
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Theory of Deep Learning: Neural Tangent Kernel and
Beyond

Arthur Ulysse JACOT-GUILLARMOD

Thèse n° 9825

2022

Présentée le 9 août 2022

Prof. F. Nobile, président du jury
Prof. C. Hongler, directeur de thèse
Prof. B. Hanin, rapporteur
Prof. M. Mondelli, rapporteur
Prof. E. Abbé, rapporteur

Faculté des sciences de base
Chaire de théorie des champs statistiques
Programme doctoral en mathématiques

1

Acknowledgements

I first want to thank my advisor Clément for all the inspiration and advice he gave me. Throughout
my PhD, he always understood when to correct me and push me forward and when to trust me
and give me freedom. I loved all the discussions we had and will continue to have in the future.

I also wish to thank Franck who followed me from the very start of my PhD to the end. For
each new idea, I was always looking forward to coming to the EPFL to explain it all to him. Our
team was always full of great discussions and exchanges of ideas, for which I have to thank Berfin,
Francesco, François, Evgenii, Maxime, SC, and Marie.

I want to thank all of the other researchers I worked with: Matthieu, Mario, Stefano, Levent,
Stéphane, Giulio, Johanni, Wulfram, Benjamin, Nikolai, and Stanislav. The results of some of these
collaborations appear in this thesis.

I am also thankful to the members of the Jury for my thesis defense: Emmanuel Abbé, Boris
Hanin, Marco Mondelli, and Fabio Nobile.

Je remercie aussi tout spécialement ma famille qui m’a suivi tout au long de mes aventures
mathématiques. Ma maman qui est allée chercher mon diplôme last minute à Berlin pour que je
puisse commencer mon master, et qui n’a jamais caché sa fierté d’avoir un garçon doctorant en
mathématiques. Mon papa qui m’a introduit à la programmation et qui m’a surtout appris à ne
respecter aucune convention et toujours suivre mon intuition. Finalement, ma grande sœur Adèle
(et sa fille Inna) qui m’a appris tant de choses, et surtout qui m’a expliqué la trigonométrie quand
j’en avais besoin pour construire une maquette, je croyais que le cosinus était de la magie pure!

Ma très chère Aline, je te remercie pour tout l’amour et le bonheur que tu m’a donné toutes
ces années. Beaucoup des idées et preuves de cette thèse me sont venues alors que tu dormais
doucement dans mes bras.

3

Abstract

In the recent years, Deep Neural Networks (DNNs) have managed to succeed at tasks that
previously appeared impossible, such as human-level object recognition, text synthesis, transla-
tion, playing games, and many more. In spite of these major achievements, our understanding
of these models, in particular of what happens during their training, remains very limited.

This PhD started with the introduction of the Neural Tangent Kernel (NTK) to describe
the evolution of the function represented by the network during training. In the infinite-width
limit, i.e. when the number of neurons in the layers of the network grows to infinity, the NTK
converges to a deterministic and time-independent limit, leading to a simple yet complete
description of the dynamics of infinitely-wide DNNs. This allowed one to give the first general
proof of convergence of DNNs to a global minimum, and yielded the first description of the
limiting spectrum of the Hessian of the loss surface of DNNs throughout training.

More importantly, the NTK plays a crucial role in describing the generalization abilities
of DNNs, i.e. the performance of the trained network on unseen data. The NTK analysis
uncovered a direct link between the function learned by infinitely wide DNNs and Kernel
Ridge Regression predictors, whose generalization properties are studied in this thesis using
tools of random matrix theory.

Our analysis of KRR reveals the importance of the eigendecomposition of the NTK, which
is affected by a number of architectural choices. In very deep networks, an ordered regime and
a chaotic regime appear, determined by the choice of non-linearity and the balance between
the weights and bias parameters; these two phases are characterized by different speeds of
decay of the eigenvalues of the NTK, leading to a tradeoff between convergence speed and
generalization. In practical contexts such as Generative Adversarial Networks or Topology
Optimization, the network architecture can be chosen to guarantee certain properties of the
NTK and its spectrum.

These results give an almost complete description of infinitely-wide DNNs in the NTK
regime. It is then natural to wonder how it extends to finite-width networks used in practice.
In the NTK regime, the discrepancy between finite- and infinite-widths DNNs is mainly a
result of the variance with respect to the sampling of the parameters, as shown empirically and
mathematically, relying on the similarity between DNNs and random feature models.

In contrast to the NTK regime, where the NTK remains constant during training, there
exist so-called active regimes, where the evolution of the NTK is significant, and which appear
in a number of settings. We describe one such regime in Deep Linear Networks with a very small
initialization, where the training dynamics approaches a sequence of saddle-points, representing
linear maps of increasing rank, leading to a low-rank bias which is absent in the NTK regime.

Keywords: Machine Learning, Deep Learning, Deep Neural Network, Neural Tangent Kernel,
Kernel Methods, Random Matrix Theory, Statistical Learning Theory.

5

Résumé

Ces dernières années, les Réseaux de Neurones Multicouches (RNMs) ont accompli des
tâches qui paraissaient auparavant impossibles, telles que la reconnaissance d’objets, la synthèse
et traduction de textes et bien d’autres encore. Malgré ces succès majeurs, notre compréhension
de ces modèles, en particulier de leur phase d’entraînement, reste encore très limitée.

Cette thèse de doctorat a commencé avec l’introduction du Neural Tangent Kernel (NTK)
qui décrit l’évolution de la fonction représentée par le réseau pendant l’entraînement. Dans
la limite de largeur infinie, où le nombre de neurones dans les couches du réseau tend vers
l’infini, le NTK converge vers une limite déterministe et constante dans le temps, ce qui permet
une description simple mais complète de la dynamique d’entraînement des réseaux de largeur
infinie dans le régime dit NTK. Cela a permis la première preuve de convergence des RNMs
vers un minimum global, ainsi que la première description du spectre limite de la Hessienne de
la surface de coût des RNMs pendant l’entraînement.

De plus, le NTK joue un rôle crucial dans la description des propriétés de généralisation
des RNMs, c’est-à-dire les performances du réseau sur des nouvelles données. L’analyse NTK
révèle un lien direct entre la fonction apprise par des RNMs de largeur infinie et le prédicteur
de Régression Ridge à Noyau dont les propriétés de généralisation sont décrites dans cette thèse
en utilisant la théorie des matrices aléatoires.

Cette analyse révèle l’importance de la décomposition spectrale du NTK, qui est affectée
par l’architecture des RNMs. En particulier, dans les réseaux avec un très grand nombre de
couches, un régime ordonné et un régime chaotique apparaissent, déterminés par le choix de
non-linéarité et l’équilibre entre les poids de connections et de biais. Ces deux régimes sont
caractérisés par un spectre qui décroît à des vitesses différentes, conduisant à un compromis
entre la vitesse de convergence et la généralisation. Dans des contextes pratiques tels que les
Réseaux Antagonistes Génératifs et l’Optimization Topologique, l’architecture du réseau peut
être choisie afin de garantir certaines propriétés du NTK et de son spectre.

Ces résultats présentent une théorie presque complète des RNMs de largeur infinie dans le
régime NTK. Il est donc important de comparer cette description aux réseaux de largeur finie
utilisés en pratique. Dans le régime NTK, on peut montrer, grâce à la similarité entre les RNMs
et les modèles aux ‘features’ aléatoires, que la différence entre les réseaux de largeur finie et
infinie est principalement due à la variance résultant de l’aléa des paramètres à initialisation.

Contrairement au régime NTK, où le NTK reste constant durant l’entraînement, des regimes
dis actifs ont été observés, où l’évolution temporelle du NTK est significative. Un tel régime
actif apparaît dans les Réseaux Linéaires Multicouches (RLMs) avec une petite initialisation,
où la dynamique d’entraînement approche une suite de points selles, chacun représentant une
fonction linéaire de rang croissant. En conséquence, le RLM tend à apprendre des fonctions de
petit rang, ce qui n’est pas le cas dans le régime NTK.

Contents

Contents 7

List of Figures 11

1 Introduction 19
1.1 Towards a Theory of Deep Learning . 20
1.2 Original Papers . 22
1.3 Setup . 24
1.4 Neural Tangent Kernel . 26
1.5 Infinite-width Limit of the Neural Tangent Kernel 28
1.6 Generalization of Kernel Ridge Regression . 35
1.7 Spectral Bias of DNNs . 41
1.8 Finite-width Analysis . 49
1.9 Regimes of Training . 55
1.10 Conclusion . 60

2 Neural Tangent Kernel: Convergence and Generalization in Neural Networks 63
2.1 Introduction . 63
2.2 Neural networks . 64
2.3 Kernel gradient . 65
2.4 Neural tangent kernel . 67
2.5 Least-squares regression . 69
2.6 Numerical experiments . 71
2.7 Conclusion . 73

3 The Asymptotic Spectrum of the Hessian of DNN Throughout Training 75
3.1 Introduction . 75
3.2 Setup . 77
3.3 Main Theorems . 79
3.4 Conclusion . 86

4 Kernel Alignment Ridge Estimator: Risk Prediction From Training Data 87
4.1 Introduction . 87
4.2 Setup . 90
4.3 Predictor Moments and Signal Capture Threshold 92

7

8 CONTENTS

4.4 Risk Prediction with KARE . 95
4.5 Conclusion . 97

5 Freeze and Chaos: NTK views on DNN Normalization, Checkerboard and
Boundary Artifacts 99
5.1 Introduction . 99
5.2 Fully-Connected Neural Networks . 102
5.3 Order and Chaos in FC-NNs . 104
5.4 Chaotic effect of normalization . 105
5.5 Convolutional Networks . 107
5.6 Mode Collapse in Generative Adversarial Networks 108
5.7 Conclusion . 111

6 DNN-Based Topology Optimization: Spatial Invariance and Neural Tangent
Kernel 113
6.1 Introduction . 113
6.2 Presentation of the method . 114
6.3 Theoretical Analysis . 117
6.4 Experimental analysis . 120
6.5 Conclusion . 123

7 Scaling Description of Generalization with Numer of Parameters in Deep
Learning 125
7.1 Introduction . 125
7.2 Improving generalization by averaging in MNIST . 127
7.3 Relationship between variance and generalization in classification tasks 129
7.4 Asymptotic generalization as n→∞ . 130
7.5 Asymptotic generalization as N →∞ . 130
7.6 Vicinity of the jamming transition . 134
7.7 Conclusion . 136

8 Implicit Regularization of Random Feature Models 137
8.1 Introduction . 137
8.2 Setup . 140
8.3 First Observations . 142
8.4 Average Predictor . 143
8.5 Variance . 147
8.6 Conclusion . 148

9 Saddle-to-Saddle Dynamics in Deep Linear Networks: Small Initialization
Training, Symmetry and Sparsity 151
9.1 Introduction . 151
9.2 Deep Linear Networks . 153
9.3 Proximity of Critical Points at Initialization . 155
9.4 NTK regime: γ < 1 . 156
9.5 Saddle-to-Saddle Dynamics: γ � 1 . 156
9.6 Characterization of the Regimes of Training . 161

CONTENTS 9

9.7 Conclusion . 163

A General Appendix 165
A.1 Simple Bound on the Variance of the Random Feature Predictor 165

B Neural Tangent Kernel: Convergence and Generalization in Neural Networks 167
B.1 Appendix . 167

C The Asymptotic Spectrum of the Hessian of DNN Throughout Training 179
C.1 Proofs . 179
C.2 Preliminaries . 180
C.3 The Matrix S . 183
C.4 Orthogonality of I and S . 194

D Kernel Alignment Ridge Estimator: Risk Prediction From Training Data 197
D.1 Numerical Results . 197
D.2 Proofs . 202

E Freeze and Chaos: NTK views on DNN Normalization, Checkerboard and
Boundary Artifacts 235
E.1 Choice of Parametrization . 235
E.2 FC-NN Order and Chaos . 236
E.3 Layer Normalization and Nonlinearity Normalization 241
E.4 Batch Normalization . 243
E.5 Graph-based Neural Networks . 243
E.6 DC-NN Order and Chaos . 246
E.7 Border Effects . 251
E.8 Layerwise Contributions to the NTK and Checkerboard Patterns 254

F DNN-Based Topology Optimization: Spatial Invariance and Neural Tangent
Kernel 255
F.1 Derivation of the algorithm . 255
F.2 Equations of evolution . 257
F.3 Details about embeddings . 257
F.4 Precise computations of the Neural Tangent Kernel 261
F.5 Square root of the NTK in the case of random embedding 263
F.6 Additional experimental results . 267

G Scaling Description of Generalization with Numer of Parameters in Deep
Learning 269
G.1 Robustness of the boundaries distance δ(x) estimate 269
G.2 Central limit theorem of the NTK . 270
G.3 Fluctuations of output function for the mean square error loss 270

H Implicit Regularization of Random Feature Models 273
H.1 Experimental Details . 273
H.2 Additional Experiments . 275

10 CONTENTS

H.3 Proofs . 283

I Saddle-to-Saddle Dynamics in Deep Linear Networks: Small Initialization
Training, Symmetry and Sparsity 309
I.1 Further Experimental Details . 309
I.2 Regimes of Training . 310
I.3 Proofs for the Saddle-to-Saddle regime . 316
I.4 Technical Results . 331

Bibliography 333

List of Figures

1.5.1 Convergence of the NTK to a fixed limit for two widths n and two times t. 32

1.5.2 Networks function fθ near convergence for two widths n and 10th, 50th and 90th per-
centiles of the asymptotic Gaussian distribution. 32

1.6.1 Comparison between the KRR risk and the KARE for various choices of normalized
lengthscale /̀d and ridge λ on the MNIST dataset (restricted to the digits 7 and 9,
labeled by 1 and −1 respectively, N = 2000) and on the Higgs dataset (classes ‘b’ and
‘s’, labeled by −1 and 1, N = 1000) with the RBF Kernel K(x, x′) = exp(−‖x−x

′‖22/`).
KRR predictor risks, and KARE curves (shown as dashed lines, 5 samples) concentrate
around their respective averages (solid lines). 40

1.7.1 The NTK on the unit circle for four architectures with depth L = 5 (left) and L =
25 (right): vanilla ReLU network with β = 1.0 (blue) and β = 0.1 (orange), with a
normalized ReLU / Layer norm (green) and with Batch Norm (red). Both networks
have width 3000, but the deeper network is further from convergence, leading to more
noise. 43

1.7.2 The left column represents the first 8 eigenvectors of the NTK Gram matrix of a DC-
NN (L=3) on 4 inputs (as well as some other architecture changes, see Section 5 for
more details). The right column represents the results of a GAN on CelebA. Each line
correspond to a choice of nonlinearity/normalization for the generator: (top) ReLU,
(middle) normalized ReLU and (bottom) ReLU with Batch Normalization. 46

1.7.3 Left: empirical NTK of FCNNs with both embedding (a.1, a.2, see Section 6.4 for
details) or without embedding (a.3 with ReLu, a.4 with tanh). Right: Corresponding
shape obtained after training. Note that methods without spatial invariance particularly
struggles with this symmetric load case (b.3, b.4) while both "embedded methods"
respect the symmetry (b.1, b.2). We also observed that training with non-embedded
methods is very unstable . 47

1.7.4 Shape obtained for different values of R̂1/2 with a Gaussian embedding for different
values of ` ∈ {0.5, 1, 1.4, 2}. 48

1.7.5 Colormap of R̂1/2 in the (β, ω) plane, torus embedding. Level lines and shapes obtained
for different radius are represented. 48

11

12 LIST OF FIGURES

1.8.1 (A) Empirical test error v.s. number of parameters: average curve (blue, averaged over
20 runs); early stopping (green); ensemble average f̄nN (orange) over n = 20 independent
runs. In all the simulations we used fully-connected networks with depth L = 5 and
input dimension d = 10, trained for t = 2 · 106 epochs to classify P = 10k MNIST
images depending on their parity, using their first 10 PCA components, and the test
set includes 50K images (the plots are taken from the original paper where the number
of parameters is denoted by N and the number of datapoints by P). The vertical
dashed line corresponds to the interpolation threshold: at that point the test error
peaks. Ensemble averaging leads to an essentially constant behavior when N becomes
larger than N∗. 50

1.8.2 Comparison of the test errors of the average λ-RF predictor and the λ̃-KRR predictor.
We train the RF predictors on N = 100 MNIST data points where K is the RBF kernel,
i.e. K(x, x′) = exp

(
−‖x− x′‖2/`

)
. We approximate the average λ-RF on 100 random

test points for various ridges λ. In (a), given γ and λ, the effective ridge λ̃ is computed
numerically using (8.4.2). In (b), the test errors of the λ̃-KRR predictor (blue lines)
and the empirical average of the λ-RF predictor (red dots) agree perfectly. 53

1.8.3 Average test error of the ridgeless vs. ridge λ-RF predictors. In (a), the average test
errors of the ridgeless and the ridge RF predictors (solid lines) and the effect of en-
sembling (dashed lines) for N = 100 MNIST data points. In (b), the variance of the
RF predictors and in (c), the evolution of ∂λλ̃ in the ridgeless and ridge cases. The
experimental setup is the same as in Figure 1.8.2. 54

1.9.1 Saddle-to-Saddle dynamics: A DLN (L = 4, w = 100) with a small initialization (γ = 2)
trained on a MC loss fitting a 10×10 matrix of rank 3. Left: Projection onto a plane of
the gradient flow path θα in parameter space (in blue) and of the sequence of 3 limiting
paths (in orange, green and red), starting from the origin (+) and passing through 2
saddles (·) before converging. Middle: Train (solid) and test (dashed) MC costs through
training. We observe three plateaus, corresponding to the three saddles visited. Right:
The train (solid) and test (dashed) losses of the three paths plotted sequentially, in the
saddle-to-saddle limit; the dots represent an infinite amount of steps separating these
paths. 59

2.6.1 Convergence of the NTK to a fixed limit for two widths n and two times t. 71
2.6.2 Networks function fθ near convergence for two widths n and 10th, 50th and 90th per-

centiles of the asymptotic Gaussian distribution. 71
2.6.3 NTK PCA and convergence speed. 73

3.3.1 Comparison of the theoretical prediction of Corollary 1 for the expectation of the first
4 moments (colored lines) to the empirical average over 250 trials (black crosses) for a
rectangular network with two hidden layers of finite widths n1 = n2 = 5000 (L = 3)
with the smooth ReLU (left) and the normalized smooth ReLU (right), for the MSE loss
on scaled down 14x14 MNIST with N = 256. Only the first two moments are affected
by S at the beginning of training. 81

3.3.2 Illustration of the mutual orthogonality of I and S. For the 20 first eigenvectors of I
(blue) and S (orange), we plot the Rayleigh quotients vT Iv and vTSv (with L = 3,
n1 = n2 = 1000 and the normalized ReLU on 14x14 MNIST with N = 256). We see
that the directions where I is large are directions where S is small and vice versa. . . . 84

LIST OF FIGURES 13

3.3.3 Plot of the loss surface around a global minimum along the first (along the y coordinate)
and fourth (x coordinate) eigenvectors of I. The network has L = 4, width n1 = n2 =
n3 = 1000 for the smooth ReLU (left) and the normalized smooth ReLU (right). The
data is uniform on the unit disk. Normalizing the non-linearity greatly reduces the
narrow valley structure of the loss thus speeding up training. 84

4.1.1 Comparison between the KRR risk and the KARE for various choices of normalized
lengthscale /̀d and ridge λ on the MNIST dataset (restricted to the digits 7 and 9,
labeled by 1 and −1 respectively, N = 2000) and on the Higgs dataset (classes ‘b’ and
‘s’, labeled by −1 and 1, N = 1000) with the RBF KernelK(x, x′) = exp(−‖x−x

′‖22/`) (see
the Appendix for experiments with the Laplacian and `1-norm kernels). KRR predictor
risks, and KARE curves (shown as dashed lines, 5 samples) concentrate around their
respective averages (solid lines). 89

4.3.1 Signal Capture Threshold and Derivative. We consider the RBF Kernel on the standard
d-dimensional Gaussian with ` = d = 20. In blue lines, exact formulas for the SCT ϑ(λ)
and ∂λϑ(λ), computed using the explicit formula for the eigenvalues dk of the integral
operator TK given in Section 1.5 of the Appendix; in red dots, their approximation with
Proposition 4.3. 94

4.4.1 Comparision of risk predictors. We calculate the risk (i.e. test error) of f̂ ελ on MNIST
with the RBF Kernel for various values of ` and λ on N = 200 data points (same
setup as Fig. 4.1.1). We mark the minimum MSE achieved with a star. We display
the predictions of KARE and leave-one-out (LOO); both find the hyper-parameters
minimizing the risk. We also show the (normalized) log-likehood estimator and observe
that it favors large λ values. Axes are log2 scale. 97

5.2.1 The NTK on the unit circle for four architectures with depth L = 5 (left) and L = 25
(right) are plotted: vanilla ReLU network with β = 1.0 (blue) and β = 0.1 (orange),
with a normalized ReLU / Layer norm. (green) and with Batch Norm (red). Both
networks have width 3000, but the deeper network is further from convergence, leading
to more noise. 103

5.6.1 The left and middle columns represent the first 8 eigenvectors of the NTK Gram matrix
of a DC-NN (L=3) on 4 inputs. (left) without the Graph-Based Parametrization (GBP)
and the Layer-Dependent Learning Rate (LDLR); (middle) with GBP and LDLR. The
right column represents the results of a GAN on CelebA with GBP and LDLR. Each
line correspond to a choice of nonlinearity/normalization for the generator: (top) ReLU,
(middle) normalized ReLU and (bottom) ReLU with Batch Normalization. 109

6.2.1 Illustration of our method . 116

6.2.2 Example of result of our method with applied forces (red arrow) and a fixed boundary
(green). Here we used a Gaussian embedding (see section 4 for details). 117

6.3.1 Representation of one line of Θ̃θ on the full torus and of its square root. We used β = 0.2
and ω = 3 (see Section 6.4) here to make the filter visible on the whole torus. 119

14 LIST OF FIGURES

6.3.2 Left: empirical NTK of FCNNs with both embedding (a.1, a.2, see Section 6.4 for
details) or without embedding (a.3 with ReLu, a.4 with tanh). Right: Corresponding
shape obtained after training. Note that methods without spatial invariance particularly
struggles with this symmetric load case (b.3, b.4) while both "embedded methods"
respect the symmetry (b.1, b.2). We also observed that training with non-embedded
methods is very unstable . 120

6.4.1 Sorted eigenvalues of the empirical NTK with some eigenvectors (reshaped as images).
Obtained with a Gaussian embedding. 121

6.4.2 Colormap of R̂1/2 in the (β, ω) plane, torus embedding. Level lines and shapes obtained
for different radius are represented. 121

6.4.3 Shape obtained for different values of R̂1/2 with a Gaussian embedding for different
values of ` ∈ {0.5, 1, 1.4, 2}. 122

6.4.4 Density field obtained with a Torus embedding (left) and up sampling of factor 6 of the
same network (right). 123

6.4.5 Exemple of up-sampling of a FCNN (ReLu FCNN with batchnorms) without embedding,
exhibing typical visual artifacts. 123

7.2.1 (A) Empirical test error v.s. number of parameters: average curve (blue, averaged over
20 runs); early stopping (green); ensemble average f̄nN (orange) over n = 20 independent
runs. In all the simulations we used fully-connected networks with depth L = 5 and
input dimension d = 10, trained for t = 2 ·106 epochs to classify P = 10k MNIST images
depending on their parity, using their first 10 PCA components, and the test set includes
50K images. The vertical dashed line corresponds to the jamming transition: at that
point the test error peaks. Ensemble averaging leads to an essentially constant behavior
when N becomes larger than N∗. The location of the jamming transition, N∗ shown
here, is measured in section 7.6 for extrapolated t =∞. Black dashed line: asymptotic
prediction of the form εN − ε∞ = B0N

−1/2 + B1N
−3/4, with ε∞ = 0.054, B0 = 6.4 and

B1 = −49. (B) Training error v.s. number of parameters. 128

7.3.1 f(x) and the limiting function f̄(x) (see Section 7.3) classify points according to their
sign. They agree on the classification everywhere (±’s in the figure are examples where
the functions are respectively both positive or both negative) except for the points that
lie in between the two boundaries f = 0 and f̄ = 0. In the figure, let x be one such
point, and δ is the typical distance from the boundary f = 0. In the limit where f and f̄
are close to each other, δ is of the same order of the distance between the two boundaries.129

7.4.1 Left: increment of test error ε̄nN − ε̄N v.s. n, supporting ε̄nN − ε̄N ∼ 1/n. Center: δ as
defined in Eq.7.3.1 v.s. number of average n, supporting δ ∼ 1/

√
n. Right: increase of

test error ε̄nN − ε̄N as a function of the variation of the boundary decision δ, supporting
the prediction ε̄nN − ε̄N ∼ δ2. Here d = 30, h = 60, L = 5, N = 16k and P = 10k. The
value ε̄N = 2.148% is extracted from the fit. 131

7.5.1 Variance of the output (averaged over n = 20 networks) v.s. number of parameters for
different measures indicated in legend, showing a peak at jamming followed by a decay
as N grows. Here L = 5, d = 10, P = 10k. 132

LIST OF FIGURES 15

7.5.2 Here L = 5, d = 10, P = 10k. (A) The median of ‖∇fN‖µ =
√∫

dµ(x)‖∇fN (x)‖2 over
20 runs (each appearing as a dot) is indicated as a full line. The dashed line correspond to
our asymptotic prediction ||∇fN || = C0 +C1N

−1/4 with C0 = 2.1 and C1 = 51. (B) Test
error v.s. variation of the boundary, together with fit of the form εN = ε∞+D0δ

2
N . (C)

Variation of the boundary δN v.s. its estimate ||fN − f̄N ||/||∇fN ||, well fitted by a linear
relationship. (D) εN−ε̄N v.s. N , with a fit of the form εN−ε̄N = E0N

−1/2+E1N
−3/4 with

E0 = 7.6 and E1 = −59. If exponents in the fits are not imposed, we find for reasonable
fitting ranges −0.28 instead of −1/4 in (A), 2.5 instead of 2 in (B), 1.1 instead of 1 in
(C) and −0.42 instead of −1/2 in (D). Extracting exponents while also fitting for the
location of the singularity, as is the case here for (A) and (B), leads to rather sloppy fits. 133

7.6.1 Here L = 5, d = 10, P = 10k. (A) ||f ||2 =
∫
dµ(x)f(x)2 where for µ we took the uniform

measure on the training and test set. We show the mean over the different realizations.
Right after the jamming transition, the norm of the network diverges. (B) Same quantity
computed after different learning times t as indicated in the legend, as a function of the
distance from the transition. One observes that finite times cut off the divergence in the
norm. The black line indicates a power-law with slope -2, that appears to fit the data
satisfyingly. N∗ has been fine tuned to obtain straight curves (power law behavior). . . 135

8.2.1 Distribution of the RF Predictor. Red dots represent a sinusoidal dataset yi = sin(xi)
for N = 4 points xi in [0, 2π). For selected P and λ, we sample ten RF predictors (blue
dashed lines) and compute empirically the average RF predictor (black lines) with ±2
standard deviations intervals (shaded regions). 141

8.3.1 Comparison of the test errors of the average λ-RF predictor and the λ̃-KRR predictor.
We train the RF predictors on N = 100 MNIST data points where K is the RBF kernel,
i.e. K(x, x′) = exp

(
−‖x− x′‖2/`

)
. We approximate the average λ-RF on 100 random

test points for various ridges λ. In (a), given γ and λ, the effective ridge λ̃ is computed
numerically using (8.4.2). In (b), the test errors of the λ̃-KRR predictor (blue lines)
and the empirical average of the λ-RF predictor (red dots) agree perfectly. 143

8.4.1 Average test error of the ridgeless vs. ridge λ-RF predictors. In (a), the average test
errors of the ridgeless and the ridge RF predictors (solid lines) and the effect of en-
sembling (dashed lines) for N = 100 MNIST data points. In (b), the variance of the
RF predictors and in (c), the evolution of ∂λλ̃ in the ridgeless and ridge cases. The
experimental setup is the same as in Figure 1.8.2. 146

8.6.1 Average test error of the λ-RF predictor for two values of N and λ = 10−4. For N =
1000, the test error is naturally lower and the cusp at γ = 1 is narrower than forN = 100.
The experimental setup is the same as in Figure 8.3.1. 149

9.2.1 Saddle-to-Saddle dynamics: A DLN (L = 4, w = 100) with a small initialization (γ = 2)
trained on a MC loss fitting a 10× 10 matrix of rank 3. Left: Projection onto a plane
of the gradient flow path θα in parameter space (in blue) and of the sequence of 3 paths
θ1, θ2, θ3 (in orange, green and red), described by Algorithm Aε,T,η, starting from the
origin (+) and passing through 2 saddles (·) before converging. Middle: Train (solid)
and test (dashed) MC costs through training. We observe three plateaus, corresponding
to the three saddles visited. Right: The train (solid) and test (dashed) losses of the
three paths plotted sequentially, in the saddle-to-saddle limit; the dots represent an
infinite amount of steps separating these paths. 154

16 LIST OF FIGURES

9.4.1 Training in (a) the NTK regime, (b) mean-field, (c) saddle-to-saddle regimes in deep
linear networks for three widths w = 10, 100, 1000, L = 4, and 10 seeds. Parameters
are initialized with variance σ2 = w−γ . We observe that (a) in the NTK regime, the
training loss shows typical linear convergence behavior for w = 1000 and w = 100; (b)
in the mean-field regime, we observe that even the large width networks approach to
a saddle at the beginning of the training and that the length of the plateaus remains
constant between widths w = 1000 and w = 100; (c) in the saddle-to-saddle regime,
the plateaus become longer as the width grows. In all cases, we see a reduction in the
variation between the different seeds as w →∞. 157

9.6.1 Test errors and ranks at convergence as a function of initialization scale γ, matrix com-
pletion task. The task is finding a matrix of size 30 × 30 and rank 1 from 20% of its
entries. The test error and ranks are averaged over 7 seeds (±1 standard deviations are
reported in the error bar). In the NTK regime, the solutions at convergence are almost
full-rank and the test error is roughly the same or worse than that of the zero predictor.
On the other hand in the Saddle-to-Saddle regime the test error approaches zero. As the
width grows the transition between regimes becomes sharper and the test error becomes
more consistent within each regimes. 161

D.1.1Comparison between the KRR risk and the KARE for various choices of normalized
lengthscale /̀d and ridge λ on the MNIST dataset (restricted to the digits 7 and 9, la-
beled by 1 and −1 respectively, N = 2000) and on the Higgs dataset (classes ‘b’ and
‘s’, labeled by −1 and 1, N = 1000). We present the results for the Laplacian Kernel
K(x, x′) = exp(−‖x−x

′‖2/`) (top row) and the `1-norm Kernel K(x, x′) = exp(−‖x−x
′‖1/`)

(bottom row). KRR predictor risks, and KARE curves (shown as dashed lines, 5 sam-
ples) concentrate around their respective averages (solid lines). 198

D.1.2KRR predictor in function space for various N and λ for the RBF Kernel K with
` = d = 1. Observations o = δx are sampled with uniform distribution on x ∼ U [−1, 3]

(shown in blue) f̂ ελ is calculated 500 times for different realizations of the training data
(10 example predictors are shown in dashed lines), its mean and ±2 standard deviation
are shown in red. The true function f∗(x) = x2 + 2 cos(4x) is shown in black. Second
row. Observations o = δx are sampled with uniform distribution x ∼ U [0, 1.5] (shown
in blue) and f̂ ελ is calculated 100 times. The true function f∗(x) = x2 is shown in black. 199

D.1.3The estimation predicts the risk in average for small N = {100, 500} on MNIST data.
In the top row, we used the RBF Kernel K(x, z) = exp(−‖x−z‖

2
2/`), in the second row,

we used the Laplacian Kernel K(x, z) = exp(−‖x−z‖2/`), and in the bottom row, we used
the `1-norm Kernel K(x, z) = exp(−‖x−z‖1/`) for various choices of ` and λ. The optimal
predictor is calculated using N random samples (N = 100 for the plots on the left and
N = 500 for the ones on the right) from the training data 10 times (dashed curves) and
their average is plotted in the solid curves. 200

D.1.4Behavior of SCT as a function of λ and N . True SCT is calculated on the k = 50
biggest distinct eigenvalues using the formula D.1.3 for ` = d = 5 and σ = 1. Red
dots are the approximations obtained using Proposition 5 in the main text, i.e. ϑ ≈
1/Tr[(1

NK(X,X)− λI)−1]. 201

E.1.1Result of two GANs on CelebA. (Left) with Nonlinearity Normalization and (Right)
with Batch Normalization. In both cases the discriminator uses a Normalized ReLU. . . 236

LIST OF FIGURES 17

F.6.1Comparison between one line of the Gram matrix of the empirical NTK Θ̃θ(t) and and of
the corresponding limiting NTK Θ̃∞. Here we use a Gaussian embedding as described
in the paper . 267

F.6.2Evolution of the NTK of a network with a Gaussian embedding with hyperparameters
as described in Section 6.4. We can see a relative stability of the NTK 268

G.1.1Value of the output function f , in the direction of its gradient starting from x. Here
200 curves are shown, corresponding to 200 data x in the test set within the decision
boundaries fN = 0 and f̄N = 0 — i.e. fN (x)f̄N (x) < 0. If the linear prediction is
exact, then we expect f(x − δ ∇f(x)

‖∇f(x)‖) = 0 where δ = δf(x)/||∇f(x)||. This prediction
becomes accurate for large N . To make this statement quantitative, The 25%, 50%,
75% percentile of the intersection with zero are indicated with red ticks. Even for small
N the interval between the ticks is small, so that the prediction is typically accurate.
From left to right N = 938, 13623, 6414815. Here d = 10, L = 5 and P = 10k. 269

G.1.2Test for the estimate of the distance δ between the boundary decision of f and f̄ . Each
point is measured from a single ensemble average of various sizes. Here d = 30, h = 60,
L = 5, N = 16k and P = 10k. 270

H.2.1Distribution of the RF predictor. Red dots represent a sinusoidal dataset yi = sin(xi)
for N = 4 points xi in [0, 2π). For P ∈ {2, 4, 10, 100} and λ ∈ {0, 10−4, 10−1, 1}, we
sample ten RF predictors (blue dashed lines) and compute empirically the average RF
predictor (black lines) with ±2 standard deviations intervals (shaded regions). 276

H.2.2Evolution of the effective ridge λ̃ and its derivative ∂λλ̃ for various levels of ridge λ (or
γ) and for N = 20. We consider two different decays for d1, . . . , dN : (i) exponential
decay in i (i.e. di = e−

(i−1)
2 , top plots) and (ii) polynomial decay in i (i.e. di = 1

i ,
bottom plots). 277

H.2.3Evolution of effective ridge λ̃ as a function of γ for two ridges (a) λ = 10−4 and
(b) λ = 0.5 and for various N . We consider an exponential decay for d1, . . . , dN , i.e.
di = e−

(i−1)
2 . 278

H.2.4Eigenvalues d̃1, . . . d̃N (red dots) vs. eigenvalues d1

d1+λ̃
, . . . , dN

dN+λ̃
(blue dots) for N = 10.

We consider various values of P and two different decays for d1, . . . , dN : (i) exponential
decay in i, i.e. di = e−

(i−1)
2 (right plots) and (ii) polynomial decay in i, i.e. di = 1

i (left
plots). 280

H.2.5Comparision of the test errors of the average λ-FF predictor and the λ̃-KRR predictor.
In (a) and (c), the test errors of the average λ-FF predictor and of the λ̃-KRR predictor
are reported for various ridge for N = 100 and N = 1000 MNIST data points (top and
bottom rows). In (b) and (d), the average test error of the λ-FF predictor and the test
error of its average are reported. 281

18 LIST OF FIGURES

I.1.1 Matrix Completion in linear/lazy vs. saddle-to-saddle regimes. 3 DLNs (L = 4, w = 100)
trained on a MC loss fitting a 10× 10 matrix of rank 3 with initialization αθ0 for a fixed
random θ0 and three values of α. Left: Train (solid) and test (dashed) MC cost for the
three networks, for large α the network is in the linear/lazy regime and does not learn the
low-rank structure. For smaller α plateaus appear and the network generalizes. Middle:
Visualization of the gradient paths in parameter space. The black line represents the
manifold of solutions to which all example paths converge. As α → 0 the training
trajectory converges to a sequence of 3 paths (in blue, purple and red) starting from
the origin (+) and passing through 2 saddles (·) before converging. Right: The train
(solid) and test (dashed) loss of the three paths plotted sequentially, in the saddle-to-
saddle limit; · · · represent an infinite amount of steps separating these paths. 310

I.1.2 Training in (a) the NTK regime, (b) mean-field, (c) saddle-to-saddle regimes in deep
linear networks for three widths w = 10, 100, 1000, L = 4, and 10 seeds; extension of
Fig. 9.4.1 in the main. Top: The evolution of the rank of the network matrices during
training. Tolerance of the matrix is set at 1e− 1. Middle: The evolution of the nuclear
norm during training, we can see that the smooth jumps are aligned with the rank
transitions. Bottom: The evolution of the gradient norm of the parameters. Decrease
of the gradient norm down to zero indicates approaching to a saddle, and the following
increase indicates escaping it. 311

I.1.3 Training in the NTK vs. saddle-to-saddle regimes in shallow (top) and deep (bottom)
networks when learning a low rank matrix corrupted with noise. Black lines (the NTK
regime): the parameters are initialized with the standard deviation σ̃ = w−L−1/2L. The
rank of the network matrix increases incrementally as the gradient trajectory follows the
paths between the saddles. Top/Shallow case: L = 2 and w = 50; in the saddle-to-
saddle regime (shown in red), the initialization scale is σ̃ = w−2. Bigger initialization
scales result in shorter plateaus in the loss curve if the same learning rate is used.
Bottom/Deep case: L = 4 and w = 100; in the saddle-to-saddle regime (shown
in blue), the initialization scale is σ̃ = w−1. We observe that the transitions from
saddles to saddles are sharper. We observe that the gradient norm of the parameters
is highly non-monotonic; a decrease down to 0 indicates approaching to a saddle, and
a following increase indicates escaping it. We note that the peaks of the gradient norm
are sharper in the deep case, suggesting a different rate of escape. In the NTK regime,
the gradient norm decreases down to 0 monotonically. In the deep case the GD training
is implemented for 1500000 iterations whereas in the shallow case it is only 100000
iterations.The input data is standard Gaussian, the outputs are generated by a rank 3
teacher of size 10× 10 corrupted with noise, and the loss is MSE. 312

Chapter 1

Introduction

Artificial Neural Networks (ANNs) are a family of Machine Learning models, which represent
complex functions through a network of many simple computational units: the artificial neurons.
These models were at first directly inspired by similarities with biological neural networks, but with
the recent success of ANNs, their design is now mostly driven by their practical performance. As a
result, today’s ANNs often bear little resemblance to their biological cousins.

ANNs have a long history, generally considered to have started with the Perceptron [182],
introduced in 1958. In the following half century, ANNs slowly evolved to resemble those in use
today:

• In 1965, the first Deep Neural Networks (DNNs) with multiple layers of neurons is imple-
mented [100, 99]. DNNs solve the issue described in [154] with the Perceptron which cannot
describe the XOR function.

• ANNs require a training phase where the connection weights between the neurons are tuned.
While a range of methods existed at first, today the training is almost always done with gra-
dient based methods. The computation of the gradient of DNNs uses the so-called backprop-
agation algorithm, which was popularized by [187] in 1986, though earlier implementations
exist [140].

• Inspired by biological neural networks [97], K. Fukushima [64] introduced the Neocognitron,
which uses weight-sharing between connections to take advantage of translation invariance
in images, resembling the animal visual cortex. This architecture evolved into today’s Con-
volutional Neural Networks (CNNs) [123, 121, 124] which are now ubiquitous in computer
vision.

• Other types of architecture best suited for text and time series data appeared: Recurrent
Neural Networks (RNNs) [187], Long Short-Term Memory (LSTM) [91] and more recently
Transformers [215].

The 21st century has marked the start of what is sometimes called the ‘deep learning revolution’,
where ANNs have transformed from an exciting curiosity to being a key element behind many
technological tools that we use everyday. DNNs have become the standard in areas such as Com-
puter Vision, Natural Language Processing, Speech Analysis, self-driving cars and many more,
outperforming more traditional statistical methods.

19

20 CHAPTER 1. INTRODUCTION

1.1 Towards a Theory of Deep Learning

In spite of the impressive practical success of Deep Learning, our theoretical understanding of
DNNs remains very limited. DNNs are often said to be ‘black boxes’ - powerful models whose inner
workings are mysterious. There are a number of important questions related to the analysis of
DNNs:

• DNNs are notoriously hard to train and their performances can be dramatically affected by
the choices of hyper-parameters such as the learning rate, the choice of non-linearity, the
architecture and size of the neural network and many more. To tune these hyper-parameters,
practitioners either rely on their intuition (acquired through years of experiences or passed on
as ‘common practices’) or on a costly hyper-parameter search where a wide range of hyper-
parameters are tried out. A theory of deep learning has the potential to confirm and formalize
these intuitions, and to speed up the hyper-parameter search.

• DNNs are used in a wide variety of settings, from computer vision to protein folding. A
large proportion of the papers appearing every day in Machine Learning can be described
as proposing a new architecture that performs well on a specific task, resulting in an ever-
growing list of architectures. Some of these new techniques are sometimes motivated by
unclear theoretical arguments: for example Batch Normalization - which is used in the training
of most DNNs in practice - was first proposed as a solution to the ‘internal covariate shift’
problem, which is neither rigorously defined, nor shown to be a problem, nor shown to be
solved by batch normalization in the original paper [98]. We need a theory of deep learning
to compare different architectures and to explain why a certain model is adapted to a specific
task.

• A better theory of deep learning could also have impacts on the way we approach statistical
models. DNNs differ from traditional statistical models and go directly against some of the
accepted statistical wisdoms - such as avoiding models with many parameters. However DNNs
outperform these traditional models on many tasks. Better understanding DNNs would allow
one to update these beliefs, opening the door to a whole new family of related models.

• DNNs are particularly efficient on tasks that humans are good at: object recognition, text
and speech analysis/synthesis, car driving and more. The fact that DNNs and the human
brain are successful on similar tasks suggests that DNNs are a good simplification of biological
networks, which still captures most of its key features. The mathematical tools and concepts
that we develop to understand DNNs today might one day play a role in understanding key
mechanisms in the working of the human brain.

There are many open theoretical questions related to DNNs, this thesis will focus on and give partial
answers to the two general questions of convergence and generalization:

Convergence: DNNs undergo a training phase, where the parameters of the network are
optimized with a local search (typically a variant of gradient descent) to minimize a loss which
measures the performance of the network on a fixed training set. There is no general guarantee of
convergence of the local search to a global minimum of the loss because the latter is in general not
convex. However, in practice, DNNs typically reach a global minimum during training consistently
as long as the network is large enough, i.e. has enough neurons. The aim is to understand why
increasing the size of the network alleviates the problem of non-convexity.

1.1. TOWARDS A THEORY OF DEEP LEARNING 21

Generalization: Once the network has been trained, it is typically evaluated on a test set, a
new dataset distinct from the training set, to evaluate the performance of the network on unseen
data and to measure whether the network is able to generalize and not only memorize. The behavior
of the test error of DNNs as the number of neurons in the network grows is however in apparent
contradiction with the traditional statistical framework of bias/variance tradeoff: decomposing the
expected test error into a bias and variance term, as the number of neurons increases (and hence
the number of parameters), the bias term is expected to decrease and the variance term to increase,
leading to a U-shaped curve with a sweet spot balancing the bias and variance terms. Instead for
DNNs the test error has consistently been observed to keep decreasing as the number of neurons
grows, suggesting that the best performances would be obtained as the number of neurons grows
to infinity.

This phenomenon could be explained by the existence of an implicit bias effect for gradient
descent: even though large networks may have many global minima, each with potentially very
different test errors; it seems that the training dynamics naturally converge to global minima which
generalize well. To describe this implicit bias of gradient descent, we need mathematical tools to
describe the dynamics of training.

Approach

The theory of deep learning remains a very open field, and many distinct approaches have been
explored. The approach underlying the results presented in this thesis can be described by three
choices: we focus on ‘wide’ networks, we study the dynamics of training and we take a functional
perspective.

Wide networks: The neurons of a neural network are usually organized into layers, from the
input layer 0 to the output layer L, and L − 1 so-called hidden layers in between. The number L
is called the depth, while the number of neurons in each of the hidden layers is called the width.
Most of the work presented in this thesis occurs in the infinite-width limit, i.e. in the limit where
the width of the network grows as the depth is kept constant.

Dynamics: To understand the properties of the trained network - such as the test error - we
first need to understand the training dynamics that lead to this particular trained network. We
therefore focus on developing mathematical tools to describe the training dynamics of DNNs1.

Functional approach: A lot of theoretical work on DNNs focuses on understanding the loss
landscape of DNNs, in particular its critical points and Hessian, leading to a vision of DNNs ‘from
the parameter space’. In this thesis, the focus is shifted to the function represented by the network
(the so-called network function, which maps the activation of input neurons to that of the output
neurons). There are two key advantages to this perspective:

1. Since the number of parameters grows with the size of the network, the dimension of the
parameter space grows when one studies the infinite-width limit. In contrast, one can fix a
function space to which the network function belongs for any width, and study the infinite-
width limit of this function directly.

2. Two neurons in the same hidden layer can be swapped (by swapping all their incoming and
outcoming connections) without changing the outputs of the network (and hence neither the

1This is in contrast to another line of work [90, 81, 80] which identifies properties that are typically satisfied by
networks at the end of training and prove generalization bounds conditioned on these properties (which could then
be checked empirically for a specific network).

22 CHAPTER 1. INTRODUCTION

train nor test error). The parameters of the network are affected by this swapping which
implies that any property of the loss surface is true up to any permutation, and that two
choices of parameters which are separated by a large Euclidean distance, might be very close
after applying the right permutation. In contrast, the network function is invariant under
permutation symmetries, and from the functional perspective, these permutations can be
essentially forgotten.

1.2 Original Papers

This thesis compiles the results of 7 papers published during my PhD and 1 preprint. In this
introduction I give an overview of each of these papers and explain how they are linked. Note
that the papers are not presented in chronological order, they are grouped by themes, to present
a cohesive theory. The original text of the 8 papers can be found in Sections 2 to 9 and their
respective appendices are reproduced in Appendices B to I.

The first 3 papers describe the convergence and generalization of infinitely wide DNNs using
the Neural Tangent Kernel (NTK):

• The starting point of my PhD is the paper Neural Tangent Kernel: Convergence and Gener-
alization in Neural Networks [105], written with my coauthors Franck Gabriel and Clément
Hongler and published at NeurIPS 2018. The Neural Tangent Kernel is introduced and its
infinite-width limit throughout training is described, leading to a simple description of the
training dynamics of infinitely wide DNNs.

• As a follow up, I studied the implications of the previous result on the loss surface of DNNs
around the training path of infinitely wide DNNs in the paper Asymptotic Spectrum of the
Hessian of DNN Throughout Training [106], written with Franck Gabriel and Clément Hongler
and published at ICLR 2020.

• The NTK analysis implies a direct link between the training of infinitely wide DNNs and Ker-
nel Ridge Regression (KRR). In the paper Kernel Alignment Risk Estimator: Risk Prediction
from Training Data [103], written with Berfin Şimşek, Francesco Spadaro, Clément Hongler
and Franck Gabriel and published at NeurIPS 2020, we described the expected risk (or test
error) of KRR and as an extension of infinitely wide DNNs, using tools of random matrix
theory.

These three results showed the importance of the spectral decomposition of the NTK in the analysis
of the convergence and generalization of DNNs. I studied how the architecture of DNNs affects the
NTK and its spectrum in two papers:

• DNNs were known to feature an ordered (or freeze) and chaotic regime in very deep net-
works. In the paper Freeze and Chaos: NTK views on DNN Normalization, Checkerboard
and Boundary Artifacts [104], written with François Ged, Franck Gabriel and Clément Hon-
gler and to appear at MSML2022, we extended this analysis to the NTK: with the ordered and
chaotic regime characterized respectively by a very fast or slow spectral decay of the NTK.
We also showed links with Layer Normalization and Mode Collapse in Generative Adversarial
Networks.

1.2. ORIGINAL PAPERS 23

• In the paper DNN-Based Topology Optimisation: Spatial Invariance and Neural Tangent
Kernel [52] written with Benjamin Dupuis and published at NeurIPS 2021, we used the
NTK to study the impact of using a DNN to learn optimal shapes in the task of Topology
Optimization. We proposed two input embeddings to preserve the translation symmetries
inherent in the underlying physical model and uncovered the role of the NTK as a low-pass
filter, whose decay can be tuned to obtain shapes with different levels of detail.

The above results along with the work of many other researchers propose an almost complete theory
of infinitely wide DNNs through the NTK. Since the networks used in practice have a large but
finite-width, it is crucial to understand how close those finite-width networks are to their infinite-
width counterparts:

• I first studied this question in the mostly empirical paper Scaling Description of Gener-
alization with Number of Parameters in Deep Learning [67], with Mario Geiger, Stefano
Spigler, Franck Gabriel, Levent Sagun, Stéphane d’Ascoli, Giulio Biroli, Clément Hongler
and Matthieu Wyart, published in the Journal of Statistical Mechanics: Theory and Experi-
ments. We observed that the difference in test error between finite-width networks and their
infinite-width counterparts is mostly due to the variance of the trained network function w.r.t.
sampling of the parameters at initialization.

• This was followed by the theoretical paper Implicit Regularization of Random Feature Mod-
els [102] with Berfin Şimşek, Francesco Spadaro, Clément Hongler and Franck Gabriel and
published at ICML 2020, in which we partially explain these observations mathematically
for Random Feature models, which are good approximations of DNNs in the so-called NTK
regime, where the NTK moves little during training.

Beyond the NTK regime, there are settings and limits of DNNs that lead to an NTK with a
significant time evolution. These regimes are called active, in opposition to the NTK regime. I
have studied one such regime in Deep Linear Networks (DLNs):

• In the paper Saddle-to-Saddle Dynamics in Deep Linear Networks: Small Initialization Train-
ing, Symmetries and Sparsity [107], written with François Ged, Berfin Şimşek, Clément Hon-
gler and Franck Gabriel, we describe the training dynamics of DLNs initialized close to the
saddle at the origin in parameter space. Gradient flow leaves the saddle along an optimal
escape path which leads it to approach another saddle and so on and so forth. The rank of
the matrix represented by the network increases by 1 at each of these saddles, approximating
a greedy low rank algorithm where the network first optimizes amongst rank 1 matrices then
rank 2 matrices and so on until reaching a global minimum [135].

In the rest of the introduction, I will summarize the results of these papers in a unified setup.

24 CHAPTER 1. INTRODUCTION

1.3 Setup

We will now define DNNs, describe their training procedure and introduce notations to study DNNs
‘from the function space’.

Fully-Connected DNNs

Up to a few exceptions, all the results in this thesis are presented for so-called fully-connected
DNNs. In fully-connected DNNs, the neurons are organized into L + 1 layers, numbered from 0
(input layer) to L (output layer), with the layers 1 to L− 1 being the hidden layers. The number
of neurons in a layer ` = 0, . . . , L is denoted by n`, the number of neurons in the input layer n`
equals the input dimension din and the number of output neurons nL equals the output dimension
dout. We will generally consider din and dout to be fixed while the number of neurons in the hidden
layers n1, . . . , nL−1 vary.

Given an input x ∈ Rn0 , the activations α(`)
i (x) and pre-activations α̃(`)

i (x) of the i-th neuron
in the `-th layer are defined from the vector of activations α(`−1)(x) ∈ Rn`−1 of the previous layers.
For a fixed function σ : R → R, which we call the non-linearity, and a scalar β, which we call the
bias strength, we define inductively:

α(0)(x) = x

α̃(`)(x) =
1

√
n`−1

W (`)α(`−1)(x) + βb(`)

α(`)(x) = σ
(
α̃(`)(x)

)
,

whereW (`) is a n`×n`−1 matrix called connection weight matrix and b(`) is a n` dimensional vector
called bias vector.

The parameters of the network are all the connection weights and bias vectors of all the layers.
We define the vector of parameters θ of dimension P =

∑L
`=1(n`−1 + 1)n` as the concatenation of

all the parameters θ = (W1, b1, . . . ,WL, bL). The parameters are to be learned during the training
phase.

In contrast, the depth L and widths n0, . . . , nL as well as the non-linearity σ and the bias strength
β are called hyper-parameters of the network, as they remain fixed during training. Typical choices
for the non-linearity include the ReLU function σ(x) = max{0, x}, the arc tangent σ(x) = arctan(x)
or the sigmoid σ(x) = 1

1+e−x .
The output of the network are the pre-activations α̃(`)(x) of the last layer. The network function

fθ : Rdin → Rdout is defined as fθ(x) = α̃(L)(x).

Training Phase

In supervised learning, the goal is to find parameters θ of a network that implement a practical
task such as classyfing cats from dogs in images. If we want e.g. to classify 64x64 RGB images
of cats and dogs and train a network to discriminate between the two categories, we are looking
for parameters θ such that the network function fθ maps images x (represented as a dimension
din = 64 × 64 × 3 vector) to a scalar value fθ(x) that is positive when the image is of a cat and
negative if it is of a dog.

1.3. SETUP 25

To implement this task, we rely on a training set of N input/output pairs (xi, yi). In the cat
and dogs example, the xis would be images of cats and dogs and yi would be +1 for cats and −1
for dogs (in this example dout = 1). We write X and Y for the din × N and dout × N matrices
obtained from the concatenation of the inputs (xi)i=1,...,N and outputs (yi)i=1,...,N respectively.

Our goal is to find parameters θ that minimize a training loss which measures how accurate the
network is on the training data. Typical choices are the Mean Squared Error (MSE) for regression
tasks, where the outputs yi can take any value in Rdout

LMSE(θ) =
1

N

N∑
i=1

‖fθ(xi)− yi‖2

or the Binary Cross-Entropy loss for binary classification, with scalar outputs yi ∈ {−1,+1}

LBCE(θ) =
1

N

N∑
i=1

log
(

1 + e−yifθ(xi)
)
.

The loss L is then minimized with gradient descent (or a variant thereof) starting from a random
initialization of the parameters as i.i.d. standard Gaussian N (0, 1). The results presented in this
thesis are for gradient flow

∂tθ(t) = −∇L(θ(t))

which approximates the gradient descent

θ(t+ η) = θ(t)− η∇L(θ(t))

as the learning rate η goes to zero.
Our goal is to understand the evolution of the parameters θ(t), in particular at the end of

training θ(∞).

Function Space Perspective

The loss of DNNs as a function of the parameters L(θ) is high-dimensional and non-convex, making
the analysis of gradient flow difficult. Furthermore the parameter space RP with P =

∑L
`=1(n`−1 +

1)n` is inconvenient to work with, since the parameters θ ∈ RP are a concatenation of weight
matrices W` and bias vectors b` each with their distinct gradients ∇W`

L(θ(t)) and ∇b`L(θ(t)) and
the dimensions of each of these matrices depends on the widths n` (which we later let grow to
infinity).

In addition the loss L(θ) is invariant under permutations of the neurons in the hidden layers,
as a result every permutation of a critical point θ∗ of the loss L is also a critical point [204].
Similarily any gradient flow path θ(t) can also be permuted in the same manner, yielding another
valid gradient flow path. While there exists techniques to ‘mod out’ these symmetries for shallow
networks (L = 2) [35, 183], it is difficult to find such symmetry-invariant representations of the
parameters for deep networks (L > 2).

If we focus on the evolution of network function fθ(t) : Rdin → Rdout instead of the parameters
θ(t), both of these problems are however naturally avoided:

1. As long as the non-linearity and the input and output dimensions n0 and nL are fixed, the
network function fθ belongs to a fixed space of functions F , whatever the depth L or the

26 CHAPTER 1. INTRODUCTION

widths of the hidden layers n1, . . . , nL−1 are. Note that there are multiple reasonable choices
for the function space: if σ is continuous, F could be taken to be the space C0

[
Rdin → Rdout

]
of continuous functions from Rdin to Rdout , if σ is differentiable then one could consider the
space of differentiable functions C1

[
Rdin → Rdout

]
instead.

2. The network function fθ is invariant under permutations of the neurons within any given
hidden layer.

From a functional perspective, the loss L : RP → R is to be viewed as the composition of two
functions: first the realization function F (L) : RP → F which maps the parameters θ to the
network function fθ ∈ F and the cost function C : F → R which maps a function f to its
cost. Multiple choices for the cost function are possible, such as the already mentioned MSE
CMSE(f) = 1

N

∑N
i=1 ‖f(xi)− yi‖2 or the BCE cost CBCE(f) = 1

N

∑N
i=1 log (1 + exp (−yif(xi))).

Note that both CMSE and CBCE are convex (CMSE is even quadratic).
More generally, we will consider a general convex cost C(f) which only depends on the value of

the function f on the training set. Writing Yθ for the nL×N matrix obtained from the concatenation
of the vectors (fθ(xi))i=1,...,N , we will often abuse notation and write the cost C as taking Yθ as
input, i.e. CMSE(Yθ) = 1

N ‖Yθ − Y ‖
2
F , where Y is the matrix of output labels and ‖·‖F is the

Frobenius norm.

1.4 Neural Tangent Kernel

The Neural Tangent Kernel (NTK) naturally arises when one tries to describe the evolution of the
network function fθ(t) as the parameters θ(t) follow gradient flow on the parameters. The evolution
of the parameters θ(t) trained on the MSE loss is given by the formula

∂tθ(t) =
2

N

N∑
i=1

Jfθ(t)(xi)(yi − fθ(t)(xi)),

where the Jacobian Jfθ(t)(xi) of the outputs of the network with respect to the parameters θ is a
P × nL matrix. The evolution of the network function fθ(t)(x) at any input x is given by

∂tfθ(t)(x) =
(
Jfθ(t)(x)

)T
∂tθ(t) =

2

N

N∑
i=1

(
Jfθ(t)(x)

)T
Jfθ(t)(xi)(yi − fθ(t)(xi)).

We define the Neural Tangent Kernel (NTK) Θ(L) : Rn0 × Rn0 → RnL×nL by

Θ(L)(x, y) =
(
Jfθ(t)(x)

)T
Jfθ(t)(y).

The NTK is a multidimensional kernel : a function K : Rdin × Rdin → Rdout×dout which takes
two inputs x, y ∈ Rn0 and outputs a dout×dout matrix, such that for any set of N inputs x1, . . . , xN
the doutN × doutN kernel Gram matrix K(X,X) with entries (K(X,X))ki,k′i′ = Kkk′(xi, xi′) is a
positive semidefinite matrix. This is a generalization of the notion of kernel which is a function
K : Rdin × Rdin → R such that for any set of inputs x1, . . . , xN , the N × N kernel Gram matrix
K(X,X) with entries (K(X,X))i,i′ = K(xi, xi′) is positive semidefinite matrix.

1.4. NEURAL TANGENT KERNEL 27

Using the NTK, we can rewrite the evolution of the network function fθ(t) as

∂tfθ(t)(x) =
2

N

N∑
i=1

Θ(L)(x, xi)(yi − fθ(t)(xi)).

This can be generalized to a cost C of the form C(f) = 1
N

∑N
i=1 ci(f(xi)), in which case

∂tfθ(t)(x) =
1

N

N∑
i=1

Θ(L)(x, xi)∇ci(fθ(t)(xi)).

Clearly, if we can describe the evolution of the NTK for all time t then we can describe the
evolution of the network function fθ(t). The NTK is however a complex object: it is random
at initialization due to the randomness of the parameters, and evolves in time as a result of the
evolution of the parameters.

Tangent Linear Model

The Neural Tangent Kernel can be interpreted as approximating the DNNs by a ‘tangent’ linear
model (as in tangent space for a manifold), hence the name. This tangent linear model Tθ0F (L)(θ)
around a fixed parameter vector θ0 is given by the realization function

Tθ0F
(L)(θ) = F (L)(θ0) + JF (L)(θ0)θ

which is clearly affine in θ.
A central property of DNNs is that they are a non-linear model, in the sense that the realization

function F (L) is non-linear. This non-linearity makes the analysis of the training of DNNs difficult:
the non-linearity of F (L) makes the loss L = C ◦ F (L) non-convex. In comparison, linear models
have a much nicer behavior: the loss L = C ◦ F is convex, hence guaranteeing convergence of
gradient flow on the parameters θ(t).

A general linear model can be defined as fθ(x) =
∑P
p=1 θpfp(x) for a set of P function fp :

Rdin → Rdout called the features of the model. The realization function F therefore maps the
parameters θ to a linear combination

∑P
p=1 θpfp with coefficients given by the parameters θ. The

features of the tangent linear model introduced above are the derivatives x 7→ ∂θpfθ0(x) of the
outputs w.r.t. to each of the parameters θp.

A linear model defines a kernel K : Rdin ×Rdin → Rdout×dout equal to the (rescaled) covariance
of the features f1, . . . , fP

K(x, y) =

P∑
p=1

fp(x) (fp(y))
T
.

The NTK Θ(L) at θ0 is simply the kernel of the tangent linear model at θ0.
For a cost of the form C(f) = 1

N

∑N
i=1 ci(f(xi)) for some differentiable functions c1, . . . , cN , the

parameters follows the differential equation

∂tθp(t) =
2

N

N∑
i=1

(fp(xi))
T ∇ci(fθ(t)(xi)),

28 CHAPTER 1. INTRODUCTION

while the function fθ(t) follows the differential equation

∂tfθ(t)(x) =
2

N

N∑
i=1

K(x, xi)∇ci(fθ(t)(xi)). (1.4.1)

Since the derivative only depends on fθ(t) (and the kernelK) and not the parameters θ(t) themselves,
the differential equation governing fθ(t) can be solved independently of θ(t).

Furthermore since the dynamics of training of a linear model in function space only depends on
the kernel K and not the features f1, . . . , fP , a linear model is uniquely described by its kernel K
(if we abstract away the dynamics of the parameters). This is a special case of the so-called the
‘Kernel trick’.

Kernel Gradient Descent

The dynamics in function space of a linear model can be interpreted as performing kernel gradient
descent on the cost C with respect to the kernel K. kernel gradient descent can itself be interpreted
as performing gradient descent in a function space F w.r.t. to a specific norm.

As we are in a infinite dimensional space, there is no canonical notion of gradient descent on a
function space F . The derivative ∂fC(f) of the cost C(f) with respect to f is not a function in
F but rather an element of the dual space F∗ (the set of linear functions from F to R). Given a
scalar product 〈·, ·〉 on the space F forming a Hilbert space, one can define the gradient ∇C(f) as
the unique function g ∈ F such that 〈g, f〉 = ∂fC(f). The choice of the scalar product can have a
significant effect on the resulting gradient and one particular choice leads to the kernel gradient.

Given a multidimensional kernel K, there is a natural function space FK and a scalar product
〈·, ·〉K which form a Hilbert space called the Reproducing Kernel Hilbert Space (RKHS) of the kernel
K: FK is the completion of the set of functions f(x) =

∑N
i=1K(x, xi)bi for any finiteN , set of inputs

x1, . . . , xN ∈ Rdin and coefficients b1, . . . , bN ∈ Rdout and the scalar product of two functions f(x) =∑N
i=1K(x, xi)bi and g(x) =

∑N ′

j=1K(x, x′j)b
′
j is defined as 〈f, g〉K =

∑N
i=1

∑N ′

j=1 b
T
i K(xi, x

′
j)b
′
j (and

the definition is extended to the completion continuously).
For kernels of the form K(x, y) =

∑P
p=1 fp(x) (fp(y))

T (i.e. the kernel of a linear model with
features f1, . . . , fp) the function space FK is the set of functions f(x) =

∑P
p=1 θpfp(x) for some

coefficients θ1, . . . , θP , i.e. FK is the image of the realization function F . The scalar product of
two functions f(x) =

∑P
p=1 θpfp(x) and g(x) =

∑P
p=1 θ

′
pfp(x) is the scalar product θT θ′ of the

coefficient vectors. If the features f1, . . . , fP are linearly independent, the realization function F is
invertible (when restricted to its image FK) and we can simply write 〈f, g〉K =

(
F−1(f)

)T
F−1(g).

The dynamics described by equation 1.4.1 describe kernel gradient flow on the cost C.

1.5 Infinite-width Limit of the Neural Tangent Kernel

The infinite-width limit of the NTK was first described in the paper [105] which can be found in
Section 2.

The infinite-width limit corresponds to letting the number of neurons in each of the hidden layers
n1, . . . , nL−1 grow to infinity. Our description of the limiting NTK relies on some previous results
describing the distribution of the network function fθ at initialization. We will start by presenting
this result and follow by a description of the limit of the NTK at initialization and during training.

1.5. INFINITE-WIDTH LIMIT OF THE NEURAL TANGENT KERNEL 29

Finally we will discuss what this result implies for the training dynamics of the network function
fθ(t) and the loss landscape around the gradient flow path.

Neural Networks as Gaussian Processes

At initialization, the network function fθ(0)(·) and more generally all pre-activations α̃(`)(·) are
random functions, due to the randomness of the parameters. Conditionally on the activations
of the previous layer α(`−1)(·) (or conditionally on the parameters up to the (` − 1)-th layer
W1, b1, . . . ,W`−1, b`−1), the distribution of α̃(`−1)(·) is Gaussian with zero mean and covariance

Cov
(
α̃

(`−1)
k (x), α̃(`−1)

m (y)
)

=
1

n`−1

(
α(`−1)(x)

)T
α(`−1)(y)δkm

for any pair of inputs x, y ∈ Rdin and neuron indices k,m ∈ {1, . . . , n`}, where δkm is the Kronecker
delta.

This implies that the distribution of α̃(`−1)(·) is a mixture of Gaussians. Furthermore the
conditioned distribution of α̃(`−1)(·) depends on the conditioned parameters only through the so-
called conjugate kernel

Σ(`)(x, y) =
1

n`−1

(
α(`−1)(x)

)T
α(`−1)(y).

It turns out that in the infinite-width limit the conjugate kernels Σ(`)(x, y) converge to deter-
ministic limits Σ

(`)
∞ (x, y), which are independent of the parameters of the previous layer. As a

result, the distribution of the pre-activations α̃(`)(·) becomes asymptotically Gaussian:

Proposition 1.1. As n1, . . . , nL−1 →∞, for a Lipschitz non-linearity σ, we have for any x, y

Σ(`)(x, y)→ Σ(`)
∞ (x, y)

where Σ
(`−1)
∞ (x, y) is defined recursively as

Σ(1)
∞ (x, y) = xT y + β2

Σ(`+1)
∞ (x, y) = Eu,v [σ(u)σ(v)] + β2

where the expectation is taken over pairs u, v sampled from N

(
0,

(
Σ

(`)
∞ (x, x) Σ

(`)
∞ (x, y)

Σ
(`)
∞ (y, x) Σ

(`)
∞ (y, y)

))
.

Furthermore for all layer `, the pre-activations α̃(`)
k (·) of each neuron k converge in law to i.i.d.

centered Gaussian processes with covariance Σ
(`)
∞ .

Multiple versions of this result exist: the earliest appearance is in [159] but only for shallow
networks (L = 2), it was then generalized in a sequence of papers [37, 42, 126, 46, 228]. The
version presented here matches the one in our 2018 paper in Section 2, which only applies in the
sequential limit, i.e. we first let n1 → ∞ then n2 → ∞ and so on until nL−1 → ∞, for proofs in
the simultaneous limit, i.e. when n1 = · · · = nL−1 = w and w →∞, see [126, 46, 228].

In the simultaneous limit, the convergence of the conjugate kernels Σ(`) to their limit as a
function of the width w is of order w−

1
2 [126, 46] which is expected as the proof consists in iterated

law of large numbers for each layer.

30 CHAPTER 1. INTRODUCTION

Limit of the NTK at Initialization

In the same infinite-width limit the NTK Θ(L) converges to a deterministic limit at initialization:

Theorem 1.1. As n1, . . . , nL−1 → ∞, for a Lipschitz non-linearity σ, the NTK Θ
(L)
km(x, y) con-

verges to Θ
(L)
∞ (x, y)δkm for a deterministic kernel Θ

(L)
∞ : Rdin × Rdin → R defined recursively as

Θ(1)
∞ (x, y) = Σ(1)

∞ (x, y)

Θ(`)
∞ (x, y) = Σ(`)

∞ (x, y) + Θ(`−1)
∞ (x, y)Σ̇(`)

∞ (x, y)

where Σ̇
(`)
∞ (x, y) = Eu,v [σ̇(u)σ̇(v)] for u, v sampled from N

(
0,

(
Σ

(`−1)
∞ (x, x) Σ

(`−1)
∞ (x, y)

Σ
(`−1)
∞ (y, x) Σ

(`−1)
∞ (y, y)

))
and where σ̇ is the derivative of σ.

Sketch of proof. The NTK Θ(L) can be expressed in a recursive manner in terms of the NTK up to
the last layer Θ(L−1). The proof is by induction: the NTK up to the second layer Θ

(2)
km converges

to deterministic limit Θ
(2)
∞ δkm as n1 → ∞ by a law of large number, which in turns allows one to

prove the convergence of Θ(3) as n2 →∞ and so on and forth.

Remark 1.1. Since the non-linearity σ is Lipschitz, its derivative is defined almost everywhere and
therefore Θ

(L)
km(x, y) is almost surely well defined at initialization and the expectation Σ̇

(`)
∞ (x, y) is

well defined.

The proof presented in our original paper [105] (see Section 2) is for the sequential infinite-width
limit. Since then a number of generalization have been proven: for the simultaneous limit [128, 6]
and for more general architectures [228] amongst others. In the simultaneous limit, the rate of
convergence of the NTK to its limit as a function of w is w−

1
2 [128, 6, 95], like the convergence of

the conjugate kernels Σ(`).
Theorem 1.1 shows that the tangent linear model at initialization Tθ(0)F (θ) = fθ(0) +JF (θ(0))θ

has a deterministic limiting kernel. In contrast, the features ∂θpfθ(0) of the tangent model are
random even in the infinite-width limit. This shows the advantage of working from a functional
perspective: while the features ∂θpfθ(0) remain random in the infinite-width limit, the NTK is
asymptotically deterministic.

Limit of the NTK during Training

But the convergence of the NTK at initialization only describes the asymptotic derivative ∂tfθ(t)
at initialization t = 0, i.e. it only describes the dynamics of fθ(t) for very small times t. It turns
out that as the width of the network grows, the rate of change of the NTK goes to zero, so that
the limiting NTK is fixed in time:

Theorem 1.2. (sketch) For a Lipschitz twice differentiable non-linearity σ and for a time T (defined
in Section 2), we have, uniformly for all t ∈ [0, T] and any x, y ∈ Rdin

lim
n1,...,nL−1→∞

Θ
(L)
θ(t)(x, y) = Θ(L)

∞ (x, y)Idout .

1.5. INFINITE-WIDTH LIMIT OF THE NEURAL TANGENT KERNEL 31

Sketch of proof. The proof relies on a recursive argument, which is formalized using Grönwall’s
Lemma: knowing the size of the NTK, we can bound how much the parameters move as a result of
gradient flow, and knowing that the parameters have not moved much we can guarantee that the
NTK is close to its initialization (and hence by Theorem 1.1 close to its limit Θ

(L)
∞). A surprising

implication of the proof is that for large widths, the parameters move very little during training:
there is a growing number of parameters but each of them moves less and less during training,
resulting in a change of the vector of parameters ‖θ(t)− θ(0)‖ (in Euclidean norm) of order 1,
which is insufficient to affect the NTK for large widths.

The details of how T can be chosen are in the paper [105] (see Section 2). Thanks to a number
of follow-ups, this results has been generalized and improved:

• Regarding the time T , it was later shown that for the MSE T can be taken to be infinite
(i.e. the convergence is uniform over all t ∈ R+) and that the result generalizes to gradient
descent [6, 128]. More generally, exponential convergence (uniformly over all times t ∈ R+,
with gradient flow or gradient descent) can be proven for any cost C that satisfies the Polyak-
Lojasiewicz (PL) condition [142], which in particular includes all strictly convex costs.

• Our original proof was in the sequential limit, but it was later generalized to the simultaneous
limit [6, 128]. While the rate of change of the NTK was at first only bounded by w−

1
2 [6, 128],

it was observed empirically that the actual rate of change of the NTK is w−1 [128]. This lower
rate of w−1 was later proven in [95] by introducing the Neural Tangent Hierarchy (NTH): a
sequence of tensors, the first of which is the NTK, that each describe the derivative of the
previous one.

This NTK analysis can also be interpreted as showing that the tangent linear model at initialization
is good approximation of the non-linear model for large widths. In particular, in the infinite-width
limit the model and its linearization match on the training path. This approach has been used to
not only describe the dynamics of the network function fθ(t), but also of the parameters θ(t) in
wide networks [128].

Infinite-Width Dynamics

Now that we have described the infinite-width NTK, we can describe the training dynamics of the
network function fθ(t) for any cost C of the form C(f) = 1

N

∑
ci(f(xi)):

fθ(0) ∼ N (0,Σ(L))

∂tfθ(t) = − 1

N

∑
Θ(L)
∞ (x, xi)∇ci(fθ(t)(xi)).

The function fθ(0) is initialized as a Gaussian process with covariance Σ(L) and then follows kernel
gradient flow w.r.t. the limiting NTK Θ

(L)
∞ on the cost C. In other words, the dynamics on the

non-linear model F (L) are asymptotically equivalent to the dynamics on the tangent linear model
Tθ(0)F

(L) around initialization θ(0).

32 CHAPTER 1. INTRODUCTION

3 2 1 0 1 2 3

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 n = 500, t = 0
n = 500, t = 20
n = 10000, t = 0
n = 10000, 0

n = 500, t = 0
n = 500, t = 200
n = 10000, t = 0
n = 10000, t = 200

Figure 1.5.1: Convergence of the NTK to a fixed
limit for two widths n and two times t.

3 2 1 0 1 2 3

0.4

0.2

0.0

0.2

0.4

f
(s

in
(

),
co

s(
))

n = 50
n = 1000
n = , P50
n = , {P10, P90}

Figure 1.5.2: Networks function fθ near conver-
gence for two widths n and 10th, 50th and 90th
percentiles of the asymptotic Gaussian distribu-
tion.

Explicit Formulas for the MSE

For the MSE loss (or any other quadratic loss) the network function fθ(t) evolves according to a
linear differential equation, which implies that fθ(t) is Gaussian for all times t, with a mean and
covariance that can be explicitely formulated (see Section 2.5).

The matrix of values on the training set Yθ(t) is described by the following linear differential
equation:

∂tYθ(t) =
2

N
(Y − Yθ(t))Θ(L)

∞ (X,X)

where Y and Yθ(t) are dout ×N matrices, and Θ
(L)
∞ (X,X) is the N ×N Gram matrix with entries(

Θ
(L)
∞ (X,X)

)
ij

= Θ
(L)
∞ (xi, xj). Solving the linear differential equation, we obtain the evolution of

Yθ(t):
Yθ(t) = Y + (Yθ(0) − Y)e−tΘ

(L)
∞ (X,X),

whose expectation is E
[
Yθ(t)

]
= Y

(
I − e−tΘ(L)

∞ (X,X)
)
.

To describe the evolution of the whole function fθ(t) we need to introduce the so-called empirical
integral operator TNK for a kernel K : Rdin ×Rdin → R (though we are mostly interested in the case
K = Θ

(L)
∞) which maps any function f : Rdin → R to another function TNK (f) : Rdin → R with

values

TNK (f)(x) =
1

N

N∑
i=1

K(x, xi)f(xi).

In the infinite-width limit, each of the outputs fθ(t),k : Rdin → R for k ∈ {1, . . . , dout} evolves
independently according to the linear differential equation

∂tfθ(t),k = 2TN
Θ

(L)
∞

(f∗k − fθ(t),k)

1.5. INFINITE-WIDTH LIMIT OF THE NEURAL TANGENT KERNEL 33

where f∗ : Rdin → Rdout is the true function we are trying to fit, which maps the inputs X to the
outputs Y, i.e. f∗(xi) = yi for all i = 1, . . . , N .

Solving the above equation, we obtain that

fθ(t),k = fθ(0),k +

(
I − e

−2tTN
Θ

(L)
∞

)
(f∗k − fθ(0),k).

Since the network function at initialization has zero mean, i.e. E
[
fθ(0),k(x)

]
= 0, the expected

network function throughout training is equal to

E
[
fθ(t),k

]
=

(
I − e

−2tTN
Θ

(L)
∞

)
f∗k .

Since the different outputs evolve independently in the limit we can assume that dout = 1
without loss of generality.

Similarity with Kernel Ridge Regression

The expected network function is similar to the so-called Kernel Ridge Regression (KRR) predictor
which is defined by 2

f̂λ(x) = K(x,X) (K(X,X) +NλI)
−1
Y,

for some positive ridge parameter λ, where K(x,X) is a N -dimensional row vector with entries
K(x, xi) for i ∈ {1, . . . , N}. The f̂λ KRR predictor can also be expressed in terms of the integral
operator TNK :

f̂λ = TNK
(
TNK + λI

)−1
f∗.

This formula illustrates the link between the expected network function E
[
fθ(t),k

]
and the KRR

predictor with the NTK (K = Θ
(L)
∞). The operators

(
I − e

−2tTN
Θ

(L)
∞

)
and TN

Θ
(L)
∞

(
TN

Θ
(L)
∞

+ λI
)−1

share the same eigenfunctions, they only differ in their eigenvalues. Given an eigenvalue λi of em-

pirical integral operator TN
Θ

(L)
∞

, the corresponding eigenvalue of
(
I − e

−2tTN
Θ

(L)
∞

)
is 1− e−2tλi while

the corresponding eigenvalue of TN
Θ

(L)
∞

(
TN

Θ
(L)
∞

+ λI
)−1

is λi
λ+λ i

. Both result in a form of cutoff of the

small eigenvalues: 1−e−2tλi is close to 1 if λi � 1
2t and close to 0 if λi � 1

2t while
λi
λ+λ i

is close to 1

when λi � λ and close to 0 when λi � λ. In other terms
(
I − e

−tTN
Θ

(L)
∞

)
and TN

Θ
(L)
∞

(
TN

Θ
(L)
∞

+ λI
)−1

are ‘smooth’ approximate projections to the space spanned by the eigenvectors of T
Θ

(L)
∞

with eigen-
values larger than 1

2t resp. λ (they are smooth in the sense that they are continuous w.r.t. to
changing t or λ).

The expected network function E
[
fθ(t)

]
at a time t is similar to the KRR predictor f̂λ with ridge

parameters λ = 1
2t . This similarity illustrates the regularizing effect of early stopping in DNNs.

2The KRR predictor is often defined without the N factor in front of the λ, this change has little impact, since
λ can be chosen as any positive real number. This definition leads to a nicer theoretical analysis of the large N
behavior of f̂λ, as discussed in Section 1.6.

34 CHAPTER 1. INTRODUCTION

In the limit as t→ +∞ (and λ↘ 0), this approximation becomes an equality: we have

lim
t→+∞

E
[
fθ(t)

]
= lim
λ↘0

f̂λ = PImTN
Θ

(L)
∞

f∗

where PImTN
Θ

(L)
∞

is the projection to the image of the operator TN
Θ

(L)
∞

.

Kernel Ridge Regression is a well known method and its generalization properties are well-
studied [238, 150, 181]. The expected risk (or test error) of KRR is described in 1.6 and the
similarity presented in this section suggests that we can expect approximately the same risk of for
the expected network function E

[
fθ(t)

]
at a time t = 1

2λ .

Loss Landscape Perspective

Though the NTK analysis that we just introduced shows that the dynamics of DNNs can be studied
in function space directly, it is interesting to understand what these dynamics look like in parameters
space. A lot of work has been done to study the P × P Hessian HL(θ) of the loss landscape L,
both empirically [189, 190] and mathematically [38, 171, 172, 112]. The aforementioned theoretical
results apply to the Hessian at initialization and the complexity of the training dynamics makes it
difficult to extend these results to later training times. The NTK analysis allowed us to overcome
this hurdle and describe properties of the Hessian throughout training in a paper [106] which is
reproduced in full in Section 3.

There is a direct link between the NTK and the Hessian of the loss L of DNNs. Since L(θ) =
C(Yθ), the Hessian of L equals the sum of two P × P matrices

HL(θ) = I + S = (JYθ(θ))
T HC(Yθ)JYθ(θ) +∇C(Yθ) · HYθ

where the Jacobian JYθ(θ) is understood as a Ndout×P matrix, the Hessian HC(Yθ) is a Ndout×
Ndout matrix and HYθ is a Ndout×P ×P tensor which is multiplied with the Ndout vector ∇C(Yθ)
to obtain a P × P matrix.

The first matrix is the so-called the Fisher Information Matrix (FIM) I and it is a positive
matrix (since for convex C the Hessian HC(Yθ) is positive).

The second matrix S typically has positive and negative eigenvalues and it vanishes at a global
minimum since ∇C(Yθ) = 0. The matrix S is directly related to the non-linearity of the model
F (L) since it vanishes in linear models.

For the MSE, we have HC(Yθ) = 2
N INdout , so that the FIM I = 2

N (JYθ(θ))
T
JYθ(θ) is equal

(up to a scaling of 2
N) to the dual of NTK Gram matrix Θ(L)(X,X) = JYθ(θ) (JYθ(θ))

T , which
implies that the two matrices have matching non-zero eigenvalues. A direct consequence of our
NTK analysis is that, in the infinite-width limit, at the end of training t → ∞, we reach a global
minimum where the Hessian equals the FIM whose spectrum is equal to the limiting NTK Gram
matrix Θ

(L)
∞ (X,X). Furthermore this implies that the spectrum of the FIM is asymptotically

fixed in time, which means that results which described the spectrum of the FIM at initialization
[172, 112] could be extended to describe the FIM at the end of training.

In the paper [106], we give a full description of the asymptotic moments Tr
[
(HL(θ(t)))

k
]
of the

spectrum of the Hessian from the following observations:

• The matrices I and S are asymptotically orthogonal in the sense that their moments asymp-
totically add up Tr (I + S)

k ≈ TrIk+TrSk, this allows us to compute the asymptotic moments
of HL(θ) = I + S from the moments of I and S.

1.6. GENERALIZATION OF KERNEL RIDGE REGRESSION 35

• The moments of I are the moments of the NTK Gram matrix.

• We express the first two moments of S for any time t by introducing some other kernels,
defined in a similar manner to the limiting NTK Θ

(L)
∞ (for the full formulas see Section 3).

The first two asymptotic moments are non-zero at initialization and decay to zero. All higher
moments of S vanish in the infinite-width limit.

For the MSE, the differential equations describing the evolution of the first two moments of S can
be solved and we obtain explicit formulas for all time t.

These results suggest the following interpretation of the spectrum of I and S: as the width of
the network grows the FIM I has a bounded (at most Ndout) number of eigenvalues of order 1
while the matrix S has a growing number of eigenvalues whose magnitude goes to zero (S has a
non-vanishing Frobenius norm but a vanishing operator norm).

All the mixed terms in the trace of the Hessian Tr (I + S)
k such as Tr (IS) or Tr (ISSISI)

vanish since the mixed products (i.e. IS or ISSISI) have a finite number of vanishing eigenvalues,
hence leading to the asymptotic orthogonality. Empirically, we observe that this orthogonality
might be stronger, in the sense that I is large along directions where S is small and vice-versa, see
Section 3 for more details.

These results can also be interpreted in terms of the geometry of the loss surface around the
training path {θ(t) : t ∈ R+}. For the MSE, the loss is almost quadratic in the region, with the
Hessian being almost constant in the region I (the fixed FIM I asymptotically dominates the S
matrix in operator norm). This is in line with the observation that in the infinite-width limit the
DNN model becomes equivalent to its linearization, i.e. the wider the network the more it behaves
as a linear model.

As usual in a quadratic cost, what determines the speed of convergence is the conditioning
κ = λmax/λmin of the Hessian, which in our case equals the conditioning of the limiting NTK Gram
matrix Θ

(L)
∞ (X,X), a large conditioning implies that the loss has a narrow valley structure with

large eigenvalues corresponding to the ‘cliffs’ of the valley, where the loss increases very fast, forcing
a very small learning rate (at most 2/λmax) and this small learning means that training is going to
be very slow along the bottom of the valley which correspond to the small eigenvalues. In contrast
a small condition number allows for fast convergence. This interpretation of the loss surface is in
line with other results such as [128, 142].

1.6 Generalization of Kernel Ridge Regression

As explained in Section 1.5, for infinitely-wide DNNs trained with the MSE, the expected network
function E [fθ] at the end of training (t→∞) is the ridgeless (λ↘ 0) KRR predictor f̂λ↘0, and for
finite times t < +∞, the expected network function E [fθ] is similar to the KRR predictor f̂λ with
λ = 1/2t. Motivated by this similarity, we studied the test error of KRR in a NeurIPS 2020 paper
[103] with Berfin Şimşek, Francesco Spadaro, Franck Gabriel and Clément Hongler. This section
summarizes these results and the original paper can be found in Section 4.

Statistical Learning Setup

To study the test error of KRR, we need to describe how the training and test data are sampled. We
assume that all the training inputs xi are sampled i.i.d. from a probability measure π over a domain

36 CHAPTER 1. INTRODUCTION

Ω ⊂ Rdin and the outputs are of the form yεi = f∗(xi) + εei for a true function f∗ : Rdin → R, a
noise intensity ε and some i.i.d. standard Gaussian noise variables ei ∼ N (0, 1). Remember that
for any λ > 0, we define the Kernel Ridge Regression w.r.t. to a kernel K : Ω × Ω → R as the
function3

f̂ ελ(x) =
1

N
K(x,X)

(
1

N
K(X,X) + λIN

)−1

Y ε

where Y ε is the vector of dimension N containing all of the outputs yεi - in this section we only
consider the single output case (dout = 1) so that Y ε is simply a vector of dimension N .

The training loss or empirical risk is the MSE

R̂ε(f̂ ελ) =
1

N

N∑
i=1

(
f̂ ελ(xi)− yεi

)2

.

The risk is the expected error on a new data point x sampled from the distribution π indepen-
dently from the training set:

Rε(f̂ ελ) = Ex,e
[(
f̂ ελ(x)− f∗(x) + εe

)2
]

where e is a standard Gaussian noise variable independent of all other variables. The risk can be

simplified to Rε(f̂ ελ) = Ex,e
[(
f̂ ελ(x)− f∗(x)

)2
]

+ ε2.

Our goal is to describe the typical risk Rε(f̂ ελ) when the number of datapoints N is large. More
precisely, we will study the expected risk EX,E

[
Rε(f̂ ελ)

]
, taking the expectation over the sampling

of the training set X and the noise variables E = (e1, . . . , eN).
The expected risk is decomposed into a bias and a variance term:

EX,E
[
Rε(f̂ ελ)

]
= Rε

(
EX,E

[
f̂ ελ

])
+ Ex

[
VarX,E

(
f̂ ελ(x)

)]
.

The goal is to identify the optimal choice of ridge λ and to describe how fast the risk goes to
zero as N grows. This rate depends on a notion of alignement of the true function f∗ with the
kernel K, hence giving an idea of what functions are ‘easy’ and ‘hard’ to learn with KRR (and as
an extension with infinitely wide DNNs).

Note the contrast with the results up to this point, where the randomness was coming from
the random initialization of the parameters. In this setting, there is no random initialization of
parameters. Instead the randomness comes from the sampling of the inputs.

Functional Perspective

Taking a functional perspective will again be useful for this problem. Instead of thinking of the
training set x1, . . . , xN as a set of points of the input domain Ω, one can think of them as linear maps
oi : C → R (where C is the space of continuous functions from Ω to the reals), mapping a function
f : Ω → R to its value f(xi) at xi. Together they form a random linear operator O : C → RN

3If one multiplies the inside and the outside of the parenthesis by N we recover the definition of the KRR predictor
given in Section 1.5.

1.6. GENERALIZATION OF KERNEL RIDGE REGRESSION 37

mapping a function f to the vector (f(x1), . . . , f(xN))T of values of f on the training set which is
called the sampling operator O.

The noiseless KRR predictor f ε=0
λ can be written as ANλ f

∗ for a random operator ANλ : C → C
of the form

ANλ =
1

N
KOT

(
1

N
OKOT + λIN

)−1

O

where the kernel K is understood as an operator K : C∗ → C from the dual space C∗ to the primal
and where OT is the adjoint OT : RN → C∗ of the sampling operator O, i.e. for any vector z and
any continuous function f : Ω→ R, we have

(
OT z

)
(f) =

∑N
i=1 zioi(f).

The operator ANλ is closely related to the so-called integral operator TK : C → C and the
empirical integral operator TNK : C → C which map a function f : Ω → R to a functions with
respective values

(TKf) (x) =

∫
Ω

K(x, z)f(z)dπ(z)

(
TNK f

)
(x) =

1

N

N∑
i=1

K(x, xi)f(xi).

Clearly we have TNK (x)→ TK(x) as N →∞.
The empirical integral operator can also be expressed in terms of the sampling operator as

TNK = KOTO, allowing us to rewrite ANλ in terms of TNK :

ANλ = TNK
(
TNK + λIC

)−1
= IC − λ

(
TNK + λIC

)−1
.

The operator
(
TNK + λIC

)−1 is the so-called resolvent of TNK (at −λ). Amongst other uses, the
resolvent is one of the central tools used in random matrix theory to understand the spectrum of
random matrices. The following analysis of ANλ is inspired from previous work [203] which studies
so-called general Wishart matrices (matrices of the form TWTW for a deterministic m×m matrix
T and a random k×m matrix W with i.i.d. entries) which are very similar to the random operator
TNK = KOTO.
Remark 1.2. Readers familiar with random matrix theory might wonder why we did not simply
apply these previous results to our setting. Our setting is distinct from the typical random matrix
theory setting in a few ways:

• We are studying random operators instead of random matrices.

• We are interested in finite-N approximations. In contrast, most results on the spectrum of
general Wishart matrices are in the limit where m and k go to infinity with a fixed ratio γ.
In our case m is in a sense +∞ while k is finite (it is the number of datapoints N).

• In the aforementioned type of analysis, the spectrum of the deterministic operator T must
converge to a continuous measure as m→∞. In our setting TK is fixed and its spectrum does
not have a continuous measure, instead the operator TK has typically a countable number
of eigenvalues which decay to zero (the rate of decay is determined by the regularity of the
kernel K, e.g. if K is smooth then the decay is exponential).

38 CHAPTER 1. INTRODUCTION

• To approximate the expected risk for finite N , we need to describe fluctuations of the resolvent
(i.e. approximate the rescaled variance of the resolvent). The difficulty to compute these
fluctuations made a full description of the risk impossible in previous works [48, 144].

Inspired by Random Matrix Theory, we assume universality, i.e. that the large N statistics of the
resolvent

(
TNK + λIC

)−1 – and as an extension of ANλ – are the same if we replace the sampling
operator O with a centered Gaussian equivalent Õ (a random Gaussian operator with zero mean
and a covariance that matches the covariance of O). From now on we assume that O is Gaussian;
for more details see Section 4.

Signal Capture Threshold

For a fixed λ, the operatorANλ = TNK
(
TNK + λIC

)−1 converges to the operatorAλ = TK (TK + λIC)
−1

as N → ∞, but our goal is to understand the behavior of the expected risk E
[
Rε(f̂ ελ)

]
for finite

but large N , for which we need to describe the mean and variance of ANλ for such finite N .
The central object describing the mean and variance of ANλ for finite N is the the Signal Capture

Threshold ϑ(λ), which is the unique positive solution to the equation

ϑ = λ+
ϑ

N
Tr [Aϑ] .

The trace Tr [Aϑ] = Tr
[
TK (TK + ϑIC)

−1
]
is well defined since it is bounded by 1

λTrTK and TrTK =

Ex∼π [K(x, x)] <∞. The SCT is bounded from below by the ridge parameter: ϑ ≥ λ.
We first show in Theorem 4.1 in Section 4.3 that the mean EO

[
ANλ
]
is O(1

N) close4 to the
operator Aϑ(λ).

This first result motivates the name Signal Capture Threshold: assume that the true function
f∗ is an eigenfunction with eigenvalue d of the integral operator TK (i.e. TKf∗ = df∗), then the
expected predictor E

[
f̂λ

]
is approximately equal to d

d+ϑf
∗; if d� ϑ then d

d+ϑ ≈ 0 ‘the signal is lost’

and if d � ϑ then d
d+ϑ ≈ 1 ‘the signal is captured’. More generally, if we write f∗ =

∑∞
k=1 bkf

(k)

for some coefficients bk ∈ R and where f (k) is the k-th eigenfunction (with eigenvalue λk) of TK ,
then the expected predictor will learn along the eigenfunctions with eigenvalues above the signal
capture threshold and not learn along the eigenfunctions below it.

This description of the mean predictor leads to an approximation of the bias term:

Rε
(
EX,E

[
f̂ ελ

])
≈
∥∥(IC −Aϑ(λ)

)
f∗
∥∥2

π
+ ε2

where ‖·‖2π is the `2-norm ‖f‖2π =
∫

Ω
f(x)2dπ(x) over the distribution π.

We then describe the variance of the predictor f̂λ along each of the eigenfunctions f (k) of TK :

VarX,E

(〈
f (k), f̂λ

〉
π

)
≈ ∂λϑ(λ)

N

(∥∥(IC −Aϑ(λ)

)
f∗
∥∥2

π
+ ε2 +

〈
f (k), f∗

〉
π

ϑ(λ)2

(dk + ϑ(λ))
2

)
d2
k

(dk + ϑ(λ))
2 ,

where 〈·, ·〉π is the scalar product 〈f, g〉π =
∫

Ω
f(x)g(x)dπ(x) over the distribution π.

4See Section 4.3 for more precise bounds, in terms of the ridge λ.

1.6. GENERALIZATION OF KERNEL RIDGE REGRESSION 39

This description of the variance allows us to approximate the variance term in the expected risk:

Ex
[
VarX,E

(
f̂ ελ(x)

)]
≈ (∂λϑ(λ)− 1)

(∥∥(IC −Aϑ(λ)

)
f∗
∥∥2

π
+ ε2

)
,

yielding an approximation of the expected risk in terms of the SCT:

EX,E
[
Rε(f̂ ελ)

]
≈ ∂λϑ(λ)

(∥∥(IC −Aϑ(λ)

)
f∗
∥∥2

π
+ ε2

)
.

This approximation in terms of the SCT suggests a multiplicative version of the bias/variance
tradeoff (instead of the traditional additive form):

• The bias term
∥∥(IC −Aϑ(λ)

)
f∗
∥∥2

π
+ ε2, represents how much signal is captured. As the ridge

goes to zero λ↘ 0, the SCT ϑ(λ) decreases and so does the bias term, since we capture more
of the signal. Note however that for a fixed N it is impossible to capture all the signal: even
in the limit λ ↘ 0 the SCT converges the solution of the equation Tr

[
Aϑ(0)

]
= N (which

is generally positive). There is an interesting interpretation for this equation: let f (k) be an
eigenfunction of TK with eigenvalue λk, then f (k) is an eigenfunction of Aϑ(0) with eigenvalue

λi
λi+ϑ(0) which is close to 1 if λi > ϑ(0) and close to zero if λi < ϑ(0); the trace Tr

[
Aϑ(0)

]
measures in a sense the number of eigenfunctions along which the signal is captured and the
equation Tr

[
Aϑ(0)

]
= N ensures that this number equals the number of datapoints N . This

makes intuitive sense, if we receive information of dimension N (in the form of the labels Y)
then we can only capture information of the same dimension, i.e. we only capture the signal
along roughly the N largest eigenfunctions of TK .

• The derivative ∂λϑ(λ) plays the role of the variance term, which interestingly does not depend
on the true function f∗. The derivative ∂λϑ(λ) grows as λ becomes smaller and may explode
as λ↘ 0. The optimal ridge λ (and by extension the optimal time T at which we stop training
an infinitely wide DNN) is determined by a tradeoff, where decreasing λ leads to capturing
more signal but at the risk of an explosion of variance.

This result also shows that the functions that are easy to learn for KRR with a kernel K are those
whose signal decays rapidly along the eigenfunctions of the integral operator TK , so that most of
the signal is contained along the first eigenfunctions. The faster the decay, the faster the term∥∥(IC −Aϑ(λ)

)
f∗
∥∥2

π
decays, leading to a smaller test error.

Kernel Alignement Risk Estimator

In practice, it is difficult to use the approximation of the expected risk in terms of the SCT ϑ
presented in the previous section to real data, since we have typically no information on the data
distribution π, and we therefore cannot compute the integral operator TK nor the SCT ϑ. It turns
out that the risk can also be approximated by the Kernel Alignement Risk Estimator (KARE):

E
[
Rε(f̂ ελ)

]
≈

1
N (Y ε)

T (1
NK(X,X) + λIN

)−2
Y ε(

1
NTr

[(
1
NK(X,X) + λIN

)−1
])2 .

The KARE depends only on the training labels Y ε and the kernel Gram matrix K(X,X) of the
training inputs: it can therefore be computed from the training data.

The KARE is motivated by the following three facts:

40 CHAPTER 1. INTRODUCTION

h
ey

!!
M

S
E

10−810−710−610−510−410−310−210−1 100

0

0.2

0.4

0.6

0.8

1

ridge λ

KARE
Risk
Train err.

(a) MNIST, ` = d

10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

1/d·lengthscale `

(b) MNIST, λ = 10−5

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

ridge λ

(c) Higgs, ` = d

10−2 10−1 100 101

0

0.2

0.4

0.6

0.8

1

1/d·lengthscale `

(d) Higgs, λ = 10−4

Figure 1.6.1: Comparison between the KRR risk and the KARE for various choices of normalized
lengthscale /̀d and ridge λ on the MNIST dataset (restricted to the digits 7 and 9, labeled by 1
and −1 respectively, N = 2000) and on the Higgs dataset (classes ‘b’ and ‘s’, labeled by −1 and
1, N = 1000) with the RBF Kernel K(x, x′) = exp(−‖x−x

′‖22/`). KRR predictor risks, and KARE
curves (shown as dashed lines, 5 samples) concentrate around their respective averages (solid lines).

1. The mean risk EX,E
[
Rε(f̂ ελ)

]
and empirical risk EX,E

[
R̂ε(f̂ ελ)

]
are related by the following

formula EX,E
[
Rε(f̂ ελ)

]
≈ ϑ2

λ2EX,E
[
R̂ε(f̂ ελ)

]
.

2. The empirical risk can be written as R̂ε(f̂ ελ) = λ2

N (Y ε)
T (1

NK(X,X) + λIN
)−2

Y ε.

3. The SCT ϑ(λ) can be approximated by5 1
1
N Tr

[
(1
NK(X,X)+λIN)

−1
] .

Assuming that both the risk and the expected risk concentrate in their expectation for large N , we
recover the KARE from the three above considerations.

The KARE suggest that we can have a small test error when the numerator is small and the
denominator is large:

• The numerator 1
N (Y ε)

T (1
NK(X,X) + λIN

)−2
Y ε is small when Y ε andK(X,X) are ‘aligned’

in the sense that K(X,X) is large along the direction of Y ε.

• The denominator is large when K(X,X) is small.

We therefore want the kernel Gram matrix to be large along Y ε and small along all the other
directions. In the noiseless case ε = 0, the optimal choice of kernel would be the kernel K∗(x, y) =
f∗(x)f∗(y) where f∗ is the true function, so that the Gram matrix is of the form K(X,X) =

Y ε (Y ε)
T . As λ ↘ 0 the numerator remains upper bounded while the denominator scales as λ−2,

so that the KARE is of order λ2. Of course, such a choice of kernel would imply that one has
knowledge of the true function f∗, which explains why one can reach zero test loss with only a
finite number of datapoints.

In practice we do not know the true function f∗ but we might have some prior knowledge: for
example we might expect the Fourier coefficients of the true function to decay rapidly, in which
case it makes sense to choose a so-called translation-invariant kernel such as the so-called Radial
Basis Function (RBF) kernel K(x, y) = exp(−‖x−y‖

2

2h2).

5For those familiar, this is the reciprocal of the Stieljes transform of the kernel Gram matrix.

1.7. SPECTRAL BIAS OF DNNS 41

Convergence Speed and Generalization

The KARE also implies the existence of a tradeoff between convergence speed and generalization.
As discussed in Section 1.5, the number of steps to reach a certain train error scales with the
condition number κ = λmax

λmin
of the kernel Gram matrix (where λmin and λmax are the smallest and

largest eigenvalues of the kernel Gram matrix K(X,X)) and the fastest convergence is when the
kernel Gram matrix equals the identity (or a scaling thereof) with a condition number of 1.

In contrast, the KARE is lower bounded by(
λmin
λmax

)2
1

N
‖Y ε‖2 = κ−2 1

N
‖Y ε‖2 .

The term 1
N ‖Y

ε‖2 concentrates in ‖f‖2π + ε2 for large N , which is the risk of the zero predictor
(f̂(x) = 0 for all x), intuitively it represents the test error when nothing is learned. As a result, for
the KARE (and by extension the test error) to go to zero, the conditioning κ = λmax

λmin
must be very

large.
Note however that a fast decay does not guarantee good generalization, it is only a necessary

condition.

1.7 Spectral Bias of DNNs

The so-called spectral bias of DNNs, observed empirically in [175, 227, 226], denotes a tendency of
DNNs to learn low frequencies faster than high frequencies.

In the infinite-width limit, this phenomenon is directly related to the spectrum of the NTK
Gram matrix Θ

(L)
∞ (X,X). If v ∈ RN is an eigenvector of Θ

(L)
∞ (X,X) with eigenvalue d, the error

along v will go to zero at a rate of e−dt (this follows from the dynamics described in Section 1.5), i.e.
the larger the eigenvalue, the faster the network learns along v. What happens informally is that
top eigenvectors of the NTK Gram matrix Θ

(L)
∞ (X,X) tends to be ‘low frequency’ or ‘smoother’

while the bottom eigenvectors are ‘higher frequency’ or ‘rougher’.
For some data distributions and in the population limit N → ∞, we can formalize these no-

tions, since the eigendecomposition of the NTK Gram matrix then matches a classical spectral
decomposition: the spherical harmonics.

Note that the eigenvalues of the Θ
(L)
∞ (X,X) are the same (up to a scaling) as those of the

empirical integral operator TN
Θ

(L)
∞

: if v is an eigenvector of Θ
(L)
∞ (X,X) eigenvalue d, the function

x 7→ Θ
(L)
∞ (x,X)Θ

(L)
∞ (X,X)−1v) is an eigenfunction of TN

Θ
(L)
∞

with eigenvalue d
N . In the population

limit, as N → ∞, the empirical integral operator TN
Θ

(L)
∞

converges to the integral operator T
Θ

(L)
∞

whose eigendecomposition can in some cases be easier to describe.
Consider the uniform distribution π on the hyper-sphere Sdin−1. Since the limiting NTK Θ

(L)
∞

is rotationally invariant (i.e. for any orthogonal transformation Θ
(L)
∞ (Ox,Oy) = Θ

(L)
∞ (x, y)) the

eigenfunctions of T
Θ

(L)
∞

are the (hyper-)spherical harmonics. The spherical harmonics have a degree
k and all harmonics of the same degree have the same eigenvalue λk. The spherical harmonics
generalize the notion of Fourier analysis from the plane to the sphere. The degree k is a notion of
frequency: the only spherical harmonics of degree 0 is the constant function and higher harmonics
become more oscillating (harmonics of degree k are homogeneous polynomials of degree k). In
the 2D case (din = 2) the link between spherical harmonics and Fourier analysis is direct: the

42 CHAPTER 1. INTRODUCTION

space of spherical harmonics of degree k is spanned by the two functions x 7→ cos(k arg x) and
x 7→ sin(k arg x) for any x on the circle S1.

In this setting, the spectral bias of DNNs can be formalized as the fact that the eigenvalues λk
decrease for large degree k, which follows directly from the fact that the NTK is continuous. But
our goal is to have a more precise description of how fast the eigenvalues decay (the ‘strength’ of
the spectral bias) which has an impact on the convergence speed and generalization of DNNs, as
discussed in the previous sections.

We will now study how hyper-parameters such as the non-linearity σ, the bias strength β and
the depth of the network affect the strength of the spectral bias. There are multiple settings where
one might want to tune the strength of the spectral bias: in the classical regression setting, to
choose the right tradeoff between convergence speed and generalization (as discussed at the end of
the last section), but also in settings such as the training of Generative Adversarial Networks (in
Section 1.7) or in topology optimization with DNNs (in Section 1.7).

This section follows the two papers [104, 52] whose original text can be found in Sections 5 and
6.

Order and Chaos for Large Depths

When the depth of the network L becomes very large, two phases have been observed [173], deter-
mined by properties of the non-linearity σ and the amount of bias6.

Since we are studying DNNs with increasing depth L, we need to choose our non-linearity care-
fully to ensure that the activations of the output layer α̃(L)(x) remain of order 1. We restrict
ourselves to inputs on the

√
din-hypersphere

√
dinSdin−1 =

{
x ∈ Rdin : ‖x‖ =

√
din
}
, and restrict

ourselves to nonlinearities σ of the form σ(x) = ασ0(x) for some α > 0 and a standardized nonlin-
earity σ0, i.e. σ0 satisfies Ez∼N (0,1)

[
σ0(z)2

]
= 1 (taking the mean over a standard Gaussian variable

z). For a given bias strength 0 ≤ β ≤ 1 we need to choose α =
√

1− β2 so that Σ
(`)
∞ (x, x) = 1

for all layers ` and any x ∈
√
dinSdin−1 which ensures a constant infinite-width variance of the

pre-activations α̃(`)(x) for all layers `.
In this setting an ordered and a chaotic phase appear, determined by the characteristic value

rσ0,β = Ez∼N (0,1)

[
σ̇(x)2

]
= (1− β2)Ez∼N (0,1)

[
σ̇0(x)2

]
:

• Order: If rσ,β < 1, the NNGP kernel Σ
(L)
∞ converges to a constant kernel as L→∞, i.e. for

all x, y ∈
√
dinSdin−1

lim
L→∞

Σ(L)
∞ (x, y) = 1,

and the limiting rescaled NTK Θ̂
(L)
∞ (x, y) =

Θ̂(L)
∞ (x,y)√

Θ̂
(L)
∞ (x,x)Θ̂

(L)
∞ (y,y)

also converges to a constant

kernel

lim
L→∞

Θ̂(L)
∞ (x, y) = 1.

6In previous works studying this phenomenon, the effect of the variance of the parameters at initialization is
also taken into account, which we do not. Note that scaling the non-linearity σ has a similar effect to scaling the
initialization of the connection weights by the same factor.

1.7. SPECTRAL BIAS OF DNNS 43

Figure 1.7.1: The NTK on the unit circle for four architectures with depth L = 5 (left) and L = 25
(right): vanilla ReLU network with β = 1.0 (blue) and β = 0.1 (orange), with a normalized ReLU
/ Layer norm (green) and with Batch Norm (red). Both networks have width 3000, but the deeper
network is further from convergence, leading to more noise.

• Chaos: If rσ,β > 1 the NNGP kernel Σ
(L)
∞ converges to the sum of a constant kernel and a

Kronecker delta kernel, i.e. there is a value 0 ≤ h < 1 such that for all x, y (with x 6= −y)

lim
L→∞

Σ(L)
∞ (x, y) =

{
1 if x = y

h if x 6= y
,

and the rescaled NTK Θ̂
(L)
∞ (x, y) converges to a Kronecker delta kernel:

lim
L→∞

Θ̂(L)
∞ (x, y) =

{
1 if x = y

0 if x 6= y
.

This phase transition was first observed before the introduction of the NTK, and only the effect
on the NNGP kernel Σ

(`)
∞ were proven at the time [173, 42, 231]. In 2019 we studied the effect of

the order/chaos transition on the NTK kernel and other related questions (see Section 5) in a paper
with Franck Gabriel, François Ged and Clément Hongler. A few similar analysis of the order/chaos
transition for the NTK came out independently [86, 225, 96].

Clearly, these two regimes have a significant effect on the decay of the eigenvalues of the limiting
NTK and consequently on the strength of the spectral bias of DNNs:

• In the chaotic regime, the condition number κ of the limiting NTK Gram matrix Θ
(L)
∞ (X,X)

converges to 1 as the depth grows to infinity L → ∞, in other words the spectral bias
vanishes. In this regime, DNNs with very large depths L can be trained very efficiently but
cannot generalize.

• In contrast, in the ordered regime, the condition number κ grows to infinity as L → ∞. In
other terms the spectral bias becomes stronger with the depth. The training time blows up,
but generalization is still possible (though it is of course not guaranteed).

44 CHAPTER 1. INTRODUCTION

This suggests that for very large depths, it is crucial to choose a non-linearity σ and bias strength β
with a characteristic value rσ,β of 1, as this is the only regime where a reasonable balance between
convergence speed and generalization can be achieved.

However, for networks that are not as deep, a wider range of characteristic values around 1 is
viable. In such settings, the characteristic value can be thought of as an indicator of the strength of
the spectral bias (a large characteristic value indicating a weak spectral bias and vice-versa), and
one can tune the strength of the spectral bias through the characteristic value rσ,β .

The spectral bias can always be strengthened by increasing the bias strength β (hence reducing
the characteristic value rσ,β) but for some non-linearities even removing completely the bias (β = 0)
still leads to a characteristic value rσ,β smaller or equal to 1 – for example for the standardized
ReLU σ0(x) = 1√

2
max{0, x} the characteristic value without bias is rσ0,β=0 = 1. It might therefore

be useful to find techniques to increase the characteristic value (and reduce the spectral bias).

The Chaotic Effect of Layer Normalization

It seems that various normalization techniques have such a chaotic effect, i.e. they increase the
characteristic value rσ0,β . Let us first consider layer normalization in which the definition of the
activation α(`)

k (x) of the k-th neuron in the `-th layer is changed to

α
(`)
k (x) =

σ
(
α̃(`)(x)

)
−m(`)(x)

d(`)(x)

for the mean m(`)(x) = 1
n`

∑n`
k=1 σ(α̃

(`)
k (x)) and standard deviation

d(`)(x) =

√√√√ 1

n`

n∑̀
k=1

(
σ(α̃

(`)
k (x))−m(`)(x)

)2

of the activations σ
(
α̃(`)(x)

)
of the layer.

We show that in the infinite-width limit, layer normalization is equivalent to non-linearity nor-
malization, in which the non-linearity σ0 is translated and scaled to have zero mean and unit
variance when evaluated on a standard Gaussian variable z, i.e. σ0 is replaced by the normalized
non-linearity σ̄0 defined as

σ̄0(x) =
σ0(x)− Ez∼N (0,1) [σ0(z)]√

Varz∼N (0,1)(σ0(z))
.

We then show that the normalized non-linearity σ̄0 has always a larger characteristic value than
the original one rσ̄0,β ≥ rσ0,β and that in the absence of bias (β = 0) a normalized non-linearity
always lies in the chaotic regime rσ̄0,β=0 > 1, as long as the non-linearity σ0 is not linear. This
reveals the chaotic effect of layer normalization.

In practice, it is much more common to use batch normalization instead of layer normalization.
While batch normalization is much more difficult to study theoretically, we show that if one applies
batch normalization after the last non-linearity, it has the effect of upper bounding the eigenvalue
corresponding to the 0-th order spherical harmonic (the constant function) which typically domi-
nates. This suggests that batch normalization has a similar chaotic effect (as supported by Figure
1.7.1), reducing the spectral bias of DNNs. For more details, see Section 5.

1.7. SPECTRAL BIAS OF DNNS 45

Generative Adversarial Networks

Generative Adversarial Networks (GANs) [78] are generative models: given a set X of datapoints
(for example images of human faces or handwritten digits) GANs are trained to learn to sample new
datapoints x which resemble the training dataset X. GANs are made up of two DNNs competing
against each other:

• The Generator Gθ : Rk → Rdin with parameters θ: the generated datapoints x are sampled
as x = Gθ(z) where z is a random k-dim vector with i.i.d. standard Gaussian entries N (0, 1).
By tuning the parameters θ, the distribution of x can be learned.

• The Discriminator Dφ : Rdin → R with parameters φ: during training, the discriminator
receives a batch of real datapoints X and of generated data X̃ = Gθ(Z) and learns to classify
real from generated data. Simultaneously, the generator learns to ‘fool’ the discriminator, to
make the generated data undistinguishable from the real data.

The two player game aspect of GANs makes training very unstable and GANs are notoriously hard
to train [27, 174, 191]. A technique that helps a lot for training GANs is batch normalization [223].
While batch normalization is known to speed up training in more traditional DNN training, in
GANs the absence of batch normalization often makes training almost impossible. In [104] (see
Section 5) we propose an explanation for the importance of normalization in GANs: normalization
moves the network outside of the ordered regime, which is characterized by problems of so-called
mode collapse and checkerboard artifacts.

Mode Collapse

The most common failure state in GANs is the so-called mode collapse, where the generator becomes
constant or almost constant, hence collapsing the generated distribution to a Dirac mass or a very
concentrated distribution. Once such a state is reached, it is difficult to ‘uncollapse’ the generator.
Therefore, we want to understand why the generator has a natural tendency to converge to a
constant function and how to avoid this issue.

There is an obvious link between the ordered regime and mode collapse: in the ordered regime,
the NNGP kernel and the NTK of a very deep and wide generator Gθ are almost constant, which
implies that the generator will be almost constant at initialization and move along constant direc-
tions during training. More precisely, the NTK matrix will have din dominating eigenvalues whose
eigenvectors roughly span the din space of constant functions from Rk to Rdin .

This suggests the following explanation for the importance of normalization in the generator:
the typical choice of non-linearity (the ReLU) lies in the ordered regime when β > 0, and even
in the absence of bias β = 0 we observe a dominating constant mode [104] (see Section 5). We
therefore need normalization to move to the chaotic regime to weaken the bias towards constant
functions and avoid mode collapse.

Checkerboard Artifacts

GANs are typically trained to generate images, in which case the generator is a so-called deconvo-
lutional network, in which the neurons of each layer have a spatial structure, i.e. they are indexed
by an x coordinate, a y coordinate, and a channel k. The neurons of two consecutive layer are
connected in a convolutional manner, according to their coordinates, and with a stride s which

46 CHAPTER 1. INTRODUCTION

O
R
D
E
R

1 2 3 4 5 6 7 8

1

2

3

4

C
H
A
O
S

1 2 3 4 5 6 7 8

1

2

3

4
B
A
T
C
H

N
O
R
M

1 2 3 4 5 6 7 8

1

2

3

4

Figure 1.7.2: The left column represents the first 8 eigenvectors of the NTK Gram matrix of a
DC-NN (L=3) on 4 inputs (as well as some other architecture changes, see Section 5 for more
details). The right column represents the results of a GAN on CelebA. Each line correspond to
a choice of nonlinearity/normalization for the generator: (top) ReLU, (middle) normalized ReLU
and (bottom) ReLU with Batch Normalization.

allows to multiply by s the height and width of the spatial field at every layer to generate large
images. In this setting the infinite-width limit corresponds to letting the number of channels grow
to infinity.

When GANs are trained with such a generator, it is common to observe checkerboard artifacts,
which are small patterns in the image which repeat every s pixels (or every sm pixels for some
integer m). These checkerboard patterns are especially visible in the image generated after mode
collapse (see Figure 1.7.2 top right).

In [104] (Section 5), we study the large depth behaviour of the NTK of infinitely wide decon-
volutional network. We observe the same order/chaos transition: while the chaotic regime remains
mostly the same, in the ordered regime we observe a natural tendency for checkerboard artifacts.
More precisely, we observe that in the infinite depth and width limit, the dominating eigenfunctions
f (k) : Rk → Rdin of the NTK are constant in their inputs (as for the fully-connected case), but
instead of all constant eigenfunctions having the same eigenvalue, they are ordered in a specific
manner.

These constant functions f (k)(x) = y are determined by the image y ∈ Rw×h that they generate
(for grayscale images din = wh where w and h are the width and height of the image). The

1.7. SPECTRAL BIAS OF DNNS 47

Figure 1.7.3: Left: empirical NTK of FCNNs with both embedding (a.1, a.2, see Section 6.4
for details) or without embedding (a.3 with ReLu, a.4 with tanh). Right: Corresponding shape
obtained after training. Note that methods without spatial invariance particularly struggles with
this symmetric load case (b.3, b.4) while both "embedded methods" respect the symmetry (b.1,
b.2). We also observed that training with non-embedded methods is very unstable

dominating eigenfunction generates a constant image (which can be understood as a checkerboard
pattern that repeat every s0 = 1 pixels), followed by eigenfunctions whose output image y has a
checkerboard pattern repeating every s pixels, followed by checkerboard patterns that repeat every
s2 pixels and so on and so forth.

This order of the eigenfunctions is visible in the top line of Figure 1.7.2, where the first 8
eigenfunctions on 4 inputs are plotted with a stride of s = 2, the largest eigenfunction is constant,
the following 3 feature checkerboard patterns that repeat every 2 pixels and the following 4 feature
checkerboard patterns that repeat every 4 pixels.

Here again these checkerboard artifacts can be avoided in the chaotic regime, hence further
supporting the importance of normalization.

DNN-based Topology Optimization

Topology optimization tackles tasks such as finding the optimal shape of a bridge to be as sturdy
as possible with the minimal amount of material. The underlying principle is that given a 2D or
3D object shape (represented by a ‘shape image’, a 2D or 3D array that indicate the presence of
material at every pixel) and a set of forces acting on the object, the stability of the object under
these forces can be computed. Since this computation is differentiable, it is possible to maximize
the stability of the shape with gradient ascent on the 2D or 3D image. This is called the Solid
Isotropic Material Penalisation (SIMP) method [21, 149].

48 CHAPTER 1. INTRODUCTION

Figure 1.7.4: Shape obtained for different values
of R̂1/2 with a Gaussian embedding for different
values of ` ∈ {0.5, 1, 1.4, 2}.

Figure 1.7.5: Colormap of R̂1/2 in the (β, ω)
plane, torus embedding. Level lines and shapes
obtained for different radius are represented.

However, this optimization commonly leads to checkerboard artifacts in the optimized shape,
where the program appears to consider pixels connected diagonally to be stable. A common solution
to this problem is to apply a low-pass filter to the shape image before computing stability, but this
technique has the drawback of leading to blurry shapes.

It was later observed that one can avoid both checkerboard artifacts and blurriness by using a
DNN to represent the shape [207, 31]. The DNN takes as inputs the 2D or 3D coordinates of the
pixel and outputs a value between 0 and 1 (by applying the sigmoid function to the outputs of the
network) representing the presence of material.

NTK Analysis

If the network used to represent the shape is infinitely wide, the reason why DNNs avoid checker-
board patterns is quite simple: the NTK implicitly plays the role of a filter. In addition to this,
the application of the sigmoid function to the outputs of the network avoids the blurriness.

However this analysis also reveals a problem: the NTK is invariant under rotations but not
translations, as can be seen in Figure 1.7.3 (a.3 and a.4). This breaks the symmetry of topology
optimization, where translating the force constraints should lead to a translation of the resulting
optimal shape, but the lack of translation invariance of the NTK leads to this property not being
respected as can be seen in Figure 1.7.3 (b.3 and b.4). We propose two solutions that lead to an
(approximately) translation- and rotation-invariant NTK.

The idea behind both techniques is to first map the input coordinates (x, y, z) to a larger space
Rdin with a map φ : R3 → Rdin such that the scalar product φ(x, y, z)Tφ(x′, y′, z′) only depends on

1.8. FINITE-WIDTH ANALYSIS 49

the Euclidean distance between (x, y, z) and (x′, y′, z′). Since the limiting NTK Θ
(L)
∞ (u, v) depends

only on the norm of u and v and their scalar product uT v, we have that Θ
(L)
∞ (φ(x, y, z), φ(x′, y′, z′))

is translation and rotation invariant (since it only depends on the Euclidean distance between
(x, y, z) and (x′, y′, z′)).

We however show that any non-constant function φ which satisfies this property must have an
infinite-dimensional image (din =∞). We instead propose two maps with finite-dimensional image
that approximately satisfy this property:

• Hypertorus embedding: The first map sends the coordinate x, y, z to pairs (sin(δx), cos(δx)),
(sin(δy), cos(δy)) and respectively (sin(δz), cos(δz)) for some δ > 0. With this map the
NTK becomes translation-invariant but loses its rotation-invariance, however we argue that
translation-invariance plays a more important role than rotation-invariance (see Section 6).

• Gaussian embedding: The second map uses so-called random Fourier features, the coordi-
nates (x, y, z) are mapped to the din-dimensional vector φ(x, y, z) with entries

φk(x, y, z) =
1√
din

sin

(
akx+ bky + ckz

`
+
π

4

)
for some i.i.d. standard Gaussian scalars ak, bk, ck and the so-called lengthscale ` > 0. In the
limit din → ∞ the NTK becomes translation- and rotation-invariant and for finite din it is
only approximately so.

With these embeddings, the NTK Θ
(L)
∞ (φ(x, y, z), φ(x′, y′, z′)) only depends on the Euclidean dis-

tance between the coordinates (up to a small error), much like a traditional low-pass filter. We can
therefore define the filter radius R̂1/2 of the NTK as the smallest distance d such that the value of
the NTK at two coordinates at a distance d from one other is half the value the NTK at its center
(evaluated at the same coordinate twice). This filter radius is directly related to the strength of
the spectral bias of the NTK, and it has a strong impact on the convergence speed of topology
optimization and on the final optimized shape. The filter radius can be tuned using the scalar δ for
the hypertorus embedding and the lengthscale ` for the Gaussian embedding to obtain a range of
shapes with different levels of detail, as shown in Figures 1.7.4 and 1.7.5.
Remark 1.3. There are many other settings where DNNs are used to represent images and the same
problem of translation invariance and tuning of the spectral bias appear [155, 214]. The analysis
that we did for topology optimization, as well as the solutions we proposed would also apply to
these other settings.

1.8 Finite-width Analysis

The results presented up to this point have mostly focused on infinitely wide DNNs, giving a
thorough description of their convergence and generalization properties. It is now natural to ask
how close finite-width networks are to their infinite-width counterparts?

Double-Descent Curve

When one plots the train and test error as a function of the width of the network w (or as a function
of the number of parameters P which scales with the width), a surprising phenomenon is observed
[18, 69] (see Figure 1.8.1 for an example with MNIST):

50 CHAPTER 1. INTRODUCTION

102 N∗ = 825 104 105 106 107

N

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

ε N

A normal
ens.
early st.

104 106

N

0.000

0.025

0.050

tra
in

er
ro

r B

Figure 1.8.1: (A) Empirical test error v.s. number of parameters: average curve (blue, averaged
over 20 runs); early stopping (green); ensemble average f̄nN (orange) over n = 20 independent runs.
In all the simulations we used fully-connected networks with depth L = 5 and input dimension
d = 10, trained for t = 2 · 106 epochs to classify P = 10k MNIST images depending on their parity,
using their first 10 PCA components, and the test set includes 50K images (the plots are taken from
the original paper where the number of parameters is denoted by N and the number of datapoints
by P). The vertical dashed line corresponds to the interpolation threshold: at that point the test
error peaks. Ensemble averaging leads to an essentially constant behavior when N becomes larger
than N∗.

• When it comes to the training loss, a clear transition can be observed: from an under-
parameterized regime for small widths, where the number of parameters is too small to fit the
data and to achieve a zero training loss, to an over-parameterized regime for large widths,
where the training loss is zero. We call the smallest number of parameters where gradient
descent reaches a zero training loss the interpolation threshold. For regression tasks (e.g. the
MSE loss) the interpolation threshold happens when the number of parameters P equals the
number of datapoints N , however for classification tasks (e.g. the cross-entropy loss or hinge
loss), this transition can happen significantly earlier [69].

• The test error on the other hand has a surprisingly non-monotonous behavior. From the
traditional point of view of the bias-variance tradeoff, one would expect the test error curve
to have a U-shape with the optimal width striking a balance between the bias and variance
terms. We do observe such a U-shape, but only in the under-parameterized regime. At the
interpolation threshold, the test error explodes and then starts to go down again as we move
further in the over-parameterized regime. As the width goes to infinity, the test loss converges
to some finite value which appears in some cases to be optimal (as in Figure 1.8.1).

• The explosion of the test error can be avoided with early stopping: at the ideal stopping

1.8. FINITE-WIDTH ANALYSIS 51

time (stopping at the time t where the test error is at its lowest) the test error decreases
monotonically with the width w.

The NTK analysis explains why the test error converges to a finite value as w → ∞, but it does
not explain why in the over-parameterized regime the test error decreases as the width increases
nor the explosion of the test loss at the interpolation threshold.

Effect of Ensembling

A similar double-descent curve has been observed in many different models such as random forests
and random features [18]. Interestingly, all of these models are random models, in the sense that
given a fixed training set {(xi, yi), i = 1, . . . , N} the final estimator (the final network function fθ(T)

for DNNs) is random.
This observation suggests that there might be a relation between the randomness of the network

function fθ w.r.t. the sampling of the parameters and the double descent curve. We studied this
relationship in the paper [67] presented in Section 7.

We used ensembling to average out the randomness due to the sampling of the parameters:
ensembling consists in training K network with i.i.d. initializations θ1(0), . . . , θK(0) on the same
dataset and averaging their outputs fenst (x) = 1

K

∑K
k=1 fθk(t)(x). A K-fold ensembling allows one

to reduce the variance of the network function by K.
As shown in Figure 1.8.1, we observed that the double descent curve disappears after ensembling.

This implies that the explosion of the test loss at the interpolation threshold is due to an explosion
in the variance of the network function. Furthermore, we observe that right after the interpolation
threshold it is possible to attain the same test error as an infinitely-wide network after ensembling.

NTK Regime

Our strategy to explain the above observations mathematically is to extend the NTK analysis of
infinite-width networks to finite-width ones. As mentioned in Section 1.5, the standard deviation
of the NTK at initialization is of order w−

1
2 while the rate of change of the NTK during training

is of order w−1. This suggests that for large but finite-width there is a regime where the change of
the NTK in time is negligible but its randomness at initialization is not, which we call the NTK
regime (also called the lazy regime [34] or kernel regime).

Understanding the extent of this NTK regime is still an area of active research. At the moment
however, we will study the double descent under the assumption that the network is in the NTK
regime, i.e. we will assume that the NTK is random but fixed in time. The double descent
phenomenon is well suited to this type of analysis since our numerical experiments suggest that it
is related to the randomness of the network function, suggesting that the randomness of the NTK
is more important than its time evolution.

Remark 1.4. There are regimes outside the NTK regime where the NTK is not constant, as described
in Section 1.9, resulting in a different behavior to the one described in this section. For example,
the mathematical analysis in this section implies that the test loss is always optimal in the infinite-
width limit (which matches our experiments on MNIST in Figure 1.8.1 as well as those of others
[18, 69] also on MNIST), however it has been observed empirically on CIFAR-10 that there are
finite-width networks that have a smaller test loss than that of an infinite-width network [6]. We
cannot fully explain this difference yet, but it seems that the choice of dataset plays a key role.

52 CHAPTER 1. INTRODUCTION

Random Feature Models

As mentioned above, the double-descent curve can also be observed in Random Features (RF)
models [176]. In the most general interpretation, a RF model is a linear model F (θ) = 1√

P

∑P
p=1 θpfp

whose features fp : Rdin → Rdout are random functions. With this interpretation, the tangent
linear model Tθ(0)F

(L)(θ) (see Section 1.4) of a DNN at initialization is a RF model, with features
fp(x) = ∂θpfθ(0)(x).

We will now describe the double-descent curve theoretically for Gaussian RF models, where the
random features fp : Rdin → R (for simplicity, we assume dout = 1) are sampled as i.i.d. Gaussian
processes with a fixed covariance kernel K : Rdin × Rdin → R. As we will see, this model has the
advantage of simplifying the theoretical analysis while keeping all of the interesting features of the
double descent curve. These results were published in a paper [102] reproduced in full in Section 8.

Training a RF model corresponds to doing kernel gradient descent with a random kernel
K̃(x, y) = 1

P

∑P
p=1 fp(x)fp(y). On the MSE cost with inputs X and outputs Y , the network

function at a time t can be approximated by the kernel ridge regression estimator

f̂RFλ,P (x) =
1

N
K̃(x,X)

(
1

N
K̃(X,X) + λIN

)−1

Y

for λ = 1
2t (this follows from the same argument as in Section 1.5).

Since as the number of features P grows to infinity the random kernel K̃ converges to the
fixed kernel K, we know that the RF predictor f̂RFλ,P (x) concentrates as P →∞ around the kernel
predictor

f̂Kλ (x) =
1

N
K(x,X)

(
1

N
K(X,X) + λIN

)−1

Y.

Our goal is to study the distribution of the RF predictor f̂Kλ,P for finite but large P , in particular
its expectation and variance, to describe the expected test error.

Remark 1.5. For DNNs in the NTK regime, the random kernel K̃ is the finite-width NTK Θ(L) while
the kernel K is the limiting NTK Θ

(L)
∞ . While in both cases we have a random kernel approximating

a deterministic kernel, there is an important distinction. In contrast to the features of a Gaussian
RF model which are all independent, the features of the NTK ∂θpfθ(0) are not independent. This
leads to a different rate of convergence of the random kernel to its deterministic limit for deep
networks. While for Gaussian RF the error K̃ −K is of order O(P−

1
2) for deep networks (L > 2)

the error Θ(L)−Θ
(L)
∞ is of order P−

1
4 (since the error Θ(L)−Θ

(L)
∞ is w−

1
2 and P is of order w2 when

L > 2). This has an effect on the rate at which the test error of finite-width networks converges to
the test error of infinite-width networks, as discussed in [67] (see Section 7).

Implicit Regularization of Random Feature Models

The analysis of the mean RF predictor reveals an implicit regularization, in the sense that the mean
RF predictor E

[
f̂RFλ,P

]
with ridge λ is close7 to the kernel predictor f̂K

λ̃
with an effective ridge λ̃

7Explicit bounds on the distance between the two can be found in Section 8.4. Though these theoretical bounds
blow up as λ↘ 0 we observe empirically that this approximation remains accurate even for very small or zero ridges
λ.

1.8. FINITE-WIDTH ANALYSIS 53

0

1

2

3

4

5

6

7

8

10-2 10-1 100 101 102

(a) Evolution of λ̃

Te
st

 E
rr

or

10-2 10-1 100 101 102

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Average λ-RF predictor vs. λ̃-KRR

Figure 1.8.2: Comparison of the test errors of the average λ-RF predictor and the λ̃-KRR predictor.
We train the RF predictors on N = 100 MNIST data points where K is the RBF kernel, i.e.
K(x, x′) = exp

(
−‖x− x′‖2/`

)
. We approximate the average λ-RF on 100 random test points for

various ridges λ. In (a), given γ and λ, the effective ridge λ̃ is computed numerically using (8.4.2).
In (b), the test errors of the λ̃-KRR predictor (blue lines) and the empirical average of the λ-RF
predictor (red dots) agree perfectly.

which is the unique positive solution of the equation

λ̃ = λ+
λ̃

P
Tr

[
1

N
K(X,X)

(
1

N
K(X,X) + λ̃IN

)−1
]
.

The fact that the effective ridge is larger than the original ridge λ̃ ≥ λ implies that the use of
random features has an implicit regularization effect, increasing the ridge parameter.

Moreover in the over-parametrized P ≥ N and ridgeless λ ↘ 0 setting, one can show with a
simple argument that E

[
f̂RFλ↘0,P

]
= f̂Kλ↘0. This is in line with the empirical observation made in

[67] that in the overparametrized regime, the test loss at the end of training is almost constant after
ensembling.

Remark 1.6. There is a direct correspondence between the effective ridge λ̃ and the Signal Capture
Threshold ϑ from Section 1.6. Both theoretical analyses rely on the same tools from Random
Matrix Theory.

Variance Explosion

For non-zero ridge λ > 0, we can obtain some bounds over the variance of the predictor directly:

Var
(
f̂RFλ,P (x)

)
≤ c ‖Y ‖2

PN2λ2
,

where the constant c depends only on the kernel K the input data X and the point x (see Appendix
A.1 for a derivation of the bound and an explicit formula for c).

54 CHAPTER 1. INTRODUCTION

Te
st

 e
rr

or

10-2 10-1 100 101 102

1.2

1.0

0.8

0.6

0.4

0.2

(a) Ridgeless vs. Ridge

10-2 10-1 100 101 102

Va
ria

nc
e

1.2

1.0

0.8

0.6

0.4

0.2

0.0

(b) Variance of λ-RF

2.0

1.8

1.6

1.4

1.2

1.0

10-2 10-1 100 101 102

(c) Evolution of ∂λλ̃

Figure 1.8.3: Average test error of the ridgeless vs. ridge λ-RF predictors. In (a), the average test
errors of the ridgeless and the ridge RF predictors (solid lines) and the effect of ensembling (dashed
lines) for N = 100 MNIST data points. In (b), the variance of the RF predictors and in (c), the
evolution of ∂λλ̃ in the ridgeless and ridge cases. The experimental setup is the same as in Figure
1.8.2.

If we fix the number of datapoints N , this bound illustrates how increasing the ridge helps avoid
an explosion of variance. This is also in agreement with the observation that early stopping avoids
the explosion of variance, since early stopping at a time t is similar to taking a ridge of λ = 1/2t.

If we instead fix a positive ridge λ > 0 and increase P , we see that the variance goes to zero
at a rate of P−1. However as noted in Remark 1.5, for DNNs the non-independence leads to a
variance of order P−

1
2 instead, as observed empirically in [67] (see Section 7). Note also that for

DNNs there is an extra source of variance, the randomness of the network function at initialization,
and this variance does not vanish in the infinite-width limit, though it seems to be very small in
Figure 1.8.1, where the difference of the test before and after ensembling seems to almost vanish as
the width grows.

Our goal was to describe the explosion of variance at the interpolation threshold, but due to a
number of technical issues, we were not able to precisely describe the covariance of the RF predictor,
especially not in the ridgeless case λ ↘ 0. Nevertheless, our theoretical analysis suggests that the
variance of the RF predictor scales with the derivative of the effective ridge8 ∂λλ̃. This derivative
explodes when P = N and λ ↘ 0, which is exactly the location of the explosion of variance in
the numerical experiments. A more detailed discussion of the variance of the RF predictor can be
found in Section 8.5.

These theoretical results suggest that at least in the NTK regime, finite-width networks are
very similar to their infinite-width counterparts in expectation (up to a slight increase in the ridge
from λ to λ̃(λ), which would correspond to a slight change of training time from 1/2λ to 1/2λ̃(λ)).
The change in test error between finite and infinite-width networks is mostly due to the variance,
which has a complex behavior: it explodes at the ridgeless interpolation threshold (N = P and
λ↘ 0), but this explosion of variance can be avoided with either ensembling, early stopping, or by
increasing the width.

8This is reminiscent of the role the derivative of the SCT ∂λϑ played in the description of the variance of the
KRR predictor in Section 1.6.

1.9. REGIMES OF TRAINING 55

1.9 Regimes of Training

The results presented up to this point have all been in the so-called NTK regime (see Section
1.8) where the rate of change of the NTK is negligible (so that we can assume it to be constant).
But there exists another regime where the rate of change of the NTK has a significant impact on
the training dynamics and the network function that is learned. While this regime is commonly
called the active regime (also feature-learning regime or rich regime) there are actually multiple
active regimes, each corresponding to different ways to leave the NTK regime with distinct training
dynamics.

Let us remind that the proof of convergence of the NTK to a constant kernel relies on the fact
that the parameters of the network move very little for large widths, which implies that there is a
global minimum close to the parameters at initialization θ(0) that gradient flow converges to (see
Theorem 1.2). There are a number of settings where the rate of change of the parameters is not
small:

1. With a cost such as cross-entropy, which decays towards infinity, there is no finite global
minimum. As a result, training never stops and the length of the training path is infinite
and the NTK remains approximately constant only up to a time T (which increases with the
width w of the network) after that, the change in time of the NTK is significant. For more
details, see [36, 80, 81, 156, 209, 235].

2. Increasing the number of training points N at the same time as the width w can lead to an
active regime since the parameters need to move more to fit the data. This setting is less
studied, but it could explain why the test loss curve can be non-monotonically decreasing in
the over-parameterized regime on CIFAR-10 [6] as explained in Section 1.8.

3. Adding L2 regularization to the loss of DNNs Lλ(θ) = C(fθ) + λ ‖θ‖2 completely changes
the critical points of the loss surface. In particular there might not be any closeby global
minimum, leading to active dynamics (see [80, 81, 41] for linear networks and [10, 194, 166]
for shallow non-linear networks).

4. There is a ball around the origin in parameter space RP with no global minimum, since the
network must represent a non-zero function to fit the data. If one initializes the parameters
with a small variance, then the parameters at initialization will lie with high probability inside
this ball, far away from any global minimum, hence leading to another active regime, which
we will discuss in the rest of this section: we will see that changing how the variance of the
parameters at initialization scales with the width, one can reach three regimes: the NTK
regime, a critical regime, and a saddle-to-saddle regime. The critical regime is related to the
Mean-Field limit studied in [35, 183] or Maximal Update parametrization from [229].

Active regimes have also been observed for large learning rates [134], or if one lets the width and
depth of the network grow at the same time [84].

In general these active regimes are much less understood than the NTK regime, especially in
the deep case. While all of these active regimes have very distinct dynamics, they are almost all
related to some notion of sparsity. This is especially visible for linear networks, i.e. networks with
no non-linearity σ (or equivalently with σ(x) = x); which can only represent linear functions. It
has been observed in different settings that the linear maps learned by linear network feature some
form of low-rank bias [5, 74, 81, 135, 209, 235, 195, 196]. It remains a challenge to generalize these

56 CHAPTER 1. INTRODUCTION

results to the non-linear case, mostly because the underlying proofs often rely on some tricks that
only apply to linear networks.

The rest of this section summarizes the results of the paper [107] written with François Ged,
Berfin Şimşek, Clément Hongler and Franck Gabriel, which studies the training dynamics of linear
networks for different scales of initialization of the parameters. The original paper can be found in
Section 9.

Linear Networks

A Deep Linear Network (DLNs) is a model for linear maps from Rdin to Rdout . The din × dout
network matrix Aθ which defines the linear map takes the form of a matrix product of L matrices

Aθ = WL · · ·W1

where W` is a n` × n`−1 dimensional matrix.

Remark 1.7. Note the absence of the 1√
n`

factors in the definition of the network matrix. If we
were to take the definition of DNNs from Section 1.3 and remove the non-linearity and the bias, we
would instead have the definition

ANTKθ =
1

√
n0 · · ·nL−1

WL · · ·W1.

The parametrization from in Section 1.3 (with the 1√
n`

factors) is called the NTK parameteri-
zation; it is best suited when one studies the NTK regime. We call the parameterization presented
in this section (without the 1√

n`
factors) the standard parameterization, as it is the most common

one.
Note that the two parametrizations are equivalent up to a scaling of the parameters and

the learning rate: if t 7→ θ(t) is a gradient flow path for the standard parameterization, then
t 7→ (n0 · · ·nL−1)

1
2L θ((n0 · · ·nL−1)−

L+1
2L t) is a gradient flow path for the NTK parameterization.

Studying one or the other parameterization is therefore purely a matter of convenience, and we
obtain nicer scaling factors with the standard parameterization in the active regime. Informally, it
seems that the NTK parametrization is best suited to study the NTK regime while the standard
parametrization is best suited for active regimes.

Symmetries of Deep Linear Networks

Two types of symmetries of DLNs will play an important role in our analysis:

Rotations: We already mentioned how in DNNs one can permute neurons without changing the
outputs of the network. For DLNs this can be extended to any orthogonal transformation
of the hidden layers. We define a rotation R = (O1, . . . , OL−1) of a DLN where O` is a
n` × n` orthogonal transformation. A rotation can be applied to a vector of parameter
θ = (W1, . . . ,WL), yielding a new set of parameters

Rθ = (O1W1, O2W2O
T
1 . . . ,WLO

T
L−1).

Rotations preserve the network matrix (ARθ = Aθ for any parameter θ) and as well as gradient
flow (if θ(t) is a gradient flow path, then so is Rθ(t)).

1.9. REGIMES OF TRAINING 57

Inclusions: A network of width w can be included into a network into a wider network of width w′
by adding zero connections everywhere. More precisely, given parameters θ = (W1, . . . ,WL)
of a network of width w, the inclusion I(w→w′)θ of θ into a network of width w′ is defined as
I(w→w′) = (W1, . . . ,WL) with

V1 =

(
W1

0

)
, V` =

(
W` 0
0 0

)
, VL =

(
WL 0

)
.

Again inclusions preserve the network matrix as well as gradient flow.

Matrix Completion

In practice, DLNs are commonly used for Matrix Completion (MC) where a dout×din matrix A∗ is
reconstructed from a subset of its entries A∗i1j1 , . . . , A

∗
iN jN

. It is of course impossible to reconstruct
a general matrix from a subset of its entries, but under the assumption that A∗ is low rank, the
minimal rank solution Â (the matrix with the smallest rank amongst matrices whose entries match
the observed entries of A∗) is a good estimator. Recovering Â is in general NP hard [28], so a
common strategy is to select the solution with minimal nuclear norm instead, which often matches
the minimal rank solution [28].

Another strategy is to use a DLN fit the matrix A∗ and to train it with gradient descent on the
loss LMC(θ) = CMC(Aθ) where CMC is the Matrix Completion cost

CMC(A) =
1

N

N∑
k=1

(
A∗ikjk −Aθ,ikjk

)2
.

The matrix Aθ(t→∞) learned in this manner approximates the true function A∗ well, suggesting that
the linear map learned by the DLN is low rank. However it is not obvious why gradient descent is
naturally biased towards low-rank solutions.

Initialization Scale and Loss Surface

Our goal is to understand the training dynamics of DLN as a function of the initialization scale
−γ: we initialize the parameters θ1, . . . , θP as i.i.d. Gaussian N (0, w−γ) with variance w−γ where
w = n1 = · · · = nL−1 is the width of the network. A small γ corresponds to large initialization
and a large γ corresponds to small initialization. We will only consider the case γ ≥ 1− 1

L , as any
larger initialization scale leads to an exploding variance of the network matrix Aθ at initialization.

As the initialization scale γ increases and leaves the NTK regime γ ≥ 1 we observe a significant
change in the loss surface L(θ) around initialization, suggesting the existence of three regimes:

Theorem 1.3. Let the parameters θ be sampled with i.i.d. N (0, w−γ) entries and denote dm and
ds the distance between θ and the closest global minimum resp. saddle of the MC loss9 LMC(θ) =
C(Aθ). We have:

1. NTK regime (1− 1
L ≤ γ < 1): dm � w−

(1−γ)(L−1)
2 and ds � w

1−γ
2 .

2. Critical regime (γ = 1): dm � 1 and ds � 1.

9The result actually holds for a general cost C with a few conditions, see Section 9.

58 CHAPTER 1. INTRODUCTION

3. Saddle-to-Saddle regime (γ > 1): dm � 1 and ds � w−
γ−1

2 .

For any two random variables f(w) and g(w) which depend on w, we write f(w) � g(w) if both
f(w)/g(w) and g(w)/f(w) are stochastically bounded as w →∞.

Theorem 1.3 shows a significant change between large initializations γ < 1 where the initializa-
tion is close to a global minimum but far from any saddle and small initializations γ > 1 where the
initialization is close to a saddle but far from any global minima.

In the NTK regime, gradient flow converges to one of the close global minima directly. In Section
1.9, we discuss the resulting dynamics using the limiting NTK and show the absence of low-rank
bias in this regime, suggesting that the NTK regime should be avoided for Matrix Completion.

The critical regime has been studied for shallow non-linear networks (L = 2) in [35, 183] or for
the deep case in [229]. This regime interpolates between the NTK and Saddle-to-Saddle regime:
by changing the variance at initialization by a constant, i.e. taking σ2 = cw−1 for a constant
c, one can obtain dynamics which are either close to the NTK regime for large c or close to the
Saddle-to-Saddle regime for small c. In contrast, the asymptotic dynamics in the two other regimes
should be less affected by such constant changes to the variance.

The dynamics in the Saddle-to-Saddle regime are studied in Section 1.9. A difficulty in the study
of this regime is that since the initial parameters converge to a saddle as w → 0, the time it takes for
gradient descent to escape the saddle grows with w, and up to this ‘escape time’ nothing happens.
In Section 1.9, we will fix the width w and let the variance of the parameters at initialization go to
zero, which in a sense corresponds to the case γ → +∞. We conjecture that the dynamics observed
in this limit are a good description of the whole regime γ > 1.

NTK Regime for Deep Linear Networks

The infinite-width limit with scaling γ = 1− 1
L is the same (up to a rescaling of the learning rate) as

the limit we studied in Sections 1.5 and 1.5. In this limit, the rescaled NTK w−(1− 1
L)Θ(L) converges

to the deterministic and constant limiting kernel Θ
(L)
∞ (x, y) = LxT y. The limiting dynamics of the

network matrix Aθ are equivalent in this limit to the gradient descent on the cost C : Rdout×din → R
directly:

∂tAθ(t) = −Lw(1− 1
L)∇C(Aθ).

Recent results [229] show that the NTK regime extends to initialization scales in the range 1− 1
L ≥

γ > 1, which is in line with our description of the loss surface from Theorem 1.3.
The training dynamics in the NTK regime exhibits no low-rank bias: when trained on the MC

cost CMC , the entries of the network matrix Aθ(t),ij at indices i, j which were not observed do
not change during training in the infinite-width limit. At the end of training, the network matrix
Aθ(t→∞) matches the true matrix A∗ on the observed entries and has i.i.d. standard Gaussian
N (0, 1) values in the unobserved entries. In other terms, a DLN in the linear regime returns
random guesses on a Matrix Completion task. We argue that this is because of the lack of bias
towards low rank matrices in the NTK regime, in contrast to the Saddle-to-Saddle whose low-rank
bias we now discuss.

Saddle-to-Saddle Dynamics

Given a random initialization θ0 with i.i.d. standard Gaussian entries N (0, 1), our goal is to
study the dynamics of gradient flow θα(t) initialized at αθ0 in the limit as α↘ 0, which should be

1.9. REGIMES OF TRAINING 59

0

0 5000 10000 15000 20000 25000 30000
iterations

10 5

10 4

10 3

10 2

10 1

100

M
C

lo
ss

train
test

iterations
10 6

10 5

10 4

10 3

10 2

10 1

100

M
C

lo
ss

...
...

Figure 1.9.1: Saddle-to-Saddle dynamics: A DLN (L = 4, w = 100) with a small initialization
(γ = 2) trained on a MC loss fitting a 10 × 10 matrix of rank 3. Left: Projection onto a plane
of the gradient flow path θα in parameter space (in blue) and of the sequence of 3 limiting paths
(in orange, green and red), starting from the origin (+) and passing through 2 saddles (·) before
converging. Middle: Train (solid) and test (dashed) MC costs through training. We observe three
plateaus, corresponding to the three saddles visited. Right: The train (solid) and test (dashed)
losses of the three paths plotted sequentially, in the saddle-to-saddle limit; the dots represent an
infinite amount of steps separating these paths.

representative of the dynamics in the Saddle-to-Saddle regime (γ > 1). Since there is a saddle-point
at the origin in parameter space, the limiting dynamics at any finite time t is trivial: limα↘0 θα(t) =
0.

However, under the assumption that gradient flow escapes the saddle at the origin (which we
show happens with prob. 1 when L ≤ 3 and with prob. at least 1/2 otherwise), we can define an
escape time tα such that the limit limα↘0 θα(tα + t) is non-trivial for any fixed t. The escape time
scales as − logα for shallow networks (L = 2) and as α−(L−2) for deep networks (L > 2). The
difference in scaling is due to the fact that for shallow networks the saddle at the origin is strict
(i.e. the Hessian at the origin is non-zero) whereas for deep networks it is not strict (the first L− 1
derivatives of the loss at the origin vanish). This limiting path limα↘0 θα(tα + t) is unique up to
symmetries:

Theorem 1.4. (sketch) Under the assumption that the gradient flow path escapes the saddle, there
is a gradient flow path θ1(t) of a width 1 network such that

lim
α↘0

θα(tα + t) = RI(1→w)θ1(t),

where only the escape time tα and the rotation R depend on the random initialization θ0.

Sketch of proof. The proof relies on the fact that gradient flow naturally escapes along an optimal
escape path, i.e. a gradient flow path θ(t) which escapes the saddle at the origin (limt→−∞ θ(t) = 0)
at an optimal rate. We then show a bijection between these optimal escape paths and the optimal
escape paths of L-th order Taylor approximation of the flow around the origin, allowing us to show
the unicity (up to symmetries) of these optimal escape paths.

The bijection between optimal escape paths at the heart of the proof can be extended to fast
escape paths (paths that escape at a rate larger than some lower bound) and we prove its existence

60 CHAPTER 1. INTRODUCTION

for a general loss. It can be viewed as a generalization of the Hartman-Grobmann Theorem to
non-strict saddles and might be of independent interest to study non-strict saddles.

Remark 1.8. A weaker version of this result was proven in [135]. The distinctions between the two
are discussed in the original paper [107], see Section 9. The main advantage of our approach is
that it does not rely on tricks specific to linear networks, which is important if we want to one day
generalize these results to the non-linear case.

Theorem 1.4 implies that for small α the gradient flow path θα(t) will first get stuck at the
saddle at the origin up to a time tα, after which it will follow the inclusion of a width 1 path θ1(t).
The path θ1(t) converges to a critical point ϑ1 of the width 1 loss as t → ∞, while ϑ1 is typically
a local minimum amongst width 1 network, its inclusion RI(1→w)ϑ1 will typically be a saddle if
w > 1. Theorem 1.4 implies that as α↘ 0 the gradient flow path θα will approach this new saddle
RI(1→w)ϑ1. At this point, we conjecture that gradient flow will escape this second saddle along the
inclusion of a width 2 path RI(2→w)θ2(t) and then approach another saddle RI(2→w)ϑ2(t) and so
on and so forth until reaching a global minimum.

This can be interpreted as DLNs implementing a greedy low-rank algorithm, which tries to
minimize the cost C first among the matrices of rank 1, then those of rank 2, and so on until
reaching a global minimum (a more detailed version of this algorithm is presented in the paper
[107], see Section 9). While this algorithm might not always recover the minimal rank solution, it
has a clear low-rank bias.

These Saddle-to-Saddle dynamics are visible when one plots the train and test error throughout
training. Each of the saddles that is approached leads to a plateau where both test and train error
remain almost constant for many gradient descent steps. As α gets smaller, these plateaus become
longer.
Remark 1.9. Note that Theorem 1.4 implies that the time evolution of the NTK is significant.
Indeed we know that at initialization the NTK is of order α2(L−1). However at the escape time
tα, it is of order 1 (since as α ↘ 0 the parameters at the escape time θα(tα) converge to a set of
parameters RI(1→w)θ1(0) with a non-zero NTK). In the α ↘ 0 limit, the change in time of the
NTK becomes infinitely larger than the size of the NTK at initialization.

1.10 Conclusion

This thesis started with the introduction of the NTK and a proof of its convergence to a deterministic
and constant limit as the width of the network grows to infinity. This result implies the existence
of a NTK regime where DNNs can be approximated by their tangent linear models, leading to
surprisingly simple training dynamics.

The NTK analysis can be extended to describe the loss surface of DNNs along the training
path in the infinite-width limit, revealing the fact that gradient flow remains in a region of the loss
surface of DNNs where the dynamics resembles that of a convex function.

The limiting dynamics of DNNs as described by the NTK imply a direct link between DNNs and
Kernel Ridge Regression (KRR). Relying and improving upon tools from Random Matrix Theory,
the test error of KRR – and as an extension that of infinitely-wide DNNs – can be approximated
in terms of the eigendecomposition of the kernel.

These results reveal the importance of the spectral decay of the NTK to understand both con-
vergence and generalization of DNNs. The spectral bias of DNNs is affected by architectural choices
such as the non-linearity σ, the bias strength β, the depth L as well as the use of normalization.

1.10. CONCLUSION 61

Analysing these effects helps better understand practical problems such as mode collapse in GANs,
leading to solutions backed by theory. Likewise, the NTK analysis of DNN-based topology op-
timization leads to theoretically-motivated architecture choices to ensure translation invariances
inherent in the problem, and to tune the level of details in the final shape.

The NTK allows for a very precise description of infinitely wide DNNs, it is natural to ask
how similar finite-width networks are to their infinite-width counterparts. An empirical analysis
identified a number of features of the test loss of DNNs as the width grows, related to the Double
Descent curve. These features can be analyzed mathematically in the Random Features setup,
which is closely related to DNNs in the NTK regime.

Thanks to these results, and thanks to the contributions of many other researchers, our un-
derstanding of the NTK regime is now almost complete. However there exists a number of active
regimes, characterized by a non-constant NTK, whose dynamics remain ill-understood at the mo-
ment. We analyze one such active regime in linear networks, which appears for very small initializa-
tion, where the training path approaches a sequence of saddles, each corresponding to linear maps
of increasing rank, leading to a bias towards low-rank solution.

The NTK is a first step in the development of a conceptual understanding of DNNs, with a well-
understood NTK regime and a number of less understood active regimes. This suggests a strategy
for the development of a theory of Deep Learning: we need to identify these regimes, understand
under which condition they arise and describe the resulting dynamics and generalization properties.
In spite of their differences, active regimes are linked by some common properties, such as feature
learning and some form of sparsity, which are absent in the NTK regime. A lot of work remains to
be done formalizing these properties and understanding how they arise.

Chapter 2

Neural Tangent Kernel: Convergence and
Generalization in Neural Networks

Abstract

At initialization, artificial neural networks (ANNs) are equivalent to Gaussian processes in
the infinite-width limit [159, 42, 47, 126, 46], thus connecting them to kernel methods. We
prove that the evolution of an ANN during training can also be described by a kernel: during
gradient descent on the parameters of an ANN, the network function fθ (which maps input
vectors to output vectors) follows the kernel gradient of the functional cost (which is convex,
in contrast to the parameter cost) w.r.t. a new kernel: the Neural Tangent Kernel (NTK).
This kernel is central to describe the generalization features of ANNs. While the NTK is
random at initialization and varies during training, in the infinite-width limit it converges to
an explicit limiting kernel and it stays constant during training. This makes it possible to
study the training of ANNs in function space instead of parameter space. Convergence of the
training can then be related to the positive-definiteness of the limiting NTK. We prove the
positive-definiteness of the limiting NTK when the data is supported on the sphere and the
non-linearity is non-polynomial.

We then focus on the setting of least-squares regression and show that in the infinite-
width limit, the network function fθ follows a linear differential equation during training. The
convergence is fastest along the largest kernel principal components of the input data with
respect to the NTK, hence suggesting a theoretical motivation for early stopping.

Finally we study the NTK numerically, observe its behavior for wide networks, and compare
it to the infinite-width limit.

2.1 Introduction

Artificial neural networks (ANNs) have achieved impressive results in numerous areas of machine
learning. While it has long been known that ANNs can approximate any function with sufficiently
many hidden neurons [93, 133], it is not known what the optimization of ANNs converges to.
Indeed the loss surface of neural networks optimization problems is highly non-convex: it has a
high number of saddle points which may slow down the convergence [44]. A number of results
[38, 170, 171] suggest that for wide enough networks, there are very few “bad” local minima, i.e.
local minima with much higher cost than the global minimum. More recently, the investigation of

63

64
CHAPTER 2. NEURAL TANGENT KERNEL: CONVERGENCE AND GENERALIZATION

IN NEURAL NETWORKS

the geometry of the loss landscape at initialization has been the subject of a precise study [112].
The analysis of the dynamics of training in the large-width limit for shallow networks has seen
recent progress as well [153]. To the best of the authors knowledge, the dynamics of deep networks
has however remained an open problem until the present paper: see the contributions section below.

A particularly mysterious feature of ANNs is their good generalization properties in spite of
their usual over-parametrization [190]. It seems paradoxical that a reasonably large neural network
can fit random labels, while still obtaining good test accuracy when trained on real data [236]. It
can be noted that in this case, kernel methods have the same properties [20].

In the infinite-width limit, ANNs have a Gaussian distribution described by a kernel [159, 42,
47, 126, 46]. These kernels are used in Bayesian inference or Support Vector Machines, yielding
results comparable to ANNs trained with gradient descent [37, 126]. We will see that in the same
limit, the behavior of ANNs during training is described by a related kernel, which we call the
neural tangent network (NTK).

Contribution

We study the network function fθ of an ANN, which maps an input vector to an output vector,
where θ is the vector of the parameters of the ANN. In the limit as the widths of the hidden layers
tend to infinity, the network function at initialization, fθ converges to a Gaussian distribution
[159, 42, 47, 126, 46].

In this paper, we investigate fully connected networks in this infinite-width limit, and describe
the dynamics of the network function fθ during training:

• During gradient descent, we show that the dynamics of fθ follows that of the so-called kernel
gradient descent in function space with respect to a limiting kernel, which only depends on
the depth of the network, the choice of nonlinearity and the initialization variance.

• The convergence properties of ANNs during training can then be related to the positive-
definiteness of the infinite-width limit NTK. In the case when the dataset is supported on
a sphere, we prove this positive-definiteness using recent results on dual activation functions
[42]. The values of the network function fθ outside the training set is described by the NTK,
which is crucial to understand how ANN generalize.

• For a least-squares regression loss, the network function fθ follows a linear differential equation
in the infinite-width limit, and the eigenfunctions of the Jacobian are the kernel principal
components of the input data. This shows a direct connection to kernel methods and motivates
the use of early stopping to reduce overfitting in the training of ANNs.

• Finally we investigate these theoretical results numerically for an artificial dataset (of points
on the unit circle) and for the MNIST dataset. In particular we observe that the behavior of
wide ANNs is close to the theoretical limit.

2.2 Neural networks

In this article, we consider fully-connected ANNs with layers numbered from 0 (input) to L (output),
each containing n0, . . . , nL neurons, and with a Lipschitz, twice differentiable nonlinearity function

2.3. KERNEL GRADIENT 65

σ : R→ R, with bounded second derivative 1.
This paper focuses on the ANN realization function F (L) : RP → F , mapping parameters θ to

functions fθ in a space F . The dimension of the parameter space is P =
∑L−1
`=0 (n` + 1)n`+1: the

parameters consist of the connection matrices W (`) ∈ Rn`×n`+1 and bias vectors b(`) ∈ Rn`+1 for
` = 0, ..., L− 1. In our setup, the parameters are initialized as iid Gaussians N (0, 1).

For a fixed distribution pin on the input space Rn0 , the function space F is defined as {f : Rn0 → RnL}.
On this space, we consider the seminorm || · ||pin , defined in terms of the bilinear form

〈f, g〉pin = Ex∼pin
[
f(x)T g(x)

]
.

In this paper, we assume that the input distribution pin is the empirical distribution on a finite
dataset x1, ..., xN , i.e the sum of Dirac measures 1

N

∑N
i=0 δxi .

We define the network function by fθ(x) := α̃(L)(x; θ), where the functions α̃(`)(·; θ) : Rn0 → Rn`
(called preactivations) and α(`)(·; θ) : Rn0 → Rn` (called activations) are defined from the 0-th to
the L-th layer by:

α(0)(x; θ) = x

α̃(`+1)(x; θ) =
1
√
n`
W (`)α(`)(x; θ) + βb(`)

α(`)(x; θ) = σ(α̃(`)(x; θ)),

where the nonlinearity σ is applied entrywise. The scalar β > 0 is a parameter which allows us to
tune the influence of the bias on the training.

Remark 2.1. Our definition of the realization function F (L) slightly differs from the classical one.
Usually, the factors 1√

n`
and the parameter β are absent and the parameters are initialized using

what is sometimes called LeCun initialization, taking W
(`)
ij ∼ N (0, 1

n`
) and b

(`)
j ∼ N (0, 1) (or

sometimes b(`)j = 0) to compensate. While the set of representable functions F (L)(RP) is the
same for both parametrizations (with or without the factors 1√

n`
and β), the derivatives of the

realization function with respect to the connections ∂
W

(`)
ij
F (L) and bias ∂

b
(`)
j
F (L) are scaled by 1√

n`

and β respectively in comparison to the classical parametrization.
The factors 1√

n`
are key to obtaining a consistent asymptotic behavior of neural networks as the

widths of the hidden layers n1, ..., nL−1 grow to infinity. However a side-effect of these factors is that
they reduce greatly the influence of the connection weights during training when n` is large: the
factor β is introduced to balance the influence of the bias and connection weights. In our numerical
experiments, we take β = 0.1 and use a learning rate of 1.0, which is larger than usual, see Section
2.6. This gives a behaviour similar to that of a classical network of width 100 with a learning rate
of 0.01.

2.3 Kernel gradient

The training of an ANN consists in optimizing fθ in the function space F with respect to a functional
cost C : F → R, such as a regression or cross-entropy cost. Even for a convex functional cost C, the

1While these smoothness assumptions greatly simplify the proofs of our results, they do not seem to be strictly
needed for the results to hold true.

66
CHAPTER 2. NEURAL TANGENT KERNEL: CONVERGENCE AND GENERALIZATION

IN NEURAL NETWORKS

composite cost C ◦ F (L) : RP → R is in general highly non-convex [38]. We will show that during
training, the network function fθ follows a descent along the kernel gradient with respect to the
Neural Tangent Kernel (NTK) which we introduce in Section 2.4. This makes it possible to study
the training of ANNs in the function space F , on which the cost C is convex.

A multi-dimensional kernel K is a function Rn0×Rn0 → RnL×nL , which maps any pair (x, x′) to
an nL×nL-matrix such that K(x, x′) = K(x′, x)T (equivalently K is a symmetric tensor in F⊗F).
Such a kernel defines a bilinear map on F , taking the expectation over independent x, x′ ∼ pin:

〈f, g〉K := Ex,x′∼pin
[
f(x)TK(x, x′)g(x′)

]
.

The kernel K is positive definite with respect to || · ||pin if ||f ||pin > 0 =⇒ ||f ||K > 0.
We denote by F∗ the dual of F with respect to pin, i.e. the set of linear forms µ : F → R of the

form µ = 〈d, ·〉pin for some d ∈ F . Two elements of F define the same linear form if and only if they
are equal on the data. The constructions in the paper do not depend on the element d ∈ F chosen
in order to represent µ as 〈d, ·〉pin . Using the fact that the partial application of the kernel Ki,·(x, ·)
is a function in F , we can define a map ΦK : F∗ → F mapping a dual element µ = 〈d, ·〉pin to the
function fµ = ΦK(µ) with values:

fµ,i(x) = µKi,·(x, ·) = 〈d,Ki,·(x, ·)〉pin .

For our setup, which is that of a finite dataset x1, . . . , xn ∈ Rn0 , the cost functional C only
depends on the values of f ∈ F at the data points. As a result, the (functional) derivative of the
cost C at a point f0 ∈ F can be viewed as an element of F∗, which we write ∂inf C|f0

. We denote
by d|f0

∈ F , a corresponding dual element, such that ∂inf C|f0
= 〈d|f0

, ·〉pin .
The kernel gradient ∇KC|f0 ∈ F is defined as ΦK

(
∂inf C|f0

)
. In contrast to ∂inf C which is only

defined on the dataset, the kernel gradient generalizes to values x outside the dataset thanks to the
kernel K:

∇KC|f0
(x) =

1

N

N∑
j=1

K(x, xj)d|f0(xj).

A time-dependent function f(t) follows the kernel gradient descent with respect to K if it satisfies
the differential equation

∂tf(t) = −∇KC|f(t).

During kernel gradient descent, the cost C(f(t)) evolves as

∂tC|f(t) = −
〈
d|f(t),∇KC|f(t)

〉
pin

= −
∥∥d|f(t)

∥∥2

K
.

Convergence to a critical point of C is hence guaranteed if the kernel K is positive definite with
respect to || · ||pin : the cost is then strictly decreasing except at points such that ||d|f(t)||pin = 0.
If the cost is convex and bounded from below, the function f(t) therefore converges to a global
minimum as t→∞.

Random functions approximation

As a starting point to understand the convergence of ANN gradient descent to kernel gradient
descent in the infinite-width limit, we introduce a simple model, inspired by the approach of [176].

2.4. NEURAL TANGENT KERNEL 67

A kernel K can be approximated by a choice of P random functions f (p) sampled independently
from any distribution on F whose (non-centered) covariance is given by the kernel K:

E[f
(p)
k (x)f

(p)
k′ (x′)] = Kkk′(x, x

′).

These functions define a random linear parametrization F lin : RP → F

θ 7→ f linθ =
1√
P

P∑
p=1

θpf
(p).

The partial derivatives of the parametrization are given by

∂θpF
lin(θ) =

1√
P
f (p).

Optimizing the cost C ◦ F lin through gradient descent, the parameters follow the ODE:

∂tθp(t) = −∂θp(C ◦ F lin)(θ(t)) = − 1√
P
∂inf C|f lin

θ(t)
f (p) = − 1√

P

〈
d|f lin

θ(t)
, f (p)

〉
pin

.

As a result the function f linθ(t) evolves according to

∂tf
lin
θ(t) =

1√
P

P∑
p=1

∂tθp(t)f
(p) = − 1

P

P∑
p=1

〈
d|f lin

θ(t)
, f (p)

〉
pin

f (p),

where the right-hand side is equal to the kernel gradient −∇K̃C with respect to the tangent kernel

K̃ =

P∑
p=1

∂θpF
lin(θ)⊗ ∂θpF lin(θ) =

1

P

P∑
p=1

f (p) ⊗ f (p).

This is a random nL-dimensional kernel with values K̃ii′(x, x
′) = 1

P

∑P
p=1 f

(p)
i (x)f

(p)
i′ (x′).

Performing gradient descent on the cost C ◦ F lin is therefore equivalent to performing kernel
gradient descent with the tangent kernel K̃ in the function space. In the limit as P → ∞, by the
law of large numbers, the (random) tangent kernel K̃ tends to the fixed kernel K, which makes this
method an approximation of kernel gradient descent with respect to the limiting kernel K.

2.4 Neural tangent kernel

For ANNs trained using gradient descent on the composition C ◦F (L), the situation is very similar
to that studied in the Section 2.3. During training, the network function fθ evolves along the
(negative) kernel gradient

∂tfθ(t) = −∇Θ(L)C|fθ(t)
with respect to the neural tangent kernel (NTK)

Θ(L)(θ) =

P∑
p=1

∂θpF
(L)(θ)⊗ ∂θpF (L)(θ).

68
CHAPTER 2. NEURAL TANGENT KERNEL: CONVERGENCE AND GENERALIZATION

IN NEURAL NETWORKS

However, in contrast to F lin, the realization function F (L) of ANNs is not linear. As a consequence,
the derivatives ∂θpF (L)(θ) and the neural tangent kernel depend on the parameters θ. The NTK
is therefore random at initialization and varies during training, which makes the analysis of the
convergence of fθ more delicate.

In the next subsections, we show that, in the infinite-width limit, the NTK becomes deterministic
at initialization and stays constant during training. Since fθ at initialization is Gaussian in the
limit, the asymptotic behavior of fθ during training can be explicited in the function space F .

Initialization

As observed in [159, 42, 47, 126, 46], the output functions fθ,i for i = 1, ..., nL tend to iid Gaussian
processes in the infinite-width limit (a proof in our setup is given in the appendix):

Proposition 2.1. For a network of depth L at initialization, with a Lipschitz nonlinearity σ, and
in the limit as n1, ..., nL−1 → ∞, the output functions fθ,k, for k = 1, ..., nL, tend (in law) to iid
centered Gaussian processes of covariance Σ(L), where Σ(L) is defined recursively by:

Σ(1)(x, x′) =
1

n0
xTx′ + β2

Σ(L+1)(x, x′) = Ef∼N(0,Σ(L))[σ(f(x))σ(f(x′))] + β2,

taking the expectation with respect to a centered Gaussian process f of covariance Σ(L).

Remark 2.2. Strictly speaking, the existence of a suitable Gaussian measure with covariance Σ(L)

is not needed: we only deal with the values of f at x, x′ (the joint measure on f(x), f(x′) is simply
a Gaussian vector in 2D). For the same reasons, in the proof of Proposition B.1 and Theorem 2.1,
we will freely speak of Gaussian processes without discussing their existence.

The first key result of our paper (proven in the appendix) is the following: in the same limit,
the Neural Tangent Kernel (NTK) converges in probability to an explicit deterministic limit.

Theorem 2.1. For a network of depth L at initialization, with a Lipschitz nonlinearity σ, and
in the limit as the layers width n1, ..., nL−1 → ∞, the NTK Θ(L) converges in probability to a
deterministic limiting kernel:

Θ(L) → Θ(L)
∞ ⊗ IdnL .

The scalar kernel Θ
(L)
∞ : Rn0 × Rn0 → R is defined recursively by

Θ(1)
∞ (x, x′) = Σ(1)(x, x′)

Θ(L+1)
∞ (x, x′) = Θ(L)

∞ (x, x′)Σ̇(L+1)(x, x′) + Σ(L+1)(x, x′),

where
Σ̇(L+1) (x, x′) = Ef∼N(0,Σ(L)) [σ̇ (f (x)) σ̇ (f (x′))] ,

taking the expectation with respect to a centered Gaussian process f of covariance Σ(L), and where
σ̇ denotes the derivative of σ.

Remark 2.3. By Rademacher’s theorem, σ̇ is defined everywhere, except perhaps on a set of zero
Lebesgue measure.

Note that the limiting Θ
(L)
∞ only depends on the choice of σ, the depth of the network and the

variance of the parameters at initialization (which is equal to 1 in our setting).

2.5. LEAST-SQUARES REGRESSION 69

Training

Our second key result is that the NTK stays asymptotically constant during training. This applies
for a slightly more general definition of training: the parameters are updated according to a training
direction dt ∈ F :

∂tθp(t) =
〈
∂θpF

(L)(θ(t)), dt

〉
pin

.

In the case of gradient descent, dt = −d|fθ(t) (see Section 2.3), but the direction may depend on
another network, as is the case for e.g. Generative Adversarial Networks [78]. We only assume
that the integral

∫ T
0
‖dt‖pindt stays stochastically bounded as the width tends to infinity, which is

verified for e.g. least-squares regression, see Section 2.5.

Theorem 2.2. Assume that σ is a Lipschitz, twice differentiable nonlinearity function, with bounded
second derivative. For any T such that the integral

∫ T
0
‖dt‖pindt stays stochastically bounded, as

n1, ..., nL−1 →∞, we have, uniformly for t ∈ [0, T],

Θ(L)(t)→ Θ(L)
∞ ⊗ IdnL .

As a consequence, in this limit, the dynamics of fθ is described by the differential equation

∂tfθ(t) = Φ
Θ

(L)
∞ ⊗IdnL

(
〈dt, ·〉pin

)
.

Remark 2.4. As the proof of the theorem (in the appendix) shows, the variation during training of
the individual activations in the hidden layers shrinks as their width grows. However their collective
variation is significant, which allows the parameters of the lower layers to learn: in the formula of
the limiting NTK Θ

(L+1)
∞ (x, x′) in Theorem 2.1, the second summand Σ(L+1) represents the learning

due to the last layer, while the first summand represents the learning performed by the lower layers.

As discussed in Section 2.3, the convergence of kernel gradient descent to a critical point of the
cost C is guaranteed for positive definite kernels. The limiting NTK is positive definite if the span
of the derivatives ∂θpF (L), p = 1, ..., P becomes dense in F w.r.t. the pin-norm as the width grows
to infinity. It seems natural to postulate that the span of the preactivations of the last layer (which
themselves appear in ∂θpF (L), corresponding to the connection weights of the last layer) becomes
dense in F , for a large family of measures pin and nonlinearities (see e.g. [93, 133] for classical
theorems about ANNs and approximation). In the case when the dataset is supported on a sphere,
the positive-definiteness of the limiting NTK can be shown using Gaussian integration techniques
and existing positive-definiteness criteria, as given by the following proposition, proven in Appendix
B.1:

Proposition 2.2. For a non-polynomial Lipschitz nonlinearity σ, for any input dimension n0,
the restriction of the limiting NTK Θ

(L)
∞ to the unit sphere Sn0−1 = {x ∈ Rn0 : xTx = 1} is

positive-definite if L ≥ 2.

2.5 Least-squares regression

Given a goal function f∗ and input distribution pin, the least-squares regression cost is

C(f) =
1

2
||f − f∗||2pin =

1

2
Ex∼pin

[
‖f(x)− f∗(x)‖2

]
.

70
CHAPTER 2. NEURAL TANGENT KERNEL: CONVERGENCE AND GENERALIZATION

IN NEURAL NETWORKS

Theorems 2.1 and B.2 apply to an ANN trained on such a cost. Indeed the norm of the training
direction ‖d(f)‖pin = ‖f∗ − f‖pin is strictly decreasing during training, bounding the integral. We
are therefore interested in the behavior of a function ft during kernel gradient descent with a kernel
K (we are of course especially interested in the case K = Θ

(L)
∞ ⊗ IdnL):

∂tft = ΦK

(
〈f∗ − f, ·〉pin

)
.

The solution of this differential equation can be expressed in terms of the map Π : f 7→ ΦK

(
〈f, ·〉pin

)
:

ft = f∗ + e−tΠ(f0 − f∗)

where e−tΠ =
∑∞
k=0

(−t)k
k! Πk is the exponential of −tΠ. If Π can be diagonalized by eigenfunctions

f (i) with eigenvalues λi, the exponential e−tΠ has the same eigenfunctions with eigenvalues e−tλi .
For a finite dataset x1, ..., xN of size N , the map Π takes the form

Π(f)k(x) =
1

N

N∑
i=1

nL∑
k′=1

fk′(xi)Kkk′(xi, x).

The map Π has at most NnL positive eigenfunctions, and they are the kernel principal components
f (1), ..., f (NnL) of the data with respect to to the kernelK [198, 200]. The corresponding eigenvalues
λi is the variance captured by the component.

Decomposing the difference (f∗ − f0) = ∆0
f + ∆1

f + ...+ ∆NnL
f along the eigenspaces of Π, the

trajectory of the function ft reads

ft = f∗ + ∆0
f +

NnL∑
i=1

e−tλi∆i
f ,

where ∆0
f is in the kernel (null-space) of Π and ∆i

f ∝ f (i).
The above decomposition can be seen as a motivation for the use of early stopping. The

convergence is indeed faster along the eigenspaces corresponding to larger eigenvalues λi. Early
stopping hence focuses the convergence on the most relevant kernel principal components, while
avoiding to fit the ones in eigenspaces with lower eigenvalues (such directions are typically the
‘noisier’ ones: for instance, in the case of the RBF kernel, lower eigenvalues correspond to high
frequency functions).

Note that by the linearity of the map e−tΠ, if f0 is initialized with a Gaussian distribution (as
is the case for ANNs in the infinite-width limit), then ft is Gaussian for all times t. Assuming
that the kernel is positive definite on the data (implying that the NnL × NnL Gram marix K̃ =
(Kkk′(xi, xj))ik,jk′ is invertible), as t → ∞ limit, we get that f∞ = f∗ + ∆0

f = f0 −
∑
i ∆i

f takes
the form

f∞,k(x) = κTx,kK̃
−1y∗ +

(
f0(x)− κTx,kK̃−1y0

)
,

with the Nnl-vectors κx,k, y∗ and y0 given by

κx,k = (Kkk′(x, xi))i,k′

y∗ = (f∗k (xi))i,k

2.6. NUMERICAL EXPERIMENTS 71

3 2 1 0 1 2 3

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 n = 500, t = 0
n = 500, t = 20
n = 10000, t = 0
n = 10000, 0

n = 500, t = 0
n = 500, t = 200
n = 10000, t = 0
n = 10000, t = 200

Figure 2.6.1: Convergence of the NTK to a fixed
limit for two widths n and two times t.

3 2 1 0 1 2 3

0.4

0.2

0.0

0.2

0.4

f
(s

in
(

),
co

s(
))

n = 50
n = 1000
n = , P50
n = , {P10, P90}

Figure 2.6.2: Networks function fθ near conver-
gence for two widths n and 10th, 50th and 90th
percentiles of the asymptotic Gaussian distribu-
tion.

y0 = (f0,k(xi))i,k .

The first term, the mean, has an important statistical interpretation: it is the maximum-a-posteriori
(MAP) estimate given a Gaussian prior on functions fk ∼ N (0,Θ

(L)
∞) and the conditions fk(xi) =

f∗k (xi) . Equivalently, it is equal to the kernel ridge regression [200] as the regularization goes to
zero (λ→ 0). The second term is a centered Gaussian whose variance vanishes on the points of the
dataset.

2.6 Numerical experiments

In the following numerical experiments, fully connected ANNs of various widths are compared to
the theoretical infinite-width limit. We choose the size of the hidden layers to all be equal to the
same value n := n1 = ... = nL−1 and we take the ReLU nonlinearity σ(x) = max(0, x).

In the first two experiments, we consider the case n0 = 2. Moreover, the input elements are
taken on the unit circle. This can be motivated by the structure of high-dimensional data, where
the centered data points often have roughly the same norm 2.

In all experiments, we took nL = 1 (note that by our results, a network with nL outputs behaves
asymptotically like nL networks with scalar outputs trained independently). Finally, the value of
the parameter β is chosen as 0.1, see Remark 2.1.

Convergence of the NTK

The first experiment illustrates the convergence of the NTK Θ(L) of a network of depth L = 4 for
two different widths n = 500, 10000. The function Θ(4)(x0, x) is plotted for a fixed x0 = (1, 0) and

2The classical example is for data following a Gaussian distribution N (0, Idn0): as the dimension n0 grows, all
data points have approximately the same norm

√
n0.

72
CHAPTER 2. NEURAL TANGENT KERNEL: CONVERGENCE AND GENERALIZATION

IN NEURAL NETWORKS

x = (cos(γ), sin(γ)) on the unit circle in Figure 2.6.1. To observe the distribution of the NTK, 10
independent initializations are performed for both widths. The kernels are plotted at initialization
t = 0 and then after 200 steps of gradient descent with learning rate 1.0 (i.e. at t = 200). We
approximate the function f∗(x) = x1x2 with a least-squares cost on random N (0, 1) inputs.

For the wider network, the NTK shows less variance and is smoother. It is interesting to note
that the expectation of the NTK is very close for both networks widths. After 200 steps of training,
we observe that the NTK tends to “inflate”. As expected, this effect is much less apparent for
the wider network (n = 10000) where the NTK stays almost fixed, than for the smaller network
(n = 500).

Kernel regression

For a regression cost, the infinite-width limit network function fθ(t) has a Gaussian distribution for
all times t and in particular at convergence t→∞ (see Section 2.5). We compared the theoretical
Gaussian distribution at t → ∞ to the distribution of the network function fθ(T) of a finite-width
network for a large time T = 1000. For two different widths n = 50, 1000 and for 10 random
initializations each, a network is trained on a least-squares cost on 4 points of the unit circle for
1000 steps with learning rate 1.0 and then plotted in Figure 2.6.2.

We also approximated the kernels Θ
(4)
∞ and Σ(4) using a large-width network (n = 10000) and

used them to calculate and plot the 10th, 50th and 90-th percentiles of the t→∞ limiting Gaussian
distribution.

The distributions of the network functions are very similar for both widths: their mean and
variance appear to be close to those of the limiting distribution t → ∞. Even for relatively small
widths (n = 50), the NTK gives a good indication of the distribution of fθ(t) as t→∞.

Convergence along a principal component

We now illustrate our result on the MNIST dataset of handwritten digits made up of grayscale
images of dimension 28× 28, yielding a dimension of n0 = 784.

We computed the first 3 principal components of a batch of N = 512 digits with respect to
the NTK of a high-width network n = 10000 (giving an approximation of the limiting kernel)
using a power iteration method. The respective eigenvalues are λ1 = 0.0457, λ2 = 0.00108 and
λ3 = 0.00078. The kernel PCA is non-centered, the first component is therefore almost equal to
the constant function, which explains the large gap between the first and second eigenvalues3. The
next two components are much more interesting as can be seen in Figure 2.6.3a, where the batch
is plotted with x and y coordinates corresponding to the 2nd and 3rd components.

We have seen in Section 2.5 how the convergence of kernel gradient descent follows the kernel
principal components. If the difference at initialization f0 − f∗ is equal (or proportional) to one of
the principal components f (i), then the function will converge along a straight line (in the function
space) to f∗ at an exponential rate e−λit.

We tested whether ANNs of various widths n = 100, 1000, 10000 behave in a similar manner.
We set the goal of the regression cost to f∗ = fθ(0) + 0.5f (2) and let the network converge. At
each time step t, we decomposed the difference fθ(t) − f∗ into a component gt proportional to
f (2) and another one ht orthogonal to f (2). In the infinite-width limit, the first component decays

3It can be observed numerically, that if we choose β = 1.0 instead of our recommended 0.1, the gap between the
first and the second principal component is about ten times bigger, which makes training more difficult.

2.7. CONCLUSION 73

3 2 1 0 1 2
f(2)(x)

2

1

0

1

2

f(3
) (x

)

(a) The 2nd and 3rd principal
components of MNIST.

0 500 1000 1500 2000 2500 3000 3500 4000
t

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14 n = 100
n = 1000
n = 10000

||h
t
|| p

i
n

(b) Deviation of the network func-
tion fθ from the straight line.

0 500 1000 1500 2000 2500 3000 3500 4000
t

0.0

0.1

0.2

0.3

0.4

0.5 n = 100
n = 1000
n = 10000
n =

||g
t
|| p

i
n

(c) Convergence of fθ along the 2nd
principal component.

Figure 2.6.3: NTK PCA and convergence speed.

exponentially fast ||gt||pin = 0.5e−λ2t while the second is null (ht = 0), as the function converges
along a straight line.

As expected, we see in Figure 2.6.3b that the wider the network, the less it deviates from the
straight line (for each width n we performed two independent trials). As the width grows, the
trajectory along the 2nd principal component (shown in Figure 2.6.3c) converges to the theoretical
limit shown in blue.

A surprising observation is that smaller networks appear to converge faster than wider ones. This
may be explained by the inflation of the NTK observed in our first experiment. Indeed, multiplying
the NTK by a factor a is equivalent to multiplying the learning rate by the same factor. However,
note that since the NTK of large-width network is more stable during training, larger learning rates
can in principle be taken. One must hence be careful when comparing the convergence speed in
terms of the number of steps (rather than in terms of the time t): both the inflation effect and the
learning rate must be taken into account.

2.7 Conclusion

This paper introduces a new tool to study ANNs, the Neural Tangent Kernel (NTK), which describes
the local dynamics of an ANN during gradient descent. This leads to a new connection between
ANN training and kernel methods: in the infinite-width limit, an ANN can be described in the
function space directly by the limit of the NTK, an explicit constant kernel Θ

(L)
∞ , which only

depends on its depth, nonlinearity and parameter initialization variance. More precisely, in this
limit, ANN gradient descent is shown to be equivalent to a kernel gradient descent with respect to
Θ

(L)
∞ . The limit of the NTK is hence a powerful tool to understand the generalization properties

of ANNs, and it allows one to study the influence of the depth and nonlinearity on the learning
abilities of the network. The analysis of training using NTK allows one to relate convergence of
ANN training with the positive-definiteness of the limiting NTK and leads to a characterization of
the directions favored by early stopping methods.

Chapter 3

The Asymptotic Spectrum of the Hessian of
DNN Throughout Training

Abstract

The dynamics of DNNs during gradient descent is described by the so-called Neural Tangent
Kernel (NTK). In this article, we show that the NTK allows one to gain precise insight into
the Hessian of the cost of DNNs. When the NTK is fixed during training, we obtain a full
characterization of the asymptotics of the spectrum of the Hessian, at initialization and during
training. In the so-called mean-field limit, where the NTK is not fixed during training, we
describe the first two moments of the Hessian at initialization.

3.1 Introduction

The advent of deep learning has sparked a lot of interest in the loss surface of deep neural networks
(DNN), and in particular its Hessian. However to our knowledge, there is still no theoretical
description of the spectrum of the Hessian. Nevertheless a number of phenomena have been observed
numerically.

The loss surface of neural networks has been compared to the energy landscape of different
physical models [38, 68, 153]. It appears that the loss surface of DNNs may change significantly
depending on the width of the network (the number of neurons in the hidden layer), motivating the
distinction between the under- and over-parametrized regimes [12, 68, 66].

The non-convexity of the loss function implies the existence of a very large number of saddle
points, which could slow down training. In particular, in [170, 44], a relation between the rank of
saddle points (the number of negative eigenvalues of the Hessian) and their loss has been observed.

For overparametrized DNNs, a possibly more important phenomenon is the large number of flat
directions [12]. The existence of these flat minima is conjectured to be related to the generalization
of DNNs and may depend on the training procedure [90, 32, 222].

In [105] it has been shown, using a functional approach, that in the infinite-width limit, DNNs
behave like kernel methods with respect to the so-called Neural Tangent Kernel, which is determined
by the architecture of the network. This leads to convergence guarantees for DNNs [105, 51, 2, 95]
and strengthens the connections between neural networks and kernel methods [159, 37, 126].

Our approach also allows one to probe the so-called mean-field/active limit (studied in [183, 35,
153] for shallow networks), where the NTK varies during training.

75

76
CHAPTER 3. THE ASYMPTOTIC SPECTRUM OF THE HESSIAN OF DNN

THROUGHOUT TRAINING

This raises the question: can we use these new results to gain insight into the behavior of the
Hessian of the loss of DNNs, at least in the small region explored by the parameters during training?

Contributions

Following ideas introduced in [105], we consider the training of L+ 1-layered DNNs in a functional
setting. For a functional cost C, the Hessian of the loss RP 3 θ 7→ C

(
F (L) (θ)

)
is the sum of two

P × P matrices I and S. We show the following results for large P and for a fixed number of
datapoints N :

• The first matrix I is positive semi-definite and its eigenvalues are given by the (weighted)
kernel PCA of the dataset with respect to the NTK. The dominating eigenvalues are the
principal components of the data followed by a high number of small eigenvalues. The “flat
directions” are spanned by the small eigenvalues and the null-space (of dimension at least
P − N when there is a single output). Because the NTK is asymptotically constant [105],
these results apply at initialization, during training and at convergence.

• The second matrix S can be viewed as residual contribution to H, since it vanishes as the
network converges to a global minimum. We compute the limit of the first moment Tr (S) and
characterize its evolution during training, of the second moment Tr

(
S2
)
which stays constant

during training, and show that the higher moments vanish.

• Regarding the sum H = I + S, we show that the matrices I and S are asymptotically
orthogonal to each other at initialization and during training. In particular, the moments of
the matrices I and S add up: tr(Hk) ≈ tr(Ik) + tr(Sk).

These results give, for any depth and a fairly general non-linearity, a complete description of the
spectrum of the Hessian in terms of the NTK at initialization and throughout training. Our
theoretical results are consistent with a number of observations about the Hessian [90, 170, 44, 32,
222, 171, 68], and sheds a new light on them.

Related works

The Hessian of the loss has been studied through the decomposition I + S in a number of previous
works [190, 171, 68].

For least-squares and cross-entropy costs, the first matrix I is equal to the Fisher matrix [219,
169], whose moments have been described for shallow networks in [172]. For deep networks, the first
two moments and the operator norm of the Fisher matrix for a least squares loss were computed
at initialization in [112] conditionally on a certain independence assumption; our method does not
require such assumptions. Note that their approach implicitly uses the NTK.

The second matrix S has been studied in [171, 68] for shallow networks, conditionally on a
number of assumptions. Note that in the setting of [171], the matrices I and S are assumed to
be freely independent, which allows them to study the spectrum of the Hessian; in our setting, we
show that the two matrices I and S are asymptotically orthogonal to each other.

3.2. SETUP 77

3.2 Setup

We consider deep fully connected artificial neural networks (DNNs) using the setup and NTK
parametrization of [105], taking an arbitrary nonlinearity σ ∈ C4

b (R) (i.e. σ : R → R that is
4 times continuously differentiable function with all four derivatives bounded). The layers are
numbered from 0 (input) to L (output), each containing n` neurons for ` = 0, . . . , L. The P =∑L−1
`=0 (n` + 1)n`+1 parameters consist of the weight matrices W (`) ∈ Rn`+1×n` and bias vectors

b(`) ∈ Rn`+1 for ` = 0, . . . , L− 1. We aggregate the parameters into the vector θ ∈ RP .
The activations and pre-activations of the layers are defined recursively for an input x ∈ Rn0 ,

setting α(0)(x; θ) = x :

α̃(`+1)(x; θ) =
1
√
n`
W (`)α(`)(x; θ) + βb(`),

α(`+1)(x; θ) = σ
(
α̃(`+1)(x; θ)

)
.

The parameter β is added to tune the influence of the bias on training1. All parameters are
initialized as iid N (0, 1) Gaussians.

We will in particular study the network function, which maps inputs x to the activation of the
output layer (before the last non-linearity):

fθ(x) = α̃(L)(x; θ).

In this paper, we will study the limit of various objects as n1, . . . , nL−1 → ∞ sequentially, i.e.
we first take n1 → ∞, then n2 → ∞, etc. This greatly simplifies the proofs, but they could in
principle be extended to the simultaneous limit, i.e. when n1 = ... = nL−1 →∞. All our numerical
experiments are done with ‘rectangular’ networks (with n1 = ... = nL−1) and match closely the
predictions for the sequential limit.

In the limit we study in this paper, the NTK is asymptotically fixed, as in [105, 2, 51, 6, 95].
By rescaling the outputs of DNNs as the width increases, one can reach another limit where the
NTK is not fixed [35, 34, 183, 151]. Some of our results can be extended to this setting, but only at
initialization (see Section 3.3). The behavior during training becomes however much more complex.

Functional viewpoint

The network function lives in a function space fθ ∈ F := [Rn0 → RnL] and we call the function
F (L) : RP → F that maps the parameters θ to the network function fθ the realization function.
We study the differential behavior of F (L):

• The derivative DF (L) ∈ RP ⊗ F is a function-valued vector of dimension P . The p-th entry
DpF (L) = ∂θpfθ ∈ F represents how modifying the parameter θp modifies the function fθ in
the space F .

• The Hessian HF (L) ∈ RP ⊗ RP ⊗F is a function-valued P × P matrix.

The network is trained with respect to the cost functional:

C(f) =
1

N

N∑
i=1

ci (f(xi)) ,

1In our experiments, we take β = 0.1.

78
CHAPTER 3. THE ASYMPTOTIC SPECTRUM OF THE HESSIAN OF DNN

THROUGHOUT TRAINING

for strictly convex ci, summing over a finite dataset x1, . . . , xN ∈ Rn0 of size N . The parameters
are then trained with gradient descent on the composition C ◦ F (L), which defines the usual loss
surface of neural networks.

In this setting, we define the finite realization function Y (L) : RP → RNnL mapping parameters
θ to be the restriction of the network function fθ to the training set yik = fθ,k(xi). The Jacobian
DY (L) is hence an NnL × P matrix and its Hessian HY (L) is a P × P ×NnL tensor. Defining the
restricted cost C(y) = 1

N

∑
i ci(yi), we have C ◦ F (L) = C ◦ Y (L).

For our analysis, we require that the gradient norm ‖DC‖ does not explode during training.
The following condition is sufficient:

Definition 1. A loss C : RNnL → R has bounded gradients over sublevel sets (BGOSS) if the
norm of the gradient is bounded over all sets Ua =

{
Y ∈ RNnL : C(Y) ≤ a

}
.

For example, the Mean Square Error (MSE) C(Y) = 1
2N ‖Y

∗ − Y ‖2 for the labels Y ∗ ∈ RNnL
has BGOSS because ‖∇C(Y)‖2 = 1

N ‖Y
∗ − Y ‖2 = 2C(Y). For the binary and softmax cross-

entropy the gradient is uniformly bounded, see Proposition C.1 in Appendix C.1.

Neural Tangent Kernel

The behavior during training of the network function fθ in the function space F is described by a
(multi-dimensional) kernel, the Neural Tangent Kernel (NTK)

Θ
(L)
k,k′(x, x

′) =

P∑
p=1

∂θpfθ,k(x)∂θpfθ,k′(x
′).

During training, the function fθ follows the so-called kernel gradient descent with respect to the
NTK, which is defined as

∂tfθ(t)(x) = −∇Θ(L)C|fθ(t)(x) := − 1

N

N∑
i=1

Θ(L)(x, xi)∇ci(fθ(t)(xi)).

In the infinite-width limit (letting n1 → ∞, . . . , nL−1 → ∞ sequentially) and for losses with
BGOSS, the NTK converges to a deterministic limit Θ(L) → Θ

(L)
∞ ⊗ IdnL , which is constant during

training, uniformly on finite time intervals [0, T] [105]. For the MSE loss, the uniform convergence
of the NTK was proven for T =∞ in [6].

The limiting NTK Θ
(L)
∞ : Rn0 × Rn0 → R is constructed as follows:

1. For f, g : R→ R and a kernel K : Rn0 ×Rn0 → R, define the kernel Lf,gK : Rn0 ×Rn0 → R by

Lf,gK (x0, x1) = E(a0,a1) [f(a0)g(a1)] ,

for (a0, a1) a centered Gaussian vector with covariance matrix (K(xi, xj))i,j=0,1. For f = g,
we denote by LfK the kernel Lf,fK .

2. We define the kernels Σ
(`)
∞ for each layer of the network, starting with Σ

(1)
∞ (x0, x1) = 1/n0(xT0 x1)+

β2 and then recursively by Σ
(`+1)
∞ = Lσ

Σ
(`)
∞

+ β2, for ` = 1, . . . , L− 1, where σ is the network
non-linearity.

3.3. MAIN THEOREMS 79

3. The limiting NTK Θ
(L)
∞ is defined in terms of the kernels Σ

(`)
∞ and the kernels Σ̇

(`)
∞ = Lσ̇

Σ
(`−1)
∞

:

Θ(L)
∞ =

L∑
`=1

Σ(`)
∞ Σ̇(`+1)

∞ . . . Σ̇(L)
∞ .

The NTK leads to convergence guarantees for DNNs in the infinite-width limit, and connect their
generalization to that of kernel methods [105, 6].

Gram Matrices

For a finite dataset x1, . . . , xN ∈ Rn0 and a fixed depth L ≥ 1, we denote by Θ̃ ∈ RNnL×NnL the
Gram matrix of x1, . . . , xN with respect to the limiting NTK, defined by

Θ̃ik,jm = Θ(L)
∞ (xi, xj) δkm.

It is block diagonal because different outputs k 6= m are asymptotically uncorrelated.
Similarly, for any (scalar) kernel K(L) (such as the limiting kernels Σ

(L)
∞ ,Λ

(L)
∞ ,Υ

(L)
∞ ,Φ

(L)
∞ ,Ξ

(L)
∞

introduced later), we denote the Gram matrix of the datapoints by K̃.

3.3 Main Theorems

Hessian as I + S

Using the above setup, the Hessian H of the loss C ◦ F (L) is the sum of two terms, with the entry
Hp,p′ given by

Hp,p′ = HC|fθ (∂θpF, ∂θp′F) +DC|fθ (∂θp,θp′F).

For a finite dataset, the Hessian matrix H
(
C ◦ Y (L)

)
is equal to the sum of two matrices

I =
(
DY (L)

)T
HCDY (L) and S = ∇C · HY (L)

where DY (L) is a NnL × P matrix, HC is a NnL × NnL matrix and HY (L) is a P × P × NnL
tensor to which we apply a scalar product (denoted by ·) in its last dimension with the NnL vector
∇C to obtain a P × P matrix.

Our main contribution is the following theorem, which describes the limiting moments Tr
(
Hk
)

in terms of the moments of I and S:

Theorem 3.1. For any loss C with BGOSS and σ ∈ C4
b (R), in the sequential limit n1 →

∞, . . . , nL−1 →∞, we have for all k ≥ 1

Tr
(
H (t)

k
)
≈ Tr

(
I (t)

k
)

+ Tr
(
S (t)

k
)
.

The limits of Tr
(
I (t)

k
)
and Tr

(
S (t)

k
)
can be expressed in terms of the NTK Θ

(L)
∞ , the kernels

Υ
(L)
∞ ,Ξ

(L)
∞ and the non-symmetric kernels Φ

(L)
∞ , Λ

(L)
∞ defined in Appendix C.3:

80
CHAPTER 3. THE ASYMPTOTIC SPECTRUM OF THE HESSIAN OF DNN

THROUGHOUT TRAINING

• The moments Tr
(
I (t)

k
)
converge to the following limits (with the convention that ik+1 = i1):

Tr
(
I (t)

k
)
→ Tr

((
HC(Y (t))Θ̃

)
k
)

=
1

Nk

N∑
i1,...,ik=1

k∏
m=1

c′′im(fθ(t)(xim))Θ(L)
∞ (xim , xim+1

).

• The first moment Tr (S (t)) converges to the limit:

Tr (S (t)) = (G(t))
T ∇C(Y (t)).

At initialization (G(0), Y (0)) form a Gaussian pair of NnL-vectors, independent for differing
output indices k = 1, ..., nL and with covariance E [Gik(0)Gi′k′(0)] = δkk′Ξ

(L)
∞ (xi, xi′) and

E [Gik(0)Yi′k′(0)] = δkk′Φ
(L)
∞ (xi, xi′) for the limiting kernel Ξ

(L)
∞ (x, y) and non-symmetric

kernel Φ
(L)
∞ (x, y). During training, both vectors follow the differential equations

∂tG(t) = −Λ̃∇C(Y (t))

∂tY (t) = −Θ̃∇C(Y (t)).

• The second moment Tr
(
S (t)

2
)
converges to the following limit defined in terms of the Gram

matrix Υ̃:
Tr
(
S2
)
→ (∇C(Y (t)))

T
Υ̃∇C(Y (t))

• The higher moments Tr
(
S (t)

k
)
for k ≥ 3 vanish.

Proof. The moments of I and S can be studied separately because the moments of their sum is
asymptotically equal to the sum of their moments by Proposition C.4 below. The limiting moments
of I and S are respectively described by Propositions 3.1 and C.3 below.

In the case of a MSE loss C(Y) = 1
2N ‖Y − Y

∗‖2, the first and second derivatives take simple
forms ∇C(Y) = 1

N (Y − Y ∗) and HC(Y) = 1
N IdNnL and the differential equations can be solved

to obtain more explicit formulae:

Corollary 1. For the MSE loss C and σ ∈ C4
b (R), in the limit n1, ..., nL−1 →∞, we have uniformly

over [0, T]

Tr
(
H(t)k

)
→ 1

Nk
Tr
(

Θ̃k
)

+ Tr
(
S(t)k

)
where

Tr (S(t))→− 1

N
(Y ∗ − Y (0))T

(
IdNnL + e−tΘ̃

)
Θ̃−1Λ̃T e−tΘ̃(Y ∗ − Y (0))

+
1

N
G(0)T e−tΘ̃(Y ∗ − Y (0))

Tr
(
S(t)2

)
→ 1

N2
(Y ∗ − Y (0))T e−tΘ̃Υ̃e−tΘ̃(Y ∗ − Y (0))

Tr
(
S(t)k

)
→0 when k > 2.

3.3. MAIN THEOREMS 81

10 1 100 101

t

102

103

Tr
[H

(t)
k] k = 1

k = 2
k = 3
k = 4

10 1 100 101

t

102

3 × 101

4 × 101

6 × 101Tr
[H

(t)
k] k = 1

k = 2
k = 3
k = 4

Figure 3.3.1: Comparison of the theoretical prediction of Corollary 1 for the expectation of the first
4 moments (colored lines) to the empirical average over 250 trials (black crosses) for a rectangular
network with two hidden layers of finite widths n1 = n2 = 5000 (L = 3) with the smooth ReLU
(left) and the normalized smooth ReLU (right), for the MSE loss on scaled down 14x14 MNIST
with N = 256. Only the first two moments are affected by S at the beginning of training.

In expectation we have:

E [Tr (S(t))]→− 1

N
Tr
((
IdNnL + e−tΘ̃

)
Θ̃−1Λ̃T e−tΘ̃

(
Σ̃ + Y ∗Y ∗T

))
+

1

N
Tr
(
e−tΘ̃Φ̃T

)
E
[
Tr
(
S(t)2

)]
→ 1

N2
Tr
(
e−tΘ̃Υ̃e−tΘ̃

(
Σ̃ + Y ∗Y ∗T

))
.

Proof. The moments of I are constant because HC = 1
N IdNnL is constant. For the moments of S,

we first solve the differential equation for Y (t):

Y (t) = Y ∗ − e−tΘ̃(Y ∗ − Y (0)).

Noting Y (t)− Y (0) = −Θ̃
∫ t

0
∇C(s)ds, we have

G(t) = G(0)− Λ̃

∫ t

0

∇C(s)ds

= G(0) + Λ̃Θ̃−1(Y (t)− Y (0))

= G(0) + Λ̃Θ̃−1
(
IdNnL + e−tΘ̃

)
(Y ∗ − Y (0))

The expectation of the first moment of S then follows.

Mutual Orthogonality of I and S

A first key ingredient to prove Theorem 3.1 is the asymptotic mutual orthogonality of the matrices
I and S

82
CHAPTER 3. THE ASYMPTOTIC SPECTRUM OF THE HESSIAN OF DNN

THROUGHOUT TRAINING

Proposition (Proposition C.4 in Appendix C.4). For any loss C with BGOSS and σ ∈ C4
b (R), we

have uniformly over [0, T]
lim

nL−1→∞
· · · lim

n1→∞
‖IS‖F = 0.

As a consequence limnL−1→∞ · · · limn1→∞Tr
(

[I + S]
k
)
−
[
Tr
(
Ik
)

+ Tr
(
Sk
)]

= 0.

Remark 3.1. If two matrices A and B are mutualy orthogonal (i.e. AB = 0) the range of A is
contained in the nullspace of B and vice versa. The non-zero eigenvalues of the sum A + B are
therefore given by the union of the non-zero eigenvalues of A and B. Furthermore the moments
of A and B add up: Tr

(
[A+B]

k
)

= Tr
(
Ak
)

+ Tr
(
Bk
)
. Proposition C.4 shows that this is what

happens asymptotically for I and S.
Note that both matrices I and S have large nullspaces: indeed assuming a constant width

w = n1 = ... = nL−1, we have Rank(I) ≤ NnL and Rank(S) ≤ 2(L−1)wNnL (see Appendix C.3),
while the number of parameters P scales as w2 (when L > 2).

Figure 3.3.2 illustrates the mutual orthogonality of I and S. All numerical experiments are done
for rectangular networks (when the width of the hidden layers are equal) and agree well with our
predictions obtained in the sequential limit.

Mean-field Limit

For a rectangular network with width w, if the output of the network is divided by
√
w and the

learning rate is multiplied by w (to keep similar dynamics at initialization), the training dynamics
changes and the NTK varies during training when w goes to infinity. The new parametrization of
the output changes the scaling of the two matrices:

H
[
C

(
1√
w
Y (L)

)]
=

1

w

(
DY (L)

)T
HCDY (L) +

1√
w
∇C · HY (L) =

1

w
I +

1√
w
S.

The scaling of the learning rate essentially multiplies the whole Hessian by w. In this setting, the
matrix I is left unchanged while the matrix S is multiplied by

√
w (the k-th moment of S is hence

multiplied by wk/2). In particular, the two moments of the Hessian are dominated by the moments
of S, and the higher moments of S (and the operator norm of S) should not vanish. This suggests
that the active regime may be characterised by the fact that ‖S‖F � ‖I‖F . Under the conjecture
that Theorem 3.1 holds for the infinite-width limit of rectangular networks, the asymptotic of the
two first moments of H is given by:

1/
√
wTr (H)→ N (0,∇CT Ξ̃∇C)

1/wTr
(
H2
)
→ ∇CT Υ̃∇C,

where for the MSE loss we have ∇C = −Y ∗.

The matrix S

The matrix S = ∇C · HY (L) is best understood as a perturbation to I, which vanishes as the
network converges because ∇C → 0. To calculate its moments, we note that

Tr
(
∇C · HY (L)

)
=

(
P∑
p=1

∂2
θ2
p
Y

)T
∇C = GT∇C,

3.3. MAIN THEOREMS 83

where the vector G =
∑P
k=1 ∂

2
θ2
p
Y ∈ RNnL is the evaluation of the function gθ(x) =

∑P
k=1 ∂

2
θ2
p
fθ(x)

on the training set.
For the second moment we have

Tr

((
∇C · HY (L)

)2
)

= ∇CT
 P∑
p,p′=1

∂2
θpθp′

Y
(
∂2
θpθp′

Y
)T∇C = ∇CT Υ̃∇C

for Υ̃ the Gram matrix of the kernel Υ(L)(x, y) =
∑P
p,p′=1 ∂

2
θpθp′

fθ(x)
(
∂2
θpθp′

fθ(y)
)T

.

The following proposition desribes the limit of the function gθ and the kernel Υ(L) and the
vanishing of the higher moments:

Proposition (Proposition C.3 in Appendix C.3). For any loss C with BGOSS and σ ∈ C4
b (R), the

first two moments of S take the form

Tr (S(t)) = G(t)T∇C(t)

Tr
(
S(t)2

)
= ∇C(t)T Υ̃(t)∇C(t)

- At initialization, gθ and fθ converge to a (centered) Gaussian pair with covariances

E[gθ,k(x)gθ,k′(x
′)] = δkk′Ξ

(L)
∞ (x, x′)

E[gθ,k(x)fθ,k′(x
′)] = δkk′Φ

(L)
∞ (x, x′)

E[fθ,k(x)fθ,k′(x
′)] = δkk′Σ

(L)
∞ (x, x′)

and during training gθ evolves according to

∂tgθ,k(x) =

N∑
i=1

Λ(L)
∞ (x, xi)∂ikC(Y (t))·

- Uniformly over any interval [0, T], the kernel Υ(L) has a deterministic and fixed limit

lim
nL−1→∞

· · · lim
n1→∞

Υ
(L)
kk′ (x, x

′) = δkk′Υ
(L)
∞ (x, x′)

with limiting kernel:

Υ(L)
∞ (x, x′) =

L−1∑
`=1

(
Θ(`)
∞ (x, x′)2Σ̈(`)

∞ (x, x′) + 2Θ(`)
∞ (x, x′)Σ̇(`)

∞ (x, x′)
)

Σ̇(`+1)
∞ (x, x′) · · · Σ̇(L−1)

∞ (x, x′).

- The higher moment k > 2 vanish: limnL−1→∞ · · · limn1→∞ Tr
(
Sk
)

= 0.

This result has a number of consequences for infinitely wide networks:

1. At initialization, the matrix S has a finite Frobenius norm ‖S‖2F = Tr
(
S2
)

= ∇CT Υ̃∇C,
because Υ converges to a fixed limit. As the network converges, the derivative of the cost
goes to zero ∇C(t)→ 0 and so does the Frobenius norm of S.

84
CHAPTER 3. THE ASYMPTOTIC SPECTRUM OF THE HESSIAN OF DNN

THROUGHOUT TRAINING

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
vtSv

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

vt Iv

largest eig. of I
largest eig. of S

Figure 3.3.2: Illustration of the mutual
orthogonality of I and S. For the 20
first eigenvectors of I (blue) and S (or-
ange), we plot the Rayleigh quotients
vT Iv and vTSv (with L = 3, n1 =
n2 = 1000 and the normalized ReLU
on 14x14 MNIST with N = 256). We
see that the directions where I is large
are directions where S is small and vice
versa.

2 1 0 1 2

2

1

0

1

2

0.100

1.000

1.000

10.000

10.000

2 1 0 1 2

2

1

0

1

2

0.100

1.000

10.000

10.000

Figure 3.3.3: Plot of the loss surface around a global min-
imum along the first (along the y coordinate) and fourth
(x coordinate) eigenvectors of I. The network has L = 4,
width n1 = n2 = n3 = 1000 for the smooth ReLU (left) and
the normalized smooth ReLU (right). The data is uniform
on the unit disk. Normalizing the non-linearity greatly re-
duces the narrow valley structure of the loss thus speeding
up training.

2. In contrast the operator norm of S vanishes already at initialization (because for all even
k, we have ‖S‖op ≤

k
√

Tr (Sk) → 0). At initialization, the vanishing of S in operator norm
but not in Frobenius norm can be explained by the matrix S having a growing number of
eigenvalues of shrinking intensity as the width grows.

3. When it comes to the first moment of S, Proposition C.3 shows that the spectrum of S is in
general not symmetric. For the MSE loss the expectation of the first moment at initialization
is

E [Tr(S)] = E
[
(Y − Y ∗)TG

]
= E

[
Y TG

]
− (Y ∗)

T E [G] = Tr
(

Φ̃
)
− 0

which may be positive or negative depending on the choice of nonlinearity: with a smooth
ReLU, it is positive, while for the arc-tangent or the normalized smooth ReLU, it can be
negative (see Figure 3.3.1).
This is in contrast to the result obtained in [171, 68] for the shallow ReLU networks, taking
the second derivative of the ReLU to be zero. Under this assumption the spectrum of S is
symmetric: if the eigenvalues are ordered from lowest to highest, λi = −λP−i and Tr(S) = 0.

These observations suggest that S has little influence on the shape of the surface, especially
towards the end of training, the matrix I however has an interesting structure.

The matrix I

At a global minimizer θ∗, the spectrum of I describes how the loss behaves around θ∗. Along
the eigenvectors of the biggest eigenvalues of I, the loss increases rapidely, while small eigenvalues
correspond to flat directions. Numerically, it has been observed that the matrix I features a few

3.3. MAIN THEOREMS 85

dominating eigenvalues and a bulk of small eigenvalues [189, 190, 82, 167]. This leads to a narrow
valley structure of the loss around a minimum: the biggest eigenvalues are the ‘cliffs’ of the valley,
i.e. the directions along which the loss grows fastest, while the small eigenvalues form the ‘flat
directions’or the bottom of the valley.

Note that the rank of I is bounded by NnL and in the overparametrized regime, when NnL < P ,
the matrix I will have a large nullspace, these are directions along which the value of the function
on the training set does not change. Note that in the overparametrized regime, global minima are
not isolated: they lie in a manifold of dimension at least P −NnL and the nullspace of I is tangent
to this solution manifold.

The matrix I is closely related to the NTK Gram matrix:

Θ̃ = DY (L)
(
DY (L)

)T
and I =

(
DY (L)

)T
HCDY (L).

As a result, the limiting spectrum of the matrix I can be directly obtained from the NTK2

Proposition 3.1. For any loss C with BGOSS and σ ∈ C4
b (R), uniformly over any interval [0, T],

the moments Tr
(
Ik
)
converge to the following limit (with the convention that ik+1 = i1):

lim
nL−1→∞

· · · lim
n1→∞

Tr
(
Ik
)

= Tr
((
HC(Yt)Θ̃

)
k
)

=
1

Nk

N∑
i1,...,ik=1

k∏
m=1

c′′im(fθ(t)(xim))Θ(L)
∞ (xim , xim+1

)

Proof. It follows from Tr
(
Ik
)

= Tr

(((
DY (L)

)T HCDY (L)
)k)

= Tr

((
HCΘ̃

)k)
and the asymp-

totic of the NTK [105].

Mean-Square Error

When the loss is the MSE, HC is equal to 1
N IdNnL . As a result, Θ̃ and I have the same non-zero

eigenvalues up to a scaling of 1/N. Because the NTK is assymptotically fixed, the spectrum of I is
also fixed in the limit.

The eigenvectors of the NTK Gram matrix are the kernel principal components of the data. The
biggest principal components are the directions in function space which are most favorised by the
NTK. This gives a functional interpretation of the narrow valley structure in DNNs: the cliffs of the
valley are the biggest principal components, while the flat directions are the smallest components.
Remark 3.2. As the depth L of the network increases, one can observe two regimes [173, 104]:
Order/Freeze where the NTK converges to a constant and Chaos where the NTK converges to a
Kronecker delta. In the Order/Freeze the NnL ×NnL Gram matrix approaches a block diagonal
matrix with nL constant blocks, and as a result nL eigenvalues of I dominate the other ones,
corresponding to constant directions along each outputs (this is in line with the observations of
[167]). This leads to a narrow valley for the loss and slows down training. In contrast, in the Chaos
regime, the NTK Gram matrix approaches a scaled identity matrix, and the spectrum of I should
hence concentrate around a positive value, hence speeding up training. Figure 3.3.3 illustrates this
phenomenon: with the smooth ReLU we observe a narrow valley, while with the normalized smooth
ReLU (which lies in the Chaos according to [104]) the narrowness of the loss is reduced. A similar
phenomenon may explain why normalization helps smoothing the loss surface and speed up training
[193, 73].

2This result was already obtained in [112], but without identifying the NTK explicitely and only at initialization.

86
CHAPTER 3. THE ASYMPTOTIC SPECTRUM OF THE HESSIAN OF DNN

THROUGHOUT TRAINING

Cross-Entropy Loss

For a binary cross-entropy loss with labels Y ∗ ∈ {−1,+1}N

C(Y) =
1

N

N∑
i=1

log
(

1 + e−Y
∗
i Yi
)
,

HC is a diagonal matrix whose entries depend on Y (but not on Y ∗):

HiiC(Y) =
1

N

1

1 + e−Yi + eYi
.

The eigenvectors of I then correspond to the weighted kernel principal component of the data.
The positive weights 1

1+e−Yi+eYi
approach 1/3 as Yi goes to 0, i.e. when it is close to the decision

boundary from one class to the other, and as Yi → ±∞ the weight go to zero. The weights evolve
in time through Yi, the spectrum of I is therefore not asymptotically fixed as in the MSE case, but
the functional interpretation of the spectrum in terms of the kernel principal components remains.

3.4 Conclusion

We have given an explicit formula for the limiting moments of the Hessian of DNNs throughout
training. We have used the common decomposition of the Hessian in two terms I and S and have
shown that the two terms are asymptotically mutually orthogonal, such that they can be studied
separately.

The matrix S vanishes in Frobenius norm as the network converges and has vanishing operator
norm throughout training. The matrix I is arguably the most important as it describes the narrow
valley structure of the loss around a global minimum. The eigendecomposition of I is related to
the (weighted) kernel principal components of the data w.r.t. the NTK.

Chapter 4

Kernel Alignment Ridge Estimator: Risk
Prediction From Training Data

Abstract

We study the risk (i.e. generalization error) of Kernel Ridge Regression (KRR) for a kernel
K with ridge λ > 0 and i.i.d. observations. For this, we introduce two objects: the Signal
Capture Threshold (SCT) and the Kernel Alignment Risk Estimator (KARE). The SCT ϑK,λ
is a function of the data distribution: it can be used to identify the components of the data
that the KRR predictor captures, and to approximate the (expected) KRR risk. This then
leads to a KRR risk approximation by the KARE ρK,λ, an explicit function of the training
data, agnostic of the true data distribution. We phrase the regression problem in a functional
setting. The key results then follow from a finite-size analysis of the Stieltjes transform of
general Wishart random matrices. Under a natural universality assumption (that the KRR
moments depend asymptotically on the first two moments of the observations) we capture the
mean and variance of the KRR predictor. We numerically investigate our findings on the Higgs
and MNIST datasets for various classical kernels: the KARE gives an excellent approximation
of the risk, thus supporting our universality assumption. Using the KARE, one can compare
choices of Kernels and hyperparameters directly from the training set. The KARE thus provides
a promising data-dependent procedure to select Kernels that generalize well.

4.1 Introduction

Kernel Ridge Regression (KRR) is a widely used statistical method to learn a function from its values
on a training set [198, 200]. It is a non-parametric generalization of linear regression to infinite-
dimensional feature spaces. Given a positive-definite kernel function K and (noisy) observations yε

of a true function f∗ at a list of points X = x1, . . . , xN , the λ-KRR estimator f̂ ελ of f∗ is defined by

f̂ ελ(x) =
1

N
K(x,X)

(
1

N
K(X,X) + λIN

)−1

yε,

where K(x,X)=(K(x, xi))i=1,..,N ∈ RN and K(X,X)=(K(xi, xj))i,j=1,..,N ∈ RN×N .
Despite decades of intense mathematical progress, the rigorous analysis of the generalization of

kernel methods remains a very active and challenging area of research. In recent years, many new

87

88
CHAPTER 4. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

kernels have been introduced for both regression and classification tasks; notably, a large number
of kernels have been discovered in the context of deep learning, in particular through the so-called
Scattering Transform [148], and in close connection with deep neural networks [37, 105], yielding
ever-improving performance for various practical tasks [6, 51, 136, 199]. Currently, theoretical tools
to select the relevant kernel for a given task, i.e. to minimize the generalization error, are however
lacking.

While a number of bounds for the risk of Linear Ridge Regression (LRR) or KRR [29, 72,
212, 150] exist, most focus on the rate of convergence of the risk: these estimates typically involve
constant factors which are difficult to control in practice. Recently, a number of more precise
estimates have been given [145, 48, 152, 144, 25]; however, these estimates typically require a priori
knowledge of the data distribution. It remains a challenge to have estimates based on the training
data alone, enabling one to make informed decisions on the choices of the ridge and of the kernel.

Contributions

We consider a generalization of the KRR predictor f̂ ελ: one tries to reconstruct a true function f
∗ in a

space of continuous functions C from noisy observations yε of the form (o1(f∗) + εe1, . . . , oN (f∗) + εeN),
where the observations oi are i.i.d. linear forms C → R sampled from a distribution π, ε is the level
of noise, and the e1, . . . , eN are centered of unit variance. We work under the universality assump-
tion that, for large N , only the first two moments of π determine the behavior of the first two
moments of f̂ ελ. We obtain the following results:

1. We introduce the Signal Capture Threshold (SCT) ϑ(λ,N,K, π), which is determined by the
ridge λ, the size of the training set N , the kernel K, and the observations distribution π (more
precisely, the dependence on π is only through its first two moments). We give approximations
for the expectation and variance of the KRR predictor in terms of the SCT.

2. Decomposing f∗ along the kernel principal components of the data distribution, we observe that
in expectation, the predictor f̂ ελ captures only the signal along the principal components with
eigenvalues larger than the SCT. If N increases or λ decreases, the SCT ϑ shrinks, allowing the
predictor to capture more signal. At the same time, the variance of f̂ ελ scales with the derivative
∂λϑ, which grows as λ→ 0, supporting the classical bias-variance tradeoff picture [71].

3. We give an explicit approximation for the expected MSE risk Rε(f̂ ελ) and empirical MSE risk
R̂ε(f̂ ελ) for an arbitrary continuous true function f∗. We find that, surprisingly, the expected
risk and expected empirical risk are approximately related by

E[Rε(f̂ ελ)] ≈ ϑ(λ)2

λ2
E[R̂ε(f̂ ελ)].

4. We introduce the Kernel Alignment Risk Estimator (KARE) as the ratio ρ defined by

ρ(λ,N, yε, G) =
1
N (yε)

T (1
NG+ λIN

)−2
yε(

1
NTr

[(
1
NG+ λIN

)−1
])2 ,

where G is the Gram matrix of K on the observations. We show that the KARE approximates
the expected risk; unlike the SCT, it is agnostic of the true data distribution. This result

4.1. INTRODUCTION 89
h
ey

!!
M

S
E

10−810−710−610−510−410−310−210−1 100

0

0.2

0.4

0.6

0.8

1

ridge λ

KARE
Risk
Train err.

(a) MNIST, ` = d

10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

1/d·lengthscale `

(b) MNIST, λ = 10−5

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

ridge λ

(c) Higgs, ` = d

10−2 10−1 100 101

0

0.2

0.4

0.6

0.8

1

1/d·lengthscale `

(d) Higgs, λ = 10−4

Figure 4.1.1: Comparison between the KRR risk and the KARE for various choices of normalized
lengthscale /̀d and ridge λ on the MNIST dataset (restricted to the digits 7 and 9, labeled by 1
and −1 respectively, N = 2000) and on the Higgs dataset (classes ‘b’ and ‘s’, labeled by −1 and
1, N = 1000) with the RBF Kernel K(x, x′) = exp(−‖x−x

′‖22/`) (see the Appendix for experiments
with the Laplacian and `1-norm kernels). KRR predictor risks, and KARE curves (shown as dashed
lines, 5 samples) concentrate around their respective averages (solid lines).

follows from the fact that ϑ(λ) ≈ 1/mG(−λ), where mG(z) = Tr
[
(1
NG− zIN)−1

]
is the Stieltjes

Transform of the Gram matrix.

5. Empirically, we find that the KARE predicts the risk on the Higgs and MNIST datasets. We
see empirically that our results extend extremely well beyond the Gaussian observation setting,
thus supporting our universality assumption (see Figure 4.1.1).

Our proofs (see the Appendix) rely on a generalized and refined version of the finite-size analysis
of [102] of generalized Wishart matrices, obtaining sharper bounds and generalizing the results to
operators. Our analysis relies in particular on the complex Stieltjes transform mG(z), evaluated at
z = −λ, and on fixed-point arguments.

Related Works

The theoretical analysis of the risk of KRR has seen tremendous developments in the recent years.
In particular, a number of upper and lower bounds for kernel risk have been obtained [29, 212, 150]
in various settings: notably, convergence rates (i.e. without control of the constant factors) are
obtained in general settings. This allows one to abstract away a number of details about the
kernels (e.g. the lengthscale), which don’t influence the asymptotic rates. However, this does not
give access to the risk at finite data size (crucial to pick e.g. the correct lengthscale or the NTK
depth [105]).

A number of recent results have given precise descriptions of the risk for ridge regression [48, 144],
for random features [152, 102], and in relation to neural networks [145, 25]. These results rely on
the analysis of the asymptotic spectrum of general Wishart random matrices, in particular through
the Stieltjes transform [203, 11]. The limiting Stieltjes transform can be recovered from the formula
for the product of freely independent matrices [65]. To extend these asymptotic results to finite-size
settings, we generalize and adapt the results of [102].

While these techniques have given simple formulae for the KRR predictor expectation, approxi-
mating its variance has remained more challenging. For this reason the description of the expected
risk in [145] is stated as a conjecture. In [144] only the bias component of the risk is approximated.

90
CHAPTER 4. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

In [48] the expected risk is given only for random true functions (in a Bayesian setting) with a
specific covariance. In [25], the expected risk follows from a heuristic spectral analysis combining
a PDE approximation and replica tricks. In this paper, we approximate the variance of the pre-
dictor along the principal components, giving an approximation of the risk for any continuous true
function.

The SCT is related to a number of objects from previous works, such as the effective dimension
of [238, 29], the companion Stieltjes transform of [48, 144], and particularly the effective ridge of
[102]. The SCT can actually be viewed as a direct translation to the KRR risk setting of [102].

Outline

In Section 8.2, we first introduce the Kernel Ridge Regression (KRR) predictor in functional space
(Section 4.2) and formulate its train error and risk for random observations (Section 4.2).

The rest of the paper is then devoted to obtaining approximations for the KRR risk. In Section
4.3,the Signal Capture Threshold (SCT) is introduced and used to study the mean and variance of
the KRR predictor (Sections 4.3 and 4.3). An approximation of the SCT in terms of the observed
data is then given (Section 4.3). In Section 4.4, the expected risk and the expected empirical risk
are approximated in terms of the SCT and its derivative w.r.t. the ridge λ. The SCT approximation
of Section 4.3, together with the estimates of Section 4.4, leads to an approximation of the KRR
risk by the Kernel Alignment Risk Estimator (KARE).

4.2 Setup

Given a compact Ω ⊂ Rd, let C denote the space of continuous f : Ω → R, endowed with the
supremum norm ‖f‖∞ = supx∈Ω |f(x)|. In the classical regression setting, we want to reconstruct
a true function f∗ ∈ C from its values on a training set x1, . . . , xN , i.e. from the noisy labels
yε = (f∗(x1) + εe1, . . . , f

∗(xN) + εeN)
T for some i.i.d. centered noise e1, . . . , eN of unit variance

and noise level ε ≥ 0.
In this paper, the observed values (without noise) of the true function f∗ consist in observations

o1, . . . , oN ∈ C∗, where C∗ is the dual space, i.e. the space of bounded linear functionals C → R. We
thus represent the training set of N observations o1, . . . , oN by the sampling operator O : C → RN
which maps a function f ∈ C to the vector of observations O(f) = (o1(f), . . . , oN (f))T .

The classical setting corresponds to the case where the observations are evaluations of f∗ at
points x1, . . . , xN ∈ Ω, i.e. oi (f∗) = f∗(xi) for i = 1, . . . , N . In time series analysis (when Ω ⊂ R),
the observations can be the averages oi(f∗) = 1

bi−ai

∫ bi
ai
f∗(t)dt over time intervals [ai, bi] ⊂ R.

Kernel Ridge Regression Predictor

The regression problem is now stated as follows: given noisy observations yεi = oi (f∗) + εei with
i.i.d. centered noises e1, . . . , eN of unit variance, how can one reconstruct f∗?

Definition 1. Consider a continuous positive kernel K : Ω×Ω→ R and a ridge parameter λ > 0.
The Kernel Ridge Regression (KRR) predictor with ridge λ is the function f̂ ελ : Ω→ R

f̂ ελ =
1

N
KOT (

1

N
OKOT + λIN)−1yε

4.2. SETUP 91

where OT : RN → C∗ is the adjoint of O defined by (OT y)(f) = yTO(f) and where we view K as
a map C∗ → C with (Kµ)(x) = µ(K(x, ·)).

Remark 4.1. The KRR predictor arises naturally in the following setup: assuming a (centered)
Gaussian Bayesian prior on the true function with covariance operator K and noise amplitude ε,
the expected posterior, for observed labels yε is given by f̂ ελ for λ = ε2.

We call the N × N matrix G = OKOT the Gram matrix : in the classical setting, when the
observations are oi = δxi (with δx(f) = f(x)), G is the usual Gram matrix, i.e. Gij = K(xi, xj).

Training Error and Risk

We consider the least-squares error (MSE loss) of the KRR predictor, taking into account random-
ness of: (1) the test point, random observation o to which is added a noise εe (2) the training data,
made of N observations oi plus noises εei ∼ ν, where o, o1, . . . , on ∼ π and e, e1, . . . , eN are i.i.d.
The expected risk of the KRR predictor is thus taken w.r.t. the test and training observations
and their noises. Unless otherwise specified, the expectations are taken w.r.t. all these sources of
randomness.

For (fixed) observations o1, . . . , oN , the empirical risk or training error of the KRR predictor
f̂ ελ is

R̂ε(f̂ ελ) =
1

N

N∑
i=1

(oi(f̂
ε
λ)− yεi)2 =

1

N

∥∥∥O(f̂ ελ)− yε
∥∥∥2

.

For a random observation o sampled from π and a noise εe (where e ∼ ν is centered of unit
variance as before), the risk Rε(f̂ ελ) of the KRR predictor f̂ ελ is defined by

Rε(f̂ ελ) = Eo∼π,e∼ν
[
(o(f∗) + εe− o(f̂ ελ))2

]
.

Describing the observation variance by the bilinear form 〈f, g〉S = Eo∼π [o(f)o(g)] and the related
semi-norm ‖f‖S = 〈f, f〉1/2S , the risk can be rewritten as Rε(f̂ ελ) = ‖f̂ ελ − f∗‖2S + ε2.

From now on, we will assume that 〈·, ·〉S is a scalar product; note that in the classical setting,
when o is the evaluation of f∗ at a point x ∈ Ω with x ∼ σ, the S-norm is given by ‖f‖2S =∫

Ω
f(x)2σ(dx).
The following three operators C → C are central to our analysis:

Definition 2. The KRR reconstruction operator Aλ : C → C, the KRR Integral Operator TK : C →
C, and its empirical version TNK : C → C are defined by

Aλ =
1

N
KOT (

1

N
OKOT + λIN)−1O,

(TKf)(x) = 〈f,K(x, ·)〉S = Eo∼π [o(f)o(K(x, ·))] ,

(TNK f)(x) =
1

N
KOTOf(x) =

1

N

N∑
i=1

oi(f)oi(K(x, ·)).

Note that in the noiseless regime (i.e. when ε = 0), we have f̂ ελ
∣∣
ε=0

= Aλf
∗. Also note that

Aλ and TNK are random operators, as they depend on the random observations. The operator TK

92
CHAPTER 4. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

is the natural generalization to our framework of the integration operator f 7→
∫
K(x, ·)f(x)σ(dx),

which is defined with random observations δx with x ∼ σ in the classical setting.
The reconstruction and empirical integral operators are linked by Aλ = TNK (TNK +λIC)

−1, which
follows from the identity

(
1
NOKO

T + λIN
)−1O = O

(
1
NKO

TO + λIC
)−1. As N → ∞, we have

that TNK → TK , and it follows that

Aλ → Ãλ := TK(TK + λIC)
−1. (4.2.1)

Eigendecomposition of the Kernel

We will assume that the kernel K can be diagonalized by a countable family of eigenfunctions
(f (k))k∈N in C with eigenvalues (dk)k∈N, orthonormal with respect to the scalar product 〈·, ·〉S , such
that we have (with uniform convergence):

K(x, x′) =

∞∑
k=1

dkf
(k)(x)f (k)(x′).

The functions f (k) are also eigenfunctions of TK : we have TKf (k) = dkf
(k). We will also assume

that Tr [TK] =
∑∞
k=1

〈
f (k), TK(f (k))

〉
S

=
∑∞
k=1 dk is finite. Note that in the classical setting

K can be diagonalized as above (by Mercer’s theorem), and Tr [TK] = Ex∼σ [K(x, x)] is finite.
Computing the eigendecomposition of TK is difficult for general kernels and data distributions, but
explicit formulas exist for special cases, such as for the RBF kernel and isotropic Gaussian inputs
as described in Section 1.5 of the Appendix.

Gaussianity Assumption

As seen in Equation (4.2.1) above, Ãλ only depends on the second moment of π (through 〈·, ·〉S),
suggesting the following assumption, with which we will work in this paper:

Assumption A. As far as one is concerned with the first two moments of the Aλ operator, for
large but finite N , we will assume that the observations o1, . . . , oN are centered Gaussian, i.e. that
for any tuple of functions (f1, . . . , fN), the vector (o1(f1), . . . , oN (fN)) is a mean zero Gaussian
vector.

Though our proofs use this assumption, the ideas in [145, 23] suggest a path to extend them
beyond the Gaussian case, where our numerical experiments (see Figure 4.1.1) suggest that our
results remain true. See Section 2.1 of the Appendix for a more detailed discussion.

4.3 Predictor Moments and Signal Capture Threshold

A central tool in our analysis of the KRR predictor f̂ ελ is the Signal Capture Threshold (SCT):

Definition 3. For λ > 0, the Signal Capture Threshold ϑ(λ) = ϑ(λ,N,K, π) is the unique positive
solution (see Section 2.2 in the Appendix) to the equation:

ϑ(λ) = λ+
ϑ(λ)

N
Tr
[
TK (TK + ϑ(λ)IC)

−1
]
.

In this section, we use ϑ(λ) and the derivative ∂λϑ(λ) for the estimation of the mean and variance
of the KRR predictor f̂ ελ upon which the Kernel Alignment Risk Estimator of Section 4.4 is based.

4.3. PREDICTOR MOMENTS AND SIGNAL CAPTURE THRESHOLD 93

Mean predictor

The expected KRR predictor can be expressed in terms of the expected reconstruction operator Aλ

E[f̂ ελ] = E[
1

N
KOT (

1

N
OKOT + λIN)−1yε] = E [Aλ] f∗,

where we used the fact that Ee1,...,eN [yε] = Of∗.

Theorem 4.1 (Theorem 10 in the Appendix). The expected reconstruction operator E[Aλ] is ap-
proximated by the operator Ãϑ = TK (TK + ϑ(λ)IC)

−1 in the sense that for all f, g ∈ C,∣∣∣〈f,(E [Aλ]− Ãϑ
)
g
〉
S

∣∣∣ ≤ (1

N
+ P 0(

Tr[TK]

λN
)

) ∣∣∣〈f, Ãϑ(IC − Ãϑ)g
〉
S

∣∣∣ ,
for a polynomial P 0 with nonnegative coefficients and P 0(0) = 0.

Proof. (Sketch; see the Appendix for details) First we show that E
[〈
f (k), Aλf

(m)
〉
S

]
= 0 whenever

m 6= k, using the invariance of the observations’ distribution oi w.r.t. reflection along a principal
component f (k). This implies that E [Aλ] and Ãϑ both have the same eigenfunctions (f (k))k≥1. It
thus only remains to show that the eigenvalues of both operators are close: E

[〈
f (k), Aλf

(k)
〉
S

]
≈

dk
dk+ϑ .

The difficulty lies in computing the inverse of B = 1
NOKO

T + λIN . We use the Sherman-
Morrison formula to isolate the contribution along the k-th principal component f (k). Defining the
kernel K(k)(x, y) =

∑
6̀=k d`f

(`)(x)f (`)(y) and the vector Ok = Of (k) ∈ RN , we obtain

B−1 = B−1
(k) −

1

N

dk
1 + dkgk

B−1
(k)OkO

T
k B
−1
(k)

for B(k) = 1
NOK(k)OT + λIN and gk = 1

NO
T
k B
−1
(k)Ok. Using the above formula we obtain that〈

f (k), Aλf
(k)
〉
S

=
1

N
dkOTk B−1Ok =

dkgk
1 + dkgk

.

Since the vector Ok is independent of B(k) and has i.i.d. N (0, dk) entries, gk concentrates around
1
NTrB−1

(k) which itself can be approximated by the Stieltjes transform m(z = −λ) = 1
NTrB−1 (since

B(k) is a rank-one deformation of B). Expanding the trivial equation 1
NTr

[
BB−1

]
= 1, we obtain

the relation
1

N

∞∑
k=1

dkgk
1 + dkgk

+ λm(−λ) = 1

which implies that both the gk’s and the Stieltjes transform m(−λ) concentrate around the unique
solution m̃ to the equation 1

N

∑∞
k=1

dkm̃
1+dkm̃

+ λm̃ = 1. The SCT is then defined as the reciprocal

ϑ = 1/m̃ and since gk ≈ m̃ we obtain that E
[〈
f (k), Aλf

(k)
〉
S

]
= E

[
dkgk

1+dkgk

]
≈ dk

ϑ+dk
as needed.

This theorem gives the following motivation for the name SCT: if the true function f∗ is an
eigenfunction of TK , i.e. TKf∗ = δf∗, then Ãϑf∗ = δ

ϑ(λ)+δf
∗ and we get:

• if δ � ϑ(λ), then δ
ϑ(λ)+δ ≈ 1 and E [Aλ] f∗ ≈ f∗, i.e. the function is learned on average,

94
CHAPTER 4. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

λ

ϑ
(λ

)

N = 20
N = 100
N = 500
N = 2500

0 200 400 600 800 1,000

10−3

10−2

10−1

N

ϑ
(λ

)

λ = 10−3

λ = 10−2

λ = 10−1

0 200 400 600 800 1,000

1

1.1

1.2

N

∂
λ
ϑ

(λ
)

λ = 10−3

λ = 10−2

λ = 10−1

Figure 4.3.1: Signal Capture Threshold and Derivative. We consider the RBF Kernel on the stan-
dard d-dimensional Gaussian with ` = d = 20. In blue lines, exact formulas for the SCT ϑ(λ)
and ∂λϑ(λ), computed using the explicit formula for the eigenvalues dk of the integral operator TK
given in Section 1.5 of the Appendix; in red dots, their approximation with Proposition 4.3.

• if δ � ϑ(λ), then δ
ϑ(λ)+δ ≈ 0 and E [Aλ] f∗ ≈ 0, i.e. the function is not learned on average.

More generally, if we decompose a true function f∗ along the principal components (i.e. eigen-
functions) of TK , the signal along the k-th principal component f (k) is captured whenever the
corresponding eigenvalue dk � ϑ(λ) and lost when dk � ϑ(λ).

Variance of the predictor

We now estimate the variance of f̂ ελ along each principal component in terms of the SCT ϑ(λ) and
its derivative ∂λϑ(λ). Along the eigenfunction f (k), the variance is estimated by Vk, where

Vk(f∗, λ,N, ε) =
∂λϑ(λ)

N

(∥∥∥(IC − Ãϑ)f∗
∥∥∥2

S
+ ε2 +

〈
f (k), f∗

〉2

S

ϑ2(λ)

(ϑ(λ) + dk)2

)
d2
k

(ϑ(λ) + dk)2
.

Theorem 4.2 (Theorem 15 in the Appendix). There is a constant C1 > 0 and a polynomial P 1

with nonnegative coefficients and with P 1(0) = 0 such that∣∣∣Var
(〈
f (k), f̂ ελ

〉
S

)
− Vk

∣∣∣ ≤ (C1

N
+ P 1(

Tr[TK]

λN
1
2

)

)
Vk.

As shown in Section 4.4, understanding the variance along the principal components (rather
than the covariances between the principal components) is enough to describe the risk.

Behavior of the SCT

The behavior of the SCT can be controlled by the following (agnostic of the exact spectrum of TK)

Proposition 4.1 (Proposition 5 in the Appendix). For any λ > 0, we have

λ < ϑ(λ,N) ≤ λ+
1

N
Tr[TK], 1 ≤ ∂λϑ(λ,N) ≤ 1

λ
ϑ(λ,N),

moreover ϑ(λ,N) is decreasing as a function of N .

Remark 4.2. As N →∞, we have ϑ(λ,N) decreases down to λ (see also Figure 4.3.1), in agreement
with the fact that Aλ → Ãλ.

4.4. RISK PREDICTION WITH KARE 95

As λ → 0, the above upper bound for ∂λϑ becomes useless. Still, assuming that the spectrum
of K has a sufficiently fast power-law decay, we get:

Proposition 4.2 (Proposition 9 in the Appendix). If dk = Θ(k−β) for some β > 1, there exist
c0, c1, c2 > 0 such that for any λ > 0

λ+ c0N
−β ≤ ϑ(λ,N) ≤ c2λ+ c1N

−β , 1 ≤ ∂λϑ(λ,N) ≤ c2.

Approximation of the SCT from the training data

The SCT ϑ and its derivative ∂λϑ are functions of λ,N , and of the spectrum of TK . In practice,
the spectrum of TK is not known: for example, in the classical setting, one does not know the true
data distribution σ. Fortunately, ϑ can be approximated by 1/mG(−λ), where mG is the Stieltjes
Transform of the Gram matrix, defined by mG(z) = Tr

[
(1
NG− zIN)−1

]
. Namely, we get:

Proposition 4.3 (Proposition 3 in the Appendix). For any λ > 0, s ∈ N, there is a cs > 0 such
that

E
[
|1/ϑ(λ)−mG(−λ)|2s

]
≤ cs(Tr[TK])2s

λ4sN3s
.

Remark 4.3. Likewise, we have ∂λϑ ≈
(
∂zmG(z)/mG(z)2

)
|z=−λ, as shown in the Appendix.

4.4 Risk Prediction with KARE

In this section, we show that the Expected Risk E[Rε(f̂ ελ)] can be approximated in terms of the
training data by the Kernel Alignment Risk Estimator (KARE).

Definition 4. The Kernel Alignment Risk Estimator (KARE) ρ is defined by

ρ(λ,N, yε, G) =
1
N (yε)

T (1
NG+ λIN

)−2
yε(

1
NTr

[(
1
NG+ λIN

)−1
])2 .

In the following, using Theorems 4.1 and D.2, we give an approximation for the expected risk
and expected empirical risk in terms of the SCT and the true function f∗. This yields the important
relation (4.4.1) in Section 4.4, which shows that the KARE can be used to efficiently approximate
the kernel risk.

Expected Risk and Expected Empirical Risk

The expected risk is approximated, in terms of the SCT and the true function f∗, by

R̃ε(f∗, λ,N,K, π) = ∂λϑ(λ)(‖(IC − Ãϑ)f∗‖2S + ε2),

as shown by the following:

Theorem 4.3 (Theorem 16 in the Appendix). There exists a constant C2 > 0 and a polynomial
P 2 with nonnegative coefficients and with P 2(0) = 0, such that we have∣∣∣E[Rε(f̂ ελ)]− R̃ε(f∗, λ,N,K, π)

∣∣∣ ≤ (C2

N
+ P 2(

Tr[TK]

λN
1
2

)

)
R̃ε(f∗, λ,N,K, π).

96
CHAPTER 4. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

Proof. (Sketch; the full proof is given in the Appendix). From the bias-variance decomposition:

E[Rε(f̂ ελ)] = Rε(E[f̂ ελ]) +

∞∑
k=1

Var(〈f (k), f̂ ελ〉S).

By Theorem 4.1, and a small calculation, the bias is approximately ‖(IC−Ãϑ)f∗‖2S+ε2. By Theorem
D.2, and a calculation, the variance is approximately (∂λϑ(λ)− 1)(‖(IC − Ãϑ)f∗‖2S + ε2).

The approximate expected risk R̃ε(f∗, λ,N,K, π) is increasing in both ϑ and ∂λϑ. As λ increases,
the bias increases with ϑ, while the variance decreases with ∂λϑ: this leads to the bias-variance
tradeoff. On the other hand, as a function of N , ϑ is decreasing but ∂λϑ is generally not monotone:
this can lead to so-called multiple descent curves in the risk as a function of N [138].

Note also that if we decompose the true function along the principal components f∗ =
∑∞
k=1 bkf

(k),
the risk is approximated by R̃ε(f∗) = ∂λϑ(λ)(

∑∞
k=1

ϑ(λ)2

(ϑ(λ)+dk)2 b
2
k + ε2).

Remark 4.4. For a decaying ridge λ = cN−γ for 0 < γ < 1
2 , as N → ∞, by Proposition D.3, we

get ϑ(λ) → 0 and ∂λϑ(λ) → 1: this implies that E[Rε(f̂ ελ)] → ε2. Hence the KRR can learn any
continuous function f∗ as N →∞ (even if f∗ is not in the RKHS associated with K).

Remark 4.5. In a Bayesian setting, assuming that f∗ is random with zero mean and covariance
kernel Σ, the optimal choices for the KRR predictor are K = Σ and λ = ε2/N (see Section 2.7 in
the Appendix). When K = Σ and λ = ε2/N, the formula of Theorem 6 simplifies (see Corollary 18
in the Appendix) to

E
[
Rε
(
f̂ ελ

)]
≈ Nϑ

(
ε2

N
,Σ

)
.

The empirical risk (or train error) R̂ε(f̂ ελ) = λ2(yε)T (1
NG+ λIN)−2yε can be analyzed with the

same theoretical tools. Its approximation in terms of the SCT is given as follows:

Theorem 4.4 (Theorem 17 in the Appendix). There exists a constant C3 > 0 and a polynomial
P 3 with nonnegative coefficients and with P 3(0) = 0 such that we have∣∣∣∣E[R̂ε(f̂ ελ)]− λ2

ϑ(λ)2
R̃ε(f̂ ελ, λ,N,K, π)

∣∣∣∣ ≤ (1

N
+ P 3(

Tr[TK]

λN
)

)
R̃ε(f∗, λ,N,K, π).

KARE: Kernel Alignment Risk Estimator

While the above approximations (Theorems D.3 and 4.4) for the expected risk and empirical risk
depend on f∗, their combination yields the following relation, which is surprisingly independent of
f∗:

E
[
Rε
(
f̂ ελ

)]
≈ ϑ2

λ2
E
[
R̂ε
(
f̂ ελ

)]
. (4.4.1)

Since ϑ can be approximated from the training set (see Proposition 4.3), so can the expected risk.
Assuming that the risk and empirical risk concentrate around their expectations, we get the KARE:

Rε
(
f̂ ελ

)
≈ ρ(λ,N, yε, G) =

1
N (yε)

T (1
NG+ λIN

)−2
yε(

1
NTr

[(
1
NG+ λIN

)−1
])2 .

4.5. CONCLUSION 97
h
er

id
ge
λ

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
2

*

1/d·lengthscale `

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Risk
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
2

*

1/d·lengthscale `

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) KARE Preds.

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
2

*

1/d·lengthscale `

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) LOO Preds.

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
2

*

1/d·lengthscale `

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

(d) Log-likelihood Preds.

Figure 4.4.1: Comparision of risk predictors. We calculate the risk (i.e. test error) of f̂ ελ on MNIST
with the RBF Kernel for various values of ` and λ on N = 200 data points (same setup as Fig.
4.1.1). We mark the minimum MSE achieved with a star. We display the predictions of KARE
and leave-one-out (LOO); both find the hyper-parameters minimizing the risk. We also show the
(normalized) log-likehood estimator and observe that it favors large λ values. Axes are log2 scale.

Remark 4.6. As shown in the Appendix, estimating the risk of the expected predictor E[f̂ ελ] yields:

Rε(E[f̂ ελ]) ≈ %(λ,N, yε, G) =
(yε)T (1

NG+ λIN)−2yε

Tr[(1
NG+ λIN)−2]

.

Note that both ρ and % are invariant (as is the risk) under the simultaneous rescalingK,λ αK,αλ.

The KARE can be used to optimize the risk over the space of kernels, for instance to choose
the ridge and length-scale. The most popular kernel selection techniques are (see Figure 4.4.1):

• Leave-one-out: accurate estimator of the risk on a test set, it has a closed-form formula similar
yet different from the KARE [181].

• Kernel likelihood (Chapter 5 of [178]): efficient to optimize and takes into account the ridge,
but not a risk estimator; unlike the risk, not invariant under the simultaneous rescaling K,λ
αK,αλ.

• Classical kernel alignment [40]: very efficient to optimize and scale invariant, but not a risk
estimator, not sensitive to small eigenvalues and inadequate to select hyperparameters such as
the ridge.

The KARE has the following three desirable properties:

• it can be computed efficiently on the training data, and optimized over the space of kernels;

• like the risk, it is invariant under the simultaneous rescaling K,λ αK,αλ;

• it is sensitive to the small Gram matrix eigenvalues and to the ridge λ.

4.5 Conclusion

In this paper, we introduce new techniques to study the Kernel Ridge Regression (KRR) predictor
and its risk. We obtain new precise estimates for the test and train error in terms of a new object,

98
CHAPTER 4. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

the Signal Capture Threshold (SCT), which identifies the components of a true function that are
being learned by the KRR: our estimates reveal a remarkable relation, which leads one to the
Kernel Alignment Risk Estimator (KARE). The KARE is a new efficient way to estimate the risk
of a kernel predictor based on the training data only. Numerically, we observe that the KARE
gives a very accurate prediction of the risk for Higgs and MNIST datasets for a variety of classical
kernels.

Chapter 5

Freeze and Chaos: NTK views on DNN
Normalization, Checkerboard and Boundary
Artifacts

Abstract

We analyze architectural features of Deep Neural Networks (DNNs) using the so-called
Neural Tangent Kernel (NTK), which describes the training and generalization of DNNs in the
infinite-width setting. In this setting, we show that for fully-connected DNNs, as the depth
grows, two regimes appear: freeze (or order), where the (scaled) NTK converges to a constant,
and chaos, where it converges to a Kronecker delta. Extreme freeze slows down training while
extreme chaos hinders generalization. Using the scaled ReLU as a nonlinearity, we end up in
the frozen regime. In contrast, Layer Normalization brings the network into the chaotic regime.
We observe a similar effect for Batch Normalization (BN) applied after the last nonlinearity.
We uncover the same freeze and chaos modes in Deep Deconvolutional Networks (DC-NNs).
Our analysis explains the appearance of so-called checkerboard patterns and border artifacts.
Moving the network into the chaotic regime prevents checkerboard patterns; we propose a
graph-based parametrization which eliminates border artifacts; finally, we introduce a new
layer-dependent learning rate to improve the convergence of DC-NNs. We illustrate our findings
on DCGANs: the frozen regime leads to a collapse of the generator to a checkerboard mode,
which can be avoided by tuning the nonlinearity to reach the chaotic regime. As a result, we
are able to obtain good quality samples for DCGANs without BN.

5.1 Introduction

The training of Deep Neural Networks (DNN) involves a great variety of architecture choices. It
is therefore crucial to find tools to understand their effects and to compare them. For example,
Batch Normalization (BN) [98] has proven to be crucial in the training of DNNs but remains ill-
understood. While BN was initially introduced to solve the problem of “covariate shift”, recent
results [193] suggest an effect on the smoothness of the loss surface. Some alternatives to BN
have been proposed [132, 192, 118], yet it remains difficult to compare them theoretically. Recent
theoretical results [230] suggest some relation to the transition from “order” (freeze) to “chaos”
observed as the depth of the NN goes to infinity [173, 42, 231, 197, 87].

99

100
CHAPTER 5. FREEZE AND CHAOS: NTK VIEWS ON DNN NORMALIZATION,

CHECKERBOARD AND BOUNDARY ARTIFACTS

The impact of architecture is very apparent in GANs [78]: their results are heavily affected by
the architecture of the generator and discriminator [174, 237, 27, 114] and the training may fail
without BN [7, 223].

Recently, there has been important advances [105, 51, 2, 34, 128] in the understanding of the
training of DNNs when the number of neurons in each hidden layer is very large. These results give
new tools to study the asymptotic effect of BN. In particular, the Neural Tangent Kernel (NTK)
[105] illustrates the effect of architecture on the training of DNNs and also describes their loss
surface [112, 106]. The NTK can easily be extended to Convolutional Neural Networks (CNNs)
and other architectures [228, 6], hence allowing comparison. Since the first apparition of this work
on arxiv, the freeze/chaos transition for the NTK has been further studied in [88, 86, 224, 96]. To
stay consistent with the literature, we will henceforth use the term order in place of freeze.

Our Contributions

In Section 5.3, we study fully-connected deep neural networks of infinite width as the depth L
increases. Using a characteristic value rσ,β (for the non-linearity σ and the amount of bias β), we
identify two regimes:

• In the Ordered regime (when rσ,β < 1) the NTK approaches a constant kernel, leading to
an ill-conditioned kernel Gram matrix and a very narrow valley around the global minimum,
hence hurting convergence of the network.

• In the Chaotic regime (when rσ,β > 1) the NTK approaches a Kronecker delta kernel,
leading to an identity kernel Gram matrix and wide valley around the global minimum,
leading to fast convergence but conversely hurting generalization.

For very large depths only critical networks (rσ,β = 1) can be trained successfully [88, 86, 224].
Outside of this large depth regime, the characteristic value plays a similar role to the lengthscale
parameters in traditional kernel methods, depending on the application different values of rσ,β may
be optimal. Therefore we discuss in Section 5.4 how rσ,β can be changed. A network can be pushed
towards the ordered regime by increasing the amount of bias β. Unfortunately even for β = 0 the
network can remain in the ordered regime: to move to the chaotic regime, we show that one can
use normalization. We study three types of normalizations and show their ’chaotic’ properties:

• We introduceNonlinearity Normalization, which modifies the non-linearity σ(x) 7→ σ(x)−b
v

to normalize it over random Gaussian inputs. With a normalized nonlinearity, the character-
istic value rσ,β can always reach the chaotic region for small enough β.

• We show that in the infinite width limit, Layer Normalization has no effect on training
when applied before the nonlinearity and is equivalent to Nonlinearity Normalization when
applied after the nonlinearity: in the latter case, the network can therefore reach the chaotic
regime.

• We show that Batch Normalization at the last layer of the network controls the intensity
of the constant mode of the kernel Gram matrix which otherwise dominates in the ordered
regime, hence avoiding the slow convergence related to the ordered phase.

Finally in Section 5.6, we conduct a similar analysis on deconvolutional networks, to understand
problems of mode collapse in Generative Adversarial Networks (GANs). Mode collapse occurs

5.1. INTRODUCTION 101

when a GAN only generates the same image for all inputs. Typically the generated image features
checkerboard patterns and border artifacts. We show that these problems can be mitigated by
modifying the generator:

• To avoid border artifacts, we propose a Graph-based parameterization of deconvolutional
networks which ensures that the intensity of the NTK is constant over the whole image,
preventing the dip in intensity on the border with the traditional parametrization.

• To circumvent the collapse and the checkerboard patterns we show that one needs to avoid
the ordered regime, where the dominating eigenvectors of the NTK Gram matrix are constant
over the inputs of the generator and feature checkerboard patterns. This may explain why
normalization is so crucial in practice for the training of GANs, to avoid the ordered regime
in the generator.

The traditional technique to avoid Mode Collapse is to use Batch Normalization. Based on our
results, we are able to train a simple DC-GAN without Batch Normalization, using a Graph-based
parameterization and Nonlinearity Normalization.

Related Works

The order/chaos transition was first observed for the covariance of the activations in neural networks
at initialization [173, 42, 231, 197, 87]. The frontier between the two regimes is the same as for
the NTK, however the NTK analysis allows one to describe the behavior of the network during
training.

Since and simultaneously with the original release of this paper on arxiv, there has been numer-
ous works studying the order/chaos transition for the NTK: the edge of chaos (rσ,β = 1) is studied
in more details for both fully-connected and convolutional networks in [88, 86, 224] and the effect
of resnet architecture in [88, 86, 96]. To our knowledge, only our paper shows the chaotic effect of
normalization and the order/chaos transition in deconvolutional networks leading to checkerboard
patterns. Furthermore, while the aforementioned works conclude that only the edge of chaos is
viable for training of very deep networks, we show that for reasonable depths the characteristic
value plays a similar role to the lengthscale parameters in traditional kernel methods, and we show
that for GANs it is advantageous to have a generator in the chaotic regime.

Our work (as well as the aforementioned order/chaos literature) studies infinitely wide DNNs in
the linear or lazy regime, characterized by the NTK staying constant during training, by changing
the initialization and/or parametrization of DNNs, one can instead reach the so-called mean-field
regime where the NTK evolves in time [183, 35, 151, 229]. To our knowledge, the order/chaos
transition in the mean-field regime has not yet been studied.

Finally note that as described in [83, 84], the limiting behavior of the NTK can be very different
in the limit when both width and depth go to infinity simultaneously than in the finite depth,
infinite width limit of [105, 51, 2, 128]. This work (and other order/chaos literature) gives finite
depth bounds for the infinite width limit, roughly speaking, our work applies to large depths and
widths but with a width significantly larger than the depth, while in [83, 84] the depth and width
are of the same order.

102
CHAPTER 5. FREEZE AND CHAOS: NTK VIEWS ON DNN NORMALIZATION,

CHECKERBOARD AND BOUNDARY ARTIFACTS

5.2 Fully-Connected Neural Networks

The first type of architecture we consider are deep Fully-Connected Neural Networks (FC-NNs).
An FC-NN Rn0 → RnL with nonlinearity σ : R → R consists of L + 1 layers (L − 1 hidden
layers), respectively containing n0, n1, . . . , nL neurons. The parameters are the connection weight
matrices W (`) ∈ Rn`+1×n` and bias vectors b(`) ∈ Rn`+1 for ` = 0, 1, . . . , L− 1. Following [105], the
network parameters are aggregated into a single vector θ ∈ RP and initialized using iid standard
Gaussians N (0, 1). For θ ∈ RP , the DNN network function fθ : Rn0 → RnL is defined as fθ (x) =
α̃(L) (x), where the activations and preactivations α(`), α̃(`) are recursively constructed using the
NTK parametrization: we set α(0) (x) = x and, for ` = 0, . . . , L− 1,

α̃(`+1) (x) =

√
1− β2

√
n`

W (`)α(`) (x) + βb(`)

α(`+1) (x) = σ
(
α̃(`+1) (x)

)
,

where σ is applied entry-wise and β ≥ 0.

Remark. The hyperparameter β allows one to balance the relative contributions of the connection
weights and of the biases during training; in our numerical experiments, we set β = 0.1. Note that
the variance of the normalized bias βb(`) at initialization can be tuned by β.

Neural Tangent Kernel

The NTK [105] describes the evolution of (fθt)t≥0 in function space during training. In the FC-NN

case, the NTK Θ
(L)
θ : Rn0 × Rn0 → RnL×nL is defined by

Θ
(L)
θ,kk′ (x, x

′) =

P∑
p=1

∂θpfθ,k (x) ∂θpfθ,k′ (x
′) .

For a dataset x1, . . . , xN ∈ Rn0 , we define the output vector Yθ = (fθ,k (xi))ik ∈ RNnL . The
DNN is trained by optimizing a cost C : RnLN → R through gradient descent, defining a flow
∂tθt = −∇θC (Yθ)

∣∣
θt
. The evolution of the output vector Yθ can be expressed in terms of the NTK

Gram Matrix Θ̃
(L)
θ =

(
Θ

(L)
θ,km (xi, xj)

)
ik,jm

∈ RnLN×nLN and gradient ∇Y C(Yθt) ∈ RnLN :

∂tYθt = −Θ̃
(L)
θt
∇Y C(Yθt).

Infinite-Width Limit

Following [159, 37, 126], in the overparametrized regime at initialization, the preactivations
(
α̃

(`)
i

)
i=1,...,n`

are described by iid centered Gaussian processes with covariance kernels Σ(`) constructed as follows.
For a kernel K, set

LgK (z0, z1) = E(y0,y1)∼N(0,(K(zi,zj))i,j=0,1)
[g (y0) g (y1)] .

5.2. FULLY-CONNECTED NEURAL NETWORKS 103

Figure 5.2.1: The NTK on the unit circle for four architectures with depth L = 5 (left) and L = 25
(right) are plotted: vanilla ReLU network with β = 1.0 (blue) and β = 0.1 (orange), with a
normalized ReLU / Layer norm. (green) and with Batch Norm (red). Both networks have width
3000, but the deeper network is further from convergence, leading to more noise.

The activation kernels Σ(`) are defined recursively by

Σ(0) (z0, z1) = β2 +

(
1− β2

)
n0

zT0 z1

Σ(`+1) (z0, z1) = β2 +
(
1− β2

)
LσΣ(`) (z0, z1) .

While random at initialization, in the infinite-width-limit, the NTK converges to a deterministic
limit, which is moreover constant during training:

Theorem 5.2.1. As n1, . . . , nL−1 →∞, for any z0, z1 ∈ Rn0 and any t ≥ 0, the kernel Θ
(L)
θt

(z0, z1)

converges to Θ
(L)
∞ (z0, z1)⊗ IdnL , where

Θ(L)
∞ (z0, z1) =

L∑
`=1

Σ(`) (z0, z)

L∏
l=`+1

Σ̇(l) (z0, z1)

and Σ̇(l) = (1− β2)Lσ̇
Σ(l−1) with σ̇ denoting the derivative of σ.

We refer to [105] for a proof for the sequential limit n1 → ∞, . . . , nL−1 → ∞ and [228, 6] for
the simultaneous limit min (n1, . . . , nL−1)→∞. As a consequence, in the infinite-width limit, the
dynamics of the labels Yθt,k ∈ RN for each outputs k acquires a simple form in terms of the limiting
NTK Gram matrix Θ̃

(L)
∞ ∈ RN×N

∂tYθt,k = −Θ̃(L)
∞ ∇YkC(Yθt),

where the Gram matrix is now fixed.

104
CHAPTER 5. FREEZE AND CHAOS: NTK VIEWS ON DNN NORMALIZATION,

CHECKERBOARD AND BOUNDARY ARTIFACTS

5.3 Order and Chaos in FC-NNs

We now investigate the large L behavior of the NTK (in the infinite-width limit), revealing a
transition between two phases: “order” and “chaos”. To ensure that the variance of the neurons is
constant for all depths (Σ(`)(x, x) = 1) we consider standardized nonlinearity, i.e. such that

Ex∼N (0,1)

[
σ2 (x)

]
= 1

and inputs on the standard
√
n0-sphere

1

Sn0
= {x ∈ Rn0 : ‖x‖ =

√
n0} .

For a standardized σ, the large-depth behavior of the normalized NTK

ϑ(L) (x, y) :=
Θ

(L)
∞ (x, y)√

Θ
(L)
∞ (x, x) Θ

(L)
∞ (y, y)

is determined by the characteristic value

rσ,β = (1− β2)Ex∼N (0,1)

[
σ̇2 (x)

]
. (5.3.1)

Theorem 5.3.1. Suppose that σ is twice differentiable and standardized.
Order: If rσ,β < 1, there exists C1 > 0 such that for x, y ∈ Sn0

,

1− C1Lr
L
σ,β ≤ ϑ(L) (x, y) ≤ 1.

Chaos: If rσ,β > 1, for x 6= ±y in Sn0
, there exist h < 1 and C2 > 0, such that∣∣∣ϑ(L) (x, y)

∣∣∣ ≤ C2h
L.

Theorem 5.3.1 shows that in the ordered regime, the normalized NTK ϑ(L) converges to a
constant as L → ∞, whereas in the chaotic regime, it converges to a Kronecker δ (taking value 1
on the diagonal, 0 elsewhere). This suggests that the training of deep FC-NN is heavily influenced
by the characteristic value: when rσ,β < 1, Θ(L) becomes constant, thus slowing down the training,
whereas when rσ,β > 1, Θ(L) is concentrates on the diagonal, ensuring fast training, but limiting
generalization. To train very deep FC-NNs, it is necessary to lie “on the edge of chaos” rσ,β = 1
[173, 231].

The order/chaos transition can also be related to the “roughness” of the loss around a global
minimum. As observed in [106] the eigenvalues of the Hessian at convergence are the same as those
of the NTK Gram matrix. In the chaotic regime all eigenvalues are close to each other, leading
to a “wide valley” around the minimum, on the other hand in the ordered regime, the dominating
eigenvalue (corresponding to the constant mode) is much larger than the other eigenvalues, leading
to a very “narrow valley”.

1Note that high dimensional datasets tend to concentrate on hyperspheres: for example in GANs [78] the inputs
of a generator are vectors of iid N (0, 1) entries which concentrate around Sn0 for large dimensions.

5.4. CHAOTIC EFFECT OF NORMALIZATION 105

Order and Chaos for ReLU networks

Theorem 5.3.1 does not apply directly to the standardized ReLU σ (x) =
√

2 max (x, 0), because it
is not differentiable in 0. The characteristic value for the standardized ReLU is rσ,β = 1−β2 which
lies in the ordered regime for β > 0:

Theorem 5.3.2. With the same notation as in Theorem 5.3.1, taking σ to be the standardized ReLU
and β > 0, the NTK is in the ordered regime: there exists a constant C such that 1 − CrL/2σ,β ≤
ϑ(L) (x, y) ≤ 1.

We observe two interesting (and potentially beneficial) properties of the standardized ReLU:

1. Its characteristic value rσ,β = 1 − β2 is very close to the ‘edge of chaos’ for small β and
typically with LeCun initialization the variance of the bias at initialization is 1

w for w the
width, which roughly corresponds to a choice of β = 1√

w
.

2. The rate of convergence to the limiting kernel is smaller (rL/2σ,β) for the ReLU than for differ-
entiable nonlinearities (rLσ,β)

2.

These observations suggest that an advantage of the ReLU is that the NTK of ReLU networks
converges to its constant limit at a slower rate and may naturally offer a good tradeoff between
generalization and training speed.

5.4 Chaotic effect of normalization

Figure 5.2.1 shows that even on the edge of chaos, the NTK may exhibit a strong constant com-
ponent (i.e. ϑ(x, y) > 0.2 for all x, y) which can lead to a bad conditioning of the Gram matrix
governing the infinite-width training behavior. It may be helpful to slightly ’move’ the network
towards the chaotic regime to reduce this effect. In Figure 5.2.1, rσ,β plays a similar role to that of
the lengthscale parameter in classical kernel methods: increasing rσ,β makes the NTK ’narrower’,
reducing the correlation length.

From the definition 5.3.1 of the characteristic value, we see that increasing the bias pushes the
network towards the ordered regime, whereas rσ,β reaches its highest value E

[
σ̇2 (x)

]
when the bias

is 0, which may still be in the ordered regime (or on the edge with the ReLU). We are therefore
interested in ways to push the network further towards the chaotic regime.

In this section, we show that Layer Normalization is asymptotically equivalent to Nonlinearity
Normalization which entails rσ,β > 1 for β small enough. While Batch normalization cannot
be directly interpreted in terms of rσ,β , it is easy to show that it directly controls the constant
component of the NTK, which is characteristic of the ordered regime.

Nonlinearity Normalization

Intuitively, the dominating constant component in ReLU networks is partly a consequence of the
ReLU being non-negative: after the first hidden layer, all negative correlations become positive (i.e.
Σ(1)(x, y) ≥ β for all x, y, even x = −y). One can address this issue thanks to the following. We

2Of course the rates of Theorems 5.3.1 and 5.3.2 may not be tight, but from the proofs in Appendix B.1 one can
observe that the rate of rL/2σ,β appears as a result of the non-differentiability of the ReLU.

106
CHAPTER 5. FREEZE AND CHAOS: NTK VIEWS ON DNN NORMALIZATION,

CHECKERBOARD AND BOUNDARY ARTIFACTS

shall write Z for a random variable with standard normal distribution. We say that σ is normalized
if E[σ(Z)] = 0 and E[σ(Z)2] = 1. In particular, if σ 6= id, then

σ(·) :=
σ(·)− E[σ(Z)]√

E[(σ(Z)− E[σ(Z)])2]

is normalized. By Poincaré Inequality, after nonlinearity normalization, one can always reach the
chaotic regime:

Proposition 5.4.1. If σ 6= id is normalized, then E
[
σ̇2 (Z)

]
> 1 and rσ,β > 1 for β > 0 small

enough.

Layer Normalization

Nonlinearity Normalization is closely related to Layer Normalization (LN). We define a normaliza-
tion layer on any vector v ∈ Rd as

LN(v) =
√
d
v − v̄
‖v − v̄‖

.

for v̄ = 1
d

∑
i vi. We consider two types of Layer normalization depending on whether we apply

the normalization layer before or after the nonlinearity: pre-nonlinearity LN where the activations
are changed to α(`)(x) = σ(LN(α̃(`)(x))) and post-nonlinearity LN where they are changed to
α(`)(x) = LN(σ(α̃(`)(x))). Depending on whether Layer Normalization is applied before or after
the nonlinearity it has either no effect or is equivalent to Nonlinearity Normalization:

Proposition 5.4.2. Suppose that the inputs belong to Sn0
and that σ is standardized. In the infinite

width limit, the network function is the same at initialization and during training:

• with or without pre-nonlinearity LN,

• with Post-nonlinearity LN or with Nonlinearity Normalization.

Proof. (sketch) At initialization, the normalization parameters v̄ and ‖v− v̄‖/
√
d respectively con-

verge to 0 and 1 for pre-nonlinearity LN, and to E[σ(Z)] and
√

E[(σ(Z)− E[σ(Z)])2] for post-
nonlinearity LN. These values stay asymptotically constant during training because the rate of
change of the (pre-)activations is sufficiently small in the linear/lazy regime.

Batch Normalization

For any N × d matrix of features X leading to a N ×N Gram matrix K = 1
dXX

T , the Rayleigh
quotient 1

N 1TK1 of the constant vector 1 measures how big the constant component is. Applying
Batch Normalization (BN) at a layer ` centers (and standardizes) the activations3 α(`)

j (xi) over a
batch x1, ..., xN , thus zeroing the constant Rayleigh quotient of the N ×N features Gram matrices
Σ̃(`) with entries Σ̃

(`)
ij = 1

n`

∑n`
k=1 α

(`)
k (xi)α

(`)
k (xj). Adding a single BN layer after the last hidden

layer controls the constant Rayleigh quotient of the NTK Gram matrix Θ̃(L):

Lemma 5.4.3. Consider FC-NN with L layers, with a ost-nonlinearity-BN after the last nonlin-
earity. Then 1

N 1T Θ̃(L)1 = β2.

3We consider here post-nonlinearity BN, it is common to normalize the pre-activations α̃(`) instead.

5.5. CONVOLUTIONAL NETWORKS 107

In contrast, for a network in the extreme ordered regime, i.e. such that Θ(L)(x, y) ≈ c for some
constant c > 0, the constant Rayleigh quotient scales as 1

N 1T Θ̃(L)1 ≈ cN . The analysis of BN
presented in [113] is also closely related to this phenomenon.

The chaotic effect of Batch Normalization can also be observed in Figure 5.2.1 where the NTK
with Nonlinearity and Batch Normalization have a similar behavior.

5.5 Convolutional Networks

In this section, we introduce convolutional networks as a special case of a general Graph-based
neural networks. We then describe the convergence of the NTK in the infinite width limit.

Graph-based Neural Networks (GB-NNs)

In GB-NNs, the neurons are indexed by their layer ` and their channel i ∈ {1, ..., n`}, in convolu-
tional networks each neuron furthermore has a location on the image (or on a downscaled image).
The position p of a neuron determines its connections with the neurons of the previous and subse-
quent layers. Furthermore certain connections are shared, i.e. they evolve together. We abstract
these concepts in the following manner:

For each layer ` = 0, ..., L, the neurons are indexed by a position p ∈ I` and a channel i = 1, ..., n`.
The sets of positions I` can be any set, in particular any subset of ZD. Each position p ∈ I`+1 has
a set of parents P (p) ⊂ I` which are neurons of the previous layer connected to p. The connections
from the parent (q, `) to the position (p, `+ 1) are encoded in an n`×n`+1 weight matrix W (`,q→p).
Finally two connections q → p and q′ → p′ can be shared, setting the corresponding matrices to be
equal W (`,q→p) = W (`,q′→p′).

The inputs of the network x are vectors in (Rn0)
I0 , for example for colour images of width

w and height h, we have n0 = 3 and I0 = {1, ..., w} × {1, ..., h} ⊂ Z2. The activations and
preactivations α(`), α̃(`) ∈ (Rn`)I` are constructed recursively using the NTK parametrization: we
set α(0,p) (x) = x(p) and for ` = 0, . . . , L− 1 and any position p ∈ I`+1,

α̃(`+1,p)(x) = βb(`) +

√
1− β2√
|P (p)|n`

∑
q∈P (p)

W (`,q→p)α(`,q)(x) (5.5.1)

α(`+1,p) (x) = σ
(
α̃(`+1,p) (x)

)
where σ is applied entry-wise, β ≥ 0 and |P (p)| is the cardinality of P (p).

Deconvolutional networks

Deconvolutional networks (DC-NNs) in dimension D can be seen as a special case of GB-NNs.
We first consider borderless DC-NNs, i.e. the set of positions are I` = ZD for all layers `. Given
window dimensions (w1, ..., wD) and strides (s1, ..., sD), the set of parents of p ∈ I`+1 is the hyper-
rectangle P (p) = {bp1/s1c+ 1, ..., bp1/s1c+ w1} × · · · × {bpD/sDc+ 1, ..., bpD/sDc+ wD} ⊂ ZD.
Two connections q → p and q′ → p′ are shared if sd | pd − p′d (i.e. sd is a divisor of pd − p′d) and
qd − q′d =

pd−p′d
sd

for all d = 1, ..., D. This definition can easily be extended to any other choices of
position sets I` ⊂ ZD (for example hyperrectangles) by considering P (p) ∩ I` in place of P (p) as
parents of p.

108
CHAPTER 5. FREEZE AND CHAOS: NTK VIEWS ON DNN NORMALIZATION,

CHECKERBOARD AND BOUNDARY ARTIFACTS

Neural Tangent Kernel

As for FC-NNs , in the infinite width limit (when n1, ..., nL−1 → ∞) the preactivations α̃(`,p)
i (x)

converge to Gaussian processes with covariance

Cov
(
α̃

(`+1,p)
i (x), α̃

(`+1,q)
j (y)

)
= δijΣ

(`,pq)(x, y).

The behavior of the network during training is described by the NTK

Θ
(`,pq)
ij (x, y) =

P∑
k=1

∂θk α̃
(`+1,p)
i (x)∂θk α̃

(`+1,q)
j (y).

In the Appendix E we prove the convergence Θ
(`,pq)
ij (x, y) → δijΘ

(`,pq)
∞ (x, y) of the NTK for the

sequential limit n1, · · · , nL−1 → ∞ and give formulas for the limiting kernels Σ(`,pq)(x, y) and
Θ

(`,pq)
∞ (x, y). The simultaneous limit yields the same formulas.

5.6 Mode Collapse in Generative Adversarial Networks

The order/chaos transition is even more interesting for convolutional networks, in particular in the
context of Generative Adversarial Networks (GANs): a common problem in GAN training is the
so-called ‘mode collapse’, where the generator converges to a constant function, hence generating
a single image instead of a variety of images. This problem is closely related to the fact that the
constant mode of the NTK Gram matrix dominates, and indeed the problem of mode collapse is
most prominent in the ordered regime (Figure 5.6.1), while normalization techniques (leading to a
chaotic network) mitigate this problem.

In this section, we use the NTK to explain the appearance of border and checkerboard arti-
facts in generated images. We show that the border artifacts issue can be solved by a change of
parametrization and that the checkerboard artifacts occur in the ordered regime, and can hence be
avoided by adding normalization and using layer-wise learning rates. With these changes we are
able to train GANs on CelebA dataset without Batch Normalization.

Border Effects

A very important element of the NTK parametrization proposed in Section 5.5 is the factors
1/
√
|P (p)|n` in the definition of the preactivation (Equation 5.5.1): we scale the contribution

of the previous layer according to the number of neurons |P (p)|n` (i.e. n` channels for each of
the|P (p)| positions) which are fed into the neuron. For inputs x ∈ SI0n0

(i.e. such that x(p) ∈ Sn0

for all p), these factors ensure that the limiting variance Σ(`,pp) (x, x) of α̃(`,p)
i (x) at initialization is

the same for all p:

Proposition 5.6.1. For GB-NNs with the NTK parametrization, Σ(`,pp) (x, x) and Θ
(`,pp)
∞ (x, x)

do not depend neither on p ∈ I` nor on x ∈ SI0n0
.

These factors are usually not present and to compensate, the variance of the weights at initial-
ization is reduced. In convolutional networks with LeCun initialization, the standard deviation of
the weights at initialization is set to 1√

whn`
for w and h the width and height of the window of

5.6. MODE COLLAPSE IN GENERATIVE ADVERSARIAL NETWORKS 109

convolution, which has roughly the effect of replacing the 1√
|P (p)|n`

factors by 1√
whn`

. However

whn` is the maximal number of parents that a neuron can have, it is typically attained at positions
p in the middle of the image. Positions p on the border of the image have less parents hence leading
to a smaller contribution of the previous layer. This leads both kernels Σ(`,pp)(x, x) and Θ(`,pp)(x, x)
to have lower intensity for p ∈ I` on the border (see Appendix G for an example when I` = N, i.e.
when there is one border pixel), leading to border artifacts as seen in Figure 5.6.1.

O
R
D
E
R

1 2 3 4 5 6 7 8

1

2

3

4

1 2 3 4 5 6 7 8

1

2

3

4

C
H
A
O
S

1 2 3 4 5 6 7 8

1

2

3

4

1 2 3 4 5 6 7 8

1

2

3

4

B
A
T
C
H

N
O
R
M

1 2 3 4 5 6 7 8

1

2

3

4

1 2 3 4 5 6 7 8

1

2

3

4

standard graph-based + layer dependent lr. GAN

Figure 5.6.1: The left and middle columns represent the first 8 eigenvectors of the NTK Gram
matrix of a DC-NN (L=3) on 4 inputs. (left) without the Graph-Based Parametrization (GBP)
and the Layer-Dependent Learning Rate (LDLR); (middle) with GBP and LDLR. The right column
represents the results of a GAN on CelebA with GBP and LDLR. Each line correspond to a choice of
nonlinearity/normalization for the generator: (top) ReLU, (middle) normalized ReLU and (bottom)
ReLU with Batch Normalization.

Order, Chaos and Checkerboard Patterns

Large depths deconvolutional networks exhibit a similar Order/Chaos transition as that of FC-NNs,
the values of the limiting kernel at different positions Θ(L,pq) is especially interesting.

For GB-NNs, the value of an output neuron at a position p ∈ IL only depends on the inputs
which are ancestors of p, i.e. all positions q ∈ I0 such that there is a chain of connections from q

110
CHAPTER 5. FREEZE AND CHAOS: NTK VIEWS ON DNN NORMALIZATION,

CHECKERBOARD AND BOUNDARY ARTIFACTS

to p. For the same reason , the NTK Θ(L,pp′)(x, y) only depends on the values xq, yq′ for q, q′ ∈ I0
ancestors of p and p′ respectively.

For a stride s ∈ {2, 3, . . .}d, we denote the s-valuation vs (n) of n ∈ Zd as the largest k ∈
{0, 1, 2, . . .} such that ski | ni for all i = 1, ..., d. The behaviour of the NTK Θ

(L)
p,p′(x, y) depends on

the s-valuation of the difference of the two output positions. If vs (p′ − p) is strictly smaller than L,
the NTK Θ(L,pp′)(x, y) converges to a constant in the infinite-width limit for any x, y ∈ SI0n0

. Again
the characteristic value rσ,β plays a central role in the behavior of the large-depth limit. In this
context, we define the rescaled NTK as ϑ(L,pp′) (x, y) = Θ(L,pp′)(x, y)/

√
Θ(L,pp)(x, x)Θ(L,p′p′)(y, y)

(note that the denominator actually does not depend on p, p′, x nor y by Proposition 5.6.1)

Theorem 5.6.2. Consider a borderless DC-NN with position sets I` = ZD for all layers `, up-
sampling stride s ∈ {2, 3, . . .}D and window sizes w ∈ {1, 2, 3, . . .}D. For a standardized twice
differentiable σ, there exist constants C1, C2 > 0, such that the following holds: for x, y ∈ SI0n0

, and
any positions p, p′ ∈ IL, we have

Order: When rσ,β < 1, taking v = min (vs (p− p′) , L− 1), we have

1− rv+1
σ,β

1− rLσ,β
− C1(v + 1)rvσ,β ≤ ϑ(L,pp′) (x, y) ≤

1− rv+1
σ,β

1− rLσ,β
.

Chaos: When rσ,β > 1, if either vs (p− p′) < L or if there exists c < 1 such that for all

positions q ∈ I0 which are ancestors of p,
∣∣∣∣xTq yq+ p′−p

sL

∣∣∣∣ < c, then there exists h < 1 such that

∣∣∣ϑ(L,pp′) (x, y)
∣∣∣ ≤ C2h

L.

This theorem suggests that in the order regime, the correlations between differing positions p and
p′ increase with vs (p− p′), which is a strong feature of checkerboard patterns [165]. These artifacts
typically appear in images generated by DC-NNs. The form of the NTK also suggests a strong
affinity to these checkerboard patterns: they should dominate the NTK spectral decomposition.
This is shown in Figure 5.6.1 where the eigenvectors of the NTK Gram matrix for a DC-NN are
computed.

In the chaotic regime, the normalized NTK converges to a “scaled translation invariant” Kro-
necker delta. For two output positions p and p′ = p + ksL we associate the two regions ω and
ω′ = ω + k of the input space which are connected to p and p′. Then ϑ(L,p,p+ksL) (x, y) is one if
the patch yω′ is a k translation of xω and approximately zero otherwise.

Layer-dependent learning rate

The NTK is the sum Θ(L) =
∑
` Θ

(L)

W (`) + Θ
(L)

b(`)
over the contributions of the weights Θ

(L,pq)

W (`) (x, y) =∑
ij ∂W (`)

ij
fθ,p(x)∂

W
(`)
ij
fθ,q(y) and biases Θ

(L,pq)

b(`)
(x, y) =

∑
j ∂b(`)j

fθ,p(x)∂
b
(`)
j
fθ,q(y). At the `-th layer,

the weights and biases can only contribute to checkerboard patterns of degree v = L − ` and
v = L− `− 1, i.e. patterns with periods sL−` and sL−`−1 respectively, in the following sense:

Proposition 5.6.3. In a DC-NN with stride s ∈ {2, 3, ...}d, we have Θ
(L,pp′)

∞,W (`)(x, y) = 0 if sL−` -

p′ − p and Θ
(L,pp′)

∞,b(`) (x, y) = 0 if sL−`−1 - p′ − p.

5.7. CONCLUSION 111

This suggests that the supports of Θ
(L)

∞,W (`) and Θ
(L)

∞,b(`) increase exponentially with `, giving more
importance to the last layers during training. This could explain why the checkerboard patterns
of lower degree dominate in Figure 5.6.1. In the classical parametrization, the balance is restored
by letting the number of channels n` decrease with depth [174]. In the NTK parametrization, the
limiting NTK is not affected by the ratios n`

nk
. To achieve the same effect, we divide the learning

rate of the weights and bias of the `-th layer by S
`
2 and S

(`+1)
2 respectively, where S =

∏
i si is the

product of the strides. Together with the ’parent-based’ parametrization and the normalization of
the nonlinearity (in order to lie in the chaotic regime) this rescaling of the learning rate removes
both border and checkerboard artifacts in Figure 5.6.1.

5.7 Conclusion

This article shows how the NTK can be used theoretically to understand the effect of architecture
choices (such as decreasing the number of channels or batch normalization) on the training of
DNNs. We have shown that DNNs in a “order” regime, have a strong affinity to constant modes
and checkerboard artifacts: this slows down training and can contribute to a mode collapse of
the DC-NN generator of GANs. We introduce simple modifications to solve these problems: the
effectiveness of normalizing the nonlinearity, a parent-based parametrization and a layer-dependent
learning rates is shown both theoretically and numerically.

Chapter 6

DNN-Based Topology Optimization: Spatial
Invariance and Neural Tangent Kernel

Abstract

We study the Solid Isotropic Material Penalisation (SIMP) method with a density field
generated by a fully-connected neural network, taking the coordinates as inputs. In the large
width limit, we show that the use of DNNs leads to a filtering effect similar to traditional fil-
tering techniques for SIMP, with a filter described by the Neural Tangent Kernel (NTK). This
filter is however not invariant under translation, leading to visual artifacts and non-optimal
shapes. We propose two embeddings of the input coordinates, which lead to (approximate)
spatial invariance of the NTK and of the filter. We empirically confirm our theoretical observa-
tions and study how the filter size is affected by the architecture of the network. Our solution
can easily be applied to any other coordinates-based generation method.

6.1 Introduction

Topology optimisation [21], also known as structural optimisation, is a method to find optimal
shapes subject to some constraints. It has been widely studied in the field of computational me-
chanics. Here we are interested in the particular case of the Solid Isotropic Material Penalisation
(SIMP) method [143, 3], which is a very common method in this field.

Recently some authors have used Deep Neural Networks (DNNs) to perform topology optimi-
sation. We can differentiate two different approaches in the use of DNNs with SIMP. The first
approach consists in generating with the classical algorithms a dataset of optimised shapes and
train a DNN on this dataset to produce new optimal shapes [15, 207]. Variations of this approach
use Generative Adversarial Networks (GAN) [163, 201] to effectively reproduce classical topology
optimisation.

In the second approach, the density is generated pointwise by a DNN, which is trained with
gradient descent to optimise the density field with respect to the physical constraints, as proposed
in [94] to use the power of deep models without giving up exact physics. We focus on the approach
of [31, 30] where the density field is generated by a Fully-Connected Neural Network (FCNN) taking
the coordinates of a grid as inputs. Surprisingly, [31] observes that the DNN-generated density fields
do not feature checkerboard artifacts, which are common in vanilla SIMP. A traditional method

113

114
CHAPTER 6. DNN-BASED TOPOLOGY OPTIMIZATION: SPATIAL INVARIANCE AND

NEURAL TANGENT KERNEL

to avoid checkerboard patterns is to add a filter [202, 22], but it is not needed for DNN-generated
density fields.

In this paper, we analyse theoretically how the use of a DNN to generate the density field affects
the learning. Our main theoretical tool is the Neural Tangent kernel (NTK) introduced in [105] to
describe the dynamics of wide neural networks [105, 6, 128, 95].

While this paper focuses on linear elasticity and SIMP, our analysis can extended to other
physical problems such as heat transfer [149], or any model where an image is generated by a DNN
taking the pixel coordinates as inputs (like in [155]).

Our contribution

In this paper we study topology optimisation with neural networks. The physical density is repre-
sented by a neural network taking an embedding of spatial coordinates as inputs, i.e. the density
at a point x ∈ Rd is given by fθ(ϕ(x)) for θ the parameters of the network and ϕ an embedding.
We use theoretical tools, in particular the Neural Tangent Kernel (NTK), to understand how the
architecture and hyperparameters of the network affect the optimisation of the density field:

• We show that in the infinite width limit (when the number of neurons in the hidden layers
grows to infinity), topology optimisation with a DNN is equivalent to topology optimisation
with a density filter equal to the “square root” of the NTK. Filtering is a commonly used
technique in topology optimisation, aimed to remove checkerboard patterns.

• In topology optimisation as in other physical optimisation problems, it is crucial to guarantee
some spatial invariance properties. If the coordinates are taken as inputs of the network
directly, the NTK (and the corresponding filter) is not translation invariant, leading to non-
optimal shapes and visual artifacts. We present two methods to ensure the spatial invariance
of the NTK: embedding the coordinates on the (hyper-)torus or using a random Fourier
features embedding (similar to [214]).

• In traditional topology optimisation, the filter size must be tuned carefully. When optimising
with a DNN, the filter size depends on the embedding of the coordinates and the architecture
of the network. We define a filter radius for the NTK, which plays a similar role as the classical
filter size and discuss how it is affected by the choice of embedding, activation function, depth
and other hyperparameters like the importance of bias in the network. This tradeoff can also
be analysed in terms of the spectrum of the NTK, explaining why neural networks naturally
avoid checkerboard patterns.

We confirm and illustrate these theoretical observations with numerical experiments. Our imple-
mentation of the algorithm will be made public at https://github.com/benjiDupuis/DeepTopo.

6.2 Presentation of the method

In this paper, we use a DNN to generate the density field used by the Solid Isotropic Material
Penalisation (SIMP) method. Our implementation of SIMP is based on [3] and [143]. In this
section we introduce the traditional SIMP method and our neural network setting.

https://github.com/benjiDupuis/DeepTopo

6.2. PRESENTATION OF THE METHOD 115

SIMP method

We consider a regular grid of N elements where the density of element i is denoted yi ∈ [0, 1],
informally the value yi represents the presence of material at a point i. Our goal is to optimise
over the density y ∈ RN to obtain a shape that can withstand forces applied at certain points,
represented by a vector F .

The method uses finite element analysis to define a stiffness matrix K(y) ∈ S++
N (R) from the

density y and computes the displacement vector U(y) (which represent the deformation of the
shape at all points i as a result of the applied forces F) by solving a linear system K(y)U(y) = F .
In our implementation, we performed it either by using sparse Cholesky factorisation [45, 33] or
BICGSTAB method [218] (this last one can be used for a high number of pixels).

The loss function is then defined as the compliance C(y) = U(y)TK(y)U(y), under a volume
constraint of the form

∑N
i=1 yi = V0, with 0 ≤ V0 ≤ N (see [3, 143]).

A modified SIMP approach

Several methods exist to optimise the density field y ∈ RN , such as gradient descent or the so-called
Optimality Criteria (OC) [233]. We propose here an optimisation method inspired from [94] which
we will refer as the Modified Filtering method (MF). The advantage of this method is that it can
be used with or without DNNs, hence allowing comparison between these two approaches. We first
present here the model without DNNs.

In our method, the densities yMF
i are given by:

∀i ∈ {1, ..., N}, yMF
i = σ(xi + b̄(X)), with b̄(X) such that

N∑
i=1

yMF
i = V0, (6.2.1)

for X = (x1, ..., xN) ∈ RN and the sigmoid σ(x) = 1
1+e−x . We will denote this operation as:

Y MF = Σ(X). The sigmoid ensures that densities are in [0, 1] and the choice of the optimal bias
b̄(X) ensures that the volume constraint is satisfied.

Filtering: If the vector X is optimised directly with gradient descent, SIMP often converges
toward checkerboard patterns, i.e. some high frequency noise in the image, which is a common
issue with SIMP [3]. To overcome this issue a common technique is to use filtering [202]. In this
paper, we consider low-pass density filters of the form: X = TX̄ where T represents a convolution
on the grid, X̄ are the design variables and X is the vector in equation 6.2.1. The loss function of
this method is then naturally defined as: X̄ 7−→ C(Σ(TX̄)).

The gradient ∇Y C is easily obtained by the self-adjointness of the variational problem [233,
110]. We recover ∇XC from ∇Y C using an implicit differentiation technique [79]. The following
proposition is a consequence of implicit function theorem and chain rules:

Proposition 6.1. Let Ṡ be the vector with entries σ̇(xi + b̄(X)). We have ∇XC = DX∇Y C with:

DX := − 1

|Ṡ|1
ṠṠT + Diag(Ṡ). (6.2.2)

where |.|1 denotes the l1 norm of a vector. Furthermore DX is a symmetric positive semi-definite
matrix whose null-space is the space of constant vectors and has eigenvalues smaller than 1

4 .

116
CHAPTER 6. DNN-BASED TOPOLOGY OPTIMIZATION: SPATIAL INVARIANCE AND

NEURAL TANGENT KERNEL

Proposed algorithm: SIMP with Neural networks

Fully-Connected Neural Networks (FCNN) are characterised by the number of layers L + 1, the
numbers of neurons in each layer (n0, n1, ..., nL) and an activation function µ : R −→ R, here we
will use the particular case nL = 1. The activations al ∈ Rnl and preactivations ãl ∈ Rnl are
defined recursively for all layers l, using the so-called NTK parameterisation [105]:

a0(x) = x, ãl+1(x) =
α
√
nl
W lal(x) + βbl, al+1(x) = µ

(
ãl+1(x)

)
, (6.2.3)

for some hyperparameters α, β ∈ [0, 1] representing the contribution of the weights and bias terms
respectively. The parameters θ = (θp)p, consisting in weight matrices W l and bias vectors bl are
drawn as i.i.d. standard normal random variables N (0, 1). We denote the output of the network as
fθ(x) = ãL(x).

Remark: To ensure that the variance of the neurons at initialization is the equal to 1 at
all layers, we choose α and β such that α2 + β2 = 1 and use a standardised non-linearity, i.e.
EX∼N (0,1)[µ(X)2] = 1 ([104]).

 Pointwise
FCNN

SIMP

Figure 6.2.1: Illustration of our method

In our approach, the pre-densities XNN(θ) = (xNN
1 , ..., xNN

N) are generated by a neural network
as xNN

i = fθ(zi) where zi ∈ Rn0 is either the coordinates of the grid elements (in this case n0 = d)
or an embedding of those coordinates. We then apply the same transformation Σ to obtain the
density field Y NN(θ) = Σ(XNN(θ)). Our loss function is then defined as:

θ 7−→ C(Y NN(θ)) = C
(
Σ(X(θ))

)
.

The design variables are now the parameters θ of the network. The gradient ∇θC w.r.t. to
the parameters is computed by first using Proposition F.1 to get ∇Y NNC followed by traditional
backpropagation.

Remark: Note the absence of filter T in the above equations, indeed we will show how neural
networks naturally avoid checkerboard patterns, making the use of filtering obsolete.

Initial density field: The SIMP method is usually initialised with a constant density field [3].
Since the neural network is initialized randomly, the initial density field is random and non-constant.
To avoid this problem, we subtract the initial density field and add a well-chosen constant:

∀i ∈ {1, ..., N}, xi(θ) = f̄θ(t)(zi) = fθ(t)(zi)− fθ(t=0)(zi) + log

(
V0

N − V0

)
. (6.2.4)

We used equation 6.2.4 to compute X(θ) in our numerical experiments.

6.3. THEORETICAL ANALYSIS 117

Figure 6.2.2: Example of result of our method with applied forces (red arrow) and a fixed boundary
(green). Here we used a Gaussian embedding (see section 4 for details).

6.3 Theoretical Analysis

Analogy between the Neural Tangent Kernel and filtering techniques

In our paper, we use the Neural Tangent Kernel (NTK [105]) as the main tool to analyse the
training behaviour of the FCNN. In our setting (where nL = 1) the NTK is defined as:

∀z, z′ ∈ Rn0 , ΘL
θ (z, z′) =

∑
p

∂fθ
∂θp

(z)
∂fθ
∂θp

(z′) = (∇θfθ(z)|∇θfθ(z′)).

This is a positive semi-definite kernel. Given some inputs z1, ..., zN we define the NTK Gram matrix
as: Θ̃L

θ :=
(
ΘL(zi, zj)

)
1≤i,j≤N ∈ RN×N .

Assuming a small enough learning rate, the evolution of the network under gradient descent is
well approximated by the gradient flow dynamics ∂tθ(t) = −∇θC(t). The evolution of the output
of the network XNN(θ) can then easily be expressed in terms of the NTK Gram matrix [104] for a
loss L:

∂tX
NN(θ(t)) = −Θ̃L

θ(t)∇XNNL.

From this equation we can derive the evolution of the physical density field Y NN in our algorithm:

Proposition 6.2. If the network is trained under this gradient flow, then by applying chain rules,
we can prove that the density field follows the equation:

∂tY
NN(θ(t)) = −DX(t)Θ̃L

θ(t)DX(t)∇Y C(Y NN(θ(t))). (6.3.1)

The analogy between the NTK and filtering techniques comes from the following observation.
With Modified Filtering with a filter T , we show similarly that the density field Y MF evolves as

∂tY
MF(t) = −DX(t)TTTDX(t)∇Y C(Y MF(t)). (6.3.2)

We see that the NTK Gram matrix and the squared filter TTT play exactly the same role.
An important difference however is that the NTK is random at initialisation and evolves during
training.

This difference disappears for large widths (when n1, . . . , nL−1 are large), since the NTK con-
verges to a deterministic and time independent limit Θ̃L

∞ as n1, . . . , nL−1 →∞ [105]. Furthermore,

118
CHAPTER 6. DNN-BASED TOPOLOGY OPTIMIZATION: SPATIAL INVARIANCE AND

NEURAL TANGENT KERNEL

in contrast to the finite width NTK (also called empirical NTK), we have access to a closed form
formula for the limiting NTK Θ̃L

∞ (given in the appendix).
In the infinite width limit, the evolution of the physical densities is then expressed in terms of

the limiting NTK Gram matrix Θ̃L
∞:

∂tY
NN(θ(t)) = −DX(t)Θ̃L

∞DX(t)∇Y C(Y NN(θ(t))). (6.3.3)

From now on we will focus on this infinite-width limit, comparing the NTK Gram matrix Θ̃L
∞ and

the squared filter TTT . Recent results [128, 6, 95] suggest that this limit is a good approximation
when the width of the network is sufficiently large. For more details see the appendix, where we
compare the empirical NTK with its limiting one and plot its evolution in our setting.

Spatial invariance

In physical problems such as topology optimisation, it is important to ensure that certain physical
properties are respected by the model. We focus in this section on the translation and rotation
invariance of topology optimisation: if the force constraints are rotated or translated, the resulting
shape should remain the same (up to rotation and translation), as in Figure 6.3.2 (b.1 and b.2).

In Modified Filtering method, this property is guaranteed if the filter T is translation and
rotation invariant. In contrast the limiting NTK is in general invariant under rotation [105] but
not translation. As Figure 6.3.2 shows, this leads to some problematic artifacts. The NTK can be
made translation and rotation invariant by first applying an embedding ϕ : Rd −→ Rn0 with the
properties that for any two coordinates p, p′, ϕ(p)Tϕ(p′) only depends on the distance ‖p − p′‖2.
Since the rotation invariance of the NTK implies that ΘL

∞(z, z′) depends only on the scalar products
zT z′, zzT and z′z′T , we have that ΘL

∞(ϕ(p), ϕ(p′)) depends only on ‖p− p′‖ as needed.
The issue is that for finite n0 there is no non-trivial embedding ϕ with this property:

Proposition 6.3. Let ϕ : Rd → Rn0 for d > 2 and any finite n0. If ϕ satisfies ϕ(x)Tϕ(x′) =
K(‖x− x′‖) for some continuous function K then both ϕ and K are constant.

To overcome this issue, we present two approaches to approximate spatial invariance with finite
embeddings: an embedding on a (hyper)-torus and a random feature [176] embedding based on
Bochner theorem [186].

Embedding on a hypertorus

In this subsection we consider the following embedding of a nx × ny regular grid on a torus:

R2 3 p = (p1, p2) 7−→ ϕ(p) = r(cos(δp1), sin(δp1), cos(δp2), sin(δp2)), (6.3.4)

where δ > 0 is a discretisation angle (our default choice is δ = π
2 max(nx,ny)). One can use similar

formulas for d > 2 (leading to an hyper-torus embedding), we used d = 2 in equation 6.3.4 for
simplicity.

This embedding leads to an exact translation invariance and an approximate rotation invariance:

ϕ(p)Tϕ(p′) = r2(cos(δ(p1 − p′1)) + cos(δ(p2 − p′2))) = r2

(
2− δ2

2
‖p− p′‖22

)
+O

(
δ4‖p− p′‖44

)
.

As a result, the limiting NTK Θ∞(ϕ(p), ϕ(p′)) is translation invariant and approximately rota-
tion invariant (for small δ and/or when p, p′ are close to each other). Moreover, if we look at the

6.3. THEORETICAL ANALYSIS 119

limiting NTK on the whole torus, we obtain that the gram matrix Θ̃∞ is a discrete convolution on
the input grid, with nice properties summed up in the following proposition:

Proposition 6.4. We can always extend our nx×ny grid and choose δ such that the embedded grid
covers the whole torus (typically δ = π

2 max(nx,ny) and take a n × n grid with n = 4 max(nx, ny)).
Then the Gram matrix Θ̃∞ of the limiting NTK is a 2D discrete convolution matrix. Moreover the
NTK Gram matrix has a positive definite square root

√
Θ̃∞ which is also a discrete convolution

matrix.

Figure 6.3.1: Representation of one line of Θ̃θ on
the full torus and of its square root. We used
β = 0.2 and ω = 3 (see Section 6.4) here to make
the filter visible on the whole torus.

As we know, the eigenvectors of such a con-
volution matrix are the 2D Fourier vectors.
The corresponding eigenvalues are the discrete
Fourier transforms of the convolution kernel.

The square root of the NTK Gram matrix√
Θ̃∞ then corresponds to the filtering matrix

T in our analogy. Figure 6.3.1 shows that on the
full torus, the matrix square root

√
Θ̃θ indeed

looks like a typical smoothing filter.
As Figure 6.3.2 shows, the torus embedding

method gives good numerical results and re-
spect the symmetry of the applied forces F .

Random embeddings for radial kernels

Another approach to approximate a rotation and translation invariant embedding is to use random
Fourier features [176], which is a general method to approximate shift invariant kernels of the form
k(x, y) = k(x − y). By Bochner theorem [186], any continuous non-zero radial kernel k(x − y) =
K(‖x− y‖) can be written as the the (scaled) Fourier transform of a probability measure Q on Rd:

k(r) = k(0)

∫
Rd
eiω.rdQ(ω).

For radial kernels, we formulate random Fourier features embeddings ϕ : Rd → Rn0 as follows:

ϕ(p)i =
√

2k(0) sin(wTi p+
π

4
+ bi),

for i.i.d. samples w1, ..., wn0 ∈ Rd from Q (which is also invariant by rotation) and i.i.d. samples
b1, ..., bn0 ∈ Rd from any symmetric probability distribution (or uniform laws on [0, 2π]). By the
law of large numbers for large n0, we have the approximation 1

n0
ϕ(p)Tϕ(p′) ' k(p− p′).

Gaussian embedding: Depending on the kernel k that we want to approximate, it may be
difficult to sample from the distribution Q. The simplest case is for a Gaussian kernel k(d) =

e−
1

2`2
d2

, where the distribution Q of the weights wi is N (0, 1
`2 Id), i.e. the entries wij are all

i.i.d. N (0, 1
`2) Gaussians. For this reason this is the embedding that we will use in our numerical

experiments. Note the similarity between this type of embedding and an untrained first layer of a
FCNN with sine activation function, weights wi and bias bi.

Moreover, the following result shows that we can still define a "square root" of the NTK with
those types of embedding and thus complete the analogy with equation 6.3.2.

120
CHAPTER 6. DNN-BASED TOPOLOGY OPTIMIZATION: SPATIAL INVARIANCE AND

NEURAL TANGENT KERNEL

Figure 6.3.2: Left: empirical NTK of FCNNs with both embedding (a.1, a.2, see Section 6.4
for details) or without embedding (a.3 with ReLu, a.4 with tanh). Right: Corresponding shape
obtained after training. Note that methods without spatial invariance particularly struggles with
this symmetric load case (b.3, b.4) while both "embedded methods" respect the symmetry (b.1,
b.2). We also observed that training with non-embedded methods is very unstable

Proposition 6.5. Let ϕ be an embedding as described above for a positive radial kernel k ∈ L1(Rd)
with k(0) = 1, k ≥ 0. Then there is a filter function g : R→ R and a constant C such that for all
p, p′:

lim
n0→∞

Θ∞(ϕ(p), ϕ(p′)) = C + (g ? g)(p− p′), (6.3.5)

where Θ∞ is the limiting NTK of a network with a Lipschitz, non-constant and standardised acti-
vation function µ. (Here ? denotes the convolution product).

As the matrix DX in equation 6.3.3 cancels out the constant frequency (proposition F.1), the
constant C doesn’t matter, i.e. DXΘ̃

(L)
∞ DX = DX

(
Θ̃

(L)
∞ − C

)
DX .

6.4 Experimental analysis

Setup

Most of our experiments were conducted with a torus embedding or a gaussian embedding. For the
SIMP algorithm, we adapted the code described in [3, 143]. Here are the hyperparameters used in
the experiments.

6.4. EXPERIMENTAL ANALYSIS 121

Figure 6.4.1: Sorted eigenvalues of the empir-
ical NTK with some eigenvectors (reshaped as
images). Obtained with a Gaussian embedding.

Figure 6.4.2: Colormap of R̂1/2 in the (β, ω)
plane, torus embedding. Level lines and shapes
obtained for different radius are represented.

For the Gaussian embedding, we used n0 = 1000 and a length scale ` = 4. This embedding was
followed by one hidden linear layer of size 1000 with standardized ReLu (x 7→

√
2 max(0, x)) and a

bias parameter β = 0.5.

For the torus embedding we set the torus radius to r =
√

2 (to be on a standard sphere) and the
discretisation angle to δ = π

2 max(nx,ny) (to cover roughly half the torus, which is a good trade-off
between rotation invariance and kernel size), where nx×ny is the size of the grid. It was followed by
2 linear layers of size 1000 with β = 0.1. The ReLu activation is not well-suited in this case because
it induces filters that are too wide. The large radius of the NTK kernel can be understood in relation
with the order/chaos regimes [197, 173], as observed in [104] the ReLU lies in the ordered regime
when β > 0, leading to a “wide” kernel, a narrower kernel can be achieved with non-linearities which
lie in the chaotic regime instead. We used a cosine activation of the form x 7→ cos(ωx), which has
the advantage that the width of the filter can be adjusted using the ω hyperparameter, see Section
6.4. When not stated otherwise we used ω = 5.

Even though our theoretical analysis is for gradient flow, we obtain similar results with other op-
timizers such as RPROP [179] (learning rate 10−3) and ADAM [116] (learning rate 10−3). RPROP
gave the fastest results, possibly because it is well-suited for batch learning [180]. Vanilla gradient
descent can be very slow due to the vanishing of the gradients when the image becomes almost
binary (due to the sigmoid), we therefore gradually increased the learning rate during training to
compensate.

122
CHAPTER 6. DNN-BASED TOPOLOGY OPTIMIZATION: SPATIAL INVARIANCE AND

NEURAL TANGENT KERNEL

Spectral analysis

In SIMP convolution with a low pass filter ensures that low frequencies are optimised faster than
high frequencies, to avoid checkerboards.

Figure 6.4.3: Shape obtained for different
values of R̂1/2 with a Gaussian embedding
for different values of ` ∈ {0.5, 1, 1.4, 2}.

With the embeddings proposed in the last two sub-
sections, the limiting NTK takes the form of a convo-
lution over the input space Rd. Figure 6.4.1 represents
the eigenvalues and eigenimages of the NTK Gram ma-
trix Θ̃θ(t). Even though this plot is done for a finite
width network and a finite random embedding, we see
that the eigenimages look like 2D Fourier modes. The
fact that the low frequencies have the largest eigenval-
ues supports the similarity between the NTK and a low
pass filter.

This may explain why neural networks naturally
avoid checkerboard patterns: the low frequencies of the
shape are trained faster than the high frequencies which
lead to checkerboard patterns.

Filter radius

In the classical SIMP algorithm, the choice of the radius
of the filter T is critical. It controls the appearance of
checkerboards or intermediate densities.

When using DNNs, there is no explicit choice of fil-
ter radius, since the filter depends on the embedding
and the architecture of the network. In Section 6.3 we
have shown that the NTK is approximately invariant,

it can hence be expressed as:

ΘL
θ(t)(ϕ(p), ϕ(p′)) ' Φ∞(‖p− p′‖),

where Φ∞ can be analytically expressed with the embedding and the limiting NTK (see appendix
for a detailed example).

The kernels we consider do not have compact support in general, we therefore focus instead on
the radius at half-maximum of Φ∞:

Φ∞(R̂1/2) =
1

2

(
Φ∞(0) + inf

r
Φ∞(r)

)
.

Note that for simplicity we are computing here the radius of the squared filter, since obtaining
a closed form formula for the square root of the NTK is more difficult. For Gaussian filters the
radius of the squared filter is

√
2 times that of the original, suggesting that the filter radius is well

estimated by 1√
2
R̂1/2.

The quantity R̂1/2 is a function of the hyperparameters of the network (α,β, L, see appendix)
and of the embedding (the lengthscale `). Using the formula for R̂1/2, these hyperparameters can
be tuned to obtain a specific filter radius.

6.5. CONCLUSION 123

With the Gaussian embedding, the radius of the filter can easily be adjusted by changing the
length-scale ` of the embedding. As illustrated in Figure 6.4.

With the torus embedding, we instead have to change the hyperparameters of the network to
adjust the radius of the filter. With the ReLU activation function, the radius is very large which
makes it impossible to obtain precise shape. The solution we found is to use a cosine activation
x 7→ cos(ωx) with hyper-parameter ω. Figure 6.4.2 shows how the radius decreases as ω increases.
The β parameter has the opposite effect, as increasing it increases the radius. For different values
of ω and β, we obtain a variety of radius and plot the resulting shapes. This plot also illustrates the
role of the radius in the determination of the resulting shape. The fact that cosine activation leads to
an adjustable NTK radius could explain why periodic activation function help in the representation
of high frequency signal as observed in [206].

The effect of depth is more complex. For large depths L the NTK either approaches a constant
kernel in the so-called order regime (with infinite radius) or a Kronecker delta kernel in the so-called
chaos regime (with zero radius) [173, 197, 104]. Depending on whether we are in the order or chaos
regime (which is determined by the activation function µ and the parameters α, β), increasing the
depth can either increase or decrease the radius.

We conducted an experimental study of the influence of this parameter on the geometry of the
final shape. We observed that its complexity (number of holes, high frequencies) is highly controlled
by R̂1/2. We see in Figure 6.4 and 6.4.2 some examples of shape obtained for several values of R̂1/2.

Up-sampling

Since the density field is generated by a DNN, it can be evaluated at any point in Rd, hence
allowing upsampling. As Figure 6.4.4 shows, with our method we obtain a smooth and binary
shape. Something interesting happens when the network is trained without an embedding: when
upsampling we observe some visual artifacts plotted in Figure 6.4.5. We believe that it is due to
the lack of spatial invariance.

Note that this second experiment was done with batch norm, as described in [31], since for this
problem it was difficult to obtain a good shape with a vanilla ReLU-FCNN. With our embeddings,
we can achieve complex shapes without batch-norm.

Figure 6.4.4: Density field obtained with a
Torus embedding (left) and up sampling of fac-
tor 6 of the same network (right).

Figure 6.4.5: Exemple of up-sampling of a
FCNN (ReLu FCNN with batchnorms) without
embedding, exhibing typical visual artifacts.

6.5 Conclusion

Using the NTK, we were able to give a simple theoretical description of topology optimisation with
DNNs, showing a similarity to traditional filtering techniques. This theory allowed us to identify a
problem: since the NTK is not translation invariant, the spatial invariance of topology optimisation

124
CHAPTER 6. DNN-BASED TOPOLOGY OPTIMIZATION: SPATIAL INVARIANCE AND

NEURAL TANGENT KERNEL

is not respected, leading to visual artifacts and non-optimal shapes. We propose a simple solution
to this problem: adding a spatial invariant embedding to the coordinates before the DNN.

Using this method, our models are able to learn efficient shapes while avoiding checkerboard
patterns. We give tools to adjust the implicit filter size induced by the hyperparameters, to give
control over the complexity of the final shape. Using the learned network, we can easily perform
good quality up-sampling. The techniques described in this paper can easily be translated to any
other problem where spatial invariance is needed.

The NTK is a simple yet powerful tool to analyse a practical method such as SIMP when
combined with a DNN. Morover it can be used to make informed choices of the DNN’s architecture
and hyperparameters.

Chapter 7

Scaling Description of Generalization with
Numer of Parameters in Deep Learning

Abstract

We provide a description for the evolution of the generalization performance of fixed-depth
fully-connected deep neural networks, as a function of their number of parameters N . As N
gets large, we observe that increasing N at fixed depth reduces the fluctuations of the output
function fN induced by initial conditions, with ‖fN−f̄N‖ ∼ N−1/4 where f̄N denotes an average
over initial conditions. We explain this asymptotic behavior in terms of the fluctuations of
the so-called Neural Tangent Kernel that controls the dynamics of the output function. For
the task of classification, we predict these fluctuations to increase the true test error ε as
εN − ε∞ ∼ N−

1/2 +O(N−
3/4). This prediction is consistent with our empirical results on the

MNIST dataset, and it explains in a concrete case the puzzling observation that the predictive
power of deep networks improves as the number of fitting parameters grows. For smaller N , this
asymptotic description breaks down at a so-called jamming transition which takes place at a
critical N = N∗, below which the training error is non-zero. In the absence of regularization, we
observe an apparent divergence ‖fN‖ ∼ (N−N∗)−α and provide a simple argument suggesting
α = 1, consistent with empirical observations. This result leads to a plausible explanation for
the cusp in test error known to occur at N∗. Overall, our analysis suggests that once models
are averaged, the optimal model complexity is reached just beyond the point where the data
can be perfectly fitted, a result of practical importance that needs to be tested in a wide range
of architectures and dataset.

7.1 Introduction

Deep neural networks are very successful at various tasks including image classification [119, 122]
and speech recognition [89]. Yet, understanding why they work remains a challenge, and central
questions need to be clarified.

• First, learning amounts to a descent in a high-dimensional loss landscape, which is a priori
non-convex. What guarantees then that the dynamics does not get stuck in a poor minimum
of the loss, leading to bad generalization?

125

126
CHAPTER 7. SCALING DESCRIPTION OF GENERALIZATION WITH NUMER OF

PARAMETERS IN DEEP LEARNING

• Second, deep networks tend to work in the over-parametrized regime where the number of
parameters N can be (much) larger than the number of data points P which are used to
optimize them. Thus, they are used in a regime where their capacity is very large (in the sense
that they can still classify data even if the labels are randomized [236]), yet they generalize
very well, at odds with the traditional VC-dimension learning theory.

Recent works suggest that these two questions are closely connected. Numerical and theoretical
studies [63, 216, 92, 208, 39, 189, 190, 14, 141, 12, 68, 211] support that in the over-parametrized
regime the loss landscape is not rough with isolated minima (as initially thought in [44, 38]), but
instead has connected level sets and presents many flat directions, even near its bottom. When
optimizing neural networks using the hinge loss, there is a sharp phase transition (similar to the
jamming transition that occurs in granular materials [101]) at some N∗(P) such that for N ≥ N∗

the dynamic process reaches global minima of the loss [68, 211]. In short, cranking up N guarantees
low training error. A counter-intuitive aspect of deep learning is that increasing N above N∗ does
not destroy the predictive power by over-fitting the data, but instead appears to improve the
generalization performance [161, 160, 16, 1]. Indeed the test error is observed to decrease in a slow
power-law fashion [211] toward a limit as N → ∞. Such a monotonic improvement is observed
everywhere except near N∗, where the test error displays a cusp [1, 139, 211] (phenomena shown
by the blue curve in Fig.7.2.1).

Explaining this observed dependence of the generalization on N in deep networks remains a
challenge. In the perceptron, the simplest network without hidden layers, the cusp in the test error
at the jamming point is also observed and predicted analytically [188, 57, 26, 120, 60, 59]. For
deep linear networks trained with the mean-square loss, this cusp corresponds to an explosion of
the norm of the output function precisely at N = P [1, 139]. Yet, what controls its presence in
non-linear deep networks that are trained with a descent dynamics is unclear.

Another open question regards the asymptotic improvement of generalization performance with
N — a phenomenon that does not happen for perceptrons. Very recently, in the context of least-
squares regression, this behavior was linked to the observed diminishing fluctuations of the output
function with N [158], a result that is consistent with the notion of stronger implicit regularization
with increasing N [209, 137]. Yet, what controls these fluctuations in deep non-linear networks and
how they affect the test error in a classification task is not yet clear.

In this work, we address these questions using the recent discovery that in the limit N → ∞,
some deep learning models (in particular, fully-connected networks with any depth and a large
class of non-linear functions that include the most common ones used in practice) are equivalent
to a kernel method, where the kernel (coined the Neural Tangent Kernel or NTK) becomes deter-
ministic and fixed at any finite time during training [105]. This result explains why generalization
performance converges to a finite value as N →∞ (such a result has previously been obtained for
single hidden layer neural networks in [34, 184, 153, 205] under a different scaling limit1). Here, we
use this framework to study the variation of the output function fN at the end of training. For a
fixed algorithm, such variations are induced by the initial conditions. These variations still exist
asymptotically for f∞ [105], yet for a large dataset, this effect appears to be subdominant even
for the largest N we can reach. Departing from the N → ∞ limit has two consequences. First,
at finite N , the NTK will display a nonzero evolution in time, leading to a systematic difference
between fN and f∞. This effect on the performance is perceptible but small. Secondly, the NTK at

1Weights of a layer of width h are initialized at scale 1/h as opposed to the usual 1/
√
h.

7.2. IMPROVING GENERALIZATION BY AVERAGING IN MNIST 127

initialisation has fluctuations around its mean that are of order N−1/4, leading to similar variations
for fN which turn out to be dominant.

Next, by considering the decision boundary, we argue that a variation in f of order δf increases
the true test error by δε ∼ (δf)2. We use this asymptotic result to predict (i) the increase in
generalization performance obtained by ensemble averaging on n samples of the function fN as n
becomes large and (ii) the increase in generalization performance with N at fixed network depth.
This description breaks down at the transition point N∗, where variations in fN appear to diverge
as a powerlaw, justifying the non-analyticity in the training error. We rationalize this divergence
with a simple argument on a non-linear network trained with the hinge loss, that leads to ‖fN‖ ∼
(N −N∗)−1. Overall, our work introduces a conceptual framework to describe how generalization
error in deep learning evolves with the number of parameters. As an application, we demonstrate
how ensemble averaging removes variations in the predictor and enhance generalization. Our result
suggests that near-optimal generalization can be obtained by ensemble averaging networks that are
slightly larger than N∗.

7.2 Improving generalization by averaging in MNIST

In this section we show how ensemble averaging improves generalization in networks that are slightly
larger than the jamming transition N∗. We adopt the experimental setup of [211]. The task is to
classify MNIST digits depending on their parity, where the standardized MNIST inputs are reduced
to 10 dimensions using their first 10 PCA components (this reduction has been introduced to have a
number of weights in the first layer comparable to the ones of the other layers). The architecture is
a fully-connected network with L layers, where each of the layers has h nodes. The non-linearity at
each hidden layer is the standard rectified linear unit (ReLU). Weights of the network are initialized
according to the random orthogonal scheme [195] and all biases are initialized to zero. The network is
optimized using ADAM [117] with full batch and the learning rate is set to λ = min(10−1h−1.5, 10−4)
in order to have a smooth dynamics for all values of h2.

The network parametrizes an output function f(x; θ) with some parameters θ — the network’s
weights and biases. The binary classification task consists in searching the parameters such that
signf(xµ; θ) = yµ for all MNIST images xµ, where yµ = ±1 according to the parity of the digit
depicted in the input image. To do so, we minimize the square-hinge cost function

C =
1

P

P∑
µ=1

1

2
max(0,∆µ)2, (7.2.1)

where ∆µ ≡ εm − yµf(xµ; θ). In all of our simulations we fix the margin εm to 1. The training
process runs for a maximum of 2 ·106 steps3. Typically, above jamming the training halts earlier as
soon as the training reaches zero loss, while below jamming, training stalls at points with non-zero
loss.

Our results, shown in Fig.7.2.1, demonstrate that after learning, the test error has a peak near
the transition at N∗ and then it slowly decreases as N becomes larger. We denote by f̄nN the
average of the function fN over n different initial conditions. Remarkably, in our experiments
ensemble-averaging over n = 20 independent runs led to a nearly flat test error for N > N∗; this

2The exponent −1.5 has been empirically chosen so that the number of steps to converge is independent of h
[105].

3Note that the number of steps and the number of epochs are the same in this setup.

128
CHAPTER 7. SCALING DESCRIPTION OF GENERALIZATION WITH NUMER OF

PARAMETERS IN DEEP LEARNING

102 N∗ = 825 104 105 106 107

N

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

ε N

A normal
ens.
early st.

104 106

N

0.000

0.025

0.050

tra
in

er
ro

r B

Figure 7.2.1: (A) Empirical test error v.s. number of parameters: average curve (blue, averaged
over 20 runs); early stopping (green); ensemble average f̄nN (orange) over n = 20 independent runs.
In all the simulations we used fully-connected networks with depth L = 5 and input dimension
d = 10, trained for t = 2 · 106 epochs to classify P = 10k MNIST images depending on their parity,
using their first 10 PCA components, and the test set includes 50K images. The vertical dashed
line corresponds to the jamming transition: at that point the test error peaks. Ensemble averaging
leads to an essentially constant behavior when N becomes larger than N∗. The location of the
jamming transition, N∗ shown here, is measured in section 7.6 for extrapolated t = ∞. Black
dashed line: asymptotic prediction of the form εN − ε∞ = B0N

−1/2 + B1N
−3/4, with ε∞ = 0.054,

B0 = 6.4 and B1 = −49. (B) Training error v.s. number of parameters.

supports that the improvement of generalization performance with N in this classification task
originates from reduced variance of fN when N gets large, as recently observed for mean-square
regression [158]. An observation of potential practical interest is that near-optimal generalization
is obtained by ensemble averaging slightly above N∗. Thus the intuition that the most predictive
and parsimonious models have just enough parameters to fit the data may indeed be correct, once
one averages over differently initialized networks4.

4This observation carries over to convolutional networks, as well. We train CIFAR10 on a vanilla architecture
with 3 convolutional layers with f filters at each layer and a single fully-connected layer. For each f , we train 20
models at different random initial conditions. Just after N∗, the mean accuracy is ∼ %66, accuracy of the ensemble
averaging is ∼ %80, and the average accuracy of widest models we could train (which has 5 orders of parameters
more) is a little bit less than ∼ %77.

7.3. RELATIONSHIP BETWEEN VARIANCE AND GENERALIZATION IN
CLASSIFICATION TASKS 129

+
+

+

+

+

+

+

+

-
+ -

-

-

-
-

-
-

-
-

0

Figure 7.3.1: f(x) and the limiting function f̄(x) (see Section 7.3) classify points according to
their sign. They agree on the classification everywhere (±’s in the figure are examples where the
functions are respectively both positive or both negative) except for the points that lie in between
the two boundaries f = 0 and f̄ = 0. In the figure, let x be one such point, and δ is the typical
distance from the boundary f = 0. In the limit where f and f̄ are close to each other, δ is of the
same order of the distance between the two boundaries.

7.3 Relationship between variance and generalization in classification
tasks

We consider an ensemble of functions f that approach pointwise to a limiting function f̄ , so that
δf = f − f̄ satisfies ‖δf‖µ � ‖f‖µ and 〈δf〉 = 0, where the average is made on the ensemble
considered. In what follows we define ||f ||2µ =

∫
dµ(x)f(x)2, where µ is some measure (empirically

we shall use the uniform distribution on the training or test set or a Gaussian distribution on
all x, all leading to similar results). For example, one may consider the ensemble of functions
f̄nN = 1

n

∑n
i=1 f

i
N obtained by varying initial conditions and averaging, or f̄N = limn→∞ f̄nN . In this

setup, the test errors of f and f̄N will be denoted respectively by ε and ε̄N .
Consider a specific function f , and the two decision boundaries of f and f̄ defined as the set

of inputs for which f(x) = 0 or f̄(x) = 0. Consider a data point x0 classified differently by these
two functions — i.e. f(x0)f̄(x0) < 0 — as illustrated in Fig.7.3.1. When the two boundaries are
close enough, if the functions f and f̄ are smooth, the signed distance δ(x0) between the two curves
near x0 must follow δ(x0) = δf(x0)/||∇f(x0)||+O(δf(x0)2), where δf(x0) = f(x0)− f̄(x0). If the
non-linearity in the network is itself smooth, smoothness of the output function during learning is
guaranteed both for N finite or not, as shown in [105] and discussed in Supplementary Materials
(S.M.). In the case of the Relu non-linear function, we expect smoothness to hold as N →∞ except

130
CHAPTER 7. SCALING DESCRIPTION OF GENERALIZATION WITH NUMER OF

PARAMETERS IN DEEP LEARNING

on the P points of the training set 5. We show direct measurements of δ(x) in Section A of S.M.,
supporting that this estimate still holds and become more and more accurate as N →∞.

Next we introduce the typical distance δ along the boundary:

δ ≡ 〈|δf(x0)|/||∇f(x0)||〉xo∼test∩interface (7.3.1)

where the average is made over all the test data classified differently by f and f̄ . Such conditioning,
however, does not affect the average. Indeed we have checked, as shown in Appendix A, that δ is
very well estimated by ||δf ||µ/||∇f ||µ where µ indicates the uniform measure on all the test set. Next,
we denote by ∆ε the difference between the true test error of f and that of f̄ . Under reasonable
assumptions 6 it can be expanded by considering a small motion of the decision boundary B of f̄
(that can consist of unconnected parts):

∆ε =

∫
B

dxd−1

[
∂ε

∂δ(x)
δ(x) +

1

2

∂2ε

∂2δ(x)
δ2(x) +O(δ3(x))

]
. (7.3.2)

Using that 〈δ(x)〉 = O(δf(x)2) since 〈δf(x)〉 = 0, we get that in average the true test error must
increase quadratically with the norm of fluctuations δf :

〈∆ε〉 ∼ δ2 ∼
||δf ||2µ
||∇f ||2µ

. (7.3.3)

Note that if the model f̄ displays a minimal true test error, the decision boundary is optimal:
∂ε/∂δ(x) = 0 and ∂2ε/∂2δ(x) ≥ 0 for all x ∈ B, implying that the prefactor in Eq.7.3.3 must be
positive 7. If the true test error is small, the decision boundary will tend to be close to the ideal
one, so that the prefactor in Eq.7.3.3 will still be positive. We expect it to be the case for the
MNIST model we consider for which the test error is a few percents.

Eq.7.3.3 is a result on the ensemble average of the true test error. Yet, our data in Fig.7.2.1
supports that the test error is a self-averaging quantity: the test error of a given output function
(blue points) lies close to its average (blue line). Such a self-averaging behavior is expected if there
are many distinct regions where δ changes sign along the decision boundary. In what follows we
will always consider averaged quantities, and drop the notation 〈〉.

7.4 Asymptotic generalization as n→∞

It is now straightforward to predict how an ensemble average of n networks behaves in the limit
n → ∞. The central limit theorem implies δf ∼ 1/

√
n while ||∇f || converges to some constant

value. Thus δ ∼ 1/
√
n and ε̄nN − ε̄N ∼ 1/n. These predictions are confirmed in Fig.7.4.1.

7.5 Asymptotic generalization as N →∞

We now study the fluctuations of f tN throughout training for large networks using the Neural
Tangent Kernel [105] or NTK. At initialization t = 0, f t=0

N is a random function whose limiting
5Indeed in that case the NTK Θ(x, x′) has a cusp for x = x′ [105].
6The true test error must be a smooth function of the decision boundary if the probability distributions to find

data of different labels are themselves smooth functions of the input. It is the case, for instance, if the input data
have Gaussian noise.

7The pre-factor could be zero if the optimal boundary is degenerate, a situation that will not occur generically
if the data have e.g. Gaussian noise.

7.5. ASYMPTOTIC GENERALIZATION AS N →∞ 131

100 101 102

n

10−4

10−3

10−2

ε̄n N
−
ε̄ N

−1

100 101 102

n

10−1

δ

−1/2

10−1

δ

10−4

10−3

10−2

ε̄n N
−
ε̄ N

2

Figure 7.4.1: Left: increment of test error ε̄nN − ε̄N v.s. n, supporting ε̄nN − ε̄N ∼ 1/n. Center:
δ as defined in Eq.7.3.1 v.s. number of average n, supporting δ ∼ 1/

√
n. Right: increase of test

error ε̄nN − ε̄N as a function of the variation of the boundary decision δ, supporting the prediction
ε̄nN − ε̄N ∼ δ2. Here d = 30, h = 60, L = 5, N = 16k and P = 10k. The value ε̄N = 2.148% is
extracted from the fit.

distribution as N →∞ is known to be Gaussian [159, 37, 126]. These types of fluctuations do not
vanish as N →∞: the variance of f t=0

N at initialization is essentially constant in N 8.
However, as the network is trained, the fluctuations of f tN will be reduced in time. We shall argue

that at the end of training, the dominant source of fluctuations does not stem from the randomness
of f t=0

N , but from the randomness of the learning dynamics. To understand why the fluctuations of
the function at convergence t→∞ decrease with N , we must thus study the training process. The
gradient descent dynamics of f tN is described by a kernel, the Neural Tangent Kernel Θt

N :

Θt
N (x, x′) =

N∑
k=1

d

dθk
f tN (x)

d

dθk
f tN (x′) (7.5.1)

where d
dθk

f tN is the derivative of the output of the network with respect to one parameter θk and the
sum is over all the network’s parameters. For a general cost C(f) = 1

P

∑
i ci(f(xi)), the function

follows the kernel gradient ∇ΘtN
C|ftN of the cost during training

∂tf
t
N (x) =−∇ΘtN

C|ftN (x)

=− 1

P

∑
i

Θt
N (x, xi)c

′
i(f

t
N (xi)). (7.5.2)

The NTK is random at initialization and varies during training. However as the number h of
neurons in each hidden layer goes to infinity, the NTK converges to a deterministic limit Θt

N → Θ∞
which stays constant throughout training [105]. In this limit, deep learning simply corresponds to
a kernel method, and the only randomness of f tN at convergence t → ∞ is due to the randomness
of f t=0

N . We shall see below that this effect is subdominant in the range of parameters we probe.
Other sources of variation of f come from the variation of the kernel itself, which occurs at finite

N . It varies for two reasons. First, the kernel now evolves in time, in a trajectory that depends
8In our setup, the output variance at initialization is smaller than one. It is possible to suppress the randomness

of f t=0
N at initialization by training f ′t = f t − f t=0. We have observed that it does not qualitatively affects our

results.

132
CHAPTER 7. SCALING DESCRIPTION OF GENERALIZATION WITH NUMER OF

PARAMETERS IN DEEP LEARNING

N∗ = 825 104 105 106 107

N

10−2

10−1

100

101

102

103

104

‖f
N
−
f̄ N
‖2 µ

-0.5

µ =train
µ =test

Figure 7.5.1: Variance of the output (averaged over n = 20 networks) v.s. number of parameters
for different measures indicated in legend, showing a peak at jamming followed by a decay as N
grows. Here L = 5, d = 10, P = 10k.

on initial conditions. It turns out however that this effect leads to small variations asymptotically.
For any finite time T one finds [106]:

∥∥Θt=0
N −Θt=T

N

∥∥ = O
(

1

h

)
= O

(
N−

1/2
)
. (7.5.3)

Secondly, at finite N the kernel varies already at initialization:

∥∥Θt=0
N −Θ∞

∥∥ = O
(

1√
h

)
= O

(
N−

1/4
)
. (7.5.4)

The variation in Eq.7.5.4 decays much more slowly with N than that in Eq.7.5.3, and is thus
expected to be the dominant source of the NTK fluctuations around Θ∞, as supported empirically
below. Eq.7.5.4 can be readily obtained by re-writing Eq.7.5.1 as a sum on neurons and using the
central limit theorem, as sketched in Appendix B and derived rigorously in [106].

Because the NTK describes the behaviour of the function f tN during training, and because the
time to converge to a minimum of the loss converges to a constant as N → ∞, from Eq.7.5.2 we
expect the variance of the NTK to induce some variance of the same order to the function at the
end of training. We confirm it is the case for the mean square loss in Appendix C. In conclusion for
large enough width, the fluctuations of the kernel leads to fluctuations of f t=∞N of order O

(
N−1/4

)
.

This prediction is checked in Fig.7.5.1, supporting that ||fN − f̄N || ∼ N−1/4 in the range of N
we can explore (eventually this curve must converge to a small constant ||f∞ − f̄∞||, due to the
finite fluctuations at initialization and the fact that we consider a large yet finite dataset [105]. In
our setting observing this effect would require unreachable values of N , and we neglect this small
constant). We expect that the same fluctuations that characterize fN to also characterize ∇fN ,

7.5. ASYMPTOTIC GENERALIZATION AS N →∞ 133

104 105 106 107

N

101

‖∇
f N
‖ µ

A

µ =train
µ =test

0.1 0.2 0.3
δN

0.05

0.06

0.07

0.08

0.09

ε N

B

0.1 0.2
‖fN − f̄N‖µ/‖∇fN‖µ, µ = test

0.10

0.15

0.20

0.25

0.30

0.35

δ N

C

N∗ = 825 105 106 107

N

10−3

10−2

10−1

ε N
−
ε̄ N

-1/2

D

Figure 7.5.2: Here L = 5, d = 10, P = 10k. (A) The median of ‖∇fN‖µ =
√∫

dµ(x)‖∇fN (x)‖2

over 20 runs (each appearing as a dot) is indicated as a full line. The dashed line correspond to
our asymptotic prediction ||∇fN || = C0 + C1N

−1/4 with C0 = 2.1 and C1 = 51. (B) Test error v.s.
variation of the boundary, together with fit of the form εN = ε∞ + D0δ

2
N . (C) Variation of the

boundary δN v.s. its estimate ||fN − f̄N ||/||∇fN ||, well fitted by a linear relationship. (D) εN − ε̄N
v.s. N , with a fit of the form εN − ε̄N = E0N

−1/2 + E1N
−3/4 with E0 = 7.6 and E1 = −59. If

exponents in the fits are not imposed, we find for reasonable fitting ranges −0.28 instead of −1/4
in (A), 2.5 instead of 2 in (B), 1.1 instead of 1 in (C) and −0.42 instead of −1/2 in (D). Extracting
exponents while also fitting for the location of the singularity, as is the case here for (A) and (B),
leads to rather sloppy fits.

implying that ||∇fN || = C0 + C1N
−1/4 + o(N−1/4). This result is consistent with our observations,

as shown in Fig.7.5.2.A, in which we find empirically that C1 is much larger than C0. We know
that εN − ε̄N ∼ δ2

N where δN indicates the typical distance between the decision boundaries f̄N = 0
and fN = 0, as supported by Fig.7.5.2.B. The fluctuations of the decision boundary δN can be
approximated as ||fN − f̄N ||/||∇fN ||, as supported by Fig.7.5.2.C, leading to δN = A0N

−1/4 +
A1N

−1/2 + o(N−1/2). We then obtain the key prediction εN − ε̄N = B0N
−1/2 + B1N

−3/4. Since
we measure both εN and ε̄N independently, we can test the prediction for the leading exponent
without any fitting parameters, and indeed confirm that asymptotically εN − ε̄N ∼ N−1/2 as shown
in Fig.7.5.2.D.

134
CHAPTER 7. SCALING DESCRIPTION OF GENERALIZATION WITH NUMER OF

PARAMETERS IN DEEP LEARNING

Finally we estimate the evolution of test error with N . We have:

εN − ε∞ = (εN − ε̄N) + (ε̄N − ε̄∞) + (ε̄∞ − ε∞) (7.5.5)

The first term was estimated above, and turns out to be the dominant one for MNIST. The last
term is independent of N , and should cancel the first term for asymptotically large N unaccessible
in our numerics. The middle term is very interesting, as it characterizes the possibility that deep
nets do better than kernel methods at finite N . In that case features can be learned, in contrast
with the situation at N → ∞ for which the time evolution the activity of any hidden neuron
becomes vanishingly small (yet important) [105]. In magnitude, this term corresponds to the
distance between the orange curve and its asymptote in Fig.7.2.1. For MNIST we observe that it
is negative (which is compatible with the view that learning features improves generalization) for
N slightly larger than N∗, but the effect is small. We provide an argument why it may be so. For
large N , we expect the difference between f̄N and f̄∞ to stem from (i) the evolution of the kernel
with time (which corresponds to learning features), described in Eq.7.5.3 and (ii) the fact that the
relationship between the kernel and the function at infinite time is not linear, as described for the
mean square loss in Eq.G.3.2 of the Supplementary Material. Both effects are O(N−1/2), i.e. much
smaller than the O(N−1/4) fluctuations of fN around its mean. The typical distance δN,∞ between
the interfaces f̄N = 0 and f̄∞ = 0 is thus small and O(N−1/2). According to Eq.7.3.2 we get:

ε̄N − ε̄∞ =

∫
B

dxd−1

[
∂ε

∂δ(x)
δN,∞(x) +O(δ2

N,∞(x))

]
(7.5.6)

Thus ε̄N−ε̄∞ = O(N−1/2), and thus cannot be neglected a priori. The fact that this term is small
in practice presumably reflects that ∂ε

∂δ(x)δN,∞(x) often changes sign along the boundary, leading
to a small pre-factor. Understanding if the situation can be different for well-chosen architectures,
for which learning features would enhance significantly generalization accuracy is an important
question for the future 9.

Overall, we get εN − ε∞ = B0N
−1/2 + B1N

−3/4, a form indeed consistent with observation
as shown in Fig.7.2.1. Note that a direct fit of the test error vs N gives an apparent exponent
smaller than 1/2 [211], reflecting that (i) power-law fits are less precise when the value for the
asymptote (here the value of ε∞) is a fitting parameter and (ii) that correction to scaling needs to
be incorporated for a good comparison with the theory (a fact that ultimately stems from the large
correction to scaling of ||∇fN || shown in Fig.7.5.2.A).

7.6 Vicinity of the jamming transition

The asymptotic description for generalization in the large N limit is not qualitatively useful for
N ≤ N∗, where a cusp in test error is found. We now argue that this cusp is induced by a
singularity of ||fN || atN∗ when no regularization is used, as apparent in Fig.7.6.1.A. Indeed following
our argument of Section 7.3, this effect must lead to singular fluctuations of the decision boundary
at N∗, suggesting a non-analytical behavior for the true test error. This phenomenon shares some
similarity with the norm divergence that occurs in linear networks with mean square loss for which
||fN || ∼ |N − P |−2 [1, 139]. Yet for losses better suited for classification such as the hinge loss, we
argue that this explosion occurs at a different location with a different exponent.

9Very recently empirical results suggest that the test error can even increase for increasing and large N [34]. Yet,
this observation was made in the teacher-student framework, where it is intuitively clear that the student should be
penalized when its number of parameters becomes larger than the teacher.

7.6. VICINITY OF THE JAMMING TRANSITION 135

Consider the hinge loss in Eq. 7.2.1. For N ≥ N∗ the system is able to reach the ground state
at C = 0, therefore all ∆µ must be negative, i.e. all patterns must satisfy yµf(xµ) > εm. The
parameter εm plays the role of a margin above which we are confident about the network’s prediction.
Because we do not use regularization on the norm ||f ||, the precise choice of εm does not affect N∗.
Indeed the weights can always increase during learning so as to multiply f by any scalar λ, effectively
reducing the margin by a factor 1/λ, making the data easier to fit. By contrast, if a regularization
is imposed to fix ||f || = λ (which may be hard to implement in practice), then N∗ must be an
increasing function of ε̃m ≡ εm/λ. We assume that this function is differentiable in its argument
around zero, a fact know to be true for the perceptron [62, 61], thus N∗(ε̃m) = N∗(0)+B0ε̃m+o(ε̃m).
Now consider our learning scheme (no regularization) for a network with 0 < N/N∗(0) − 1 � 1,
with initial conditions such that before learning ||f t=0

N || = 1. Initially, the effective margin is large
with ε̃m = 1. Yet, all data can be fitted and the loss brought to zero if the norm increases so that
ε̃m ≈ (N −N∗(0))/B0, corresponding to ||f tN || ∼ (N −N∗)−1 where N∗ = N∗(0). At later times,
the loss is zero and the dynamics stops.

This predicted inverse relation is tested in Fig.7.6.1.B. It is important to note that, as it is
the case for any critical points, working at finite times cuts off a true singularity: as illustrated in
Fig.7.6.1.B ||f tN || becomes more and more singular at long times. This effect also causes a shift of
the transition N∗ where the loss vanishes, that converges asymptotically to a well-defined value in
the limit t→∞ as documented in [68]. N∗ is therefore defined when ‖f tN‖ displays a power law as
function of N/N∗ − 1.

Note that for other losses like the cross-entropy, the dynamics never stops completely but be-
comes extremely slow [12]. In such cases, we expect that asymptotically ||f tN || = ∞ as soon as
N > N∗, although this singularity should build up logarithmically slowly in time. For finite learn-

N∗=825 104 106

N

100

101

102

103

104

‖f
N
‖2 µ

A

early stopping

t = 2000k

µ=train
µ=test

10−1 100 101

N −N∗

N∗

102

103

104

B slope -2

µ=test

t = 2000k

t = 566k

t = 179k

t = 87k

Figure 7.6.1: Here L = 5, d = 10, P = 10k. (A) ||f ||2 =
∫
dµ(x)f(x)2 where for µ we took the

uniform measure on the training and test set. We show the mean over the different realizations.
Right after the jamming transition, the norm of the network diverges. (B) Same quantity computed
after different learning times t as indicated in the legend, as a function of the distance from the
transition. One observes that finite times cut off the divergence in the norm. The black line
indicates a power-law with slope -2, that appears to fit the data satisfyingly. N∗ has been fine
tuned to obtain straight curves (power law behavior).

136
CHAPTER 7. SCALING DESCRIPTION OF GENERALIZATION WITH NUMER OF

PARAMETERS IN DEEP LEARNING

ing times we expect that a singularity will occur near N∗, but will be blurred as for the hinge loss
if t <∞.

7.7 Conclusion

We have provided a description for the evolution of the generalization performance of by fixed-
depth fully-connected deep neural networks, as a function of their number of parameters N . In the
asymptotic regime of very large N , we find empirically that the network output displays reduced
fluctuations with ||fN − f̄N || ∼ N−1/4. We have argued that this scaling behavior is expected
from the finite N fluctuations of the Neural Tangent Kernel known to control the dynamics at
N = ∞. Next we have provided a general argument relating fluctuations of the network output
to decreasing generalization performance, from which we predicted for the test error εN − ε∞ =
C0N

−1/2 + C1N
−3/4 +O(N−1), consistent with our observation on MNIST. Overall this approach

explains the surprising finding that generalization keeps improving with the number of parameters.
Secondly, we have argued that this description breaks down at N = N∗ below which the training

set is not fitted. For the hinge loss where this jamming transition is akin to a critical point, and in
the case where no regularization (such as early stopping) is used, we observe the apparent divergence
||fN || ∼ (N − N∗)−α. We have argued, based on reasonable assumptions, that α = 1, consistent
with our observations. This predicted enhanced variance of f explains the spike in error observed
at N∗.

On the practical side, our analysis suggests that optimal generalization does not require to
take N much larger than N∗: since improvement of generalization with N stems from reduced
variance in the output function, near-optimal generalization is readily obtained by performing an
ensemble average of networks with N fixed, e.g. taken to be a few times N∗. Interestingly, ensemble
averaging turns out to be more efficient than increasing N memory-wise, due to the very slow decay
∼ N−1/4 � N−1/2 of fluctuations in deep networks. The usefulness of averaging breaks down near
N∗ where the variance of f is too large. We thus recover the intuition that the optimal model
complexity is reached just beyond the point where the data can be perfectly fitted, a result of
practical importance that needs to be tested in a wide range of architectures and datasets.

Chapter 8

Implicit Regularization of Random Feature
Models

Abstract

Random Feature (RF) models are used as efficient parametric approximations of kernel
methods. We investigate, by means of random matrix theory, the connection between Gaussian
RF models and Kernel Ridge Regression (KRR). For a Gaussian RF model with P features,
N data points, and a ridge λ, we show that the average (i.e. expected) RF predictor is close
to a KRR predictor with an effective ridge λ̃. We show that λ̃ > λ and λ̃ ↘ λ monotonically
as P grows, thus revealing the implicit regularization effect of finite RF sampling. We then
compare the risk (i.e. test error) of the λ̃-KRR predictor with the average risk of the λ-RF
predictor and obtain a precise and explicit bound on their difference. Finally, we empirically
find an extremely good agreement between the test errors of the average λ-RF predictor and
λ̃-KRR predictor.

8.1 Introduction

In this paper, we consider the Random Feature (RF) model which is an approximation of Kernel
Methods [176] which has seen many recent theoretical developements.

The conventional wisdom suggests that to ensure good generalization performance, one should
choose a model class that is complex enough to learn the signal from the training data, yet simple
enough to avoid fitting spurious patterns therein [24]. This view has been questioned by recent
developments in machine learning. First, [236] observed that modern neural network models can
perfectly fit randomly labeled training data, while still generalizing well. Second, the test error as a
function of parameters exhibits a so-called ‘double-descent’ curve for many models including neural
networks, random forests, and random feature models [1, 211, 18, 152, 19, 157].

The above models share the feature that for fixed input, the learned predictor f̂ is random: for
neural networks, this is due to the random initialization of the parameters and/or to the stochasticity
of the training algorithm; for random forests, to the random branching; for random feature models,
to the sampling of random features. The somehow surprising generalization behavior of these
models has recently been the subject of increasing attention. In general, the risk (i.e. test error)
is a random variable with two sources of randomness: the usual one due to the sampling of the
training set, and the second one due to the randomness of the model itself.

137

138 CHAPTER 8. IMPLICIT REGULARIZATION OF RANDOM FEATURE MODELS

We consider the Random Feature (RF) model [176] with features sampled from a Gaussian
Process (GP) and study the RF predictor f̂ minimizing the regularized least squares error, isolating
the randomness of the model by considering fixed training data points. RF models have been the
subject of intense research activity: they are (randomized) approximations of Kernel Methods aimed
at easing the computational challenges of Kernel Methods while being asymptotically equivalent to
them [176, 232, 213, 234]. Unlike the asymptotic behavior, which is well studied, RF models with
a finite number of features are much less understood.

Contributions

We consider a model of Random Features (RF) approximating a kernel method with kernel K.
This model consists of P Gaussian features, sampled i.i.d. from a (centered) Gaussian process
with covariance kernel K. For a given training set of size N , we study the distribution of the RF
predictor f̂ (RF)

λ with ridge parameter λ > 0 (L2 penalty on the parameters) and denote it by λ-RF.
We show the following:

• The distribution of f̂ (RF)
λ is that of a mixture of Gaussian processes.

• The expected RF predictor is close to the λ̃-KRR (Kernel Ridge Regression) predictor for an
effective ridge parameter λ̃ > 0.

• The effective ridge λ̃ > λ is determined by the number of features P , the ridge λ and the
Gram matrix of K on the dataset; λ̃ decreases monotonically to λ as P grows, revealing the
implicit regularization effect of finite RF sampling. Conversely, when using random features
to approximate a kernel method with a specific ridge λ∗, one should choose a smaller ridge
λ < λ∗ to ensure λ̃(λ) = λ∗.

• The test errors of the expected λ-RF predictor and of the λ̃-KRR predictor f̂ (K)

λ̃
are numeri-

cally found to be extremely close, even for small P and N .

• The RF predictor’s concentration around its expectation can be explicitly controlled in terms
of P and of the data; this yields in particular E[L(f̂

(RF)
λ)] = L(f̂

(K)

λ̃
) +O(P−1) as N,P →∞

with a fixed ratio γ = P/N where L is the MSE risk.

Since we compare the behavior of λ-RF and λ̃-KRR predictors on the same fixed training set, our
result does not rely on any probabilistic assumption on the training data (in particular, we do not
assume that our training data is sampled i.i.d.). While our proofs currently require the features to
be Gaussian processes, we are confident that they could be generalized to a more general setting
[145, 23].

Related works

Generalization of Random Features. The generalization behavior of Random Feature models
has seen intense study in the Statistical Learning Theory framework. [177] find that O(N) features
are sufficient to ensure the O(1√

N
) decay of the generalization error of Kernel Ridge Regression

(KRR). [185] improve on their result and show that O(
√
N logN) features is actually enough to

obtain the O(1√
N

) decay of the KRR error.

8.1. INTRODUCTION 139

[85] use random matrix theory tools to compute the asymptotic risk when both P,N →∞ with
P
N → γ > 0. When the training data is sampled i.i.d. from a Gaussian distribution, the variance
is shown to explode at γ = 1. In the same linear regression setup, [17] establish general upper and
lower bounds on the excess risk. [152] prove that the double-descent (DD) curve also arises for
random ReLU features, and adding a ridge suppresses the explosion around γ = 1.

Double-descent and the effect of regularization. For the cross-entropy loss, [162] observed
that for two-layer neural networks the test error exhibits the double-descent (DD) curve as the
network width increases (without regularizers, without early stopping). For MSE and hinge losses,
the DD curve was observed also in multilayer networks on the MNIST dataset [1, 211]. [158]
study the variance due to stochastic training in neural networks and find that it increases until a
certain width, but then decreases down to 0. [157] establish the DD phenomenon across various
models including convolutional and recurrent networks on more complex datasets (e.g. CIFAR-10,
CIFAR-100).

[18, 19] find that the DD curve is not peculiar to neural networks and observe the same for
random Fourier features and decision trees. In [67], the DD curve for neural networks is related
to the variance associated with the random initialization of the Neural Tangent Kernel [105]; as a
result, ensembling is shown to suppress the DD phenomenon in this case, and the test error stays
constant in the overparameterized regime. Recent theoretical work [43] study the same setting and
derive formulas for the asymptotic error, relying on the so-called replica method.

General Wishart Matrices. Our theoretical analysis relies on the study of the spectrum
of the so-called general Wishart matrices of the form WΣWT (for N × N matrix Σ and P ×
N matrix W with i.i.d. standard Gaussian entries) and in particular their Stieltjes transform
mP (z) = 1

P Tr
(
WΣWT − zIP

)−1. A number of asymptotic results [203, 11] about the spectrum
and Stieltjes transform of such matrices can be understood using the asymptotic freeness of WTW
and Σ [65, 210]. In this paper, we provide non-asymptotic variants of these results for an arbitrary
matrix Σ (which in our setting is the kernel Gram matrix); the proofs in our setting are detailed in
the Supp. Mat.

Outline

The rest of this paper is organized as follows:

• In Section 8.2, the setup (linear regression, Gaussian RF model, λ-RF predictor, and λ-KRR
predictor) is introduced.

• In Section 8.3, preliminary results on the distribution of the λ-RF model are provided: the RF
predictors are Gaussian mixtures (Proposition 8.3.1) and the λ↘ 0-RF model is unbiased in
the overparameterized regime (Corollary 8.3.2). Graphical illustrations of the RF predictors
in various regimes are presented (Figure 8.2.1).

• In Section 8.4, the first main theorem is stated (Theorem 8.4.1): the average (expected) λ-RF
predictor is close to the λ̃-KRR predictor for an explicit λ̃ > λ. As a consequence (Corollary
8.4.3), the test errors of these two predictors are close. Finally, numerical experiments show
that the test errors are in fact virtually identical (Figure 8.3.1).

• In Section 8.5, the second main theorem is stated (Theorem H.3): a bound on the variance
of the λ-RF predictor is given, which show that it concentrates around the average λ-RF
predictor. As a consequence, the test error of the λ-RF predictor is shown to be close to that

140 CHAPTER 8. IMPLICIT REGULARIZATION OF RANDOM FEATURE MODELS

of the λ̃-KRR predictor (Corollary H.3.16). The ridgeless λ ↘ 0 case is then investigated
(Section 8.5): a lower bound on the variance of the λ-RF predictor is given, suggesting an
explanation for the double-descent curve in the ridgeless case.

• In Section 8.6, we summarize our results and discuss potential implications and extensions.

8.2 Setup

Linear regression is a parametric model consisting of linear combinations

fθ =
1√
P

(
θ1φ

(1) + · · ·+ θPφ
(P)
)

of (deterministic) features φ(1), . . . , φ(P) : Rd → R. We consider an arbitrary training dataset
(X, y) with X = [x1, ..., xN] ∈ Rd×N and y = [y1, . . . , yN] ∈ RN , where the labels could be noisy
observations. For a ridge parameter λ > 0, the linear estimator corresponds to the parameters
θ̂ = [θ̂1, . . . , θ̂P] ∈ RP that minimize the (regularized) Mean Square Error (MSE) functional L̂λ
defined by

L̂λ(fθ) =
1

N

N∑
i=1

(fθ(xi)− yi)2
+
λ

N
‖θ‖2. (8.2.1)

The data matrix F is defined as the N×P matrix with entries Fij = 1√
P
φ(j)(xi). The minimization

of (8.2.1) can be rewritten in terms of F as

θ̂ = argminθ‖Fθ − y‖2 + λ‖θ‖2. (8.2.2)

The optimal solution θ̂ is then given by

θ̂ = FT
(
FFT + λIN

)−1
y (8.2.3)

and the optimal predictor f̂ = fθ̂ by

f̂(x) =
1√
P

P∑
j=1

φ(j)(x)FT:,j
(
FFT + λIN

)−1
y. (8.2.4)

In this paper, we consider linear models of Gaussian random features associated with a kernel K :
Rd×Rd → R. We take φ(j) = f (j), where f (1), . . . , f (P) are sampled i.i.d. from a Gaussian Process
of zero mean (i.e. E[f (j)(x)] = 0 for all x ∈ Rd) and with covariance K (i.e. E[f (j)(x)f (j)(x′)] =

K(x, x′) for all x, x′ ∈ Rd). In our setup, the optimal parameter θ̂ still satisfies (8.2.3) where F is
now a random matrix. The associated predictor, called λ-RF predictor, is then given by

Definition 5 (Random Feature Predictor). Consider a kernel K : Rd × Rd → R, a ridge λ > 0,
and random features f (1), . . . , f (P) sampled i.i.d. from a centered Gaussian Process of covariance
K. Let θ̂ be the optimal solution to (8.2.1) taking φ(j) = f (j). The Random Feature predictor with
ridge λ is the random function f̂ (RF)

λ : Rd → R defined by

f̂
(RF)
λ (x) =

1√
P

P∑
j=1

θ̂jf
(j)(x). (8.2.5)

8.2. SETUP 141

2

3

2

2 3 4 5 6

1

1

0

0

-1

-2

-3

(a) P = 2, λ = 10−4

3

2

2 3 4 5 6

1

1

0

0

-1

-2

-3

(b) P = 4, λ = 10−4

3

2

2 3 4 5 6

1

1

0

0

-1

-2

-3

(c) P = 4, λ = 0.1

3

2

2 3 4 5 6

1

1

0

0

-1

-2

-3

(d) P = 100, λ = 10−4

Figure 8.2.1: Distribution of the RF Predictor. Red dots represent a sinusoidal dataset yi = sin(xi)
for N = 4 points xi in [0, 2π). For selected P and λ, we sample ten RF predictors (blue dashed
lines) and compute empirically the average RF predictor (black lines) with ±2 standard deviations
intervals (shaded regions).

The λ-RF can be viewed as an approximation of kernel ridge predictors: observing from (8.2.4)
that f̂ (RF)

λ only depends on the scalar product KP (x, x′) = 1
P

∑P
j=1 f

(j)(x)f (j)(x′) between data-

points, we see that as P →∞, KP → K and hence f̂ (RF)
λ converges [176] to a kernel predictor with

ridge λ [198], which we call λ-KRR predictor.

Definition 6 (Kernel Predictor). Consider a kernel function K : Rd ×Rd → R and a ridge λ > 0.
The Kernel Predictor is the function f̂ (K)

λ : Rd → R

f̂
(K)
λ (x) = K(x,X)(K(X,X) + λIN)−1y

where K(X,X) is the N ×N matrix of entries (K(X,X))ij = K(xi, xj) and K(· , X) : Rd → RN
is the map (K(x,X))i = K(x, xi).

Bias-Variance Decomposition.

Let us assume that there exists a true regression function f∗ : Rd → R and a data generating
distribution D on Rd. The risk of a predictor f : Rd → R is measured by the MSE defined as

L(f) = ED
[
(f(x)− f∗(x))2

]
.

Let π denote the joint distribution of the i.i.d. sample f (1), ..., f (P) from the centered Gaussian
process with covariance kernel K. The risk of f̂ (RF)

λ can be decomposed into a bias-variance form

142 CHAPTER 8. IMPLICIT REGULARIZATION OF RANDOM FEATURE MODELS

as
Eπ
[
L(f̂

(RF)
λ)

]
=L

(
Eπ[f̂

(RF)
λ]

)
+ ED

[
Varπ(f̂

(RF)
λ (x))

]
.

This decomposition into the risk of the average RF predictor and of the D-expectation of its variance
will play a crucial role in the next sections. This is in contrast with the classical bias-variance
decomposition in [71]

ED⊗N [L(f)] = L(ED⊗N [f]) + ED[VarD⊗N [f(x)]]

where D⊗N denotes the joint distribution on x1, ..., xN , sampled i.i.d. from D. Note that in our
decomposition no probabilistic assumption is made on the data, which is fixed.

Additional Notation

In this paper, we consider a fixed dataset (X, y) with distinct data points and a kernel K (i.e. a
positive definite symmetric function Rd ×Rd → R). We denote by ‖y‖K−1 the inverse kernel norm
of the labels defined as yT (K(X,X))−1y.

Let UDUT be the spectral decomposition of the kernel matrixK(X,X), withD = diag(d1, . . . , dN).
Let D

1
2 = diag(

√
d1, . . . ,

√
dN) and set K

1
2 = UD

1
2UT . The law of the (random) data matrix F

is now that of 1√
P
K

1
2WT where W is a P ×N matrix of i.i.d. standard Gaussian entries, so that

E[FFT] = K(X,X).
We will denote by γ = P

N the parameter-to-datapoint ratio: the underparameterized regime
corresponds to γ < 1, while the overparameterized regime corresponds to γ ≥ 1. In order to stress
the dependence on the ratio parameter γ, we write f̂ (RF)

λ,γ instead of f̂ (RF)
λ .

8.3 First Observations

The distribution of the RF predictor features a variety of behaviors depending on γ and λ, as
displayed in Figure 8.2.1. In the underparameterized regime P < N , sample RF predictors in-
duce some implicit regularization and do not interpolate the dataset (8.2.1a); at the interpolation
threshold P = N , RF predictors interpolate the dataset but the variance explodes when there is
no ridge (8.2.1b), however adding some ridge suppresses variance explosion (8.2.1c); in the overpa-
rameterized regime P ≥ N with large P , the variance vanishes thus the RF predictor converges to
its average (8.2.1d). We will investigate the average RF predictor (solid lines) in detail in Section
8.4 and study its variance in Section 8.5.

We start by characterizing the distribution of the RF predictor as a Gaussian mixture:

Proposition 8.3.1. Let f̂ (RF)
λ,γ (x) be the random features predictor as in (8.2.5) and let ŷ = F θ̂

be the prediction vector on training data, i.e. ŷi = f̂
(RF)
λ,γ (xi). The process f̂ (RF)

λ,γ is a mixture of

Gaussians: conditioned on F , we have that f̂ (RF)
λ,γ is a Gaussian process. The mean and covariance

of f̂ (RF)
λ,γ conditioned on F are given by

E[f̂
(RF)
λ,γ (x)|F] = K(x,X)K(X,X)−1ŷ, (8.3.1)

Cov[f̂
(RF)
λ,γ (x), f̂

(RF)
λ,γ (x′)|F] =

‖θ̂‖2

P
K̃(x, x′), (8.3.2)

with K̃(x, x′) = K(x, x′)−K(x,X)K(X,X)−1K(X,x′) denoting the posterior covariance kernel.

8.4. AVERAGE PREDICTOR 143

0

1

2

3

4

5

6

7

8

10-2 10-1 100 101 102

(a) Evolution of λ̃

Te
st

 E
rr

or

10-2 10-1 100 101 102

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Average λ-RF predictor vs. λ̃-KRR

Figure 8.3.1: Comparison of the test errors of the average λ-RF predictor and the λ̃-KRR predictor.
We train the RF predictors on N = 100 MNIST data points where K is the RBF kernel, i.e.
K(x, x′) = exp

(
−‖x− x′‖2/`

)
. We approximate the average λ-RF on 100 random test points for

various ridges λ. In (a), given γ and λ, the effective ridge λ̃ is computed numerically using (8.4.2).
In (b), the test errors of the λ̃-KRR predictor (blue lines) and the empirical average of the λ-RF
predictor (red dots) agree perfectly.

The proof of Proposition 8.3.1 relies on the fact that f (j) conditioned on
(
f (j)(xi)

)
i=1,...,N

is a
Gaussian Process.

Note that (8.3.1) and (8.3.2) depend on λ and P through ŷ and ‖θ̂‖2; in fact, as the proof
shows, these identities extend to the ridgeless case λ ↘ 0. For the ridgeless case, when one is in
the overparameterized regime (P ≥ N), one can (with probability one) fit the labels y and hence
ŷ = y:

Corollary 8.3.2. When P ≥ N , the average ridgeless RF predictor is equivalent to the ridgeless
KRR predictor

E
[
f̂

(RF)
λ↘0,γ(x)

]
= K(x,X)K(X,X)−1y = f̂

(K)
λ↘0(x).

This corollary shows that in the overparameterized case, the ridgeless RF predictor is an unbiased
estimator of the ridgeless kernel predictor. The difference between the expected loss of ridgeless
RF predictor and that of the ridgeless KRR predictor is hence equal to the variance of the RF
predictor. As will be demonstrated in this article, outside of this specific regime, a systematic bias
appears, which reveals an implicit regularizing effect of random features.

8.4 Average Predictor

In this section, we study the average RF predictor E[f̂
(RF)
λ,γ]. As shown by Corollary 8.3.2 above, in

the ridgeless overparmeterized regime, the RF predictor is an unbiased estimator of the ridgeless
kernel predictor. However, in the presence of a non-zero ridge, we see the following implicit regu-
larization effect : the average λ-RF predictor is close to the λ̃-KRR predictor for an effective ridge

144 CHAPTER 8. IMPLICIT REGULARIZATION OF RANDOM FEATURE MODELS

λ̃ > λ (in other words, sampling a finite number P of features amounts to taking a greater kernel
ridge λ̃).

Theorem 8.4.1. For N,P > 0 and λ > 0, we have∣∣∣E[f̂
(RF)
λ,γ (x)]− f̂ (K)

λ̃
(x)
∣∣∣ ≤ c

√
K(x, x) ‖y‖K−1

P
(8.4.1)

where the effective ridge λ̃(λ, γ) > λ is the unique positive number satisfying

λ̃ = λ+
λ̃

γ

1

N

N∑
i=1

di

λ̃+ di
, (8.4.2)

and where c > 0 depends on λ, γ, and 1
NTrK(X,X) only.

Proof. (Sketch; see Supp. Mat. for details) Set Aλ = F (FTF + λIP)−1FT . The vector of the
predictions on the training set is given by ŷ = Aλy and the expected predictor is given by

E
[
f̂

(RF)
λ,γ (x)

]
= K(x,X)K(X,X)−1E [Aλ] y.

By a change of basis, we may assume the kernel Gram matrix to be diagonal, i.e. K(X,X) =
diag(d1, . . . , dN). In this basis E [Aλ] turns out to be diagonal too. For each i = 1, . . . , N we
can isolate the contribution of the i-th row of F : by the Sherman-Morrison formula, we have
(Aλ)ii = digi

1+digi
, where

gi =
1

P
WT
i (FT(i)F(i) + λIP)−1Wi,

with Wi denoting the i-th column of W =
√
PFTK−

1
2 and F(i) being obtained by removing the

i-th row of F . The gi’s are all within O(1/
√
P) distance to the Stieltjes transform

mP (−λ) =
1

P
Tr
(
FTF + λIP

)−1
.

By a fixed point argument, the Stieltjes transform mP (−λ) is itself within O(1/
√
P) distance to

the deterministic value m̃(−λ), where m̃ is the unique positive solution to

γ =
1

N

N∑
i=1

dim̃(z)

1 + dim̃(z)
− γzm̃(z).

(The detailed proof in the Supp. Mat. uses non-asymptotic variants of arguments found in [11];
the constants in the O bounds are in particular made explicit).

As a consequence, from the above results, we obtain

E [(Aλ)ii] = E
[

digi
1 + digi

]
≈ dim̃

1 + dim̃
=

di

λ̃+ di
,

revealing the effective ridge λ̃ = 1/m̃(−λ).
This implies that E [Aλ] ≈ K(X,X)(K(X,X) + λ̃IN)−1 and

E
[
f̂

(RF)
λ,γ (x)

]
≈K(x,X)(K(X,X) + λ̃IN)−1y= f̂

(K)

λ̃
(x),

yielding the desired result.

8.4. AVERAGE PREDICTOR 145

Note that asymptotic forms of equations similar to the ones in the above proof appear in different
settings [48, 152, 144], related to the study of the Stieltjes transform of the product of asymptotically
free random matrices.

While the above theorem does not make assumptions on P,N , and K, the case of interest is
when the right hand side cK(x,x)‖y‖K−1

P is small. The constant c > 0 is uniformly bounded whenever
γ and λ are bounded away from 0 and 1

NTrK(X,X) is bounded from above. As a result, to bound
the right hand side of (8.4.1), the two quantities we need to bound are T = 1

NTrK(X,X) and
‖y‖K−1 .

• The boundedness of T is guaranteed for kernels that are translation-invariant, i.e. of the form
K(x, y) = k(‖x− y‖): in this case, one has T = k(0).

• If we assume ED [K(x, x)] <∞ (as is commonly done in the literature [185]), T converges to
ED [K(x, x)] as N →∞ (assuming i.i.d. data points).

• For ‖y‖K−1 , under the assumption that the labels are of the form yi = f∗(xi) for a true
regression function f∗ lying in Reproducing Kernel Hilbert Space (RKHS) H of the kernel K
[198], we have ‖y‖K−1 ≤ ‖f∗‖H.

Our numerical experiments in Figure (8.3.1b) show excellent agreement between the test error of
the expected λ-RF predictor and the one of the λ̃-KRR predictor suggesting that the two functions
are indeed very close, even for small N,P .

Thanks to the implicit definition of the effective ridge λ̃ (which depends on λ, γ,N and on the
eigenvalues di of K(X,X)) we obtain the following:

Proposition 8.4.2. The effective ridge λ̃ satisfies the following properties:

1. for any γ > 0, we have λ < λ̃(λ, γ) ≤ λ+ 1
γT ;

2. the function γ 7→ λ̃(λ, γ) is decreasing;

3. for γ > 1, we have λ̃ ≤ γ
γ−1λ;

4. for γ < 1, we have λ̃ ≥ 1−√γ√
γ mini di.

The above proposition shows the implicit regularization effect of the RF model: sampling fewer
features (i.e. decreasing γ) increases the effective ridge λ̃.

Furthermore, as λ→ 0 (ridgeless case), the effective ridge λ̃ behave as follows:

• in the overparameterized regime (γ > 1), λ̃ goes to 0;

• in the underparameterized regime (γ < 1), λ̃ goes to a limit λ̃0 > 0.

These observations match the profile of λ̃ in Figure (8.3.1a).
Remark. When λ ↘ 0, the constant c in our bound (8.4.1) explodes (see Supp. Mat.). As a

result, this bound is not directly useful when λ = 0. However, we know from Corollary 8.3.2 that
in the ridgeless overparametrized case (γ > 1), the average RF predictor is equal to the ridgeless
KRR predictor. In the underparametrized case (γ < 1), our numerical experiments suggest that
the ridgeless RF predictor is an excellent approximation of the λ̃0-KRR predictor.

146 CHAPTER 8. IMPLICIT REGULARIZATION OF RANDOM FEATURE MODELS

Te
st

 e
rr

or

10-2 10-1 100 101 102

1.2

1.0

0.8

0.6

0.4

0.2

(a) Ridgeless vs. Ridge

10-2 10-1 100 101 102

Va
ria

nc
e

1.2

1.0

0.8

0.6

0.4

0.2

0.0

(b) Variance of λ-RF

2.0

1.8

1.6

1.4

1.2

1.0

10-2 10-1 100 101 102

(c) Evolution of ∂λλ̃

Figure 8.4.1: Average test error of the ridgeless vs. ridge λ-RF predictors. In (a), the average test
errors of the ridgeless and the ridge RF predictors (solid lines) and the effect of ensembling (dashed
lines) for N = 100 MNIST data points. In (b), the variance of the RF predictors and in (c), the
evolution of ∂λλ̃ in the ridgeless and ridge cases. The experimental setup is the same as in Figure
1.8.2.

Effective Dimension

The effective ridge λ̃ is closely related to the so-called effective dimension appearing in statistical
learning theory. For a linear (or kernel) model with ridge λ, the effective dimension N (λ) ≤ N

is defined as
∑N
i=1

di
λ+di

[238, 29]. It allows one to measure the effective complexity of the Hilbert
space in the presence of a ridge.

For a given λ > 0, the effective ridge λ̃ introduced in Theorem 8.4.1 is related to the effective
dimension N (λ̃) by

N (λ̃) = P

(
1− λ

λ̃

)
.

In particular, we have that N (λ̃) ≤ min(N,P): this shows that the choice of a finite number
of features corresponds to an automatic lowering of the effective dimension of the related kernel
method.

Note that in the ridgeless underparameterized case (λ↘ 0 and γ < 1), the effective dimension
N (λ̃) equals precisely the number of features P .

Risk of the Average Predictor

A corollary of Theorem 8.4.1 is that the loss of the expected RF predictor is close to the loss of the
KRR predictor with ridge λ̃:

Corollary 8.4.3. If ED[K(x, x)] <∞, we have that the difference of errors δE =
∣∣∣L(E[f̂

(RF)
λ,γ])− L(f̂

(K)

λ̃
)
∣∣∣

is bounded from above by

δE ≤
C ‖y‖K−1

P

(
2

√
L
(
f̂

(K)

λ̃

)
+
C ‖y‖K−1

P

)
,

where C is given by c
√
ED[K(x, x)], with c the constant appearing in (8.4.1) above.

8.5. VARIANCE 147

As a result, δE can be bounded in terms of λ, γ, T, ‖y‖K−1 , which are discussed above, and of
the kernel generalization error L(f

(K)

λ̃
). Such a generalization error can be controlled in a number

of settings as N grows: in [29, 150], for instance, the loss is shown to vanish as N → ∞. Figure
(8.3.1b) shows that the two test losses are indeed very close.

8.5 Variance

In the previous sections, we analyzed the loss of the expected predictor E[f̂
(RF)
λ,γ]. In order to analyze

the expected loss of the RF predictor f̂ (RF)
λ,γ , it remains to control the variance of the RF predictor:

this follows from the bias-variance decomposition

E
[
L(f̂

(RF)
λ,γ)

]
=L

(
E[f̂

(RF)
λ,γ]

)
+ ED

[
Var(f̂

(RF)
λ,γ (x))

]
,

introduced in Section 8.2.
The variance Var

(
f̂

(RF)
λ,γ (x)

)
of the RF predictor can itself be written as the sum

Var
(
E
[
f̂

(RF)
λ,γ (x) | F

])
+ E

[
Var

(
f̂

(RF)
λ,γ (x) | F

)]
.

By Proposition 8.3.1, we have

E
[
f̂

(RF)
λ,γ (x) | F

]
= K(x,X)K(X,X)−1ŷ

Var
(
f̂

(RF)
λ,γ (x) | F

)
=
‖θ̂‖2

P
K̃(x, x).

RF Predictor Concentration

The following theorem allows us to bound both terms:

Theorem 8.5.1. There are constants c1, c2 > 0 depending on λ, γ, T only such that

Var
(
K(x,X)K(X,X)−1ŷ

)
≤
c1K(x, x)‖y‖2K−1

P∣∣∣E‖[θ̂‖2]− ∂λλ̃yTMλ̃y
∣∣∣ ≤ c2‖y‖2K−1

P
,

where ∂λλ̃ is the derivative of λ̃ with respect to λ and for Mλ̃ = K(X,X)(K(X,X) + λ̃IN)−2. As
a result

Var
(
f̂

(RF)
λ,γ (x)

)
≤
c3K(x, x)‖y‖2K−1

P
,

where c3 > 0 depends on λ, γ, T .

Putting the pieces together, we obtain the following bound on the difference ∆E = |E[L(f̂
(RF)
λ,γ)]−

L(f̂
(K)

λ̃
)| between the expected RF loss and the KRR loss:

Corollary 8.5.2. If ED[K(x, x)] <∞, we have

∆E ≤
C1‖y‖K−1

P

(√
L(f̂

(K)

λ̃
) + C2‖y‖K−1

)
.

where C1 and C2 depend on λ, γ, T and ED[K(x, x)] only.

148 CHAPTER 8. IMPLICIT REGULARIZATION OF RANDOM FEATURE MODELS

Double Descent Curve

We now investigate the neighborhood of the frontier γ = 1 between the under- and overparameter-
ized regimes, known empirically to exhibit a double descent curve, where the test error explodes at
γ = 1 (i.e. when P ≈ N) as exhibited in Figure 8.4.1.

Thanks to Theorem H.3, we get a lower bound on the variance of f̂ (RF)
λ,γ :

Corollary 8.5.3. There exists c4 > 0 depending on λ, γ, T only such that Var(f̂
(RF)
λ,γ (x)) is bounded

from below by

∂λλ̃
yTMλ̃y

P
K̃(x, x)−

c4K(x, x)‖y‖2K−1

P 2
.

If we assume the second term of Corollary H.3.17 to be negligible, then the only term which
depends on P is ∂λλ̃

yTMλ̃y

P . The derivative ∂λλ̃ has an interesting behavior as a function of λ and
γ:

Proposition 8.5.4. For γ > 1, as λ → 0, the derivative ∂λλ̃ converges to γ
γ−1 . As λγ → ∞, we

have ∂λλ̃(λ, γ)→ 1.

The explosion of ∂λλ̃ in (γ = 1, λ = 0) is displayed in Figure (8.4.1c).
Corollary H.3.17 can be used to explain the double-descent curve numerically observed for small

λ > 0. It is natural to assume that in this case ∂λλ̃ � 1 around γ = 1, dominating the lower
bound in Corollary H.3.17. In turn, by Proposition H.3.11 this implies that the variance of f̂ (RF)

gets large. Finally, by the bias-variance decomposition, we obtain a sharp increase of the test error
around γ = 1, which is in line with the results of [85, 152].

8.6 Conclusion

In this paper, we have identified the implicit regularization arising from the finite sampling of
Random Features (RF): using a Gaussian RF model with ridge parameter λ > 0 (λ-RF) and
feature-to-datapoints ratio γ = P

N is essentially equivalent to using a Kernel Ridge Regression with
effective ridge λ̃ > λ (λ̃-KRR) which we characterize explicitly. More precisely, we have shown the
following:

• The expectation of the λ-RF predictor is very close to the λ̃-KRR predictor (Theorem 8.4.1).

• The λ-RF predictor concentrates around its expectation when λ is bounded away from zero
(Theorem H.3); this implies in particular that the test errors of the λ-RF and λ̃-KRR predic-
tors are close to each other (Corollary H.3.16).

Both theorems are proven using tools from random matrix theory, in particular finite-size results on
the concentration of the Stieltjes transform of general Wishart matrix models. While our current
proofs require the assumption that the RF model is Gaussian, it seems natural to postulate that
the results and the proofs extend to more general setups, along the lines of [145, 23].

Our numerical verifications on the expected λ-RF predictor and the λ̃-KRR predictor have
shown that both are in excellent agreement. This shows in particular that in order to use RF
predictors to approximate KRR predictors with a given ridge, one should choose both the number
of features and the explicit ridge appropriately.

8.6. CONCLUSION 149

Te
st

 e
rr

or

10-210-3 10-1 100 101 102

1.2

1.0

0.8

0.6

0.4

0.2

Figure 8.6.1: Average test error of the λ-RF predictor for two values of N and λ = 10−4. For
N = 1000, the test error is naturally lower and the cusp at γ = 1 is narrower than for N = 100.
The experimental setup is the same as in Figure 8.3.1.

Finally, we investigate the ridgeless limit case λ ↘ 0. In this case, we see a sharp transition
at γ = 1: in the overparameterized regime γ > 1, the effective ridge goes to zero, while in the
underparameterized regime γ < 1, it converges to a positive value. At the interpolation threshold
γ = 1, the variance of the λ-RF explodes, leading to the double descent curve emphasized in
[1, 211, 18, 157]. We investigate this numerically and prove a lower bound yielding a plausible
explanation for this phenomenon.

Chapter 9

Saddle-to-Saddle Dynamics in Deep Linear
Networks: Small Initialization Training,
Symmetry and Sparsity

Abstract

The dynamics of Deep Linear Networks (DLNs) is dramatically affected by the variance
σ2 of the parameters at initialization θ0. For DLNs of width w, we show a phase transition
w.r.t. the scaling γ of the variance σ2 = w−γ as w →∞: for large variance (γ < 1), θ0 is very
close to a global minimum but far from any saddle point, and for small variance (γ > 1), θ0
is close to a saddle point and far from any global minimum. While the first case corresponds
to the well-studied NTK regime, the second case is less understood. This motivates the study
of the case γ → +∞, where we conjecture a Saddle-to-Saddle dynamics: throughout training,
gradient descent visits the neighborhoods of a sequence of saddles, each corresponding to linear
maps of increasing rank, until reaching a sparse global minimum. We support this conjecture
with a theorem for the dynamics between the first two saddles, as well as some numerical
experiments.

9.1 Introduction

In spite of their widespread usage, the theoretical understanding of Deep Neural Networks (DNNs)
remains limited. In contrast to more common statistical methods which are built (and proven) to
recover the specific structure of the data, the development of DNNs techniques has been mostly
driven by empirical results. This has led to a great variety of models which perform consistently
well, but without a theory explaining why. In this paper, we provide a theoretical analysis of Deep
Linear (Neural) Networks (DLNs), whose simplicity makes them particularly attractive as a first
step towards the development of such a theory.

DLNs have a non-convex loss landscape and the behavior of training dynamics can be subtle.
For shallow networks, the convergence of gradient descent is guaranteed by the fact that the saddles
are strict and that all minima are global [13, 115, 131, 130]. In contrast, the deep case features non-
strict saddles [115] and no general proof of convergence exists at the moment, though convergence
to a global minimum can be guaranteed in some cases [4, 54].

151

152
CHAPTER 9. SADDLE-TO-SADDLE DYNAMICS IN DEEP LINEAR NETWORKS: SMALL

INITIALIZATION TRAINING, SYMMETRY AND SPARSITY

A recent line of work focuses on the implicit bias of DLNs, and consistently reveals some form of
incremental learning and implicit sparsity as in [75]. Diagonal networks are known to learn minimal
L1 solutions [156, 221]. With a specific initialization and the MSE loss, DLNs learn the singular
components of the signal one by one [195, 1, 196, 74, 5]. Recently, it has been shown that with
losses such as the cross-entropy and the exponential loss, the parameters diverge towards infinity,
but end up following the direction of the max-margin classifier w.r.t. the Lp-Schatten (quasi)norm
[80, 81, 209, 108, 109, 36, 147, 156, 235].

In parallel, recent works have shown the existence of two regimes in large-width DNNs: a kernel
regime (also called NTK or lazy regime) where learning is described by the so-called Neural Tangent
Kernel (NTK) guaranteeing linear convergence [105, 51, 34, 6, 128, 95], and an active regime where
the dynamics is nonlinear [35, 183, 153, 151, 36]. For DLNs, both regimes can be observed as well,
with evidence that while the linear regime exhibits no sparsity, the active regime favors solutions
with some kind of sparsity [221, 156].

Contributions

We study deep linear networks x 7→ Aθx of depth L ≥ 1 and widths n0, · · · , nL, that is Aθ =
WL · · ·W1 where W1, . . . ,WL are matrices such that Wi ∈ Rni×ni−1 and θ is a vector that consists
of all the (learnable) parameters of the DLN, i.e. the components of the matrices W1, · · · ,WL. For
any general convex cost C : RnL×n0 → R on matrices such that the zero matrix is not a global
minimum, we investigate the gradient flow minimizing the loss L(θ) = C(Aθ). To ease the notation,
suppose that the hidden layers have the same size, that is w = n1 = · · · = nL−1 for some w ∈ N.

The variance of the parameters at initialization has a profound effect on the training dynamics.
If the parameters are initialized with variance σ2 = w−γ , where w is the size of the hidden layers,
we observe a phase transition in the infinite width limit as w →∞ and show in Theorem 9.1 that:

• when γ < 1, the random initialization θ0 is (with high probability) very close to a global
minimum and very far from any saddle,

• when γ > 1, the initialization is very close to a saddle and far from any global minimum.

The case γ < 1 corresponds to the NTK regime (or kernel/lazy regime, described in Section 9.4)
and the case γ = 1 corresponds to the Mean-Field limit (or the Maximal Update parametrization
of [228]). It appears that the case γ > 1 has been much less studied in previous works.

To understand this regime, we investigate in Section 9.5 the case γ → +∞. More precisely, we
fix the width of the network and let the variance at initialization go to zero. We show in Theorem
9.2 that the gradient flow trajectory asymptotically goes from the saddle at the origin ϑ0 = 0 to
a rank-one saddle ϑ1, i.e. a saddle where the matrices W1, . . . ,WL are of rank 1. The proof is
based on a new description (Theorem 9.4), in the spirit of the Hartman-Grobman theorem, of the
so-called fast escape paths at the origin. This theorem may be of independent interest.

We propose the Conjecture 9.3, backed by numerical experiments, describing the full gradient
flow when the variance at initialization is very small, suggesting that it goes from saddle to saddle,
visiting the neighborhoods of a sequence of critical points ϑ0, . . . , ϑK (the first K ones being saddle
points, the last one being either a global minimum or a point at infinity) corresponding to matrices
of increasing ranks. This is consistent with [75] which shows that incremental learning occurs in a
toy model of DLNs and that gradient-based optimization hence has an implicit bias towards simple
(sparse) solutions.

9.2. DEEP LINEAR NETWORKS 153

In Section 9.5, we show how this Saddle-to-Saddle dynamics can be described using a greedy
low-rank algorithm which bears similarities with that of [135] and leads to a low-rank bias of the
final learned function. This is in stark contrast to the NTK regime which features no low-rank bias.

Related Works

The existence of distinct regimes in the training dynamics of DNNs has been explored in previous
works, both theoretically [34, 228] and empirically [70]. The theoretical works [34, 228] have mostly
focused on the transition from the NTK regime (γ < 1) to the Mean-Field regime (γ = 1). This
paper is focused on the regime beyond the critical one (γ > 1).

Our study of the Saddle-to-Saddle dynamics can also be understood as a generalization of the
works [195, 1, 196, 74, 5] which describe a similar plateau effect in a very specific setting and with
a very carefully chosen initialization.

Shortly after the initial publication of this article, we came aware of the paper [135] which
provides a similar description to our Saddle-to-Saddle dynamics. For shallow networks, the results
are almost equivalent, although the techniques are very different, especially when dealing with the
fact that the escape directions (and escape paths) are unique only up to rotations. The paper [135]
uses a clever trick that allows them to both study the dynamics of the output matrix Aθ(t), without
the need to keep track of the parameters, and obtain a unicity property for the asymptotic dynamics.
Instead, we focus on the dynamics of the parameters, give an identification of all optimal escape
paths, and show that the path followed by the parameters’ dynamics is unique up to symmetries of
the network. Note also that, as in our paper, [135] only proves the first step of the Saddle-to-Saddle
regime: for the subsequent steps, it is assumed that the next saddle is not approached along a b̀ad’
direction (as we discuss in Section 9.5). For deep networks, our results are more general as they hold
for more general initializations than in [135]. Indeed, in order to avoid the non-uniqueness problem
of the escape paths in the space of parameters, their analysis relies heavily on the assumption that
the weights of the network are balanced at initialization, and thus during training. Because we do
not rely on this trick, our analysis does not require a balanced initialization.

9.2 Deep Linear Networks

Setup

A DLN of depth L and widths n0, . . . , nL is the composition of L matrices

Aθ = WL · · ·W1

where W` ∈ Rn`×n`−1 . The number of parameters is P =
∑L
`=1 n`−1n` and we denote by θ =

(WL, . . . ,W1) ∈ RP the vector of parameters. The input dimension, resp. the output dimension is
n0, resp. nL. All parameters are initialized as i.i.d. N (0, σ2) Gaussian random variables.

We will focus on the so-called rectangular networks, in which the number of neurons in all hidden
layers is the same, i.e. n1 = · · · = nL−1 = w. Such rectangular network is called a (L,w)-DLN, and
its number of parameters is denoted by P = P(L,w) = n0w+ (L− 2)w2 +wnL. The proofs given in
this article can be extended to the non-rectangular case, but this leads to more complex notations.

We study the dynamics of gradient descent on the loss L(θ) = C(Aθ) for a general differentiable
and convex cost C on nL × n0 matrices. To ensure a non-trivial minimisation problem, we assume
that the null matrix is not a global minimum of C : in this case, the origin in the parameter space

154
CHAPTER 9. SADDLE-TO-SADDLE DYNAMICS IN DEEP LINEAR NETWORKS: SMALL

INITIALIZATION TRAINING, SYMMETRY AND SPARSITY

0

0 5000 10000 15000 20000 25000 30000
iterations

10 5

10 4

10 3

10 2

10 1

100

M
C

lo
ss

train
test

iterations
10 6

10 5

10 4

10 3

10 2

10 1

100

M
C

lo
ss

...
...

Figure 9.2.1: Saddle-to-Saddle dynamics: A DLN (L = 4, w = 100) with a small initialization
(γ = 2) trained on a MC loss fitting a 10× 10 matrix of rank 3. Left: Projection onto a plane of
the gradient flow path θα in parameter space (in blue) and of the sequence of 3 paths θ1, θ2, θ3 (in
orange, green and red), described by Algorithm Aε,T,η, starting from the origin (+) and passing
through 2 saddles (·) before converging. Middle: Train (solid) and test (dashed) MC costs through
training. We observe three plateaus, corresponding to the three saddles visited. Right: The train
(solid) and test (dashed) losses of the three paths plotted sequentially, in the saddle-to-saddle limit;
the dots represent an infinite amount of steps separating these paths.

is a saddle of L. Given a starting point θ0 ∈ RP , we denote by t 7→ Γ(t, θ0) the gradient flow path
on the cost L(θ) starting from θ0, i.e. Γ(0, θ0) = θ0 and ∂tΓ(t, θ0) = −∇L(Γ(t, θ0)).

While our analysis applies to general twice differentiable costs C, the typical costs used in
practice are:

The Mean-Squared Error (MSE) loss C(A) = 1
N ‖AX − Y ‖

2
F for some inputs X ∈ Rn0×N and

labels Y ∈ RnL×N , where || · ||F is the Frobenius norm.
The Matrix Completion (MC) loss C(A) = 1

N

∑N
i=1(Aki,mi −A∗ki,mi)

2 for some true matrix A∗
of which we observe only the N entries A∗k1,m1

, . . . , A∗kN ,mN .

Symmetries and Invariance

A key tool in this paper is the use of two important symmetries of the parametrization map θ 7→ Aθ
in DLNs: rotations of hidden layers and inclusions in wider DLNs.

Rotations: A L − 1 tuple R = (O1, . . . , OL−1) of orthogonal w × w matrices is called a w-width
network rotation, or in short a rotation. A rotation R acts on a parameter vector θ =
(WL, . . . ,W1) as Rθ = (WLO

T
L−1, OL−1WL−1O

T
L−2, . . . , O1W1). The space of rotations is an

important symmetry of DLN: indeed, for any parameter θ, and any cost C, the two following
important properties hold:

ARθ = Aθ, ∇θC(ARθ) = R∇θC(Aθ),

where we considered ∇θC(Aθ) ∈ RPL,w as another vector of parameters. These properties
imply that if θ(t) = Γ(t, θ0) is a gradient flow path, then so is Rθ(t) = Γ(t, Rθ0).

9.3. PROXIMITY OF CRITICAL POINTS AT INITIALIZATION 155

Inclusion: The inclusion I(w→w′) of a network of width w into a network of width w′ > w (by
adding zero weights on the new neurons) is defined as I(w→w′)(θ) = (VL, . . . , V1) with

V1 =

(
W1

0

)
, V` =

(
W` 0
0 0

)
, VL =

(
WL 0

)
.

For any parameters θ and any cost C, we have AI(w→w′)θ = Aθ and ∇C(AI(w→w′)θ) =

I(w→w′)∇C(Aθ): the image of the inclusion map I(w→w′) (as well as any rotation RImI(w→w′)

thereof) is invariant under gradient flow.

9.3 Proximity of Critical Points at Initialization

It has already been observed that in the infinite width limit, when the width w of the network
grows to infinity, the scale at which the variance σ2 of the parameters at initialization scales with
the width can lead to very different behaviors [34, 70, 228]. Let us consider scaling of the variance
σ2 = w−γ for γ ≥ 1 − 1

L . The reason we lower bound γ is that any smaller γ would lead to an
explosion of the variance of the matrix Aθ at initialization as the width w grows.

Let dm and ds be the Euclidean distances between the initialization θ and, respectively, the set
of global minima and the set of all saddles. For random variables f(w), g(w) which depend on w,
we write f � g if both f(w)/g(w) and g(w)/f(w) are stochastically bounded as w →∞. The following
theorem studies how dm and ds scale as w →∞:

Theorem 9.1. Suppose that the set of matrices that minimize C is non-empty, has Lebesgue
measure zero, and does not contain the zero matrix. Let θ be i.i.d. centered Gaussian r.v. of
variance σ2 = w−γ where 1− 1

L ≤ γ <∞. Then:

1. if 1− 1
L ≤ γ < 1, we have dm � w−

(1−γ)(L−1)
2 and ds � w

1−γ
2 ,

2. if γ = 1, we have dm, ds � 1,

3. if γ > 1 we have dm � 1 and ds � w−
γ−1

2 .

This theorem shows an important change of behavior between the case γ < 1 and γ > 1. When
γ < 1, the network is initialized very close to a global minimum and far from any saddle. When
γ > 1, the parameters are initialized very close to a saddle but far away from any global minimum.
The critical case γ = 1 is the unique limit where both types of critical points are at the same
distance from the initialization.

Hence, the landscape of the loss near the initialization displays distinct features in the three
regimes highlighted in the previous theorem. In fact, the dynamics of the gradient descent also
exhibits very distinctive characteristics in the different regimes. In Appendix I.2, we show that the
largest initialization, corresponding to the choice γ = 1 − 1

L , is equivalent to the so-called NTK
parametrization of [105], up to a rescaling of the learning rate. In the range 1 − 1

L < γ < 1,
[229] obtain a similar, yet slightly different, kernel regime. The initialization γ = 1 corresponds
to the Mean-Field limit for shallow networks [35, 183] or, more generally, to the Maximal Update
parametrization [229] (see Appendix I.2). The case γ > 1 is however much less studied and is
difficult to study since the initialization approaches a saddle as w →∞. Thus, in this regime, the
wider the network, the longer it takes to escape this nearby saddle and, in the limit as w → ∞,
nothing happens over a finite number of gradient steps. With the right time parametrization, we

156
CHAPTER 9. SADDLE-TO-SADDLE DYNAMICS IN DEEP LINEAR NETWORKS: SMALL

INITIALIZATION TRAINING, SYMMETRY AND SPARSITY

will observe interesting Saddle-to-Saddle dynamics in this regime, leading to some low-rank bias.
This is regime is related to the condensed regime identified in [146].

9.4 NTK regime: γ < 1

The NTK for linear networks can be expressed easily using the tensor

Θ(L) =
∑
θ

∂θA⊗ ∂θA,

which entries are given by [Θ(L)]j,li,k = (∇θ(Aθ)i,j)T (∇θ(Aθ)k,l), for i, k = 1, . . . , nL and j, l =

1, . . . , n0. For any x, y in Rn0 , the value of the NTK at x and y is Θ(L)(x⊗ y) =
∑
j,l[Θ

(L)]j,l·,·xjyl.
When the parameters evolve according to the gradient flow on L(θ) = C(Aθ), the dynamics of

Aθ(t) is:

∂tAθ(t) = −Θ(L) · ∇AC(Aθ(t))

= −
∑
k,l

[Θ(L)]·,l·,k
d

dAk,l
C(Aθ(t)),

where · denotes a contraction of the k, l indices of Θ(L) with the two indices of ∇AC(Aθ(t)).
At initialization, Θ(L) concentrates around its expectation E

[
Θ(L)

]
= Lw(1−γ)(L−1)δi,kδj,l as

the width grows. It was first proven in [105] that for an initialization equivalent to the case γ = 1− 1
L

(see Appendix I.2 for more details), as w →∞ the NTK remains constant during training. Recent
results [229] have shown that the NTK is asymptotically fixed for all γ ∈ (1 − 1

L , 1). In this case,
given the asymptotic behavior of the NTK, the evolution of Aθ(t) is the same (up to a change of
learning rate) as the one obtained by performing directly a gradient flow on the cost C.

As a result, in the regime γ < 1, if the cost C is strictly convex (or satisfies the Polyak-Lojasievicz
inequality [142]), the loss decays exponentially fast. Besides, the depth of the network has no effect
in the infinite width limit (except for a change of learning rate) and the DLN structure adds no
specific bias to the global minimum learned with gradient descent. In particular, this regime leads
to no low-rank bias.

9.5 Saddle-to-Saddle Dynamics: γ � 1

We now study the dynamics of DLN during training as the variance at initialization goes to zero.
Specifically, we sample some random parameters θ0 with i.i.d. N (0, 1) entries, consider the gra-
dient flow θα(t) = Γ(t, αθ0), and let α ↘ 0. Since the origin is a saddle, for all fixed times t,
limα↘0 θα(t) = 0. We will show however that there is an escape time tα, which grows to infinity as
α↘ 0, such that the limit limα↘0 θα(tα + t) is non-trivial for all t ∈ R.

The study of shallow networks (L = 2) is facilitated by the fact that the saddle at the origin
is strict: its Hessian has negative eigenvalues. For deeper networks (L > 2), the saddle is highly
degenerate: the L−1 first order derivatives vanish. In Section 9.5, we develop new theoretical tools
to analyze the two types of saddles and their escape paths.

9.5. SADDLE-TO-SADDLE DYNAMICS: γ � 1 157

0 2500 5000 7500 10000 12500 15000 17500 20000
itr

10 10

10 8

10 6

10 4

10 2

100

102

tra
in

 e
rro

r

w = 10
w = 100
w = 1000

0 2000

10 6

100

(a) NTK: γ = 0.75

0 2500 5000 7500 10000 12500 15000 17500 20000
itr

10 9

10 7

10 5

10 3

10 1

101

103

0 2000

10 2

101

(b) MF: γ = 1.0

0 10000 20000 30000 40000 50000
itr

10 9

10 7

10 5

10 3

10 1

101

103

0 5000

102

103

(c) StS: γ = 1.5
(a) γ = 0.75 (NTK) (b) γ = 1 (MF) (c) γ = 1.5 (S-S)

Figure 9.4.1: Training in (a) the NTK regime, (b) mean-field, (c) saddle-to-saddle regimes in deep
linear networks for three widths w = 10, 100, 1000, L = 4, and 10 seeds. Parameters are initialized
with variance σ2 = w−γ . We observe that (a) in the NTK regime, the training loss shows typical
linear convergence behavior for w = 1000 and w = 100; (b) in the mean-field regime, we observe
that even the large width networks approach to a saddle at the beginning of the training and that
the length of the plateaus remains constant between widths w = 1000 and w = 100; (c) in the
saddle-to-saddle regime, the plateaus become longer as the width grows. In all cases, we see a
reduction in the variation between the different seeds as w →∞.

First Path

It turns out that gradient flow paths naturally escape the saddle at the origin along so-called optimal
escape paths. We say that a gradient flow path θ(·) : R → RP is an escape path of a critical point
θ∗ if limt→−∞ θ(t) = θ∗. Informally, the optimal escape paths, whose precise definition is given in
Section 9.5, are the escape paths that allow the fastest exit from a saddle. In DLNs, these optimal
escape paths are of the form RI(1→w)θ1(t) where θ1(t) is a path of a width 1 DLN which escapes
from the origin:

Theorem 9.2. Assume that the largest singular value s1 of the gradient of C at the origin ∇C(0) ∈
RnL×n0 has multiplicity 1. There is a deterministic gradient flow path θ1 in the space of width-1
DLNs such that, with probability 1 if L ≤ 3, and probability at least 1/2 if L > 3, there exists an
escape time t1α and a rotation R such that

lim
α→0

θα(t1α + t) = RI(1→w)θ1(t).

The unicity of the largest singular value of the gradient at the origin guarantees the unicity (up
to rotation) of the optimal escape paths. For example, with the MSE loss, the gradient at the origin
is 2Y XT : for generic Y and X, the largest singular value of the gradient has a multiplicity of 1.

The reason why, for DLN with L > 3, we can only guarantee a probability of 1
2 in the previous

theorem, is that we need to ensure that gradient descent does not get stuck at the saddle at the
origin or at other saddles connected to it. For L = 2, this follows from the fact that the saddle is
strict. When L > 2, the saddle is not strict and we were only able to prove it in the case where
L = 3. We conjecture that the behavior described in Theorem 9.2 happens with probability 1 for
all L ≥ 2.

As shown in the Appendix I.3, the escape time tα is of order − logα for shallow networks and of
order α−(L−2) for networks of depth L > 2. Hence, the deeper the network, the slower the gradient
flow escapes the saddle.

158
CHAPTER 9. SADDLE-TO-SADDLE DYNAMICS IN DEEP LINEAR NETWORKS: SMALL

INITIALIZATION TRAINING, SYMMETRY AND SPARSITY

Besides, as also discussed in the Appendix I.3, the norm
∥∥θ1(t)

∥∥ of the limiting escape path
θ1(t) = RI(1→w)θ1(t) grows at an optimal speed: as es

∗(t+T) for some T when L = 2 and as
(s∗(L−2)(T −t))−

1
L−2 for some T when L > 2, where s∗ is the optimal escape speed s∗ = L−

L−2
2 s1.

These are optimal in the sense that given an other gradient flow path θ(t) which exits from the
origin, there exists a ball B centered at the origin such that, for any small ε, if t1 and t2 are the
times such that

∥∥θ1(t1)
∥∥ = ε = ‖θ(t2)‖, then

∥∥θ1(t+ t1)
∥∥ ≥ ‖θ(t+ t2)‖ for any positive t, until one

of the paths exits the ball B.

Subsequent Paths

What happens after this first path? The width-1 gradient flow path θ1(t) converges to a width-1
critical point ϑ1 as t→∞. While ϑ1 may be a local minimum amongst width-1 DLNs, its inclusion
ϑ1 = RI(1→w)(ϑ1) will be a saddle assuming it is not a global minimum already and that the
network is wide enough, since if w ≥ min{n0, nL} all critical points are either global minima or
saddles [164].

Theorem 9.2 guarantees that, as α↘ 0, the gradient flow path θα(t) will approach the saddle ϑ1.
It is then natural to assume that θα(t) will escape this saddle along an optimal escape path (which
is the inclusion of a width-2 path). Repeating this process, we expect gradient flow to converge as
α↘ 0 to the concatenation of paths going from saddle to saddle of increasing width:

Conjecture 9.3. With probability 1, there exist K + 1 critical points ϑ0, . . . , ϑK ∈ RPL,w (with
ϑ0 = 0) and K gradient flow paths θ1, . . . , θK : R → RPL,w connecting the critical points (i.e.
limt→−∞ θk(t) = ϑk−1 and limt→+∞ θk(t) = ϑk) such that the path θα(t) converges as α→ 0 to the
concatenation of θ1(t), . . . , θK(t) in the following sense: for all k < K, there exist times tkα (which
depend on θ0) such that

lim
α→0

θα(tkα + t) = θk(t).

Furthermore, for all k < K, there is a deterministic path θk(t) and a local minimum ϑk of a
width-k network such that for some rotation R (which depends on θ0), θk(t) = RI(k→w)(θk(t)) and
ϑk = RI(k→w)(ϑk) for all k and t.

This Saddle-to-Saddle behavior explains why for small initialization scale, the train error gets
stuck at plateaus during training (Figures 9.2.1 and 9.4.1). Conjecture 9.3 suggests that these
plateaus correspond to the saddle visited.

Note that for losses such as the cross-entropy, the gradient descent may diverge towards infinity,
as studied in [209, 80]. From now on, we focus on the case where ϑK is a finite global minimum.
By the invariance under gradient flow of Im[I(k→w)] (the image of the inclusion map), the inclusion
of a width-k local minimum ϑk into a larger network is a saddle ϑk (if Aϑk is not a global minimum
of C). These types of saddles are closely related to the symmetry-induced saddles studied in [204]
in non-linear networks.

Remark 9.1. Note that each of the limiting paths θk and critical points ϑk will be balanced (i.e.
their weight matrices satisfy W`W

T
` = WT

`+1W`+1 for all ` = 1, . . . , L− 1). The origin is obviously
balanced and since balancedness is an invariant of gradient flow and all other paths and saddles
are connected to the origin by a sequence of gradient flow paths, they must be balanced too. Note
however that for all α > 0, the path θα(t) is almost surely not balanced.

9.5. SADDLE-TO-SADDLE DYNAMICS: γ � 1 159

Algorithm Aε,T,η
Compute the first singular vectors of ∇C(0):
u, s, v ← SVD1(∇C(0))
θ ← (−εvT , ε, . . . , εu)
w ← 1
while C(Aθ) < Cmin + ε do
T steps of GD on the loss of width-w DLN with lr η
θ ← SGDw,T,η(θ)
u, s, v ← SVD1(∇C(Aθ))

θ ←
((

W1

−εvT
)
,

(
W2 0
0 ε

)
, . . . ,

(
WL εu

))
w ← w + 1

end while

Greedy Low-Rank Algorithm

Conjecture 9.3 suggests that the gradient flow with vanishing initialization implements a greedy
low-rank algorithm which performs a greedy search for a lowest-rank solution: it first tries to fit
a width 1 network, then a width 2 network and so on until reaching a solution. Thus, we expect
that as α ↘ 0, the dynamics of gradient flow corresponds, up to inclusion and rotation, to the
limit of the algorithm Aε,T,η as sequentially T →∞, η → 0 and ε→ 0. In particular, we used the
Algorithm Aε,T,η, with large T and small η and ε to approximate the paths θk and points ϑk in
Figure 9.2.1. Note how this limiting algorithm is deterministic. This implies that even for finite
widths the dynamics of gradient flow converge to a deterministic limit (up to random rotations R)
as the variance at initialization goes to zero.

A similar algorithm has already been described in [135], however thanks to our different proof
techniques, we are able to give a more precise description of the evolution of the parameters.

Description of the paths that escape a saddle

Our proof relies on a theorem which relates the escape paths of the saddle at the origin of the cost
L and the escape paths of the L-th order Taylor approximation H of L. This correspondence only
applies to paths which escape the saddle sufficiently fast.

We define the set of fast escaping paths FL(s) of the cost L with speed at least s as follows:

• for shallow networks (L = 2), it is the set of gradient flow paths that satisfy ‖θ(t)‖ = O(est)
as t→ −∞,

• for deep networks (L > 2), it is the set of gradient flow paths that satisfy ‖θ(t)‖ ≤ (s(L− 2)(T − t))−
1

L−2

for some T and any small enough t.

The optimal escape speed is s∗ = L−
L−2

2 s1 where s1 is the largest singular value of ∇C(0). It
is the optimal escape speed in the sense that there are no faster escape paths: FL(s) = ∅ if s > s∗.
Escape paths which exit the saddle at the optimal escape speed are called optimal escape paths.

There is a bijection between fast escaping paths of the loss L and those of its Lth order Taylor
approximation H:

160
CHAPTER 9. SADDLE-TO-SADDLE DYNAMICS IN DEEP LINEAR NETWORKS: SMALL

INITIALIZATION TRAINING, SYMMETRY AND SPARSITY

Theorem 9.4. Shallow networks: for all s s.t. s > 1
3s
∗ there is a unique bijection Ψ : FL(s)→

FH(s) such that for all paths θ ∈ FL(s), ‖θ(t)−Ψ(θ)(t)‖ = O(e3st) as t→ −∞.
Deep networks: for all s > L−1

L+1s
∗, there is a unique bijection Ψ : FL(s) → FH(s) such that

for all paths θ ∈ FL(s), ‖θ(t)−Ψ(θ)(t)‖ = O((−t)−
L+1
L−2) as t→ −∞.

We believe that this theorem is of independent interest, and it is stated in a more general
setting in the Appendix. Theorem 9.4 is similar to the Hartman-Grobman Theorem, which shows
a bijection, in the vicinity of a critical point, between the gradient flow paths of F and of its
linearization. The bijection in Theorem 9.4 holds only between fast escaping paths, but it gives
stronger guarantees regarding how close the paths θ(·) and Ψ(θ)(·) are. In particular, Theorem 9.4
guarantees that a fast escaping path θ(·) and its image Ψ(θ)(·) have the same ‘escape speed’, whereas
the correspondence between paths of in the Hartman-Grobman theorem does not in general conserve
speed. This is due to the fact that the homeomorphism which allows to construct the bijection in
the Hartman-Grobman theorem is only Hölder continuous. This suggests that fast escaping paths
can be guaranteed to conserve their speed after the Taylor approximation while slower paths can
change speed. Finally, our result has the significant advantage that it may be applied to higher order
Taylor approximations, whereas the Hartman-Grobman Theorem only applies to the linearization
of the flow (i.e. it could only be useful in the shallow case L = 2).

Sketch of Proof

In this section, we provide a sketch of proof for Theorem 9.2.
We fix some small r > 0 independent of α. The escape time tα is the earliest time such that

‖θα(tα)‖ = r. We show that the limiting escape path (θ1(t))t∈R as θ1(t) = limα↘0 θα(tα + t) is well
defined and non-trivial since θ1(0) 6= 0. The next step of the proof is to show that θ1 escapes the
saddle at an almost optimal speed: for any ε > 0, for some T and any small enough t, for shallow
network

∥∥θ1(t)
∥∥ = O(e(s∗−ε)t), and for deeper networks

∥∥θ1(t)
∥∥ ≤ [(L− 2)(s∗ − ε)(T − t)]−

1
L−2 .

We may therefore apply Theorem 9.4: there exists a unique optimal escape path for the L-th order
Taylor approximation H around the origin which is ‘close’, in the sense given in Theorem 9.4, to
θ1.

For the Taylor approximation H, we have a precise description of the optimal escaping paths for
the saddle at the origin. Assuming that the largest singular value s1 of the gradient matrix ∇C(0)
has multiplicity one, all optimal escape paths of H (i.e. the set of paths that escape with the largest
speed) are of the form θH(t) = d(t)RI(1→w) (ρ) where R is some rotation, the scalar function d(t)

is equal to es
∗(t+T) for shallow networks and (s∗(L − 2)(T − t))−

1
L−2 for deep networks, and the

vector of parameters ρ is given by:

ρ =
(
vT1 , 1, . . . , 1, u1

)
with u1, v1 the left and right singular vectors of the largest singular value s1 of the gradient matrix
∇C(0).

Let us consider the unique optimal escape path θH(t) = d(t)RI(1→w) (ρ) for H which is ‘close’
to θ1. The path θH(t) = d(t)ρ is also an optimal escape path for H: from Theorem 9.4, there exists
a unique optimal escape path θ(t) which is ‘close’ to θH . The former escape path corresponds to
a 1-width DLN and it is easy to show that RI(1→w)(θ) is an optimal escape path for L which is
‘close’ to RI(1→w)(θH) = θH .

9.6. CHARACTERIZATION OF THE REGIMES OF TRAINING 161

0.8 1.0 1.2 1.4
0.0

0.5

1.0

1.5

2.0
te

st
 e

rro
r

w = 50
w = 500
w = 5000

0.8 1.0 1.2 1.4
0

5

10

15

20

25

30

ra
nk

s

Figure 9.6.1: Test errors and ranks at convergence as a function of initialization scale γ, matrix
completion task. The task is finding a matrix of size 30 × 30 and rank 1 from 20% of its entries.
The test error and ranks are averaged over 7 seeds (±1 standard deviations are reported in the
error bar). In the NTK regime, the solutions at convergence are almost full-rank and the test error
is roughly the same or worse than that of the zero predictor. On the other hand in the Saddle-to-
Saddle regime the test error approaches zero. As the width grows the transition between regimes
becomes sharper and the test error becomes more consistent within each regimes.

In particular, we obtain that both θ1 and RI(1→w)(θ) are optimal escape path for L which are
‘close’ to θH . By the unicity property in Theorem 9.4, we obtain that θ1 = RI(1→w)(θ) which
allows us to conclude.

Remark 9.2. To prove Conjecture 9.3, one needs to apply a similar argument to understand how
gradient flow escapes the subsequent saddles ϑ1, . . . , ϑK . There are two issues:

First, even though Theorem 9.2 guarantees that gradient descent will come arbitrarily close to
the next saddle ϑ1, it may not approach it along a generic direction: it could approach along a
“bad” direction. For the first path, we relied on the fact that θ0 is Gaussian to guarantee that these
bad directions are avoided with probability 1 (or 1/2). Note that this problem c

ould be addressed using the so-called perturbed stochastic gradient descent described in [111, 50]
since, in this learning algorithm, once in the vicinity of the saddle, a small Gaussian noise is added
to the parameters: as a consequence, they end up being in a generic position in the neighborhood
of the saddle.

Second, for deep networks (L > 2), the saddle ϑ1 has a different local structure to ϑ0. Indeed, at
the origin, the L− 1 first derivatives vanish, leading to an (approximately) L-homogeneous saddle
at the origin. On the contrary, at the rank 1 saddle ϑ1 = RI(1→w)(ϑ1), if ϑ1 is a local minimum of
the width 1 network, the Hessian is positive along the inclusion Im

[
RI(1→w)

]
. This implies that

the dynamics can only escape the saddle through the Hessian null-space, along which the first L−1
derivatives vanish. Although the loss restricted to this null-space around ϑ1 has a similar structure
to the loss around the origin, the fact that the Hessian at ϑ1 is not null complexifies the analysis.

9.6 Characterization of the Regimes of Training

In light of the results presented in this paper, we discuss the three regimes that can be obtained
by varying the initialization scale γ: the kernel regime (γ < 1), the Mean-Field regime (γ = 1) and
the Saddle-to-Saddle regime (γ > 1).

162
CHAPTER 9. SADDLE-TO-SADDLE DYNAMICS IN DEEP LINEAR NETWORKS: SMALL

INITIALIZATION TRAINING, SYMMETRY AND SPARSITY

The NTK limit (γ = 1− 1
L) [105, 128] is representative of the other scalings 1− 1

L ≤ γ < 1 [229].
The critical regime γ = 1 corresponds to the Mean-Field limit for shallow networks [35, 183] or
the Maximal Update parametrization for deep networks [229]. Finally, we conjecture that the last
regime where γ > 1, displays features very akin to the γ = +∞ case studied in this article. Under
this assumption, we obtain the following list of properties that characterize each of these regimes:

In the NTK regime (1− 1
L ≤ γ < 1):

1. During training, the parameters converge to a nearby global minimum, and do not approach
any saddle (Figure 9.4.1a shows how the plateaus disappear as w grows).

2. If the cost on matrices C is strictly convex, one can guarantee exponential decrease of the loss
(i.e. linear convergence).

3. The NTK is asymptotically fixed during training.

4. No low-rank bias in the learned matrix - as a result the test error for matrix completion is the
same (or even larger) than the zero predictor in the NTK regime, as shown in Figure 9.6.1.

The Saddle-to-Saddle regime (γ > 1):

1. The parameters start in the vicinity of a saddle and visit a sequence of saddles during training.
They come closer to each of these saddles as the width grows.

2. As the width grows, it takes longer to escape each saddle, leading to long plateaus for the
training error. The training time is therefore asymptotically infinite (see Figure 9.4.1c).

3. The rate of change ‖Θ(θT)−Θ(θ0)‖ (where T ∈ R is the stopping time) of the NTK is
infinitely larger than the NTK at initialization ‖Θ(θ0)‖. This follows from the fact that the
NTK at initialization goes to zero, while it has finite size at the end of training.

4. The learned matrix is the result of a greedy algorithm that finds the lowest rank solution.

The Mean-Field regime γ = 1 lies at the transition between the two previous regimes and is
more difficult to characterize:

1. In this critical regime, the constant factor c in the variance at initialization σ2 = cw−γ can
have a strong effect on the dynamics.

2. Plateaus can still be observed (see Figure 9.4.1b), however in contrast to the Saddle-to-Saddle
regime, the length of the plateaus does not increase as the width grows, but remains roughly
constant.

3. The NTK and its rate of change are of same order.

In general, we observe some tradeoff: the NTK regime leads to fast convergence without low-
rank bias, while the Saddle-to-Saddle regime leads to some low-rank bias, but at the cost of an
asymptotically infinite training time.

9.7. CONCLUSION 163

9.7 Conclusion

We propose a simple criterion to identify three regimes in the training of large DLNs: the distances
from the initialization to the nearest global minimum and to the nearest saddle. The NTK regime
(1 − 1

L ≤ γ < 1) is characterized by an initialization which is close to a global minimum and far
from any saddle, the Saddle-to-Saddle regime (γ > 1) is characterized by an initialization which
is close to a saddle and (comparatively) far from any global minimum and, finally, in the critical
Mean-Field regime (γ = 1), these two distances are of the same order as the width grows.

While the NTK and Mean-Field limits are well-studied, the Saddle-to-Saddle regime is less
understood. We therefore investigate the case γ = +∞ (i.e. we fix the width and let the variance
at initialization go to zero). In this limit, the initialization converges towards the saddle at the
origin ϑ0 = 0. We show that gradient flow naturally escapes this saddle along an ‘optimal escape
path’ along which the network behaves as a width-1 network. This leads the gradient flow to
subsequently visit a second saddle ϑ1 which has the property that the matrix Aϑ1 has rank 1. We
conjecture that the gradient flow next visits a sequence of critical points ϑ2, . . . , ϑK of increasing
rank, implementing some form of greedy low-rank algorithm. These saddles explain the plateaus in
the loss curve which are characteristic of the Saddle-to-Saddle regime.

Similar plateaus can be observed in non-linear networks: this suggests that the regimes and
dynamics described in this paper could be generalized to non-linear networks.

Appendix A

General Appendix

A.1 Simple Bound on the Variance of the Random Feature Predictor

In this Appendix we prove the bound on the variance Var
(
f̂RFλ,P (x)

)
of the Random Feature pre-

dictor f̂RFλ,P (x).

Lemma A.1. We have

Var
(
f̂RFλ,P (x)

)
≤ ‖Y ‖2

N2λ2P

[∥∥K(x,X)K(X,X)−1
∥∥2
(
‖K(X,X)‖2F + (TrK(X,X))

2
)

+ TrK(X,X)K(x, x)
]
.

Proof. We know that

Var
(
f̂RFλ,P (x)

)
= Var

(
K(x,X)K(X,X)−1K̃(X,X)

(
K̃(X,X) +NλIN

)−1

Y

)

+
E
[
‖θ‖2

]
P

(
K(x, x)−K(x,X)K(X,X)−1K(X,x)

)
.

The first term Var

(
K(x,X)K(X,X)−1K̃(X,X)

(
K̃(X,X) +NλIN

)−1

Y

)
can bounded by

∥∥K(x,X)K(X,X)−1
∥∥2 E

[∥∥∥∥K̃(X,X)
(
K̃(X,X) +NλIN

)−1

Y −K(X,X) (K(X,X) +NλIN)
−1
Y

∥∥∥∥2
]
.

Since K̃(X,X)
(
K̃(X,X) +NλI

)−1

= IN −Nλ
(
K̃(X,X) +NλI

)−1

we can bound the expecta-
tion in the above by

N2λ2E

[∥∥∥∥[(K̃(X,X) +NλIN

)−1

− (K(X,X) +NλIN)
−1

]
Y

∥∥∥∥2
]
.

Since (A+NλIN)
−1 − (B +NλIN)

−1
= (A+NλIN)

−1
(B − A) (B +NλIN)

−1 for any matrices
A,B, we get the bound

E
[∥∥∥K(X,X)− K̃(X,X)

∥∥∥2

F

]
‖Y ‖2

λ2
=
‖K(X,X)‖2F + (TrK(X,X))

2

P

‖Y ‖2

N2λ2
.

165

166 APPENDIX A. GENERAL APPENDIX

In the second term
E[‖θ‖2]
P

(
K(x, x)−K(x,X)K(X,X)−1K(X,x)

)
, we only need to compute

the expected parameter norm E
[
‖θ‖2

]
. We have

E
[
‖θ‖2

]
= Y TE

[
K̃(X,X)

(
K̃(X,X) +NλIN

)−2
]
Y

≤
E
[∥∥∥K̃∥∥∥

op

]
N2λ2

‖Y ‖2

and the operator norm
∥∥∥K̃∥∥∥

op
is bounded by the trace TrK̃(X,X) with mean TrK(X,X). Putting

it all together, we obtain

Var
(
f̂RFλ,P (x)

)
≤ ‖Y ‖2

N2λ2P

[∥∥K(x,X)K(X,X)−1
∥∥2
(
‖K(X,X)‖2F + (TrK(X,X))

2
)

+ TrK(X,X)K(x, x)
]
,

where we used the fact that K(x,X)K(X,X)−1K(X,x) ≥ 0.

Appendix B

Neural Tangent Kernel: Convergence and
Generalization in Neural Networks

B.1 Appendix

This appendix is dedicated to proving the key results of this paper, namely Proposition B.1 and
Theorems B.1 and B.2, which describe the asymptotics of neural networks at initialization and
during training.

We study the limit of the NTK as n1, ..., nL−1 →∞ sequentially, i.e. we first take n1 →∞, then
n2 →∞, etc. This leads to much simpler proofs, but our results could in principle be strengthened
to the more general setting when min(n1, ..., nL−1)→∞.

A natural choice of convergence to study the NTK is with respect to the operator norm on
kernels:

‖K‖op = max
‖f‖pin≤1

‖f‖K = max
‖f‖pin≤1

√
Ex,x′ [f(x)TK(x, x′)f(x′)],

where the expectation is taken over two independent x, x′ ∼ pin. This norm depends on the input
distribution pin. In our setting, pin is taken to be the empirical measure of a finite dataset of
distinct samples x1, ..., xN . As a result, the operator norm of K is equal to the leading eigenvalue of
the NnL ×NnL Gram matrix (Kkk′(xi, xj))k,k′<nL,i,j<N . In our setting, convergence in operator
norm is hence equivalent to pointwise convergence of K on the dataset.

Asymptotics at Initialization

It has already been observed [159, 126] that the output functions fθ,i for i = 1, ..., nL tend to iid
Gaussian processes in the infinite-width limit.

Proposition B.1. For a network of depth L at initialization, with a Lipschitz nonlinearity σ, and
in the limit as n1, ..., nL−1 → ∞ sequentially, the output functions fθ,k, for k = 1, ..., nL, tend (in
law) to iid centered Gaussian processes of covariance Σ(L), where Σ(L) is defined recursively by:

Σ(1)(x, x′) =
1

n0
xTx′ + β2

Σ(L+1)(x, x′) = Ef [σ(f(x))σ(f(x′))] + β2,

167

168
APPENDIX B. NEURAL TANGENT KERNEL: CONVERGENCE AND GENERALIZATION

IN NEURAL NETWORKS

taking the expectation with respect to a centered Gaussian process f of covariance Σ(L).

Proof. We prove the result by induction. When L = 1, there are no hidden layers and fθ is a
random affine function of the form:

fθ(x) =
1
√
n0
W (0)x+ βb(0).

All output functions fθ,k are hence independent and have covariance Σ(1) as needed.
The key to the induction step is to consider an (L+1)-network as the following composition: an

L-network Rn0 → RnL mapping the input to the pre-activations α̃(L)
i , followed by an elementwise

application of the nonlinearity σ and then a random affine map RnL → RnL+1 . The induction
hypothesis gives that in the limit as sequentially n1, ..., nL−1 →∞ the preactivations α̃(L)

i tend to
iid Gaussian processes with covariance Σ(L). The outputs

fθ,i =
1
√
nL

W
(L)
i α(L) + βb

(L)
i

conditioned on the values of α(L) are iid centered Gaussians with covariance

Σ̃(L+1)(x, x′) =
1

nL
α(L)(x; θ)Tα(L)(x′; θ) + β2.

By the law of large numbers, as nL →∞, this covariance tends in probability to the expectation

Σ̃(L+1)(x, x′)→ Σ(L+1)(x, x′) = Ef∼N (0,Σ(L))[σ(f(x))σ(f(x′))] + β2.

In particular the covariance is deterministic and hence independent of α(L). As a consequence, the
conditioned and unconditioned distributions of fθ,i are equal in the limit: they are iid centered
Gaussian of covariance Σ(L+1).

In the infinite-width limit, the neural tangent kernel, which is random at initialization, converges
in probability to a deterministic limit.

Theorem B.1. For a network of depth L at initialization, with a Lipschitz nonlinearity σ, and in
the limit as the layers width n1, ..., nL−1 →∞ sequentially, the NTK Θ(L) converges in probability
to a deterministic limiting kernel:

Θ(L) → Θ(L)
∞ ⊗ IdnL .

The scalar kernel Θ
(L)
∞ : Rn0 × Rn0 → R is defined recursively by

Θ(1)
∞ (x, x′) = Σ(1)(x, x′)

Θ(L+1)
∞ (x, x′) = Θ(L)

∞ (x, x′)Σ̇(L+1)(x, x′) + Σ(L+1)(x, x′),

where
Σ̇(L+1) (x, x′) = Ef∼N(0,Σ(L)) [σ̇ (f (x)) σ̇ (f (x′))] ,

taking the expectation with respect to a centered Gaussian process f of covariance Σ(L), and where
σ̇ denotes the derivative of σ.

B.1. APPENDIX 169

Proof. The proof is again by induction. When L = 1, there is no hidden layer and therefore no
limit to be taken. The neural tangent kernel is a sum over the entries of W (0) and those of b(0):

Θkk′(x, x
′) =

1

n0

n0∑
i=1

n1∑
j=1

xix
′
iδjkδjk′ + β2

n1∑
j=1

δjkδjk′

=
1

n0
xTx′δkk′ + β2δkk′ = Σ(1)(x, x′)δkk′ .

Here again, the key to prove the induction step is the observation that a network of depth L+ 1
is an L-network mapping the inputs x to the preactivations of the L-th layer α̃(L)(x) followed by a
nonlinearity and a random affine function. For a network of depth L+ 1, let us therefore split the
parameters into the parameters θ̃ of the first L layers and those of the last layer (W (L), b(L)).

By Proposition B.1 and the induction hypothesis, as n1, ..., nL−1 →∞ the pre-activations α̃(L)
i

are iid centered Gaussian with covariance Σ(L) and the neural tangent kernel Θ
(L)
ii′ (x, x′) of the

smaller network converges to a deterministic limit:(
∂θ̃α̃

(L)
i (x; θ)

)T
∂θ̃α̃

(L)
i′ (x′; θ)→ Θ(L)

∞ (x, x′)δii′ .

We can split the neural tangent network into a sum over the parameters θ̃ of the first L layers
and the remaining parameters W (L) and b(L).

For the first sum let us observe that by the chain rule:

∂θ̃pfθ,k(x) =
1
√
nL

nL∑
i=1

∂θ̃p α̃
(L)
i (x; θ)σ̇(α̃

(L)
i (x; θ))W

(L)
ik .

By the induction hypothesis, the contribution of the parameters θ̃ to the neural tangent kernel
Θ

(L+1)
kk′ (x, x′) therefore converges as n1, ..., nL−1 →∞:

1

nL

nL∑
i,i′=1

Θ
(L)
ii′ (x, x′)σ̇

(
α̃

(L)
i (x; θ)

)
σ̇
(
α̃

(L)
i′ (x′; θ)

)
W

(L)
ik W

(L)
i′k′

→ 1

nL

nL∑
i=1

Θ(L)
∞ (x, x′)σ̇

(
α̃

(L)
i (x; θ)

)
σ̇
(
α̃

(L)
i (x′; θ)

)
W

(L)
ik W

(L)
ik′

By the law of large numbers, as nL →∞, this tends to its expectation which is equal to

Θ(L)
∞ (x, x′)Σ̇(L+1)(x, x′)δkk′ .

It is then easy to see that the second part of the neural tangent kernel, the sum over W (L) and b(L)

converges to Σ(L+1)δkk′ as n1, ..., nL →∞.

Asymptotics during Training

Given a training direction t 7→ dt ∈ F , a neural network is trained in the following manner: the
parameters θp are initialized as iid N (0, 1) and follow the differential equation:

∂tθp(t) =
〈
∂θpF

(L), dt

〉
pin

.

In this context, in the infinite-width limit, the NTK stays constant during training:

170
APPENDIX B. NEURAL TANGENT KERNEL: CONVERGENCE AND GENERALIZATION

IN NEURAL NETWORKS

Theorem B.2. Assume that σ is a Lipschitz, twice differentiable nonlinearity function, with
bounded second derivative. For any T such that the integral

∫ T
0
‖dt‖pindt stays stochastically

bounded, as n1, ..., nL−1 →∞ sequentially, we have, uniformly for t ∈ [0, T],

Θ(L)(t)→ Θ(L)
∞ ⊗ IdnL .

As a consequence, in this limit, the dynamics of fθ is described by the differential equation

∂tfθ(t) = Φ
Θ

(L)
∞ ⊗IdnL

(
〈dt, ·〉pin

)
.

Proof. As in the previous theorem, the proof is by induction on the depth of the network. When
L = 1, the neural tangent kernel does not depend on the parameters, it is therefore constant during
training.

For the induction step, we again split an L+1 network into a network of depth L with parameters
θ̃ and top layer connection weights W (L) and bias b(L). The smaller network follows the training
direction

d′t = σ̇
(
α̃(L)(t)

)(1
√
nL

W (L)(t)

)T
dt

for i = 1, . . . , nL, where the function α̃
(L)
i (t) is defined as α̃(L)

i (·; θ(t)). We now want to apply
the induction hypothesis to the smaller network. For this, we need to show that

∫ T
0
‖d′t‖pindt is

stochastically bounded as n1, . . . , nL →∞. Since σ is a c-Lipschitz function, we have that

‖d′t‖pin ≤ c‖
1
√
nL

W (L)(t)‖op‖dt‖pin .

To apply the induction hypothesis, we now need to bound ‖ 1√
nL
W (L)(t)‖op. For this, we use the

following lemma, which is proven in Appendix B.1 below:

Lemma B.1. With the setting of Theorem B.2, for a network of depth L+ 1, for any ` = 1, . . . , L,
we have the convergence in probability:

lim
nL→∞

· · · lim
n1→∞

sup
t∈[0,T]

‖ 1
√
n`

(
W (`)(t)−W (`)(0)

)
‖op = 0

From this lemma, to bound ‖ 1√
nL
W (L)(t)‖op, it is hence enough to bound ‖ 1√

nL
W (L)(0)‖op.

From the law of large numbers, we obtain that the norm of each of the nL+1 rows of W (L)(0)
is bounded, and hence that ‖ 1√

nL
W (L)(0)‖op is bounded (keep in mind that nL+1 is fixed, while

n1, . . . , nL grow).
From the above considerations, we can apply the induction hypothesis to the smaller network,

yielding, in the limit as n1, . . . , nL → ∞ (sequentially), that the dynamics is governed by the
constant kernel Θ

(L)
∞ :

∂tα̃
(L)
i (t) =

1
√
nL

Φ
Θ

(L)
∞

(〈
σ̇
(
α̃

(L)
i (t)

)(
W

(L)
i (t)

)T
dt, ·

〉
pin

)
.

At the same time, the parameters of the last layer evolve according to

∂tW
(L)
ij (t) =

1
√
nL

〈
α

(L)
i (t), dt,j

〉
pin

.

B.1. APPENDIX 171

We want to give an upper bound on the variation of the weights columns W (L)
i (t) and of the

activations α̃(L)
i (t) during training in terms of L2-norm and pin-norm respectively. Applying the

Cauchy-Schwarz inequality for each j, summing and using ∂t|| · || ≤ ||∂t · ||), we have

∂t

∥∥∥W (L)
i (t)−W (L)

i (0)
∥∥∥

2
≤ 1
√
nL
||α(L)

i (t)||pin ||dt||pin .

Now, observing that the operator norm of Φ
Θ

(L)
∞

is equal to ||Θ(L)
∞ ||op, defined in the introduction

of Appendix H.3, and using the Cauchy-Schwarz inequality, we get

∂t

∥∥∥α̃(L)
i (t)− α̃(L)

i (0)
∥∥∥
pin
≤ 1
√
nL

∥∥∥Θ(L)
∞

∥∥∥
op

∥∥∥σ̇ (α̃(L)
i (t)

)∥∥∥
∞

∥∥∥W (L)
i (t)

∥∥∥
2
‖dt‖pin ,

where the sup norm ‖·‖∞ is defined by ‖f‖∞ = supx |f(x)|.
To bound both quantities simultaneously, study the derivative of the quantity

A(t) = ||α(L)
i (0)||pin + c

∥∥∥α̃(L)
i (t)− α̃(L)

i (0)
∥∥∥
pin

+ ||W (L)
i (0)||2 +

∥∥∥W (L)
i (t)−W (L)

i (0)
∥∥∥

2
.

We have

∂tA(t) ≤ 1
√
nL

(
c2
∥∥∥Θ(L)
∞

∥∥∥
op

∥∥∥W (L)
i (t)

∥∥∥
2

+ ||α(L)
i (t)||pin

)
||dt||pin

≤ max{c2‖Θ(L)
∞ ‖op, 1}√
nL

‖dt‖pinA(t),

where, in the first inequality, we have used that |σ̇| ≤ c and, in the second inequality, that the sum
‖W (L)

i (t)‖2 + ||α(L)
i (t)||pin is bounded by A(t). Applying Grönwall’s Lemma, we now get

A(t) ≤ A(0) exp

(
max{c2‖Θ(L)

∞ ‖op, 1}√
nL

∫ t

0

‖ds‖pinds

)
.

Note that ‖Θ(L)
∞ ‖op is constant during training. Clearly the value inside of the exponential converges

to zero in probability as nL →∞ given that the integral
∫ t

0
‖dt‖pinds stays stochastically bounded.

The variations of the activations
∥∥∥α̃(L)

i (t)− α̃(L)
i (0)

∥∥∥
pin

and weights
∥∥∥W (L)

i (t)−W (L)
i (0)

∥∥∥
2
are

bounded by c−1(A(t)−A(0)) and A(t)−A(0) respectively, which converge to zero at rate O
(

1√
nL

)
.

We can now use these bounds to control the variation of the NTK and to prove the theorem.
To understand how the NTK evolves, we study the evolution of the derivatives with respect to
the parameters. The derivatives with respect to the bias parameters of the top layer ∂

b
(L)
j
fθ,j′ are

always equal to δjj′ . The derivatives with respect to the connection weights of the top layer are
given by

∂
W

(L)
ij
fθ,j′(x) =

1
√
nL

α
(L)
i (x; θ)δjj′ .

The pre-activations α̃(L)
i evolve at a rate of 1√

nL
and so do the activations α(L)

i . The summands

∂
W

(L)
ij
fθ,j′(x)⊗ ∂

W
(L)
ij
fθ,j′′(x

′) of the NTK hence vary at rate of n−3/2
L which induces a variation of

the NTK of rate 1√
nL

.

172
APPENDIX B. NEURAL TANGENT KERNEL: CONVERGENCE AND GENERALIZATION

IN NEURAL NETWORKS

Finally let us study the derivatives with respect to the parameters of the lower layers

∂θ̃kfθ,j(x) =
1
√
nL

nL∑
i=1

∂θ̃k α̃
(L)
i (x; θ)σ̇

(
α̃

(L)
i (x; θ)

)
W

(L)
ij .

Their contribution to the NTK Θ
(L+1)
jj′ (x, x′) is

1

nL

nL∑
i,i′=1

Θ
(L)
ii′ (x, x′)σ̇

(
α̃

(L)
i (x; θ)

)
σ̇
(
α̃

(L)
i′ (x′; θ)

)
W

(L)
ij W

(L)
i′j′ .

By the induction hypothesis, the NTK of the smaller network Θ(L) tends to Θ
(L)
∞ δii′ as n1, ..., nL−1 →

∞. The contribution therefore becomes

1

nL

nL∑
i=1

Θ(L)
∞ (x, x′)σ̇

(
α̃

(L)
i (x; θ)

)
σ̇
(
α̃

(L)
i (x′; θ)

)
W

(L)
ij W

(L)
ij′ .

The connection weights W (L)
ij vary at rate 1√

nL
, inducing a change of the same rate to the whole

sum. We simply have to prove that the values σ̇(α̃
(L)
i (x; θ)) also change at rate 1√

nL
. Since the

second derivative of σ is bounded, we have that

∂t

(
σ̇
(
α̃

(L)
i (x; θ(t))

))
= O

(
∂tα̃

(L)
i (x; θ(t))

)
.

Since ∂tα̃
(L)
i (x; θ(t)) goes to zero at a rate 1√

nL
by the bound on A(t) above, this concludes the

proof.

It is somewhat counterintuitive that the variation of the activations of the hidden layers α(`)
i

during training goes to zero as the width becomes large1. It is generally assumed that the purpose
of the activations of the hidden layers is to learn “good” representations of the data during training.
However note that even though the variation of each individual activation shrinks, the number
of neurons grows, resulting in a significant collective effect. This explains why the training of
the parameters of each layer ` has an influence on the network function fθ even though it has
asymptotically no influence on the individual activations of the layers `′ for ` < `′ < L.

A Priori Control during Training

The goal of this section is to prove Lemma B.2, which is a key ingredient in the proof of Theorem
B.2. Let us first recall it:

Lemma B.2. With the setting of Theorem B.2, for a network of depth L+ 1, for any ` = 1, . . . , L,
we have the convergence in probability:

lim
nL→∞

· · · lim
n1→∞

sup
t∈[0,T]

‖ 1
√
n`

(
W (`)(t)−W (`)(0)

)
‖op = 0

1As a consequence, the pre-activations stay Gaussian during training as well, with the same covariance Σ(`).

B.1. APPENDIX 173

Proof. We prove the lemma for all ` = 1, . . . , L simultaneously, by expressing the variation of
the weights 1√

n`
W (`) and activations 1√

n`
α̃(`) in terms of ‘back-propagated’ training directions

d(1), . . . , d(L) associated with the lower layers and the NTKs of the corresponding subnetworks:

1. At all times, the evolution of the preactivations and weights is given by:

∂tα̃
(`) = ΦΘ(`)

(
< d

(`)
t , · >pin

)
∂tW

(`) =
1
√
n`

< α(`), d
(`+1)
t >pin ,

where the layer-wise training directions d(1), . . . , d(L) are defined recursively by

d
(`)
t =

dt if ` = L+ 1

σ̇
(
α̃(`)

) (
1√
n`
W (`)

)T
d

(`+1)
t if ` ≤ L,

and where the sub-network NTKs Θ(`) satisfy

Θ(1) =

[[
1
√
n0
α(0)

]T [
1
√
n0
α(0)

]]
⊗ Idn` + β2 ⊗ Idn`

Θ(`+1) =
1
√
n`
W (`)σ̇(α̃(`))Θ(`)σ̇(α̃(`))

1
√
n`
W (`)

+

[[
1
√
n`
α(`)

]T [
1
√
n`
α(`)

]]
⊗ Idn` + β2 ⊗ Idn` .

2. Set w(k)(t) :=
∥∥∥ 1√

nk
W (k)(t)

∥∥∥
op

and a(k) (t) :=
∥∥∥ 1√

nk
α(k) (t)

∥∥∥
pin

. The identities of the previous

step yield the following recursive bounds:∥∥∥d(`)
t

∥∥∥
pin
≤ cw(`)(t)

∥∥∥d(`+1)
t

∥∥∥
pin

,

where c is the Lipschitz constant of σ. These bounds lead to

∥∥∥d(`)
t

∥∥∥
pin
≤ cL+1−`

L∏
k=`

w(k)(t) ‖dt‖pin .

For the subnetworks NTKs we have the recursive bounds

‖Θ(1)‖op ≤ (a(0)(t))2 + β2.

‖Θ(`+1)‖op ≤ c2(w(`)(t))2‖Θ(`)‖op + (a(`)(t))2 + β2,

which lead to
‖Θ(`+1)‖op ≤ P

(
a(1), . . . , a(`), w(1), . . . , w(`)

)
,

where P is a polynomial which only depends on `, c, β and pin.

174
APPENDIX B. NEURAL TANGENT KERNEL: CONVERGENCE AND GENERALIZATION

IN NEURAL NETWORKS

3. Set

ã(k) (t) :=

∥∥∥∥ 1
√
nk

(
α̃(k) (t)− α̃(k) (0)

)∥∥∥∥
pin

w̃(k) (t) :=

∥∥∥∥ 1
√
nk

(
W (k) (t)−W (k) (0)

)∥∥∥∥
op

and define

A (t) =

L∑
k=1

a(k) (0) + cã(k) (t) + w(k) (0) + w̃(k) (t) .

Since a(k) (t) ≤ a(k) (0)+cã(k) (t) and w(k) (t) ≤ w(k) (0)+w̃(k) (t), controlling A (t) will enable
us to control the a(k) (t) and w(k) (t). Using the formula at the beginning of the first step, we
obtain

∂tã
(`) (t) ≤ 1

√
n`
‖Θ(`)(t)‖op‖d(`)

t ‖pin

∂tw̃
(`) (t) ≤ 1

√
n`
a(`) (t) ‖d(`+1)

t ‖pin .

This allows one to bound the derivative of A (t) as follows:

∂tA (t) ≤
L∑
`=1

c
√
n`
‖Θ(`)(t)‖op‖d(`)

t ‖pin +
1
√
n`
a(`) (t) ‖d(`+1)

t ‖pin .

Using the polynomial bounds on ‖Θ(`)(t)‖op and ‖d(`+1)
t ‖pin in terms of the a(k) and w(k) for

k = 1, . . . ` obtained in the previous step, we get that

∂tA (t) ≤ 1√
min {n1, . . . , nL}

Q
(
w(1) (t) , . . . , w(L) (t) , a(1) (t) , . . . , a(L) (t)

)
‖dt‖pin ,

where the polynomial Q only depends on L, c, β and pin and has positive coefficients. As a
result, we can use a(k) (t) ≤ a(k) (0) + cã(k) (t) and w(k) (t) ≤ w(k) (0) + w̃(k) (t) to get the
polynomial bound

∂tA (t) ≤ 1√
min {n1, . . . , nL}

Q̃ (A (t)) ‖dt‖pin .

4. Let us now observe that A (0) is stochastically bounded as we take the sequential limit
limnL→∞ · · · limn1→∞ as in the statement of the lemma. In this limit, we indeed have that
w(`)and a(`) are convergent: we have w(`) → 0, while a(`) converges by Proposition B.1.
The polynomial control we obtained on the derivative of A (t) now allows one to use (a
nonlinear form of, see e.g. [49]) GrÃ¶nwall’s Lemma: we obtain that A (t) stays uniformly
bounded on [0, τ] for some τ = τ (n1, . . . , nL) > 0, and that τ → T as min (n1, . . . , nL)→∞,
owing to the 1√

min{1,...,nL}
in front of the polynomial. Since A (t) is bounded, the differential

bound on A (t) gives that the derivative ∂tA (t) converges uniformly to 0 on [0, τ] for any
τ < T , and hence A (t)→ A (0). This concludes the proof of the lemma.

B.1. APPENDIX 175

Positive-Definiteness of Θ
(L)
∞

This subsection is devoted to the proof of Proposition B.2, which we now recall:

Proposition B.2. For a non-polynomial Lipschitz nonlinearity σ, for any input dimension n0,
the restriction of the limiting NTK Θ

(L)
∞ to the unit sphere Sn0−1 = {x ∈ Rn0 : xTx = 1} is

positive-definite if L ≥ 2.

A key ingredient for the proof of Proposition B.2 is the following Lemma, which comes from
[42].

Lemma B.3 (Lemma 12(a) in suppl. mat. of [42]). Let µ̂ : [−1, 1] → R denote the dual of a
Lipschitz function µ : R → R, defined by µ̂ (ρ) = E(X,Y) [µ (X)µ (Y)] where (X,Y) is a centered
Gaussian vector of covariance Σ, with

Σ =

(
1 ρ
ρ 1

)
.

If the expansion of µ in Hermite polynomials (hi)i≥0 is given by µ =
∑∞
i=0 aihi, we have

µ̂ (ρ) =

∞∑
i=0

a2
i ρ
i.

The other key ingredient for proving Proposition B.2 is the following theorem, which is a slight
reformulation of Theorem 1(b) in [77], which itself is a generalization of a classical result of Schön-
berg:

Theorem B.3. For a function f : [−1, 1] → R with f (ρ) =
∑∞
n=0 bnρ

n, the kernel K(n0)
f :

Sn0−1 × Sn0−1 → R defined by
K

(n0)
f (x, x′) = f

(
xTx′

)
is positive-definite for any n0 ≥ 1 if and only if the coefficients bn are strictly positive for infinitely
many even and infinitely many odd integers n.

With Lemma B.3 and Theorem B.3 above, we are now ready to prove Proposition B.2.

Proof of Proposition B.2. We first decompose the limiting NTK Θ(L) recursively, relate its positive-
definiteness to that of the activation kernels, then show that the positive-definiteness of the activa-
tion kernels at level 2 implies that of the higher levels, and finally show the positive-definiteness at
level 2 using Lemma B.3 and Theorem B.3:

1. Observe that for any L ≥ 1, using the notation of Theorem 2.1, we have

Θ(L+1) = Σ̇(L)Θ(L) + Σ(L+1).

Note that the kernel Σ̇(L)Θ(L) is positive semi-definite, being the product of two positive
semi-definite kernels. Hence, if we show that Σ(L+1) is positive-definite, this implies that
Θ(L+1) is positive-definite.

176
APPENDIX B. NEURAL TANGENT KERNEL: CONVERGENCE AND GENERALIZATION

IN NEURAL NETWORKS

2. By definition, with the notation of Proposition B.1 we have

Σ(L+1) (x, x′) = Ef∼N(0,Σ(L)) [σ (f (x))σ (f (x′))] + β2.

This gives, for any collection of coefficients c1, . . . , cd ∈ R and any pairwise distinct x1, . . . , xd ∈
Rn0 , that

d∑
i,j=1

cicjΣ
(L+1) (xi, xj) = E

(∑
i

ciσ (f (xi))

)2
+

(
β
∑
i

ci

)2

.

Hence the left-hand side only vanishes if
∑
ciσ (f (xi)) is almost surely zero. If Σ(L) is

positive-definite, the Gaussian (f (xi))i=1,...d is non-degenerate, so this only occurs when
c1 = · · · = cd = 0 since σ is assumed to be non-constant. This shows that the positive-
definiteness of Σ(L+1) is implied by that of Σ(L). By induction, if Σ(2) is positive-definite,
we obtain that all Σ(L) with L ≥ 2 are positive-definite as well. By the first step this hence
implies that Θ(L) is positive-definite as well.

3. By the previous steps, to prove the proposition, it suffices to show the positive-definitess of
Σ(2) on the unit sphere Sn0−1. We have

Σ(2) (x, x′) = E(X,Y)∼N(0,Σ̃) [σ (X)σ (Y)] + β2

where

Σ̃ =

(1
n0

+ β2 1
n0
xTx′ + β2

1
n0
xTx+ β2 1

n0
+ β2

)
.

A change of variables then yields

E(X,Y)∼N(0,Σ̃) [σ (X)σ (Y)] + β2 = µ̂

(
n0β

2 + xTx′

n0β2 + 1

)
+ β2, (B.1.1)

where µ̂ : [−1, 1]→ R is the dual in the sense of Lemma B.3 of the function µ : R→ R defined
by µ (x) = σ

(
x
√

1
n0

+ β2
)
.

4. Writing the expansion of µ in Hermite polynomials (hi)i≥0

µ =

∞∑
i=0

aihi,

we obtain that µ̂ is given by the power series

µ̂ (ρ) =

∞∑
i=0

a2
i ρ
i,

Since σ is non-polynomial, so is µ, and as a result, there is an infinite number of nonzero ai’s
in the above sum.

B.1. APPENDIX 177

5. Using (B.1.1) above, we obtain that

Σ(2) (x, x′) = ν
(
xTx′

)
,

where ν : R→ R is defined by

ν (ρ) = β2 +

∞∑
i=0

ai

(
n0β

2 + ρ

n0β2 + 1

)i
,

where the ai’s are the coefficients of the Hermite expansion of µ. Now, observe that by the
previous step, the power series expansion of ν contains both an infinite number of nonzero
even terms and an infinite number of nonzero odd terms. This enables one to apply Theorem
B.3 to obtain that Σ(2) is indeed positive-definite, thereby concluding the proof.

Remark B.1. Using similar techniques to the one applied in the proof above, one can show a
converse to Proposition B.2: if the nonlinearity σ is a polynomial, the corresponding NTK Θ(2) is
not positive-definite Sn0−1 for certain input dimensions n0.

Appendix C

The Asymptotic Spectrum of the Hessian of
DNN Throughout Training

C.1 Proofs

For the proofs of the theorems and propositions presented in the main text, we reformulate the
setup of [105]. For a fixed training set x1, ..., xN , we consider a (possibly random) time-varying
training direction D(t) ∈ RNnL which describes how each of the outputs must be modified. In the
case of gradient descent on a cost C(Y), the training direction is D(t) = ∇C(Y (t)). The parameters
are updated according to the differential equation

∂tθ(t) = (∂θY (t))
T
D(t).

Under the condition that
∫ T

0
‖D(t)‖2 dt is stochastically bounded as the width of the network goes

to infinity, the NTK Θ(L) converges to its fixed limit uniformly over [0, T].
The reason we consider a general training direction (and not only a gradient of a loss) is that

we can split a network in two at a layer ` and the training of the smaller network will be according
to the training direction D(`)

i (t) given by

D
(`)
i (t) = diag

(
σ̇
(
α(`)(xi)

))(1
√
n`
W (`)

)T
...diag

(
σ̇
(
α(L−1)(xi)

))(1
√
nL−1

W (L−1)

)T
Di(t)

because the derivatives σ̇ are bounded and by Lemma 1 of the Appendix of [105], this training
direction satisfies the constraints even though it is not the gradient of a loss. As a consequence, as
n1 → ∞, ..., n`−1 → ∞ the NTK of the smaller network Θ(`) also converges to its limit uniformly
over [0, T]. As we let n` → ∞ the pre-activations α̃(`)

i and weights W (`)
ij move at a rate of 1/√n`.

We will use this rate of change to prove that other types of kernels are constant during training.
When a network is trained with gradient descent on a loss C with BGOSS, the integral

∫ T
0
‖D(t)‖2 dt

is stochastically bounded. Because the loss is decreasing during training, the outputs Y (t) lie in
the sublevel set UC(Y (0)) for all times t. The norm of the gradient is hence bounded for all times t.
Because the distribution of Y (0) converges to a multivariate Gaussian, b(C(Y (0))) is stochastically
bounded as the width grows, where b(a) is a bound on the norm of the gradient on Ua. We then
have the bound

∫ T
0
‖D(t)‖2 dt ≤ Tb(C(Y (0))) which is itself stochastically bounded.

For the binary and softmax cross-entropy losses the gradient is uniformly bounded:

179

180
APPENDIX C. THE ASYMPTOTIC SPECTRUM OF THE HESSIAN OF DNN

THROUGHOUT TRAINING

Proposition C.1. For the binary cross-entropy loss C and any Y ∈ RN , ‖∇C(Y)‖2 ≤
1√
N
.

For the softmax cross-entropy loss C on c ∈ N classes and any Y ∈ RNc, ‖∇C(Y)‖2 ≤
√

2c√
N
.

Proof. The binary cross-entropy loss with labels Y ∗ ∈ {0, 1}N is

C(Y) = − 1

N

N∑
i=1

log
eYiY

∗
i

1 + eYi
=

1

N

N∑
i=1

log
(
1 + eYi

)
− YiY ∗i

and the gradient at an input i is

∂iC(Y) =
1

N

eYi − Y ∗i (1 + eYi)

1 + eYi

which is bounded in absolute value by 1
N for both Y ∗i = 0, 1 such that ‖∇C(Y)‖2 ≤

1√
N
.

The softmax cross-entropy loss over c classes with labels Y ∗ ∈ {1, . . . , c}N is defined by

C(Y) = − 1

N

N∑
i=1

log
e
YiY ∗

i∑c
k=1 e

Yik
=

1

N

N∑
i=1

log

(
c∑

k=1

eYik

)
− YiY ∗i .

The gradient is at an input i and output class m is

∂imC(Y) =
1

N

(
eYim∑c
k=1 e

Yik
− δY ∗i m

)
which is bounded in absolute value by 2

N such that ‖∇C(Y)‖2 ≤
√

2c√
N
.

C.2 Preliminaries

To study the moments of the matrix S, we first have to show that two tensors vanish as n1, ..., nL−1 →
∞:

Ω
(L)
k0,k1,k2

(x0, x1, x2) = (∇fθ,k0(x0))
T Hfθ,k1(x1)∇fθ,k2(x2)

Γ
(L)
k0,k1,k2,k3

(x0, x1, x2, x4) = (∇fθ,k0(x0))
T Hfθ,k1(x1)Hfθ,k2(x2)∇fθ,k3(x3).

We study these tensors recursively, for this, we need a recursive definition for the first derivatives
∂θpfθ,k(x) and second derivatives ∂2

θpθp′
fθ,k(x). The value of these derivatives depend on the layer

` the parameters θp and θp′ belong to, and on whether they are connection weights W (`)
mk or biases

b
(`)
k . The derivatives with respect to the parameters of the last layer are

∂
W

(L−1)
mk

fθ,k′(x) =
1

√
nL−1

α(L−1)
m (x)δkk′

∂
b
(L−1)
k

fθ,k′(x) = β2δkk′

for parameters θp which belong to the lower layers the derivatives can be defined recursively by

∂θpfθ,k(x) =
1

√
nL−1

nL−1∑
m=1

∂θp α̃
(L−1)
m (x)σ̇

(
α̃(L−1)
m (x)

)
W

(L−1)
mk .

C.2. PRELIMINARIES 181

For the second derivatives, we first note that if either of the parameters θp or θp′ are bias of
the last layer, or if they are both connection weights of the last layer, then ∂2

θpθp′
fθ,k(x) = 0. Two

cases are left: when one parameter is a connection weight of the last layer and the others belong to
the lower layers, and when both belong to the lower layers. Both cases can be defined recursively
in terms of the first and second derivatives of α̃(L−1)

m :

∂2

θpW
(L)
mk

fθ,k′(x) =
1

√
nL−1

∂θp α̃
(L−1)
m (x)σ̇

(
α̃(L−1)
m (x)

)
δkk′

∂2
θpθp′

fθ,k′(x) =
1

√
nL−1

nL−1∑
m=1

∂2
θpθp′

α̃(L−1)
m (x)σ̇

(
α̃(L−1)
m (x)

)
W

(L−1)
mk

+
1

√
nL−1

nL−1∑
m=1

∂θp α̃
(L−1)
m (x)∂θp′ α̃

(L−1)
m (x)σ̈

(
α̃(L−1)
m (x)

)
W

(L−1)
mk .

Using these recursive definitions, the tensors Ω(L+1) and Γ(L+1) are given in terms of Θ(L),Ω(L)

and Γ(L), in the same manner that the NTK Θ(L+1) is defined recursively in terms of Θ(L) in [105].

Lemma C.1. For any loss C with BGOSS and σ ∈ C4
b (R), we have uniformly over [0, T]

lim
nL−1→∞

· · · lim
n1→∞

Ω
(L)
k0,k1,k2

(x0, x1, x2) = 0

Proof. The proof is done by induction. When L = 1 the second derivatives ∂2
θpθp′

fθ,k(x) = 0 and

Ω
(L)
k0,k1,k2

(x0, x1, x2) = 0.

For the induction step, we write Ω
(`+1)
k0,k1,k2

(x0, x1, x2) recursively as

n
−3/2
`

∑
m0,m1,m2

Θ(`)
m0,m1

(x0, x1)Θ(`)
m1,m2

(x1, x2)σ̇(α̃(`)
m0

(x0))σ̈(α̃(`)
m1

(x1))σ̇(α̃(`)
m2

(x2))W
(`)
m0k0

W
(`)
m1k1

W
(`)
m2k2

+ n
−3/2
`

∑
m0,m1,m2

Ω(`)
m0,m1,m2

(x0, x1, x2)σ̇(α̃(`)
m0

(x0))σ̇(α̃(`)
m1

(x1))σ̇(α̃(`)
m2

(x2))W
(`)
m0k0

W
(`)
m1k1

W
(`)
m2k2

+ n
−3/2
`

∑
m0,m1

Θ(`)
m0,m1

(x0, x1)σ̇(α̃(`)
m0

(x0))σ̇(α̃(`)
m1

(x1))σ(α̃(`)
m1

(x2))W
(`)
m0k0

δk1k2

+ n
−3/2
`

∑
m1,m2

Θ(`)
m1,m2

(x1, x2)σ(α̃(`)
m1

(x0))σ̇(α̃(`)
m1

(x1))σ̇(α̃(`)
m2

(x2))δk0k1
W

(`)
m2k2

.

As n1, ..., n`−1 → ∞ and for any times t < T , the NTK Θ(`) converges to its limit while Ω(`)

vanishes. The second summand hence vanishes and the others converge to

n
−3/2
`

∑
m

Θ(`)
∞ (x0, x1)Θ(`)

∞ (x1, x2)σ̇(α̃(`)
m (x0))σ̈(α̃(`)

m (x1))σ̇(α̃(`)
m (x2))W

(`)
mk0

W
(`)
mk1

W
(`)
mk2

+ n
−3/2
`

∑
m

Θ(`)
∞ (x0, x1)σ̇(α̃(`)

m (x0))σ̇(α̃(`)
m (x1))σ(α̃(`)

m (x2))W
(`)
mk0

δk1k2

+ n
−3/2
`

∑
m

Θ(`)
∞ (x1, x2)σ(α̃(`)

m (x0))σ̇(α̃(`)
m (x1))σ̇(α̃(`)

m (x2))δk0k1W
(`)
mk2

.

182
APPENDIX C. THE ASYMPTOTIC SPECTRUM OF THE HESSIAN OF DNN

THROUGHOUT TRAINING

At initialization, all terms vanish as n` → ∞ because all summands are independent with zero
mean and finite variance: in the n1 → ∞, . . . , n`−1 → ∞ limit, the α̃(`)

m (x) are independent for
different m, see [105]. During training, the weights W (`) and preactivations α̃(`) move at a rate of
1/√n` (see the proof of convergence of the NTK in [105]). Since σ̇ is Lipschitz, we obtain that the
motion during training of each of the sums is of order n−

3/2+1/2
` = n−1

` . As a result, uniformly over
times t ∈ [0, T], all the sums vanish.

Similarily, we have

Lemma C.2. For any loss C with BGOSS and σ ∈ C4
b (R), we have uniformly over [0, T]

lim
nL−1→∞

· · · lim
n1→∞

Γ
(L)
k0,k1,k2,k3

(x0, x1, x2, x3) = 0

Proof. The proof is done by induction. When L = 1 the hessianHF (1) = 0, such that Γ
(L)
k0,k1,k2,k3

(x0, x1, x2, x3) =
0.

For the induction step, Γ(`+1) can be defined recursively:

Γ
(L+1)
k0,k1,k2,k3

(x0, x1, x2, x3)

= n−2
L

∑
m0,m1,m2,m3

Γ(L)
m0,m1,m2,m3

(x0, x1, x2, x3)σ̇(α(L)
m0

(x0))σ̇(α(L)
m1

(x1))σ̇(α(L)
m2

(x2))σ̇(α(L)
m3

(x3))

W
(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

Θ(L)
m0,m1

(x0, x1)Ω(L)
m1,m2,m3

(x1, x2, x3)σ̇(α(L)
m0

(x0))σ̈(α(L)
m1

(x1))

σ̇(α(L)
m2

(x2))σ̇(α(L)
m3

(x3))W
(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

Ω(L)
m0,m1,m2

(x0, x1, x2)Θ(L)
m2,m3

(x2, x3)σ̇(α(L)
m0

(x0))σ̇(α(L)
m1

(x1))

σ̈(α(L)
m2

(x2))σ̇(α(L)
m3

(x3))W
(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

Θ(L)
m0,m1

(x0, x1)Θ(L)
m1,m2

(x1, x2)Θ(L)
m2,m3

(x2, x3)σ̇(α(L)
m0

(x0))σ̈(α(L)
m1

(x1))

σ̈(α(L)
m2

(x2))σ̇(α(L)
m3

(x3))W
(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m1,m2,m3

Ω(L)
m1,m2,m3

(x1, x2, x3)σ(α(L)
m1

(x0))σ̇(α(L)
m1

(x1))σ̇(α(L)
m2

(x2))σ̇(α(L)
m3

(x3))

δk0k1
W

(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m1,m2,m3

Θ(L)
m1,m2

(x1, x2)Θ(L)
m2,m3

(x2, x3)σ(α(L)
m1

(x0))σ̇(α(L)
m1

(x1))σ̈(α(L)
m2

(x2))σ̇(α(L)
m3

(x3))

δk0k1
W

(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2

Ω(L)
m0,m1,m2

(x0, x1, x2)σ̇(α(L)
m0

(x0))σ̇(α(L)
m1

(x1))σ̇(α(L)
m2

(x2))σ(α(L)
m2

(x3))

W
(L)
m0k0

W
(L)
m1k1

δk2k3

C.3. THE MATRIX S 183

+n−2
L

∑
m0,m1,m2

Θ(L)
m0,m1

(x0, x1)Θ(L)
m1,m2

(x1, x2)σ̇(α(L)
m0

(x0))σ̈(α(L)
m1

(x1))σ̇(α(L)
m2

(x2))σ(α(L)
m2

(x3))

W
(L)
m0k0

W
(L)
m1k1

δk2k3

+ n−2
L

∑
m1,m2

Θ(L)
m1,m2

(x1, x2)σ(α(L)
m1

(x0))σ̇(α(L)
m1

(x1))σ̇(α(L)
m2

(x2))σ(α(L)
m2

(x3))δk0k1
δk2k3

+n−2
L

∑
m0,m1,m3

Θ(L)
m0,m1

(x0, x1)Θ(L)
m1,m3

(x2, x3)σ̇(α(L)
m0

(x0))σ̇(α(L)
m1

(x1))σ̇(α(L)
m1

(x2))σ̇(α(L)
m3

(x3))

W
(L)
m0k0

δk1k2W
(L)
m3k3

As n1, ..., n`−1 → ∞ and for any times t < T , the NTK Θ(`) converges to its limit while Ω(`) and
Γ(`) vanishes. Γ

(L+1)
k0,k1,k2,k3

(x0, x1, x2, x3) therefore converges to:

+n−2
L

∑
m

Θ(L)
∞ (x0, x1)Θ(L)

∞ (x1, x2)Θ(L)
∞ (x2, x3)σ̇(α(L)

m (x0))σ̈(α(L)
m (x1))σ̈(α(L)

m (x2))σ̇(α(L)
m (x3))

W
(L)
mk0

W
(L)
mk1

W
(L)
mk2

W
(L)
mk3

+n−2
L

∑
m

Θ(L)
∞ (x1, x2)Θ(L)

∞ (x2, x3)σ(α(L)
m (x0))σ̇(α(L)

m (x1))σ̈(α(L)
m (x2))σ̇(α(L)

m (x3))

δk0k1W
(L)
mk2

W
(L)
mk3

+n−2
L

∑
m

Θ(L)
∞ (x0, x1)Θ(L)

∞ (x1, x2)σ̇(α(L)
m (x0))σ̈(α(L)

m (x1))σ̇(α(L)
m (x2))σ(α(L)

m (x3))

W
(L)
mk0

W
(L)
mk1

δk2k3

+n−2
L

∑
m

Θ(L)
∞ (x1, x2)σ(α(L)

m (x0))σ̇(α(L)
m (x1))σ̇(α(L)

m (x2))σ(α(L)
m (x3))δk0k1δk2k3

+n−2
L

∑
m

Θ(L)
∞ (x0, x1)Θ(L)

∞ (x2, x3)σ̇(α(L)
m (x0))σ̇(α(L)

m (x1))σ̇(α(L)
m (x2))σ̇(α(L)

m (x3))

W
(L)
mk0

δk1k2W
(L)
mk3

For the convergence during training, we proceed similarily to the proof of Lemma C.1. At
initialization, all terms vanish as n` →∞ because all summands are independent (after taking the
n1, . . . , nL−1 → ∞ limit) with zero mean and finite variance. During training, the weights W (`)

and preactivations α̃(`) move at a rate of 1/√n` which leads to a change of order n−2+1/2
` = n−1.5

` ,
which vanishes for all times t too.

C.3 The Matrix S

We now have the theoretical tools to describe the moments of the matrix S. We first give a bound
for the rank of S:

Proposition C.2. Rank(S) ≤ 2(n1 + ...+ nL−1)NnL

184
APPENDIX C. THE ASYMPTOTIC SPECTRUM OF THE HESSIAN OF DNN

THROUGHOUT TRAINING

Proof. We first observe that S is given by a sum of NnL matrices:

Spp′ =

N∑
i=1

nL∑
k=1

∂ikC∂
2
θpθpfθ,k(xi).

It is therefore sufficiant to show that the rank of each matrices Hfθ,k(x) =
(
∂2
θpθp′

fθ,k(xi)
)
p,p′

is

bounded by 2(n1 + ...+ nL).
The derivatives ∂θpfθ,k(x) have different definition depending on whether the parameter θp is a

connection weight W (`)
ij or a bias b(`)j :

∂
W

(`)
ij
fθ,k(x) =

1
√
n`
α

(`)
i (x; θ)∂

α̃
(`+1)
j (x;θ)

fθ,k(x)

∂
b
(`)
j
fθ,k(x) = β∂

α̃
(`+1)
j (x;θ)

fθ,k(x)

These formulas only depend on θ through the values
(
α

(`)
i (x; θ)

)
`,i

and
(
∂
α̃

(`)
i (x;θ)

fθ,k(x)
)
`,i

for

` = 1, ..., L − 1 (note that both α
(0)
i (x) = xi and ∂

α̃
(L)
i (x;θ)

fθ,k(x) = δik do not depend on θ).

Together there are 2(n1 + ...+ nL−1) of them. As a consequence, the map θ 7→
(
∂θpfθ,k(xi)

)
p
can

be written as a composition

θ ∈ RP 7→
(
α

(`)
i (x; θ), ∂

α̃
(`)
i (x;θ)

fθ,k(x)
)
`,i
∈ R2(n1+...+nL−1) 7→

(
∂θpfθ,k(xi)

)
p
∈ RP

and the matrix Hfθ,k(x) is equal to the Jacobian of this map. By the chain rule, Hfθ,k(x) is the
matrix multiplication of the Jacobians of the two submaps, whose rank are bounded by 2(n1 + ...+
nL−1), hence bounding the rank of Hfθ,k(x). And because S is a sum of NnL matrices of rank
smaller than 2(n1 + ...+ nL−1), the rank of S is bounded by 2(n1 + ...+ nL−1)NnL.

Moments

Let us now prove Proposition C.3:

Proposition C.3. For any loss C with BGOSS and σ ∈ C4
b (R), the first two moments of S take

the form

Tr (S(t)) = G(t)T∇C(t)

Tr
(
S(t)2

)
= ∇C(t)T Υ̃(t)∇C(t)

- At initialization, gθ and fθ converge to a (centered) Gaussian pair with covariances

E[gθ,k(x)gθ,k′(x
′)] = δkk′Ξ

(L)
∞ (x, x′)

E[gθ,k(x)fθ,k′(x
′)] = δkk′Φ

(L)
∞ (x, x′)

E[fθ,k(x)fθ,k′(x
′)] = δkk′Σ

(L)
∞ (x, x′)

and during training gθ evolves according to

∂tgθ,k(x) =

N∑
i=1

Λ(L)
∞ (x, xi)∂ikC(Y (t))·

C.3. THE MATRIX S 185

- Uniformly over any interval [0, T] where
∫ T

0
‖∇C(t)‖2 dt is stochastically bounded, the kernel

Υ(L) has a deterministic and fixed limit limnL−1→∞ · · · limn1→∞Υ
(L)
kk′ (x, x

′) = δkk′Υ
(L)
∞ (x, x′) with

limiting kernel:

Υ(L)
∞ (x, x′) =

L−1∑
`=1

(
Θ(`)
∞ (x, x′)2Σ̈(`)(x, x′) + 2Θ(`)

∞ (x, x′)Σ̇(`)(x, x′)
)

Σ̇(`+1)(x, x′) · · · Σ̇(L−1)(x, x′).

- The higher moment k > 2 vanish: limnL−1→∞ · · · limn1→∞ Tr
(
Sk
)

= 0.

Proof. The first moment of S takes the form

Tr (S) =
∑
p

(∇C)
T Hp,pY = (∇C)

T
G

where G is the restriction to the training set of the function gθ(x) =
∑
p ∂

2
θpθp

fθ(x). This process
is random at initialization and varies during training. Lemma C.3 below shows that, in the infinite
width limit, it is a Gaussian process at initialization which then evolves according to a simple
differential equation, hence describing the evolution of the first moment during training.

The second moment of S takes the form:

Tr(S2) =

P∑
p1,p2=1

N∑
i1,i2=1

∂2
θp1

,θp2
fθ,k1

(x1)∂2
θp2

,θp1
fθ,k2

(x2)c′i1(xi1)c′i2(xi2)

= (∇C)
T

Υ̃∇C

where Υ
(L)
k1,k2

(x1, x2) =
∑P
p1,p2=1 ∂

2
θp1

,θp2
fθ,k1(x1)∂2

θp2
,θp1

fθ,k2(x2) is a multidimensional kernel and

Υ̃ is its Gram matrix. Lemma C.4 below shows that in the infinite-width limit, Υ
(L)
k1,k2

(x1, x2)

converges to a deterministic and time-independent limit Υ
(L)
∞ (x1, x2)δk1k2 .

To show that Tr(Sk) → 0 for all k > 2, it suffices to show that
∥∥S2

∥∥
F
→ 0 as

∣∣Tr(Sk)
∣∣ <∥∥S2

∥∥
F
‖S‖k−2

F and we know that ‖S‖F → (∂Y C)
T

Υ̃∂Y C is finite. We have that

∥∥S2
∥∥
F

=

N∑
i0,i1,i2,i3=1

nL∑
k0,k1,k2,k3=1

Ψ
(L)
k0,k1,k2,k3

(xi0 , xi1 , xi2 , xi3)∂fθ,k0
(xi0)C∂fθ,k1

(xi1)C

∂fθ,k2
(xi2)C∂fθ,k3

(xi3)C

= Ψ̃ · (∂Y C)
⊗4

for Ψ̃ the NnL ×NnL ×NnL ×NnL finite version of

Ψ
(L)
k0,k1,k2,k3

(xi0 , xi1 , xi2 , xi3) =

P∑
p0,p1,p2,p3=1

∂2
θp0 ,θp1

fθ,k0(x0)∂2
θp1 ,θp2

fθ,k1(x1)

∂2
θp2

,θp3
fθ,k2

(x2)∂2
θp3

,θp0
fθ,k3

(x3).

which vanishes in the infinite width limit by Lemma C.5 below.

186
APPENDIX C. THE ASYMPTOTIC SPECTRUM OF THE HESSIAN OF DNN

THROUGHOUT TRAINING

Lemma C.3. For any loss C with BGOSS and σ ∈ C4
b (R), at initialization gθ and fθ converge to

a (centered) Gaussian pair with covariances

E[gθ,k(x)gθ,k′(x
′)] = δkk′Ξ

(L)
∞ (x, x′)

E[gθ,k(x)fθ,k′(x
′)] = δkk′Φ

(L)
∞ (x, x′)

E[fθ,k(x)fθ,k′(x
′)] = δkk′Σ

(L)
∞ (x, x′)

and during training gθ evolves according to

∂tgθ(x) =

N∑
i=1

Λ(L)
∞ (x, xi)Di(t)

Proof. When L = 1, gθ(x) is 0 for any x and θ.
For the inductive step, the trace g(L+1)

θ,k (x) is defined recursively as

1
√
nL

nL∑
m=1

g
(L)
θ,m(x)σ̇

(
α̃(L)
m (x)

)
W

(L)
mk + Tr

(
∇fθ,m(x) (∇fθ,m(x))

T
)
σ̈
(
α̃(L)
m (x)

)
W

(L)
mk

First note that Tr
(
∇fθ,m(x) (∇fθ,m(x))

T
)

= Θ
(L)
mm(x, x). Now let n1, ...nL−1 →∞, by the induc-

tion hypothesis, the pairs (g
(L)
θ,m, α̃

(L)
m) converge to iid Gaussian pairs of processes with covariance

Φ
(L)
∞ at initialization.
At initialization, conditioned on the values of g(L)

m , α̃
(L)
m the pairs (g

(L+1)
k , fθ) follow a centered

Gaussian distribution with (conditioned) covariance

E[g
(L+1)
θ,k (x)g

(L+1)
θ,k′ (x′)|g(L)

θ,m, α̃
(L)
m] =

δkk′

nL

nL∑
m=1

(
g

(L)
θ,m(x)σ̇

(
α̃(L)
m (x)

)
+ Θ(L)

∞ (x, x)σ̈
(
α̃(L)
m (x)

))
(
g

(L)
θ,m(x′)σ̇

(
α̃(L)
m (x′)

)
+ Θ(L)

∞ (x′, x′)σ̈
(
α̃(L)
m (x′)

))
E[g

(L+1)
θ,k (x)fθ,k′(x

′)|g(L)
θ,m, α̃

(L)
m] =

δkk′

nL

nL∑
m=1

(
g

(L)
θ,m(x)σ̇

(
α̃(L)
m (x)

)
+ Θ(L)

∞ (x, x)σ̈
(
α̃(L)
m (x)

))
σ
(
α̃(L)
m (x′)

)
E[fθ,k(x)fθ,k′(x

′)|g(L)
θ,m, α̃

(L)
m] =

δkk′

nL

nL∑
m=1

σ
(
α̃(L)
m (x)

)
σ
(
α̃(L)
m (x′)

)
+ β2.

As nL → ∞, by the law of large number, these (random) covariances converge to their expecta-
tions which are deterministic, hence the pairs (g

(L+1)
k , fθk) have asymptotically the same Gaussian

distribution independent of g(L)
m , α̃

(L)
m :

E
[
g

(L)
θ,k (x)g

(L)
θ,k′(x

′)
]
→ δkk′Ξ

(L)
∞ (x, x′)

E
[
g

(L)
θ,k (x)f

(L)
θ,k′(x

′)
]
→ δkk′Φ

(L)
∞ (x, x)

C.3. THE MATRIX S 187

E
[
f

(L)
θ,k (x)f

(L)
θ,k′(x

′)
]
→ δkk′Σ

(L)
∞ (x, x)

with Ξ
(1)
∞ (x, x′) = Φ

(1)
∞ (x, x′) = 0 and

Ξ(L+1)
∞ (x, x′) = E [gg′σ̇(α)σ̇(α′)]

+ Θ(L)
∞ (x′, x′)E [gσ̇(α)σ̈(α′)]

+ Θ(L)
∞ (x, x)E [g′σ̇(α′)σ̈(α)]

+ Θ(L)
∞ (x, x)Θ(L)

∞ (x′, x′)E [σ̈(α′)σ̈(α)]

= Ξ(L)
∞ (x, x′)Σ̇(L)

∞ (x, x′) +
(

Φ(L)
∞ (x, x′)Φ(L)

∞ (x′, x) + Φ(L)
∞ (x, x)Φ(L)

∞ (x′, x′)
)

Σ̈(L)
∞ (x, x′)

+ Φ(L)
∞ (x, x′)Φ(L)

∞ (x′, x′)E [σ̇(α)
...
σ (α′)] + Φ(L)

∞ (x, x)Φ(L)
∞ (x′, x)E [

...
σ (α)σ̇(α′)]

+ Θ(L)
∞ (x′, x′)

(
Φ(L)
∞ (x, x)Σ̈(L)

∞ (x, x′) + Φ(L)
∞ (x, x′)E [σ̇(α)

...
σ (α′)]

)
+ Θ(L)

∞ (x, x)
(

Φ(L)
∞ (x′, x′)Σ̈(L)

∞ (x, x′) + Φ(L)
∞ (x′, x)E [

...
σ (α)σ̇(α′)]

)
+ Θ(L)

∞ (x, x)Θ(L)
∞ (x′, x′)Σ̈(L)

∞ (x, x′)

and

Φ(L+1)
∞ (x, x′) = E [gσ̇(α)σ(α′)] + Θ(L)

∞ (x, x)E [σ̈(α)σ(α′)]

= Φ(L)
∞ (x, x′)Σ̇(L+1)(x, x′) +

(
Φ(L)
∞ (x, x) + Θ(L)

∞ (x, x)
)
E [σ̈(α)σ(α′)]

where (g, g′, α, α′) is a Gaussian quadruple of covariance
Ξ

(L)
∞ (x, x) Ξ

(L)
∞ (x, x′) Φ

(L)
∞ (x, x) Φ

(L)
∞ (x, x′)

Ξ
(L)
∞ (x, x′) Ξ

(L)
∞ (x′, x′) Φ

(L)
∞ (x′, x) Φ

(L)
∞ (x′, x′)

Φ
(L)
∞ (x, x) Φ

(L)
∞ (x′, x) Σ

(L)
∞ (x, x) Σ

(L)
∞ (x, x′)

Φ
(L)
∞ (x, x′) Φ

(L)
∞ (x′, x′) Σ

(L)
∞ (x, x′) Σ

(L)
∞ (x′, x′)

 .

During training, the parameters follow the gradient ∂tθ(t) = (∂θY (t))
T
D(t). By the induction

hypothesis, the traces g(L)
θ,m then evolve according to the differential equation

∂tg
(L)
θ,m(x) =

1
√
nL

N∑
i=1

nL∑
m=1

Λ
(L)
mm′(x, xi)σ̇(α̃

(L)
m′ (x))

(
W

(L)
m′

)T
Di(t)

and in the limit as n1, ..., nL−1 →∞, the kernel Λ
(L)
mm′(x, xi) converges to a deterministic and fixed

limit δmm′Λ
(L)
∞ (x, xi). Note that as nL grows, the g(L)

θ,m(x) move at a rate of 1/√nL just like the

pre-activations α̃(L)
m . Even though they move less and less, together they affect the trace g(L+1)

θ,k

which follows the differential equation

∂tg
(L+1)
θ,k (x) =

N∑
i=1

nL∑
k′=1

Λ
(L+1)
kk′ (x, xi)Dik′(t)

188
APPENDIX C. THE ASYMPTOTIC SPECTRUM OF THE HESSIAN OF DNN

THROUGHOUT TRAINING

where

Λ
(L+1)
kk′ (x, x′) =

1

nL

∑
m,m′

Λ
(L)
mm′(x, x

′)σ̇
(
α̃(L)
m (x)

)
σ̇
(
α̃

(L)
m′ (x′)

)
W

(L)
mkW

(L)
m′k′

+
1

nL

∑
m,m′

g
(L)
θ,m(x)Θ

(L)
mm′(x, x

′)σ̈
(
α̃(L)
m (x)

)
σ̇
(
α̃

(L)
m′ (x′)

)
W

(L)
mkW

(L)
m′k′

+
1

nL

∑
m

g
(L)
θ,m(x)σ̇

(
α̃(L)
m (x)

)
σ
(
α̃(L)
m (x′)

)
δkk′

+
2

nL

∑
m,m′

Ω
(L)
m′mm(x′, x, x)σ̈

(
α̃(L)
m (x)

)
σ̇
(
α̃

(L)
m′ (x′)

)
W

(L)
mkW

(L)
m′k′

+
1

nL

∑
m,m′

Θ(L)
mm(x, x)Θ

(L)
mm′(x, x

′)
...
σ
(
α̃(L)
m (x)

)
σ̇
(
α̃

(L)
m′ (x′)

)
W

(L)
mkW

(L)
m′k′

+
1

nL

∑
m

Θ(L)
mm(x, x)σ̈

(
α̃(L)
m (x)

)
σ
(
α̃(L)
m (x′)

)
δkk′ .

As n1, ..., nL−1 →∞, the kernels Θ
(L)
mm′(x, x

′) and Λ
(L)
mm′(x, x

′) converge to their limit and Ω
(L)
m′mm(x′, x, x)

vanishes:

Λ
(L)
kk′ (x, x

′)→ 1

nL

∑
m

Λ(L)
∞ (x, x′)σ̇

(
α̃(L)
m (x)

)
σ̇
(
α̃(L)
m (x′)

)
W

(L)
mkW

(L)
mk′

+
1

nL

∑
m

g
(L)
θ,m(x)Θ(L)

∞ (x, x′)σ̈
(
α̃(L)
m (x)

)
σ̇
(
α̃(L)
m (x′)

)
W

(L)
mkW

(L)
mk′

+
1

nL

∑
m

g
(L)
θ,m(x)σ̇

(
α̃(L)
m (x)

)
σ
(
α̃(L)
m (x′)

)
δkk′

+
1

nL

∑
m

Θ(L)
∞ (x, x)Θ(L)

∞ (x, x′)
...
σ
(
α̃(L)
m (x)

)
σ̇
(
α̃(L)
m (x′)

)
W

(L)
mkW

(L)
mk′

+
1

nL

∑
m

Θ(L)
∞ (x, x)σ̈

(
α̃(L)
m (x)

)
σ
(
α̃(L)
m (x′)

)
δkk′

By the law of large numbers, as nL →∞, at initialization Λ
(L+1)
kk′ (x, x′)→ δkk′Λ

(L+1)
∞ (x, x′) where

Λ(L+1)
∞ (x, x′) = Λ(L)

∞ (x, x′)Σ̇(L+1)
∞ (x, x′)

+ Θ(L)
∞ (x, x′)E [gσ̈ (α) σ̇ (α′)]

+ E [gσ̇ (α)σ (α′)]

+ Θ(L)
∞ (x, x)Θ(L)

∞ (x, x′)E [
...
σ (α) σ̇ (α′)]

+ Θ(L)
∞ (x, x)E [σ̈ (α)σ (α′)]

= Λ(L)
∞ (x, x′)Σ̇(L+1)

∞ (x, x′)

+ Θ(L)
∞ (x, x′)

(
Φ(L)
∞ (x, x′)Σ̈(L+1)

∞ (x, x′) + Φ(L)
∞ (x, x)E [

...
σ (α) σ̇ (α′)]

)
+ Φ(L)

∞ (x, x′)Σ̇(L+1)
∞ (x, x′) + Φ(L)

∞ (x, x)E [σ̈ (α)σ (α′)]

C.3. THE MATRIX S 189

+ Θ(L)
∞ (x, x)Θ(L)

∞ (x, x′)E [
...
σ (α) σ̇ (α′)]

+ Θ(L)
∞ (x, x)E [σ̈ (α) σ̇ (α′)]

During training Θ
(L)
∞ and Λ

(L)
∞ are fixed in the limit n1, .., nL−1 → ∞, and the values g(L)

θ,m(x),

α̃
(L)
m (x) and W

(L)
mk vary at a rate of 1/√nL which induce a change of the same rate to Λ

(L)
kk′ (x, x

′),
which is therefore asymptotically fixed during training as nL →∞.

The next lemma describes the asymptotic limit of the kernel Υ(L):

Lemma C.4. For any loss C with BGOSS and σ ∈ C4
b (R), the second moment of the Hessian of

the realization function HF (L) converges uniformly over [0, T] to a fixed limit as n1, ...nL−1 →∞

Υ
(L)
kk′ (x, x

′)→ δkk′
L−1∑
`=1

(
Θ(`)
∞ (x, x′)2Σ̈(`)

∞ (x, x′) + 2Θ(`)
∞ (x, x′)Σ̇(`)

∞ (x, x′)
)

Σ̇(`+1)
∞ (x, x′) · · · Σ̇(L−1)

∞ (x, x′).

Proof. The proof is by induction on the depth L. The case L = 1 is trivially true because
∂2
θpθp′

fθ,k(x) = 0 for all p, p′, k, x. For the induction step we observe that

Υ
(L)
k,k′(x, x

′)

=

P∑
p1,p2=1

∂2
θp1

,θp2
fθ,k(x)∂2

θp2
,θp1

fθ,k′(x
′)

=
1

nL

nL∑
m,m′=1

Υ
(L)
m,m′(x, x

′)σ̇
(
α̃(L)
m (x)

)
σ̇
(
α̃

(L)
m′ (x′)

)
W

(L)
mkW

(L)
m′k′

+
1

nL

nL∑
m,m′=1

Ω
(L)
m′,m,m′(x

′, x, x′)σ̇
(
α̃(L)
m (x)

)
σ̈
(
α̃

(L)
m′ (x′)

)
W

(L)
mkW

(L)
m′k′

+
1

nL

nL∑
m,m′=1

Ω
(L)
m,m′,m(x, x′, x)σ̈

(
α̃(L)
m (x)

)
σ̇
(
α̃

(L)
m′ (x′)

)
W

(L)
mkW

(L)
m′k′

+
1

nL

nL∑
m,m′=1

Θ
(L)
m,m′(x, x

′)Θ
(L)
m′,m(x′, x)σ̈

(
α̃(L)
m (x)

)
σ̈
(
α̃

(L)
m′ (x′)

)
W

(L)
mkW

(L)
m′k′

+
2

nL

nL∑
m=1

Θ
(L)
m,m′(x, x

′)σ̇
(
α̃(L)
m (x)

)
σ̇
(
α̃

(L)
m′ (x′)

)
δkk′

if we now let the width of the lower layers grow to infinity n1, ...nL−1 →∞, the tensor Ω(L) vanishes
and Υ

(L)
m,m′ and the NTK Θ

(L)
m,m′ converge to limits which are non-zero only when m = m′. As a

result, the term above converges to

1

nL

nL∑
m=1

Υ(L)
∞ (x, x′)σ̇

(
α̃(L)
m (x)

)
σ̇
(
α̃(L)
m (x′)

)
W

(L)
mkW

(L)
mk′

+
1

nL

nL∑
m=1

Θ(L)
∞ (x, x′)2σ̈

(
α̃(L)
m (x)

)
σ̈
(
α̃(L)
m (x′)

)
W

(L)
mkW

(L)
mk′

190
APPENDIX C. THE ASYMPTOTIC SPECTRUM OF THE HESSIAN OF DNN

THROUGHOUT TRAINING

+
2

nL

nL∑
m=1

Θ(L)
∞ (x, x′)σ̇

(
α̃(L)
m (x)

)
σ̇
(
α̃(L)
m (x′)

)
δkk′

At initialization, we can apply the law of large numbers as nL → ∞ such that it converges to
Υ

(L+1)
∞ (x, x′)δkk′ , for the kernel Υ

(L+1)
∞ (x, x′) defined recursively by

Υ(L+1)
∞ (x, x′) =Υ(L)

∞ (x, x′)Σ̇(L)
∞ (x, x′) + Θ(L)

∞ (x, x′)2Σ̈(L)
∞ (x, x′) + 2Θ(L)

∞ (x, x′)Σ̇(L)
∞ (x, x′)

and Υ
(1)
∞ (x, x′) = 0.

For the convergence during training, we proceed similarily to the proof of Lemma C.1: the
activations α̃(L)

m (x) and weights W (L)
mk move at a rate of 1/√nL and the change to Υ

(L+1)
kk′ is therefore

of order 1/√nL and vanishes as nL → 0.

Finally, the next lemma shows the vanishing of the tensor Ψ
(L)
k0,k1,k2,k3

to prove that the higher
moments of S vanish.

Lemma C.5. For any loss C with BGOSS and σ ∈ C4
b (R), uniformly over [0, T]

lim
nL−1→∞

· · · lim
n1→∞

Ψ
(L)
k0,k1,k2,k3

(xi0 , xi1 , xi2 , xi3) = 0

Proof. When L = 1 the Hessian is zero and Ψ
(1)
k0,k1,k2,k3

(xi0 , xi1 , xi2 , xi3) = 0.

For the induction step, we write Ψ
(L+1)
k0,k1,k2,k3

(xi0 , xi1 , xi2 , xi3) recursively, because it contains

many terms, we change the notation, writing
[
x0 x1

m0 m1

]
for Θ

(L)
m0,m1(x0, x1),

[
x0 x1 x2

m0 m1 m2

]
for Ω

(L)
m0,m1,m2(x0, x1, x2) and

[
x0 x1 x2 x3

m0 m1 m2 m3

]
for Γ

(L)
m0,m1,m2,m3(x0, x1, x2, x3). The value

Ψ
(L+1)
k0,k1,k2,k3

(xi0 , xi1 , xi2 , xi3) is then equal to

n−2
L

∑
m0,m1,m2,m3

Ψ(L)
m0,m1,m2,m3

(x0, x1, x2, x3)σ̇
(
α̃(L)
m0

(x0)
)
σ̇
(
α̃(L)
m1

(x1)
)
σ̇
(
α̃(L)
m2

(x2)
)

σ̇
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

[
x0 x1

m0 m1

] [
x1 x2

m1 m2

] [
x2 x3

m2 m3

] [
x3 x0

m3 m0

]
σ̈
(
α̃(L)
m0

(x0)
)

σ̈
(
α̃(L)
m1

(x1)
)
σ̈
(
α̃(L)
m2

(x2)
)
σ̈
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

[
x0 x1 x2

m0 m1 m2

] [
x2 x3

m2 m3

] [
x3 x0

m3 m0

]
σ̈
(
α̃(L)
m0

(x0)
)
σ̇
(
α̃(L)
m1

(x1)
)

σ̈
(
α̃(L)
m2

(x2)
)
σ̈
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

[
x0 x1

m0 m1

] [
x1 x2 x3

m1 m2 m3

] [
x3 x0

m3 m0

]
σ̈
(
α̃(L)
m0

(x0)
)
σ̈
(
α̃(L)
m1

(x1)
)

σ̇
(
α̃(L)
m2

(x2)
)
σ̈
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

C.3. THE MATRIX S 191

+n−2
L

∑
m0,m1,m2,m3

[
x0 x1

m0 m1

] [
x1 x2

m1 m2

] [
x2 x3 x0

m2 m3 m0

]
σ̈
(
α̃(L)
m0

(x0)
)
σ̈
(
α̃(L)
m1

(x1)
)

σ̈
(
α̃(L)
m2

(x2)
)
σ̇
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

[
x1 x2

m1 m2

] [
x2 x3

m2 m3

] [
x3 x0 x1

m3 m0 m1

]
σ̇
(
α̃(L)
m0

(x0)
)
σ̈
(
α̃(L)
m1

(x1)
)

σ̈
(
α̃(L)
m2

(x2)
)
σ̈
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

[
x0 x1 x2

m0 m1 m2

] [
x2 x3 x0

m2 m3 m0

]
σ̈
(
α̃(L)
m0

(x0)
)
σ̇
(
α̃(L)
m1

(x1)
)

σ̈
(
α̃(L)
m2

(x2)
)
σ̇
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

[
x1 x2 x3

m1 m2 m3

] [
x3 x0 x1

m3 m0 m1

]
σ̇
(
α̃(L)
m0

(x0)
)
σ̈
(
α̃(L)
m1

(x1)
)

σ̇
(
α̃(L)
m2

(x2)
)
σ̈
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

[
x0 x1 x2 x3

m0 m1 m2 m3

] [
x3 x0

m3 m0

]
σ̈
(
α̃(L)
m0

(x0)
)
σ̇
(
α̃(L)
m1

(x1)
)

σ̇
(
α̃(L)
m2

(x2)
)
σ̈
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

[
x0 x1

m0 m1

] [
x1 x2 x3 x0

m1 m2 m3 m0

]
σ̈
(
α̃(L)
m0

(x0)
)
σ̈
(
α̃(L)
m1

(x1)
)

σ̇
(
α̃(L)
m2

(x2)
)
σ̇
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

[
x1 x2

m1 m2

] [
x2 x3 x0 x1

m2 m3 m0 m1

]
σ̇
(
α̃(L)
m0

(x0)
)
σ̈
(
α̃(L)
m1

(x1)
)

σ̈
(
α̃(L)
m2

(x2)
)
σ̇
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

[
x2 x3

m2 m3

] [
x3 x0 x1 x2

m3 m0 m1 m2

]
σ̇
(
α̃(L)
m0

(x0)
)
σ̇
(
α̃(L)
m1

(x1)
)

σ̈
(
α̃(L)
m2

(x2)
)
σ̈
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m,m1,m2

[
x0 x1

m m1

] [
x1 x2

m1 m2

] [
x2 x3

m2 m

]
σ̇
(
α̃(L)
m (x0)

)
σ̈
(
α̃(L)
m1

(x1)
)

σ̈
(
α̃(L)
m2

(x2)
)
σ̇
(
α̃(L)
m (x3)

)
W

(L)
m1k1

W
(L)
m2k2

δk0k3

+n−2
L

∑
m,m2,m3

[
x1 x2

m m2

] [
x2 x3

m2 m3

] [
x3 x0

m3 m

]
σ̇
(
α̃(L)
m (x0)

)
σ̇
(
α̃(L)
m (x1)

)
σ̈
(
α̃(L)
m2

(x2)
)
σ̈
(
α̃(L)
m3

(x3)
)
W

(L)
m2k2

W
(L)
m3k3

δk0k1

192
APPENDIX C. THE ASYMPTOTIC SPECTRUM OF THE HESSIAN OF DNN

THROUGHOUT TRAINING

+n−2
L

∑
m,m3,m0

[
x0 x1

m0 m

] [
x2 x3

m m3

] [
x3 x0

m3 m0

]
σ̈
(
α̃(L)
m0

(x0)
)
σ̇
(
α̃(L)
m (x1)

)
σ̇
(
α̃(L)
m (x2)

)
σ̈
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m3k3

δk1k2

+n−2
L

∑
m,m0,m1

[
x0 x1

m0 m1

] [
x1 x2

m1 m

] [
x3 x0

m m0

]
σ̈
(
α̃(L)
m0

(x0)
)
σ̈
(
α̃(L)
m1

(x1)
)

σ̇
(
α̃(L)
m (x2)

)
σ̇
(
α̃(L)
m (x3)

)
W

(L)
m0k0

W
(L)
m1k1

δk2k3

+n−2
L

∑
m,m1,m2

[
x0 x1 x2

m m1 m2

] [
x2 x3

m2 m

]
σ̇
(
α̃(L)
m (x0)

)
σ̇
(
α̃(L)
m1

(x1)
)

σ̈
(
α̃(L)
m2

(x2)
)
σ̇
(
α̃(L)
m (x3)

)
W

(L)
m1k1

W
(L)
m2k2

δk0k3

+n−2
L

∑
m,m2,m3

[
x1 x2 x3

m m2 m3

] [
x3 x0

m3 m

]
σ̇
(
α̃(L)
m (x0)

)
σ̇
(
α̃(L)
m (x1)

)
σ̇
(
α̃(L)
m2

(x2)
)

σ̈
(
α̃(L)
m3

(x3)
)
W

(L)
m2k2

W
(L)
m3k3

δk0k1

+n−2
L

∑
m,m3,m0

[
x0 x1

m0 m

] [
x2 x3 x0

m m3 m0

]
σ̈
(
α̃(L)
m0

(x0)
)
σ̇
(
α̃(L)
m (x1)

)
σ̇
(
α̃(L)
m (x2)

)
σ̇
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m3k3

δk1k2

+n−2
L

∑
m,m0,m1

[
x1 x2

m1 m

] [
x3 x0 x1

m m0 m1

]
σ̇
(
α̃(L)
m0

(x0)
)
σ̈
(
α̃(L)
m1

(x1)
)

σ̇
(
α̃(L)
m (x2)

)
σ̇
(
α̃(L)
m (x3)

)
W

(L)
m0k0

W
(L)
m1k1

δk2k3

+n−2
L

∑
m,m1,m2

[
x0 x1

m m1

] [
x1 x2 x3

m1 m2 m

]
σ̇
(
α̃(L)
m (x0)

)
σ̈
(
α̃(L)
m1

(x1)
)

σ̇
(
α̃(L)
m2

(x2)
)
σ̇
(
α̃(L)
m (x3)

)
W

(L)
m1k1

W
(L)
m2k2

δk0k3

+n−2
L

∑
m,m2,m3

[
x1 x2

m m2

] [
x2 x3 x0

m2 m3 m

]
σ̇
(
α̃(L)
m (x0)

)
σ̇
(
α̃(L)
m (x1)

)
σ̈
(
α̃(L)
m2

(x2)
)
σ̇
(
α̃(L)
m3

(x3)
)
W

(L)
m2k2

W
(L)
m3k3

δk0k1

+n−2
L

∑
m,m3,m0

[
x2 x3

m m3

] [
x3 x0 x1

m3 m0 m

]
σ̇
(
α̃(L)
m0

(x0)
)
σ̇
(
α̃(L)
m (x1)

)
σ̇
(
α̃(L)
m (x2)

)
σ̈
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m3k3

δk1k2

+n−2
L

∑
m,m0,m1

[
x0 x1 x2

m0 m1 m

] [
x3 x0

m m0

]
σ̈
(
α̃(L)
m0

(x0)
)
σ̇
(
α̃(L)
m1

(x1)
)

σ̇
(
α̃(L)
m (x2)

)
σ̇
(
α̃(L)
m (x3)

)
W

(L)
m0k0

W
(L)
m1k1

δk2k3

C.3. THE MATRIX S 193

+n−2
L

∑
m,m1,m2

[
x0 x1 x2 x3

m m1 m2 m

]
σ̇
(
α̃(L)
m (x0)

)
σ̇
(
α̃(L)
m1

(x1)
)
σ̇
(
α̃(L)
m2

(x2)
)
σ̇
(
α̃(L)
m (x3)

)
W

(L)
m1k1

W
(L)
m2k2

δk0k3

+n−2
L

∑
m,m2,m3

[
x1 x2 x3 x0

m m2 m3 m

]
σ̇
(
α̃(L)
m (x0)

)
σ̇
(
α̃(L)
m (x1)

)
σ̇
(
α̃(L)
m2

(x2)
)
σ̇
(
α̃(L)
m3

(x3)
)

W
(L)
m2k2

W
(L)
m3k3

δk0k1

+n−2
L

∑
m,m3,m0

[
x2 x3 x0 x1

m m3 m0 m

]
σ̇
(
α̃(L)
m0

(x0)
)
σ̇
(
α̃(L)
m (x1)

)
σ̇
(
α̃(L)
m (x2)

)
σ̇
(
α̃(L)
m3

(x3)
)

W
(L)
m0k0

W
(L)
m3k3

δk1k2

+n−2
L

∑
m,m0,m1

[
x3 x0 x1 x2

m m0 m1 m

]
σ̇
(
α̃(L)
m0

(x0)
)
σ̇
(
α̃(L)
m1

(x1)
)
σ̇
(
α̃(L)
m (x2)

)
σ̇
(
α̃(L)
m (x3)

)
W

(L)
m0k0

W
(L)
m1k1

δk2k3

+n−2
L

∑
m,m′

[
x0 x1

m m′

] [
x2 x3

m′ m

]
σ̇
(
α̃(L)
m (x0)

)
σ̇
(
α̃

(L)
m′ (x1)

)
σ̇
(
α̃

(L)
m′ (x2)

)
σ̇
(
α̃(L)
m (x3)

)
δk0k1

δk2k3

+n−2
L

∑
m,m′

[
x1 x2

m m′

] [
x3 x0

m′ m

]
σ̇
(
α̃(L)
m (x0)

)
σ̇
(
α̃(L)
m (x1)

)
σ̇
(
α̃

(L)
m′ (x2)

)
σ̇
(
α̃

(L)
m′ (x3)

)
δk0k3δk1k2

Even though this is a very large formula one can notice that most terms are “rotation of each
other”. Moreover, as n1, ..., nL−1 → ∞, all terms containing either an Ψ(L), an Ω(L) or a Γ(L)

vanish. For the remaining terms, we may replace the NTKs Θ(L) by their limit and as a result
Ψ

(L+1)
k0,k1,k2,k3

(xi0 , xi1 , xi2 , xi3) converges to

n−2
L

∑
m

Θ(L)
∞ (x0, x1)Θ(L)

∞ (x1, x2)Θ(L)
∞ (x2, x3)Θ(L)

∞ (x3, x0)σ̈
(
α̃(L)
m (x0)

)
σ̈
(
α̃(L)
m (x1)

)
σ̈
(
α̃(L)
m (x2)

)
σ̈
(
α̃(L)
m (x3)

)
W

(L)
mk0

W
(L)
mk1

W
(L)
mk2

W
(L)
mk3

+n−2
L

∑
m

Θ(L)
∞ (x0, x1)Θ(L)

∞ (x1, x2)Θ(L)
∞ (x2, x3)σ̇

(
α̃(L)
m (x0)

)
σ̈
(
α̃(L)
m (x1)

)
σ̈
(
α̃(L)
m (x2)

)
σ̇
(
α̃(L)
m (x3)

)
W

(L)
mk1

W
(L)
mk2

δk0k3

+n−2
L

∑
m

Θ(L)
∞ (x1, x2)Θ(L)

∞ (x2, x3)Θ(L)
∞ (x3, x0)σ̇

(
α̃(L)
m (x0)

)
σ̇
(
α̃(L)
m (x1)

)
σ̈
(
α̃(L)
m (x2)

)
σ̈
(
α̃(L)
m (x3)

)
W

(L)
mk2

W
(L)
mk3

δk0k1

+n−2
L

∑
m

Θ(L)
∞ (x0, x1)Θ(L)

∞ (x2, x3)Θ(L)
∞ (x3, x0)σ̈

(
α̃(L)
m (x0)

)
σ̇
(
α̃(L)
m (x1)

)
σ̇
(
α̃(L)
m (x2)

)
σ̈
(
α̃(L)
m (x3)

)
W

(L)
mk0

W
(L)
mk3

δk1k2

194
APPENDIX C. THE ASYMPTOTIC SPECTRUM OF THE HESSIAN OF DNN

THROUGHOUT TRAINING

+n−2
L

∑
m

Θ(L)
∞ (x0, x1)Θ(L)

∞ (x1, x2)Θ(L)
∞ (x3, x0)σ̈

(
α̃(L)
m (x0)

)
σ̈
(
α̃(L)
m (x1)

)
σ̇
(
α̃(L)
m (x2)

)
σ̇
(
α̃(L)
m (x3)

)
W

(L)
mk0

W
(L)
mk1

δk2k3

+n−2
L

∑
m

Θ(L)
∞ (x0, x1)Θ(L)

∞ (x2, x3)σ̇
(
α̃(L)
m (x0)

)
σ̇
(
α̃(L)
m (x1)

)
σ̇
(
α̃(L)
m (x2)

)
σ̇
(
α̃(L)
m (x3)

)
δk0k1

δk2k3

+n−2
L

∑
m

Θ(L)
∞ (x1, x2)Θ(L)

∞ (x3, x0)σ̇
(
α̃(L)
m (x0)

)
σ̇
(
α̃(L)
m (x1)

)
σ̇
(
α̃(L)
m (x2)

)
σ̇
(
α̃(L)
m (x3)

)
δk0k3δk1k2

And all these sums vanish as nL → ∞ thanks to the prefactor n−2
L , proving the vanishing of

Ψ
(L+1)
k0,k1,k2,k3

(xi0 , xi1 , xi2 , xi3) in the infinite width limit.

During training, the activations α̃(L)
m (x) and weightsW (L)

mk move at a rate of 1/√nL which induces
a change to Ψ(L+1) of order n−

3/2
L which vanishes in the infinite width limit.

C.4 Orthogonality of I and S

From Lemma C.2 and the vanishing of the tensor Γ(L) as proven in Lemma C.2, we can easily prove
the orthogonality of I and S of Proposition C.4:

Proposition C.4. For any loss C with BGOSS and σ ∈ C4
b (R), we have uniformly over [0, T]

lim
nL−1→∞

· · · lim
n1→∞

‖IS‖F = 0.

As a consequence limnL−1→∞ · · · limn1→∞Tr
(

[I + S]
k
)
−
[
Tr
(
Ik
)

+ Tr
(
Sk
)]

= 0.

Proof. The Frobenius norm of IS is equal to

‖IS‖2F =
∥∥∥DYHC (DY)

T
(∇C · HY)

∥∥∥2

F

=

P∑
p1,p2=1

 P∑
p=1

N∑
i1,i2=1

nL∑
k1,k2=1

∂θp1
fθ,k1

(xi1)c′′k1
(xi1)∂θpfθ,k1

(xi1)∂2
θp,θp3

fθ,k2
(x2)(xi2)c′k2

(xi2)

2

=

N∑
i1,i2,i′1,i

′
2=1

nL∑
k1,k2,k′1,k

′
2=1

c′′k1
(xi1)c′′k′1(xi′1)c′k2

(xi2)c′k′2(xi′2)Θk1,k′1
(xi1 , xi′1)Γk1,k2,k′2,k

′
1
(xi1 , xi2 , xi′2 , xi′1)

and Γ vanishes as n1, ..., nL−1 →∞ by Lemma C.2.
The k-th moment of the sum Tr (I + S)

k is equal to the sum over all Tr (A1 · · ·Ak) for any word
A1 . . . Ak of Ai ∈ {I, S}. The difference Tr

(
[I + S]

k
)
−
[
Tr
(
Ik
)

+ Tr
(
Sk
)]

is hence equal to the
sum over all mixed words, i.e. words A1 . . . Ak which contain at least one I and one S. Such words

C.4. ORTHOGONALITY OF I AND S 195

must contain two consecutive terms AmAm+1 one equal to I and the other equal to S. We can
then bound the trace by

|Tr (A1 · · ·Ak)| ≤ NnL ‖A1‖F · · · ‖Am−1‖F ‖AmAm+1‖F ‖Am+2‖F · · · ‖Ak‖F

which vanishes in the infinite width limit because ‖I‖F and ‖S‖F are bounded and ‖AmAm+1‖F =
‖IS‖F vanishes.

Appendix D

Kernel Alignment Ridge Estimator: Risk
Prediction From Training Data

We organize the Supplementary Material (Supp. Mat.) as follows:

1. In Section D.1, we present the details for the numerical results presented in the main text
(and in the Supp. Mat.) and we present additional experiments and some discussions.

2. In Section H.3, we present the proofs of the mathematical results presented in the main text.

D.1 Numerical Results

Empirical Methods

For the MNIST dataset. We sample N images of digits 7 and 9 from the MNIST training
dataset (image size d = 24 × 24, edge pixels cropped, all pixels rescaled down to [0, 1] and recen-
tered around the mean value) and label each of them with +1 and −1 labels. We perform KRR
with various ridge λ on this dataset with the selected kernel k times and calculate the MSE training
error, risk, and the KARE for every trial (k = 10 for small N and k = 5 for N = 2000). The risk
is approximated using other N2 = 1000 random samples of the MNIST training data.

For the Higgs Dataset. We randomly choose N samples among those that do not have
any missing features marked with −999 from the Higgs training dataset. The samples have d = 31
features, and we normalize each feature column down to [0, 1] by dividing by the maximum absolute
value observed among the selected samples. We replace the categorical labels ‘s’ and ‘b’ with
regression values +1 and −1 respectively and perform KRR with various ridge λ. We repeat this
procedure k times, which corresponds to sampling k different training datasets of N = 1000 samples
to perform kernel regression, and calculate the MSE training error, the risk, and the KARE for
every trial (k = 10 for small N and k = 5 for N = 1000). The risk is approximated using other
N2 = 1000 random samples of the Higgs training data.

197

198
APPENDIX D. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

KARE predicts risk for various Kernels
h
ey

!!
M

S
E

10−810−710−610−510−410−310−210−1 100

0

0.2

0.4

0.6

0.8

1

ridge λ

KARE
Risk
Train err.

(a) MNIST, ` = d

10−2 10−1 100

0

0.1

0.2

1/d·lengthscale `

(b) MNIST, λ = 10−6

10−810−710−610−510−410−310−210−1 100

0

0.2

0.4

0.6

0.8

1

ridge λ

(c) Higgs, ` = d

10−2 10−1 100 101

0

0.2

0.4

0.6

0.8

1

1/d·lengthscale `

(d) Higgs, λ = 10−5

h
ey

!!
M

S
E

10−810−710−610−510−410−310−210−1 100

0

0.2

0.4

0.6

0.8

1

ridge λ

(e) MNIST, ` = d

10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

1/d·lengthscale `

(f) MNIST, λ = 10−5

10−810−710−610−510−410−310−210−1 100

0

0.2

0.4

0.6

0.8

1

ridge λ

(g) Higgs, ` = d

10−2 10−1 100 101

0

0.2

0.4

0.6

0.8

1

1/d·lengthscale `

(h) Higgs, λ = 10−5

Figure D.1.1: Comparison between the KRR risk and the KARE for various choices of normalized
lengthscale /̀d and ridge λ on the MNIST dataset (restricted to the digits 7 and 9, labeled by 1
and −1 respectively, N = 2000) and on the Higgs dataset (classes ‘b’ and ‘s’, labeled by −1 and 1,
N = 1000). We present the results for the Laplacian Kernel K(x, x′) = exp(−‖x−x

′‖2/`) (top row)
and the `1-norm Kernel K(x, x′) = exp(−‖x−x

′‖1/`) (bottom row). KRR predictor risks, and KARE
curves (shown as dashed lines, 5 samples) concentrate around their respective averages (solid lines).

KRR predictor in function space

D.1. NUMERICAL RESULTS 199

3 2 1 0 1 2 3
x

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

y

N = 5, = 10 4

f*(x) = x2 + 2cos(4x)
f

3 2 1 0 1 2 3
x

2

0

2

4

6

8

10

12

y

N = 5, = 0.05
f*(x) = x2 + 2cos(4x)

f

3 2 1 0 1 2 3
x

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

y

N = 15, = 10 4

f*(x) = x2 + 2cos(4x)
f

3 2 1 0 1 2 3
x

2

0

2

4

6

8

10

12

y

N = 100, = 10 4

f*(x) = x2 + 2cos(4x)
f

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

y

N = 1, = 10 4

f*(x) = x2

f

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

y

N = 2, = 10 4

f*(x) = x2

f

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

y

N = 2, = 0.5
f*(x) = x2

f

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y

N = 100, = 10 4

f*(x) = x2

f

Figure D.1.2: KRR predictor in function space for various N and λ for the RBF Kernel K with
` = d = 1. Observations o = δx are sampled with uniform distribution on x ∼ U [−1, 3] (shown in
blue) f̂ ελ is calculated 500 times for different realizations of the training data (10 example predictors
are shown in dashed lines), its mean and ±2 standard deviation are shown in red. The true
function f∗(x) = x2 + 2 cos(4x) is shown in black. Second row. Observations o = δx are sampled
with uniform distribution x ∼ U [0, 1.5] (shown in blue) and f̂ ελ is calculated 100 times. The true
function f∗(x) = x2 is shown in black.

200
APPENDIX D. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

KARE predicts risk in average for small N

h N = 100 N = 500

h
ey

!M
S
E

10−810−710−610−510−410−310−210−1 100

0

0.2

0.4

0.6

0.8

1

ridge λ

KARE
Risk
Train err.

(a) ` = d

10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

1/d·lengthscale `

(b) λ = 10−3

10−810−710−610−510−410−310−210−1 100

0

0.2

0.4

0.6

0.8

1

ridge λ

(c) ` = d

10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

1/d·lengthscale `

(d) λ = 10−4

R
B

F
K

ern
el

h
ey

!M
S
E

10−810−710−610−510−410−310−210−1 100

0

0.2

0.4

0.6

0.8

1

ridge λ

(e) ` = d

10−2 10−1 100

0

0.2

0.4

0.6

1/d·lengthscale `

(f) λ = 10−5

10−810−710−610−510−410−310−210−1 100

0

0.2

0.4

0.6

0.8

1

ridge λ

(g) ` = d

10−2 10−1 100

0

0.1

0.2

0.3

1/d·lengthscale `

(h) λ = 10−5

L
ap

lacian
K

ern
el

h
ey

!M
S
E

10−810−710−610−510−410−310−210−1 100

0

0.2

0.4

0.6

0.8

1

ridge λ

(i) ` = d

10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

1/d·lengthscale `

(j) λ = 10−4

10−810−710−610−510−410−310−210−1 100

0

0.2

0.4

0.6

0.8

1

ridge λ

(k) ` = d

10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

1l/d·lengthscale `

(l) λ = 10−5

`
1
-n

orm
K

ern
el

Figure D.1.3: The estimation predicts the risk in average for small N = {100, 500} on MNIST data.
In the top row, we used the RBF Kernel K(x, z) = exp(−‖x−z‖

2
2/`), in the second row, we used the

Laplacian Kernel K(x, z) = exp(−‖x−z‖2/`), and in the bottom row, we used the `1-norm Kernel
K(x, z) = exp(−‖x−z‖1/`) for various choices of ` and λ. The optimal predictor is calculated using
N random samples (N = 100 for the plots on the left and N = 500 for the ones on the right) from
the training data 10 times (dashed curves) and their average is plotted in the solid curves.

D.1. NUMERICAL RESULTS 201

SCT and its behavior

In general, it is hard to compute the spectrum (dk)k∈N of TK even when one has the knowledge of
the true data distribution. Luckily, following an adaptation from [220, 58], we can obtain an explicit
formula for dk for centered d-dimensional Gaussian distribution with covariance matrix σ2Id, and
RBF Kernel K(x, x′) = exp(−‖x−x′‖2/`). The formula for the distinct eigenvalues λk is

λk =

(√
1

2Aσ2

)d
Bk, (D.1.1)

where A = 1
4σ2 + 1

` + c, B = 1
A` with c = 1

2σ

√
1

4σ2 + 2
` . Each λk has multiplicity

nd(k) =

k∑
j=1

(
d

j

)(
k − 1

j − 1

)
(D.1.2)

for k ≥ 1. In particular, we have nd(0) = 1, nd(1) =
(
d
1

)
, nd(2) =

(
d
2

)
+ d, In general, nd(k) is

the number of ways to partition k into d non-negative integers.
The true SCT is therefore approximated solving the following equation numerically

ϑ = λ+
ϑ

N

k∑
i=1

nd(k)λk
λk + ϑ

. (D.1.3)

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

λ

ϑ
(λ

)

N = 20
N = 100
N = 500
N = 2500

0 100 200 300 400 500

10−5

10−4

10−3

10−2

10−1

N

ϑ
(λ

)

λ = 10−5

λ = 10−3

λ = 10−1

Figure D.1.4: Behavior of SCT as a function of λ and N . True SCT is calculated on the k = 50
biggest distinct eigenvalues using the formula D.1.3 for ` = d = 5 and σ = 1. Red dots are the
approximations obtained using Proposition 5 in the main text, i.e. ϑ ≈ 1/Tr[(1

NK(X,X)− λI)−1].

Note that in the Figure 2 in the main text, we limit the approximation to k = 10 for d = 20
because the multiplicity nd(k) grows polynomially with dk.

202
APPENDIX D. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

D.2 Proofs

Preliminary: Big-P notation

Throughout our proofs, we will frequently rely on a polynomial analogue of the big-O notation,
which we call big-P:

Definition 7. For two functions f and g (of one or several variables, defined on an arbitrary
common domain D), we write f = P(g) if g is nonnegative over D and there exists a polynomial
P with nonnegative coefficients and P(0) = 0 such that |f | ≤ P(g) over D.

Note that the big-O notation corresponds to the case when the polynomial P is of degree at
most one.

Gaussianity Assumption

For the sake of simplicity, our proof are made under the assumptions that the observations are
Gaussian. However we conjecture that as long as the higher moments are bounded/small enough,
the general non-Gaussian case can be reduced to the Gaussian case, up to a small error (as it is
common in random matrix theory).

There are two special cases where a weaker Gaussianity property applies, i.e. that the oiK ∈ C
are Gaussian processes, and is enough for our proofs as everytime O appears in the formulas, it is
composed with K. These two special cases are:

1. For the linear kernel K(x, y) = xT y, oiK is the linear function x 7→ xTi x, which is Gaussian
whenever the inputs xi are sampled from a Gaussian distribution.

2. As noted in [56], this linear case can be generalized to a broader (non-linear) family kernel
K in the large input space limit: as shown in [55], in the large width limit the kernel Gram
matrix G for such kernel K can be approximated by the Gram matrix of a linear kernel (up
to scaling) hence leading back to the previous point.

Let us observe that all the quantities we study (the predictor, the risk and empirical risk) stay
the same if any observation oi is replaced by −oi. Hence a posteriori, by a symmetrization trick we
may remove the assumption that the observations are centered (as in general they are not).

Objects of Interest and general strategy

The central object of our analysis is the N × N Gram matrix OKOT , in particular the related
Stieltjes transform:

m(z) =
1

N
Tr
[
B(z)−1

]
where B(z) = 1

NOKO
T − zIN and z ∈ C \ R+.

From now on, we consider only z ∈ H<0 = {z : <(z) < 0}. Note that m(z) = 1
N

∑
`

1
λ`−z where

λ` ≥ 0 are the real eigenvalues of 1
NOKO

T , hence m(z) lies in the cone Γ spanned by 1 and −1/z,
i.e. Γ = {a− b 1

z |a, b ≥ 0}. We will first show that for z ∈ H<0, the Stieltjes transform concentrates
around the unique solution m̃(z) to the equation

m̃(z) = −1

z

(
1− 1

N
Tr
[
m̃(z)TK (IC + m̃(z)TK)

−1
])

, (D.2.1)

D.2. PROOFS 203

and then show that the linear map

A(z) =
1

N
KOT

(
1

N
OKOT − zIN

)−1

O =
1

N
KOTB(z)−1O

concentrates around the map Ãϑ(−z) = TK (TK + ϑ(−z)IC)−1, where (TKf)(x) = Eo∼π [o(K(x, ·))o(f)] =

〈K(x, ·), f〉S and ϑ(−z) = 1
m̃(z) is the Signal Capture Threshold. From Equation (D.2.1), the SCT

can be also defined as the solution to the equation

ϑ(−z) = −z +
ϑ(−z)
N

Tr
[
TK (TK + ϑ(−z)IC)−1

]
. (D.2.2)

From now on, we denote ϑ(−z) by ϑ. Note that here, in the Appendix, we use the resolvent
notation: in particular the KRR reconstruction operator Aλ is equal to A(−λ).

Spectral decomposition and generalized matrix representation

Throughout this paper it is assumed that there exists an orthonormal basis of continuous functions(
f (k)

)
k
for the scalar product 〈·, ·〉S such that K =

∑
k∈N dkf

(k) ⊗ f (k) and
∑
k∈N dk < ∞. For a

linear map M : C → C, we define the (k, `)−entry of M as:

Mk` =
〈
f (k),Mf (`)

〉
S
.

With this notation, the trace of a linear map M becomes Tr (M) =
∑
k∈NMkk.

Similarly, using the canonical basis (bi)i=1,...,N of RN , we define the entries of O : C → RN and
OT : RN → C∗ by

Oik = bi · Of (k) = oi(f
(k)), OTik = OT bk(f (i)) = bk · Of (i) = ok(f (i)).

Since the observations oi are i.i.d. Gaussians with zero mean and covariance E [oi(f)oi(g)] = 〈f, g〉S
and since

(
f (k)

)
k
is an orthonormal basis for the scalar product 〈·, ·〉S , the entries Oik are i.i.d

standard Gaussians.
Using the spectral decomposition of K, the entries of OKOT are given by:(

OKOT
)
i,j

=
∑
`

d`oi(f
(`))oj(f

(`)),

where the sum converges absolutely (thanks to the trace assumption on K) and the entries of A
are then given by:

Ak`(z) =
dk
N

(O·k)
T

(
1

N
OKOT − zIN

)−1

O·` (D.2.3)

where O·k =
(
oi(f

(k))
)
i=1,...,N

.

Shermann-Morrison Formula

The Shermann-Morrison formula allows one to study how the inverse of a matrix is modified by a
rank one perturbation of the matrix. The matrix OKOT can be seen as a perturbation of OK(k)OT

204
APPENDIX D. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

by the rank one matrix dkO·kOT·k, where K(k) :=
∑
` 6=k d`f

(`) ⊗ f (`). By doing so, one isolates the

contribution of the k-th eigenvalue of K. Thus, one can compute B(z)−1 =
(

1
NOKO

T − zIN
)−1

using the Shermann-Morrison formula:

B(z)−1 = B(k)(z)
−1 − 1

N

dk
1 + dkgk(z)

B(k)(z)
−1O·kOT·kB(k)(z)

−1 (D.2.4)

where B(k)(z) = 1
NOK(k)OT − zIN and gk(z) = 1

NO
T
·kB(k)(z)

−1O·k. A crucial property is that,
since oi

(
f (k)

)
does not appear anymore in OK(k)OT and, since for any ` 6= k and any i, j, we have

that oi
(
f (k)

)
is independent from oj(f

(`)), we obtain that the matrix B(k)(z)
−1 is independent of

O·k.

Remark D.1. Using the diagonalization of B(k)(z)
−1 = UTdiag

(
1

ν`−z

)
U with U orthogonal and

ν` ≥ 0, we have that gk(z) = 1
N

∑
`

[
∑
i U`,ioi(f

(k))]
2

ν`−z lies in the cone spanned by 1 and −1/z, in
particular, <(gk) ≥ 0 on H<0.

As a result of Equations (D.2.3) and (D.2.4), the diagonal entries of the operator A(z) =
1
NKO

TB(z)−1O are equal to

Akk(z) =
dkgk(z)

1 + dkgk(z)
. (D.2.5)

Remark D.2. For any z ∈ H<0, the sum
∑
k |Akk(z)| is almost surely finite. Indeed, notice that∣∣∣∣ dkgk(z)

1 + dkgk(z)

∣∣∣∣ ≤ |dkgk(z)| ≤ 1

N
dk ‖O·k‖2

∥∥B(k)(z)
−1
∥∥

op
.

For any z ∈ H<0,
∥∥B(k)(z)

−1
∥∥

op
≤ 1
|z| and thus∣∣∣∣ dkgk(z)

1 + dkgk(z)

∣∣∣∣ ≤ 1

N |z|
dk ‖O·k‖2 .

Since E
[∑

k dk ‖O·k‖
2
]

= NTr[TK] <∞, we have that
∑
k |Akk(z)| is almost surely finite.

The operator A is therefore a.s. trace-class and Tr(A) =
∑
k

dkgk(z)
1+dkgk(z) , where the sum is

absolutely convergent.

Another important observation is that the Stieltjes transform m(z) and the gk(z) are closely
related.

Lemma D.1. For any z ∈ H<0, a.s. we have

m(z) = −1

z

(
1− 1

N

∞∑
k=1

dkgk(z)

1 + dkgk(z)

)
. (D.2.6)

Proof. Indeed, using the trivial relation Tr
[
B(z)B(z)−1

]
= N , expandingB(z), we obtain Tr

[
1
NOKO

TB(z)−1
]
−

zTr
[
B(z)−1

]
= N . Since O is an operator from C to RN , which is a finite dimensional space, we

can apply the cyclic property of the trace and obtain Tr
[

1
NOKO

TB(z)−1
]

= Tr [A(z)]. Thus,

Tr [A(z)]− zTr
[
B(z)−1

]
= N.

D.2. PROOFS 205

Dividing both sides by N and using Equation (D.2.5), we obtain

1 =
1

N

∞∑
k=1

dkgk(z)

1 + dkgk(z)
− zm(z),

hence the result.

Concentration of the Stieltjes Transform

We will now show that gk(z) = 1
NO

T
·kB(k)(z)

−1O·k is close to 1
NTr

(
B(k)(z)

−1
)
, as suggested by

the fact that by Wick’s formula E[gk] = 1
NTr

(
E
[
B(k)(z)

−1
])
. Since B(z) is obtained using a rank

one permutation of B(k)(z), 1
NTr

(
B(k)(z)

−1
)
is close to the Stieltjes transform m. As a result, all

the gk’s are close to the Stieltjes transform m: it is natural to think that for z ∈ H<0, both gk(z)’s
and m(z) should concentrate around the unique solution m̃(z) in the cone spanned by 1 and −1/z
of the equation

m̃(z) = −1

z

(
1− 1

N

∞∑
k=1

dkm̃(z)

1 + dkm̃(z)

)
. (D.2.7)

Remark D.3. The existence and the uniqueness of the solution in the cone spanned by 1 and −1/z
of the equation can be argued as follows. If in Equation (D.2.7) we truncate the series and consider
the sum of the first M terms, one can show that there exists a unique fixed point m̃M (z) in the
region R given by intersection between the cone spanned by 1 and −1/z and the cone spanned by z
and 1/z translated by +1 and multiplied by −1/z (see Lemma C.6 in the Supplementary Material of
[102]). Since R is a compact region, we can extract a converging subsequence that solves Equation
(D.2.7), the limit of which can be showed to be unique, again using the same arguments of Lemma
C.6 in the Supplementary Material of [102].

From now on we omit the z dependence and we set m = m(z), m̃ = m̃(z) and gk(z) = gk.

Concentration bounds

Using Equation D.2.6 and the definition of the fixed point m̃ (Equation D.2.7), we obtain the
following formula for the difference between the Stieltjes transform m and m̃:

m̃−m =
1

z

1

N

∞∑
k=1

dk (m̃− gk)

(1 + dkm̃)(1 + dkgk)

=
m̃−m
z

1

N

∞∑
k=1

dk
(1 + dkm̃)(1 + dkgk)

+
1

z

1

N

∞∑
k=1

dk (m− gk)

(1 + dkm̃)(1 + dkgk)
,

where the well-posedness of the two infinite sums of the r.h.s is granted by the fact that:

1.
∣∣∣ dk

(1+dkm̃)(1+dkgk)

∣∣∣ ≤ dk since < (m̃) ,<(gk) are positive, thus the first sum is absolutely conver-
gent,

2. being the difference of two absolutely convergent series, the second sum is also absolutely con-
vergent.

206
APPENDIX D. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

As a consequence, the difference m̃−m can be expressed as

m̃−m =

1
N

∑∞
k=1

dk(m−gk)
(1+dkm̃)(1+dkgk)

z − 1
N

∑∞
k=1

dk
(1+dkm̃)(1+dkgk)

, (D.2.8)

which allows us to show the concentration of m around m̃ from the concentration of gk around m.
Regarding the concentration of the gk’s around m, we have the following result:

Lemma D.2. For any N, s ∈ N and any z ∈ H<0, we have

E
[
|m− gk|2s

]
≤ cs

|z|2sNs
,

E
[∣∣m−m(k)

∣∣2s] ≤ 1

|z|2sN2s
.

where cs only depends on s.

Proof. The second inequality will be proven while proving the first one. Let m(k) = 1
NTr

[
B−1

(k)

]
where B(k) was defined in Section D.2. By convexity:

E
[
|m− gk|2s

]
≤ 22s−1E

[∣∣m−m(k)

∣∣2s]+ 22s−1E
[∣∣m(k) − gk

∣∣2s] . (D.2.9)

Bound on E[|m−m(k)|2s]: We obtain the bound on the expectation by showing that a deterministic
bound holds for the random variable |m−m(k)|2s. Using the Sherman-Morrison formula (Equation
(D.2.4)), and using the cyclic property of the trace,

m = m(k) −
1

N

dkg
′
k

1 + dkgk

since the derivative g′k(z) of gk(z) is equal to 1
NO

T
·kB(z)−2O·k. As a result, we obtain

∣∣m−m(k)

∣∣2s =

1
N2s

d2s
k |g′k|2s
|1+dkgk|2s

. Using the fact that |1 + dkgk| ≥ |dkgk| since < (gk) ≥ 0,

∣∣m−m(k)

∣∣2s ≤ 1

N2s

|g′k|
2s

|gk|2s
.

Notice now that∣∣∣∣g′kgk
∣∣∣∣ =

∣∣∣∣∣OT·kB(k)(z)
−2O·k

OT·kB(k)(z)−1O·k

∣∣∣∣∣ ≤ max
w∈RN

∣∣∣∣∣wTB(k)(z)
−2w

wTB(k)(z)−1w

∣∣∣∣∣ ≤ ∥∥B(k)(z)
−1
∥∥

op
.

The eigenvalues of B(k)(z)
−1 are given by 1

λi−z where the λi > 0 are the eigenvalues of the symmetric
matrix 1

NOK(k)OT :
∥∥B(k)(z)

−1
∥∥

op
≤ maxi

1
|λi−z| is also bounded by 1

|z| if z ∈ H<0. Thus we get

∣∣m−m(k)

∣∣2s ≤ 1

|z|2sN2s
.

D.2. PROOFS 207

Bound on E[|m(k) − gk|2s]: The term E
[((

m(k) − gk
) (
m(k) − gk

))s]
is equal to

E
[((

1

N
Tr
[
B−1

(k)

]
− 1

N
OT·kB−1

(k)O·k
)(

1

N
Tr
[
B−1

(k)

]
− 1

N
OT·kB−1

(k)O·k
))s]

.

Let B =
(
B(k), B(k), . . . , B(k), B(k)

)
and let us denote by B(i) the ith element of B. Using Wick’s

formula (Lemma D.9), we have

E
[∣∣m(k) − gk

∣∣2s] =
1

Ns

∑
σ∈S†2s

1

Ns−c(σ)
22s−c(σ)E

 ∏
c cycle of σ

1

N
Tr

[∏
i∈c

B(i)

] ,
where we recall that S†2s is the set of permutations with no fixed points and the product over i is
taken according to the order given by the cycle c and does not depend on the starting point. Using
the fact that the eigenvalues of B(k) are of the form 1/(λi−z) with λi ≥ 0,∣∣∣∣∣ 1

N
Tr

[∏
i∈c

B(i)

]∣∣∣∣∣ ≤ 1

|z|#c
.

Hence,

E
[∣∣m(k) − gk

∣∣2s] ≤ 1

Ns

1

|z|2s
∑
σ∈S†2s

22s−c(σ)

Ns−c(σ)
.

Note that, since σ ∈ S†2s, it has no fixed point, hence c(σ) ≤ s and thusKs := supN
∑
σ∈S†2s

22s−c(σ)

Ns−c(σ)

is finite. This yields the inequality

E
[∣∣m(k) − gk

∣∣2s] ≤ Ks

|z|2sNs
.

Using the two bounds on E
[∣∣m−m(k)

∣∣2s] and E
[∣∣m(k) − gk

∣∣2s] in Equation (D.2.9), we get

E
[
|m− gk|2s

]
≤ cs

|z|2sNs
,

where cs = 22s−1 [1 +Ks].

As a result, we can show the concentration of the Stieltjes transform m and of the gk’s around
the fixed point m̃:

Proposition D.1. For any N, s ∈ N, and any z ∈ H<0, we have

E
[
|m̃−m|2s

]
≤ cs (Tr[TK])

2s

|z|4sN3s
,

E
[
|m̃− gk|2s

]
≤ 22s−1cs (Tr[TK])

2s

|z|4sN3s
+

22s−1cs

|z|2sNs
.

where cs is the same constant as in Lemma D.2.

208
APPENDIX D. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

Proof. The second bound is a direct consequence of the first one, Lemma D.2 and convexity. It
remains to prove the first bound. Recall Equation (D.2.8)

m̃−m =

1
N

∑∞
k=1

dk(m−gk)
(1+dkm̃)(1+dkgk)

z − 1
N

∑∞
k=1

dk
(1+dkm̃)(1+dkgk)

.

We first bound from below the norm of the denominator using Lemma D.12: since m̃ and gk all lie
in the cone spanned by 1 and −1/z we have∣∣∣∣∣z − 1

N

∞∑
k=1

dk
(1 + dkm̃)(1 + dkgk)

∣∣∣∣∣ ≥ |z| .
Using this bound, we can bound from below E

[
|m̃−m|2s

]
by:

1

|z|2sN2s

∞∑
k1,...,k2s=1

dk1
· · · dk2s

|1 + dk1
m̃| · · · |1 + dk2s

m̃|
E [|m− gk1

| · · · |m− gk2s
|] ,

and hence, using a generalization of Cauchy-Schwarz inequality (Lemma D.11), by:

1

|z|2sN2s

∞∑
k1,...,k2s=1

dk1
· · · dk2s

|1 + dk1m̃| · · · |1 + dk2sm̃|

(
E
[
|m− gk1

|2s
]
· · ·E

[
|m− gk2s

|2s
]) 1

2s

.

Using the fact that < (m̃) ≥ 0 and hence |1 + dk1
m̃| ≥ 1, and using Lemma D.2, this gives the

following upper bound:
E
[
|m− gk|2s

]
≤ cs

|z|4sN3s
(Tr[TK])

2s
.

We now give tighter bounds for |m̃− E [m]| and |m̃− E [gk]|:

Proposition D.2. For any N ∈ N and any z ∈ H<0, we have

|m̃− E [m]| ≤ Tr[TK]

|z|2N2
+

2c1 (Tr[TK])
2

|z|3N2
+

2c1 (Tr[TK])
4

|z|5N4
,

|m̃− E [gk]| ≤ 1

|z|N
+

Tr[TK]

|z|2N2
+

2c1 (Tr[TK])
2

|z|3N2
+

2c1 (Tr[TK])
4

|z|5N4
,

where c1 is the constant in Lemma D.2.

Proof. First bound: Following similar ideas to the one which provided Equation (D.2.8), notice
that

m̃−m =
1

z

1

N

∞∑
k=1

dk (m̃− gk)

(1 + dkm̃)(1 + dkgk)

D.2. PROOFS 209

=
1

z

1

N

∞∑
k=1

dk (m̃− gk)

(1 + dkm̃)2
+

1

z

1

N

∞∑
k=1

d2
k (m̃− gk)

2

(1 + dkm̃)2(1 + dkgk)

=
m̃−m
z

1

N

∞∑
k=1

dk
(1 + dkm̃)2

+
1

z

1

N

∞∑
k=1

dk (m− gk)

(1 + dkm̃)2
+

1

z

1

N

∞∑
k=1

d2
k (m̃− gk)

2

(1 + dkm̃)2(1 + dkgk)
,

hence the new identity:

m̃−m =

1
N

∑∞
k=1

dk(m−gk)
(1+dkm̃)2 + 1

N

∑∞
k=1

d2
k(m̃−gk)2

(1+dkm̃)2(1+dkgk)

z − 1
N

∑∞
k=1

dk
(1+dkm̃)2

.

Again, using Lemma D.12, the norm of the denominator is bounded from below by |z| . From
Lemma D.9, E [gk] = E

[
m(k)

]
, and thus from Lemma D.2, |E [m− gk]| ≤ E

[∣∣m−m(k)

∣∣] ≤ 1
|z|N .

Furthermore, from Proposition D.1, E
[
|gk − m̃|2

]
≤ 2c1(Tr[TK])2

|z|4N3 + 2c1

|z|2N . Thus, the expectation of
the numerator is bounded by

1

|z|N2

∞∑
k=1

dk

|1 + dkm̃|2
+

(
2c1 (Tr[TK])

2

|z|4N4
+

2c1

|z|2N2

) ∞∑
k=1

d2
k

|1 + dkm̃|2
.

Hence, using again the inequality |1 + dkm̃| ≥ 1, it is bounded by

Tr[TK]

|z|N2
+

2c1 (Tr[TK])
2

|z|2N2
+

2c1 (Tr[TK])
4

|z|4N4
.

This allows us to conclude that

|m̃− E [m]| ≤ Tr[TK]

|z|2N2
+

2c1 (Tr[TK])
2

|z|3N2
+

2c1 (Tr[TK])
4

|z|5N4
.

Second bound: Since E [gk] = E
[
m(k)

]
, one has

|m̃− E [gk]| ≤
∣∣m̃− m̃(k)

∣∣+
∣∣m̃(k) − E

[
m(k)

]∣∣ ,
where m̃(k) is the unique solution in the cone spanned by 1 and −1/z to the equation

m̃(k) = −1

z

1− 1

N

∞∑
m6=k

dmm̃(k)

1 + dmm̃(k)

 .

From Lemma D.13,
∣∣m̃− m̃(k)

∣∣ ≤ 1
|z|N . The second term

∣∣m̃(k) − E
[
m(k)

]∣∣ is bounded by applying
the first bound of this proposition to the Stieltjes transform m(k). As a result, we obtain

|m̃− E [gk]| ≤ 1

|z|N
+

Tr[TK]

|z|2N2
+

2c1 (Tr[TK])
2

|z|3N2
+

2c1 (Tr[TK])
4

|z|5N4
.

210
APPENDIX D. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

Properties of the effective dimension and SCT

General properties

We begin with general properties on the Signal Capture Threshold ϑ (which depends on λ,N and
on the eigenvalues dk of TK), valid for any kernel K.

Proposition D.3. For any λ > 0, we have

λ < ϑ(λ,N) ≤ λ+
1

N
Tr[TK], 1 ≤ ∂λϑ(λ,N) ≤ 1

λ
ϑ(λ,N),

moreover ϑ(λ,N) is decreasing as a function of N and ∂λϑ(λ,N) is decreasing as a function of λ.

Proof. Let λ > 0.

1. Recall that ϑ(λ) is the unique positive real number such that

ϑ(λ) = λ+
ϑ(λ)

N
Tr
[
TK (TK + ϑ(λ)IC)

−1
]
.

Since TK is a positive operator, Tr
[
TK (TK + ϑ(λ)IC)

−1
]
≥ 0 and thus ϑ(λ) ≥ λ. Moreover,

TK + ϑ(λ)IC ≥ ϑ(λ)IC , thus

TK (TK + ϑ(λ)IC)
−1 ≤ TK

ϑ(λ)

and thus ϑ(λ) ≤ λ+ 1
NTr [TK], which gives the desired inequality.

2. Differentiating Equation (D.2.2), the derivative ∂λϑ(λ) is given by:

∂λϑ(λ) =
1(

1− 1
NTr

[(
TK (TK + ϑ(λ)IC)

−1
)2
]) . (D.2.10)

Using the fact that TK (TK + ϑ(λ)IC)
−1 ≤ IC , one has(

TK (TK + ϑ(λ)IC)
−1
)2

≤ TK (TK + ϑ(λ)IC)
−1
,

thus 0 ≤ 1
NTr

[(
TK (TK + ϑ(λ)IC)

−1
)2
]
≤ 1

NTr
[
TK (TK + ϑ(λ)IC)

−1
]
. Using Equation (D.2.2),

1
NTr

[
TK (TK + ϑ(λ)IC)

−1
]

= 1− λ
ϑ(λ) . This yields

0 ≤ λ

ϑ(λ)
≤ 1− 1

N
Tr

[(
TK (TK + ϑ(λ)IC)

−1
)2
]
≤ 1.

Inverting this inequality yields the desired inequalities.

3. In order to study the variation of ϑ(λ,N) as a function of N , we take the derivatives of Equation
(D.2.2) w.r.t λ and N , and notice that

∂Nϑ(λ,N) =
1

N
(λ− ϑ)∂λϑ(λ,N).

In particular, since ϑ > λ and ∂λϑ ≥ 1, we get that ∂Nϑ(λ,N) < 0 hence ϑ(λ,N) is decreasing
as a function of N .

D.2. PROOFS 211

4. Finally, we conclude by noting that since ∂λϑ(λ,N) > 0, ϑ(λ,N) is an increasing function of λ
and thus, from the Equation (D.2.10) we have that ∂λϑ(λ,N) is decreasing as a function of ϑ
and thus as a function of λ.

Bounds under polynomial decay hypothesis

In this subsection only, we assume that dk = Θ(k−β) with β > 1, i.e, there exist c` and ch positive
such that for any k ≥ 1, c`k−β ≤ dk ≤ chk

−β . We first study the asymptotic behavior of ϑ(0, N)
and ∂λϑ(0, N) as N goes to infinity, then using these results, we investigate the asymptotic behavior
of ϑ(λ,N) and ∂λϑ(λ,N) as N goes to infinity.

For any t ∈ R+, let N (t) denote the t-effective dimension [238, 29] defined by

N (t) :=

∞∑
k=1

dk
t+ dk

.

For any λ > 0, the SCT is the unique solution of ϑ (λ,N) = λ + ϑ(λ,N)
N N (ϑ(λ,N)). In particular,

ϑ(0, N) is the unique solution of N (ϑ(0, N)) = N .
Since N (t) is decreasing from ∞ to 0, in order to study the asymptotic behavior of ϑ(0, N) as

N goes to infinity, one has to understand the rate of explosion of N (t) as t goes to zero, as given
by the following Lemma (also found in [9, 239]):

Lemma D.3. If dk = Θ(k−β) with β > 1, then N (t) = Θ(t−
1
β) when t→ 0.

Proof. For any m ∈ R+, N (t) =
∑
k≤m

dk
t+dk

+
∑∞
k>m

dk
t+dk

≤ m+ t−1
∑
k>m dk. Then there exists

c, d > 0 such that
∑
k>m dk ≤ c

∑
k>m k

−β ≤ dm1−β . Thus N (t) is bounded by m+ dt−1m1−β for
any m. Taking m = t−1m1−β , i.e. m = t−

1
β , one gets that N (t) ≤ Ct−

1
β .

For the lower bound, notice that N (t) ≥
∑
k|dk≥t

dk
t+dk

≥ 1
2# {k | dk ≥ t}. Using the fact that

there exists c` > 0 such that dk ≥ c`k
−β , # {k | dk ≥ t} ≥ #

{
k | c`k−β ≥ t

}
=
⌊
(t/c`)

− 1
β

⌋
. This

yields the lower bound on N (t).

Lemma D.4. If dk = Θ(k−β) with β > 1, then ϑ(0, N) = Θ
(
N−β

)
.

Proof. From the previous lemma, there exist b`, bh > 0 such that b`ϑ(0, N)−
1
β ≤ N (ϑ(0, N)) ≤

bhϑ(0, N)−
1
β . From the definition of ϑ(0, N), N (ϑ(0, N)) = N , thus we get (N/b`)

−β ≤ ϑ(0, N) ≤
(N/bh)

−β
.

With no assumption on the spectrum of TK , the upper bound for the derivative of the SCT ∂λϑ
obtained in Proposition D.3, becomes useless in the ridgeless limit λ→ 0. Yet, with the assumption
of power-law decay of the eigenvalues of TK we can refine the bound with a meaningful one. In
order to obtain this we first prove a technical lemma.

Lemma D.5. If dk = Θ(k−β) with β > 1, then supN ∂λϑ(0, N) <∞.

212
APPENDIX D. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

Proof. The derivative of the SCT with respect to λ at λ = 0 is given by:

∂λϑ(0, N) =
N

ϑ(0, N)
∑∞
k=1

dk
(ϑ(0,N)+dk)2

.

Set α > 1, then for all dk ∈ [α−1t, αt], we have that dk
(t+dk)2 ≥ αt

(t+αt)2 = α
(1+α)2

1
t . Thus,

t

∞∑
k=1

dk
(t+ dk)2

≥ t
∑

α−1t<dk<αt

dk
(t+ dk)2

≥ α

(1 + α)2
#{k | α−1t < dk < αt}.

It follows that

∂λϑ(0, N) ≤ N (1 + α)2

α

1

#{k | α−1ϑ(0, N) < dk < αϑ(0, N)}
Now, using Lemma D.4, we are going to find a value of α such that #{k | α−1ϑ(0, N) < dk <
αϑ(0, N)} ≥ cN for some universal constant c: this will conclude the proof.

By using the assumption that there exist c`, ch > 0 such that c`k−β ≤ dk ≤ chk
−β , in Lemma

D.4 we saw that there exist c′`, c
′
h > 0 such that c′`N

−β ≤ ϑ(0, N) ≤ c′hN−β . For sake of simplicity,
let us assume that the ratios c`

c′`
and ch

c′h
are not integer. Hence we have

#{k | α−1ϑ(0, N) ≤ dk ≤ αϑ(0, N)} ≥ #

{
k | 1

αc`
ϑ(0, N) ≤ k−β ≤ α

ch
ϑ(0, N)

}
≥ #

{
k | 1

αc`
c′hN

−β ≤ k−β ≤ α

ch
c′`N

−β
}

=

(⌊(
αc`
c′h

) 1
β

⌋
−

⌊(
ch
αc′`

) 1
β

⌋)
N

For one of the two values α ∈ { chc` , α =
c′h
c′`
}, we have a meaningful (positive) bound:

#
{
k | α−1ϑ(0, N) ≤ dk ≤ αϑ(0, N)

}
≥

∣∣∣∣∣
⌊(

ch
c′h

) 1
β

⌋
−

⌊(
c`
c′`

) 1
β

⌋∣∣∣∣∣N.
This allows us to conclude.

Proposition D.4. If there exist β > 1 and c`, ch > 0 s.t. for any k ∈ N, c`k−β ≤ dk ≤ chk
−β,

then for any integer N ,

1. λ+ a`N
−β ≤ ϑ(λ,N) ≤ cλ+ ahN

−β,

2. 1 ≤ ∂λϑ(λ,N) ≤ c,

where a`, ah ≥ 0 and c ≥ 1 depend only on c`, ch, β.

Proof. We start by proving the inequalities for the derivative of the SCT ∂λϑ(λ,N). The left side
of the inequality has already been proven in Proposition D.3. For the right side, from Proposition
D.3, the derivative ∂λϑ(λ,N) is decreasing in λ. In particular, by Lemma D.5, ∂λϑ(λ,N) ≤
supN ∂λϑ(0, N) <∞. Thus, the right side holds with c := supN ∂λϑ(0, N).

The inequality for the SCT ϑ(λ,N) is then obtained by integrating the second inequality and
by using the initial value condition a`N−β ≤ ϑ(0, N) ≤ ahN−β provided by Lemma D.4.

D.2. PROOFS 213

The Operator A(z)

We have now the tools to describe the moments of the operator A(z) which allow us to describe
the moments of the predictor f̂λ.

Expectation

Writing Ãϑ(−z) = TK (TK + ϑ(−z)IC)−1 and for any diagonalizable operator A writing |A| for the
operator with the same eigenfunctions but with eigenvalues replaced by their absolute values, we
have:

Theorem D.1. For any z ∈ H<0, for any f, g ∈ C, we have∣∣∣〈f,(E [A(z)]− Ãϑ(−z)

)
g
〉
S

∣∣∣ ≤ ∣∣∣〈f, |Ãϑ(−z)||IC − Ãϑ(−z)|g
〉
S

∣∣∣ (1

N
+ P

(
Tr[K]

|z|N

))
(D.2.11)

using the big-P notation of Definition 7.

Remark D.4. Note that in particular since the polynomial implicitly embedded in P vanishes at 0,
the right hand side tends to 0 as N →∞.

Proof. As before, let (f (k))k∈N be the orthonormal basis of C defined above andAk`(z) = 〈f (k), A(z)f (`)〉S .
Using a symmetry argument, we first show that for any ` 6= k, E [A`k(z)] = 0: this implies that
E [A(z)] and Ãϑ(−z) have the same eigenfunctions f (k). Thus, to conclude the proof, we only need
to prove Equation D.2.11 for f = g = f (k).

• Off-Diagonal terms: By a symmetry argument, we show that the off-diagonal terms are null.
Consider the map sk : C → C defined by sk : f 7→ f − 2

〈
f, f (k)

〉
S
f (k), and note that sk(f (m)) =

f (m) if m 6= k and sk(f (k)) = −f (k). The map sk is a symmetry for the observations, i.e.
for any observations o1, . . . , oN , and any functions f1, . . . , fN , the vector (oi(sk(fi))i=1,...,N and
(oi(fi))i=1,...,N have the same law. Thus, the sampling operator O and the operator Osk have
the same law, hence so do A(z) and Ask(z), where

Ask(z) :=
1

N
KsTkOT (

1

N
OskKsTkOT − zIN)−1Osk.

Note that KsTk = skK and since s2
k = Id, skKsTk = K. This implies that Ask(z) = skA(z)sk.

For any ` 6= k, Ask`k(z) = −A`k(z), hence E[A`k(z)] = 0.

• Diagonal terms: Using Equation D.2.5, we have

Akk(z) =
dkgk

1 + dkgk
=

dkm̃

1 + dkm̃
+

dk(gk − m̃)

(1 + dkm̃) (1 + dkgk)

=
dkm̃

1 + dkm̃
+
dk(gk − m̃)

(1 + dkm̃)
2 −

d2
k(gk − m̃)2

(1 + dkm̃)
2

(1 + dkgk)
.

From this, using the fact that <(gk) > 0, we obtain

∣∣∣∣E [Akk(z)]− dkm̃

1 + dkm̃

∣∣∣∣ ≤ dk |E [gk]− m̃|
|1 + dkm̃|2

+
d2
kE
[
|gk − m̃|2

]
|1 + dkm̃|2

.

214
APPENDIX D. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

Using Proposition D.2, we can bound the first fraction by

dk |E [gk]− m̃|
|1 + dkm̃|2

≤ dk

|1 + dkm̃|2

(
1

|z|N
+

Tr[TK]

|z|2N2
+

2c1 (Tr[TK])
2

|z|3N2
+

2c1 (Tr[TK])
4

|z|5N4

)

≤ dk|ϑ(−z)|2

|ϑ(−z) + dk|2

(
1

|z|N
+

Tr[TK]

|z|2N
+

2c1 (Tr[TK])
2

|z|3N2
+

2c1 (Tr[TK])
4

|z|5N4

)

≤ dk
|ϑ(−z) + dk|

∣∣∣∣1− dk
ϑ(−z) + dk

∣∣∣∣ (1

N
+ P

(
Tr[TK]

|z|N

))
,

by substituting ϑ(−z) = 1
m̃(z) , using the bound |ϑ(−z)| ≤ |z|+ Tr[TK]

N (see Proposition D.3).

Using Proposition D.1, the inequality d2
k ≤ dkTr[TK] and similar arguments as above, we can

bound the second fraction by

d2
kE
[
|gk − m̃|2

]
|1 + dkm̃|2

≤ d2
k

|1 + dkm̃|2

(
2c1 (Tr[TK])

2

|z|4N3
+

2c1

|z|2N

)

≤ dk|ϑ(−z)|2

|ϑ(−z) + dk|2

(
2c1 (Tr[TK])

3

|z|4N3
+

2c1Tr[TK]

|z|2N

)

≤ dk
|ϑ(−z) + dk|

∣∣∣∣1− dk
ϑ(−z) + dk

∣∣∣∣P (Tr[TK]

|z|N

)
Finally, putting everything together, we get:∣∣∣∣E [Akk(z)]− dkm̃

1 + dkm̃

∣∣∣∣ ≤ dk
|ϑ(−z) + dk|

∣∣∣∣1− dk
ϑ(−z) + dk

∣∣∣∣ (1

N
+ P

(
Tr[TK]

|z|N

))
(D.2.12)

Variance

To study the variance of A(z) we will need to apply the Shermann-Morrison formula twice, to
isolate the contribution of the two eigenfunctions f (k) and f (`). Similarly to above, we set K(k`) =∑
n/∈{k,`} dnf

(n) ⊗ f (n) and we define

B(k`)(z) =
1

N
OK(k`)OT − zIN , m(k`)(z) =

1

N
Tr
[
B(k`)(z)

−1
]
.

Note that the concentration results of Section D.2 apply to m(k`): it concentrates around m̃(k`),
the unique solution, in the cone spanned by 1 and −1/z, to the equation

m̃(k`) = −1

z

(
1−

m̃(k`)

N
Tr
[
TK(k`)

(
TK(k`)

+ m̃(k`)IC
)−1
])

.

In order to compute the off-diagonal entry Ak`(z) = 1
N dkO

T
.kB(z)−1O.`, we use the Shermann-

Morrison formula twice: when applied to B(z) = B(k)(z) + dk
N O.kO

T
.k we get

B(z)−1 = B(k)(z)
−1 − dk

N

B(k)(z)
−1O.kOT.kB(k)(z)

−1

1 + dk
N O

T
.kB(k)(z)−1O.k

;

D.2. PROOFS 215

thus, recalling that g(k) = 1
NO

T
.,kB(k)(z)

−1O.,k, we have

Ak`(z) =
dk

1 + dkgk

1

N
OT.kB(k)(z)

−1O.`.

We then apply the Shermann-Morrison formula to B(k)(z) = B(k`)(z) + d`
NO.`O

T
.` and obtain

B(k)(z)
−1 = B(k`)(z)

−1 − d`
N

B(k`)(z)
−1O.`OT.`B(k`)(z)

−1

1 + d`
NO

T
.`B(k`)(z)−1O.`

.

Thus, we obtain the following formula for the off-diagonal entry:

Ak`(z) =
dk

1 + dkgk

hk`
1 + d`h`

(D.2.13)

where h` = 1
N (O.`)T B−1

(k`)(z)O.` and hk` = 1
N (O.k)

T
B−1

(k`)(z)O.`.
We can apply the results of Section D.2 showing the concentration of gk around m̃(k): h`

concentrates around m̃(k) which itself is close to m̃:

Lemma D.6. For z ∈ H<0, and s ∈ N, we have

E
[
|h` − m̃|2s

]
≤ as (Tr[TK])

2s

|z|4sN3s
+

bs

|z|2sNs
,

where as, bs only depend on s.

Proof. By convexity, for k 6= `,

E
[
|h` − m̃|2s

]
≤ 22s−1E

[∣∣h` − m̃(k)

∣∣2s]+ 22s−1
∣∣m̃(k) − m̃

∣∣2s
≤ 22s−1

(
22s−1cs (Tr[TK])

2s

|z|4sN3s
+

22s−1cs

|z|2sNs

)
+

22s−1

|z|2sN2s

where for the first term, we applied Proposition D.1 to the matrix B(k) instead of B and the
second term is bounded by

∣∣m̃(k) − m̃
∣∣ ≤ 1

|z|N by Lemma D.13. Finally, letting as = 42s−1cs and
bs = 42s−1cs + 22s−1, we obtain the result.

The scalar hk` on the other hand has 0 expectation and, using Wick’s formula (Lemma D.9), its
variance E

[
h2
k`

]
is equal to 1

N2E[Tr[B−2
(k`)]] = 1

NE
[
∂zm(k`)(z)

]
. Since E

[
m(k`)(z)

]
is close to m̃(z),

from Lemma D.10, its derivative, and hence the variance of hk`, is close to 1
N ∂zm̃:

Lemma D.7. For z ∈ H<0, we have:

∣∣E [m(k`)(z)
]
− m̃(z)

∣∣ ≤ Tr[TK]

|z|2N2
+

2c1 (Tr[TK])
2

|z|3N2
+

2c1 (Tr[TK])
4

|z|5N4
+

2

|z|N
,

where c1 is as in Proposition D.2.

216
APPENDIX D. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

Proof. We use Proposition D.2 and Lemma D.13 twice to obtain∣∣E [m(k`)(z)
]
− m̃(z)

∣∣ ≤ ∣∣E [m(k`)(z)
]
− m̃(k`)(z)

∣∣+
∣∣m̃(k`)(z)− m̃(k)(z)

∣∣+
∣∣m̃(k)(z)− m̃(z)

∣∣
≤ Tr[TK]

|z|2N2
+

2c1 (Tr[TK])
2

|z|3N2
+

2c1 (Tr[TK])
4

|z|5N4
+

2

|z|N
,

which yields the desired result.

To approximate the variance Var
(〈
f (k), Aλf

∗〉
S

)
of the coordinate of the noiseless predictor,

we need the following results regarding the covariance of the entries of A(z).

Proposition D.5. For z ∈ H<0, any k, ` ∈ N, we have∣∣∣∣∣Var (Akk(z))− 2

N

d2
k∂zm̃

(1 + dkm̃)
4

∣∣∣∣∣ ≤ 1

N

d2
k|∂zm̃|

|1 + dkm̃|4

(
1

N
+
|z|
−<(z)

P
(

Tr[TK]

|z|N 1
2

))
∣∣∣∣∣Var (Ak`(z))−

1

N

d2
k∂zm̃

(1 + dkm̃)
2

(1 + d`m̃)
2

∣∣∣∣∣ ≤ 1

N

d2
k|∂zm̃|

|1 + dkm̃|2 |1 + d`m̃|2
|z|
−<(z)

P
(

Tr[TK]

|z|N 1
2

)
∣∣∣∣∣Cov (Ak`(z), A`k(z))− 1

N

dkd`∂zm̃

(1 + dkm̃)
2

(1 + d`m̃)
2

∣∣∣∣∣ ≤ 1

N

dkd`|∂zm̃|
|1 + dkm̃|2 |1 + d`m̃|2

|z|
−<(z)

P
(

Tr[TK]

|z|N 1
2

)
where we use the big-P notation of Definition 7. Whenever a value in the quadruple (k, h, n, `)
appears an odd number of times, we have

Cov (Akh(z), An`(z)) = 0.

Proof. Let sk be the symmetry map in the proof of Theorem D.1: the matrices A(z) and Ask(z)
have the same law. Since Ask`n(z) = −A`n(z) whenever exactly one of `, n is equal to k, we have for
h, n, ` distinct from k:

Cov (Akh(z), An`(z)) = Cov (Askkh(z), Askn`(z)) = Cov (−Akh(z), An`(z))

which implies that Cov (Akh(z), An`(z)) = 0 when h, n, ` are distinct from k. More generally, it is
easy to see that Cov (Akh(z), An`(z)) = 0 whenever a value in the quadruple (k, h, n, `) appears an
odd number of times.

Approximation of Var (Akk(z)): Since E[Akk(z)] ≈ dkm̃
1+dkm̃

(Theorem D.1), we decompose the
variance of Akk(z) as follows:

Var (Akk) = E

[(
Akk −

dkm̃

1 + dkm̃

)2
]
−
[
E [Akk]− dkm̃

1 + dkm̃

]2

.

This gives us an approximation Var (Akk) ≈ E
[(
Akk − dkm̃

1+dkm̃

)2
]
since the term

∣∣∣E [Akk]− dkm̃
1+dkm̃

∣∣∣2,
by using Theorem D.1, we get the following bound :∣∣∣∣E [Akk]− dkm̃

1 + dkm̃

∣∣∣∣2 ≤ ∣∣∣∣ dkm̃

(1 + dkm̃)2

(
1

N
+ P

(
Tr[TK]

|z|N

))∣∣∣∣2

D.2. PROOFS 217

=
1

N

d2
k|m̃|2

|1 + dkm̃|4

(
1

N
+ 2P

(
Tr[TK]

|z|N

)
+NP

(
Tr[TK]

|z|N

)2
)

Since P
(

Tr[TK]
|z|N

)
= P

(
Tr[TK]

|z|N1/2

)
andNP

(
Tr[TK]
|z|N

)2

= P
(

(Tr[TK])2

|z|2N

)
, we can bound

∣∣∣E [Akk]− dkm̃
1+dkm̃

∣∣∣2
by

1

N

d2
k|m̃|2

|1 + dkm̃|4

(
1

N
+ P

(
Tr[TK]

|z|N 1
2

))
.

Using Formula (D.2.5) for the diagonal entries of A, we have:(
Akk −

dkm̃

1 + dkm̃

)2

=
d2
k [gk − m̃]

2

(1 + dkgk)2(1 + dkm̃)2
.

which can be also expressed as:(
dk [gk − m̃]

(1 + dkgk)(1 + dkm̃)

)2

=

(
dk [gk − m̃]

(1 + dkm̃)(1 + dkm̃)
− d2

k [gk − m̃]
2

(1 + dkgk)(1 + dkm̃)2

)2

.

This yields

E

[(
Akk −

dkm̃

1 + dkm̃

)2
]
− E

[(
dk [gk − m̃]

(1 + dkm̃)2

)2
]

= −E

[
d2
k [gk − m̃]

2

(1 + dkgk)(1 + dkm̃)2

(
2dk [gk − m̃]

(1 + dkm̃)(1 + dkm̃)
− d2

k [gk − m̃]
2

(1 + dkgk)(1 + dkm̃)2

)]
.

Using Proposition D.1, the absolute value of the r.h.s. can now be bounded by

d3
k

(
2E
[
|gk − m̃|3

]
+ dkE

[
|gk − m̃|4

])
|1 + dkm̃|4

≤ d3
k

|1 + dkm̃|4
2

(
23c2 (Tr[TK])

4

|z|8N6
+

23c2

|z|4N2

) 3
4

+
d4
k

|1 + dkm̃|4

(
23c2 (Tr[TK])

4

|z|8N6
+

23c2

|z|4N2

)

≤ 2

N

d2
k|m̃|2

|1 + dkm̃|4
Tr[TK]

|m̃|2

(
2

9
4 c

3
4
2 (Tr[TK])

3

|z|6N 7
2

+
2

9
4 c

3
4
2

|z|3N 1
2

)

+
1

N

d2
k|m̃|2

|1 + dkm̃|4
(Tr[TK])2

|m̃|2

(
23c2 (Tr[TK])

4

|z|8N5
+

23c2

|z|4N

)
,

using the inequality (a+ b)
3
4 ≤ a

3
4 + b

3
4 and the fact that dk ≤ Tr[TK]. From Proposition D.3, we

have 1
m̃2 ≤

(
|z|+ Tr[TK]

N

)2

, so that∣∣∣∣∣E
[(

Akk −
dkm̃

1 + dkm̃

)2
]
− E

[(
dk [gk − m̃]

(1 + dkm̃)2

)2
]∣∣∣∣∣ ≤ 1

N

d2
k|m̃|2

|1 + dkm̃|4
P
(

Tr[TK]

|z|N 1
2

)
.

218
APPENDIX D. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

This yields the approximation Var (Akk) ≈ d2
kE[(gk−m̃)2]
(1+dkm̃)4 .

Using Wick’s formula (Lemma D.9),

E
[
(gk − m̃)

2
]

= E
[(
m(k) − m̃

)2]
+

2

N
E[∂zm(k)(z)],

hence we get:
d2
kE
[
(gk − m̃)

2
]

(1 + dkm̃)4
=

2
N d

2
k∂zE[m(k)(z)]

(1 + dkm̃)4
+
d2
kE
[(
m(k) − m̃

)2]
(1 + dkm̃)4

.

Using Proposition D.1,

d2
kE
[∣∣m(k) − m̃

∣∣2]
|1 + dkm̃|4

≤ d2
k

|1 + dkm̃|4

∣∣∣∣c1(Tr[TK])2

|z|4N3

∣∣∣∣
≤ 1

N

d2
k|m̃|2

|1 + dkm̃|4
P
(

Tr[TK]

|z|N

)
,

hence the approximation Var (Akk) ≈
2
N d

2
k∂zE[m(k)(z)]

(1+dkm̃)4 .
At last, by using the approximation E[∂zm(k)(z)] = E[∂zgk(z)] ≈ ∂zm̃(z) (Proposition D.2 and

Lemma D.10), we obtain∣∣∣∣∣ 2
N d

2
k∂zE[m(k)(z)]

(1 + dkm̃)4
−

2
N d

2
k∂zm̃(z)

(1 + dkm̃(z))4

∣∣∣∣∣
≤ 2

N

d2
k

|1 + dkm̃|4
2

−<(z)

(
22Tr[TK]

|z|2N2
+

24c1 (Tr[TK])
2

|z|3N2
+

26c1 (Tr[TK])
4

|z|5N4
+

22

|z|N

)

≤ 2

N

d2
k|m̃|2

|1 + dkm̃|4
2|z|
−<(z)

P
(

Tr[TK]

|z|N

)
.

Hence we get the approximation Var (Akk) ≈
2
N d

2
k∂zm̃(z)

(1+dkm̃(z))4 , more precisely
∣∣∣Var (Akk)−

2
N d

2
k∂zm̃(z)

(1+dkm̃(z))4

∣∣∣
is bounded by

2

N

d2
k|m̃|2

|1 + dkm̃|4

(
1

N
+ P

(
Tr[TK]

|z|N 1
2

)
+ P

(
Tr[TK]

|z|N

)
+
|z|
−<(z)

P
(

Tr[TK]

|z|N

))
.

Putting everything together, we get∣∣∣∣Var (Akk)−
2
N d

2
k∂zm̃(z)

(1 + dkm̃(z))4

∣∣∣∣ ≤ 2

N

d2
k|m̃|2

|1 + dkm̃|4

(
1

N
+
|z|
−<(z)

P
(

Tr[TK]

|z|N 1
2

))
.

Since ∂zϑ = ∂zm̃
m̃2 , from Proposition D.3 we have |∂λϑ(λ)| ≥ 1, i.e. |m̃|2 ≤ |∂λm̃| and thus we

conclude.
Approximation of Cov (Ak`(z), A`k(z)): Note that Ak`(z) = dk

N O
T
.kB(z)−1O.`, hence, since

B(z) is symmetric,

Ak`(z) =
dk
d`
A`k(z).

D.2. PROOFS 219

In particular, we have Cov (Ak`(z), A`k(z)) = d`
dk

Var (Ak`(z)). Hence the approximation of Cov (Ak`(z), A`k(z))

follows from the one of Var (Ak`(z)).
Approximation of Var (Ak`(z)): We have seen in Theorem D.1 that E (Ak`(z)) = 0: we need

to bound E
(
Ak`(z)

2
)
. Using Equation (D.2.13):

E
[
Ak`(z)

2
]

= E

[(
dk

1 + dkgk

hk`
1 + d`h`

)2
]
,

where we recall that h` = 1
NO

T
.,`B(k`)(z)

−1O.,` and hk` = 1
NO

T
.,kB(k`)(z)

−1O.,`. Since

dk
1 + dkgk

hk`
1 + d`h`

=
dk

1 + dkm̃

hk`
1 + d`m̃

− dkhk`
(
dk (gk − m̃) (1 + d`h`) + d` (1 + dkm̃) (h` − m̃)

(1 + dkm̃) (1 + d`m̃) (1 + dkgk) (1 + d`h`)

)
,

(D.2.14)

using Lemma D.8 below, we get the approximation E
[
Ak`(z)

2
]
≈ E

[
d2
kh

2
k`

(1+dkm̃)2(1+d`m̃)2

]
. Using

Wick’s formula (Lemma D.9 below):

E
[
h2
k`

]
=

1

N
∂zE

[
m(k`)(z)

]
.

Hence the approximation E
[
Ak`(z)

2
]
≈

1
N d

2
k∂zE[m(k`)(z)]

(1+dkm̃)2(1+d`m̃)2 . At last, by using the approximation
E[∂zm(kl)(z)] ≈ ∂zm̃(z) (Lemma D.7 above and the technical complex analysis Lemma D.10 below),

we can bound the difference
∣∣∣∣ 1
N d

2
k∂zE[m(k`)(z)]

(1+dkm̃)2(1+d`m̃)2 −
1
N d

2
k∂zm̃(z)

(1+dkm̃)2(1+d`m̃)2

∣∣∣∣ by
1

N

d2
k

|1 + dkm̃|2|1 + d`m̃|2
2

−<(z)

(
22Tr[TK]

|z|2N2
+

24c1 (Tr[TK])
2

|z|3N2
+

26c1 (Tr[TK])
4

|z|5N4
+

22

|z|N

)

≤ 1

N

d2
k|m̃|2

|1 + dkm̃|2|1 + d`m̃|2
2|z|
−<(z)

P
(

Tr[TK]

|z|N

)
Finally, we can bound the error

∣∣∣E [(Ak`(z))2
]
− 1

N
d2
k∂zm̃

(1+dkm̃)2(1+d`m̃)2

∣∣∣ by
1

N

d2
k|∂zm̃|

|1 + dkm̃|2 |1 + d`m̃|2

(
P
(

Tr[TK]

|z|N 1
2

)
+

2|z|
−<(z)

P
(

Tr[TK]

|z|N 1
2

))
≤ 1

N

d2
k|∂zm̃|

|1 + dkm̃|2 |1 + d`m̃|2
|z|
−<(z)

P
(

Tr[TK]

|z|N 1
2

)
.

Lemma D.8. Using the same notation as in the proof of Proposition D.5,

εk` = E
[
Ak`(z)

2
]
− d2

kh
2
k`

(1 + dkm̃)2(1 + d`m̃)2

is bounded by:

|εk`| ≤
1

N

d2
k∂λm̃

|1 + d`m̃|2 |1 + dkm̃|2
P
(

Tr[TK]

|z|N 1
2

)

220
APPENDIX D. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

Proof. Using Equation D.2.14, by setting c = 2 1
1+dkm̃

1
1+d`m̃

, X1 = dkhk`, and

X2 =
dk (gk − m̃)

(1 + dkm̃) (1 + d`m̃) (1 + dkgk)
+

d` (h` − m̃)

(1 + d`m̃) (1 + dkgk) (1 + d`h`)
,

we have that εk` is equal to:
εk` = E

[
−X2

1X2(c−X2)
]

we can thus control εk` with the following bound

|εk`| ≤ cE
[
|X1|2 |X2|

]
+ E

[
|X1|2 |X2|2

]
≤ E

[
|X1|4

] 1
2

(
cE
[
|X2|2

] 1
2

+ E
[
|X2|4

] 1
2

)
.

• Bound on E[|X1|4]: using the same argument as for E
[
|m(k) − gk|2s

]
and Wick’s formula (Lemma

D.9), there exists a constant a such that

E
[
|X1|4

] 1
2

= E
[
|dkhk`|4

] 1
2

= d2
kE
[
|hk`|4

] 1
2 ≤ ad2

k

|z|2N

• Bound on E[|X2|2s]: in order to bound E[|X2|2s] we decompose X2 as X2 = Y1 + Y2 + Y3 where

Y1 =
dk (gk − m̃)

(1 + dkm̃) (1 + d`m̃) (1 + dkgk)
,

Y2 =
d` (h` − m̃)

(1 + d`m̃) (1 + dkm̃) (1 + d`h`)
,

Y3 =
d`dk (h` − m̃) (m̃− gk)

(1 + d`m̃) (1 + dkm̃) (1 + dkgk) (1 + d`h`)
,

so that by Minkowski inequality,

E
[
|X2|2s

] 1
2s ≤ E

[
|Y1|2s

] 1
2s

+ E
[
|Y2|2s

] 1
2s

+ E
[
|Y3|2s

] 1
2s

,

We can bound the terms in the r.h.s. of the above by applying Proposition D.1 and Lemma D.6:

– Bound on E[|Y1|2s]:

E
[
|Y1|2s

] 1
2s ≤ dk

|1 + d`m̃| |1 + dkm̃|
E
[
| (gk − m̃) |2s

] 1
2s ≤ dk

|1 + d`m̃| |1 + dkm̃|

[
22s−1cs(Tr[TK])2s

|z|4sN3s
+

22s−1cs
|z|2sNs

] 1
2s

– Bound on E[|Y2|2s]:

E
[
|Y2|2s

] 1
2s ≤ d`

|1 + d`m̃| |1 + dkm̃|
E
[
| (h` − m̃) |2s

] 1
2s ≤ dk

|1 + d`m̃| |1 + dkm̃|

[
as(Tr[TK])2s

|z|4sN3s
+

bs
|z|2sNs

] 1
2s

D.2. PROOFS 221

– Bound on E
[
|Y3|2s

] 1
2s

:

E
[
|Y3|2s

] 1
2s ≤ d`dk

|1 + d`m̃| |1 + dkm̃|
E
[
|(h` − m̃)|2s |(m̃− gk)|2s

] 1
2s

≤ d`dk
|1 + d`m̃| |1 + dkm̃|

E
[
|(h` − m̃)|4s

] 1
4s E

[
|(m̃− gk)|4s

] 1
4s

≤ d`dk
|1 + d`m̃| |1 + dkm̃|

[
a2s(Tr[TK])4s

|z|8sN6s
+

b2s

|z|4sN2s

] 1
4s
[

24s−1c2s(Tr[TK])4s

|z|8sN6s
+

24s−1c2s

|z|4sN2s

] 1
4s

Let rs = max{22s−1cs,as} and ts = max{22s−1cs, bs}; then putting the pieces together we have

E
[
|X2|2s

] 1
2s ≤ d` + dk

|1 + d`m̃| |1 + dkm̃|

[
rs(Tr[TK])2s

|z|4sN3s
+

ts
|z|2sNs

] 1
2s

+
d`dk

|1 + d`m̃| |1 + dkm̃|

[
r2s(Tr[TK])4s

|z|8sN6s
+

t2s

|z|4sN2s

] 1
2s

and thus

E
[
|X2|2

] 1
2 ≤ d` + dk
|1 + d`m̃| |1 + dkm̃|

[
r

1/2
1 (Tr[TK])

|z|2N 3/2
+

t
1/2
1

|z|
√
N

]
+

d`dk
|1 + d`m̃| |1 + dkm̃|

[
r

1/2
2 (Tr[TK])2

|z|4N3
+

t
1/2
2

|z|2N1

]

E
[
|X4|4

] 1
2 ≤ 2(d` + dk)2

|1 + d`m̃|2 |1 + dkm̃|2

[
r

1/2
2 (Tr[TK])2

|z|4N3
+

t
1/2
2

|z|2N

]
+

2d2
`d

2
k

|1 + d`m̃|2 |1 + dkm̃|2

[
r

1/2
4 (Tr[TK])4

|z|8N6
+

t
1/2
4

|z|4N2

]
And finally, putting all the pieces together, we have

|εk`| ≤ E
[
|X1|4

] 1
2

(
cE
[
|X2|2

] 1
2

+ E
[
|X2|4

] 1
2

)
≤ ad2

k

|z|2N
2(d` + dk)

|1 + d`m̃|2 |1 + dkm̃|2

[
r

1/2
1 (Tr[TK])

|z|2N 3/2
+

t
1/2
1

|z|
√
N

]

+
ad2

k

|z|2N
2(d` + dk)2 + 2d`dk

|1 + d`m̃|2 |1 + dkm̃|2

[
r

1/2
2 (Tr[TK])2

|z|4N3
+

t
1/2
2

|z|2N

]

+
ad2

k

|z|2N
2d2
`d

2
k

|1 + d`m̃|2 |1 + dkm̃|2

[
r

1/2
4 (Tr[TK])4

|z|8N6
+

t
1/2
4

|z|4N2

]
.

Using the fact that |∂zm̃| ≤ |m̃|2 and Proposition D.3, we get:

1

|z|2
≤ |∂zm̃|
|z|2|m̃|2

≤ |∂zm̃|
(

1 + 2
Tr[TK]

|z|N
+

(Tr[TK])2

|z|2N2

)
,

we conclude saying that

|εk`| ≤
1

N

d2
k∂zm̃

|1 + d`m̃|2 |1 + dkm̃|2
P
(

Tr[TK]

|z|N 1
2

)
.

222
APPENDIX D. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

Remark D.5. Since m̃(z) = 1
ϑ(−z) , the derivative ∂zm̃(z) can also be expressed in terms of the SCT:

∂zm̃(z) = ∂zϑ(−z) 1
ϑ(−z)2 , hence the previous approximations can also be written as:

Var (Akk(z)) ≈ 2

N

d2
kϑ(−z)2∂zϑ(−z)
(ϑ(−z) + dk)4

Var (Ak`(z)) ≈
1

N

d2
kϑ(−z)2∂zϑ(−z)

(ϑ(−z) + dk)2(ϑ(−z) + d`)2
.

We can now describe the variance of the predictor. The variance of the predictor along the
eigenfunction f (k) is estimated by Vk, where

Vk(f∗, λ,N, ε) =
∂λϑ(λ)

N

(∥∥∥(IC − Ãϑ)f∗
∥∥∥2

S
+ ε2 +

〈
f (k), f∗

〉2

S

ϑ2(λ)

(ϑ(λ) + dk)2

)
d2
k

(ϑ(λ) + dk)2
.

Theorem D.2. There is a constant C1 > 0 such that, with the notation of Definition 7, we have∣∣∣Var
(〈
f (k), f̂ ελ

〉
S

)
− Vk(f∗, λ,N, ε)

∣∣∣ ≤ (C1

N
+ P

(
Tr[TK]

λN
1
2

))
Vk(f∗, λ,N, ε).

Proof. Using the law of total variance, we decompose the variance with respect to the observations
O and the vector of noise E = (e1, . . . , eN)T

Var
(〈
f (k), f̂ ελ

〉
S

)
= VarO

(〈
f (k),EE

[
f̂ ελ

]〉
S

)
+ ε2EO

[
VarE

(
dk
N

(O·k)
T

(
1

N
OKOT + λIN

)−1

E

)]

= VarO

(〈
f (k), A(−λ)f∗

〉
S

)
+ ε2EO

[
dk
N
∂λAkk(−λ)

]
.

Since the randomness is now only on A through O, from now on, we will lighten the notation by
sometimes omitting the O dependence in the expectations.

We first show how the approximation Vk(f∗, λ,N, ε) appears, and then establish the bounds
which allow one to study the quality of this approximation.

Approximations: Decomposing the true function along the principal components f∗ =
∑∞
k=1 bkf

(k)

with bk =
〈
f (k), f∗

〉
S
, we have

Var(〈f (k), A(−λ)f∗〉S) =
∑
`

b2`Var (Ak`(−λ)) .

From Proposition D.5 and the remark after, we have two different approximations for Var (Ak`(−λ)).
For any ` 6= k, we have

Var (Akk(−λ)) ≈ 2

N

d2
kϑ(λ)2∂λϑ(λ)

(ϑ(λ) + dk)4
, Var (Ak`(−λ)) ≈ 1

N

d2
kϑ(λ)2∂λϑ(λ)

(ϑ(λ) + dk)2(ϑ(λ) + d`)2
.

Hence

Var(〈f (k), Aλf
∗〉S) ≈ b2k

N

d2
kϑ(λ)2∂λϑ(λ)

(ϑ(λ) + dk)4
+
∑
`

b2`
N

d2
kϑ(λ)2∂λϑ(λ)

(ϑ(λ) + dk)2(ϑ(λ) + d`)2

=
∂λϑ(λ)

N

(〈
f (k), f∗

〉2

S

ϑ2(λ)

(ϑ(λ) + dk)2
+
∑
`

b2`
ϑ(λ)2

(ϑ(λ) + d`)2

)
d2
k

(ϑ(λ) + dk)2
.

D.2. PROOFS 223

Since
∑
` b

2
`

ϑ(λ)2

(ϑ(λ)+d`)2 = ‖(IC − Ãϑ)f∗‖2S , this provides the approximation:

Var(〈f (k), Aλf
∗〉S) ≈ ∂λϑ(λ)

N

(
‖(IC − Ãϑ)f∗‖2S + 〈f (k), f∗〉2S

ϑ2(λ)

(ϑ(λ) + dk)2

)
d2
k

(ϑ(λ) + dk)2
.

(D.2.15)

Now, using Lemma D.10 and Theorem D.1:

ε2EO
[
dk
N
∂λAkk(−λ)

]
≈ ε2 ∂λϑ(λ)

N

d2
k

(ϑ(λ) + dk)2
. (D.2.16)

Combining Equations D.2.15 and D.2.16, we obtain the approximation

Var(〈f (k), f̂ ελ〉S) ≈ Vk(f∗, λ,N, ε).

Now, we explain how to quantify the quality of the approximations, and thus how to get the
bound stated in the theorem. Recall that we decomposed Var(〈f (k), f̂ ελ〉S) into two terms using the
law of total variance.

First term: We have seen that:

Var
(〈
f (k), Aλf

∗
〉
S

)
= b2kVar (Akk(−λ)) +

∑
6̀=k

b2`Var (Ak`(−λ)) .

By Proposition D.5, we have∣∣∣∣b2kVar (Akk(−λ))− 2b2k
∂λϑ(λ)

N

ϑ(λ)2d2
k

(ϑ(λ) + dk)4

∣∣∣∣ = b2k

∣∣∣∣Var (Akk(−λ))− 2

N

d2
k∂λm̃

(1 + dkm̃)4

∣∣∣∣
≤ b2k

|∂λϑ(λ)|
N

|ϑ(λ)|2 d2
k

|ϑ(λ) + dk|4

(
1

N
+ P

(
Tr[TK]

λN
1
2

))
and∣∣∣∣b2`Var (Ak`(−λ))− 1

N
b2`

d2
k∂λm̃

(1 + dkm̃)2(1 + d`m̃)2

∣∣∣∣ ≤ b2` 1

N

d2
k |ϑ(λ)|2 |∂λϑ(λ)|

|ϑ(λ) + dk|2 |ϑ(λ) + d`|2
P
(

Tr [TK]

λN
1
2

)
.

Thus we have∣∣∣∣∣∣
∑
`

b2`Var (Ak`(−λ))− ∂λϑ(λ)

N

d2
k

(ϑ(λ) + dk)2

2b2k
ϑ(λ)2

(ϑ(λ) + dk)2
+
∑
` 6=k

b2`
ϑ(λ)2

(ϑ(λ) + d`)2

∣∣∣∣∣∣
≤ b2k

∣∣∣∣Var (Akk(−λ))− 2

N

d2
k∂λm̃

(1 + dkm̃)4

∣∣∣∣+
∑
` 6=k

b2`

∣∣∣∣Var (Ak`(−λ))− 1

N

d2
k∂λm̃

(1 + dkm̃)2(1 + d`m̃)2

∣∣∣∣
≤ b2k

1

N

d2
k |ϑ(λ)|2 |∂λϑ(λ)|
|ϑ(λ) + dk|4

(
1

N
+ P

(
Tr[TK]

λN
1
2

))
+
∑
6̀=k

b2`
1

N

d2
k |ϑ(λ)|2 |∂λϑ(λ)|

|ϑ(λ) + dk|2 |ϑ(λ) + d`|2
P
(

Tr [TK]

λN
1
2

)

≤ |∂λϑ(λ)|
N

d2
k

|ϑ(λ) + dk|2
∑
`

b2`
|ϑ(λ)|2

|ϑ(λ) + d`|2

(
1

N
+ P

(
Tr [TK]

λN
1
2

))

224
APPENDIX D. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

≤ |∂λϑ(λ)|
N

d2
k

|ϑ(λ) + dk|2
∥∥∥(IC − Ãϑ(λ)

)
f∗
∥∥∥2

S

(
1

N
+ P

(
Tr [TK]

λN
1
2

))
.

We deduce:∣∣∣∣VarO

(〈
f (k), Aλf

∗
〉
S

)
− ∂λϑ(λ)

N

(∥∥∥(IC − Ãλ) f∗∥∥∥2

S
+
〈
f (k), f∗

〉2

S

ϑ(λ)2

(ϑ(λ) + dk)2

)
d2
k

(ϑ(λ) + dk)2

∣∣∣∣
≤ ∂λϑ(λ)

N

(∥∥∥(IC − Ãϑ(λ)

)
f∗
∥∥∥2

S

)
d2
k

(ϑ(λ) + dk)2

(
1

N
+ P

(
Tr [TK]

λN
1
2

))
≤ ∂λϑ(λ)

N

(∥∥∥(IC − Ãϑ(λ)

)
f∗
∥∥∥2

S
+
〈
f (k), f∗

〉2

S

ϑ(λ)2

(ϑ(λ) + dk)2

)
d2
k

(ϑ(λ) + dk)2

(
1

N
+ P

(
Tr [TK]

λN
1
2

))
.

Second term: To approximate, we apply Cauchy’s inequality to Equation (D.2.12) of Theorem
D.1:∣∣∣∣E [∂zAkk(z)]− ∂zϑ(−z) dk

(ϑ(−z) + dk)2

∣∣∣∣ ≤ 2

−<(z)
sup

|w−z|=− 1
2<(z)

∣∣∣∣E[Akk(w)]− dk
ϑ(−w) + dk

∣∣∣∣
≤ 2

−<(z)
sup

|w−z|=− 1
2<(z)

dk |ϑ(−w)|
|ϑ(−w) + dk|2

(
1

N
+ P

(
Tr [TK]

|w|N

))
.

By choosing z = −λ, in the region {w ∈ C | |w + λ| = λ
2 } the polynomial P

(
Tr[TK]
|w|N

)
is uniformly

bounded by P
(

2Tr[TK]
λN

)
and dk|ϑ(−w)|

|ϑ(−w)+dk|2
≤ dk|ϑ(λ)|
|ϑ(λ)+dk|2

. Thus we get∣∣∣∣E [∂λAkk(−λ)]− ∂λϑ(λ)
dk

(ϑ(λ) + dk)2

∣∣∣∣ ≤ 2
dk

|ϑ(λ) + dk|2
ϑ(λ)

λ

(
1

N
+ P

(
Tr [TK]

λN

))
≤ 2

dk

|ϑ(λ) + dk|2

(
1 +

Tr[TK]

λN

)(
1

N
+ P

(
Tr [TK]

λN

))
≤ dk

|ϑ(λ) + dk|2

(
2

N
+ P

(
Tr [TK]

λN

))
.

By using the fact that 1 ≤ |∂λϑ(λ)| (see Proposition D.3), we have that∣∣∣∣dkN E [∂λAkk(−λ)]− ∂λϑ(λ)

N

d2
k

(ϑ(λ) + dk)2

∣∣∣∣ ≤ |∂λϑ(λ)|
N

d2
k

|ϑ(λ) + dk|2

(
2

N
+ P

(
Tr [TK]

|z|N

))
.

Finally, by putting the bounds for the two terms together we have∣∣∣∣∣∣Var
(〈
f (k), f̂ ελ

〉
S

)
− ∂λϑ(λ)

N

d2
k

(ϑ(λ) + dk)2

2b2k
ϑ(λ)2

(ϑ(λ) + dk)2
+
∑
` 6=k

b2`
ϑ(λ)2

(ϑ(λ) + d`)2
+ ε2

∣∣∣∣∣∣
≤

∣∣∣∣∣∣Var
(〈
f (k), Aλf

∗
〉
S

)
− ∂λϑ(λ)

N

d2
k

(ϑ(λ) + dk)2

2b2k
ϑ(λ)2

(ϑ(λ) + dk)2
+
∑
6̀=k

b2`
ϑ(λ)2

(ϑ(λ) + d`)2

∣∣∣∣∣∣
+ ε2

dk
N

∣∣∣∣∂λE[Akk(−λ)]− ∂λϑ(λ)
dk

(ϑ(λ) + dk)2

∣∣∣∣

D.2. PROOFS 225

≤ ∂λϑ(λ)

N

(∥∥∥(IC − Ãϑ(λ)

)
f∗
∥∥∥2

S
+ ε2

)
d2
k

(ϑ(λ) + dk)2

(
2

N
+ P

(
Tr [TK]

λN
1
2

))
.

This concludes the proof.

Expected Risk

We now have all the tools required to describe the expected risk and empirical risk. In particular,
we now show that the distance between the expected risk E[Rε(f̂ ελ)] and

R̃ε(f∗, λ) = ∂λϑ(λ)(‖(IC − Ãϑ(λ))f
∗‖2S + ε2)

is relatively small:

Theorem D.3. We have∣∣∣E [Rε (f̂ ελ)]− R̃ε (f∗, λ)
∣∣∣ ≤ R̃ε (f∗, λ)

(
1

N
+ P

(
Tr [TK]

λN
1
2

))
.

Proof. The expected risk can be written as E[Rε(f̂ ελ)] = E[‖f̂ ελ−f∗‖2S] + ε2 =
∑
k E[(ak− bk)2] + ε2,

where ak = 〈f (k), f̂ ελ〉S and bk = 〈f (k), f∗〉S . Hence, using the classical bias-variance decomposition
for each summand, we get that the expected risk is equal to:

E[Rε(f̂ ελ)] = Rε(E[f̂ ελ]) +

∞∑
k=1

Var(〈f (k), f̂ ελ〉S).

Similarly to the proof of Theorem D.2, we explain how the approximation of the expected arises,
then we establish the bounds which allow one to study the quality of this approximation.

Approximations: The bias term Rε(E[f̂ ελ]) is equal to ‖E[f̂ ελ]−f∗‖2S+ε2 = ‖(IC−E[Aλ])f∗‖2S+
ε2. Using Theorem D.1, one gets the approximation of the bias term:

Rε(E[f̂ ελ]) ≈ ‖(IC − Ãϑ(λ))f
∗‖2S + ε2.

As for the variance term
∑∞
k=1 Var(〈f (k), f̂ ελ〉S), we use Theorem D.2.

∞∑
k=1

Var(〈f (k), f̂ ελ〉S) ≈
∞∑
k=1

Vk(f∗, λ,N, ε),

where

Vk(f∗, λ,N, ε) =
∂λϑ(λ)

N

(∥∥∥(IC − Ãϑ)f∗
∥∥∥2

S
+ ε2 +

〈
f (k), f∗

〉2

S

ϑ2(λ)

(ϑ(λ) + dk)2

)
d2
k

(ϑ(λ) + dk)2
.

Thus the variance term is approximately equal to:

(‖(IC − Ãϑ)f∗‖2S + ε2)
∂λϑ(λ)

N

∞∑
k=1

d2
k

(ϑ(λ) + dk)2
+
∂λϑ(λ)

N

∞∑
k=1

〈f (k), f∗〉2S
ϑ2(λ)d2

k

(ϑ(λ) + dk)4
.

226
APPENDIX D. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

Noting that from Equation D.2.10, we have (∂λϑ(λ)− 1) = ∂λϑ(λ)
N

∑∞
k=1

d2
k

(ϑ(λ)+dk)2 , we get:

∞∑
k=1

Var(〈f (k), f̂ ελ〉S) ≈ (∂λϑ(λ)− 1)(‖(IC − Ãϑ)f∗‖2S + ε2) +
∂λϑ(λ)

N

∞∑
k=1

〈f (k), f∗〉2S
ϑ2(λ)d2

k

(ϑ(λ) + dk)4
.

The second term in the r.h.s. is a residual term: using the fact that d2
k

(ϑ(λ)+dk)2 ≤ 1, this term is

bounded by ∂λϑ(λ)
N ‖(IC − Ãϑ(λ))f

∗‖2S .
Hence, we get the following approximation of the variance term:

∞∑
k=1

Var(〈f (k), f̂ ελ〉S) ≈ (∂λϑ(λ)− 1)(‖(IC − Ãϑ)f∗‖2S + ε2).

Putting the approximations of the bias and variance terms together, we obtain:

E
[
Rε
(
f̂ ελ

)]
≈ R̃ε (f∗, λ) .

Now, we explain how to quantify the quality of the approximations, and thus how to get the
bound stated in the theorem. Recall that, using the bias-variance decomposition, we split the
expected risk into two terms, the bias term and the variance term. We show now that:

∣∣∣Rε(EO,E [f̂ ελ])−
(
‖(IC − Ãϑ(λ))f

∗‖2S + ε2
)∣∣∣ ≤ ‖(IC − Ãϑ(λ))f

∗‖2S
(

1

N
+ P

(
Tr [TK]

λN

))
and ∣∣∣∣∣

∞∑
k=1

Var(〈f (k), f̂ ελ〉S)− (∂λϑ(λ)− 1)
(
‖(IC − Ãϑ(λ))f

∗‖2S + ε2
)∣∣∣∣∣ ≤

∂λϑ(λ)
(
‖(IC − Ãϑ(λ))f

∗‖2S + ε2
)(2

N
+ P

(
Tr [TK]

λN
1
2

))
.

Combining the two inequations, and using the fact that 1 ≤ ∂λϑ(λ), we then get the desired
inequality.

Bias term: Since |Ãϑ(λ),kk| ≤ 1, Equation (D.2.12) of Theorem D.1 implies that∣∣∣Ãϑ(λ),kk − E [Akk(−λ)]
∣∣∣ ≤ |1− Ãϑ(λ),kk|

(
1

N
+ P

(
Tr[TK]

λN

))
.

We then get

1− E [Aλ,kk] ≤ 1− Ãλ,kk +
c

λ2N

(
1− Ãλ,kk

)
Ãλ,kk ≤

(
1− Ãλ,kk

)(
1 +

c

λ2N

)
.

We decompose the true function f∗ into f∗ =
∑∞
k=1 bkf

(k) for bk =
〈
f∗, f (k)

〉
S
, and obtain∣∣∣∣Rε (EO,E [f̂ ελ])− (∥∥∥(IC − Ãϑ(λ)

)
f∗
∥∥∥2

S
+ ε2

)∣∣∣∣ =

∣∣∣∣‖(IC − E [Aλ]) f∗‖2S −
∥∥∥(IC − Ãϑ(λ)

)
f∗
∥∥∥2

S

∣∣∣∣

D.2. PROOFS 227

=

∣∣∣∣∣
∞∑
k=1

b2k

(
(1− E [Aλ,kk])

2 −
(

1− Ãϑ(λ),kk

)2
)∣∣∣∣∣

≤
∞∑
k=1

b2k

∣∣∣Ãϑ(λ),kk − E [Aλ,kk]
∣∣∣ ∣∣∣2− Ãϑ(λ),kk − E

[
Aϑ(λ),kk

]∣∣∣ .
By the triangular inequality, we get that∣∣∣2− Ãϑ(λ),kk − E

[
Aϑ(λ),kk

]∣∣∣ ≤ ∣∣∣1− Ãϑ(λ),kk

∣∣∣ (2 +

(
1

N
+ P

(
Tr[TK]

λN

)))
and thus ∣∣∣∣Rε (EO,E [f̂ ελ])− (∥∥∥(IC − Ãϑ(λ)

)
f∗
∥∥∥2

S
+ ε2

)∣∣∣∣
≤
∞∑
k=1

b2k

∣∣∣1− Ãϑ(λ),kk

∣∣∣2(2 +
1

N
+ P

(
Tr[TK]

λN

))(
1

N
+ P

(
Tr[TK]

λN

))

≤
∞∑
k=1

b2k

∣∣∣1− Ãϑ(λ),kk

∣∣∣2(C2

N
+ P

(
Tr[TK]

λN

))
.

Variance term: For the second term, recall that (∂λϑ(λ)− 1) = ∂λϑ(λ)
N

∑∞
k=1

d2
k

(ϑ(λ)+dk)2 , and that∣∣∣∣∣
∞∑
k=1

Var
(〈
f (k), f̂ ελ

〉
S

)
− (∂λϑ(λ)− 1)

(∥∥∥(IC − Ãϑ(λ)

)
f∗
∥∥∥2

S
+ ε2

)∣∣∣∣∣
≤
∞∑
k=1

∣∣∣∣VarO

(〈
f (k), A(−λ)f∗

〉
S

)
− ∂λϑ(λ)

N

(∥∥∥(IC − Ãϑ(λ)

)
f∗
∥∥∥2

S
+ ε2 +

〈
f (k), f∗

〉2

S

ϑ(λ)2

(ϑ(λ) + dk)2

)
d2
k

(ϑ(λ) + dk)2

∣∣∣∣
+

∞∑
k=1

∂λϑ(λ)

N

〈
f (k), f∗

〉2

S

ϑ(λ)2d2
k

(ϑ(λ) + dk)4
.

Using Theorem D.2, we can control the terms in the first series: there is a constant C1 > 0 such
that
∞∑
k=1

∣∣∣∣VarO

(〈
f (k), A(−λ)f∗

〉
S

)
− ∂λϑ(λ)

N

(∥∥∥(IC − Ãϑ(λ)

)
f∗
∥∥∥2

S
+ ε2 +

〈
f (k), f∗

〉2

S

ϑ(λ)2

(ϑ(λ) + dk)2

)
d2
k

(ϑ(λ) + dk)2

∣∣∣∣
≤
(
C1

N
+ P

(
Tr[TK]

λN
1
2

))
∂λϑ(λ)

N

∞∑
k=1

(∥∥∥(IC − Ãϑ(λ))f
∗
∥∥∥2

S
+ ε2 +

〈
f (k), f∗

〉2

S

ϑ2(λ)

(ϑ(λ) + dk)2

)
d2
k

(ϑ(λ) + dk)2

≤
(
C1

N
+ P

(
Tr[TK]

λN
1
2

))
∂λϑ(λ)

N

(∥∥∥(IC − Ãϑ(λ)

)
Ãϑ(λ)f

∗
∥∥∥2

S
+

(∥∥∥(IC − Ãϑ(λ))f
∗
∥∥∥2

S
+ ε2

) ∞∑
k=1

d2
k

(ϑ(λ) + dk)2

)

≤
(
C1

N
+ P

(
Tr[TK]

λN
1
2

))(
∂λϑ(λ)

N

∥∥∥(IC − Ãϑ(λ)

)
Ãϑ(λ)f

∗
∥∥∥2

S
+ (∂λϑ(λ)− 1)

(∥∥∥(IC − Ãϑ(λ))f
∗
∥∥∥2

S
+ ε2

))
≤
(
C1

N
+ P

(
Tr[TK]

λN
1
2

))(
∂λϑ(λ)

N

∥∥∥(IC − Ãϑ(λ)

)
f∗
∥∥∥2

S
+ (∂λϑ(λ)− 1)

(∥∥∥(IC − Ãϑ(λ))f
∗
∥∥∥2

S
+ ε2

))
,

228
APPENDIX D. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

whereas for the second series, as explained already above, we have

∞∑
k=1

∂λϑ(λ)

N

〈
f (k), f∗

〉2

S

ϑ(λ)2d2
k

(ϑ(λ) + dk)4
=
∂λϑ(λ)

N

∥∥∥(IC − Ãϑ(λ)

)
Ãϑ(λ)f

∗
∥∥∥2

S
≤ ∂λϑ(λ)

N

∥∥∥(IC − Ãϑ(λ)

)
f∗
∥∥∥2

S
.

Finally, putting the pieces together, we conclude.

Expected Empirical Risk

The expected empirical risk can be approximated as follows:

Theorem D.4. We have∣∣∣∣E [R̂ε (f̂ ελ,E)]− λ2

ϑ(λ)2
R̃ε (f∗, λ)

∣∣∣∣ ≤ R̃ε (f∗, λ)P
(

Tr [TK]

λN

)
.

Proof. A small computation allows one to show that:

R̂ε
(
f̂ ελ,E

)
=
λ2

N
(yε)

T

(
1

N
G+ λIN

)−2

yε.

Using the definition of yε and the fact that the noise on the labels is centered and independent from
the observations, this yields:

E
[
R̂ε
(
f̂ ελ,E

)]
=
λ2

N
f∗E

[
OT

(
1

N
G+ λIN

)−2

O

]
f∗ + λ2ε2E

[
1

N
Tr

(
1

N
G+ λIN

)−2
]

= λ2
N∑
k=1

〈f (k), f∗〉2S
E [∂λAkk(−λ)]

dk
+ λ2ε2E [∂zm(−λ)] .

Similarly to the proof of Theorem D.2, we explain how the approximation of the expected
empirical risk appears, then we establish the bounds which allow one to study the quality of this
approximation.

Approximations: Using Equation D.2.16, E [∂λAkk(−λ)] ≈ ∂λϑ(λ) dk
(ϑ(λ)+dk)2 hence

λ2
N∑
k=1

〈f (k), f∗〉2S
E [∂λAkk(−λ)]

dk
≈ ∂λϑ(λ)λ2

ϑ(λ)2

N∑
k=1

〈f (k), f∗〉2S
ϑ(λ)2

(ϑ(λ) + dk)2

=
∂λϑ(λ)λ2

ϑ(λ)2
‖(IC − Ãϑ(λ))f

∗‖2S .

The second term can be approximated using Proposition D.2 and Lemma D.10: this yields

E [∂λm(−λ)] ≈ ∂λm̃(−λ) =
∂λϑ(λ)

ϑ(λ)2
.

Hence, putting the two approximations together, the expected empirical risk is approximated by:

E
[
R̂ε
(
f̂ ελ,E

)]
≈ ∂λϑ(λ)λ2

ϑ(λ)2

(
‖(IC − Ãϑ(λ))f

∗‖2S + ε2
)

=
λ2

ϑ(λ)2
Rε(f∗, λ).

D.2. PROOFS 229

Now, we explain how to quantify the quality of the approximations, and thus how to get the
bound stated in the theorem. Recall that, we split the expected empirical risk into two terms.

First term: We have already seen in Theorem D.2 that by applying Lemma D.10 to Equation
(D.2.12) of Theorem D.1 we get∣∣∣∣E [∂zAkk(−λ)]− ∂λϑ(λ)

dk
(ϑ(λ) + dk)2

∣∣∣∣ ≤ dk
|ϑ(λ) + dk|2

(
2

N
+ P

(
Tr[TK]

λN

))
and thus ∣∣∣∣∣λ2

N∑
k=1

〈
f (k), f∗

〉2

S

E [∂λAkk(−λ)]

dk
− ∂λϑ(λ)λ2

ϑ(λ)2

∥∥∥(IC − Ãϑ(λ)

)
f∗
∥∥∥2

S

∣∣∣∣∣
≤ λ2

N∑
k=1

〈
f (k), f∗

〉2

S

∣∣∣∣E [∂λAkk(−λ)]

dk
− ∂λϑ(λ)

ϑ(λ)2

ϑ(λ)2

(ϑ(λ) + dk)2

∣∣∣∣
≤ λ2

N∑
k=1

〈
f (k), f∗

〉2

S

1

|ϑ(λ) + dk|2

(
2

N
+ P

(
Tr[TK]

λN

))
=

λ2

ϑ(λ)2

∥∥∥(IC − Ãϑ(λ)

)
f∗
∥∥∥2

S

(
2

N
+ P

(
Tr[TK]

λN

))
≤ ∂λϑ(λ)λ2

ϑ(λ)2

∥∥∥(IC − Ãϑ(λ)

)
f∗
∥∥∥2

S

(
2

N
+ P

(
Tr[TK]

λN

))
.

Second Term: Using Proposition D.2 and Lemma D.10:

|E [∂zm(z)]− ∂zm̃(z)| ≤ |z|
−<(z)

(
23Tr [TK]

|z|3N2
+

24c1 (Tr [TK])
2

|z|4N2
+

26c1 (Tr [TK])
4

|z|6N4

)
.

Thus, since ∂λm̃(−λ) = ∂λϑ(λ)
ϑ(λ)2 ,∣∣∣∣λ2ε2E [∂λm(−λ)]− λ2ε2

ϑ(λ)2
∂λϑ(λ)

∣∣∣∣ ≤ ε2P (Tr[TK]

λN

)
.

Bayesian Setting

In this section, we consider the following Bayesian setting: let the true function f∗ be random with
zero mean and covariance kernel Σ(x, y) = Ef∗ [f∗(x)f∗(y)]. We will first show that in this setting
the KRR predictor with kernel K = Σ and ridge λ = ε2

N is optimal amongst all predictors which
depend linearly on the noisy labels yε. Second, given a kernel K and a ridge λ, we provide a simple
formula for the expected risk.

Let us consider predictors f̂ that depend linearly on the labels yε, i.e. for all x, there is a
Mx ∈ RN such that f̂(x) = MT

x y
ε. Clearly, the KRR predictor belongs to this family of predictors.

The pointwise expected squared error can be expressed for any such predictors in terms of the Gram
matrix OΣOT + ε2IN and the vector OΣ(·, x)

E[(MT
x y

ε − f∗(x))2] = MT
x (OΣOT + ε2IN)Mx − 2MT

x OΣ(·, x) + Σ(x, x).

230
APPENDIX D. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

Differentiating w.r.t. Mx, we obtain that the above error is minimized when

Mx = Σ(x, ·)OT (OΣOT + ε2IN)−1.

In other terms, in this Bayesian setting, the KRR predictor with kernel K = Σ and ridge λ = ε2

N
minimizes the expected squared error at all points x.

Using Theorem D.3, we obtain the following approximation of the expected risk for a general
kernel K and ridge λ:

Corollary 2. For a random true function of zero mean and covariance kernel Σ the expected risk
is approximated by

B(λ,K; ε2,Σ) = Nϑ(λ,K) +N∂λϑ(λ,K)(
ε2

N
− λ) + ∂τϑ(λ,K + τ(Σ−K))

∣∣
τ=0

,

in the sense that

|E[Rε(f̂ ελ)]−B(λ,K; ε2,Σ)| ≤ B(λ,K; ε2,Σ)

(
1

N
+ P

(
Tr [TK]

|z|N 1
2

))
.

Proof. Denoting by E the expectation taken with respect to the data points and the noise, and
by Ef∗ the expectation taken with respect to the random true function f∗, from Theorem D.3 we
obtain ∣∣∣Ef∗ [E [Rε (f̂ ελ)]]− Ef∗

[
R̃ε (f∗, λ)

]∣∣∣ ≤ Ef∗
[∣∣∣E [Rε (f̂ ελ)]− R̃ε (f∗, λ)

∣∣∣]
≤ Ef∗

[
R̃ε (f∗, λ)

](1

N
+ P

(
Tr [TK]

|z|N 1
2

))
it therefore suffices to show that Ef∗

[
R̃ε (f∗, λ)

]
= B(λ,K; ε2,Σ).

Ef∗ [R̃ε(f∗, λ,N)] = ∂λϑ(λ)
(
Ef∗

[
‖(IC − Ãϑ)f∗‖2S

]
+ ε2

)
= ∂λϑ(λ,K)

(
Tr
[
TΣ(IC − Ãϑ)2

]
+ ε2

)
= ∂λϑ(λ,K)

(
ϑ2Tr

[
TK(TK + ϑ(λ,K)IC)

−2
]

+ ε2
)

+ ∂λϑ(λ,K)Tr
[
(TΣ − TK)(IC − Ãϑ)2

]
.

This formula can be further simplified. First note that differentiating both sides of Equation D.2.2
w.r.t. to λ, we obtain that

ϑ2

N
Tr
[
TK(TK + ϑ(λ,K)IC)

−2
]

=
ϑ

∂λϑ
− λ.

Secondly, differentiating both sides of Equation D.2.2, we obtain, writing K(τ) = K+ τ(Σ−K)

∂τϑ(λ,K(τ)) =
∂τϑ

N
Tr
[
Ãϑ

]
+
ϑ

N
Tr
[
∂τ Ãϑ

]
=
∂τϑ

N
Tr
[
TK(TK + ϑIC)

−1
]

+
ϑ2

N
Tr
[
(TK + ϑIC)

−1T(Σ−K)(TK + ϑIC)
−1
]

D.2. PROOFS 231

− ∂τϑϑ

N
Tr
[
TK(TK + ϑIC)

−2
]

=
∂τϑ

N
Tr
[
TK(TK + ϑIC)

−1 − ϑTK(TK + ϑIC)
−2
]

+
ϑ2

N
Tr
[
T(Σ−K)(TK + ϑIC)

−2
]

=
∂τϑ

N
Tr
[
T 2
K(TK + ϑIC)

−2
]

+
ϑ2

N
Tr
[
T(Σ−K)(TK + ϑIC)

−2
]

= ∂τϑ−
∂τϑ

∂λϑ
+
ϑ2

N
Tr
[
T(Σ−K)(TK + ϑIC)

−2
]
,

where we used the fact that 1
NTr

[
T 2
K(TK + ϑIC)

−2
]

= 1− 1/∂λϑ. This implies that

∂τϑ = ∂λϑ
ϑ2

N
Tr
[
T(Σ−K)(TK + ϑIC)

−2
]

= ∂λϑ(λ,K)Tr
[
(TΣ − TK)(IC − Ãϑ)2

]
.

Putting everything together, we obtain that

Ef∗ [R̃ε(f∗, λ,N)] = Nϑ(λ,K) +N∂λϑ(λ,K)(
ε2

N
− λ) + ∂τϑ(λ,K + τ(Σ−K))

∣∣
τ=0

.

Technical Lemmas

Matricial observations and Wick formula

For any family A =
(
A(1), . . . , A(k)

)
of k square matrices of same size, any permutation σ ∈ Sk,

we define:

σ (A) =
∏

c cycle of σ

Tr

[∏
i∈c

A(i)

]
,

where the product inside the trace is taken following the order given by the cycle and, by the cyclic
property, does not depend on the starting point (see [65]). For example if k = 4 and σ is the
product of transpositions (1, 3)(2, 4),

σ (A) = Tr(A(1)A(3))Tr(A(2)A(4)).

The number of cycles of σ is denoted by c(σ). The set of permutations without fixed points, i.e.
such that σ(i) 6= i for any i ∈ [1, . . . , k] is denoted by S†k and the set of permutations with cycles
of even size is denoted by Seven

k .
The following lemma, which is reminiscent of Lemma 4.5 in [8] and which is a rephrasing of

Lemma C.3 of [102], is a consequence of Wick’s formula for Gaussian random variables and is key
to study the gk and hk,`.

Lemma D.9. If A =
(
A(1), . . . , A(k)

)
is a family of k square symmetric random matrices of size

P independent from a standard Gaussian vector w of size P , we have

E

[
k∏
i=1

wTA(i)w

]
=
∑
σ∈Sk

2k−c(σ)E [σ (A)] , (D.2.17)

232
APPENDIX D. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

and,

E

[
k∏
i=1

(
wTA(i)w − Tr

(
A(i)

))]
=
∑
σ∈S†k

2k−c(σ)E [σ (A)] . (D.2.18)

Furthermore, if w and v are independent Gaussian vectors of size P and independent from A, then

E

[
k∏
i=1

wTA(i)v

]
=

∑
σ∈Seven

k

E [σ (A)] . (D.2.19)

Proof. The only differences with Lemma C.3 of [102] are in the r.h.s. and the combinatorial sets
used to express the left side. We only prove Equation (H.3.3); Equations (H.3.4) and (D.2.19) can
be proven similarly. Let P 2(2k) be the set of pair partitions of {1, . . . , 2k} and let p ∈ P 2(2k).
Let p [A] =

∑
p≤Ker(i1,...,i2k)

i1,...,i2k∈{1,...,P}
E
[
A

(1)
i1i2

. . . A
(k)
i2k−1i2k

]
where ≤ is the coarsed order (i.e. p ≤ q if q is

coarser than p) and where for any i1, . . . , i2k in 1, ..., P , Ker(i1, . . . , i2k) is the partition of {1, . . . , 2k}
such that two elements u and v in {1, ..., 2k} are in the same block (i.e. pair) of Ker(i1, . . . , i2k) if
and only if iu = iv. By Wick’s formula, we have

E

[
k∏
i=1

wTA(i)w

]
=

∑
p∈P 2(2k)

p [A] ;

therefore, it is sufficient to prove that∑
p∈P 2(2k)

p [A] =
∑
σ∈Sk

2k−c(σ)σ (A) ,

Let Po be the set of polygons on {1, . . . , k}, i.e. the set of collections of non-crossing loops
(disjoint unoriented cycles) which cover {1, . . . , k}. Consider the two maps F : P 2(2k) → Po and
G : Sk 7→ Po obtained by forgetting the underlying structure: for any partition p ∈ P 2(2k), F (p)
is the collection of edges (`,m) (viewed as collection of non-crossing loops) such that there exists
u ∈ {2`− 1, 2`} and v ∈ {2m− 1, 2m} with {u, v} ∈ p; for any permutation σ ∈ Sk, G(σ) is the
set of its loops (unoriented cycles).

One can check that for any π ∈ Po,

{p ∈ P 2(2k) | F (p) = π} = 2k−c≤2(π), # {σ ∈ Sk | G(σ) = π} = 2c(π)−c≤2(π),

where c(π), resp. c≤2(π), is the number of unoriented cycles, resp. unoriented cycles of size smaller
than or equal to 2, of π. Note that c(π), resp. c≤2(π) are also the number of cycles, resp. cycles
of size smaller than or equal to 2 of any σ such that G(σ) = π. Notice also that, since the
matrices are symmetric, for any p, p′ ∈ P 2(2k) and any σ ∈ Sk, if F (p) = F (p′) = G(σ), then
p [A] = p′ [A] = σ [A]. Hence:∑

p∈P 2(2k)

p [A] =
∑

p∈P 2(2k)

∑
π=F (p)

p [A] =
∑
π∈Po

∑
p:F (p)=π

π [A] =
∑
π∈Po

2k−c≤2(π)π [A]

hence ∑
p∈P 2(2k)

p [A] =
∑
π∈Po

2k−c≤2(π) 1

2c(π)−c≤2(π)

∑
σ:G(σ)=π

π [A] =
∑
σ∈Sk

2k−c(π)σ [A] ,

as required.

D.2. PROOFS 233

Bound on derivatives

Given a bound on a holomorphic function, one can obtain a bound on its derivative.

Lemma D.10. Let f, g : H<0 → C be two holomorphic functions such that for any z ∈ H<0,

|f(z)− g(z)| ≤ F (|z |),

where F : R+ → R is a decreasing function, then for any z ∈ H<0:

|∂zf(z)− ∂zg(z)| ≤ 2

−<(z)
F

(
|z |
2

)
,

Proof. This is a consequence of Cauchy’s inequality: for any r < −<(z) (so that the circle of center
z and radius r lies inside H<0),

|∂zf(z)− ∂zg(z)| ≤ 1

r
sup

|w−z|=r
|f(w)− g(w)| ≤ 1

r
sup

|w−z|=r
F (|w |).

The inequality follows by considering r = − 1
2<(z) and using the fact that F is decreasing.

Generalized Cauchy-Schwarz inequality

Another result that we will use is the following generalization of the Cauchy-Schwarz inequality,
which is a consequence of Hölder’s inequality.

Lemma D.11. For complex random variables a1, ..., as, we have

E [|a1 · · · as|] ≤ s

√
E [|a1|s] · · ·E [|as|s].

Proof. The proof is done using an induction argument. The initialization, i.e. when s = 1, is trivial.
For the induction step, assume that the result is true for s terms and let us prove it for s + 1

terms. By Hölder’s inequality applied for p = s+ 1 and q = s+1
s , we obtain:

E [|a0a1 · · · as|] ≤
(
E
[
|a0|s+1

]) 1
s+1
(
E
[
|a1 · · · as|

s+1
s

]) s
s+1

≤
(
E
[
|a0|s+1

]) 1
s+1
(
E
[
|a1|s+1

]
· · ·E

[
|as|s+1

]) 1
s+1

,

where the second inequality is obtained by the induction hypothesis.

Control on fixed points

Lemma D.12. Let z ∈ H<0, let (ak)k and (bk)k be sequences of complex numbers in the cone
spanned by 1 and −1/z and let (dk)k be positive numbers. Then∣∣∣∣∣z −

∞∑
k=1

dk
(1 + ak)(1 + bk)

∣∣∣∣∣ ≥ |z| .

234
APPENDIX D. KERNEL ALIGNMENT RIDGE ESTIMATOR: RISK PREDICTION FROM

TRAINING DATA

Proof. For any complex numbers z1 and z2, let Γz1,z2 be the cone spanned by z1 and z2, i.e.
Γz1,z2 = {w ∈ C : w = az1 + bz2for a, b ≥ 0}. Since ak, bk ∈ Γ1,−1/z, 1/1+ak and 1/1+bk are in Γ1,−z.
All the summands dk

(1+ak)(1+bk) lie in Γ1,z2 , hence so does
∑∞
k=1

dk
(1+ak)(1+bk) . Since < (z) < 0, the

closest point to z in this cone is 0 and this yields the lower bound:∣∣∣∣∣z −
∞∑
k=1

dk
(1 + ak)(1 + bk)

∣∣∣∣∣ ≥ |z| ,
hence the result.

Recall that m̃(z), resp. m̃(k)(z), is the unique fixed point of the function ψ(x) := − 1
z

(
1− 1

N

∑∞
`=1

d`x
1+d`x

)
,

resp. ψ(k)(x) := − 1
z

(
1− 1

N

∑
` 6=k

d`x
1+d`x

)
, inside the cone spanned by 1 and −1/z. We have the

following control on the distance between m̃(z) and m̃(k)(z).

Lemma D.13. For any z ∈ H<0, ∣∣m̃(k)(z)− m̃(z)
∣∣ ≤ 1

|z|N
.

Proof. Let z ∈ H<0 , m̃ = m̃(z) and m̃(k) = m̃(k)(z). We have:

m̃(k) − m̃ = −1

z

− 1

N

∑
` 6=k

d`m̃(k)

1 + d`m̃(k)
+

1

N

∑
m

d`m̃

1 + d`m̃


= −1

z

 1

N

∞∑
` 6=k

d`(
1 + d`m̃(k)

)
(1 + d`m̃)

(m̃− m̃(k)) +
1

N

dkm̃

1 + dkm̃


which allows us to express the difference m̃(k) − m̃ as

m̃(k) − m̃ =
1
N

dkm̃
1+dkm̃(

1
N

∑∞
` 6=k

d`
(1+d`m̃(k))(1+d`m̃)

− z
) .

Since m̃(k) and m̃ lie in the cone spanned by 1 and − 1
z , from Lemma D.12, we have the lower bound

on the norm of the denominator:∣∣∣∣∣∣ 1

N

∞∑
` 6=k

d`(
1 + d`m̃(k)

)
(1 + d`m̃)

− z

∣∣∣∣∣∣ ≥| z | .
Since <(m̃) ≥ 0, |1 + dkm̃| ≥ |dkm̃| and hence

∣∣∣ 1
N

dkm̃
1+dkm̃

∣∣∣ ≤ 1
N . This yields the inequality∣∣m̃(k)(z)− m̃(z)

∣∣ ≤ 1
N |z| .

Appendix E

Freeze and Chaos: NTK views on DNN
Normalization, Checkerboard and Boundary
Artifacts

E.1 Choice of Parametrization

The NTK parametrization for FC-NNs introduced in Section 2 differs slightly from the one com-
monly used, yet it ensures that the training is consistent as the size of the layers grows. In the
standard parametrization, for ` = 0..L− 1, the activations are defined by

α(0)(x) = x

α̃(`+1)(x) = W (`)α(`)(x) + b(`)

α(`+1)(x) = σ
(
α̃(`+1)(x)

)
.

Let denote by gθ the output function of the FC-NN thus parametrized, where θ is the concise
notation for the vector of free parameters of the FC-NN, and fθ that of the FC-NN with NTK
parametrization. Note the absence of 1√

n`
in comparison to the NTK parametrization. With

LeCun/He initialization [125], the parameters W (`) have standard deviation 1√
n`

(or
√

2√
n`

for the
ReLU but this does not change the general analysis). Using this initialization, the activations stay
stochastically bounded as the widths of the FC-NN get large. In the forward pass, there is almost
no difference between the two parametrizations and for each choice of parameters θ, we can scale

down the connection weights by
√

1−β2

√
n`

and the bias weights by β to obtain a new set of parameters

θ̂ such that
fθ = gθ̂.

The two parametrizations will exhibit a difference during backpropagation since:

∂
W

(`)
ij
gθ̂(x) =

√
n`√

1− β2
∂
W

(`)
ij
fθ(x), ∂

b
(`)
j
gθ̂(x) =

1

β
∂
b
(`)
j
fθ(x).

The NTK is a sum of products of these derivatives over all parameters:

Θ(L) = Θ(L:W (0)) + Θ(L:b(0)) + Θ(L:W (1)) + Θ(L:b(1)) + ...+ Θ(L:W (L−1)) + Θ(L:b(L−1)).

235

236
APPENDIX E. FREEZE AND CHAOS: NTK VIEWS ON DNN NORMALIZATION,

CHECKERBOARD AND BOUNDARY ARTIFACTS

Figure E.1.1: Result of two GANs on CelebA. (Left) with Nonlinearity Normalization and (Right)
with Batch Normalization. In both cases the discriminator uses a Normalized ReLU.

With our parametrization, all summands converge to a finite limit, while with the Le Cun or He
parameterization we obtain

Θ̂(L) =
n0

1− β2
Θ(L:W (0)) +

1

β2
Θ(L:b(0)) + ...+

nL−1

1− β2
Θ(L:W (L−1)) +

1

β2
Θ(L:b(L−1)),

where some summands, namely the
(

ni
1−β2 Θ(L:W (i))

)
i
, explode in the infinite width limit. One

must therefore take a learning rate of order 1
max(n1,...nL−1) [112, 168] to obtain a meaningful training

dynamics, but in this case the contributions to the NTK of the first layers connections W (0) and
the bias of all layers b(`) vanish, which implies that training these parameters has less and less effect
on the function as the width of the network grows. As a result, the dynamics of the output function
during training can still be described by a modified kernel gradient descent: the modified learning
rate compensates for the absence of normalization in the usual parametrization.

The NTK parametrization is hence more natural for large networks, as it solves both the problem
of having meaningful forward and backward passes, and to avoid tuning the learning rate, which is
the problem that sparked multiple alternative initialization strategies in deep learning [76]. Note
that in the standard parametrization, the importance of the bias parameters shrinks as the width
gets large; this can be implemented in the NTK parametrization by taking a small value for the
parameter β.

E.2 FC-NN Order and Chaos

In this section, we prove the existence of two regimes,‘order’ and ‘chaos’, in FC-NNs. First, we
improve some results of [42], and study the rate of convergence of the activation kernels as the

E.2. FC-NN ORDER AND CHAOS 237

depth grows to infinity. In a second step, this allows us to characterise the behavior of the NTK
for large depth.

Let us consider a standardized differentiable nonlinearity σ, i.e. satisfying Ex∼N (0,1)

[
σ2 (x)

]
=

1. Recall that the the activation kernels are defined recursively by Σ(1)(x, y) = 1−β2

n0
xT y + β2 and

Σ(`+1)(x, y) = (1 − β2)Lσ
Σ(`)(x, y) + β2, where Lσ

Σ(L) was introduced in Section 2.2. By induction,
for any x, y ∈ Sn0 , Σ(`+1)(x, y) is uniquely determined by ρx,y = 1

n0
xT y. Defining the two functions

Rσ, Bβ : [−1, 1]→ [−1, 1] by:

Rσ(ρ) = E
v∼N

0,

 1 ρ
ρ 1

 [σ(v0)σ(v1)] ,

Bβ(ρ) = β2 + (1− β2)ρ,

one can formulate the activation kernels as an alternate composition of Bβ and Rσ:

Σ(`)(x, y) = (Bβ ◦Rσ)
◦`−1 ◦Bβ (ρx,y) .

In particular, this shows that for any x, y ∈ Sn0
, Σ(`)(x, y) ≤ 1. Since the activation kernels

are obtained by iterating the same function, we first study the fixed points of the composition
Bβ ◦ Rσ : [−1, 1] → [−1, 1]. When σ is a standardized nonlinearity, the function Rσ, named the
dual of σ, satisfies the following key properties proven in [42]:

1. Rσ(1) = 1,

2. For any ρ ∈ (−1, 0), Rσ(ρ) > ρ,

3. Rσ is convex in [0, 1),

4. R′σ(1) = E
[
σ̇(x)2

]
, where R′σ denotes the derivative of Rσ,

5. R′σ = Rσ̇ .

By definition Bβ(1) = 1, thus 1 is a trivial fixed point: Bβ ◦ Rσ(1) = 1. This shows that for any
x ∈ Sn0 and any ` ≥ 1:

Σ(`)(x, x) = 1.

It appears that−1 is also a fixed point of Bβ◦Rσ if and only if the nonlinearity σ is antisymmetric
and β = 0. From now on, we will focus on the region (−1, 1). From the property 2. of Rσ and
since Bβ is non decreasing, any non trivial fixed point must lie in [0, 1). Since Bβ ◦ Rσ(0) > 0,
Bβ ◦ Rσ(1) = 1 and Rσ is convex in [0, 1), there exists a non trivial fixed point of Bβ ◦ Rσ if
(Bβ ◦Rσ)

′
(1) > 1 whereas if (Bβ ◦Rσ)

′
(1) < 1 there is no fixed point in (−1, 1). This leads to two

regimes shown in [42], depending on the value of rσ,β =
(
1− β2

)
Ex∼N (0,1)

[
σ̇2 (x)

]
:

1. “Order” when rσ,β < 1: Bβ ◦Rσ has a unique fixed point equal to 1 and the activation kernels
become constant at an exponential rate,

2. “Chaos” when rσ,β > 1: Bβ ◦ Rσ has another fixed point 0 ≤ a < 1 and the activation
kernels converge to a kernel equal to 1 if x = y and to a if x 6= y and, if the nonlinearity is
antisymmetric and β = 0, it converges to −1 if and only if x = −y.

238
APPENDIX E. FREEZE AND CHAOS: NTK VIEWS ON DNN NORMALIZATION,

CHECKERBOARD AND BOUNDARY ARTIFACTS

To establish the existence of the two regimes for the NTK, we need the following bounds on the
rate of convergence of Σ(`)(x, y) in the “order” region and on its values in the “chaos” region:

Lemma E.2.1. If σ is a standardized differentiable nonlinearity,
If rσ,β < 1, then for any x, y ∈ Sn0 ,

1 ≥ Σ(`)(x, y) ≥ 1− 2r`−1
σ,β (1− β2).

If rσ,β > 1, then there exists a fixed point a ∈ [0, 1) of Bβ ◦Rσ such that for any x, y ∈ Sn0
,∣∣∣Σ(`)(x, y)

∣∣∣ ≤ max

{∣∣∣∣β2 +
1− β2

n0
xT y

∣∣∣∣ , a} .
Proof. Let us denote r = rσ,β and suppose first that r < 1. By [42], we know that R′σ = Rσ̇
and Rσ̇(ρ) ∈

[
−E

[
σ̇(z)2

]
,E
[
σ̇(z)2

]]
where z ∼ N (0, 1). From now on, we will omit to specify

the distribution asumption on z. The previous equalities and inequalities imply that Rσ(ρ) ≥
1− E

[
σ̇(v)2

]
(1− ρ), thus we obtain:

Bβ ◦Rσ(ρ) ≥ β2 + (1− β2)(1− E
[
σ̇(z)2

]
(1− ρ)) = 1− r(1− ρ).

By definition, we then have Σ(`)(x, y) = (Bβ ◦Rσ)
◦`−1 ◦ Bβ

(
1
n0
xT y

)
≥ 1 − 2(1 − β2)r`−1. Using

the bound Σ(`)(x, y) ≤ 1, this proves the first assertion.
When r > 1, there exists a fixed point a of Bβ ◦ Rσ in [0, 1). By a convexity argument, for

any ρ in [a, 1), a ≤ Bβ ◦ Rσ(ρ) ≤ ρ and because Rσ(ρ) is increasing in [0, 1), for all ρ ∈ [0, a],
0 ≤ Bβ ◦Rσ(ρ) ≤ a.

For negative ρ, we claim that |Bβ ◦Rσ(ρ)| ≤ Bβ ◦ Rσ(|ρ|),which entails the second assertion.
Since Rσ(ρ) =

∑∞
i=0 biρ

i for positive bis [42], and the composition Bβ ◦ Rσ(ρ) =
∑∞
i=0 ciρ

i for
c0 = b0(1− β2) + β2 ≥ 0 and ci = bi(1− β2) ≥ 0 when i > 0, we have

|Bβ ◦Rσ(ρ)| =

∣∣∣∣∣
∞∑
i=0

ciρ
i

∣∣∣∣∣ ≤
∞∑
i=0

ci |ρ|i = Bβ ◦Rσ(|ρ|).

This leads to the inequality in the chaos regime.

Before studying the normalized NTK, let us remark that the NTK on the diagonal (with x = y
in Sn0

) is equal to:

Θ(L)
∞ (x, x) =

L∑
`=1

Σ(`)(x, x)
L∏

k=`+1

Σ̇(k)(x, x) =
L∑
`=1

(
(1− β2)E

[
σ̇(x)2

])L−`
=

1− rL

1− r
.

This shows that in the ordered regime, Θ
(L)
∞ (x, x) −→

L→∞
1

1−r and in the chaotic regime Θ
(L)
∞ (x, x)

grows exponentially. At the transition, r = 1 and thus Θ
(L)
∞ (x, x) = L. Besides, if x, y ∈ Sn0

,
using the Cauchy-Schwarz inequality, for any ` ,

∣∣Σ(`)(x, y)
∣∣ ≤ ∣∣Σ(`)(x, x)

∣∣ and ∣∣∣Σ̇(`+1)(x, y)
∣∣∣ ≤∣∣∣Σ̇(`+1)(x, x)

∣∣∣. This implies the following inequality: Θ
(L)
∞ (x, y) ≤ Θ

(L)
∞ (x, x).

We now study the normalized NTK ϑL (x, y) =
Θ(L)
∞ (x,y)

Θ
(L)
∞ (x,x)

≤ 1.

E.2. FC-NN ORDER AND CHAOS 239

Theorem E.2.2. Suppose that σ is twice differentiable and standardized.
If r < 1, we are in the ordered regime: there exists C1 such that for x, y ∈ Sn0 ,

1− C1Lr
L ≤ ϑ(L) (x, y) ≤ 1.

If r > 1, we are in the chaotic regime: for x 6= y in Sn0
, there exist s < 1 and C2, such that∣∣∣ϑ(L) (x, y)

∣∣∣ ≤ C2s
L.

Proof. First, let us suppose that r < 1. Recall that the NTK is defined as

Θ(L)
∞ (x, y) =

L∑
`=1

Σ(`)(x, y)Σ̇(`+1)(x, y) . . . Σ̇(L)(x, y).

Several times in the appendix, we will use the following fact: for any a1, · · · , ak ∈ (0, 1), we have

k∏
i=1

(1− ai) ≥ 1−
k∑
i=1

ai. (E.2.1)

For all ` = 1..L, Σ(`)(x, y) ≤ Σ(`)(x, x) = 1 and Σ̇(`)(x, y) ≤ Σ̇(`)(x, x) = r. Writing Σ(`)(x, y) =
1− ε(`) and Σ̇(`)(x, y) = r − ε̇(`) for ε(`), ε̇(`) ≥ 0, we have that

Θ(L)
∞ (x, y) =

L∑
`=1

(
1− ε(`)

) L∏
k=`+1

(
r − ε̇(`)

)

≥
L∑
`=1

rL−` − rL−`ε(`) −
L∑

k=`+1

rL−`−1ε̇(`),

by (E.2.1). Using the bound of Lemma E.2.1 and the fact that for any x, y ∈ Sn0
, Σ̇(`)(x, y) =

(1−β2)Rσ̇(Σ(`−1)(x, y)) ≥ r−ψε(`−1) for ψ = (1−β2)Ez∼N (0,1) [σ̈(z)], we obtain ε(`) < 2(1−β2)r`−1

and ε̇(`) ≤ 2(1− β2)ψr`−2. As a result:

Θ(L)
∞ (x, y) ≥

L∑
`=1

rL−` − 2(1− β2)rL−`r`−1 −
L∑

k=`+1

2(1− β2)ψrL−`−1rk−2

= Θ(L)
∞ (x, x)− 2(1− β2)

L∑
`=1

rL−1 + ψ
L∑

k=`+1

rL−`+k−3

= Θ(L)
∞ (x, x)− 2(1− β2)

[
LrL−1 + ψrL−2

L∑
`=1

1− rL−`

1− r

]

≥ Θ(L)
∞ (x, x)− 2(1− β2)

[
r + ψ

1

1− r

]
LrL−2

≥ Θ(L)
∞ (x, x)− CLrL.

Now, let us suppose that r > 1. Recall that Bβ ◦ Rσ has a unique fixed point a on [0, 1). For
any x and y in Sn0

, the kernels Σ(`)(x, y) are bounded in norm by v = max
{∣∣∣β2 + 1−β2

n0
xT y

∣∣∣ , a}

240
APPENDIX E. FREEZE AND CHAOS: NTK VIEWS ON DNN NORMALIZATION,

CHECKERBOARD AND BOUNDARY ARTIFACTS

from Lemma E.2.1. For the kernels Σ̇(`) we have
∣∣∣Σ̇(`)(x, y)

∣∣∣ = (1 − β2)
∣∣Rσ̇(Σ(`−1)(x, y))

∣∣ ≤
(1 − β2)Rσ̇(

∣∣Σ(`−1)(x, y)
∣∣) ≤ (1 − β2)Rσ̇(v) =: w where the first inequality follows from the fact

that Rσ̇(ρ) =
∑
i biρ

i for bi ≥ 0 and the second follows from the monotonicity of Rσ̇ in [0, 1].
Applying these two bounds, we obtain:

∣∣∣Θ(L)
∞ (x, y)

∣∣∣ ≤ L∑
`=1

v

L∏
k=`+1

w = v
1− wL

1− w
.

Since Θ
(L)
∞ (x, y) = 1−rL

1−r , we have that |ϑL (x, y)| ≤ v 1−wL
1−rL . If x 6= y then v < 1 and since σ is

nonlinear, w = (1− β2)Rσ̇(v) < (1− β2)Rσ̇(1) = r. This implies that |ϑL (x, y)| converges to zero
at an exponential rate, as L→∞.

ReLU FC-NN

For the standardized ReLU nonlinearity, σ (x) =
√

2 max (x, 0), the dual activation is computed in
[42]:

Rσ(ρ) =

√
1− ρ2 +

(
π − cos−1(ρ)

)
ρ

π
,

and the dual activation of its derivative is given by:

Rσ̇(ρ) =
π − cos−1(ρ)

π
.

The characteristic value r = rσ,β of the standardized ReLU is equal to 1 − β2: the ReLU
nonlinearity therefore lies in the “order” regime as soon as β > 0. More explicitly, Lemma E.2.1
still holds of the standardized ReLU and the following inequalities hold for any x, y ∈ Sn0

:

1 ≥ Σ(`)(x, y) ≥ 1− 2r`.

Using these bounds, we can now prove Theorem E.2.3.

Theorem E.2.3. With the same notation as in Theorem E.2.2, taking σ to be the standardized
ReLU and β > 0, we are in the weakly ordered regime: there exists a constant C such that 1 −
CLrL/2 ≤ ϑ(L) (x, y) ≤ 1.

Proof. The first inequality ϑL (x, y) ≤ 1 follows the same proof as in the differentiable case.
For the lower bound, using the fact that (1− β) r = 1, we have ε(`) = 1 − Σ(`)(x, y) ≤ 2r`

and using the explicit value of Rσ̇(ρ), we get that Rσ̇(ρ) ≥ 1 −
√

1− ρ which implies that ε̇(`) =

r − Σ̇(`)(x, y) ≤ r
√

2r
`−1

2 : using (E.2.1), we write

Θ(L)
∞ (x, y) =

L∑
`=1

(
1− ε(`)

) L∏
k=`+1

(
r − ε̇(k)

)
≥

L∑
`=1

rL−` − 2rL−`r` −
√

2

L∑
k=`+1

rL−`−1+ k−1
2

≥ Θ(L)
∞ (x, x)− 2LrL −

√
2

L∑
`=1

rL−
`
2−1

L−`−1∑
k=0

r
k
2 .

E.3. LAYER NORMALIZATION AND NONLINEARITY NORMALIZATION 241

Focusing on bounding the double sum from above, we have

√
2

L∑
`=1

rL−
`
2−1

L−`−1∑
k=0

r
k
2 ≤

√
2

1−
√
r
r
L
2 −1

L−1∑
`=0

r
`
2

√
2

1−
√
r
r
L
2 −1 1

1−
√
r

≤
√

2

r (1−
√
r)

2 r
L
2

Hence, we see that

Θ(L)
∞ (x, y) ≥ Θ(L)

∞ (x, x)−

[
2Lr

L
2 −

√
2

r (1−
√
r)

2

]
r
L
2 .

Recall that for any x ∈ Sn0
, Θ

(L)
∞ (x, x) = 1−rL

1−r is bounded in L. Dividing the previous inequality

by Θ
(L)
∞ (x, x) we get: 1− CrL/2 ≤ ϑL (x, y) ≤ 1, as claimed, where the constant C is explicit.

E.3 Layer Normalization and Nonlinearity Normalization

Layer normalization is asymptotically equivalent to nonlinearity normalization.

With Layer Normalization (LN), the coordinates of the normalized vectors of activations are

α̌
(`)
j (x) =

√
n`

α
(`)
j (x)−µ(`)(x)

||α(`)(x)−µ(`)(x)|| , where µ
(`) := 1

n`

∑n`
i=1 α

(`)
i (x) and µ(`) :=

µ
(`)

...
µ(`)

. We simplify

the notation by making the dependence on x implicite and denote the standardized nonlinearity
σ(·) := σ(·)−E(σ(Z))√

Var(σ(Z))
, where Z d∼ N (0, 1).

Suppose that L = 2, that is we have a single hidden layer after which the LN is applied. More
precisely, the output of the network function with LN is α̃(2)(α̌(1)(x)). We rewrite

α̌(1) =
√
n1

σ(α̃(1))− µ(1)

||σ(α̃(1))− µ(1)||
= σ(α̃(1))C1 + C2,

where C1 =
√
n1

√
Var(σ(Z))

||σ(α̃(1))− µ(1)||
, and C2 =

√
n1

E(σ(Z))− µ(1)

||σ(α̃(1))− µ(1)||
.

Note that C1 → 1 and C2 → 0 almost surely, as n1 →∞. Indeed, since the α̃(1)
i ’s are independent

standard Gaussian variables at initialization (recall that we assume that the inputs belong to Sn0
),

the law of large numbers entails that µ(1) → E(σ(Z)) almost surely, as n1 → ∞, and similarly for
||σ(α̃(1))−µ(1)||2

n1
→ Var(σ(Z)).

To show that LN is asymptotically equivalent to centering and standardizing the nonlinearity,
we now establish that C1 and C2 are constant during training. We have

∂

∂α̃
(1)
j

||σ(α̃(1))− µ(1)|| =
σ̇(α̃

(1)
j)

∑n1

i=1(δij − 1/n1)(σ(α̃
(1)
i)− µ(1))

||σ(α̃(1))− µ(1)||
=
σ̇(α̃

(1)
j)(σ(α̃

(1)
j)− µ(1))

||σ(α̃(1))− µ(1)||
.

(E.3.1)

242
APPENDIX E. FREEZE AND CHAOS: NTK VIEWS ON DNN NORMALIZATION,

CHECKERBOARD AND BOUNDARY ARTIFACTS

Note that the absolute value of the latter is bounded by 2||σ̇||∞. We write g(t) for any function g
that depends on the parameters θ(t) at time t ≥ 0. Using twice the triangle inequality yields that∣∣∣||σ(α̃(1)(t))− µ(1)(t)|| − ||σ(α̃(1)(0))− µ(1)(0)||

∣∣∣ ≤ ||σ(α̃(1)(t))− σ(α̃(1)(0))||+ ||µ(1)(t)− µ(1)(0)||

≤ ||σ̇||∞

(n1∑
i=1

(α̃
(1)
i (t)− α̃(1)

i (0))2

)1/2

+
1
√
n1

n1∑
i=1

∣∣∣α̃(1)
i (t)− α̃(1)

i (0)
∣∣∣
 ≤ ct, (E.3.2)

for some constant c > 0, where we used that |α̃(1)
i (t) − α̃(1)

i (0)| = O(t/
√
n1), see Appendix A.2

of [105]. Since ||σ(α̃(1)(0)) − µ(1)(0)|| ∼ √n1 by the law of large numbers, we can always write
||σ(α̃(1)(t))− µ(1)(t)|| > ||σ(α̃(1)(0))− µ(1)(0)|| − ct > 0. Hence, using (E.3.1) then (E.3.2), we get∣∣∣∣∣ ∂C1(t)

∂α̃
(1)
j (t)

∣∣∣∣∣ =

√
n1Var(σ(Z))

||σ(α̃(1)(t))− µ(1)(t)||2
·

∣∣∣∣∣ σ̇(α̃
(1)
j (t))(σ(α̃

(1)
j (t))− µ(1)(t))

||σ(α̃(1)(t))− µ(1)(t)||

∣∣∣∣∣
≤

√
n1Var(σ(Z))

(||σ(α̃(1)(0)− µ(1)(0))|| − ct)2
||σ̇||∞ = O(1/

√
n1), (E.3.3)

by the law of large numbers. The case of C2 is similar:

∂C2(t)

∂α̃
(1)
j (t)

=
−σ̇(α̃

(1)
j (t))

√
n1||σ(α̃(1)(t))− µ(1)(t)||

−
√
n1

(E(σ(Z))− µ(1)(t))σ̇(α̃
(1)
j (t))(σ(α̃

(1)
j (t))− µ(1)(t))

||σ(α̃(1)(t))− µ(1)(t)||3

≤ ||σ̇||∞

(
1

n1

√
n1

||σ(α̃(1)(0))− µ(1)(0)|| − ct
− 1
√
n1

n1(E(σ(Z))− µ(1)(0) + ct)

(||σ(α̃(1)(0))− µ(1)(0)|| − ct)2

)
= O(1/

√
n1),

(E.3.4)

again by the law of large numbers. For i = 1, 2, we now write ∂Ci(t)
∂t =

∂α̃
(1)
j (t)

∂t
∂Ci(t)

∂α̃
(1)
j (t)

and recall

that the first term is changing at rate O(1/
√
n1). Therefore, |Ci(t)−Ci(0)| ≤ O(t/n1). The claim

for L ≥ 3 follows by induction.

Pre-layer normalization has asymptotically no effect.

Normalizing the preactivations has asymptotically no effect on the network at initialization as well

as during training. The output of the `-th layer becomes α̌(`)
j = σ

(√
n`

α̃
(`)
j −µ

(`)

||α̃(`)−µ(`)||

)
where µ(`) and

µ(`) are computed similarily as before with α̃(`) in place of α(`). As before, we assume L = 2 and
deduce the general case by induction. We write α̌(1)

j = σ(α̃
(1)
j C1 +C2), with C1 =

√
n1/||α̃(`)−µ(`)||

and C2 = −√n1µ
(1)/||α̃(`)− µ(`)||. Again, the law of large numbers show that C1 → 1 and C2 → 0

almost surely, as n1 →∞. Moreover, similarily as (E.3.1) and (E.3.2), we have that

∂

∂α̃
(1)
j

||α̃(1) − µ(1)|| =
α̃

(1)
j − µ(1)

||α̃(1) − µ(1)||
,∣∣∣||α̃(1)(t)− µ(1)(t)|| − ||α̃(1)(0)− µ(1)(0)||

∣∣∣ ≤ ct,

E.4. BATCH NORMALIZATION 243

for some constant c > 0. Using the same argument as in (E.3.3) and (E.3.4), one can thus show for
i = 1, 2 that ∣∣∣∣∣∂Ci(t)∂α̃

(1)
j

∣∣∣∣∣ = O(1/
√
n1).

We conclude as previously, noting that

∂α̌
(1)
j (t)

∂t
= σ̇

(
α̃

(1)
j (t)C1(t) + C2(t)

)(∂α̃(1)
j (t)

∂t
C1(t) + α̃

(1)
j (t)

∂C1(t)

∂t
+
∂C2(t)

∂t

)
.

E.4 Batch Normalization

If one adds a BatchNorm layer after the nonlinearity of the last hidden layer, we have:

Lemma E.4.1. Consider a FC-NN with L layers, with a PN-BN after the last nonlinearity. For
any k, k′ ∈ {1, . . . , nL} and any parameter θp, we have

∑N
i=1 Θ

(L)
θp

(·, xi) = β2IdnL .

Proof. This is an direct consequence of the definition of the NTK and of the following claim:
Claim. For a fully-connected DNN with a BatchNorm layer after the nonlinearity of the last

hidden layer then 1
N

∑N
i=1 ∂θpfθ,k(xi) is equal to β if θp is b(L−1)

k , the bias parameter of the last
layer, and equal to 0 otherwise.

The average of fθ,k on the training set, 1
N

∑N
i=1 ∂θpfθ,k(xi), only depends on the bias of the last

layer:
1

N

N∑
i=1

fθ,k(xi) =

√
1− β2

√
nL−1

W (L−1) 1

N

N∑
i=1

α̂(L−1)(xi) + βb
(L−1)
k = βb

(L−1)
k .

Thus for any parameter θp, 1
N

∑N
i=1 ∂θpfθ,k(xi) = ∂θp

(
βb

(L−1)
k

)
is equal to β if the parameter is

the bias b(L−1)
k and zero otherwise.

E.5 Graph-based Neural Networks

In this section, we prove the convergence of the NTK at initialization for a general family of DNNs
which contain in particular CNNs and DC-NNs. We will consider the Graph-based parametrization
introduced in the main.

For each layer ` = 0, ..., L, the neurons are indexed by a position p ∈ I` and a channel i = 1, ..., n`.
We may assume that the sets of positions I` can be any set, in particular any subset of ZD. For
any position p ∈ I`+1, we consider a set of parents P (p) ⊂ I` and we define recursively the set
P ◦k(p) ⊂ I`+1−k of ancestors of level k by P ◦k(p) =

{
q | ∃q′ ∈ P ◦k−1(p), q ∈ P (q′)

}
. For each

parent q ∈ P (p), the connections from the position (q, `) to the position (p, `+ 1) are encoded in
an n` × n`+1 weight matrix W (`,q→p). We define χ(q → p, q′ → p′) which is equal to 1 if and only
if W (`,q→p) and W (`,q′→p′) are shared (in the sense that the two matrices are forced to be equal
at initialization and during training) and 0 otherwise. It satisfies χ(q → p, q → p) = 1 for any
neuron p and any q ∈ P (p) and it is transitive. We will also suppose that for any neuron p and any

244
APPENDIX E. FREEZE AND CHAOS: NTK VIEWS ON DNN NORMALIZATION,

CHECKERBOARD AND BOUNDARY ARTIFACTS

q, q′ ∈ P (p), χ(q → p, q′ → p) = δqq′ (i.e. no pair of connections connected to the same neuron p
are shared).

In this setting, the activations and preactivations α(`), α̃(`) ∈ (Rn`)I` are recursively constructed
using the parent-based NTK parametrization: we set α(0) (x) = x and for ` = 0, . . . , L− 1 and any
position p ∈ I`:

α̃(`+1,p)(x) = βb(`) +

√
1− β2√
|P (p)|n`

∑
q∈P (p)

W (`,q→p)xq, α(`+1) (x) = σ
(
α̃(`+1) (x)

)
where σ is applied entry-wise, β ≥ 0 and |P (p)| is the cardinal of P (p). This is a slightly more
general formalism than the DC-NNs and it will allow us to obtain simpler formulae which generalize
well to other architectures.

Remark. Notice that the parametrization is slightly different than the traditional one: we divide
by
√
|P (p)|n` instead of dividing by

√
n`

|ω|
s1...sd

. This does not lead to any difference when one
consider infinite-sized images as in Section E.6 since in this case the number of parents is constant,
equal to |ω|

s1...sd
. The key difference between the two parametrizations will be investigated in Section

E.7.

Recall, that for a kernel K : Rn0 × Rn0 → R, and for any z0, z1 ∈ Rn0 , we defined:

LgK (z0, z1) = E(y0,y1)∼N(0,(K(zi,zj))i,j=0,1)
[g (y0) g (y1)] .

Proposition E.5.1. In the above setting, as n1 →∞, . . .,n`−1 →∞ sequentially, the preactivations(
α̃

(`,p)
i (x)

)
i=1,...,n`,p∈I`

of the `th layer converge to a centered Gaussian process with covariance

Σ(`,pp′)(x, y)δii′ , where Σ(`,pp′)(x, y) is defined recursively as

Σ(1,pp′)(x, y) = β2 +
1− β2√

|P (p)| |P (p′)|n0

∑
q∈P (p)

∑
q′∈P (p′)

χ(q → p, q′ → p′) (xq)
T
yq′ ,

Σ(`+1,pp′)(x, y) = β2 +
1− β2√
|P (p)| |P (p′)|

∑
q∈P (p)

∑
q′∈P (p′)

χ(q → p, q′ → p′)Lσ
Σ(`,qq′) (x, y) .

Proof. The proof is done by induction on `. For ` = 1 and any i ∈ {1, . . . , n1}, the preactivation

α̃
(1,p)
i (x) = βb

(0)
i +

√
1− β2√
|P (p)|n0

∑
q∈P (p)

(
W (0,q→p)
p xq

)
i

is a random affine function of x and its coefficients are centered Gaussian: it is hence a cen-
tered Gaussian process whose covariance is easily shown to be equal to E

[
α̃

(1,p)
i (x)α̃

(1,p′)
i′ (y)

]
=

Σ(1,pp′)(x, y)δii′ .
For the induction step, we assume that the result holds for the pre-activations of the layer `.

The pre-activations of the next layer are of the form

α̃
(`+1,p)
i (x) = βb

(0)
i +

√
1− β2√
|P (p)|n`

∑
q∈P (p)

(
W (`,q→p)α(`,q)(x)

)
i
.

E.5. GRAPH-BASED NEURAL NETWORKS 245

Conditioned on the activations α(`,q) of the last layer, α̃(`+1,p) is a centered Gaussian process: in
other terms, it is a mixture of centered Gaussians with a random covariance determined by the
activations of the last layer. The random covariance between α̃(`+1,p0)

i0
(x) and α̃(`+1,p1)

i1
(y) is equal

to

β2δi0i1 +
1− β2√

|P (p)| |P (p′)|n`

∑
q0 ∈ P (p0)
q1 ∈ P (p1)

n∑̀
j0,j1=1

E
[
W

(`,q0→p0)
i0j0

W
(`,q1→p1)
i1j1

]
α

(`,q0)
j0

(x)α
(`,q1)
j1

(y)

= δi0i1

β2 +
1− β2√
|P (p)| |P (p′)|

∑
q0 ∈ P (p0)
q1 ∈ P (p1)

χ(q0 → p0, q1 → p1)
1

n`

n∑̀
j=1

σ
(
α̃

(`,q0)
j (x)

)
σ
(
α̃

(`,q1)
j (y)

)
 ,

where we used the fact that E
[
W

(`,q0→p0)
i0j0

W
(`,q1→p1)
i1j1

]
= χ(q0 → p0, q1 → p1)δi0i1δj0j1 . Using the in-

duction hypothesis, as n1 →∞, . . .,n`−1 →∞ sequentially, the preactivations
(
α̃

(`,q0)
j (x), α̃

(`,q1)
j (y)

)
j

converge to independant centered Gaussian pairs. As n` → ∞, by the law of large numbers, the
sum over j along with the 1

n`
converges to LΣ(`,qq′)

σ (x, y). In this limit, the random covariance of the
Gaussian mixture becomes deterministic and as a consequence, the mixture of Gaussian processes
tends to a centered Gaussian process with the right covariance.

Similarly to the activation kernels, one can prove that the NTK converges at initialization.

Proposition E.5.2. As n1 → ∞, . . .,nL−1 → ∞ sequentially, the NTK Θ(L,p0p1) of a general
convolutional network converges to Θ

(L)
∞,p0p1 ⊗ IdnL where Θ

(L,p0p1)
∞ (x, y) is defined recursively by:

Θ(1,p0p1)
∞ (x, y) =Σ(1,p0p1)(x, y),

Θ(L,p0p1)
∞ (x, y) =

1− β2√
|P (p0)| |P (p1)|

∑
q0 ∈ P (p0)
q1 ∈ P (p1)

χ(q0 → p0, q1 → p1)Θ(L−1,q0q1)
∞ (x, y)Lσ̇Σ(L−1,q0q1) (x, y)

+ Σ(L,p0p1)(x, y).

Proof. The proof by induction on L follows the one of [105] for fully-connected DNNs. We present
the induction step and assume that the result holds for a general convolutional network with L− 1

hidden layers. Following the same computations as in [105], the NTK Θ
(L+1)
p0p1,jj′

(x, y) is equal to

1− β2√
|P (p0)| |P (p1)|nL

∑
q0∈P (p0)

∑
q1∈P (p1)

∑
ii′

Θ
(L,q0q1)
ii′ (x, y)σ̇

(
α̃

(L,q0)
i (x)

)
σ̇
(
α̃

(L,q1)
i′ (y)

)
W

(L,q0→p0)
ij W

(L,q1→p1)
i′j′

+ δjj′β
2 + δjj′

1− β2√
|P (p0)| |P (p1)|nL

∑
q0∈P (p0)

∑
q1∈P (p1)

χ(q0 → p0, q1 → p1)
∑
i

α
(L,q0)
i (x)α

(L,q1)
i (y)

246
APPENDIX E. FREEZE AND CHAOS: NTK VIEWS ON DNN NORMALIZATION,

CHECKERBOARD AND BOUNDARY ARTIFACTS

which, by assumption, converges as n1 →∞, . . .,nL−1 →∞ to

1− β2√
|P (p0)| |P (p1)|nL

∑
q0∈P (p0)

∑
q1∈P (p1)

∑
i

Θ(L,q0q1)
∞ (x, y)σ̇

(
α̃

(L,q0)
i (x)

)
σ̇
(
α̃

(L,q1)
i (y)

)
W

(L,q0→p0)
ij W

(L,q1→p1)
ij′

+ δjj′β
2 + δjj′

1− β2√
|P (p0)| |P (p1)|nL

∑
q0∈P (p0)

∑
q1∈P (p1)

χ(q0 → p0, q1 → p1)
∑
i

α
(L,q0)
i (x)α

(L,q1)
i (y).

As nL →∞, using the previous results on the preactivations and the law of large number, the NTK
converges to

1− β2√
|P (p0)| |P (p1)|

∑
q0∈P (p0)

∑
q1∈P (p1)

Θ(L,q0q1)
∞ (x, y)Lσ̇Σ(L,q0q1) (x, y)E

[
W

(L,q0→p0)
ij W

(L,q1→p1)
ij′

]

+ δjj′β
2 + δjj′

1− β2√
|P (p0)| |P (p1)|

∑
q0∈P (p0)

∑
q1∈P (p1)

χ(q0 → p0, q1 → p1)LσΣ(L,q0q1) (x, y) ,

which can be simplified–using the fact that E
[
W

(L,q0→p0)
ij W

(L,q1→p1)
ij′

]
= χ(q0 → p0, q1 → p1)δjj′–

into:

δjj′
1− β2√

|P (p0)| |P (p1)|

∑
q0∈P (p0)

∑
q1∈P (p1)

χ(q0 → p0, q1 → p1)Θ(L,q0q1)
∞ (x, y)Lσ̇Σ(L,q0q1) (x, y)

+ δjj′Σ
(L+1,p0p1)(x, y),

which proves the assertions.

E.6 DC-NN Order and Chaos

In this section, in order to study the behaviour of DC-NNs in the bulk and to avoid dealing with
border effects, studied in Section E.7, we assume that for all layers ` there is no border, i.e. the
positions p are in Zd. Let us consider a DC-NN with up-sampling s ∈ {2, 3, ...}d where the window
sizes for all layers are all set equal to π = ω = {0, · · · , w1s1 − 1} × · · · × {0, · · · , wdsd − 1}. A
position p has therefore w1 · · ·wd parents which are given by

P (p) =

{⌊
p0

s0

⌋
,

⌊
p0

s0

⌋
+ 1, · · · ,

⌊
p0

s0

⌋
+ w1

}
× · · · ×

{⌊
pd
sd

⌋
,

⌊
pd
sd

⌋
+ 1, · · · ,

⌊
pd
sd

⌋
+ wd

}
.

Two connections q → p and q′ → p′ are shared if and only if s | p − p′ (i.e. for any i = 1, ..., d,
si | pi − p′i) and qi − q′i =

pi−p′i
si

for any i = 1, ..., d.
Propositions E.5.1 and E.5.2 hold true in this setting. By Proposition E.7.2, if the nonlinearity σ

is standardized, Σ(`,pp)(x, x) = 1 for any x ∈ SI0n0
and any p ∈ I`. The activation kernels Σ(`,pp′)(x, y)

E.6. DC-NN ORDER AND CHAOS 247

for any two inputs x, y ∈ SI0n0
and two output positions p, p′ ∈ Zd are therefore defined recursively

by:

Σ(1,pp′)(x, y) = β2 + δs|p−p′
1− β2

|P (p)|n0

∑
q∈P (p)

(xq)
T
y
q+ p′−p

s

,

Σ(`+1,pp′)(x, y) = β2 + δs|p−p′
1− β2

|P (p)|
∑

q∈P (p)

Rσ

(
Σ(`,q,q+ p′−p

s)(x, y)
)
,

where p′−p
s =

(
p′i−pi
si

)
i
is a valid position since s|p−p′. Similarly, the NTK at initialization satisfies

the following recursion:

Θ(L+1,pp′)
∞ (x, y) = Σ(L+1,pp′)(x, y)+δs|p−p′

1− β2

|P (p)|
∑

q∈P (p)

Θ
(L,q,q+ p′−p

s)
∞ (x, y)Rσ̇

(
Σ(L,q,q+ p′−p

s)(x, y)
)
.

Remark. Recall that the s-valuation vs (n) of a number n ∈ Zd is the largest k ∈ {0, 1, 2, . . .} such
that ski | ni for all dimensions i = 1, ..., d. For two pixels p, p′ ∈ Zd and any input vectors x, y ∈ SI0n0

,
if vs(p′ − p) < ` the activation kernel Σ(`,pp′)(x, y) does not depend neither on x nor on y. More
precisely, if v = vs(p

′ − p) = 0, we have

Σ(`,pp′)(x, y) = β2,

and for a general v < `:

cv := Σ(`,pp′)(x, y) = (Bβ ◦Rσ)
◦v

(β2).

In particular, if v < L, the NTK is therefore also equal to a constant:

Θ(L,pp′)
∞ (x, y) =

v∑
k=0

ck(1− β2)k
k−1∏
m=0

Rσ̇(cm).

We establish the bounds on the rate of convergence in the “order” region and on the values of
the activations kernel in the chaos region for DC-NNs.

Proposition E.6.1. In the setting introduced above, for a standardized twice differentiable σ, for
x, y ∈ SI0n0

, and any positions p, p′ ∈ I`, taking k = min{vs(p′ − p), `}, we have:
If rσ,β < 1 then:

1 ≥ Σ(`,pp′)(x, y) ≥ 1− 2(1− β2)rkσ,β .

If rσ,β > 1 then there exists a fixed point a ∈ [0, 1) of Bβ ◦Rσ such that:

• If k < `: ∣∣∣Σ(`,pp′)(x, y)
∣∣∣ ≤ max

{
β2, a

}
,

• If p′−p = ms` and there is a c ≤ 1 such that for all input positions q ∈ P ◦`(p),
∣∣∣ 1
n0
xTq yq+m

∣∣∣ ≤
c, then ∣∣∣Σ(`,pp′)(x, y)

∣∣∣ ≤ max
{
β2 + (1− β2)c, a

}
.

248
APPENDIX E. FREEZE AND CHAOS: NTK VIEWS ON DNN NORMALIZATION,

CHECKERBOARD AND BOUNDARY ARTIFACTS

Proof. Let us denote r = rσ,β . Let us suppose that r < 1 and let us prove the first assertion by
induction on `. If ` = 1, then

Σ(1,pp′)(x, y) = β2 + δs|p−p′
1− β2

|P (p)|n0

∑
q∈P (p)

(xq)
T
y
q+ p′−p

s

≥ β2 − δs|p−p′(1− β2)

≥ 1− 2(1− β2)

For the induction step, suppose that the inequality holds true for some ` ≥ 1, then

Σ(`+1,pp′)(x, y) ≥ β2 + δs|p−p′
1− β2

|P (p)|

w
s∑

q=0

Rσ
(
1− 2(1− β2)rk−1

)
≥ β2 + δs|p−p′

1− β2

|P (p)|

w
s∑

q=0

1− 2(1− β2)Rσ̇(1)rk−1

≥ β2 + δs|p−p′
(
1− β2 − 2(1− β2)rk

)
=

{
1− (1− β2) if k = 0

1− 2(1− β2)rk if k > 0

≥ 1− 2(1− β2)rk

Now let us suppose that r > 1. If k < `, then
∣∣∣Σ(`,pp′)(x, y)

∣∣∣ =
∣∣∣(Bβ ◦Rσ)

◦k (
β2
)∣∣∣ < max

{
β2, a

}
.

Let us suppose at last that k = ` and let us prove the last assertion by induction on `. If ` = 1,
then ∣∣∣Σ(1,pp′)(x, y)

∣∣∣ ≤ β2 +
1− β2

|P (p)|n0

∑
q∈P (p)

∣∣∣xTq yTq+ p′−p
s

∣∣∣ ≤ β2 +
1− β2

|P (p)|
∑

q∈P (p)

c

= β2 + (1− β2)c.

For the induction step, if we suppose that the inequality holds true for `, then∣∣∣Σ(`+1,pp′)(x, y)
∣∣∣ ≤ β2 +

(1− β2)

|P (p)|
∑

q∈P (p)

∣∣∣Rσ (Σ(`,q,q+ p′−p
s)(x, y)

)∣∣∣
≤ β2 +

(1− β2)

|P (p)|
∑

q∈P (p)

Rσ
(
max{β2 + (1− β2)c, a}

)
= Bβ ◦Rσ

(
max{β2 + (1− β2)c, a}

)
≤ max{β2 + (1− β2)c, a},

which allows us to conclude.

The NTK features the same two regimes:

Theorem E.6.2. Take I0 = Zd, and consider a DC-NN with upsampling stride s ∈ {2, 3, . . .}d,
windows π = ω = {0, . . . , w1s1 − 1} × . . . × {0, . . . , wdsd − 1} for w ∈ {1, 2, 3, . . .}d. For a stan-
dardized twice differentiable σ, there exist constants C1, C2 > 0, such that the following holds: for
x, y ∈ SI0n0

, and any positions p, p′ ∈ IL, we have:

E.6. DC-NN ORDER AND CHAOS 249

Order: When rσ,β < 1, taking v = min (vs (p− p′) , L− 1), taking v = L − 1 if p = p′ and
r = rσ,β, we have

1− rv+1

1− rL
− C1(v + 1)rv ≤ ϑ(L,p,p′)

∞ (x, y) ≤ 1− rv+1

1− rL
.

Chaos: When rσ,β > 1, if either vs (p− p′) < L or if there exists a c < 1 such that for all positions

q ∈ I0 which are ancestor of p,
∣∣∣∣xTq yq+ p′−p

sL

∣∣∣∣ < c, then there exists h < 1 such that

∣∣∣∣ϑ(L,p,p′)
∞ (x, y)

∣∣∣∣ ≤ C2h
L.

Proof. Let us denote r = rσ,β and let us suppose that r < 1. The NTK can be bounded recursively

Θ(L,pp′)
∞ (x, y) = Σ(L,pp′)(x, y) + δs|p−p′

1− β2

|P (p)|
∑

q∈P (p)

Θ
(L−1;q,q+ p′−p

s)
∞ (x, y)Rσ̇

(
Σ(L−1;q,q+ p′−p

s)(x, y)
)

≥ 1− 2(1− β2)rv + δs|p−p′
1

|P (p)|
∑

q∈P (p)

Θ
(L−1;q,q+ p′−p

s)
∞ (x, y)

(
r − ψ2(1− β2)2rv−1

)
.

Unrolling this inequality then using (E.2.1), we get

Θ(L,pp′)
∞ (x, y) =

v∑
k=0

(
1− 2(1− β2)rk

) v∏
m=k+1

(
r − ψ2(1− β2)2rm−1

)
≥

v∑
k=0

rv−k − 2(1− β2)rv−krk − ψ2(1− β2)2
v∑

m=k+1

rv−k−1rm−1

=
1− rv+1

1− r
− 2(1− β2)(v + 1)rv − ψ2(1− β2)2

v∑
k=0

rv−1
v−k−1∑
m=0

rm

≥ 1− rv+1

1− r
− 2(1− β2)

[
r +

ψ(1− β2)

1− r

]
(v + 1)rv−1

≥ 1− rv+1

1− r
− C(v + 1)rv,

where the constant C is allowed to depend on σ and β. For the upper bound, we have: Θ
(L,pp′)
∞ (x, y) ≤∑L

`=L−k 1
∏L
m=`+1 r = 1−rv+1

1−r . Thus, we get the same bounds as in the FC-NNs case, but with re-
spect to v, which is the maximal integer strictly smaller than L such that sv|p− p′:

1− rv+1

1− r
≥ Θ(L,pp′)

∞ (x, y) ≥ 1− rv+1

1− r
− C(v + 1)rv.

Dividing by Θ
(L,pp)
∞ (x, x) which is bounded in the ordered regime (see proof of Proposition E.7.2)

as L→∞, one gets the desired result.
If r > 1, there are two cases. When p′− p = ksL then if there exists c < 1 such that

∣∣xTq yq+k∣∣ <
cn0 for all ancestors q of p. Writing z = max{β2 + (1 − β2)c, a} and w = (1 − β2)Rσ̇(z) < r such

250
APPENDIX E. FREEZE AND CHAOS: NTK VIEWS ON DNN NORMALIZATION,

CHECKERBOARD AND BOUNDARY ARTIFACTS

that
∣∣∣Σ(`;q,q+ks`)(x, y)

∣∣∣ < z for all position q at layer ` which is an ancestor of p. Then

∣∣∣Θ(L,pp′)
∞ (x, y)

∣∣∣ ≤ L∑
`=1

vwL−` = v
1− wL

1− w

such that ∣∣∣Θ(L,pp′)
∞ (x, y)

∣∣∣∣∣∣Θ(L,pp)
∞ (x, x)

∣∣∣ ≤ c 1− r
1− w

1− wL

1− rL
≤ C(σ, β)

(w
r

)L
which goes to zero exponentially.

If p′ − p is not divisible by sL then for z = max{β2, a} and w = (1− β2)Rσ̇(z) < r

∣∣∣Θ(L,pp′)
∞ (x, y)

∣∣∣ ≤ L∑
`=L−v+1

zwL−` = z
1− wv

1− w

which also converges exponentially to 0.

Adapting the learning rate

Let us suppose that we multiply the learning rate of the `-th layer weights and bias by S−
`
2 where

S =
∏
i si. This is slightly different than what we propose in the main, where the learning rate of

the bias are multiplied by S−
`+1

2 instead of S−
`
2 , but it greatly simplifies the formulas. Furthermore,

the balance between the weights and bias can be modified with the meta-parameter β to achieve a
similar result. The NTK then takes the value:

Θ(L,pp)(x, x) =

L∑
`=1

S−
`
2

L∏
n=`+1

r =

L∑
`=1

S−
`
2 rL−` = S−

L
2

1−
(√

Sr
)L

1−
√
Sr

This leads to another transtion inside the “order” regime: if
√
Sr < 1 the NTK Θ

(L,pp)
∞ (x, x) goes

to zero and if 1√
S
< r < 1 it converges to a constant. If we translate the bound of Proposition

E.6.2 to the NTK with varying learning rates, the convergence to a constant is only guaranteed
when

√
Sr < 1, which suggests that adapting the learning (or changing the number of channels)

does reduce the checkerboard artifacts (as confirmed by numerical experiments):

Proposition E.6.3. If r < 1 the limiting NTK at any two inputs x, y such that for all p ∈ Z,
‖xp‖ = ‖yp‖ =

√
n0 and for any two output positions p and p′, such that k is the maximal integer

in {0, ..., L− 1} such that sk divides the difference p− p′ then:

1− (
√
Sr)k+1

1− (
√
Sr)L

≥ ϑ(L,pp′)
∞ (x, y) ≥ 1− (

√
Sr)k+1

1− (
√
Sr)L

− Cσ,β(
√
Sr)k∣∣∣1− (
√
Sr)L

∣∣∣
Proof. The NTK can be bounded recursively

Θ(L,pp′)
∞ (x, y) = S−

L−1
2 Σ(L,pp′)(x, y) + δs|p−p′

1− β2

|P (p)|
∑

q∈P (p)

Θ
(L−1;q,q+ p′−p

s)
∞ (x, y)Rσ̇

(
Σ(L−1;q,q+ p′−p

s)(x, y)
)

E.7. BORDER EFFECTS 251

≥ S−
L−1

2 (1− 2(1− β2)rk) + δs|p−p′
1

|P (p)|
∑

q∈P (p)

Θ
(L;q,q+ p′−p

s)
∞ (x, y)

(
r − ψ2(1− β2)2rk−1

)
unrolling then using (E.2.1), we get

Θ(L,pp′)
∞ (x, y) ≥

k∑
m=0

S−
L−k+m

2

(
1− 2(1− β2)rm

) k∏
n=m+1

(
r − ψ2(1− β2)2rn−1

)
≥

k∑
m=0

S
k−m−L

2 rk−m − S
k−m−L

2 2(1− β2)rk−mrm − S
k−m−L

2 ψ2(1− β2)2
k∑

n=m+1

rk−m−1rn−1

≥ S−L2 1− (
√
Sr)k+1

1−
√
Sr

− 2
1− β2

1− S− 1
2

S
k−L

2 rk − ψ2(1− β2)2rk−1
k∑

m=0

S
k−m−L

2

k−m−1∑
n=0

rn

We can bound the last term:

ψ2(1− β2)2rk−1
k∑

m=0

S
k−m−L

2

k−m−1∑
n=0

rn ≤ ψ2(1− β2)2rk−1S
k−L

2
1

1− S− 1
2

1

1− r

Hence, we write

Θ(L,pp′)
∞ (x, y) ≥ S−L2

(
1− (

√
Sr)k+1

1−
√
Sr

− 2
1− β2

1− S− 1
2

[
1 +

ψr(1− β2)

1− r

](√
Sr
)k)

≥ S−L2
(

1− (
√
Sr)k+1

1−
√
Sr

− Cσ,β
(√

Sr
)
k

)
.

For the upper bound, we have that

Θ(L,pp′)
∞ (x, y) ≤

k∑
m=0

S−
L−k+m

2

k∏
n=m+1

r = S−
L
2

1− (
√
Sr)k+1

1−
√
Sr

.

Dividing by Θ
(L,pp)
∞ (x, x) we obtain

1− (
√
Sr)k+1

1− (
√
Sr)L

≥ ϑ(L,pp′)
∞ (x, y) ≥ 1− (

√
Sr)k+1

1− (
√
Sr)L

− Cσ,β(
√
Sr)k∣∣∣1− (
√
Sr)L

∣∣∣ ,
as claimed.

E.7 Border Effects

With the usual scaling of 1√
|ω|

s1...sd

, in a General ConvNet, the positions on the border have less

parents and hence a lower activation variance. In this section, we show, in a special example, how
this parametrization leads to border effects in the limiting activation kernels and NTK. This could

252
APPENDIX E. FREEZE AND CHAOS: NTK VIEWS ON DNN NORMALIZATION,

CHECKERBOARD AND BOUNDARY ARTIFACTS

be generalized to a more general setting, yet, our main purpose is to show that with the parent-
based parametrization–as defined in Section E.5–no border artifact is present in both kernels in this
general setting.

The following proposition illustrates the border artifact present in the usual NTK-parametrization.
Let us consider a DC-NN with a standardized ReLU nonlinearity, with I0 = I1 . . . = N, with up-
sampling stride of 2, and windows π0 = ω0 = π1 = ω1 = . . . = {−3,−2,−1, 0}. In particular, there
is only one border at position 0. Using the formalism of Section E.5, the set of parents of a position
p is P (p) = {

⌊
p
2

⌋
− 1,

⌊
p
2

⌋
} ∩ N. In particular, any generic position in any hidden or last layer has

2 parents except for the border p = 0 for which P (0) = {0}.

Proposition E.7.1. In the setting introduced above, for any x ∈ SI0n0
, the kernels satisfy:

Σ(`,00)(x, x) =
β2 +

(
r
2

)`+1

1− r
2

and Θ(L,00)
∞ (x, x) =

β2(1−
(
r
2

)L
)(

1− r
2

)2 + L

(
r
2

)L+1

1− r
2

.

In particular Σ(`,00)(x, x) is smaller than the “bulk-value” limp→∞Σ(`,pp)(x, x) = 1 and Θ
(L,00)
∞ (x, x)

is smaller than the “bulk-value” limp→∞Θ
(L,pp)
∞ (x, x) = 1−rL

1−r .

Proof. Recall that for the standardized ReLU, rσ,β = 1 − β2. From now on, we denote r = rσ,β
and x is an element of SI0n0

. For any ` = 0, 1 . . ., we have:

Σ(`+1,00)(x, x) = β2 +
1− β2

2

∑
q∈P (0)

E
z∼N (0,Σ

(`)
qq (x,x))

[
σ(x)2

]
= β2 +

1− β2

2
Σ(`,00)(x, x).

Since x ∈ SI0n0
, we get Σ(1)(x, x) = β2 + r

2 : this implies the following equalities:

Σ(`,00)(x, x) =
(r

2

)`
+

`−1∑
k=0

β2
(r

2

)k
=
(r

2

)`
+ β2 1−

(
r
2

)`
1− r

2

=
β2

1− r
2

+

(
r
2

)` − (r2)`+1 − β2
(
r
2

)`
1− r

2

=
β2 +

(
r
2

)`+1

1− r
2

.

For the limiting NTK, with the usual NTK parametrization, the following recursion holds:

Θ(L+1,00)
∞ (x, x) = Σ(L+1,00)(x, x) +

r

2
Θ(L,00)
∞ (x, x)Lσ̇Σ(L,00)(x, x).

Note that for the standardized ReLU, σ̇ is a rescaled Heaviside, thus

Lσ̇Σ(L,00)(x, x) = Ex∼N (0,Σ(L,00)(x,x))

[
σ̇(x)2

]
= 2Ex∼N (0,1)[Ix≥0] = 1.

This implies:

Θ(L,00)(x, x) =

L∑
`=1

Σ(`,00)(x, x)
(r

2

)L−`
=

L∑
`=1

(
β2

1− r
2

+

(
r
2

)`+1

1− r
2

)(r
2

)L−`
=
β2(1−

(
r
2

)L
)(

1− r
2

)2 + L

(
r
2

)L+1

1− r
2

.

E.7. BORDER EFFECTS 253

The “bulk-values” for the activation kernels and the limiting NTK kernel can be deduced from
the proof of Proposition E.7.2. A tedious study of variation of functions allows to prove the assertion
on the boundary/bulk comparison.

As a consequence of the previous proposition, in the limits as ` and L goes to infinity, the ratio
boundary/bulk value is bounded by max

(
1, cβ2

)
: the smaller β is, the stronger the boundary effect

will be.
In the parent-based parametrization, the variance of the neurons throughout the network is

always equal to 1 and the NTK Θ
(L)
∞,pp(x, x) becomes independent of the position p: the border

artifacts disappear.

Proposition E.7.2. For the parent-based parametrization of DC-NNs, if the nonlinearity is stan-
dardized,

(
Σ(L)

)
pp

(x) and
(

Θ
(L)
∞

)
pp

(x) do not depend neither on p ∈ IL nor on x ∈ SI0n0
.

Proof. Actually, we will prove the stronger statement: for any General Convolutional Network, as
defined in Section E.5, for any standardized nonlinearity, for any x ∈ SI0n0

and any p ∈ IL,

Σ(L,pp)(x, x) = 1, and Θ(L,pp)
∞ (x, x) =

1− rL

1− r
.

For the activation kernels,this is proven by induction on ` . For any x ∈ SI0n0
and any p ∈ I1:

Σ(1,pp)(x, x) = β2 +
1− β2

|P (p)|n0

∑
q∈P (p)

∑
q′∈P (p)

χ(q → p, q′ → p)xTq xq′

= β2 +
1− β2

|P (p)|n0

∑
q∈P (p)

xTq xq = β2 + (1− β2) = 1,

and if the assertion holds true for L, then:

Σ(L+1,pp)(x, x) = β2 +
1− β2

|P (p)|n0

∑
q∈P (p)

∑
q′∈P (p)

χ(q → p, q′ → p)Σ(L,qq′)(x, x)

= β2 +
1− β2

|P (p)|n0

∑
q∈P (p)

Σ(L,qq)(x, x) = 1.

For the activation kernels, this is proven by induction on L. It is easy to see that Θ
(1,pp)
∞ (x, x) = 1

is valid for any x ∈ SI0n0
and any p ∈ IL. Let us show the induction step:

Θ(L+1,pp)
∞ (x, x) = Σ(L+1,pp)(x, x) +

1− β2

|P (p)|
∑

q∈P (p)

Θ(L,qq)
∞ (x, x)Rσ̇

(
Σ(L,qq)(x, x)

)
= 1 + rΘ(L,qq)

∞ (x, x).

Thus, Θ
(L,pp)
∞ (x, x) =

∑L
`=1 r

L−` = 1−rL
1−r .

254
APPENDIX E. FREEZE AND CHAOS: NTK VIEWS ON DNN NORMALIZATION,

CHECKERBOARD AND BOUNDARY ARTIFACTS

E.8 Layerwise Contributions to the NTK and Checkerboard Patterns

In a DC-NN with stride s ∈ {2, 3, ...}d, if two connection weight matrices W (`,q→p) and W (`,q′→p′)

are shared then s | p′ − p. In other words, χ(q → p, q′ → p′) = 0 as soon as s - p′ − p. The limiting
contribution of the weights Θ

(L:W (`))
∞ and bias Θ

(L:b(`))
∞ to the limiting NTK can be formulated

recursively. For the last layer L− 1 we have

Θ(L:b(L−1),pp′)
∞ = β2

Θ(1:W (0),pp′)
∞ = δs|p−p′

1− β2

|P (p)|n0

∑
q∈P (p)

xTq yq+ p′−p
s

Θ(L:W (L−1),pp′)
∞ = δs|p−p′

1− β2

|P (p)|
∑

q∈P (p)

Rσ

(
Σ(L−1,q,q+ p′−p

s)(x, y)
)

for L > 1

and for the other layers, we have

Θ(L+1:b(`),pp′)
∞ = δs|p−p′

1− β2

|P (p)|
∑

q∈P (p)

Θ
(L;b(`),q,q+ p′−p

s)
∞ (x, y)Rσ̇

(
Σ(L,q,q+ p′−p

s)(x, y)
)

Θ(L+1:W (`),pp′)
∞ = δs|p−p′

1− β2

|P (p)|
∑

q∈P (p)

Θ
(L;W (`),q,q+ p′−p

s)
∞ (x, y)Rσ̇

(
Σ(L,q,q+ p′−p

s)(x, y)
)
.

Proposition E.8.1. In a DC-NN with stride s ∈ {2, 3, ...}d, we have Θ
(L:W (`),pp′)
∞ (x, y) = 0 if

sL−` - p′ − p and Θ
(L:b(`),pp′)
∞ (x, y) = 0 if sL−`−1 - p′ − p.

Proof. From the formulas of the limiting contributions Θ(L:W (`)) and Θ(L:b(`)), we see that the
bias of the last layer contribute to all pairs p, p′ while the bias only contribute to pairs such that
s | p′− p. Now by induction on L, if Θ(L:b(`),qq′) and Θ(L:W (`),qq′) only contribute to pairs q, q′ such
that sL−`−1 | q′ − q and sL−` | q′ − q then

Θ(L+1:b(`),pp′)
∞ = δs|p−p′

1− β2

|P (p)|
∑

q∈P (p)

Θ
(L;b(`),q,q+ p′−p

s)
∞ (x, y)Rσ̇

(
Σ(L,q,q+ p′−p

s)(x, y)
)

Θ(L+1:W (`),pp′)
∞ = δs|p−p′

1− β2

|P (p)|
∑

q∈P (p)

Θ
(L;W (`),q,q+ p′−p

s)
∞ (x, y)Rσ̇

(
Σ(L,q,q+ p′−p

s)(x, y)
)

only contribute to pairs p′, p such that sL−` | p′ − p and sL+1−` | p′ − p as needed.

Appendix F

DNN-Based Topology Optimization: Spatial
Invariance and Neural Tangent Kernel

F.1 Derivation of the algorithm

In this section we show how to derive the equations used in our algorithm, especially the ones
corresponding to implicit differentiation [79]. Let us recall that we consider a vector X ∈ RN and
compute a vector Y = Σ(X) ∈ [0, 1]N (either Y MF or Y NN) by:

∀i ∈ {1, ..., N}, yi = σ(xi + b̄(X)), such that:
N∑
i=1

yi = V0, σ(x) =
1

1 + e−x
,

Where X denotes (x1, ..., xN).
We want to show that this operation is well defined and find a formula to recover ∇XC from a

given ∇Y C. More precisely we have the following result.

Proposition F.1 (Proposition F.1 in the paper). Let X ∈ RN , the operation Y = Σ(X) is well
defined. Moreover, let Ṡ be the vector of the σ̇(xi + b̄(X)). Then we have ∇XC = DX∇Y C with:

DX := − 1

|Ṡ|1
ṠṠT + Diag(Ṡ). (F.1.1)

DX is a symmetric positive semi-definite matrix whose kernel corresponds to constant vectors and
has eigenvalues smaller than 1

2 .

Proof: Let us consider the function F : RN ×R −→ R defined by: F (z, b) =
∑N
i=1 σ(zi + b). It

is clear that F (X, .) is stricty increasing on R from 0 to N . Then ∃!b̄ ∈ R such that F (X, b̄) = V0.
As ∂bF (X, b̄) > 0, by the implicit functions theorem, there exists a neighbourhood V of X in

RN , a neighbourhood U of b̄ in R and a function b̄ : V −→ R of class C1 such that:

∀(z, b) ∈ V × U, F (z, b) = V0 ⇐⇒ b = b̄(z).

Moreover we also get from the implicit function theorem that:

∂b̄

∂xi
(X) = −

(
∂F

∂b
(X, b̄)

)−1
∂F

∂xi
(X, b̄) = −

(N∑
j=1

σ̇(xj + b̄)

)−1

σ̇(xi + b̄),

255

256
APPENDIX F. DNN-BASED TOPOLOGY OPTIMIZATION: SPATIAL INVARIANCE AND

NEURAL TANGENT KERNEL

and we can apply chain rules:

∂C

∂xi
=

N∑
j=1

∂C

∂yj

∂yj
∂xi

=

N∑
j=1

∂C

∂yj
σ̇(xj + b̄(x))

(∂b̄
∂xi

+ δij
)
,

So that equation F.1.1 makes sense. Now, if we denote Ṡ = (a1, ..., aN), let us recall that we defined
ai = σ̇xi + b̄(X) where σ is the sigmoid function. By taking any u ∈ RN , we remark that:

(
DXu

)
i

=
ai

|Ṡ|1

N∑
j=1

aj(ui − uj). (F.1.2)

We easily deduce from equation F.1.2 that ker(DX) = span(1N) and that DX ∈ S+
N (R). Indeed:

∀u ∈ RN , uT (DX)u = − 1

|Ṡ|1
uT ṠṠTuT +

N∑
i=1

aiu
2
i

=
1

|Ṡ|1

{
−
(N∑
i=1

aiui

)2

+

(N∑
i=1

ai

)(N∑
i=1

aiu
2
i

)}
=

1

|Ṡ|1

∑
1≤i,j≤N

aiajui(ui − uj)

=
1

|Ṡ|1

∑
1≤i<j≤N

aiaj(ui − uj)2 ≥ 0.

Eigenvalues: We already know that 0 is an eigenvalue with multiplicity 1. So let u 6= 0 in RN
and λ > 0 such that: DXu = λu. Then we easily show:

∀i ∈ J1, NK,
ai − λ
ai

ui =
1

|Ṡ|1

N∑
j=1

ajuj =: 〈u〉a.

If 〈u〉a = 0, then necessarily λ ∈ {a1, ..., aN}
If 〈u〉a 6= 0, then we can assume (by normalising u) that 〈u〉a = 1 and we have ui = ai

ai−λ . Then
we can replace ui = ai

ai−λ in the equation 〈u〉a = 1:

N∑
j=1

aj =

N∑
j=1

a2
j

aj − λ
, which by substraction leads to F (λ) :=

N∑
j=1

aj
aj − λ

= 0,

By studying the function F , we see that ∀λ > maxi(ai), F (λ) < 0. Therefore an eigenvalue always
satisfies the inequality:

λ ≤ max{a1, ..., aN} ≤ ‖σ̇‖∞ =
1

4
,

The last inequality coming from the fact that ai = σ̇(xi + b̄(X)), as mentionned earlier.
Remark: As shown above an important property of the matrix DX is that it cancels out

constants, which allows us to consider the limiting NTK up to some constant. The fact that the
eigenvalues of DX are in [0, 1

4] can help to avoid exploding gradients.

F.2. EQUATIONS OF EVOLUTION 257

F.2 Equations of evolution

We quickly show how equations 5, 6 and 7 of the paper are derived. The proofs are mainly based
on chain rules.

Let us first remark that the matrix DX introduced above actually corresponds to the jacobian
matrix ∇XΣ of the application Σ : RN −→ [0, 1]N . So we can immediately applied chain rules to
Y NN = Σ(X(θ)) and get:

∂Y NN

∂t
= DX(θ(t))

∂X(θ(t))

∂t

= −DX(θ(t))Θ̃
L
θ(t)∇Xθ(t)C (Gradient Descent)

= −DX(θ(t))Θ̃
L
θ(t)DX(θ(t))∇Y NNC(θ(t)) (By proposition F.1).

Similarly, for the MF method, we set X = TX̄ and obtain:

∂Y MF

∂t
= DX(t)

∂X(t)

∂t

= DX(t)T
∂X̄(t)

∂t
(Linearity)

= −DX(t)T∇X̄C (Gradient descent)

= −DX(t)TT
T∇XC (Chain rule)

= −DX(t)TT
TDX(t)∇YMFC.

F.3 Details about embeddings

Torus embedding

The aim of this section is to give details about properties of the limiting NTK in case of Torus
embedding. As a reminder we consider the following embedding:

R2 3 p = (p1, p2) 7−→ ϕ(p) = r(cos(δp1), sin(δp1), cos(δp2), sin(δp2));

In particular we show the following proposition which basically says that Θ̃∞ is in that case a
discrete convolution and derive from there its spectral properties and construct its positive semi-
definite square root

Proposition F.2 (Proposition 6.4 in the paper). We can always extend our nx × ny grid and
choose δ such that the embedded grid covers the whole torus (typically δ = π

2 max(nx,ny) and take
a n × n grid with n = 4 max(nx, ny)). Then the Gram matrix Θ̃∞ of the limiting NTK is a 2D
discrete convolution matrix. Moreover the NTK Gram matrix has a positive definite square root√

Θ̃∞ which is also a discrete convolution matrix.

proof: We assume that we extend the grid in a n×n grid with n ≥ nx, ny. Now we take δ = 2π
n

and we consider the limiting NTK Gram matrix on ϕ
(
Jn, nK× Jn, nK

)
.

As Θ∞(ϕ(p), ϕ(p′)) depends only on p − p′, we can see the limiting NTK Gram Matrix as a
discrete convolution kernel K acting on Z/nZ× Z/nZ:

Θ∞((k, k′), (j, j′)) = K(k − k′, j − j′),

258
APPENDIX F. DNN-BASED TOPOLOGY OPTIMIZATION: SPATIAL INVARIANCE AND

NEURAL TANGENT KERNEL

For (k, k′), (j, j′) ∈ Z/nZ× Z/nZ.
We see Θ̃∞ as a n2 square matrix with each index in Z/nZ× Z/nZ.
We introduce the Fourier vectors Ωm = (e−i2π

mk
n)0≤k≤nx−1. As Θ̃∞ is a 2D convolution matrix,

we classically have the following results:
The eigenvectors of Θ̃∞ are exactly given by:

Ωm ⊗ ΩM ,

for 0 ≤ m ≤ nx − 1 and 0 ≤ M ≤ ny − 1, ⊗ denotes the Kronecker product. The corresponding
eigenvalue is given by the discrete Fourier transform K̂(m,M) with:

K̂(m,M) =

n−1∑
j=0

n−1∑
j′=0

e−i2π
mj
n e−i2π

Mj′
n K(j, j′).

Moreover, as the matrix Θ̃∞ is positive definite (from the positive definiteness of the NTK, [105])
those eigenvalues verify K̂(m,M) ≥ 0 and it makes sense to write the square root of the NTK Gram

Matrix as the inverse Fourier transform of the
√
K̂(m,M):√

Θ̃∞((k, k′), (j, j′)) =
1

n2

n−1∑
m=0

n−1∑
M=0

ei2π
m(j−k)

n ei2π
M(j′−k′)

n

√
K̂(m,M), (F.3.1)

It is easy to see that the matrix defined by equation F.3.1 is symmetric and positive semi-
definite. Indeed we can write

√
Θ̃∞((k, k′), (j, j′)) = g(k − j, k′ − j′) with g the Fourier transform

of a positive vector.
Moreover it follows from the (discrete) convolution theorem that

√
Θ̃∞

2
= Θ̃∞. Therefore√

Θ̃∞((k, k′), (j, j′)) is indeed the positive semi-definite matrix square root of Θ̃∞.
Thus the square root of the NTK Gram matrix can be seen as a convolution filter as well (it is

invariant by translation as a function of (k − j, k′ − j′)).

Dimension of radial embeddings

In this section we prove that feature maps associated to continuous radial kernels are either trivial
or of infinite dimension. this result is what motivates discussion in section 6.3 of the paper.

Let us first recall Bochner theorem ([186]):

Theorem F.1 (Bochner). Let (x, y) 7→ k(x − y) be a continuous shift invariant positive definite
kernel on Rd. Then it is the Fourier transform of a finite positive measure Λ on Rd:

k(r) =

∫
Rd
eiω·rdΛ(ω).

The function k appearing in the above theorem will be called a positive definite function, ac-
cording to the following definition:

Definition 2. Let k : Rd −→ R, then k is a positive definite function when for all n, all p1, . . . , pn ∈
Rd and all c1, ..., cn ∈ R we have: ∑

1≤i,j≤n

cicjk(xi − xj) ≥ 0.

F.3. DETAILS ABOUT EMBEDDINGS 259

Moreover we will denote SO(d) the set of rotations matrices of dimension d and the Fourier
transform (for an integrable function ψ):

Fψ(ω) =

∫
Rp
ψ(p)e−iω·pdp.

Let us now recall the result that we want to prove:

Proposition F.3 (Proposition 6.3 in the paper). Let ϕ : Rd → Rm for d > 2 and any finite m. If
ϕ satisfies

ϕ(x)Tϕ(x′) = K(‖x− x′‖) (F.3.2)
for some continuous function K then both ϕ and K are constant. We will denote k(x − x′) :=
K(‖x− x′‖).

Proof: We procede in the following way: We consider an embedding ϕ as described above
and we are going to show that, when K is not constant, one can construct arbitrarily big linearly
independent families ϕ(p1), . . . , ϕ(pn).

For now let us take pairwise distinct p1, . . . , pn ∈ Rd and c1, . . . , cn ∈ R such that:
n∑
k=1

ckϕ(pk) = 0.

A clever choice for p1, . . . , pn will be done later.
For any p ∈ Rd and any rotation R ∈ SO(d) we can write:

0 = ϕ(p)T
n∑
k=1

ckϕ(pk) =

n∑
k=1

ckK(‖p− pk‖) =

n∑
k=1

ckK(‖Rp−Rpk‖)

= ϕ(Rp)T
n∑
k=1

ckϕ(Rpk).

Since this is true for all p′ = Rp we can deduce that for all p ∈ Rd and all R ∈ SO(d) we have:
n∑
k=1

ckk(p−Rpk) = 0.

We denote by Λ the finite measure on Rd given by Bochner’s theorem applied on k.
Let us take a test function ψ ∈ S(Rp) in the Schwartz space, we can write successively that for

all rotation R ∈ SO(d):

0 =

∫
Rd
Fψ(p)

n∑
k=1

ckk(p−Rpk)dp

=

∫
Rd
Fψ(p)

n∑
k=1

ck

∫
Rd
eiω·(p−Rpk)dΛ(ω)dp, (Bochner’s theorem)

=

∫
Rd

(n∑
k=1

cke
−iω·(Rpk)

)∫
Rd
Fψ(p)eiω·pdp dΛ(ω), (Fubini’s theorem)

= (2π)d
∫
Rd
ψ(ω)

n∑
k=1

cke
−iω·(Rpk)dΛ(ω), (Fourier inversion)

260
APPENDIX F. DNN-BASED TOPOLOGY OPTIMIZATION: SPATIAL INVARIANCE AND

NEURAL TANGENT KERNEL

As K is not constant, we can find ω0 ∈ Rd\{0} such that for all ε > 0 small enough we have
Λ
(
B(ω0, ε)

)
> 0 (otherwise the finite positive measure Λ would be concentrated on 0 and k would

be constant).
Let R ∈ SO(d), if we assume that S :=

∑n
k=1 cke

−iω0·(Rpk) 6= 0 then we can find a small enough
open ball B(ω0, ε) on which Re(S)) and Im(S) have constant sign and such that: |Re(S)| ≥ c1 > 0
or |Im(S)| ≥ c1 > 0.

We choose ψ such that ψ ≥ 0, ψ has compact support in B(ω0, ε) and ψ ≥ c2 > 0 on B(ω0,
ε
2).

Then we obtain a contradiction by writing 0 ≥ (2π)d)c1c2Λ(B(ω0,
ε
2)). (We separate real and

imaginary parts).
This implies that:

∀R ∈ SO(d),

n∑
k=1

cke
−i(Rω0)·pk = 0, (F.3.3)

Now we take a particular choice of (pi), let pk = (k, 0, . . . , 0) ∈ Rd.
Up to rotations, we can assume without loss of generality that ω0 = (w, 0, . . . , 0) with w 6= 0.

Moreover, we consider the particular case of rotations in the 2D plane generated by (1, 0, . . . , 0)
and (0, 1, 0, . . . , 0).

Therefore, equation F.3.3 implies that:

∀θ ∈ R,
n∑
k=1

ck
(
e−iw cos(θ)

)k
= 0,

So that the polynomial
∑
k ckz

k has an infinite number of roots. Thus c1 = · · · = cn = 0.

Random features embedding

In this section we give some details about the way we define random embeddings, which is very
similar but slightly different than in [176].

If the kernel is properly scaled (i.e. k(0) = 1) then Λ defines a probability measure. That’s why
we introduce a probability measure Q and write:

k(r) = k(0)

∫
Rd
eiω·rdQ(ω) = k(0)Eω∼Q[eiω·r].

Now, following the reasoning in [176] we consider:

ϕ(p)i =
√

2k(0) sin(ω · p+
π

4
+ b)

With ω ∼ Q and b a random variable with a symmetric law (note that Q is also symmetric). Then
we have:

E[ϕ(p)iϕ(p′)i] = 2k(0)E
[(

eiω.p+
π
4 +b − e−iω.p−π4 − b

2i

)(
eiω.p

′+π
4 +b − e−iω.p′−π4 − b

2i

)]
= −k(0)

2

(
ei
π
2 E[eiω.(p+p

′)+2b] + e−i
π
2 E[e−iω.(p+p

′)−2b]

− E[eiω.(p−p
′)]− E[e−iω.(p−p

′)]

)
= k(0)E[eiω.(p−p

′)]

= k(p− p′).

F.4. PRECISE COMPUTATIONS OF THE NEURAL TANGENT KERNEL 261

Therefore we reduce the variance by drawing i.i.d. samples ω1, . . . , ωn0 and b1, . . . , bn0 as described
in section 3 and computing the mean 1

n0
ϕ(p)Tϕ(p′). By the strong law of large numbers we have

the almost sure convergence:
1

n0
ϕ(p)Tϕ(p′) −→

n0→∞
k(p− p′),

Now we can obtain Gaussian embedding by drawing the bias from δ0 and weights from N (0, 1
`2 Id).

from the above formulas we immediately get:

k(p− p′) = e−
‖p−p′‖22

2`2 .

F.4 Precise computations of the Neural Tangent Kernel

We now give more details about the computation of the limiting NTK and detail how we obtain
the limiting kernels used in Figures 6 and 7 of the paper.

Limiting NTK

For this purpose, following several authors ([105], [224], [129]), we need to introduce some gaussian
processes and their associated kernels. For a symmetric positive kernel Σ let us define:{

T (Σ)(z, z′) = E(X,Y)∼N (0,Σz,z′)

[
µ(X)µ(Y)

]
Ṫ (Σ)(z, z′) = E(X,Y)∼N (0,Σz,z′)

[
µ̇(X)µ̇(Y)

] With : Σz,z′ =

(
Σ(z, z) Σ(z, z′)

Σ(z, z′) Σ(z′, z′)

)
.

Then we set Σ1(z, z′) = Θ1
∞(z, z′) = β2 + α2

n0
zT z′ and we define recursively:

σl+1 = β2 + α2T (Σl), Σ̇l+1 = α2Ṫ (Σl), Θl+1
∞ = Σ̇l+1Θl

∞ + Σl+1. (F.4.1)

Using those formulas it is clear that the limiting NTK is invariant under rotation.
When neurons have constant variance, the following notion of dual activation function is often

very useful:

Definition 3. Let µ : R −→ R be a function such that EX∼N (0,1)[µ(X)2] < +∞, then its dual
function µ̂ : [−1, 1] −→ R is defined by:

µ̂(ρ) = E(X,Y)∼N (0,Σρ)[µ(X)µ(Y)], With : Σρ =

(
1 ρ

ρ 1

)
.

We will use some properties of the dual function, which are described in [42].

Another way of seeing Gaussian embedding

As explained above (Section 6.3), the Gaussian embedding can be seen as the first hidden layer of
a neural network, with the first layer untrained. Thus it actually corresponds to Σ2 with the above
notations.

262
APPENDIX F. DNN-BASED TOPOLOGY OPTIMIZATION: SPATIAL INVARIANCE AND

NEURAL TANGENT KERNEL

Let us consider the activation function µ : a 7−→ λ sin(ωa+ π
4) and denote:

∀x, y ∈ Rn0 , Σ1
x,y =

(β2 +
1− β2

n0
‖x‖22 β2 +

1− β2

n0
xT y

β2 +
1− β2

n0
xT y β2 +

1− β2

n0
‖y‖22

)
,

We are looking at:

Σ2(x, y) = β2 + (1− β2)E
(X,Y)∼N (0,Σ

(1)
x,y)

[µ(X)µ(Y)].

Let (X,Y) ∼ N (0,Σ1
x,y), then X − Y and X + Y are normal random variables and V(X − Y) =

1−β2

n0
‖x− y‖22. Thus, using properties of characteristic functions we get:

E[µ(X)µ(Y)] = λ2E
[(

eiωX+π
4 − e−iωX−π4

2i

)(
eiωY+π

4 − e−iωY−π4
2i

)]
= −λ

2

4

(
ei
π
2 E[eiω(X+Y)] + e−i

π
2 E[e−iω(X+Y)]− E[eiω(X−Y)]− E[e−iω(X−Y)]

)
=
λ2

2
E[eiω(X−Y)]

=
λ2

2
exp

{
− 1

2
ω2 1− β2

n0
‖x− y‖22

}
.

Computation of the NTK used for Figure 7 in the paper

In this section we show how one can derived analytically the function Φ∞ described in Section 6.4.
This kind of computation can be used to derive numerically the filter radius R̂1/2 and tune the
hyperparameters.

We use here a Gaussian embedding ϕ of size n0 with lenghtscale ` followed by one hidden linear
layer (activation function x→

√
2 max(0, x)) of size n1 and the output layer n2 = 1. We also take

α2 + β2 = 1 in those experiments, to ensure constant variance of the neurons.
By the strong law of large numbers we have for the limiting NTK of the first layer:

Θ1
∞(ϕ(p), ϕ(p′)) = β2 +

1− β2

n0
ϕ(p)Tϕ(p′) −→

n0→∞
β2 + (1− β2)e−

‖p−p′‖22
2l2 =: G(‖p− p′‖).

For the second layer, we use the notion of dual function defined above. In the case of the standard-
ized ReLu it is computed in [42]:

r̂(ρ) = ρ− ρ arccos(ρ)−
√

1− ρ2

π
, ρ ∈ [−1, 1],

and:
ˆ̇r(ρ) = ˙̂r(ρ) = 1− arccos(ρ)

π
.

So that we can write, with d = ‖p− p′‖:

Φ∞(d) = r̂(G(d)) +G(d) ˙̂r(G(d)).

Therefore Φ∞ only depends on ` and β. From this expression we can use standard Python libraries
to approximate R̂1/2 for given values of the hyperparameters.

F.5. SQUARE ROOT OF THE NTK IN THE CASE OF RANDOM EMBEDDING 263

Computation of the NTK used for Figure 6 in the paper

Now we derive an approximate of the quantity R̂1/2 used in Figure 6 of the paper. This is a little
bit more difficult than with Gaussian embedding because the rotation invariance is now only an
approximation, even in the infinite-width limit.

With Torus embedding, we have n0 = 4. The embedding is followed by two hidden linear layers
with standardised cosine activation function, and then the last linear layer. We used here r =

√
2

δ = π
80 (which is the formula suggested in the paper with nx = ny = 40). As in the case of Gaussian

embedding, we set α2 = 1− β2. This ensures that neurons have constant variance and allows easy
analytical computations.

Thanks to the Torus embedding described above, we get for the first layer:

Θ1
∞(ϕ(p), ϕ(p′)) = β2 +

1− β2

n0
ϕ(p)Tϕ(p′)

= β2 +
1− β2

2

(
cos(δ(p1 − p′1)) + cos(δ(p2 − p′2))

)
As rotation invariance is not analytically correct here, we look at the limiting NTK in the direction
p1 = p2. which gives:

Σ1(ϕ(p), ϕ(p′)) = Θ1
∞(ϕ(p), ϕ(p′)) = β2 + (1− β2) cos(δr),

with r = |p1 − p′1| = |p2 − p′2|.
For the next layers, we use the dual function of the standardised cosine (see [42]) given by:

µ̂(ρ) =
cosh(ω2ρ)

cosh(ω2)
,

and its derivative:
ˆ̇µ(ρ) = ω2 sinh(ω2ρ)

cosh(ω2)
,

Then the limiting NTK is simply given by the following formulas:

Σl+1(ϕ(p), ϕ(p′)) = β2 + (1− β2)µ̂(Σl(ϕ(p), ϕ(p′))),

Σ̇l+1(ϕ(p), ϕ(p′)) = (1− β2)µ̂(Σ̇l(ϕ(p), ϕ(p′))),

Θl+1
∞ (ϕ(p), ϕ(p′)) = Σl+1(ϕ(p), ϕ(p′)) + Σ̇l+1(ϕ(p), ϕ(p′))Θl

∞(ϕ(p), ϕ(p′)).

This way we construct a function Φ∞(r) with r an approximation of the radius and we can use
it to compute numerically an approximation of R̂1/2 as before.

F.5 Square root of the NTK in the case of random embedding

We now prove that we can define a notion of a square root of the NTK. First we need a technical
lemma:

Lemma F.1. Let µ be a continuous function such that EX∼N (0,1)[µ(X)2] = 1, C ∈ [0, 1] a constant
and f ≥ 0 a positive definite function (in the sense of definition 2) such that C + f(p) ≤ 1. Then
the function

F : p 7−→ µ̂(C + f(p))− µ̂(C),

is positive definite, where µ̂ denotes the dual function of µ (see definition 3).

264
APPENDIX F. DNN-BASED TOPOLOGY OPTIMIZATION: SPATIAL INVARIANCE AND

NEURAL TANGENT KERNEL

Proof:
Let us take p1, ..., pm ∈ Rd and c1, ..., cm ∈ R. We introduce the Hermite expansion

∑
k akhk of

µ and write its dual function as (see [42]):

µ̂(ρ) =

+∞∑
k=0

a2
kρ
k, ρ ∈ [−1, 1],

Then by Bernoulli’s formula:

µ̂(C + f(pi − pj))− µ̂(C) =

+∞∑
k=1

a2
kf(pi − pj)

k−1∑
s=0

Ck−1−s(C + f(pi − pj))s.

Thus by polynomial combination with positive coefficients of positive semi-definite kernels:

m∑
i,j=1

cicjF (pi − pj) =

+∞∑
k=1

k−1∑
s=0

a2
kC

k−1−s
m∑

i,j=1

cicjf(pi − pj)(C + f(pi − pj))s ≥ 0,

Which achieves the proof.
Let us recall the statement that we want to prove:

Proposition F.4 (Proposition 6.5 in the paper). Let ϕ be an embedding as described in section 6.3
of the paper, for a positive radial kernel k ∈ L1(Rd) with k(0) = 1. Then there is a filter function
g : R→ R and a constant C such that for all p, p′:

lim
n0→∞

Θ∞(ϕ(p), ϕ(p′)) = C + (g ? g)(p− p′), (F.5.1)

where Θ∞ is the limiting NTK of a network with Lipschitz, non constant, and standardized activa-
tion function µ.

Before writing the proof, let us make some remarks on the assumptions of this proposition and
their immediate implications:

• We recall that the fact that µ is "standardised" means here: EX∼N (0,1)[µ(X)2] = 1.

• As mentioned before (Section 6.2 of the paper) we assume for simplicity that α2 = 1− β2 to
ensure constant variance of the neurons (we consider β ∈ [0, 1)).

• We denote by A the Lipschitz constant of µ. By Rademacher theorem, we know that µ is
almost everywhere differentiable and ‖µ̇‖∞ ≤ A. The fact that µ is not constant ensures that
µ̂ is (strictly) increasing on [0, 1).

• Moreover, the Lipschitz assumption also implies that | ˆ̇µ(1)| ≤ A2 < +∞ and therefore ˆ̇µ is
continuous on [−1, 1] by Abel’s theorem on entire series.

• The procedure to approximate the kernel k in Section 6.3 of the paper assumes that k is
continuous (to be able to apply Bochner’s theorem). It is therefore also the case in this proof.

F.5. SQUARE ROOT OF THE NTK IN THE CASE OF RANDOM EMBEDDING 265

Proof of the proposition:
Step 1: We want to show by recursion that for all l ≥ 1 there exists some constant Cl ∈ [0, 1)

such that for all p, p′ ∈ Rd we have in probability:

Σl(ϕ(p), ϕ(p′)) −→
n0→∞

Cl + fl(p− p′), (F.5.2)

With fl a radial positive definite function such that fl ≥ 0 and fl ∈ L1(Rd).
For l = 1, we know that this is true by the law of large numbers:

Σ1(ϕ(p), ϕ(p′)) = Θ1
∞(ϕ(p), ϕ(p′)) = β2 +

1− β2

n0
ϕ(p)Tϕ(p′)

−→
n0→∞

β2 + (1− β2)k(p− p′),
(F.5.3)

We just set f1 = (1− β2)k. Now we assume l ≥ 2:
We have by our normalisation assumptions Σl(ϕ(p), ϕ(p)) = Cl+fl(0) = 1. Using the continuity

of µ̂ (see [42] for the properties of µ̂), we have:

Σl+1(ϕ(p), ϕ(p′)) = β2 + (1− β2)µ̂(Σl(ϕ(p), ϕ(p′)))

−→
n0→∞

β2 + (1− β2)µ̂(Cl + fl(p− p′)).
(F.5.4)

Using properties of the dual function given in [42], we know that µ̂ is positive, increasing and
convex in [0, 1]. Moreover as fl is radial positive definite we have fl ≤ fl(0) = 1 − Cl. Then by
convexity:

µ̂(Cl + fl(p− p′)) = µ̂

(
fl(p− p′)

1− Cl
+

(
1− fl(p− p′)

1− Cl

)
Cl

)
≤ fl(p− p′)

1− Cl
µ̂(1) +

(
1− fl(p− p′)

1− Cl

)
µ̂(Cl).

Using that µ̂ is increasing:

|µ̂(Cl + fl(p− p′))− µ̂(Cl)| ≤
µ̂(1)− µ̂(Cl)

1− Cl
fl(p− p′),

So that we can rewrite equation F.5.4 in the following form:

Σl+1(ϕ(p), ϕ(p′)) −→
n0→∞

β2 + (1− β2)µ̂(Cl) + fl+1(p− p′),

With fl+1(p− p′) = (1− β2)(µ̂(Cl + fl(p− p′))− µ̂(Cl)) and Cl+1 = β2 + (1− β2)µ̂(Cl).
The previous inequality, lemma F.1 and the fact that µ̂ is increasing in [0, 1) ensure the properties

of fl+1 and Cl+1.
Step 2: As ˆ̇µ is also positive, continuous, increasing and convex in [0, 1], we can obtain a

convergence in probability similar to equation F.5.2 but for Σ̇l:

Σ̇l(ϕ(p), ϕ(p′)) −→
n0→∞

Bl + hl(p− p′),

With Bl ≥ 0, and hl a positive definite function such that hl ∈ L1(Rd) and hl ≥ 0.

266
APPENDIX F. DNN-BASED TOPOLOGY OPTIMIZATION: SPATIAL INVARIANCE AND

NEURAL TANGENT KERNEL

Now we want to show by recursion that for a fixed l:

∀p, p′ ∈ Rd, Θl
∞(ϕ(p), ϕ(p′)) −→

n0→∞
Cµ,β,l + θl(p− p′). (F.5.5)

With θl a positive definite function such that θl ∈ L1(Rd) and Cµ,β,l ≥ 0. Again we know that this
is true for l = 1 by equation F.5.3.

We have:

Θl+1
∞ (ϕ(p), ϕ(p′)) −→

n0→∞
(Cµ,β,l + θl(p− p′))Σ̇(l+1)(p, p′) + Cl+1 + fl+1(p− p′).

So that we can set:

θl+1(ϕ(p), ϕ(p′)) = Cµ,β,lhl+1(p− p′) + θl(p− p′)Σ̇l+1(ϕ(p), ϕ(p′)) + fl+1(p− p′),

and:
Cβ,µ,l+1 = Cl+1 + Cβ,µ,lBl.

Using that |θl(p − p′)Σ̇l+1(ϕ(p), ϕ(p′))| ≤ A2|θl(p − p′)| and all the previous results, the recursion
works automatically and we have equation F.5.5 for all l ≥ 2.

Moreover (p, p′) 7−→ θl(p − p′)Σ̇1+l(p, p′) is positive semi-definite as a product of two positive
semi-definite kernels. By sum we deduce that θl+1 is positive semi-definite and by recursion we
have the result for all θl.

Step 3: Now, using integrability of θl, we know that its Fourier transform defines a function
q ∈ L∞(Rd).

From dominated convergence theorem we deduce that q is continuous.
Therefore in the sense of distributions, the Fourier transform of θL is given by a finite positive

measure (Bochner’s theorem) and also by q ∈ L∞(Rd). We deduce that q is the density of this
finite positive measure (the Radon-Nikodym derivative with respect to the Lebesgue measure).

From those arguments we get q ≥ 0 and q ∈ L1(Rd). We then have the Fourier inversion formula
for θL:

θL(p− p′) =
1

(2π)d

∫
Rd
q(ω)eiω.(p−p

′)dω, with: q ≥ 0

Hence it makes sense to define:
g = F−1(

√
q),

In the sense of the Fourier transform of a L2 function. Then the convolution theorem ensures:

θL = g ? g.

Remark: Here we used lemma F.1 and the dual activation function to show that both fl and θl
are positive definite. If we only show that θl ∈ L1(Rd) it is still possible to show the same properties
of the function q by using positive definiteness of C + θL and take the Fourier transform in the
sense of distributions, which leads to (2π)dCδ0 + q = (2π)dM with M a finite positive measure.
Then arguments based on test functions and the continuity of q give the result. The advantage of
lemma F.1 is that it is a bit more general.

F.6. ADDITIONAL EXPERIMENTAL RESULTS 267

F.6 Additional experimental results

Plots of the Neural Tangent Kernel

Here are some additional experimental results regarding the comparison between the theoretical
(limiting) NTK Θ̃∞ and the empirical NTK Θ̃θ(t). Here again the "lines" of the Gram matrices are
reshaped as images.

Figure F.6.1 represents the comparison between the limiting NTK and the emprirical NTK with
a Gaussian embedding. We can observe that the infinite-width limit seems to be well-respected.

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

Theoretical NTK - Gaussian embedding

0.8

1.0

1.2

1.4

1.6

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

Empirical NTK - Gaussian embedding

0.8

1.0

1.2

1.4

1.6

Figure F.6.1: Comparison between one line of the Gram matrix of the empirical NTK Θ̃θ(t) and
and of the corresponding limiting NTK Θ̃∞. Here we use a Gaussian embedding as described in
the paper

Figure F.6.2 shows the evolution of the NTK during the optimisation process. While the NTK
begins to change at the end of training (it is due to the alignment of descent directions, because of
the sigmoid we use to control the volume, pre-densities (xi)1≤i≤N tend to infinity) the NTK stays
close to Θ∞ during the part of training where the final shape is created. This justifies even more
that it is pertinent to study the effect of the NTK on the final geometry.

268
APPENDIX F. DNN-BASED TOPOLOGY OPTIMIZATION: SPATIAL INVARIANCE AND

NEURAL TANGENT KERNEL

0 10 20 30 40

0

10

20

30

40

NTK at iteration 0

0.8

1.0

1.2

1.4

1.6

0 10 20 30 40

0

10

20

30

40

NTK at iteration 10

0.8

1.0

1.2

1.4

1.6

0 10 20 30 40

0

10

20

30

40

NTK at iteration 20

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40

0

10

20

30

40

NTK at iteration 30

0.75

1.00

1.25

1.50

1.75

2.00

2.25

0 10 20 30 40

0

10

20

30

40

Density field at iteration 0

0 10 20 30 40

0

10

20

30

40

Density field at iteration 10

0 10 20 30 40

0

10

20

30

40

Density field at iteration 20

0 10 20 30 40

0

10

20

30

40

Density field at iteration 30

Figure F.6.2: Evolution of the NTK of a network with a Gaussian embedding with hyperparameters
as described in Section 6.4. We can see a relative stability of the NTK

Appendix G

Scaling Description of Generalization with
Numer of Parameters in Deep Learning

G.1 Robustness of the boundaries distance δ(x) estimate

Fig.G.1.1 shows that the linear estimate for the distance δ(x) between two decision boundaries,
δ(x) = δf(x)/||∇f(x)||, holds for Relu nonlinear function and improves as N →∞.

x
x− δ ∇f(x)

‖∇f(x)‖

0

f(x)

x
x− δ ∇f(x)

‖∇f(x)‖
x

x− δ ∇f(x)

‖∇f(x)‖

Figure G.1.1: Value of the output function f , in the direction of its gradient starting from x. Here
200 curves are shown, corresponding to 200 data x in the test set within the decision boundaries
fN = 0 and f̄N = 0 — i.e. fN (x)f̄N (x) < 0. If the linear prediction is exact, then we expect
f(x − δ ∇f(x)

‖∇f(x)‖) = 0 where δ = δf(x)/||∇f(x)||. This prediction becomes accurate for large N .
To make this statement quantitative, The 25%, 50%, 75% percentile of the intersection with zero
are indicated with red ticks. Even for small N the interval between the ticks is small, so that the
prediction is typically accurate. From left to right N = 938, 13623, 6414815. Here d = 10, L = 5
and P = 10k.

Fig.G.1.2 demonstrates the validity of the estimate of the typical distance between two boundary
decisions presented in the main text δ ∼ ||δf ||µ/||∇f ||µ, where µ corresponds to the uniform measure
on all the test points.

269

270
APPENDIX G. SCALING DESCRIPTION OF GENERALIZATION WITH NUMER OF

PARAMETERS IN DEEP LEARNING

10−3 10−2 10−1

〈 |f(x)− f̄(x)|
‖∇f(x)‖

〉x∼test∩interface

10−3

10−2

10−1

‖f
−
f̄
‖ t

e
st

‖∇
f
‖ t

e
st

1

Figure G.1.2: Test for the estimate of the distance δ between the boundary decision of f and f̄ .
Each point is measured from a single ensemble average of various sizes. Here d = 30, h = 60, L = 5,
N = 16k and P = 10k.

G.2 Central limit theorem of the NTK

In this section, we present a heuristic for the finite-size effects that are displayed by the NTK
at initialization: informally, this is the central limit theorem counterpart to the NTK asymptotic
result, which can be viewed as a law of large numbers. A rigorous derivation, including the behavior
during training, is beyond the scope of this paper and will be presented in [106].

The NTK (see Eq.7.5.1) can be re-written as:

∑
α

[
1+ 1

h

∑
β∈v−(α) aβ(x)aβ(x′)

][
g′(bα(x))g′(bα(x′))

∂f(x)
∂aα

∂f(x′)
∂aα

]
(G.2.1)

where aα(x) = g(bα(x)) is the activity of neuron α when data x is shown, while bα(x) is its pre-
activity and v−(α) is the set of h neurons in the layer preceding α. The first bracket converges
to a well-defined limit described by a so-called activation kernel, see [159, 37, 105] which use a
law of large numbers to prove this fact. The second bracket has fluctuations of order of its mean.
The normalization is chosen such that each layer contributes a finite amount to the kernel, so
that the mean is of order 1/h. For a given hidden layer, the contributions of two neurons can be
shown to have a covariance that is positive and decays as 1/h3, and thus does not affect the scaling
expected from the central limit theorem for uncorrelated variables. For a rectangular network, this
suggests that fluctuations associated with the contribution of one layer to the kernel is of order
1/
√
h ∼ N−1/4.

G.3 Fluctuations of output function for the mean square error loss

In this section, we discuss the fluctuations of the output function after training for the mean square
error loss: C(f) = 1

2P

∑
i |yi− f(xi)|2. We first investigate the variance of f tN in the limit N →∞,

then we explain the deviations due to finite size effects, at last we discuss the hing loss case.

G.3. FLUCTUATIONS OF OUTPUT FUNCTION FOR THE MEAN SQUARE ERROR LOSS271

Infinite width

Let us first study the variance of f tN in the limit N → ∞. In this limit the function f t=0
∞ at

initialization follows a centered Gaussian distribution described by a covariance kernel Σ. During
training however, the dynamics of f t∞ is described by a deterministic kernel Θ

(L)
∞ , the Neural

Tangent Kernel (NTK):

∂tf
t
∞(x) =

1

P

∑
i

Θ∞(x, xi)
(
yi − f t∞(xi)

)
.

If the NTK is positive definite (which is proven when the inputs all lie on the unit circle and
the non-linearity is not a polynomial), the network reaches a global minimum at the end of training
t → ∞. In particular the values of the function on training set are deterministic: f t=∞∞ (xi) = yi.
The values of the function outside the training set can be studied using the vector of values of f t∞
on the training set ỹt = (f t∞(xi))i=1,...P . Denoting by Θ̃∞ = (Θ∞(xi, xj))ij the empirical Gram
matrix:

y = ỹt=∞ = ỹt=0 +
1

P

∫ ∞
0

Θ̃∞(y − ỹt)dt,

so that
1

P

∫ ∞
0

(y − ỹt)dt = Θ̃−1
∞
(
y − ỹt=0

)
= Θ̃−1

∞ y − Θ̃−1
∞ ỹt=0.

These two terms represent the fact that the network needs to learn the labels y and forget the
random initialization. We can therefore give a formula for the values outside the training set, using
the vector Θ̃∞,x = (Θ∞(x, xi))i=1,...P :

f t∞(x) = f t=0
∞ (x) + Θ̃∞,x

1

P

∫ ∞
0

(y − ỹt)dt

= f t=0
∞ (x)− Θ̃∞,xΘ̃−1

∞ ỹt=0 + Θ̃∞,xΘ̃−1
∞ y. (G.3.1)

The first two terms are random, but they partly cancel each other, their sum is a centered
Gaussian distribution with zero variance on the training set and a small variance for points close to
the training set: the more training data points used, the lower the variance at initialization. The
last term is equal to the kernel regression on y with respect to the NTK, it is not random.

This shows that even in the infinite-width limit, f t=∞∞ has some variance which is due to the
variance of f t=0

∞ at initialization. Yet, in the setup where the number of data points is large enough,
the variance due to initialization almost vanishes during training and the scaling of the variance
due to finite-size effects in N will appear in the last term.

Finally, note that Eq.G.3.1 of this S.M. implies that f t∞(x) is smooth if both Θ∞(x, x′) and
f t=0
∞ (x) are smooth functions of x (this implication holds true for other choices of loss function).

Θ∞(x, x′) is smooth if the activation function is smooth [105], and so does f t=0
∞ (x) which is then

a Gaussian function of smooth covariance Σ(x, x′). For Relu neurons, Θ∞(x, x′) displays a cusp at
x = x′ while Σ(x, x′) is smooth, so f t∞(x) is smooth except on the training set, as supported by
Figure 1 of this S.M.

272
APPENDIX G. SCALING DESCRIPTION OF GENERALIZATION WITH NUMER OF

PARAMETERS IN DEEP LEARNING

Finite width

For a finite width N , the training is also described by the NTK Θt
N which is random at initialization

and varies during training because it depends on the parameters. The integral formula becomes

f tN (x) = f t=0
N (x) +

∫ ∞
0

Θ̃t
N,x(y − ỹt)dt

However the noise at initialization is Ω(N−1/4), whereas the rate of change is only Ω(N−1/2) [106],
we can therefore make the approximation

f tN (x) = f t=0
N (x) + Θ̃t=0

N,x

∫ ∞
0

(y − ỹt)dt+O(N−
1/2).

Assuming that there are enough parameters such that the Gram matrix Θ̃t=0
N is invertible, we

can again decompose the integral into two terms:∫ ∞
0

(y − ỹt)dt = Θ̃−1
N y − Θ̃−1

N ỹt=0 +O(N−
1/2),

such that
f tN (x) = f t=0

N (x)− Θ̃t=0
N,xΘ̃−1

N ỹt=0 + Θ̃t=0
N,xΘ̃−1

N y +O(N−
1/2). (G.3.2)

Here again the first two terms almost cancel each other, but the third term is random due to
the randomness of the NTK which is of order O(N−1/4), as needed.

Hinge Loss

For the hinge loss set-up, we do not have such a strong constraint on the value of the function f t=∞N

on the training set ỹt=∞ as for regression, but we still know that they must satisfy the margin
constraints

ỹt=∞i yi > 1.

The vector ỹt=∞ is therefore random for the hinge loss as a result of the random initialization of
f t=0
N and the fluctuations of the NTK. Again it is natural to assume the first type of fluctuations
to be subdominant and the second type to be of order O(N−1/4).

Appendix H

Implicit Regularization of Random Feature
Models

We organize the Supplementary Material (Supp. Mat.) as follows:

• In Section H.1, we present the details for the numerical results presented in the main text
(and in the Supp. Mat.).

• In Section H.2, we present additional experiments and some discussions.

• In Section H.3, we present the proofs of the mathematical results presented in the main text.

H.1 Experimental Details

The experimental setting consists of N training and Ntst test datapoints {(xi, yi)}N+Ntst
i=1 ∈ Rd×R.

We sample P Gaussian features f (1), . . . , f (P) of N+Ntst dimension with zero mean and covariance
matrix entries thereof Ci,j = K(xi, xj) where K(x, x′) = exp(−‖x − x′‖2/`) is a Radial Basis
Function (RBF) Kernel with lengthscale `. The extended data matrix F̄ = 1√

P
[f (1), . . . , f (P)] of

size (N +Ntst)× P is decomposed into two matrices: the (training) data matrix F = F̄[:N,:] of size
N × P , and a test data matrix Ftst = F̄[N :,:] of size Ntst × P so that F̄ = [F ;Ftst]. For a given
ridge λ, we compute the optimal solution using the data matrix F , i.e. θ̂ = FT

(
FFT + λIN

)−1
y

and obtain the predictions on the test datapoints ŷtst = FtstF
T
(
FFT + λIN

)−1
y.

Using the procedure above, we performed the following experiments:

Experiments with Sinusoidal data

We consider a dataset of N = 4 training datapoints (xi, sin(xi)) ∈ [0, 2π)× [−1, 1] and Ntst = 100
equally spaced test data points in the interval [0, 2π). In this experiment, the lengthscale of the
RBF Kernel is ` = 2. We compute the average and standard deviation the λ-RF predictor using
500 samplings of F̄ (see Figure 1 in the main text and Figure H.2.1 in the Supp. Mat.).

273

274 APPENDIX H. IMPLICIT REGULARIZATION OF RANDOM FEATURE MODELS

MNIST experiments

We sample N = 100 and Ntst = 100 images of digits 7 and 9 from the MNIST dataset (image
size d = 24 × 24, edge pixels cropped, all pixels rescaled down to [0, 1] and recentered around the
mean value) and label each of them with +1 and −1 labels, respectively. In this experiment, the
lengthscale of the RBF Kernel is ` = d`0 where `0 = 0.2. We approximate the expected λ-RF
predictor on the test datapoints using the average of ŷtst over 50 instances of F̄ and compute the
MSE (see Figures 2, 3 in the main text; in the ridgeless case –λ = 10−4 in our experiments– when
P is close to N , the average is over 500 instances). In Figure 4 of the main text, using Ntst = 100
test points, we compare two predictors trained over N = 100 and N = 1000 training datapoints.

Random Fourier Features

We sample random Fourier Features corresponding to the RBF Kernel with lengthscale ` = d`0
where `0 = 0.2 (same as above) and consider the same dataset as in the MNIST experiment. The
extended data matrix F̄ for Fourier features is obtained as follows: we sample d-dimensional i.i.d.
centered Gaussians w(1), . . . , w(P) with standard deviation

√
2/`, sample b(1), . . . , b(P) uniformly in

[0, 2π), and define F̄i,j =
√

2
P cos(xTi w

(j) + b(j)). We approximate the expected Fourier Features
predictor on the test datapoints using the average of ŷtst over 50 instances of F̄ (see Figure H.2.5).

H.2. ADDITIONAL EXPERIMENTS 275

H.2 Additional Experiments

We present the following complementary simulations:

• In Section H.2, we present the distribution of the λ-RF predictor for the selected P and λ.

• In Section H.2, we present the evolution of λ̃ and its derivative ∂λλ̃ for different eigenvalue
spectra.

• In Section H.2, we show the evolution of the eigenvalue spectrum of E[Aλ].

• In Section H.2, we present numerical experiments on MNIST using random Fourier features.

Distribution of the RF predictor

276 APPENDIX H. IMPLICIT REGULARIZATION OF RANDOM FEATURE MODELS

0 1 2 3 4 5 6
3

2

1

0

1

2

3

(a) P = 2, λ = 0

0 1 2 3 4 5 6
3

2

1

0

1

2

3

(b) P = 4, λ = 0

0 1 2 3 4 5 6
3

2

1

0

1

2

3

(c) P = 10, λ = 0

0 1 2 3 4 5 6
3

2

1

0

1

2

3

(d) P = 100, λ = 0

0 1 2 3 4 5 6
3

2

1

0

1

2

3

(e) P = 2, λ = 10−4

0 1 2 3 4 5 6
3

2

1

0

1

2

3

(f) P = 4, λ = 10−4

0 1 2 3 4 5 6
3

2

1

0

1

2

3

(g) P = 10, λ = 10−4

0 1 2 3 4 5 6
3

2

1

0

1

2

3

(h) P = 100, λ = 10−4

0 1 2 3 4 5 6
3

2

1

0

1

2

3

(i) P = 2, λ = 10−1

0 1 2 3 4 5 6
3

2

1

0

1

2

3

(j) P = 4, λ = 10−1

0 1 2 3 4 5 6
3

2

1

0

1

2

3

(k) P = 10, λ = 10−1

0 1 2 3 4 5 6
3

2

1

0

1

2

3

(l) P = 100, λ = 10−1

0 1 2 3 4 5 6
3

2

1

0

1

2

3

(m) P = 2, λ = 1

0 1 2 3 4 5 6
3

2

1

0

1

2

3

(n) P = 4, λ = 1

0 1 2 3 4 5 6
3

2

1

0

1

2

3

(o) P = 10, λ = 1

0 1 2 3 4 5 6
3

2

1

0

1

2

3

(p) P = 100, λ = 1

Figure H.2.1: Distribution of the RF predictor. Red dots represent a sinusoidal dataset yi = sin(xi)
for N = 4 points xi in [0, 2π). For P ∈ {2, 4, 10, 100} and λ ∈ {0, 10−4, 10−1, 1}, we sample ten RF
predictors (blue dashed lines) and compute empirically the average RF predictor (black lines) with
±2 standard deviations intervals (shaded regions).

H.2. ADDITIONAL EXPERIMENTS 277

Evolution of the Effective Ridge λ̃

In Figure H.2.2, we show how the effective ridge λ̃ and its derivative ∂λλ̃ evolve for the selected
eigenvalue spectra with various decays (exponential or polynomial) as a function of γ and λ. In
Figure H.2.3, we compare the evolution of λ̃ for various N .

100

10-1

10-2

10-3

10-4

10-1 100 101 102

(a) Exponential, λ̃

1

2

3

4

5

6

10-1 100 101 102

(b) Exponential, ∂λλ̃

0.00
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

(c) Exponential, λ̃

100

10-1

10-2

10-3

10-4

10-1 100 101 102

(d) Polynomial, λ̃

1

2

3

4

5

6

10-1 100 101 102

(e) Polynomial, ∂λλ̃

0.00
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

(f) Polynomial, λ̃

Figure H.2.2: Evolution of the effective ridge λ̃ and its derivative ∂λλ̃ for various levels of ridge λ
(or γ) and for N = 20. We consider two different decays for d1, . . . , dN : (i) exponential decay in i
(i.e. di = e−

(i−1)
2 , top plots) and (ii) polynomial decay in i (i.e. di = 1

i , bottom plots).

278 APPENDIX H. IMPLICIT REGULARIZATION OF RANDOM FEATURE MODELS

0.00

0.25

0.50

0.75

1.00

1.50

2.00

1.75

1.25

10-110-2 100 101 102

(a) λ = 10−4

0.5

1.0

1.5

2.0

2.5

10-110-2 100 101 102

(b) λ = 0.5

Figure H.2.3: Evolution of effective ridge λ̃ as a function of γ for two ridges (a) λ = 10−4 and (b)
λ = 0.5 and for various N . We consider an exponential decay for d1, . . . , dN , i.e. di = e−

(i−1)
2 .

H.2. ADDITIONAL EXPERIMENTS 279

Eigenvalues of Aλ

The (random) prediction ŷ on the training data is given by ŷ = Aλy where Aλ = F (FTF+λI)−1FT .
The average λ-RF predictor is E[f̂

(RF)
λ (x)] = K(x,X)K(X,X)−1E[Aλ]y. We denote by d̃1, . . . d̃N

the eigenvalues of E[Aλ]. By Proposition H.3.7, the d̃i’s converge to the eigenvalues d1

d1+λ̃
, . . . , dN

dN+λ̃

of K(K + λ̃IN)−1 as P goes to infinity. We illustrate the evolution of d̃i and their convergence to
di

di+λ̃
for two different eigenvalue spectrums d1, . . . dN .

280 APPENDIX H. IMPLICIT REGULARIZATION OF RANDOM FEATURE MODELS

1.0

0.8

0.6

0.4

0.2

0.0
2 4 6 8 10

1.0

0.8

0.6

0.4

0.2

0.0
2 4 6 8 10

λ
=

10
−

1

1.0

0.8

0.6

0.4

0.2

0.0
2 4 6 8 10

1.0

0.8

0.6

0.4

0.2

0.0
2 4 6 8 10

λ
=

1
0
−

2

1.0

0.8

0.6

0.4

0.2

0.0
2 4 6 8 10

1.0

0.8

0.6

0.4

0.2

0.0
2 4 6 8 10

λ
=

10
−

3

1.0

0.8

0.6

0.4

0.2

0.0
2 4 6 8 10

1.0

0.8

0.6

0.4

0.2

0.0
2 4 6 8 10

λ
=

10
−

4

Polynomial Exponential

Figure H.2.4: Eigenvalues d̃1, . . . d̃N (red dots) vs. eigenvalues d1

d1+λ̃
, . . . , dN

dN+λ̃
(blue dots) for N =

10. We consider various values of P and two different decays for d1, . . . , dN : (i) exponential decay
in i, i.e. di = e−

(i−1)
2 (right plots) and (ii) polynomial decay in i, i.e. di = 1

i (left plots).

Average Fourier Features Predictor

The Fourier Features predictor λ-FF is f̂ (FF)(x) = 1√
P

∑P
j=1 θ̂jφ

(j)(x) where φ(j)(x) = cos(xTw(j)+

b(j)) and θ̂ = FT
(
FFT + λIN

)−1
y with the data matrix F as described in Section H.1.

H.2. ADDITIONAL EXPERIMENTS 281

We investigate how close the average λ-FF predictor is to the λ̃-KRR predictor and we observe
the following:

1. The difference of the test errors of the two predictors decreases as γ increases.

2. In the overparameterized regime, i.e. P ≥ N , the test error of the λ̃-KRR predictor matches
with the test error of the λ-FF predictor.

3. For N = 1000, strong agreement between the two test errors is observed already for γ > 0.1.
We also observe that Gaussian features achieve lower (or equal) test error than the Fourier
features for all γ in our experiments.

10-1 100 101 10210-2

1.0

0.8

0.6

0.4

0.2

Te
st

 E
rr

or

(a) N = 100

10-1 100 10210110-2

1.0

0.8

0.6

0.4

0.2

Te
st

 E
rr

or

(b) N = 100

10-1 100 10110-2

0.5

0.4

0.3

0.2

0.1

Te
st

 E
rr

or

(c) N = 1000

10-1 100 10110-2

0.5

0.4

0.3

0.2

0.1

Te
st

 E
rr

or

0.7

0.6

(d) N = 1000

Figure H.2.5: Comparision of the test errors of the average λ-FF predictor and the λ̃-KRR predictor.
In (a) and (c), the test errors of the average λ-FF predictor and of the λ̃-KRR predictor are reported
for various ridge for N = 100 and N = 1000 MNIST data points (top and bottom rows). In (b)
and (d), the average test error of the λ-FF predictor and the test error of its average are reported.

282 APPENDIX H. IMPLICIT REGULARIZATION OF RANDOM FEATURE MODELS

.

H.3. PROOFS 283

H.3 Proofs

Gaussian Random Features

Proposition H.3.1. Let f̂ (RF)
λ be the λ-RF predictor and let ŷ = F θ̂ be the prediction vector on

training data, i.e. ŷi = f̂
(RF)
λ (xi). The process f̂ (RF)

λ is a mixture of Gaussians: conditioned on F ,
we have that f̂ (RF)

λ is a Gaussian process. The mean and covariance of f̂ (RF)
λ conditioned on F are

given by

E[f̂
(RF)
λ (x)|F] = K(x,X)K(X,X)−1ŷ, (H.3.1)

Cov[f̂
(RF)
λ (x), f̂

(RF)
λ (x′)|F] =

‖θ̂‖2

P
K̃(x, x′) (H.3.2)

where K̃(x, x′) = K(x, x′)−K(x,X)K(X,X)−1K(X,x′) denotes the posterior covariance kernel.

Proof. Let F = (1√
P
f (j)(xi))i,j be the N×P matrix of values of the random features on the training

set. By definition, f̂ (RF)
λ = 1√

P

∑P
p=1 θ̂pf

(p). Conditioned on the matrix F , the optimal parameters

(θ̂p)p are not random and (f (p))p is still Gaussian, hence, conditioned on the matrix F , the process
f̂

(RF)
λ is a mixture of Gaussians. Moreover, conditioned on the matrix F , for any p, p′, f (p) and
f (p′) remain independent, hence

E
[
f̂

(RF)
λ (x) | F

]
=

1√
P

P∑
p=1

θ̂pE
[
f (p)(x) | f (p)

N

]

Cov
[
f̂

(RF)
λ (x), f̂

(RF)
λ (x′) | F

]
=

1

P

P∑
p=1

θ̂2
pCov

[
f (p)(x), f (p)(x′) | f (p)

N

]
.

where we have set f (p)
N = (f (p)(xi))i ∈ RN . The value of E

[
f (p)(x) | f (p)

N

]
and Cov

[
f (p)(x), f (p)(x′) | f (p)

N

]
are obtained from classical results on Gaussian conditional distributions [53]:

E
[
f (p)(x) | f (p)

N

]
= K(x,X)K(X,X)−1f

(p)
N ,

Cov
[
f (p)(x), f (p)(x′) | f (p)

N

]
= K̃(x, x′),

where K̃(x, x′) = K(x, x′) − K(x,X)K(X,X)−1K(X,x′). Thus, conditioned on F , the predictor
f̂

(RF)
λ has expectation:

E
[
f̂

(RF)
λ (x) | F

]
= K(x,X)K(X,X)−1 1√

P

P∑
p=1

θ̂pf
(p)
N = K(x,X)K(X,X)−1ŷ

and covariance:

Cov
[
f̂

(RF)
λ (x), f̂

(RF)
λ (x′) | F

]
=

1

P

P∑
p=1

θ̂2
pK̃(x, x′) =

‖θ̂‖2

P
K̃(x, x′).

284 APPENDIX H. IMPLICIT REGULARIZATION OF RANDOM FEATURE MODELS

Generalized Wishart Matrix

Setup. In this section, we consider a fixed deterministic matrix K of size N×N which is diagonal
positive semi-definite, with eigenvalues d1, . . . , dN . We also consider a P × N random matrix W
with i.i.d. standard Gaussian entries.

The key object of study is the P × P generalized Wishart random matrix FTF = 1
PWKWT

and in particular its Stieltjes transform defined on z ∈ C \ R+, where R+ = [0,+∞[:

mP (z) =
1

P
Tr
[(
FTF − zIP

)−1
]

=
1

P
Tr

[(
1

P
WKWT − zIP

)−1
]
,

where K is a fixed positive semi-definite matrix.
Since FTF has positive real eigenvalues λ1, . . . , λP ∈ R+, and

mP (z) =
1

P

P∑
p=1

1

λp − z
,

we have that for any z ∈ C \ R+,

|mP (z)| ≤ 1

d(z,R+)
,

where d(z,R+) = inf {|z − y| , y ∈ R+} is the distance of z to the positive real line. More precisely,
mP (z) lies in the convex hull Ωz = Conv

({
1
d−z : d ∈ R+

})
. As a consequence, the argument

arg (mP (z)) ∈ (−π, π) lies between 0 and arg
(
− 1
z

)
, i.e. mP (z) lies in the cone spanned by 1 and

− 1
z .
Our first lemma implies that the Stieljes transform concentrates around its mean as N and P

go to infinity with γ = P
N fixed.

Lemma H.3.2. For any integer m ∈ N and any z ∈ C \ R+, we have

E [|mP (z)− E [mP (z)]|m] ≤ cP−
m
2 ,

where c depends on z, γ, and m only.

Proof. The proof follows Step 1 of [11]. Let w1, ..., wN be the columns of W from left to right.
Let us introduce the P × P matrices B(z) = 1

PWKWT − zIP and B(i)(z) = 1
PW(i)K(i)W

T
(i) − zIP

where W(i) is the P × (N − 1) submatrix of W obtained by removing its i-th column wi, and K(i)

is the (N − 1)× (N − 1) submatrix of K obtained by removing both its i-th column and i-th row.
Since the eigenvalues of WKWT and W(i)K(i)W

T
(i) are all real and positive, B(z) and B(i)(z) are

invertible matrices for z /∈ R+.
Noticing that

B(z) =
1

P
WKWT − zIP =

1

P
W(i)K(i)W

T
(i) − zIP +

di
P
wiw

T
i

is a rank one perturbation of the matrix B(i)(z), by the Sherman–Morrison’s formula, the inverse
of B(z) is given by:

B(z)−1 =
(
B(i)(z)

)−1 − di
P

1

1 + di
P w

T
i

(
B(i)(z)

)−1
wi

(
B(i)(z)

)−1
wiw

T
i

(
B(i)(z)

)−1
.

H.3. PROOFS 285

We denote Ei the conditional expectation given wi+1, ..., wN . We have E0[mP (z)] = mP (z) and
EN [mP (z)] = E[mP (z)]. As a consequence, we get:

mP (z)− E[mP (z)] =

N∑
i=1

(Ei−1[mP (z)]− Ei[mP (z)])

=
1

P

N∑
i=1

(Ei−1 − Ei)
[
Tr
(
B(z)−1

)]
=

1

P

N∑
i=1

(Ei−1 − Ei)
[
Tr
(
B(z)−1

)
− Tr

(
B(i)(z)

−1
)]
.

The last equality comes from the fact that Tr
(
B(i)(z)

−1
)
does not depend on wi, hence

Ei−1

[
Tr
(
B(i)(z)

−1
)]

= Ei
[
Tr
(
B(i)(z)

−1
)]
.

Let gi : C \ R+ → C be the holomorphic function given by gi(z) := 1
P w

T
i

(
B(i)(z)

)−1
wi. Its

derivative is given by g′i(z) = 1
P w

T
i

(
B(i)(z)

)−2
wi. Hence

Tr
(
B(z)−1

)
− Tr

(
B(i)(z)

−1
)

= −
di
P Tr

((
B(i)(z)

)−1
wiw

T
i

(
B(i)(z)

)−1
)

1 + digi(z)

= − dig
′
i(z)

1 + digi(z)
,

where we used the cyclic property of the trace. We can now bound this difference:

∣∣Tr
(
B(z)−1

)
− Tr

(
B(i)(z)

−1
)∣∣ =

∣∣∣∣ dig
′
i(z)

1 + digi(z)

∣∣∣∣
≤

∣∣∣∣∣wTi
(
B(i)(z)

)−2
wi

wTi
(
B(i)(z)

)−1
wi

∣∣∣∣∣
≤ max

w

∣∣∣∣∣wT
(
B(i)(z)

)−2
w

wT
(
B(i)(z)

)−1
w

∣∣∣∣∣
≤ ‖

(
B(i)(z)

)−1 ‖op = max
j
| 1

νj − z
| ≤ 1

d(z,R+)
,

where νj are the eigenvalues of 1
PW(i)K(i)W

T
(i).

The sequence (
(EN−i − EN−i+1)

[
Tr
(
B(z)−1

)
− Tr

(
B(N−i+1)(z)

−1
)])

i=1,...,N

is a martingale difference sequence. Hence, by Burkholder’s inequality, there exists a positive
constant Km such that

286 APPENDIX H. IMPLICIT REGULARIZATION OF RANDOM FEATURE MODELS

E [|mP (z)− E [mP (z)]|m] ≤ Km
1

Pm
E

(N∑
i=1

∣∣[Ei−1 − Ei]
(
Tr
(
B(z)−1

)
− Tr

(
B(i)(z)

−1
))∣∣2)m

2


≤ Km

1

Pm

(
N

(
2

d(z,R+)

)2
)m

2

≤ Kmγ
−m2

(
2

d(z,R+)

)m
P−

m
2 ,

hence the desired result with c = Kmγ
−m2

(
2

d(z,R+)

)m
.

The following lemma, which is reminiscent of Lemma 4.5 in [8], is a consequence of Wick’s
formula for Gaussian random variables and is key to prove Lemma C.4.

Lemma H.3.3. If A(1), . . . , A(k) are k square random matrices of size P independent from a
standard Gaussian vector w of size P ,

E
[
wTA(1)wwTA(2)w . . . wTA(k)w

]
=

∑
p∈P 2(2k)

∑
[
p≤Ker(i1,...,i2k)]i1,...,i2k∈{1,...,P}

E
[
A

(1)
i1i2

. . . A
(k)
i2k−1i2k

]
,(H.3.3)

where P 2(2k) is the set of pair partitions of {1, . . . , 2k}, ≤ is the coarser (i.e. p ≤ q if q is coarser
than p), and for any i1, . . . , i2k in {1, . . . , P}, Ker(i1, . . . , i2k) is the partition of {1, . . . , 2k} such
that two elements u and v in {1, ..., 2k} are in the same block (i.e. pair) of Ker (i1, . . . , i2k) if and
only if iu = iv.

Furthermore,

E
[(
wTA(1)w − Tr

(
A(1)

))(
wTA(2)w − Tr

(
A(2)

))
. . .
(
wTA(k)w − Tr

(
A(k)

))]
=

∑
p∈:P 2(2k):

∑
[
p≤Ker(i1,...,i2k)]i1,...,i2k∈{1,...,P}

E
[
A

(1)
i1i2

. . . A
(k)
i2k−1i2k

]
, (H.3.4)

where : P 2(2k) : is the subset of partitions p in P 2(2k) for which {2j − 1, 2j} is not a block of p
for any j ∈ {1, . . . , k}.

Proof. Expanding the left-hand side of Equation (H.3.3), we obtain:

E

 ∑
i1,...,i2k∈{1,...,P}

wi1A
(1)
i1i2

wi2wi3A
(2)
i3i4

wi4 . . . wi2k−1
A

(k)
i2k−1i2k

wi2k

 .
Using Wick’s formula, we get:∑

i1,...,i2k∈{1,...,P}

∑
[
p≤Ker(i1,...,i2k)]p∈P 2(2k),

E
[
A

(1)
i1i2

A
(2)
i3i4

. . . A
(k)
i2k−1i2k

]
,

H.3. PROOFS 287

hence, interchanging the order of summation, we recover the left-hand side of Equation (H.3.3):∑
p∈P 2(2k)

∑
[
p≤Ker(i1,...,i2k)]i1,...,i2k∈{1,...,P}

E
[
A

(1)
i1i2

. . . A
(k)
i2k−1i2k

]
.

We now prove Equation (H.3.4). Expanding the product, the left-hand side is equal to:

∑
I⊂{1,...,k}

(−1)k−#IE

[∏
i∈I

wTA(i)w
∏
i/∈I

Tr(A(i))

]
.

Expanding the product and the trace, and using Wick’s equation, we obtain: a∑
I⊂{1,...,k}

(−1)k−#I
∑

i1,...,i2k∈{1,...,P}

∑
[
p≤Ker(i1,...,i2k)]p∈P 2(2k),p≤pI

E
[
A

(1)
i1i2

. . . A
(k)
i2k−1i2k

]
.

where pI is the partition composed of blocks of size 2 given by {2l, 2l + 1} with l /∈ I and the rest
of the indices contained in a single block. Interchanging the order of summation, we get:

∑
i1,...,i2k∈{1,...,P}

∑
[
p≤Ker(i1,...,i2k)]p∈P 2(2k),

E
[
A

(1)
i1i2

. . . A
(k)
i2k−1i2k

] ∑
[
p≤pI]I⊂{1,...,k},

(−1)k−#I

 .
Since

[∑
I⊂{1,...,k},p≤pI (−1)#I

]
= δ{I⊂[k],p≤pI}={{1,...,k}} and {I ⊂ [k], p ≤ pI} = {{1, . . . , k}} if

and only if p ∈:P 2(2k):, interchanging a last time the order of summation, we recover the left-hand
side of Equation (H.3.4):∑

p∈:P 2(2k):

∑
[
p≤Ker(i1,...,i2k)]i1,...,i2k∈{1,...,P}

E
[
A

(1)
i1i2

. . . A
(k)
i2k−1i2k

]
.

For any z ∈ C \ R+, we define the holomorphic function gi : C \ R+ → C by

gi(z) =
1

P
wTi

(
1

P
W(i)K(i)W

T
(i) − z IP

)−1

wi,

where W(i) is the P × (N − 1) submatrix of W obtained by removing its i-th column wi, and K(i)

is the (N − 1)× (N − 1) submatrix of K obtained by removing both its i-th column and i-th row.
In the following lemma, we bound the distance of gi(z) to its mean. Then we prove that E[gi(z)] is
close to the expected Stieljes transform of K.

Lemma H.3.4. The random function gi(z) satisfies:

|E [gi(z)]− E [mP (z)]| ≤ c0
P
,

288 APPENDIX H. IMPLICIT REGULARIZATION OF RANDOM FEATURE MODELS

Var (gi(z)) ≤ c1
P
,

E
[
(gi(z)− E [gi(z)])

4
]
≤ c2

P 2
,

E
[
(gi(z)− E [gi(z)])

8
]
≤ c3

P 4
,

where c0, c1, c2, and c3 depend on γ and z only.

Proof. The random variable wi is independent from B(i)(z) = 1
PW(i)K(i)W

T
(i) − zIP since the i-th

column of W does not appear in the definition of B(i)(z). Using Lemma H.3.3, since there exists a
unique pair partition p ∈ P 2(2), namely {{1, 2}}, the expectation of gi(z) is given by

E [gi(z)] =
1

P
E
[
Tr
[
B(i)(z)

−1
]]
.

Recall that E [mP (z)] = 1
P E
[
Tr
[
B(z)−1

]]
and

∣∣Tr
(
B(z)−1

)
− Tr

(
B(i)(z)

−1
)∣∣ ≤ 1

d(z,R+) (from the
proof of Lemma H.3.2). Hence

|E [gi(z)]− E [mP (z)]| ≤ 1

P
E
[∣∣Tr

(
B(z)−1

)
− Tr

(
B(i)(z)

−1
)∣∣] ≤ 1

P

1

d(z,R+)
.

which proves the first assertion with c0 = 1
d(z,R+) .

Now, let us consider the variance of gi(z). Using our previous computation of E [gi(z)], we have

Var(gi(z)) = E

[
wTi

(
B(i)(z)

)−1

P
wiw

T
i

(
B(i)(z)

)−1

P
wi

]
− E

[
1

P
Tr
[
B(i)(z)

−1
]]2

.

The first term can be computed using the first assertion of Lemma H.3.3: there are 2 matrices

involved, thus we have to sum over 3 pair partitions. A simplification arises since (B(i)(z))
−1

P is sym-

metric: the partition {{1, 2}, {3, 4}} yields E

[(
Tr

[
(B(i)(z))

−1

P

])2
]
whereas both {{1, 3}, {2, 4}}

and {{1, 4}, {2, 4}} yield E
(

Tr

[
(B(i)(z))

−2

P 2

])
.

Thus, the variance of gi(z) is given by:

Var(gi(z)) = 2E

(
Tr

[(
B(i)(z)

)−2

P 2

])
+ E

[(
1

P
Tr
[(
B(i)(z)

)−1
])2

]
− E

[
1

P
Tr
[(
B(i)(z)

)−1
]]2

hence is given by a sum of two terms:

Var(gi(z)) =
2

P
E
(

1

P
Tr
[(
B(i)(z)

)−2
])

+ Var

(
1

P
Tr
[(
B(i)(z)

)−1
])

.

Using the same arguments as those explained for the bound on the Stieltjes transform, the first term
is bounded by 2

Pd(z,R+)2 . In order to bound the second term, we apply Lemma H.3.2 for W(i) and
K(i) in place of W and K. The second term is bounded by c

P , hence the bound Var (gi(z)) ≤ c1

P .

H.3. PROOFS 289

Finally, we prove the bound on the fourth moment of gi(z) − E [gi(z)]. We denote m(i)(z) =
1
P Tr

[(
B(i)(z)

)−1
]
. Recall that E [gi(z)] = E

[
m(i)(z)

]
. Using the convexity of t 7→ t4, we have

E
[
(gi(z)− E[gi(z)])

4
]

= E
[(
gi(z)−m(i)(z) +m(i)(z)− E

[
m(i)(z)

])4]
≤ 8E

[(
gi(z)−m(i)(z)

)4]
+ 8E

[(
m(i)(z)− E

[
m(i)(z)

])4]
.

We bound the second term using the concentration of the Stieljes transform (Lemma H.3.2): it is
bounded by 8c

P 2 . The first term is bounded using the second assertion of Lemma H.3.3. Using the
symmetry of B(i)(z), the partitions in : P 2(4) : yield two different terms, namely:

1. 1
P 2E

[(
1
P Tr

[(
B(i)(z)

)−2
])2
]
, for example if p = {{1, 3}, {2, 4}, {5, 7}, {6, 8}}

2. 1
P 3E

[
1
P Tr

[(
B(i)(z)

)−4
]]
, for example if p = {{2, 3}, {4, 5}, {6, 7}, {8, 1}}.

We bound the two terms using the same arguments as those explained for the bound on the Stieljes
transform at the beginning of the section. The first term is bounded by d(z,R+)−4

P 2 and the second

term by d(z,R+)−4

P 3 hence the bound E
[
(gi(z)− E [gi(z)])

4
]
≤ c2

P 2 .

The bound E[(gi(z)− E [gi(z)])
8
] ≤ c3

P 4 is obtained in a similar way, using the second assertion
of Lemma H.3.3 and simple bounds on the Stieljes transform.

In the next proposition we show that the Stieltjes transform mP (z) is close in expectation to
the solution of a fixed point equation.

Proposition H.3.5. For any z ∈ H<0 = {z : Re(z) < 0} ,

|E [mP (z)]− m̃(z)| ≤ e

P
,

where e depends on z, γ, and 1
NTr(K) only and where m̃(z) is the unique solution in the cone

Cz := {u− 1
z v : u, v ∈ R+} spanned by 1 and − 1

z of the equation

γ =
1

N

N∑
i=1

dim̃(z)

1 + dim̃(z)
− γzm̃(z).

Proof. We use the same notation as in the previous proofs, namely B(z) = 1
PWKWT − zIP ,

B(i)(z) = 1
PW(i)K(i)W

T
(i) − zIP and gi(z) = 1

P w
T
i

(
B(i)(z)

)−1
wi. Let νj ≥ 0, j = 1, . . . , P be the

spectrum of the positive semi-definite matrix 1
PW(i)K(i)W

T
(i). After diagonalization, we have

B(i)(z)
−1 = OTdiag(

1

ν1 − z
, . . . ,

1

νP − z
)O,

with O an orthogonal matrix. Then

gi(z) =
1

P
Tr
((
B(i)(z)

)−1
wiw

T
i

)
=

1

P

P∑
j=1

((Owi)jj)
2

νj − z
. (H.3.5)

290 APPENDIX H. IMPLICIT REGULARIZATION OF RANDOM FEATURE MODELS

Since z ∈ H<0, we conclude that <[gi(z)] ≥ 0 for all i = 1, . . . , P .
In order to prove the proposition, the key remark is that, since Tr

(
(1
PWKWT − zIP)(B(z))−1

)
=

P , the Stieltjes transform mP (z) satisfies the following equation:

P = Tr

(
1

P
KWTB(z)−1W

)
− zPmP (z).

From the proof of Lemma H.3.2, recall thatB−1(z) = B−1
(i) (z)−diP

1

1+
di
P w

T
i B
−1
(i)

(z)wi
B−1

(i) (z)wiw
T
i B
−1
(i) (z),

hence:

1

P
wTi B

−1(z)wi = gi(z)−
digi(z)

2

1 + digi(z)

=
gi(z)

1 + digi(z)
.

(H.3.6)

Expanding the trace,

Tr

(
1

P
KWTB(z)−1W

)
=

N∑
i=1

di
1

P
wTi B

−1(z)wi =

N∑
i=1

digi(z)

1 + digi(z)
.

Thus, the Stieljes transform mP (z) satisfies the following equation P =
∑N
i=1

digi(z)
1+digi(z)

− zPmP (z),

or equivalently

γ =
1

N

N∑
i=1

digi(z)

1 + digi(z)
− zγmP (z).

Recall that γ > 0 and Re(z) < 0. The Stieljes transform mP (z) can be written as a function of
gi(z) for i = 1, . . . , n: mP (z) = f(g1(z), ..., gN (z)) where

f(g1, . . . , gN) =
1

γzN

N∑
i=1

digi
1 + digi

− 1

z
= −1

z

(
1− 1

γ
+

1

γ

1

N

N∑
i=1

1

1 + digi

)
.

From Lemma H.3.6, the map f(m) = f(m, ...,m) has a unique non-degenerate fixed point m̃(z)
in the cone Cz. We will show that E [mP (z)] is close to m̃(z) using the following two steps:
we show a non-tight bound |E [mP (z)]− m̃(z)| ≤ e′√

P
and use it to obtain the tighter bound

|E[mP (z)]− m̃(z)| ≤ e
P .

Let us prove the e′√
P

bound. From Lemma H.3.6, the distance between mP (z) and the fixed
point m̃(z) of f is bounded by the distance between f(mP (z), . . . ,mP (z)) and mP (z) . Using the
fact that mP (z) = f(g1(z), ..., gN (z)), we obtain

|E[mP (z)]− m̃(z)| ≤ E [|mP (z)− m̃(z)|] ≤ E [|f(mP (z), . . . ,mP (z))− f(g1(z), ..., gN (z))|] .

Recall that for any z ∈ H<0, <(gi(z)) ≥ 0: we need to study the function f on HN≥0 where
H≥0 = {z ∈ C|<(z) ≥ 0}. On HN≥0, the function f is Lipschitz:

|∂gif(g1, .., gN)| =
∣∣∣∣ 1

γzN

di
(1 + digi)2

∣∣∣∣ ≤ di
γ |z|N

.

H.3. PROOFS 291

Thus,

E [|f (mP (z), ...,mP (z))− f (g1(z), ..., gN (z))|] ≤
N∑
i=1

di
γ |z|N

E [|mP (z)− gi(z)|] .

Since

E [|mP (z)− gi(z)|] ≤ E [|mP (z)− E [mP (z)]|] + |E [mP (z)]− E [gi(z)]|+ E [|gi(z)− E [gi(z)]|] ,

using Lemmas H.3.2 and H.3.4, we get that E [|mP (z)− gi(z)|] ≤ d√
P
, where d depends on γ and

z only. This implies that

E [|f (mP (z), ...,mP (z))− f (g1(z), ..., gN (z))|] ≤ 1√
P

d

N
Tr (K) ,

which allows to conclude that |E[mP (z)]− m̃(z)| ≤ e′√
P

where e′ depends on γ, z and 1
NTr(K) only.

We strengthen this inequality and show the e
P bound. Using again Lemma H.3.6, we bound the

distance between E[mP (z)] and the fixed point m̃(z) by

|E[mP (z)]− m̃(z)| ≤ |E[f(g1(z), . . . , gN (z))]− f(E[mP (z)], . . . ,E[mP (z)])|

and study the r.h.s. using a Taylor approximation of f near E [mP (z)]. For i = 1, . . . , N and
m0 ∈ H≥0, let Tm0

hi be the first order Taylor approximation of the map hi : m 7→ 1
1+dim

at a point
m0. The error of the first order Taylor approximation is given by

hi(m)− Tm0
hi(m) =

1

1 + dim
−

(
1

1 + dim0
− di(m−m0)

(1 + dim0)
2

)
=

d2
i (m0 −m)

2

(1 + dim) (1 + dim0)
2 ,

which, for m ∈ H≥0 can be upper bounded by a quadratic term:

|hi(m)− Tm0
hi(m)| =

∣∣∣∣∣ d2
i

(1 + dim) (1 + dim0)
2

∣∣∣∣∣ |m0 −m|2 ≤
1

|m0|2
|m0 −m|2 . (H.3.7)

The first order Taylor approximation Tf of f at the N -tuple (E [mP (z)] , ...,E [mP (z)]) is

Tf(g1, .., gN) = −1

z

(
1− 1

γ
+

1

γ

1

N

N∑
i=1

TE[mP (z)]hi(gi)

)
.

Using this Taylor approximation, E[f(g1(z), . . . , gN (z))]− f(E[mP (z)], . . . ,E[mP (z)]) is equal to:

E [Tf(g1(z), .., gN (z))]− f(E[mP (z)], . . . ,E[mP (z)]) + E [f(g1(z), ..., gN (z))− Tf(g1(z), .., gN (z))] .

Using Lemma H.3.4, we get

|E [f(g1(z), ..., gN (z))− Tf(g1(z), .., gN (z))]| ≤ 1

|z| γ
1

N

N∑
i=1

1

|E[mP (z)]|2
E
[
|gi(z)− E [mP (z)]|2

]

292 APPENDIX H. IMPLICIT REGULARIZATION OF RANDOM FEATURE MODELS

≤ 1

P

α

|E[mP (z)]|2

and

|E [Tf(g1(z), .., gN (z))]− f(E [mP (z)] , ...,E [mP (z)])| ≤ 1

|z| γ
1

N

N∑
i=1

di |E [gi]− E [mP (z)]|
|1 + diE [mP (z)]|2

≤
β
(

1
NTrK

)
P

where α and β depends on z and γ only. From the bounds |E[mP (z)]− m̃(z)| ≤ e′√
P

and |m̃(z)| ≥
(|z| + 1

NγTr(K))−1 (Lemma H.3.6), the bound 1
P

α
|E[mP (z)]|2 yields a α̃

P bound. This implies that
|E[mP (z)]− f(E[mP (z)], . . . ,E[mP (z)])| ≤ e

P , hence the desired inequality |E [mP (z)]− m̃(z)| ≤
e
P .

For the proof of Proposition H.3.5, we have used the fact that the map fz introduced therein
has a unique non-degenerate fixed point in the cone Cz := {u − 1

z v : u, v ∈ R+}. We now proceed
with proving this statement.

Lemma H.3.6. Let d1, . . . , dn ≥ 0 and let γ ≥ 0. For any fixed z ∈ H<0 , let fz : H≥0 → C be
the function t 7→ fz(t) = − 1

z

(
1− 1

γ
1
N

∑N
i=1

dit
1+dit

)
. Let Cz := {u − 1

z v : u, v ∈ R+} be the convex

region spanned by the half-lines R+ and − 1
zR+. Then for every z ∈ H<0 there exists a unique fixed

point t̃(z) ∈ Cz such that t̃(z) = fz(t̃(z)). The map t̃ : z 7→ t̃(z) is holomorphic in H<0 and

|t̃(z)| ≥
(
|z|+

∑
i di
γN

)−1

.

Furthermore for every z ∈ H<0 and any t ∈ H≥0, one has

|t− t̃(z)| ≤ |t− fz(t)|.

Proof. By means of Schwarz reflection principle, we can assume that =(z) ≥ 0. Let z ∈ H<0 and let
Πz := {−wz : =(w) ≤ 0} and let Cz be the wedged region Cz := Πz ∩ {w ∈ C : =(w) ≥ 0}. To show
the existence of a fixed point in Cz we show that 0 is in the image of the function ψ : t 7→ fz(t)− t.
Note that since di ≥ 0, the eventual poles of fz are all strictly negative real numbers, hence
ψ : Cz → C is an holomorphic function.

To prove that 0 ∈ ψ(Cz) we proceed with a geometrical reasoning: the image ψ(Cz) is (one of)
the region of the plane confined by ψ (∂Cz), so we only need to “draw” ψ (∂Cz) and show that 0
belongs to the “good” connected component confined by it.

The boundary of Cz is made up of two half-lines R+ and − 1
zR+. Under the map fz, 0 is mapped

to − 1
z and∞ is mapped to − 1− 1

γ

z , the two half-lines are hence mapped to paths from − 1
z to − 1− 1

γ

z .
Now under ψ the half-lines will be mapped to paths going − 1

z to∞ because by our assumption − 1
z

lies in the upper right quadrant, we will show that the image of R+ under φ goes ’above’ the origin
while the image of − 1

zR+ goes ’under’ the origin:

• R+ is mapped under fz to the segment − 1
z [1, 1− 1

γ], as a result, its map under ψ lies in the
Minkowski sum − 1

z [1, 1− 1
γ] + (−R+) which is contained in C \Πz.

H.3. PROOFS 293

• For any t ∈ − 1
zR+ we have for all di

=
(

dit

1 + dit

)
= =

(
1− 1

1 + dit

)
= =

(
1

1 + dit

)
≤ 0,

since =(t) ≥ 0. As a result the image of − 1
zR+ under fz lies in Πz and its image under ψ lies

in the Minkovski sum Πz + (− 1
zR+) = Πz.

Thus we can conclude that 0 ∈ ψ (Cz), which shows that there exists at least a fixed point m̃ in Cz.
We observe that, for every t ∈ Cz, the derivative of f has negative real part:

Re (f ′z(t)) =
1

γ

1

N

N∑
i=1

Re

(
di

z (1 + dit)
2

)

=
1

γ

1

N

N∑
i=1

di
[
<(z) + 2di<(z)<(t)− 2di=(z)=(t) + d2

i<(zt2)
]

|z|2 |1 + dit|4
≤ 0,

where we concluded the last inequality by using that <(z) ≤ 0, <(t) ≥ 0, =(z)=(t) ≥ 0 and
<(zt2) ≤ 0. Thus, since for no point t ∈ Cz has f ′z(t) = 1, any fixed point of fz is a simple fixed
point.

We now proceed to show the uniqueness of the fixed point in the region Cz. Suppose there are
two fixed points t1 and t2, then

t1 − t2 = fz(t1)− fz(t2)

= (t1 − t2)
1

z

1

γN

N∑
i=1

di
(1 + dit1)(1 + dit2)

.

Again, since <(z) ≤ 0, <(t1),<(t2) ≥ 0, =(z)=(t1),=(z)=(t2),≥ 0 and <(zt1t2) ≤ 0, the factor
1
z

1
N

∑N
i=1

di
(1+dit1)(1+dit2) has negative real part, and thus the identity is possible only if t1 = t2.

Let’s then t̃(z) be the only fixed point in Cz.
We proceed now to show that |t − fz(t)| ≥ |t − t̃(z)|, i.e. if t and its image are close, then t is

not too far from being a fixed point, and so it is close to t̃(z).
For any t ∈ Cz, we have

|t− fz(t)| = |t− t̃(z) + fz(t̃(z))− f̃z(t)|

=

∣∣∣∣∣(t− t̃(z))− (t− t̃(z))
(

1

z

1

γN

N∑
i=1

di

(1 + dit)(1 + dit̃(z))

)∣∣∣∣∣
=
∣∣t− t̃(z)∣∣ ∣∣∣∣∣1− 1

z

1

γN

N∑
i=1

di

(1 + dit)(1 + dit̃(z))

∣∣∣∣∣
≥
∣∣t− t̃(z)∣∣

where we have used again that 1
z

1
N

∑N
i=1

di
(1+dit)(1+di t̃(z))

has negative real part.
We provide a lower bound on the norm of the fixed point:

∣∣t̃(z)∣∣ =
1

|z|

∣∣∣∣∣1− 1

γ

1

N

N∑
i=1

dit̃(z)

1 + dit̃(z)

∣∣∣∣∣ ≥ 1

|z|

(
1− 1

γ

1

N

N∑
i=1

∣∣∣∣ dit̃(z)

1 + dit̃(z)

∣∣∣∣
)
≥ 1

|z|

(
1−

∣∣t̃(z)∣∣
γN

N∑
i=1

di

)
.

294 APPENDIX H. IMPLICIT REGULARIZATION OF RANDOM FEATURE MODELS

hence

|t̃(z)| ≥
(
|z|+

∑
i di
γN

)−1

.

Finally, note that z can be expressed from the fixed point m̃, hence defining an inverse for the
map t̃:

t̃−1(m̃) = z = − 1

m̃

(
1− 1

γ

1

N

N∑
i=1

dim̃

1 + dim̃

)
because the inverse is holomorphic, so is t̃.

Ridge

Using Proposition H.3.1, in order to have a better description of the distribution of the predictor
f̂

(RF)
λ,γ , it remains to study the distributions of both the final labels ŷ on the training set and the
parameter norm ‖θ̂‖2. In Section H.3, we first study the expectation of the final labels ŷ: this
allows us to study the loss of the average predictor E

[
f̂

(RF)
λ,γ

]
. Then in Section H.3, a study of the

variance of the predictor allows us to study the average loss of the RF predictor.

Expectation of the predictor

The optimal parameters θ̂ which minimize the regularized MSE loss is given by θ̂ = FT (FFT +

λIN)−1y, or equivalently by θ̂ = (FTF +λ)−1FT y. Thus, the final labels take the form ŷ = A(−λ)y
where A(z) is the random matrix defined as

A(z) := F
(
FTF − zIP

)−1
FT

=
1

P
K

1
2WT

(
1

P
WKWT − zIP

)−1

WK
1
2 .

Note that the matrix Aλ defined in the proof sketch of Theorem 4.1 in the main text is given by
Aλ = A(−λ).

Proposition H.3.7. For any γ > 0, any z ∈ H<0, and any symmetric positive definite matrix K,

‖E [A(z)]−K(K + λ̃(−z)IN)−1‖op ≤
c

P
, (H.3.8)

where λ̃(z) := 1
m̃(−z) and c > 0 depends on z, γ and 1

N Tr(K) only.

Proof. Since the distribution of W is invariant under orthogonal transformations, by applying a
change of basis, in order to prove Inequality (H.3.8), we may assume that K is diagonal with
diagonal entries d1, . . . , dN . Denoting w1, . . . , wN the columns of W , for any i, j = 1, . . . , N ,

(A(z))ij =
1

P

√
didjw

T
i

(
1

P
WKWT − zIP

)−1

wj ,

H.3. PROOFS 295

where WKWT =
∑N
i=1 diwiw

T
i . Replacing wi by −wi does not change the law W hence does not

change the law of (A(z))ij . Since WKWT is invariant under this change of sign, we get that for
i 6= j, E [(A(z))ij] = −E [(A(z))ij], hence the off-diagonal terms of E [A(z)] vanish.

Consider a diagonal term (A(z))ii. From Equation (H.3.6), we get

(A(z))ii =
di
P
wTi B

−1(z)wi =
digi(z)

1 + digi(z)
. (H.3.9)

By Lemma H.3.4, gi lies close tomP (z) which itself is approximatively equal to m̃(z) by Proposition
H.3.5. Therefore, we expect E [(A(z))ii] = E

[
digi

1+digi

]
to be at short distance from dim̃(z)

1+dim̃(z) .

In order to make rigorous this heuristic and to prove that E [(A(z))ii] is within O(1
P) distance

to dim̃(z)
1+dim̃(z) , we consider the first order Taylor approximation Tm̃(z)hi of the map hi : g 7→ 1

1+dig

(as in the proof Proposition H.3.5 but this time centered at m̃(z)). Using the fact that dit
1+dit

=

1− 1
1+dit

= 1− hi(t), and inserting the Taylor approximation, E [(A(z))ii]− dim̃(z)
1+dim̃(z) is equal to:

hi(m̃(z))− hi(gi(z)) =
1

1 + dim̃(z)
− E

[
Tm̃(z)h(gi(z))

]
+ E

[
Tm̃(z)h(gi(z))− h(gi(z))

]
.

Thus,∣∣∣∣E [(A(z))ii]−
dim̃(z)

1 + dim̃(z)

∣∣∣∣ ≤ ∣∣∣∣ 1

1 + dim̃(z)
− E

[
Tm̃(z)h(gi(z))

]∣∣∣∣+
∣∣E [Tm̃(z)h(gi(z))− h(gi(z))

]∣∣ .
Using Lemma H.3.4 and Proposition H.3.5, the first term

∣∣∣ 1
1+dim̃(z) − E

[
Tm̃(z)h(gi(z))

]∣∣∣ =

di|E[gi(z)]−m̃(z)|
|1+dim̃(z)|2 can be bounded by δ

P
di

|1+dim̃(z)|2 where δ depends on z, γ and 1
NTr(K) only. Since

Re [m̃(z)] ≥ 0 thus |1 + dim̃(z)| ≥ max(1, |dim̃(z)|), and |m̃(z)| ≥ 1
|z|+ 1

γ
1
N TrK

(Lemma H.3.6), the
denominator can be lower bounded:

|1 + dim̃(z)|2 ≥ |dim̃(z)| ≥ di

|z|+ 1
γ

1
NTrK

,

yielding the upper bound:∣∣∣∣ 1

1 + dim̃(z)
− E

[
Tm̃(z)h(gi(z))

]∣∣∣∣ ≤ 1

P
δ

[
|z|+ 1

γ

1

N
TrK

]
.

For the second term, using the same arguments as for the proof of Proposition H.3.5, we have:

∣∣E [Tm̃(z)h(gi(z))− h(gi(z))
]∣∣ ≤ E

[
|m̃(z)− gi(z)|2

]
|m̃(z)|2

.

Recall that |m̃(z)| ≥ 1
|z|+ 1

γ
1
N TrK

and that, by Lemma H.3.4 and Proposition H.3.2, E
[
|m̃(z)− gi(z)|2

]
≤

δ̃
P where δ̃ depends on z, γ and 1

NTr(K) only. This implies that

∣∣E [Tm̃(z)h(gi(z))− h(gi(z))
]∣∣ ≤ δ̃

P

[
|z|+ 1

γ

1

N
TrK

]2

.

296 APPENDIX H. IMPLICIT REGULARIZATION OF RANDOM FEATURE MODELS

As a consequence, there exists a constant c which depends on z, γ and 1
NTr(K) only such that:∣∣∣∣E [(A(z))ii]−

dim̃(z)

1 + dim̃(z)

∣∣∣∣ ≤ c

P
.

Using the effective ridge λ̃(z) := 1
m̃(−z) , the term

dim̃(z)
1+dim̃(z) = di

di+λ̃(−z) is equal to (K(K+ λ̃IN)−1)ii

since, in the basis considered, K(K + λ̃IN)−1 is a diagonal matrix. Hence, we obtain:∥∥∥E [A(z)]−K(K + λ̃IN)−1
∥∥∥
op
≤ c

P

which allows us to conclude.

Using the above proposition, we can bound the distance between the expected λ-RF predictor
and the λ̃-RF predictor.

Theorem H.3.8. For N,P > 0 and λ > 0, we have

∣∣∣E[f̂
(RF)
λ,γ (x)]− f̂ (K)

λ̃
(x)
∣∣∣ ≤ c

√
K(x, x)‖y‖K−1

P
(H.3.10)

where the effective ridge λ̃(λ, γ) > λ is the unique positive number satisfying

λ̃ = λ+
λ̃

γ

1

N

N∑
i=1

di

λ̃+ di
, (H.3.11)

and where c > 0 depends on λ, γ, and 1
NTrK(X,X) only.

Proof. Recall that m̃(−λ) is the unique non negative real such that γ = 1
N

∑N
i=1

dim̃(−λ)
1+dim̃(−λ) +

γλm̃(−λ).Dividing this equality by γm̃(−λ) yields Equation (H.3.11). From now on, let λ̃ = λ̃(λ, γ).
We now bound the l.h.s. of Equation (H.3.10). By Proposition H.3.1, since ŷ = A(−λ)y,

the average λ-RF predictor is E
[
f

(RF)
λ,γ (x)

]
= K(x,X)K−1E [A(−λ)] y. The λ̃-KRR predictor is

f
(K)

λ̃
(x) = K(x,X)

(
K + λ̃IN

)−1

y. Thus:

∣∣∣E[f
(RF)
λ,γ (x)]− f (K)

λ̃
(x)
∣∣∣ =

∣∣∣∣K(x,X)K−1

[
E [A(−λ)]−K

(
K + λ̃IN

)−1
]
y

∣∣∣∣ .
The r.h.s. can be expressed as the absolute value of the scalar product |〈w, v〉K−1 | =

∣∣vTK−1w
∣∣

where v = K(x,X) and w = [E [A(−λ)] − K(K + λ̃IN)−1]y. By Cauchy-Schwarz inequality,
|〈v, w〉K−1 | ≤ ‖v‖K−1 ‖w‖K−1 .

For a general vector v, the K−1-norm ‖v‖K−1 is equal to the norm mininum Hilbert norm (for
the RKHS associated to the kernel K) interpolating function:

‖v‖K−1 = min
f∈H,f(xi)=vi

‖f‖H .

H.3. PROOFS 297

Indeed the minimal interpolating function is the kernel regression given by f (K)(·) = K(·, X)K(X,X)−1v
which has norm (writing β = K−1v):

∥∥∥f (K)
∥∥∥
H

=

∥∥∥∥∥
N∑
i=1

βiK(·, xi)

∥∥∥∥∥
H

=

√√√√ N∑
i,j=1

βiβjK(xi, xj) =
√
vTK−1KK−1v = ‖v‖K−1 .

We can now bound the two norms ‖v‖K−1 and ‖w‖K−1 . For v = K(x,X), we have

‖v‖K−1 = min
f∈H,f(xi)=vi

‖f‖H ≤ ‖K(x, ·)‖H = K(x, x)
1
2 . (H.3.12)

since K(x, ·) is an interpolating function for v.
It remains to bound ‖w‖K−1 . Recall that K = UDUT with D diagonal, and that, from the

previous proposition, E [A(−λ)] = UDAU
T where DA = diag

(
d1g1(−λ)

1+d1g1(−λ) , . . . ,
dNgN (−λ)

1+dNgN (−λ)

)
. The

norm ‖w‖K−1 is equal to√
ỹT
[
DA −D

(
D + λ̃(λ)IN

)−1
]T

D−1

[
DA −D

(
D + λ̃(λ)IN

)−1
]
ỹ,

where ỹ = UT y. Expanding the product, ‖w‖K−1 =

√∑N
i=1

ỹ2
i

di

(
(DA)ii − di

λ̃(λ)+di

)2

, hence by

Proposition H.3.7, ‖w‖K−1 ≤ c
P

√∑N
i=1

ỹ2

di
. The result follows from noticing that

∑N
i=1

ỹ2

di
=

ỹTD−1ỹ = ‖y‖2K−1 :∣∣∣E[f
(RF)
λ,γ (x)]− f (K)

λ̃
(x)
∣∣∣ ≤ ‖v‖K−1 ‖w‖K−1 ≤

cK(x, x)
1
2 ‖y‖K−1

P
.

which allows us to conclude.

Corollary H.3.9. If ED[K(x, x)] <∞, we have that the difference of errors δE =
∣∣∣L(E[f̂

(RF)
λ,γ])− L(f̂

(K)

λ̃
)
∣∣∣

is bounded from above by

δE ≤
C‖y‖K−1

P

(
2

√
L
(
f̂

(K)

λ̃

)
+
C‖y‖K−1

P

)
,

where C is given by c
√
ED[K(x, x)], with c the constant appearing in (H.3.10) above.

Proof. For any function f : Rd → R, we denote by ‖f‖ = (ED
[
f(x)2

]
)

1
2 its L2(D)-norm. Integrat-

ing
∣∣∣E[f

(RF)
λ,γ (x)]− f (K)

λ̃
(x)
∣∣∣2 ≤ c2K(x,x)‖y‖2

K−1

P 2 over x ∼ D, we get the following bound:

‖E[f
(RF)
λ,γ]− f (K)

λ̃
‖ ≤ c [ED [K(x, x)]]

1
2 ‖y‖K−1

P
.

Hence, if f∗ is the true function, by the triangular inequality,∣∣∣‖E[f
(RF)
λ,γ]− f∗‖ − ‖f (K)

λ̃
− f∗‖

∣∣∣ ≤ c [ED [K(x, x)]]
1
2 ‖y‖K−1

P
.

298 APPENDIX H. IMPLICIT REGULARIZATION OF RANDOM FEATURE MODELS

Notice that L(E[f̂
(RF)
γ,λ]) = ‖E[f

(RF)
λ,γ] − f∗‖2 and L(f̂

(K)

λ̃
) = ‖f (K)

λ̃
− f∗‖2. Since

∣∣a2 − b2
∣∣ ≤

|a− b| (|a− b|+ 2 |b|), we obtain

∣∣∣L(E[f̂
(RF)
γ,λ]

)
− L

(
f̂

(K)

λ̃

)∣∣∣ ≤ c [ED [K(x, x)]]
1
2 ‖y‖K−1

P

(
2

√
L
(
f̂

(K)

λ̃

)
+
c [ED [K(x, x)]]

1
2 ‖y‖K−1

P

)
,

which allows us to conclude.

Properties of the effective ridge

Thanks to the implicit definition of the effective ridge λ̃, we obtain the following:

Proposition H.3.10. The effective ridge λ̃ satisfies the following properties:

1. for any γ > 0, we have λ < λ̃(λ, γ) ≤ λ+ 1
γT ;

2. the function γ 7→ λ̃(λ, γ) is decreasing;

3. for γ > 1, we have λ̃ ≤ γ
γ−1λ;

4. for γ < 1, we have λ̃ ≥ 1−√γ√
γ mini di.

Proof. (1) The upper bound in the first statement follows directly from Lemma H.3.6 where it was
shown that m̃(−λ) ≥ 1

λ+ 1
γ

1
N TrK

and from the fact that λ̃(λ,γ) = 1
m̃(−λ) . For the lower bound,

remark that Equation (H.3.11) can be written as:

λ̃(λ, γ) = λ+
1

γ

1

N
Tr[λ̃(λ, γ)K(λ̃(λ, γ)IN +K)−1].

Since λ̃(λ, γ) ≥ 0 and K is a positive symmetric matrix, Tr[K[λ̃(λ, γ)IN + K]−1] ≥ 0: this yields
λ̃(λ, γ) ≥ λ.

(2) We show that γ 7→ λ̃(λ, γ) is decreasing by computing the derivative of the effective ridge
with respect to γ. Differentiating both sides of Equation (H.3.11), ∂γ λ̃ = ∂γ

[
λ+ λ̃

γ
1
N

∑N
i=1

di
λ̃+di

]
.

The r.h.s. is equal to:

∂γ λ̃

γ

1

N

N∑
i=1

di

λ̃+ di
− λ̃

γ2

1

N

N∑
i=1

di

λ̃+ di
− λ̃

γ

1

N

N∑
i=1

di∂γ λ̃

(λ̃+ di)2
.

Using Equation (H.3.11), 1
γ

1
N

∑N
i=1

di
λ̃+di

= λ̃−λ
λ̃

and thus:

∂γ λ̃

λ
λ̃

+
λ̃

γ

1

N

N∑
i=1

di(
λ̃+ di

)2

 = − λ̃− λ
γ

.

Since λ̃ ≥ λ ≥ 0, the derivative of the effective ridge with respect to γ is negative: the function
γ 7→ λ̃(λ, γ) is decreasing.

H.3. PROOFS 299

(3) Using the bound di
λ̃+di

≤ 1 in Equation (H.3.11), we obtain λ̃ ≤ λ + λ̃
γ which, when γ ≥ 1,

implies that λ̃ ≤ λ γ
γ−1 .

(4) Recall that λ > 0 and that the effective ridge λ̃ is the unique fixpoint of the map f(t) =
λ+ t

γ
1
N

∑
i

di
t+di

in R+. The map is concave and, at t = 0, we have f(t) = λ > 0 = t: this implies
that f ′(λ̃) < 1 otherwise by concavity, for any t ≤ λ̃ one would have f(t) ≤ t. The derivative of
f is f ′(t) = 1

γ
1
N

∑N
i=1

d2
i

(t+di)
2 , thus 1

γ
1
N

∑N
i=1

d2
i

(λ̃+di)
2 < 1. Using the fact that d0 is the smallest

eigenvalue of K(X,X), i.e. di ≥ d0, we get 1 > 1
γ

d2
0

(λ̃+d0)
2 hence λ̃ ≥ d0

1−√γ√
γ .

Similarily, we gather a number of properties of the derivative ∂λλ̃(λ, γ).

Proposition H.3.11. For γ > 1, as λ→ 0, the derivative ∂λλ̃ converges to γ
γ−1 . As λγ →∞, we

have ∂λλ̃(λ, γ)→ 1.

Proof. Differentiating both sides of Equation (H.3.11),

∂λλ̃ = 1 + ∂λλ̃
1

γ

1

N

N∑
i=1

di

λ̃+ di
− λ̃∂λλ̃

1

γ

1

N

N∑
i=1

di

(λ̃+ di)2
.

Hence the derivative ∂λλ̃ satisfies the following equality

∂λλ̃

(
1− 1

γ

1

N

N∑
i=1

di

λ̃+ di
+ λ̃

1

γ

1

N

N∑
i=1

di

(λ̃+ di)2

)
= 1. (H.3.13)

(1) Assuming γ > 1, from the point 3. of Proposition H.3.10, we already know that λ̃(λ, γ) ≤
λ γ
γ−1 hence λ̃(0, γ) = 0. Actually, using similar arguments as in the proof of point 3., this holds also

for γ = 1. Using the fact that λ̃(0, γ) = 0, we get ∂λλ̃(0, γ) = 1 + ∂λλ̃(0,γ)
γ , hence ∂λλ̃(0, γ) = γ

γ−1 .
(2) From the first point of Proposition H.3.10, λ̃ ∼ λ as λγ →∞. Since Equation (H.3.13) can

be expressed as:

∂λλ̃

(
1− 1

γλ

1

N

N∑
i=1

di
λ̃
λ + di

+
1

γλ

λ̃

λ

1

N

N∑
i=1

di

(λ̃λ + di)2

)
= 1,

we obtain that ∂λλ̃→ 1 as λ→∞.

Variance of the predictor

By the bias-variance decomposition, in order to bound the difference between E[L(f̂
(RF)
γ,λ)] and

L(f̂
(K)

λ̃
, we have to bound ED[Var(f(x))]. The law of total variance yields Var(f̂(x)) = Var(E[f̂(x)|F])+

E[Var[f̂(x)|F]]. By Proposition H.3.1, we have E[f̂(x)|F] = K(x,X)K(X,X)−1ŷ and Var[f̂(x)|F] =
1
P ‖θ̂‖

2K̃(x, x). Hence, it remains to study Var
(
K(x,X)K(X,X)−1ŷ

)
and E[‖θ̂‖2]. Recall that we

denote T = 1
NTrK(X,X).

This section is dedicated to the proof of the variance bound of Theorem 5.1 of the paper:

300 APPENDIX H. IMPLICIT REGULARIZATION OF RANDOM FEATURE MODELS

Theorem 5.1 There are constants c1, c2 > 0 depending on λ, γ, T only such that

Var
(
K(x,X)K(X,X)−1ŷ

)
≤
c1K(x, x)‖y‖2K−1

P∣∣∣E‖[θ̂‖2]− ∂λλ̃yTMλ̃y
∣∣∣ ≤ c2‖y‖2K−1

P
,

where ∂λλ̃ is the derivative of λ̃ with respect to λ and for Mλ̃ = K(X,X)(K(X,X) + λ̃IN)−2. As
a result

Var
(
f̂

(RF)
λ (x)

)
≤
c3K(x, x)‖y‖2K−1

P
,

where c3 > 0 depends on λ, γ, T .
• Bound on Var

(
K(x,X)K(X,X)−1ŷ

)
. We first study the covariance of the entries of the

matrix

Aλ =
1

P
K

1
2WT

(
1

P
WKWT + λIP

)−1

WK
1
2 ,

whereK = diag(d1, . . . , dN) is a positive definite diagonal matrix andW is a P×N matrix with i.i.d.
Gaussian entries. In the next proposition we show a c1

P bound for the covariance of the entries of
Aλ, then we exploit this result in order to prove the bound on the variance of K(x,X)K(X,X)−1ŷ.

Proposition H.3.12. There exists a constant c′1 > 0 depending on λ, γ, and 1
NTr(K) only, such

that the following bounds hold:

|Cov ((Aλ)ii, (Aλ)jj) | ≤
c′1
P

Var ((Aλ)ij) ≤ min

{
di
dj
,
dj
di

}
c′1
P
.

For all other cases (i.e. if i,j, k and l take more than two different values),Cov ((Aλ)ij , (Aλ)kl) = 0.

Proof. We want to study the covariances Cov ((Aλ)ij , (Aλ)kl) for any i, j, k, l. Using the same
symmetry argument as in the proof of Proposition H.3.7, E [(Aλ)ij(Aλ)kl] = 0 whenever each
value in {i, j, k, l} does not appear an even number of times in (i, j, k, l). Using the fact that
Aλ is symmetric, it remains to study Cov ((Aλ)ii, (Aλ)jj), Var ((Aλ)ii) and Var [(Aλ)ij] for all
i 6= j. By the Cauchy-Schwarz inequality, any bound on Var ((Aλ)ii) will imply a similar bound on
Cov ((Aλ)ii, (Aλ)jj). Besides, as we have seen in the proof of Proposition H.3.7, E [(Aλ)ij] = 0 for
any i 6= j. Thus, we only have to study Var ((Aλ)ii) and E

[
(Aλ)2

ij

]
.

• Bound on Var ((Aλ)ii): From Equation (H.3.9),

Var ((Aλ)ii) = Var

(
digi

1 + digi

)
= Var

(
1− 1

1 + digi

)
= Var

(
1

1 + digi

)
≤ E

[(
1

1 + digi
− 1

1 + dim̃

)2
]
,

where gi := gi(−λ). Again, we use the first order Taylor approximation Th of h : x → 1
1+dix

centered at m̃ := m̃(−λ), as well as the bound (H.3.7), to obtain

E

[(
1

1 + digi
− 1

1 + dim̃

)2
]

= E

(− di

(1 + dim̃)
2 (gi − m̃) + h(gi)− Th(gi)

)2


H.3. PROOFS 301

≤ 2d2
i

(1 + dim̃)
4E
[
(gi − m̃)

2
]

+ 2E
[
(h(gi)− Th(gi))

2
]

≤ 2

6m̃2
E
[
(gi − m̃)

2
]

+
2

m̃4
E
[
(gi − m̃)

4
]
.

Using Lemma H.3.4, we get Var ((Aλ)ii) ≤ c′1
P , where c′1 > 0 depends on λ, γ, and 1

NTr(K) only.
• Bound on E ((Aλ)ij) for i 6= j: Following the same arguments as for Equation (H.3.9), (Aλ)ij

is equal to

(Aλ)ij =

√
didj

P

[
wTi B

−1
(i) wj −

digi
1 + digi

wTi B
−1
(i) wj

]
=

√
didj

1 + digi

1

P
wTi B

−1
(i) wj ,

where we setB(i) := Bi(−λ). Since wi andB(i) are independent, E
[(
wTi B

−1
(i) wj

)2
]

= E
[
wTj B

−2
(i) wj

]
,

and thus, by the Cauchy-Schwarz inequality, we have

E
[
(Aλ)2

ij

]
≤ 1

P 2

√√√√E

[
d2
i d

2
j

(1 + digi)
4

]√
E
[(
wTj B

−2
(i) wj

)2
]
. (H.3.14)

Recall that m̃ := m̃(−λ). Using the fact that 1
1+digi

= 1
1+dim̃

+ 1
1+digi

− 1
1+dim̃

and inserting the
first Taylor approximation Th of h : x→ 1

1+dix
centered at m̃, we get:

E

[(
1

1 + digi

)4
]

= E

(1

1 + dim̃
− di

(1 + dim̃)
2 (gi − m̃) + h(gi)− Th(gi)

)4
 .

Using a convexity argument, the bound (H.3.7), and the lower bound on m̃ given by Lemma
H.3.6, there exists three constants c̃1, c̃2, c̃3, which depend on λ, γ and 1

NTr(K) only, such that

E
[(

1
1+digi

)4
]
is bounded by

c̃1

(1 + dim̃)
4 +

c̃2d
4
i

(1 + dim̃)
8E
[
(gi − m̃)

4
]

+ c̃3E
[
(gi − m̃)

8
]
.

Thanks to Lemma H.3.4 and Proposition H.3.5, this last expression can be bounded by an expression
of the form ẽ1

d4
i

+ ẽ2
P 2d4

i
+ ẽ3

P 4 . Note that ẽ2
P 2d4

i
≤ ẽ2

d4
i
and ẽ3

P 4 ≤ ẽ3
γ4

(1
N Tr(K))4

d4
i

. Hence, we obtain the
bound:

E

[(
1

1 + digi

)4
]
≤ c̃

d4
i

,

where c̃ = ẽ1 + ẽ2 +
ẽ3(1

N Tr(K))4)

γ4 depends on λ, γ and and 1
NTr(K) only.

Let us now consider the second term in the r.h.s. of (H.3.14) . Using the fact that ‖B(i)‖op ≥ 1
λ ,

we get √
E
[(
wTj B

−2
(i) wj

)2
]
≤
√

1

λ4
E
[(
wTj wj

)2]
=

√
1

λ4
N(N + 2) ≤ N + 1

λ2
,

302 APPENDIX H. IMPLICIT REGULARIZATION OF RANDOM FEATURE MODELS

where we have used the fact that the second moment of a χ2(N) distribution is N(N+2). Together,
we obtain

E
[
(A)2

ij

]
≤ 1

P 2

√√√√E

[
d2
i d

2
j

(1 + digi)
4

]√
E
[(
wTj B

−2
(i) wj

)2
]

≤ c̃didj
d2
i

N + 1

P 2λ2

≤ c̃dj
Pdiλ2γ

N + 1

N
≤ c′1
P

di
dj
,

for c′1 = 2 c̃
λ2γ . Since the matrix Aλ is symmetric, we finally conclude that

E
[
(Aλ)2

ij

]
≤ c′1
P

min

{
di
dj
,
dj
di

}
.

Note that c′1 is a constant related to the bounds constructed in Lemma H.3.2 and Proposition
H.3.5 and as such it depends on 1

NTr(K), γ and λ only.

Proposition H.3.13. There exists a constant c1 > 0 (depending on λ, γ, T only) such that the
variance of the estimator is bounded by

Var
(
K(x,X)K(X,X)−1ŷ

)
≤
c1‖y‖2K−1K(x, x)

P
.

Proof. As in the proof of Theorem H.3.8, with the right change of basis, we may assume the Gram
matrix K(X,X) to be diagonal.

We first express the covariances of ŷ = A(−λ)y. Using Proposition Proposition H.3.12, for i 6= j
we have

Cov (ŷi, ŷj) =

N∑
k,l=1

Cov ((Aλ)ik, (Aλ)lj) ykyl = Cov ((Aλ)ii, (Aλ)jj) yiyj + E
[
(Aλ)2

ij

]
yjyi,

whereas for i = j we have

Cov (ŷi, ŷi) =

N∑
k=1

Cov ((Aλ)ik, (Aλ)ki) y
2
k = Var ((Aλ)ii) y

2
i +

∑
k 6=i

E
[
(Aλ)2

ik

]
y2
k.

We decompose K−
1
2 Cov(ŷ, ŷ)K−

1
2 into two terms: let C be the matrix of entries

Cij =
Cov((Aλ)ii, (Aλ)jj) + δi 6=jE

[
(Aλ)2

ij

]√
didj

yiyj ,

and let D the diagonal matrix with entries

Dii =

∑
k 6=i E

[
(Aλ)2

ik

]
y2
k

di
.

H.3. PROOFS 303

We have the decomposition K−
1
2 Cov(ŷ, ŷ)K−

1
2 = C +D.

Proposition H.3.12 asserts that Cov((Aλ)ii, (Aλ)jj ≤ c′1
P and E

[
(Aλ)2

ij

]
≤ c′1

P , and thus the
operator norm of C is bounded by

‖C‖op ≤ ‖C‖F

=

√√√√∑
i,j

(
Cov((Aλ)ii, (Aλ)jj) + δi 6=jE

[
(Aλ)2

ij

])2
didj

y2
i y

2
j

≤ 2c′1
P

√∑
ij

1

didj
y2
i y

2
j =

2c′1‖y‖2K−1

P

For the matrix D, we use the bound E
[
(Aλ)2

ik

]
≤ c′1

P
di
dk

to obtain

Dii =

∑
k 6=i E

[
(Aλ)2

ik

]
y2
k

di
≤ c′1
P

∑
k 6=i

y2
k

dk
≤
c′1‖y‖2K−1

P
,

which implies that ‖D‖op ≤
c′1‖y‖

2
K−1

P . As a result

Var
(
K(x,X)K−1ŷ

)
= K(x,X)K−1Cov(ŷ, ŷ)K−1K(X,x)

≤ K(x,X)K−
1
2 ‖C +D‖opK−

1
2K(X,x)

≤
3c′1‖y‖2K−1

P
‖K(x,X)‖2K−1

≤
3c′1K(x, x)‖y‖2K−1

P
,

where we used Inequality (H.3.12). This yields the result with c1 = 3c′1.

• Bound on Eπ
[
‖θ̂‖2

]
. To understand the variance of the λ-RF estimator f̂ (RF)

λ , we need to
describe the distribution of the squared norm of the parameters:

Proposition H.3.14. For γ, λ > 0 there exists a constant c2 > 0 depending on λ, γ, T only such
that ∣∣∣∣E[‖θ̂‖2]− ∂λλ̃yTK(X,X)

(
K(X,X) + λ̃IN

)−2

y

∣∣∣∣ ≤ c2‖y‖2K−1

P
. (H.3.15)

Proof. As in the proof of Theorem H.3.8, with the right change of basis, we may assume the Gram
matrix K(X,X) to be diagonal. Recall that θ̂ = 1√

P

(
1
PWK(X,X)WT + λIN

)−1WK(X,X)
1
2 y,

thus we have:

‖θ̂‖2 =
1

P
yTK(X,X)

1
2WT (

1

P
WK(X,X)WT + λIP)−2WK(X,X)

1
2 y = yTA′(−λ)y, (H.3.16)

where A′(−λ) is the derivative of

A(z) =
1

P
K(X,X)

1
2WT

(
1

P
WK(X,X)WT − zIP

)−1

WK(X,X)
1
2

304 APPENDIX H. IMPLICIT REGULARIZATION OF RANDOM FEATURE MODELS

with respect to z evaluated at −λ. Let

Ã(z) = K(X,X)(K(X,X) + λ̃(−z)IN)−1.

Remark that the derivative of Ã(z) is given by Ã′(z) = λ̃′(−z)K(X,X)(K(X,X) + λ̃(−z)IN)−2.
Thus, from Equation (H.3.16), the l.h.s. of (H.3.15) is equal to:∣∣∣yT (E[A′(−λ)]− Ã′(−λ)

)
y
∣∣∣ . (H.3.17)

Using a classical complex analysis argument, we will show that E[A′(−λ)] is close to Ã′(−λ) by
proving a bound of the difference between E[A(z)] and Ã(z) for any z ∈ H<0.

Note that the proof of Proposition H.3.7 provides a bound on the diagonal entries of E[A(z)],
namely that for any z ∈ H<0, ∣∣∣E[(A(z))ii]− (Ã(z))ii

∣∣∣ ≤ c

P
,

where ĉ depends on z, γ and T only. Actually, in order to prove (H.3.15), we will derive the following
slightly different bound: for any z ∈ H<0,∣∣∣E[(A(z))ii]− (Ã(z))ii

∣∣∣ ≤ ĉ

diP
, (H.3.18)

where ĉ depends on z, γ and T only. Let gi := gi(z) and m̃ := m̃(z). Recall that for hi : x 7→ dix
1+dix

,
one has (A(z))ii = hi(gi), (Ã(z))ii = hi(m̃) and

Tm̃hi(gi) =
dim̃

1 + dim̃
− di (gi − m̃)

(1 + dim̃)
2 ,

hi(gi)− Tm̃hi(gi) =
d2
i (gi − m̃)

2

(1 + digi) (1 + dim̃)
2 ,

where Tm̃hi is the first order Taylor approximation of hi centered at m̃. Using this first order
Taylor approximation, we can bound the difference |E[hi(gi)]− hi(m̃)|:

|E[hi(gi)]− hi(m̃)| ≤ di |E[gi]− m̃|
(1 + dim̃)

2 +
d2
i

(1 + dim̃)
2E

[
|gi − m̃|2

1 + digi

]

≤ a

diP
+ a

√√√√E

[
1

(1 + digi)
2

]
E
[
|gi − m̃|4

]
,

where a depends on z, γ and T . We need to bound E
[

1
(1+digi)

2

]
. Recall that in the proof of

Proposition H.3.12, we bounded E
[

1
(1+digi)

4

]
. Using similar arguments, one shows that

E

[
1

(1 + digi)
2

]
≤ ê2

d2
i

,

H.3. PROOFS 305

where ê depends on z, γ and 1
NTr(K(X,X)) only. The term E

[
|gi − m̃|4

]
is bounded using Lemmas

H.3.4, H.3.2 and Proposition H.3.5. This allows us to conclude that:

|E[hi(gi)]− hi(m̃)| ≤ ĉ

diP
,

where ĉ depends on z, γ and 1
NTr(K(X,X)) only, hence we obtain the Inequality (H.3.18).

We can now prove Inequality H.3.15. We bound the difference of the derivatives of the diagonal
terms of A(z) and Ã(z) by means of Cauchy formula. Consider a simple closed path φ : [0, 1]→ H<0

which surrounds z. Since

E[(A′(z))ii]− (Ã′(z))ii =
1

2πi

∮
φ

E[(A(z))ii]− (Ã(z))ii

(w − z)2 dw,

using the bound (H.3.18), we have:∣∣∣E[(A′(z))ii]− (Ã′(z))ii

∣∣∣ ≤ ĉ

diP

1

2π

∮
φ

1

|w − z|2
dw ≤ c2

diP
,

where c2 depends on z, γ, and T only. This allows one to bound the operator norm ofK(X,X)(E[A′(z)]−
Ã′(z)):

‖K(X,X)(E[A′(z)]− Ã′(z))‖op ≤
c2
P
.

Using this bound and (H.3.17), we have∣∣∣∣E[‖θ̂‖2]− ∂λλ̃ yTK(X,X)
(
K(X,X) + λ̃IN

)−2

y

∣∣∣∣ =
∣∣∣yT (E[A′(−λ)]− Ã′(−λ)

)
y
∣∣∣ ≤ c2‖y‖2K−1

P
,

which allows us to conclude.

• Bound on Var
(
f̂

(RF)
λ (x)

)
. We have shown all the bounds needed in order to prove the

following proposition.

Proposition H.3.15. For any x ∈ Rd, we have

Var
(
f̂

(RF)
λ (x)

)
≤
c3K(x, x)‖y‖2K−1

P
,

where c3 > 0 depends on λ, γ, T .

Proof. Recall that for any x ∈ Rd,

Var(f̂
(RF)
λ (x)) = Var

(
E
[
f̂

(RF)
λ (x) | F

])
+ E

[
Var

[
f̂

(RF)
λ (x) | F

]]
= Var

(
K(x,X)K(X,X)−1ŷ

)
+

1

P
E
[
‖θ̂‖2

] [
K(x, x)−K(x,X)K(X,X)−1K(X,x)

]
.

From Proposition H.3.13,

Var
(
K(x,X)K(X,X)−1ŷ

)
≤
c1K(x, x)‖y‖2K−1

P
,

306 APPENDIX H. IMPLICIT REGULARIZATION OF RANDOM FEATURE MODELS

and from Proposition H.3.14, we have:

E
[
‖θ̂‖2

]
≤ ∂λλ̃ yTK

(
K + λ̃IN

)−2

y +
c2‖y‖2K−1

P
≤ ∂λλ̃ ‖y‖2K−1 +

c2‖y‖2K−1

P
≤ α‖y‖2K−1 ,

where α = ∂λλ̃+ c2. Using the fact that K̃(x, x) ≤ K(x, x), we get

E
[
Var

[
f̂(x) | F

]]
=

1

P
E
[
‖θ̂‖2

] [
K(x, x)−K(x,X)K(X,X)−1K(X,x)

]
≤
α‖y‖2K−1K(x, x)

P
.

This yields

Var
(
f̂

(RF)
λ (x)

)
≤
c3‖y‖2K−1K(x, x)

P
,

where c3 = α+ c1.

Average loss of λ-RF predictor and loss of λ̃-KRR:

Putting the pieces together, we obtain the following bound on the difference ∆E = |E[L(f̂
(RF)
λ,γ)]−

L(f̂
(K)

λ̃
)| between the expected RF loss and the KRR loss:

Corollary H.3.16. If ED[K(x, x)] <∞, we have

∆E ≤
C1‖y‖K−1

P

(
2
√
L(f̂

(K)

λ̃
) + C2‖y‖K−1

)
,

where C1 and C2 depend on λ, γ, T and ED[K(x, x)] only.

Proof. Using the bias/variance decomposition, Corollary H.3.9, and the bound on the variance of
the predictor, we obtain∣∣∣E [L(f̂ (RF)

γ,λ

)]
− L

(
f̂

(K)

λ̃

)∣∣∣ ≤ ∣∣∣L(E [f̂ (RF)
γ,λ

])
− L

(
f̂

(K)

λ̃

)∣∣∣+ ED
[
Var

(
f̂(x)

)]
≤ C‖y‖K−1

P

(
2

√
L
(
f̂

(K)

λ̃

)
+
C‖y‖K−1

P

)
+
c3‖y‖2K−1ED [K(x, x)]

P

≤ C1‖y‖K−1

P

(
2

√
L
(
f̂

(K)

λ̃

)
+ C2‖y‖K−1

)
,

where C1 and C2 depends on λ, γ, T and ED [K(x, x)] only.

Double descent curve

Recall that for any λ̃, we denote Mλ̃ = K(X,X)(K(X,X) + λ̃IN)−2. A direct consequence of
Proposition H.3.14 is the following lower bound on the variance of the predictor.

Corollary H.3.17. There exists c4 > 0 depending on λ, γ, T only such that Var
(
f̂

(RF)
λ (x)

)
is

bounded from below by

∂λλ̃
yTMλ̃y

P
K̃(x, x)−

c4K(x, x)‖y‖2K−1

P 2
.

H.3. PROOFS 307

Proof. By the law of total cumulance,

Var
(
f̂

(RF)
λ (x)

)
≥ E

[
Var

[
f̂

(RF)
λ (x) | F

]]
≥ 1

P
E
[
‖θ̂‖2

]
K̃(x, x).

From Proposition H.3.14, E[‖θ̂‖2] ≥ ∂λλ̃ yTMλ̃y −
c2‖y‖2K−1

P , hence

Var
(
f̂

(RF)
λ (x)

)
≥ ∂λλ̃

yTMλ̃y

P
K̃(x, x)−

c4K̃(x, x)‖y‖2K−1

P 2
.

The result follows from the fact that K̃(x, x) ≤ K(x, x).

Appendix I

Saddle-to-Saddle Dynamics in Deep Linear
Networks: Small Initialization Training,
Symmetry and Sparsity

We organize the Appendix as follows:

• In Section I.1, we present the details for the numerical results presented in the main text
together with some discussions.

• In Section I.2, we present the proofs for the result on the proximity of critical points, i.e.
Theorem 9.1.

• In Section I.3, we present the proofs for the Saddle-to-Saddle regime, in particular Theorems
9.2 and 9.4.

• In Section I.4, we state and prove a few technical results.

I.1 Further Experimental Details

Experimental details of Fig. 9.4.1: A teacher network matrix of size 5 × 5 is generated as
10diag([1, 2, 3, 4, 5]). The input data is i.i.d. 5-dim. standard Gaussian samples, and the number
of training samples is 100. The labels are generated by the teacher, no noise is added. Training is
performed with gradient descent for 50000 epochs and a learning rate of 1e− 4 is used.

Experimental details of Fig. 9.6.1: A random matrix A∗ of size 30 × 30 is generated by
multiplying two i.i.d. matrices of size 30×1 with i.i.d. standard Gaussian entries. 0.2 of the entries
of this matrix was accecible in training, and the training objecive is the squared difference between
the (observed) entries of the linear network matrix and those of the matrix A∗. The training is
performed for 20000 gradient descent iterations with a learning rate of η0 = 0.05 if γ > 1, and
η = η0w

(L−1)(γ−1) for γ ≤ 1. The tolerance for computing the rank is set to 0.1.
Experimental details of Fig. I.1.3 in the Appendix: We created a rank 3 teacher weight

matrix WT = W0W
T
0 of size 10 × 10 where W0 is a 10 × 3 matrix with all entries independent

Gaussian with zero mean and where all entries in i-th column has variance i for all i ∈ {1, 2, 3}.
We corrupted the teacher weight matrix by an addition of a 10 × 10 matrix where each entry is

309

310
APPENDIX I. SADDLE-TO-SADDLE DYNAMICS IN DEEP LINEAR NETWORKS: SMALL

INITIALIZATION TRAINING, SYMMETRY AND SPARSITY

0

= 0.1
= 0.03
= 0.0075

1st path
2nd path
3rd path 0 10000 20000 30000 40000 50000

iterations

10 10

10 8

10 6

10 4

10 2

100

M
C

lo
ss

= 0.1
= 0.03
= 0.0075

iterations

10 9

10 7

10 5

10 3

10 1

101

M
C

lo
ss

... ...
1st path
2nd path
3rd path

Figure I.1.1: Matrix Completion in linear/lazy vs. saddle-to-saddle regimes. 3 DLNs (L = 4, w =
100) trained on a MC loss fitting a 10 × 10 matrix of rank 3 with initialization αθ0 for a fixed
random θ0 and three values of α. Left: Train (solid) and test (dashed) MC cost for the three
networks, for large α the network is in the linear/lazy regime and does not learn the low-rank
structure. For smaller α plateaus appear and the network generalizes. Middle: Visualization of
the gradient paths in parameter space. The black line represents the manifold of solutions to which
all example paths converge. As α → 0 the training trajectory converges to a sequence of 3 paths
(in blue, purple and red) starting from the origin (+) and passing through 2 saddles (·) before
converging. Right: The train (solid) and test (dashed) loss of the three paths plotted sequentially,
in the saddle-to-saddle limit; · · · represent an infinite amount of steps separating these paths.

i.i.d. centered Gaussian with standard deviation 0.2. Input points are isotropic Gaussians. The
training outputs are generated by the noisy teacher, and the test outputs are generated by the
noiseless teacher. We generated 100 training and 1000 test data points. Different runs of the same
experiment yielded effectively the same figure. The learning rate is 0.001 both for the shallow and
the deep case. Tolerance for the rank is set to 10−4 (i.e. eigenvalues smaller than 10−4 are set to 0
for the rank calculation).

I.2 Regimes of Training

In this section we describe the regimes of training depending on the scaling γ of the variance at
initialization σ2 = w−γ .

Equivalence of Parametrization/Initializations

NTK Parametrization

Let us show that the NTK parametrization corresponds to a scaling of γ = 1− 1
L .

The NTK parametrization [105] for linear networks is

ANTKθ =
WL√
nL−1

· · · W1√
n0

=
1

√
n0 · · ·nL−1

WL · · ·W1

with all parameters initialized with a variance of 1. One can show that gradient flow θNTK(t) with
the NTK parametrization, initialized at some parameters θNTK0 is equivalent (up to a rescaling of
the learning rate) to gradient flow θ(t) with the classical parametrization with an initialization of
θ0 = (n0 · · ·nL−1)

− 1
2L θNTK0 :

Proposition I.1. Let θNTK(t) be gradient flow on the loss LNTK(θ) = C(ANTKθ) initialized at
some parameters θNTK0 and θ(t) be gradient flow on the cost L(θ) = C(Aθ) initialized at θ0 =

I.2. REGIMES OF TRAINING 311

0 250 500 750 1000 1250 1500 1750 2000
itr

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

ra
nk

s

w = 10
w = 100
w = 1000

0 1000 2000 3000 4000 5000
itr

0

1

2

3

4

5

ra
nk

s

0 10000 20000 30000 40000 50000
itr

0

1

2

3

4

5

ra
nk

s

0 250 500 750 1000 1250 1500 1750 2000
itr

0

20

40

60

80

100

120

140

nu
c.

 n
or

m
s

w = 10
w = 100
w = 1000

0 1000 2000 3000 4000 5000
itr

0

20

40

60

80

100

120

140

nu
c.

 n
or

m
s

0 10000 20000 30000 40000 50000
itr

0

20

40

60

80

100

120

140

nu
c.

 n
or

m
s

0 250 500 750 1000 1250 1500 1750 2000
itr

0

100

200

300

400

500

600

700

800

gr
ad

. n
or

m
s

w = 10
w = 100
w = 1000

0 1000 2000 3000 4000 5000
itr

0

50

100

150

200

250

gr
ad

. n
or

m
s

0 10000 20000 30000 40000 50000
itr

0

25

50

75

100

125

150

175

200

gr
ad

. n
or

m
s

(a) γ = 0.75 (NTK) (b) γ = 1 (MF) (c) γ = 1.5 (S-S)

Figure I.1.2: Training in (a) the NTK regime, (b) mean-field, (c) saddle-to-saddle regimes in deep
linear networks for three widths w = 10, 100, 1000, L = 4, and 10 seeds; extension of Fig. 9.4.1 in
the main. Top: The evolution of the rank of the network matrices during training. Tolerance of the
matrix is set at 1e−1. Middle: The evolution of the nuclear norm during training, we can see that
the smooth jumps are aligned with the rank transitions. Bottom: The evolution of the gradient
norm of the parameters. Decrease of the gradient norm down to zero indicates approaching to a
saddle, and the following increase indicates escaping it.

(n0 · · ·nL−1)
− 1

2L θNTK0 . We have

Aθ(t) = ANTKθNTK(
√
n0···nL−1t)

.

Proof. We will show that θ(t) = (n0 · · ·nL−1)
− 1

2L θNTK(
√
n0 · · ·nL−1t) which implies that Aθ(t) =

ANTKθNTK(t). This is obviously true at t = 0. Now assuming it is true at a time t, we show that the

time derivatives of θ(t) and (n0 · · ·nL−1)
− 1

2L θNTK(
√
n0 · · ·nL−1t) match:

∂tθ
NTK(

√
n0 · · ·nL−1t) =

√
n0 · · ·nL−1√
n0 · · ·nL−1

∂tθ(t) = ∂tθ(t).

This implies that the NTK parametrization with N (0, 1) initialization is equivalent to the clas-
sical parametrization with N (0, (n0 · · ·nL−1)

− 1
L) initialization, which for rectangular networks cor-

responds to a N (0, n
− 1
L

0 w−
L−1
L) initialization with scaling γ = L−1

L = 1− 1
L .

312
APPENDIX I. SADDLE-TO-SADDLE DYNAMICS IN DEEP LINEAR NETWORKS: SMALL

INITIALIZATION TRAINING, SYMMETRY AND SPARSITY

NTK

Tst

S-S

Tst

0 20000 40000 60000 80000 100000
iterations

0

10

20

30

40

50

60

nu
cle

ar
 n

or
m

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
iterations 1e6

0

10

20

30

40

50

60

nu
cle

ar
 n

or
m

Figure I.1.3: Training in the NTK vs. saddle-to-saddle regimes in shallow (top) and deep (bottom)
networks when learning a low rank matrix corrupted with noise. Black lines (the NTK regime):
the parameters are initialized with the standard deviation σ̃ = w−L−1/2L. The rank of the network
matrix increases incrementally as the gradient trajectory follows the paths between the saddles.
Top/Shallow case: L = 2 and w = 50; in the saddle-to-saddle regime (shown in red), the
initialization scale is σ̃ = w−2. Bigger initialization scales result in shorter plateaus in the loss
curve if the same learning rate is used. Bottom/Deep case: L = 4 and w = 100; in the saddle-to-
saddle regime (shown in blue), the initialization scale is σ̃ = w−1. We observe that the transitions
from saddles to saddles are sharper. We observe that the gradient norm of the parameters is highly
non-monotonic; a decrease down to 0 indicates approaching to a saddle, and a following increase
indicates escaping it. We note that the peaks of the gradient norm are sharper in the deep case,
suggesting a different rate of escape. In the NTK regime, the gradient norm decreases down to 0
monotonically. In the deep case the GD training is implemented for 1500000 iterations whereas in
the shallow case it is only 100000 iterations.The input data is standard Gaussian, the outputs are
generated by a rank 3 teacher of size 10× 10 corrupted with noise, and the loss is MSE.

Maximal Update Parametrization

The Maximal Update parametrization (or µ-parametrization) [229] is equivalent to γ = 1. The
µ-parametrization for linear rectangular networks is the same the classical one, since

Aµθ =
WL√
w
WL−1 · · ·W2

(√
wW1

)
= WL · · ·W1

and the parameters are initialized with variance w−1, i.e. γ = 1.

Distance to Different Critical Points

Let dm and ds be the Euclidean distances between the initialization θ and, respectively, the set of
global minima and the set of all saddles. For random variables f(w), g(w) which depend on w, we
write f � g if both f(w)/g(w) and g(w)/f(w) are stochastically bounded as w → ∞. The following
theorem studies how dm and ds scale as w →∞:

Theorem I.1 (Theorem 9.1 in the main). Suppose that the set of matrices that minimize C is non-
empty, has Lebesgue measure zero, and does not contain the zero matrix. Let θ be i.i.d. centered
Gaussian r.v. of variance σ2 = w−γ where 1− 1

L ≤ γ <∞. Then:

I.2. REGIMES OF TRAINING 313

1. if 1− 1
L ≤ γ < 1, we have dm � w−

(1−γ)(L−1)
2 and ds � w

1−γ
2 ,

2. if γ = 1, we have dm, ds � 1,

3. if γ > 1 we have dm � 1 and ds � w−
γ−1

2 .

To prove this result, we require a few Lemmas:

Lemma I.1. Let θ be the vector of parameters of a DLN with i.i.d. N (0, w−γ) Gaussian entries,
and let Amin = {A ∈ RnL×n0 : C(A) = 0} be the set of global minimizers of C. Under the same
assumptions on the cost C as Proposition I.1, we have d(Aθ,Amin) � 1 as w →∞.

Proof. If γ > 1 − 1
L then Aθ converges in distribution to the zero matrix as w → ∞, the distance

d(Aθ,Amin) therefore converges to the finite value d(0,Amin) 6= 0.
If γ = 1 − 1

L , then Aθ converges in distribution to random Gaussian matrix with iid N (0, 1)
entries (this can seen as a consequence of the more general results for non-linear networks [127, 46]).
As a result the distribution of d(Aθ,Amin) converges to the distribution of d(B,Amin) for a matrix
B with iid Gaussian N (0, 1) entries. Since P [d(B,Amin) = 0] = 0 and P [d(B,Amin) > b] → 0 as
b→∞ we have that d(Aθ,Amin) � 1 as needed.

Lemma I.2. Let θ be the vector of parameters of a DLN with iid N (0, w−γ) Gaussian entries.
For all ε, there is a constant Cε,L that does not depend on w s.t. with prob. 1− ε, we have for all
θ′ ∈ RP that

‖Aθ′ −Aθ‖2F ≤ Cε,L
L∑
k=1

‖θ − θ′‖2k w(1−γ)(L−k).

Proof. By Corollary 5.35 in [217], reformulated as Theorem I.2 below, we know that for all ε, there
is a constant cεthat does not depend on w s.t. with prob. 1− ε, we have for all `

‖W`‖2op ≤ cεw
1−γ .

We now write dθ = θ′ − θ (and the corresponding matrices dW` = W ′` −W`) so that we may write
the difference Aθ+dθ −Aθ as the following sum

∑
a1, . . . , aL ∈ {0, 1}
∃`, a` 6= 0

({
WL if aL = 0

dWL if aL = 1

)
· · ·

({
W1 if a1 = 0

dW1 if a1 = 1

)

where the indicator a` determines whether we take W` or dW` in the product. We can therefore
bound

‖Aθ+dθ −Aθ‖2F ≤


∑

a1, . . . , aL ∈ {0, 1}
∃`, a` 6= 0

∥∥∥∥∥
({

WL if aL = 0

dWL if aL = 1

)
· · ·

({
W1 if a1 = 0

dW1 if a1 = 1

)∥∥∥∥∥
F


2

314
APPENDIX I. SADDLE-TO-SADDLE DYNAMICS IN DEEP LINEAR NETWORKS: SMALL

INITIALIZATION TRAINING, SYMMETRY AND SPARSITY

≤ (2L − 1)
∑

a1, . . . , aL ∈ {0, 1}
∃`, a` 6= 0

∥∥∥∥∥
({

WL if aL = 0

dWL if aL = 1

)
· · ·

({
W1 if a1 = 0

dW1 if a1 = 1

)∥∥∥∥∥
2

F

≤ (2L − 1)
∑

a1, . . . , aL ∈ {0, 1}
∃`, a` 6= 0

({
‖WL‖2op if aL = 0

‖dWL‖2F if aL = 1

)
· · ·

({
‖W1‖2op if a1 = 0

‖dW1‖2F if a1 = 1

)

We now bound ‖WL‖2op by cεw1−γ and ‖dWL‖2F by ‖dθ‖2 so that we obtain the bound

‖Aθ+dθ −Aθ‖2F ≤ (2L − 1)

L∑
k=1

(
L
k

)
‖dθ‖2k cL−kε w(1−γ)(L−k) ≤ Cε,L

L∑
k=1

‖dθ‖2k w(1−γ)(L−k)

for Cε,L = (2L − 1) maxk=1,...,L

(
L
k

)
cL−kε .

Let us now prove Theorem I.1:

Proof. (1) Distance to minimum: Let us first give an lower bound on the distance from initial-
ization to a global minimum. Let θ be the intialization and θ + dθ be the closest minimum. By
Lemma I.2, we obtain

‖Aθ+dθ −Aθ‖2F ≤ C
′
L

L∑
k=1

‖dθ‖2k w(1−γ)(L−k).

If γ > 1, the term with k = L dominates, in which case ‖Aθ+dθ −Aθ‖2F ≤ ‖dθ‖
2L which implies

that ‖dθ‖ ≥ ‖Aθ+dθ −Aθ‖
1
L

F ≥ d(Aθ,Amin)
1
L � 1 by Lemma I.1.

If γ < 1, the term k = 1 dominates, which implies ‖Aθ+dθ −Aθ‖2F ≤ ‖dθ‖
2
w(1−γ)(L−1) which

implies that ‖dθ‖ ≥ ‖Aθ+dθ −Aθ‖F w−
(1−γ)(L−1)

2 = O(w−
(1−γ)(L−1)

2), which decreases with width.
Let us now show upper bounds on ‖dθ‖. When γ > 1, we will construct a closeby mini-

mum. Let us first define the parameters θ̄ = (W̄1, . . . , W̄L) where W̄1 = 0 and W̄L = 0 and

W̄`,ij =

{
W`,ij if i, j > min{n0, nL}
0 otherwise

. Since we have set only O(w) parameters to zero, we

have
∥∥θ − θ̄∥∥2

= O(σ2w) = O(w1−γ). Now let the matrix A be a global minimum of the cost
C with SVD A = USV T (with inner dimension equal to the rank k of A), we then set θ∗ =

θ̄ + I(k→w)(S
1
LV T , S

1
L , . . . , S

1
L , US

1
L). The parameters θ∗ are a global minimum since Aθ∗ = A

and ‖θ∗ − θ‖ ≤
∥∥θ∗ − θ̄∥∥+

∥∥θ̄ − θ∥∥ = O(1) +O(w
1−γ

2) = O(1).
When γ < 1, with prob. 1−ε, we have smin (WL−1 · · ·W1) > 1

2σ
(L−1)w

L−1
2 = w

(1−γ)(L−1)
2 , we can

reach a global minimum by only changing WL, we need dWLWL−1 · · ·W1 = A∗−Aθ hence we take
dWL = (A∗ −Aθ) (WL · · ·W1)

+ with norm ‖dθ‖ = ‖dWL‖F ≤
‖A∗−Aθ‖

smin(WL−1···W1) = O(w−
(1−γ)(L−1)

2).

(2) Distance to saddles: Given parameters θ = (W1, . . . ,WL), we can obtain a saddle θ∗ by
setting all entries of W1 and WL to zero. We have

E
[
‖θ − θ∗‖2

]
= E

[
‖W1‖2F

]
+ E

[
‖WL‖2F

]
= σ2(n0 + nL)w = O(w1−γ).

I.2. REGIMES OF TRAINING 315

This gives an upper bound of order w1−γ on the distance between θ and the set of saddles θ∗.
Now let θ∗ = θ + dθ be the saddle closest to θ, we know that

0 = ∂WL
L(θ∗) = ∇C(Aθ∗) (W ∗1)

T · · ·
(
W ∗L−1

)T
.

Since Aθ∗ is not a global minimum, ∇C(Aθ∗) 6= 0, for the above to be zero, we therefore need
(W ∗1)

T · · ·
(
W ∗L−1

)T to not have full column rank, i.e. Rank (W ∗1)
T · · ·

(
W ∗L−1

)T
= n0.

We will show that at initialization (W1)
T · · · (WL−1)

T has rank n0 and its smallest non-zero sin-
gular value smin is of order w

(1−γ)(L−1)
2 . We will use the fact that

∥∥∥(W1)
T · · · (WL−1)

T − (W ∗1)
T · · ·

(
W ∗L−1

)T∥∥∥
F
≥

smin to lower bound the distance ‖θ − θ∗‖ using Lemma I.2.
The singular values of WT

1 · · ·WT
L−1 are the squared root of the eigenvalues of the n0 × n0

matrix WT
1 · · ·WT

L−1WL−1 · · ·W1. One can show that as w → ∞ this matrix concentrates in its
expectation

E
[
WT

1 · · ·WT
L−1WL−1 · · ·W1

]
= σ2(L−1)wL−1 = w(1−γ)(L−1).

which implies that smin concentrates in w
(1−γ)(L−1)

2 and therefore smin � w
(1−γ)(L−1)

2 .
Now by Lemma I.2 (applied to the depth L− 1 this time), we have with prob. 1− ε

s2
min ≤

∥∥∥(W1)
T · · · (WL−1)

T − (W ∗1)
T · · ·

(
W ∗L−1

)T∥∥∥2

F

≤ Cε,L−1

L−1∑
k=1

‖θ − θ′‖2k w(1−γ)(L−1−k)

and ‖θ − θ′‖ needs to be at least of order w
(1−γ)

2 for any of the terms in the sum to be at least of
order w(1−γ)(L−1) (actually all these become of the right order at the same time).

Spectrum bounds

An important tool in our analysis is the following Theorem (which is a reformulation of Corollary
5.35 in [217])

Theorem I.2. Let A be a m×n matrix with i.i.d. N (0, σ2) entries. For all t ≥ 0, with probability
at least 1− 2e−

t2

2 , it holds that

σ(−
√
m−

√
n− t) ≤ smin (A) ≤ smax (A) ≤ σ

(√
m+

√
n+ t

)
.

Corollary 3. If the parameters θ are independent centered Gaussian with variance σ2, for all t ≥ 0,
with probability at least 1− 2Le−

t2

2 , it holds that

‖Aθ‖op ≤ (1 + t)LσL
(√
n0 +

√
w
)

(4w)
L−2

2

(√
w +
√
nL
)
.

Proof. By Theorem I.2, with probability greater than 1 − 2Le−
t2

2 , for all ` = 1, . . . , L, ‖W`‖op ≤
σ
(√
n`−1 +

√
n` + t

)
, where n` = w for ` ∈ {1, · · · , L− 1}. Hence

‖Aθ‖op ≤ ‖WL‖op · · · ‖W1‖op ≤ σ
L

L∏
`=1

(√
n`−1 +

√
n` + t

)
≤ (1 + t)LσL

L∏
`=1

(√
n`−1 +

√
n`
)
.

316
APPENDIX I. SADDLE-TO-SADDLE DYNAMICS IN DEEP LINEAR NETWORKS: SMALL

INITIALIZATION TRAINING, SYMMETRY AND SPARSITY

I.3 Proofs for the Saddle-to-Saddle regime

In this section, we prove Theorem 4 of the main. Given a saddle ϑ∗ = RI(k→w)(ϑ) where ϑ is
a local minimum in a width k network, we want to describe the dynamics of gradient descent
θα(t) = γ(t, ϑ∗+αθ0), initialized close to ϑ∗. We shall consider ϑ∗ = 0 for convenience, though the
same arguments could be applied for ϑ∗ 6= 0. We will start by studying the case of homogeneous
costs, which will allow us to describe costs that locally look homogeneous around 0. Later on,
after having defined the notion of escape paths, we will show that as α → 0, the path (θα(t))t∈R+

converges to an escape path with specific direction and speed. We will then show that the escape
paths which escape at this speed are unique in some aspects.

Homogeneous Costs

As in the main text, we use θ to denote an element in the parameter space RP . Let k ≥ 2 be an
integer. We say that a cost H is k-homogeneous if H(αθ) = αkH(θ) for all θ ∈ RP and all scalar
α > 0. Later in this paper, we will be particularly interested in the case where H(θ) = Tr [GAθ] for
a linear network Aθ of depth L and some nL × n0 matrix G. Thus defined, H is a L-homogeneous
polynomial.

Throughout, when studying a k-homogeneous cost H, we will always assume that it is twice
differentiable.

A useful property of gradient descent on a homogeneous cost is that:

Lemma I.3. Gradient flow on a twice-differentiable k-homogeneous cost H satisfies

γH(t, λθ0) = λγH(λk−2t, θ0)

for all θ0 ∈ RP ,all λ > 0 and all t ≥ 0.

Proof. We simply need show that for all θ0 ∈ RP , λ > 0, t ≥ 0, we have 1
λγH(λ2−kt, λθ0) = γH(t, θ0),

i.e. that the path t 7→ 1
λγH(λ2−kt, λθ0) is the solution of gradient descent starting at θ0. Clearly,

the path starts at θ0 and satisfies

∂t
1

λ
γH(λ2−kt, λθ0) = −λ1−k∇H

(
γH(λ2−kt, λθ0)

)
= −∇H

(
1

λ
γH(λ2−kt, λθ0)

)
since, using the fact that H is k-homogeneous, for all scalar α > 0, and any θ ∈ RP , α∇H(αθ) =
αk∇H(θ). One concludes using Picard-LindelÃ¶f Theorem, using that ∇H is locally Lipschitz
around 0 since H is twice differentiable.

An Escape Direction at 0 of H is a vector on the sphere ρ ∈ SP−1 such that ∇H(ρ) = −sρ
for some s ∈ R+ which we call the escape speed associated with ρ. A path (θ(t))t<0 indexed by
negative times and following gradient flow on H such that θ(t) is on one escape direction for some
t < 0 will remain along this direction (these paths are equal for t < 0 to θ(t) = ρest when k = 2 and
θ(t) = ρ (−(k − 2)st)

− 1
k−2 when k > 2). Note that this entails that θ(t) → 0 as t → −∞. When

H(θ) = θTAθ for some symmetric matrix A, the escape directions are simply the eigenvectors of
the Hessian A and the escape speeds are twice the eigenvalues of A.

I.3. PROOFS FOR THE SADDLE-TO-SADDLE REGIME 317

AnOptimal Escape Direction ρ∗ ∈ SP−1 is an escape direction with the largest speed s∗ > 0.
It is a minimizer of H restricted to SP−1:

ρ∗ ∈ arg min
ρ∈SP−1

H(ρ). (I.3.1)

Indeed, critical points of H(ρ) restricted to the sphere are the escape directions, and by Euler’s
condition (i.e. ∇H(ρ)T ρ = kH(ρ) if H is k-homogeneous), if ρ is an escape direction with speed s,
then H(ρ) = − s

k : optimal escape directions are thus global minimizers of H restricted on the unit
sphere.

Under some conditions on the Hessian along the escape directions, one can guarantee that
gradient descent will escape along an optimal escape path:

Proposition I.2. Assume that the optimal escape speed s∗ is positive and that for all escape
directions ρ which are not optimal, there is a vector v ⊥ ρ such that vTHH(ρ)v < −s∗vT v. Let Ω

be the set of θ0 such that the direction γ(t,θ0)
‖γ(t,θ0)‖ of the gradient descent flow converges towards an

optimal escape direction as t→ T , where T is the explosion time of the path (which can be infinite).
The set SP−1 \ Ω has spherical measure zero.

Proof. Let Ω′ ⊂ RP be the set of points θ 6= 0 such that gradient flow on the 0-homogeneous cost
H̄(θ) = H

(
θ
‖θ‖

)
converges to a global minimum. Our proof is divided in two steps: (1) we show

that Ω′ ⊂ Ω, (2) we show that Ω′ ∩ SP−1 has spherical measure 1.
(1) Note that both sets Ω and Ω′ are cones: for any α > 0, Ω = αΩ and Ω′ = αΩ′. Therefore,

we only need to show that Ω′ ∩ SP−1 ⊂ Ω ∩ SP−1. Besides, note that since H̄ is 0-homogenous,
∇H̄(θ)T θ = 0 for all θ ∈ RP and thus, the norm is an invariant of the descent gradient flow for H̄:
for any θ0 ∈ RP , t 7→ ‖γH̄(t, θ0)‖ is constant.

In particular, if θ0 ∈ Ω′ ∩ SP−1, then θ̄(t) = γH̄(t, θ0) converges to an optimal escape direction
ρ∗ as t → ∞, by Equation (I.3.1). The gradient flow path θ(t) can be obtained from the gradient
flow path θ̄(s) directly. First we define the function α(s) = e−k

∫ s
0
H(θ̄(r))dr such that

∂s
[
θ̄(s)α(s)

]
= −(I − θ̄(s)θ̄(s)T)∇H(θ̄(s))α(s)− kθ̄(s)H(θ̄(s))α(s)

= −∇H(θ̄(s))α(s)

where we used the fact that θT∇H(θ) = kH(θ). Let us now define τ(t) =
∫ t

0
α(s)k−2ds, we have

θ̄(τ(t))α(τ(t)) = −∇H(θ̄(τ(t)))α(τ(t))k−1 = −∇H
(
θ̄(τ(t))α(τ(t))

)
which implies that θ(t) = θ̄(τ(t))α(τ(t)). As r → ∞, we have H(θ̄(r)) → −s∗ < 0, which implies
that α(s) → ∞ as s → ∞. This in turn implies that τ(t) → ∞ as t → ∞. As a result, we obtain
that

lim
t→∞

θ(t)

‖θ(t)‖
= lim
t→∞

θ̄(τ(t))α(τ(t))∥∥θ̄(τ(t))α(τ(t))
∥∥ = lim

t→∞
θ̄(τ(t)) = ρ∗

and hence θ0 ∈ Ω as needed.
(2) We now show that Ω′ ∩ SP−1 has spherical measure 1: this is a consequence of the fact that

the critical points of H̄ are global minima or strict saddle points. By taking the gradient of H̄, one
sees that the critical points of H̄ on the sphere SP−1 are the points θ ∈ SP−1 such that

∇H(θ) = θθT∇H(θ).

318
APPENDIX I. SADDLE-TO-SADDLE DYNAMICS IN DEEP LINEAR NETWORKS: SMALL

INITIALIZATION TRAINING, SYMMETRY AND SPARSITY

Since θθT is the orthogonal projection on the line R.θ, the critical points of H̄ on SP−1 are the escape
directions. As explained before, global minima of H are optimal escape directions. The other escape
directions are strict saddle points: consider such ρ and let v ⊥ ρ be such that vTHH(ρ)v < −s∗vT v.
Differentiating H̄ twice and using that v ⊥ ρ, one can show that

vTHH̄(ρ)v = vTHH(ρ)v −∇H(ρ)T ρvT v.

Since ρ is an escape direction, ∇H(ρ) = −sρ with s < s∗ and ‖ρ‖ = 1: this implies vTHH̄(ρ)v <
(s− s∗) vT v < 0. In particular, the points such that the gradient descent on H̄ converge to a saddle
have spherical measure 0 on SP−1. This shows that Ω′ ∩ SP−1 has spherical measure 1, and allows
us to conclude.

Deep Linear Networks

For a depth L DLN and the homogeneous cost H(θ) = Tr
[
GTAθ

]
with SVD decomposition G =

USV T , the escape directions ρ are of the form

1√
L

(±uiwTL−1, wL−1w
T
L−2, . . . , w1v

T
i)

with speed s = ∓ si

L
L−2

2

, where ui, vi are the i-th columns of U, V respectively. The optimal speed
is s1

L
L−2

2

, where s1 is the largest singular value of G.
Furthermore this loss satisfies the property required to ensure convergence along the fastest

escape path:

Lemma I.4. For a network of depth L and width w ≥ 1, for any escape direction of the form ρ =
1√
L

(±uiwTL−1, wL−1w
T
L−2, . . . , w1v

T
i) with speed ∓ si

L
L−2

2

< s1

L
L−2

2

the vector v = (−u1w
T
L−1, 0, . . . , 0, w1v

T
1)

satisfies
vTHH(ρ)v < ∓ si

L
L−2

2

vT v.

Proof. We have vTHH(ρ)v = − 2s1

L
L−2

2

and ± si

L
L−2

2

vT v = ± 2si

L
L−2

2

as needed.

This guarantees that gradient flow will not escape along a non-optimal direction, but it does not
rule out the possibility that it converges to a saddle of the loss H(θ) = Tr

[
GTAθ

]
. Each non-zero

saddle θ∗ = (W1, . . . ,WL) is technically proportional to an escape direction ρ with escape speed
0, since ∇H(θ∗) = 0. For shallow networks these saddles are strict [115] and so they are almost
surely avoided, guaranteeing convergence in direction. For depth L = 3 we can apply Proposition
I.2 since we have:

Lemma I.5. Consider the cost H(θ) = Tr [GAθ] for a rank min{n0, nL} matrix G and a network
of depth L = 3 and width w ≥ 1. For any escape direction ρ with speed 0 there is a vector v such
that vTHH(ρ)v < 0.

Proof. Since ρ 6= 0 there must a non-zero W1,W2 or W3. We separate the case W2 6= 0 from W1 or
W3 is non-zero.

Case W2 6= 0: let u1, v1 be the largest singular vectors of G and ũ1, ṽ1 the largest singular
vectors of W2, then v = (−ũ1v

T
1 , 0, u1ṽ

T
1) satisfies

vTHH(ρ)v = −Tr
[
Gu1ṽ

T
1 W2ũ1v

T
1

]
= −s1s̃1 < 0.

I.3. PROOFS FOR THE SADDLE-TO-SADDLE REGIME 319

Case W1 6= 0 (the case W3 6= 0 is similar): Let u1, v1 be the largest singular vectors of W1G
and b be any unitary w-dim vector, then the parameters v = (0, bvT1 , u1b

T) satisfy

vTHH(ρ)v = −Tr
[
Gu1b

T bvT1 W1

]
= −s1 < 0.

For L > 3 we were not able to prove that the saddles can be avoided with prob. 1, we therefore
introduce the assumption:

Assumption A. Let I be the set of initializations which converge to a saddle of the cost H(θ) =
Tr [GAθ]. We shall work on the event E = θ0 /∈ I.

It can easily be proven for a Gaussian initialization that P(E) ≥ 1/2, i.e. that saddles can be
avoided with probability at least 1/2, since P (H(θ0) < 0) = 1

2 at initialization (this follows from
the fact that H((W1, . . . ,WL)) = −H((−W1, . . . ,WL))).

Another motivation for this assumption is the fact that if the network is initialized with balanced
weights [4, 5], i.e. ifWT

` W` = W`−1W
T
`−1 for 1 < ` < L, then necessarily θ0 /∈ I. This is because the

balancedness is conserved during training: if gradient flow converges to a saddle, this saddle must be
balanced. However the only balanced saddle of H is the origin, which can only be approached along
an escape direction ρ with positive speed s > 0, which are avoided with prob. 1 by Proposition I.2.

Approximately Homogeneous Costs

In the previous section, we studied the escape paths for homogeneous costs H. We extend these
results to more general cost functions, which are only locally homogeneous around a saddle ϑ∗, i.e.
we consider costs of the form

C(θ) = H(θ − ϑ∗) + e(θ − ϑ∗), (I.3.2)

where H is a k-homogeneous cost H, and where e is infinitely differentiable such that its m−1 first
derivatives vanish at 0 for a given m > k. We call such costs (k,m)-approximately homogeneous. In
the setting of a cost C(Aθ) for a neural network of depth L, the saddle at the origin θ = 0 is (L, 2L)-
approximately homogeneous, since the only non-vanishing derivatives are the kL-th derivatives for
k = 0, 1, 2,

Since we are only interested in the local behaviour around the saddle ϑ∗, we localize the cost:
let h : R+ → R+ be a smooth cut-off function such that h(x) = 1 if 0 ≤ x ≤ 1, 0 ≤ h(x) ≤ 1 if
1 < x < 2 and h(x) = 0 when x ≥ 2. For r > 0, we define the localization Cr of the cost C as

Cr(θ) = H(θ − ϑ∗) + e(θ − ϑ∗)h
(
‖θ − ϑ∗‖

r

)
. (I.3.3)

As usual, we assume for simplicity that ϑ∗ = 0. We note for later use that by assumption on e, for
all compact set K containing 0, there exists a finite constant c > 0 such that

||∇e(θ)|| ≤ c||θ||k,∀θ ∈ K. (I.3.4)

Lemma I.6. Let h : R+ → R and e : RP → R be as above. The correction er(θ) = e(θ)h
(

1
r ‖θ‖

)
satisfies ∥∥∂kθ [er]

∥∥
∞ = O

(
rm−k

)
, as r → 0.

320
APPENDIX I. SADDLE-TO-SADDLE DYNAMICS IN DEEP LINEAR NETWORKS: SMALL

INITIALIZATION TRAINING, SYMMETRY AND SPARSITY

Proof. We have

∂kθ

[
e(θ)h

(
1

r
‖θ‖
)]

=
∑

k1+k2=k

∂k1

θ e(θ)∂
k2

θ h

(
1

r
‖θ‖
)

Since ∂k2

θ h
(

1
r ‖θ‖

)
= 0 whenever ‖θ‖ > 2r and

∥∥∥∂k2

θ h
(

1
r ‖θ‖

)∥∥∥
∞

= O
(
r−k2

)
, while

∥∥∥∂k1

θ e(θ)
∥∥∥ =

O(‖θ‖m−k1) we see from the above equation that∥∥∥∥∂kθ [e(θ)h(1

r
‖θ‖
)]∥∥∥∥

∞
= O(rm−k1r−k2) = O(rm−k),

as claimed.

Escape Cones

We will approximate approximately homogeneous costs by homogeneous ones using the following
approximation:

Lemma I.7. Suppose that C(θ) = H(θ) + e(θ) is (k,m)-approximately homogeneous around 0 as
defined in I.3.2. Let θ0 ∈ RP . It holds that for all t ≥ 0 and all α > 0, there is a finite constant
c1(t) that does not depend on α such that∥∥γC(α2−kt, αθ0)− γH(α2−kt, αθ0)

∥∥ ≤ c1(t)α2.

Proof. Fix θ0 ∈ RP and t ≥ 0 and let dt = d(t, θ0) := sups≤t γC(s, θ0), γH(s, θ0). We can bound
how fast the distance between the two paths γC and γH increases as follows:

∂t ‖γC(t, θ0)− γH(t, θ0)‖ = − (γC(t, θ0)− γH(t, θ0))
T

‖γC(t, θ0)− γH(t, θ0)‖
(∇H (γC(t, θ0)) +∇e (γC(t, θ0))−∇H (γH(t, θ0)))

≤

(
sup
‖θ‖≤dt

‖HH(θ)‖op

)
‖γC(t, θ0)− γH(t, θ0)‖+ ‖∇e (γC(t, θ0))‖

≤ c′dk−2
t ‖γC(t, θ0)− γH(t, θ0)‖+ cdkt

where c comes from I.3.4 and c′ = sup‖x‖≤1 ‖HH(x)‖op. Applying GrÃ¶nwall’s inequality on [0, t]

to A(s) = ‖γC(s, θ0)− γH(s, θ0)‖+ c
c′ d

2
t (such that ∂sA(s) ≤ c′dk−2

t A(s)), we obtain

‖γC(s, θ0)− γH(s, θ0)‖+
c

c′
d2
t = A(s) ≤ A(0)ec

′dk−2
t s =

c

c′
d2
t e
c′dk−2

t s.

Hence ‖γC(t, θ0)− γH(t, θ0)‖ ≤ c
c′ d

2
t e
c′dk−2

t t for all times t ≥ 0. To finish the proof, one uses that
for a fixed t ≥ 0, d(t, αθ0) = O(α) as α → 0, which is true because 0 is a saddle of C and H so
their gradient tends to 0 with α.

We define the ε-Escape Cone as the set Cε =
{
θ ∈ RP : H(θ)

‖θ‖k <
−s∗+ε
k

}
where we recall that

s∗ denotes the optimal escape speed.

Proposition I.3. For all ε > 0 small enough there is a r > 0 such that

I.3. PROOFS FOR THE SADDLE-TO-SADDLE REGIME 321

1. for any θ ∈ ∂Cε with ‖θ‖ < r, the negative of the gradient of C at θ points inside the cone,
i.e. denoting by n the normal of Cε at θ pointing inside of the cone, we have −∇C(θ)Tn ≥ 0.

2. for any point θ inside the cone with ‖θ‖ < r, we have ‖θ‖k−1
(−s∗ − ε) ≤ ∇C(θ)T θ

‖θ‖ ≤
‖θ‖k−1

(−s∗ + 2ε).

3. Let θ0 ∈ Cε and ‖θ0‖ < r, let T be the time when ‖γC(t, θ0)‖ = r. When k = 2 we have for
all time 0 ≤ t < T

‖θ0‖ e−(−s∗+2ε)t ≤ ‖γ(t, θ0)‖ ≤ ‖θ0‖ e−(−s∗−ε)t

and when k 6= 2 we have for all time 0 ≤ t < T[
‖θ0‖−(k−2)

+ (k − 2)(−s∗ + 2ε)t
]− 1

k−2 ≤ ‖γ(t, θ0)‖ ≤
[
‖θ0‖−(k−2)

+ (k − 2)(−s∗ − ε)t
]− 1

k−2

.

Proof. For all non-zero θ ∈ RP , define Pθ =
[
Id − θθT

‖θ‖2

]
, which is the orthogonal projection to

the tangent space of SP−1 at θ
‖θ‖ . Denote by ∂Cε the boundary of the cone and note that for any

θ ∈ ∂Cε, it holds that H(θ) = (−s∗ + ε)/k. Choose

r = r(ε) = min


infρ∈SP−1∩∂Cε

{
∇H (ρ)

T
Pρ∇H (ρ)

}
c supρ∈SP−1∩∂Cε

{√
∇H (ρ)

T
Pρ∇H (ρ)

} ,√ ε

c

 ,

where the constant c comes from I.3.4.
(1) Let θ ∈ ∂Cε, so that H(θ)

‖θ‖k = H
(

θ
‖θ‖

)
= (−s∗ + ε)/k. The normal pointing inside the cone

is equal (up to a positive scaling) to

−∇θ

(
H

(
θ

‖θ‖

))
= −∇H

(
θ

‖θ‖

)
Pθ
‖θ‖

.

We then have that(
−∇θ

(
H(θ)

‖θ‖k

))T
(−∇C(θ)) = −∇H

(
θ

‖θ‖

)T
Pθ
‖θ‖

(−∇H(θ)−∇e(θ))

= ‖θ‖k−1∇H
(

θ

‖θ‖

)T
Pθ∇H

(
θ

‖θ‖

)
+∇H

(
θ

‖θ‖

)T
Pθ
‖θ‖
∇e(θ)

≥ ‖θ‖k−1
inf

ρ∈SP−1∩∂Cε

{
∇H (ρ)

T
Pρ∇H (ρ)

}
− 1

‖θ‖
sup

ρ∈SP−1∩∂Cε

√
∇H (ρ)

T
Pρ∇H (ρ) ‖∇e(θ)‖

≥ ‖θ‖k−1
inf

ρ∈SP−1∩∂Cε

{
∇H (ρ)

T
Pρ∇H (ρ)

}
− c ‖θ‖k sup

ρ∈SP−1∩∂Cε

{√
∇H (ρ)

T
Pρ∇H (ρ)

}
,

322
APPENDIX I. SADDLE-TO-SADDLE DYNAMICS IN DEEP LINEAR NETWORKS: SMALL

INITIALIZATION TRAINING, SYMMETRY AND SPARSITY

where we used I.3.4 for the last inequality. The right-hand side above is positive since ‖θ‖ < r(ε) ≤
infH(ρ)=s∗+ε{∇H(ρ)TPρ∇H(ρ)}

c supH(ρ)=s∗+ε

{√
∇H(ρ)TPρ∇H(ρ)

} .
(2) Let θ ∈ Cε. By I.3.4, we have that

∇C(θ)T θ = ∂λH(λθ)∣∣∣λ=1
+ (∇e(θ))T θ

≤ kH(θ) + c ‖θ‖k+2

= k ‖θ‖kH
(

θ

‖θ‖

)
+ c ‖θ‖k+2

≤ ‖θ‖k
(
−s∗ + ε+ c ‖θ‖2

)
≤ ‖θ‖k (−s∗ + 2ε)

where we used that ‖θ‖2 < r2 ≤ ε
c . In the other direction we obtain

∇C(θ)T θ = ∂λH(λθ)∣∣∣λ=1
+ (∇e(θ))T θ

≥ kH(θ)− c ‖θ‖k+2

= k ‖θ‖kH
(

θ

‖θ‖

)
− c ‖θ‖k+2

≥ ‖θ‖k
(
−s∗ − c ‖θ‖2

)
≥ ‖θ‖k (−s∗ − ε) .

(3) Applying GrÃ¶nwall’s inequality generalized to polynomial bounds (Lemma I.12), we have

∂t ‖θ‖2 = −2∇C(θ)T θ ≤ c1
(
‖θ‖2

) k
2

.

Putting it all together, this guarantees that with probability 1 over the initialization, gradient
flow escapes the saddle at a specific speed along a path θ1:

Proposition I.4. Let θα(t) = γC(t, αθ0) for all t ≥ 0. With prob. 1 over initialization (and
under Assumption A when L > 3) there is a time horizon t1α that tends to ∞ as α → 0 and a
path (θ1(t))t∈R such that for all t ∈ R, limα→0 θα(t1α + t) = θ1(t). Furthermore, for all ε > 0 s.t.
ε < s∗/2, there exists T ∈ R+ such that:

(1) Shallow networks: e(s∗−2ε)(T+t) ≤
∥∥θ1(t)

∥∥ ≤ e(s∗+ε)(T+t) for all t ∈ R.
(2) Deep networks: [(L− 2)(s∗ − 2ε)(T − t)]−

1
L−2 ≤

∥∥θ1(t)
∥∥ ≤ [(L− 2)(s∗ + ε)(T − t)]−

1
L−2 for

all t < T (the path θ1 is defined up to time T in this case).

Proof. We consider the gradient flow path θ̃α(t) = γH(t, αθ0) on the k-homogeneous cost H. With
prob. 1 (and under Assumption A when L > 3), we have H(θ̃α(t))

‖θ̃α(t)‖L → −
s∗

k as t→∞. In particular,

I.3. PROOFS FOR THE SADDLE-TO-SADDLE REGIME 323

for all ε > 0, there exists a finite t ∈ R such that θ̃α=1 ∈ Cε and more generally, by Lemma I.3, we
have θ̃α(α−(L−2)t) = αθ̃1(t) ∈ Cε. Lemma I.7 then shows that there exists α0 > 0 such that for all
α < α0, it holds that θα(α−(L−2)t) ∈ Cε. Define t0 := inf

{
t ∈ R : θ̃α=1(t0) ∈ Cε

}
< +∞.

By Proposition I.3, once the gradient flow path is inside Cε, it cannot leave the escape cone until
the norm ‖θα(t)‖ is larger than some radius r. We define the time horizon t1α =inf

{
t ∈ R : ‖θα(t)‖ = r

2

}
and the escape path θ1 as the limit θ1(t) = limα→0 θα(t1α + t) for t ∈ R (the limit is well defined
by continuity of θ 7→ γC(t, θ) and is an escape path by continuity of θ 7→ ∇γC(t, θ)). One can see
that for any t < 0, there exists α > 0 small enough such that tα + t > α−(L−2)t0, thus it holds
that θ1(t) ∈ Cε since for a small enough α, we have θ(t1α + t) ∈ Cε. Proposition I.3 then implies the
escape rates for deep and shallow networks.

Optimal Escape Paths

In this section, we define the notions of escape paths, optimal escape paths and we give a description
of the optimal escape paths at the origin.

Proposition I.4 shows that as α↘ 0 one has convergence to an escape path which escapes with
an almost optimal speed s∗−2ε for a small ε > 0. We will show that the only such escape paths are
the optimal escape paths, i.e. those that escape exactly at a speed of s∗, furthermore these escape
paths are unique up to rotations of the network.

We understand well the escape paths of the homogeneous loss H, and want to use this knowledge
to describe the escape paths of the locally homogogeneous loss C. We will show a bijection between
the escape paths of H and those of C such that their speed is preserved, but only between the
set of escape paths which escape faster than a certain speed. It seems that in general there is
no speed-preserving bijection between escape paths, indeed while for shallow networks (when the
saddle is strict) one may apply the Hartman-Grobman Theorem to obtain a bijection, it does not
preserve speed (since the bijection is in general not differentiable, only HÃ¶lder continuous).

This bijection is described by the following theorem (which is a more general version of Theorem
5 [] from the main - one simply needs to set k = L andm = 2L and s∗ = L ‖H‖∞ to recover theorem
5, i.e. the DLN case):

Theorem I.3 (Theorem 9.4 of the main text). Let C = H + e be a (k,m)-approximately homoge-
neous loss, where H is a polynomial.

When k = 2: for all s0 s.t. s0 >
k‖H‖∞
m−1 there is a unique bijection Ψ : FH(s0)→ FC(s0) such

that for all paths x ∈ FC(s0), we have ‖x(t)−Ψ(x)(t)‖ = O(e(m−1)s0t) as t→ −∞.
When k > 2: for all s0 >

k−1
m−k+1k ‖H‖∞ there is a unique bijection Ψ : FH(s0) → FC(s0)

such that for all paths x ∈ FC(s0), we have ‖x(t)−Ψ(x)(t)‖ = O((−t)−
m−k+1
k−2) as t→ −∞.

Note that in the case s0 > k ‖H‖∞, the set FH(s0) is empty (and therefore so is FC(s0)).

Proof. For r > 0, recall that Cr denotes the localization of the cost C as introduced in Section I.3.
It is readily seen that for all r > 0, there is a bijection Ψr between FC [s0] and FCr [s0] such that
for all x0 ∈ FC [s0], ‖x0(t)−Ψr(x0)(t)‖ = O(0) (i.e. the difference is zero for small enough t < 0).
We therefore only need to show a bijection between FCr [s0] and FH [s0].

Consider a fast escaping path x0 ∈ FH(s0) of the homogeneous approximation of the loss. The
escape paths of the origin w.r.t. to gradient flow on the cost Cr are fixed points of the following

324
APPENDIX I. SADDLE-TO-SADDLE DYNAMICS IN DEEP LINEAR NETWORKS: SMALL

INITIALIZATION TRAINING, SYMMETRY AND SPARSITY

map:

ΦCr : x0 7→
(
t 7→

∫ t

−∞
−∇Cr(x0(u))du

)
.

Our strategy is simply to iterate this map starting from the path x0 to find such a fixed point
(note that any fixed point of ΦCr is differentiable by the fundamental theorem of calculus). We will
show that this iteration converges to a gradient flow path x′0 of the cost Cr which is, as t → −∞,
O(e(m−1)s0t)-close to x0 when k = 2 and O((−t)

k−m−1
k−2)-close to x0 when k > 2.

For c > 0, let Bc be the set of corrections, that is the set of all paths b : R− → RP (which are
Lebesgue measurable functions) such that when k = 2, ‖b(t)‖ ≤ ce(m−1)s0t for all t ≤ 0 and when
k > 2, ‖b(t)‖ ≤ c(−t)

k−m−1
k−2 for all t ≤ 0.

The convergence of the iteration process follows from the fact that Φ is a contraction w.r.t. to
some norm on the set of paths x0 +Bc (the set of possible corrections around x0). Indeed, Lemma
I.9 (case k = 2, stated and proven in Section I.3) and Lemma I.11 (case k > 2, stated and proven
in Section I.3) show that for all x0 ∈ FH [s0], there exist r > 0 small enough and c > 0 large
enough, such that ΦCr is a contraction on x0 +Bc for some well-suited norm (defined below), hence
guaranteeing the existence and uniqueness of a fixpoint x′0 of ΦCr (which is obtained by interating
ΦCr infinitely many times). We thus define the map Ψ : x0 7→ Ψ(x0) = x′0.

We need to show that Ψ has an inverse that maps a fast escaping path y0 ∈ FC(s0) back to a
path Ψ−1(y0) ∈ FH(s0). We iterate the map

ΦH : y0 7→
(
t 7→

∫ t

−∞
−∇H(y0(u))du

)
whose fixed points are the escape paths w.r.t. to gradient flow on the cost H. By a similar
argument we can show that this map is a contraction on x0 + Bc. Choosing y0 = x′0, this again
implies the existence of a unique path Ψ−1(x′0) which is O(e(m−1)s0t)-close to x′0 when k = 2 and
O((−t)−

m−k+1
k−2)-close to x′0 when k > 2. Because x′0 ∈ x0 + Bc The uniqueness implies that since

x′0 = Ψ(x0), the path Ψ−1(x′0) must be x0. This shows that Ψ is a bijection and it is the only
bijection between fast escaping paths with the property of mapping a path to a closeby path as in
the statement of the theorem.

Shallow networks

For the case k = 2, we consider the following norm for β < (m− 1)s0

‖b‖2β =

∫ 0

−∞
e−2βt ‖b(t)‖2 dt

defined on the corrections b ∈ Bc, where the set of corrections Bc is the set of all paths b : R− → RP
such that ‖b(t)‖ ≤ ce(m−1)s0t for all t ≤ 0. The condition β < (m− 1)s0 ensures that

‖b‖2β =

∫ 0

−∞
e−2βt ‖b(t)‖2 dt ≤ c2

∫ 0

−∞
e2((m−1)s0−β)tdt <∞.

As a result the set x0 + Bc equipped with the distance induced by the norm ‖·‖β is a complete
metric space.

I.3. PROOFS FOR THE SADDLE-TO-SADDLE REGIME 325

We define the scalar product for two corrections x, y ∈ B

〈x, y〉β =

∫ ∞
−∞

e−2βt 〈x(t), y(t)〉 dt.

We first state a few useful properties of 〈·, ·〉β . In the following, ẋ is the path obtained by considering
the derivative of x.

Lemma I.8. For any two corrections x, y ∈ B, we have

1. 〈x, ẏ〉β = 2β 〈x, y〉β − 〈ẋ, y〉β.

2. 〈x, ẋ〉β = β ‖x‖2β.

3. ‖x‖β ≤
1
β ‖ẋ‖β.

Proof. The first point is obtained by integration by part:

〈x, ẏ〉β =

∫ ∞
−∞

e−2βt (x(t))
T
ẏ(t)dt =

∫ ∞
−∞

2βe−2βt (x(t))
T
y(t)dt−

∫ ∞
−∞

e−2βtẋ(t)y(t)dt

= 2β 〈x, y〉β − 〈ẋ, y〉β .

The second point is a consequence of the first one, by taking x = y. Finally, the last point follows
from the second one since ‖x‖2β = 1

β 〈x, ẋ〉β ≤
1
β ‖x‖β ‖ẋ‖β , by Cauchy-Schwarz Inequality.

We may now describe how for large enough β, one can guarantee that the map ΦCr is a con-
traction on the set x0 +Bc:

Lemma I.9. Let Cr = H + er be a localized (2,m)-approximately homogeneous loss as in I.3.3,
where H is a polynomial. Choose a s0 >

2‖H‖∞
m−1 . There is a r small enough such that for any

x0 ∈ FH [s0] there is a constant c such that the map ΦCr is contraction on the set x0 + Bc ={
x0 + b : ‖b(t)‖ ≤ ces0(m−1)t,∀t < 0

}
w.r.t. the norm on paths ‖·‖β for some β.

Proof. We first show that for r > 0 small enough and c > 0 large enough, the image of x0 + Bc
under ΦCr is contained in itself and then show that ΦCr is a contraction w.r.t. the norm ‖·‖β for
an adequate β.

(1) Self-map: Let x ∈ x0 +Bc, i.e. x = x0 + b for some b ∈ Bc, then using the linearity of ∇H
and the fact x0 is a gradient flow path of H, we obtain

ΦCr (x)(t) = −
∫ t

−∞
∇H(x(u)) +∇er(x(u))du

= −
∫ t

−∞
∇H(x0(u)) +∇H(b(u)) +∇er(x(u))du

= x0(t)−
∫ t

−∞
∇H(b(u)) +∇er(x(u))du.

326
APPENDIX I. SADDLE-TO-SADDLE DYNAMICS IN DEEP LINEAR NETWORKS: SMALL

INITIALIZATION TRAINING, SYMMETRY AND SPARSITY

Writing b′(t) =
∫ t
−∞ [∇H(b(u)) +∇er(x(u))] du we need to show that b′ ∈ Bc. We can bound

‖b′(t)‖ by

‖b′(t)‖ ≤
∫ t

−∞
(‖∇H(b(u))‖+ ‖∇er(x0(u))‖+ ‖∇er(x(u))−∇er(x0(u))‖) du.

Using the fact that for a map g with uniformly bounded Hessian ‖Hg‖∞ <∞, we have ‖∇g(x)−∇g(y)‖ ≤
‖Hg‖∞ ‖x− y‖, it follows that ‖∇H(b(u))‖ ≤ supz∈RP ‖HH(z)‖op ‖b(u)‖ and ‖∇er(x(u))−∇er(x0(u))‖ ≤

supz∈RP ‖Her(z)‖op ‖b(u)‖. The last term ‖∇er(x0(u))‖ can be bounded by
supz‖∂

m
z er(z)‖

op
‖x0(u)‖m−1

(m−1)!

since the first m− 1 derivatives of er vanish at 0 (see point 1 of Lemma I.13).
We therefore get

‖b′(t)‖ ≤
∫ t

−∞

((
sup
z∈RP

‖HH(z)‖op + sup
z∈RP

‖Her(z)‖op

)
‖b(u)‖+ sup

z∈RP
‖∂mz er(z)‖op ‖x0(u)‖m−1

)
du.

Since supz∈RP ‖HH(z)‖op = 2 ‖H‖op (where ‖HH(x)‖op is the operator norm of the Hessian
HH, while ‖H‖op = maxx∈SP−1 |H(x)|) and by Lemma I.6 supz∈RP ‖Her(z)‖∞ ≤ κ0r

m−2 and
supz∈RP ‖∂mx er(z)‖∞ ≤ κ1

≤
2 ‖H‖op + κ0r

m−2

s0(m− 1)
ces0(m−1)t + κ1c0e

s0(m−1)t

≤

(
2 ‖H‖op + κ0r

m−2

s0(m− 1)
c+ κ1c0

)
es0(m−1)t

Since by assumption s0 >
2‖H‖op

m−1 , we can choose r small enough such that
2‖H‖op+κ0r

m−2

s0(m−1) < 1. We

can then choose c large enough so that
2‖H‖op+κ0r

m−2

s0(m−1) c+ κ1c0 ≤ c. With these choices of r and c,
we obtain that ‖b′(t)‖ ≤ ces0(m−1)t and therefore b′ ∈ Bc as needed.

(2) Contraction: We need to bound for any x, y ∈ x0 +Bc

‖ΦCr (x)− ΦCr (y)‖2β =

∥∥∥∥t 7→ ∫ t

−∞
[∇Cr(x(u))−∇Cr(y(u))] du

∥∥∥∥2

β

,

for any β < (m− 1)s0.
From point (1), we know that ΦCr (x),ΦCr (y) ∈ x0 + Bc and hence ‖ΦCr (x)− ΦCr (y)‖2β ≤ ∞

(since β < (m− 1)s0).
From point (3) of Lemma I.8 we have:∥∥∥∥t 7→ ∫ t

−∞
[∇Cr(x(u))−∇Cr(y(u))] du

∥∥∥∥
β

≤ 1

β
‖t 7→ ∇Cr(x(t))−∇Cr(y(t))‖β

≤
supz ‖HCr(z)‖op

β
‖x− y‖β .

By the localization, we have supz ‖HCr(z)‖op ≤ supz ‖HH(z)‖op+supz ‖Her(z)‖op ≤ 2 ‖H‖op+

κ0r
m−2.

I.3. PROOFS FOR THE SADDLE-TO-SADDLE REGIME 327

Therefore to guarantee a contraction, we choose β > 2 ‖H‖op +κ0r
m−2, so that

supz‖HCr(z)‖op

β <
1. Therefore β lies in an open interval(

2 ‖H‖op + κ0r
m−2

(m− 1)s0

)
(m− 1)s0 < β < (m− 1)s0

which is non-empty since we have chosen r small enough in point (1) such that
2‖H‖op+κ0r

m−2

s0(m−1) <
1.

Deep case

For the case k > 2, we consider the following norm

‖b‖2α =

∫ 0

−∞
(−t)2α−1 ‖b(t)‖2 dt.

If α < m−k+1
k−2 then this norm is finite on any corrections b ∈ Bc (i.e. if ‖b(t)‖ ≤ c(−t)−

m−k+1
k−2),

since

‖b‖2α ≤ c
2

∫ 0

−∞
(−t)2(α−m−k+1

k−2)−1dt <∞.

The set x0 +Bc equipped with the distance ‖·‖α therefore defines a complete metric space.
Again, for paths x, y such that ‖x‖w , ‖y‖w <∞, we define the scalar product

〈x, y〉w =

∫ 0

−∞
(−t)2α−1 〈x(t), y(t)〉 dt.

Lemma I.8 is now replaced by the following:

Lemma I.10. For any differentiable paths x, y with ‖x‖w , ‖y‖w <∞, we have

1. 〈x,−tẏ〉w = 2α 〈x, y〉w − 〈−tẋ, y〉w.

2. 1
α 〈x,−tẋ〉w = ‖x‖2w.

3. ‖x‖w ≤
1
α ‖−tẋ‖w.

Proof. The first point is obtained by integration by part:

〈x,−tẏ〉w =

∫ 0

−∞
(−t)2αx(t)ẏ(t)dt

=

∫ 0

−∞
2α(−t)2α−1x(t)y(t)dt−

∫ 0

−∞
(−t)2αẋ(t)y(t)dt

= 2α 〈x, y〉w − 〈−tẋ, y〉w .

Taking x = y, we obtain the second point. Finally, the last point follows from the second one since:

‖x‖2w =
1

α
〈x,−tẋ〉w ≤

1

α
‖x‖w ‖−tẋ‖w .

Under certain conditions, we can ensure that there is an α such that Φ is a contraction on
x0 +Bc w.r.t. the norm ‖·‖α:

328
APPENDIX I. SADDLE-TO-SADDLE DYNAMICS IN DEEP LINEAR NETWORKS: SMALL

INITIALIZATION TRAINING, SYMMETRY AND SPARSITY

Lemma I.11. Let Cr = H + er be a localized (k,m)-approximately homogeneous loss as in I.3.3,
where H is a polynomial, with k > 2. Choose a s0 > k−1

m−k+1k ‖H‖∞. Let x0 ∈ FH [s0], there
exist r > 0 small enough, c > 0 large enough and T < 0 small enough, such that the map Φ is a
contraction on the set x0 +Bc,T =

{
x0 + b : ‖b(t)‖ ≤ ces(m−1)t,∀t < T

}
w.r.t. to the norm ‖·‖α for

some well-suited α.

Proof. (1) Self-map: Let x0 + b ∈ x0 + Bc,T , we first show that Φ(x0 + b) ∈ x0 + Bc,T . Let us
rewrite

Φ(x0 + b) = −
∫
−∞
∇Cr(x0(u) + b(u))du

= −
∫
−∞
∇H(x0(u))du+

∫
−∞
∇H(x0(u))−∇Cr(x0(u) + b(u))du

= x0 + b′

where

b′(t) =

∫ t

−∞
∇H(x0(u))−∇Cr(x0(u) + b(u))du

=

∫ t

−∞
∇H(x0(u))−∇Cr(x0(u))du

+

∫ t

−∞
∇Cr(x0(u))−∇Cr(x0(u) + b(u))du

= −
∫ t

−∞
∇er(x0(u))du

+

∫ t

−∞
∇Cr(x0(u))−∇Cr(x0(u) + b(u))du.

Our goal is to show that b′(t) ∈ Bc, i.e. that ‖b′(t)‖ ≤ c(−t)
k−m−1
k−2 . We bound the two terms

separately:

‖b′(t)‖ ≤
∥∥∥∥∫ t

−∞
∇er(x0(u))du

∥∥∥∥+

∥∥∥∥∫ t

−∞
[∇Cr(x0(u))−∇Cr(x0(u) + b(u))] du

∥∥∥∥ .
The first term

∥∥∥∫ t−∞∇er(x0(u))du
∥∥∥ is bounded by

∫ t

−∞
‖∇er(x0(u))‖ du

≤ m ‖∂mx er‖
∫ t

−∞
‖x0(u)‖m−1

du

≤ mκs−
m−1
k−2

0 (k − 2)−
m−1
k−2

∫ t

−∞
(−u)−

m−1
k−2 du

= mκs
−m−1
k−2

0 (k − 2)−
m−1
k−2

k − 2

m− k + 1
(−t)

k−m−1
k−2

I.3. PROOFS FOR THE SADDLE-TO-SADDLE REGIME 329

= mκs
−m−1
k−2

0

(k − 2)
k−m−1
k−2

(m− k + 1)
(−t)

k−m−1
k−2 .

The second term
∥∥∥∫ t−∞∇Cr(x0(u))−∇Cr(x0(u) + b(u))du

∥∥∥ is bounded by

∫ t

−∞
‖∇Cr(x0(u))−∇Cr(x0(u) + b(u))‖ du

≤
supz

∥∥∂kzCr(z)∥∥op

(k − 2)!

∫ t

−∞
‖b(u)‖max {‖x0(u)‖ , ‖x0(u) + b(u)‖}k−2

du

by Lemma I.13. Let us first bound max {‖x0(u)‖ , ‖x0(u) + b(u)‖}k−2 by

(‖x0(u)‖+ ‖b(u)‖)k−2 ≤
(

(s0(k − 2)(−u))
− 1
k−2 + c(−u)−

m−k+1
k−2

)k−2

= (s0(k − 2)(−u))
−1

+

k−2∑
i=1

(
k − 2
i

)
(s0(k − 2)(−u))

−1+ i
k−2 c(−u)−

m−k+1
k−2 i

= (s0(k − 2)(−u))
−1

+ (s0(k − 2)(−u))
−1

k−2∑
i=1

(
k − 2
i

)
(s0(k − 2))

i
k−2 ci(−u)−

m−k
k−2 i

≤ (s0(k − 2)(−u))
−1

[
1 +

k−2∑
i=1

(
k − 2
i

)
(s0(k − 2))

i
k−2 ci(−T)−

m−k
k−2 i

]
,

for any ε, we can choose T < 0 small enough so that max {‖x0(u)‖ , ‖x0(u) + b(u)‖}k−2 is bounded
by (s0(k − 2)(−u))

−1
[1 + ε].

Using also the bounds
supz‖∂kzCr(z)‖

op

(k−2)! ≤ k(k−1) ‖H‖∞+ κ
(k−2)!r

m−k and ‖b(u)‖ ≤ c(−u)−
m−k+1
k−2 ,

the second term
∥∥∥∫ t−∞∇Cr(x0(u))−∇Cr(x0(u) + b(u))du

∥∥∥ can be bounded by

k(k − 1) ‖H‖op + κ
(k−2)!r

m−k

s0(k − 2)
(1 + ε)

∫ t

−∞
c(−u)−

m−k+1
k−2 −1du

=
k(k − 1) ‖H‖op + κ

(k−2)!r
m−k

s0(m− k + 1)
(1 + ε)c(−t)−

m−k+1
k−2 .

We choose r > 0 small enough, c > 0 large enough, and T < 0 small enough so that
k(k−1)‖H‖op+ κ

(k−2)!
rm−k

s0(m−k+1) (1+ε) < 1 and
[
mκs

−m−1
k−2

0
(k−2)

−m−k+1
k−2

m−k+1 +
k(k−1)‖H‖op+ κ

(k−2)!
rm−k

s0(m−k+1) (1 + ε)c

]
≤

c so that

‖b′(t)‖ ≤

[
mκs

−m−1
k−2

0

(k − 2)−
m−k+1
k−2

m− k + 1
+
k(k − 1) ‖H‖op + κ

(k−2)!r
m−k

s0(m− k + 1)
(1 + ε)c

]
(−t)−

m−k+1
k−2

≤ c(−t)−
m−k+1
k−2

330
APPENDIX I. SADDLE-TO-SADDLE DYNAMICS IN DEEP LINEAR NETWORKS: SMALL

INITIALIZATION TRAINING, SYMMETRY AND SPARSITY

and therefore b′ ∈ Bc.
(2) Contraction: We have, for any x, y ∈ x0 +Bc

‖Φ(x)− Φ(y)‖w =

∥∥∥∥∫ t

−∞
∇Cr(x(s))−∇Cr(y(s))ds

∥∥∥∥
α

≤ 1

α
‖−t (∇Cr(x)−∇Cr(y))‖α

≤
‖∂kCr(x0)‖∞
α(k − 2)!

∥∥∥−t ‖x− y‖ (max{‖x‖ , ‖y‖})k−2
∥∥∥
α

by Lemma I.13. Using the same argument as in point (1) to bound (max{‖x‖ , ‖y‖})k−2, we obtain

k(k − 1) ‖H‖∞ + κ
(k−2)!r

m−k

α

∥∥−t ‖x− y‖ (s0(k − 2)(−t))−1
∥∥
α

≤
k(k − 1) ‖H‖∞ + κ

(k−2)!r
m−k

αs0(k − 2)
(1 + ε) ‖x− y‖α

To obtain a contraction, we need to choose α >
k(k−1)‖H‖∞+ κ

(k−2)!
rm−k

s0(k−2) (1 + ε). To summarize α
must lie within the two bounds:

k(k − 1) ‖H‖∞ + κ
(k−2)!r

m−k

(m− k + 1)s
(1− ε)m− k + 1

k − 2
< α <

m− k + 1

k − 2

which is possible since we have chosen r, c and T such that
k(k−1)‖H‖∞+ κ

(k−2)!
rm−k

(m−k+1)s (1− ε) < 1.

Proof of Theorem 9.2

We have now all the tools to prove the Theorem 4 of the main:

Theorem I.4 (Theorem 9.2 of the main text). Assume that the largest singular value s1 of the
gradient of C at the origin ∇C(0) ∈ RnL×n0 has multiplicity 1. There is a deterministic gradient
flow path θ1 in the space of width-1 DLNs such that, with probability 1 if L ≤ 3, and probability at
least 1/2 if L > 3, there exists an escape time t1α and a rotation R such that

lim
α→0

θα(t1α + t) = RI(1→w)θ1(t).

Proof. From Proposition I.4 we know that with prob. 1 there is a time horizon t1α and an escape
path such that limα→0 θα(t1α + t) = θ1(t) which for any ε > 0 escapes the origin at a rate of at least
e(s∗+ε)t for shallow networks and [(k − 2)(s∗ + ε)t]

1
2−k for deep networks, where s∗ = −L−L=2

2 s1.
Since the loss CNN is (L, 2L)-approximately homogeneous, we can apply Theorem I.3 to obtain

that θ1 must be in bijection with an escape path of the homogeneous loss H of the same speed.
For small enough ε the only escape path of H of at least this speed are of the form ρ∗es

∗(t+T)

for shallow networks and ρ∗ ((k − 1)s∗(−t− T))
− 1
k−1 for some constant T and an optimal escape

I.4. TECHNICAL RESULTS 331

direction ρ∗. We therefore call θ1 an optimal escape path since it belongs to the unique set of paths
which escape at an optimal speed and are in bijection to the optimal escape directions.

Assuming that the largest singular value of s1 of ∇C(0) has multiplicity 1, with singular vectors
u1, v1, the optimal escape directions are of the form

ρ∗ = RI(1→w)(ρ∗) =
1√
L
RI(1→w)

(
−vT1 , 1, . . . , 1, u1

)
for any rotation R. In the width 1 network, there is an optimal escape path θ1 corresponding
to the escape direction ρ∗, then by the unicity of the bijection of Theorem I.3, the escape path
RI(1→w)(θ1) is the unique optimal escape path escaping along RI(1→w)(ρ∗), as a result, we know
that θ1 = RI(1→w)(θ1) for some rotation R.

I.4 Technical Results

In this section, we state and prove a few technical lemmas used throughout the appendix.
Let us first prove a generalization of GrÃ¶nwall’s inequality for polynomial bounds:

Lemma I.12. Let x : R+ → R which satisfy

∂tx(t) ≤ cx(t)α,

for some c > 0 and α > 1. Then, for all t < x(0)1−α

c(α−1) ,

x(t) ≤
[
x(0)1−α − c(α− 1)t

]− 1
α−1 .

Proof. Note that the function y(t) =
[
x(0)1−α + c(1− α)t

]− 1
α−1 satisfies y(0) = x(0) and for all

t < x(0)1−α

c(α−1) :
∂ty(t) = cy(t)α.

We conclude by showing that if x(t) ≤ y(t) then x(s) ≤ y(s) for all t ≤ s ≤ x(0)1−α

c(α−1) : this follows
from the fact that on the diagonal, i.e. when x(t) = y(t), we have

∂tx(t)− ∂ty(t) ≤ cx(t)α − cy(t)a = 0

which implies that the flow points towards the inside of {(x, y) : x ≤ y}.

Let us now state a lemma to bound the gradient of a cost C in terms of its high order derivatives:

Lemma I.13. Let C be a cost and k the largest integer such that ∂nxC(0) = 0 for all n < k and∥∥∂kxC∥∥∞ <∞, then

1. For all x, ‖∇C(x)‖ ≤ ‖
∂kxC‖∞‖x‖k−1

(k−1)! .

2. For all x, y, ‖∇C(x)−∇C(y)‖ ≤ 1
(k−2)!

∥∥∂kxC∥∥∞ ‖x− y‖ (max{‖x‖ , ‖y‖})k−2
.

332
APPENDIX I. SADDLE-TO-SADDLE DYNAMICS IN DEEP LINEAR NETWORKS: SMALL

INITIALIZATION TRAINING, SYMMETRY AND SPARSITY

Proof. (1)

‖∇C(x)‖ =

∥∥∥∥∫ 1

0

HC(λx)[x]dλ

∥∥∥∥
=

∥∥∥∥∥
∫ 1

0

∫ λ1

0

· · ·
∫ λk−2

0

∂kxC(λ1 · · ·λk−1zt)[x, . . . , x]dt1 · · · dt1

∥∥∥∥∥
≤
∫ 1

0

∫ λ1

0

· · ·
∫ λm−2

0

∥∥∂kxC∥∥∞ ‖x‖k−1
dt1 · · · dt1

≤
∥∥∂kxC∥∥∞ ‖x‖k−1

(k − 1)!

(2) First note that ∇C(x)−∇C(y) is equal to∫ 1

0

HC(zt)[x− y]dt

where zt = tx+ (1− t)y. This can further be rewritten as∫ 1

0

∫ 1

0

∂3
xC(t1zt,t1)[x− y, zt]dt1 dt.

Iterating this procedure, we obtain that ∇C(x)−∇C(y) equals∫ 1

0

∫ 1

0

∫ t1

0

· · ·
∫ tk−3

0

∂kxC(t1 · · · tk−2zt,t1)[x− y, zt, . . . , zt]dtk−2 · · · dt2 dt1 dt.

Since the volume of the set {(t1, . . . , tk−2) : 0 ≥ t1 ≥ · · · ≥ tk−2 ≥ 0} is 1
(k−2)! we have

‖∇C(x)−∇C(y)‖ ≤
∫ 1

0

∫ 1

0

∫ t1

0

· · ·
∫ tk−3

0

∥∥∂kxC∥∥ ‖x− y‖ ‖zt‖k−2
dtk−2 · · · dt2 dt1 dt

≤ 1

(k − 2)!

∥∥∂kxC∥∥∞ ‖x− y‖ (max{‖x‖ , ‖y‖})k−2
.

Bibliography

[1] Madhu S. Advani and Andrew M. Saxe. High-dimensional dynamics of generalization error
in neural networks, 2017.

[2] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via
over-parameterization. pages 242–252, 2019.

[3] Erik Andreassen, Anders Clausen, Mattias Schevenels, Boyan Lazarov, and Ole Sigmund. Ef-
ficient topology optimization in matlab using 88 lines of code. Structural and Multidisciplinary
Optimization, 43:1–16, 11 2011.

[4] Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient
descent for deep linear neural networks. In International Conference on Learning Represen-
tations, 2019.

[5] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. Advances in Neural Information Processing Systems, 32, 2019.

[6] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net. Advances in Neural Information
Processing Systems, 32, 2019.

[7] Devansh Arpit, Yingbo Zhou, Bhargava Kota, and Venu Govindaraju. Normalization prop-
agation: A parametric technique for removing internal covariate shift in deep networks. In
Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd Inter-
national Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pages 1168–1176, New York, New York, USA, 20–22 Jun 2016. PMLR.

[8] Benson Au, Guillaume Cébron, Antoine Dahlqvist, Franck Gabriel, and Camille Male. Large
permutation invariant random matrices are asymptotically free over the diagonal, 2018. To
appear in Annals of Probability.

[9] Francis Bach. Sharp analysis of low-rank kernel matrix approximations. In Conference on
Learning Theory, pages 185–209, 2013.

[10] Francis Bach. Breaking the curse of dimensionality with convex neural networks. The Journal
of Machine Learning Research, 18(1):629–681, 2017.

[11] Zhidong Bai and Zhou Wang. Large sample covariance matrices without independence struc-
tures in columns. Statistica Sinicia, 18:425–442, 2008.

333

334 BIBLIOGRAPHY

[12] Marco Baity-Jesi, Levent Sagun, Mario Geiger, Stefano Spigler, Gerard Ben Arous, Chiara
Cammarota, Yann LeCun, Matthieu Wyart, and Giulio Biroli. Comparing Dynamics: Deep
Neural Networks versus Glassy Systems. In Jennifer Dy and Andreas Krause, editors, Proceed-
ings of the 35th International Conference on Machine Learning, volume 80, pages 314–323.
PMLR, 10–15 Jul 2018.

[13] Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning
from examples without local minima. Neural networks, 2(1):53–58, 1989.

[14] Andrew J Ballard, Ritankar Das, Stefano Martiniani, Dhagash Mehta, Levent Sagun, Jacob D
Stevenson, and David J Wales. Energy landscapes for machine learning. Physical Chemistry
Chemical Physics, 2017.

[15] Saurabh Banga, Harsh Gehani, Sanket Bhilare, Sagar Patel, and Levent Kara. 3d topology
optimization using convolutional neural networks. CoRR, abs/1808.07440, 2018.

[16] Yamini Bansal, Madhu Advani, David D Cox, and Andrew M Saxe. Minnorm training: an
algorithm for training over-parameterized deep neural networks. CoRR, 2018.

[17] Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in
linear regression. arXiv preprint arXiv:1906.11300, 2019.

[18] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National
Academy of Sciences, 116(32):15849–15854, 2019.

[19] Mikhail Belkin, Daniel Hsu, and Ji Xu. Two models of double descent for weak features.
arXiv preprint arXiv:1903.07571, 2019.

[20] Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to
understand kernel learning. arXiv preprint, Feb 2018.

[21] Bendsoe and Sigmund. Topology optimization: Theory, methods and applications. Springer
Science and Business, April 2013.

[22] Martin Bendsøe. Optimal shape design as a material distribution problem. structural opti-
mization 1, 193-202. Structural Optimization, 1:193–202, 01 1989.

[23] Lucas Benigni and Sandrine Péché. Eigenvalue distribution of nonlinear models of random
matrices. arXiv preprint arXiv:1904.03090, 2019.

[24] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[25] Blake Bordelon, Abdulkadir Canatar, and Cengiz Pehlevan. Spectrum dependent learning
curves in kernel regression and wide neural networks. arXiv preprint arXiv:2002.02561, 2020.

[26] Siegfried Bös and Manfred Opper. Dynamics of training. In Advances in Neural Information
Processing Systems, pages 141–147, 1997.

[27] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.

BIBLIOGRAPHY 335

[28] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex optimization.
Foundations of Computational mathematics, 9(6):717–772, 2009.

[29] Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares
algorithm. Foundations of Computational Mathematics, 7(3):331–368, 2007.

[30] Aaditya Chandrasekhar and K. Suresh. Length scale control in topology optimization using
fourier enhanced neural networks. 2020.

[31] Aaditya Chandrasekhar and Krishnan Suresh. Tounn: Topology optimization using neural
networks. Structural and Multidisciplinary Optimization, 2020.

[32] Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Chris-
tian Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing
gradient descent into wide valleys. arXiv preprint arXiv:1611.01838, 2016.

[33] Yanqing Chen, Timothy A. Davis, and William W. Hager. Algorithm 887: Cholmod, supern-
odal sparse cholesky factorization and update/downdate. ACM Transactions on Mathematical
Software, pages 1–14, 2008.

[34] Lenaic Chizat and Francis Bach. A note on lazy training in supervised differentiable pro-
gramming. arXiv preprint arXiv:1812.07956, 2018.

[35] Lénaïc Chizat and Francis Bach. On the Global Convergence of Gradient Descent for Over-
parameterized Models using Optimal Transport. In Advances in Neural Information Process-
ing Systems 31, pages 3040–3050. Curran Associates, Inc., 2018.

[36] Lénaïc Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural
networks trained with the logistic loss. In Jacob Abernethy and Shivani Agarwal, editors,
Proceedings of Thirty Third Conference on Learning Theory, volume 125 of Proceedings of
Machine Learning Research, pages 1305–1338. PMLR, 09–12 Jul 2020.

[37] Youngmin Cho and Lawrence K. Saul. Kernel Methods for Deep Learning. In Advances in
Neural Information Processing Systems 22, pages 342–350. Curran Associates, Inc., 2009.

[38] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun.
The Loss Surfaces of Multilayer Networks. Journal of Machine Learning Research, 38:192–204,
nov 2015.

[39] Yaim Cooper. The loss landscape of overparameterized neural networks. arXiv preprint
arXiv:1804.10200, 2018.

[40] Nello Cristianini, John Shawe-Taylor, Andre Elisseeff, and Jaz S Kandola. On kernel-target
alignment. In Advances in neural information processing systems, pages 367–373, 2002.

[41] Zhen Dai, Mina Karzand, and Nathan Srebro. Representation costs of linear neural networks:
Analysis and design. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, 2021.

[42] Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural net-
works: The power of initialization and a dual view on expressivity. volume abs/1602.05897.
2016.

336 BIBLIOGRAPHY

[43] Stéphane d’Ascoli, Maria Refinetti, Giulio Biroli, and Florent Krzakala. Double trouble in
double descent: Bias and variance (s) in the lazy regime. arXiv preprint arXiv:2003.01054,
2020.

[44] Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and
Yoshua Bengio. Identifying and Attacking the Saddle Point Problem in High-dimensional
Non-convex Optimization. In Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’14, pages 2933–2941, Cambridge, MA,
USA, 2014. MIT Press.

[45] Timothy A. Davis. User guide for cholmod: a sparse cholesky factorization and modification
package. 2009.

[46] Alexander G. de G. Matthews, Jiri Hron, Mark Rowland, Richard E. Turner, and Zoubin
Ghahramani. Gaussian process behaviour in wide deep neural networks. In International
Conference on Learning Representations, 2018.

[47] Alexander G. de G. Matthews, Jiri Hron, Richard E. Turner, and Zoubin Ghahramani.
Sample-then-optimize posterior sampling for bayesian linear models. In NIPS workshop on
Advances in Approximate Bayesian Inference, 2017.

[48] Edgar Dobriban and Stefan Wager. High-dimensional asymptotics of prediction: Ridge re-
gression and classification. Ann. Statist., 46(1):247–279, 02 2018.

[49] Sever Silvestru Dragomir. Some Gronwall Type Inequalities and Applications. Nova Science
Publishers, 2003.

[50] Simon S. Du, Chi Jin, Jason D. Lee, Michael I. Jordan, Barnabás Póczos, and Aarti Singh.
Gradient descent can take exponential time to escape saddle points. In Proceedings of the 31st
International Conference on Neural Information Processing SystemsDecember 2017, NIPS’17,
pages 1067–1077. Curran Associates, Inc., 2017.

[51] Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably
optimizes over-parameterized neural networks. In International Conference on Learning Rep-
resentations, 2019.

[52] Benjamin Dupuis and Arthur Jacot. Dnn-based topology optimisation: Spatial invariance
and neural tangent kernel. Advances in Neural Information Processing Systems, 34, 2021.

[53] Morris Eaton. Multivariate statistics: A vector space approach. Journal of the American
Statistical Association, 80, 01 2007.

[54] Armin Eftekhari. Training linear neural networks: Non-local convergence and complexity
results. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 2836–2847. PMLR, 13–18 Jul 2020.

[55] Noureddine El Karoui et al. The spectrum of kernel randommatrices. The Annals of Statistics,
38(1):1–50, 2010.

BIBLIOGRAPHY 337

[56] Khalil Elkhalil, Abla Kammoun, Xiangliang Zhang, Mohamed-Slim Alouini, and Tareq Al-
Naffouri. Risk convergence of centered kernel ridge regression with large dimensional data.
IEEE Transactions on Signal Processing, 68:1574–1588, 2020.

[57] Andreas Engel and Christian Van den Broeck. Statistical mechanics of learning. Cambridge
University Press, 2001.

[58] Gregory E Fasshauer and Michael J McCourt. Stable evaluation of gaussian radial basis
function interpolants. SIAM Journal on Scientific Computing, 34(2):A737–A762, 2012.

[59] Silvio Franz, Sungmin Hwang, and Pierfrancesco Urbani. Jamming in multilayer supervised
learning models. arXiv preprint arXiv:1809.09945, 2018.

[60] Silvio Franz and Giorgio Parisi. The simplest model of jamming. Journal of Physics A:
Mathematical and Theoretical, 49(14):145001, 2016.

[61] Silvio Franz, Giorgio Parisi, Maxime Sevelev, Pierfrancesco Urbani, and Francesco Zamponi.
Universality of the sat-unsat (jamming) threshold in non-convex continuous constraint satis-
faction problems. SciPost Physics, 2(3):019, 2017.

[62] Silvio Franz, Giorgio Parisi, Pierfrancesco Urbani, and Francesco Zamponi. Universal spec-
trum of normal modes in low-temperature glasses. Proceedings of the National Academy of
Sciences, 112(47):14539–14544, 2015.

[63] C Daniel Freeman and Joan Bruna. Topology and geometry of deep rectified network opti-
mization landscapes. International Conference on Learning Representations, 2017.

[64] Kunihiko Fukushima. Neocognitron: A hierarchical neural network capable of visual pattern
recognition. Neural networks, 1(2):119–130, 1988.

[65] Franck Gabriel. Combinatorial theory of permutation-invariant random matrices ii: Cumu-
lants, freeness and Levy processes. arXiv preprint arXiv:1507.02465, 2015.

[66] Mario Geiger, Arthur Jacot, Stefano Spigler, Franck Gabriel, Levent Sagun, Stéphane
d’Ascoli, Giulio Biroli, Clément Hongler, and Matthieu Wyart. Scaling description of gener-
alization with number of parameters in deep learning . abs/1901.01608, 2019.

[67] Mario Geiger, Arthur Jacot, Stefano Spigler, Franck Gabriel, Levent Sagun, Stéphane
d’Ascoli, Giulio Biroli, Clément Hongler, and Matthieu Wyart. Scaling description of general-
ization with number of parameters in deep learning. Journal of Statistical Mechanics: Theory
and Experiment, 2020(2):023401, 2020.

[68] Mario Geiger, Stefano Spigler, Stéphane d’Ascoli, Levent Sagun, Marco Baity-Jesi, Giulio
Biroli, and Matthieu Wyart. The jamming transition as a paradigm to understand the loss
landscape of deep neural networks. arXiv preprint arXiv:1809.09349, 2018.

[69] Mario Geiger, Stefano Spigler, Stéphane d’Ascoli, Levent Sagun, Marco Baity-Jesi, Giulio
Biroli, and Matthieu Wyart. Jamming transition as a paradigm to understand the loss land-
scape of deep neural networks. Physical Review E, 100(1):012115, 2019.

338 BIBLIOGRAPHY

[70] Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature
and lazy training in deep neural networks. Journal of Statistical Mechanics: Theory and
Experiment, 2020(11):113301, 2020.

[71] Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the bias/variance
dilemma. Neural computation, 4(1):1–58, 1992.

[72] L Lo Gerfo, Lorenzo Rosasco, Francesca Odone, E De Vito, and Alessandro Verri. Spectral
algorithms for supervised learning. Neural Computation, 20(7):1873–1897, 2008.

[73] Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net opti-
mization via hessian eigenvalue density. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 2232–2241, Long Beach, California, USA,
09–15 Jun 2019. PMLR.

[74] Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien. Implicit regularization of discrete
gradient dynamics in linear neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[75] Daniel Gissin, Shai Shalev-Shwartz, and Amit Daniely. The implicit bias of depth: How
incremental learning drives generalization. In International Conference on Learning Repre-
sentations, 2020.

[76] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research, pages
249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR.

[77] Tilmann Gneiting. Strictly and non-strictly positive definite functions on spheres. Bernoulli,
19(4):1327–1349, 2013.

[78] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks. NIPS’14
Proceedings of the 27th International Conference on Neural Information Processing Systems
- Volume 2, pages 2672–2680, jun 2014.

[79] Andreas Griewank and Christèle Faure. Reduced functions, gradients and hessians from
fixed-point iterations for state equations. Numerical Algorithms, 30:113–139, 06 2002.

[80] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias
in terms of optimization geometry. In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 1832–1841. PMLR, 10–15 Jul 2018.

[81] Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient
descent on linear convolutional networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018.

BIBLIOGRAPHY 339

[82] Guy Gur-Ari, Daniel A. Roberts, and Ethan Dyer. Gradient descent happens in a tiny
subspace. CoRR, abs/1812.04754, 2018.

[83] Boris Hanin. Which neural net architectures give rise to exploding and vanishing gradients?
arXiv preprint arXiv:1801.03744, 2018.

[84] Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent kernel,
2019.

[85] Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-
dimensional ridgeless least squares interpolation. arXiv preprint arXiv:1903.08560, 2019.

[86] Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. Mean-field behaviour of neural tan-
gent kernel for deep neural networks. arXiv preprint arXiv:1905.13654, 2019.

[87] Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. On the impact of the activation
function on deep neural networks training. In International Conference on Machine Learning,
pages 2672–2680. PMLR, 2019.

[88] Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. Training dynamics of deep networks
using stochastic gradient descent via neural tangent kernel. arXiv preprint arXiv:1905.13654,
2019.

[89] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep
neural networks for acoustic modeling in speech recognition: The shared views of four research
groups. IEEE Signal processing magazine, 29(6):82–97, 2012.

[90] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 9(1):1–42,
1997.

[91] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[92] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the gen-
eralization gap in large batch training of neural networks. In Advances in Neural Information
Processing Systems, pages 1729–1739, 2017.

[93] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359 – 366, 1989.

[94] Stephan Hoyer, Jascha Sohl-Dickstein, and Sam Greydanus. Neural reparameterization im-
proves structural optimization. CoRR, abs/1909.04240, 2019.

[95] Jiaoyang Huang and Horng-Tzer Yau. Dynamics of deep neural networks and neural tangent
hierarchy. 119:4542–4551, 13–18 Jul 2020.

[96] Kaixuan Huang, Yuqing Wang, Molei Tao, and Tuo Zhao. Why do deep residual networks
generalize better than deep feedforward networks?—a neural tangent kernel perspective. Ad-
vances in Neural Information Processing Systems, 33, 2020.

340 BIBLIOGRAPHY

[97] David H Hubel and Torsten N Wiesel. Receptive fields of single neurones in the cat’s striate
cortex. The Journal of physiology, 148(3):574, 1959.

[98] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proceedings of the 32nd International Conference
on International Conference on Machine Learning - Volume 37, ICML’15, pages 448–456.
JMLR.org, 2015.

[99] A. G. Ivakhnenko. Polynomial theory of complex systems. IEEE Trans. Syst. Man Cybern.,
1:364–378, 1971.

[100] Aleksei Grigorevich Ivakhnenko and Valentin Grigor’evich Lapa. Cybernetic predicting de-
vices. 1966.

[101] Andrea J Liu, Sidney R Nagel, W Saarloos, and Matthieu Wyart. The jamming scenario -
an introduction and outlook. OUP Oxford, 06 2010.

[102] Arthur Jacot, Berfin Şimşek, Francesco Spadaro, Clément Hongler, and Franck Gabriel. Im-
plicit regularization of random feature models. In H. Daumé and A. Singh, editors, Proceed-
ings of the 37th International Conference on Machine Learning, ICML 2020, 12-18 July 2020,
Vienna, Austria, Proceedings of Machine Learning Research. 2020.

[103] Arthur Jacot, Berfin Şimşek, Francesco Spadaro, Clement Hongler, and Franck Gabriel. Ker-
nel alignment risk estimator: Risk prediction from training data. In H. Larochelle, M. Ran-
zato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Process-
ing Systems, volume 33, pages 15568–15578. Curran Associates, Inc., 2020.

[104] Arthur Jacot, Franck Gabriel, François Ged, and Clément Hongler. Order and chaos:
Ntk views on dnn normalization, checkerboard and boundary artifacts. arXiv preprint
arXiv:1907.05715, 2019.

[105] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural Tangent Kernel: Convergence
and Generalization in Neural Networks. In Advances in Neural Information Processing Sys-
tems 31, pages 8580–8589. Curran Associates, Inc., 2018.

[106] Arthur Jacot, Franck Gabriel, and Clement Hongler. The asymptotic spectrum of the hessian
of dnn throughout training. In International Conference on Learning Representations, 2020.

[107] Arthur Jacot, François Ged, Berfin Şimşek, Clément Hongler, and Franck Gabriel. Saddle-to-
saddle dynamics in deep linear networks: Small initialization training, symmetry, and sparsity,
2022.

[108] Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks.
CoRR, abs/1810.02032, 2018.

[109] Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 17176–17186. Curran Associates, Inc.,
2020.

BIBLIOGRAPHY 341

[110] Jiaqi Jiang and Jonathan A. Fan. Global optimization of dielectric metasurfaces using a
physics-driven neural network. Nano Letters, 19(8):5366–5372, Jul 2019.

[111] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How
to escape saddle points efficiently. In Proceedings of the 34th International Conference on
Machine Learning - Volume 70, ICML’17, pages 1724–1732. JMLR.org, 2017.

[112] Ryo Karakida, Shotaro Akaho, and Shun-Ichi Amari. Universal Statistics of Fisher Informa-
tion in Deep Neural Networks: Mean Field Approach. jun 2018.

[113] Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. The normalization method for allevi-
ating pathological sharpness in wide neural networks. In Advances in Neural Information
Processing Systems, pages 6403–6413, 2019.

[114] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. arXiv preprint arXiv:1812.04948, 2018.

[115] Kenji Kawaguchi. Deep learning without poor local minima. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Process-
ing Systems, volume 29. Curran Associates, Inc., 2016.

[116] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[117] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Interna-
tional Conference on Learning Representations, 2015.

[118] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-
normalizing neural networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems 30, pages 971–980. Curran Associates, Inc., 2017.

[119] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

[120] Yann Le Cun, Ido Kanter, and Sara A Solla. Eigenvalues of covariance matrices: Application
to neural-network learning. Physical Review Letters, 66(18):2396, 1991.

[121] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[122] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436,
2015.

[123] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recog-
nition. Neural computation, 1(4):541–551, 1989.

[124] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

342 BIBLIOGRAPHY

[125] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop.
In Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

[126] Jae Hoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington,
and Jascha Sohl-Dickstein. Deep Neural Networks as Gaussian Processes. ICLR, 2018.

[127] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington,
and Jascha Sohl-Dickstein. Deep neural networks as gaussian processes. arXiv preprint
arXiv:1711.00165, 2017.

[128] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. In Advances in neural information processing systems, pages 8572–
8583, 2019.

[129] Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Roman Novak, Jascha
Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear
models under gradient descent. Journal of Statistical Mechanics: Theory and Experiment,
2020(12):124002, Dec 2020.

[130] Jason D Lee, Ioannis Panageas, Georgios Piliouras, Max Simchowitz, Michael I Jordan, and
Benjamin Recht. First-order methods almost always avoid strict saddle points. Mathematical
programming, 176(1):311–337, 2019.

[131] Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht. Gradient descent
only converges to minimizers. In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir,
editors, 29th Annual Conference on Learning Theory, volume 49 of Proceedings of Machine
Learning Research, pages 1246–1257, Columbia University, New York, New York, USA, 23–26
Jun 2016. PMLR.

[132] J. Lei Ba, J. R. Kiros, and G. E. Hinton. Layer Normalization. arXiv e-prints, July 2016.

[133] Moshe Leshno, Vladimir Lin, Allan Pinkus, and Shimon Schocken. Multilayer Feedforward
Networks with a Non-Polynomial Activation Function Can Approximate Any Function. Neu-
ral Networks, 6(6):861–867, 1993.

[134] Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari.
The large learning rate phase of deep learning: the catapult mechanism. arXiv preprint
arXiv:2003.02218, 2020.

[135] Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient
descent for matrix factorization: Greedy low-rank learning. In International Conference on
Learning Representations, 2020.

[136] Zhiyuan Li, Ruosong Wang, Dingli Yu, Simon S Du, Wei Hu, Ruslan Salakhutdinov, and San-
jeev Arora. Enhanced convolutional neural tangent kernels. arXiv preprint arXiv:1911.00809,
2019.

[137] Tengyuan Liang and Alexander Rakhlin. Just interpolate: Kernel" ridgeless" regression can
generalize. arXiv preprint arXiv:1808.00387, 2018.

BIBLIOGRAPHY 343

[138] Tengyuan Liang, Alexander Rakhlin, and Xiyu Zhai. On the multiple descent of minimum-
norm interpolants and restricted lower isometry of kernels. arXiv preprint arXiv:1908.10292
[cs, math, stat], 2020.

[139] Zhenyu Liao and Romain Couillet. The dynamics of learning: A random matrix approach.
arXiv preprint arXiv:1805.11917, 2018.

[140] Seppo Linnainmaa. The representation of the cumulative rounding error of an algorithm as
a Taylor expansion of the local rounding errors. PhD thesis, Master’s Thesis (in Finnish),
Univ. Helsinki, 1970.

[141] Zachary C Lipton. Stuck in a what? adventures in weight space. International Conference
on Learning Representations, 2016.

[142] Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Toward a theory of optimization for over-
parameterized systems of non-linear equations: the lessons of deep learning. arXiv preprint
arXiv:2003.00307, 2020.

[143] Kai Liu and Andres Tovar. An efficient 3d topology optimization code written in matlab.
Structural and Multidisciplinary Optimization, 50, 12 2014.

[144] Sifan Liu and Edgar Dobriban. Ridge regression: Structure, cross-validation, and sketching.
In International Conference on Learning Representations, 2020.

[145] Cosme Louart, Zhenyu Liao, and Romain Couillet. A random matrix approach to neural
networks. The Annals of Applied Probability, 28, 02 2017.

[146] Tao Luo, Zhi-Qin John Xu, Zheng Ma, and Yaoyu Zhang. Phase diagram for two-layer relu
neural networks at infinite-width limit. Journal of Machine Learning Research, 22(71):1–47,
2021.

[147] Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural
networks. In International Conference on Learning Representations, 2020.

[148] Stéphane Mallat. Group invariant scattering. Communications on Pure and Applied Mathe-
matics, 65(10):1331–1398, 2012.

[149] Gilles Marck, Maroun Nemer, Jean-Luc Harion, Serge Russeil, and Daniel Bougeard. Topology
optimization using the simp method for multiobjective conductive problems. Numerical Heat
Transfer Part B-fundamentals - NUMER HEAT TRANSFER PT B-FUND, 61:439–470, 06
2012.

[150] Ulysse Marteau-Ferey, Dmitrii Ostrovskii, Francis Bach, and Alessandro Rudi. Beyond least-
squares: Fast rates for regularized empirical risk minimization through self-concordance.
CoRR, abs/1902.03046, 2019.

[151] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layers
neural networks: dimension-free bounds and kernel limit. arXiv preprint arXiv:1902.06015,
2019.

[152] Song Mei and Andrea Montanari. The generalization error of random features regression:
Precise asymptotics and double descent curve. arXiv preprint arXiv:1908.05355, 2019.

344 BIBLIOGRAPHY

[153] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of
two-layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–
E7671, 2018.

[154] Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Computational Geom-
etry. MIT Press, Cambridge, MA, USA, 1969.

[155] Alexander Mordvintsev, Nicola Pezzotti, Ludwig Schubert, and Chris Olah. Differ-
entiable image parameterizations. Distill, 2018. https://distill.pub/2018/differentiable-
parameterizations.

[156] Edward Moroshko, Blake E Woodworth, Suriya Gunasekar, Jason D Lee, Nati Srebro, and
Daniel Soudry. Implicit bias in deep linear classification: Initialization scale vs training
accuracy. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 22182–22193. Curran
Associates, Inc., 2020.

[157] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya
Sutskever. Deep double descent: Where bigger models and more data hurt. arXiv preprint
arXiv:1912.02292, 2019.

[158] Brady Neal, Sarthak Mittal, Aristide Baratin, Vinayak Tantia, Matthew Scicluna, Simon
Lacoste-Julien, and Ioannis Mitliagkas. A Modern Take on the Bias-Variance Tradeoff in
Neural Networks. arXiv preprint arXiv:1810.08591, 2018.

[159] Radford M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1996.

[160] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro.
Towards understanding the role of over-parametrization in generalization of neural networks.
arXiv preprint arXiv:1805.12076, 2018.

[161] Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, and Nathan Srebro. Geometry
of optimization and implicit regularization in deep learning. arXiv preprint arXiv:1705.03071,
2017.

[162] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias:
On the role of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

[163] Zhenguo Nie, Tong Lin, Haoliang Jiang, and Levent Burak Kara. Topologygan: Topology
optimization using generative adversarial networks based on physical fields over the initial
domain. CoRR, abs/2003.04685, 2020.

[164] Maher Nouiehed and Meisam Razaviyayn. Learning deep models: Critical points and local
openness. INFORMS Journal on Optimization, 2021.

[165] Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checkerboard arti-
facts. Distill, 1(10):e3, 2016.

[166] Greg Ongie, Rebecca Willett, Daniel Soudry, and Nathan Srebro. A function space view of
bounded norm infinite width relu nets: The multivariate case. In International Conference
on Learning Representations, 2020.

BIBLIOGRAPHY 345

[167] Vardan Papyan. Measurements of three-level hierarchical structure in the outliers in the
spectrum of deepnet hessians. CoRR, abs/1901.08244, 2019.

[168] Daniel S Park, Samuel L Smith, Jascha Sohl-dickstein, and Quoc V Le. Optimal SGD Hy-
perparameters for Fully Connected Networks. 2018.

[169] Razvan Pascanu and Yoshua Bengio. Revisiting Natural Gradient for Deep Networks. jan
2013.

[170] Razvan Pascanu, Yann N Dauphin, Surya Ganguli, and Yoshua Bengio. On the saddle point
problem for non-convex optimization. arXiv preprint, 2014.

[171] Jeffrey Pennington and Yasaman Bahri. Geometry of Neural Network Loss Surfaces via
Random Matrix Theory. In Proceedings of the 34th International Conference on Machine
Learning, volume 70, pages 2798–2806. PMLR, 06–11 Aug 2017.

[172] Jeffrey Pennington and Pratik Worah. The Spectrum of the Fisher Information Matrix of a
Single-Hidden-Layer Neural Network. In Advances in Neural Information Processing Systems
31, pages 5415–5424. Curran Associates, Inc., 2018.

[173] Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli.
Exponential expressivity in deep neural networks through transient chaos. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 29, pages 3360–3368. Curran Associates, Inc., 2016.

[174] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[175] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht,
Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks. In International
Conference on Machine Learning, pages 5301–5310. PMLR, 2019.

[176] Ali Rahimi and Benjamin Recht. Random Features for Large-Scale Kernel Machines. In
Advances in Neural Information Processing Systems 20, pages 1177–1184. Curran Associates,
Inc., 2008.

[177] Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Replacing mini-
mization with randomization in learning. In Advances in neural information processing sys-
tems, pages 1313–1320, 2009.

[178] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine
learning, volume 2. MIT Press, 2006.

[179] M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learning:
the rprop algorithm. In IEEE International Conference on Neural Networks, pages 586–591
vol.1, 1993.

[180] Martin Riedmiller and Heinrich Braun. A direct adaptive method for faster backpropagation
learning: The rprop algorithm. pages 586–591, 1993.

[181] Ryan M Rifkin and Ross A Lippert. Notes on regularized least squares. 2007.

346 BIBLIOGRAPHY

[182] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organi-
zation in the brain. Psychological review, 65(6):386, 1958.

[183] Grant Rotskoff and Eric Vanden-Eijnden. Parameters as interacting particles: long time con-
vergence and asymptotic error scaling of neural networks. In Advances in Neural Information
Processing Systems 31, pages 7146–7155. Curran Associates, Inc., 2018.

[184] Grant M Rotskoff and Eric Vanden-Eijnden. Neural networks as interacting particle systems:
Asymptotic convexity of the loss landscape and universal scaling of the approximation error.
arXiv preprint arXiv:1805.00915, 2018.

[185] Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with random
features. In Advances in Neural Information Processing Systems, pages 3215–3225, 2017.

[186] W. Rudin. Fourier Analysis on Groups. Wiley Classics Library. Wiley, 1990.

[187] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

[188] David Saad and Sara A Solla. On-line learning in soft committee machines. Physical Review
E, 52(4):4225, 1995.

[189] Levent Sagun, Léon Bottou, and Yann LeCun. Singularity of the hessian in deep learning.
CoRR, abs/1611.07476, 2016.

[190] Levent Sagun, Utku Evci, V. Ugur Güney, Yann Dauphin, and Léon Bottou. Empirical
Analysis of the Hessian of Over-Parametrized Neural Networks. CoRR, abs/1706.04454, 2017.

[191] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in neural information processing systems,
pages 2234–2242, 2016.

[192] Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems 29,
pages 901–909. Curran Associates, Inc., 2016.

[193] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch
normalization help optimization? In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems
31, pages 2483–2493. Curran Associates, Inc., 2018.

[194] Pedro Savarese, Itay Evron, Daniel Soudry, and Nathan Srebro. How do infinite width
bounded norm networks look in function space? In Alina Beygelzimer and Daniel Hsu,
editors, Proceedings of the Thirty-Second Conference on Learning Theory, volume 99 of Pro-
ceedings of Machine Learning Research, pages 2667–2690. PMLR, 25–28 Jun 2019.

[195] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks, 2014.

BIBLIOGRAPHY 347

[196] Andrew M. Saxe, James L. McClelland, and Surya Ganguli. A mathematical theory of seman-
tic development in deep neural networks. Proceedings of the National Academy of Sciences,
116(23):11537–11546, 2019.

[197] Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep infor-
mation propagation. 2017.

[198] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component anal-
ysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

[199] Vaishaal Shankar, Alex Fang, Wenshuo Guo, Sara Fridovich-Keil, Ludwig Schmidt, Jonathan
Ragan-Kelley, and Benjamin Recht. Neural kernels without tangents. arXiv preprint
arXiv:2003.02237, 2020.

[200] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, New York, NY, USA, 2004.

[201] M.-H. Herman Shen and Liang Chen. A new CGAN technique for constrained topology design
optimization. CoRR, abs/1901.07675, 2019.

[202] Ole Sigmund. Morphology-based black and white filters for topology optimization. Structural
and Multidisciplinary Optimization, 33:401–424, 04 2007.

[203] J.W. Silverstein. Strong convergence of the empirical distribution of eigenvalues of large
dimensional random matrices. Journal of Multivariate Analysis, 55(2):331 – 339, 1995.

[204] Berfin Simsek, François Ged, Arthur Jacot, Francesco Spadaro, Clement Hongler, Wulfram
Gerstner, and Johanni Brea. Geometry of the loss landscape in overparameterized neural
networks: Symmetries and invariances. In Marina Meila and Tong Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 9722–9732. PMLR, 18–24 Jul 2021.

[205] Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural networks. arXiv
preprint arXiv:1805.01053, 2018.

[206] Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gor-
don Wetzstein. Implicit neural representations with periodic activation functions. CoRR,
abs/2006.09661, 2020.

[207] Ivan Sosnovik and Ivan V. Oseledets. Neural networks for topology optimization. CoRR,
abs/1709.09578, 2017.

[208] Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error
guarantees for multilayer neural networks. arXiv preprint arXiv:1605.08361, 2016.

[209] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro.
The implicit bias of gradient descent on separable data. The Journal of Machine Learning
Research, 19(1):2822–2878, 2018.

[210] Roland Speicher. Free probability and random matrices. In Free Probability and Random
Matrices, 2017.

348 BIBLIOGRAPHY

[211] Stefano Spigler, Mario Geiger, Stéphane d’Ascoli, Levent Sagun, Giulio Biroli, and Matthieu
Wyart. A jamming transition from under-to over-parametrization affects loss landscape and
generalization. arXiv preprint arXiv:1810.09665, 2018.

[212] Karthik Sridharan, Shai Shalev-Shwartz, and Nathan Srebro. Fast rates for regularized ob-
jectives. In Advances in neural information processing systems, pages 1545–1552, 2009.

[213] Bharath Sriperumbudur and Zoltán Szabó. Optimal rates for random fourier features. In
Advances in Neural Information Processing Systems, pages 1144–1152, 2015.

[214] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let net-
works learn high frequency functions in low dimensional domains. In H. Larochelle, M. Ran-
zato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Process-
ing Systems, volume 33, pages 7537–7547. Curran Associates, Inc., 2020.

[215] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[216] Luca Venturi, Afonso Bandeira, and Joan Bruna. Neural networks with finite intrinsic di-
mension have no spurious valleys. arXiv preprint arXiv:1802.06384, 2018.

[217] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv
preprint arXiv:1011.3027, 2010.

[218] H. Vorst. Bi-cgstab: A fast and smoothly converging variant of bi-cg for the solution of
nonsymmetric linear systems. SIAM J. Sci. Comput., 13:631–644, 1992.

[219] Daniel Wagenaar. Information geometry of neural networks. 1998.

[220] Christopher Williams and Matthias Seeger. The effect of the input density distribution on
kernel-based classifiers. In Proceedings of the 17th international conference on machine learn-
ing. Citeseer, 2000.

[221] Blake Woodworth, Suriya Gunasekar, Pedro Savarese, Edward Moroshko, Itay Golan, Jason
Lee, Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models,
2020.

[222] Lei Wu, Zhanxing Zhu, and Weinan E. Towards Understanding Generalization of Deep
Learning: Perspective of Loss Landscapes. CoRR, abs/1706.10239, 2017.

[223] Sitao Xiang and Hao Li. On the effects of batch and weight normalization in generative
adversarial networks. arXiv preprint arXiv:1704.03971, 2017.

[224] Lechao Xiao, Jeffrey Pennington, and Samuel Schoenholz. Disentangling trainability and
generalization in deep neural networks. In Hal Daumé III and Aarti Singh, editors, Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 10462–10472. PMLR, 13–18 Jul 2020.

[225] Lechao Xiao, Jeffrey Pennington, and Samuel S. Schoenholz. Disentangling trainability and
generalization in deep learning. CoRR, abs/1912.13053, 2019.

BIBLIOGRAPHY 349

[226] Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
Fourier analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523, 2019.

[227] Zhi-Qin John Xu, Yaoyu Zhang, and Yanyang Xiao. Training behavior of deep neural network
in frequency domain. In International Conference on Neural Information Processing, pages
264–274. Springer, 2019.

[228] Greg Yang. Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process
Behavior, Gradient Independence, and Neural Tangent Kernel Derivation. arXiv e-prints,
page arXiv:1902.04760, Feb 2019.

[229] Greg Yang and Edward J. Hu. Feature learning in infinite-width neural networks, 2020.

[230] Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, and Samuel S. Schoenholz.
A mean field theory of batch normalization. CoRR, abs/1902.08129, 2019.

[231] Greg Yang and Samuel Schoenholz. Mean field residual networks: On the edge of chaos. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30, pages 7103–7114. Curran
Associates, Inc., 2017.

[232] Tianbao Yang, Yu-Feng Li, Mehrdad Mahdavi, Rong Jin, and Zhi-Hua Zhou. Nyström method
vs random Fourier features: A theoretical and empirical comparison. In Advances in neural
information processing systems, pages 476–484, 2012.

[233] Luzhong Yin and Wei Yang. Optimality criteria method for topology optimization under
multiple constraints. Computers and Structures, 79(20):1839–1850, 2001.

[234] Felix Xinnan X Yu, Ananda Theertha Suresh, Krzysztof M Choromanski, Daniel N Holtmann-
Rice, and Sanjiv Kumar. Orthogonal random features. In Advances in Neural Information
Processing Systems, pages 1975–1983, 2016.

[235] Chulhee Yun, Shankar Krishnan, and Hossein Mobahi. A unifying view on implicit bias in
training linear neural networks. In International Conference on Learning Representations,
2021.

[236] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Under-
standing deep learning requires rethinking generalization. ICLR 2017 proceedings, Feb 2017.

[237] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention generative
adversarial networks. arXiv preprint arXiv:1805.08318, 2018.

[238] Tong Zhang. Effective dimension and generalization of kernel learning. In Advances in Neural
Information Processing Systems, pages 471–478, 2003.

[239] Yuchen Zhang, John Duchi, and Martin Wainwright. Divide and conquer kernel ridge regres-
sion: A distributed algorithm with minimax optimal rates. The Journal of Machine Learning
Research, 16(1):3299–3340, 2015.

Arthur Jacot

Nationality: Swiss
E-mail: arthur.jacot@netopera.net
Website: https://sites.google.com/view/arthurjacot/

Education

2018-2022 PhD in Mathematics on the Theory of Deep Learning
École Polytechnique Fédérale de Lausanne
under the supervision of Prof. Clément Hongler.

2015-2017 M.Sc. in Mathematics with a minor in Computational Neurosciences
École Polytechnique Fédérale de Lausanne.

2011-2015 B.Sc. in Mathematics with a minor in Computer Science
Freie Universität Berlin.

Work Experience

2017-2018 Civil Service - Science Activity Leader
Animascience, Geneva
Creation of scientific activities, math puzzles, and more.

2016-2017 Substitute Teacher in Mathematics
Département de l’Instruction Publique (DIP), Geneva.

2014 Internship as Programmer/Musician
Studio for Electro-Instrumental Music (STEIM), Amsterdam
Developed RoSa, an audio live sampling program in C++.

Publications (Google Scholar)

1. Feature Learning in L2-regularized DNNs: Attraction/Repulsion and Sparsity, Arthur Jacot,
Eugene Golikov, Clément Hongler, Franck Gabriel, 2022. [arXiv link]

2. Deep Linear Network Dynamics: Low-Rank Biases Induced by Initialization Scale and L2
Regularization, Arthur Jacot, François Ged, Franck Gabriel, Berfin Şimşek, Clément Hongler,
2022. [arXiv link]

3. DNN-Based Topology Optimization: Spatial Invariance and Neural Tangent Kernel, Benjamin
Dupuis, Arthur Jacot, NeurIPS 2021. [conference paper]

4. Geometry of the Loss Landscape in Overparameterized Neural Networks: Symmetries and
Invariances, Berfin Şimşek, François Ged, Arthur Jacot, Francesco Spadaro, Clément Hongler,
Wulfram Gerstner, Johanni Brea, ICML 2021. [conference paper]

5. Kernel Alignment Risk Estimator: Risk Prediction from Training Data, Arthur Jacot, Berfin
Şimşek, Francesco Spadaro, Clément Hongler, Franck Gabriel, NeurIPS 2020. [conference
paper]

https://scholar.google.ch/citations?user=G6OhFawAAAAJ&hl=en
https://arxiv.org/pdf/2205.15809.pdf
https://arxiv.org/abs/2106.15933
https://openreview.net/forum?id=DUy-qLzqvlU
http://proceedings.mlr.press/v139/simsek21a.html
https://proceedings.neurips.cc/paper/2020/file/b367e525a7e574817c19ad24b7b35607-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b367e525a7e574817c19ad24b7b35607-Paper.pdf

6. Implicit regularization of Random Feature Models, Arthur Jacot, Berfin Şimşek, Francesco
Spadaro, Clément Hongler, Franck Gabriel, ICML 2020. [conference paper]

7. The asymptotic spectrum of the Hessian of DNN throughout training, Arthur Jacot, Franck
Gabriel, Clément Hongler. ICLR 2020. [conference paper]

8. Order and Chaos: NTK views on DNN Normalization, Checkerboard and Boundary Artifacts,
Arthur Jacot, Franck Gabriel, François Ged, Clément Hongler, to appear at MSML 2022.
[arXiv link]

9. Disentangling feature and lazy learning in deep neural networks: an empirical study, Mario
Geiger, Stefano Spigler, Arthur Jacot, Matthieu Wyart, Journal of Statistical Mechanics:
Theory and Experiment 2020. [arXiv link]

10. Scaling description of generalization with number of parameters in deep learning, Mario Geiger,
Arthur Jacot, Stefano Spigler, Franck Gabriel, Levent Sagun, Stéphane d’Ascoli, Giulio Biroli,
Clément Hongler, Matthieu Wyart, Journal of Statistical Mechanics: Theory and Experiment
2020. [arXiv link]

11. Neural Tangent Kernel: Convergence and Generalization in Neural Networks, Arthur Jacot,
Franck Gabriel, Clément Hongler, NeurIPS 2018. [conference paper]

Prizes
1. 2021 SwissMAP Innovator Prize.

2. 2022 Google PhD Fellowship (declined).

Talks
May 2022 Workshop ‘New Interactions Between Statistics and Optimization’ at BIRS.

Sep. 2021 SwissMAP General Meeting, Les Diablerets, Switzerland.

Feb. 2021 Seminar at RWTH Chair for Mathematics of Information Processing, RWTH Aachen
University, Germany (online).

Feb. 2021 4th Mini-workshop on Deep Learning Theory, Huawei Beijing, China (online).

Aug. 2020 Mathematics of Machine Learning Seminar, University of California, Los Angeles, USA
(online).

July 2020 Online Summer School of Deep Learning Theory, Shanghai Jiao Tong University, China
(online).

May 2020 Data Science Seminar, Shanghai Jiao Tong University, China (online).

Mar. 2020 DeepMind London, UK.

Feb. 2020 Statistics Seminar, University of Oxford, UK.

Feb. 2020 Neural Net Theory Group, École Polytechnique Fédérale de Lausanne, Switzerland.

Oct. 2019 Google Brain, Mountain View, USA.

Oct. 2019 Analyses of Deep Learning, Stanford University, USA.

https://proceedings.mlr.press/v119/jacot20a.html
https://openreview.net/pdf?id=SkgscaNYPS
https://arxiv.org/abs/1907.05715
https://arxiv.org/abs/1906.08034
https://arxiv.org/abs/1901.01608
https://papers.nips.cc/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf

Aug. 2019 Theoretical Advances in Deep Learning Workshop, Istanbul, Turkey.

Mar. 2019 CRiSM day on Bayesian Intelligence, Warwick University, UK.

Apr. 2019 Seminar in Probability: Theory of Deep Learning, Universität Basel, Switzerland.

Dec. 2018 Spotlight Presentation, NeurIPS 2018, Montréal, Canada.

Skills and Other Activities

• Languages: French (native), English (fluent), German (fluent), Spanish (beginner).

• Programming: Python, Pytorch, Haskell, Scala, C, C++, Java.

• Music: Singer and bassist in two bands, piano.

	Contents
	List of Figures
	Introduction
	Towards a Theory of Deep Learning
	Original Papers
	Setup
	Neural Tangent Kernel
	Infinite-width Limit of the Neural Tangent Kernel
	Generalization of Kernel Ridge Regression
	Spectral Bias of DNNs
	Finite-width Analysis
	Regimes of Training
	Conclusion

	Neural Tangent Kernel: Convergence and Generalization in Neural Networks
	Introduction
	Neural networks
	Kernel gradient
	Neural tangent kernel
	Least-squares regression
	Numerical experiments
	Conclusion

	The Asymptotic Spectrum of the Hessian of DNN Throughout Training
	Introduction
	Setup
	Main Theorems
	Conclusion

	Kernel Alignment Ridge Estimator: Risk Prediction From Training Data
	Introduction
	Setup
	Predictor Moments and Signal Capture Threshold
	Risk Prediction with KARE
	Conclusion

	Freeze and Chaos: NTK views on DNN Normalization, Checkerboard and Boundary Artifacts
	Introduction
	Fully-Connected Neural Networks
	Order and Chaos in FC-NNs
	Chaotic effect of normalization
	Convolutional Networks
	Mode Collapse in Generative Adversarial Networks
	Conclusion

	DNN-Based Topology Optimization: Spatial Invariance and Neural Tangent Kernel
	Introduction
	Presentation of the method
	Theoretical Analysis
	Experimental analysis
	Conclusion

	Scaling Description of Generalization with Numer of Parameters in Deep Learning
	Introduction
	Improving generalization by averaging in MNIST
	Relationship between variance and generalization in classification tasks
	Asymptotic generalization as n to infinity
	Asymptotic generalization as N to infinity
	Vicinity of the jamming transition
	Conclusion

	Implicit Regularization of Random Feature Models
	Introduction
	Setup
	First Observations
	Average Predictor
	Variance
	Conclusion

	Saddle-to-Saddle Dynamics in Deep Linear Networks: Small Initialization Training, Symmetry and Sparsity
	Introduction
	Deep Linear Networks
	Proximity of Critical Points at Initialization
	NTK regime: <1
	Saddle-to-Saddle Dynamics: 1
	Characterization of the Regimes of Training
	Conclusion

	General Appendix
	Simple Bound on the Variance of the Random Feature Predictor

	Neural Tangent Kernel: Convergence and Generalization in Neural Networks
	Appendix

	The Asymptotic Spectrum of the Hessian of DNN Throughout Training
	Proofs
	Preliminaries
	The Matrix S
	Orthogonality of I and S

	Kernel Alignment Ridge Estimator: Risk Prediction From Training Data
	Numerical Results
	Proofs

	Freeze and Chaos: NTK views on DNN Normalization, Checkerboard and Boundary Artifacts
	Choice of Parametrization
	FC-NN Order and Chaos
	Layer Normalization and Nonlinearity Normalization
	Batch Normalization
	Graph-based Neural Networks
	DC-NN Order and Chaos
	Border Effects
	Layerwise Contributions to the NTK and Checkerboard Patterns

	DNN-Based Topology Optimization: Spatial Invariance and Neural Tangent Kernel
	Derivation of the algorithm
	Equations of evolution
	Details about embeddings
	Precise computations of the Neural Tangent Kernel
	Square root of the NTK in the case of random embedding
	Additional experimental results

	Scaling Description of Generalization with Numer of Parameters in Deep Learning
	Robustness of the boundaries distance (x) estimate
	Central limit theorem of the NTK
	Fluctuations of output function for the mean square error loss

	Implicit Regularization of Random Feature Models
	Experimental Details
	Additional Experiments
	Proofs

	Saddle-to-Saddle Dynamics in Deep Linear Networks: Small Initialization Training, Symmetry and Sparsity
	Further Experimental Details
	Regimes of Training
	Proofs for the Saddle-to-Saddle regime
	Technical Results

	Bibliography

