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Abstract

In this thesis, we give a modern treatment of Dwyer’s tame homotopy theory
using the language of ∞-categories. We introduce the notion of tame spectra
and show it has a concrete algebraic description. We then carry out a study of
∞-operads and define tame spectral Lie algebras and tame spectral Hopf alge-
bras. Finally, we prove that the homotopy theory of tame spectral Hopf algebras
is equivalent to that of tame spaces. To recover Dwyer’s Lie algebra model for
tame spaces, we use Koszul duality to construct a universal enveloping algebra
functor, and show it is an equivalence from the ∞-category of tame spectral Lie
algebras to the ∞-category of tame spectral Hopf algebras.

Key words: ∞-category, tame homotopy theory, spectral Lie algebra, Koszul
duality
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Résumé

À travers cette thèse, nous étudions la théorie moderne de l’homotopie modérée
de Dwyer en utilisant le langage des ∞-catégories. Nous introduisons la notion
de spectres modérée et montrons qu’elle a une description algébrique concrète.
Nous effectuons ensuite une étude des ∞-opérades et définissons les algèbres
de Lie spectrales modérée et les algèbres de Hopf spectrales modérée. Enfin,
nous prouvons que la théorie de l’homotopie des algèbres de Hopf spectrales
modérée est équivalente à celle des espaces modérée. Pour retrouver le modèle
d’algèbre de Lie de Dwyer pour les espaces modérée, nous utilisons la dualité de
Koszul pour construire un foncteur universel d’algèbre enveloppante et montrons
qu’il s’agit d’une équivalence entre la ∞-catégorie des algèbres de Lie spectrales
modérée et la ∞-catégorie des algèbres de Hopf spectrales modérée.

Mots clefs : ∞-catégorie, théorie de l’homotopie modérée, algèbre de Lie
spectrale, dualité de Koszul.
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Chapter 1

Introduction

1.1 A Brief History of Algebraic Models for Spaces

Algebraic topology is the study of classification of topological spaces up to certain
equivalence relations via algebraic invariants. The homotopy groups π∗X of a
space X are among those invariants. For n = 1, π1(X ) is called the fundamental
group of X . For n ≥ 2, πn(X ) is an abelian group.

Spheres are the building blocks in topology, since the category of spaces is
generated under (homotopy) colimits by Sn for n ≥ 0. Perhaps surprisingly, we
only know very little about the homotopy groups of spheres.

To motivate the study of algebraic models of spaces, we now survey some
important results about the homotopy groups of spheres πm(S

n) for m, n ≥ 1.
From our first course of topology, we know that the fundamental group of the
circle S1 is isomorphic to the group of integers Z. Moreover, π1(S1) is the only
non-vanishing homotopy group of S1, i.e., S1 is an Eilenberg-Maclane space of
type K (Z, 1).

In 1930’s, Hurewicz showed that, if X is simply-connected, then the lowest
non-vanishing homology group of X is isomorphic to its lowest non-vanishing
homotopy group. Hurewicz’s theorem then implies the following result, which
states that any map from a low dimensional sphere to a higher dimensional
sphere is null-homotopic.

Theorem 1.1.1 (Hurewicz). The homotopy group πm(S
n) is zero for m < n

and is isomorphic to Z if m = n.

13



14 CHAPTER 1. INTRODUCTION

Shortly after Hurewicz, Freudenthal discovered the statbility of the groups
πm(S

n).

Theorem 1.1.2 (Freudenthal’s Suspension Theorem). The suspension mor-
phism

σ : Sn → ΩSn+1

induces isomorphisms:

πn+k(S
n)

σ∗−→ πn+k+1(S
n+1)

for k < n − 1.

Freudenthal’s theorem motivates the definition of the stable homotopy groups
of spheres

πs
k := colimn πn+k(S

n), ∀k ∈ Z

which led to the study of a whole new subject, the stable homotopy theory.
The stable homotopy groups of spheres are slightly easier to compute than the
unstable ones, but still largely unknown.

In the 1950’s, Serre used his spectral sequence to compute πm(S
n) modulo

torsion.

Theorem 1.1.3 (Serre). For each n ≥ 1, the homotopy groups of the sphere
Sn are finitely generated abelian groups. Moreover, after tensoring with Q,

πm(S
n)⊗Q ∼=


Q if m = n,

Q if m = 2n − 1 and n is even,

0 otherwise.

Serre’s theorem initiated the study of the homotopy theory of spaces modulo
torsion, which is the subject called rational homotopy theory. A simply-connected
space X is rational if its homotopy groups π∗X are vector spaces over Q. Quillen
[Qui69] showed that rational homotopy theory has a complete algebraic descrip-
tion. We shall now use the modern language of ∞-categories from [Lur09] to
explain Quillen’s theorem in more detail.

Let S≥2
∗ denote the ∞-category of pointed, simply-connected spaces and

let S≥2
Q denote the full subcategory of S≥2

∗ spanned by rational spaces. A map
f : X → Y in S≥2

∗ is a rational equivalence if it induces isomorphisms on rational
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homotopy groups
π∗(f ) : π∗X ⊗Q → π∗Y ⊗Q;

or equivalently, if it induces isomorphisms on rational homology groups

H∗(f ) : H∗(X ;Q) → H∗(Y ;Q).

For any space X ∈ S≥2
∗ , there exists a map η : X → XQ such that

1. XQ is a rational space;

2. η is a rational equivalence.

The ∞-category S≥2
Q of simply-connected rational spaces can be constructed by

formally inverting rational equivalences in S≥2
∗ .

Let ChQ denote the ∞-category of rational chain complexes. The ∞-
categorical version of Quillen’s theorem can be stated as follows.

Theorem 1.1.4. [Qui69] There are equivalences of ∞-categories

coCAlg(ChQ)
≥2 ≃ S≥2

Q ≃ Lie(ChQ)
≥1,

where Lie(ChQ)
≥1 denotes the ∞-category of connected rational dg Lie alge-

bras, and coCAlg(ChQ)
≥2 denotes the ∞-category of simply-connected rational

commutative dg coalgebras.

Quillen’s model for rational homotopy theory is not only conceptual, but also
allows computation using algebraic gadgets. Later Sullivan [Sul77] defined the
polynomial de Rham complex functor APL : (S≥2

Q )op → CAlg(ChQ), where the
target is the category of commutative differential graded algebras (CDGAs) over
Q. The functor APL is a complete homotopy invariant, in the sense that two
rational spaces X and Y of finite type (i.e. their homology groups are finitely
generated) are equivalent if and only if APL(X ) and APL(Y ) are equivalent (i.e.
connected by a zig-zag of quasi-isomorphisms) as CDGAs over Q. Moreover,
every APL(X ) is equivalent to a minimal model ΛX , which is generally quite
computable. The rational homotopy groups of X can be directly computed from
the minimal model ΛX .

From a modern prospective, Sullivan’s functor APL is essentially equivalent
to the rational cochain functor C ∗(−;Q), and C ∗(X ;Q) has a E∞-algebra struc-
ture coming from the chain-level cup products. Sullivan’s theorem can then be
rephrased in the language of ∞-categories as follows.
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Theorem 1.1.5. [Sul77] Let S≥2,fin
Q be the ∞-category of simply-connected

rational spaces of finite type, and let CAlg(ChQ) be the ∞-category of E∞-
algebras over Q. The cochain functor

C ∗(−;Q) : S≥2,fin
Q → CAlg(ChQ)

is fully faithful.

One natural question to ask is what other subcategories of spaces admit
concrete algebraic descriptions as in the case of rational spaces. We will now
survey some results that answer this question. Recall that we obtain the ∞-
category S≥2

Q by formally inverting rational equivalences in S≥2
∗ . This technique

is called localization, and it can be formulated in a general setting as follows.

Definition 1.1.6. Let C be an ∞-category and let S be a (small) collection of
morphisms in C. An object X in C is S-local if the induced map on mapping
spaces

MapC(B,X ) → MapC(A,X )

is a weak equivalence for all f : A → B in S . A map g : Y → Z is an
S-equivalence if the induced map on mapping spaces

MapC(Z ,X ) → MapC(Y ,X )

is an equivalence for every S-local object X .

Let C′ be the full subcategory of C spanned by S-local objects. The ∞-
category C′ is called a localization of C if the embedding functor C′ ↪→ C admits
a left adjoint.

Proposition 1.1.7. [Lur09, Proposition 5.5.4.15.] If C is a presentable ∞-
category and S is a collection of morphisms in C, then there exists a localization
functor

L : C → C′

so that a map f : A → B in C is an S-equivalence if and only if Lf is an
equivalence in C′.

Using Proposition 1.1.7, one can show that the ∞-category S≥2
Q of simply-

connected rational spaces is obtained by inverting rational homology equiva-
lences. A next step to consider is to take S to be the collection of morphisms
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in S≥2
∗ that induce isomorphisms on mod-p homology groups, i.e., f : X → Y

is in S if
H∗(f ) : H∗(X ;Fp)

∼=−→ H∗(Y ;Fp).

An S-local space is called a p-complete space. By Proposition 1.1.7, any simply-
connected space X admits a p-completion X → X∧

p , i.e., X∧
p is p-complete and

the map X → X∧
p induces isomorphisms on mod-p homology groups.

Let Fp denote the algebraic closure of Fp. Mandell constructed an algebraic
model for the ∞-category S≥2,fin

p of simply-connected p-complete spaces of finite
type.

Theorem 1.1.8. [Man01] The cochain functor

C ∗(−;Fp) : (S≥2,fin
p )op → CAlg(ChFp

)

is fully faithful.

One may then wonder whether the integral homotopy type might be charac-
terized by the integral cochain functor

C ∗(−;Z) : (S≥2,fin)op → CAlg(ChZ).

Unfortunately, this is not the case due to the following theorem proved again by
Mandell.

Theorem 1.1.9. [Man06] The integral cochain functor C ∗(−;Z) (as a functor
between ordinary categories) is faithful but not full.

The next best hope is to find a way to assemble information from rationaliza-
tion and p-completions. In number theory, one can recover the ring of integers
Z by the following pullback square:

Z
∏

p Z∧
p

Q (
∏

p Z∧
p )⊗Q,

where Z∧
p denotes the ring of p-adic integers. In homotopy theory, Bousfield–

Kan [BK72] and Sullivan [Sul05] proved that there is pullback square for any
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nilpotent space X :
X

∏
p X

∧
p

XQ (
∏

p X
∧
p )⊗Q.

One might then hope to construct the integral model for nilpotent spaces by
assembling Sullivan’s cochain model for rational spaces and Mandell’s cochain
model for p-complete spaces. However, the difficulty lies in how to assemble
information from E∞-rings over fields of different characteristics.

Mandell’s theorem suggests that we need structures beyond just commuta-
tivity to capture all the information of integral homotopy. We now introduce
recent results of Yuan [Yua19] concerning the integral homotopy type.

For each prime p, Nikolaus-Scholze [NS18] showed that any E∞-ring A ad-
mits a Frobenius action φA : A → AtCp , where (−)tCp denotes the Tate con-
struction of a Cp-spectrum. Yuan [Yua19] then defines a p-complete E∞-ring to
be p-perfect by imposing conditions on the Frobenius action and showed that
the ∞-category CAlgperfp of p-perfect E∞-rings admits an S1-action. A canonical
example of a p-perfect E∞-ring is the p-complete sphere spectrum S∧p .

Yuan defined the ∞-category CAlgφ=1
p of p-Frobenius fixed E∞-rings as the

S1-fixed points of CAlgperfp , and referred to a lift Aφ=1 ∈ CAlgφ=1
p of a p-perfect

E∞-ring A as the Fp-trivialization of A. The p-complete sphere spectrum S∧p
admits an Fp-trivialization and hence the cochain (S∧p )Xφ=1 lies in the ∞-category
CAlgφ=1

p . Yuan then constructed a new algebraic model for simply-connected
p-complete spaces of finite type.

Theorem 1.1.10. [Yua19, Theorem B] The functor (S≥2,fin
p )op → CAlgφ=1

p

that sends X to (S∧p )Xφ=1 is fully faithful.

It turns out that the cochains of X with coefficient in the p-Frobenius fixed
E∞-ring (S∧p )φ=1 can be assembled for different primes p and give rise to an
algebraic model for the integral homotopy type.

An E∞-ring A is called Frobenius fixed if its p-completion A∧
p admits Fp-

trivialization for each prime p. Let CAlgφ=1 denote the ∞-category of Frobenius
fixed E∞-rings.

Theorem 1.1.11. [Yua19, Theorem C] The functor (S≥2,fin
∗ )op → CAlgφ=1 that

sends X to SXφ=1 is fully faithful.
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So far we have only seen the (co)algebra analogues of Quillen’s rational
homotopy theory. We now state a result of Heuts [Heu21b], which concerns a
Lie algebra model for vn-periodic spaces. Since the prerequisites to understand
the exact statement are substantial, we give only a rough explaination here and
refer the readers to [Heu21b] and the survey paper [Heu20] for more details.

For each prime p, there is a sequence of homology thoeries

K (0),K (1),K (2), ... ,K (∞)

on p-local spaces, called the Morava K-theories. For certain n, these homology
theories are well-known. For instance, K (0) is rational homology theory, K (1) is
mod-p complex K-theory and K (∞) is mod-p homology theory. These homology
theories are the fundamental objects in chromatic homotopy theory.

A p-local finite complex V is of type n if K∗(m)V vanishes for m < n

and is non-zero for m = n. By the famous periodicity theorem of Hopkins-
Smith [HS98], any p-local finite complex V of type n admits a vn-self map
v : ΣdV → V so that K∗(m)v is an isomorphism for m = n and K∗(m)v is the
zero map for m ̸= n. Hence, for any p-local space X , the vn-self map v acts
invertibly on the homotopy groups of the mapping space Map∗(V ,X ) and one
can define the vn-periodic homotopy groups of X as

v−1π∗(X ;V ) := Z[v±1]⊗Z[v ] π∗Map∗(V ,X ).

A map f : X → Y between two p-local spaces X ,Y is called a vn-periodic
equivalence if it induces isomorphisms on the vn-periodic homotopy groups. We
remark that the vn-periodic homotopy groups depend on the choice of the type n
complex V , but the class of vn-periodic equivalences does not. The ∞-category
Svn of vn-periodic spaces is then obtained by formally inverting the vn-periodic
equivalences. In a similar manner, we can also define the ∞-category Spvn of
vn-periodic spectra.

Heuts proved that the ∞-category of vn-periodic spaces admits a Lie algebra
model.

Theorem 1.1.12. [Heu21b] The ∞-category of vn-periodic spaces is equivalent
to the ∞-category AlgLie(Spvn) of spectral Lie algebras in Spvn .

We will give the definition of the ∞-category of spectral Lie algebras in
Chapter 3.
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We now introduce the algebraic model for Dwyer’s tame homotopy theory
[Dwy79], which is also the main topic of this thesis. All the localizations we
have seen so far are obtained by first inverting a set of primes for all spaces. For
rational spaces, we invert all the primes at all degrees of the homotopy groups.
What if we progressively invert more primes as the degree of the homotopy
groups increases? The motivation for doing so was inspired by the following
theorem of Serre.

Theorem 1.1.13 (Serre). For n ≥ 3, the first p-torsion in the homotopy group
πk(S

n) appears in degree n + 2p − 3.

A ring system R∗ is a sequence of subrings Rj of Q for j ≥ 0 such that Rm

is a subring of Rn if m < n. In this thesis, we will be interested in only one ring
system, defined as follows.

Definition 1.1.14. The tame ring system {Rj}j≥0 is defined as

Rj := Z[
1

k
|k ≤ j + 3

2
].

In other words, Rj is the smallest subring of Q in which p is inverted for all
primes p ≤ j+3

2 .

Let r ≥ 3 be an integer. Dwyer [Dwy79] defined the tame model structure
on the category S≥r

∗ of pointed r -connective spaces, in which a map f is a weak
equivalence if πr+j(f ) ⊗ Rj is an isomorphism for all j ≥ 0. On the algebraic
side, he defined the tame model structure on the category AlgLie(ChZ)

≥r−1 of
(r − 1)-connective dg Lie algebras over the integers Z, in which a map f is a
weak equivalence if the induced maps on homology groups with coefficients in the
tame ring system are isomorphisms, that is, Hr+j−1(f )⊗Rj is an isomorphism for
all j ≥ 0. There seems to exist no direct homotopy functor that connects these
two categories on the model category level. Dwyer then defined the notion of
Lazard algebras, which are Lie algebras with just enough extra structure so that
the Baker-Campbell-Hausdorff formula makes sense. He equipped the category
of simplicial Lazard algebras with a model structure and proved that it is the
intermediate category in a zig-zag of Quillen equivalences between S≥r

∗ and
AlgLie(ChZ)

≥r−1.

Theorem 1.1.15. [Dwy79] With the model structures described above, there is
a zig-zag of Quillen equivalences between S≥r

∗ and AlgLie(Ch(Z))≥r−1.
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We end this section by stating a result of Anick [Ani89] which motivated us
to consider the Hopf algebra model for tame spaces. Let p be a prime number,
and let R = Z[ 1

(p−1)! ]. A free differential graded (dg) Lie algebra is r -mild if it
is generated in the range of dimension from r to rp − 1. Denote the category
of free r -mild dg Lie algebras over R by AlgLie(Chr (R)). Anick introduced a
notion of Hopf algebra up to homotopy (Hah) [Ani89, Definition 4.1], which
is a generalization of dg cocommutative Hopf algebras with the usual structure
diagrams commuting up to homotopy. Let Hahr (R) denote the category of
r -mild Hah over R .

Theorem 1.1.16 ([Ani89] Theorem 4.8). The universal enveloping algebra func-
tor U : AlgLie(Chr (R)) → Hahr (R) induces an equivalence on their homotopy
categories:

Ho(AlgLie(Chr (R))) ≃ Ho(Hahr (R)).

1.2 Outline of the Thesis

The main objectives of the thesis are four-fold. In chapter 2, we will stream-
line the discussion of tame homotopy theory using the modern language of ∞-
categories. A space X is r -tame if its homotopy groups are modules over the
tame ring system, i.e. πr+jX is an Rj -module for all j ≥ 0. We show that
the ∞-category of r -tame spaces can be obtained by inverting maps that induce
isomorphisms on homotopy groups with coefficients in the tame ring system. We
will refer to such maps as tame equivalences. More concretely, we prove that
the ∞-category S≥r

tame of r -tame spaces is a localization of the ∞-category S≥r
∗

of pointed r -connective spaces at the class of tame equivalences.
Secondly, we define the ∞-category Sp≥r

tame of r -tame spectra and tame
equivalences between them in a similar manner. We show that Sp≥r

tame is a local-
ization of the ∞-category Sp≥r of r -connective spectra. The ∞-category Sp≥r

tame

of tame spectra appears to have a nice algebraic description. Let (Mod≥r
HZ)tame

be the ∞-category of r -connective HZ-modules whose underlying spectra are
tame.

Theorem A. There is an symmetric monoidal equivalence of ∞-categories

Sp≥r
tame ≃ (Mod≥r

HZ)tame.

In Chapter 3, we define the ∞-category AlgLie(Sp
≥r
tame) of Lie algebras in
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tame spectra , which we will refer as the tame spectral Lie algebras. We apply
Koszul duality to produce a universal enveloping algebra functor

U : AlgLie(Sp
≥r
tame) → HopfAlg(Sp≥r

tame),

where the target is the ∞-category of Hopf algebras in Sp≥r
tame.

In chapter 4, we establish a new Hopf algebra model for tame spaces.

Theorem B. There is an equivalence of ∞-categories

S≥r
tame ≃ HopfAlg(Sp≥r−1

tame ).

Using the Hopf algebra model, we prove a Milnor-Moore theorem for tame
spectra which has already been observed by Hess [Hes93, Theorem 6.6].

Theorem C. The universal enveloping algebra functor U is an equivalence of
∞-categories.

Assembling these three theorems, we then recover Dwyer’s Lie algebra model
for tame spaces.

1.3 Conventions and Notation

Throughout this paper, we will freely use the language of ∞-categories (i.e.
quasi-categories) developed in [Lur09] and higher algebra from [Lur17]. We will
try our best to provide explicit references to the relevant results in these books.

1.3.1 Conventions

• If D is an ordinary category, then we won’t distinguish D and its nerve
ND (when viewed as an ∞-category).

• We say a morphism f : X → Y in an ∞-category D is an equivalence if
it is an isomorphism after passing to the homotopy category hD.

• If D is an ∞-category, we denote by D≃ the core of D, i.e. the largest
Kan subcomplex contained in D.

• Let n be a non-negative integer. We will call a space (or spectrum) X

n-connective if πi (X ) = 0 for i < n. Dually, we will call a space X (or
spectrum) is n-truncated if πi (X ) = 0 for i > n.
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• Let X be a space or spectrum, we denote τ≤kX (resp. τ≥kX ) for the
k-truncation (resp. k-connective cover) of X .

• A map f : X → Y between spaces or spectra is n-connective (resp.
n-truncated) if the (homotopy) fibers of f are n-connective (resp. n-
truncated).

• We always assume spaces are pointed in this thesis.

1.3.2 Notation

• ∆ denotes the category of non-empty finite linearly ordered sets.

• ∆+ denotes the category of (possibly empty) finite linearly ordered sets.
We will abuse notation by denoting the empty set by [−1].

• ∆≤n
+ is the full subcategory of ∆+ spanned by the objects {[k]}−1≤k≤n.

• Finnu is the category of non-empty finite sets.

• Fin is the category of (possibly empty) finite sets.

• Let C and D be ∞-categories. We let Fun(C,D) denote the ∞-category
of functors from C to D.

• Let f : K → C be a map of simplicial sets. We denote C/f the slice
category defined below [Lur09, Proposition 1.2.9.2.].

• S∗ is the ∞-category of pointed spaces and Sp is the ∞-category of spec-
tra.

• Cat∞ is the ∞-category of (small) ∞-categories.

• PrL is the ∞-category of presentable ∞-categories with colimit-preserving
functors as morphisms [Lur09, Definition 5.5.3.1.].

• Let C,D ∈ PrL. We let FunL(C,D) (resp. FunR(C,D)) denote the ∞-
category of colimit-preserving functors from C to D that are left adjoints
(resp. right adjoints).

• For every pair of ∞-categories C and D, we let Fun(C,D) denote the
∞-category of functors from C to D.
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• If F : C → C′ is a functor between ∞-categories, then we denote F∗ :

Fun(D, C) → Fun(D, C′) and F ∗ : Fun(C′,D) → Fun(C,D) the functor
induced by post-composing and pre-composing with F , respectively.

• 1 denotes the trivial ∞-operad, which is the unit object in the monoidal
category of ∞-operads with respect to the composition product.

• If C is a monoidal ∞-category. We let Alg(C) denote the ∞-category of
associative algebras in C. If C is a symmetric monoidal ∞-category, we let
CAlg(C) denote the ∞-category of commutative algebras in C.

• Informally, a monad (resp. comonad) ( [Lur17, Definition 4.7.3.2.]) T on
C is an associative (resp. coassociative) algebra object in the ∞-category
of endofunctors on C. LModT (C) denotes the ∞-category of left modules
over the monad T as defined in [Lur17, Section 4.2]. Dually, LcoModQ(C)
denotes the ∞-category of left comodules over the comonad Q.



Chapter 2

Tame Spaces and Tame
Spectra

In this chapter, we give a modern treatment of Dwyer’s tame spaces in §2.1
using the theory of localizations. In §2.2, we give a concrete characterization
of tame equivalences. We then extend the definition of tameness to spectra in
§2.3. We prove that the ∞-category of r -tame spaces (resp. r -tame spectra)
is a localization of the ∞-category of r -connective spaces (resp. r -connective
spectra). We then discuss properties of these two categories and establish an
algebraic characterization of r -tame spectra.

2.1 Tame Spaces

In this section, we first define the notion of a tame space. Then we explain how
to obtain the ∞-category of r -tame spaces as a localization of the ∞-category
S≥r
∗ of pointed r -connective spaces. Recall that we have defined the tame ring

system {Rj}j≤0 in Definition 1.1.14.

Definition 2.1.1. Let X ∈ S≥r
∗ be a pointed r -connective space. We say X is

r -tame if for all j ≥ 0, the (r + j)-th homotopy group πr+j(X ) is uniquely p-
divisible for all p ≤ j+3

2 . This is equivalent to saying that πr+j(X ) is a Rj -module
for each j , that is,

πr+j(X ) ∼= πr+j(X )⊗ Rj .

Remark 2.1.2. Note that the definition of tame spaces depends on an integer
r . It is clear from the definiton that, for two integers s ≥ r ≥ 3, if a s-connective
space X is r -tame, then it is also s-tame.

25
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Notation 2.1.3. We let S≥r
tame denote the full subcategory of S≥r

∗ spanned by
r -tame spaces. We decide to omit the r from the subscript since the level of
tameness will be clear from the superscript. Moreover, we will simply call a space
tame if the level of tameness is clear from the context.

Given a space X ∈ S≥r
∗ , we want to produce a space Xtame that is the

universal tame space receiving a map from X . Moreover, we want this assignment
to be functorial. The theory of localization, well-studied in Bousfield [Bou75],
[Bou79] and Farjoun [Far96], provides powerful machinery for doing so in the
context of model categories. For localization of ∞-categories, we will follow
[Lur09].

Definition 2.1.4. [Lur09, Definition 5.2.7.2.] A functor F : C → D between
∞-categories is a localization if F has a fully faithful right adjoint.

In our case, we will construct a tame localization functor

Ltame : S≥r
∗ → S≥r

tame

so that the inclusion functor is its right adjoint. Our strategy for proving the
existence of such a localization functor is to show the effect of inverting primes
in homotopy groups is equivalent to inverting some maps in S≥r

∗ .
To explain this idea, we now recall some terminology from Definition 1.1.6.

Let C be an ∞-category and S a collection of morphisms in C. An object Z is
said to be S-local if for every morphism f : X → Y in S , restricting along f

MapC(Y ,Z ) → MapC(X ,Z )

is a weak equivalence. A morphism f : X → Y in C is an S-equivalence if, for
every S-local object Z , composition with f induces a weak equivalence

MapC(Y ,Z ) → MapC(X ,Z ).

Remark 2.1.5. Let L : C → LC ↪→ C be a localization of an ∞-category C,
and let S be the class of morphisms f in C such that Lf is an equivalence. By
[Lur09, Proposition 5.5.4.2.], the full subcategory spanned by S-local objects is
precisely the essential image LC under L, and every S-equivalence in C belongs
to S .
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To understand the effect of inverting primes in homotopy groups, let’s first
consider the following simple case. Let mp : Sn p−→ Sn be a map of degree p.
Observe that a space X is mp-local if and only if the multiplication-by-p map on
the homotopy groups

π∗(X )
·p−→ π∗(X )

is an isomorphism in degrees ∗ ≥ n. In other words, a space X is mp-local if
and only if its homotopy groups π∗(X ) are uniquely p-divisible in degrees large
or equal to n.

Let P denote the set of all primes. For each prime q, we consider the
following composition

mq : S r+2q−3 ·q−→ S r+2q−3 inclusion−−−−−→
∨
p∈P

S r+2p−3,

which induces a canonical map

∨p∈P mp :
∨
p∈P

S r+2p−3 →
∨
p∈P

S r+2p−3. (2.1)

To simplify notation, we will denote the map ∨p∈Pmp by f .

Lemma 2.1.6. A space X ∈ S≥r
∗ is tame if and only if it is f -local.

Proof. A space X is f -local if and only if the induced map on mapping spaces

Map∗(
∨
p∈P

S r+2p−3,X )
f ∗−→ Map∗(

∨
p∈P

S r+2p−3,X )

is a weak equivalence. This is equivalent to asking that the homotopy groups
πr+j(X ) be uniquely p-divisible for all primes p ≤ j+3

2 for every fixed j ≥ 0. The
lemma now follows from the following commuting diagram

πr+j(X ) πr+j(X )

πj−(2p−3)(Map∗(S
r+2p−3,X )) πj−(2p−3)(Map∗(S

r+2p−3,X )),

·p

·p

where the vertical arrows are isomorphisms. Hence the top horizontal map is an
isomorphism if and only if the bottom horizontal map is an isomorphism.
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The following proposition guarantees the existence of the localization of pre-
sentable ∞-categories.

Proposition 2.1.7. [Lur09, Proposition 5.5.4.15.] Let C be a presentable ∞-
category, and let S be a (small) set of morphisms of C. Let S denote the strongly
saturated (cf. [Lur09, Definition 5.5.4.5.]) class of morphisms generated by S .
If C′ ⊆ C denotes the full subcategory of C spanned by S-local objects, then

1. For each object C ∈ C, there exists a morphism s : C → C ′ such that C ′

is S-local and s belongs to S .

2. The ∞-category C′ is presentable.

3. The inclusion C′ ⊆ C has a left adjoint L.

4. For every morphism f of C, the following are equivalent:

(i) The morphism f is an S-equivalence.

(ii) The morphism f belongs to S .

(iii) The induced morphism Lf is an equivalence.

If C = S≥r
∗ and S = {f } in (2.1), we will also call an S-local space (resp. S-

equivalence) Lf -local (resp. Lf -equivalence). The proposition above guarantees
the existence of the tame localization functor.

Corollary 2.1.8. There exists a localization functor

Ltame : S≥r
∗ → S≥r

tame .

Moreover, the ∞-category S≥r
tame of tame spaces is a presentable ∞-category.

Definition 2.1.9. A morphism g : X → Y in S≥r
∗ is said to be a tame equiva-

lence if it is an Lf -equivalence in the sense of Definition 1.1.6.

2.2 Characterization of Tame Equivalences

In this section, we give an explicit characterization of tame equivalences by
showing that the functor Ltame : S≥r

∗ → S≥r
tame is an infinite composite of

localization functors.
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We first consider the effect of localizing with respect to the multiplication-
by-p map

mp : S r+2p−3 → S r+2p−3

for a fixed prime p. Note that a space X ∈ S≥r
∗ is Lmp -local if and only if π∗X

is uniquely p-divisible for ∗ ≥ r + 2p − 3. Let S≥r
mp

denote the full subcategory
of S≥r

∗ spanned by spaces whose homotopy groups are uniquely p-divisible in
degree larger or equal to r + 2p− 3. Proposition 2.1.7 guarantees the existence
of a localization functor

Lmp : S≥r
∗ → S≥r

mp
.

A map g : X → Y is a Lmp -equivalence if and only if Lmpg : LmpX → LmpY is an
equivalence. We first show that Lmp -localization does not change the homotopy
groups below degree r + 2p − 3.

Proposition 2.2.1. If g : X → Y is a n-connective map in S∗, then every
Lg -equivalence is n-connective.

Proof. Take S = {g} and denote by S the strongly saturated class of morphisms
generated by S . Proposition 2.1.7 implies that S = {Lg -equivalences}, hence
it suffices to show that S is contained in the class of n-connective maps. Note
that the class of n-connective maps is saturated in the sense of [Lur09, Definition
5.5.5.1]. Since every strongly saturated class of morphisms in a presentable ∞-
category is also saturated [Lur09, Example 5.5.5.5.], we have

{Lg -equivalences} = S ⊆ S̃ ⊆ {n-connective maps}

where S̃ denotes the saturated class of morphisms generated by S .

Corollary 2.2.2. If g : A → B is n-connective, then the localization Lg : S∗ →
S∗ doesn’t change the homotopy groups of a space X below degree n, i.e.

πi (LgX ) ∼= πi (X )

for i < n.

We now compare Lmp -localization with the Bousfield localization with respect
to the homology theory H∗(−;Z[ 1p ]).

In this case, we let S ′ be the collection of morphisms that induce isomor-
phisms on homology with coefficients in Z[ 1p ], or equivalently on π∗(−)⊗ Z[ 1p ]
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by [Bou96, Proposition 4.3], as we are working in S≥r
∗ . We will call an S ′-local

space Z[ 1p ]-local. By [Bou96, Theorem 5.5], a space whose homotopy groups are
uniquely p-divisible is Z[ 1p ]-local. Hence, any Z[ 1p ]-local space is also Lmp -local,
and any Lmp -equivalence also induces isomorphisms on π∗(−)⊗ Z[ 1p ].

Lemma 2.2.3. If f : X → Y is a Lmp -equivalence of spaces, then it induces
isomorphisms

π∗(X )⊗ Z[ 1p ] → π∗(Y )⊗ Z[ 1p ].

Moreover, if f : X → Y is a map between (r + 2p − 3)-connective spaces, then
f is a Lmp -equivalence if and only if it is a Z[ 1p ]-equivalence.

Proof. The first part is clear. The second part follows from the fact that a
(r + 2p − 3)-connective space is Lmp -local if and only if it is Z[ 1p ]-local.

Let τ≥r+2p−3X denote the (r+2p−3)-connective cover and τ≤r+2p−4X the
(r + 2p − 4)-truncation of X . We claim that Lmp -localization commutes with
taking (r + 2p − 3)-connective cover.

Lemma 2.2.4. The localization functor Lmp commutes with taking (r+2p−3)-
th connective cover, i.e., there is an equivalence

Lmp(τ≥r+2p−3X ) ≃ τ≥r+2p−3(LmpX )

for any X ∈ S≥r
∗ .

Proof. It suffices to show the map τ≥r+2p−3X → τ≥r+2p−3LmpX is a Lmp -
equivalence, since τ≥r+2p−3LmpX is Lmp -local. Consider the following commu-
tative diagram of fiber sequences

τ≥r+2p−3X X τ≤r+2p−4X

τ≥r+2p−3LmpX LmpX τ≤r+2p−4LmpX ≃ τ≤r+2p−4X ,

where the equivalence at the lower right corner follows from Corollary 2.2.2.
Note that the diagram above induces a commutative diagram of two long exact
sequences of homotopy groups. For each n ≥ r+2p−3, there is a commutative
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diagram

πn(τ≥r+2p−3X )⊗ Z[ 1p ] πn(X )⊗ Z[ 1p ]

πn(τ≥r+2p−3LmpX )⊗ Z[ 1p ] πn(LmpX )⊗ Z[ 1p ],

where the horizontal maps are isomorphisms and the right vertical map is also an
isomorphism by Lemma 2.2.3, hence the left map is also an isomorphism. The
lemma then follows from the second part of Lemma 2.2.3.

We can now compute the homotopy groups of the Lmp -localization of a
space.

Corollary 2.2.5. The homotopy groups of LmpX are given by

π∗LmpX =

π∗X if ∗ < r + 2p − 3

π∗X ⊗ Z[ 1p ] if ∗ ≥ r + 2p − 3.

Proof. Since the map mp is (r +2p−3)-connective, the map X → LmpX is also
(r +2p− 3)-connective. By Proposition 2.2.1. Hence there are isomorphisms in
homotopy groups

π∗LmpX
∼= π∗X

for ∗ < r + 2p − 3. Since Lmp commutes with taking (r + 2p − 3)-connective
cover by Lemma 2.2.4, we can assume X is (r + 2p − 3)-connective. We claim
that LmpX ≃ LZ[ 1

p
]X , that is, LmpX is the localization of X with respect to the

homology theory H∗(−;Z[ 1p ]).
Indeed, the homotopy groups of LmpX are uniquely p-divisible, so LmpX is

LZ[ 1
p
]-local and we have a unique factorization

X LmpX

LZ[ 1
p
]X .

By Lemma 2.2.3, the horizontal map is an LZ[ 1
p
]X -equivalence. Hence the dashed

diagonal map is also an LZ[ 1
p
]-equivalence, which implies that LmpX ≃ LZ[ 1

p
]X .
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Therefore, we conclude that π∗LmpX = π∗X ⊗ Z[ 1p ] for ∗ ≥ r + 2p − 3.

Corollary 2.2.6. A map g : X → Y is an Lmp -equivalence if and only if the
induced maps on homotopy groups satisfy:

1. πi (X ) → πi (Y ) is an isomorphism for i < r + 2p − 3;

2. πi (X )⊗ Z[ 1p ] → πi (Y )⊗ Z[ 1p ] is an isomorphism for i ≥ r + 2p − 3.

Proof. Note that f is a Lmp -equivalence if and only if

LmpX → LmpY

is an equivalence. By our computation of the homotopy groups in Corollary
2.2.5, this is equivalent to requiring that f is (r+2p−3)-connective and induces
isomorphisms on πn+r+2p−3X ⊗ Z[ 1p ] → πn+r+2p−3Y ⊗ Z[ 1p ] for any n ≥ 0.

We conclude this section by showing that localization with respect to the
map f is equivalent to localization with respect to an infinite composite of
localizations.

Proposition 2.2.7. If f is the map in (2.1), then there is an equivalence

Lf X ≃ colim(X → Lm2X → Lm3Lm2X → · · · )

in S≥r
∗ .

Proof. Let X∞ := colim(X → Lm2X → Lm3Lm2X → · · · ). The space X∞ is
tame; indeed, for fixed j , we have

πr+j(X∞) ∼= πr+j(Lmq · · · Lm2X ) ∼= πr+j(X )⊗ Rj ,

where q is the largest prime number less than or equal to j+3
2 . Since there is

also an isomorphism πr+j(Lf X ) ∼= πr+jX ⊗ Rj , we conclude that the canonical
map

Lf X → X∞

is an equivalence.
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As a consequence, a map g : X → Y in S≥r
∗ is a tame equivalence if and

only if it is a Lmp -equivalence for every prime p, which implies the following
corollary.

Corollary 2.2.8. A map g : X → Y between r -connective spaces is a tame
equivalence if and only if the induced maps

πr+jX ⊗ Rj → πr+jY ⊗ Rj

are isomorphisms for all j ≥ 0.

Remark 2.2.9. Let s ≤ r be non-negative integers. If X → Y is an r -tame
equivalence, then it’s also an s-tame equivalence.

We end this section with a basic example of tame equivalences.

Example 2.2.10. For r an odd number, the canonical map

S r → K (Z, r)

is a tame equivalence since it is a rational equivalence.

2.3 Tame Spectra

In this section, we introduce the notion of tame spectra. These spectra are
defined analogously to tame spaces, that is, we impose divisibility conditions on
their homotopy groups. Then we establish functors which connect tame spaces
and tame spectra. Finally, we establish an algebraic characterization of the
∞-category of tame spectra.

As opposed to the case of spaces, we allow r to be any non-negative integer,
and we denote the ∞-category of r -connective spectra by Sp≥r .

Definition 2.3.1. A r -connective spectrum X is r -tame if the (r + j)-th ho-
motopy group πr+j(X ) is an Rj -module for j ≥ 0, or equivalently, there are
isomorphisms

πr+j(X ) ∼= πr+j(X )⊗ Rj

for all j ≤ 0.

Notation 2.3.2. We let Sp≥r
tame denote the full subcategory of Sp≥r spanned by

r -tame spectra.
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Let f be the map

f :
∨
p∈P

Sr+2p−3 →
∨
p∈P

Sr+2p−3 (2.2)

defined by assembling the multiplication by different primes as we did for spaces
in (2.1).

Definition 2.3.3. A map g : X → Y between r -connective spectra is a tame
equivalence if it is an Lf -equivalence.

We summarize the results regarding tame localization of spectra and tame
equivalences below.

Proposition 2.3.4. 1. A spectrum X ∈ Sp≥r is tame if and only if it is
Lf -local.

2. The tame localization

Ltame : Sp
≥r → Sp≥r

tame

exists. Moreover, the ∞-category Sp≥r
tame of tame spectra is presentable.

3. A map g : X → Y between r -connective spectra is a tame equivalence if
and only if the induced maps

πr+jX ⊗ Rj → πr+jY ⊗ Rj

are isomorphisms for all j ≥ 0.

Proof. The proofs of these statements are completely analogous to those of
Lemma 2.1.6, Corollary 2.1.8 and Proposition 2.2.8.

Remark 2.3.5. We remark that tame localization of Sp≥r is no longer prestable
[Lur18b, Definition C.1.2.1.], since the tame localization is no longer compatible
with the suspension Σ in Sp. This is contrast to many usual localizations of the
∞-category of spectra.

Let C be a presentable ∞-category and let S be a collection of morphisms
in C. We now state a closure property S-equivalences in C. In particular, the
lemma below implies that the collection of tame equivalences is closed under
colimits.
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Lemma 2.3.6. Let K be a simplicial set and let f : X → Y be a pointwise
S-equivalence in Fun(K , C). Then the induced map on colimits

colimk∈K Xk → colimk∈K Yk

is an S-equivalence.

Proof. This follows immediately from Proposition 2.1.7, since the collection
of S-equivalences is strongly saturated, and hence is closed under colimits in
Fun(∆1, C).

We now discuss the relation between the ∞-category S≥r
tame of tame spaces

and the ∞-category Sp≥r
tame of tame spectra. Since there are isomorphisms

π∗(Ω
∞X ) ∼= π∗(X )

for any spectrum X , the infinite loop space of a tame spectrum is a tame space.
Therefore, the functor Ω∞ : Sp≥r → S≥r restricts to a functor

Ω∞ : Sp≥r
tame → S≥r

tame.

Lemma 2.3.7. The suspension functor Σ∞ : S≥r
∗ → Sp≥r sends tame equiva-

lences of spaces to tame equivalences of spectra.

Proof. Let f : X → Y be a tame equivalence in S≥r
∗ . By definition, Σ∞f :

Σ∞X → Σ∞Y is a tame equivalence if, for every tame spectrum Z , the induced
map

MapSp≥r (Σ∞Y ,Z ) → MapSp≥r (Σ∞X ,Z )

is a weak equivalence. Note that the map above is equivalent to the map

MapS≥r
∗
(Y , Ω∞Z ) → MapS≥r

∗
(X , Ω∞Z )

which is a weak equivalence as Ω∞Z is a tame space and f is a tame equivalence
by assumption.

We now discuss some basic examples of tame equivalences in Sp≥r .

Example 2.3.8. 1. For any integer r ≥ 0, the r -truncation map

Sr → ΣrHZ
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is an r -tame equivalence. Indeed, the first p-torsion in the homotopy
groups of the shifted sphere spectrum Sr appears in degree r + 2p − 3,
hence its r -tame localization is the shifted Eilenberg-MacLane spectrum
ΣrHZ. This example indicates that Sp≥r

tame is generated by ΣrHZ under
colimits, since Sp≥r is generated by Sr under colimits.

2. Let r ≥ 3 be an odd integer, then the canonical map

S r → K (Z, r)

is an r -tame equivalence by Example 2.2.10. Then Lemma 2.3.7 implies
that

Sr → Σ∞K (Z, r)

is a tame equivalence. Combining with the previous example, we conclude
that the r -truncation map

Σ∞K (Z, r) → ΣrHZ

is also a tame equivalence. Since ΣrHZ is r -tame, hence we have

LtameΣ
∞K (Z, r) ≃ ΣrHZ.

We now show that the class of r -tame equivalences is closed under smashing
with a connective spectrum.

Lemma 2.3.9. Let r ≥ 0 and let E be a connective spectrum. If f : X → Y is
an r -tame equivalence in Sp≥r , then E ⊗ X → E ⊗ Y is an r -tame equivalence
in Sp≥r .

Proof. Let E be the full subcategory of Sp≥0 spanned by spectra F satisfying
the condition that

F ⊗ X → F ⊗ Y

is an r -tame equivalence whenever X → Y is an r -tame equivalence. Clearly,
the sphere spectrum S is in E . Since Sp≥0 is generated by S under colimits, the
claim will follow if we can show E is closed under colimits. Let Z : K → E be
a diagram in E . Note that by Lemma 2.3.6 and the fact that smash product
commutes with colimits in Sp≥0, we conclude that

(colimK Zk)⊗ X → (colimK Zk)⊗ Y
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is an r -tame equivalence.

Remark 2.3.10. 1. As a direct consequence of Lemma 2.3.9, if X → Y

is an r -tame equivalence, then X ⊗ HZ → Y ⊗ HZ is also an r -tame
equivalence. Hence, for every k ≥ 0, the induced map on homology

Hr+k(X )⊗ Rk → Hr+k(Y )⊗ Rk

is an isomorphism.

2. Lemma 2.3.9 above implies that r -tame localization is compatible with
the smash product in Sp≥r in the sense of [Lur17, Definition 2.2.1.6.].
By [Lur17, Proposition 2.2.1.9.], the ∞-category Sp≥r

tame of tame spectra
admits a (non-unital) symmetric monoidal structure given by

X ⊗̂Y := Ltame(X ⊗ Y ).

Moreover, the tame localization

Ltame : Sp
≥r → Sp≥r

tame

is symmetric monoidal, hence the tensor product ⊗̂ preserves colimits in
each variable.

Corollary 2.3.11. Let E ∈ Sp≥r . Then the map

E ≃ E ⊗ S → E ⊗ HZ

is an r -tame equivalence.

Proof. This is immediate from Lemma 2.3.9, since S → HZ is a 0-tame equiv-
alence, and E is r -connective.

Remark 2.3.12. One might ask whether HZ-module spectra are r -tame for all
r , but this is false. For instance, ΣHZ is a 1-connective HZ-module but it’s not
0-tame, as π1ΣHZ ∼= Z is not uniquely 2-divisible.

We now give an algebraic characterization of tame spectra. Let ModHZ

denote the ∞-category of HZ-modules. Note that ModHZ can be identified with
the derived ∞-category D(Z) by [Lur17, Remark 7.1.1.16.]. We let (Mod≥r

HZ)tame
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denote the full subcategory of Mod≥r
HZ spanned by r -connective HZ-modules

whose underlying spectra are tame.

Construction 2.3.13. We now explain how to realize (Mod≥r
HZ)tame as a local-

ization of Mod≥r
HZ. We first remark that this procedure is completely analogous to

the case of spaces and spectra. Similar to (2.2), we assemble the multiplication-
by-p maps mp : Σr+2p−3HZ → Σr+2p−3HZ to a map

f :
∨
p∈P

Σr+2p−3HZ →
∨
p∈P

Σr+2p−3HZ. (2.3)

By definition, X ∈ Mod≥r
HZ is f -local if

MapModHZ(
∨
p∈P

Σr+2p−3HZ,X ) → MapModHZ(
∨
p∈P

Σr+2p−3HZ,X )

is a weak equivalence. Since we have an equivalence

MapModHZ(Σ
r+2p−3HZ,X ) ≃ MapSp(Sr+2p−3,X ),

X is f -local if and only if its underlying spectrum is tame, i.e., X ∈ (Mod≥r
HZ)tame.

By Proposition 2.1.7, there is a localization functor

Mod≥r
HZ → (Mod≥r

HZ)tame

which we will again denote by Ltame. We will refer to Ltame-equivalences in
Mod≥r

HZ as tame HZ-equivalences.

It is clear from the definition of the ∞-category (Mod≥r
HZ)tame that a map

f : X → Y in Mod≥r
HZ is a tame HZ-equivalence if it is a tame equivalence in

Sp≥r .

Remark 2.3.14. Let f : M → M ′ be a tame HZ-equivalence, then

f ⊗
Z
id : M ⊗

Z
ΣrHZ → M ′ ⊗

Z
ΣrHZ

is a tame HZ-equivalence by Lemma 2.3.6. Since Mod≥r
HZ is generated under

colimits by ΣrHZ, the map

f ⊗
Z
N : M ⊗

Z
N → M ′ ⊗

Z
N
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is a tame HZ-equivalence for any N ∈ Mod≥r
HZ.

Therefore, tame HZ-equivalences are compatible with the symmetric monoidal
structure on Mod≥r

HZ and we can equip (Mod≥r
HZ)tame with a symmetric monoidal

structure given by
M⊗̂N ≃ Ltame(M ⊗

Z
N).

Note that the functor

Ltame(−⊗ HZ) : Sp≥r → (Mod≥r
HZ)tame

is left adjoint to the forgetful functor U : (Mod≥r
HZ)tame → Mod≥r

HZ → Sp≥r .
Moreover, the forgetful functor has essential images in Sp≥r

tame, hence by Propo-
sition A.1.6, we obtain a pair of adjoint functors

Ltame(−⊗ HZ): Sp≥r
tame ⇄ (Mod≥r

HZ)tame :U.

We can now state and prove Theorem A stated in the introduction.

Theorem 2.3.15. The functor

Ltame(−⊗ HZ) : Sp≥r
tame → (Mod≥r

HZ)tame

is a symmetric monoidal equivalence of ∞-categories.

Proof. We first show Ltame(− ⊗ HZ) is an equivalence of ∞-categories. Since
the forgetful functor U is conservative, it suffices to show Ltame(−⊗HZ) is fully
faithful. Let X ∈ Sp≥r

tame be a tame spectrum. The map

X ⊗ S → X ⊗ HZ

is an r -tame equivalence by Corollary 2.3.11 and

HZ → Ltame(X ⊗ HZ)

is a tame equivalence since it’s a tame HZ-equivalence . Hence the composite

X → X ⊗ HZ → Ltame(X ⊗ HZ)

is an equivalence as both X and Ltame(X ⊗ HZ) are tame.

To show Ltame(− ⊗ HZ) is symmetric monoidal, by [Lur17, Proposition
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2.2.1.9.], it remains to check tame equivalences is compatible with the tensor
product on Sp≥r

tame, which is the content of Lemma 2.3.9.

As a direct corollary, we see that the tame homotopy type of a spectrum is
determined by its homology with coefficients in the tame ring system.

Corollary 2.3.16. If X ∈ Sp≥r
tame is a tame spectrum, then

πr+kX ∼= Hr+kX ⊗ Rk

for every k ≥ 0. Therefore, a map g : X → Y in Sp≥r
tame between tame spectra

is an equivalence if and only if the induced map on homology with coefficients
in the tame ring system

Hr+k(X )⊗ Rk → Hr+k(Y )⊗ Rk

is an isomorphism for all k ≥ 0.

Proof. Using Theorem 2.3.15, we compute

πr+kX ∼= πr+kLtame(X ⊗ HZ)
∼= πr+k(X ⊗ HZ)⊗ Rk

∼= Hr+k(X )⊗ Rk

Corollary 2.3.17. For any spectrum X ∈ Sp≥r ,

πr+kLtameX ∼= Hr+kLtameX ⊗ Rk

∼= Hr+kX ⊗ Rk

for any k ≥ 0.

Proof. The first isomorphism follows from corollary 2.3.16 and the second iso-
morphism follows from the fact that tensoring with HZ preserves r -tame equiv-
alences.
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Remark 2.3.18. As an immediate consequence of Corollary 2.3.17, the functor
LtameΣ

∞ : S≥r
∗ → Sp≥r

tame sends a Moore space M(V , r+k) for V an Rk -module
to a shifted Eilenberg-Maclane spectrum Σr+kHV , i.e.,

LtameΣ
∞M(V , r + k) ≃ Σr+kHV .

Notation 2.3.19. Since Σ∞ : S≥r
∗ → Sp≥r

tame preserves tame equivalences by
Lemma 2.3.7, we obtain a canonical lift by the universal property of the tame
localization

S≥r
∗ Sp≥r

tame

S≥r
tame .

LtameΣ∞

Ltame

We let Σ∞
tame denote the resulting functor

Σ∞
tame : S

≥r
tame → Sp≥r

tame .

We now establish a pair of adjoint functors between tame spaces and tame
spectra.

Proposition 2.3.20. There is an adjoint pair

Σ∞
tame : S

≥r
tame ⇄ Sp≥r

tame :Ω
∞

Proof. We first note that LtameΣ
∞ : S≥r

∗ ⇄ Sp≥r
tame : Ω∞ is an adjoint pair,

where we abuse notation by writing Ω∞ for the composite

Sp≥r
tame ↪→ Sp≥r Ω∞

−−→ S≥r
∗ .

Indeed, Σ∞
tame is equivalent to the composition of Ltame and Σ∞, which are left

adjoint to the inclusion functor Sp≥r
tame ↪→ Sp≥r and Ω∞, respectively. The

statement then follows from Proposition A.1.6 and the fact that S≥r
tame is a full

subcategory of S≥r
∗ .

Let G be a finite group. For any preadditive ∞-category C (see Definition
A.1.7) with finite limits and colimits, there is a norm natural transformation
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constructed in [Lur17, §6.1.6] and [NS18, Definition I.1.10]:

Nm : (−)hG → (−)hG

from the homotopy orbits functor (−)hG : Fun(BG , C) → C to the homotopy
fixed points functor (−)hG : Fun(BG , C) → C. The Tate construction of an
object X ∈ Fun(BG , C) is defined as the cofiber of the norm map:

X tG := cofib(NmX : (X )hG → (X )hG ).

If G = Σn and C = Sp, then the norm map of a Σn-spectrum X

NmX : XhΣn → X hΣn

is an equivalence if n! is invertible in the homotopy groups of X .
For any X ∈ Sp≥r , we can identify LtameX

⊗n as an object in Fun(BΣn, Sp
≥r
tame).

We end this chapter with the Tate vanishing property of tame spectra.

Lemma 2.3.21. The Tate construction of a tame spectrum vanishes, i.e., for
all X ∈ Sp≥r (

Ltame(X
⊗n)

)tΣn ≃ ∗

for all n ≥ 2. Therefore,

(
Ltame(X

⊗n)
)
hΣn

≃
(
Ltame(X

⊗n)
)hΣn .

Proof. If X is r -connective, then its n-th tensor power X⊗n is nr -connective. We
claim that the homotopy groups of the tame spectrum Ltame(X

⊗n) are uniquely
n!-divisible, from which the conclusion follows. Indeed, since

nr − 2n − r + 3 = (r − 2)(n − 1) + 1 ≥ 0

for r ≥ 3, it follows that π∗Ltame(X
⊗n) is uniquely k-divisible for all k ≤ n in all

degrees.



Chapter 3

Koszul Duality

In this chapter, we provide the necessary background on ∞-operads (resp. ∞-
cooperads) and algebras (resp. coalgebras) over them. For convenience, we will
assume C is a pointed, presentably symmetric monoidal ∞-category throughout
this chapter.

Our main references will be [Bra17], [Heu22], [FG12], [Hei19] and [Lur17].
In §3.1, we define ∞-operads and ∞-cooperads in a symmetric monoidal ∞-

category C, as associative algebras and associative coalgebras in the ∞-category
of symmetric sequences in C, respectively.

In §3.2, we discuss algebras over an ∞-operad and some relevant construc-
tions which will be useful in the proof of the main theorems.

In §3.3, we explain the bar-cobar duality between connected ∞-operads and
cooperads. We then define divided power, conilpotent coalgebras over a ∞-
cooperad and define the Koszul duality functor indecO.

In §3.4, we define the spectral Lie operad and introduce shifting of an ∞-
operad and relevant properties.

In §3.5, we explain how to produce monads and comonads on Sp≥r and
Sp≥r

tame from certain monads and comonads on Sp.
In §3.6, we define the ∞-category of commutative coalgebras in an ∞-

category. In the case of tame spectra, we prove that it is equivalent to the
∞-category of divided power, conilpotent coalgebras.

In §3.7, we define spectral Lie algebras and tame spectral Lie algebras. We
then use Koszul duality between the spectral Lie operad and commutative op-
erad to define the Chevalley-Eilenberg functor as a functor from the ∞-category
of tame spectral Lie algebras to the ∞-category of divided power, conilpotent
commuative coalgebras in tame spectra.

43
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3.1 (co)Operads in Infinity-Categories

In this section, we collect and extend some results from [Bra17] and [Hei19].

Let Fin≃ denote the ∞-category of finite sets with bijections between them,
i.e., the core of Fin. Note that Fin≃ carries a natural symmetric monoidal
structure with the tensor product given by the disjoint union. Moreover, it’s the
free symmetric monoidal ∞-category generated by the one-object category {∗}.
The ∞-category P(Fin≃) of presheaves admits a symmetric monoidal structure
given by Day convolution [Lur17, Example 2.2.6.9.], hence we can also consider
it as a presentable symmetric monoidal ∞-category. This suggests an alternative
description of C:

FunCAlg(PrL)(P(Fin≃), C) ≃ FunCAlg(Cat∞)(Fin
≃, C) ≃ Fun({∗}, C) ≃ C.

Definition 3.1.1. A symmetric sequence in C is a functor

A : Fin≃ → C.

We denote the ∞-category of symmetric sequences in C by SSeq(C).

Remark 3.1.2. Informally, one can think of a symmetric sequence A in C as
a sequence of objects {A(n)}n≥0 in C where A(n) := A((n)) carries an action
of Σn for each n. We will refer to the number n as the arity of the symmetric
sequence A. We will sometimes describe an ∞-operad informally by giving a
sequence {A(0),A(1), ... }.

Recall the ∞-category of presentable ∞-categories admits a symmetric monoidal
structure. The tensor product ⊗ in PrL admits an explicit formula as in [Lur17,
Proposition 4.8.1.17.]. The following lemma points out that the ∞-category
SSeq(C) of symmetric sequences in C is tensored over the ∞-category SSeq(S)
of symmetric sequences in the ∞-category S of spaces.

Lemma 3.1.3. Let C be a presentably symmetric moniodal ∞-category. Then

SSeq(C) ≃ SSeq(S)⊗ C ≃ P(Fin≃)⊗ C.

Proof. First note that SSeq(S) = Fun(Fin≃,S) ≃ P(Fin≃), since Fin≃ is iso-
morphic to its opposite category. This proves the second equivalence. Using
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[Lur17, Proposition 4.8.1.17.], we deduce that there are equivalences

SSeq(S)⊗ C ≃ FunR(P(Fin≃)op, C)

≃ (FunL(P(Fin≃), Cop))op

≃ Fun(Fin≃, Cop)op

≃ SSeq(C).

We now explain a monoidal structure on SSeq(C) that will be used to de-
fine ∞-operads. Note that we can view C as the full subcategory of SSeq(C)
spanned by symmetric sequences that evaluates to the zero object on all non-
empty finite sets in Fin≃. The ∞-category SSeq(C) of symmetric sequences
is equipped with a monoidal structure that corresponds to the composition of
functors in the ∞-category FunCAlg(PrL)C/(SSeq(C), SSeq(C)). More precisely,
there are equivalences of ∞-categories

FunCAlg(PrL)C/(SSeq(C), SSeq(C)) ≃ FunCAlg(PrL)(P(Fin≃), SSeq(C))

≃ FunCAlg(Cat∞)(Fin
≃, SSeq(C))

≃ Fun({∗}, SSeq(C))

≃ SSeq(C),

allowing the transfer of the monoidal structure on FunCAlg(PrL)C/(SSeq(C), SSeq(C))
to SSeq(C). Given two symmetric sequences X and Y in C, we will write X ◦Y
for this monoidal product on SSeq(C) and refer to it as the composition product.

Remark 3.1.4. For some categories C, e.g., C = Set, Sp etc. with a point-set
model, there is a concrete formula for the composition product (cf. [Bra17,
Section 4.1.2.])

A ◦ B(J) ∼=
∐
n≥0

( ∐
J=J1

∐
···

∐
Jn

A(n)⊗ B(J1)⊗ · · · ⊗ B(Jn)
)
hΣn

,

where n denotes the finite set with n elements and the second coproduct runs
over all partitions of J.

Remark 3.1.5. Let X ∈ C be an object in C, which we can identify as a
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symmetric sequence. By the equivalence

FunCAlg(PrL)C/(SSeq(C), SSeq(C)) ≃ SSeq(C),

we can identify X as a functor SSeq(C) → SSeq(C) that factors through C. To
any symmetric sequence A in C, we can then identify A ◦ X as an object A(X )

in C. By Remark 3.1.4, we obtain a functor which has an explicit description as
follows

F(−) : SSeq(C) → Fun(C, C)

A 7→
(
X 7→ A(X ) :=

∐
n≥0

(A(n)⊗ X⊗n)hΣn

)
.

where Σn acts on the n-th tensor power of X via permutation. By our definition
of the composition products, this assignment is monoidal with respect to the
composition product in SSeq(C) (see [FG12, §3.1 ]) and composition of functors
in Fun(C, C). We call the the endofunctor FA the Schur functor associated to
the symmetric sequence A.

We can now define ∞-operads (resp. ∞-cooperads) as associative algebras
(resp. coalgebras) with respect to the composition products in SSeq C.

Definition 3.1.6. The ∞-category Op(C) of ∞-operads in C (resp. ∞-category
coOp(C) of ∞-cooperads in C) is defined as the ∞-category Alg(SSeq(C))
(resp.coAlg(SSeq(C))) of associative algebras (resp. coalgebras) in SSeq(C)
with respect to the composition product.

Remark 3.1.7. Although Lurie’s approach to ∞-operads [Lur17, Chapter 2]
is seemingly different from the one we give here, Haugseng [Hau17] and Heine
[Hei19] showed that Lurie’s model is equivalent to the definition of ∞-operads in
S. Hence all the results in [Lur17] transfer smoothly to the setting of ∞-operads
in spaces.

In this paper, we will work exclusively with non-unital ∞-operads. Roughly
speaking, a non-unital ∞-operad O is an operad without nullary operations.

Definition 3.1.8. An ∞-operad O in C is non-unital if O(0) is equivalent to
the zero object of C.

Remark 3.1.9. As a consequence of Remark 3.1.5, the Schur functor FO associ-
ated to an operad O is a monad on C. If additionally we assume C is preadditive
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(Definition A.1.7) and O is a non-unital ∞-operad, then the Schur functor FQ
associated to a cooperad Q is a comonad on C by [Hau17, Remark 2.21].

Definition 3.1.10. A (non-unital) ∞-operad O is connected 1 if there is an
equivalence O(1) ≃ 1C .

Definition 3.1.11. An augmentation of an ∞-operad O is a map of ∞-operads
ϵ : O → 1C such that ϵ ◦ η ≃ id1C . We call an ∞-operad O in C together with
an augmentation ϵ an augmented ∞-operad.

Remark 3.1.12. A connected ∞-operad is augmented with the canonical aug-
mentation ϵ : O → 1C .

Remark 3.1.13. From now on, whenever we say ∞-operads (resp. ∞-cooperads)
we mean non-unital connected ∞-operads (resp. ∞-cooperads).

We now introduce two simple examples.

Example 3.1.14. We denote by 1C the symmetric sequence that takes value
the tensor unit 1C of C at {∗} and the zero object otherwise. One can check
that Schur functor F1C associated to 1C is the identity endofunctor on SSeq(C).
Hence 1C serves as a monoidal unit for the composition product in SSeq(C). We
will refer to 1C as the trivial ∞-operad in C.

Example 3.1.15. Consider the symmetric algebra functor on C defined as

Sym : C → C

X 7→ ⨿n≥1(X
⊗n)hΣn ,

which is the Schur functor of the symmetric sequence Com := (1C , 1C , ... ), where
1C is the tensor unit of C. Since Com is clearly an associative algebra in SSeq(C)
with respect to the composition product, Com is called the commutative operad
in C, and Sym is a monad on C. If we additionally assume C is preadditive, then
Sym associated to the symmetric sequence Com defines a comonad on C, and
we will abuse notation by writing Com for the commutative cooperad in C.

3.1.1 Truncations of ∞-operads

The goal of this subsection is to set up the prerequisites to state Proposition
3.3.12 [Heu22, Theorem 4.12], which we will use in the proof of Theorem 4.0.2.

1In [Chi05], operads with this property are called reduced. However, the term reduced
operads sometimes has another meaning in the literature.
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We discuss the notion of truncations of ∞-(co)operads, for which we follow the
upcoming paper by Heuts [Heu22] closely. The upshot of these truncations is
to produce natural filtrations on algebras (resp. coalgebras) over operads (resp.
cooperads).

We fix a pointed presentably symmetric monoidal ∞-category C with tensor
product compatible with colimits. Let Finnu≤n denote the full subcategory of Finnu

spanned by (non-empty) finite sets with cardinality less or equal to n. We will
refer to

SSeq≤n(C) := Fun(Finnu≤n, C)

as the ∞-category SSeq≤n(C) of n-truncated symmetric sequences in C. Re-
striction along the inclusion Finnu≤n → Finnu induces a functor

(−)≤n : SSeq(C) → SSeq≤n(C).

which preserves both limits and colimits.

Lemma 3.1.16. [Hei19, Lemma 2.16] If C is a pointed symmetric monoidal
∞-category with colimits, then the restriction functor

(−)≤n : SSeq(C) → SSeq≤n(C)

is compatible with the composition products. Hence it equips a monoidal struc-
ture on SSeq≤n(C) and it lifts to functors between algebras and coalgebras.

We can now define n-truncated operads and cooperads in C.

Definition 3.1.17. We define the ∞-category of n-truncated operads in C as

Op≤n(C) := Alg(SSeq≤n(C)).

Dually, we define
coOp≤n(C) := coAlg(SSeq≤n(C))

to be the ∞-category of n-truncated cooperads in C.

Remark 3.1.18. As a consequence of Lemma 3.1.16, there are commutative
diagrams

Op(C) Op≤n(C)

SSeq(C) SSeq≤n(C)

ρn

oblv oblv′

(−)≤n
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and
coOp(C) coOp≤n(C)

SSeq(C) SSeq≤n(C).

ρn

oblv oblv′

(−)≤n

where the vertical arrows are forgetful functors.

We now explain the relations between operads and their truncations, follow-
ing [Heu22]. Consider the functor

ζn : SSeq≤n(C) → SSeq(C)

given by extending by zero objects in arities above n. One can check that it is
both left and right adjoint to the restriction functor (−)≤n.

The lemma above has an immediate corollary.

Corollary 3.1.19. The functor

ζn : SSeq≤n(C) → SSeq(C)

admits both a lax monoidal and an oplax monoidal strucutre.

The lax monoidal structure on ζn induces a functor on algebras

τn : Op≤n(C) → Op(C)

which is right adjoint to ρn. On the other hand, the functor ρn : Op(C) →
Op≤n(C) preserves limits and filtered colimits (since they are computed in the
underlying ∞-category of symmetric sequences), hence by the adjoint functor
theorem [Lur09, Corollary 5.5.2.9.], it admits a left adjoint

φn : Op≤n(C) → Op(C).

To sum up, we have a diagram consisting of functors described above

Op(C) Op≤n(C),

φn

τn

ρn (3.1)

where the left adjoints are above the right adjoints.
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Dually, the oplax structure on ζn induces a functor on coalgebras

τn : coOp≤n(C) → coOp(C),

which is left adjoint to the restriction ρn. The restriction ρn preserves colimits,
hence admits a right adjoint

φn : coOp≤n(C) → coOp(C),

and we have the following diagram which summarizes the situation for cooperads

coOp(C) coOp≤n(C).

τn

φn

ρn
(3.2)

Notation 3.1.20. We will abuse notation by writing

• for any operad O in C, O → τnO for the unit of the bottom adjunction in
(3.1) ;

• for any operad O in C, φnO → O for the counit of the top adjunction in
(3.1) ;

• for any cooperad Q in C, τnQ → Q for the counit of the top adjunction
in (3.2) ;

• for any cooperad Q in C, Q → φnQ for the unit of the bottom adjunction
in (3.2).

We state the following facts from [Heu22] without proof.

Fact 3.1.21. [Heu22]

• For any ∞-operad O in C, there is a sequence of operad maps

φnO → O → τnO.

The operad τnO is the n-truncation of O, i.e., operations of arity higher
than n are set to zero. The map O → τnO is terminal among those
operad maps from O that are equivalences in arities up to n. The operad
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φnO is equivalent to O in arities up to n, while higher arity operations
are "freely generated" by operations of arity less or equal to n. Hence,
the map φnO → O is initial among those operad maps to O that are
equivalences in arities up to n.

• Similarly, for any ∞-cooperad Q in C, there is a sequence of cooperad
maps

τnQ → Q → φnQ.

The cooperad τnQ is the n-truncation of Q, i.e., cooperations of arity
higher than n are set to zero. The map Q → φnQ is terminal among
those cooperad maps from O that are equivalences in arities up to n. The
cooperad φnQ is "cofreely generated" by cooperations of arities up to n.
The map τnQ → Q is initial among those cooperad maps from Q that
are equivalences in arities up to n.

Remark 3.1.22. Using the fact above, we see that there is a direct system for
an ∞-operad O,

φ1O → φ2O → · · · → O. (3.3)

Similarly, there is an inverse system for the n-truncations of ∞-operads.

· · · → τ2O → τ1O → O (3.4)

Proposition 3.1.23. [Heu22] If O is an ∞-operad in C, then there is an equiv-
alence

O ≃ colimn φnO

in Op(C).

Sketch of proof: It suffices to check the equivalence aritywise. For any arity k ,
the direct system of objects

φ1O(k) → φ2O(k) → · · ·

stabilizes for n ≥ k .

3.2 Algebras over Operads

In this section, we will review the definition of algebras over an ∞-operad. Recall
that a symmetric sequence O ∈ SSeq(C) acts on C via its Schur functor FO. If
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O is an ∞-operad, then its Schur functor FO is a monad, hence we can consider
the ∞-category LModFO(C) of left FO-modules in C.

Definition 3.2.1. Let O be an ∞-operad in C. The ∞-category of O-algebras
is AlgO(C) := LModFO(C).

For a symmetric sequence A in C, we consider the following extended power
functors

DA
n (X ) := (A(n)⊗ X⊗n)hΣ, Dn

A(X ) := (A(n)⊗ X⊗n)hΣ. (3.5)

Informally, an O-algebra X in C is equipped with maps

DO
n (X ) → X

for each n ≥ 1 and homotopy coherent data that keeps track of the associativity.

Definition 3.2.2. Let F : C → C be an endofunctor. We define the ∞-category
AlgF (C) of F -algebras in C to be the pullback of the following diagram in Cat∞

AlgF (C) Fun(∆1, C)

C C × C.

(ev0,ev1)
(F ,id)

That is, AlgF (C) has objects X of C equipped with a morphism F (X ) → X .

Remark 3.2.3. Our notation might cause potential confusion when F is a monad
T , since we write AlgT (C) for the ∞-category of left modules over T . Note
that this is different from the pullback definition in Definition 3.2.2.

Proposition 3.1.23 motivates us to ask the following question: Can we write
an O-algebra, as the limit of φkO-algebras as in the case of Postnikov decom-
position of a simply-connected space?

Heuts answers this question in the following theorem.

Theorem 3.2.4. [Heu22, Theorem 4.1] For each n ≥ 2, the commutative square
of ∞-categories

AlgφnO(C) AlgDO
n
(C)

Algφn−1O(C) Alg
D

φn−1O
n

(C).
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is a pullback square. Furthermore, the natural map

AlgO(C) → lim
n

AlgφnO(C)

is an equivalence of ∞-categories.

Remark 3.2.5. Heuts stated Theorem 3.2.4 for a stable ∞-category, but a
careful examination of the proof shows that the theorem holds for a presentably
pointed symmetric monoidal ∞-category C, which is our assumption throughout
this chapter.

Remark 3.2.6. Theorem 3.2.4 has the following informal interpretation: sup-
pose X is a φn−1O-algebra, then to specify a φnO-algebra structure on X , it
suffices to equip X with a multiplication map µn : DO

n (X ) → X that is compat-
ible with the φn−1O-algebra structure maps. We refer the readers to [Heu22]
for further details.

3.3 Koszul Duality and Divided Power Conilpotent
Coalgebras

In this section, we discuss Koszul duality for operads in the sense of [GK94]
and define divided power, conilpotent coalgebras over an ∞-cooperad. We will
assume C is a presentably stable, symmetric monoidal ∞-category in this section.

We first discuss bar-cobar duality between ∞-operads and ∞-cooperads.
The general form of bar-cobar duality is exhibited in the form of associative
algebras and coassociative coalgebras in a nice ∞-category in [Lur17].

Proposition 3.3.1. [Lur17, Remark 5.2.2.19.] Let D be a pointed monoidal ∞-
category admitting geometric realizations of simplicial objects and totalizations
of cosimplicial objects. Then there is an adjunction

B : Algaug(D) ⇄ coAlgaug(D) :C .

If D = SSeq(C), then we obtain an adjunction between (augmented) operads
and (coaugmented) cooperads.

B : Opaug (C) ⇄ coOpaug (C) :C .
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Explicitly, the bar construction BO of an ∞-operad O is computed as the geo-
metric realization of the simplicial bar construction with respect to the compo-
sition products [Lur17, Section 4.4.2]

Bar(1,O,1)• := 1 // O
//
//oo

oo
O ◦ O · · ·

oo
oo
oo

,

and we will write
BO := |Bar(1,O,1)•|.

Similarly, the cobar construction CQ of a cooperad Q is computed as the total-
ization of the cosimplicial object

Cobar(1,Q,1)• := 1
//
// Qoo

//
//
//
Q ◦ Q · · ·oo

oo
.

and we will write
CQ := Tot Cobar(1,Q,1)•.

Definition 3.3.2. An ∞-operad O ∈ Opaug (C) is Koszul if the unit map

O → CB(O)

is an equivalence.

If we restrict to ∞-operads in a stable ∞-category C, then every connected
∞-operad is Koszul.

Proposition 3.3.3. [Heu22, Proposition 3.4] Let C be a presentably stable sym-
metric monoidal ∞-category. Then the bar-cobar adjunction

B : Opaug (C) ⇄ coOpaug (C) :C .

restricts to an equivalence on the ∞-categories of connected operads and coop-
erads.

We now introduce functors that will play important roles throughout the rest
of the thesis. Let O be a connected ∞-operad with its canonical augmentation
ϵ : O → 1. Restriction along ϵ induces a functor

trivO : C ≃ Alg1(C) → AlgO(C),

which we will call the trivial O-algebra functor. The trivial O-algebra functor
admits a left adjoint cotO : C → AlgO(C) given by the relative tensor product
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1◦O (−), whose existence can also be deduced from the adjoint functor theorem
[Lur09, Corollary 5.5.2.9.]. The functor cotO is called the cotangent fiber functor
in [Heu22].

Remark 3.3.4. Informally, a trivial O-algebra X is an O-algebra whose structure
map (O(n)⊗ X⊗n)hΣn → X factors through 0 when n > 1.

Remark 3.3.5. If O is the commutative operad, the functor cotO is often
called Topological André-Quillen homology in the literature. The choice of the
terminology from [Heu22] comes from the following fact. Let C be the category of
chain complexes over a commutative ring k and O the non-unital commutative
operad. If A is a commutative k-algebra, then cotO(A) computes the fiber
of the cotangent complex LA/k at the k-point of Spec(A) determined by the
augmentation of A.

Similarly, restriction along the unit map η : 1 → O induces a functor

oblvO : AlgO(C) → C ≃ Alg1(C),

which we will refer as the O-forgetful functor. The O-forgetful functor admits
a left adjoint freeO : C → AlgO(C) given by O ◦ (−) which we will call the free
O-algebra functor.

The composite
1

η−→ O ϵ−→ 1

is equivalent to the identity, hence we have equivalences

cotO ◦ freeO ≃ id

and
oblvO ◦ trivO ≃ id .

The situation can be summarized in the following diagram of adjunctions

C AlgO(C) C
freeO

oblvO

cotO

trivO

in which the left adjoints are above their right adjoints and both horizontal
composites are equivalent to the identity functor.

The following corollary of the Barr-Beck-Lurie theorem [Lur17, Theorem
4.7.3.5.] says that any O-algebra X is canonically equivalent to the geomectric
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realization of a simplicial object of O-algebras.

Proposition 3.3.6. If X is an O-algebra, then it can be resolved as the geometric
realization of the simplicial objects (freeO ◦ oblvO)•+1X , i.e.,

X ≃ |(freeO ◦ oblvO)•+1X | ≃ |Bar(O,O,X )•|. (3.6)

Proof. This follows from the fact that the adjunction (freeO, oblvO) is monadic
and Corollary A.3.2.

Applying cotO to both sides of (3.6) yields a formula for computing the
cotangent fiber of X .

Corollary 3.3.7. [Heu22, Proposition 4.4] The cotangent fiber of an O-algebra
X can be computed as

cotO X ≃ |(oblvO ◦ freeO)• oblvO X |,

where the geometric realization is computed in the underlying ∞-category C.

As a consequence, we can identify the comonad cotO ◦ trivO in terms of the
bar construction of O.

Proposition 3.3.8. [Heu22, Proposition 4.5] The comonad cotO ◦ trivO is nat-
urally equivalent to the comonad FBO associated with the cooperad BO.

We are now ready to define the ∞-category of divided power, conilpotent
coalgebras over an ∞-cooperad.

Definition 3.3.9. Let Q be an ∞-cooperad in C. We define the ∞-category of
divided power, conilpotent coalgebras over a cooperad Q as the ∞-category of
left comodules over FQ,

coAlgdp,nilQ (C) := LcoModFQ(C).

Analogous to the case of algebras over an operad, we have two pairs of
adjunctions

C coAlgdp,nilQ (C) C
cofreenilQ

oblvnilQ

Primnil
Q

trivnilQ
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where the right adjoints are above the left adjoints, and compositions of the
horizontal functors are equivalent to the identity functor on C.

Moreover, by an argument dual to the proof of Proposition 3.3.6, we can
resolve any divided power, conilpotent coalgebra by a totalization of cosimplicial
cofree coalgebras.

Proposition 3.3.10. Let X be a divided power, conilpotent Q-coalgebra, then it
can be resolved as the totalization of the cosimplicial object (cofreeQ ◦ oblvQ)•+1X ,
i.e.

X ≃ Tot(cofreeQ ◦ oblvQ)•+1X ≃ TotCobar(Q,Q,X )•. (3.7)

The functor cotO factors through the ∞-category LcoModcotO ◦ trivO(C) of
left comodules over the comonad (cotO ◦ trivO), which can be identified with
the ∞-category of left comodules over the comonad FBO by Proposition 3.3.8,
hence we can write the resulting factorization as

AlgO(C) C

coAlgdp,nilBO (C) .

cotO

indecO oblvnilBO

The functor indecO preserves colimits, hence it admits a right adjoint primnil
BO

by the adjoint functor theorem [Lur09, Corollary 5.5.2.9.], which we will call the
primitives functor ; for Y ∈ coAlgdp,nilBO (C), the primitives primnil

BO(Y ) of Y can
be computed explicitly as [Heu22, Lemma 4.7]

primnil
BO(Y ) ≃ Tot trivO(FBO)

• oblvnilBO(Y ).

For future application, we record the following lemma.

Lemma 3.3.11. [FG12, (3.4) and (3.5)] There are equivalences

indecO ◦ trivO ≃ cofreenilBO and primnil
BO ◦ cofreenilBO ≃ trivO .

Proof. The first equivalence is a direct consequence of Proposition 3.3.8. The
composite primnil

BO ◦ cofreenilBO is right adjoint to oblvO ◦ indecO ≃ cotO, hence
primnil

BO ◦ cofreenilBO ≃ trivO.

We also have the following decomposition result for divided power, conilpo-
tent Q-coalgebras, which will be used in the proof of the essential surjectivity of
the functor Ctame. Let Q be a connected ∞-cooperad.
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Proposition 3.3.12. [Heu22, Theorem 4.13] For n ≥ 2, the following commu-
tative square of ∞-categories

coAlgnil,dpφnQ (C) coAlgnil,dpDn
Q

(C)

coAlgφn−1Q(C) coAlgDn
φn−1Q

(C)

is a pullback square. Moreover, the natural map

coAlgQ(C) → lim
n

coAlgφnQ(C)

is an equivalence.

3.4 The spectral Lie operad

In this section, we introduce an operad in Sp which will be central to this thesis.
We first need to provide some background on partition posets. Consider the
set P(n) of partitions (i.e., equivalence relations) on the finite set {1, · · · , n}.
P(n) is a poset with minimal element the trivial partition and maximal element
the discrete partition. Write P+(n) (resp. P−(n) ) for the subposet of P(n)

obtained by deleting the minimal (resp. maximal) partition.

Goodwillie calculus is an important tool in homotopy theory, we will assume
basic familiarity of its theory and applications. The survey paper [AC19] is an
excellent source on this subject. The Goodwillie derivative ∂∗ id of the identity
functor id : S∗ → S∗ forms a symmetric sequence in Sp, i.e., each ∂n id is a
Σn-spectrum in the naive sense. In [Joh95] and [AM99], it was shown that

∂n id ≃ D(Σ∞Kn),

where Kn := |P(n)|/ (|P+(n)| ∪ |P−(n)|) and D denotes the Spanier-Whitehead
dual. Let Com denote the commutative cooperad in Sp. Ching [Chi05] iden-
tified the derivatives of the identity functor as the cobar construction of the
commutative cooperad and hence admits an operad structure.

Remark 3.4.1. We remark that Ching works with point-set models of operads in
spectra. However, one can choose a simplicial model for the operads in [Chi12]
and apply operadic nerve [Lur17, Definition 2.1.1.23.] to obtain relevant results
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for ∞-operads. The operad ∂∗ id is the cobar construction of the commutative
cooperad in Sp ([Chi05, Remark 8.9])

Cobar(Com) ≃ ∂∗ id .

Remark 3.4.2. Classical Koszul duality between the Lie operad and the com-
mutative cooperad Com in (graded) abelian groups is studied in [GK94] and
[LV12]; there is an equivalence of operads in (graded) abelian groups

Lie[−1] ≃ Com∨

where Com∨ denotes the linear dual of the commutative cooperad and Lie[−1](n)p :=

Lie(n)p+n−1.

Definition 3.4.3. We define the shifted spectral Lie operad to be

L := ∂∗ id .

The name comes from the following computation in [Chi05, Example 9.50],

H∗L(n) ∼=

Lie(n)⊗ sgn if ∗ = 1− n,

0 otherwise

where sgn denotes the sign representation.
The mismatch of degrees between the spectral Lie operad L and the Lie

operad Lie in abelian groups is rather inconvenient for applications. To remedy
this, we recall a shift operation for ∞-operads in Sp introduced in [Hei19, §2.2.4.]
and [Cam16, Section 3].

Definition 3.4.4. Suppose there is an adjunction

L: Sp ⇄ C :R

for some ∞-category C. Let T be the monad arising from this adjunction, then
the desuspended monad ΩTΣ is a monad on Sp and we denote it by Σ−1T .
If the monad T is the Schur functor FO of an ∞-operad O, then there is
a desuspended operad Σ−1O corresponding to the monad Σ−1FO, which has
underlying symmetric sequence

(Σ−1O)(n) = Sn ⊗ Σ−1O(n)
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where Σn acts on Sn by permuting the n factors of S1, and Σn acts on Σ−1O(n)

via the its action on O(n).

We now state some results concerning shifts of monads and ∞-operads with-
out proof. We refer the reader to [Hei19, Section 2.2.4.] and [Cam16] for more
details. The following lemma indicates that shifting an ∞-operad is indeed
harmless to the category of algebras we want to study.

Lemma 3.4.5. [Hei19, Section 2.2.4.] Let C be a stable ∞-category. There is
a pullback diagram

AlgΣ−1O(C) AlgO(C)

C C.

Σ′

≃

Σ
≃

of ∞-categories.

As a consequence, we write

Ω′ : AlgO(C) → AlgΣ−1O(C)

for the inverse of Σ′, which fits into a commutative diagram

AlgO(C) AlgΣ−1O(C)

C C.

Ω′

≃

Ω
≃

Moreover, we have two commutative diagrams of right adjoints

AlgO(C) AlgΣ−1O(C)

C C,

Ω′

≃

trivO triv
Σ−1O

Ω
≃

(3.8)

and
AlgO(C) AlgΣ−1O(C)

AlgO(C) AlgΣ−1O(C),

Ω′

≃

ΩO ΩΣ−1O

Ω′

≃

(3.9)

where ΩO and ΩΣ−1O denote the loop functor in AlgO(C) and AlgΣ−1O(C),
respectively. The commutativity of (3.8) follows from the fact that Ω′ ◦ trivO
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and trivΣ−1O ◦Ω are right adjoint to cotO ◦Σ′ and Σ◦cotΣ−1O, respectively; and
there are equivalences

cotO ◦(Σ′X ) ≃ |(FO)•(ΣX )|

≃ |Σ(ΩFOΣ)•(X )|

≃ ΣcotΣ−1O

where we used that there is an equivalence of simplicial objects

Σ(ΩFOΣ)•(X ) → (FO)•(ΣX )

in the second equivalence.

The commutativity of (3.8) says that applying Ω′ to a trivial O-algebra gives
rise to a trivial Σ−1O-algebra, and the commutativity of (3.9) says that there is
an equivalence ΩΣ−1OX ≃ Ω′ ◦ ΩO(Σ

′X ) for X ∈ AlgΣ−1O(C). Therefore, we
obtain the following lemma.

Lemma 3.4.6. Let Y ∈ AlgΣ−1O(C). If ΩO(Σ
′Y ) is a trivial O-algebra, then

ΩΣ−1OY is a trivial Σ−1O-algebra.

Proof. By the assumption, ΩO(Σ
′Y ) is a trivial O-algebra, i.e. ΩO(Σ

′Y ) ≃
trivO Y . Moreover, by the commutativity of (3.8) and (3.9), there are equiva-
lences

ΩΣ−1OY ≃ Ω′ΩO(Σ
′Y ) ≃ Ω′ trivO(Y ) ≃ trivΣ−1O(ΩY ).

Construction 3.4.7 (Suspension morphism). Consider the commutative dia-
gram

AlgO(C) C

AlgO(C) .

oblvO ◦ΩO

ΩO oblvO

The forgetful functor oblvO is monadic and it corresponds to the monad FO.
Since the functor oblvO ◦ΩO is conservative and preserves sifted colimits, it is
also monadic by the Barr-Beck-Lurie theorem [Lur17, Theorem 4.7.3.5.]. More-
over, the monad induced from the right adjoint oblvO ◦ΩO and its left adjoint
ΣO ◦ freeO is exactly FΣ−1O; indeed, the monad arising from this adjunction is



62 CHAPTER 3. KOSZUL DUALITY

given by
oblvO ΩOΣO freeO ≃ ΩoblvO freeO Σ ≃ ΩFOΣ,

where we use that freeO preserves colimits so ΣO freeCO ≃ freeO Σ. Therefore,
we obtain a functor

σ∗ : AlgΣ−1O(C) → AlgO(C)

which is the dashed arrow in the following commutative diagram

AlgO(C) C

AlgΣ−1O(C)

AlgO(C).

oblvO ◦ΩO

Ω′ oblv
Σ−1O

ΩO
oblvO

σ∗

By the dual statement of Theorem A.4.4, the functor

σ∗ : AlgΣ−1O(C) → AlgO(C)

induces a map of monads
σ : FO → ΩFOΣ, (3.10)

which we will refer as the suspension morphism associated to the operad O.

Definition 3.4.8. We define the spectral Lie operad as

Lie := Σ−1L.

Remark 3.4.9. The underlying symmetric sequence of the spectral Lie operad
Lie := Σ−1L has the form

Lie(n) = Sn ⊗ Σ−1L(n),

whose homology is exactly Lie(n) concentrated in degree 0. Moreover, the
homology of the spectral Lie operad H∗Lie is the Lie operad Lie in graded abelian
groups. On the other hand, Lie is the Goodwillie derivative of the functor ΩΣ
on S∗, see [Goo03, Section 8]. Moreover, one can check the associated Schur
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functor FLie of FLie is indeed given by ΩLΣ,

FLie(X ) ≃
∐
n≥1

(
Sn ⊗ Σ−1L(n)⊗ X⊗n

)
hΣn

≃ Σ−1
∐
n≥1

(
L(n)⊗ (ΣX )⊗n

)
hΣn

≃ ΩFLΣ(X ).

3.5 Induced Monads and Comonads

The goal for this section is to explain how to produce monads on Sp≥r and
Sp≥r

tame from certain monads on Sp.

We start by proving a general fact regarding how localizations interact with
endofunctors. Suppose L : C → D is a symmetric monoidal localization and, we
let j : D → C denote the embedding that is right adjoint to L. We then have an
adjunction on the ∞-category of endofunctors.

Proposition 3.5.1. There is an adjunction

j∗L∗ : Fun(C, C) ⇄ Fun(D,D) :j∗L
∗. (3.11)

Moreover, the left adjoint j∗L∗ is a localization functor.

Proof. We need to show there are two pairs of adjunctions

L∗ : Fun(C, C) ⇄ Fun(C,D) :j∗

and
j∗ : Fun(C,D) ⇄ Fun(D,D) :L∗.

We only prove the first adjunction, as the proof of the second is similar. Let
η : idC → j ◦ L be the unit natural transformation arising from the localization.
By post-composition, η lifts to a natural transformation

η′ : idFun(C,C) → j∗L∗.

It suffices to check the following composite is an equivalence

MapFun(C,D)(L∗F ,G ) → MapFun(C,C)(j∗L∗F , j∗G )
η′∗−−→ MapFun(C,C)(F , j∗G )
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for F ∈ Fun(C, C) and G ∈ Fun(C,D). But this follows from the fact that the
composite

MapC(LF (X ),G (X )) → MapD(jLF (X ), jG (X ))
η∗−→ MapD(F (X ), jG (X ))

is an equivalence for every X ∈ C.
Note that the counit of the adjunction in (3.11)

j∗L∗j∗L
∗ → idFun(D,D)

is an equivalence, hence the right adjoint j∗L∗ is fully faithful and the proposition
is proved.

The following corollary is a direct consequence of the proposition above and
[Lur17, Proposition 2.2.1.1.].

Corollary 3.5.2. The functor j∗L
∗ : Fun(D,D) → Fun(C, C) is monoidal.

Therefore, the left adjoint j∗L∗ is oplax monoidal.

Let FunL(C, C) be the full subcategory of Fun(C, C) spanned by functors that
preserve L-equivalences. The goal of the rest of this section is to show j∗L∗ is
monoidal when restricted to FunL(C, C). Note first that for any F ∈ FunL(C, C),
we have a natural equivalence

L ◦ F ≃ L ◦ F ◦ L (3.12)

since F preserves L-equivalences.

Remark 3.5.3. Let FunL(D,D) denote the essential image of FunL(C, C) under
the functor j∗L∗. For any pair of functors F ,G ∈ FunL(C, C), there is an natural
equivalence

L ◦ (F ◦ G ) ≃ L ◦ (F ◦ LG )

by (3.12). If f : X → Y is an L-equivalence in C, then FG (X ) → FG (Y ) →
F ◦ LG (Y ) is an L-equivalence since both F and G preserve L-equivalences.
Hence, we conclude that both FunL(C, C) and FunL(D,D) are closed under
composition.

For F ∈ FunL(C, C), the right adjoint j∗L
∗ sends any functor of the form

j∗L∗F to a functor in FunL(C, C); indeed, this follows from the following equiv-
alence

j∗L
∗j∗L∗F ≃ j∗L∗F
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by (3.12). Since the functor j∗L∗F clearly preserves L-equivalences, the functor
j∗L∗ restricts to a localization

FunL(C, C) → FunL(D,D).

Lemma 3.5.4. The functor

j∗L∗ : FunL(C, C) → FunL(D,D)

is a monoidal.

Proof. By [Lur17, Proposition 2.2.1.9.], it suffices to check the monoidal struc-
ture is compatible with the localization functor j∗L∗ in the sense of [Lur17,
Definition 2.2.1.6.]. Suppose for F ,F ′ in FunL(C, C) there is a natural transfor-
mation

T : F → F ′

that is an equivalence after applying j∗L∗. It suffices to check

j∗L∗(T ◦ id) : L(F ◦ G ) → L(F ′ ◦ G )

is an equivalence for any G ∈ FunL(C, C). Consider the commutative diagram

L(F ◦ G ) LF ◦ j ◦ LG

L(F ′ ◦ G ) LF ′ ◦ j ◦ LG .

The horizontal arrows are equivalences since both F and F ′ preserve L-equivalences,
and the right vertical arrow is an equivalence by the assumption. Therefore, the
left arrow is an equivalence and the proof is now complete.

Remark 3.5.5. As a consequence, if F ∈ FunL(C, C) is a monad, then j∗L∗(F )

is a monad on D. For simplicity, we will abuse notation by writing LF for the
monad j∗L∗(F ). Similarly, if G ∈ FunL(C, C) is a comonad, then j∗L∗(G ) is a
comonad on D.

Let {O(k)}k≥1 be a symmetric sequence in Sp such that the connectivity of
O(k) is 1− k for each k . For r ≥ 1, let X be an r -connective spectrum. Since
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(O(k)⊗ X⊗k)hΣk
is still r -connective, the Schur functor associated to O

FO(X ) ≃
∐
k≥1

(O(k)⊗ X⊗k)hΣk

induces an endofunctor on the ∞-category Sp≥r of r -connective spectra.
Let SSeq(Sp)≥1 be the full subcategory of SSeq(Sp) spanned by symmetric

sequences {O(k)}k≥1 such that O(k) is (1− k)-connective.

Lemma 3.5.6. The ∞-category SSeq(Sp)≥1 is closed under the composition
product.

Proof. For any O,P ∈ SSeq(Sp)≥1, it suffices to check (O◦P)(n) is still (1−n)-
connective for every n ≥ 1. By the formula in Remark 3.1.4, a component in
(O ◦ P)(n) is of the form

(
O(k)⊗ P(n1)⊗ · · · ⊗ P(nk)

)
hΣk

where
∑

i ni = n. The lemma then follows from the calculation of the connec-
tivity of O(k)⊗ P(n1)⊗ · · · ⊗ P(nk), which equals to

1− k +
∑
i

(1− ni ) = 1−
∑
i

ni = 1− n.

We extend the definition of coanlytic functors in [Heu21b, Definition 4.3].

Definition 3.5.7. We say an endofunctor F : Sp≥r → Sp≥r is coanalytic over
Sp if there is a natural equivalence

F (X ) ≃
∐
k≥1

(O(k)⊗ X⊗k)hΣk

for {O(k)}k≥1 a symmetric sequence in SSeq(Sp)≥1. We write coAnSp(Sp
≥r )

for the full subcategory of Fun(Sp≥r , Sp≥r ) spanned by coanalytic functors over
Sp.

As a consequence of Lemma 3.5.6, the composition of two coanalytic functors
is again a coanalytic functor, hence the monoidal structure on Fun(Sp≥r , Sp≥r )

restricts to one on coAnSp(Sp
≥r ). Moreover, if O is an operad (resp. cooperad)

in SSeq(Sp)≥1, then FO restricts to a monad (resp. comonad) on Sp≥r .
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Example 3.5.8. The shifted free Lie algebra monad FL is a coanalytic functor
on Sp≥r over Sp, since L(n) is a wedge of S1−n. Similarly, FLie is a coanalytic
functor on Sp≥r .

Example 3.5.9. The free commutative comonad FCom is a coanalytic functor
Sp≥r over Sp, since Com(n) is S.

Remark 3.5.10. Since tame equivalences are closed under tensor products and
colimits, we conclude that coanalytic functors on Sp≥r over Sp preserve tame
equivalences.

Combining Lemma 3.5.4 and Remark 3.5.10, we end this section with the
following proposition.

Proposition 3.5.11. If O (resp. Q) is an ∞-operad (resp. ∞-cooperad) whose
underlying symmetric sequence is in SSeq(Sp)≥1, then we obtain an induced
monad LtameFO (resp. comonad LtameFQ) on the ∞-category Sp≥r

tame of tame
spectra.

3.6 Commutative Coalgebras in Tame Spectra

In this section, we define and study the ∞-category of commutative coalgebras
in the category of r -tame spectra. The main aim is to show the ∞-category
of divided power, conilpotent commutative coalgebras is equivalent to the ∞-
category of commutative coalgebras in Sp≥r

tame. We start by collecting some
results from [Lur18a].

Definition 3.6.1. Let C be a symmetric monoidal ∞-category. The ∞-category
coCAlg(C) of commutative coalgebras in C is defined to be coCAlg(C) :=

CAlg(Cop)op.

Proposition 3.6.2. [Lur18a, Corollary 3.1.5] Let C be a symmetric monoidal
∞-category. Suppose that the ∞-category C is presentable and that the tensor
product functor ⊗ : C × C → C preserves colimits separately in each variable.
Then the forgetful functor coCAlg(C) → C admits a right adjoint cofree : C →
coCAlg(C).

Corollary 3.6.3. The forgetful functor

oblvcoCAlg : coCAlg(Sp≥r
tame) → Sp≥r

tame

admits a right adjoint functor, which we will denote by cofreetame.
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Proof. Note that Sp≥r
tame is presentable as it’s an accessible localization of the

presentable ∞-category Sp≥r . Since the tensor product ⊗̂ in Sp≥r
tame preserves

colimits separately in each variable by Remark 2.3.10, the existence of the cofree
commutative coalgebra functor is ensured by Proposition 3.6.2.

Since the monad FCom associated to the commutative operad has underlying
endofunctor

FCom(X ) :=
∐
n≥1

(X⊗n)hΣn ,

hence F (X ) :=
∏

n≥1(X
⊗n)hΣn defines a comonad on C. For a general sym-

metric monoidal ∞-category C, we do not know any explicit identification of
the cofree comonad Q := oblvcoCAlg ◦ cofree. However, we do know an explicit
formula for the comonad Qtame := oblvcoCAlg ◦ cofreetame in the ∞-category
of tame spectra. To explain this, we need the following lemma which can be
deduced from [Lur17, Proposition 3.1.3.3] and [Lur17, Example 3.1.1.17].

Lemma 3.6.4. Let C be a presentable symmetric monoidal ∞-category. Define
F to be the endofunctor on C

F (X ) :=
∏
n≥1

(X⊗n)hΣn .

If the canonical map

γ :
(∏
n≥1

(X⊗n)hΣn
)
⊗ Y →

∏
n≥1

(X⊗n ⊗ Y )hΣn

is an equivalence for any Y ∈ C with trivial Σn-action, for all n, then the cofree
comonad Q is given by F .

Proof. By [Lur17, Definition 3.1.3.1.] the cofree coalgebra of an obejct X in
C is defined as a operadic limit diagram (cf. [Lur17, Definition 3.1.1.2.]) p :

Fin∗ → C. By a dual statement of [Lur17, Proposition 3.1.3.3] in the special
case where A is the trivial ∞-operad, B and O are the commutative ∞-operad
Fin∗, such a operadic limit exists. The lemma then follows from the dual version
of [Lur17, Example 3.1.1.17], which says that a diagram p : Fin∗ → C is an
operadic limit diagram if it remains as a limit diagram in C after tensoring with
any object Y ∈ C. In our case, this means that

∏
n≥1(X

⊗n)hΣn is an operadic
limit diagram if

(∏
n≥1(X

⊗n)hΣn
)
⊗ Y is a limit diagram for any Y ∈ C, which

is the condition required for γ being an equivalence.
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We now prove that the ∞-category of tame spectra satisfies the conditions
of Lemma 3.6.4, therefore we obtain a simple description of the comonad Qtame.
We write Symtame for the symmetric algebra functor on Sp≥r

tame, which is given
explicitly by

Symtame(X ) :=
⊕
n≥1

Ltame(X
⊗n)hΣn .

Proposition 3.6.5. The cofree commutative comonad on the ∞-category Sp≥r
tame

of tame spectra is given by

Qtame(X ) ≃
⊕
n≥1

Ltame(X
⊗n)hΣn ≃ Symtame(X )

for any X ∈ Sp≥r
tame.

Proof. We first claim that the canonical map

γ :
⊕
n≥1

(LtameX
⊗n)hΣn →

∏
n≥1

(LtameX
⊗n)hΣn

is an equivalence for any X ∈ Sp≥r
tame. Note that the target is equivalent to∏

n≥1

(LtameX
⊗n)hΣn ,

by Proposition 2.3.21.

We now show that γ is an equivalence after applying k-truncation functor
τ≤k for each integer k ≥ r . There exists a maximum integer l(k) such that
X⊗(l+1) is (k + 1)-connective. Hence the k-truncation of γ can be identified as
a map

τ≤kγ :

l(k)⊕
n≥1

τ≤k(LtameX
⊗n)hΣn →

l(k)⊕
n≥1

τ≤k(LtameX
⊗n)hΣn

which is an equivalence for every k . Hence, γ is an equivalence. Since ten-
sor product commutes with colimits in Sp≥r

tame, F (X ) :=
∏

n≥1(LtameX
⊗n)hΣn

satisfies the condition of Lemma 3.6.4, and thus the comonad Qtame is given by

Qtame(X ) ≃ Symtame(X ).
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We now define the ∞-category of divided power, conilpotent coalgebras in
Sp≥r

tame. Note that Sp≥r
tame is a non-unital symmetric monoidal ∞-category, so

there is no commutative cooperad in Sp≥r
tame. However, we can define a comonad

which comes from the commutative cooperad in Sp via tame localization.

By example 3.1.15, the Schur functor FCom associated to the commutative
cooperad in Sp is a comonad and is given by

FCom(X ) :=
∐
n≥1

(X⊗n)hΣn .

Note that FCom restricts to a comonad on the ∞-category Sp≥r of r -connective
spectra, since colimits in Sp≥r are computed in Sp. By Proposition 3.5.11, we
obtain a comonad LtameFCom on Sp≥r

tame, given by

LtameFCom(X ) :=
∐
n≥1

Ltame(X
⊗n)hΣn .

as Ltame is colimit-preserving and symmetric monoidal.

Definition 3.6.6. The ∞-category of divided power, conilpotent coalgebras in
tame spectra is defined to be the ∞-category of left comodules over the comonad
LtameFCom

coCAlgdp,nil(Sp≥r
tame) := LcoModLtameFCom

(Sp≥r
tame).

We now want to show these two ∞-categories of coalgebras in tame spec-
tra are actually equivalent. Since the underlying endofunctors of Qtame and
LtameFCom are equivalent, it suffices to show there is a natural transformation
of comonads

Γ : LtameFCom → Qtame,

which gives rise to an equivalence LtameFCom ≃ Qtame. By the discussion in
Appendix A.4, there is a map of comonads on Sp≥r

tame

Γ : (Ltame)∗j
∗FCom → Qtame.

which is the unique map that makes the diagram in Remark A.4.5 commute.
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The map of comonads Γ then induces a comparison functor

ζ : coCAlgdp,nil(Sp≥r
tame) → coCAlg(Sp≥r

tame).

The following proposition now follows immediately from Proposition 3.6.5.

Proposition 3.6.7. The comparison functor ζ is an equivalence of ∞-categories.

Proof. Since the forgetful functor Comonad(Sp≥r
tame) → End(Sp≥r

tame) is conser-
vative, it suffices to show the Γ induces an equivalence between the underlying
endofunctors of LtameFCom and Qtame. For X ∈ Sp≥r

tame, the map Γ is obtained
from the projection LtameFComX → X to the first factor (see Appendix A.4),
which agrees with the canonical projection QtameX → X by 3.6.5. Hence Γ is
an equivalence since it is an equivalence between the underlying endorfunctors.

3.7 Lie Algebras in Tame Spectra

In this section, we discuss spectral Lie algebras in Sp and Sp≥r
tame. We will prove

that the ∞-category of tame spectral Lie algebras can be identified as the full
subcategory of spectral Lie algebras whose underlying spectra are tame. We then
define the Chevalley-Eilenberg functor that goes from the ∞-category of spec-
tral Lie algebras to the ∞-category of divided power, conilpotent commutative
coalgebras.

Definition 3.7.1. We define the ∞-category AlgLie(Sp) of spectral Lie algebras
to be the ∞-category of algebras over the spectral Lie operad Lie.

Remark 3.7.2. Note that our definition of spectral Lie algebras might be dif-
ferent from the one given in the literature, e.g. [Cam16] and [Chi05], where L is
referred as the spectral Lie operad. Our definition of the spectral Lie operad Lie

differs by a shift. The advantage of this definition is that the homology H∗Lie

is precisely the Lie operad in abelian groups, hence the homology of a spectral
Lie algebra is a graded Lie algebra.

By Proposition 3.5.11, LtameFLie defines a monad on Sp≥r
tame. The underlying

endofunctor of the monad LtameFLie on Sp≥r
tame is simply given by the tame

localization of the free spectral Lie algebra monad on Sp≥r :

X 7→
∐
n≥1

Ltame

(
Lie(n)⊗ (LtameX )⊗n

)
hΣn

.
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We are now ready to define the ∞-category of tame spectral Lie algebras.

Definition 3.7.3. We define the ∞-category AlgLie(Sp
≥r
tame) of tame spectral

Lie algebras to be

AlgLie(Sp
≥r
tame) := LModLtameFLie

(Sp≥r
tame).

Similarly, we define the ∞-category of shifted tame spectral Lie algebras

AlgL(Sp
≥r
tame) := LModLtameFL(Sp

≥r
tame).

On the level of underlying spectra, the induced functor

AlgLie(Sp)
≥r → AlgLie(Sp

≥r
tame).

is simply given by sending an r -connective spectrum X to its tame localization
LtameX .

Remark 3.7.4. Although the monad LtameFLie does not come from an operad
in Sp≥r

tame, it does have all the associated functors we discussed in Section 3.3.
Indeed, the spectral Lie monad on Sp≥r has unit η and augmentation ϵ natural
transformations so that the composition

idSp≥r
η−→ FLie

ϵ−→ idSp≥r

is the identity natural transformation. Applying tame localization, there is again
a composite of monads on Sp≥r

tame

id
Sp≥r

tame

η−→ LtameFLie
ϵ−→ id

Sp≥r
tame

which is equivalent to the identity natural transformation on Sp≥r
tame. Therefore,

we have the adjoint pairs between tame spectral Lie algebras and tame spectra

Sp≥r
tame AlgLie(Sp

≥r
tame) Sp≥r

tame .
freeLie

oblv Lie

cotLie

trivLie

Remark 3.7.5. Dually, recall we have defined the ∞-category of divided power,
conilpotent tame commutative coalgebras in Definition 3.6.6. As in the case of
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spectral Lie algebras, we have a pair of adjunctions

Sp≥r
tame coAlgdp,nilCom (Sp≥r

tame) Sp≥r
tame .

cofreenilCom

oblvnilCom

Primnil
Com

trivnilCom

We claim the ∞-category of tame spectral Lie algebras is a full subcategory
of the ∞-category of r -connective spectral Lie algebras whose underlying spectra
are tame. It turns out that this is a consequence of the following more general
result.

Proposition 3.7.6. Let C and D be symmetric monoidal ∞-categories whose
tensor products are compatible with colimits. Suppose L : C → D is a symmetric
monoidal localization functor. If FO is a monad in C, then the induced functor

L′ : AlgFO(C) → AlgLFO(D).

is a localization.

Proof. The existence of the functor L′ follows from Remark 3.5.5. It remains to
show L′ is a localization functor. Let g be the fully faithful right adjoint of L.
We first claim that g lifts to a functor

g ′ : AlgLFO(D) → AlgFO(C),

which is right adjoint to L′. Indeed, since L is symmetric monoidal, it follows
that g is lax symmetric monoidal; hence g induces a functor g ′ : AlgLFO(D) →
AlgFO(C). To see that g ′ is right adjoint to L′, let η : idC → gL be the unit
natural transformation. Note that η is a End(C)-linear natural transformation in
the sense of [Lur17, Definition 4.6.2.7.], hence it induces a natural transformation
η′ : idAlgFO (C) → g ′ ◦ L′. We claim the map

ρ : MapAlgLFO (D)(L
′M,N) → MapAlgFO (C)(M, g ′N),

induced from η′, is an equivalence for any M ∈ AlgFO(C) and N ∈ AlgLFO(D).

First observe that L′ sends free FO-algebras to free LFO-algebras, i.e.

L′(freeFO X ) ≃ freeLFO f (X )
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for X ∈ C, as L is symmetric monoidal and colimit-preserving. Hence,

MapAlgLFO (D)(L
′ freeFO X ,N) ≃ MapAlgLFO (D)(freeLFO L(X ),N)

≃ MapD(L(X ), oblvLFO N)

≃ MapC(X , g ◦ oblvLFO N)

≃ MapC(X , oblvFO ◦g ′N)

≃ MapC(freeFO X , g ′N)

and we conclude that ρ is an equivalence whenever M is a free FO-algebra.
For a general FO-algebra, we use Proposition 3.3.6 to write M as a geometric
realization of a oblvFO -split simplicial free FO-algebras. Then the claim follows
from the Barr-Beck-Lurie theorem [Lur17, Theorem 4.7.3.5.] and the fact that
L′ preserves geometric realizations of oblvFO -split simplicial objects.

For the fully-faithfulness of g ′, it suffices to show the counit map L′g ′N → N

is an equivalence for any N ∈ AlgLFO(D). This follows from the fact that the
forgetful functor oblvLFO is conservative and g is fully faithful.

Corollary 3.7.7. The ∞-category AlgLie(Sp
≥r
tame) can be identified with the full

subcategory of AlgLie(Sp)≥r spanned by spectral Lie algebras whose underlying
spectra are tame.

Proof. Proposition 3.7.6 provides a localization functor

L′ : AlgLie(Sp)
≥r → AlgLie(Sp

≥r
tame).

The corollary then follows from the commuting diagram

AlgLie(Sp)
≥r AlgLie(Sp

≥r
tame)

Sp≥r Sp≥r
tame

oblv oblv′

where the horizontal functors are fully faithful.

We now give an algebraic characterization of tame spectral Lie algebras and
tame commutative coalgebras. We first define Lie algebras in ModHZ, for which
we need the following result from Haugseng.
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Lemma 3.7.8. [Hau17, Corollary 4.2.9.] Let C and D be preadditive symmetric
monoidal ∞-categories whose tensor products are compatible with colimits. Let

f : C → D

be a colimit-preserving, symmetric monoidal functor. Postcomposing with f

gives a monoidal functor

SSeq(C) → SSeq(D).

Since the functor (−⊗HZ) : Sp → ModHZ satisfies the condition of Lemma
3.7.8, we conclude that the symmetric sequence

(Lie⊗ HZ)(n) := Lie(n)⊗ HZ

defines an operad in ModHZ.

Definition 3.7.9. We define the ∞-category of Lie algebras in HZ-modules by

AlgLie(ModHZ) := LModLie⊗HZ(ModHZ).

Remark 3.7.10. The homotopy groups of Lie(n)⊗HZ are the homology groups
of Lie(n) (concentrated in degree 0), hence π∗Lie(n) ⊗ HZ is the Lie operad
in graded abelian groups by our discussion in §3.4. Since ModHZ models the
derived ∞-category D(Z) of chain complexes, we can identify AlgLie(ModHZ)

as the ∞-category of dg Lie algebras over Z.

Let Ltame be the localization Mod≥r
HZ → (Mod≥r

HZ)tame. Since the associated
Schur functor for the operad Lie⊗HZ also preserves tame HZ-equivalences, by
Lemma 3.5.4, we obtain a monad LtameFLie⊗HZ on (Mod≥r

HZ)tame.

Definition 3.7.11. We define the ∞-category of tame Lie algebras in (Mod≥r
HZ)tame

by
AlgLie((Mod≥r

HZ)tame) := LModLtameFLie⊗HZ((Mod≥r
HZ)tame).

Remark 3.7.12. Since the underlying free Lie monad on (Mod≥r
HZ)tame is given

by
LtameFLie⊗HZ(M) ≃

∐
k≥1

Ltame(Lie(n)⊗ HZ⊗
Z
M

⊗
Z
n
)hΣn ,

by Proposition 3.7.6, we conclude that AlgLie((Mod≥r
HZ)tame) is the full subcat-

egory of AlgLie(Mod≥r
HZ) consisting of Lie algebras in Mod≥r

HZ whose underlying
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spectra are tame. Therefore, we can identify AlgLie((Mod≥r
HZ)tame) as Dwyer’s

tame Lie algebras in [Dwy79].

Recall from Theorem 2.3.15 that we have a symmetric monoidal equivalence

Ltame(−⊗ HZ) : Sp≥r
tame ≃ (Mod≥r

HZ)tame.

Apply the discussion above, we obtain the following lemma.

Lemma 3.7.13. There is an equivalence of ∞-categories

AlgLie(Sp
≥r
tame) ≃ AlgLie

(
(Mod≥r

HZ)tame

)
.

By an argument dual to the proof of Corollary 3.7.7, we obtain the analogous
result for tame commutative coalgebras in Sp≥r

tame.

Corollary 3.7.14. The ∞-category coCAlg(Sp≥r
tame) can be identified with the

full subcategory of coCAlgdp,nil(Sp)≥r spanned by commutative divided power,
conilpotent coalgebras whose underlying spectra are tame.

Remark 3.7.15. The ∞-category coCAlg(Sp≥r
tame) of tame commutative coal-

gebras can be identified with the full subcategory of coCAlgdp,nil(ModHZ)
≥r

spanned by commutative divided power, conilpotent coalgebras whose underly-
ing HZ-module spectra are tame.

To conclude this section, we discuss Koszul duality between Lie algebras and
divided power, conilpotent commutative coalgebras. That is, we consider the
functor

indecO : AlgO(C) → coAlgBar(O)(C)

for O the Lie operad. Classically, if C is the ∞-category SpQ of rational spectra,
or equivalently, the ∞-category of rational chain complexes, then the functor

cotL : AlgL(SpQ) → SpQ

computes the Chevalley-Eilenberg cohomology of a dg Lie algebra over Q.

Definition 3.7.16. We define two versions of the Chevalley-Eilenberg functor
on a stable ∞-category Sp:

• CE : AlgLie(Sp)
Σ′
−→ AlgL(Sp)

cotL−−→ Sp where Σ′ is the equivalence in
Lemma 3.4.5;
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• C̃E : AlgLie(Sp)
Σ′
−→ AlgL(Sp)

indecL−−−−→ coAlgdp,nilCom (Sp).

For later application, we record the following theorem from [CH19].

Theorem 3.7.17. [CH19] Let R be an E∞-ring spectrum and O an operad in
the ∞-category ModR of R-module spectra with O(1) = R . Suppose R and all
O(n) are connective. Then the functor

indecO : AlgO(ModR)
≥1 → coAlgnil ,dpBar(O)(ModR)

≥1

is an equivalence.

Taking R = HZ and let Lie denote the Lie operad in ModHZ, we obtain the
following corollary.

Corollary 3.7.18. For r ≥ 1, the Chevalley-Eilenberg functor

C̃E : AlgLie(ModHZ)
≥r → coAlgnil ,dpCom (ModHZ)

≥r

is an equivalence of ∞-categories.

We now define the Chevalley-Eilenberg functor for tame spectral Lie algebras.
First we need the following lemma regarding the bar construction of the monad
(Ltame)!FO.

Lemma 3.7.19. Let O be a connected ∞-operad in Sp and let FO be the
induced monad on Sp≥r , then

Bar(LtameFO) ≃ Ltame Bar(FO).

Proof. Unravelling the definition of bar construction, we need to show there is
an equivalence

|Bar(id, LtameO, id)•| ≃ Ltame|Bar(id,O, id)•|.

Since Ltame preserves colimits, the proof is reduced to checking that there is a
tame equivalence

Bar(id,O, id)• → Bar(id, LtameO, id)• (3.13)



78 CHAPTER 3. KOSZUL DUALITY

of simplicial objects in Monad(Sp≥r ). We claim that there is an equivalence

Ltame(O ◦ · · · ◦ O︸ ︷︷ ︸
n-fold

) ≃ LtameO ◦ · · · ◦ LtameO︸ ︷︷ ︸
n-fold

for each n ≥ 1. It suffices to check this for two-fold composition, which can be
done directly on the composition of the associated Schur functors

FO(X ) :=
∐
n≥1

(O(n)⊗ X⊗n)hΣn .

The desired equivalence follows from the fact that Ltame is symmetric monoidal
and preserves colimits. Therefore, the map (3.13) is a point-wise tame equiva-
lence, which is a tame equivalence after taking geometric realization.

As a consequence, taking O = Lie allows us to identify the bar construction
of the monad LtameFLie as the comonad LtameFCom. Explicitly, by Proposition
3.6.5, the underlying endofunctor of the comonad LtameFCom on a tame spectrum
X is given by

X 7→
∐
n≥1

Ltame(X
⊗n)hΣn .

Therefore, we obtain a functor

Ltame indecL : AlgL(Sp
≥r+1
tame ) → coAlgdp,nilCom (Sp≥r+1

tame ).

Note that there is an equivalence of ∞-categories between r -tame spectra
and (r+1)-tame spectra by Lemma A.1.13, hence we obtain a pullback diagram

AlgLie(Sp
≥r
tame) AlgL(Sp

≥r+1
tame )

Sp≥r
tame Sp≥r+1

tame

Σ′

≃

Σ
≃

as in Lemma 3.4.5.

Definition 3.7.20. We define the Chevalley-Eilenberg functor for tame spectra
to be the following composite

C̃Etame : AlgLie(Sp
≥r
tame)

Σ′
−→
≃

AlgL(Sp
≥r+1
tame )

Ltame indecL−−−−−−−→ coAlgdp,nilCom (Sp≥r+1
tame ).
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Definition 3.7.21. The functor C̃Etame admits a right adjoint by the adjoint
functor theorem, which we will denote by p̃rim.

Remark 3.7.22. The underlying spectrum of C̃Etame(L) can be computed as
the geometric realization of the bar construction

|B(id
Sp≥r+1

tame
, LtameFL ◦ Σ′, id

Sp≥r+1
tame

)|

which is equivalent to LtameC̃E(L) as Ltame is colimit-preserving and symmetric
monoidal.

Lemma 3.7.23. There are equivalences of functors

C̃Etame ◦ trivLie ≃ Symtame ◦Σ

and
p̃rim ◦ Symtame ≃ trivLie ◦Ω.

Proof. The proof is analogous to that of Lemma 3.3.11, plus the equivalences
trivL ◦Σ ≃ Σ′ ◦ trivLie and Ω′ ◦ trivL ≃ trivLie ◦Ω.

Proposition 3.6.7 allows us to identify the codomain of the Chevalley-Eilenberg
functor C̃Etame on tame spectra as coCAlg(Sp≥r

tame), whose categorical product
is given by the tensor product ⊗̂ in Sp≥tame. We now show that the Chevalley-
Eilenberg functor C̃E preserves finite products, hence it induces a functor on the
categories of group objects.

Lemma 3.7.24. The functor C̃Etame preserves finite products.

Proof. Since Σ′ is an equivalence, it suffices to show the natural morphism

Ltame indecL(L× L′) → Ltame indecL(L)⊗̂Ltame indecL(L
′)

is an equivalence for L, L′ ∈ AlgL(Sp
≥r
tame). By Remark 3.7.22, the proof reduces

to showing that the natural map

c : indecL(L× L′) → indecL(L)⊗ indecL(L
′)

is a tame equivalence when we regard L, L′ as objects in AlgL(Sp).
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For a spectral Lie algebra X , we let X∗ denote its canonical filtration from
Theorem A.2.7. Note that indecL induces a functor

(indec)∗ : Fil
+(AlgL(Sp)) → Fil+(coCAlgdp,nil(Sp))

by postcomposing with indecL. Since X ≃ colimX∗ and indecL preserves col-
imits, it suffices to show c induces an equivalence on the canonical filtrations,
i.e.,

(indecL)∗(L∗ × L′∗) → (indecL)∗(L∗)⊗ (indecL)∗(L
′
∗).

Note also that the associated graded functor Gr is conservative by Lemma A.2.4,
hence the proof further reduces to proving that the induced map on associated
gradeds

ν : Gr(indecL)∗((L× L′)∗) → Gr((indecL)∗(L∗)⊗ (indecL)∗(L
′
∗))

is an equivalence.

Since Gr is symmetric monoidal by Remark A.2.6, and it commutes with
(indecL)∗ (since Gr is defined using colimits), there are equivalences

Gr(indecL)∗((L× L′)∗) ≃ indecGrL (Gr(L× L′)∗)

and

Gr((indecL)∗(L∗)⊗ (indecL)∗(L
′
∗)) ≃ indecGrL (Gr(L∗))⊗ indecGrL (Gr(L′∗))

where indecGrL denotes the induced functor on associated graded. Hence we can
identify ν as the map

indecGrL (Gr(L× L′)∗) → indecGrL (Gr(L∗))⊗ indecGrL (Gr(L′∗)).

By theorem A.2.7, the associated graded of the canonical filtration of a
spectral Lie algebra X has the form

freeL((BL(n)⊗ X⊗n)hΣn ≃ freeL(X
⊗n)hΣn

where the latter equivalence comes from the fact that BL ≃ Com. Hence, there
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are equivalences

oblvL indecL freeL(X
⊗n)hΣn ≃ cotL ◦ freeL(X⊗n)hΣn

≃ (X⊗n)hΣn

= Symn(X ).

Therefore, the map oblv(ν) is equivalent to the natural map

Sym(L× L′) → Sym(L)⊗ Sym(L′),

which is a tame equivalence since the symmetric coalgebra functor Sym is the
cofree coalgebra comonad which preserves products and the tensor product in
Sp≥r

tame is the product in coCAlgdp,nil(Sp≥r
tame) ≃ coCAlg(Sp≥r

tame).
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Chapter 4

A Hopf Algebra Model for
Tame spaces

In this last chapter, we prove Theorem B and Theorem C stated in the in-
troduction, concerning a new Hopf algebra model for r -tame spaces. Note
that every pointed space X is a commutative coalgebra in S∗ via the diago-
nal X → X × X → X ∧ X . Since the functors Σ∞ and Ltame are symmetric
monoidal, the functor

Σ∞
tame : S

≥r
tame → Sp≥r

tame

factors through the ∞-category coCAlg(Sp≥r
tame) of commutative coalgebras in

Sp≥r
tame, and we denote the resulting functor as

Ctame : S≥r
tame → coCAlg(Sp≥r

tame).

The funcor Ctame is colimit-preserving, hence it admits a right adjoint R by the
adjoint functor theorem [Lur09, Corollary 5.5.2.9.]. We summarize the situation
in the following diagram

S≥r
tame Sp≥r

tame

coCAlg(Sp≥r
tame) ,

Σ∞
tame

Ω∞
Ctame

R

oblv

Symtame

where left adjoints sit above right adjoint.

Classically, cocommutative Hopf algebras can be identified as group objects
in the Cartesian category of cocommutative counital coalgebras [MM65]. This

83
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motivates us to give the following definition of the ∞-category of Hopf algebras
in tame spectra.

Definition 4.0.1. We define the ∞-category of Hopf algebras in r -tame spectra
to be the category of group objects in coCAlg(Sp≥r

tame), i.e.,

HopfAlg(Sp≥r
tame) := Grp(coCAlg(Sp≥r

tame)).

Our first goal is to establish a Hopf algebra model for tame spaces. The
following is the precise statement of Theorem B.

Theorem 4.0.2. The composite

S≥r
tame

Ω−→ Grp(S≥r−1
tame )

Grp(Ctame)−−−−−−→ HopfAlg(Sp≥r−1
tame )

is an equivalence of ∞-categories.

We now sketch our strategy for the proof of Theorem 4.0.2. We originally
thought that there should be a coalgebra model for tame spaces, i.e., we sus-
pected that the functor

Ctame : S≥r
tame → coCAlg(Sptame)

was an equivalence, as this is indeed the case in Quillen’s rational homotopy
theory and Mandell’s p-adic homotopy thoery. However, this functor fails to be
fully faithful; indeed, if Ctame is fully faithful, then the composition

oblvCom ◦Ctame ≃ Σ∞
tame

would be conservative. Since the homotopy groups of Σ∞
tameX are computed as

the homology groups of X with coefficients in the tame ring system by Corollary
2.3.16, the statement that Σ∞

tame is conservative is equivalent to a Whitehead
theorem for tame spaces. That is, a map f : X → Y of tame spaces is an
equivalence if and only if the induced map on homology groups with coefficients
in the tame ring system is an isomorphism

Hr+j f ⊗ Rj : Hr+jX ⊗ Rj → Hr+jY ⊗ Rj

for all j ≥ 0.
However, we do not have a Whitehead theorem for tame spaces, as we need
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more conditions on the cokernel coker(hr+j ,X ) of the Hurewicz map

hr+j ,X : πr+jX ⊗ Rj → Hr+jX ⊗ Rj .

Proposition 4.0.3. [FL88, Proposition 1.1] If f : X → Y is a map between
r -connective spaces, then the following are equivalent:

1. f is a tame equivalence.

2. For all j ≥ 0,

Hr+j f ⊗ Rj : Hr+jX ⊗ Rj → Hr+jY ⊗ Rj

is an isomorphism and

coker(hr+j ,X ) → coker(hr+j ,Y )

is surjective.

Taking a step back, we prove that Ctame is fully faithful when restricted to
the full subcategory of tame Eilenberg-Maclane spaces. We then show that the
functors Ω and Grp(Ctame) are both equivalences of ∞-categories. The crux
of the latter is that the loop of a r -tame space splits into a product of tame
Eilenberg-Maclane spaces, and therefore we can conclude that Grp(Ctame) is fully
faithful.

The second goal of this final chapter is to connect the Hopf algebra model
for tame spaces with tame spectral Lie algebras defined in §3.7.

Since Lemma 3.7.24 ensures the functor C̃Etame preserves group objects,
there is a functor on the categories of groups

Grp(C̃Etame) : Grp(AlgLie(Sp
≥r−1
tame )) → Grp(coCAlg(Sp≥r−1

tame )).

Let ΩLie denote the loop functor in AlgLie(Sp
≥r
tame). We prove in Proposition

A.1.14 that ΩLie factors through the ∞-category of group objects Grp(AlgLie(Sp
≥r−1
tame ))

in tame spectral Lie algebras. Moreover, we prove that the factorization

ΩLie : AlgLie(Sp
≥r
tame) → Grp(AlgLie(Sp

≥r−1
tame ))

is an equivalence of ∞-categories.
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In [Knu18], it is shown that the universal enveloping algebra U(L) of a spec-
tral Lie algebra defined there satisfies a Poincare-Birkhoff-Witt theorem [Knu18,
Theorem B]. Motivated by this, we define the universal enveloping algebra func-
tor as follows.

Definition 4.0.4. The universal enveloping algebra functor is defined as the
following composite

U : AlgLie(Sp
≥r
tame)

ΩLie−−→
≃

Grp(AlgLie(Sp
≥r−1
tame ))

Grp(C̃Etame)−−−−−−−→ HopfAlg(Sp≥r
tame).

The following is the precise statement of Theorem C.

Theorem 4.0.5. The universal enveloping algebra functor

U : AlgLie(Sp
≥r
tame) → HopfAlg(Sp≥r

tame)

is an equivalence of ∞-categories.

Combining Theorem 4.0.5 and Theorem 4.0.2, we establish an ∞-categorical
version of Dwyer’s Lie algebra model for tame spaces in [Dwy79].

Theorem 4.0.6. [Dwy79] There is an equivalence of ∞-categories

S≥r
tame → AlgLie(Sp

≥r−1
tame ).

In §4.1, we prove the functor Ctame is fully faithful on the full subcategory of
Eilenberg-Maclane spaces by computing the cohomology of Eilenberg-Maclane
spaces with coefficients in the tame ring system. In §4.2, we finalize our proof
of Theorem 4.0.2. In §4.3, we show that there is an equivalence from the ∞-
category of tame Lie algebras to the ∞-category of tame Hopf algebras.

4.1 Fully faithfulness on Eilenberg-MacLane spaces

Our goal in this section is to prove the following proposition.

Proposition 4.1.1. The functor

Ctame : S≥r
tame → coCAlg(Sp≥r

tame)

is fully faithful on the full subcategory spanned by Eilenberg-MacLane spaces.
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To simplify notation, we let n = r + k in this section, where k is a non-
negative integer. Fix an Rk -module V . We first show that CtameK (V , n) is
equivalent to the cofree commutative coalgebra generated by ΣnHV . By Propo-
sition 3.6.7, the cofree commutative coalgebra generated by ΣnHV is given by
the symmetric coalgebra SymtameΣ

nHV in Sp≥r
tame. There is a canonical map

Σ∞
tameK (V , n) → ΣnHV (4.1)

given by n-truncation. By the forgetful-cofree adjunction, the map (4.1) corre-
sponds to a map

CtameK (V , n) → SymtameΣ
nHV . (4.2)

Since the forgetful functor

oblv : coCAlg(Sp≥r
tame) → Sp≥r

tame .

is conservative, it suffices to check that the map obtained by applying forgetful
functor to (4.2)

γ : Σ∞
tameK (V , n) → SymtameΣ

nHV (4.3)

is an equivalence. Here we abuse notation by writing SymtameΣ
nHV also for the

underlying spectrum of the cofree coalgebra generated by ΣnHV . Since both
Σ∞
tameΩ

∞ and Symtame preserves filtered colimits, we can reduce to the case of
V being a finitely generated Rk -module.

Let M(V , n) be the Moore space of type (V , n). By Remark 2.3.18, LtameΣ
∞

sends M(V , n) to a tame Eilenberg-Maclane spectrum, i.e.,

LtameΣ
∞M(V , n) ≃ ΣnHV .

Let X be a pointed connected space. The underlying space of the free E∞-space
generated by X is given by the symmetric algebra (see Example 3.1.15)

Sym(X ) =
∨
m≥1

(X∧m)hΣm ;

If X is tame, then the free tame E∞-space generated by X is

Symtame(X ) =
∨
m≥1

Ltame(X
∧m)hΣm ;
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We claim the functor Symtame on tame spaces is analogous to the infinite sym-
metric product construction, i.e., it sends the tame localization of Moore spaces
to Eilenberg-MacLane spaces.

Lemma 4.1.2. Let V be a finitely generated Rk -module. Then there is an
equivalence of tame spaces

Symtame LtameM(V , n) ≃ K (V , n).

Proof. By May’s theorem [May72, 6.3], there is an equivalence

SymX ≃ Ω∞Σ∞X

for any connected space X . Hence, the space Symtame LtameM(V , n) is equiva-
lent to the tame localization of Ω∞Σ∞LtameM(V , n). Since both Σ∞ and Ω∞

preserve tame equivalences,

LtameΩ
∞Σ∞LtameM(V , n) ≃ LtameΩ

∞Σ∞M(V , n)

the homotopy groups of which are given by

H∗M(V , n)⊗ R∗−r =

V for ∗ = n;

0 otherwise.

Since both the functors Ltame : Sp
≥r → Sp≥r

tame and Σ∞
tame : S

≥r
tame → Sp≥r

tame

are colimit-preserving and symmetric monoidal, we have the following lemma.

Lemma 4.1.3. There is a commutative diagram

S≥r
tame S≥r

tame

Sp≥r
tame Sp≥r

tame .

Symtame

Σ∞
tame Σ∞

tame

Symtame

Proposition 4.1.4. The map

γ : Σ∞
tameK (V , n) → SymtameΣ

nHV

of (4.3) is an equivalence.
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Proof. Combining Lemma 4.1.2 and Lemma 4.1.3, we have equivalences

Σ∞
tameK (V , n) ≃ Σ∞

tame Symtame LtameM(V , n)

≃ SymtameΣ
∞
tameLtameM(V , n)

≃ Symtame LtameΣ
∞M(V , n)

≃ SymtameΣ
nHV ,

where the last equivalence follows from Remark 2.3.18. Hence γ can be identified
as the unique map that lifts Σ∞

tameK (V , n) → ΣnHV through the projection

SymtameΣ
nHV → ΣnHV ,

which is an equivalence.

Now we can prove Proposition 4.1.1. We denote the right adjoint of Ctame

by R as above.

Proof of Proposition 4.1.1: Using Proposition 4.1.4, we see that

RCtameK (V , n) ≃ R SymtameΣ
nHV

≃ Ω∞ΣnHV

≃ K (V , n),

so Ctame is fully faithful on the full subcategory of tame Eilenberg-Maclane
spaces.

4.2 A Hopf algebra model for tame spaces

First we establish some preliminary results.

Proposition 4.2.1. For r ≥ 4, the loop functor Ω : S≥r
tame → Grp(S≥r−1

tame ) is an
equivalence.

Proof. We have a commutative diagram

S≥r
tame Grp(S≥r−1

tame )

S≥r
∗ Grp(S≥r−1

∗ )

Ω

Ω
≃
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where the left vertical functor is fully faithful as is right vertical functor by
Proposition A.1.5. The bottom arrow is an equivalence by May’s recognition
theorem (cf. see [Lur17, Theorem 5.2.6.10.]). Hence the top loop functor
S≥r
tame → Grp(S≥r−1

tame ) is fully faithful. For the essential surjectivity, we know
that any X ∈ Grp(S≥r−1

tame ) is equivalent to ΩY for some Y ∈ S≥r
∗ , while Y has

to be r -tame since X is (r − 1)-tame.

Lemma 4.2.2. Let C be a Cartesian symmetric monoidal ∞-category and let
L : C → C′ be a localization functor that preserves finite products. Then both
forgetful functors

Grp(C) → C

and
Grp(C′) → C′

are conservative.

Proof. Since the category of groups is a full subcategory of monoids, it suffices
to prove the forgetful functor Mon(C) → C is conservative. The statements then
follows from [Lur17, Proposition 2.4.2.5] and [Lur17, Lemma 3.2.2.6.].

Applying Lemma 4.2.2 to the case of tame spaces, we have the following
corollary.

Corollary 4.2.3. The forgetful functor

Grp(S≥r−1
tame )

oblvGrp−−−−→ S≥r−1
tame

is conservative.

Since the categorical product of coCAlg(Sp≥r−1
tame ) is given by the smash prod-

uct in Sp≥r−1
tame , the smash product equips coCAlg(Sp≥r−1

tame ) with the structure of
a Cartesian symmetric monoidal ∞-category. Moreover, the functor

Ctame : S≥r−1
tame → coCAlg(Sp≥r−1

tame )

sends products to smash products, and therefore induces a functor

Gtame : Grp(S≥r−1
tame ) → Grp(coCAlg(Sp≥r−1

tame )) (4.4)
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where the latter ∞-category is the ∞-category of tame Hopf algebras (Definition
4.0.1).

Applying Lemma 4.2.2 again, we have the following result.

Corollary 4.2.4. The forgetful functor

HopfAlg(Sp≥r−1
tame )

oblvGrp−−−−→ coCAlg(Sp≥r−1
tame )

is conservative.

Proof. This follows from the fact that coCAlg(Sp≥r−1
(r−1)- tame) is a Cartesian sym-

metric monoidal ∞-category and Lemma 4.2.2.

Recall that in rational homotopy theory, any rational H-space splits as a
product of Eilenberg-Maclane spaces. Our proof of the Hopf algebra model of
tame spaces will be based on an analogous splitting result for tame H-spaces.
The following proposition was already proved in [ST91, Proposition 1.7] using
Dwyer’s Lie algebra model for tame spaces.

Proposition 4.2.5. Let X be an r -tame E1-space. Then X is equivalent to a
product of Eilenberg-Maclane spaces, that is,

X ≃
∏
i

K (πiX , i).
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Proof. We first assume X is of finite type, i.e., all its homotopy groups are
finitely generated abelian groups. If X is rational, then the result follows from
rational homotopy theory. Otherwise, we can assume the homotopy groups of
X is p-torsion for some prime p.

Observe that if X is both tame and p-torsion, then X is (r+2p−4)-truncated;
since X is p-torsion and πnX is uniquely p-divisible for n ≥ r + 2p − 3. Note
also that if p = 2, then X is an Eilenberg-MacLane space K (πrX , r) (as 2 is
inverted at degree r + 1), hence we can assume p is an odd prime.

We proceed by induction on the Postnikov tower of X . The base case is
obvious. For the inductive step, consider the principal fiber sequence

K (πn+1X , n + 1) → τ≤n+1X → τ≤nX
kn−→ K (πn+1X , n + 2).

We want to show that the k-invariant [kn] ∈ Hn+2(τ≤nX ;πn+1X ) vanishes.
Note that kn represents a primitive element in the p-local Hopf algebra H∗(τ≤nX ;πn+1X )

(cf. [Kah63, Theorem 3.2]). We claim [kn] is also indecomposable. A primitive
element in a p-local commutative Hopf algebra is decomposable if and only if
it’s a p-th power [MM65, Proposition 4.21]. However, [kn] cannot be a p-th
power for degree reasons. As n < r + 2p − 3, whence

n − rp < r + 2p − 3− rp < (2− r)(p − 1) < 0.

By the inductive hypothesis, the cohomology of τ≤nX is a product of Eilenberg-
Maclane spaces. By the Künneth formula, it suffices to show

Hn+2(K (πiX , i);πn+1X ) = 0

for r ≤ i ≤ n. Cartan [Car54] shows that if R is a p-local ring, all cohomology
classes [α] ∈ H∗(K (A, k);R) are decomposable in degree k < ∗ < k+2(p−1).
Since n + 2 < i + 2(p − 1) for any r ≤ i ≤ n, [kn] = 0 for degree reasons.

Now a general tame E1-space X can be written as a filtered colimits of tame
E1-spaces of finite type

X ≃ colimα Xα.
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Since the n-truncation commutes with colimits, there are equivalences:

τ≤nX ≃ colimα τ≤nXα

≃ colimα

n∏
i=r

K (πiXα, i)

≃
n∏

i=r

colimα K (πiXα, i)

≃
n∏

i=r

K (colimα πiXα, i)

≃
n∏

i=r

K (πiX , i)

where we also used that filtered colimits commute with finite limits and filtered
colimits commutes with π∗. Therefore, the proposition is proved.

Remark 4.2.6. We learned part of the proof of Proposition 4.2.5 from Soulé
[Sou85][Proposition 3], where the author further attributed the idea to L.Smith.

We need the following technical lemma for the proof of Theorem 4.0.2.

Lemma 4.2.7. The monad RCtame : S≥r
tame → S≥r

tame preserves connectivity.

Proof. Suppose X is a k-connective tame space. By Corollary A.3.2, RCtameX

is given by the totalization

RCtameX ≃ Tot(Ω∞Σ∞
tame)

•+1X .

Let Q := Ω∞Σ∞
tame. Recall that Tot(Ω∞Σ∞

tame)
•+1X can be written as the

inverse limit
lim
n

Totn Q•+1X ,

where Totn Q•+1X denotes the limit of the diagram over Q•+1X |∆≤n
. Let T

be a set with n elements and P(T ) be the poset of subsets of T . We define a
diagram F over P(T ) by

F(S) := Q |T−S |+1X .
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By the appendix of [AK98],

fib(Totn Q•+1X → Totn−1Q•+1X ) ≃ Ωn−1Fn(X )

is nk-connective. Hence, the lemma follows from the Milnor exact sequence

0 → lim1
nπm+1 Tot

n Q•+1X → πm TotQ•+1X → lim
n

πm Totn Q•+1X → 0.

Lemma 4.2.8. If F : S≥r
∗ → S≥r

∗ preserves connectivity and finite products,
then

F (
∏
n

K (An, n)) ≃
∏
n

F (K (An, n))

where {An}n≤r is a sequence of abelian groups.

Proof. It suffices to check the canonical map

F (
∏
n

K (An, n)) →
∏
n

F (K (An, n))

is an equivalence after k-truncation τ≤k for every k ≥ r . Since F preserves
connectivity and finite products, there is an equivalence after k-truncation

F (
k∏

n=r

K (An, n))
≃−→

k∏
n=r

F (K (An, n)).

Theorem 4.2.9. The functor Gtame : Grp(S≥r−1
tame ) → HopfAlg(Sp≥r−1

tame ) (cf.
(4.4)) is an equivalence of ∞-categories.

Proof. First, we prove the functor Gtame is fully faithful. Since both Ctame and
R preserve finite products, they lift to a pair of adjunction

Gtame : Grp(S≥r−1
tame ) ⇄ HopfAlg(Sp≥r−1

tame ) :R ′. (4.5)
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We observe that there are commutative diagrams of ∞-categories

Grp(S≥r−1
tame ) HopfAlg(Sp≥r−1

tame )

S≥r−1
tame coCAlg(Sp≥r−1

tame )

Gtame

oblv oblv′

Ctame

and
Grp(S≥r−1

tame ) HopfAlg(Sp≥r−1
tame )

S≥r−1
tame coCAlg(Sp≥r−1

tame )

R′

oblv oblv′

R

where oblv and oblv′ denote the forgetful functors from the category of groups
in S≥r−1

tame and from HopfAlg(Sp≥r−1
tame ) to the underlying categories of coalgebras.

We want to show the unit map X → R ′GtameX is an equivalence for any
X ∈ Grp(S≥r−1

tame ). Since the functor oblv is conservative by Lemma 4.2.3, it
suffices to show the map oblv(X ) → oblv(R ′GtameX ) is an equivalence. By the
commutativity of the diagrams above,

oblv(R ′GtameX ) ≃ R ◦ oblv′(GtameX ) ≃ RCtame(oblv(X )).

Note that Proposition 4.2.1 implies that any (r − 1)-tame group X is equivalent
to the loop space of a r -tame space Y . Since X ≃ ΩY is in particular an E1-
space, it splits into a product of Eilenberg-Maclane spaces by Proposition 4.2.5.
Hence,

RCtame(oblv(X )) ≃ RCtame(
∏
i

K (πiX , i)))

≃
∏
i

RCtame(K (πiX , i))

≃
∏

K (πiX , i)

≃ X

where the second equivalence follows from Lemma 4.2.8. Hence, we conclude
that the functor Gtame is fully faithful.

To finish the proof, it suffices to show the right adjoint R ′ is conservative.
Since oblv′ is conservative by Corollary 4.2.4, we are reduced to showing that
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the functor
R : coCAlg(Sp≥r−1

tame ) → S≥r−1
tame

is conservative.
Let f : U → V be a morphism in coCAlg(Sp≥r−1

tame ) and suppose that R(f ) :
RU → RV is an equivalence. For any coalgebra X ∈ coCAlg(Sp≥r−1

tame ), we claim
that the induced map on the mapping space

Map
coCAlg(Sp≥r−1

tame )
(X ,U) → Map

coCAlg(Sp≥r−1
tame )

(X ,V )

is an equivalence, which implies f is an equivalence. Note that if X lies in the
essential image of Ctame , then this certainly holds. Hence, it suffices to show
that the functor

Ctame : S≥r−1
tame → coCAlg(Sp≥r−1

tame )

is essentially surjective, which we will prove in Lemma 4.2.12.

The crux of the essential surjectivity argument for Ctame is the following
lemma.

Lemma 4.2.10. CtameLtameS
r−1 is equivalent to the trivial tame coalgebra on

Σr−1HZ.

Proof. Since the coalgebra CtameLtameS
r−1 is obtained by applying tame local-

ization to the coalgebra Y := Σ∞LtameS
r−1 in coCAlg(Sp), it suffices to prove

Y is a trivial coalgebra after tame localization.
By Proposition 3.3.12, we can build a commutative coalgebra X in Sp by

assembling compatible coalgebra structures of X in coAlgφn Com(Sp) for each n.
Moreover, by Proposition 3.1.23 there is an equivalence

colimn LtameFφn Com ≃ LtameFCom.

It suffices to prove by induction that, CtameLtameS
r−1 is a trivial LtameFφn Com-

coalgebra for each n ≥ 1. The case for n = 1 is obvious since φ1 Com is the
trivial operad.

Assume LtameY is a trivial (LtameFφn−1 Com)-coalgebra, i.e., the structure
map of Y as an (φn−1 Com)-coalgebra becomes trivial after apply Ltame. By
Proposition 3.3.12 and the vanishing of the Tate construction in tame spectra,
specifying a LtameFφn Com-coalgebra structure on CtameLtameS

r−1 is equivalent
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to a lift in the following diagram

Ltame(Y ⊗ · · · ⊗ Y )hΣn

LtameY Ltame(φ
n−1 Com(n)⊗ Y ⊗ · · · ⊗ Y )hΣn0

where the vertical map is induced from the map of operads Com → φn−1 Com.
Let F denote the fiber of the vertical map. We claim that the connectivity of F
is at least r , hence any lift is null-homotopic and has to be the trivial map. The
connectivity of Ltame(Y ⊗ · · · ⊗ Y )hΣn is at least n(r − 1), which is larger than
r + 1 (recall r ≥ 4). The connectivity of

Ltame(φ
n−1 Com(n)⊗ Y ⊗ · · · ⊗ Y )hΣn

is at least n(r−1)−(n−3) > r+1 (cf. [Heu21a, Proposition 4.10 and Example
4.7]). Hence the connectivity of F is larger than r , and the lemma is proved.

Remark 4.2.11. The proof of Lemma 4.2.10 is almost identical to the proof of
[Heu21a, Lemma 6.17]. There Heuts shows that Σ∞S r−1 is a trivial coalgebra in
the ∞-category coAlgnil,dpCom (τp−1 Sp

≥r−1). Informally, coAlgnil,dpCom (τp−1 Sp
≥r−1)

consists of conilpotent, divided power coalgebras X in Sp with (p− 1)! inverted
in Sp and with coherent structure maps X → (X⊗k)hΣk

for 1 ≤ k ≤ p− 1. The
important ingredients of both proofs are the inductive construction of coalgebras
and the vanishing of Tate construction.

Using Lemma 4.2.10, we can now prove the essential surjectiveness of the
functor Ctame.

Lemma 4.2.12. The functor

Ctame : S≥r−1
tame → coCAlg(Sp≥r−1

tame )

is essentially surjective.

Proof. Recall that Theorem 3.7.17 gives an equivalence

C̃E : AlgLie(ModHZ)
≥r−1 → coCAlgdp,nil(ModHZ)

≥r−1
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of ∞-categories. The ∞-category AlgLie(ModHZ)
≥r−1 is generated by the free

Lie algebra freeLie(Σ
r−1HZ) (in ModHZ) under colimits. It follows that the

∞-category coCAlgdp,nil(ModHZ)
≥r−1 is generated under colimits by the triv-

ial commutative coalgebra trivCom(Σ
r−1HZ), since we have an equivalence of

functors
C̃E ◦ freeLie ≃ trivCom .

Since coCAlg(Sp≥r
tame) is a localization of coCAlgdp,nil(Mod≥r−1

HZ ) by Remark
3.7.15, it is generated under colimits by the trivial tame coalgebra

trivCom,tame(Σ
r−1HZ),

where trivCom,tame denotes the composite Ltame ◦ trivCom. Hence it suffices to
show

CtameLtameS
r−1 ≃ trivCom,tame(Σ

r−1HZ),

which is the content of Lemma 4.2.10.

4.3 The equivalence of tame Lie algebras and tame
Hopf algebras

In the last section of this chapter, we prove Theorem 4.0.5. We first prove an
important proposition about the loop of a tame spectral Lie algebra. Over Q, if L
is a Lie algebra in ChQ, then ΩLieL is a trivial Lie algebra for degree reasons. We
claim the same phenomenon happens in the case of tame spectral Lie algebras.

Proposition 4.3.1. Let L ∈ AlgLie(Sp
≥r
tame) be a tame spectral Lie algebra. Then

there is an equivalence
ΩLieL ≃ trivLie(ΩL).

Assuming Proposition 4.3.1, we can now prove Theorem 4.0.5.

Proof of Theorem 4.0.5: First we claim the universal enveloping algebra functor

U : AlgLie(Sp
≥r
tame)

ΩLie−−→ Grp(AlgLie(Sp
≥r−1
tame ))

Grp(C̃Etame)−−−−−−−→ HopfAlg(Sp≥r−1
tame )

is fully faithful. Let Grp(p̃rim) denote the right adjoint of Grp(C̃Etame). Note
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that ΩLie is an equivalence, hence it suffices to show the unit map

η : ΩLieX → Grp(p̃rim) ◦ Grp(C̃Etame)(ΩLieX )

is an equivalence. By Proposition 4.3.1, ΩLieX ≃ trivLieΩX . Hence η can be
written as

η : trivLieΩX → Grp(p̃rim) ◦ Grp(C̃Etame)(trivLieΩX ).

The claim then follows from the fact that the unit from the Koszul duality
adjunction C̃Etame-p̃rim is an equivalence on trivial algebras, which is due to the
following formal equivalences

C̃Etame ◦ trivLie ≃ SymtameΣ p̃rim ◦ Symtame ≃ trivLieΩ

by Lemma 3.7.23. This completes the proof of the fully faithfulness of U.

For essential surjectivity, note first that U preserves colimits, as it is a com-
position of an equivalence ΩLie and a left adjoint Grp(C̃Etame). Since we have
an equivalence of ∞-categories

HopfAlg(Sp≥r−1
tame ) ≃ S≥r

tame

by Theorem 4.0.2, it suffices to show that the Hopf algebra H corresponding to
the generator K (Z, r) of S≥r

tame , lies in the essential image of U. Observe that
the underlying (r − 1)-tame spectrum of H is

Σ∞
tameΩK (Z, r) ≃ Σ∞

tameK (Z, r − 1) ≃ Symtame(Σ
r−1HZ),

where the second equivalence follows from Proposition 4.1.4. Moreover, for the
trivial r -tame Lie algebra trivLie(Σ

rHZ),

C̃Etame ◦ ΩLie(trivLie(Σ
rHZ)) ≃ C̃Etame ◦ trivLie(Σr−1HZ)

≃ Symtame(Σ
r−1HZ),

hence we see that H is the image of trivLie(ΣrHZ) under U.

We conclude this chapter with the proof of Proposition 4.3.1. We learned
this proof from Heuts. Recall that there is a pair of adjoint equivalences of
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∞-categories by Lemma 3.4.5

Σ′ : AlgΩLΣ(Sp) ⇄ AlgL(Sp) :Ω
′.

By Lemma 3.4.6, it suffices to show ΩLX is a trivial L-algebra for any X ∈
AlgL(Sp

≥r ) after tame localization.

Let σ denote the suspension morphism in (3.10)

FL
σ−→ FΩLΣ,

or equivalently, this can be obtained via the induced map on Goodwillie deriva-
tives ∂∗ id → ∂∗ΩΣ. The restriction along σ fits in a factorization

AlgL(Sp) AlgL(Sp)

AlgΩLΣ(Sp) .

ΩL

Ω′ σ∗

We claim σ : FL → FΩLΣ factors through the identity monad as the augmen-
tation of FL followed by the unit of FΩLΣ, after tame localization, which would
complete the proof of Proposition 4.3.1, since the restriction along FL → id is
indeed the trivial Lie algebra functor.

The ∞-category Sp is generated under sifted colimits by wedge sum of shifted
spheres Sk . Therefore, it suffices to prove the claim when evaluating σ at a wedge
of spheres Sk1 ⊕ · · · ⊕ Skn . That is, we want to show

σSk1⊕···⊕Skn : L(Sk1 ⊕ · · · ⊕ Skn) → ΩLΣ(Sk1 ⊕ · · · ⊕ Skn).

factors as the coaugmentation of L follows by the augmentation of ΩLΣ on
Sk1 ⊕ · · · ⊕ Skn after tame localization.

Theorem 4.3.2 (Hilton-Milnor Theorem, [BH20], [AK98]). For any collection
of spheres Sk1 , ... , Skn , there is an equivalence

ΩLΣ(Sk1 ⊕ · · · ⊕ Skn) →
∏′

ω∈Lien

ΩL(Σω(Sk1 , · · · , Skn)),

where
∏′ denotes the weak product (i.e., filtered colimits of finite products) and

Lien denotes the ordered set of Lie words with n generators, i.e., every ω ∈ Lien

is a basis element of the free Lie algebra on n generators.
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Using the Hilton-Milnor theorem, we can describe the suspension morphism
σ on the underlying spectra as

σ :
∏′

w∈Lien

L(Σω(Sk1−1, · · · , Skn−1)) →
∏′

w∈Lien

ΩL(Σω(Sk1 , · · · , Skn)).

Since σ comes from a map of spectral Lie algebras, it should preserve components
indexed by the same Lie word. We claim that σ restricts to a null map on
components corresponding to those Lie words ω with length n ≥ 2. Indeed,
write F : Spn → Sp for the multivariable functor L(Σω(−, · · · ,−)). Then we
can identify the suspension morphism σ as

F (Sk1−1, · · · ,Skn−1) → ΩF (ΣSk1−1, · · · , ΣSkn−1).

Observe that this map can be further factored by first applying the suspension
morphism component wise, then applying the “diagonal embedding” S−n → S−1.
This can be summarized as the diagram below

F (Sk1−1, · · · ,Skn−1) ΩF (ΣSk1−1, · · · , ΣSkn−1)

ΩnF (ΣSk1−1, · · · , ΣSkn−1).

σ

0

We remind the reader that the map S−n → S−1 is obtained from the Spainer-
Whitehead dual of the diagonal embedding S1 → Sn, which is null if n ≥ 2.

Therefore σ factors as a map

n⊕
i=1

L(Ski ) →
n⊕

i=1

ΩLΣ(Ski ),

which sends L(Ski ) to ΩLΣ(Ski ) for every i . It now suffices to show that for
each k , the suspension map

σ′ : L(Sk) → ΩLΣ(Sk)

factors through Sk after tame localization, for which we need the following
theorem by Arone-Mahowald.

Theorem 4.3.3. [AM99, Theorem 3.13, Theorem 4.4] Let X denote the p-
localization of the sphere Sk at a prime p, then
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1. if k is odd, then (
L(n)⊗ X⊗n

)
hΣn

≃ ∗.

if n ̸= pl for some l . If n = pl then
(
L(n)⊗ X⊗n

)
hΣn

has only p-primary
torsion.

2. if k is even, then (
L(n)⊗ X⊗n

)
hΣn

≃ ∗.

if n is not equal to pl or 2pj for l , j > 0. If n = pl or n = 2pl then(
L(n)⊗ X⊗n

)
hΣn

has only p-primary torsion.

Lemma 4.3.4. The suspension morphism evaluated on a sphere admits a fac-
torization

L(Sk) ΩL(ΣSk)

Sk

σ

after tame localization.

Proof. The lemma follows from Theorem 4.3.3; indeed, for n = pl or n = 2pl

and l > 0, the connectivity of

(
L(n)⊗ (Sk)⊗n

)
hΣn

is at least kn − n + 1, which is larger than r + 2p − 3 (note that k ≤ r), hence(
L(n) ⊗ (Sk)⊗n

)
hΣn

has only p-primary torsion and is contractible after tame
localization for n > 1.

The proof of Theorem 4.0.5 is now complete.



Appendix A

Higher Algebra Preliminaries

In this appendix, we recall some notions and results from [Lur09] and [Lur17]
that are used repeatedly in this thesis.

A.1 Monoids and Groups in ∞-Categories

Let C be a pointed ∞-category with finite limits. We recall that a monoid
object in an ∞-category C [Lur17, Definition 4.1.2.5.] is a simplicial object X :

∆op → C satisfying the Segal condition: the collection of face maps X ([n]) →
X ({i−1, i}) for 1 ≤ i ≤ n exhibits X ([n]) as a product of {X ({i−1, i})}1≤i≤n.
We will denote the full subcategory of monoids in C by Mon(C).

Under the identification Mon(C) ≃ MonAssoc(C) (see [Lur17, Proposition
4.1.2.10.]), a monoid X is equipped with a (homotopy coherently) associative
multiplication:

m : X × X → X ;

we say that X is a group in C [Lur17, Definition 5.2.6.2.] if both shearing maps

(p1,m) : X × X → X × X

(m, p2) : X × X → X × X

are equivalences. We will denote the ∞-category of groups in C as Grp(C).

Definition A.1.1. [Lur09, Definition 6.1.2.7.] A simplicial object U• in D is a
groupoid object if for every n ≥ 0 and every partition [n] = S ∪ S ′ such that

103
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S ∩ S ′ = {s}, the diagram

U([n]) U(S)

U(S ′) U({s})

is a pullback square in the ∞-category C.

Remark A.1.2. By [Lur17, Remark 5.2.6.5.], the notion of group in an ∞-
category is equivalent to the definition of groupoid objects in [Lur09, Definition
6.1.2.7.]. For a groupoid object X•, we write X1 for the corresponding group
object.

We now give another characterization of group objects in terms of presheaves
on C. Since the Yoneda embedding preserves limits, it induces a functor

Grp(C) → Grp(Fun(Cop,S)) ≃ Fun(Cop, Grp(S)).

Hence we can identify group objects in C as those representable presheaves that
factor through Grp(S).

The loop object ΩY of an object Y ∈ C is defined as

ΩY := 0×
Y
0.

We want to show that ΩY is a group object of C.

Lemma A.1.3. Let C be a pointed ∞-category with finite limits, then ΩY is a
group object for any Y ∈ C.

Proof. The image of the Yoneda embedding of ΩY is given by

X 7→ MapC(X , ΩY ) ≃ ΩMapC(X ,Y ),

where latter is in Grp(S) for any X ∈ C.

Remark A.1.4. In particular, ΩY is a monoid in C. The multiplication map is
given by the "concatenation" map

0×
Y
0×

Y
0 ≃ ΩY × ΩY → ΩY ≃ 0×

Y
Y ×

Y
0

which is unique up to contractible ambiguity.
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Proposition A.1.5. Let C and D be ∞-categories with finite products. Suppose
F : C ↪→ D is a fully faithful, product-preserving functor, then

(1) the functor F induces a fully faithful embedding Mon(F ) : Mon(C) →
Mon(D) between the category of associative monoids.

(2) the functor F induces a fully faithful embedding Grp(F ) : Grp(C) → Grp(D)

between the category of group objects.

Proof. Observe first that the functor F induces a fully faithful embedding

Fun(∆op, C) → Fun(∆op,D)

between the ∞-categories of simplicial objects. Then (1) follows from the
fact that F send monoids to monoids and Mon(C) is a full subcategory of
Fun(∆op, C); and (2) follows from the fact that Grp(C) is a full subcategory
of Mon(C).

Proposition A.1.6. Let F : C ⇄ D :G be a pair of adjoint functors between
∞-categories. Let C0 be a full subcategory of C so that the essential image of
G is contained in C0. Then F 0 := F |C0 restricts to an adjoint pair

F 0 : C0 ⇄ D :G .

Definition A.1.7. [GGN15, Definition 2.1] An ∞-category is preadditive if the
canonical morphism

X
∐

Y → X × Y

is an equivalence for any pair of objects X ,Y ∈ C.

Example A.1.8. 1. Any stable ∞-category is preadditive.

2. The ∞-category Sp≥r of r -connective spectra is preadditive; indeed, the
coproduct of X ,Y ∈ Spr is computed in Sp and the product of X ,Y ∈ Spr

is computed by τ≥r (X ⊕Y ) ≃ X ⊕Y , where ⊕ denotes the direct sum in
Sp.

3. Any product-preserving localization of a stable ∞-category is preadditive.
Therefore, the ∞-category Sp≥r

tame of r -tame spectra is preadditive; the
product of X ,Y ∈ Sp≥r

tame is computed in Sp≥r and the coproduct is
computed by Ltame(X ⊕ Y ) ≃ X ⊕ Y .



106 APPENDIX A. HIGHER ALGEBRA PRELIMINARIES

Let CMon(C) [Lur17, Definition 2.4.2.1.] denote the ∞-category of commu-
tative monoids in C.

Proposition A.1.9. [GGN15, Proposition 2.3] Let C be an ∞-category with
finite products and finite coproducts, then the following are equivalent:

1. The ∞-category C is preadditive.

2. The homotopy category hC is preadditive.

3. The forgetful functor CMon(C) → C is an equivalence.

If M ∈ C is an object in a preadditive ∞-category C, then M can be equipped
with a commutative monoid structure by Proposition A.1.9. We will call the
monoid structure map ∇ : M ⊕ M → M the fold map. The shearing map
defined as

s : M ⊕M
(pr1,∇)−−−−→ M ⊕M,

where pr1 denotes the projection to the first factor.

Definition A.1.10. [GGN15, Definition 2.6] A preadditive ∞-category C is ad-
ditive if the shearing map s is an equivalence.

Proposition A.1.11. [GGN15, Proposition 2.8] Let C be an ∞-category with
finite products and finite coproducts, then the following are equivalent:

1. The ∞-category C is additive.

2. The homotopy category hC is additive.

3. The forgetful functor Grp(C) → C is an equivalence.

Proposition A.1.9 and Proposition A.1.11 then imply that there are equiva-
lences

Grp(C) ≃ CMon(C) ≃ C

if C is additive. Moreover, if C is stable, we have the following corollary regarding
the ∞-category AlgO(C) of O-algebras in C.

Corollary A.1.12. Let C be a presentably stable ∞-category. Let BO(M) denote
the bar construction of a monoid M (with respect to the monoid structure) in
AlgO(C). Then the pair of adjoint functors

BO : Grp(AlgO(C)) ⇄ AlgO(C) :ΩO

is an equivalence.
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Proof. Since both of the functors BO and oblvO preserves sifted colimits, the
bar construction BO(M) of M ∈ Grp(AlgO(C)) is computed in C. Since C is
stable, the bar complex Bar(0,M, 0)• comes from the Čech nerve of 0 → ΣM,
which implies that BOM ≃ ΣM. Therefore we obtain two commuting diagrams

Grp(AlgO(C)) AlgO(C)

C C;

BO

oblvO ◦ oblvGrp oblvO

Σ

and
Grp(AlgO(C)) AlgO(C)

C C.

ΩO

oblvO ◦ oblvGrp oblvO

Ω

Since the vertical forgetful functors are conservative, there are equivalences

oblvO ◦BO ◦ ΩO(X ) ≃ ΣΩ(oblvO X ) ≃ oblvO X

for any X ∈ AlgO(C), and

oblvO ◦ oblvGrp ◦ΩO ◦ BOY ≃ ΩΣ(oblvO ◦ oblvGrp Y ) ≃ (oblvO ◦ oblvGrp Y )

for any Y ∈ Grp(AlgO(C)).

We consider now the ∞-category Sp≥r
tame of r -tame spectra. Let Σ and Ω

denote the suspension and loop functor in Sp respectively. Note that the category
Sp≥r

tame is not closed under Σ, so it’s not an inverse of Ω. However, it’s easy to
see we have the following lemma.

Lemma A.1.13. The adjunction

Σ: Sp≥r−1
tame ⇄ Sp≥r

tame :Ω

is an equivalence.

Moreover, if we let Lr−1,tame and Lr ,tame be (r − 1)-localization and r -
localization functors, respectively. It’s easy to see there are equivalences

Lr−1,tameΩX ≃ ΩLr ,tameX
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for an r -connective spectrum X , and

Lr ,tameΣY ≃ ΣLr−1,tameY

for an (r − 1)-connective spectrum Y .

Since AlgLie(Sp
≥r
tame) is Cartesian symmetric monoidal, the loop functor

Ω : Sp≥r
tame → Sp≥r−1

tame

induces a functor

ΩLie : AlgLie(Sp
≥r
tame) → Grp(AlgLie(Sp

≥r−1
tame ))

which takes a r -tame Lie algebra X to a (r − 1)-tame Lie algebra ΩLieX whose
underlying spectrum is ΩX .

Proposition A.1.14. The functor

ΩLie : AlgLie(Sp
≥r
tame) → Grp(AlgLie(Sp

≥r−1
tame ))

is an equivalence.

Proof. Let BLie denote the bar construction functor that is left adjoint to ΩLie.
Since the forgetful functor AlgLie(Sp

≥r
tame) → Sp≥r

tame preserves sifted colimits,
the bar construction is computed in the underlying category Sp≥r

tame of r -tame
spectra.

Let X• be a groupoid object in Sp≥r−1
tame , the geometric realization of X• is

computed by first taking the geometric realization of X• in Sp, then applying
the r -tame localization functor Ltame, but |X•| ≃ ΣX which is already r -tame,
hence we have BLieX ≃ ΣX . Therefore we have a commuting diagram

Grp(AlgLie(Sp
≥r−1
tame )) AlgLie(Sp

≥r
tame)

Sp≥r−1
tame Sp≥r

tame;

BLie

ΩLie

Σ

Ω

Hence BLie and ΩLie are mutually inverses because Σ and Ω are mutually inverses.
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A.2 Filtered and Graded Objects in Infinity-Categories

In this section, we introduce the notion of filtered and graded objects in a sym-
metric monoidal ∞-category C. The main reference for this section is [BM19].

Definition A.2.1. Let Z denote the poset of the integers and let C be an
∞-category. The ∞-category of filtered objects in C is defined as the functor
category

Fil(C) := Fun(Z, C).

Let Zdisc denote the groupoid with objects the integers and identity mor-
phisms.

Definition A.2.2. The ∞-category of graded objects in C is defined as the
functor category

Gr(C) := Fun(Zdisc, C).

Remark A.2.3. We can also extend the definitions above to the category Fil+(C)
(resp. Gr+(C)) of non-negatively filtered (resp. non-negatively graded) objects
by restricting to the category Z≥0 (resp. Zdisc

≥0 ) of non-negative integers.

The natural inclusion Zdisc ↪→ Z induces a forgetful functor Fil(C) → Gr(C).
We denote by

U : Gr(C) → Fil(C)

the left Kan extension along the inclusion Zdisc ↪→ Z; explicitly, the filtered
object X∗ evaluated at n is given by

⊕
k≤n Xk .

We can also define the associated graded of a filtered object

Gr(−) : Fil(C) → Gr(C)

to be X∗ 7→ (n 7→ cofib(Xn−1 → Xn)). The following lemma follows immediately
from an inductive argument.

Lemma A.2.4. The associated graded functor

Gr(−) : Fil+(C) → Gr+(C)

is conservative.

We also have the following obvious observation.
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Lemma A.2.5. The composite

Gr(C) U−→ Fil(C) Gr(−)−−−→ Gr(C)

is equivalent to the identity functor.

The following remark from [BM19] equips the categories of both filtered
objects and graded objects with symmetric monoidal structure.

Remark A.2.6. [BM19, Definition 2.5] Suppose that C is (nonunital) pre-
sentably symmetric monoidal ∞-category in which tensor product commutes
with colimits. Using Day convolution, one can equip both Fil(C) and Gr(C)
with the structure of presentably (nonunital) symmetric monoidal ∞-categories.
Furthermore, the associated graded functor Gr : Fil(C) → Gr(C) is (nonunital)
symmetric monoidal (cf. [Gla13, Sec. 2.23]).

Consider now an ∞-operad O in C. We can now state a theorem in [Heu22]
which says that every O-algebra admits a canonical filtration so that its associ-
ated graded is free.

Theorem A.2.7. [Heu22, Theorem 5.2 (2)] For an O-algebra X , there exists a
canonical filtered object X∗ so that

1. The filtration is exhaustive, i.e., there is an equivalence

colimX∗ → X .

2. The filtered O-algebra has associated graded

Gr(X∗) ≃ freeO(BO(n)⊗ X⊗n)hΣn .
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A.3 The Barr-Beck-Lurie Theorem

Theorem A.3.1. [Lur17, Theorem 4.7.3.5.] Let F : C ⇄ D :G be an adjoint
pair of ∞-categories. Then G is monadic if and only if

1. G is conservative, and

2. If X• is a G -split simplicial object in D, then its geometric realization exists
in D and G preserves geometric realization of X•.

In practice, the category D often admits all geometric realizations for simpli-
cial objects. In this case, we have a technically convenient criteria for determining
monadicity of a functor. We learned the proof of the following corollary from
Heuts.

Corollary A.3.2 ([Heu20]). If F : C ⇄ D :G an adjoint pair and that D admits
colimits of G -split simplicial objects. Then this pair is monadic if and only if for
every object X of D, the map

|(FG )•+1X | → X

is an equivalence.

Proof. Suppose this pair is monadic, then it satisfies the conditions of Theorem
A.3.1. For an object X in D, the simplicial object (FG )•+1X is G -split. Indeed,
the simplicial object G ((FG )•+1X ) admits a contracting homotopy via the unit
natural transformation X → GF (X ). Applying G to the map

|(FG )•+1X | → X

one obtains

G (|(FG )•+1X |) ≃ |G (FG )•+1X |

≃ G (X )

where the first equivalence is due to the fact that G preserves geometric re-
alization of G -split objects and the second equivalence is due to the assump-
tion that (FG )•+1X is G -split. Since G is conservative, we conclude that
|(FG )•+1X | → X is an equivalence.

Suppose now |(FG )•+1X | → X is an equivalence for every X in D. If G (f ) :

G (X ) → G (Y ) is an equivalence in C for some morphism f : X → Y , then
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(FG )•+1X → (FG )•+1Y is an equivalence of simplicial objects in D. Therefore,

|(FG )•+1X | → |(FG )•+1Y |

is an equivalence and hence so is f : X → Y . So G is conservative. We now
claim that G preserves geometric realization of G -split objects. Let X• be a
G -split simplicial object and consider the following commuting diagram

|(FG )•+1|X•|| |(FG )•+1X−1|

|X•| X−1.

We claim the bottom horizontal arrow is an equivalence. Note that two
vertical morphisms are equivalences by our assumption. We claim that the top
horizontal map is an equivalence as well. Indeed, if we view (FG )p+1Xq as a
bisimplicial object, then

|(FG )•+1|X•|| ≃ colimp colimq(FG )q+1Xp.

For fixed q, the simplicial object (FG )q+1X• is split since it’s a composite of
functors starting with G , hence one has

colimp(FG )q+1Xp ≃ (FG )q+1X−1

and colimq(FG )q+1X−1 → X−1 is an equivalence by the assumption. Therefore,
we conclude that

G (|X•|) ≃ G (X−1) ≃ |G (X•)|

where the last equivalence follows from the fact that X• is G -split.

As an application of the Corollary A.3.2 in homotopy theory, we prove the
following folklore proposition that is well-known among seasoned homotopy the-
oriests.

Proposition A.3.3. For r ≥ 2, the functor Σ∞ : S≥r
∗ → Sp≥r is comonadic. In

other words, there is an equivalence of ∞-categories:

ϕ : S≥r
∗ → coAlgΣ∞Ω∞(Sp≥r ).

between the ∞-category of r -connective spaces and the ∞-category of r -connective
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Σ∞Ω∞-coalgebras.

Proof. By the dual of Corollary A.3.2, it suffices to show there is an equivalence

X → Tot(Ω∞Σ∞)•+1X

for every X ∈ S≥r
∗ . We prove this by induction on the Postnikov tower. For

X an Eilenberg-Maclane space K (A, n) ≃ Ω∞−nHA, its associated augmented
cosimplicial object (Ω∞Σ∞)•+1X splits, with the contracting homotopy induced
by the counit Σ∞Ω∞ΩnHA → ΩnHA.

For the inductive step, we have a principal fibration sequence

K (πnX , n) → τ≤nX → τ≤n−1X → K (πnX , n + 1).

By the principal fibration lemma [BK72], the functor Tot(Ω∞Σ∞)•+1 preserves
principal fibrations. Hence the vertical sequences in the following diagram are
fiber sequences.

τ≤nX Tot(Ω∞Σ∞)•+1(τ≤nX )

τ≤n−1X Tot(Ω∞Σ∞)•+1(τ≤n−1X )

K (πnX , n + 1) Tot(Ω∞Σ∞)•+1K (πnX , n + 1)

Observe that the bottom two horizontal arrows are equivalences by the induc-
tive hypothesis, hence the induced map on the fibers is an equivalence. This
completes the inductive step of the proof.

A.4 Construction of the Comparison Functor

In this section, we construct the comparison functor from divided power conilpo-
tent commutative coalgebras in tame spectra to commutative coalgebras in tame
spectra

ζ : coCAlgdp,nil(Sp≥r
tame) → coCAlg(Sp≥r

tame).

We fix a pre-additive, presentable, symmetric monoidal ∞-category C in
which the tensor product is compatible with colimits. Consider the following lax
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monoidal functor

SSeq(C) → Fun(C, C)

O 7→ (X 7→
∏
n≥1

(O(n)⊗ X⊗n)hΣn).

Let K be the image of the commutative cooperad under the above functor, one
can consider the K -comodules in C ([FG12, §3.5]).

Definition A.4.1. We define the ∞-category of divided power commutative
coalgebras in C as

coCAlgdp(C) := LcoModK (C).

Remark A.4.2. If C = Sp≥r
tame, then there is an equivalence of ∞-categories

coCAlgdp(Sp≥r
tame) → coCAlg(Sp≥r

tame)

by Lemma 2.3.21. Moreover, K defines a cooperad on coCAlg(Sp≥r
tame).

Remark A.4.3. When C = Sp, there is a comparison functor

coAlgdp,nilCom (Sp) → coCAlgdp(Sp)

(see [FG12, Section 3.5] or [Heu22]), which induces a comparison functor

coCAlgdp,nil(Sp≥r ) → coCAlgdp(Sp≥r ) (A.1)

since colimits in Sp≥r are computed in Sp.

By Remark A.4.2, it suffices to construct a comparison functor

ζ ′ : coCAlgdp,nil(Sp≥r
tame) → coCAlgdp(Sp≥r

tame).

For the rest of this section, we explain how to obtain ζ ′ given (A.1). The crux for
this construction is the following theorem by Heine, which allows us to identify
maps between comonads with functors between comodules

Theorem A.4.4. [Hei17, Theorem 5.1] Let C be a presentable ∞-category, then
there is a localization

Comonad(C) → PrL/C

that sends Q to LcoModQ(C), where PrL/C denotes the ∞-category of presentable
∞-categories over C.
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As a consequence of Corollary 3.5.2, the functor j∗L∗ preserves monads and
comonads. Furthermore, the left adjoint j∗L∗ is oplax monoidal, so it also pre-
serves comonads. The counit map of adjunction (A.2) evaluated on any comonad
Q on D

j∗L∗j∗L
∗Q → Q (A.2)

is an equivalence of comonads. Therefore, the functor j∗L
∗ : Comonad(D) →

Comonad(C) is fully faithful.

Let QC and QD denote the comonads arising from the forgetful-cofree ad-
junction

oblvC : coCAlg
dp(C) ⇄ C :cofreeC

and
oblvD : coCAlgdp(D) ⇄ D :cofreeD .

For every X ∈ D, there is a natural map

QC(X ) =
∏
n

(X⊗n)hΣn,C → QD(X ) =
∏
n

(X⊗n)hΣn,D

where we use (X⊗n)hΣn,C (resp. (X⊗n)hΣn,D) to indicate the homotopy orbits is
computed in C (resp. D). Therefore, we obtain a map of comonads

LQC j → QD. (A.3)

Consider now the composite of comonads

QC → j ◦ L ◦ QC ◦ j ◦ L → j ◦ QD ◦ L (A.4)

where the first map is the unit of adjunction (3.11), and the second map (A.3).

Since C is preadditive, the comonad FCom is equivalent to the symmetric
algebra functor SymC , hence there is a natural transformation

SymC → idC

induced from the coaugmentation.

Remark A.4.5. Suppose there is a map of comonads

θ : FCom → QC ,
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then θ must be the canonical map obtained by the universal property of QC .
More concretely, if X ∈ C, then the map FCom(X ) → QC(X ) is the unique map
(up to contractible ambiguity) that makes the following diagram commute

FCom(X ) X

QC(X ).

Postcomposing with (A.4) then induces a map

FCom → QC → j ◦ QD ◦ L,

which corresponds to

Γ : L ◦ FCom ◦ j → L ◦ QC ◦ j → QD

by the adjunction (3.11).
Applying Theorem A.4.4, we define the comparison functor as follows.

Definition A.4.6. The comparison functor

ζ ′ : coCAlgdp,nil(D) := LcoModL◦FCom
(D) → coCAlgdp(D) := LcoModQD

is the functor corresponding to Γ under the correspondence of Theorem A.4.4.

To construct the comparison functor in the case of tame spectra, we let
C = Sp≥r and D = Sp≥r

tame. There is a comparison functor on coalgebras in
r -connective spectra

coCAlgdp,nil(Sp≥r ) → coCAlgdp(Sp≥r )

by Remark A.4.3. Combining with the discussion above, we obtain the compar-
ison functor

ζ : coCAlgdp,nil(Sp≥r
tame) → coCAlgdp(Sp≥r

tame) ≃ coCAlg(Sp≥r
tame).
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