based on personalization methods, to analyze the filtering performed by
online media.

First, we cast the problem to a personalized ranking task by following a collaborative
filtering approach: we train a model to predict the selection of subjects from a media,
knowing the coverage from other media. We evaluate our approach on a large set of events
collected from the GDELT database. We show that a personalized approach exhibits
higher accuracy in coverage prediction and provides an interpretable representation of
the selection bias. We propose a method able to select a set of sources by leveraging the
resulting latent representation. We show that selected sources provide more diverse and
egalitarian coverage, all while retaining the most actively covered events.

Second, we present a dynamic embedding method that learns to capture the decision
process of individual news sources over time. Specifically, our method maintains a
consistent embedding space over successive time epochs, using a careful initialization
of new vectors and introducing a regularization term penalizing large variations across
time steps. Our approach enables the systematic detection of large-scale transformations
in the media landscape over prolonged periods. We demonstrate the potential of the
method for news monitoring applications and investigative journalism by shedding light on
important changes in programming induced by mergers and acquisitions, policy changes,
or network-wide content diffusion.

4.1 Introduction

World events are reported through an ever increasing number of information channels.
These events happen on a variety of different scales, from global to highly local, and all
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across the planet. To get a grasp on the world’s state, even avid readers must pre-process
the event space, with such sampling inherently exposing them to a distorted perspective.
This processing is a conscious selection which not only applies to news consumers, the
reader, but also to news providers, the medias. News organizations are designed to
be the initial filter of the event stream, pruning, condensing and categorizing it into
manageable chunks of information. Unfortunately, it is difficult to guarantee the neutrality
of this selection: the process is performed by the editorial team based on an arbitrary
number of factors. Some of them are obvious, such as geographic considerations, editorial
guidelines, thematic regards or even logistic capabilities. Others are not visible at a
glance: ideological leanings or higher order structures such as broadcast syndications or
corporate structures. Either one of these can compromise the representativity of the news
sample presented: this is generally referred to as gatekeeping or selection bias.

Any attempt to measure the influence of these factors on news coverage in absolute terms
is ill-fated: the factor space could never claim to be exhaustive, and a subset would be at
best arbitrary. Additionally, these measures suffer from the absence of baselines: they are
all relative estimates, having no ground truth to compare to. These issues are substantial
barriers to the interpretability of biases in the coverage of news, which can have a very
real impact on the readers’ world views [24]. The concentration of media ownership
also contributes to reinforcing these biases, since consolidating coverage mechanically
weakens media pluralism. The lack of accountability in these issues is an obvious threat
to broadcasting diversity and could jeopardize media integrity, aggravating the public’s
lack of confidence in news sources.I

As the selection made by each channel is partial by nature, the variety of outlets, each
with a wide array of considerations in the choice of its reporting, is assumed to ensure
the diversity of news to which the reader is exposed to. This principle is often referred
to as the external pluralism assumption. It should ensure heterogeneity in the media
space, encapsulating anything from the diversity of ownership to the independence of the
editorial board. II External pluralism is also known as the “supplier” pluralism, since it
should exclude the possibility of large broadcast groups exerting influence on downstream
reporting. Yet in practice, this assumption does not always hold. News channels are
often owned or operated by commercial, private entities, implying that the ecosystem as
a whole is influenced by economically motivated forces, such as mergers, acquisitions, or
regulatory actions. The increase in concentration of ownership has been observed to be
the dominating force in the media landscape, as reported by the Pew Research Institute
in a 2017 study on the acquisition of local television stations. III

While the literature, still debates the causal effects of market ownership structures on the
Ihttp://news.gallup.com/poll/212852/confidence-newspapers-low-rising.aspx

IIAs opposed to internal pluralism, where sources are assumed to present a wide variety of ideological
viewpoints, communicated through different mediums. [27]

IIIhttp://www.pewresearch.org/fact-tank/2017/05/11/buying-spree-brings-more-local-tv-stations-to-
fewer-big-companies/
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diversity of offerings, the Federal Communications Commission (FCC) IV has defended
the idea that “there is a positive correlation between viewpoints expressed and ownership
of an outlet”. V This uncertainty strongly motivates the development of novel and
interpretable methods, which would allow the observation of large-scale movements in
the media landscape and allow correlating the observations with real-world factors.

In the first part of this chapter (Section 4.4), we establish a methodology to identify and
characterize bias in the mainstream media landscape by recognizing it as a manifestation
of the selection process performed by a news source. This paves the way for its treatment
as a preference problem, well suited to approaches inspired by personalization methods.
We first argue that capturing this bias would require comparing distributions of covered
events across news sources, as a biased selection of stories from a news media cannot
be observed by looking at the source alone. We thus intend to measure by how much a
specific source’s news selection deviates from another by learning a latent representation
of this source’s preferences from its observed selection of events. We hypothesize that this
representation allows the study of relationships between sources, and sheds light on the
factors that guide their decisions. We also propose a method to promote diversity and
equality in the coverage of events by selecting a small representative subset of sources.

In the second part of this chapter (Section 4.8), we propose a dynamic embedding model
of the media landscape. By predicting news sources’ coverage, the model captures their
similarities throughout the observed period. The embedding space is maintained consistent
over time by augmenting the model with a knowledge of previous time steps, and by
adding a temporal regularization on the model’s parameters. This improves the model’s
predictive capabilities and provides a temporally coherent source-wise similarity metric,
allowing the visualization and analysis of long-ranging fluctuations in the news ecosystem.
We also propose a systematic method to detect abrupt transition patterns in this similarity
space. This enables the analysis of the news ecosystem beyond domain-specific knowledge
and hand-crafted analysis.

To illustrate, we provide some prototypical questions which could arise in a journalistic
probe, and that could be elucidated by information derived from the proposed model:

• What effect does the ownership of a news channel have on its content diffusion?

• Which sources are most similar (resp. dissimilar) to a sample source, and how has
this similarity evolved over time?

• Which are the most varying news channels in terms of broadcast content?

• Which broadcast groups exert a large influence on the content of their respective
channels?

IVThe FCC is the regulating body for multimedia communications in the United States.
VFCC, Biennial Media Ownership Order (2003)

33



Chapter 4 Dynamic Embedding

4.2 Related Work

Media Bias: The presence of bias, as well as its formal definition, have been widely
discussed in the literature. Early work in the domain, by Groseclose et al. [38], highlighted
the left-right cleavage in the coverage of several of the major media outlets by computing
an ideological score for each of them. Their approach relies on the observed number of
citations of several policy groups in the news relative to the mentions of the same groups
by several Congress members. More recently, Lin et al. [68] compared the coverage bias
between mainstream media and social media, focusing on stories about the 111th US
Congress (2009-2011). They reported a slant in terms of political leaning and a geographic
bias.

Saez-Trumper et al. [108] analyze, at a large-scale, the bias in both traditional press
and social media. Their study relies on an Principal Component Analysis (PCA), an
unsupervised approach, to detect similarities across news channels. They considered
three types of biases, namely: gatekeeping bias, that defines how stories are selected or
ignored in the news, coverage bias, that measures how visible an issue is in the news and
statement bias, that quantifies how the tone of an article is slanted toward or against a
particular entity.

One of the consequences of a biased press is the formation of a figurative echo-chamber, an
analogy to the acoustic echo-chamber in which sounds reverberate. The analogy sketches
a press in which reputable sources go unquestioned and opposing views are censored.
Moreover, the homogenization of views inside an echo-chamber artificially reinforces the
perception of a universally accepted view. Echo-chambers have been studied in social
media by Wallsten et al. [130], Flaxman et al. [31] and Bakshy et al. [10].

Steiner’s seminal work [117] studies the interplay of consumer preferences and in-market
competition on the diversity of radio broadcasting. This study omitted the role of external
driving forces, which were only later modeled by Anderson & Coate. [9] They predicted
that media consolidation, while economically beneficial for the market, would reduce
competition and hence diversity for the viewer. This insight was later formulated in terms
of ideological bias by Gentzkow & Shapiro [32] in the case of newspapers.

The tendency to integrate external driving factors has picked up steam in recent years,
most notably with a theory of convergence in the media ecosystem. This convergence
expresses itself through two seemingly contradictory features. On one hand, information is
being delivered through an ever-increasing number of channels and means of diffusion. On
the other hand, media ownership concentration has seen an upwards trend, with a large
proportion of channels being owned by only a handful of media conglomerates. [92] This
dichotomy has been studied by, among others, Jenkins. [53] The author proposed a sketch
of the phenomenon that looks further than the sole technological influence, reaching for
larger cultural factors. Vizcarrondo et al. [129] have more specifically investigated the
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concentration of media ownership. They reported on changes in the diversity of ownership
within the media industry covering the 1976 through 2009 time period.

A large body of work has also been introduced to study the effect of an ideologically
slanted press. For instance in a large-scale observational study, DellaVigna et al. [24]
measured the effect of the introduction of a conservative-oriented channel (Fox News)
led to gains of 0.4 to 0.6 percentage points in Republican voting in the towns where
the channel was being broadcast. While specific to a particular orientation, this work
is in line with studies showing the profound influence of the media in voters’ political
awareness [79] and their participation in the electoral process. [34, 85, 33]

The Federal Communications Commission (FCC) regularly issues studies regarding the
state of the news ecosystem. Specifically, some of these studies focus on the effect of
ownership on local news stations’ content programming behaviors. However, by the
authors’ own admission VI, these works often lack the breadth required by a large-scale
empirical study. For example, Pritchard [93] conducted a study of the diversity of coverage
for cross-owned media outlets during the 2000 presidential campaign but on a sample of
only 10 newspapers. Groseclose & Milyo [39] proposed a measure of media bias which was
evaluated on a set of 8 newspapers. Djankov et al. [26] did survey the news ecosystem on
large scale, building a map of media ownership in 97 countries around the world, but this
work dates back to 2003.

Methods: Temporally-aware methods have received increasing attention and many
previous models have now been adapted to the temporal setting. The dynamic embedding,
proposed by Rudolph et al. [106] as a variation of traditional embedding methods, is
generally aimed toward temporal consistency. The method is introduced in the context
of word embeddings, which are used to characterize the evolution of English language.
The model is built upon the initial exponential family embeddings model. [107]

The field of personalization has many examples of temporally-aware models since human
preferences tend to evolve over time. For example, influential work from Koren et
al. [59] models the changing nature of preference through a linear drifting term. Another
approach relies on the use of Tensor Factorization (TF), [28, 5, 140] in which the extra
dimension models temporal patterns in the data. We do not consider TF-based methods
as valid candidate approaches since we focus on the problem of grounding representations
over time by penalizing unnecessary differences between successive solutions of the
model. The temporal modelling capabilities of TF-based methods would predict the
evolution of sources and introduce additional temporal variations, consequently degrading
interpretability.

VI“[a] larger number of independent owners will tend to generate a wider array of viewpoints in the
media than would a comparatively smaller number of owners. We believe this proposition, even without
the benefit of conclusive empirical evidence.” FCC, Biennial Media Ownership Order (2003)
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He et al. [46] introduced a temporally-aware model of a recommender system in order
to capture the evolution of fashion trends. Similar to Koren et al. [59], the authors also
proposed the addition a drifting term to the model. The authors later proposed the use
of a higher-order Markov chain that captures both short- and long-term dynamics [45].
Note that both models make use of Bayesian Personalized Ranking (BPR [96]) for their
respective optimization procedure. In the context of networks, Yu et al. [144] proposed a
temporal factorization for analyzing the evolution of network structures.

Maximal Marginal Relevance (MMR) [23] is an information retrieval technique that
retrieves documents based on relevance, while enforcing diversity. It balances the two
aspects through the use of a tunable parameter. We refer the reader to Section 4.6 for a
more detailed description.

Research Questions: Given the work above, several research questions are of our
interest and have remained unanswered:

RQ1: How to model news coverage as a collaborative filtering problem?

RQ2: Is the model interpretable? Are real-world factors visible through the resulting
representation?

RQ3: How to exploit the learned bias representation to select a diverse set of sources?

RQ4: How can we maintain a consistent model over multiple time epochs?

RQ5: Is media consolidation highlighted by the resulting latent representation?

RQ6: How to systematically detect abrupt deviations in content diffusion from a source?

4.3 Data

Table 4.1 – Distribution of events and sources for one week.

Date Sources Events
Week 1 9’501 76’966
Week 2 9’363 88’755
Week 3 9’741 88’082
Week 4 9’714 89’367
Week 5 9’961 87’574

Table 4.2 – Per-week data
statistics

Event coding is the task of extracting, manually or automatically, interactions between
(political) actors from large quantities of news text. For decades, event coding was
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performed manually. In the 1990s, the first automated systems started to gain traction in
the academic community, with initiatives such as the KEDS system. [109] Its successor
was proposed in the form of Text Analysis By Augmented Replacement Instructions
(TABARI), which is the engine that runs event coding for GDELT. This framework is
designed to process large amounts of text to extract the presence of pairs of actors and
verbs. To do so it matches elements from user-provided dictionaries, which contain a
massive collection of event protagonists (i.e. actors) ranging from recognizable named
entities (e.g. Barack Obama) to functional placeholders (e.g. a local woman). These
actors are able to interact with the world through verbs (i.e. actions), which can be
self-contained (e.g. announces their intent to) or involve a second actor (e.g. criticizes
their opponent). Several standards exist for these dictionaries. GDELT uses the Conflict
and Mediation Event Observations (CAMEO [35]). VII Note that, as a remnant of previous
hand-curated event annotation frameworks [65], TABARI also provides an interface for
manual hand-off to domain experts if the sentences become too complex. This reinforces
GDELT’s ability to uniquely annotate even the most fine-grained events.

GDELT also augments every news event it tags by extracting meta-information about
the article including, but not limited to, its location, its tone, its Goldstein Scale [37]
and refences the URL the event was scanned at. It scours a wide array of sources, from
television stations to blogs, news wires and papers. Thanks to the information provided
by this augmented event coding framework, GDELT assigns, for each news event, a global
identifier, which makes it possible to link the same event’s coverage across different news
sources. Beyond the rich annotations provided by GDELT, this tracking is central to
our study given that we only work at the coverage level, without considering the content
itself.

4.4 Static Modelling

In this section, we first introduce the use of Matrix Factorization methods in the context of
news coverage modeling. Then, we exploit our model to study various factors influencing
media decisions. Finally, we propose a method to select a diverse set of news sources by
leveraging the latent representation learned by the model.

4.4.1 Model

We model the interrelationships between sources and events by relying on a Matrix
Factorization (MF) method. MF methods represent a natural way of projecting two
disjoint sets of items in a common latent space of K dimensions in order to model their
interactions. Such personalized methods are commonly use by recommender systems,

VIIAn exhaustive list of the considered categories can be found at
http://data.gdeltproject.org/documentation/CAMEO.Manual.1.1b3.pdf
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which routinely aim to model retail purchasing decisions. Used in our context, they model
coverage decisions instead. We cast the problem to a One-Class learning setting [86]
since we observe positive interactions only. The One-class formulation avoids making
assumptions about negative examples: we do not distinguish between real negatives (i.e.
the source purposely didn’t cover an event) and unobserved interactions (i.e. the source
wasn’t aware of the event).

Let us consider a set of news sources S and a set of events E. Interactions between the
two are represented by an interaction matrix R ∈ R|S|×|E|. Observations take the form of
dyadic interactions (si, ej), si ∈ S, ej ∈ E which express source si’s coverage of event ej .
Equivalently, we define in matrix form that Ri,j = 1 if source si has covered event ej and
Ri,j = 0 otherwise. Predicting the unobserved entries of matrix R is achieved by taking
the dot-product of two low rank matrices, such that R ≈ P T ·Q, where P ∈ RK×|S| and
Q ∈ RK×|E| with K << |S|, |E|. Every source si (resp. every event ej) is represented
by a column in P (resp. Q). We will refer to these columns as an embedding vector
throughout the remainder of this work. We will refer to Θ as the set of parameters for
our MF predictor, such that Θ = {P,Q}.

Objectives: The model is trained with the objective of predicting the likelihood of a
source covering a particular event. The predicted likelihood x̂si,ej of source si covering
event ej is computed as the dot-product between the two respective embedding vectors,

x̂si,ej = pTsi · qej . (4.1)

Instead of best approximating the reconstruction of matrix R, this objective is stated as
a ranking problem in which positive examples should obtain a higher rank than negative
ones, i.e. to predict a higher score for an event that has been covered than for random
negative samples. Optimizing a MF model with a ranking criterion is equivalent to
maximizing the following probability,

Pr(ej >si ek|Θ) := H(x̂si,ej − x̂si,ek)

≈ σ(x̂si,ej − x̂si,ek)
(4.2)

where ej is an event covered by source si and ek is a randomly sampled negative event;
formally, ej ∈ E+

si and ek ∈ E \ E+
si . We adopt the notation >si to denote a source si

preferring to cover ej over ek and model the observation of this preference using H(·),
the Heaviside step function: H(·) is equal to 1.0 for positive inputs and to 0.0 otherwise.
Therefore, H(x̂si,ej − x̂si,ek) would always be equal to 1.0 for an ideal predictor. In
practice, H(·) is approximated by the differentiable logistic sigmoid σ(·).
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Finally, we maximize BPR, our log-likelihood criterion

BPR :=
∑

(si,ej ,ek)∈D

lnσ(x̂si,ej − x̂si,ek)− λΘ ||Θ||2 . (4.3)

Note the inclusion of an `2-regularization term over the set of parameters Θ. We please
refer the reader to the work of Rendle et al. [96] for more details about this optimization
scheme.

4.4.2 Optimization

We aim to directly optimize the ranking structure of the problem rather than to provide
an accurate reconstruction of the interaction matrix R. The BPR optimization scheme
introduced by Rendle et al. [96] is particularly suited for this type of problem and could
be applied to our problem using the following update step

θ ← θ + α · (σ(−x̂si,ej ,ek)
∂x̂si,ej ,ek

∂θ
+ λθΩ

′(θ)), (4.4)

where x̂si,ej ,ek = x̂siej − x̂siek , and θ represents the set of parameters to be learned. Ω(θ)

denotes a regularizer. We opted for a `2 regularization Ω(θ) = ‖Θ‖22.

4.4.3 Experimental Setting

The learning part of our analysis only required to build the interaction matrix between
sources and events: we scrape the events and mentions tables to recover which events
were covered by which sources in a given timespan. We filter low-count events and sources
(sources that have covered less than 5 events, and conversely events covered by less than
5 sources) to limit the impact of the cold-start problem. Fig. 4.1 and Table 4.2 are
computed from our dataset after this preprocessing step.

In order to abstract away temporal dynamics, we proceed to temporally split our data.
We select five weeks of interest across 2 months (October and November 2016) in the
dataset, which are described in Table 4.2. We select one-week chunks to get enough data,
and replicate the experiment across the five weeks to measure temporal consistency.

As sources typically cover a highly variable number of events, we adopt a leave-one-out
methodology to assess the accuracy of the model, with every source having the same
weight in the evaluation. Specifically, we constitute our test set by sampling for each
source, at random, one event that it covered during the last day of the week.
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Reproducibility: We ran our experiment on a single computer, running a 2.3 GHz Intel
Core i7 CPU, using Matlab R2014b. We trained our model with the following parameters:
α = 0.1, λθ = 0.01, K = 20. We found that these were well-performing parameters for
the proposed problem: the same parameters were used on all 5 weeks. We note that
the number of latent factors K did not show significant information gain after K = 20

dimensions.

4.4.4 Evaluation

Prediction accuracy is not the primary goal of our approach but rather a mean to tune the
predictor, in order to avoid under- or over-fitting, and to compare it to various approaches.
Since the BPR optimization scheme directly optimizes a pairwise ranking criterion, we
select the widely used metric Area Under the Curve (AUC) [113] as our measure of
performance.

AUC =
1

|D|
∑
(si,ej ,ek)∈D

H(ŷsiej − ŷsiek) =
1

|D|
∑
(si,ej ,ek)∈D

H(x̂siejek), (4.5)

where H(·) is the Heaviside step function (the latter formula uses the notation introduced
in Section 4.4.1) and D is our evaluation set composed of one triplet (si, ej , ek) per source
where si is a source, ej is a randomly sampled event that has been covered by source si
and ek is a randomly sampled event that source si has not covered. This metric assesses
the ability of the predictor to correctly rank a positive interaction withheld during training
against a random negative example. An ideal predictor would obtain a score of AUC = 1,
while a random selection would output a score around AUC = 0.5.

We compare our method to two common baselines used in recommendation problems:
popularity and nearest-neighbor methods [101]. Popularity based methods simply rank
the events based on the amount of coverage they receive. Nearest-neighbor methods infer
a source’s coverage from the coverage of its closest peers: the intuition is that congruent
sources should exhibit similar coverage of the event space. We chose the k-Nearest
Neighbors (k = 10) method for this baseline, using the Jaccard distance metric.

4.5 Results

Adopting a supervised learning approach presents the advantage of allowing the explicit
evaluation of the quality of our model. We propose that the coverage prediction accuracy
yields an adequate estimate of the learned embedding’s quality. Indeed, reconstructing the
interactions should only be possible if the latent factors captured sufficient information
about how sources select the events they cover. This type of evaluation is not feasible
with an unsupervised method (e.g. PCA, SVD [114]), which requires expert intervention
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Figure 4.1 – Results with AUC as a performance metric. Results are shown per week.
We show the averaged score as well as the standard deviation of the results obtained over
the 5 weeks.

to judge the quality of results and interpret them.

We reference the results in Fig. 4.1, which shows higher prediction accuracies compared
to the selected baselines.

4.6 Source Selection

In the following section, we describe how the apriori knowledge produced by our model
can be exploited in the context of news selection, that is the problem of selecting N
sources from a large and heterogeneous set. In this scenario, the selection of news sources
should be done such that the resulting subset exhibits two desirable properties that makes
it representative of the worlds’ daily events distribution. First, the news sources should
be picked in order to foster diversity. Intuitively, the resulting set should cover a large
spectrum of the news while minimizing concentration around a small set of events, thus
reducing the effect of the so-called echo-chamber [130]. Second, the resulting set of news
covered by the selected sources should retain a large proportion of the most actively
covered events, ensuring comprehensive coverage of the event space.

Without an accurate way of modeling the inter-relationship between sources, picking a
representative subset of media can be difficult. Indeed, the main criterion of selection
would have to come from side-information, e.g. the reputability of the source or its level
of activity, etc. Therefore, we propose to exploit the knowledge gained from our model to
guide this selection.

We adapt to our scenario a standard diversity-promoting retrieval method, Maximum
Marginal Relevance (MMR) [23]. MMR is an iterative procedure that establishes a
ranking of elements based on two criteria: a relevance score, that is application-specific
and has to be defined, and a diversity measure of the retrieved set of elements. MMR
balances the two aspects with a tunable parameter β. At each step, MMR selects the
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source to be added to the results set based on the relevance of the source, that we define
as being comprised in the interval [0, 1]. This score is then weighted to include results
with minimal similarity to the current retrieved set, thus ensuring its diversity. The
procedure ranks the sources iteratively based on the following score function

MMR(si) := β ∗ relevance(si)− (1− β) ∗max
sj∈B

[
sim(si, sj)

]
, (4.6)

where β is a parameter that controls the strength of the diversification and B is the set
of elements already selected (the first pick is thus based on relevance only). With a β
value of 1, the ranking is based on relevance only, while with a β value of 0 the ranking is
the most diverse set of items possible achievable in a greedy fashion. The formulation
of Eqn. 4.6 requires a measure of similarity between sources. After experimenting with
different options, we obtained satisfactory results by using sim(si, sj) = 1/dist(pi, pj) as
our measure of similarity, with dist(·) being the Euclidean distance between pi and pj ,
two sources’ latent representation vectors. We use as a relevance function the activity
level of the source, i.e. the number of articles published by the source (see Section 4.7.3).

4.7 Discussion

In the following section, we consider the results of our experiments. We first discuss the
method’s predictive performance. Then, we analyze the resulting representations yielded
by our approach, providing ways of explaining the observed variance. Last, we describe
the results of leveraging this representation with our method to promote diversity in a
news source selection problem.

4.7.1 Coverage prediction accuracy

As mentioned in Section 4.9, our method of choice presents the advantage of supervised
learning procedures, in that it provides a measure of the accuracy of the predicted coverage.
Therefore, it allows the comparison with other types of personalization techniques. We
select two baselines: the raw popularity of the events and k-Nearest Neighbor (k-NN).
Popularity based methods are not personalized: they simply rank the events based on
the amount of coverage they received. We show that we can outperform this method as a
result of the personalization of the coverage prediction. We also compare to a personalized
method, k-NN, and observe that our method achieves better accuracy, due to the fact that
it is also parameterized. We report a score (AUC) greater than 90% for the 5 selected
weeks. We also observe less variability across the weeks in the results obtained from our
method of choice.
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original β = 0.75 β = 0.5

Figure 4.2 – We illustrate the effect of the β parameter on week 5 of our dataset on a
query of size N=100 . Sources’ positions in latent space are displayed as single dots. We
overlay the density (gaussian KDE) around the sources contained in the selected subset.
The original selection picks sources solely based on their level of activity (β=1). The
center and right figures have nonzero values of β which diversifies the selection of sources.

Geographic proximityBroadcast syndication

#11 U.K. - Ireland

#3 India

#8 Canada

theguardian.com

telegraph.co.uk
irishexaminer.com

24indianews.com

indianexpress.com

ctvnews.ca

macleans.ca

canadianbusiness.com

cbc.ca

bclocalnews.com

westerleynews.com

indiatimes.com

hindustantimes.com

independent.ie

mirror.co.uk

oxfordmail.co.uk

bbc.co.uk

newkerala.com

prokerala.com

#18 Sinclair Broadcast Group
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Figure 4.3 – Source agglomerations in latent space (best seen in color)
Left: After investigation, we observe clusters explainable by the publishing structure of
sources in the cluster: all are part of a publishing network, such as the public radio network
(#20: left, bottom) or are all owned by a larger commercial entity (#7: left, top, #18: left,
center). Center: Position of the sources in latent space, reduced in dimensionality with
t-SNE [127]. An unsupervised cluster learning method (DBSCAN [30]) is applied to show
agglomerates of sources that are similar in the latent space. 24 clusters are extracted in
this example (Week 1). Visual inspection allows interpretation through the discovery
of the biases detailed in 4.7.2. Right: We notice several geographical clusters, three of
which are detailed here: a cluster of Indian news sources (#3: right, top), a cluster of
Canadian news sources (#8: right, center) and a cluster of sources from Great-Britain
and Ireland (#11: right, bottom).
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4.7.2 Leveraging representations to uncover biases

The methodology described in Section 4.4.1 yields latent-space representations of the
source preferences, i.e. a low-dimensional description of the selection bias. By investigating
the distances between sources in this preference space, we uncover interesting correlations
between them, indicating the presence of a common bias. We also apply standard
unsupervised clustering methods to explicitly group sources together. While the measures
are done in the latent space, we project these vectors down to 2 dimensions for visual
inspection.

Since the structure arises directly from the coverage we can extract factors of the bias,
such as those that we mentioned in Section 4.1 (geographic relationships, thematic regards,
higher-order structures, ...) despite them not always being evident to the inexperienced
eye (for example broadcast affiliates owned by larger structures which are not reflected in
branding).

Geographic proximity: The simplest similarity between sources comes from their
geographic proximity: local or national sources orient their coverage to their respective
scales. Hence sources with similar geographic dependencies should present similarities in
their coverage, and be close together in the latent space. This effect is indeed captured
by our method, as shown in Fig. 4.3, right. This geographic relationship between
sources is confirmed by the proximity of regional sources, such as prokerala.com and
newkerala.com, two sources from the region of Kerala in India: they are in a cluster
of Indian news sources, but are also close together in the latent space as they cover
national and regional news. The same effect is visible in a portion of cluster #8, with
sources from British Columbia, Canada, being close together (westerleynews.com and
bclocalnews.com are shown here).

Affiliation and ownership: Local news sources are an essential part of the news
coverage network, most notably in rural areas where they represent one of the only
sources of information with a granularity level fine enough to cover very local events.
While it is to their advantage to also provide general news coverage to their readers
(national or international news), they usually lack the resources to be involved in the
treatment of events at that scale. Hence a common method has long been to agglomerate
into larger organizations: groups of local news sources dedicating a fraction of their
budgets to pool the coverage between them, forming a broadcast syndication network [70].

Note that these groupings are not necessarily horizontal: they can also be the fruit of
consolidations through mergers or acquisitions by larger organizations (the Pew Research
Center estimates that the five largest broadcast companies now own 37% of local television
stations in the United StatesVIII). In cluster #18, we show a group of sources all owned

VIIIhttp://www.pewresearch.org/fact-tank/2017/05/11/buying-spree-brings-more-local-tv-stations-to-
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by the same corporate structures, formed by a wave of acquisitions in the local news
space.

These larger structures are not always obvious at a glance. Many familiar networks
are present in the list of sources shown in Fig. 4.3, such as the American Broadcasting
Company (ABCIX) (abc22now.com), Columbia Broadcasting System (CBSX) (cbs12.com)
or even FoxXI (okcfox.com) but none of these are actually operated by the network their
name suggests: they are all operated by the same broadcast entity.

Medium: Some of the larger structures that form are driven by platforms based on similar
media. Cluster #20 brings together a network of public radio stations. They are usually
affiliated with one or several organizations such as NPRXII, Public Radio InternationalXIII

or American Public MediaXIV, all of which are non-profit entities exchanging content to
form a radio syndicate.

A few observations are left as side-notes. First, we report the clusters discussed in this
section to be largely consistent throughout the 5 selected weeks. We report an average
Pearson correlation of 0.82 between the pairwise distances in embedding space of the
top-1000 most active sources across the 5 weeks. Second, we did not observe any clear
left-right cleavage, and, therefore, do not report on it.

4.7.3 Application to source selection

In this section, we develop the results obtained by the proposed method in the context
of source selection. In particular, the properties of their combined coverage of the event
space is of our interest. A skewed selection of news sources could induce side-effects. The
selected sources could cover a too-small or non-representative portion of the event space
by focusing on a few highly discussed topics. As a consequence, those events would be
overrepresented while other topics of importance would be drowned. Therefore, we discuss
the results of the news selection problem with respect to two aspects. First, we report a
metric of coverage equality received by the events. An egalitarian coverage should give a
similar importance to all events treated by our selected sources. Second, we report the
ability of the method to retain the most actively covered events in the set.

We first select a subset of N news sources based on a ranking criterion that does not
require any side-information: their respective levels of activity. This naive approach
ensures the resulting selection to include the largest possible number of articles. We

fewer-big-companies/
IXabcnews.go.com
Xcbs.com

XIfoxnews.com
XIInpr.org

XIIIpri.org
XIVamericanpublicmedia.org
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Figure 4.4 – top-25 sources selection (first row) and top-100 sources selection (second
row). We report the coverage produced by the original ranking (ranked by the number of
articles published), the same ranking with the diversity constraint for different values of β,
and the coverage of a random selection of sources. Left: Number of articles covered (total
and unique) by the selected subset of news sources. Center: Lorenz curves of the coverage
received by individual events in the selected subset of news sources. Right: Proportion of
the top-5000 most discussed events of the week included in the coverage of the selected
subset of news sources. For example, a top-100 on the x-axis represents the percentage of
the 100 most covered events in the entire set that have been covered at least once by the
selected subset of news sources.

therefore expect it to contain a wide spectrum of events. We then compare this coverage
with the one produced by a ranking with the additional diversity constraint presented in
Section 4.6. We report that a skewed attention in the original ranking of sources provides
a ratio of #events/#articles of 0.41 for top-25 and 0.22 for top-100. This ratio suggests
a lot of repetitions around the same subset of events. However, we observe this effect
being mitigated by the re-ranking procedure. For example, we obtain a ratio of 0.60
for top-25 and 0.44 for top-100, by fixing the value of the β parameter to 0.5. A more
detailed view of this discrepancy, and its mitigation, is shown in Fig. 4.4 (left).

This ratio gives an indication of the overall novelty provided by a set of sources. However,
it does not show the unequal treatment of the event, which we have hypothesized. If we
consider the coverage of news sources as a budget of attention, we observe the attention
income that every event receives. In fact, the Lorenz curves (Fig. 4.4 center) indeed
reveal the attention budget of the press being spent unequally for a selection of the most
active sources. We report that this effect is also mitigated by the proposed approach.
We also estimate the imbalance in the resulting coverage in statistical terms using the
GINI coefficient which measures the inequality of a distribution. A perfectly egalitarian
coverage would have a GINI coefficient of 0, meaning all events receive equal attention.
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“Walmart raises minimum age
to buy guns and ammo.”

News sources News events

Epoch t Epoch t+1

Figure 4.5 – Illustration of the setting: we observe the coverage of news events from a
fixed set of sources over several time epochs. Example events are extracted from the
GDELT database.

For a selection of 25 sources, we obtain a GINI coefficient of 0.79 that reduces to 0.74

after re-ranking (β = 0.5). Similarly, for a selection of 100 sources, we obtain a GINI
coefficient of 0.78 that reduces to 0.68 after re-ranking (β = 0.5).

Although equality in the coverage is a desirable property, we cannot sacrifice the total
coverage to achieve an egalitarian distribution: this would mean discarding too many
important events for the coverage to be meaningful. Hence we also report the propensity
of our selected subset to retain events of importance, as shown in Fig. 4.4 (right). We
ranked the event by importance, the top events being the ones that have been covered
by a larger number of sources during the week. We show the resulting selection of news
sources includes a larger proportion of the most discussed topics despite covering a smaller
set of unique events.

The last point of our discussion treats of the balance between coverage equality and
top-event retention. The choice of the β parameter is a trade-off between the two aspects
that could be fixed through numerical analysis or include human judgment. However,
a value of β = 0.5 allows to substantially reduce the imbalance, while still including a
larger proportion of top events in the resulting coverage.

4.8 Dynamic Modelling

In this section, we propose two strategies to adapt the model to a temporal setting. This
change enables the visualization of the news ecosystem over time and to detect abrupt
variations in coverage of individual channels.
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4.8.1 Data Preprocessing

From the massive resource maintained by GDELT we can gather a dataset of interactions
between sources and events, recording which sources covered which uniquely identifiable
events. We focus our data collection campaign on the publicly available dumps of GDELT
2.0, released every 15 minutes since February 2015. General statistics about the dataset
are presented in Table 4.3 as well as Fig. 4.6 and Fig. 4.7.

When considering the full time-span, GDELT references more than 105K different news
sources. This represents a considerable increase compared to the 63K sources reported by
Kwak et al. [7] in 2016. However, as is shown in Fig. 4.7, most of the sources have only
published a few articles over the relevant stretch. To maintain a consistent number of
channels over time, we discard all channels inactive in any one of the time slices from our
dataset. This retains around 7 278 news sources in our dataset. The filtering step does
remove a large fraction of available channels, but it mostly affects sources with a very
low publishing rate: despite preserving only 7% of the total channels, the selection still
accounts for more than 76% of interactions in the dataset (see Fig. 4.7).
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Table 4.3

Left: Number of sources covering an event. Center: Number of events covered per
source. Right: Dataset statistics.

The dataset is split into slices with a duration of one month. This allows for a decent
trade-off between having a significant amount of events covered in the training set, while
also providing enough samples to observe time-dependent changes over the considered
period. In principle, this scale could be modified to study the media landscape at different
granularity levels. For example, a more fine-grained split might allow the observation
of changes correlated with specific events. However, we choose to leave this analysis as
future work given the significant amount of computation that the model requires.
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4.8.2 Temporal Setting

In this section, we describe the adoption of the dynamic embedding scheme proposed by
Rudolph et al. [106] in the context of news coverage modeling. In particular, we adopt
two strategies to maintain temporal consistency across time slices, respectively based (i)
on a Gaussian random walk (RW ) and (ii) on the addition of a temporal regularization
term (RG). We adopt the notation p(t)

si to denote the embedding vector of news source si
at the t-th time step.

Prior on the embedding vectors: Without information about former time slices,
existing methods typically initialize embedding vectors to small, randomly distributed
values. However, such approaches do not take advantage of any prior knowledge acquired
during anterior training steps. The addition of a prior on embedding vectors represents a
simple, yet powerful strategy to leverage previously acquired knowledge about sources.
In particular, embedding vectors at the t-th time step are initialized using a Gaussian
random walk around their final values at time step (t− 1). The Gaussian random walk is
expressed as follows:

p(t)
si ∼

{
N (0, γ−1I), if t=0 .

N (p
(t−1)
si , γ−1I), otherwise .

(4.7)

This initialization scheme ensures a smooth transition of the parameter set learned in two
consecutive time slices. This yields a more stable embedding space, offering a coherent
expression of divergence across time-steps. Since events are inherently much more volatile
than sources, we initialized their embedding vectors at random at each new time slice.

Optimization using temporal regularization: The second part of the dynamic
scheme takes the form of a temporal regularization term. The newly introduced term
penalizes large variations across time steps by minimizing the distance of an embedding
vector at the t-th step to its final value at step (t− 1).

The final log-likelihood criterion, BPR-T, can then be formulated as follows for the t-th
time split

BPR-T (t) :=
∑

(si,ej ,ek)∈D

lnσ(x̂si,ej − x̂si,ek)

− λΘ ||Θ||2

− λT ‖p(t)
si − p

(t−1)
si ‖2︸ ︷︷ ︸

temporal regularization

(4.8)
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The model is optimized using stochastic gradient ascent and is fitted once for every time
split. Update steps are defined as follows:

q (t)
ej ← q(t)

ej + α(σ(−x̂si,ej ,ek) · p(t)
si − λΘ q(t)

ej )

q (t)
ek
← q(t)

ek
+ α(σ(−x̂si,ej ,ek) · (−p(t)

si )− λΘ q(t)
ek

)

p (t)
si ← p(t)

si + α(σ(−x̂si,ej ,ek) · (q(t)
ej − q

(t)
ek

)

− λΘ p(t)
si

− λT (p(t)
si − p

(t−1)
si ))

(4.9)

where α is our learning rate. We use the notation x̂si,ej ,ek to denote the quantity
(x̂si,ej − x̂si,ek). Note that triplets (si, ej , ek), ej ∈ E+

si and ek ∈ E \ E+
si forming the

training dataset D are randomly sampled during the optimization. XV

4.8.3 Evaluation

To assess the performance of the different methods, we adopt a leave-one-out methodology,
in which a single event per source is withheld at random from the training set D to
constitute the test set Ds. This approach ensures that all sources have similar weights in
the evaluation. We adopt the widely used Area Under the Curve (AUC) as a measure of
performance. In the context of this work, the evaluation procedure is formally defined as
follows

AUC =
1

|Ds|
∑
(si,ej ,ek)∈Ds

H(x̂si,ej − x̂si,ek) . (4.10)

where ej is an event covered by si and ek is an event that si hasn’t covered, randomly
sampled at testing time. Negative samples are drawn uniformly at random across all
unique event of the current time slice (we omitted the time indices for the sake of brevity).

4.8.4 Experimental Setting

The code for experiment and analysis will be made available at publication time under an
open-source license. All experiment-related code was run on a 6-core machine, equipped
with an Intel(R) Xeon(R) CPU E5-2630 @ 2.30GHz, for a total training time of approx-
imately 3 days. XVI We restricted the tuning of hyper-parameter λT to a subset of values
∈ {0.001, 0.01, 0.1, 1.0}. All scores and figures are reported using λT = 0.1, which we

XVWe sampled both positive and negative examples uniformly. More complex sampling approaches
exist [95] but are outside of the scope of this work.
XVIThe training time is reported for the full 3-year period; a production-ready application would typically
be optimized and use incremental updates instead.
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Model AUC
POP 0.6509
BPR 0.8959
BPR + RG 0.9089
BPR + RW 0.9318
BPR + RW + RG 0.9337

Table 4.4 – Method contribution to performance

found to provide the highest cross-validated accuracy. For computational reasons, the
other parameters were coarse-tuned on a static snapshot and were set to K = 20 and
λΘ = 0.1, γ = 0.01 and α = 0.1.

Figure 4.8
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Left: Average displacement of embeddings. Right: Performances (AUC) and dataset
size per month.

4.9 Results

In this section, we compare the existing static embedding model with the dynamic method
presented in Section 6.5. The effect of both the prior on the embedding vectors and the
temporal regularization are then measured in isolation.

Table 4.4 summarizes the performances of the various approaches by taking the mean
AUC scores obtained, for each month, over the considered period. BPR denotes the core
of the algorithm without any temporal component. RG denotes the use of temporal
regularization and RW denotes the use of a Gaussian random walk for embedding
initialization. To compare with a non-parametrized approach, we also include POP, a
popularity-based baseline: the score for a given event is a function of its frequency in the
training set.
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Figure 4.10 – Case-study of the influence of ownership on the selection of covered events
(best seen in color)
Left: Sample of the temporal evolution of the media landscape, learned with dynamic
embeddings, illustrated with t-SNE. [125] To test the effect of ownership on diversity of
coverage, we monitor the evolution of a set of sources all owned by the same broadcast
group in 2018, backtracking their evolution in embedding space. Starting with an initial
seed source known to be operated by - or affiliated to - one of three large American media
conglomerates (Gray Television Inc., Sinclair Broadcasting Group and GateHouse Media),
we build a set of 50 sources per group so as to have a comparably sized sample for each.
These sources are also all verified to be owned - or operated by - one of these groups at the
last observed time-frame of our dataset (May 2018) by cross-checking publicly available
information. We project their positions from the embedding space onto a display-friendly
plane, showcasing snapshots of their movement over time, as they collapse into highly
similar and cohesive clusters in the similarity space.
Right: Average inter-source cosine distance between sources of each group in the dynamic
embedding space, over time.
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Several observations can be made in light of these results. Firstly, the combination
of the two strategies RG and RW is shown to provide the best observed predictive
performances. Secondly, the individual strategies do not provide the same performance
improvements. Results suggest that a proper initialization contributes much more to
an accurate prediction than strong temporal regularization. In parallel experiments, we
even observed that an increase of λT decreases performances. We hypothesize that this is
due to the model’s inability to handle abrupt changes in source behavior, since a strong
regularizer would penalize a large difference with respect to the previous time step.

The use of the proposed dynamic strategies (RG and RW ) provides better overall
consistency of the latent space across time slices. This is visible by measuring the average
displacement of sources in embedding space. As shown in Fig. 4.8, sources are much
more stable in the dynamic setting compared to the static embedding procedure. The
added stability of the embedding space provides a usable expression of divergence across
time-steps. This means source similarity can be coherently compared across the entire
observed period, while also providing an overall improvement of the AUC scores (see
Fig. 4.9).

4.10 Analysis

In the following section, we discuss the interpretation of the model introduced in Section 6.5.
We first describe an approach to visualize the evolution of the news ecosystem. Then, we
propose a systematic, unsupervised way to detect abrupt deviations in this space.

4.10.1 Visualizing the Media Landscape

We start by introducing an example case-study, which should illustrate the usefulness
of the presented model in facilitating the understanding of the news ecosystem. The
study is centered on three representative media conglomerates that we track throughout
the 40-month period covered by our dataset: Gray Television Inc. (over 100 television
stations), Sinclair Broadcasting Group (over 190 television stations) and GateHouse Media
(over 140 newspapers). XVII

As a starting point, the model described in Section 6.5 is optimized in its most successful
setting (RW+RG). Dimensionality reduction is performed in order to have a more
interpretable view into the embedding vectors. In Fig. 4.10 - (left) we use a t-distributed
Stochastic Neighbor Embedding (t-SNE [125]), a popular method for the visualization
of high-dimensional data. In order to maintain consistency across time steps in the
projection, we initialize the parameters of the t-SNE optimization procedure at time slice

XVIIas of August 2018.
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Figure 4.11 – Top-left: t-SNE [125] projection of the embedding space for May 2018,
colors represent the weight wsi of each source si. Top-right: Identified attractor map
built from the attraction potential map (σ = 1.9, k = 500). Bottom: Detail and
affiliation of attractors identified in (center), with the set of 3 sources closest to the
uncovered poles. Best seen in color.

t with the final parameters of time step t− 1. This seeds the projected points’ positions
instead of assigning them to a random initial position, allowing for easier tracking between
time steps.

Additionally, in order to avoid interpreting from model parameters only, which might
be misleading due to optimization artifacts, we correlate sources’ trajectories with the
average pairwise cosine distance between sources of each group. These distances are
computed using sources’ respective sets of covered events for each month. Overall, this
procedure allows us to coherently visualize the evolution of the media landscape over
time, uncovering non-obvious dynamics at several scales, from the ecosystem as whole
(e.g. convergence phenomenons) down to individual sources (e.g. shift toward a group).

The designed visualization of the media landscape is presented in Fig. 4.10. Please refer
to Section 5.5.4 for a more detailed discussion.
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4.10.2 Detecting Fluctuations in the Media Landscape

Even with extensive domain knowledge, tracking the evolution of a group of sources
belonging to specific entities remains a tedious task, since it requires the manual identifi-
cation of sources of interest and the validation of their common factors. Therefore, in
the following section, we propose an unsupervised method which leverages the models’
a priori knowledge to identify abrupt changes in sources’ content diffusion patterns. In
particular, the proposed framework aims to identify attractors, e.g. sources that tend of
attract others in latent space, suggesting an alignment of coverage.

Attractors: News channels involved in a consolidation of resources typically tend to
have increasingly similar coverage patterns. As seen in Fig. 4.10 - (right), the phenomenon
manifests itself as the convergence of a subset of sources toward a common position in
embedding space. Systematically detecting such gatherings around a common location,
that we will loosely refer to as attractors, would allow to interpret each of these patterns in
isolation. We propose a method in two steps. Firstly, we identify sources whose distances
to other channels are abruptly reduced at any point in time. Secondly, we identify the
absolute position towards which those sources tend to converge.

We first define the matrix Z ∈ R|S|×|S| that represents the difference of distance between
the first and the last considered time step, for any two news sources i and j. More
formally, we define Z as follows.

Zi,j = ‖p(1)
si − p

(1)
sj ‖ − ‖p

(t)
si − p

(t)
sj ‖ (4.11)

where ‖·‖ is the Euclidean norm. We rely on the matrix Z to identify channels having
undergone large reductions of distance with other sources during the considered period
[1 . . . t]. In more details, we retrieve from Z the k-sources having the largest negative
difference with any other source, i.e. the minimal value of each row in Zi,j . By taking
into consideration only the top-k, we can capture large shifts only and avoid considering
small movements due to random factors. Once identified, the relative displacement of
these k sources can be visualized in latent space. In particular, each source si in our
dataset will be qualified by a single weight wsi , computed as the sum of the difference in
Z with respect to the k considered sources. As shown in Fig. 4.11 - (left), negative values
reveal sources that tend to exhibit agglomerative behaviors.

Until now, we observed strong fluctuations in terms of inter-source distances. The next
step is to define a systematic way of identifying the centers around which these shifts
occur, in absolute terms and at any given point in time. On a 2D projection of sources,

55



Chapter 4 Dynamic Embedding

20
15
Fe
b

20
16
Jan

20
17
Jan

20
18
Jan

0

2

4

0

2

4

0

2

4

0

2

4

kwch.com
Gray Television (since Feb 2016)

cbs7.com
Gray Television (since Jul 2015)

kotatv.com
Gray Television (since Oct 2015)

kjct8.com
Gray Television (since Dec 2015)

20
15
Fe
b

20
16
Jan

20
17
Jan

20
18
Jan

0

2

4

0

2

4

0

2

4

0

2

4

fox11online.com
Sinclair (since Dec 2014)

wcyb.com
Sinclair (since Sep 2017)

wcti12.com
Sinclair (since Sep 2017)

krcrtv.com
Sinclair (since Sep 2017)

20
15
Fe
b

20
16
Jan

20
17
Jan

20
18
Jan

0

2

4

0

2

4

0

2

4

0

2

4

houmatoday.com
Gatehouse (announced in Nov 2014)

dailycomet.com
Gatehouse (announced in Nov 2014)

salina.com
Gatehouse (since Nov 2016)

yourstephenvilletx.com
Gatehouse (since Jul. 2014)

Figure 4.12 – Euclidean distance from channels to their respective affiliations, in latent
space, over time. Affiliation positions are computed as the centroid of 3 seed sources
(taken from Fig. 4.11 - (right)). Those patterns are extracted without any supervision:
retrieved channels are the ones having undertaken the largest shift of content over the
considered period (2015-2018). Channels acquisition dates are given for reference.

we apply a weighted Kernel Density Estimator (KDE), a non-parametric method for
estimating the Probability Density Function from a set of samples, under weak smoothness
assumptions. The objective is to detect areas containing a high density of sources with
negative weights and locate their density peaks. We use the weights wsi as input of the
estimator. The bandwidth selection is a function of the data’s covariance, multiplied by
a constant factor σ. [115] An example of the resulting density is presented in Fig. 4.11
- (center). Finally, local extrema are collected using a local minimum filter, a simple
method routinely used in computer vision. The set of identified poles and the top-3
closest sources surrounding them is shown in Fig. 4.11 - (right).

Attractees: Having identified a set of attractors in latent space, the dual observation
can be made: the identification of sources that experienced large movements in latent
space toward any of the previously identified attraction poles. These are sources that
have been strongly influenced by external forces, for example in the content consolidation
phase after an acquisition. The detection of these phenomenon is done relative to a
specific pole of attraction. In order to track the distance to a pole over time, we start
with a set of seed sources. An obvious choice is to study the top-3 closest sources from
the poles, detailed in Fig. 4.11 - (right). The ranking of sources having undergone a large
shift can once again be made systematic. In particular, we rank sources according to
the largest difference in distance to the pole between two consecutive time steps. The
distance to the centroid of these sources yields the distance maps shown in Fig. 4.12 for
the top-4 sources with the largest shifts.

4.11 Discussion

The structure of the news landscape is in a constant state of flux. It is often difficult to
follow the evolution of its organizational structure and even more so to determine what
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influenced these changes. In this section, we discuss how the fluctuations of broadcast
patterns can be informative about channels’ organizational structure. We report that
important changes in this structure are identifiable through abrupt shifts in content
diffusion, and showcase the models’ ability to systematically highlight this variability in
the coverage space.

4.11.1 Observing the effects of ownership on the media landscape

The selection and diffusion of events by individual news channels could be influenced by
a large number of factors, from obfuscated economic drivers to convoluted distribution
schemes. Theoretically, the external pluralism assumption would prevent large-scale
organizational changes in news outlets from inducing significant shifts in coverage. Our
findings question the validity of this assumption.

We provide evidence that ownership can indeed exert its influence on the content being
distributed downstream. The most distinct and recurring pattern pointing to this conclu-
sion is the subsequent alignment of coverage patterns after an outlet’s acquisition. Some
examples are clearly observable in Fig. 4.10, such as the acquisition of 14 stations from
the Bonten Media Group by Sinclair Broadcasting Group (SBG) in a deal completed
on September 1st, 2017. XVIII Visible through the lens of a decrease in the average
inter-source distance of the Sinclair stations, this consolidation of coverage can also be
tracked in the embedding spaces’ visualization in Fig. 4.10 - (left). This can be observed
in Fig. 4.12 as well, albeit with a slight delay with a sharp decrease in the distance
from channels like wcyb.com, wcti12.com or krcrtv.com to the center of the Sinclair
attraction pole (#8 in Fig. 4.11).

We observe similar behaviors during others large-scale acquisitions, for example in the
purchase of a group of assets from the Morris Publishing Group by GateHouse in August
2017. XIX Other observations of this phenomenon include the sudden increase in coverage
similarity of Gatehouse-owned stations around April 2017 (see Fig. 4.12 - right). While
not directly correlated to a specific merger or acquisition, these movements could hint at
a company-wide content alignment campaign.

Such observations also support the convergence hypothesis. The visualization in Fig. 4.10
exemplifies this effect: many of the sources that are present in one of these group’s media

XVIIIhttps://tvnewscheck.com/article/103465/sinclair-buying-bonten-stations-for-240m/
XIXhttps://www.poynter.org/news/gatehouse-acquires-morris-publishings-11-daily-newspapers
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portfolios start out from vastly different regions in embedding space. This is visible
in their high initial average cosine distance in Fig. 4.10 - (right) and their dispersed
placement in Fig. 4.10 - (left). In the last frame however, these same sources form highly
coherent, tight groups in embedding space - and in the visualization. Despite the fact that
this case-study back-tracks the evolution of sources across time, explaining the density of
the last frame, their convergence points to a unification of coverage patterns over time.

4.11.2 Detecting highly influential broadcast groups

News outlets present complex content distribution schemes, as is particularly visible in
television broadcasting: the on-air content is produced by a wide range of affiliates, from
well-known household names to in-house teams, XX being distributed through channels
with another, often different set of owners. While the consolidation of broadcast material
for economies of scale or investigative resources for economies of scope can be economically
beneficial for the broadcaster, it is also potentially deceitful for a news consumer, as the
exact origin of the broadcast content is not always known. By extension, the unique slant
it carries in its selection of news is not clearly obvious. Not only does it carry is unique
biases in terms of the way in which it covers the content, a topic not discussed in this
work, but it also has the ability to over-emphasize or under-report certain events with
little accountability.

This influence on coverage can be observed when interpreting the agglomeration dynamics
highlighted by Fig. 4.11. Information sinks can be highlighted through the discovery of
attraction poles in the embedding space.

Such sets of highly accretive sources, i.e. sources that draw other sources to align with
their coverage, cluster neatly into large broadcast entities, some of which have been
mentioned before. Fig. 4.11-(right) presents these groupings more exhaustively. The
three large media groups chosen for analysis in Fig. 4.10 are present (Gray Television
Inc., Sinclair Broadcasting Group and GateHouse Media Inc.), along with several other
large players in the American media landscape.

Previous studies [112] and [11] have studied differences in terms of the types of content
covered in television and newspapers outlets, finding that TV stations cover proportionally
more “global” news than newspapers. Television is traditionally thought to be more
impacted by media consolidation for this reason: content is costly to produce, hence it
makes sense for large entities to share their footage at scale. In our model, this should
intuitively lead to the flagging of television conglomerates as the strongest attractors,

XXA study conducted by Pew Research in 2014 already demonstrated a steady decline in locally produced
content, with 1 in 4 local news stations not producing any of their own content [92].
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with high content similarities. However, we observe in Fig. 4.11 that all mediums are
represented and impacted by the convergence phenomenon. This could hint to the effect a
convergence of mediums can have on the media landscape, with the efficacy co-ownership
regulations being jeopardized by the all-encompassing nature of online content delivery.

4.11.3 Interpretation of the temporal consistency

None of this qualitative analysis would be possible without a temporal consistency
constraint on the embedding space. Without such stability, the model could take advantage
of an unnecessarily large number of degrees of freedom to align sources. In consequence,
it would converge to very different solutions from one epoch to another. Due to the
stochastic nature of the procedure, coverage changes would be rendered indistinguishable
from optimization artifacts (see Fig. 4.4). By penalizing sources that deviate from their
previous positions, only significant coverage changes can force a source to migrate to
a different region in space. In other words, in order to provoke a displacement, the
channels’ coverage should differ enough from the previous time step to outweigh the
temporal constraint. If this condition is met, the source will converge towards a different
neighborhood that better fits its coverage patterns, typically getting closer to similar
channels.

This variability in time can be tuned through the regularization parameter λT , as detailed
in Section 6.5, providing a way to highlight more global dynamics - in the case of strong
regularization - or more individual variations - with weak regularization. We also observe
that the constraint provides predictive gains. This can be explained by the accumulation
of knowledge about sources over time. This last hypothesis is corroborated by the pattern
observed in Fig. 4.9, in which the accuracy reaches its maximum after the first few epochs
before stabilizing until the end of the considered period.

4.12 Conclusion

In the first part of this chapter, we studied the presence and nature of selection biases
in static news datasets. By treating the event selection performed by news channels
as a collaborative filtering task, we reported distinct and interpretable communities of
news sources by learning from their coverage alone. The learned representations shed
light on many real-world relationships between news entities, which in turn influence the
coverage of the news by these sources. Notably, we detected geographic dependencies,
conserving even regional links, as well as same-medium sources without the use of side-
information. We also report the ability to extract non-trivial relationships, such as
affiliations, broadcast syndications, and even the inclusion of sources in a corporate
network. The identification of these non-obvious structures is an important step towards
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the transparency needed to restore public trust in the reporting process. We further
leveraged the learned representations to propose a re-ranking procedure producing more
diverse and egalitarian coverage of the news which preserves a larger proportion of the
most discussed events compared to a simple selection of highly active sources.

In the second part of this chapter, we proposed an approach to keep the embedding
space of the model consistent over successive time slices of a news dataset. We show that
this dynamic embedding model can outperform static approaches thanks to its ability to
propagate knowledge obtained from former time slices to the current prediction step. We
present this model as a framework in which to reason about the evolution of the media
landscape, and that enables the analysis and the visualization of important shifts in the
media ecosystem, at a large scale but also the individual source level. We demonstrate
the potential of the method on several channel acquisition campaigns. We show drastic
post-acquisition content alignment in channels belonging to large, well-known broadcast
conglomerates. This corroborates the hypothesis of deep consolidation of broadcast
material inside news networks. Finally, we automate this investigative process and
explore several strategies to systemically identify abrupt variations in the news ecosystem,
fingerprints of sharp changes in media programming.
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5.1 Introduction

At its inception, the economy is assumed to have been barter-based [21]. Money later
appeared as a medium of exchange and a measure of value, making the pricing of assets an
easier task, and shaping the economic practices of today. With the advent of widespread
digital communication, barter has re-emerged into the lives of 21st century consumers [43].
The idea on which this revived economic model rests is that of extending the lifetime of
goods, in order for them to serve the purposes of multiple owners, or to give users access to
obscure or difficult-to-obtain items. Numerous platforms are dedicated to swapping items
of various categories, such as swapacd.com, swapadvd.com, readitswapit.co.uk,
bookmooch.com, etc.

However, the aforementioned platforms are remarkably ad-hoc and lack mechanisms to
recommend trades,I requiring that users manually search for compatible trading partners.
Since the main prerequisite for barter is a double coincidence of ‘wants’ (i.e., that both
parties desire each other’s goods at the same time) such an endeavor becomes challenging.
Given the recent shift towards green practices, a category in which bartering naturally
fits, this problem presents high potential in terms of improving consumer experience.
However, little research has been done on methods for recommending trades within an
online bartering platform.

In order to build a recommender system for bartering platforms, eligible trading partners
need to be found within the user base. Each platform user has a public ‘wish list’
comprising items they wish to acquire, and a public ‘give-away list,’ containing items to
be given away in exchange for the desired ones. Initial work done on the problem [2, 1, 119]
proposes ‘strict’ matching criteria between explicit user ‘wants’ and ‘haves,’ rendering a
pair of users trade-compatible only if their reciprocal wish list/give-away list intersections
are simultaneously non-empty. Surprisingly, we find that such an approach is highly
ineffective on real-world datasets collected from online bartering platforms, as the double

IThere exist some other platforms that employ a trade matching method, like barterquest.com [15],
but their data was inaccessible. Their matching method, however, does not involve user preference
modeling.
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Potential transactions

Tom’s wish list

Heineken Duvel Brewdog

Duvel

Chimay

Heineken

Tom

Jack

Jane

Rick

Jack’s wish list

Jane’s wish list

Rick’s wish list

Figure 5.1 – Illustration of the problem setting in which a user (Tom) can exchange an
item with owners of other items available on the platform (assuming the recipient has a
reciprocal interest in the item being given away).

coincidence of ‘wants’ and ‘haves’ is very low, with fewer than 5% of users being eligible
to receive recommendations. Moreover, real data reveals that the items being transacted
are not always listed in users’ wish lists prior to the transaction, suggesting the need for
a system that can offer ‘serendipity.’ Such a system would be able to recommended items
that a user likes, but which are not explicitly mentioned among their preferences, either
because the user omitted them when creating the wish list, or because they are unaware
of their existence. In summary, we find that existing approaches generally do not yield
recommendations that are consistent with observed transactions, possibly suggesting that
users are guided by criteria other than those revealed by wish list analysis.

In this chapter, we propose a model based on Matrix Factorization [62] that estimates
cross-preferences between potential trade partners, or more precisely the strength of the
reciprocal interest that two users have for each other’s items. The end goal of our system
is to discover, for each pair of candidate users, a pair of items that are most likely to be
exchanged between them; swap recommendations are then made by computing the sorted
list of partner-item combinations in order of reciprocal interest.

We build an initial model following traditional matrix factorization approaches, which
we then extend by incorporating social and temporal dynamics, as we find that users
develop trust in trading partners through repeated transactions, and they tend to trade
in bursts of repeated activity. In order to capture these effects, we propose a model that
is both socially- and temporally- aware, showing substantial improvements over previous
matching-based approaches and ‘vanilla’ matrix factorization.

Another contribution of our work is the introduction of three large scale real-world
datasets, composed not only of wish lists and give-away lists, but also of actual transaction
histories. This allows us to qualitatively evaluate our approaches, by testing how well
they rank transactions which have actually taken place against others that have not. This
contribution is very important, as the user behavior revealed by the data is quite different
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from what has previously been assumed about bartering platforms.

We test the quality of the produced recommendations against the ground truth of the
collected bartering histories, a form of evaluation that has surprisingly been missing in
previous works on bartering [2, 1, 119, 88, 69]. We compare against a state-of-the-art item
exchange method [119], and discuss its shortcomings on concrete examples of real-world
bartering datasets. Our approach deals with several drawbacks of previous methods, by
tackling the problem in a more flexible way through the use of user preference modeling,
rather than relying on the incomplete truth provided in users’ wish lists. This technique
allows us to rank all the swap opportunities that a user has in the system, thus providing
more choice, as well as serendipity.

5.2 Related work

The most closely related topics of related work to ours are (a) those that study bartering
and exchange in general, and (b) those that model the latent preferences of users toward
items. We discuss each in detail below.

Early works on optimal barter exchange strategies. The study of algorithms for
exchange markets [4] was, at its inception, inspired by the kidney exchange problem
[105, 104]. In order to improve the number of patients receiving kidneys despite having
incompatible living donors, algorithms have been developed to determine cross compatible
patient-donor pairs from the regional pool of transplant cases. The problem is solved by
Roth et al. [105], using the The Top Trading Cycles and Chains mechanism. Another
relevant work is that of Haddawy et al. [42], as it solves the problem of determining a
balanced matching of buyers and sellers in the context of barter trade exchanges. The
trades are managed by an intermediary, and parties are matched based on supply and
demand information, as well as their credit in terms of a private label currency. The
problem is modeled as a minimum cost circulation on a network. Lastly, the work of
Mathieu [77] tackles the problem of finding bartering rings in an e-marketplace, based on
similarity matching of seek and offer queries, expressed as weighted trees.

The Circular Single-item Exchange Model (CSEM). Determining exchange cycles
in a bartering network is a more general problem than that of pairwise kidney exchange.
As opposed to people receiving and donating one item (a kidney), in a traditional exchange
market users have multiple items to give away, and potentially multiple incoming items.
Abassi et al. [2, 3] model this setting as a directed graph, where nodes represent users
and edges are labeled with item identifiers. The edge labels are determined by the wish
lists and give-away lists of the users. A directed cycle in this graph represents a potential
transaction (where each user gives away the item to the subsequent node, while receiving
another item from the preceding node).
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The Binary Value Exchange Model (BVEM). A different perspective is taken by
Su et al. [119], who solve the item exchange problem for cycles of length two (i.e., swaps).
The system is designed to be used in competitive online environments such as online
games with a hefty real-time update schedule. Moreover, each item is associated with a
user-defined price, and the value to be optimized is the maximum gain of each user.

Matrix Factorization (MF) is a popular technique in recommender systems. MF
estimates unobserved user preferences from a sparse interaction matrix R ∈ R|U |×|I|,
where U is the user set and I is the item set, which is low-rank approximated [52]. MF
techniques project every user and every item into a common low-dimensional space, such
that their dot product approximates the observed interactions, i.e., the ‘compatibility’
between a user and an item.

Later, when considering social relationships and temporal dynamics, we mainly build
upon established ideas that extend MF to incorporate social regularization [71], and
temporal dynamics in recommender systems [60].

Bayesian Personalized Ranking (BPR). Bayesian Personalized Ranking is a pairwise
optimization procedure proposed by Rendle et al. [97], that directly optimizes a ranking
measure (AUC). This technique naturally deals with implicit feedback, as it only considers
‘positive’ user-item interactions, while not differentiating between negative observations
and missing values. The intuition here is essentially that users prefer items they have
observed over the ones they have not. This pairwise optimization technique can be used
in conjunction with various model classes, such as Matrix Factorization, or Adaptive
k-Nearest-Neighbors [97].

5.2.1 Key Differences

Our work is related to BPR in the sense that we also aim to discover latent factors in order
to optimize ranked lists of recommendations in terms of the AUC. In terms of exchange
models, BVEM comes the closest to the present problem formulation. Firstly, BVEM
is also concerned with recommending swaps, as opposed to CSEM where exchange cycles
are longer. Secondly, BVEM recommends a list of swaps for each user, sorted decreasingly
according to user gain in terms of item price. Or approach also produces recommendations
as sorted lists, but uses a different scoring function, which is based on the estimated
user preference. The key difference, however, is that BVEM’s recommendations are still
based on exact matches between the wish lists and the give-away lists of the two partners,
which is too restrictive on real datasets, as we show in the following section.

64



Personalized Matching Chapter 5

Platform
user
count

item
count

transaction
count

% of users w/
at least one

swapping partner

Bookmooch 84,989 2,098,699 148,755 0.2%
Ratebeer 2,215 35,815 125,665 65.9%
/r/gameswap 9,888 3,470 2,008 -
Swapacd 4,516 244,893 - 0.5%
Swapadvd 7,562 91,241 - 0%
ReaditSwapit 33,151 94,399 - 4.2%

Table 5.1 – Statistics for our collected platform data. The rightmost column shows the
percentage of users that have at least one trading opportunity, according to their public
lists. On most platforms, users have very few eligible trading partners.

5.3 Data Analysis

To evaluate our approach, we first conducted an empirical study by collecting the following
datasets:

1. SwapacdII is a CD exchange platform.

2. SwapadvdIII is a DVD exchange platform.

3. ReaditSwapitIV is a book exchange platform.

4. BookmoochV is a book exchange platform.

5. RatebeerVI is a beer exchange (and rating) platform.

6. /r/gameswapVII is a self-organized subreddit made for users to exchange video
games.

Basic statistics of the datasets are shown in Table 5.1. Of the six datasets, 4, 5 and 6
also have transaction histories, and are thus our main focus throughout the paper.

The platforms have object type specificity. It is worth noting that each platform
is oriented towards only one kind of item (books, games, beers). This suggests that the
value of items does not vary significantly, as particularly valuable objects (e.g. Leonardo
da Vinci’s Codex Hammer) would be very unlikely to be listed for exchange. Therefore, a
coarse approximation could say that, with few exceptions, most objects on such platforms

IIhttp://www.swapacd.com
IIIhttp://www.swapadvd.com
IVhttp://www.readitswapit.co.uk
Vhttp://www.bookmooch.com

VIhttp://www.ratebeer.com
VIIhttp://www.reddit.com/r/gameswap
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Figure 5.2 – The distribution of item list sizes and item popularity approximately follows
a power-law for the three considered platforms (top: Bookmooch; middle: Ratebeer;
bottom: /r/gameswap). The CDF plots on the right show user activity in terms of the
number of swap transactions each user participates in. The presence of power users, who
account for a majority of the transactions, is apparent on all three platforms.

are of comparable value. There exist, however, bartering platforms where exchange is
possible between items of different categories (e.g., a book for a microwave). We have come
across a number of such platforms during our research, for example www.swapz.co.uk
and www.barteronly.com, but their data was not accessible.
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All the datasets were obtained through crawling the corresponding websites, except
for Bookmooch, which constantly exposes an updated snapshot of its database. For
Ratebeer and /r/gameswap, the transactional information was extracted from textual
submissions of users, containing information about their completed transactions (i.e., the
transacting parties, along with the beers and games they exchanged, respectively).VIII

The datasets are long-tailed. The distribution of the size of users’ wish lists and
give-away lists, as well as the popularity of each item (both in terms of how many users
own it and of how many users desire it), are depicted in Fig. 5.2, as are the Cumulative
Distribution Functions for the number of transactions that each user has taken part
in (right column). These quantities appear to approximately follow power-laws, and
suggest the presence of ‘power users’ [80] on the platforms. Swapacd, Swapadvd and
ReaditSwapit, yield similar results, but are omitted due to space considerations.

The fact that these quantities follow power-laws is not surprising, but it partly explains
our following observation that there is little coincidence between ‘haves’ and ‘wants’
among real trades—while the platforms have many users, there are long tails of rare items
among small wish and give-away lists.

Pairs of ‘eligible’ swapping partners are very scarce. Two users are eligible
swapping partners if each of them desires one or more items in the other’s give-away list.
The percentage of users having at least one eligible swapping partner is summarized in
Table 5.1, for the considered snapshots of the swapping platforms. The table contains
no entry for /r/gameswap, because the organization of the information on the threads
rendered us unable to extract an exact snapshot of all the users’ ‘wants’ and ‘haves’ at a
fixed point in time.IX

One may note in Table 5.1 that the shortage of eligible swapping partners proves to be a
problem even for large user bases, like that of Bookmooch. An exception to the rule
is seen for Ratebeer, which may be explained by the fact that the platform is several
years older than the others, and has a global community of users.

An implication of the aforementioned scarcity is that approaches that match users
exclusively according to wish list and give-away list content, such as CSEM [2] and
BVEM [119], do not perform well on this data, yielding too few (or zero) recommendations
per user. In practice, as we show next, many trades take place between users who are not
strictly ‘eligible.’

VIIIAll the datasets are available at http://swapit.github.io/.
IXFor example, if uj posts their item lists on the thread at time t, and uk does the same d days later,

one may be wrong to assume that uj ’s preferences have not changed in the meantime (they may have
exchanged items, rendering the lists stale, because the system has no way of updating them). Therefore,
a snapshot taken at time t+d can only include the subset of users who posted on the thread at that time.
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Figure 5.3 – Evolution in popularity of the top-5 beer styles (using the Ratebeer dataset).

Preferences are not exhaustively listed in wish lists. Since Bookmooch surfaces
weekly database snapshots, it is possible to evaluate the extent to which books that a user
receives while trading on the platform were present in their wish lists before the transaction
took place. Using these snapshots from Bookmooch, we computed this percentage to
be, on average, 33.2% per user. This directly implies the need for a recommender which
can infer a user’s preferences toward items which they may not be aware of (or did not
explicitly declare in their wish list), and may instead discover serendipitously. Critically,
this issue is one not addressed in previous work.

Users trade multiple times with the same peer. The intuition that pairs of users
who successfully traded in the past are likely to trade again is supported by an observation
we make about transaction events. On average, a pair of users trades 1.35 times on
Bookmooch, 3.56 times on Ratebeer and 1.19 times on /r/gameswap. This suggests
that social ties may play an important role in determining the trading partner of a user,
and that pairs of users who successfully function as trading partners are likely to trade
again in the future.

Item popularity and trade frequency are time dependent. A highly dynamic
environment such as that of a bartering platform is subject to time-dependent trends. In
Fig. 5.3 we observe how beer styles evolve in popularity, measured as their trade frequency
over time. For example, we see how IPAs steadily gain popularity, surpassing all the
other styles by the year 2013, whereas before that Imperial Stouts were the most popular
among the beer styles being traded.
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Figure 5.4 – Cumulative frequency plot of the transactions performed on Bookmooch.
Note that while there is a core of power users who perform multiple transactions per day
(i.e., ∆t < 100), most of the items are swapped infrequently (i.e., a few times per year).

Fig. 5.4, on the other hand, suggests a different type of time-dependent behavior. Every
point corresponds to a transaction, focused on either the users transacting the item (top
plot), or the item being transacted (bottom plot). The Y-value is given by the number of
days passed since the particular user previously transacted (respectively the number of
days passed since the last time the same item was transacted on the platform). Fig. 5.4
shows the existence of items and users more actively involved in trading, as opposed to
others with less frequent interaction.

5.3.1 Limitations of Previous Work

The main disadvantages of the previously mentioned approaches come from the restrictions
on which they rely. For example the Circular Single-item Exchange Model (CSEM) [2]
requires that a user and their item be recommended to only one user at a time; this is
disadvantageous as it reduces the probability of an item being traded. Such a restriction
would accentuate the scarcity of eligible swapping partners, as a recommendation of an
item to a user would be further conditioned on whether the same item has already been
recommended to somebody else. Ideally, an item should be recommended to as many
users as are potentially interested.

While the Binary Value Exchange Model (BVEM) [119] more realistically models the
trade recommendation problem, in order to be tractable it requires an assumption that
the length of the item lists be bounded to some small number (say, less than 50). This is
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β = 0.6 β = 0.7 β = 0.8 β = 0.9

Total recommendations 113 111 110 110
Distinct users 155 152 150 150

Table 5.2 – Number of BVEM recommendations for various values of the price matching
parameter β. Note that each recommendation is made to two distinct users.

contradicted by our findings across all collected datasets, showing that the size of the item
lists varies between one and several thousand items, approximately following a power-law.
This assumption, however, only affects time performance rather than the quality of the
recommendations.

The most important drawback—common to both previous approaches—is that they only
consider explicit user preferences, which are shown to be far from complete. Neither
BVEM [119], nor CSEM [2] make use of the implicit preference information encoded in
users’ transaction histories, but base their recommendations solely on the items which
a user explicitly lists in their wish list. Not only does this prevent serendipitous item
discovery (which makes up for a majority of trades in real transaction histories), but
it also implies a much too rigid definition of ‘eligible swapping partners,’ yielding very
few trade opportunities (as seen in Table 5.1). A system aiming to pair users based on
matching wish lists and give-away lists can only make recommendations to an extremely
limited number of users in these datasets.

To support the latter statement, we tested the performance of BVEM [119] on the
Bookmooch dataset, as it is the only one providing item pricing information as required
by the model. Table 5.2 summarizes the number of recommendations produced using
this approach for a dataset of 84,989 users, based on a snapshot from September 2015.
Extremely few users (a maximum of 155) receive recommendations under BVEM, due
to the scarcity in the coincidence of ‘wants’ (see Table 5.1). Having recorded the trade
history for the four months following the September snapshot, we observed that 3,864
distinct users received books via trades, a much higher number than that of users being
made recommendations. Also, the total number of recommendations made system-wide
is very low (with a maximum of 113), compared to the size of the user base; this effect
would be even more drastic on Swapadvd, where BVEM would fail to make any
recommendations, as there are no pairs of eligible swapping partners.

Moreover, we assessed the predictive power of the recommendations produced by BVEM,
with respect to the transactions recorded during the four months following the database
snapshot. None of the users who were predicted to interact based on BVEM’s matching
have actually exchanged any item in the concerned time frame, therefore yielding zero
recall.
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CSEM with cycles of length two [2] and BVEM [119] are particular instances of a
more general approach, where matching users depends on wish list and give-away list
intersections, and the problem boils down to finding the maximum matching on a bipartite
graph in which nodes represent users, and edges exist between eligible swapping partners.
Edges can further be weighed according to various quantities to be optimized platform-
wide (e.g. an aggregate reciprocal preference score for the involved users). Computing a
maximum weight matching on this graph retrieves an optimal set of user pairs with respect
to the previously established criterion. Such an approach can at best produce a number
of recommendations equal to the number of users having at least one eligible swapping
partner (see Table 5.1). Also, a user may receive at most as many recommendations as
they have eligible swapping partners. Applying any such technique to the aforementioned
datasets would yield few recommendations, and generally few options to any user receiving
a recommendation.

Our observations point to the need for a more flexible approach, which better models user
preferences, and is capable of surfacing recommendations to a larger fraction of users.

5.4 Model

5.4.1 Problem Definition and Notation

The setting of the bartering platforms presently considered is described by a set of users
U = {u1, u2, . . . um}, and a set of items I = {i1, i2, . . . in} known at any time t. Each
user uj has a wish list Wj and a give-away list Gj , both of which are available for all
members to see. Wj is a subset of I containing items which uj wishes to obtain, while
Gj is a subset of I with items to be given away by uj .

The key difference between bartering compared to traditional recommendation is that
users are both suppliers and consumers. Thus, every item ik has an associated owner
uj , in whose give-away list Gj it appears, and a set of users who desire it. Note that
there might be items that are listed as give-aways but are not wished for by any user,
just as there may be items that are wished for but not available. Also, each user uj has
an associated history of transactions, which we will denote by Hj . Since transactions are
bidirectional, we define Hg

j to contain all the items that uj gives away in transactions,
and similarly, Hr

j to be all those which uj receives via transactions:

Hg
j = {(ul, ij→l) |uj gives item ij→l to ul}

Hr
j = {(ul, ij←l) |uj receives item ij←l from ul}

In the following sections, we use the notation ŷujik to denote the estimate of user uj ’s
preference for item ik.
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5.4.2 Modeling Basic User Preferences

The first goal of our model is to estimate a user’s preference for an individual item. As our
data contains wish lists and past transactions, we use them as implicit feedback signals
[84] when building the preference model.

Following the approach proposed by Hu et al. [52], the user-item interaction matrix R is
built based on implicit feedback signals as follows:

rujik =

{
1, if ik ∈Wj , or (∗, ik) ∈ Hr

j

0, otherwise

(i.e., 1 iff the item belongs to uj ’s wish list, or there exists a past transaction in which uj
receives ik).

We want to model the preference ŷuj ,ik that a user uj exhibits toward item ik. We start
with a low-rank model of users and items:

ŷuj ,ik = pTujqik (5.1)

where puj and qik are vectors describing the ‘preferences’ of the user uj and the ‘properties’
of the item ik. Although we defer details of our optimization procedure until Section 5.5.1,
our goal is that ŷuj ,ik should be large if and only if the user is ‘compatible’ with the item.

As this formulation of the optimization problem is the simplest one, we will reference it
as a baseline during our experiments.

5.4.3 Incorporating Social Bias

The effect of incorporating social information into collaborative filtering models has been
shown to improve prediction accuracy and alleviate data sparsity (e.g., Ma et al. [71],
[29]). As discussed in Section 6.3, users tend to repeatedly trade with a selected subgroup
of peers on the observed bartering platforms, suggesting that their choices have a strong
social (or simply trust) component. This further points to the fact that a plain low-rank
decomposition of the interaction matrix R as in Section 5.4.2 cannot fully capture the
dynamics of users’ behavior. Thus, we incorporate a directed social bias S ∈ R|U |×|U |

as part of the predictor where sujul models the bias for user uj toward user ul. The
extended model to be optimized is described as follows:

ŷuj ,ul,ik = pTujqik + sujul (5.2)

where the preference score ŷuj ,ul,ik is now in terms of an item ik and a user ul with whom
the item is being traded. Note that this relation is asymmetric, as the bias from uj toward
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ul may differ from the bias from ul towards uj .

Also note that the optimization remains tractable after adding the social bias term, as in
practice users trade with a limited number of peers, rendering the matrix S sparse.

5.4.4 Adding Temporal Dynamics

User tastes may shift over time, or vary periodically (for example, following certain
holidays). Temporal dynamics have previously been exploited in collaborative filtering
settings, e.g. to build temporally-aware models of preferences on Netflix [60]. Motivated
by the observations made in Section 6.3, we extend our model from Eqn. 5.2 to capture
the temporal dynamics of bartering platforms.

There are two key aspects we wish to consider. Firstly, the model should capture the
activity ‘density’ of users. For example, a user with high activity level at time t is
probably more likely to trade at time t + ε than a user who hasn’t traded during the
same period. Secondly, the model should capture seasonality, i.e., that certain items tend
to be more frequently requested during specific periods of the year (e.g. Christmas beers
at Christmas). The activity level of users and the frequency with which items are traded
can be observed by analyzing the timestamps available in the transaction histories of all
three datasets.

In order to work with a smooth function, we approximate the trade time density using a
Kernel Density Estimator [110]. KDE is a non-parametric method for estimating the
Probability Density Function from a set of i.i.d. samples, under weak smoothness assump-
tions. Eqn. 5.3 represents such a density estimator for the sample set {x1, x2, . . . xn}:

δ(x; x̄) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K

(
x− xi
h

)
(5.3)

For our purposes, we set K(x) = 1√
2πexp(−

1
2x

2), i.e., the Gaussian kernel [110, 74].
Parameter h represents the bandwidth, and can be set according to Silverman’s rule of
thumb [116], i.e., h ≈ 1.06σ̂n−1/5, where σ̂ is the standard deviation of the samples. This
quantity is then incorporated into our predictor by modulating it with a parameter per
item τik for item ik, and a parameter τuj for user uj , which are to be learned. Eqn. 5.4
represents our final model, which includes the social bias and the temporal terms:

ŷuj ,ul,ik = pTujqik +

social bias︷︸︸︷
sujul + τujδ(t; t̄uj ) + τikδ(t; t̄ik)︸ ︷︷ ︸

temporal dynamics

(5.4)
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where t is the timestamp of the transaction sample, and t̄uj and t̄ik are time points of
activities for trades involving user uj , and item ik (respectively).

5.4.5 Modeling Reciprocal Interest

In a bartering context, recommendations need to be addressed not just to a user, but to
a user and each of the items that they own. This reflects the idea that for each owned
item, a user may have different swapping opportunities. It follows that for each (uj , ik),
where ik is owned by uj , we will generate a ranking of all possible pairs (ul, im), where ul
owns im, according to some preference score. It is worth stressing that in this context, uj
will have a different preference score for item im owned by ul, than for the same item
owned by un 6= ul. In order to model the bidirectionality of user preferences within each
pair of potential swapping partners, we will aggregate the preference of uj for im and
the preference of ul for ik into one meaningful score. Note that we do not impose the
constraint that im should be in Wj , nor that ik belongs to Wl, so as to allow serendipity.

We evaluate potential transactions by defining an aggregate score given by a function
f : R2 → R. In the following, we consider uj to be the owner of ik, and ul to be the owner
of im. We want to evaluate the strength of the cross preference within the (uj , ul) pair,
with respect to items im and ik (respectively). We therefore aggregate interest scores into
a single value, which quantifies the ‘strength’ of the pair’s potential interaction. For this
purpose we use the arithmetic mean:

ŷuj ,im,ul,ik = f(ŷujulim , ŷulujik )

=
1

2
(ŷujulim + ŷulujik )

(5.5)

(the basic idea of the reciprocal interest model is depicted on the left). In this case, a
strong preference from one user compensates for a potentially weaker one coming from
the other. We also considered other aggregating functions, such as the harmonic mean
[91], but found that the arithmetic mean was consistently the best performing one.

5.5 Experiments and Discussion

5.5.1 Parameter Learning

Since our input data consists of implicit preference signals, our methods’ performance
should be oriented towards correctly ranking items relative to each other, rather than
accurately predicting missing values from the interaction matrix R. The BPR optimization
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Bookmooch /r/gameswap Ratebeer

(1) MF 0.758 0.790 0.824
(2) MF+B 0.798 (+2.0%) 0.842 (+5.19%) 0.892 (+6.79%)
(3) MF+B+S 0.849 (+9.15%) 0.863 (+7.31%) 0.962 (+13.84%)
(4) MF+B+T 0.938 (+18.06%) 0.890 (+9.99%) 0.969 (+14.55%)
(5) MF+B+S+T 0.958 (+19.98%) 0.903 (+11.29%) 0.983 (+15.87%)

Table 5.3 – Results of our approach in terms of the AUC (higher is better): The
best performing method on each dataset is boldfaced. MF (1) stands for plain Matrix
Factorization used as a baseline, B (2) stands for the bidirectional model, S (3) stands
for the social bias term and T (4) stands for the temporal dynamics term.

technique introduced by Rendle et al. [97] is designed for this type of optimization problem.
Following the notation of Rendle et al. [97] the update rules for this setting are defined
as

θ ← θ + α · (σ(−x̂ujikim)
∂x̂ujikim
∂θ

+ λθΩ
′(θ)), (5.6)

where x̂ujikim = ŷujik − ŷujim , and θ represents the set of parameters to be learned. Ω(θ)

denotes a regularizer, and in our case we opted for `2 regularization, i.e., Ω(θ) = ‖Θ‖22.

The term x̂ujikim denotes the difference in preference score of user uj for two items ik
and im. Should the difference be negative, the user is assumed to prefer im over ik,
and should it be positive the user is assumed to prefer ik over im. In other words, the
framework optimizes the fraction of times that the model ranks a traded item higher than
a (randomly sampled) non-traded item, which approximates the AUC [97]. The update
from Eqn. 6.5 is repeated with a large number of random samples until convergence.

The item preference terms ŷujik and ŷujim in the above can be adapted with any of the
previously described models (Sections 5.4.2—5.4.5).

5.5.2 Evaluation Methodology

Our datasets contain one-for-one item exchanges between user pairs, directly from the
transaction history. We express such transactions as quadruplets (uj , ik, ul, im), where uj
owns ik and ul owns im, and define I+ to be the set of all positive interactions extracted
from the considered transactions:

I+ = {(uj , ik, ul, im)|(ul, im) ∈ Hr
j ∧ (uj , im) ∈ Hg

l ∧
(uj , ik) ∈ Hr

l ∧ (ul, ik) ∈ Hg
j }
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Our evaluation set E consists of triplets (uj , im, in), where (uj , ∗, ∗, im) ∈ I+ means that
we have observed a positive signal from user uj towards item im, while in is randomly
chosen from the set of items which do not belong to either Wj or Hr

j , meaning that uj did
not express a preference towards it. A model that performs well should rank unseen items
which received positive feedback from uj (like im) higher than items with no observed
interaction (like in). We formally define E below:

E =
{

(uj , im, in)|(∗, im) ∈ Hr
j ∧ in /∈Wj ∧ (∗, in) /∈ Hr

j

}
.

To assess the effectiveness of our approach, we select the widely used metric Area Under
the Curve (AUC) [113] as our measure of performance:

AUC =
1

|E|
∑
(uj ,im,in)∈E

1(ŷujim − ŷujin) =
1

|E|
∑
(uj ,im,in)∈E

1(2x̂ujimin), (5.7)

where 1 is the Heaviside function (the latter formula uses the notation introduced in
Section 5.5.1). Negative user-item pairs (uj , in) are randomly sampled from a set of
unobserved interactions for user uj . This metric shows how well the model ranks items
that the user has actually received from transactions that are withheld during training,
versus items that the user has not interacted with, or does not explicitly desire.

Note that above we have expressed the AUC in terms of our simplest preference model
(ŷujim), in order to avoid excessive notation. However, the above expression can be
adapted to include any of the previously described models.

5.5.3 Experiments

Experimental Setup. Experiments were performed on a single machine running Matlab
R2015b. Following the methodology proposed by Rendle et. al [97], the hyperparameters
of all the described methods have been tuned based on the expected error estimated
on a randomly drawn initial train/test split. To create the split, positive samples were
randomly selected from I+ for each user, and set aside for testing. The negative samples
from the triplets of E were randomly sampled on the fly. Afterwards, the hyperparameters
are kept constant during the testing phase, where a new train/test split is drawn at every
round in the same fashion. The results in Table 5.3 are averaged over 5 rounds. We found
that the optimal models have 40-dimensional latent factors for both /r/gameswap and
Ratebeer, and 100-dimensional factors for Bookmooch.

All code is available at http://swapit.github.io

Results. Table 5.3 summarizes the performance of the various instances of our approach.
On average, our method outperforms ‘vanilla’ matrix factorization by 15.71% across the
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MF
MF+S
MF+S+T
Query

Pokémon Red/Blue
Splatoon
Mario Party

Gex (PS1 95)
Castelvania (PS1 99)
Fatal Fury (NeoGeo 91)

NFL Head Coach 09
MLBPA Baseball
FIFA Soccer 08

GTA V
Metal Gear Solid
Dragon Age Inquisition

Figure 5.5 – t-SNE [126] embedding of items’ latent factors from the /r/gameswap dataset.
Colored dots show the projection of recommendations in Table 5.4.

three datasets we consider. Each of the model extensions (bidirectionality, social bias, and
temporal dynamics) makes a substantial contribution to the performance of our method,
yielding cumulative performance gains of 4.66%, 5.44%, and 5.61% (respectively). AUC
scores of the final model (MF+B+S+T) are above 0.9 on all three datasets.

In summary, a successful model for generating trade recommendations for online bartering
requires flexibility in modeling users’ preferences; approaches that are too ‘rigid’ (e.g.,
which use strict matching criteria) are unsuccessful, as discussed in Section 5.3.1. Beyond
predicting users’ preferences for items, a strong approach should also model the social
and temporal dynamics at play. We further analyze our results and give examples below.

5.5.4 Discussion

The astute reader will notice that BVEM is missing from Table 5.3. Due to the
requirements of this method, its application is only possible on the Bookmooch dataset,
which is the only one of the three containing pricing information (see Section 5.3.1). More
importantly, the BVEM approach does not produce a preference estimate of a user for a
given item, which makes it impossible to evaluate its performance under the same metric
as that used for our approach.
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User’s wish list

Super Mario World
Sonic Generation
Kirby’s Dream Land
Metroid: Zero Mission
Super Mario 64
Mario Kart: Super Circuit
Sly 3: Honor Among Thieves

MF MF + S MF + S + T

Recommendations
(ranked)

#own
most
recent
activity

Recommendations
(ranked)

owner
activity

past
trans.

Recommendations
(ranked)

owner
activity

past
trans.

Sonic Generations 19 56 wks. Kid Icarus 24 wks. 2 Fire Emblem <1 wk. 0
Earthbound 14 22 wks. Final Fantasy 24 wks. 2 Contra <1 wk. 0
Super Mario Sunshine 26 22 wks. Beyond: Two Souls 24 wks. 2 Monster Hunter <1 wk. 1
Grand Theft Auto V 253 <1 wk. Fire Emblem 92 wks. 1 Bayonetta 2 <1 wk. 1
Fire Emblem 28 <1 wk. Paper Mario 92 wks. 1 Mario Kart 7 <1 wk. 1

Table 5.4 – An example of recommendations produced by the models from Table 5.3.
Left: The set of items in a user’s wish list; most are Nintendo console games. Right:
Recommendations. All methods correctly identify related games, as depicted in Fig. 6.6.
However, matrix factorization (MF) alone suggests a heterogeneous set of games belonging
to multiple users; once social terms are added (MF+S), the system suggests trades with
prior trading partners, but many of them have been inactive for some time; once the
temporal term is added (MF+S+T), the system finally identifies relevant games, amongst
active users, several of whom were prior trading partners.

Users’ decision processes can be influenced by external factors, such as social ties and
item availability. In such a scenario, the success of a trade cannot be fully explained by a
low-rank decomposition (i.e., MF) that captures unilateral preferences of users toward
items. Bidirectionality (MF+B) substantially improves the score over MF, and leads to
similar improvements in combination with all other models. This suggests that a strong
signal coming from one of the traders can compensate for a weaker signal coming from
the other party. Note that the aggregation does not depend on the predictor and, thus,
can be applied to various recommender systems techniques. Using the socially-aware
model MF+S described in Section 5.4.3, our predictor is able to partially explain the
observed variance by a social bias that users exhibit toward their prior trading partners.
Considering the same item with different owners, the model will favor exchanges with
users that already traded in the past. Proposing viable exchanges with this additional
constraint consistently improved the score on our three datasets. The biggest improvement
can be seen for Ratebeer, the platform with the highest percentage of recurrent trades
between pairs of users. Beyond social biases, temporal bias (MF+T) acts as a gating
function as it decreases the score of users/items that exhibit a long period of inactivity.
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As with social bias, temporal bias can partially explain the score of a trade by the recent
burst of activity of the considered user/item. Again, this addition in our model provides
an improvement on all our datasets.

A recommendation example (for /r/gameswap) is shown in Table 5.4, illustrating the
performance of our method with temporal and social constraints. These recommendations
are also visualized in terms of a t-SNE embedding [126] in Fig. 6.6. Note that while even
the simplest method (MF) already generates semantically meaningful trades, they are
with unlikely trading partners due to lack of recent activity and social ties. These latter
two features are important to ensure that plausible trades are recommended.

Advantages over previous approaches. Compared to existing methods, there are
several factors that make our approach better suited to real-world bartering platforms.

First, our model outputs recommendations chosen from a ranked list of all swap op-
portunities available on the platform. This list contains not only items that a user
mentioned explicitly in their wish list, but also items that are likely to be preferred by
the user, based on preference modeling. CSEM [2] does not produce such a ranking, and
while BVEM [119] aims to output a ranked list of recommendations, it fails due to the
strictness of its assumptions, as previously described.

Second, our approach works even when the user base contains few compatible swap
candidates, i.e., when few (or zero) users exist such that their wish lists and give-away
lists are cross-compatible. Such a case occurs on the Swapadvd platform, as noted in
Table 5.1. Applying BVEM on this dataset would yield no recommendations at all,
as there are no two users with a bidirectional coincidence of ‘wants’. This is also a
plausible scenario for newly emerged platforms with a small user base, where eligible
swapping partners are likely to be rare. We show that through preference modeling
via MF techniques (applied to implicit user feedback), our method can recommend
meaningful swap transactions from early on, in order to support platform activity and
growth. This is also the reason why we can output long recommendation lists, as opposed
to very few recommendations per user obtained under BVEM.

Finally, our model does not restrict the recommended trades to contain only items from
the users’ wish lists, consistent with our observation that only 33.2% of the items that
users receive are explicitly listed. By modeling user preferences with the help of Matrix
Factorization, our method allows us to estimate the users’ preferences for items they have
not explicitly desired, therefore allowing for potentially serendipitous recommendations.
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5.6 Summary and Future Work

We introduced a new approach to recommending trades in the context of online bartering
platforms. We presented several bartering datasets with transaction histories, covering
books (Bookmooch), video games (/r/gameswap), and beers (Ratebeer). We ana-
lyzed their properties, revealing important reference points to be considered in the design
of a bartering recommender. By considering real-world datasets, we found that previous
approaches based on matching algorithms face severe performance limitations, due to the
shortage of eligible swapping partners.

The approach we introduce builds upon well established recommender systems techniques,
including matrix factorization, social regularization and temporally-aware models. Our
design is data-driven, following observations that are consistent across the three afore-
mentioned datasets, namely that i) successful trades require reciprocal user interest, ii)
users develop ‘trust’ and trade according to their social ties, and iii) activity density
varies over time, for both items and users. Our method is more flexible than existing
approaches, due to the use of preference modeling, allowing coherent recommendations to
be computed even in cases where few swapping partners are strictly ‘eligible.’ This allows
users to receive potentially serendipitous item recommendations, due to the fact that we
do not impose them to exclusively contain items from their wish lists.

As future work, we are interested in evaluating the performance of our approach on
different scenarios in which reciprocal interest plays a considerable role, e.g. e-dating
platforms, partner match-up in online video games, etc. Additionally, we hope to study
the problem of bartering with heterogeneous item types (i.e. items with large price
differences) and to explore more complex preference aggregation schemes for modeling
the bidirectionality of interest between potential trade partners.
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Many Web platforms rely on user collaboration to generate high-quality content: Wiki,
Q&A communities, etc. Understanding and modeling the different collaborative behaviors
is therefore critical. However, collaboration patterns are difficult to capture when the
relationships between users are not directly observable, since they need to be inferred
from user actions. In this chapter, we propose a solution to this problem by adopting a
systemic view of collaboration. Rather than modeling users as independent actors in the
system, we capture their coordinated actions with personalization methods which can, in
turn, identify shared objectives and predict future user actions.

To validate our approach, we perform a study on a dataset comprising more than 16M
user actions, recorded on the online collaborative sandbox Reddit r/place. Participants
had access to a drawing canvas where they could change the color of one pixel at every
fixed time interval. Users were not grouped in teams nor were given any specific goals, yet
they organized themselves into a cohesive social fabric and collaborated to the creation of
a multitude of artworks. Our contribution in this chapter is multi-fold: i) we perform
an in-depth analysis of the Reddit r/place collaborative sandbox, extracting insights
about its evolution over time; ii) we propose a predictive method that captures the latent
structure of the emergent collaborative efforts; and iii) we show that our method provides
an interpretable representation of the emergent social structure.

6.1 Introduction

Human beings left free to act according to their own will seem to often produce spontaneous
order. This phenomenon has been observed in various contexts, ranging from city traffic
flow to self-organizing economy. Those examples suggest that, even with different goals, a
multitude of individuals interacting with one another often tend to avoid disorder, letting
some underlying structure emerge. The Web is no exception: many Web initiatives rely
on this principle, such as Question Answering platforms, collaborative code platforms,
or even larger platforms such as Wikipedia. Characterizing the way people interact and
organize themselves is a necessary step to understand users’ behavior when little or no
rules are enforced. Broadening our understanding of collaboration and self-organization

81



Chapter 6 Personalized Collaboration

Figure 6.1 – A portion of the final canvas produced by the contributors of Reddit r/place

can, therefore, have a practical impact on the design of applications that are built for
large populations of users, which underlines the importance of expanding our ensemble of
methods to study such phenomena.

The study of collaboration is, however, being hampered by the inherent complexity of the
task: the phenomenon is hard to be analyzed in realistic scenarios as it requires to capture
complex interactions between actors. Therefore, the dynamics of such efforts have been
mostly studied in scenarios where the relationships among users are directly observable.
The problem of community detection in collaboration networks, for example, relies on
an existing graph to segment it into subgroups of users. However, in practical scenarios,
the relationships between users are often not explicit. In such cases, the analysis can
rely on human judgment [72], however with severe limitations in terms of size of the
environment that can be analyzed, both in terms of number of users and interactions.
Therefore, we propose in this work a data-driven method to infer the user relationships
from their interactions in the environment.

In this chapter, we propose a methodology to analyze user activities in a simple virtual
environment, with the goal of characterizing collaboration patterns that emerged from it.
In a second step, we propose a predictive method that captures the latent structure of
user cooperation, and evaluate our approach on its capacity to predict future user actions.
Our study focuses on a virtual sandbox in which users receive no particular directives,
and are given the freedom to act as they want. In particular, we propose to investigate
the behavioral patterns observed in RedditI r/placeII, an online canvas where users were
allowed to change the color of only one pixel at every fixed time interval (during a total of

Ihttps://www.reddit.com
IIhttps://www.reddit.com/r/place/
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Figure 6.2 – Distribution of the number of updates for each user (left). Distribution of the
number of updates per tile (middle). Evolution of the number of clicks and the number
of unique users, computed per hour (right)

72 hours). Being part of Reddit, a discussion platform with more than 230M unique users
per month, this collaborative project received a massive engagement of over a million
users (see Fig. 6.1 for a glimpse of the final canvas).

In order to establish a predictive model of user behavior, we consider the sandbox as a
complex social system, i.e., a system inherently difficult to model due to the large amount
of interdependencies between its parts. Previous research in the field of Complexity
Science [12] hypothesized that the nature of such systems is favorable to the emergence of
global behaviors, arising from the local interactions of the actors. Following this evidence,
we propose a model that assesses the likelihood of a user interaction by observing its
social context. In other terms, we propose a predictive model that captures inter-user
relationships instead of modeling independent behaviors.

6.2 Related Work

Networks of collaboration between scientists have been studied by Newman [83]. The
authors argue that simple unweighted networks are unable to capture the strength of
collaboration ties and propose a method to model the strength of collaboration by relying
on the number of co-authored papers. The same author has later studied various properties
of such networks [83]. Ramasco et al. [94] have studied collaboration networks from an
evolving and self-organizing perspective. Behavioral experiments on the ability to solve
problems collaboratively have been conducted by Kearns [57]. Online collaboration with
different network topologies has been studied by Suri and Watts [121]. The exploration-
exploitation trade-off in a collaborative problem solving task has been discussed by Mason
and Watts [75]. Kittur and Kraut [58] studied various types of collaboration taking place
between Wikipedia editors and measured the impact on quality of the resulting articles.

The study, as well as the interpretation of proximity data from a social perspective
has been a prolific research area. Recent studies [111], have extracted social network
properties from proximity sensor data. In particular, the authors propose a method to
distinguish between strong and weak social ties, using the Bluetooth signal strength of
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users’ cellphones. The authors observe that weak links, i.e. the interactions that have
been observed less than once per day, have a lower probability of being observed at later
times. Collaboration patterns between university students, collaborating in teams for
their course assignments, have also been studied [25]. The authors consider the time
spent in physical proximity, using university wifi logs, as a proxy to measure ties between
students. Their analysis suggests that only strong ties matter in order to predict team
performances. We also notice that the study of social properties from positional tracking
is not limited to the human species, as a colony of ants as been recently tracked, at
individual level, revealing complex hierarchical social structures [78].

The phenomenon of emergence has been studied in different domains, notably in the field
of Complexity Science and in the context of agent based modeling. The term emergence
has various definition across fields [64], alike complexity [36] from which emergence has
been suggested to arise from. Emergence generally refers to system-wide behaviors that
cannot be explained by the sum of individual behaviors. Moreover, means of modeling
emergence are still subject to debate. Counting interaction between agents is, however, a
widely used method to infer complex behaviors in a system [76].

The analysis of virtual behavior has been suggested as being a valid proxy for the study
of real-life behaviors. High-level social behaviors, such as the bystander effect, have been
observed inside a simple video-game based virtual environment [63]. Social interactions
in Massively Multilayer Online games have been studied by Cole et al. [19]. They suggest
such games to be favorable for teamwork.

The task of community detection has been a well-studied problem, whose goal is to assign
users to communities [103]. The most relevant line of research is probably the task of
detecting overlapping communities, whose members can be part of multiple groups. Those
lines of research have made use of Matrix Factorization methods in order to relax the
assumption of communities being disjoint [145] [142]. Methods providing a direct way
to embed the nodes of a network, thus generalizing the notion of network neighborhood,
have recently been proposed [40].

The modeling of personalized decision processes has many application, notably in Collab-
orative Filtering, which generally assumes that future user actions can be predicted by
collecting historical data from many users. Such applications have made extensive use of
Matrix Factorization methods that have been popularized during the Netflix Prize [13].
Traditional techniques were mostly relying on ratings data but recent advances of the field
have focused their attention on the problem of One-Class Collaborative Filtering [87], that
is the task of learning from positive interactions only. More recently, Rendle et al. [96]
proposed a variation of the method that is particularly suited for the modeling of one-class
datasets. A link between recommendation and collaboration has been explored by Tang
et al. [123]. In particular, the authors tackled the problem of scientific collaboration
recommendation.
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Research Questions: Given the work above, several research questions have remained
unanswered:

RQ1: Are local coordinated user activities predictive of future user actions?

RQ2: Is the latent representation of our model interpretable?

RQ3: Is the product of users’ collaboration segmentable relying on implicit social signal
exclusively?

6.3 Data

In April 2017, the discussion platform Reddit launched Place, an online canvas of 1000-
by-1000 pixels, designed as a social experiment. Reddit users were allowed to change the
color of one pixel at every fixed time interval (the interval varied from 5 to 20 minutes
during the events). The event lasted 72 hours and received a massive engagement from
more than 1.2M unique users. Users collaborated to create various artworks by either
directly interacting with the canvas or by coordinating their actions from the discussion
platform.

The full dataset of events has been made publicly available. It contains more than 16M
events and includes, for each event, the position of the click in the canvas, the chosen
color and a unique user identifier. Note that usernames have been anonymized using a
hash function, making impossible to link users to their respective Reddit profile.

After the end of the event, Reddit users launched an initiative to segment and detail
the various artworks of the final canvas. Their crowd-sourced effort resulted in an atlas
publicly available online III. In total, 1493 artworks have been identified by the community.
In their original format, those annotations contained overlapping regions, coming from
noisy segmentations or from users annotating subparts of the artworks. In this work,
we do not consider the hierarchy of the artworks and, therefore, we have to further
process the set of artworks through manual annotation with the following strategy: if two
artworks have a non-zero intersection, we give priority to the smallest one and remove
the overlapping region from the largest one. Then, we manually and iteratively select
coherent artworks made of a single region. The result is a set of 830 non-overlapping
artworks covering 84.2% of the canvas.

6.4 Analysis

In this section, we propose a general analysis of the event by shining a light on user
behaviors within the online canvas.

IIIhttps://draemm.li/various/place-atlas/
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Figure 6.3 – Percentage of unused space in the canvas, over time (left). Average distance
between two subsequent clicks from the same user, over time (right).

We first observe, in Fig. 6.2 (left), the activity distribution of the users. This distribution
highlight the presence of few power-users and a vast majority of users performing a
moderate number of clicks. In Fig. 6.2 (middle), we observe the same type of distribution
for the number of updates performed on every pixel. As few pixels have been highly
disputed, the large majority of them have only been updated a few times. For example,
4.35% of the pixels have been updated only once during the entire event. The fact that
the number of updates is not uniform over the set of pixels suggests that there exists a
latent structure in the users’ decision process.

We pay special attention to the system activity level over time, from its initial chaotic
state to the first signs of its convergence. The evolution of the activity level of the entire
system is observable through the variations of the click rate. We first notice the level
of user activity being clearly influenced by the circadian cycle of American users. Note
that, according to Alexa IV, United States alone represent 57% of the traffic on Reddit.
Beyond the temporal variations of the overall activity within the canvas, the relationship
between the number of active users and the number of clicks is of our interest, as it is
subject to significant variations that characterize the average activity of single users (see
Fig. 6.2 right). We observe a rapidly increasing number of click-per-user after the 24 hour.
A first potential cause is the coverage of the event (both in social and mainstream media).
Moreover, we observe the term “Reddit place” having growth by a factor of 1.8 from the
first to the second day, according to Google Trends. Second, we compare this sudden
raise of the activity level with variations of the userbase. At peak value, the number of
concurrent unique users per hour was subject to an increase of 27% from the first to the
second day.

Starting from an empty canvas, users have been continuously filling the space. After the
first 24 hours, 90% of the pixels have already been clicked on at least once (see Fig. 6.3
left). With less blank space at their disposal, users were forced to overwrite existing

IVhttps://www.alexa.com/siteinfo/reddit.com
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Figure 6.4 – Activity heatmap on the canvas. On the left, the canvas is partitioned in
uniformly-sized tiles. On the right, the canvas regions reflect the artwork shapes, as
described in Section 6.3. Both heatmaps use a comparable number of regions.

structure. We observe people having focusing their actions on a similar distribution:
the distance between two subsequent clicks performed by the same user has, on average,
largely decreased during the first 24 hours (see Fig. 6.3 right).

We observe the activity level with different partitioning schemes of the canvas. Without a
clear segmentation following the shape of the artworks, though, only limited observation
can be made on the activity taking place on the canvas, i.e., we mainly observe spikes
of localized activity (see Fig. 6.4 left). However, when considering the artwork shapes,
the activity from a group dynamics perspective is revealed (see Fig. 6.4 right), therefore
motivating the development of an effective segmentation strategy.

6.5 Model

In this section, we introduce a predictive method that models collaboration between users
in order to predict future user actions. In this regard, we train a model to evaluate the
likelihood of a user ui to perform a particular action at a given moment in time. We use
the term action as a shorthand, with a slight abuse of notation, to denote the click of a
user ui on a pixel at coordinates (x, y) at time t.

To train the model according to the decision structure of user ui, we train the model
to discriminate an action ai performed by user ui from a randomly sampled action ak
performed by another user uk 6= ui. We define it as a probability

Pr(ai >ui aj |Θ), (6.1)

where Θ represents the set of parameters of an arbitrary predictor and >ui represents the
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preference scheme of user ui. Specifically, we use the notation ai >ui aj to indicate user
ui preferring action ai over action aj . A predictor that would perfectly model the latent
preference structure >ui of user ui would thus predict a probability of 1 for Pr(ai >ui aj |Θ)

and a probability of 0 for Pr(ai <ui aj |Θ). Defining x̂ui,ai as the predicted score for user
ui and action ai, the same ideal predictor would systematically predict a higher score for
x̂ui,ai than for x̂ui,aj , thus making the quantity x̂ui,ai,aj := x̂ui,ai − x̂ui,aj consistently and
strictly positive. Therefore, training the model to discriminate between the two actions
can be achieved by maximizing the difference between their predicted scores. In order to
make the operation differentiable, we follow the procedure introduced by Rendle et al.
[96] by maximizing the quantity lnσ(x̂ui,ai,aj ). In particular, we maximize the following
criterion

BPR-OPT :=
∑

(ui,ai,aj)∈D

lnσ(x̂ui,ai,aj )− λΘ||Θ||2 (6.2)

where λΘ is a parameter controlling the strength of the regularization. In our case, we
opted for `2-regularization.

So far, we described our optimization criterion without specifying the underlying pre-
dictive model. Our choice of predictor is driven by its capability to model users-users
relationships. We opt for an embedding method, since we hypothesize less independent
behaviors than individuals in the system. Embedding methods are especially adapted
to produce personalized predictions (e.g. collaborative filtering applications), by making
the assumption that the behavior from an individual can be predicted by collecting
data from many users and by projecting each of them in a common latent space. We
therefore represent every user in the system by a latent representation: a real-valued
vector pui of size K where K is the chosen dimensionality of the latent space. We define
a notion of distance between any pair of users in the considered population, where the
distance metric represents the strength of collaboration between users. If two users are
actively collaborating, the response produced by the combination of their respective
vectors (typically by using dot product) should be high.

As suggested by previous studies (see Section 6.2), the choice of input features is determi-
nant to capture complex inter-user dependencies. Assuming users performing actions in a
fully-observable environment, we construct our input signal by observing the proximity of
their actions. In our scenario, the notion of proximity could be constructed by looking
at the tiles surrounding the one on which the considered user ui clicked (see Fig. 6.5).
Assuming every user being represented by a latent representation vector pui , we define qai
to be a combination of the users’ latent features vectors that updated the eight adjacent
cells at last, before action ai. We then specifically train our model to produce a high
predicted score x̂ui,ai of user ui performing action ai. The score x̂ui,ai is computed as
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Figure 6.5 – Illustration of the input features. For an action performed on pixel (x,y), we
consider the users having updated the 8 adjacent pixels at last.

follows

x̂ui,ai = pTui · qai (6.3)

where qai is a combination of users’ embeddings. This combination could be computed in
many ways, using a differentiable operation. We combined the embedding vectors using a
simple sum over users’ latent representations, defined as follows

qai =
∑
k∈Aai

puk (6.4)

where Aai is the list of users having updated the adjacent tiles at last, before action ai.
During our experiments, we observed the normalization of each vector puk to benefit from
normalization (in the sense of `2 normalization).

6.5.1 Optimization

As we aim to discriminate positive from negative examples, we devise our optimization
procedure as a ranking problem. In particular, we train the predictor to discriminate an
observed interaction from a randomly sampled negative (an action performed by another
user). The BPR optimization scheme can be optimized using the following update step

θ ← θ + α · (σ(−x̂ui,ai,aj )
∂x̂ui,ai,aj

∂θ
+ λθΩ

′(θ)), (6.5)

where x̂ui,ai,aj = x̂uiai − x̂uiaj , and θ represents the set of parameters to be learned. Ω(θ)

denotes a regularizer. We opted for a `2 regularization Ω(θ) = ‖Θ‖22.

89



Chapter 6 Personalized Collaboration

Figure 6.6 – Collaboration patterns on Reddit r/place. Groups of users have been
identified by exploiting the computed latent representation (left), and their activities
have been localized over the canvas (right). Best seen in colors. Left: t-SNE [127]
projection of user embeddings. For visualization purposes, user groups have been colored
using the resulting clustering from DBSCAN [30]. Right: Traces of activity performed by
selected users. Colors correspond to the left figure. Results are computed for the last 1M
interactions (around 3 hours of activity).

6.5.2 Experimental Setting

We adopt a leave-one-out methodology to assess the accuracy of the model, thus making
every user having the same weight in the evaluation. Specifically, we constitute our
evaluation set by sampling one action for each user. As an experimental setting, we
discard users having performed less than 10 interactions from our dataset and filter the
first quarter of interactions. We apply this filtering to avoid a cold-start data regime, a
scenario that is outside of the scope of this work.

Reproducibility: We ran our experiment on a single computer, running a 3.2 GHz Intel
Core i7 CPU, using PyTorch version 0.2.0.4 V. We run the optimization on GPU NVIDIA
GTX 670. We trained our model with the following parameters: α = 0.04, λθ = 0.01,
K = 120. All code will be made available at publication time VI.

6.5.3 Baselines:

We describe the baselines to which our approach is compared to. Those methods are
split in two different categories: methods that model the interaction of users with their

Vhttp://pytorch.org/
VIhttps://github.com/JRappaz/placemf
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environment and methods that model users interrelationships.

Median: As discussed in Section 6.4, users have rapidly focused their actions on specific
areas of the canvas. We therefore compare our results to a simple baseline that
compute the likelihood of interaction as a linear function of the euclidean distance
between two points p1 and p2, where p1 is the position of the considered click and
p2 is the median position of the user activity in the canvas (computed from the
training set). We also tried with the average position but exclude the results as
they were consistently lower.

MF: Matrix Factorization (MF) methods typically model the preferences from users
interacting with a large number of items. We trained the MF baseline to model
the interactions between users and pixels, in a setting similar to a preference
problem. We used the Spark version 2.2 ALS implementation, a scalable model of
Collaborative Filtering method. VII.

Count: We compare our method to a simple count of user interactions. We count the
number of adjacent clicks between users and rank the available actions based on
the location having the largest sum of users’ interactions.

Community Detection: We use InfomapVIII, a scalable, state-of-the-art community
detection algorithm optimizing an information-theoretic criterion. We model collab-
oration between user as a weighted undirected graph. Edges weights are computed
from the number of past adjacent clicks between two users. The algorithm provides
a single assignment for each user to a cluster. The predicted score for an action
and a user ui is then computed by counting the number of users having updated
the adjacent tiles at last and being part of the same community than ui.

6.5.4 Evaluation

To evaluate our approach, we select the widely used metric Area Under the Curve
(AUC) [113] as our measure of performance:

AUC =
1

|D|
∑
(ui,ai,aj)∈D

H(x̂uiai − x̂uiaj ) =
1

|D|
∑
(ui,ai,aj)∈D

H(x̂ui,ai,aj ), (6.6)

where H(·) is the Heaviside step function (equal to 1 for a positive input, zero otherwise)
and D is our evaluation set composed of one triplet (ui, ai, aj) per source where ui is a
user, ai is a randomly sampled action that has been performed by user ui and aj is a
randomly sampled action from another user uj 6= ui. This metric assesses the ability of

VIIhttps://spark.apache.org/
VIIIhttp://www.mapequation.org/code.html
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Method AUC
Environment Median 0.8413 ± 0.0006

MF 0.7921 ± 0.0006
Social Count 0.8383 ± 0.0003

CD 0.8382 ± 0.0006
Ours 0.8792 ± 0.0019

Table 6.1 – Results: scores are reported with the Area Under the Curve (AUC) metric
(CI=0.95).

Figure 6.7 – Segmentation of the artworks using the proposed method which leverages
exclusively social signals. We report the number of users that contributed to the final
version of the highlighted artworks. Even with artworks produced by a large user base,
our segmentation method can correctly identify the boundaries, as shown in the above
examples.

the predictor to correctly rank a positive interaction withheld during training against a
random negative example. Negative examples are sampled from the training set during
training and from the testing set during testing. An ideal predictor would obtain a score
of AUC = 1, while a random selection would output a score around AUC = 0.5.

6.6 Results

In this section, we discuss the results summarized in Table 6.1. We divide the aforemen-
tioned methods in two categories: methods that capture the relation between users and
their environment, and methods that capture users’ inter-relationships.

User-environment relationship: The virtual environment is constituted by a set of
clickable tiles. Moreover, this environment is structured, since pixels have clearly defined
positions. MF-based methods are unaware of the structure of the environment and did not
model any social aspect of the event. We therefore observe them to exhibit a lower score
than the other methods. The score obtained from a median-based method is, however,
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performing relatively well, despite its relative simplicity. This suggest the locality of user
actions being a critical aspect in the design of a method to predict collaborations.

User-user relationship: We observe the Community Detection method being on par
with a method based on raw interactions count. We therefore suggest that a strict
segmentation of the users does not result on a gain in performance. Since those methods
were able to capture relatively good social proximity between users, they were not
optimized (and not parametrized) to directly model user interactions. From Table 6.1, we
can observe the performance gain obtained from our model, being optimized to model user
interactions data. Specifically, our methods outperformed the best performing baseline
with a margin of 4.5% of relative improvement. We therefore conclude that, from the
considered models, the parametrization of user interrelationships is the most predictive
method of user actions in a sandbox environment.

Systems are generally considered as complex if the sum of the individual behaviors of
its subparts cannot explain the overall behavior of the ensemble. This consideration
encourages the modeling of the inter-relationships between subparts, instead of modeling
them as independent behaviors. Our results reinforce this perspective, as we report this
modeling approach to be more predictive of users’ decisions. Moreover, our approach has
the advantage to be interpretable, as described in the following section.

6.7 Segmentation

In this section, we exploit the learned representation of our model to identify user groups
and segment their respective artworks.

First we show that groups of users can be identified from the latent representation obtained
through the proposed method. As described in Section 6.5, each user is represented by
a single low-dimensional embedding vector pui . The total set of vectors represents a
distributed representation of the collaboration strength between any two considered users
(all the vectors share the same latent space but the triangle inequality is not necessarily
respected). This representation can be further reduced in dimensionality in order to be
visualized. We observe the resulting representation to exhibit sufficient cohesiveness to
be easily labeled by an unsupervised clustering approach. The traces left in the canvas
by the different groups of users is shown in Fig. 6.6.

In a second step, we propose a method to segment the product of user collaboration,
i.e. to attribute every pixel to a single partition of the final image. To this end, we
propose a simple method that detects abrupt variations of the social activity on the
canvas. We first assume that users leave a social signature in the canvas, and suggest
that abrupt variations of this signature could reveal the artworks edges. To model it,
we attach to each pixel a fingerprint of the social activity that took place on it. We
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Figure 6.8 – Illustration of the agglomerative clustering procedure setting. Each pixel has
a latent features vector attached to it. Black lines represent the connectivity constraint
applied to the procedure: only adjacent pixels can be merged.

opt for the latent representation of the user that updated the pixel at last, i.e., the user
whose action colored a pixel of the final canvas. We then segment the canvas by using
an agglomerative clustering procedure. At start, the algorithm attributes each pixel
to its own cluster. Then, the procedure recursively merges clusters by minimizing the
sum of squared differences within all clusters. Note that the algorithm is constrained
by the connectivity of the grid as only adjacent pixels could be merged (see Fig. 6.8).
The procedure terminates when the target number of clusters C is obtained. To find the
optimal value of the C parameter, we rely on the crowd-sourced segmentation of user
artwork that we treat as ground truth. We search for the optimal number of clusters,
restricting our evaluation to the portions of the space being annotated. We use Adjusted
Rand Index (ARI), as a metric comparing the results of the clustering procedure with the
annotations. We found the best value to be C = 840, a value close to the 830 artworks
identified in human-curated atlas. Examples of the resulting clustering are shown in
Fig. 6.7.

6.8 Discussion

The method introduced in Section 6.5 exhibits a significant improvement over the baselines
in a purely predictive task. We suggest that this result is due to its capability of modeling
user-user relationships, while still capturing local consistency of the environment. Indeed,
our approach directly models a 8-to-1 relationship between the considered user and the
users having updated the adjacent tiles. Moreover, thanks to the common latent space
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in which all the users are projected, our method models transitive relations between
participants. As an example, if user A collaborated with user B and user B with user
C, a potential collaboration between A and C should still exhibit a high predicted score
since they would be contained in the same local manifold of the embedding space. This
is especially important in the case of large artworks, to which many users contributed.

We propose a qualitative interpretation of the learned parameters in Fig. 6.7, where we
show the traces left by participants on the canvas. We observe the method to capture a
relative proximity of actions performed by users belonging to the same group. This result
is coherent with the observation of user actions being relatively localized (see Section 6.4).

The proposed method captures the proximity of users’ actions on the canvas. One might
question the ability of such approach to establish a clear segmentation of the artworks from
proximity signals. For example, two different user populations, working on two different
adjacent artworks, are difficult to be distinguished, as the actions of the two groups
would appear in close vicinity. However, we give evidences that a latent representation,
computed from a large set of actions, is sufficiently expressive to recover the artworks
boundaries.

6.9 Summary and Future Work

We introduce a generic method to infer collaboration patterns in environments where only
user interactions are observable. We show, through experiments, that the local proximity
of users’ actions represents a sufficiently expressive signal for the study of collaboration.
Indeed, we report it to be more predictive than the modeling of the interactions between
users and their environment. This finding reinforces previous results in the domain, that
suggest the study of emergent phenomenons requiring the modeling of interrelationships
between the parts of a system, rather than modeling their individual behaviors.

Our method finds immediate applications in the analysis of large-scale collaborative efforts,
such as Wikipedia or Github, in which users don’t always have explicit or observable links
between them. In such cases, the proper segmentation of user contributions could lead to
a more fine-grained quantitative analysis of the various portions of the contribution. In
concrete terms, the method would allow assessing the quality of the contribution produced
by a subgroup of the population instead of measuring the quality of the article/repository
as a whole. Beyond the analysis of collaboration, such methods could also be used to
produce recommendations of partnership as a way to engage participants through direct
collaboration recommendation. Our method can finally find applications in malicious
collaboration. In such context, the result of a collaboration could be isolated using similar
segmentation techniques to limit the impact of adversarial activities on large projects.

We foresee several directions as future work.
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• Given the generic nature of our method, we want to test it on other collaborative
platforms (e.g., Wikipedia, Github, etc.) as they represent a natural extension of
our current effort on Reddit r/place. Moreover, we believe that other types of virtual
environments, such as multi-player video-games, would represent an interesting
testbed for the proposed method.

• We want to tackle the problem of learning in a low data regime (i.e., cold-start
scenario). We plan to leverage side-information, inherent to both users and their
environment, as it represents a promising resource to generate prediction for newly
introduced users.

• We want to make our model temporally-aware, as further insights can be gathered
by analyzing the temporal dynamics of the user interactions.

• We plan to study the dual problem, that is to infer antisocial behaviors from
localized actions, and to propose a method to distinguish them from collaboration
patterns.
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The range of activities that can be performed online continues to expand. People
increasingly use Web platforms to discuss with friends, consume movies and songs, look
for employment, housing, or even romantic partners. The large volume of information
and options available on these platforms can become overwhelming and make navigation
difficult. To tackle this problem, personalized predictive systems are often used to guide
users through these services, by learning from their preferences and helping them access
the right information at the right time. However, predicting user actions is a difficult
task, because of the high interactivity of the modern Web, the spread of user-generated
content, and the many social and temporal factors that affect user decisions.

In this thesis, we proposed novel personalized ranking methods suited to the interactive
and social Web, that incorporate contextual signals into their predictions and that
maintain a consistent embedding space over multiple time epochs. Our work situates itself
in recent lines of research that, instead of predicting user interests on static databases of
items, predict user interactions with pieces of content or with other users. Our model
designs are motivated by the study of large datasets involving millions of users and items.
From the careful study of user dynamics, we identified temporal and social patterns that
we incorporated into our models for improving predictions. To encourage future research
in this domain, we shared multiple datasets containing rich interaction signals with the
research community.

In Chapter 3, we studied recommendation on a live-streaming platform, Twitch, for which
we designed a method to rank available channels. In this setting, the meaning of positive
interactions differs from its traditional definition, since users could interact multiple times
with the same item; we observed that repeated interactions account for more than 50% of
our dataset. To discriminate among positive instances, we added a temporal embedding
layer, to learn from the timing of these repeated interactions. Negative examples also
have a different meaning, since “non-interaction” could reflect implicit user preferences, as
much as the unavailability of an item. Therefore, we proposed a novel model architecture
that only samples and processes items from a pool of available options. We observed that
the modeling of these two aspects led to an increase in performance, which paves the way
for future research in real-time media.
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In Chapter 4, we proposed a methodology, based on collaborative filtering, to model the
selection of news stories performed by digital media and predict their coverage of world
events. First, we showed that the knowledge captured by this model could be exploited
to mitigate popularity biases in an aggregation of news articles, by reducing the weight of
articles published by similar media. Then, we proposed a mechanism to maintain this
model temporally consistent over successive time epochs, which enabled us to monitor the
evolution of news coverage and to detect strong variations at channel-level. We observed
those variations to be frequently associated with the acquisition of media channels by
broadcast groups. We believe that our methods represent a first step towards large-scale
monitoring and mitigation of event misrepresentation in the news, and could be applied
to other aggregated information streams coming from diverse sources.

In Chapter 5, we proposed a recommender system for bartering platforms that models
reciprocal interest: each of two users needs to have what the other wants in order for
a trade to occur. Compared to traditional e-commerce platforms, trade opportunities
are extremely scarce on exchange platforms, which encourages the use of a bidirectional
recommendation method. We showed that pairs of users who successfully traded in the
past are likely to trade again as they build trust (for example, a pair of users trade 3.56
times on average on Ratebeer, a beer exchange community). Therefore, we proposed a
socially-aware model that favors exchanges with users that already traded together. With
the rise of two-sided online platforms, we believe that matching recommendation systems
could be applied to new scenarios, both for the symmetric case (e.g. dating platforms)
and asymmetric case (e.g. matching workers to jobs).

In Chapter 6, we studied a collaborative creation of artworks on a virtual canvas hosted
on Reddit. We showed that a personalized ranking approach can predict user clicks by
modeling the proximity of their actions on the canvas. We believe that this method could
be applied to infer coordinated activities in other virtual environments such as video games.
More generally, capturing rich social signals, such as collaboration patterns, represents a
unique opportunity to study complex social phenomenons. With virtual environments
being increasingly used as a proxy to study specific social-psychology aspects, our method
paves the way for the analysis of user behavior in contexts in which only user actions are
observable, and the collaboration patterns are emergent rather than predefined.

In this thesis, we leveraged collaborative filtering methods to predict and characterize
user decisions. We explored various scenarios on digital and social media, analyzed how
people produce and consume online content, and how they interact together on social
platforms. We believe that this research line could be pursued, by applying personalized
predictive methods to new online scenarios. We give a few promising research directions
below.
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Live settings: the recent rise of streaming media platforms encourages the development
of novel recommendation techniques. Many known dynamics remain to be adapted to the
real-time setting. For example, the popularity of an item is generally parametrized with
a single weight, but modeling the evolution of item popularity in real-time would require
a more sophisticated approach. Further research is also needed to include new types
of signals from a live audience. For example, a model could account for the navigation
path from an item to another (e.g. browsing video channels), and for the influence (or
competition) of concurrently available items. In general, making recommendations of
streaming content requires combining historical data with real-time signals, which is a
challenging problem that remains unaddressed.

Incorporating rich signals: Web platforms typically generate a large volume of rich
signals that represent a trove of knowledge to learn from. Recommender systems can
enrich interaction data with various content, social and temporal features to make more
accurate recommendations. Moreover, modeling user and item attributes generally helps
make more interpretable recommendations, for example by providing the specific factors
that led to a prediction. In particular, with the recent advance of vision and language
models, recommendations can be enhanced with textual and visual item data. The wide
availability of pre-trained models creates new opportunities to transfer knowledge acquired
by these models to recommendation tasks. This approach is particularly appealing for
scenarios in which user historical data are not accessible (e.g. for privacy reasons) since
predictions could be made from item features exclusively.

Users in control: there exist risks in blindly optimizing personalization models from
preference signals. Recommender systems have been associated with various detrimental
effects such as filter bubbles, popularity bias, lack of diversity in content exposure or
loss of trust from users. More worryingly, recommending content of political nature has
been suspected to be a source of polarization and to create “pathways” from moderate to
extreme (e.g. alt-right) communities. Those phenomena are often discussed anecdotally
since they are difficult to measure online (they have been mostly investigated through
simulations) and further research is needed to characterize these dynamics empirically. We
believe that future research should create more transparent, explainable, and interactive
systems to put users in control of the content they are exposed to. Personalization
methods could then be seen as a discovery mechanism or a navigation paradigm rather
than a black-box predictive system. The structure and interface of such systems constitute
important research challenges.
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