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Abstract

Motivated by the need for a better understanding of post-stroke recovery and new biomarkers to improve
stroke patient stratification and outcomes, this thesis investigated structure-function coupling and its role in
post-stroke recovery. Furthermore, in order to increase data comparability between sessions and centers (a
critical challenge in contemporary clinical research), this thesis assessed the reproducibility of
microstructure-informed structural connectivity measures in a multi-center dataset.

Stroke is one of the major sources of permanent impairment, frequently of motor origin. However the clinical
picture is very heterogeneous: patients show divergent courses of recovery and the underlying mechanisms
are still unclear. In addition, current treatments still have limited success and are restricted to a ‘one-fits-all’
approach, not considering the individual patient’s phenotype. As efforts to stratify patients based on
structural or functional biomarkers are still needed, we chose to investigate the potential of a multimodal
biomarker, the Structural Decoupling Index (SDI) (Preti & Van De Ville, 2019), a new metric assessing the
structure-function coupling strength in the brain.

The first part (Studies 1 and 2) of this thesis investigates the potential of the SDI as a biomarker. In Study 1,
the goals were to evaluate the feasibility of applying the SDI on an individual level in healthy older adults
and to investigate the effect of an acute stroke on it. Consistent with the literature, we found a network
gradient of SDI in healthy older adults, from high coupling in lower-level sensory areas, to low coupling in
higher-level cognitive areas. This confirmed the applicability of SDI on an individual level. Furthermore, we
showed that stroke impacts the SDI, with a higher decoupling on the ipsi- compared to the contralesional
side, and with network-specific effects in RH stroke patients. In Study 2, the goal was to see whether the SDI
evolved over time post-stroke and whether it links to behavior. The longitudinal analysis revealed differential
network effects of stroke at T1 and T3. Furthermore, we showed that impairment in cognitive and
psychological behavioral domains significantly correlates with variations in SDI in a number of key areas
including motor regions (e.g., primary motor cortex) and that the brain pattern associated to behavior
changes between T1 and T2. Surprisingly, motor performance did not explain variability in key motor areas
(e.g., primary motor cortex). The link between post-stroke behavioral performance and SDI underlines its
potential clinical relevance.

Driven by the quest for more reproducible analysis pipelines in the context of longitudinal and clinical studies,
the second part of this thesis (Study 3) addressed the subject-specific reproducibility and repeatability of
microstructure-informed tractography. Through a multi-center study, we demonstrated its high
reproducibility and subject-specificity, and we found evidence for increased biological accuracy.

My thesis made a contribution by showing that the SDI is sensitive to pathophysiological changes that occur
following a stroke and that it links to clinically relevant behavioral measures. In addition, it confirms the
reproducibility and subject-specificity of microstructure-informed tractography. Together, my findings pave
the way towards patient stratification and more personalized treatments in stroke rehabilitation.
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Résumé

Motivée par le besoin d'une meilleure compréhension de la récupération post-AVC et des nouveaux
biomarqueurs pour améliorer la stratification et les résultats des patients victimes d’un accident vasculaire
cérébral (AVC), cette these a étudié le couplage structure-fonction ainsi son réle dans la récupération post-
AVC. De plus, afin d'augmenter les possibilités de comparaison des données entre les sessions et les centres
(défi critique dans la recherche clinique contemporaine), cette thése a en outre eu pour but d'évaluer la
reproductibilité des mesures de connectivité structurelle basées sur la microstructure dans le cadre d'un
ensemble de données multicentriques.

L'accident vasculaire cérébral est I'une des principales sources de déficience fonctionnelle permanente, cette
derniére étant souvent d'origine motrice. Cependant, la présentation clinique est habituellement trés
hétérogéne: les patients présentent une évolution divergente dans la récupération et les mécanismes sous-
jacents impliqués ne sont actuellement toujours pas clairement définis. En outre, les traitements actuels
n'ont qu'un succes limité et se réduisent a une approche "générale" ou "universelle", sans tenir compte du
phénotype individuel de chaque patient. Comme les efforts pour stratifier les patients sur la base de
biomarqueurs structurels ou fonctionnels sont encore nécessaires, nous avons choisi d'étudier le potentiel
d'un biomarqueur multimodal, a savoir l'indice de découplage structurel (SDI) (Preti & Van De Ville, 2019b),
une nouvelle mesure évaluant la force du couplage structure-fonction dans le cerveau.

La premiere partie (études 1 et 2) de la thése étudie le potentiel du SDI en tant que biomarqueur. Dans
I'étude 1, les objectifs étaient d'évaluer la faisabilité de I'application du SDI a un niveau individuel chez des
adultes agés en bonne santé et d'étudier l'effet d'un accident vasculaire cérébral aigu sur celui-ci.
Conformément a la littérature, nous avons trouvé un gradient dans le SDI chez les adultes dgés en bonne
santé, allant d'un couplage élevé dans les zones sensorielles de niveau inférieur a un couplage faible dans les
zones cognitives de niveau supérieur, ce qui confirme la possibilité de I'application du SDI a un niveau
individuel. En outre, nous avons montré que I'AVC a un impact sur le SDI, avec un découplage plus élevé du
coté ipsilésionnel que du c6té controlésionnel, et ce avec des effets spécifiques au réseau chez les patients
ayant subi un AVC. Dans I'étude 2, I'objectif était de voir si le SDI évoluait dans le temps apres I'AVC et s'il
était lié au comportement. L'analyse longitudinale a révélé des effets différentiels de I'AVC sur le réseau a T1
et T3. Par ailleurs, nous avons montré que l'altération des domaines du comportement cognitif et
psychologique corréele significativement avec les variations du SDI dans un certain nombre de zones clés, y
compris dans les régions motrices (par exemple, le cortex moteur primaire) et que le schéma cérébral associé
au comportement change entre T1 et T2. De maniére surprenante, la performance motrice n'explique pas la
variabilité dans les zones motrices clés comme le cortex moteur primaire. Le lien entre la performance
comportementale post-AVC et le SDI souligne sa potentielle relevance clinique.

Poussée par la quéte d'un modele d'analyse plus reproductibles dans le contexte d'études longitudinales et
cliniques, la deuxieéme partie de cette these (étude 3) s'est penchée sur la reproductibilité et la répétabilité
spécifiques au sujet dans la tractographie basée sur la microstructure. Grace a une étude multicentrique,
nous avons démontré sa reproductibilité élevée et sa spécificité par rapport au sujet, et nous avons trouvé
des preuves d'une précision biologique accrue.

Ma these a apporté une contribution dans ce domaine en montrant que le SDI est sensible aux changements
physiopathologiques qui se produisent aprés un AVC et qu'il est lié a des mesures comportementales
cliniquement relevantes. De plus, elle confirme la reproductibilité ainsi que la spécificité liée au sujet de la
tractographie basée sur la microstructure. Ensemble, mes résultats ouvrent la voie a la stratification des
patients et a des traitements plus personnalisés dans la réadaptation post-AVC.
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Introduction

Understanding how the brain is structured and functions has always been a fascinating challenge for
scientists. It has been more than 120 years since the anatomist Brodmann published maps of cortical areas
in humans, monkeys and other species, which laid the foundation of today’s understanding of brain areas.
Back then, a very localizationist view was commonly accepted when defining the function of brain areas: a
specific function was regularly attributed to one or several specific brain areas. Several case studies
influenced and supported this view, such as the one of Phineas Gage in the middle of the 19th century, whose
orbitofrontal and prefrontal cortex was lesioned in an accident and who developed drastic personality
changes, or the discovery of Broca’s area based on a post-mortem identification of the region in a patient
suffering from aphasia, as well as the description of Wernicke’s area about 20 years later. All of these
examples tie specific functions to specific locations in the brain, which marked the field and were probably
part of the reason why researchers continuously tried to connect a function to a specific brain area.

In the past century, advances in brain imaging methods provided opportunities to investigate the brain as a
whole entity whose areas are interconnected and function together rather than in an isolated manner.
However, in MRI-based research, the concept of functional connectivity only emerged in the 1990s (B. B.
Biswal et al., 1997) as the coordinated activity between two brain regions. Even more recently, the structural
connectivity in humans as we know it today was introduced in 2007 (Hagmann et al., 2007), as an indirect
measure of the underlying number and strength of physical connections between a given pair of brain areas.
These relatively young fields have, however, quickly gained in importance and the consensus has now shifted
from a localizationist view towards a network approach, which suggests that functions are the result of a set
of areas communicating within a network, rather than the activity of an isolated area. However, brain
structure and function are still commonly studied one apart from the other.

Analogously, it has been shown that a focal lesion, such as it is caused through a stroke, has widespread
consequences within the brain and concerned networks (Guggisberg et al., 2019). Stroke is therefore a
network disease and one of the major causes for impairment across the globe. Nevertheless, every stroke is
specific with its own structural and functional consequences, which will also be reflected on behavioral level
through a variety of impairments, ranging from the motor domain to cognition. Similarly, recovery from
stroke is also heterogeneous and the underlying mechanisms are still unclear. Particularly, the link between
structure and function is poorly studied during recovery, even though it has been shown that the stroke, as
a structural lesion, also impacts functional connectivity.

My thesis fits in this framework as it investigates the link between structural and functional connectivity, an
emerging field which stands methodologically and conceptually still in the very beginning. The main aim of
this thesis was to investigate the link between structure and function on an individual level, i.e. by using
individual functional and structural connectomes instead of group averages, in stroke patients. Therefore,
this work aspires to propose a new perspective of how to look at the impact a stroke has on the brain as well
as at post-stroke neural reorganization.

In the next sections, | will introduce the general background needed for a good understanding of the present
thesis. | will start by defining stroke and its underlying neurobiological mechanisms. Then | will focus on post-
stroke recovery and current rehabilitation therapies, before moving on to providing an overview of the state-
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Introduction

of-the art and challenges in Magnetic Resonance Imaging related to stroke. Finally, | will finish by presenting
the theoretical and clinical framework of my thesis.

1.1 Stroke pathophysiology

1.1.1 Stroke types and acute management

The diagnosis of stroke is based on neuroimaging, neuropathology and/or clinical evidence of permanent
ischemic or hemorrhagic injury. There are two main types of stroke, ischemic (87% of cases) and hemorrhagic
(13%) (Virani et al., 2021).

Ischemic stroke, also called central nervous system (CNS) infarction, is usually caused by an arterial
thrombotic or stenotic blockage, which deprives the supplied areas of oxygen (Figure 1) (Sacco et al., 2013).
Clinically, an ischemic stroke causes an episode of neurological dysfunctions, such as paresis of the arm
and/or leg or the inability to comprehend or produce speech. In most cases, the stroke lesion is composed
of an irreversibly infarcted core as well as a certain amount of underperfused tissue that can still be salvaged,
called the ‘penumbra’ (Figure 1). If treatments in the form of thrombolysis — intended to dissolve the blood
clot — or thrombectomy — a mechanical excision of the thrombus — are administered rapidly (within a few
hours), blood flow is restored and the cells within the penumbra tend to survive (Murphy & Corbett, 2009).
However, if the blood flow is not restored, the penumbra will also perish, which is often associated to a
negative clinical outcome (Sacco et al., 2013). Moreover, it is well known that “time is brain”, i.e., that
administering the appropriate acute care treatment is usually a race against the clock, as 1.9 million neurons
die each minute in which the typical patient is not treated for stroke (Saver, 2006). Despite the efficacy of
these treatments, only a minority of patients are eligible to receive them, which is why developing adequate
rehabilitation therapies is of outmost importance.

PENUMBRA

RUPTURED
BLOOD
VESSEL

4 ISCHEMIC CORE
€3
R

=

N

CEREBRAL ARTERIES

Figure 1. Types of stroke and penumbra.

Left: Ischemic stroke, where a blood clot is obstructing an artery in the brain causing the downstream areas to be deprived of oxygen.
Middle: Hemorrhagic stroke, where a blood vessel ruptures and causes a focal collection of blood within the brain tissue or ventricular
system. Right: Penumbra. Underperfused tissue surrounding the ischemic core (after an ischemic stroke). Image adapted from
https://www.dana.org/article/stroke/ (consulted on 29.03.2022).

Compared to ischemic stroke, a hemorrhagic stroke (also called parenchymal hemorrhage) is caused by a
focal collection of blood within the brain tissue or ventricular system that is not caused by trauma (Figure 1).
It is usually accompanied by rapidly developing signs of neurological dysfunction and/or headache due to the
mass effect (i.e. blood is accumulating and pushing on or displacing surrounding tissue, causing secondary
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Introduction

pathological effects) (Sacco et al., 2013). Compared to ischemic stroke, morbidity and mortality are higher in
hemorrhagic stroke patients and early diagnosis and treatment to manage the intracranial pressure are thus
crucial (S. Chen et al., 2014). Treatments range from osmotherapy, blood pressure control and reversal of
anticoagulant therapy to surgical interventions (S. Chen et al., 2014).

In summary, after an ischemic infarct, the goal of the acute treatment is to restore blood flow as rapidly as
possible, whereas after a hemorrhagic stroke, the first priority is to stop further bleeding. Both types of stroke
translate to behavioral dysfunctions, such as motor or cognitive deficits which will be further elaborated in
the next section.

1.1.2 Symptoms and disabilities

Despite improvements in prevention and acute treatment, which have led to a significant decrease in the
burden of stroke over the past decades, stroke remains a major cause of long-term disability (Katan & Luft,
2018). Most frequent symptoms at stroke onset include upper and/or lower limb motor deficits (80-85% of
patients), somatosensory deficits (40-50%), language deficit or aphasia (20-25%), visual deficits (15-20%),
memory deficits (15-25%), and attention deficits or neglect (25-30%), amongst others (Appelros et al., 2002;
Buxbaum et al., 2004; Lawrence et al., 2001; Nys et al., 2007; Ramsey et al., 2017; Rathore et al., 2002;
Ringman et al., 2004). Frequently, patients experience more than one symptom and most patients retain
functional disabilities after the acute stage. In the case of paralysis, for example, only 15% of patients recover
fully (Hendricks et al., 2002). Loss of motor function, particularly of the arm and hand, significantly decreases
patients’ quality of life as well as devaluates their independence in performing even the simplest everyday
tasks, rendering it a key challenge in post-stroke recovery (Stinear, 2017; Stinear et al., 2020). Despite
opposed interventions in the hyperacute phase, motor recovery and outcome seem to be independent of
the type of stroke (Boyd et al., 2017; Nouri & Cramer, 2011; Stinear et al., 2020), suggesting that these
behavioral deficits — and their evolution over time — are the consequence of common underlying
neurobiological mechanisms which take place following a stroke.

1.1.3 Neurobiological mechanisms

1.1.3.1 Stroke

The neurobiological mechanisms underlying the behavioral improvements in the first weeks and months
post-stroke are still not fully understood (Stinear et al., 2020). Evidence from animal studies suggests that
stroke triggers a cascade of hemodynamic and neuroinflammatory reactions within minutes to hours after
stroke onset (Murphy & Corbett, 2009). Indeed, neurons stop functioning within seconds of oxygen
deprivation and signs of structural damage can be observed already after two minutes (Murphy et al., 2008).
Due to a lack of energy, the normal transmembrane ionic gradients cannot be further maintained and the
resulting water and ion imbalance initiates apoptotic and necrotic cell death cascades (Besancon et al., 2008;
Hossmann, 2006), which lie at the origin of motor and sensory impairments for example (Hossmann, 2006;
Murphy & Corbett, 2009; S. Zhang & Murphy, 2007). Following a stroke, structural and functional
reorganization takes place thanks to neural plasticity.
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1.1.3.2  Spontaneous neural plasticity

A majority of patients will display post-stroke functional improvements, which can be related to brain
plasticity. In this regard, both structural and functional changes are involved in stroke recovery, especially in
areas and networks that have a close functional link with the lesioned area (Murphy & Corbett, 2009).

1.1.3.21 Structural plasticity

In the case of an ischemic stroke, the first main mechanism of repair consists of the salvation through
reperfusion of the neurons contained in the penumbra (Murphy & Corbett, 2009). Tissue in the penumbra is
also supplied by a parallel artery system, which allows neurons in this area to survive for a few hours, even if
the main blood supply is interrupted. Once reperfusion is in place, some damages to the dendritic structure
can be reversed and this perilesional area becomes one of the main locations where neural reorganization
occurs (Murphy & Corbett, 2009).

In animal studies, structural neural plasticity following a stroke has been shown to involve processes such as
axonal sprouting, dendritic branching, synaptogenesis, neurogenesis, as well as gliogenesis, and is observed
to be clinically beneficial in areas connected to the damaged area, such as the peri-infarct region, ipsi- and
contralesional brain and spinal cord networks (Ward, 2017).

1.1.3.2.2 Functional plasticity

In addition to the aforementioned structural plasticity, a stroke also induces functional plasticity in the form
of alterations in neuronal excitability (Carmichael, 2012; Murphy & Corbett, 2009; Ward, 2017). In the first
phase after stroke, the neurotransmitter glutamate is excitotoxic and contributes to cell death, which can be
counteracted by the inhibitory neurotransmitter GABA through cell hyperpolarization (Lai et al., 2014). In
mice, this phase where inhibition in the perilesional area is beneficial, lasts approximately 3 days (Clarkson
et al., 2010), while its duration in humans remains unknown (Ward, 2017). Subsequently, the effects reverse
and a shift in the cortical excitatory-inhibitory balance towards excitation becomes beneficial for plasticity
(Bavelier et al., 2010). Indeed, an increase in excitability at this point has been associated to a re-opening of
critical periods of plasticity in the adult brain. Through epigenetics, increased neuronal activity is thought to
be at the origin of neurogenesis as well as of an increase in growth factors such as brain-derived neurotropic
factor (BDNF) (Felling & Song, 2015). Hence, functional changes in turn activate further structural plasticity.
Furthermore, decreased inhibition has also been linked to expanded receptive fields (Alia et al., 2016;
Winship & Murphy, 2008), increased long-term potentiation (Hagemann et al., 1998), as well as remapping
of sensorimotor functions to intact cortex in the ipsi- and contralesional hemispheres (Que et al., 1999;
Takatsuru et al., 2009). All these effects are thought to be supportive of post-stroke reorganization. Hence,
it is believed that a change in balance between GABA- and glutamatergic signaling could be a pivotal event
at the origin of neural plasticity (Liuzzi et al., 2014; Ward, 2017).

In addition to a change in the GABA-glutamate balance, homeostatic plasticity has been hypothesized to
contribute to neural plasticity in a similar manner (Murphy & Corbett, 2009). Due to a decrease in input from
adjacent tissue due to infarct, oedema or decreased blood flow, the synaptic activity also decreases in the
perilesional area and in related networks in the first days to weeks after stroke (Bolay et al., 2002; Brown et
al.,, 2009; Butefisch, 2003; Winship & Murphy, 2008). Through homeostatic plasticity, the presynaptic
neurotransmitter release and the postsynaptic response to the latter are increased, in order to restore pre-
stroke levels of synaptic activity (Turrigiano & Nelson, 2004). The resulting increase in excitability has been
linked to the transient appearance of low frequency spontaneous activity (0.1-1Hz) (Carmichael & Chesselet,
2002). This spontaneous activity has been associated to the induction of structural plasticity, such as axonal
sprouting (Carmichael, 2003; Carmichael et al., 2001; J.-K. Lee, 2004) and dendritic spine production (Brown
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etal., 2007, 2009) which might constitute an attempt to compensate for damaged structural circuits (Murphy
& Corbett, 2009).

Collectively, this evidence suggests that increased neuronal excitability is at the origin of downstream
changes in axonal structure. Moreover, the phenomena surrounding structural and functional plasticity
which are described above exist during a limited amount of time after stroke.

1.1.3.3 Window of opportunity

Recent work has shown that there is a restricted time window of neuroplasticity that opens following a
stroke, during which the greatest functional gains are possible, called “window of opportunity” (Biernaskie,
2004; Zeiler et al., 2016). These processes of neuronal recovery are related to the increased gene expression
of growth promoting factors (e.g., brain-derived neurotropic factor (BDNF)) (Chopp et al., 2007; Murphy &
Corbett, 2009; Wieloch & Nikolich, 2006). In animal models, the window of plasticity has been shown to close
in the first weeks post-stroke with the increase in growth inhibiting factors (e.g., NOGO-A) (Murphy &
Corbett, 2009). In addition, the necessity of training in the beginning of this window, within the first days
after a stroke, has shown to be crucial. This is nicely illustrated in an experiment by (Zeiler et al., 2016) where
a seven-day delay in post-stroke training led to an incomplete recovery of task performance. However,
through the induction of a second stroke in the same hemisphere combined with training starting the
following day, the mouse was able to fully recover from both events. This shows that there might be a short
period of time in which function can be regained through training in addition to a favorable biological
environment, which is engendered by the stroke.

Even though molecular and cellular mechanisms of neural plasticity have been well studied in pre-clinical
settings, most findings have failed to translate to the clinical environment. Thus, future work in humans
should address the open questions related to various aspects of this critical window, such as timing, quantity,
intensity, and type of physical training in order to support neurorehabilitation (Ward, 2017). In the next
section, | will briefly review the current state of knowledge surrounding recovery and rehabilitation strategies
after a stroke.

1.2 Post-stroke recovery and rehabilitation

1.2.1 Proportional recovery model

In parallel to neural plasticity, behavioral changes can be observed. For instance, a majority of patients are
expected to spontaneously recover about 70% of their initial impairment within the first 3-6 months
(Prabhakaran et al., 2008). These patients are said to follow the so-called ‘proportional recovery rule’ (Figure
2) according to which the impairment is defined as the difference between a maximal and an initial score of
a behavioral assessment, e.g., a motor test (Grefkes & Fink, 2020; Prabhakaran et al., 2008; Winters et al.,
2015). As an example, if a patient initially (shortly after stroke onset) scores 16 out of 66 points on the Fugl-
Meyer motor assessment of the upper extremity (UE-FM), his impairment is 66 (maximal UE-FM score) — 16
(initial score) = 50 points. The patient is then expected to recover 70% of this initial impairment, i.e., 50 * 0.7
= 35 points, with a final score of 16 (initial score) + 35 (expected recovery) = 51 points. Severely affected
patients are thus expected to recover more in absolute numbers than moderate-to-mildly affected patients.
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Figure 2. Proportional motor recovery in the upper limb.

Two popular ways of plotting data to investigate proportional recovery. a) Predicted change in a behavioral score vs. observed
change. Patients falling in the blue range show proportional recovery, whereas patients falling in the red range recovery poorly. b)
Motor function is plotted vs time post-stroke. Patients falling on the blue range recover well, whereas patients falling in the red
range do not show proportional recovery. In this example, the recovery curves of patients suggest that the recovery does not
depend on initial impairment. Image adapted from Ward (2017).

Proportional recovery was first demonstrated for the upper limb (Prabhakaran et al., 2008) and subsequently
extended to other domains such as the lower limb (M.-C. Smith et al., 2017; Veerbeek et al., 2018), visual
spatial neglect (Marchi et al., 2017; Winters et al., 2017), aphasia (Lazar et al., 2010; Marchi et al., 2017) and
other cognitive domains (Ramsey et al., 2017).

Outcome predictions based on the proportional recovery model have shown to be very accurate for mildly
and moderately impaired patients as well as for a part of the severely impaired patients (‘fitters’, 2/3 of
patients), whereas the remaining part of severely impaired patients shows little-to-no spontaneous recovery
and hence does not fit the model (‘non-fitters’, 1/3 of patients) (P. J. Koch et al., 2021). The incomplete
understanding of the limited recovery for ‘non-fitters’ has puzzled the field in the last couple of years and
underlines the heterogeneity and unpredictability associated to stroke recovery (Stinear, 2017; Ward, 2017).

Even though proportional recovery has been demonstrated in various studies involving hundreds of stroke
patients, recently, criticism has been voiced regarding heavily inflated effect sizes (Bonkhoff et al., 2020) arising
from ceiling effects and mathematical coupling (Hawe et al., 2019; Hope et al., 2019). In addition, the model
assumes that the type and intensity of physical therapy, e.g., cannot substantially impact the outcome and
that recovery is mainly driven by a fundamental neurobiological process (‘spontaneous recovery’) (Grefkes
& Fink, 2020). Indeed, correlations tend to be very high when outcomes are significantly less variable than
baselines (Hope et al., 2019). In addition, given that recovery cannot exceed 100% and scores rarely decrease
over time post-stroke, the datapoints can only fall within a very restricted area (Figure 2), which biases the
goodness of fit. In other words, mathematical coupling occurs when “one variable directly or indirectly
contains the whole or part of another”, which is the case of proportional recovery, where the initial score is
part of both the independent (maximum score — initial score) and dependent variable (final score — initial
score). The null hypothesis (i.e., no relationship) is thus void (Hawe et al., 2019; Hope et al., 2019). Taking
this into account, the authors refute the assumption that fitters’ outcomes are largely independent of
therapeutic interventions, however, they do not contest the existence of non-fitters, i.e., patients who do
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not recover as predicted (Hawe et al., 2019; Hope et al., 2019). In line with this, alternatives to the classical
proportional recovery model have recently been proposed (Bonkhoff et al., 2022; Vliet et al., 2020) and they
confirmed that the distinction between ‘fitters’ and ‘non-fitters’ was not an artefact of previous confounds.
Furthermore, a recent study showed that whole brain connectomics could be a promising new way of
distinguishing “fitters’ from ‘non-fitters’ more accurately (P. J. Koch et al., 2021).

Therefore, the understanding and prediction of post-stroke recovery and outcome, in particular the non-
recovery of a sub-group of patients, remains a challenge and should be further addressed in the future, ideally
to predict outcomes for individual patients in order to allow for a better personalization of treatments.

1.2.2 Rehabilitation therapies

Rehabilitation therapies aim at supporting the spontaneous biological recovery in the various behavioral
domains. Depending on the impairment, current interventions include physical, occupational and language
therapies in addition to more recent multimodal treatments (e.g., music-based or mirror therapy). With
regard to motor impairment, usual care therapies seem to benefit the general stroke population, especially
in terms of activity capacity, which can increase independence and quality of life and decrease caregiver
burden and institutionalization (Stinear et al., 2020; Winstein et al., 2016). However, they mainly follow a
‘one-fits-all’ approach and are not tailored to the individual patient’s needs, especially the needs of patients
who belong to ‘non-fitter’ groups, i.e., who show little to no spontaneous recovery.

In response to this need for more individualized therapies, the quest for new appropriate and more
personalized therapeutical targets to improve motor outcome is ongoing. However, to this day, clinical trials
have been rather unsuccessful (Stinear et al., 2020) which can be accounted for due to several reasons. First,
usual care therapies which are ongoing in parallel to clinical trials are often not routinely monitored, hence
disentangling the effect of the clinical trial from the usual care effect can be challenging (Stinear et al., 2020).
In addition, most motor recovery takes place in acute and early subacute phases after a stroke (i.e., in the
first 3 months) (Duncan et al., 2000; Krakauer et al., 2012; Zeiler & Krakauer, 2013) which makes it the ideal
moment to further support behavioral improvements (Biernaskie, 2004; Overman & Carmichael, 2014).
However, if the clinical trials take place during this period, they are further confounded by spontaneous
recovery, whose peak occurs simultaneously (Stinear et al., 2013). Second, the interventions tested in clinical
trials might have been too similar to current therapy practices, rendering it difficult to differentiate the two
(Jolkkonen, 2016; M.-C. Smith et al., 2017). Third, only few studies (Stinear et al., 2017) selected biomarkers
of corticomotor function or structure as inclusion criteria. Therefore, the capacity of patients to respond to
treatment (i.e., to the underlying biological mode of action of the intervention) might have differed
significantly between control and treatment groups, even if the groups were matched on baseline clinical
scores. However, selecting patients based on biomarkers which reflect their capacity to respond to the
intervention, could increase the statistical power of a clinical trial and detect effects that are only present in
a specific sub-group of the stroke population (Stinear, 2017).

The biggest and foremost challenge of the current time, however, is to have a better understanding of stroke
recovery, especially with regard to ‘non-fitters’, which could potentially lead us to identify biomarkers that
are more suitable for patient stratification in the context of clinical intervention trials that shape recovery
and behavioral outcomes, two common indicators of post-stroke recovery (Guggisberg et al., 2019; Stinear,
2017). To this end, large-scale longitudinal studies including both ischemic and hemorrhagic stroke patients
are needed in order to represent the entirety of the stroke population and to draw appropriate conclusions
(Guggisberg et al., 2019; Stinear, 2017). Furthermore, in addition to tracking the physical and cognitive
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improvements, it is crucial to couple the behavioral observations with neuroimaging, such as Magnetic
Resonance Imaging (MRI), in order to relate the recovery to the underlying neural mechanisms.

1.3 Magnetic Resonance Imaging (MRI) in stroke

There are various ways to investigate neural correlates underlying stroke recovery in humans. Here, | will
focus on one of the most prominent neuroimaging techniques — Magnetic Resonance Imaging (MRI) — and
briefly review the main applications of structural as well as functional MRI, thereby summarizing the main
insights they provided related to stroke recovery and outcome over the last decades.

MRI is a non-invasive brain imaging technique, which can inform us about in-vivo brain structure and function
in humans. It has been widely used in research to cross-sectionally and longitudinally investigate neural
correlates underlying stroke and its recovery (Crofts et al., 2020; Moura & Conforto, 2019). Two of the most
frequently used modalities are Diffusion-Weighted Imaging (DWI) and BOLD imaging for structural and
functional imaging, respectively. In radiology, the term structural MRI refers to classical T1- and T2-weighted
imaging sequences, which provide high resolution images with good contrast between different tissues in
the brain (Carneiro et al., 2006). However, for the sake of simplicity and given that DWI provides structural
information regarding fiber tracts in the brain (see section 1.3.1 here below), in this thesis, | will use the term
“structural MRI” to relate to DWI.

1.3.1 Structural MRI

Through DWI, it has become possible to study fiber tracts and their associated microstructure as well as their
changes over time. This makes this method crucial for translational research and for studying the neural
reorganization after cerebrovascular accidents. (Guggisberg et al., 2019).

1.3.1.1  Microstructural imaging

Values derived from diffusion imaging, such as the Fractional Anisotropy (FA) or Mean Diffusivity (MD) are
often used to describe the integrity of neural tissue (Beaulieu, 2014). FA describes the directionality of
diffusion and can take a value between zero and one. A value of zero indicates that diffusion is isotropic (i.e.,
equal in all directions), whereas a value of one means that the diffusion is oriented along one axis and non-
existent in all other directions. FA is typically high in voxels that contain a big amount of highly aligned fibers,
because water molecules diffuse mainly along the direction of these fibers. FA can be related to fiber density,
axonal diameter and myelination in white matter and tends to be low in grey matter and high in white matter.
MD, on the other hand, provides information about the average diffusivity of water in the brain (Beaulieu,
2014) and is similar in gray and white matter.

In theory, in white matter, a stroke would cause a decrease in FA and an increase in MD, due to the loss of
directionality of diffusion. Following grey matter damage, MD would also increase, but FA could either
increase or decrease depending on the biological process that is triggered (Beaulieu, 2014). However, to this
day, the interpretation of changes in diffusion parameters and their implication for tissue (micro-)structure
is not fully understood. This is in particular due to limitations related to tractography and essentially its
angular resolution (Maier-Hein et al., 2017), which is the capability to distinguish between two distinct fiber
tracts that cross at a certain angle. The smaller the angle at which the two fiber tracts are still distinguished
by the algorithm, the higher is its angular resolution (Seunarine & Alexander, 2014). Depending on the
angular resolution, it can thus be difficult to disentangle a lesion from a simple fiber crossing, as both cause
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a decrease in FA in a given voxel (Assaf et al., 2017; Chu et al., 2015; Descoteaux et al., 2009; Jensen et al.,
2005; Malcolm et al., 2010). Despite efforts in the achievement of higher angular estimation, which would
allow for better results in locations of fiber crossings (Descoteaux et al., 2009; J.-D. Tournier et al., 2004), as
well as in the development in higher and more complex models (Alexander et al., 2017; Assaf et al., 2017),
the problem is still not fully resolved (Maier-Hein et al., 2017).

1.3.1.2  Tractography

The diffusion signal can also be used to reconstruct fiber tracts. In both healthy and pathological brains,
tractography offers a unique opportunity to non-invasively delineate white matter pathways. This makes it
suitable to study fiber bundles and structural brain connectivity in vivo in humans (Jeurissen et al., 2017).

Tractograms (Figure 3) are constructed based on a tensor or on the orientation distribution of fibers (ODF),
which are estimated for every voxel (Jeurissen et al., 2017; O’Donnell et al., 2017). From the latter, tracts can
be reconstructed using either deterministic or probabilistic tractography. In deterministic tractography, at
every voxel, the direction is given by the major eigenvector of the diffusion tensor or the peak orientation of
the ODF (Blyth et al., 2003; Hagmann et al., 2007). As a consequence, for every seed there is a unique
streamline and the streamline is fully determined by its seed point (Seunarine & Alexander, 2014).
Probabilistic algorithms, in addition to using fiber directions, also use a model of the uncertainty of each fiber
orientation estimate, thereby selecting the direction associated to the highest probability (Seunarine &
Alexander, 2014).

Figure 3. Whole-brain tractogram.
Left: Whole-brain tractogram. Right: A selection of fiber bundle trajectories are virtually dissected. Image adapted from Jeurissen
etal. (2017)

A main application derived from tractography is the measure of structural connectivity, where the number
of ‘connections’ (i.e., streamlines) between a pair of cortical and/or subcortical grey matter areas reflects
their connection strength (Hagmann et al., 2008; Sporns, 2011). Furthermore, a structural connectome is a
n-by-n matrix in which the structural connectivity of each pair of regions of interest (ROls) is summarized (n
reflects the number of ROIs in the cortical and/or subcortical grey matter parcellation) (Figure 4) (Sporns et
al., 2005).
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Tractography is, however, facing certain reproducibility issues (Brumer et al., 2021), which can mainly be
related to the use of different MRI scanners, but also to inter-run variability (Bonilha et al., 2015). In addition,
tractography is also subject to considerable variations which depend on the algorithm that is used for fiber
tracking. (Maier-Hein et al.,, 2017). Indeed, tractograms obtained through most algorithms contain
approximately 90% of the ground truth bundles, however, they also contain many more valid compared to
invalid fiber bundles. Of these false-positive fiber bundles, more than half are systematically reproduced
across research groups. Often times, these are considerably dense bundles of plausible looking streamlines
in places where they should not actually exist. As for microstructural imaging, the main limitation is related
to angular resolution (Maier-Hein et al., 2017). One proposed optimization are streamline filtering
techniques, such as Spherical-deconvolution Informed Filtering of Tractograms (SIFT) (R. E. Smith et al., 2013,
2015b) or Convex Optimization Modeling for Microstructure Informed Tractography (COMMIT) (Daducci et
al., 2015; Schiavi et al., 2020), which could help reduce tractography biases (Maier-Hein et al., 2017). The
underlying idea is to integrate non-local information (R. E. Smith et al., 2013, 2015b) as well as to inform the
tractogram with microstructure and anatomical priors (Daducci et al., 2015; Schiavi et al., 2020). To this day
it has however not been investigated to what extent these filtering techniques influence reproducibility and
repeatability. Despite its limitations, DWI is currently the only method that allows to investigate white matter
pathways in humans in vivo and as such remains one of the essential tools used in neuroscience research
(Maier-Hein et al., 2017).

In conclusion, DWI greatly facilitated the understanding of the brain’s in vivo circuits and the mapping of
white matter in healthy and pathological populations. Furthermore, despite its limitations related to
reproducibility and the presence of false-positive fiber bundles, it remains the gold standard for the
investigation of fiber tracts in humans. However, little can be inferred about the function of the tracts that
were discovered through diffusion-weighted imaging, motivating the need for another, functionally-oriented
MRI technique.

1.3.2 Functional MRI

Blood flow in the brain is highly locally controlled in accordance to the oxygen demands required by the
different brain areas. If a brain area increases its activity, its oxygen requirements increase, which leads to a
brief drop in oxygenated hemoglobin as well as an increase in carbon dioxide and deoxygenated hemoglobin.
In response to this, blood flow to this area will be increased, which leads to a surplus of oxygenated
hemoglobin. It is this peak in local tissue oxygenation which can be captured by functional MRI sequences,
rendering BOLD signal an indirect measure of brain activity. The activity of the brain can be observed either
during a task or during rest, called task-based or resting-state functional MRI (fMRI), respectively (Belliveau
et al.,, 1991; B. Biswal et al., 1995; Ogawa et al., 1990). fMRI was the first imaging method to offer high spatial
resolution, however this comes at the cost of a low temporal resolution, making this method complementary
to electroencephalography (EEG), which has a high temporal and low spatial resolution (Filippi, 2015).

1.3.2.1 Task-based fMRI

Task-based fMRI offers unique possibilities to investigate sources of brain activation related to behavior,
assessed by tailored experimental paradigms performed in MRI scanners (Ogawa et al., 1990). Through a
targeted motor task this allows, for example, to study differences in brain activations occurring in a given
movement in time in healthy participants vs. stroke patients with motor deficits (Hannanu et al., 2017;
Rehme et al., 2015). In the context of clinical studies, one of the main limitations of this method is the level
of impairment of patients. Indeed, patients with strong deficits might not be able to perform the task, which
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limits the interpretability of the results (Guggisberg et al., 2019). In the framework of task-based fMRI, the
goal is usually to relate the activity of brain areas to a specific function. Lately, the field has moved away from
this view towards a more interactive network approach, where a function is related to the interplay between
different grey matter areas within a network rather than to the activity in one or several isolated brain regions
(Liu & Duyn, 2013). Recent studies started to investigate dynamic co-activation patterns to task-based fMRI,
which allows to capture dynamic behavior of networks involved in a given task (Dhanis et al., 2022).

1.3.2.2  Resting-state fMRI

Interactions of neural networks can also be observed through resting-state fMRI without any explicit task.
Here, synchronization of hemodynamic fluctuations between brain regions or voxels of interest are studied
and the strength of interregional interactions are estimated (B. Biswal et al., 1995; Fries, 2005; Varela et al.,
2001). In this context, functional connectivity reflects the statistical dependency between two brain regions
(or voxels) and is used to describe the coordinated activity between the latter (Friston, 1994; Nozais et al.,
2021). Analogously to the structural connectome, a functional connectome is a n-by-n matrix in which the
functional connectivity of each pair of regions of interest (ROIs) is displayed (n reflects the number of ROIs in
the cortical and/or subcortical grey matter parcellation) (Figure 4).

Anatomical projections Neural activity Functional

connectivity

Structural
connectivity

Figure 4. Measuring structural and functional connectivity.

For both structural and functional connectivity, it is necessary to first parcellate the cortex in regions of interest (ROIs) or nodes,
displayed as grey dots. Structural connectivity is based by counting, e.g., the number of streamlines — which represent the
underlying anatomical projections — between each pair nodes (often times this value is normalized by the total amount of
streamlines in the tractogram or by ROI size). The matrix on the left, called structural connectome, summarizes these connectivity
values and high connectivity is reflected in blue. To obtain the functional connectome (on the right), the correlation between the
averaged neural activity of each pair of ROIs is plotted. Image adapted from Sudrez et al (2020).

Resting-state fMRI bears the advantage of being independent of a person’s ability to perform a task, which
is often restricted after a stroke. Therefore, resting-state fMRI offers a great opportunity to follow post-stroke
neural reorganization in patients with all degrees of impairment. In addition, it allows to study several
networks and their interactions simultaneously and on whole-brain level (Guggisberg et al., 2019;
Karahanoglu & Van De Ville, 2015). Templates for resting-state networks as published by Yeo et al. (2011)
or (S. M. Smith et al., 2009) are frequently used in research and offer various levels of resolution (e.g. Yeo et
al. propose a 7-network as well as a 17-network estimate). A limitation of this method is that it is not possible
to infer conclusions about the anatomical connections that underlie this functional activation or connectivity.
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1.3.3 Understanding of motor recovery and outcome through MRI

As mentioned previously (see section 1.2), there is a need to further improve outcome and prediction
accuracy of recovery, as well as to personalize treatment in order to move a step forward in stroke
rehabilitation. A better prediction of long-term outcomes after stroke would benefit patients, caregivers and
clinicians likewise. It would allow to better define clinical pathways and goal setting and it could potentially
help determine type and dose of intervention to promote stroke recovery (Boyd et al., 2017; Cramer et al.,
2007). A particular challenge in terms of prediction remain patients with severe initial motor impairments.
Some have good natural recovery, whereas others do not and clinical scores at this stage cannot distinguish
between the two sub-groups. Therefore, the use of biomarkers based on neuroimaging for patient
stratification has been a high priority challenge in clinical research over the past years (P. J. Koch et al., 2021;
Stinear, 2017; Ward, 2017).

MRI is a widely used technique for both clinical applications and research related to stroke. In the past two
decades, a particular focus has been laid on the understanding and prediction of motor recovery and
outcome. Recovery is understood as the improvement over time (e.g., a patient improved 12 points on the
UE-FM scale between the acute and chronic phase), whereas the outcome, or residual function, reflects a
specific score at a certain point in time (e.g., a UE-FM score of 52 after one year).

In the next sections, | will give an overview of the cortical motor network as well as the main structural and
functional neuroimaging biomarkers for patient stratification in the context of motor recovery after stroke.

1.3.3.1 Cortical motor areas

In 1870, Fritsch and Hitzig (Fritsch & Hitzig, 1870) provided the first clear demonstration through electrical
stimulation that some areas of the cerebral cortex of dogs were involved in motor function. In non-human
primates, Leyton and Sherrington (Leyton & Sherrington, 1917) later applied electrical stimulation at
different locations of the precentral cortex and reported that they could induce movements of specific parts
of the body. In 1909 Brodmann (Brodmann, 1909) demonstrated differences in the cytoarchitecture between
agranular cortex with large pyramidal cells in the anterior bank of the precentral sulcus (Brodmann area 4)
and the agranular cortex in the precentral gyrus and the posterior portion of the superior frontal gyrus on
both the lateral and medial surfaces of the brain (Brodmann area 6). These findings, along with converging
lines of evidence from clinical observations and cortical ablation experiments performed in monkeys, led
Fulton (Fulton & Sheehan, 1935) to propose that the motor cortex of human is divided into a primary motor
area (M1, corresponding to Brodmann area 4) and a premotor area (PM, corresponding to Brodmann area
6). Today, several distinct nonprimary motor areas have been identified: the PM located on the lateral part
of Brodmann area 6 (Picard & Strick, 2001) and the supplementary motor areas (SMA) located on the medial
part of Brodmann area 6 (Penfield & Welch, 1951; Picard & Strick, 1996).

M1 hosts the upper motor neurons and is the origin of the majority of descending fiber pathways to the
lower motor neurons located in the ventral horn of the spinal cord (Porter & Lemon, 1993). PM has been
shown to be activated when a new motor program is established or when the motor program is changed on
the basis of sensory information (Roland et al., 1980). Regarding the secondary motor areas, the dorsal part
of PM is involved in reaching movements, whereas the ventral part is responsible for hand and finger
movements (Hoshi & Tanji, 2007). Additionally, the supplementary motor areas (SMA) have been shown to
play an important role in the preparation and organization of voluntary movement, notably in the
performance of sequential movements (Nachev et al., 2008). Anatomically, the SMA comprised at least two
subareas, the rostral pre-SMA, which is heavily interconnected with prefrontal areas, and the caudal SMA-
proper, which is closely interconnected with M1 and PM (Miall, 2016). Both PM and SMA have direct
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anatomical projections to spinal motor neurons allowing them to directly influence the motor output (Dum
& Strick, 1996; He et al., 1993).

Further areas that are less directly involved comprise 1) the cingulate motor area located along the dorsal
and ventral banks of the cingulate sulcus which is involved in the execution of movements (Paus et al., 1993)
2) the posterior parietal cortex (areas 5 and 7) which provides information to the other motor areas regarding
the spatial position of the body with respect to the external world as well as the spatial relationship between
objects (Whitlock, 2017) 3) the somatosensory cortex (S1, areas 1,2,3), which provides detailed sensory
information regarding proprioceptors in muscles and joint as well as from cutaneous receptors and 4) the
frontal eye fields and supplementary eye fields (within area 8) which are involved in voluntary control of the
eyes (Miall, 2016). For a visual illustration of the motor areas, see Figure 5.

Supplementary
moter area
Premotor |

cortex Primary motor cortex

Primary somatosensary cortex
Frontal eye field
/ Posterior parietal cortex
6 4
& 31,2 '/
5

7

ik z
# Visual cortex
Prefrontal J___,/ S

cortex

Broca's = Cerebellum

area
Temporal cortex \

Brain stem

Figure 5. Motor areas.
Illustration of the motor areas of the cerebral cortex. The numbers represent the Brodmann’s area. E.g., the primary motor cortex
corresponds to Brodmann’s area 4. Image adapted from Miall, (2016)

The main inputs to M1 come from PM, SMA, the posterior parietal cortex and S1. In addition, there is further
input from the cerebellum via the thalamus and visual information is relayed via PM as well as via the
cerebellum to M1. Lastly, the motor cortex receives inputs from the locus coeruleus, the reticular system,
and the interthalamic nuclei which adjust the level of motivation or arousal within the voluntary motor
system. The main output from the motor cortex are projections belonging to the pyramidal tract, or
corticospinal tract (CST), which pass through the internal capsule to the brainstem and the spinal cord (Miall,
2016). Finally, there is also evidence for connections to the contralateral motor cortex through homotopic
direct transcallosal projections between M1, PMC and SMA (Boussaoud et al., 2005; Luppino et al., 1993;
Rouiller et al., 1994)

In summary, M1, PM and SMA are the central motor areas involved in the planning and execution of a
movement. Further information which is relevant for motor control is relayed to them via the cingulate motor
area, the posterior parietal cortex, S1, and the frontal eye fields. Therefore, these areas are likely to be
affected by a stroke and to play a pivotal role during post-stroke cortical reorganization, which | will address
in the next sections.
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1.3.3.2 Structural MRI in stroke

Following a stroke, studying microstructure and reconstructing major fiber bundles, e.g. the corticospinal
tract (CST), or bundles that connect specific regions of interest, is a promising approach to better understand
the impact of a stroke on the brain as well as on motor functions and recovery (Jeurissen et al., 2017; Thiel
& Vahdat, 2015). Notably, integrity of the CST is associated with less severe motor impairment in acute and
chronic phases, as well as with better recovery (Buch et al., 2016; Byblow et al., 2015; Doughty et al., 2016;
Feng et al., 2015; Guggisberg et al., 2017; Kim et al., 2015; Peters et al., 2018; Puig et al., 2011, 2013; Ramsey
et al., 2017; Stinear, 2017; Stinear et al., 2007).

Residual motor function is associated with measures such as FA asymmetry of the CST (i.e. the difference
between ipsi- and contralesional FA values of the CST divided by the sum of said values) at the level of the
pons (Puig et al., 2013), acute lesion load on the ipsilateral CST (i.e. the extent of damage caused by the lesion
to the CST) (Buch et al., 2016; Byblow et al., 2015; Doughty et al., 2016; Feng et al., 2015; Lim et al., 2020;
Pennati et al., 2020), as well as damage to the posterior limb of the internal capsule (Puig et al., 2011). Indeed,
greater FA asymmetry measured 30 days post-stroke predicted worse motor outcomes at two years (Puig et
al., 2013) and there was a negative linear relationship between acute lesion load on the ipsilesional CST and
UE-FM score three months after stroke (Doughty et al., 2016; Feng et al., 2015). In particular, acute CST
damage at the level of the posterior limb of the internal capsule predicted the motor outcome the best (Puig
et al., 2011). Interestingly, damage to the white matter was a better indicator of motor outcome than lesion
volume (Egger et al., 2021; Puig et al., 2017; Stinear, 2017). One study even found a lesion-cutoff value which
identified patients who would have a poor motor outcome with a positive predictive value at 100%. In other
words, if the lesion to the CST surpassed a certain size, the patient had a 100% chance to have a poor motor
outcome (Feng et al., 2015).

These studies highlight the importance of the ipsilesional hemisphere and CST in motor outcome and
recovery after stroke and it has been suggested that FA and lesion load might have cutoff values which could
potentially be used as predictors for individual patients (Stinear, 2017). The results of these studies are
encouraging, however, the ability to distinguish patients who will have spontaneous recovery (‘fitters’) from
patients who will likely not (‘non-fitters’), remains insufficient. In addition, only focal brain areas and
pathways related to sensorimotor function were taken into account for the prediction, while it is the current
view that stroke is in fact a large-scale network disorder and properties of affected networks could further
refine the prediction of motor recovery and outcome (Egger et al., 2021; Guggisberg et al., 2019; P. J. Koch
et al., 2021).

In line with this, a study showed that a decrease in FA of remote white matter pathways in the affected
hemisphere was linked to improved recovery (Pinter et al., 2020). Furthermore, recent work has identified
beneficial effects of including whole-brain connectivity data in prediction for motor recovery (P. J. Koch et
al., 2021). Indeed, instead of considering only a selected fiber bundle, in the study of (P. J. Koch et al., 2021),
a whole-brain FA connectome was used for each patient. Using support vector machine classifiers, the
authors managed to separate ‘fitters’ from ‘non-fitters’ with an accuracy of 92% and a precision of 93% in
severely affected patients. This underscores the potential of whole-brain measurements for the
understanding and prediction of motor recovery. However, the external validation dataset in this study had
a small sample size and an inhomogeneous patient distribution in terms of degree of impairment, hence the
results will need to be replicated in studies with larger cohorts of patients to appropriately assess the clinical
usability (P. J. Koch et al., 2021). Meanwhile, whole-brain measurements can also be explored in the context
of fMRI, which could be another, complementary, approach to measures derived from structural MRI.
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1.3.3.3 Functional MRI in stroke

In terms of functional measures, it is commonly assumed that patterns of activity more resemblant to those
observed in healthy controls are associated to better motor performance at the time of scanning for both
resting-state (Siegel et al., 2016; Thiel & Vahdat, 2015) and task-based fMRI (Buma et al., 2010; Favre et al.,
2014; Grefkes & Ward, 2014).

Regarding resting-state fMRI, there is ample evidence demonstrating that interhemispheric functional
connectivity between homologous sensorimotor areas is decreased in the acute phase of stroke and related
to behavioral impairments (Baldassarre et al., 2016; Carter et al., 2010; Golestani et al., 2013; Park et al.,
2011; van Meer et al., 2010; L. Wang et al., 2010). It has further been shown to be predictive of better motor
recovery (Fan et al., 2015; Park et al., 2011) and able to distinguish between ‘fitters’ and ‘non-fitters’ (Jung
et al., 2013). This suggests that a balance between inhibitory and excitatory interhemispheric connections is
crucial for intact sensorimotor functions (Grefkes & Fink, 2014; Thiel & Vahdat, 2015). In addition, a decrease
in ipsilesional and an increase in contralesional connectivity within the sensorimotor cortex has been
described in the subacute stage, however these changes were not related to functional outcome, suggesting
a minor role of these mechanisms (Thiel & Vahdat, 2015; Xu et al., 2014). Over time, interhemispheric
connectivity between homologous areas increases along with functional recovery. Although it fails to match
that of healthy control subjects at the subacute stage (L. Wang et al., 2010; Xu et al., 2014), it tends to
gradually normalize towards pre-stroke connectivity in the chronic phase in patients with good recovery. In
patients who recover poorly, however, the decrease in interhemispheric connectivity correlates with motor
function (J. L. Chen & Schlaug, 2013; Min et al., 2020; Urbin et al., 2014; Xu et al., 2014).

Such reorganization of resting-state connectivity seems to extend to networks which are not directly
implicated in sensorimotor processing (Guggisberg et al., 2019; Thiel & Vahdat, 2015). Indeed, in the acute
phase, elevated intra-network connectivity was found in different sensory, motor and default mode
networks, whereas connectivity was decreased within associative frontoparietal networks and between
networks (C. Wang et al., 2014). Furthermore, there have been attempts to use the whole-brain functional
connectome to improve functional predictions using measures derived from functional network topology (J.
Lee et al., 2015; Olafson et al., 2021).

There were several efforts of predicting motor outcome with task-based fMRI as well. For example, in the
study of (Rehme et al., 2015), functional activity related to an active hand-grip task revealed higher activity in
the ipsilesional primary motor cortex (M1) and premotor cortex as well as in the contralesional cerebellum
in patients with good motor outcomes compared to patients with poor outcome. The authors further report
that functional activity predicted the motor outcome better (86%) compared to behavior only (76%). It should
however be noted that no severely impaired patients were included in this study as they would not have
been able to perform the motor task. Using a passive flexion-extension task of the paretic wrist, similar work
of (Hannanu et al., 2017) has also shown lower task-related activity in M1, supplementary motor area (SMA)
as well as the contralesional cerebellum compared to healthy controls. Furthermore, the authors observed
higher activity in the contralesional primary motor cortex, superior temporal gyrus and the parietal
operculum. Task-related activity alone had an increased explained variance (96%) compared to a
combination of functional activity and total FM score (87%) (Hannanu et al., 2017). Results of these two
studies suggest that motor outcome can potentially be better predicted using task-related functional activity
compared to behavioral data alone. However, these findings need to be corroborated in larger cohorts
(Stinear, 2017).

In summary, both structural and functional biomarkers have shown promising results in terms of prediction
of motor outcome and recovery after a stroke. However, their applicability in clinics is still very limited, either
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due to the lack of large-scale evidence, or due to the inability to predict the outcome or the recovery for
individual patients (Stinear, 2017). Combining biomarkers has been proposed to address this issue (Boyd et
al., 2017) and will be presented hereafter.

1.3.3.4  Combining biomarkers

In an attempt to explain variance in motor recovery or outcome, studies frequently combined clinical,
demographic and biomarker information in multivariable regression models. However, the resulting
equations are limited in making predictions for individual stroke survivors in clinical settings (Stinear, 2017),
as they predict recovery or outcome for groups of patients. Recently, however, combining several biomarkers
sequentially instead of using multiple biomarkers simultaneously has shown promising results in addressing
the aforementioned gap (Stinear et al., 2017). For instance, the Predict Recovery Potential 2 (PREP2)
algorithm sequentially combines a measure of upper limb impairment, age, the presence or absence of upper
limb motor evoked potentials elicited with transcranial magnetic stimulation (TMS) as well as either stroke
lesion load obtained from MRI or stroke severity assessed with the NIHSS score. The biomarker obtained
through TMS is indicated for one third of the patients and if associated with the NIHSS score, the prediction
can be made as accurately and without costly MRI. The algorithm has a prediction accuracy of 75% and has
been successfully implemented in clinical practice, paving the way for other centers to a more personalized
treatment of stroke patients (Connell et al., 2021; Stinear et al., 2017). Consequently, assessment of clinical
implications showed that the duration of upper limb therapy was not altered, as opposed to the content. In
addition, inpatient length of stay was reduced by approximately one week (Stinear et al., 2017). This
pioneering clinical implementation of PREP2 demonstrates the potential of individualized care and has shown
to optimize treatment strategies and decreased costs related to hospitalization, paving the way towards new
clinical intervention trials that can appropriately stratify patients prior to inclusion. Potential for
improvement lies in the quantity of biomarkers needed for PREP2, as they can be costly and time-consuming,
especially for severely impaired patients. Instead of achieving multimodality by combining unimodal
biomarkers sequentially, a new approach could thus be to probe multimodal biomarkers instead. Hence, the
following section will address multimodal MRI approaches and their potential for understanding and
prediction of stroke recovery.

1.3.4 Multimodal MRI

Structural and functional MRI are inherently complementary (Thiel & Vahdat, 2015) and serve as remarkable
tools enabling us to investigate neural correlates at rest or during a task as well as their underlying anatomical
substrates. Even though it is well known that brain activity is biologically constrained by the underlying
anatomy (i.e., structure), the mechanisms enabling functional activity in neuroimaging to be shaped by the
underlying anatomical backbone, that is structural connectivity, remain poorly understood (Preti & Van De
Ville, 2019; Stiso & Bassett, 2018; Suarez et al., 2020).

In a pathology such as stroke, a structural damage necessarily evokes functional changes. Establishing and
predicting the consequences of a brain lesion on the functional activity and connectivity, however, still poses
a significant challenge (Silasi & Murphy, 2014). Given the complementarity between DWI and fMRI, there
have been several attempts of enhancing the functional data with structural information, with the aim of
obtaining a clearer idea of the interplay between brain structure and functional activity, as well as
understanding how pathology can affect it (Preti & Van De Ville, 2019; Suarez et al., 2020).

The first attempts involved the simple correlation of functional connectivity with the corresponding
structural connectivity (Hagmann et al., 2008; Honey et al., 2009). The authors found structural connectivity
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to be highly predictive of functional connectivity, but less reliably so vice versa. Namely, due to numerous
indirect connections between regions, the authors hypothesized that functional connectivity could remain
strong without a direct structural connection.

Another attempt of including structural information in a functional analysis involved using anatomical priors
gained from DWI measurements to estimate effective connectivity using dynamic causal modelling (DCM)
(Friston et al., 2003; Stephan et al., 2009). In this case, the changes in coupling among brain regions are
evaluated depending on the underlying structural connectivity. After assessing several models relating the
two, the authors report that the anatomical and effective connectivity are best related in a monotonic and
nonlinear (sigmoidal) fashion, implying that the increase in structural connectivity leads to the (nonlinear)
increase in effective connectivity. However, similar to previous work, these authors also stressed that
effective connectivity was constrained, but not determined by anatomical connectivity. Specifically, they
argue that the existence of an anatomical connection did not imply its involvement in a particular process,
meaning that even if a synaptic connection is there, it can remain inactive (Stephan et al., 2009).

Recently, several more sophisticated methods linking brain structure and function emerged: First, a recent
study (Sarwar et al., 2021) successfully used deep learning to predict an individual’s brain function from their
structural connectome, and additionally showed that the inter-individual variation in predicted functional
connectivity was related to cognitive performance.

Second, the Functionnectome introduced a new concept —the study of the function of white matter pathways
(Nozais et al., 2021) performed through the combination of task-related fMRI and anatomical priors for brain
circuits, where a prior reflects a voxel and its probability of structural connectivity with all other brain voxels.
To obtain a Functionnectome, the functional signal of two areas which are linked by a white matter pathway
is combined, thereby penalizing the statistical activation if only one region is significantly activated by the
investigated function. The end result is a white matter activation map which reflects the associated pathway’s
significant involvement during a task (Figure 6). The downside of this method is that it needs powerful
computational resources due to a sizeable number of priors (one for every voxel in the brain). In addition,
priors are based on 100 healthy young participants and the method can thus not readily be adapted to other
populations such as healthy older adults or stroke patients.

Third, the emergence of network neuroscience enabled the extraction of system-level network properties.
Organizational principles of structural and functional connectivity can be summarized and compared, or be
used to inform one with the other (Suarez et al., 2020). Two recent studies (Medaglia et al., 2018; Preti &
Van De Ville, 2019) explored this framework using resting-state fMRI as well as diffusion spectrum imaging
(DSI) (Medaglia et al., 2018) and DWI (Preti & Van De Ville, 2019), respectively. Both studies used the
eigenspectrum of the structural connectome to measure the distance of framewise regional BOLD activity
from the underlying white matter. Through graph signal filtering, the functional signal was split into two parts
based on the quality of coupling with structure — coupled and decoupled. (Preti & Van De Ville, 2019) named
the ratio between the decoupled and coupled portions of the signal the Structural Decoupling Index (SDI).
The first study (Medaglia et al., 2018) related functional alignment with the underlying structure to cognitive
flexibility. The second study (Preti & Van De Ville, 2019) went a step further and demonstrated the existence
of a gradient ranging from high structure-function coupling (i.e., low SDI) in areas involved in lower-level
sensory functions (e.g., somatomotor or visual areas) to high structure-function decoupling (i.e. high SDI) in
regions involved in higher-level cognitive functions (e.g., memory or emotions) (Figure 6).

Recently, this method was further extended to task-based MRI (Griffa et al., 2022), where structure-function
coupling was shown to be task-dependent and SDI-related measures managed to identify an individual within
a group with near-perfect accuracy. This suggests that the structure-function coupling might serve as a

27



Introduction

fingerprint — or an intrinsic feature — of an individual’s brain organization. The ability of SDI to characterize
anindividual renders it particularly interesting and promising for clinical studies, where the understanding of
individual patients’ features and pathological traits is a top priority, as it would allow for more patient-
tailored approaches with respect to acute treatment and rehabilitation.
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Figure 6. Functionnectome and Structural Decoupling Index (SDI).

Outputs of the Functionnectome (a) and SDI (b) analysis pipelines. a) Functionnectome: a white matter activation map which
reflects the associated pathway’s significant involvement during a task. b) The colored nodes represent the SDI values. The bigger
and the more blue, the lower the SDI (i.e. the higher the coupling), the smaller and the more red, the higher the SDI. Image adapted
from Nozais et al.(2021); Preti & Van De Ville (2019).

1.3.4.1 Multimodal approaches in stroke research

In addition to the above-described methods which integrate structural with functional information and which
were conceptualized based on healthy individuals, it is also possible to study the structure-function
association by combining information about a (structural) lesion in the functional connectome. Lesion
network mapping (Boes et al., 2015) offers such a possibility and it is based on the principle that lesions of
different locations can cause the same symptoms. In this framework, the lesion location of patients who
share similar symptoms is determined by means of MRI or Computed Tomography (CT) and traced onto a
common brain atlas. Subsequently, the functional connectivity between each patient’s lesion location and
the rest of the brain is computed using the human connectome — a normative map of anatomical and
functional brain connections which is based on thousands of healthy people. This results in an individual
lesion-function network map for each patient, which can then be overlapped with the maps from patients
who are sharing similar symptoms, in order to identify common locations between the network maps.

Furthermore, DCM has also been successfully applied to stroke, shedding light onto how the interactions of
cortical motor areas change after a stroke and throughout recovery. A stroke with an associated motor deficit
has been shown to lead to disturbances in the communication between key motor areas, such as M1, SMA
and PM. Indeed, previous studies demonstrated that early after stroke the contralesional M1 had a
supportive influence on ipsilesional M1 (Rehme et al.,, 2011). However, subsequently there was a shift
towards enhanced inhibitory coupling between the contralesional M1 and the ipsilesional M1, which
correlated with the degree of motor impairment (Grefkes et al., 2008; Rehme et al., 2011), suggesting that
increased interhemispheric inhibition from the contra- to the ipsilesional M1 is a maladaptive process. These
results were further supported by a evidence from Grefkes et al. (2010) who showed that inhibition of the
contralesional M1 resulted in a transiently decreased interhemispheric inhibition from the contra- onto the
ipsilesional M1 which correlated with behavioral improvements. In addition, initially reduced positive
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coupling between ipsilesional SMA and PM with ipsilesional M1 has been shown to increase with recovery
and associated with better outcome (Grefkes et al., 2010).

Even though these findings shed some light onto the link between structure and function in stroke, DCM
does not fully integrate function and structure, as the model is simply based on anatomical priors. While
lesion network mapping is a fascinating approach, it does not take into account the individual functional data
and is thought to work rather on group level. There is therefore still a need for a better understanding of the
relationship between structure and function and how it is impacted by a stroke, especially on individual level.

As discussed above, recent studies (Griffa et al., 2022; Nozais et al., 2021; Preti & Van De Ville, 2019; Sarwar
et al., 2021) have made a tremendous progress in the understanding of the structure-function relationship
through multimodal approaches. So far, however, the population samples of these studies have been limited
to group-level analyses in healthy young adults, and the role of age and focal brain lesions as well as its
relationship to behavioral changes remains unknown. These steps should be investigated before probing
these measures for patient stratification in the context of clinical trials. Particularly the SDI seems to be
promising for future implementation in stroke research, as it offers the possibility to obtain results based on
the individual structural and functional connectome and it can be run very fast and on a regular computer,
as opposed to, e.g., the Functionnectome.

1.4 Framework and purpose of the thesis

1.4.1 Challenges for research in a clinical environment

As indicated above, in order to gain a better understanding of stroke rehabilitation, especially with regard to
‘non-fitters’ there is a strong need for large-scale longitudinal studies with big sample sizes which could
deepen the understanding of underlying neural mechanisms and help identify interventional targets.
Furthermore, there is a need for the inclusion of both ischemic and hemorrhagic stroke patients in clinical
studies, as there isn’t any strong evidence indicating differences in terms of recovery (Jang et al., 2013) or
outcome (Favre et al., 2014) between the two types of stroke. In addition, recent advances in network
imaging have proposed new multimodal techniques (Griffa et al., 2022; Nozais et al., 2021; Preti & Van De
Ville, 2019; Sarwar et al., 2021), notably the SDI (Preti & Van De Ville, 2019), which could serve as a promising
tool for identifying novel biomarkers aimed at ‘patient phenotyping’ (Griffa et al., 2022), an inevitable step
towards more patient-tailored treatment approaches (Guggisberg et al., 2019).

Moreover, in order to have interpretable and clinically relevant results, it is important that the acquired data
and applied analysis pipelines have been optimized and show a high test-retest reliability within and across
centers and time in a healthy population. There are several reasons for this: First, to ensure that potentially
observed differences across timepoints in patients (i.e. longitudinally) actually reflect changes related to the
recovery and not intraindividual variance related to the method or equipment. Second, conclusions derived
from a given dataset should be valid for the whole stroke population, independent of the center where the
data was acquired. Third, despite its high relevance for clinical research, access to patients remains one of
the biggest challenges that contemporary research groups face. One approach is to run multi-center clinical
studies, as they can help to increase sample size and accordingly statistical power of the findings. Multi-
center studies still remain quite scarce, potentially due to the potential variance between the data acquired
at two different sites (which could occur even with very similar equipment used at each recording site)
(Bonilha et al., 2015). However, there are some initiatives such as ENIGMA (Liew et al., 2020), the largest
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multisite retrospective stroke data collaboration to date, which illustrate the abundant possibilities of a large-
scale collaboration, but which also reveals the need for data stability (in a healthy population) and robust
analysis pipelines across centers in order to be able to validate, compare and combine results.

Therefore, intraindividual stability for a given neuroimaging method first needs to be demonstrated in
healthy participants, before being applied in clinics or clinical research. The goal is that both data and results
withstand any analytical bias and, moreover, that they are independent of the type of analytical pipeline
employed. However, tractography results in particular remain subject to considerable variability arising from
the algorithm used (see section 1.3.1.2)(Maier-Hein et al., 2017). It has been proposed that the stability of
tractography results could be improved through filtering of the tractogram with SIFT (R. E. Smith et al., 2013,
2015b) or COMMIT (Daducci et al., 2015; Schiavi et al., 2020), but so far no study has systematically compared
the two filtering options nor assessed their stability across sessions and centers. Identifying the best filtering
method could thus lead to an improvement of analytical pipelines and to better data comparability across
different sessions and centers, thereby facilitating the increase in multicenter clinical studies as well as cross-
center clinical data analyses in translational neuroscience.

The purpose of this thesis is to address the above-mentioned challenges in three studies — two multimodal
imaging studies investigating the structure-function in stroke patients using SDI, as well as a reproducibility
study assessing the stability of different filtering methods in a test-retest setting. In the final sections of this
introduction, the context, outline, as well as the main aims and hypotheses of this thesis will be elaborated.

1.4.2 Context of the thesis: Towards Individualized Medicine in Stroke
(TiMeS)

The present thesis was realized in the context of a larger, longitudinal project entitled “Towards
Individualized Medicine in Stroke” (TiMeS) with the aim to address aforementioned challenges and to pave
the way for personalized precision medicine through a multimodal approach. In TiMeS, we collected an
extensive multidimensional and longitudinal dataset representative for a stroke population in Switzerland
with the aim of identifying new biomarkers for patient stratification. More precisely, through multimodal
analyses, we intended to achieve a better understanding of post-stroke recovery and to bring about potential
new biomarkers which could eventually lead to the end goal of TiMeS, which is the personalization of new
therapeutical approaches, such as the individualization of non-invasive brain stimulation (NIBS) protocols,
thanks to a better stratification of patients.

TiMeS targets patients with upper-limb motor deficits at stroke onset and comprises measurements coming
from synergistic state-of-the art systems neuroscience methods, such as structural and functional MRI,
combined transcranial magnetic stimulation and electroencephalography (TMS-EEG), and electromyography
(EMG). Furthermore, it contains an evaluation of behavioral outcomes such as motor function, but also of all
other cognitive domains, in an attempt to have a complete overview of a patients’ deficits and recovery. The
assessment is longitudinal over the course of recovery, spread over four timepoints (one week (T1), three
weeks (T2), three months (T3), and one year (T4)), until one year post-stroke. The project was implemented
in collaboration with several clinical partners at the Clinigue Romande de Réadaptation (CRR) in Sion,
Switzerland. Patient recruitment, behavioral assessment at T1 as well as MRI acquisitions for all timepoints
takes place at the Cantonal Hospital in Sion (HVS). After inpatient treatment at HVS, patients either go into
rehabilitation at the CRR or at the Berner Klinik (BK) in Crans-Montana, or they return to their homes,
depending on their degree of impairment. Behavioral follow-ups take place at either of the rehabilitation
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clinics (CRR or BK) for T2 and at the CRR for T3 and T4, whereas MRI and TMS-EEG measurements for all
timepoints are conducted at HVS and the CRR, respectively. For an illustration, see Figure 7.

This thesis focused on the MRI part of TiMeS as well as the relationship of neural correlates with behavior. In
total 86 patients were included in the study and | acquired 200 timepoints in total (T1: 67, T2: 54, T3: 47, T4:
32 datasets, see Figure 7B).

The MRI protocol consists of several structural sequences, DWI, as well as a resting-state fMRI sequence:

e For structural imaging T1-weighted magnetization-prepared, rapid acquisition gradient-echo
sequence (MPRAGE) is being acquired. Additionally, we acquire sequences for quantitative maps
(MP2RAGE and multi-echo T2 GRASE) to gain a deeper insight in the microstructure in gray and
white matter regions, by modeling, for example, the myelin water fraction. Finally, susceptibility-
weighted images (SWI) is used to detect and quantify hemorrhagic processes in the brain.

e For DWI, we use a multishell approach with high gradient strength and large number of gradient
directions. This data allows to model more advanced fiber tract distributions as compared to
conventional diffusion tensor imaging.

e For resting-state functional imaging (fMRI), a multiband gradient echo-planar imaging (EPI)
sequence is deployed and participants are instructed to fix a cross on the screen.
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Figure 7. Towards Individualized Medicine in Stroke (TiMeS) project.
Composition in terms of duration of every timepoint in TiMeS. n reflects the number of patients who completed the MRI part of the
project at each timepoint.
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1.4.3 Thesis at a glance

The general purpose of the present thesis is to better understand the neural correlates of post-stroke
recovery through multimodal imaging, with the primary goal to identify potential biomarkers that could be
probed for patient stratification in the future. The secondary goal is to optimize a DWI analysis pipeline in
terms of test-retest reproducibility, in order to obtain higher stability in the analysis of patient data.

Hence, the first part of this thesis revolves around the investigation of the structure-function relationship
using SDI in the data acquired through DWI and resting-state sequences within the TiMeS framework. The
gathered data allowed me to assess the complex interactions of structural and functional connectivity
parameters within certain domain-specific networks, as well as within the whole brain (Chapter 2).
Moreover, to the best of my knowledge, | was the first one to run such analyses in a stroke population. Given
that a deficit of the upper limb at stroke onset was a common denominator for all included patients, a
particular interest lied on identifying structure-function changes in the motor network. Structure-function
coupling has been shown to be high in low-level sensorimotor areas (Preti & Van De Ville, 2019), which is
why we hypothesized that a stroke, through the structural disruption and the functional changes this
engenders, would lead to an increase in SDI in areas related to the lesion and notably in the motor network.
Furthermore, in a second step, | extended the work previously done on recovery of one particular function
after stroke, i.e., motor function, to a longitudinal multi- and inter-domain assessment of recovery and
related the performance at different timepoints to variations in structure-function coupling (Chapter 3).
From a clinical point of view, it becomes increasingly clear that often times a stroke does not affect only one
domain, but multiple domains simultaneously. This is further supported by evidence that recovery of one
function, such as motor function, is also dependent on the status of various other cognitive functions, such
as attention (Ramsey et al., 2017). Thus, we hypothesized that worse performance in the motor, but also in
cognitive domains, would be associated with changes in SDI not only in the motor network, but also in brain
areas associated to other domains, such as cognition.
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Figure 8. Experimental design of the test-retest reproducibility study.
20 healthy young participants were tested twice at Campus Biotech (Geneva) and twice at the Cantonal Hospital in Sion (HVS) at
two weeks interval. During every session, the protocol was repeated twice in order to assess intra-session repeatability.

The second part of this thesis aims at improving analytical pipelines and increasing data comparability
between sessions and centers, as this could benefit future clinical studies, especially in a multi-center setting.
By performing microstructure-informed tractography through the use of filtering methods such as SIFT (R. E.
Smith et al., 2013, 2015b) and COMMIT (Daducci et al., 2015; Schiavi et al., 2020), it is hypothesized that
false-positive estimation biases can be reduced while increasing true-positive connections. Therefore,
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Chapter 4 of this thesis revolves around the assessment of the stability of structural connectivity measures
with and without COMMIT and SIFT in a multi-center dataset. In the lack of ground truth data, one promising
way to validate technical improvements is by assessing the subject specificity and reproducibility of
connectomes across sessions and locations. In the study presented in Chapter 4, 20 healthy young
participants underwent four sessions of MRI, two of which took place at Campus Biotech Geneva and two at
HVS in Sion (Figure 8). In addition, during every session, the protocol was run twice, in order to test
repeatability, resulting in 8 datasets per participant and 160 datasets in total. We hypothesized that
repeatability and reproducibility can be increased by including information derived from microstructure in
the tractogram (i.e. through filtering), while we estimated that the most important portion of intra-subject
variability would be associated to the use of different MRI scanners.
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1.5 Overview and personal contributions

Personal contributions are labelled with the taxonomy coming from CRediT (CRediT Author Statement, 2022).

PART I

For both articles included in Part I, my contribution included conceptualization of the analysis (applying the
Structural Decoupling Index developed by a collaborating lab to a stroke population), investigation (MRI data
collection), data curation, formal analysis, visualization, writing — original draft and writing - review & editing

Study 1: Structure-function coupling following an acute stroke. Briigger, J., Koch, P.J., Preti, M.G., Fleury, L.,
Park, C.H., Cadic-Melchior, A., Schmidt, L., Ceroni, M., Avanzi, S., Wessel, M., Maceira, P., Popa T., Meyer
N.H., Blanke, O., Adolphsen, J., Jagella, C., Micera, S., Constantin, C., Vincent, A., Ghika, J., Vuadens, P., Turlan,
J.L., Mihl, A., San Millan, D., Bonvin, C., Van de Ville, D., Hummel, F.C. In preparation.

Study 2: Post-stroke structure-function coupling relates to cognitive impairments in the acute and early
subacute phase. Briigger, J., Koch, P.J., Preti, M.G., Fleury, L., Park, C.H., Cadic-Melchior, A., Ceroni, M.,
Avanzi, S., Wessel, M., Meyer N.H., Blanke, O., Adolphsen, J., Jagella, C., Micera, S., Constantin, C., Vincent,
A., Ghika, J., Vuadens, P., Turlan, J.L.,, Mihl, A., San Millan, D., Bonvin, C., Van de Ville, D., Hummel, F.C. In
preparation.

PART II

For the article included in Part Il, my contribution included conceptualization (participation in study design),
investigation (MRI data collection), data curation, formal analysis, writing - review & editing

Study 3: Evaluating reproducibility and subject-specificity of microstructure-informed connectivity. Koch, P.
J.*, Girard, G.*, Briigger, J., Cadic-Melchior, A., Beanato, E., Park, C.H., Morishita, T., Pizzolato, M., Canales-
Rodriguez, E.J, Fischi-Gomez, E., Schiavi, S., Daducci, A., Piredda, G.F, Hilbert, T., Kober, T., Thiran, J.P. 5,
Hummel, F.C. % Under revision. Neurolmage.

*§ authors contributed equally
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APPENDIX

Supplementary study 1:

Towards individualized Medicine in Stroke — the TiMeS project: protocol of longitudinal, multi-modal, multi-
domain study in stroke

Fleury, L.*, Koch, P.J.*, Wessel, M.J.,*, Bonvin, C., San Millan, D., Ghika, J., Constantin, C., Vuadens, P.,
Adolphsen, J., Cadic-Melchior, A., Briigger, J., Beanato, E., Ceroni, M., Menoud, P., de Leon Rodriguez, D.,
Zufferey, V., Meyer, N., Egger, P., Harquel, S., Popa, T., Raffin, E., Girard, G., Thiran, J.P., Vaney, C., Alvarez,
V., Turlan, J.-P., Mihl, A., Leger, B., Morishita, T., Micera, S., Blanke, O., Van de Ville, D., Hummel, F.C. In
preparation.

Personal contribution: writing — original draft (methods related to MRI), writing — review & editing (methods
related to MRI).

Supplementary study 2:

Efficiency of unaffected parts of the brain network differentially impacts motor and attentional impairment
after stroke. Evangelista, G.G.*, Egger, P.*, Brigger, J., Beanato, E., Koch, P.J., Ceroni, M., Fleury, L., Cadic,
A., Meyer, N.H., Avanzi, S., de Leén Rodriguez, D., Girard, G., Turlan, J.L., M{hl, A., Vuadens, P., Adolphsen,
J., Jagella, C., Constantin, C., Alvarez, V., Ghika, J.A., San Millan, D., Bonvin, C., Morishita, T., Wessel, M.J., Van
de Ville, D., Hummel, F.C. Under review. Brain.

Personal contribution: Investigation (data collection), data curation, formal analysis, writing — original draft
(MRI methods), writing — review & editing (MRI methods).

IN ADDITION: IN PREPARATION

Supplementary study 3:

Variability and reproducibility in multi-echo T2 relaxometry: Insights from multi-site, multi-session and multi-
subject MRI acquisitions

Fischi-Gomez, E.*, Girard, G.*, Koch P.J., Pizzolato, M., Briigger, J., Piredda, G.F., Hilbert, T., Yu, T., Cadic-
Melchior, A., Beanato, E., Park, C.H., Morishita, T., Schiavi, S., Daducci, A., Kober, T., Canales-Rodriguez, E.J.,
Hummel, F.C.% & Thiran, J.P.% In preparation.

Personal contribution: Investigation (data collection), data curation

Supplementary study 4:

Longitudinal evaluation of microcircuits’ dynamical properties of the lesioned motor cortexin stroke: towards
new readouts of motor deficit and recovery. Cadic-Melchior, A.*, Harquel, S.*, Morishita, T., Fleury, L., Ceroni,
M., Briigger, J., Meyer, N., Adolphsen, J., Jagella, C., Vaney, C., Alvarez, V., Ghika, J., Vuadens, P., Léger, B.,
Turlan, J.L., Mihl, A., Bonvin, C., Van De Ville, D., Koch, P.J., Wessel, M.J. & Hummel, F.C. In preparation.
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Supplementary study 5:

Longitudinal evaluation of spontaneous and induced brain oscillations in stroke. Harquel, S.*, Cadic-Melchior,
A.*, Morishita, T., Fleury, L., Ceroni, M., Briigger, J., Meyer, N., Adolphsen, J., Jagella, C., Vaney, C., Alvarez,
V., Ghika, J., Vuadens, P., Léger, B., Turlan, J.L., Muhl, A., Bonvin, C., Van De Ville, D., Koch, P.J., Wessel, M.J.
& Hummel, F.C. In preparation.

*% quthors contributed equally
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2.1.1 Abstract

In MRI-based neuroimaging research, functional (fMRI) and diffusion-weighted MRI (DWI) are widespread,
but evaluated largely independently with a lack of knowledge about the link between both. Recent
methodological advancements allow to quantify the coupling strength between them through the Structural
Decoupling Index (SDI) (Preti & Van De Ville, 2019). Such metric could be of great interest in the
understanding of post-stroke brain states. The aim of this study was to determine the influence of a lesion
on the structure-function interaction and to contrast it to results obtained from age-matched healthy older
adults (HOA). DWI and resting-state fMRI was acquired in 44 stroke patients with motor deficits (65.4+14.4y)
and 33 HOA (62.4+7.6y). Patients were scanned in the first week after stroke. The SDI was calculated for
every participant/patient and for every cortical region defined in the Glasser atlas. In HOA, results indicated
a network gradient of SDI (visual << limbic network) consistent with previous findings in healthy young and
we showed a significantly higher SDI in the left compared to the right hemisphere (LH/RH) in the
somatomotor, dorsal attention, limbic and default mode networks. The same pattern was observed in LH
stroke patients. In RH stroke patients, stroke-related effects could be observed in the somatomotor, ventral
attention, limbic and default mode networks, suggesting that structure-function coupling is more vulnerable
to RH compared to LH stroke. We show that the SDI applied at the level of an individual in HOA shows
comparable results in to previous studies where the SDI analysis was performed on group-level. In addition,
a stroke in the acute phase impacts on the coupling strength between brain structure and function in several
brain networks with a potential importance of lesion site. The present study further confirmed the feasibility
of applying SDI on the individual level. A crucial next step will be to see how these findings relate to recovery
and the underlying functional and structural neural reorganization, in order to evaluate the potential of SDI
as a biomarker to stratify stroke patients.

40



PART I

2.1.2 Introduction

Classical understanding of brain structure and function through Magnetic Resonance Imaging (MRI) were for
a long time two separate fields, used to investigate both healthy and pathological brains. Through functional
MRI (fMRI) it was possible for the first time to relate activity of brain regions to a specific task (Ogawa et al.,
1990), giving a better understanding of the role of these areas and the functioning of the brain as a whole. In
this localizationist framework, the goal was thus to relate the activity of brain regions to a specific function.
Lately, the field has moved forward towards a more interactive network approach, where a function is related
to the interplay between different grey matter areas within a network rather than to the activity in one or
several isolated brain regions (Nozais et al., 2021). In this context, functional connectivity reflects the
statistical dependency between two brain regions and is used to describe the coordinated activity between
the latter (Friston, 1994; Nozais et al., 2021). However, a limitation of this method is that it is not possible to
draw conclusions about the anatomical connections that underlie this functional connectivity. This is why, in
parallel, attempts to re-construct the anatomical backbone of the brain in vivo resulted in the development
of diffusion-weighted imaging (DWI) methods, where the diffusion of water molecules along axons is
measured and then serves to reconstruct the brain’s white matter pathways (i.e. tracts) (Jeurissen et al.,
2019; Stejskal & Tanner, 1965). By counting the number of ‘connections’ (i.e. streamlines) between a pair of
cortical and/or subcortical grey matter areas, their connection strength can be established, commonly
referred to as structural connectivity (Hagmann et al., 2008; Sporns, 2011). This method greatly facilitated
the understanding of the brain’s in vivo circuits and the mapping of white matter in healthy and pathological
populations. However, nothing can be inferred about the function of the tracts that were discovered through
DWI.

Functional and structural connectivity are thus highly complementary. Studying only one of the two at a time
paints an incomplete picture of the brain about, rendering the need to combine these two modalities (Nozais
etal., 2021; Preti & Van De Ville, 2019). The first attempts were based on correlational approaches (Hagmann
et al., 2008; Honey et al., 2009), followed by increasingly complex brain computational and communication
models (Bassett & Sporns, 2017; Bullmore & Sporns, 2009; Deco et al., 2009, 2011, 2012; Fornito et al., 2013;
Ghosh et al., 2008; S. Gu et al., 2015; Honey et al., 2007; Ritter et al., 2013; Sporns, 2010, 2018; Stephan et
al., 2009). Recently, a new and more integrative approach was developed, the Structural Decoupling Index
(SDI), which focuses on the structural connectivity between gray matter areas at rest (Preti & Van De Ville,
2019) or during a task (Griffa et al., 2022). This nodal metric quantifies the coupling strength between brain
structure and function, i.e., the extent to which the function relies on the underlying anatomical backbone
in a specific brain area. In healthy young, previous work identified a gradient ranging from high structure-
function coupling (i.e., low SDI) in areas involved in lower-level sensory functions (e.g. somatomotor or visual
areas) to high structure-function decoupling (i.e., high SDI) in regions involved in higher-level cognitive
functions (e.g., memory or emotions) (Preti & Van De Ville, 2019). This finding was supported by other reports
of such gradients for functional activity (Margulies et al., 2016), cortical microstructure (Huntenburg et al.,
2017), as well as gene expression (Cioli et al., 2014; Hawrylycz et al., 2012). Namely, lower-level areas have
been related to faster processing and the expression of genes favoring temporal precision, whereas higher-
level areas were characterized by slower processing and the expression of genes supporting slower and
rhythmic activation (Cioli et al., 2014). It is believed that the less the brain structure and function are coupled,
the less efficient the brain is (Suarez et al., 2020). A higher coupling strength for lower-level sensory areas
could thus be useful for fast and reliable reactions to external input, whereas more decoupled areas would
be involved in cognitive processes that need to be more flexible and which are less predictable (Preti & Van
De Ville, 2019).
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An aspect which has not been studied so far is the potential lateralization of the SDI. Given that a number of
brain networks are known to be lateralized (e.g., somatomotor (Lubben et al., 2021), limbic (Jamieson et al.,
2021; Tippett et al., 2018), ventral attention networks (Barrett et al., 2019; Bartolomeo & Seidel Malkinson,
2019; Bernard et al., 2020)), it could be expected that the SDI follows this pattern.

So far, structure-function coupling has been studied only in the healthy brain and it is unclear how it is
impacted by pathology, such as stroke. However, investigating the relationship between structure and
function in the stroke population has been suggested as an improvement to current analysis methods, as it
could unveil new aspects to post-stroke recovery (Silasi & Murphy, 2014). There is growing evidence
suggesting that stroke does not affect just one function, but rather is a veritable network disease (Carrera &
Tononi, 2014; Guggisberg et al., 2019), resulting in important network-wide alterations in neural activity
(Alstott et al., 2009; Honey & Sporns, 2008). Therefore, one could hypothesize that a stroke would render
the brain less efficient and consequently would cause increases in SDI (i.e., higher decoupling) in areas
affected directly by the stroke, but, also in areas more distant to the lesion and their related networks,
through the respective network effects or diaschisis (Carmichael et al., 2004; Carrera & Tononi, 2014),

In the present work, we investigated structure-function coupling in stroke. For this aim, we first attempted
to extend findings from healthy young (Griffa et al., 2022; Preti & Van De Ville, 2019) to the age-matched control
group composed of healthy older adults (HOA). Given that previous analyses were done on averaged group
functional and structural connectomes, investing the structure-function coupling in HOA also allowed us to
assess the feasibility of computing the SDI based on individual structural and functional connectomes and
with shorter resting-state Magnetic Resonance Imaging (MRI) sequences. Based on previous work (Preti &
Van De Ville, 2019), we expected high structure-function coupling (i.e., low SDI) in low-level networks such
as the somatomotor or visual networks and high decoupling (i.e., high SDI) in higher-level networks, such as
the limbic network. Given the known lateralization of the somatomotor (Lubben et al., 2021), limbic
(Jamieson et al., 2021; Tippett et al., 2018) and ventral attention networks (Barrett et al., 2019; Bartolomeo
& Seidel Malkinson, 2019; Bernard et al., 2020), we also expected to see hemispheric differences in SDI in
these networks. Subsequently, studying the SDI within a stroke population and comparing it to a control
group offers a unique insight into changes of structure-function interactions within a network following a
structural lesion. We thus investigated how a stroke leading to a motor impairment in the acute phase
impacts on the SDI within the main brain networks and notably within the somatomotor network. Finally, we
compared the SDI of the stroke population to the HOA. Given that the stroke leads to lesioning of the brain
tissue, and that the function is lost or cannot rely on the usual anatomical connections, we expected a higher
SDI in the ipsi- compared to the contralesional hemisphere. Correspondingly, we expected an increased SDI
in the ipsilesional hemisphere compared to HOA, especially in the somatomotor network, since all included
patients had a motor deficit of the upper limb at stroke onset.

2.1.3 Methods

2.1.3.1 Participants

Forty-four stroke patients (Age: 65.4 + 14.4y, 12 females) were enrolled in the study after being admitted at
the Regional Hospital of Sion (HVS), Switzerland. Patients underwent scanning during the first week post-
stroke (5.2 + 2.6 days). Inclusion criteria for the study included being older than 18 years of age, having motor
deficits of the upper limb and absence of contraindications for MRI. Exclusion criteria were requests not to
be informed in case of incidental findings, inability to provide informed consent, history of seizures,
pregnancy, severe neuropsychiatric or medical diseases, regular use of narcotic drugs as well as implanted
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medical electronic devices or ferromagnetic metal implants which are not MRI compatible. Patients with
either first-ever or recurrent stroke were included in the study. Twenty-one patients had a left-hemispheric
(LH) stroke, 23 a right-hemispheric (RH) stroke. Of the patients with LH stroke, 16 were right-handed, 2 left-
handed and 3 ambidextrous. Of the RH stroke patients, 19 were right handed, 2 left-handed and 2 were
ambidextrous.

The control group comprised 33 participants (Age: 62.4 £ 7.6, 17 females). The inclusion criteria comprised
being older than 50 years old and in good health as well as the absence of contraindication for MRI.

Written informed consent was obtained from each participant following the Declaration of Helsinki and the
study was authorized by the local ethical committee (Swissethics approval number 2018-01355 for the
patients and 2017-00301 for the control group).

2.1.3.2 Magnetic Resonance Imaging Data Acquisition

Structural, functional and diffusion-weighted MRI data were acquired using a 3T Magnetom Prisma scanner
(Siemens, Erlangen, Germany) with a 64-channel head and neck coil. Images were acquired 5 days post stroke
on average (+/- 2.6 days).

Diffusion-weighted images were acquired using pulsed gradient spin echo technique (TR = 5000 ms; TE = 77
ms; slices = 84; field of view = 234 mm; voxel resolution = 1.6 x 1.6 x 1.6 mm; readout bandwidth = 1630
Hz/pixels; 64-channel head coil; SENSE acceleration factor =3). Seven T2-weighted images without diffusion
weighting (b = 0 s/mm2) were acquired, including one in opposite phase encoded direction. Further, 101
images with noncollinear diffusion gradient directions distributed equally over the half-sphere covering 5
diffusion gradient strengths were obtained (b-values = [300, 700, 1000, 2000, 3000] s/mm?2; shell-samples =
[3, 7, 16, 29, 46]). In addition, T1-weighted images were acquired using 3D MPRAGE (TR = 2300 ms; TE = 2.96
ms; flip angle = 9°; slices = 192; voxel size =1 x 1 x 1 mm, FOV 256 x 256 mm). Finally, resting-state BOLD data
(with fixation cross) was acquired using a multi-band echo-planar imaging (EPI) sequence. In total, 385
functional volumes were acquired and every volume comprised 75 axial slices covering the whole brain (in-
plane resolution 2 x 2mm; slice thickness 2 mm; no gap, FOV = 224mm, TE = 32ms, TR=1s, flip angle=58°,
Accel. Factor slice = 5).

2.1.3.3 Image Analysis

2.1.3.3.1 Lesion segmentation

All the lesion masks were hand-drawn using mrview from MRtrix3 (J.-D. Tournier et al., 2019) and
subsequently verified by a neurological clinician.

2.1.3.3.2 Processing of diffusion-weighted images

For the cortical parcellation, the Glasser atlas (180 per hemisphere) (Glasser et al., 2016) was used. The
parcellation was performed on the T1 mprage image using Freesurfer (Destrieux et al., 2010; Fischl, 2004,
2012). For stroke patients, the voxels corresponding to the lesion were stamped out and replaced by the
mirrored voxels of the contralateral side.

The diffusion-weighted images were preprocessed using, MRtrix3, FSL topup and eddy (Andersson et al.,
2003; Andersson & Sotiropoulos, 2016; S. M. Smith et al., 2004; J.-D. Tournier et al., 2019). First, Gibbs ringing
artefacts were removed from the data (Kellner et al., 2016; J.-D. Tournier et al., 2019), then motion artefact
reduction, as well as field inhomogeneity, susceptibility-induced off-resonance field and eddy currents
correction was performed. Multi-shell multi-tissue constrained spherical deconvolution (Jeurissen et al.,
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2014) was used to estimate the fibre orientation distributions within each voxel. Whole-brain probabilistic
tractography was performed using the second-order integration over fibre orientation distribution (iFOD2)
(J.-D. Tournier et al., 2019), initiating 1 million streamlines in all voxels of the white matter. For each dataset,
1 million streamlines were selected with both endpoints in the individual cortical or subcortical mask using
the Dipy software package (Garyfallidis et al., 2014). The obtained tractograms were filtered based on
underlying white matter fiber densities using SIFT2 (R. E. Smith et al., 2015b). Tissue partial volume estimates
were obtained from the T1-weighted image using the FSL Fast (Y. Zhang et al., 2001) and BET (S. M. Smith,
2002) methods. The T1-weighted image was registered to the average b0 image using FSL FLIRT (Jenkinson
& Smith, 2001) and FNIRT (Andersson et al., 2010) methods.

For each participant, a structural connectome (SC) was built with 360 pairs of areas obtained through the
parcellation. The number of streamlines connecting each pair of areas was normalized by the sum of the size
of the two areas.

2.1.3.3.3 Processing of functional images

All preprocessing and statistical analyses were conducted using the SPM12 package (SPM - Statistical
Parametric Mapping, SPM12) running on Matlab (MathWorks - MATLAB and Simulink Conferences, v2019b).
Functional images were realigned to the mean functional image. Then, the anatomical image was co-
registered to the mean functional image. The anatomical image was segmented into tissue maps based on
tissue probability maps of SPM12 (for patients, voxels corresponding to the lesion were not considered). The
resulting forward deformation field was used to warp both the anatomical and functional images into MNI
space. Finally, the functional images were smoothed using a Gaussian kernel (FWHM = 6mm). The first 10
volumes were discarded so that the fMRI signal achieves steady-state magnetization, resulting in 375
functional volumes.

Using the conn toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012), voxel fMRI time courses were detrended
and nuisance variables were regressed out (6 head motion parameters, average cerebrospinal fluid and white
matter signal). Finally, to reduce effects of very low and high frequency physiological noise, a band-pass filter
was applied (0.01-0.15Hz). The average time course was then extracted for every ROl of the Glasser
parcellation and functional connectomes were computed as Pearson correlation between time courses.

2.1.3.4  Estimation of structure-function coupling

The functional and structural connectomes of every patient were then fed to the SDI pipeline as described in
(Preti & Van De Ville, 2019) in order to calculate the coupling strength between brain structure and function
(i.e., SDI) for every area in the Glasser atlas and every patient. The SDI is obtained by decomposing the
structural connectome into harmonics in the graph frequency domain and by subsequently representing the
spatial pattern of functional activation as a weighted linear combination of these structural harmonic
components. The functional activity is then filtered into two parts, a low frequency component, which is
coupled with the SC, as well as a high frequency component which is decoupled from the SC. Finally, the ratio
between these two components represents the SDI of a brain region.

2.1.3.5  Statistical Analysis

Linear mixed effects models were used for statistical analysis. First, we evaluated the variation of the SDI
within the 7 yeo networks (Thomas Yeo et al., 2011) in the control group (HOA population), considering the
hemisphere side. Using R (R Core Team, 2017) and Ime4 (Bates et al., 2014), we performed a linear mixed
effects analysis with Network (Visual, Somatomotor, Dorsal attention, Ventral attention, Limbic,
Frontoparietal, Default mode) and Hemisphere (Left, Right) as fixed effects (with interaction term). As
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random effect, we had intercepts for subjects. Secondly, an analogous model was built for the stroke
population, taking into account whether the considered areas were located ipsi- or contralesionally and
whether it was a RH or LH stroke. The factor Hemisphere was thus replaced by factors Side (Ipsilesional,
Contralesional) and Lesion Site (Left, Right).

Subsequently, in order to directly compare the healthy controls with two sub-groups of the stroke population
(i.e., LH stroke and RH stroke), we performed a linear mixed effects analysis of the relationship between the
mean SDI and the seven Yeo networks (Thomas Yeo et al., 2011), the group (i.e., HOA vs stroke) as well as
the brain hemisphere. Network (Visual, Somatomotor, Dorsal attention, Ventral attention, Limbic,
Frontoparietal, Default Mode), Group (Patients, HOA) and Hemisphere (Left, Right) were entered into the
model as fixed effects (with interaction term). As random effect, we had intercepts for subjects. Random
effects for all linear mixed effects models were added based on a model selection with Bayesian information
criterion (BIC). For fixed effects, p-values were obtained by likelihood ratio tests, and degrees of freedom
were approximated using the Kenward-Roger method (R Core Team, 2017).

To assess post-hoc differences for significant Network effects, we used Tukey’s Honestly Significant
Difference (HSD) test. SDI outliers were excluded based on the interquartile range method. For the healthy
older adults, 3.3% of the data needed to be discarded and for the stroke patients 3.4%.

2.1.4 Results

2.1.4.1  Healthy older adults

Mixed-effects linear regression on structure-function coupling, with Mean SDI as dependent variable and
Hemisphere as well as Network as fixed effects revealed a main effect of Hemisphere (F(1,11449)=13.76,
p<0.001), indicating that the SDI is globally higher in the left compared to the right hemisphere in HOA (Figure
9A). We also report a main effect of Network (F(6,11449)= 193.08, p < 0.001) (Figure 9B). A post hoc Tukey
test showed that all networks significantly differed from each other at p <0.05, except from the somatomotor
and frontoparietal networks as well as the dorsal attention and default mode networks. Hence, we observed
the following SDI gradient (from low to high decoupling): 1) Visual network 2) Somatomotor & Frontoparietal
networks 3) Dorsal attention & Default mode networks 4) Ventral attention network 5) Limbic network. In
addition, there was a significant interaction between the two fixed effects (F(6,11449)=2.60, p=0.016).

Following the visual inspection of the results, we performed the same mixed effects linear regression for each
Network level. Results showed that the SDI was significantly higher in the left compared to the right
hemisphere for the somatomotor (F(1,1632.6)=4.18, p=0.041), dorsal attention (F(1,1123)=4.66, p=0.032),
limbic (F(1,769.34)=8.86, p=0.003) and default mode network (F(1,2773.2)=5.17, p=0.023). No hemispheric
differences were observed for the visual (F(1,2121.2)=0.04, p=0.836), ventral attention (F(1,1413.5)=0.15,
p=0.698) and frontoparietal networks (F(1,1423)=1.52, p=0.219).
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Figure 9. Mean Structural Decoupling Index (SDI) in healthy older adults (HOA).

(A) Mean SDI per hemisphere. The SDI in the left hemisphere was significantly higher in the left compared to the right hemisphere.
(B) Mean SDI per Yeo network (1: Visual network, 2: Somatomotor network, 3: Dorsal attention network, 4: Ventral attention
network, 5: Limbic network, 6: Frontoparietal network, 7: Default mode network) and hemisphere. A gradient of SDI can be depicted
across networks, the visual network having the lowest SDI and the limbic network the highest. SDI of networks were significantly
different from each other, except from the somatomotor (2) and frontoparietal (6) as well as the dorsal attention (3) and default
mode networks (7). In all plots, error bars show the standard error of the mean (SEM). *:p<0.05, **:p<0.01, *** :p<0.001

2.1.4.2  Stroke patients

In stroke patients, a mixed-effects linear model with Side (lpsilesional, Contralesional), Network (Visual,
Somatomotor, Dorsal attention, Ventral attention, Limbic, Frontoparietal, Default Mode) and Lesion site
(Left, Right) as fixed effects and Mean SDI as dependent variable indicated a main effect of Side, with a higher
SDI in the ipsi- compared to the contralesional hemisphere (F(1,15265.3)=4.84, p=0.028) (Figure 10A) and
Network (F(6,15265.3)=292.43, p < 0.001) (Figure 10B). A post hoc Tukey test showed that all networks
significantly differed from each other at p < 0.05, except from the dorsal attention and default mode
networks. We thus see the following SDI gradient (from low to high decoupling): 1) Visual network 2)
Somatomotor network 3) Frontoparietal network 4) Dorsal attention & Default mode networks 5) Ventral
attention network 6) Limbic network. Furthermore, Lesion site interacted significantly with Network
(F(6,15265.3)=4.70, p < 0.001). There was no significant main effect of Lesion site (F(1,45.6)=0.0034,
p=0.954), no two-way interaction between Side and Network (F(6,15265.3)=0.56, p=0.762) or Side and Lesion
site (F(1,15265.3)=0.45, p=0.50), nor a three-way interaction between Side, Network and Lesion site
(F(6,15265.3)=1.63, p=0.13).

Analogously to the healthy older adults, we performed the same mixed effects linear regression for each
Network level. In the visual network, we found a significant interaction between Side and Lesion site
(F(1,2813.33)=5.59, p=0.018) and the SDI was higher in the right hemisphere both for patients with LH
(F(1,1040.4)=5.19, p=0.023) and RH stroke (F(1,1473.2)=4.92, p=0.027) (Figure 11A), however, there were no
main effects of Side (F(1,2813.33)=0.50, p=0.480) and Lesion site (F(1,44.13)=1.99, p=0.165). For the
somatomotor network, we found a main effect of Lesion site (i.e. higher SDI in patients who had a right-
hemispheric stroke compared to patients who had a left-hemispheric stroke) (F(1,44.03)=4.68, p=0.036), a
tendency for a main effect of Side (F(1,2173.35)=2.75, p=0.097) and for an interaction between Side and
Lesion site (F(1,2173.35)=2.53, p=0.10) (Figure 11B). For all other networks (dorsal attention, ventral
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attention, limbic, frontoparietal and default mode), there were no significant main effects or interactions (for
an overview, see Supplementary Table S1).
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Figure 10. Mean Structural Decoupling Index (SDI) in stroke patients.

(A) Mean SDI per hemisphere. The SDI in the ipsilesional hemisphere was significantly higher compared to the contralesional
hemisphere. (B) Mean SDI per Yeo network (1: Visual network, 2: Somatomotor network, 3: Dorsal attention network, 4: Ventral
attention network, 5: Limbic network, 6: Frontoparietal network, 7: Default mode network) and lesion site . A gradient of SDI can
be depicted across networks, the visual network having the lowest SDI and the limbic network the highest. All networks were
significantly different from each other, except from the dorsal attention (3) and default mode networks (7). In all plots, error bars
show the standard error of the mean (SEM). *:p<0.05, **:p<0.01, *** :p<0.001
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Figure 11. Mean Structural Decoupling Index (SDI) in the visual and somatomotor networks in stroke patients.

(A) Mean SDI per lesion site and hemisphere in the visual network. The SDI was significantly higher in the right hemisphere for both
LH and RH stroke. (B) Mean SDI per lesion site and hemisphere in the somatomotor network. The SDI was higher in RH stroke
patients compared to LH stroke patients. In all plots, error bars show the standard error of the mean (SEM). *:p<0.05, **:p<0.01,
*** :p<0.001
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2.1.4.3  Stroke patients vs healthy older adults

Finally, we directly compared stroke patients to healthy older adults by splitting the stroke patients into two
groups, namely left-hemispheric stroke and right-hemispheric stroke. The data was analyzed using a mixed-
effects linear regression with Group (Healthy older adults, Patients), Hemisphere (Left, Right) and Network
(Visual, Somatomotor, Dorsal attention, Ventral attention, Limbic, Frontoparietal, Default Mode) as fixed
effects and Mean SDI as dependent variable.

2.1.4.3.1 Left-hemispheric stroke patients vs healthy older adults
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Figure 12. Mean Structural Decoupling Index (SDI) left-hemispheric (LH) stroke patients vs healthy older adults (HOA).

(A) Mean SDI per hemisphere in LH stroke patients and HOA (pooled). The SDI in the left hemisphere is significantly higher compared
to the right hemisphere. (B) Mean SDI per Yeo network (1: Visual network, 2: Somatomotor network, 3: Dorsal attention network,
4: Ventral attention network, 5: Limbic network, 6: Frontoparietal network, 7: Default mode network), hemisphere and group. A
gradient of SDI can be depicted across networks, the visual network having the lowest SDI and the limbic network the highest. In
all plots, error bars show the standard error of the mean (SEM). *:p<0.05, **:p<0.01, *** :p<0.001

The regression revealed a main effect of Network (F(6,18730.4)=311.85, p < 0.001) (Figure 12B) and
Hemisphere (F(1,18730.3)=9.84, p=0.002), with a higher SDI in the left, compared to the right hemisphere
(Figure 12A). There were also a significant two-way interactions between Network and Hemisphere
(F(6,18730.4)=2.29, p=0.032) as well as between Network and Group (F(6,18730.4)=3.26, p=0.003). There
was no main effect of Group (F(1,56.4)=0.06, p=0.82), no interaction between Group and Hemisphere
(F(1,18730.3)=2.24, p=0.135), nor between Network, Group and Hemisphere (F(6,18730.4)=0.96, p=0.448).
On network-level, we observed a main effect of Hemisphere for the somatomotor (F(1,2673.12)=9.47,
p=0.002) and limbic networks (F(1,1258.25)=6.31, p=0.012), with a higher SDI in the left hemisphere. There
was no main effect of Group for either of the networks (somatomotor: F(1,54.09)=2.73, p=0.104; limbic:
F(1,54.42)=0.192, p=0.662) nor interaction between the fixed effects (somatomotor: F(1,2673.12)=0.32,
p=0.571; limbic: F(1,1258.25)=1.34, p=0.25). There were no other network effects or network-specific
differences between groups (for an overview, see Supplementary Table S2).
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2.1.4.3.2 Right-hemispheric stroke patients vs healthy older adults

There was a significant main effect of Network (F(6,19433.32)=346.32, p < 0.001) (Figure 13B), as well as two-
way interactions between Network and Group (F(6,19433.4)=3.72, p=0.001)(Figure 13A), Network and
Hemisphere (F(6,19433.4)=2.50, p=0.02), as well as between Group and Hemisphere (F(1,19433.4)=15.88,
p<0.001). We observed no main effects of Group (F(1,58.7)=0.11, p=0.75) or Hemisphere (F(1,19433.4)=0.65,
p=0.421), nor was there a three-way interaction between Network, Group and Hemisphere
(F(6,19433.4)=1.04, p=0.394).
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Figure 13. Mean Structural Decoupling Index (SDI) right-hemispheric (RH) stroke patients vs healthy older adults (HOA).

(A) Mean SDI per group and hemisphere. The SDI is significantly higher in the ipsilesional (i.e., right) hemisphere for stroke patients
and significantly higher in the left hemisphere for healthy controls. (B) Mean SDI per Yeo network (1: Visual network, 2:
Somatomotor network, 3: Dorsal attention network, 4: Ventral attention network, 5: Limbic network, 6: Frontoparietal network, 7:
Default mode network), hemisphere (left = red, right = green) and group. A gradient of SDI can be depicted across networks, the
visual network having the lowest SDI and the limbic network the highest. In all plots, error bars show the standard error of the
mean (SEM). *:p<0.05, **:p<0.01, *** :p<0.001

Subsequently, we ran a separate analysis for each Network. For the ventral attention network (Figure 14A),
results revealed an interaction between Group and Hemisphere (F(1,2400.01)=4.68, p=0.031), showing that
the SDI was higher in the right compared to the left hemisphere for RH stroke patients (F(1,986.3)=5.97,
p=0.015), a difference which was absent in healthy controls (F(1,1413.5)=0.151, p=0.698). There were
tendencies for a main effect of Group (F(1,56.45)=2.83, p=0.098) and of Hemisphere (F(1,2400.01)=2.80,
p=0.094). In the limbic network (Figure 14B), there was also an interaction between Group and Hemisphere
(F(1,1312.44)=5.22, p=0.022), but , there was no hemispheric difference for stroke patients
(F(1,543.33)=0.23, p=0.630), whereas the SDI was higher in the left compared to the right hemisphere for
healthy older adults (F(1,769.34)=8.86, p=0.003). There were no main effects of Group (F(1,56.65)=0.26,
p=0.614) or Hemisphere (F(1,1312.44)=2.40, p=0.121). Analogously to the limbic network, the default mode
network shows an interaction between Group and Hemisphere (F(1,4706.6)=3.93, p=0.047), with a
hemispheric difference for healthy
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Figure 14. Mean Structural Decoupling Index (SDI) in RH stroke patients vs healthy older adults (HOA).

(A) Mean SDI per group and hemisphere in the ventral attention network. The SDI was higher in the right (ipsilesional) compared
to the left hemisphere. There was no left-right difference in HOA. (B) Mean SDI per group and hemisphere in the limbic network.
The SDI is higher in the left compared to the right hemisphere in healthy controls, a difference which is absent in stroke patients.
(C) Mean SDI per group and hemisphere in the default mode network. The SDI is higher in the left hemisphere compared to the
right in healthy controls and there is no hemispheric difference in RH stroke patients. In all plots, error bars show the standard error
of the mean (SEM). *:p<0.05, **:p<0.01, *** :p<0.001
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controls (SDI higher in the left compared to the right hemisphere; F(1,2773.2)=5.17, p=0.023) which is absent
in the patient group (F(1,1933.3)=0.44, p=0.507) (Figure 14C). There were no main effects of Group
(F(1,56.7)=0.03, p=0.861) or Hemisphere (F(1,4706.6)=0.99, p=0.320). There were no other network effects
or network-specific differences between groups (for an overview, see Supplementary Table S3).

2.1.5 Discussion

2.1.5.1  SDI varies between networks in HOA and stroke patients

The present work aimed at investigating for the first time the structure-function coupling in HOA and stroke
patients. We expected high coupling for low-level networks and lower coupling for high-level networks. Our
results showed that the SDI varied between networks in all our analyses and the effect was robust enough
to remain highly significant even following a stroke. Notably, both in HOA and stroke patients, we observed
lower decoupling for lower-level sensory networks, such as the visual and somatomotor networks, and higher
decoupling in the limbic, ventral, dorsal attention, and default mode networks, consistently with previous
results (Preti & Van De Ville, 2019). Surprisingly, the frontoparietal network was not more decoupled than
the somatomotor network in HOA. This could arise from age-related changes previously demonstrated in this
network (Campbell et al., 2012; Malagurski et al., 2020; Zanchi et al., 2017). A higher SDI is associated with
cognitive processes that require more flexibility, therefore a decrease in SDI in this network could be
associated to decreased cognitive performances. Namely, age-related functional changes in the
frontoparietal network have been associated with a decrease in cognitive performance (Campbell et al.,
2012; Zanchi et al., 2017). Moreover, as age-related changes have been observed for both structural and
functional connectivity (Damoiseaux, 2017). Thus, it is likely that these changes in connectivity are also
reflected in changes in structure-function coupling. Therefore, future work will need to investigate the effect
of ageing on the SDI more closely. Particularly network effects as well as their behavioral relevance should
be further studied.

2.1.5.2 Hemispheric lateralization in HOA

Due to the known lateralization of certain brain networks (e.g., somatomotor, limbic, ventral attention
networks), we anticipated hemispheric differences in SDI for these networks in HOA. Indeed, we observed a
higher SDI in the left (dominant) hemisphere for the somatomotor, dorsal attention, limbic and default mode
networks, compared to the right hemisphere. No lateralization was observed for the visual, ventral attention
and frontoparietal networks.

Hemispheric left-lateralization in the somatomotor network has been previously related to the hemispheric
asymmetry for motor performance (Triggs et al., 1997) and the typical preference for one side of the body
over the other, most prominently observed in the handedness (Lubben et al., 2021). For the limbic network,
a right-lateralization has been previously shown, especially with regard to the processing of faces (Jamieson
et al., 2021; Tippett et al., 2018). The default mode network is known to be rather left-lateralized (Banks et
al., 2018; Nielsen et al., 2013). Finally, lateralization of the dorsal attention network has not been reported.
As the relationship between the dorsal attention network and aging remains poorly investigated, the
lateralization of this network might in fact reflect an adaptation to old age (Nielsen et al., 2013).

In summary, the somatomotor and default mode networks are both left-lateralized and show a higher SDI in
the left hemisphere. The limbic network is right-lateralized and the dorsal attention network is not known to
be lateralized, however, both display a higher SDI in the left hemisphere. It is thus difficult to generalize SDI
patterns based on these results. However, given that the SDI was also overall significantly higher in the left
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compared to the right hemisphere in HOA, we hypothesize that this could indicate a “special role” of the left
(dominant) hemisphere, as decoupling is thought to facilitate regional and individual specialization of
behavior (Z. Gu et al., 2021; Preti & Van De Ville, 2019; Sarwar et al., 2021). This general lateralization is
possibly related to the fact that all HOA are right-handed, meaning that the left hemisphere is their dominant
one. This effect could be further investigated, e.g., by performing the same experiment in a group of left-
handed people.

2.1.5.3 Impact of stroke on structure-function coupling

The stroke population provided us with a unique opportunity to study changes in coupling strength in brain
networks following a structural lesion. We hypothesized that, as a consequence of the acute stroke and the
structural damage it causes, the function(s) related to the affected area cannot rely on the usual anatomical
backbone anymore, resulting in an increase in structure-function decoupling (i.e., higher SDI) in the ipsi-
compared to the contralesional hemisphere. Moreover, we also expected a heightened SDI ipsilesionally in
the somatomotor network of stroke patients compared to HOA, given that all included patients had a motor
deficit at stroke onset. As anticipated, the SDI was generally higher in the ipsi- compared to the contralesional
hemisphere. On network level we observed, on one hand, effects independent of lesion site (i.e., the same
SDI change occurs, independently of whether the left or right hemisphere is affected by the stroke), such as
for the visual network. On the other hand, we observed lesion-site-dependent effects, such as for the
somatomotor network, in which the SDI was higher in RH compared to LH stroke patients. Though there was
only a trend for an interaction, it could be observed that the pattern of SDI in LH stroke patients resembles
that of HOA adults more (SDI left > right hemisphere) than the pattern in RH stroke patients (SDI left = right
hemisphere), suggesting that the somatomotor network might be more severely impacted after a RH stroke.
This should, however, be corroborated in a larger cohort of patients, as the lack of a significant effect might
simply be related to a lack of statistical power.

This lesion site dependency became even more evident in a direct comparison between stroke patients (split
in RH and LH stroke groups) and healthy older adults, as network-specific differences between stroke patients
and healthy older adults were only present in RH stroke patients. For instance, in the limbic and default mode
networks, the higher decoupling between structure and function (higher SDI) in the left compared to the
right hemisphere is present equally in healthy older adults and LH stroke patients, but not in RH stroke
patients. In addition, there was no hemispheric effect in the ventral attention network in the control group,
but a stroke in the RH led to a significant increase in SDI in the ipsilesional hemisphere compared to the
contralesional side, causing a hemispheric imbalance.

Overall, based on these findings, the structure-function coupling seems to be more affected by a RH stroke.
This indicates a potentially higher vulnerability of the right and higher resilience of the left hemisphere to a
structure-function coupling change after stroke in some of the major brain networks, such as the
somatomotor, limbic, default mode and ventral attention networks. Previous work has associated RH stroke
with poor functional outcome (Kwakkel et al., 2003; Ward, 2017). Hence, a perturbed SDI in RH stroke
patients could potentially be related to higher functional impairment. However, this should be assessed in
future studies by relating it to behavioral measures which are relevant for the impacted networks.

For example, for the limbic network, the vulnerability of the RH might be explained by previous findings that
indicated a high right-lateralization of the limbic network, with regard to the processing of faces and negative
emotions, as well as non-verbal communication (Jamieson et al., 2021; Tippett et al., 2018). Indeed, a damage
to the right hemisphere has been associated to impairments in emotion identification(Sheppard et al., 2020).
Similarly, the ventral attention network is also right-lateralized (Barrett et al., 2019; Bartolomeo & Seidel
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Malkinson, 2019; Bernard et al., 2020) and RH stroke is associated with visuospatial neglect due to deficits in
ventral attention (Lunven & Bartolomeo, 2017; Rode et al., 2017). Future investigations should more closely
address the relationship between changes in SDI in the limbic or ventral attention network following RH
stroke and impairments in the processing of emotions and spatial neglect, respectively.

Finally, the somatomotor and default mode networks are known to be rather left-lateralized and changes in
SDI related to stroke in the non-dominant hemisphere cannot be fully explained along the same lines. It is
nevertheless noteworthy, that three out of the four networks which are altered only in RH stroke patients
(somatomotor, limbic and default mode networks) were the same networks that exhibited a left-
lateralization in HOA.

In the motor network, previous studies showed an increased motor-related neural activation post-stroke in
contralesional primary motor cortex as well as in bilateral premotor areas compared to healthy controls (i.e.
a loss of the usual lateralization pattern) (Rehme et al., 2012). Good functional outcome was associated with
a return to the recruitment of the original functional network. It is difficult to predict how this changed
activation pattern would translate to changes in SDI in the involved areas (primary motor and premotor
areas), especially given that a change in SDI does not just depend on how either functional or structural
connectivity change, but how one changes with respect to the other. However, one could speculate that a
return to the normal state of lateralization, i.e. a higher SDI in the left compared to the right hemisphere in
the somatomotor, limbic and default mode networks, would be associated with an improved functional
outcome for RH stroke patients, as it has been shown repeatedly for motor function (Boyd et al., 2017;
Guggisberg et al., 2019; Hummel et al., 2008; Rehme et al., 2012)

Future studies should investigate i) the role of the hemispheric lateralization in HOA and ii) the effect of the
RH-stroke-related changes in above-mentioned networks, especially with regard to lateralization, on the
degree of impairment and the individual recovery process of stroke patients.

2.1.5.4 Conclusion and future perspectives

In conclusion, this work shows the existence of a structure-function gradient in HOA similar to healthy young.
Additionally, we demonstrate hemispheric coupling differences in specific brain networks, thereby initiating
a new line of investigation for network changes related to healthy aging. Finally, we highlight the importance
of lesion site for stroke-induced network alterations. This work contributes to a better understanding of the
impact a stroke has on the brain and its networks. Our results further suggest that the SDI represents a
promising new approach to study the impact of stroke on structure-function coupling in the brain as well as
its changes related to reorganization thereafter. In order to further validate the SDI as a potential biomarker
for patient stratification, follow-up work should include an in-depth longitudinal analysis of the structure-
function coupling during post-stroke recovery and an understanding of the relationship between the SDI and
behavior. Ideally, this would be done on individual level. Indeed, the information contained in the
“decoupled” portion of the SDI has been shown to distinguish very well among individuals (Griffa et al., 2022).
This could eventually help characterize stroke patients and their specific pathological traits (Griffa et al.,
2022), thereby paving the way to a more personalized understanding of and treatment for stroke.
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2.1.6 Supplementary Information

Table S1. Mean Structural Decoupling Index (SDI) in stroke patients.
An overview of the ANOVA for the linear mixed-effects regression assessing mean SDI, for timepoint T1. No variables were
significant with p < 0.05

Network Variable Numeratordf Denominator F value p value

df
Dorsal attention Side 1 1503.35 0.19 0.65
Lesion site 1 44.11 0.02 0.88
Side * Lesion site 1 1503.35 0.06 0.81
Ventral attention  Side 1 1894.14 2.61 0.11
Lesion site 1 44.17 0.05 0.83
Side * Lesion site 1 1894.14 2.90 0.09
Limbic Side 1 1032.57 0.93 0.34
Lesion site 1 44.25 0.00 0.99
Side * Lesion site 1 1032.57 0.10 0.76
Frontoparietal Side 1 1905.34 0.47 0.50
Lesion site 1 44.29 1.33 0.26
Side * Lesion site 1 1905.34 0.003 0.96
Default mode Side 1 3684.5 0.74 0.38
Lesion site 1 44.7 0.004 0.95
Side * Lesion site 1 3684.5 0.0042 0.95
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Table S2. Mean Structural Decoupling Index (SDI) left-hemispheric (LH) stroke patients vs healthy older adults (HOA).
An overview of the ANOVA for the linear mixed-effects regression assessing mean SDI, for timepoint T1. No variables were
significant with p < 0.05.

Network Variable Numeratordf Denominator F value p value
df

Visual Group 1 54.1 0.19 0.66
Hemisphere 1 3461.4 0.60 0.44
Group * Hemisphere 1 3461.4 1.07 0.30

Dorsal attention Group 1 54.85 1.64 0.21
Hemisphere 1 1836.4 1.60 0.21
Group * Hemisphere 1 1836.4 2.18 0.14

Ventral attention  Group 1 54.41 1.92 0.17
Hemisphere 1 2321.38 0.04 0.85
Group * Hemisphere 1 2321.38 0.08 0.78

Frontoparietal Group 1 54.62 0.23 0.63
Hemisphere 1 2338.59 0.21 0.65
Group * Hemisphere 1 2338.59 1.19 0.28

Default mode Group 1 54.8 0.07 0.80
Hemisphere 1 4524.4 3.5 0.06
Group * Hemisphere 1 4524.4 1.08 0.30
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Table S3. Mean Structural Decoupling Index (SDI) right-hemispheric (RH) stroke patients vs healthy older adults (HOA).
An overview of the ANOVA for the linear mixed-effects regression assessing mean SDI, for timepoint T1. No variables were
significant with p < 0.05.

Network Variable Numeratordf Denominator F value p value
df

Visual Group 1 56.1 1.70 0.20
Hemisphere 1 35944 2.54 0.11
Group * Hemisphere 1 3594.4 3.45 0.06

Somatomotor Group 1 56.16 0.65 0.43
Hemisphere 1 2765.78 1.60 0.21
Group * Hemisphere 1 2765.78 1.71 0.19

Dorsal attention Group 1 56.64 1.75 0.07
Hemisphere 1 1912.81 3.22 0.29
Group * Hemisphere 1 1912.81 1.11 0.78

Frontoparietal Group 1 56.43 0.62 0.44
Hemisphere 1 2413.68 1.46 0.23
Group * Hemisphere 1 2413.68 0.18 0.67
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2.2.1 Abstract

Stroke is one of the main causes of death and a major source of permanent impairment, frequently of motor
origin. However, the clinical picture is very heterogeneous and the understanding of the mechanisms
underlying the divergent courses of recovery is still incomplete. Personalization of treatment has been
suggested to improve outcome, however it requires efficient biomarkers for patient stratification. Current
structural and functional biomarkers based on Magnetic Resonance Imaging (MRI) still lacks clinical
application, due to missing large-scale evidence or due to the inability to predict outcomes on an individual
basis. This study aimed at achieving a better understanding of post-stroke recovery by studying the structure-
function coupling (through the Structural Decoupling Index) longitudinally as well as by evaluating its links
with functional impairments. Diffusion-Weighted Imaging (DWI) and resting-state functional MRI were
acquired in 62 stroke patients with motor deficits (66.4+14.1y) in the first week after stroke (T1), after three
weeks (T2) and three months (T3). The SDI was calculated for every patient, every timepoint and for every
cortical region of the Glasser atlas. Behavioral domains consisted of Motor, Language, Memory, Attention,
Executive Functions, General Cognitive Screening (MoCA), Anxiety&Depression and Fatigue. Multivariate
correlation patterns (PLSC) associating behavior to SDI variability were performed for every timepoint.
Results indicated network-specific effects of stroke on SDI at T1 (ventral attention) and T3 (somatomotor and
limbic) in right-hemispheric (RH), but not left-hemispheric (LH) stroke patients. Variations in SDI in a number
of identified key areas correlated significantly with cognitive and psychological scores (CPS). At T1, the SDl in
the frontoparietal and default mode network correlated the most with CPS, whereas at T2 the contribution
of each network was more balanced. At both T1 and T2, the SDI in several key motor areas (e.g. primary
motor cortex) correlated significantly with CPS, but not with motor performance. This suggests that variability
in SDI in key motor areas is behaviorally relevant for cognitive, but not motor functions. Future directions
include a longitudinal and individualized assessment of key areas identified in this study and an evaluation of
the importance of stroke side to further demonstrate the clinical relevance of SDI.
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2.2.2 Introduction

Stroke is one of the leading causes for death and long-term disability world-wide (Katan & Luft, 2018). The
most frequent symptoms at stroke onset are upper and/or lower limb motor deficits (80-85%),
somatosensory deficits (40-50%), attention deficits or neglect (25-30%) and language deficits or aphasia (20-
25%) amongst others (Appelros et al., 2002; Buxbaum et al., 2004; Lawrence et al., 2001; Nys et al., 2007;
Ramsey et al., 2017; Rathore et al., 2002; Ringman et al., 2004). Although many patients experience a
combination of symptoms, restoration of motor function has become a priority in post-stroke rehabilitation,
as motor deficits, in addition to being the most common type, tend to be very debilitating in everyday life
and thus cause loss of independence. However, motor recovery is heterogeneous, with two thirds of patients
(“fitters’ to the proportional motor recovery) showing natural recovery, which represents approximately 70%
of the initial deficit, and the remaining third showing very limited to no recovery (‘non-fitters’) (Prabhakaran
et al.,, 2008). In spite of the heterogeneity of recovery, the current therapies mostly follow a ‘one-fits-all’
approach and are not adapted to the individual needs of patients. Especially for ‘non-fitters’, finding optimal
treatment strategies remains a significant clinical challenge. Thus, there is a strong need for research oriented
towards personalized therapy. However, due to incomplete understanding of the neuronal mechanisms
underlying recovery, the predictability of individual recovery and outcomes, as well as patient stratification,
remain challenging (Stinear, 2017).

Recently, studies using Magnetic Resonance Imaging (MRI) have shed some light onto the mechanisms
underlying post-stroke recovery, mainly by investigating structural white matter changes (through Diffusion-
Weighed Imaging (DWI)) and functional grey matter activity (through functional MRI (fMRI)) (Boyd et al.,
2017; Grefkes & Fink, 2020; Guggisberg et al., 2019; P. J. Koch & Hummel, 2017). In particular, many studies
have described potential biomarkers which could serve as predictors for post-stroke recovery. Notably, the
integrity of the corticospinal tract (CST) is among the most commonly researched structural biomarkers which
could predict recovery (Stinear, 2017) and also predictions based on the whole-brain structural connectome
have shown promising results (P. J. Koch et al., 2021). In addition, measures related to fMRI, such as intra-,
interhemispheric connectivity (Fan et al., 2015; Park et al., 2011; Siegel et al., 2016) or task-related activity
in M1 (Hannanu et al., 2017; Rehme et al., 2015, for review see previous references) have also provided
valuable insights into the prediction of motor recovery. However, the applicability of these biomarkers in
clinics remains limited. This is mainly due to lack of large-scale evidence, insufficient prediction accuracy, and
the inability to predict outcomes for individual patients, rendering a need for novel and better predictive
biomarkers (Boyd et al., 2017).

Above-mentioned biomarkers are all based on either brain structure or function, but it remains unclear
whether their relationship could also serve as a predictor for post-stroke recovery. The Structural Decoupling
Index (SDI) is a new tool which enables to quantify the degree of coupling between structure and function in
each grey matter area (Preti & Van De Ville, 2019). The work done in healthy young adults has shown that
function closely relies on structure in areas related to low-level sensorimotor functions (e.g., primary
somatomotor areas), whereas it is much more detached from its underlying anatomical backbone in areas
involved in higher level cognitive functions (e.g., prefrontal cortex) (Preti & Van De Ville, 2019). Our previous
work has extended these results from a healthy population to stroke, and demonstrated a higher decoupling
in the ipsilesional hemisphere, as well as alterations in hemispheric coupling differences in specific brain
networks, namely in the somatomotor, limbic, ventral attention, visual network and default mode networks
(Brigger et al., in preparation, see Study 1). In addition, we showed that these changes were observed only
in right-, but not left-hemispheric stroke patients. However, despite observing alterations in structure-
function coupling following a stroke, its clinical relevance and link to behavior remain unknown. Elucidating

61



PART I

the relationship between structure-function coupling and functional impairments, as well as the evolution of
this relationship over time post-stroke, will add to a better understanding of stroke-related deficits and the
underlying mechanisms of recovery. In addition, it is a necessary next step in the evaluation of structure-
function coupling as a potential future biomarker for post-stroke recovery, before it can be explored for
patient stratification.

In order to investigate the potential of structure-function coupling in regard of the above-mentioned points,
we addressed two related research questions. (i) We investigated the evolution of structure-function
coupling (by using the SDI) in the first 3 months post-stroke. (ii) We evaluated the behavioral relevance of
inter-individual differences in coupling after a stroke through multivariate correlation patterns. The evolution
of the structure-function coupling over time, as determined here, has not yet been investigated in a stroke
population. One might assume that, e.g., the structural disruption caused by the stroke lesion would lead to
a higher decoupling between brain structure and function (especially ipsilesionally) in the acute phase, as the
function is unable to rely on the underlying structure anymore. This assumption is supported by our previous
work, where we showed a higher decoupling in the ipsilesional, compared to the contralesional hemisphere
(Briigger et al., in preparation, see Study 1). The evolution of the SDI over time post-stroke could take various
courses, and can be influenced by changes in either brain structure or function or through a combination of
both. Regarding our second research question, we hypothesized that changes in coupling in areas closely
related to the lesion — hence mainly ipsilesionally — would be associated to worse performance in the
behavioral domains, and especially in the motor domain, in the acute stage. We expected this pattern to
become more spatially distributed over time, with involvement of various areas in both the ipsi- and
contralesional hemispheres at the early subacute stage.

2.2.3 Methods

2.2.3.1 Participants

Sixty-two stroke patients (Age: 66.4y + 14.1y, 17 females) were enrolled in the study following admission at
the Cantonal Hospital in Sion (HVS), Switzerland. 52 patients were right-handed, 4 were left-handed and 6
were ambidextrous. The patient cohort of this study largely overlaps with the cohort of Briigger et al. (in
preparation, see Study 1), as the patients included in Study 1 are also included for Study 2. Patients
underwent scanning at three timepoints, hereafter referred to as T1 (first week), T2 (3 weeks) and T3 (3
months). On average, T1 took place 5.1 + 2.6 days post-stroke, T2 after 25.6 + 4.5 days and T3 after 97.1
11.9 days. Inclusion criteria for the study included being older than 18 years of age, having motor deficits of
the upper limb and absence of contraindications for MRI. Exclusion criteria were requests not to be informed
in case of incidental findings, inability to provide informed consent, history of seizures, pregnancy, severe
neuropsychiatric or medical diseases, regular use of narcotic drugs, as well as implanted medical electronic
devices or ferromagnetic metal implants which are not MRI compatible. Patients with either first-ever or
recurrent stroke were included in the study. Thirty-one patients had a left-hemispheric (LH) stroke, thirty-
one a right-hemispheric (RH) stroke. A summary of the behavioral deficits of the cohort can be found in Table
1. Written informed consent was obtained from each participant following the Declaration of Helsinki and
the study was authorized by the local ethical committee (Swissethics approval number 2018-01355).

2.2.3.2 MRI Data Acquisition and Image Analysis

For the analysis of both fMRI and DWI data we used the same preprocessing and processing pipeline as
outlined in our previous work Briigger et al. (in preparation, see Study 1). The resulting individual structural
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and functional connectomes had 360 regions of interests (ROIs) (Glasser et al., 2016). For post-hoc analyses,
each ROl was attributed to one of the 7 Yeo networks (Thomas Yeo et al., 2011) through majority voting.

Table 1. Behavioral impairments at T1
Average impairment taking into account all included sub-scores (see Table 2).

Behavioral domain Percentage of patients who have an impairment at T1
Motor 100%

Language 19%

Memory 19.9%

Attention 35.9%

Executive functions 31.9%

General cognitive screening 79.4%

Anxiety & Depression 18.5%

Fatigue 28%

2.2.3.3  Structure-function coupling

In an equivalent manner detailed in our previous work (Brigger et al., in preparation, see Study 1), to
determine structure-function coupling for every ROI of the Glasser parcellation (180 areas per hemisphere)
(Glasser et al., 2016), we applied the Structural Decoupling Index (SDI) pipeline described in (Preti & Van De
Ville, 2019). In brief, to obtain the SDI, the functional signals at each point in time are first decomposed onto
the underlying structural backbone and subsequently filtered into low-frequency (coupled) and high-
frequency (decoupled) portions. The SDI is the ratio of the decoupled and the coupled portion in every ROI.
We used the individual structural and functional connectomes for each patient and timepoint, as described
in Brigger et al. (in preparation).

2.2.3.4 Longitudinal effects of stroke on structure-function coupling

To assess the longitudinal effects related to structure-function coupling between the acute and early
subacute phase, we ran two separate mixed-effects linear regressions — comparing the acute (T1) with
different levels of subacute stages (T2/T3). For completeness, we also assessed changes between T2 and T3,
which yielded no significant differences (Table S4). Both regressions contained Mean SDI as dependent
variable and Hemisphere (lpsilesional (IL), Contralesional (CL)), Lesion side (Left, Right), Network (Visual,
Somatomotor, Dorsal attention, Ventral attention, Limbic, Frontoparietal, Default Mode), and Timepoint (T1
and T2 for the first model; T1 and T3 for the second model) as fixed effects. Random effects for all linear
mixed effects models were added based on a model selection with Bayesian information criterion (BIC). For
fixed effects, p-values were obtained by likelihood ratio tests, and degrees of freedom were approximated
using the Kenward-Roger method (R Core Team, 2017). To assess post-hoc differences for significant Network
effects, we used Tukey’s Honestly Significant Difference (HSD) test. Outliers were excluded based on the
interquartile range, which concerned 3.4% of datapoints.

2.2.3.5 Behavioral data

In the context of this study, we acquired motor and neuropsychological data spanning all cognitive domains
at each of the three timepoints. Indeed, the behavioral data was divided in 8 domains: Motor, Language,
Memory, Attention, Executive functions, MoCA, Anxiety & Depression and Fatigue. A list of tests and sub-
scores included in each behavioral domain can be found in Table 2. For all motor scores, the ratio between
the score related to the affected and the unaffected side was used. In order to have the same interpretation
for the 9 Hole Peg Test as for the others contained in the motor domain (i.e., higher score corresponds to
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better performance), we subtracted the raw score from the maximum score (i.e., 180). Whenever more than
one score was available per domain, we applied Principal Component Analysis (PCA) and used the projection
onto the first component as behavioral score for the domain.

Table 2. List of behavioral tests and sub-scores for all behavioral domains.

Domain Test Sub-score used
Motor Fugl-Meyer Upper Limb (Fugl-Meyer, 1980) Total score
Pinch & Grip (Mathiowetz et al., 1984) Pinch
Fist
Key

Medical Research Council muscle strength testing (MRC) (Ciesla Total
et al., 2011; Montgomery et al., 2007)

Nine-Hole Peg Test (9HPT) (Mathiowetz et al., 1985) Total
Language Phonological verbal fluency (Godefroy et al., 2012) Final score
Semantic verbal fluency (Godefroy et al., 2012) Final score
Memory Digit span (Wechsler, 2008) Forward span score
Corsi-Kessels (Kessels et al., 2000) Forward span score

Consortium to Establish a Registry for Alzheimer’s Disease Delayed copy recall total
(CERAD) (Morris et al., 1989)
Attention Test of Attention Performance (TAP) (Zimmermann & Fimm, Alert with warning Reaction Time

2002) (RT)
Alert without warning RT
Divided attention (single
condition: visual) RT
Divided attention (single
condition: auditive) RT
Divided attention (both
conditions) - total omissions
Divided attention (both
conditions) - total errors

Bells cancellation test (Gauthier et al., 1989) Total omissions
Time
Color Trail Test (D’Elia et al., 1996) Subtest A - time
Subtest B - time
Executive Digit span (Wechsler, 2008) Backward span score
functions
Sequencing span score
Bimanual coordination (Dolivo & Assal, 1985) Total
Consortium to Establish a Registry for Alzheimer’s Disease Copy total —score
(CERAD) (Morris et al., 1989)
MoCA Montreal Cognitive Assessment (MoCA) (Nasreddine et al., 2005) Total score
Depression & | Hospital Anxiety and Depression Scale (HADS) (Snaith, 2003) Depression total score
Anxiety
State/Trait Anxiety Inventory for adults (STAI) (Spielberger, 1983, Anxiety trait total score
2010)
Fear And Stress scale (FAS) (Sandi, 2013) Total
Fatigue Multidimensional Fatigue Inventory (MFI) (Smets et al., 1995) Physical
Motivation
General
Activities
Mental
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2.2.3.6  Multivariate brain-behavior correlation patterns

We used Partial Least Square Correlation (PLSC) analyses (Krishnan et al., 2011; MclIntosh et al., 1996) to
identify multivariate correlation patterns between patient-specific nodal SDI measures and the eight
behavioral domains mentioned in 2.2.3.5. Given that patients needed to have all sub-scores to be included
for a given timepoint, due to the inability of PCA to deal with missing values, out of the 62 patients included
in the study, we could only include 32 patients for T1, 34 patients for T2 and 31 patients for T3 for the PLSC
analysis. PLSC identifies linear combinations of SDI measures that maximally covary with linear combinations
of behavioral scores (Griffa et al., 2022; Krishnan et al., 2011). Here, hemispheres were flipped for patients
with a RH stroke, so that all lesions were located on the left side of the brain in order to allow for a comparison
between the ipsi- and contralesional side. For the analysis, we used the pipeline provided in (Griffa et al.,
2022) and outputs include: 8 sets of brain-behavior saliences, which correspond to the left and right singular
vectors of the data covariance matrix; 8 sets of singular values, which represent the explained covariance; as
well as 8 pairs of behavioral and brain latent scores, which are the data projections onto the behavioral and
brain saliences.

The statistical significance of each multivariate correlation pattern was evaluated with permutation testing
(1000 permutations) (Mclntosh et al., 2004; McIntosh & Lobaugh, 2004). For significant multivariate
correlation patterns, the reliability of corresponding nonzero behavioral and brain saliences was assessed
through a bootstrapping procedure (1000 random samples) (Efron & Tibshirani, 1986; Mcintosh et al., 2004)
and the construction of standard scores based on the bootstrap distributions. Values of an absolute standard
score >2 were considered reliable (Krishnan et al., 2011). Finally, the amount of variance explained by the
multivariate correlation pattern was obtained through R-squared (squared Pearson’s correlation) between
the brain and behavioral latent scores.

2.2.4 Results

2.2.4.1 Longitudinal effects on the Structural decoupling index (SDI)

Between T1 and T2, mixed-effects linear regressions with mean SDI as dependent variable showed no main
effect of Timepoint (F(1,14003.4)=0.07, p=0.796) nor was there a significant interaction between Timepoint
and any of the other fixed effects (for an overview, see Supplementary Table S5).

When comparing T1 with T3 with an analogous mixed-effects linear regression, again, we did not observe a
main effect of Timepoint (F(1,10389)=0.016, p=0.90). However, Timepoint interacted with Lesion side
(F(1,10389)=4.80, p=0.0285) and we observed a main effect of Network (F(6,29505)=527.64, p < 0.001). A
post hoc Tukey test revealed differences in SDI between some of the networks at p<0.05, and thus the
following SDI gradient (from low to high decoupling): 1) Visual, Somatomotor & Frontoparietal networks 2)
Dorsolateral & Default Mode networks 3) Ventral attention & Limbic networks. The networks within each of
the three “gradient groups” are not significantly different from each other. Network also significantly
interacted with Lesion side (F(6,29505)=7.12, p < 0.001) as well as with Lesion side and Hemisphere in a three-
way interaction (F(6,29505)=3.60, p=0.001). No other main effects or interactions were significant
(Supplementary Table S6). To further investigate the nature of interactions with the Network variable, we
ran equivalent mixed-effects regressions for each timepoint (section 4.1.1) and for each lesion side (section
4.1.2).
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2.24.1.1 SDI at individual timepoints

Acute phase (T1)

For T1, we observed a significant effect of Hemisphere (F(1,17327.4)=6.16, p=0.013), with a higher SDI in the
IL compared to the CL hemisphere, as well as a significant effect of Network (F(6,17327.3)=310.57, p<0.001),
with the same SDI gradient as previously shown in (Briigger et al., in preparation, see Study 1). In addition,
the analysis revealed a significant two-way interaction between Network and Lesion side (F(6,17327.3)=3.88,
p<0.001) as well as a strong trend for a three-way interaction between Network, Hemisphere and Lesion side
(F(6,17327.3)=2.07, p=0.054). The remaining main effect of Lesion side (F(1,51.8)=0.0007, p=0.978) as well
as the two-way interactions between Network and Hemisphere (F(6,17327)=0.55, p=0.767) and between
Hemisphere and Lesion side (F(1,17327)=0.36, p=0.55) did not reach significance. To investigate the nature
of the significant interactions involving the Network variable, we performed equivalent mixed effects linear
regression for each Network level.
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Figure 15. Mean SDI at T1 and T3.

Mean SDI in left- (LH) (N=31) and right-hemispheric (RH) (N=31) stroke patients for significant networks in timepoints T1 (A, B) and
T3 (C, D). The SDI in the ipsilesional hemisphere (IL) is depicted in cyan and the SDI in the contralesional hemisphere (CL) in coral.
A) Ventral attention network at T1. While there was no difference between RH and LH stroke patients, only in RH patients the SDI
is higher in IL compared to CL. B) Visual network at T1. Lesion side significantly interacts with Hemisphere, the opposite pattern is
observed between sub-groups. C) Somatomotor network at T3. The SDI is higher in IL compared to CL, both in LH and RH patients.
D) Limbic network at T3. Mean SDI is higher in IL compared to the CL, but only in LH patients. *: p < 0.05, **: p < 0.01
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In the ventral attention network (Figure 15A), the regression revealed a significant interaction between
Hemisphere and Lesion Side (F(1,2154.12)=5.42, p=0.019), but no main effects (Hemisphere:
F(1,2154.12)=3.12, p=0.078; Lesion side: F(1,50.21)=0.12, p=0.729). Post-hoc analysis of the interaction
showed a significantly higher SDI in the IL compared to the CL hemisphere for RH stroke patients only
(F(1,1068.2)=8.70, p=0.003), with no hemispheric differences for LH stroke patients (F(1,1085.9)=0.15,
p=0.695).

For the visual network (Figure 15B), we similarly found a significant interaction between Hemisphere and
Lesion side (F(1,3197.2)=4.44, p=0.035). However, post-hoc analysis revealed no significant hemispheric
differences in either LH or RH stroke patients (RH stroke patients: F(1,1598)=3.42, p=0.065; LH stroke
patients: F(1,1599.2)=1.27, p=0.26). As for the ventral attention network, no main effects were significant
(Hemisphere: F(1,3197.2)=0.26, p=0.607; Lesion side: F(1,50)=1.98, p=0.166).

For the remaining investigated networks (i.e., somatomotor, dorsal attention, limbic, frontoparietal and
default mode networks) no main effects nor interactions were significant (for an overview, see
Supplementary Table S7).

Late subacute phase (T3)

At T3, we observed a significant main effect of Network (F(6,12154.5)=235.07, p<0.001), as well as significant
two-way interactions between Hemisphere and Network (F(6,12154.3)=2.70, p=0.013), and Network and
Lesion side (F(6,12154.5)=3.82, p<0.001). A post hoc Tukey test for Network variable revealed significant
differences in SDI between some of the networks at p<0.05 and therefore the following network gradient
can be observed (from low to high decoupling): 1) Visual & Somatomotor networks 2) Dorsolateral &
Frontoparietal & Default Mode networks 3) Ventral attention & Limbic networks. The networks within each
of the three “gradient groups” are not significantly different from each other.

In addition, there was also a significant three-way interaction between Hemisphere, Network and Lesion side
(F(6,12154.3)=2.80, p=0.010). However, there were no hemispheric differences (F(1,12154.2)=0.001,
p=0.967), nor differences in SDI between LH and RH stroke patients (F(1,37.6)=0.67, p=0.417) overall in the
brain. Finally, there was also no interaction between Hemisphere and Lesion side (F(1,12154.2)=0.04,
p=0.847). Subsequently, given the presence of significant interactions with Network, we performed the same
mixed effects linear regression for each Network level.

For the somatomotor network (Figure 15C), we found a main effect of Hemisphere (F(1,1739.28)=7.02,
p=0.008), with a higher SDI in the IL compared to the CL side in addition to a tendency for a difference in SDI
between LH and RH stroke patients (F(1,34.95)=3.97, p=0.054), suggesting a higher SDI in RH stroke patients.
There was no interaction between Hemisphere and Lesion side (F(1,1739.28)=0.23, p=0.628).

In the limbic network (Figure 15D), the regression revealed a significant interaction between Hemisphere
and Lesion side (F(1,815.88)=8.24, p=0.004), but no significant main effects (Hemisphere: F(1,815.88)=0.29,
p=0.592); Lesion side: F(35.33)=1.59, p=0.216). Post-hoc testing indicated a higher ipsilesional (i.e., left-
hemispheric) SDI in LH stroke patients (F(1,443.4)=6.88, p=0.009), whereas there was no significant
hemispheric difference in RH stroke patients (F(1,372.49)=2.30, p=0.130).

There were no significant main effects or interactions in the remaining networks (i.e., visual, dorsal attention,
ventral attention, frontoparietal and default mode networks) (Supplementary Table S8).

In summary (Table 3), we observed distinct network effects at T1 and T3. At T1, the SDI was higher in the
ipsi- compared to the contralesional hemisphere on whole-brain level. More precisely, in the ventral
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attention network, this hemispheric difference was present only in RH stroke patients. The same pattern
could be observed for the visual network, however, only with a trend towards significance. Contrary to T1,
at T3 there was no overall difference in SDI between the ipsi- and contralateral hemisphere (whole-brain),
however, in the somatomotor network, the SDI was higher ipsi- compared to contralesionally. Finally, in the
limbic network at T3, the same pattern could be observed in LH, but not in RH stroke patients. For
completeness, all effects were compared to those observed in the control population (i.e., healthy older
adults) reported in (Briigger et al., in preparation, see Study 1).

Table 3. Summary of cross-sectional effects on SDI at each timepoint.
T1 = Timepoint 1; T3 = Timepoint 3; LH = left-hemispheric stroke patients; RH = right-hemispheric stroke patients; IL =
Structural Decoupling Index (SDI) in the ipsilesional hemisphere; CL = SDI in the contralesional hemisphere.

Timepoint (T)  Population Network Hemispheric Effect similar to control group
comparison as reported in Briigger et al. (in
preparation, see Study 1)
T1 LH Visual IL=CL Yes
RH Visual IL>CL (trend No
only)
LH Ventral attention IL=CL Yes
RH Ventral attention IL>CL No
T3 RH + LH Somatomotor IL>CL Yes for LH
LH Limbic IL>CL Yes
RH Limbic IL=CL No

2.2.41.2 Left-hemispheric vs. right-hemispheric stroke patients

Based on our previous work (Briigger et al., in preparation, see Study 1) where we showed that stroke
differently impacted LH and RH stroke patients, and given that here we observed significant interactions with
Lesion side variable (see above), we ran a separate linear mixed effects analysis for each of the two lesion
sides (LH and RH).

LH stroke patients

In LH stroke patients, results show a main effect of Network (F(6,15289)=264.52, p<0.001) as well as an
interaction between Hemisphere and Network (F(6.15289.8)=4.10, p<0.001). Through post-hoc analysis
(Tukey) we identified differences between some of the networks at p<0.05 and we thus observe the following
network gradient (from low to high decoupling, networks do not differ from each other within groups): 1)
Visual, Somatomotor & Frontoparietal networks 2) Dorsolateral & Default Mode networks 3) Ventral
attention & Limbic networks.

There were no changes over timepoints (F(1,5548.2)=2.28, p=0.131), and also no other significant main
effects or interactions (see Table S9). Given the significant interaction between Hemisphere and Network,
we subsequently ran a separate analysis for each network. We observed a significant hemispheric difference
in the somatomotor (IL > CL, F(1,2190.0=7.48, p=0.006) (Figure 16A), ventral attention (CL > IL,
F(1,1925.52)=5.58, p=0.018) (Figure 16B), and limbic (IL > CL, F(1,1033.81)=6.41, p=0.012) networks (Figure
16C). These effects were independent of timepoint. In addition, a higher contralesional SDI was observed in
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the frontoparietal network (Figure 16D), however only at T3 (Interaction Hemisphere and Timepoint:
F(1,1899.56)=5.75, p=0.012; Post-hoc: Main effect of Hemisphere: T1 — F(1,1089.2)=0.37, p=0.542), T3 —
F(1,810.15)=7.72, p=0.006). We found no significant main effects or interactions for the visual, dorsal
attention and default mode networks (see Supplementary Table S10 for details). An overview of the LH
effects is given in Table 4, together with their comparison with the effects observed in the control group in
our previous work (Briigger et al., in preparation, see Study 1).
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Figure 16. Mean SDI in left-hemispheric stroke patients.

Mean SDI in the ipsi- (IL) and contralesional (CL) hemispheres of left-hemispheric (LH) stroke patients. SDI was higher in IL compared
to CL in somatomotor (A) and limbic (C) networks, whereas the opposite pattern was observed in ventral attention (B) and
Frontoparietal network at T3 (D). *: p<0.05; **: p<0.01

RH stroke patients

In RH stroke patients, we found no significant main effects or interactions except from a significant main
effect of Network (F(6,14182.8)=270.05, p<0.001) (Supplementary Table S11). Post-hoc analysis of Network
(using Tukey) identified a more segregated gradient between the networks than for LH stroke patients: 1)
Visual network 2) Somatomotor & Frontoparietal networks 3) Dorsal attention & Default mode network 4)
Ventral attention network 5) Limbic network.
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In summary although we observed no main effect of Timepoint, analysis for individual timepoints separately
revealed changes in SDI in specific networks across time. In LH stroke patients, the SDI was higher in the IL
compared to the CL hemisphere in the somatomotor and limbic networks. The opposite was observed in the
ventral attention network (independent of timepoint) as well as in the frontoparietal network at T3. There
were no significant effects/interactions for RH stroke patients other than the main effect of Network.

Table 4. Summary of the hemispheric effects in left-hemispheric stroke patients.
LH = left-hemispheric; IL = Structural Decoupling Index (SDI) in the ipsilesional hemisphere; CL = SDI in the contralesional
hemisphere

Group Networks Hemispheric Effect similar to control group as
comparison reported in Briigger et al. (in
preparation, see Study 2)
LH stroke patients  Whole brain IL>CL Yes
Somatomotor & limbic IL>CL Yes
Ventral attention & CL>IL No

frontoparietal (T3 only)

2.2.4.2  SDIin the primary motor cortex (M1) and motor score

Given that all included patients had a motor deficit at stoke onset, we were particularly interested in the
evolution of the SDI in the primary motor cortex (M1). Mixed-effects linear regression with Mean SDI in M1
as dependent variable and Lesion side (Left, Right) as well as Timepoint (T1, T3) revealed a higher SDI in RH
compared to LH stroke patients (F(1,61.89)=4.11, p=0.047). There was no significant effect of Timepoint
(F(1,38.43)=0.27, p=0.604), nor did it significantly interact with Lesion side (F(1,38.43)=0.17, p=0.679).
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2.2.4.3 Multivariate brain-behavior correlation patterns at each timepoint

In the second part of our analyses, we applied PLSC to investigate the inter-individual relationship between
variations in structure-function coupling (i.e., the SDI) and the performance in 8 behavioral domains (Motor,
Language, Memory, Attention, Executive functions, MoCA, Anxiety & Depression, and Fatigue). We
performed one PLSC per timepoint and found significant brain-behavior multivariate correlations for T1
(p=0.021) and T2 (p=0.033), but not for T3 (p=0.19). At all timepoints, positive weights for all behavioral
domains except MoCA reflect worse performance in the corresponding scores (Figure 17A,C). For MoCA, a
negative weight represents worse performance.
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Figure 17. Multivariate correlation patterns between the SDI and behavioral traits.

Significant partial least square correlation (PLSC) patterns between behavioral scores (A and C) and SDI (B and D, significant weights
only) at T1 (A, B) and T2 (C, D). A, C: Behavioral saliences (weights) are plotted for each score. Positive weights represent worse
performance for all domains except MoCA. Domains that have a contribution significantly different from zero are marked with a
star. B, D: Brain saliences (weights) for significant areas are displayed, ranging from negative (blue) to positive (orange-red),
representing lower and higher SDI, respectively. E.g., in B, there is a significant positive relationship between worse performance
(in all behavioral domains except motor) and the SDI in the ipsilesional (left) hand knob.

2.2.4.3.1 Acute phase (T1)

Having indicated a relationship between behavioural variables and individual ROIs (Figure 17), we further
investigated the contribution of the networks to which those ROIls belong (Figure 18). To that aim, we
associated ROIs to their corresponding Yeo network (Thomas Yeo et al., 2011) and assessed 1) how many
ROIs in each network exhibited significant weights (Figure 18A T1 and Figure 18C for T2) and 2) what was the
average weight across significant ROIs per network (Figure 18B for T1 and Figure 18D for T2). To illustrate
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this, we will focus on the somatomotor network, as it was of particular interest for this study. At T1, compared
to the other networks, the somatomotor network had the biggest portion of its ROIs (40%) significantly
accounting for variations in the behavior (Figure 18A). In other words, this means that worse performance in
all behavioral domains except motor was related to changes in SDI in 40% of the areas belonging to the
somatomotor network. Interestingly, regardless of the substantial involvement of somatomotor network as
a whole, the average weight of its individual ROIs was rather low, compared to, e.g., the frontoparietal and
default mode networks, whose average weight was significantly different from zero (Figure 18B). Similarly, a
higher SDI in the ventral attention and visual network was also correlated to worse performance in all
behavioral domains except motor, but less so than in the frontoparietal and default mode networks. On
average, the dorsal attention and limbic network did not contribute substantially to the observed brain
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Figure 18. Contributions of regions of interests (ROIs) across networks to the multivariate correlation pattern.

Percentage of ROIs with significant weights by network at T1 (A) and T2 (C). The total number (n) of ROIs per network is indicated
on the top of each bar. Average weights across significant ROIs at T1 (B) and T2 (D). The total number (n) of significant ROIs per
network is indicated on the top of each bar. Weights significantly different from zero are indicated with stars. While at T1 the
Frontoparietal and Default mode networks indicated average ROl weights different from zero (B), at T2, average ROI weights of all

networks were indistinguishable from zero (D). Note the difference in scales of y axis in B compared to D.
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2.2.4.3.2 Early subacute phase (T2)

At T2, the behavioral saliences were similar to T1, with all domains contributing significantly to the
multivariate correlation pattern, except from the motor domain (Figure 17B). As in T1, positive weights for
all the behavioral domains except MoCA indicate worse performance in the associated score. For MoCA,
negative weights reflect worse performance. The brain pattern associated to behavior at T2 was also similar
to the pattern observed at T1 — e.g., a lower SDI in the ipsilesional S1 and the more lateral portion of the
ipsilesional M1. However, there were also some differences in the T2 brain pattern, notably in secondary and
associative motor areas. Indeed, we observed a higher SDI in the ipsilesional premotor area and dorsolateral
prefrontal cortex, as well as variations in SDI in the contralesional supplementary motor area (SMA), with
one sub-part of the SMA correlating with a higher SDI and the other with a lower SDI. Changes in the degree
of correlation to behavior of some ROIs resulted in a different distribution of network contributions in T2
(Figure 18C) compared to T1 (Figure 18A). Furthermore, in T2, a similar percentage of each network was
significantly involved in the correlation with the behavior (Figure 18C), indicating a more balanced
distribution of contributions across networks. Contrary to T1, however, none of the average network
contributions remained significantly different from zero (Figure 18D). Interestingly, despite its similar overall
contribution at T1 (24%) and T2 (22%), the average ROI of the default mode network contributed significantly
and positively at T1 (weight 0.0129), however at T2 the contribution did not remain significant and, in
addition, it changed polarity (weight -0.0055). This suggests that a lower SDI in the default mode network at
T2 was associated to worse performance in the significant behavioral domains. Furthermore, the average
ROI of the frontoparietal network also contributed significantly at T1 (weight 0.0265), but not anymore at T2
(weight 0.0151).

As mentioned previously, the multivariate correlation pattern was not significant at T3 (p=0.19), indicating
that the behavior could explain variations in SDI less reliably, however results resembled those obtained at
T2 (Supplementary Figure S1, Figure S2, Table S13).

In summary, we found significant multivariate correlation patterns at T1, T2, but not at T3. The behavioral
motor scores do not contribute significantly to the multivariate correlation pattern at any of the timepoints,
notwithstanding all patients having a motor deficit at stroke onset. Despite this, at T1, we see significant
involvement of key primary somatomotor as well as of some associative motor areas (mainly ipsilesionally)
whereas at T2, there is a shift from primary to secondary motor areas in terms of correlation with behavior
(e.g., involvement of the ipsilesional premotor and dorsolateral prefrontal cortex, as well as of the
contralesional SMA). Finally, at T1, the ROls belonging to the frontoparietal and default mode networks were
correlating the most (on average) and positively with worse performance in behavior. At T2, their average
contribution is decreased (not significantly different from zero anymore) and the polarity of the default mode
network is reversed.

2.2.5 Discussion

2.2.5.1 Limited longitudinal changes in structure-function coupling on
whole-brain and network levels

In the first part of our study, we addressed the longitudinal evolution of SDI between the first week and the
third month post-stroke. When investigating a larger cohort of the TiMeS study longitudinally, we further
substantiated the previous findings (Briigger et al., in preparation, see Study 1) related to hemispheric
differences and lesion side. This was expected, as the cohorts of Study 1 and Study 2 largely overlap. Analysis
for individual timepoints separately revealed changes in SDI in specific networks across time on group-level.
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Indeed, in the acute phase (T1), we observed whole-brain (higher SDI ipsi- vs contralesional) and network
effects (ventral attention) which were in concordance with findings from our previous work (Brligger et al.,
in preparation, see Study 1). In the late subacute phase (T3), we also found timepoint-specific effects, notably
in the somatomotor, limbic and frontoparietal networks.

For LH stroke patients, almost all observed hemispheric effects (T1 and T3), i.e. in the ventral attention,
somatomotor, visual and limbic networks, were consistent with previous findings in the acute phase where
the SDI pattern was identical that of healthy controls (Briigger et al., in preparation, see Study 1). In RH stroke
patients, however, the hemispheric SDI pattern was disturbed in all these network, suggesting that the
absence (limbic network) or presence (somatomotor, ventral attention networks) of hemispheric difference
in RH stroke patients could be pathological and that RH stroke patients are more vulnerable to changes in
SDI compared to LH stroke patients. Consistent with these results, previous research has linked RH stroke to
more severe impairment (Kwakkel et al., 2003; Ward, 2017), suggesting that the RH tends to be more affected
by a stroke than the LH. Moreover, the limbic and ventral attention networks —two out of the three networks
which displayed an altered SDI pattern in RH stroke patients —are known to be right dominant and have been
shown to be more affected by a RH stroke in the past. Indeed, RH stroke can lead to the disturbance of the
ventral attention network, which behaviorally expresses under the form of visuospatial neglect (Lunven &
Bartolomeo, 2017; Rode et al., 2017). Similarly, RH stroke has been shown to impact the limbic network,
resulting in impairment of emotion identification (Sheppard et al., 2020). It is thus a possibility that a higher
vulnerability of these networks to RH stroke is underlying the observed changes in SDI. However, out of the
62 patients included in this study, only 13 (9 RH stroke patients) were affected by neglect, suggesting that
this might not be the sole explanation for alterations in the ventral attention network on group level (in total
31 RH stroke patients). The relationship between RH stroke and behavior should nevertheless be further
investigated, as a disturbed SDI pattern in the ventral attention network might not always lead to neglect,
but rather depend on the level of perturbation of the network. Regarding the remaining network which was
disturbed in RH stroke patients at T3, i.e. the somatomotor network, the interpretation is more challenging,
as it is known to be left-lateralized/dominant in right handers (52/62 patients were right-handed) (Lubben et
al., 2021; Triggs et al., 1997), but its SDI pattern is altered only after a RH stroke. The same goes for the
frontoparietal network in LH stroke patients at T3, where no evidence points towards hemispheric
lateralization. The explanation for this finding remains an open question for future research and an important
next step will be to establish whether these network alterations in RH stroke patients are behaviorally
relevant, i.e. whether they occur concomitantly to changes in behavioral outcomes which are associated to
these networks (e.g., motor function for the somatomotor network, emotion recognition for the limbic
network, executive functions for the frontoparietal network and neglect for the ventral attention network).

Interestingly, in our previous analysis (Brigger et al., in preparation, see Study 1), the somatomotor and the
limbic networks already showed alterations in the acute phase, whereas this was not the case in the present
study, where we found significant effects in these networks only in the late subacute phase (T3). Compared
to our previous work, 18 patients were added (i.e. a 40% increase), of which half had a RH stroke. Stroke side
is thus likely not the reason why we see slightly different results compared to the analysis in a smaller cohort.
Given that the power is increased in the present compared to our previous work, one would assume that the
results found in the present study are more reliable. However, further analysis should determine whether
this difference in findings can be explained by, e.g., different levels of impairment or patient heterogeneity
in the added sub-cohort.

Finally, one more point which should be given consideration is the absence of a main effect of Timepoint on
both whole-brain and network level, which was contrary to our hypothesis. Indeed, we presumed that the
structural and functional changes underlying post-stroke reorganization over time would be reflected in the
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SDI and point towards brain networks which were involved in this reorganization. One possibility for the
absence of change over time could be that the SDI is affected by a stroke, but that it is not sensitive enough
to capture the subsequent functional and structural reorganization. However, given the large body of
evidence describing post-stroke structural and functional changes (Boyd et al., 2017; Grefkes & Fink, 2020;
Guggisberg et al., 2019; P. J. Koch & Hummel, 2017), it seems more likely that we did not see intra-network
changes over time because the changes in SDI of the individual ROIs belonging to a network are averaged-
out on whole-brain and on network level, due to the fact that some areas might show an increase in coupling
over time, whereas others could experience a decrease (depending on the underlying structural and
functional changes). In addition, the networks we selected were rather broad (Yeo et al., 2011) and it might
be beneficial to perform a more fine-grained longitudinal SDI analysis by considering only key areas involved
in post-stroke reorganization. Furthermore, the heterogeneous patient population might also cause some
patient-specific effects to be averaged out on group-level, which is why analyses assessing inter-individual
differences might be more helpful to understand the evolution of structure-function coupling after a stroke.

2.2.5.2  Changes in the SDI pattern at different timepoints account for
variability in cognitive and psychological scores

In the second part of our study, we investigated the behavioral relevance of the SDI by investigating the link
between performance in eight behavioral domains and SDI through inter-individual multivariate correlation
patterns. Globally, the observed brain-behavior multivariate correlation patterns had a very high explained
variance (ranging from 78.3% to 87% between timepoints), which was considerably higher than in healthy
young (18%) (Griffa et al., 2022), suggesting that the SDI captures inter-individual variations in behavior
following a stroke particularly well. These correlation patterns were significant at T1 and T2, but not at T3.
Contrary to our expectations, variations in structure-function coupling in the brain are not contributing to
performance in the motor domain, despite all patients having a motor deficit at stroke onset. However,
particularly the cognitive (Language, Memory, Attention, Executive functions and General Cognitive
Assessment — MocA) and psychological scores (Anxiety&Depression, Fatigue) have shown to substantially
explain variations in coupling in widespread areas of the brain.

2.2.5.2.1 Somatomotor areas

In the acute (T1) phase, multiple primary somatomotor areas, such as the ipsilesional M1 (notably the hand-
knob) and S1, the contralesional M1, as well as some secondary motor areas (mainly ipsilesionally)
significantly correlated with performance in cognitive and psychological domains, but not with the motor
domain. Given that all patients had a motor impairment of the upper limb at stroke onset, we expected to
observe changes in SDI in areas closely connected to the lesion, i.e., notably in primary and secondary motor
areas, such as it could be depicted in this study. Indeed, we assume that the structural disruption induced by
the lesion results in the inability of the function to rely on the underlying anatomical backbone, implying that
function is more decoupled from structure, translating into a higher SDI. However, we also expected the
behavioral pattern, which is associated to SDI variability, to involve motor performance, which was not the
case. Indeed, at T1, worse performance in all domains except motor was associated to variation of structure-
function coupling in numerous key sensorimotor areas.

At T2, we observed a shift from primary to higher-level motor areas, as indicated by significant correlations
between the ipsilesional premotor area, the dorsolateral prefrontal cortex and the contralesional SMA, and
the cognitive and psychological (but not motor) domains. This shift from primary to higher level somatomotor
areas can potentially be explained by cortical reorganization, which has been associated to the recruitment
of secondary motor areas two weeks post-stroke (Quandt et al., 2019; Rehme et al., 2011; Schulz, Koch, et
al., 2015; Ward et al., 2006). Indeed, a change in structure-function coupling in these areas could reflect the
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structural (P. J. Koch et al., 2021; Schulz, Braass, et al., 2015; Schulz et al., 2017; Schulz, Koch, et al., 2015)
and/or functional reorganization (Grefkes et al., 2008, 2010; Rehme et al., 2011, 2012; Ward et al., 2006) that
these regions undergo during motor recovery. Hence, to observe the involvement of the motor network as
a whole during the first weeks of post-stroke recovery is to be expected. What is curious, however, is that
changes in structure-function coupling in these key motor areas could not be explained by motor
performance, but by performance in cognitive and psychological domains. In addition to these key areas, the
somatomotor network as a whole also exhibited a considerable contribution, with 40% of its ROIls at T1 (the
most of all networks) and 35% at T2 significantly correlating with performance in all behavioral domains
except motor.

Even though some cognitive tests also contain a motor component, such as, e.g., the Color Trail Test and the
Test of Attention Performance (TAP) (Zimmermann & Fimm, 2002) (both “Attention” domain), as well as the
Bimanual coordination test (“Executive functions” domain) (Dolivo & Assal, 1985), it is unlikely that a motor
action required to complete those tests could fully account for the correlation between motor areas and the
cognitive domains. First, because we expect the motor deficits to be reflected in the certified motor tests
used in this study (see list in section 2.2.3.5) and second, because we cannot assess the extent to which the
motor impairment would lead to a worse performance in these cognitive tests, as this depends on the hand
the patients used to perform the test —i.e., affected or unaffected, dominant or non-dominant.

In addition, recent evidence suggest that both motor and e.g. attentional deficits are the result of a common,
abnormal network state, implying that they are correlated and show a similar recovery over time (Corbetta
et al., 2015; Ramsey et al., 2017). This finding suggests common underlying reorganization processes related
to motor and cognitive functions, as well as an overlap of involved networks. This could explain in parts the
fact that the SDI pattern in the motor areas correlates with cognitive performance. However, on the basis of
this hypothesis, we would have expected correlations between the motor and cognitive domains, which was
not the case in our cohort (see Supplementary Table S14) and which is inconsistent with above-mentioned
findings (Ramsey et al., 2017). Therefore, it would be interesting for future analyses to investigate specific
sub-domains related to the behavioral domains studied here, in order to have a more fine-grained analysis
(e.g., specific motor functions (e.g., force, dexterity) or attentional sub-functions (e.g., divided/sustained
attention)).

The correlation between key motor areas and the cognitive and psychological scores could also be explained
by the involvement of these secondary and associative areas in other networks. For instance, the dorsolateral
prefrontal cortex is part of the frontoparietal network and the sub-parts of the SMA also belong to the
frontoparietal, dorsal or ventral attention networks, respectively (Thomas Yeo et al., 2011). Variability in SDI
in these secondary and associative areas could thus be behaviorally relevant for cognition, but not necessarily
for motor function. In addition, a recent study has shown that motor network connectivity is also relevant
for functional impairment in spatial neglect following right brain stroke (Barrett et al., 2019). More precisely,
the authors related spatial neglect to a decrease in connectivity between the ventral attention network and
M1. Hence, this could indicate that changes in functional (and/or structural) connectivity between lower-
level somatomotor and higher-level cognitive areas could lead to changes in structure-function coupling in
both of these areas. This could thus indicate that the variability in SDI, which we observe in the primary
somatomotor cortices, is behaviorally relevant for cognitive, but not necessarily motor functions.
Nevertheless, these interpretations should be taken with caution, as the evidence is limited and, in the study
of (Barrett et al., 2019), it is based on small sample-sizes.
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2.2.5.2.2 Frontoparietal & default mode networks

In the acute stage (T1), worse performance in Language, Memory, Attention, Executive functions and MoCA
as well as to a lesser extent Anxiety&Depression and Fatigue were also associated to a higher structure-
function decoupling in the frontoparietal and default mode networks. The average contribution (weight) of
these networks —i.e., of the ROIs belonging to these networks - to the multivariate correlation pattern was
significantly different from zero, which was not the case for other networks, suggesting a more prominent
role of these two networks in the correlation. In other words, worse performance in behavior (in all domains
except motor) was more strongly reflected in increases in SDI in these two networks compared to other
networks. In line with these results, worse performance in functions associated to the frontoparietal
network, such as executive functions, have previously been associated to higher structure-function
decoupling in healthy young (Griffa et al., 2022). In addition, behavioral impairment has been strongly
associated with stroke lesions in the “rich club” (Egger et al., 2021), a group of areas that are both highly
connected to each other and the rest of the brain, and that largely overlap with the default mode network
(Choi & Jezzard, 2021). Hence, structural lesions might account for the strong correlation between worse
performance and high decoupling within the default mode network in the acute phase — thereby resulting in
an increase in SDI - in “rich club” areas.

When comparing T1 to T2, we observed considerable changes in the correlation between behavior and areas
belonging to the default mode and frontoparietal networks. Both average weights were not significantly
different from zero anymore at T2, potentially indicating a more balanced contribution of networks across
the brain. In addition, the polarity of the average weight related to the default mode network is reversed. In
other words, in the acute phase, a higher coupling in the default mode network is related to better cognitive
function, whereas in the early subacute phase a lower coupling represents an advantage. Behaviorally,
cognitive processes such as episodic memory or self-referential thoughts — which are attributed to the default
mode network — are thought to benefit from a lower structure-function coupling (Preti & Van De Ville, 2019).
Therefore, a link between better cognitive performance and decreased coupling in the early subacute phase
could represent a shift towards a normal functioning of the default mode network, which is accompanied by
better behavioral performance. This is in line with previous literature which showed that a return to a more
“normal” brain state is associated to recovery and better functional outcome (Grefkes et al., 2010; Rehme et
al., 2011, 2012).

In

Taken together, between the acute (T1) and early subacute phase (T2), we observed a change in the pattern
of regions that show correlations with behavioral performance and, in the case of the default mode network,
also a reversal of sign. This indicates that ROIs, which are significantly contributing to the brain-behavior
pattern, could reflect key areas where behaviorally relevant reorganization takes place after a stroke.
However, understanding why worse performance is positively correlated to the SDI in, e.g., one motor area,
but negatively in another, requires a thorough understanding of the mechanisms underlying changes in SDI
in these areas. Indeed, several mechanisms could account for a change in SDI, which we will address in the
next section.

2.2.5.3 Potential mechanisms underlying changes in structure-function
coupling after a stroke

It is difficult to predict or explain how processes taking place following a stroke, such as structural and
functional plasticity, impact the SDI in a given area, as a change in SDI can reflect various underlying
mechanisms. To illustrate this, we can base ourselves on the following (simplified) example: It has been
shown that loss of motor-related fMRI activity in ipsilesional M1 in acute phase is correlated with more severe
motor impairment (Rehme et al., 2012). In other words, based on this example, one could assume that
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patients who have a severe impairment are distinguishable from those with a mild impairment, based on the
motor-related fMRI activity in the acute stage. However, it is unclear how these differences in function relate
to the underlying structure. We hypothesize that the structural disruption caused by the stroke lesion leads
to a higher decoupling between brain structure and function (especially ipsilesionally) in the acute phase, as
the function is detached from the anatomical backbone. This assumption is supported by a finding of this
work where we showed that the decoupling is higher in the ipsi- compared to the contralesional hemisphere.

If (hypothetically), in the early subacute phase, activity were to increase also in patients with severe deficits,
this would result in a similar activation pattern for all patients and the inability to distinguish patients based
on motor-related fMRI activity in M1. However, how these findings would translate to changes in structure-
function coupling within the motor network, but also in more remote areas, remains an open question, as
there could be several different underlying mechanisms. For instance, functional activity could have
increased in severely affected patients by means of the already existing structural connectivity. These
connections would relay more information (i.e. functional signal), which would then lead to a tighter coupling
between function and structure. Another possibility is that this increased activity is related to increased input
from a more distributed network of areas, relying less on the underlying direct structural connections,
causing thus a higher decoupling between function and structure. Finally, the coupling could also change
depending on structural changes, either through an increase of (new) connections through plasticity (ward,
2017) or a decrease (loss) of existing connections, through Wallerian degeneration (Koeppen, 2004), for
example.

Hence, even though research into structure-function coupling stands only at the very beginning,
understanding post-stroke changes in structure-function coupling could offer tremendous potential for the
understanding of post-stroke reorganization. Perhaps, it could even help disentangle adaptive from
maladaptive processes, when, e.g., the apparent activity is the same between ‘fitters’ and ‘non-fitters’ in a
given area (as described in this example), but the structure-function coupling is different, due to distinct
underlying mechanisms.

The body of evidence illustrating the advantages of taking into account both structural and functional
information when analyzing MRI data is growing by the day. For instance, taking into account tractography
measures when performing DCM has been shown to improve models of functional integration (Stephan et
al., 2009). Furthermore lesion network mapping has gained popularity in the past years, enabling the
identification of a network of brain areas likely to be involved in a given symptomatology by taking into
account patients’ individual lesion mask (Boes et al., 2015; Fox, 2018). The SDI now offers a new descriptive
measure of the brain, describing how much the functional activity in one node is globally relying on the
underlying structure, i.e. whether the functional activity in this node is rather constrained by anatomy or
rather liberal, taking into account all the connections with the other ROIs. The advantage of this approach is
that it is fully personalized (relying on the individual patients’ data) and data-driven, which stands in contrast
with other methods that take into account anatomical priors, such as DCM (Gandolla et al., 2021; Grefkes et
al., 2008, 2010; Rehme et al., 2011), where a set of areas of interest need to be defined beforehand. Given
that stroke has been shown to cause structural (P. J. Koch et al., 2021; Schulz, Braass, et al., 2015; Schulz et
al., 2017; Schulz, Koch, et al., 2015) and functional (Grefkes et al., 2008, 2010; Rehme et al., 2011, 2012; Ward
et al., 2006) changes in widespread brain areas and networks (Guggisberg et al., 2019; P. J. Koch et al., 2021),
the SDI is potentially a more appropriate measure to capture these brain-wide changes than DCM, for
example.
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2.2.5.4 Summary and outlook

In the present work, we extend previous findings which showed that RH stroke patients are more prone to
changes in coupling between brain structure and function than LH stroke patients. In addition, we show for
the first time that inter-individual patterns of behavior related to cognitive and psychological domains can
be explained to a great extent through variations in SDI in areas belonging to several widespread networks.
Notably, we show that the performance in cognitive and psychological (but not motor) domains is dependent
on variability in structure-function coupling in numerous somatomotor areas. In addition, we demonstrate
that the brain pattern associated to behavior to changes from one timepoint to another, which could be
reflective of underlying cortical reorganization. Given that the key areas identified in this study might be
driving recovery, a longitudinal evaluation of the structure-function coupling within these regions might be
more fruitful in identifying time-related changes in coupling compared to whole brain and network-based
analyses, as performed in the first part of this study. Finally, this study showed that the SDI can capture
behaviorally relevant post-stroke differences in structure-function coupling, thereby further supporting its
potential to become a biomarker for patient stratification in the future. The next step in this direction will
therefore be the investigation of the brain-behavior relationship in individual patients. Given that the key
areas identified in this study best reflect inter-individual variance, investigating the brain-behavior
relationship in these regions in individual patients could shed new light on their individual post-stroke
recovery. Patient stratification based on new biomarkers, could eventually lead to more personalized choices
of treatment and a better functional outcome.
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2.2.6 Supplementary Information

Table S4. Longitudinal effects related to structure-function coupling between the third week (T2) and the third month
(T3).

An overview of the ANOVA for the linear mixed-effects regression assessing mean SDI, reported in the main text.
Variables indicated in green were significant with p < 0.05.

Variable Numerator Denominator df F value p value
df

Network 6 26406 481.3784 <2.2e-16
Hemisphere 1 26406 0.0134 0.907861
Lesion side 1 51 0.1382 0.711629
Timepoint 1 4832 0.0704 0.790742
Network * Hemisphere 6 26406 2.6432 0.014548
Network * Lesion side 6 26406 5.7150 5.966e-06
Hemisphere * Lesion side 1 26406 0.2287 0.632510
Network * Timepoint 6 26406 1.4982 0.174243
Hemisphere * Timepoint 1 26406 0.0257

0.872651
Lesion side * Timepoint 1 4832 0.4235

0.515224
Network * Hemisphere * Lesion 6 26406 3.4060 0.002321
side
Network * Hemisphere * 6 26406 0.8966 0.496152
Timepoint
Network * Lesion side * 6 26406 0.4742 0.827971
Timepoint
Hemisphere * Lesion side * 1 26406 0.0403 0.840843
Timepoint
Network * Hemisphere * Lesion 6 26406 0.9300 0.471856

side * Timepoint
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Table S5. Longitudinal effects related to structure-function coupling between the first week (T1) and the third week (T2).
An overview of the ANOVA for the linear mixed-effects regression assessing mean SDI, reported in the main text. Variables
indicated in green were significant with p < 0.05.

Variable Numerator df Denominator df F value p value
Network 6 31581.6 552.42 <0.001
Hemisphere 1 31581.6 2.22 0.136
Lesion side 1 58.3 0.14 0.704
Timepoint 1 14003.4 0.07 0.796
Network * Hemisphere 6 31581.5 0.49 0.819
Network * Lesion side 6 31581.6 4.99 <0.001
Hemisphere * Lesion side 1 31581.6 0 0.986
Network * Timepoint 6 31581.5 1.35 0.232
Hemisphere * Timepoint 1 31581.4 3.24 0.072
Lesion side * Timepoint 1 14003.4 0.01 0.937
Network * Hemisphere * 6 31581.5 3.31 0.003
Lesion side

Network * Hemisphere * 6 31581.4 0.82 0.556
Timepoint

Network * Lesion side * 6 31581.5 1 0.421
Timepoint

Hemisphere * Lesion side 1 31581.4 0.59 0.442
* Timepoint

Network * Hemisphere * 6 31581.4 0.16 0.986

Lesion side * Timepoint
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Table S6. Longitudinal effects related to structure-function coupling between the first week (T1) and the third month (T3).
An overview of the ANOVA for the linear mixed-effects regression assessing mean SDI, reported in the main text. Variables

indicated in green were significant with p < 0.05.

Variable Numerator df Denominator df F value p value
Network 6 29505 527.64 <0.001
Hemisphere 1 29505 2.63 0.105
Lesion side 1 59 0.26 0.613
Timepoint 1 10389 0.02 0.901
Network * Hemisphere 6 29505 1.62 0.136
Network * Lesion side 6 29505 7.12 <0.001
Hemisphere * Lesion side 1 29505 2.43 0.119
Network * Timepoint 6 29505 1.43 0.198
Hemisphere * Timepoint 1 29505 2.43 0.119
Lesion side * Timepoint 1 10389 4.8 0.029
Network * Hemisphere * 6 29505 3.6 0.001
Lesion side

Network * Hemisphere * 6 29505 1.94 0.071
Timepoint

Network * Lesion side * 6 29505 0.52 0.793
Timepoint

Hemisphere * Lesion side 1 29505 0.28 0.6

* Timepoint

Network * Hemisphere * 6 29505 1.32 0.242

Lesion side * Timepoint
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Table S7. Mean SDI in networks at T1.
An overview of the ANOVA for the linear mixed-effects regression assessing mean SDI, for timepoint T1. No variables were
significant with p < 0.05.

Network Variable Numerator Denominator F value p value
df df
Somatomotor Hemisphere 1 2463.5 3.13 0.077
Lesion side 1 50.1 3.07 0.086
Hemisphere * Lesion side 1 2463.5 2.41 0.12
Dorsal Hemisphere 1 1706.72 0.03 0.87
attention Lesion side 1 50.27 0.37 0.545
Hemisphere * Lesion side 1 1706.72 0.77 0.38
Limbic Hemisphere 1 1166.78 1 0.317
Lesion side 1 50.25 0.13 0.718
Hemisphere * Lesion side 1 1166.78 0.16 0.693
Frontoparietal Hemisphere 1 2164.59 1.47 0.225
Lesion side 1 50.44 0.12 0.734
Hemisphere * Lesion side 1 2164.59 0.12 0.731
Default mode Hemisphere 1 4180.6 0.53 0.466
Lesion side 1 50.6 0.39 0.535
Hemisphere * Lesion side 1 4180.6 0.01 0.914
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Table S8. Mean SDI in networks at T3.
An overview of the ANOVA for the linear mixed-effects regression assessing mean SDI, for timepoint T3. No variables were
significant with p < 0.05.

Network Variable Numerator Denominator F value p value
df df

Visual Hemisphere 1 2246.11 0.02 0.9
Lesion side 1 34.99 1.25 0.271
Hemisphere * Lesion side 1 2246.11 0.19 0.663

Dorsal attention  Hemisphere 1 1186.07 0.13 0.723
Lesion side 1 35.52 0.55 0.463
Hemisphere * Lesion side 1 1186.07 0.67 0.412

Ventral attention Hemisphere 1 1522.04 3.81 0.051
Lesion side 1 34.84 0.46 0.504
Hemisphere * Lesion side 1 1522.04 3.35 0.068

Frontoparietal Hemisphere 1 1498.32 3.56 0.06
Lesion side 1 35.28 0.28 0.603
Hemisphere * Lesion side 1 1498.32 3.14 0.077

Default mode Hemisphere 1 2940.81 2.67 0.103
Lesion side 1 35.92 0 0.96
Hemisphere * Lesion side 1 2940.81 0.14 0.71
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Table S9. Mean SDI in left-hemispheric stroke patients.
An overview of the ANOVA for the linear mixed-effects regression assessing mean SDI, reported in the main text.
Variables indicated in green were significant with p < 0.05.

Variable Numerator df  Denominator df F value p value

Network 6 15289.9 264.5423 <2.2e-16

Hemisphere 1 15289.8 1.0300 0.3101641
Timepoint 1 5548.2 2.2757 0.1314692
Network * Hemisphere 6 15289.8 4.1040 0.0004036
Network * Timepoint 6 15289.8 0.7133 0.6388776
Hemisphere * Timepoint 1 15289.7 0.5675 0.4512740
Network * Hemisphere * 6 15289.7 1.6354 0.1328688

Timepoint

85



PART I

Table S10. Mean SDI by network in left-hemispheric stroke patients.
An overview of the ANOVA for the linear mixed-effects regression assessing mean SDI, for left hemisphere lesions. No
variables were significant with p < 0.05.

Network Variable Numerator Denominator F value p value
df df

Visual Hemisphere 1 2816.25 1.11 0.292
Timepoint 1 21.79 0.11 0.747
Hemisphere * Timepoint 1 2816.35 0.19 0.665

Dorsal Hemisphere 1 1510.05 0.35 0.555

attention Timepoint 1 634.93 1.14 0.285
Hemisphere * Timepoint 1 1509.76 0.01 0.93

Default mode Hemisphere 1 3707.1 1.23 0.268
Timepoint 1 998.6 0.28 0.597
Hemisphere * Timepoint 1 3707 0.09 0.761
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Table S11. Mean SDI in right-hemispheric stroke patients.
An overview of the ANOVA for the linear mixed-effects regression assessing mean SDI, for right hemisphere lesions.
Variables indicated in green were significant with p < 0.05.

Variable Numerator df Denominator df F value p value
Network 6 14182.8 270.05 <0.001
Hemisphere 1 29.3 1.84 0.185
Timepoint 1 4671.5 2.31 0.128
Network * Hemisphere 6 14183 1.28 0.262
Network * Timepoint 6 14182.6 1.21 0.298
Hemisphere * Timepoint 1 467.9 1.08 0.298
Network * Hemisphere * 6 14182.9 1.63 0.134

Timepoint
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Table S12. Significant regions of interest (ROIs) at T1 and T2.

Glasser ROI

L_RSC
L_POS1
L_d23ab
L_31pv
L_7PC
L_6d
L_471
L_IFJa
L_IFp
L_p9-46v
L_13I
L_47s
L_OP4
L_OP2-3
L_52
L_Pol2
L_ProS
L_PBelt
L_IP2
L_PHA2
L_31a
L_25
L_Poll

L Ig
L_MBelt
L_LBelt
R_V2
R_RSC
R_PCV
R_7m
R_POS1
R_23d
R_v23ab
R_d23ab
R_31pv
R_23c
R_MIP
R_6v
R_p32pr
R_8BM

T1

Hemisphere

Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right

Significant brain saliences

Weight

0.0714
0.1297
0.1048
0.0823
0.0698
0.0791
0.0474
0.1019
0.0717
0.126

0.0967
0.1067
0.0863
0.0788
0.0774
0.0799
0.115

0.1172
0.0775
0.0804
0.0905
0.1308
0.1254
0.0694
0.0692
0.0987
0.0746
0.0687
0.0844
0.084

0.086

0.1114
0.0756
0.1209
0.1653
0.0807
0.0844
0.0791
0.0866
0.0988

Glasser
ROI
L_POS2
L_POS1
L_23c
L_7PC
L_MIP
L_p32pr
L_8C
L_ad7r
L_IFJa
L_p9-46v
L_47s
L_OP4
L_OP1
L_PFcm
L_Pol2
L_PreS
L_ProS
L_AS5
L_PHA3
L_TGd
L_TElp
L_TE2p
L_TPOJ2
L_IP2
L_VMV3
L_PHA2
L_Poll
L_Ig

L p47r
R_V2
R_LO2
R_Al
R_SFL
R_POS1
R_8BM
R_IFSa
R_alO0p
R_OP1
R_OP2-3
R_52
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T2

Hemisphere

Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right

Weight

0.0661
0.0864
0.1454
0.0755
0.0711
0.0879
0.098

0.0922
0.1335
0.072

0.0874
0.1028
0.0679
0.0582
0.0511
0.0886
0.1105
0.0732
0.0766
0.0968
0.074

0.0604
0.0851
0.1184
0.0719
0.0797
0.1086
0.0837
0.0706
0.0665
0.0662
0.0762
0.0789
0.1139
0.0733
0.0848
0.0838
0.093

0.1526
0.0691



PART I

R_8C
R_a47r
R_IFSa
R_46
R_11l
R_13I
R_RI
R_PFcm
R_PFt
R_PHA1
R_PHA3
R_TPOJ1
R_TPOJ3
R_PHA2
R_31a
R_Poll
R_Ig
R_p47r
R_TE1lm
R_PI
L_V8
L_PEF
L_55b
L_FFC
L_5m
L_24dv
L_1

L_2

L 3a
L_44
L_9-46d
L_43
L_Pir
L_FOP2
L_PeEc
L_V6A
R_FFC
R_24dv
R_p32
R_9m
R_9p
R_6r
R_OP4
R_Pir
R_TGd
R_PGs
R_V6A

Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right

0.0661
0.1053
0.1087
0.0899
0.0747
0.1115
0.0969
0.0946
0.0617
0.1276
0.1155
0.0683
0.0585
0.1041
0.1213
0.091
0.076
0.0929
0.0616
0.088
-0.1023
-0.0654
-0.0853
-0.059
-0.0634
-0.0636
-0.0766
-0.1023
-0.0616
-0.0554
-0.0566
-0.0829
-0.1065
-0.0986
-0.0688
-0.0484
-0.0511
-0.0631
-0.0886
-0.0771
-0.0915
-0.0538
-0.0606
-0.0761
-0.0703
-0.0854
-0.0652

R_RI
R_Pol2
R_PBelt
R_PHA3
R_STSda
R_PHT
R_IP2
R_PGi
R_V4t
R_Poll
R Ig
R_MBelt
R_A4
R_PI
L_V4
L_55b
L_V3A
L_Vv7
L_V3B

L 7m

L 5m
L1

L2
L_6v
L_d32

L 9m
L_8BL
L_45
L_6r
L_9-46d
L_FOP4
L_Pir
L_PFt
L_V6A
L_31pd
L_p24
R_V6
R_V7
R_7Pm
R_v23ab
R_24dd
R_24dv
R_6ma
R_33pr
R_10r
R_9p
R_45

89

Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right

0.0602
0.0735
0.0846
0.0562
0.0961
0.086
0.0858
0.0582
0.072
0.052
0.1468
0.0763
0.0658
0.0813
-0.0912
-0.0945
-0.1006
-0.0814
-0.0796
-0.0853
-0.0706
-0.0722
-0.067
-0.0769
-0.0841
-0.1335
-0.0699
-0.0738
-0.1037
-0.0649
-0.0651
-0.0628
-0.0834
-0.062
-0.0535
-0.0667
-0.0915
-0.0844
-0.0847
-0.0578
-0.0892
-0.0656
-0.0885
-0.0784
-0.1054
-0.087
-0.069
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R_LO3

Right

-0.0685

R_IFlp
R_9-46d
R_EC
R_H
R_PeEc
R_V6A
R_V3CD
R_31pd
R_p24

90

Right
Right
Right
Right
Right
Right
Right
Right
Right

-0.1441
-0.0671
-0.09
-0.0578
-0.0786
-0.0759
-0.0681
-0.0912
-0.056
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Behavioral saliences — T3 Significant brain saliences — T3
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Figure S1. Multivariate correlation pattern between SDI and behavioral traits at T3.

Non-significant partial least square correlation (PLSC) pattern between behavioral scores (left) and SDI (right, significant
weights only) at T3. First column: Behavioral saliences (weights) are plotted. Positive weights for all scores except motor
represent worse performance and vice-versa. Domains that have a contribution that is significantly different from zero are
marked with a star. Second column: Brain saliences (weights) for significant areas are displayed. The weights ranged from
negative (blue) to positive (orange-red) areas.
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Figure S2. Contributions of brain networks to the multivariate correlation pattern at T3.
(A) Percentage of regions of interests (ROIs) with significant weights by network at T3. (B) Average brain saliences for
significant ROIs at T3. None of the networks’ average weights is significantly different from zero.
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Table S13. Significant regions of interest (ROIs) at T3.

Glasser
ROI
L_55b
L_d23ab
L_S5mv
L_2
L_3a
L_6v
L_33pr
L_d32
L_8BM
L_9m
L_44
L_6r
L_11l
L_OFC
L_AAIC
L_DVT
L_FOP5
L_TElm
R_V3B
R_24dd
R_24dv
R_7AL
R_6ma
R_LIPv
R_33pr
R_d32
R_p32
R_10r
R_47m
R_9m
R_9p
R_10d
R_6r
R_OFC
R_OP4
R_Pir
R_PGs
R_FST
R_VMV2
R_31pd

Hemisphere

Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right

Significant brain saliences

Weight

0.082
0.0843
0.0672
0.067
0.0911
0.0792
0.1033
0.1076
0.0977
0.1322
0.0773
0.0781
0.1546
0.0533
0.0696
0.0489
0.1104
0.0663
0.0813
0.0731
0.0786
0.0721
0.0846
0.0707
0.0717
0.1089
0.1559
0.1132
0.0609
0.0985
0.1
0.0592
0.1231
0.0763
0.1014
0.0746
0.0937
0.0722
0.0861
0.0683

Glasser
ROI
L_V3B
L_LO1
L_Al
L_PSL
L_23c
L_MIP
L_8C
L_p9-46v
L_a9-46v
L_47s
L_6a
L_OP1
L_RI
L_PreS
L_STGa
L_PBelt
L_TE2p
L_PGi
L_vvC
L_s32

L Ig
L_p47r
L_A4
R_LO1
R_LO2
R_A1
R_SFL
R_a9-46v
R_RI
R_PFt
R_PreS
R_ProS
R_PHT
R_TPOJ2
R_TPOJ3
R_IPO
R_V4at
R_25
R_Ig
R_MBelt

Hemisphere

Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Left
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right
Right

Weight

-0.084

-0.1005
-0.1019
-0.0722
-0.1061
-0.0768
-0.0906
-0.1262
-0.0775
-0.088

-0.0576
-0.0699
-0.0665
-0.0855
-0.1193
-0.0957
-0.1185
-0.0708
-0.0753
-0.1007
-0.1048
-0.102

-0.0749
-0.0737
-0.0775
-0.0716
-0.0701
-0.0812
-0.0782
-0.0745
-0.0778
-0.0667
-0.0988
-0.0912
-0.0746
-0.0656
-0.0646
-0.0623
-0.0996
-0.0707
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R_VVC
R_pOFC
R_FOP5
R_p10p
R_TGv

Right
Right
Right
Right
Right

0.0694
0.0682
0.1229
0.0789
0.093

R_LBelt Right
R_STSva Right
R_PI Right
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Table S14. Pearson’s correlation of Principal Component (PC) 1 with PC1 of the other domains.
No correlations were significant with p < 0.05.

Variable 1 Variable 2 Pearson’s Statistic p value
correlation
Motor Motor 1 Inf 0
Motor Language 0.19 1.084295 0.287
Motor Memory -0.14 -0.75064 0.459
Motor Attention 0.14 0.781935 0.44
Motor Executive_fct 0.16 0.873149 0.39
Motor MoCA -0.018 -0.10092 0.92
Motor PsychTests 0.23 1.294061 0.206

Motor Fatigue 0.2 1.134321 0.266
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3.1 Study 3: Evaluating reproducibility and subject-specificity of
microstructure-informed connectivity
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3.1.1 Abstract

Tractography enables identifying and evaluating the healthy and diseased brain’s white matter pathways
from diffusion-weighted magnetic resonance imaging data. As previous evaluation studies have reported
significant false-positive estimation biases, recent microstructure-informed tractography algorithms have
been introduced to improve the trade-off between specificity and sensitivity. However, a major limitation for
characterizing the performance of these techniques is the lack of ground truth brain data. In this study, we
compared the performance of two relevant microstructure-informed tractography methods, SIFT2 and
COMMIT, by assessing the subject specificity and reproducibility of their derived white matter pathways.
Specifically, twenty healthy young subjects were scanned at eight different time points at two different sites.
Subject specificity and reproducibility were evaluated using the whole-brain connectomes and a subset of 29
white matter bundles. Our results indicate that although the raw tractograms are more vulnerable to the
presence of false-positive connections, they are highly reproducible, suggesting that the estimation bias is
subject-specific. This high reproducibility was preserved when microstructure-informed tractography
algorithms were used to filter the raw tractograms. Moreover, the resulting track-density images depicted a
more uniform coverage of streamlines throughout the white matter, suggesting that these techniques could
increase the biological accuracy of the estimated fascicles. Notably, we observed an increased subject
specificity by employing pre-processing techniques to reduce the underlaying noise and the data
dimensionality (using principal component analysis), highlighting the importance of these tools for future
studies. Finally, no strong bias from the scanner site or time between measurements was found. The largest
intra-individual variance originated from the sole repetition of data measurements (inter-run).

Keywords
diffusion-weighted MRI, microstructure informed tractography, reproducibility, structural connectome,
white matter fascicles

Abbreviations

MD: Mean Diffusivity; COMMIT: convex optimization modelling for microstructure-informed tractography;
FA: Fractional Anisotropy; MRI: Magnetic resonance imaging; PCA: principal component analysis; SIFT2:
spherical-deconvolution informed filtering of tractograms; TDI: track-density imaging.

Highlights

e Raw whole-brain tractograms are highly reproducible, and erroneous estimations are subject-
specific.

e Microstructure-informed connectivity methods maintain high reproducibility as well as subject
specificity.

e TDI maps reveal a reduction of high-density biases in deep white matter regions using
microstructure-informed tractography.

e Tractography is reproducible in time and site, and most of the variance comes from the
measurements repetition themself.
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3.1.2 Introduction

Diffusion-weighted magnetic resonance imaging (DW-MRI) and tractography algorithms enable the indirect,
in-vivo assessment of white matter fascicles’ trajectories and properties in the human brain. This has
revolutionized neuroscience, allowing researchers to move away from post mortem analysis and perform
their studies non-invasively (Assaf et al., 2017). These techniques have become a fundamental part of
systems and translational neuroscience. From the measurements of the displacement of water molecules for
specific gradient directions, it is possible to obtain the 3-dimensional (3D) reconstruction of white matter
fascicles’ trajectories and the description of whole-brain connectomes. Moreover, the local qualitative and
guantitative examination of microstructure offers unique possibilities to address various questions in clinics
and research. For instance, the study of temporal changes of white matter structures allows the assessment
of plastic changes and factors like degeneration persistent in healthy and neurological disease (Sagi et al.,
2012). Longitudinal evaluations of the white matter hereby reveal insights into, e.g., learning processes
(Scholz et al., 2009) or white matter reorganization after focal brain lesions, such as stroke (P. J. Koch et al.,
2021; P. J. Koch & Hummel, 2017). Still, those techniques encompass multiple steps vulnerable to noise,
uncertainties, and approximations that affect the interpretation of findings.

The main critical drawback of fibre tracking techniques is the reconstruction of a significant number of invalid
tracts, i.e., false positives. Interestingly, a recent international tractography challenge revealed that a high
percentage of false positives could be obtained even when the ground truth fibre orientational distribution
functions (ODFs) are used (Maier-Hein et al., 2017). Thus, new innovative methods to improve the trade-off
between sensitivity and specificity are needed (Schilling et al., 2019) by identifying and filtering out the
spurious streamlines. Another important limitation is that the structural connectivity matrix estimated by
commonly used tractography algorithms remains qualitative, with an unknown biological meaning, because
the density of reconstructed connections does not reflect the underlying white matter fibre density (R. E.
Smith et al., 2015b). To address the limitations, microstructure-informed tractography methods were
introduced, where each generated streamline is evaluated by its consistency in relation to the whole
tractogram and the measured DW-MRI data. Two state-of-the-art methods are the spherical-deconvolution
informed filtering of tractograms (R. E. Smith et al., 2013, 2015b) and convex optimization modelling for
microstructure-informed tractography (Daducci et al., 2015). Both approaches differ on how the consistency
of each streamline is measured. In SIFT2, the optimal weighted set of streamlines is determined so that the
resulting weighted local orientation density of streamlines is as close as possible to the fibre ODFs estimated
using spherical deconvolution (J. D. Tournier et al., 2007). The authors hypothesized that this postprocessing
step permits using the sum of streamline weights as a biological marker of connection density (R. E. Smith et
al., 2015a). Similarly, COMMIT solves a global inverse problem to estimate a weight for each streamline by
assuming a generative multi-compartment microstructure model for the measured data, which usually
includes the intra- and extra-axonal spaces and free water. The global optimization problem is solved by using
constant microstructure properties throughout each streamline trajectory (Barakovic et al., 2016; Barakovic,
Girard, et al., 2021; Barakovic, Tax, et al., 2021; Daducci et al., 2013, 2015; Ocampo-Pineda et al., 2021;
Sherbondy et al., 2010; R. E. Smith et al., 2013, 2015b). The generated signals are projected to the 3D voxel-
space by considering the length of their segments crossing each voxel, which is assumed to be proportional
to the local volume fraction (Daducci et al., 2013; 2015). A linear regression model is then designed to
decompose the measured data as a linear combination of the generated signals. The estimated weights, thus,
quantify the signal fraction of each streamline in the measured data and assign a biological meaning to each
connection as a surrogate of the axonal cross-sectional area (Daducci et al., 2015). Those streamlines with
trajectories not supported by the measured data have weights close to zero and thus are considered false
positives. Like SIFT2, COMMIT can correct for overrepresented or underrepresented streamlines (due to
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tractography biases) by adjusting their weights (Ocampo-Pineda et al., 2021; Schiavi et al., 2020). Although
previous studies found that these microstructure-informed tractography algorithms can significantly alter
the estimated white matter network topology (Frigo et al., 2020; R. E. Smith et al., 2015b), their stability,
reproducibility, and accuracy have not been compared. This is a crucial step before its use for answering
neuroscientific and clinical questions. Thus, this study evaluates the reproducibility and repeatability of
microstructure-informed tractography methods considering the site, session, and run effects. This was done
by collecting DW-MRI data from 20 healthy participants in two scanners located at different sites during two
consecutive scanning sessions and two distinct time points, for a total of 160 datasets (eight per participant).

3.1.3 Material and methods

3.1.3.1 Participants

Twenty healthy subjects (Age: 27 (24 — 33 years old, +/- 3 years SEOM), nine female) were enrolled in the
study. Magnetic resonance imaging (MRI) was performed at two sites (Geneva: G, Sion: S) at two different
time points (sessions). At each session, two independent repetitions of the neuroimaging protocols were
acquired (run), ending up in 8 datasets per participant. Between the runs, subjects exited the scanner and
were then repositioned, followed by a new shimming. For each session, a single 3D MPRAGE was acquired.
The mean elapsed time between intra-site and inter-site repetitions was 16 days (+/- 10 days) and 29 days
(+/- 17 days), respectively. All subjects were right-handed and had no neuropsychiatric diseases or
contraindications for MRI. Written informed consent was obtained from each participant following the
Declaration of Helsinki. The ethical approval was obtained from the cantonal ethics committee Vaud,
Switzerland (project number: 2018-01355).

3.1.3.2 Magnetic resonance imaging data acquisition

At both sites (G and S), structural T1-weighted and diffusion-weighted MRI data were acquired at 3T
(MAGNETOM Prisma scanner, Siemens Healthcare, Erlangen, Germany) and employed the same acquisition
protocol. DW-MRI data were acquired using a pulsed gradient spin echo sequence with the following
parameters: TR = 5000 ms; TE = 77 ms; slices = 84; field of view = 234 x 234 mm?; voxel resolution=1.6 x 1.6
x 1.6 mm?3; slice thickness of 1.6 mm; readout bandwidth = 1630 Hz/pixels; 64-channel head coil; GRAPPA
acceleration factor =3. Seven T2-weighted images without diffusion weighting (b0; b = 0 s/mm?) were
acquired, including one in opposite phase encoding direction. A total of 101 images with noncollinear
diffusion gradient directions distributed equidistantly over the half-sphere and covering 5 diffusion-
weighting gradient strengths were obtained (b-values = [300, 700, 1000, 2000, 3000] s/mm?; shell-samples =
[3, 7, 16, 29, 46]). In addition, T1-weighted images were acquired using a 3D MPRAGE sequence with the
following acquisition parameters: TR = 2300 ms; Inversion Time = 7.1 ms; TE = 2.96 ms; flip angle = 9°; slices
=192; voxel size =1 x 1 x 1 mm?, field of view = 256 x 256 mm>.

3.1.3.3 Image analysis

The DW-MRI images were corrected for Gibbs ringing artefacts using MRtrix3 (Kellner et al., 2016; J.-D.
Tournier et al., 2019) and for motion, field inhomogeneity, susceptibility-induced off-resonance field, and
eddy currents using the FSL topup and eddy (Andersson et al., 2003; Andersson & Sotiropoulos, 2016; S. M.
Smith et al., 2004). Subsequently, the images were corrected for spatial intensity variations using FSL FAST
(Y. Zhang et al., 2001). Multi-shell multi-tissue constrained spherical deconvolution (Jeurissen et al., 2014)
was used to estimate the fibre ODF within each voxel. Whole-brain probabilistic tractography was performed
using the second-order integration over fibre orientation distribution (iFOD2(J.-D. Tournier et al., 2019),
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initiating streamlines in all voxels of the white matter. For each dataset, 5 million streamlines were
generated, from which 1 million were randomly selected with both endpoints in the individual cortical or
subcortical brain masks using the Dipy software package (Garyfallidis et al., 2014). Moreover, the diffusion
tensors and corresponding Mean Diffusivity (MD) and Fractional Anisotropy (FA) maps were estimated using
MRtrix3 ((J.-D. Tournier et al., 2019). Tissue partial volume estimates were obtained from the T1-weighted
image using the FSL FAST (Y. Zhang et al., 2001) and BET (S. M. Smith, 2002) methods. The T1-weighted image
was registered to the average b0 image using FSL FLIRT (Jenkinson et al., 2002) and FNIRT (Andersson et al.,
2010).

3.1.3.4 Whole-brain connectome estimation

For the cortical parcellation, the Destrieux atlas (74 areas per hemisphere) was used, available in FreeSurfer
(Destrieux et al., 2010; Fischl et al., 2002, 2004; Iglesias et al., 2015). Additionally, subcortical areas (thalamus,
caudate, putamen. hippocampus, amygdala), the cerebellum, and a subdivision of the brainstem (midbrain,
pons, medulla) were added, yielding 163 cortical and subcortical areas. This resulted in a structural
connectivity analysis of 13,203 pairs of areas. Connectomes were generated in three different fashions. First,
we estimated the fraction of streamlines connecting two regions of interest (i.e., the number of streamlines
between all pairs of regions divided by the total number of streamlines). Second, tractograms were filtered
based on the underlying white matter fibre densities using SIFT2 (R. E. Smith et al., 2015b). Third, each
streamline was weighted by using COMMIT (Daducci et al., 2015) with a Stick-Ball-Zeppelin diffusion model
using. The stick compartment models the intra-axonal water with parallel diffusivity fixed to 1.7 pm?/ms and
no perpendicular diffusivity. The Ball compartment accounts for the isotropic extra-axonal water having a
diffusivity of 1.7 um?/ms and the free water with diffusivity of 3.0 pm?/ms (Alexander, 2008; Scholz et al.,
2009). The Zeppelin compartment models the anisotropic extra-axonal water with parallel and perpendicular
diffusivities fixed to 1.7 um?/ms and 0.51 pm?/ms (Alexander, 2008), respectively.

3.1.3.5 Principal component analysis of whole-brain connectomes

Principal Component Analysis (PCA) was employed to reduce the dimensionality of the connectomes. The
eigenvectors and eigenvalues were chosen to account for 10% - 100% of the variance explained. This was
performed for the three connectome constructions (i.e., raw and filtered tractograms using SIFT2 and
COMMIT). Afterward, principal components were applied to reconstruct the connectomes in the original
space. These analyses were performed to keep the individual connectomes in the native space while reducing
their intrinsic dimensionality.

3.1.3.6  Bundle connectivity vector estimation

Twenty-nine white matter fascicles of the human brain were automatically segmented using a white matter
query language (Wassermann et al., 2016). See the supplementary material for more details about the
selected white matter fascicle definition (queries). The areas used for the anatomical definition of the white
matter bundles were obtained from FreeSurfer (Fischl et al., 2002). The following white matter fascicles were
reconstructed: right and left Arcuate Fasciculus (frontotemporal, frontoparietal, parietotemporal), right and
left Cingulum, right and left Fornix, right and left Inferior Fronto-Occipital Fasciculus, right and left Optic
Radiation, right and left Pyramidal Tract, right and left Superior Longitudinal Fasciculus (1, Il, Il), right and left
Uncinate Fasciculus, Corpus Callosum (anterior, mid anterior, central, mid posterior, posterior) The
connectivity of the 29 white matter fascicles was represented as a vector, termed bundle connectivity vector,
which was created for the raw and filtered tractograms (using SIFT2 and COMMIT methods), respectively.
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3.1.3.7 Diffusion Tensor Imaging

The white matter parcellation of every individual dataset was obtained using FreeSurfer (Fischl et al., 2002).
For each region of interest, the mean values of the orientationally invariant scalar maps (MD and FA) were
estimated for every subject, resulting in a vector with 148 values, representing the areas of white matter
parcellation for each subject.

3.1.3.8 Tract-density imaging maps

Track-density imaging (TDI; (Calamante et al., 2010) maps were created using MRtrix3 (J.-D. Tournier et al.,
2019) for the three evaluated tractograms (raw and filtered streamlines). TDI maps are built by counting the
number of streamlines intersecting each voxel. For SIFT2 and COMMIT methods, the maps were created by
summing the weights of the streamlines intersecting each voxel. The maps of all the participants were
registered to the MNI standard space. Subsequently, the average map was estimated and voxelwise
transformed to z-scores.

3.1.3.9 Connectome reproducibility and subject-specificity

3.1.3.9.1 Dissimilarity measure

To compare connectomes, bundle connectivity vectors and tensor map vectors, we used the Bray—Curtis
dissimilarity index (Bray & Curtis, 1957), defined as:

5|C1y; — €241
2|C1y; + €2,

where C1 and C2 are two non-zero connectomes or bundle connectivity vectors, i and j are the line and
column index, respectively. The Bray-Curtis dissimilarity index value ranges between 0 and 1.

3.1.3.9.2 Seven-nearest-neighbour clustering

There are eight datasets for each of the 20 participants of the study. For each dataset and connectivity metric
(connectomes, bundle connectivity vectors, tensor map vectors), the seven datasets with the lowest Bray-
Curtis dissimilarity were selected. Among them, we identified how many datasets match that participant,
producing a score between 0 and 7. This was repeated for all 160 datasets, resulting in a clustering score
between 0 and 1120 for each connectivity method. A good performing algorithm should separate participants
(producing high inter-individual Bray-Curtis dissimilarity values) and be reproducible for datasets acquired
from the same participant (with low intraindividual Bray-Curtis dissimilarity values).

3.1.3.9.3 Distribution of fascicle connectivity

For every dataset and each of the 29 white mater fascicles, the distribution of structural connectivity
estimates within the 20 subjects was estimated and analysed with the Shapiro-Wilk test for evaluating
whether the estimates deviate from the normal distribution. This was performed for the raw and filtered
tractograms. The percentage of datasets following a normal distribution was compared.

3.1.3.10 Data availability statement

Data can be made available upon reasonable request.
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3.1.4 Results

3.1.4.1 Dissimilarity between connectomes and connectivity vectors

We have acquired 8 datasets of 20 individuals over a short period using the same acquisition parameters
(160 datasets). The structural connectivity estimated from these datasets for one individual should show
strong similarity as no major changes should have taken place among scans. Moreover, the structural
connectivity should show subject-specificity and thus an increased dissimilarity among subjects. Figure 19
shows the Bray-Curtis dissimilarity index between all pairs of connectomes and bundle connectivity vectors.
The Bray-Curtis dissimilarity index for the diffusion tensor map is shown in the supplementary material
(Figure S3). The structural connectivity values were computed from the raw tractogram (first column),
COMMIT weights (second column), and SIFT2 weights (third column). Datasets are ordered by subjects, sites
(site G, then site S), sessions, and runs. The colours codify the Bray-Curtis dissimilarity among all datasets and
methods. The 8x8 squares visible around the diagonal (blue) show the intra-subject dissimilarities, and the
off-diagonal values show the inter-subject dissimilarities.

Bray-Curtis Dissimilarities

Raw Tractogram COMMIT Weights Sift2 Weights
Connectome Connectome Connectome

Subjects

Sift2 Weights
Bundle Connectivity Vector

Raw Tractogram
Bundle Connectivity Vector

COMMIT Weights
Bundle Connectivity Vector

Subjects

Figure 19. Bray-Curtis dissimilarities.
Bray-Curtis dissimilarities between connectomes (first row) and bundle connectivity vectors (second row) computed from the raw
tractograms (first column), and tractograms filtered by COMMIT (second column) and SIFT2 (third column). Each subject has eight
MRI datasets (two sites, two sessions per site, and two runs per session). The colours indicate the Bray-Curtis dissimilarity between
all datasets and methods. The 8x8 blue squares around the main diagonal show the intra-subject dissimilarities, and other values
depict the inter-subject dissimilarities.

Table 5 reports the corresponding interindividual to intraindividual dissimilarity ratio (mean of the inter-
subject dissimilarity over the mean of the intra-subject dissimilarity) and the seven-nearest-neighbour
clustering performances of each method. The intraindividual dissimilarity ratio is equal for the whole-brain
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connectome using the raw tractogram or the filtered one with SIFT2 at 2.32 and decreases to 1.96 for the
COMMIT method. Their corresponding clustering performances are almost perfect for all methods. The SIFT2
and COMMIT methods have an increased intraindividual dissimilarity ratio compared to the raw tractogram
when using the bundle connectivity vectors. Although the clustering performance decreases, it remains high,
ranging from 82% (COMMIT) to 86% (raw tractogram). The tensor map vectors show a lower intraindividual
dissimilarity ratio of 2.05 and 1.84 when using the FA and MD, respectively. The clustering performance
remains high when utilizing the tensor map vectors with a clustering performance of 95%.

Inter to Intraindividual Dissimilarit Clustering
Method . v Performance
Ratio

(max. 1120)

Ra
W 232 1120 (100%)

Whole-brain Connectome Tractograms
COMMIT 1.96 1119 (99.9%)
SIFT2 2.32 1120 (100%)
. Raw Tractogram 2.32 964 (86.1%)
Bundle C tivit

un eVe:::rec Wity COMMIT 2.44 922 (82.3%)
SIFT2 2.45 948 (84.6%)
Diffusion Tensor Ma Average FA 2.05 1067 (95.3%)
P Average MD 1.84 1066 (95.2%)

Table 5. Inter- and intraindividual dissimilarities.

The ratio of interindividual to intraindividual dissimilarities measured by Bray-Curtis dissimilarity index and classification
performances on the connectome, the bundle connectivity vectors, and the tensor map vectors. The dissimilarity index (between 0
and 1) represents how different two connectivity estimates are from each other. The clustering performance of 1120 indicates that
each connectome or vector seventh-nearest-neighbours are from the same subject, i.e., any subject can identify the seven other
datasets matching that subject.

Table 6 shows the results of the repeated measure ANOVA analysis comparing the mean intra- and inter-
individual dissimilarities between sites, sessions, and runs for the three studied whole-brain connectome
methods. The comparison reveals no significant differences between the raw tractograms and COMMIT
weights. 7.1% and 2.8% of the data variance were explained by the factors site, session and run for the raw
tractogram and COMMIT weights, respectively. Using the SIFT2 weights, the repeated measure ANOVA
reveals a significant difference with 11.3 % of variance explained. However, post hoc analysis showed no
significant differences between the dissimilarities comparing sites, session and run individually, after
correction for multiple comparisons.

Table 7 presents the average Bray-Curtis dissimilarity indices between datasets of different individuals (inter-
subject) and between datasets of the same individuals (intra-subject). Moreover, the average dissimilarity
indices between datasets of the same individual, acquired at different sites (inter-site), or acquired at the
same site but during different sessions (inter-session), or acquired at the same site and session but during
different runs (inter-run) are reported. It is important to note that the inter-session dissimilarity also includes
the dissimilarity inter-run. Similarly, the inter-site dissimilarity also includes the inter-session dissimilarity.
For the whole-brain connectomes, the raw tractogram method depicts higher average interindividual
dissimilarity and lower average intraindividual dissimilarity, compared to SIFT2 and COMMIT. The raw
tractogram and the SIFT2-filtered one showed similar results regarding the bundle connectivity vectors, while
COMMIT shows higher values. The average inter-run dissimilarity corresponds to 71.7% of the average inter-
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site dissimilarity. On the other hand, the increase in the dissimilarity for the inter-session dataset corresponds
to 19.8% of the average inter-site dissimilarity. Finally, the mean increase in the dissimilarity for the inter-
site dataset corresponds to 8.5% of the total dissimilarity when comparing datasets of the same subject.
Overall, the inter-run dissimilarity (same subject, scanner, and session) shows the highest percentage of
dissimilarity when comparing the repeatability of all methods. This result is confirmed when considering only
the raw diffusion signal, represented as tensor (FA, MD).

. Greenhouse-

Degrees of Uncorrected Partial eta- i .

Method F-value . Geisser epsilon

freedom p-value square effect size
factor
Raw
5 1.462263 0.209474 0.071461 0.329294
Tractogram

COMMIT 5 0.562517 0.728459 0.028755 0.385971
SIFT2 5 2.440955 0.039749 0.113845 0.385287

Table 6. Repeated-measure ANOVA comparing mean intra and interindividual dissimilarites.
Repeated measure ANOVA comparing mean intra and interindividual dissimilarities between site, session and run for the three
evaluated whole-brain reconstruction methods.

Average Bray-Curtis dissimilarity Index

Method Inter- Intra- Inter- Inter- Inter-
Subject  Subject Site Session Run
. Raw Tractogram 0.2024 0.0871 0.0927 0.0856 0.0677
Whole-brain
COMMIT 0.1873 0.0956 0.1003 0.0954 0.0770
Connectome
SIFT2 0.199 0.0858 0.0916 0.0845 0.0651
Bundle Raw Tractogram 0.1323 0.0570 0.0618 0.0540 0.0438
Connectivity coOMMIT 0.1506 0.0618 0.0679 0.0577 0.0457
Vector SIFT2 0.1332 0.0543 0.0576 0.0545 0.0410
Average FA 0.0456 0.0222 0.0242 0.0216 0.0159

Diffusion Tensor
rust Average MD 00343 00186 00198 00186  0.0136

Table 7. Intra- and interindividual comparison of average Bray-Curtis dissimilarity Index.

Average Bray-Curtis dissimilarity Index comparing interindividual and intraindividual dissimilarities with dissimilarities between sites,
sessions and runs for whole-brain connectomes and bundle connectivity vectors using the raw tractograms, SIFT2, and COMMIT.
The dissimilarity index of the mean fractional anisotropy (FA) and mean diffusivity (MD) is also reported. Please note that the inter-
session dissimilarity also includes the inter-run dissimilarity. Similarly, the inter-site dissimilarity also includes the inter-session
dissimilarity.

Figure 20 shows the whole-brain connectome interindividual to intraindividual dissimilarity (left) and
clustering performances (right), decreasing the variance explained by the data after PCA filtering. The raw
tractograms and SIFT2-filtered ones show similar results with an increase in ratio when decreasing the
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percent of variance explained. The maximum dissimilarity ratio is obtained using 80% of the variance and
decreases as the percentage decreases further. The COMMIT method shows a different profile with a rapid
increase at 80% of the variance, then a further increase as the percentage of the variance is reduced.
Although the COMMIT method has a lower maximum ratio, the ratio is higher than that obtained for the raw
tractogram and SIFT2 method when using a 30% to 10% of the variance. The whole-brain connectome
clustering performance is systematically higher for the raw tractogram, except for the COMMIT method
when using 10% of variance explained by the data.

Whole Brain Connectome Whole Brain Connectome Whole Brain Connectome
Clustering Performances Dissimilarity Principal Components
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Figure 20. Subject specificity in PCA reduced connectomes for the raw tractogram, the SIFT2 and COMMIT methods.

Percentage of successrate in seventh-nearest-neighbours clustering (left) as well as the Interindividual to intraindividual dissimilarity
ratio of whole-brain connectomes (middle) are shown accounting for various levels of explained variance by the Principal Component
Analysis (PCA). Using PCA the complex dataset of whole brain connectomes was reduced in dimensionality to a certain amount of
eigenvectors explaining variance of the data ranging from 10-90% (right). Please note, that for 100% of variance, no PCA was
performed, but the raw connectome and filtered connectomes are shown (same data as in e.g. Figure 19, Table 5).

3.1.4.2 Track-density imaging

Figure 21A depicts the z-score map computed from the mean weighted track-density imaging (TDI) map. The
distribution of the z-score for the white matter volume is shown in Figure 21B. High positive z-score values
(red) indicate regions of over-representation of the white matter trajectories, and increased negative z-score
values (blue) indicate regions of underrepresentation. Voxel of white matter tissue should ideally show
similar values. The raw tractogram and the SIFT2 weighting methods show high z-scores values in the deep
white matter. SIFT2 shows a slight reduction in high z-score values compared to the raw tractogram. COMMIT
showed a further decrease in high z-score voxels in the deep white matter. However, higher z-score values
are noticeable in regions of single fibre populations (e.g., intern capsule, corpus callosum). Interestingly, both
SIFT2 and COMMIT showed an increased z-score in the cerebellum (Figure 21A bottom row), suggesting an
underrepresentation in this region by the raw tractogram. Moreover, the z-scores produced by COMMIT are
more equally distributed in this region, which is not the case for other methods, particularly the raw
tractogram. Figure 21B also shows an increase in high negative z-scores for the COMMIT method. These
values are located at the grey matter and white matter boundaries, likely in voxels with partial volume
contamination. The raw tractogram and SIFT2 also estimated high negative z-score values in those voxels.
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3.1.4.3 Normal distribution of weights

For every white matter fascicle weight estimated at every repetition, the distribution of the structural
connectivity estimates was evaluated within the studied cohort using the Shapiro Wilk test (Shapiro and Wilk,
1965). The percentage of normal distribution of the 29 fascicle weights is 10.2%, 55.6%, and 50.0% for the
raw tractogram, SIFT2, and COMMIT, respectively. This suggests that microstructure-informed tractography
reduces connectivity weights biases and provides more fascicles with normally distributed weights across the
population.

. "
0.5

0.4

Density

0.3

0.2

01 j
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Raw Tractogram SIFT2 Weights

Figure 21. Comparison of group mean weighted TDI maps of microstructure-informed tractography methods.

A: TDI-maps were created using the raw streamline and considering the weighting by the SIFT2 and COMMIT methods. An average
map was created over all 160 datasets. All values were z-transformed, indicating the variance of structural connectivity over the
whole-brain and presented on MINI standard brain (z-indices of horizontal slices given). B: The density plot shows the frequency of
certain z-values.

3.1.5 Discussion

Microstructure-informed tractography methods have been introduced to address the specificity-sensitivity
trade-off in tractography by reducing false-positive connections and adding biological meaning to
reconstructed streamlines. Analyses in synthetic models of white-matter fascicles have proven high accuracy
for SIFT2 and COMMIT (Daducci et al., 2015; R. E. Smith et al., 2015b). Although, the validation is the
bottleneck of tractography-based connectivity estimation algorithms. Previous studies used simplified
phantoms with connectivity patterns much simpler than those observed in human brains. As an alternative
validation approach, some studies focused on studying the reproducibility and repeatability of the estimated
connectivity matrices. For example, the reproducibility of white matter reconstruction has been investigated
comparing the acquisition and local diffusion models (Dayan et al., 2015; Gigandet et al., 2013; Prckovska et
al., 2016; Roine et al., 2019; Schumacher et al., 2018; Zhao et al., 2015), different tractography methods
(Bonilha et al., 2015; Girard et al., 2020; Thomas et al., 2014), thresholding approaches (Colon-Perez et al.,
2016; Konopleva et al., 2020; Roine et al., 2019) weighting of white matter pathways (R. E. Smith et al.,
2015b), and differences in cortical and subcortical brain parcellations (Besson et al., 2014; F. Zhang et al.,
2019). With the lack of ground truth data, the biological accuracy of estimated structural connectivity must
be evaluated differently. Firstly, a robust tractography reconstruction must be reproducible. As such, the
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connectivity of large white matter bundles of a healthy population is expected to follow a normal distribution.
Secondly, it must be biologically meaningful, i.e., representing key aspects of human brain anatomy. Thirdly,
a valid reconstruction needs to be sensitive to individual differences, i.e., estimates need subject specificity.
Finally, there is a need to investigate the influences on white matter reconstruction caused by differences
between runs, sessions, and scanners to characterize the stability of the measurements and analyses. This is
especially important when studying structural connectivity alterations in clinical applications, like in
longitudinal studies with repetitive measurements, as findings can only be detected (and interpreted) when
exceeding the intrinsic variability of the measurement itself, and large multi-centre studies are optimal if the
employed methods do not show scanner and location bias.

In neuroimaging, reducing and quantifying variability is a necessity for translational research and for applying
potential findings in clinical settings, especially in the view that longitudinal changes are crucially important
in the understanding, monitoring and predicting of neurological disorders such as, e.g., stroke (Guggisberg et
al., 2019; P. J. Koch et al., 2021; P. J. Koch & Hummel, 2017). Further, being sensitive to individual structural
connectivity differences reflects the accuracy of white matter estimates. Evaluating the different impacts on
reproducibility by site, time or run offers the possibility to pinpoint the greatest influence to guide further
investigations. Finally, the quantification of the degree of uncertainties allows the translation to
neuroscientific and clinical questions, expecting a significantly higher effect size than the noise level found in
pure intraindividual and interindividual variability. Thus, in this study, we evaluate the reproducibility and
repeatability of white matter reconstruction and microstructure-informed tractography methods considering
the effects of site, time and run. We evaluated those differences within the whole-brain connectomes and
29 large white matter bundles.

3.1.5.1 Subject-specificity in whole-brain structural connectivity

The whole-brain connectomes constructed by using the raw streamlines were highly subject-specific. High
inter-subject and low intra-subject dissimilarities and maximal scores in seven-nearest-neighbours clustering
were obtained (see Figure 19, Table 5). This surprising result indicates that already the reconstruction of the
raw connectome, despite its potentially high incidence of false-positive connections and biases, represents a
highly specific individual profile. Tractography is known to be susceptible to false-positive streamlines, but
false-positives seem to capture subject specificity. In other words, this suggests that the false-positive
streamlines are not random trajectories, but dependent on the subjects’ anatomy. When using
microstructure-informed tractography methods, the reproducibility of connectomes remains high, as
indicated by a high ratio of inter-subject and intra-subject dissimilarity as well as a high score in seven-
nearest-neighbours clustering (see Figure 19, Table 5).

3.1.5.2 Bundle connectivity vectors

Considering the reconstruction of the 29 bundles, the application of microstructure-informed tractography
methods is superior to results from the raw streamline with respect to inter-subject and intra-subject
dissimilarity. This implies that adding microstructure information to the estimation of structural connectivity
shows high subject specificity while remaining biologically meaningful connectivity estimates. Although, it
was not possible to successfully identify every subject using the connectivity of the white matter bundles.

3.1.5.3 PCA-reduced connectomes

Reducing the dimensionality of the whole-brain connectomes increases the inter-subject to intra-subject
dissimilarity ratio with an optimum at 80% of the explained variance with approximatively 15 eigenvectors
(raw tractogram: 16, SIFT2: 15, COMMIT: 14) while maintaining a 100% success rate of seven-nearest-
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neighbour clustering (for the raw tractogram and SIFT2, see Figure 20). This implies that not all elements of
the whole-brain connectome are needed to identify individuals. Another explanation might be that PCA
denoises the connectome elevating the biological meaning. This result withholds novel and exciting
possibilities for future connectome analyses. With 15 eigenvectors more complex statistical analyses are
possible without losing too many degrees of freedom, while maintaining a high subject specificity.
Surprisingly, when reducing the amount of variance explained by the used eigenvectors even further the
COMMIT filtered connectomes maintain a high interindividual to intraindividual dissimilarity ratio. In
contrast, the ratio decreases for the raw tractogram and the SIFT2 method. This implies that even
subcomponents of the connectome obtained using COMMIT show high subject specificity.

3.1.5.4  Group-level reproducibility

The standardized mean TDI maps (see Figure 21) show the distribution of estimated streamlines density
throughout the white matter and reflect key pitfalls in the reconstruction. High positive z-scores in the
healthy white matter represent an oversampled density bias estimated from tractography. Areas of
convergence of multiple fibre populations are vulnerable to those types of errors, being, e.g., the internal
capsule and the corpus callosum. Overall, prominently COMMIT reduces quantitively the number of voxels
above 1.0 standard deviation (COMMIT: 0.8%, SIFT2: 1.2%), whereas the raw tractogram displayed an
oversampling density bias (streamline distribution: 1.4%). This reduction of overestimated connectivity by
SIFT2 and COMMIT seems especially prominent in the deep white matter (upper row), the internal capsule
(middle row). Negative z-scores represent two aspects. One the one hand, voxels containing grey matter are
expected to have lower white matter volume and thereby streamline density. On the other hand, low z-
values within deep white matter voxels represent an underestimation of streamline density. Areas of high
complex fibre architecture including crossing and kissing configurations are vulnerable to these types of
errors, i.e., the pons and projection fibres with the cerebellum. Although the microstructure-informed
tractography did not alter the overall number of voxels below -1.0 standard deviation (raw tractogram 1.4%,
SIFT2: 1.6%, COMMIT 1.3%), the qualitative inspection of SIFT2 and COMMIT within the pons and the
cerebellar white matter clearly shows a dense distribution of white matter fibers. In contrast, there is a bias
on the trajectory of the corticospinal pathways and the cerebellar peduncle and a low density within the pons
and the cerebellar white matter in the map obtained from the raw tractogram. Using microstructure-
informed tractography, most voxels with negative z-scores seem to be on the white matter and grey matter
boundary, as expected.

3.1.5.5 Normal distribution of white matter fascicles

We segmented 29 white matter fascicles using anatomical landmarks and the white matter query language.
Investigating the structural connectivity within these bundles in the studied cohort suggested a substantial
deviation from a normal distribution for most of the fascicles when considering the raw tractogram (10%,
normally distributed). After applying microstructure-informed tractography, the connectivity distribution at
the group level normalizes up to 50-55%, indicating a higher group level reproducibility, likely by putting high
weights on valid fibres.

3.1.5.6  Source of structural connectivity variability

The impact of location, timepoint and run was evaluated. It was hypothesized that the intra-subject
dissimilarity between datasets is the most sensitive to potential influences and variability of the acquisition
and reconstruction. The repeated measure ANOVA revealed no differences in the dissimilarity scores
between the acquisitions. 3%, 7% and 11% of the total variance was attributed to the acquisition when
considering COMMIT, raw tractogram and SIFT2, respectively (Table 6). The maximum intraindividual
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variance was 0.096 for the whole-brain connectomes and 0.062 for the bundle connectivity vectors. The
minimum inter-subject dissimilarity was 0.187 for the whole-brain connectomes and 0.132 for the bundle
connectivity vectors. This already implies excellent stability of measurements and reconstructions. More
detailed analyses revealed that most of the dissimilarity appears by repeating the measurements, and
repeating the measurements at a different scanner does not considerably increase the dissimilarity, thus the
greatest amount of the inter-individual variance could be attributed to the inter-run comparison (71.7%).
This surprising result underpins the great reproducibility of structural connectivity, especially when
considering time and location/scanner. It shows that the acquisition itself induces most of the variance. Still,
this raised the question of the source of the variance. Repeating the analysis not using the reconstructed
streamlines, but the mean of FA and MD maps derived from the diffusion tensor model confirms that the
greatest variance is between runs (Table 7). This emphasizes that the measured data (used by the diffusion
tensor model) shows the highest variance between runs. The processing algorithms like tractography or
microstructure-informed tractography do not add much to the variance. Deviations from this natural
variability thus mark a true biological difference, highlighting its meaning for systems neuroscience.

3.1.5.7 The structural connectivity fingerprint

Using the whole-brain connectome, seven-nearest-neighbour successfully clustered all datasets belonging to
the same subject, i.e., the whole-brain connectivity profile is unique and reliable to identify an individual
subject, such as a fingerprint. This was already shown for functional connectivity (Amico & Goiii, 2018; Finn
et al., 2015; Van De Ville et al., 2021), particularly in the frontoparietal network. Moreover, the structural
connectome is highly subject-specific (Yeh et al., 2016), with 100% subject classification performances using
an alternative structural connectivity pipeline.

3.1.5.8 Limitations

Several aspects have to be mentioned limiting the conclusions of the given analyses. A generalisation of the
results on the reproducibility is limited by the assessment in only two sites using the same scanner and
acquisition protocol. Showing reproducibility in total independence of the scanner is needed (Kurokawa et
al., 2021). In addition, the algorithm for tractography nor the set of streamlines or the cortical parcellation
was altered, which can impact the reconstruction of connectomes and white matter bundles. Moreover, all
results were based on the multi-tissue constrained spherical deconvolution method, and other alternative
techniques are available (e.g., see (Canales-Rodriguez et al., 2015, 2019; Daducci et al., 2014). Finally, the
impact of microstructure-informed tractography was analysed solely for COMMIT and SIFT2 with standard
parameters and microstructure models.

3.1.6 Conclusion

Surprisingly, the raw tractogram shows high subject specificity at the connectome level, though its biological
interpretation is limited. Microstructure-informed tractography shows high subject specificity as well as
group reproducibility on connectome level and bundle connectivity vectors. By reducing high fibre density
selectively in areas of fibre convergence architecture, microstructure-informed tractography increases the
biological meaning of white matter reconstructions. Moreover, reducing the dimensionality of the data
through PCA increases the subject specificity and represents a promising analysis step to be included when
dealing with whole-brain connectomes. Finally, the largest amount of intraindividual variance arrives from
inter-run comparison, most likely by the diffusion signal itself and not by the connectivity analysis. Time and
scanner have a small influence on the variance. These results are fundamentally important considering the
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design and results of translational neuroscience and patient work and supporting cross-centre clinical data
analyses. Findings exceeding the natural intrinsic variability may mark true biological meaning.
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3.1.7 Supplementary Information

Bray-Curtis Dissimilarities

Average FA Average MD
Tensor Map Vector Tensor Map Vector

Subjects Subjects

Figure $3. Bray-Curtis dissimilarities between the region-based average fractional anisotropy (left) and mean diffusivity
(right) maps (148 region of interest).

Each subject has eight MRI datasets (two sites, two session per site, and two runs per session). The colours indicate the
Bray-Curtis dissimilarity between all datasets and methods. The 8x8 blue squares on the diagonal show the intra-subject
dissimilarities and other values depicts the inter-subject dissimilarities.
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General Discussion

This thesis was motivated by the need for a better understanding of post-stroke recovery in order to pave
the way towards the identification of new biomarkers for better patient stratification and in order to improve
long-term outcomes after stroke. To that purpose, the present work investigated structure-function coupling
as a novel way of understanding the neural mechanisms underlying post-stroke recovery. The second
objective of this thesis was to assess the reproducibility of microstructure-informed structural connectivity
measures in a multi-center dataset with the goal of increasing data comparability between sessions and
centers, as this could highly benefit future clinical studies. In this chapter, | will summarize all the findings
and discuss them more broadly, thereby relating the findings of different studies with each other.

I will discuss the impact of stroke on structure-function coupling, its relationship to clinical measures as well
as whether and how it changes over time post-stroke. Next, | will review the “network framework” in which
the analyses were performed as well as challenges and opportunities related to SDI. Finally, | will consider
challenges in MRI (pre-)processing and in clinical research. | will conclude by discussing the extent to which
the present thesis contributed towards future patient stratification.

4.1 Evaluating structure-function coupling in a stroke population

4.1.1 The impact of stroke on SDI

In a first step towards determining whether changes in structure-function coupling could give new insights
into post-stroke recovery and potentially serve as a biomarker in the future, e.g. for the prediction of recovery
or response to treatment, we evaluated whether the SDI — as a way to measure structure-function coupling
—was impacted by a stroke. In Study 1, we observed in HOA, a network gradient in line with previous findings
(Preti & Van De Ville, 2019) and ranging from low decoupling in the visual and somatomotor networks to high
decoupling in the ventral attention and limbic networks. Crucially, this finding persisted following a stroke.
However, our results also suggest that a stroke in the acute phase does have an impact on structure-function
coupling (i.e., the SDI). Indeed, in stroke patients, we observed globally higher decoupling in the ipsilesional
compared to the contralesional hemisphere. This supported our hypothesis that the structural damage
induced by a lesion leads to a detachment between structure and function and hence to an increase in SDI.
Furthermore, we observed network-specific effects of stroke in RH, but not LH stroke patients in the
somatomotor, ventral attention, limbic and default mode networks. This finding was further confirmed in an
enlarged cohort in Study 2, except for the default mode network.

When comparing stroke patients to the control group (i.e., HOA, Study 1), results suggest that the “healthy”
SDI pattern observed in HOA - namely a higher decoupling in the left compared to the right hemisphere on
whole-brain level, as well as in the somatomotor, dorsal attention, limbic and default mode networks - is also
present in LH stroke patients and disturbed solely in RH stroke patients. However, the interpretation of why
RH stroke patients are more affected by a stroke than LH stroke patients remains an open question. For the
ventral attention and limbic networks, an answer might lie in previous studies, which showed that alterations
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in these networks due to RH, but not LH stroke, can lead to neglect (Lunven & Bartolomeo, 2017; Rode et al.,
2017) and impairments in emotion recognition (Sheppard et al., 2020), respectively. One might thus assume
that the higher vulnerability of these networks to RH stroke is at the origin for the change in SDI in the given
network. However, out of the 62 patients included in Study 2 only 13 were affected by neglect, of which 9
had a RH stroke, indicating that this is probably not the sole explanation for significant alterations in the
ventral attention network on group level (in total 31 RH stroke patients). Further investigations relating
behavioral measures for neglect and emotion recognition to the SDI in the ventral attention and limbic
networks are however needed to further examine this assumption. For the remaining networks, the
interpretation seems more challenging, as both the somatomotor and default mode networks are known to
be rather left-lateralized (Banks et al., 2018; Lubben et al., 2021; Nielsen et al., 2013; Triggs et al., 1997), but
their SDI patterns are altered only after a RH stroke. The explanation for this finding remains an open
question for future research and shows that the investigation of structure-function coupling offers new
perspectives into network organization and alterations following a stroke. A crucial next step will be to
establish whether these network alterations in RH stroke patients are behaviorally relevant, i.e. whether they
occur concomitantly to changes in behavioral outcomes which are associated to these networks (e.g., motor
function for the somatomotor network, autobiographic memory for the default mode network, emotion
recognition for the limbic network and neglect for the ventral attention network).

Compared to other methods that combine structural with functional measures of brain data to investigate
post-stroke recovery, such as DCM or lesion network mapping the SDI offers a different type of information.
The SDI allows to investigate how much the functional activity in one node is globally relying on the
underlying structure, i.e. whether the functional activity in this node is rather constrained by anatomy or
rather liberal, taking into account all the connections with the other ROIs. Changes in SDI after a stroke inform
us about global underlying connectivity changes (i.e. of that ROl with all other ROIs). As we show in Study 1,
SDI can take into account both the individual structural and functional data (further discussed in section
4.2.1), allowing for a data-driven patient-tailored investigation of post-stroke changes without relying on
theoretical priors. In comparison, DCM gives us information about specific (directed) connectivity between
areas within a pre-defined network. Even though DCM could also take into account anatomical priors derived
from tractography (Stephan et al., 2009), most of the studies are hypothesis-driven and derive the priors
from previous studies in animals or humans (Gandolla et al., 2021; Grefkes et al., 2008, 2010; Rehme et al.,
2011), thereby ignoring the patients actual structural connectivity. In addition, the number of areas that can
be considered for DCM is typically limited to up to 10 areas (Frassle et al., 2017), whereas for the computation
of the SDI, information from the whole brain (360 cortical areas in our case) is used, thereby also taking into
account changes in structural and/or functional connectivity between certain areas which might not have
been foreseen. Even though it is now possible to infer whole-brain connectivity through regression DCM
(Frassle et al., 2017), to my knowledge it has not been applied to stroke so far. Furthermore, lesion network
mapping offers yet another type of information, identifying brain areas that are likely to be impacted after a
stroke given a particular symptom (Boes et al., 2015; Fox, 2018). However, only the lesion is directly derived
from the patient, the remaining analysis is based on the Human (functional) Connectome derived from
thousands of healthy individuals. In addition, in the case of lesion network mapping, one symptom at a time
is usually analyzed. Which method to use eventually depends on the type of information that is sought after.
If one is interested in investigating specific connections within a network, DCM is the way to go. If one wants
to identify the network which is affected given a specific symptom and lesion location, lesion network
mapping is the appropriate approach. While both DCM and lesion network mapping can/do take into account
anatomical information, the results do not allow any inference regarding the structure-function relationship,
which, however, can be described by means of the SDI.
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Finally, a last point to consider is that this thesis also offers new future directions for research in healthy
aging, e.g., with respect to the lateralization effect of the dorsal attention network, which we observed in
Study 1, and which might be related to age (Nielsen et al., 2013). In a further next step it would thus be of
interest to compare structure-function coupling of HOA to that of healthy young, in order to better
understand the changes in structure-function coupling related to healthy ageing.

4.1.2 The link between SDI and post-stroke clinical measures

In Study 1, we determined that stroke does have an effect on SDI measures in the acute phase. The next step
in probing the SDI as a biomarker was to determine the behavioral relevance of the SDI by relating it to
several behavioral domains. In Study 2, we showed that inter-individual patterns of brain structure-function
coupling following a stroke could be explained to a great extent (78.3% - 87% of explained variance) through
performance in several cognitive and psychological domains. Notably, at T1 (first week post-stroke), the SDI
in frontoparietal and default mode networks correlated the most (i.e., with average weights significantly
different from zero) and negatively with performance in these domains, whereas the contribution of the
different networks was more balanced at T2 (3 weeks post-stroke). The negative correlation between
behavior and SDI in the frontoparietal network was in line with previous findings, where worse performance
in cognition was associated to a higher SDI in this network (Griffa et al., 2022). In addition, behavioral
impairment has been associated with stroke lesions in the “rich club” (Egger et al., 2021; Evangelista et al.,
under revision, see Appendix), which largely overlaps with the default mode network (Choi & Jezzard, 2021).
Hence, we speculated that increases in SDI in “rich club” areas might be at the origin of the strong negative
correlation between SDI and behavioral performance (i.e., the higher the SDI, the worse the performance).

Given that almost 80% of patients included in the study had a cognitive impairment according to MoCA, we
expected the cognitive domains to be involved in the multivariate brain-behavior correlation pattern and our
findings confirmed this. However, all patients also had a motor deficit at stroke onset and we thus presumed
the motor domain to correlate with variations in SDI, notably in core motor areas, such as M1, S1, PM and
SMA, as they have been previously shown to be involved in both functional (Grefkes et al., 2008, 2010; Rehme
et al., 2011, 2012; Ward et al., 2006) and structural (P. J. Koch et al., 2021; Schulz, Braass, et al., 2015; Schulz
et al., 2017; Schulz, Koch, et al., 2015) post-stroke cortical reorganization. In line with our hypothesis, we
found that variability in structure-function coupling in numerous primary (e.g., M1, S1) and secondary (e.g.,
PMC, SMA) somatomotor areas as well as in the dorsolateral PFC (involved in cognitive motor control (B.-C.
Lee et al., 2020)) was associated to behavior in the first weeks post-stroke. However, surprisingly, the
structure-function coupling in these areas was not dependent on the performance in motor function, but on
performance in cognitive and psychological domains. In particular, at T1, the brain pattern associated to the
performance in cognitive and psychological domains involved multiple primary somatomotor areas (mainly
ipsilesionally). Then, from T1 to T2, we observed a shift from primary to secondary motor areas, which could
reflect underlying cortical reorganization related to recovery. Indeed post-stroke cortical reorganization has
previously been associated to the recruitment of secondary motor areas two weeks post-stroke (Rehme et
al., 2011, 2012; Ward et al., 2006). The involvement of areas belonging to the motor network during the first
weeks post-stroke, as we observed it in Study 2, could be anticipated based on previous findings related to
post-stroke motor recovery (see above), however, it remains puzzling why it was not related to performance
in the motor domain. Recent work showed that stroke symptoms, and notably motor and attentional deficits,
appear in clusters which are thought to be the behavioral output of a common abnormal network state,
implying that they are correlated and show a similar recovery over time (Corbetta et al., 2015; Ramsey et
al., 2017). This finding suggests an overlap of networks involved in both functions (motor and attention),
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which would mean that they share some of the underlying reorganization processes related to recovery. Even
though the motor scores were not correlated to any of the other domains in Study 2, this finding could explain
in parts the fact that the SDI pattern in the motor areas correlates with cognitive performance. Furthermore,
a recent study established a link between a decrease in connectivity between M1 and the ventral attention
network, and spatial neglect (Barrett et al., 2019), suggesting that lower-level somatomotor areas could also
be involved in cognitive functions. Assuming that this is the case, changes in said connectivity between M1
and the ventral attention network could lead to changes in the structure-function coupling in the involved
areas (i.e., in M1 and areas belonging to the ventral attention network). This change in coupling might then
be related to cognitive rather than motor function. Furthermore, the secondary motor areas (e.g., PMC, SMA)
and the dorsolateral PFC are also involved in networks other than the somatomotor (e.g. dorsal and ventral
attention, and default mode network) (Thomas Yeo et al., 2011). Hence, this could mean that the variability
in SDI, which we observe in M1 and higher-level motor areas, is behaviorally relevant for cognitive, but not
necessarily for motor functions. Nevertheless, the evidence for this interpretation is limited and should be
taken with a grain of salt.

Taken together, the overall change in pattern of regions that show a significant correlation with behavioral
performance between the acute (T1) and early subacute phase (T2) is consistent with previous literature and
could indicate that the ROIs identified at T2 are key areas where behaviorally relevant reorganization takes
place after a stroke and which should thus be further studied, especially in terms of longitudinal SDI changes
post-stroke. The extensive cortical patterns (i.e., key areas) which we identified suggest that widespread
networks are involved in the recovery process, which is in line with previous literature (P. J. Koch et al., 2021).
Studying the evolution of SDI in these key areas in individual patients could offer the possibility of a more in-
depth understanding of their personal course of recovery and help explain why some patients recover well
while others do not.

There are two more points worth addressing related to our PLSC results: First, the absence of a significant
brain-behavior multivariate correlation pattern at T3 could potentially be explained by the fact that most
patients have recovered well three months post-stroke and that the variability in the behavioral domains is
now too small for the PLSC to detect. Second, the hemispheric effects, as well as the differential impact a
stroke has on the RH compared to the LH, which we described in Study 1 and 2, could not be studied in the
multivariate correlation analysis, as all lesions were flipped to the left side. Unfortunately, we did not have
enough power to analyse the brain-behavior relationship in LH and RH stroke patients separately. It would
however be important that future research endeavors study these lateralization and lesion-side specific
effect also in the context of the brain-behavior relationship, as brain patterns associated to behavior are
likely to differ between RH and LH stroke patients.

4.1.3 SDI changes over time post stroke

If the SDI is reflecting underlying neural reorganization, we would expect to observe longitudinal changes in
SDI throughout the course of recovery. In Study 2, we observed this change by revealing distinct hemispheric
or network effects at different points in time. However, the main effect of time between T1 and T3 was
absent in all our analyses. In the acute stage (T1), decoupling was higher in the ipsi- compared to the
contralesional hemisphere, but this effect disappeared in the late subacute phase (T3). In addition, most
network-specific SDI patterns in LH stroke patients observed in Study 2 (all timepoints) resembled those of
the control group in Study 1, except from the ventral attention network and frontoparietal networks, where
the hemispheric differences changed between T1 and T3. This was not the case in RH stroke patients, who
showed a deviation from the pattern observed in HOA (in Study 1) in the ventral attention network at T1 as
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well as in the somatomotor and limbic networks at T3. This suggests that even though a stroke has a bigger
impact on changes in structure-function coupling in RH stroke patients in the acute phase, both LH and RH
stroke patients undergo network changes between T1 and T3.

A peculiarity of Study 2 that is also worth discussing is the absence of network-specific main effects of time,
i.e., the SDI did not significantly in- or decrease in any of the networks between T1 and T3. This finding was
surprising, and one interpretation could be that a lesion impacts the SDI at stroke onset, but that the
subsequent reorganization on functional and structural level is not reflected in the SDI. However, given the
large body of evidence describing structural and functional changes related to post-stroke reorganization, it
seems more likely that the networks we analyzed were simply too broad to capture intra-network changes
over time in SDI, which potentially occurred only in a few sub-areas (e.g., key areas identified in Study 2).
Another reason could be increases in SDI in some areas and decreases in others, which would result in
changes to be averaged out when grouping brain areas by networks. Hence, one possible approach would be
to investigate time-related changes in the key areas identified in the brain-behavior correlation analysis in
Study 2, as these are areas that are potentially involved in reorganization.

Understanding how the structure-function coupling changes during post-stroke recovery could help
disentangling underlying neurobiological mechanisms and potentially distinguish between adaptive and
maladaptive processes. For example, if the functional activation in a given area (e.g., M1) is high during a
task, the SDI could delineate whether this is due to input from areas which have close anatomical link or from
more distant and distributed areas without strong direct anatomical connection. Indeed, if the input stems
from an area with close anatomical link, the SDI would be assumed to be low (because the function is closely
linked to the underling anatomy), whereas it would be expected to be higher if the input comes from more
a more distributed network. Potentially, we could thus observe differences between patients who show
similar activation value, but diverging behavioral performance and make inferences about the underlying
neural reorganization based on the amount of decoupling in the brain area in question. Compared to other
measures relying on anatomical priors, such as, e.g., DCM, the SDI cannot give us information regarding
specific connections within the network, but it can be seen as a “compound” measure, summarizing how
much the functional connectivity of a node (with the rest of the brain) globally relies on the underlying
structure. It is thus a global characterization of a node, taking into account its relationship with the whole
brain. In contrast, DCM is usually restricted to a few pre-defined areas and all connections with other areas
are evaluated individually (i.e., it is not a “compound” measure). Given that stroke has been shown to cause
changes in widespread brain areas and networks (Guggisberg et al., 2019), the SDI is potentially a more
appropriate measure to capture these brain-wide changes than DCM, for example.

In the acute phase, we showed in both Studies 1 and 2 that the SDI is (on whole brain level) higher in the ipsi-
compared to the contralesional hemisphere, which is, as we assume, related to the structural disruption
through the lesion, rendering the function unable to rely on the underlying anatomical scaffold. This effect
disappeared at T3, suggesting that there were changes in SDI in various brain areas between these timepoints
which re-balanced the overall intra-hemispheric coupling. It is very challenging to predict how the structure-
function coupling would evolve in a specific area after the acute stage of a stroke (and what change would
be beneficial), as a change in SDI could have various origins of both functional or structural nature. A change
in functional activity could be, for example, the result of either one (anatomical) connection being used more
intensively or of an increased amount of functional inputs from distributed areas in the network, relying less
on the underlying direct structural connections. In the first case, the SDI would likely decrease, as the function
is heavily relying on the structure, whereas in the second case, it might rather increase, because the function
is more detached from the structure. The coupling could also change following structural changes, through
the formation of new connections through plasticity (Ward, 2017), for example. It is thus to be expected that
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the different brain areas (360 cortical areas in total) show a heterogeneous post-stroke longitudinal SDI
evolution, depending on their individual functional and structural characteristics. This could be the reason
why we did not observe a main effect of time for any of the networks. An evaluation of the longitudinal
evolution of the SDI, investigating all 360 brain areas individually, does not seem feasible, however key areas
identified in Study 2 offer a good starting point for selecting areas of interest to understand the dynamics of
changes in SDI throughout post-stroke recovery.

With the experiments performed in this thesis, it is unfortunately not possible to determine the nature of
the underlying mechanisms causing changes in SDI, as a change in SDI does not just depend on how either
function or structure changes, but how one changes with respect to the other. However, future studies could
use the SDI as a tool to disentangle the underlying neural mechanisms and increase the understanding of
cortical reorganization, by applying novel experimental paradigms (such as the one described above) that
investigate functional activations concomitantly to structure-function coupling in areas or networks of
interests.

4.2 Methodological considerations

4.2.1 Individual-level implementation of the SDI

Having discussed the results related to structure-function coupling in the context of neuroscience and
pathophysiology, it is also important to consider challenges and opportunities related to the method itself.
The SDI was developed using group functional and structural connectomes derived from data from the
Human Connectome Project (HCP) involving healthy young participants (Preti & Van De Ville, 2019). Hence,
the first challenge in applying it to our data, was to use the individual instead of the group connectome and
we needed to evaluate the feasibility of an intra-individual SDI measure. In this context, an important
consideration was also the difference between the resting-state fMRI sequence used in this thesis compared
to the one used in Preti & Van De Ville (2019), as this can also have an impact on the feasibility of the SDI
analysis, notably in terms of stability of the connectivity strength, accuracy of the estimation of the
hemodynamic response function and statistical power (Birn et al., 2013). Indeed, our resting-state fMRI
sequence differed considerably from the one used in the HCP, notably in terms of TR (1.25s in our vs 0.72s in
the HCP dataset), as well as in terms of length. While our sequence lasted a little more than eight minutes,
they used two times fifteen minutes of resting-state acquisitions. Our analysis in HOA (Study 1) demonstrated
the existence of a network gradient consistent with previous findings from Preti & Van De Ville (2019), which
allowed us to assume that the SDI can be applied on individual data as well as on shorter resting-state fMRI
sequences. This is essential to apply the SDI in clinics, where there is a strong need for an individual evaluation
for every patient and where patients are not very compliant with long MRI sessions.

After having verified the feasibility of intra-individual SDI measures, we faced some issues specific to the
stroke population. Namely, in stroke patients, parcellation errors due to the stroke lesion can sometimes
occur, even though we tried to correct for the lesion by applying a “lesion transplantation” procedure, in
which the lesioned portion of the brain is replaced by the corresponding portion of the contralesional (i.e.,
healthy) hemisphere. Especially in patients with large cortical lesions, the transplanted portion did not always
align perfectly with the tissue surrounding the lesion, notably due to hemispheric asymmetries. Thus, it could
happen that one or several ROIs did not have any streamline starting/ending in them, leading to a “zero-
node”, i.e., a node in the structural connectome with a connectivity value of zero. These connectomes could
not be processed by the SDI pipeline (due to a division by zero in the computation of the spectral
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decomposition), which meant that this session had to be excluded, thus leading to a missing data point for
the patient in question. Missing data points were an issue also for other analyses, notably for the PLSC
analysis (Study 2). Indeed, we used PCA for the dimensionality reduction within every behavioral domain,
however, nor PCA nor PLSC allow missing values. Hence, we could only consider patients who had all sub-
scores for all domains, leading to a loss of roughly half the patients for every timepoint (of 62 patients
included in the study we could only include 32 patients for T1, 34 patients for T2 and 31 patients for T3). The
reason for missing behavioral data were mainly due to patient compliance (i.e., not all tests could be
performed due to fatigue or other reasons), which means that this is likely a problem for clinical studies in
general. Hence, it would be desirable for methods related to dimensionality reduction (e.g., PCA) and
statistical methods (e.g. PLSC) to be mathematically adapted in a way that they are able to deal with missing
values in the future, as more meaningful conclusions could be drawn from analyses with higher power.

Finally, methods that fully integrate structural with functional measures are scarce, and the only method that
can probably compare with the SDI method on this level is the Functionnectome (Nozais et al., 2021).
However, while the Functionnectome addresses an interesting question, which is the function of white
matter tracts in the brain, it presents a considerable amount of methodological disadvantages compared to
the SDI. For instance, the Functionnectome relies on a substantial amount of priors, that it cannot be
individualized and that it needs a considerable amount of processing power (whereas the SDI can be run on
a regular computer). Measures derived from the Functionnectome would thus be less suitable as biomarkers,
as it would be difficult to integrate it in the clinical routine. Thanks to the findings presented in this thesis, |
therefore conclude that the SDI is — to the best of my knowledge — the only measure of combined structure-
function information that can be applied on an individual level (Study 1) and in a stroke population (Studies
1 and 2) at this moment, making it a promising tool for post-stroke investigation of neural correlates.

4.2.2 The definition of brain networks

Another methodological challenge that is important to address is related to the definition of brain networks.
In the last years, neuroscience has moved away from a localizationist approach, where researchers tried to
attribute a specific behavioral function to one specific brain area, to a network-based approach, where it is
assumed that a behavioral function is the result of the interactions between areas belonging to a network
(Guggisberg et al., 2019). Stroke research has accordingly moved in this direction, redefining stroke as a
“network disease” — implying that a lesion might have an impact on the entire brain and its network
properties (Alstott et al., 2009; Grefkes & Fink, 2014; Guggisberg et al., 2019; Honey & Sporns, 2008; P. Koch
et al., 2016; P. J. Koch et al., 2021). Methodologically, this was reflected in a shift in the way neuroimaging
data was analyzed, moving away from defining functionally specialized brain areas based on fMRI paradigms
towards a within-network analysis of data. When analyzing results on a network level, the definitions of
different networks that are used should be universal, in order for results to be comparable across studies.
This is, however, not the case. Indeed, there are currently more network labels than there are underlying
networks, because visually similar networks are often assigned different labels (Uddin et al., 2019; Witt et
al., 2021). This leads to confusion and inconsistencies when relating findings to results from previous studies
as well as when designing new experiments based on prior work. To avoid ambiguities, it would be better to
use network definitions based on prior template, such as the one from Smith et al. (S. M. Smith et al., 2009)
and Yeo et al. (Thomas Yeo et al., 2011) — who derived the networks from large resting-state fMRI datasets —
as well as from Witt et al. (Witt et al., 2021) who extended this work by basing the templates on task-based
and resting-state fMRI datasets obtained in 69 studies. In this thesis, | used the 7-network solution from Yeo
et al. (Thomas Yeo et al.,, 2011) to subdivide the 360 Glasser ROIls (Glasser et al., 2016) into networks.
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However, even when using this template, interpretation is not always straightforward. The somatomotor
network from Yeo only includes primary somatomotor areas (motor, sensory, auditory), for example,
whereas the common definition of the motor network also includes higher-level areas, such as the premotor
cortex, or the SMA (Miall, 2016; Rehme et al., 2011). Hence, one should be aware of what areas are included
in a network at hand and be careful with the impact this might have on the interpretation of the results.

An additional point which caught my attention was that most definitions of networks attribute one brain area
to one specific brain network, even if it has been shown to be involved in other networks too. This is still a
leftover from the localizationist point of view, which attributed one area one specific function (Pessoa, 2014).
To illustrate, the SMA is a higher-level motor area, however it is not encompassed in the somatomotor
network from Yeo et al. (Thomas Yeo et al., 2011), but its sub-parts belong to the dorsal and ventral attention
as well as the frontoparietal networks. Hence, when investigating a specific network, one has to manually
verify, based on literature, whether all relevant areas are included in the predefined template, which further
adds to the confusion and heterogeneity of network definition. Therefore, the definition of more
comprehensive templates in the future (i.e., in which areas can belong to more than one network) would
allow us to go towards a more complete and comparable way of analysing brain networks. In the case of
analyses presented in this thesis, the 7-network solution might not have been the most appropriate choice
for all my research questions, however | decided to abide by it, as it made my results more comparable with
existing literature and because it avoids overrepresentation of certain areas in the results. For future analysis
in the context of Studies 1 and 2, it could however be of interest to redefine e.g., the somatomotor network
towards a more pure motor network, including primary and higher-level motor areas, as motor recovery is
one of the main focus of TiMeS.

4.3 Translational aspects

4.3.1 Considerations regarding research using MRI

Another important consideration when performing MRI-based experiments is reproducibility, as increasing
data comparability between sessions and centers could benefit future studies. This is especially true in the
context of multi-timepoint studies, where one wants to observe the experimental effect and not random
variability. In addition, this question is important for longitudinal clinical studies, especially in a multi-center
setting. We addressed this challenge in Study 3 of this thesis, where we tackled a particular angle of the
reproducibility issue, comparing the performance of two relevant microstructure-informed tractography
methods, SIFT2 and COMMIT, by assessing the subject specificity and reproducibility of their derived white
matter pathways. We showed that even though raw tractograms are more vulnerable to false-positive
connections, they are nevertheless highly reproducible, suggesting that the estimation bias could be subject-
specific. The high reproducibility was preserved when filtering the tractograms with SIFT2 and COMMIT, and
we observed that the coverage of streamlines throughout the white matter was more uniform, hinting that
it could increase the biological accuracy of the estimated fascicles. We further observed that the largest intra-
individual variance stems from the repetition of data measurement (inter-run), whereas scanner site or time
between measurements were not adding considerably to the bias. In addition, we found that preprocessing
techniques to reduce the underlying noise and the data dimensionality using PCA could increase subject
specificity.

With regard to preprocessing steps, it seems worthwhile mentioning that there is currently no gold standard
in terms of DWI preprocessing and processing (Tax et al., 2022), further impacting the comparability across
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analyses and datasets. Indeed, modules from different software packages can be combined, steps can be
performed in various orders and many of the preprocessing variables are user-dependent (Tax et al., 2022).
This contrasts with (pre-)processing pipelines in fMRI, which are mostly relying on the SPM software
(Ashburner et al., 2014) and applying largely identical steps (even though alternatives are available through
other software packages such as e.g., FSL or Analysis for Functional Neurolmages (AFNI)). When using SPM12,
there is still a certain number of variables to be determined depending on the data (e.g., Gaussian smoothing
kernel), however they are limited and well documented. In order for advanced DWI and fMRI analyses to be
applied in clinics, it is crucial that these steps are simplified, especially for DWI, where the choice of optimal
pipeline can be challenging even for experts (Tax et al., 2022). Indeed, a too complex use of software or
application of analysis to a dataset risks to hinder translation of promising research into clinics. Efforts
towards the simplification of MRI (pre)processing have been made in the fMRI field, with a promising
example of the CONN toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012), that proposes different
automatized preprocessing pipelines for functional data (based on SPM8 or SPM12), and provides an intuitive
Graphical User Interface (GUI). In addition, for the SPM alternatives, an automatized preprocessing pipeline
named fMRIprep (Esteban et al., 2019) has recently been published and a similar effort has been made in the
DWI field through the publication of toolboxes such as dMRIPrep (DMRIPrep, 2019/2022) or
MRtrix3_connectome (Bids-Apps/MRtrix3_connectome, 2016/2022), amongst others, which intended to
make preprocessing more user friendly.

An additional challenge when analyzing data from a stroke population is the performance of additional
manual steps, such as lesion segmentation or drawing individualized masks for the CST. Notably, for the SDI
analysis applied in this thesis, all lesions needed to be hand drawn prior to preprocessing and processing, as
automatized methods are not (yet) as good as humans in performing this task (Maier et al., 2015). Hence,
this step requires expert knowledge in the identification of brain lesions and it can also be very time
consuming, depending on the extent and location of the lesion. Finally, a considerable potential source of
problem could be the use of Linux-based toolboxes and programs for the analysis of DWI data. Indeed, this
operating system is not frequently used in clinics and could represent an additional hurdle in the translation
of biomarkers to clinics. However, more tools to promote availability of reproducible pipelines have been
made available lately through containers (Tax et al., 2022), which can run on both Windows and Linux-based
systems, and could be useful for the application of automated processing pipelines in clinics.

4.3.2 Research in a clinical environment

After discussing some considerations related to research using MRI, | will now briefly discuss more general
challenges one might encounter when setting up a study in a clinical environment, such as it was the case for
TiMeS. Being able to assess stroke patients in a longitudinal study starting from the first week, i.e., the acute
phase, post-stroke is a privilege and offers tremendous opportunities for research, as it allows to capture the
full picture of post-stroke recovery. However, performing research in a hospital is different from a laboratory
environment and one needs to adapt to the ongoing clinical schedule. Nevertheless, through close
collaboration with clinical partners for recruitment and data acquisition, even large and time-intensive
studies can turn into a success. The TiMeS project is a great example to illustrate this subject, as it includes
three different hospitals/rehabilitation clinics in two different locations and assessing several modalities,
namely MRI, TMS-EEG as well as neuropsychological and motor tests, with a total assessment time of
approximately two days.

By working on this study, | realized that the physical proximity to the hospital (in our case the cantonal
hospital of Sion, Switzerland (HVS)) and rehabilitation clinics (in our case the Clinique Romande de
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Réadaptation in Sion, Switzerland (CRR) and the Berner Klinik in Crans-Montana, Switzerland (BK)) is essential
when acquiring data with stroke patients who are in the acute and early subacute phase. Indeed, performing
experiments at these stages would have hardly been possible if the experimental facilities were not located
within the partner institutions where patients who were participating in the study were hospitalized.

When conducting a multimodal and longitudinal study, a considerable amount of specialized manpower and
a team effort for both the patient recruitment as well as for the organization and execution of the
experiments is required. Indeed, efficient exchange within the team and with the clinical partners is also here
primordial for the experiments to go ahead as planned. This is especially true when patients are still
hospitalized and also have a rehabilitation schedule. In addition, in a bilingual canton such as Valais
(Switzerland), where the experiments for this thesis were performed, knowing both French and German is
an advantage, as some patients know only one or the other language.

In studies that have long protocols, such as it was the case for TiMeS, patient compliance is another relevant
point. Indeed, depression rate and fatigue are high in stroke patients, most notably in the early phases after
a stroke (in the TiMeS cohort 11% of patients were scored as clinically depressed and 37% showed general
fatigue at T1) and experiment duration can be lengthy, which can impact the patients’ motivation in
participating in a study and —in the context of MRI —to hold still. As an example, the MRI protocols are rather
short (~15 minutes at the cantonal hospital in Sion, Switzerland), whereas our research protocols are lengthy
(~1 hour in the studies presented in this thesis). This can be very straining for patients, especially in the acute
stage, as they often experience discomfort in this phase. Notably, it is difficult for patients to remain still for
an extended period of time, which leads to an increased amount of motion artifacts in MRI acquisitions which
can render statistical dependencies spurious. Furthermore, a considerable amount of individuals tend to be
claustrophobic, adding on to the challenges of MRI-based research. Nevertheless, my experience is that
compliance can be greatly increased by adapting the schedule to the individual patients need and capacity,
for example by spreading out the assessments of the different modalities over more than two days, giving
the patient additional time to rest in between. Furthermore, my experience was that explaining the individual
steps of the MRI protocol and the functioning of the MRI scanner itself (in simple words), in addition of
frequent contact during the scanning, could help reassuring patients and ensuring that data could be
acquired, even if the patients were reluctant in the beginning.

Naturally, missing timepoints cannot always be avoided, be it due to absolute refusal to enter an MRI scanner
(i.e. missing only that part of the study; 7/86 patients in TiMeS) or due to skipping of timepoints. Indeed, in
longitudinal studies such as TiMeS, where the participants are enrolled and participating in experiments up
to one year post-stroke, one often observes a considerable amount of skipped timepoints and higher drop-
out rates than more short-term studies. In the case of TiMeS, this was accentuated by the COVID-19
pandemic, which resulted in an additional amount of omitted timepoints due to stopping of experiments
during several months in total, but also due to the reluctance of some patients to come to the laboratory in
these circumstances. Hence, given it is quite challenging to have a large and complete dataset, rendering it
precious and highlighting the importance of using a maximum of available datapoints in analyses. However,
in some cases, parts of the data still had to be excluded for analysis due to technical circumstances, such as
methods that cannot deal with missing values, as mentioned in section 4.2.1. Hence, this shows that there is
still need for improvement, mainly on the methodological side.

Despite all challenges, the effort is well worth being made, as such clinical studies could offer new insights
into post-stroke recovery and the quest for new biomarkers for patient stratification, which could eventually
lead to an improved and more personalized course of treatment and better outcomes for stroke patients.
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4.3.3 A step towards patient stratification?

This thesis started with a need for a better understanding of post-stroke recovery as well as with a quest for
new biomarkers, based on the need for better patient stratification and individualized therapies to improve
functional outcome after a stroke. Currently probed biomarkers in the field of MRI are based on either
structural or functional MRl and very little is known about the link between structure and function as well as
how it is impacted by a stroke. Therefore, in the first part of this thesis | investigated the structure-function
relationship in stroke patients, as well as its link to behavior. Furthermore, based on a need for reproducible
analysis pipelines, which is especially important in the context of clinical studies, the second part of this thesis
addressed the reproducibility of structural connectivity in the context of microstructure-informed
tractography.

Collectively, with the work | presented in this thesis, | established that the SDI —a recently introduced method
to assess structure-function coupling (Preti & Van De Ville, 2019) —is sensitive to pathophysiological changes
that occur following a stroke and the reorganization thereafter. In doing so, | additionally showed that post-
stroke changes in SDI link to clinically relevant behavioral measures and that the corresponding brain patterns
are associated to behavioral changes over time. Moreover, | complemented these findings with a study
evaluating reproducibility and subject-specificity of microstructure-informed connectivity. We showed that
microstructure-informed tractography seems to improve biological meaning of white matter
reconstructions, while keeping a high subject specificity, suggesting that filtering methods such as SIFT2 and
COMMIT can improve current DWI analytical pipelines.

The current evidence presented in this thesis shows that structure-function coupling is a promising new
approach to study the impact of stroke on the brain as well as its reorganization thereafter and it portrays
the SDI as an auspicious potential candidate to become a predictive biomarker for post-stroke recovery in
the future. However, one question remains — did this thesis bring the field a step closer to patient
stratification? The present work is merely a first and nevertheless important step in that direction. Indeed,
by quantifying the relationship between neuropsychological measures of function and variations in post-
stroke structure-function coupling and by adapting the SDI method to be used with individual patient’s data,
we are moving closer to the main goal, which is to determine whether it can add to the prediction of recovery
and response to treatment based on a patient-specific biomarker derived from structure-function coupling.
Nevertheless, the clinical relevance and time-specificities of the SDI need to be further confirmed, especially
on the level of the individual patient and considering key brain areas identified in this thesis. In this context,
it will be important to link intra-individual behavioral scores with intra-individual SDI values in specific areas
of interest and understanding their evolution over time, before attempting to stratify patients based on these
findings.

Considering clinical relevance, it is important to keep in mind the difference between statistical significance
and clinical relevance or importance when performing clinical studies. A significant difference is not always
clinically relevant and vice-versa. Taking the example of the SDI as a hypothetical future biomarker, a clinical
relevant enhancement could be seen as a higher prediction accuracy compared to existing methods which
are already applied in clinics, such as PREP2, which has a prediction accuracy of 75% (Connell et al., 2021;
Stinear et al., 2017). However, “higher” doesn’t necessarily mean “statistically significantly higher”, meaning
that a prediction accuracy of, e.g., 76% would probably not be considered clinically relevant. But what or who
determines what is clinically relevant? LeFort (1993) suggests that clinical relevance or significance is
dependent on “the extent of change, whether the change makes a real difference to subject lives, how long
the effects last, consumer acceptability, cost-effectiveness and ease of implementation”. In contrast to
statistical significance testing, there is however no fixed threshold that evaluates clinical
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significance/relevance (Fethney, 2010), and frequently it is the judgment of the clinician, and sometimes the
patient, that determines whether or not a result is clinically significant/relevant (Ranganathan et al., 2015).
It is hence not possible to give a clear answer to what minimum prediction accuracy would be needed for the
SDI to represent a clinically significant biomarker, as this would depend on the multiple factors mentioned
above. One clear advantage of the SDI as a new biomarker, however, would consists in the fact that most
patients undergo a clinical MRI anyhow within the first few days of in-patient care and it would thus be
straightforward to integrate the necessary measurements in the already established clinical routine.

In conclusion, by studying the structure-function coupling in stroke patients, this thesis lays at the
intersection of clinical translational and basic systems neuroscience and opens a completely new and
multimodal perspective of how to look at the lesioned brain. Combined with the rich behavioral dataset
collected in the TiMeS project, this innovative metric offers a whole new range of possibilities to investigate
the complex mechanisms of post-stroke reorganization, thereby hopefully paving the way towards a better
individualized understanding of post-stroke recovery leading to individualized, precision medicine-based
treatments. Indeed, future research endeavors have to investigate to what degree the SDI can predict
outcome, course of the disorder or treatment responses, such as to non-invasive brain stimulation.
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Abstract

Despite recent improvements, complete motor recovery occurs in less than 15% of stroke
patients. To improve the therapeutic outcomes, there is a strong need to tailor treatments to each
individual patient. However, there is a lack of knowledge concerning the precise neuronal
mechanisms underlying the degree and course of motor recovery and its individual differences,
especially in the view of network properties despite the fact that it became more and more clear
that stroke is a network disorder. The TiMeS project is a longitudinal exploratory study aiming at
characterizing stroke phenotypes of a large, representative stroke cohort through an extensive,
multi-modal and multi-domain evaluation. The ultimate goal of the study is to identify prognostic
biomarkers allowing to predict the individual degree and course of motor recovery and its
underlying neuronal mechanisms paving the way for novel interventions and treatment
stratification for the individual patients. A total of up to 100 patients will be assessed at 4
timepoints over the first year after the stroke: during the first (T1) and third (T2) week, then three
(T3) and twelve (T4) months after stroke onset. To assess underlying mechanisms of recovery
with a focus on network analyses and brain connectivity, we will apply synergistic state-of-the-
art systems neuroscience methods including functional and structural magnetic resonance
imaging (MRI), and electrophysiological evaluation based on transcranial magnetic stimulation
(TMS) coupled with electroencephalography (EEG) and electromyography (EMG). In addition, an
extensive, multi-domain neuropsychological evaluation will be performed at each timepoint,
covering all sensorimotor and cognitive domains. This project will significantly add to the
understanding of underlying mechanisms of motor recovery with a strong focus on the
interactions between the motor and other cognitive domains and multimodal network analyses.
The population-based, multi-dimensional dataset will serve as a basis to develop biomarkers to
predict outcome and promote personalized stratification towards individually tailored treatment
concepts using neuro-technologies, thus paving the way towards personalized precision medicine

approaches in stroke rehabilitation.
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Introduction and rationale

With 80 million survivors in 2016, stroke is the second most common cause of acquired
disabilities in the world (GBD 2019 Diseases and Injuries Collaborators, 2020; Gorelick, 2019).
This number is still increasing due to the population growth and ageing (Feigin et al., 2015). Better
acute stroke management results in an improved stroke survival on the one hand, but a higher
prevalence of chronic stroke on the other hand (Gorelick, 2019). Yet, complete motor recovery
still occurs in less than 15% of patients (Hendricks et al,, 2002). Although motor deficits are the
most debilitating and investigated (Kwakkel et al., 2003; Lai et al., 2002; Langhorne et al., 2009),
patients also show consistent long-lasting cognitive deficits (Barker-Collo, Feigin, Parag, et al.,
2010; Nys et al,, 2007), with a relevant proportion of patients having multiple domains affected.
These long-term impairing behavioral deficits have a strong impact on patients’ reintegration, on
patients and their relatives’ daily life, but also on socioeconomics and health care systems (Barker-
Collo & Feigin, 2006; GBD 2016 Stroke Collaborators, 2019). Therefore, the call for effective
strategies of neurorehabilitation in order to maximize the rate of recovery is recognized as an
important priority to substantially reduce the burden of stroke survivors (Feigin et al., 2014;
Gorelick, 2019). However, the heterogeneity in stroke outcome and in individual recovery
potential is an important challenge to address to provide optimal rehabilitative therapies. A
crucial aspect to take up this challenge is to deepen our understanding of individual courses of
recovery and the underlying neuronal mechanisms through the identification of associated

biomarkers (Stinear, 2017).

On the behavioral level, stroke is known to yield multiple deficits. The most reported and
debilitating ones are the motor impairments, present in 50% to 80% of stroke survivors
(Langhorne et al., 2009). In particular, damages to the upper extremity function are common and
significantly impact the patients’ capacity to retrieve independence, as well as to reintegrate to
professional life (Coupar et al, 2012; Lang et al, 2013). Besides motor deficits, cognitive
impairment is common in stroke survivors although initially less obvious, half of stroke survivors
reporting to suffer problems in at least one cognitive domain, an area much less studied than the
motor domain (Barker-Collo, Feigin, Parag, et al., 2010; Dennis et al., 2000). Cognitive impairment
could be found in multiple domains most frequently in, e.g., executive functions, attentional
functions or memory. Such deficits are significantly persistent after one to several years after the
stroke (Barker-Collo, Feigin, Parag, et al, 2010; Ramsey et al., 2017). Cognitive deficits also
represent an obstacle for patients to go back into a normal daily life (Barker-Collo & Feigin, 2006;
Hochstenbach et al.,, 2001; Patel et al., 2002). Furthermore, these dysfunctions might also strongly

impact, slow or prevent proper motor recovery and response to treatment (Mullick et al.,, 2015).
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For example, it is known that executive functions, such as information processing and motor
planning are essential in the processes of motor (re)learning (Elliott, 2003), which is crucial in
motor rehabilitation following stroke. However, despite few investigations of the relationships
between these domains (e.g. Ramsey et al., 2017; Verstraeten et al.,, 2020), research mainly
focused so far on deficits in only one domain, e.g. motor (Koch et al., 2016), language (Hartwigsen,
2016) or attentional (Barker-Collo, Feigin, Lawes, et al., 2010), domain and neglected largely the
interaction between them. Thus, there is a strong lack of knowledge about how deficits in different
domains depend on and influence each other in regard of impairment, residual functions and the

process of regaining lost functions after a stroke.

Recovery is often incomplete among stroke survivors, and the potential of restoring lost functions
is crucially highly heterogeneous between patients (Byblow et al., 2015; P. ]J. Koch & Hummel,
2017). For example, spontaneous natural recovery in motor domain occurs in roughly 2/3 of
patients (Stinear, 2017) who recover about ~70% in average of their maximum recovery potential
given their initial impairment (Prabhakaran et al., 2008). On the other side, roughly 1/3 presents
altered or insufficient intrinsic plasticity after stroke leading to a poor natural recovery (Stinear,
2017). Such heterogeneity has also been reported in other cognitive deficits e.g., neglect and
aphasia (Marchi et al,, 2017). In addition, stroke survivors act highly heterogeneous in the view of
the response towards specific treatment strategies, resulting in the distinction between
responders and non-responders (Coscia et al.,, 2019; Micera et al., 2020; Morishita & Hummel,
2017). For instance, patients with cortical lesions specifically demonstrated lower responsiveness
to repetitive Transcranial Magnetic Stimulation (TMS) protocols (Lefaucheur et al., 2020).
Therefore, a key challenging aspect for enhancing neuro-rehabilitation efficacy might be to shed
light on the heterogeneity of stroke patients and leverage this information to determine and
predict the degree of impairment and potential for individual functional recovery (Bonkhoff &
Grefkes, 2021; Koch et al., 2021). This heterogeneity in stroke ranges from brain reorganization
to behavioral outcomes and needs to be accounted for when planning rehabilitation strategies

(Bonkhoff & Grefkes, 2021; Morishita & Hummel, 2017).

The identification of specific individual patterns of recovery through a multi-domain perspective
during the first weeks/months post-stroke, and crucially the uncovering of the underlying brain
reorganization mechanisms would be a massive step towards the optimization of treatment
strategies for each patient. However, there is a lack of understanding concerning the detailed
neuronal mechanisms following a stroke lesion and during the course of recovery. Accumulating

evidence suggests that stroke is not a focal disorder, but a network disorder (Guggisberg et al.,
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2019; Rehme & Grefkes, 2013). In addition to local brain tissue damage, stroke also impacts the
functioning of connected areas (close or remote from the lesion) as a result of alterations in brain
networks (Carrera & Tononi, 2014). In addition, functional reorganization associated with
recovery is also notrestricted to a focal area. For instance, cortical plasticity associated with motor
recovery is not restricted to the primary motor cortex (M1), but rather embraces the complete
motor network, including primary and secondary motor cortical areas in both hemispheres,
subcortical areas like the basal ganglia and the cerebellum (Grefkes & Fink, 2014; Grefkes & Ward,
2014; Koch et al.,, 2021). Factors such as lesion size and location (REF), as well as structural and
functional prerequisites and dynamics (Egger et al,, 2021) might relevantly influence recovery-
associated plasticity processes in the brain leading to heterogeneous, widespread and time-
dependent changes of brain reorganization and connectivity between patients. To improve
rehabilitative strategies, it is therefore crucial to take this heterogeneity into account and
understand how it relates to the pattern of network reorganization and the range of behavioral

outcomes following a stroke.

On the basis of this reasoning, there is a strong need for an exact phenotyping of patients
considering stroke heterogeneity to predict outcome, course of recovery leading to improve
stroke recovery and treatment outcomes. Such challenge requires to gain a detailed and
fundamental knowledge about the precise neuronal mechanisms associated with behavioral
recovery, with a particular emphasis on brain networks changes. In addition, is essential to
investigate the different domains impacted by the stroke and not just focusing on one behavioral
outcome. As network and behavioral alterations following stroke are dynamic and not linear, a
longitudinal investigation is of great importance. Such phenotyping will allow to distinguish
distinct profiles of patients with associated dynamics of brain reorganization over the course of
recovery. Enhancing the fundamental knowledge of stroke diversity through a multimodal and
multidomain approach would serve as a basis to pave the way for personalized precision medicine

in the field of stroke recovery to achieve maximal treatment effects.

To take up this challenge, the TiMeS project aims at characterizing in details phenotypes of stroke
patients allowing to determine the individual course and degree of recovery following stroke and
to identify relevant biomarkers associated with recovery. To that purpose, the goal is to collect a
large multidimensional dataset that would be representative for the stroke population.
Measurements will come from synergistic state-of-the-art systems neuroscience methods
including magnetic resonance imaging (MRI), transcranial magnetic stimulation (TMS) coupled

with electroencephalography (EEG), in a longitudinal assessment from acute to chronic stage in
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the first year after the stroke. As stroke is not a focal disorder, subsequent analyses will focus on
networks properties within the whole brain and their changes over time, in combination with
stroke behavioral outcomes. To provide detailed knowledge about the behavioral patterns and
relationships between domains, the procedure will contain an extensive evaluation of behavioral
outcomes in multiple domains, including a multi-cognitive assessment not only looking on the
motor domain. The multidimensional dataset acquired through this research will enable to assess
for the first time the complex interactions of structural and functional brain connectivity
parameters within certain domain-specific networks as well as within the whole brain, and to

associate them with stroke behavioral outcomes and functional recovery.

Methods

Study design

The present project is an on-going longitudinal observational study. We follow-up a total of up to
100 stroke patients at four timepoints over a year (T1: 1st week, T2: three weeks, T3: three
months, T4: twelve months) from the acute to the chronic phase of recovery after the ictal event.
At each timepoint, we investigate the neural correlates of recovery and the underlying plasticity
through a multi-modal and multi-domain set of evaluations including structural and functional
neuroimaging (MRI), electrophysiology (resting-state EEG, and TMS coupled with EEG) and an
extensive battery of tests assessing the multi-domain functional and behavioral outcomes of the

patients.

Objectives

The main goal of the study is to assess the inter-individual variance and different phenotypes of
patients after an ischemic or hemorrhagic stroke. The main goal is divided into three related
objectives: 1) to evaluate the neuro-imaging and neurophysiological factors that determine the
course and degree of recovery with a focus on connectomics, 2) to determine the interactions
between multiple cognitive, visual, sensory, and motor functions and their impact on impairment,
residual functions and recovery, and 3) to associate the changes in connectomics parameters with

the clinical-behavioral outcomes.

To complete these objectives, we apply a multimodal assessment of neuro-imaging and
neurophysiological parameters to leverage the advantages of each methods and account for their
specific limitations to achieve an as much detailed picture as possible, especially in the view of the

importance of network analyses. In addition, we use an extensive battery of behavioral tests to
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get detailed information concerning the patients’ motor and cognitive profiles as well as their
dynamics. The overall goal of this research will be to integrate and combine the multimodal data
(i.e. neuroimaging, electrophysiology, and behavioral) together to obtain detailed and complete

phenotypes of stroke patients.

Primary outcome

As upper extremity function and impairment are the main reason for long-term disability and
predictors of reintegration in normal life and functional independence after stroke, longitudinal
recovery of the upper limb function and its underlying mechanisms are the primary interest of
this study. Upper limb motor function includes multiple aspects, fine and gross dexterity, gross
motor function, strength, spasticity, etc (Santisteban et al.,, 2016). These aspects are assessed
longitudinally using the same set of reliable and validated clinical tests at each timepoint (see
Appendix 1 for details). We are especially interested in how other cognitive domains and their

alterations after a stroke impact on motor recovery.

Secondary outcomes

Secondary outcomes are specific readouts based on the multi-domain cognitive evaluation and
the multi-modal data from system neurosciences techniques, i.e. neuro-imaging and

electrophysiological methods.

Magnetic Resonance Imaging (MRI)

Structural, diffusion-weighted and resting-state functional MRI are used to obtain individual
structural and functional network properties to evaluate lesion-related neuronal alterations as
well as their dynamics throughout the recovery phase, i.e. neuronal plasticity, reorganization and
degeneration. Analyses will mainly focus on brain network alterations and changes over time
through disconnectomics (Veldsman & Brodtmann, 2019) and by applying computational
approaches such as graph theory methods (Sporns, 2018), e.g the Rich-Club approach (van
den Heuvel & Sporns, 2011). In addition, integrated analyses of brain structure and function will
be emphasized, e.g. by using the Structural Decoupling Index (SDI), a metric that allows to quantify
the coupling strength between structure and function (Preti & Van De Ville, 2019). MRI methods

and sequences are detailed in Appendix n°2.
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Electrophysiological recordings

Functional measurements of the cortical excitability are provided by means of Transcranial
Magnetic Stimulation (TMS). We use single pulses delivered to the primary motor cortex (M1) to
generate motor evoked potential (MEPs) and to screen for cortico-spinal tract integrity. We also
apply paired-pulses to assess the short-interval intracortical inhibition (SICI; Kujirai et al., 1993).
This is thought to reflect GABAs-mediated inhibition in the motor cortex (Chen, 2004).
Electroencephalography (EEG) allows to assess the resting state brain connectivity (Babiloni et
al,, 2020), but more importantly, in combination with TMS, EEG is used to assess interregional
connectivity in the brain and to characterize the TMS-evoked potential and its evolution during
the course of recovery. Therefore, TMS-EEG represents a unique method to study brain dynamics
and their changes over time as it allows to record directly and non-invasively various
neurophysiological processes across motor and non-motor areas e.g. cortical responsiveness,
cortico-cortical interactions, local excitation and inhibition, oscillatory activity etc (see Tremblay

etal, 2019 for a recent review). Electrophysiological methods are detailed in Appendix n°3.

Behavioral outcomes

To assess precisely the motor and cognitive profiles of the patients, an extensive battery of 40
tests is performed at each timepoint by a trained neuropsychologist. The battery covers sensory-
motor domains as well as each neuro-cognitive domain as defined in the DSM-V, i.e. executive
functions, language, complex attention, learning and memory, social cognition, perceptual-motor
domains (Sachdev et al, 2014). Multiple questionnaires complete this battery to evaluate
additional aspects such as fatigue, mood, functional independence and recovery. See appendix n°3

for details.

Study organization

Ethical considerations

The study was designed and is conducted according to the guidelines of the Declaration of
Helsinki. All the procedures were approved by the cantonal ethics committee (Project ID 2018-

01355).
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Eligibility

We look for stroke patients presenting some upper limb motor impairment in the acute stage. In
order to get a heterogeneous cohort, we screen patients with first-ever as well as recurrent stroke,

either ischemic or hemorrhagic. Detailed inclusion and exclusion criteria are following:

- Inclusion criteria
o Age > 18years old
First-ever or recurrent stroke
Ischemic or hemorrhagic stroke
Stroke incident < 7 days at consent
Motor impairment in the acute stage, objectified by a clinical assessment
Absence of contraindication for NIBS and MRI

O O O 0 O

- Exclusion criteria

o Severe neuropsychiatric (e.g. major depression, severe dementia) or medical
disease

o Notable to consent

o Severe sensory or cognitive impairment or musculoskeletal dysfuntions
prohibiting to understand instructions or the perform the experimental tasks

o Implanted medical electronic devices or ferromagnetic metal implants, which are
not MRI and TMS compatible

o History of seizures

o Medication that significantly interacts with NIBS being benzodiazepines, tricyclic
antidepressant and antipsychotics

o Pregnancy

o Regular use of narcotic drugs

o Request of not being informed in case of incidental findings

Recruitment and screening

Stroke patients are recruited at the Hépital du Valais (HVS), at the stroke unit. The member of staff
in charge of the recruitment checks the list of new entries at the hospital daily. When a new patient
is eligible (see Inclusion and Exclusion criteria), the medical staff is consulted and a first screening
visit is organized with the patient. The study is presented in detail to the patient, and eligibility is
further evaluated. Patients are provided with 24-hours for reflection in regard of participation
before signing the consent to participate. If the patient consents, the first visit (T1) is organized
during the first week after the stroke, while the patient is most of the time still hospitalized. The

procedures are performed in accordance with the ethical approval.

Data acquisition and follow-up

The 1st behavioral evaluation and the MRI acquisition are performed at the HVS. The

electrophysiological measurements are performed in the laboratory, located in the Clinique
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Romande de Réadaptation (CRR) physically connected to the HVS. The total measurement time is

of around 10 hours, distributed in several sessions.

The patients enrolled in the study are then transferred for rehabilitation from the HVS to one of
the two rehabilitation clinics collaborating within the present study, that is the CRR and the
Berner Klinik (BK; Crans-Montana) or to home. The 3 weeks (T2) behavioral evaluation is
performed during the in-patient stay, or in the laboratory if the patient was sent back home after
the acute phase. For the 3 months (T3) and 12 months follow-ups (T4), patients are are invited to

our laboratory on the HVS/CRR campus for behavioral, MRI and electrophysiological recordings.

Data management and statistical considerations

Based on previous comparable project (e.g. Corbetta et al.,, 2015; N=132 patients) and given the

estimated feasibility of our extensive multi-modal and multi-domain evaluations, we aimed to
recruit up to 100 patients, with a recruitment rate of up to 40 patients a year. As drop-outs are
common for this type of longitudinal study, we expect some missing datapoints and will use

statistical approaches that are robust to missing values such as linear mixed models.

As the study is mainly explorative in its nature, we do not use a classical power calculation. We
will analyze the different behavioral domains individually but we also aim to integrate the
multimodal data together in statistical models and computational approaches, in order to
determine interactions between the different parameters. Statistics will be performed using
either R software (2017, R Core Team, Vienna, https://www.R-project.org/), the SPSS software
(2017, IBM SPSS Statistics for Windows, IBM Corp, Armonk, New York), the JASP software, Matlab
(v2020b, Mathworks, The MathWorks, Massachusetts, http://www.mathworks.ch) and/or

Python (2009, CreateSpace, Scotts Valley, California). We will use a broad spectrum of statistical
tools designed for high-dimensional datasets, like general linear model analyses. Besides, we will
also use machine learning tools as classifiers, supervised and unsupervised and deep learning
algorithms as they provide the opportunity to derive insights from imaging and
electrophysiological data coupled with behavior to produce predictive models and to discovering
phenotypes of patients (Tozlu et al., 2020; Wessel et al., 2021). Specific factors included in

statistical modeling will be either hypothesis-driven or mainly exploratory.
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Discussion

As depicted in the introduction, stroke results in multi-domain behavioral deficits in survivors.
Although motor deficits (in particular in the upper extremity) are the most impairing, the
prevalence of cognitive deficits is also highly important and concerns multiple domains. In
addition, they were demonstrated to likely impact the functional recovery and the reintegration
in life following stroke, as well as the outcomes of motor rehabilitation (Mullick et al., 2015). Yet,
little attention has been paid so far to how cognitive and motor domains are related and influence
each other following stroke and there is a lack of detailed phenotyping of behavioral outcomes
and their evolution though it would be of high interest to improve rehabilitation tailoring

(Corbetta et al., 2015; Duncan et al., 2005)

Some studies have investigated the relationships between cognitive and motor outcomes
(Corbetta et al., 2015; Einstad et al,, 2021; Fong et al,, 2001; Ramsey et al., 2017; Sagnier et al,,
2017; Verstraeten et al.,, 2020) and showed that cognitive impairments were common even in
patients with mild strokes, and that relationships exist between motor and cognitive domains.
This highlights the relevance of such multi-domain approaches, emphasizing that motricity and
cognition should not be investigated separately. For instance, Einstad and colleagues (2021) have
recently demonstrated that poor motor performances are associated with impaired global
cognition scores and executive dysfunctions. However, such studies made use of a limited battery
of tests and/or focused on one particular timeframe during stroke recovery without any
longitudinal assessment (i.e. acute, sub-acute, chronic). Ramsey and colleagues (2017) employed
a battery of motor and cognitive tests to evaluate the patients over the course of recovery during
the first year; at 1-2 weeks, three months and one year after the stroke. They reported that across
multiple domains, sub-acute scores were strong predictors of the performance in the chronic
stage and that the magnitude and time course of recovery were comparable between cognitive
and motor domains. Specific behavioral clusters were identified (e.g., a strong relationship
between motor impairment and attention) and shown as being stable over the three timepoints.
In addition, the authors described relationships of interest between domains over the course of
recovery (e.g. language deficits influenced the recovery of verbal memory). Interestingly, the
authors studied how lesion topography could explain behavior, as it was done in another study
from the same group (Corbetta et al,, 2015) and pointed out that white matter damage could be a
key feature in explaining behavioral recovery. Other studies from the same cohort independently
investigated the relationships between resting-state fMRI data and behavior by showing that
altered functional connectivity correlated with behavioral deficits in the motor and attention

domains (Siegel, Snyder, etal.,, 2016) and in hemi-spatial neglect (Ramsey et al., 2016). In addition,
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the authors demonstrated that memory deficits are better predicted by functional connectivity
than by lesion topography while the motor and visual deficits might be better predicted by lesion
location than functional connectivity (Siegel, Ramsey, et al,, 2016). Altogether, these studies
emphasized the importance of multi-domain behavioral assessments and the interest of
investigating brain-behavior relationships both through structural and functional measures as
they provide complementary insights. However, patients enrolled in this cohort were
substantially younger than the natural population of stroke survivors (average age 54 + 11 years
old, range 19-83, benchmark 69.2 years in 2005 Greater Cincinnati/Northern Kentucky cohort;
Kissela et al., 2012) and executive functions were not assessed in the battery. Plus, the authors
focused on one modality (MRI) to assess brain features which provides rich but limited insights
about the neuronal mechanisms underlying post-stroke recovery. To date, no study provided any
extensive behavioral evaluation (with an approach centered on the individuals rather than the
whole cohort) and during the course of recovery following stroke while combining data with

multimodal assessments of brain network plasticity.

A common factor in many of these studies is the interplay between structural and functional
connectivity. Structure influences function in the obvious way, while function influences structure
in the long term. However, there is strong evidence that the strength of the link between structure
and function is domain-dependent. The findings of Siegel, Ramsey and colleagues suggest that
function is tightly coupled to structure in the motor and visual domains, while the two are more
decoupled for “higher order” domains such as memory. These findings have been echoed in Preti
& Van De Ville’s work (2019), which found that brain regions responsible for “low level sensory

function” tend to exhibit strong structural-functional coupling, and vice versa.

The present study aspires to bolster our understanding of mechanics underlying multiple-domain
deficits by providing a multi-modal and multi-domain evaluation of stroke patients longitudinally
during the first year after the stroke. This research intends to investigate the different behavioral
profiles and their dynamics in stroke patients, not only looking at the motor domain but
undergoing a holistic approach coupled with neuro-imaging and electrophysiological parameters.
Therefore, the originality of the project lies in the multiplicity of the approaches undertaken that
will allow to provide a very detailed picture of the recovery and the reorganization in the brain
following stroke. Structural, diffusion-weighted and functional MRI will provide the opportunity
to study network dysfunctions as well as the complex interactions between brain function and
structure. In addition, simultaneous EEG recording during TMS is a promising approach that will

enable to explore brain connectivity and recovery pattern for functional networks after stroke by
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providing a direct measure of the cortical activity induced by TMS. By combining modalities with
different advantages (such as either excellent spatial or temporal resolution, structural versus
functional information) and by following patients along the first year, we will provide a complete
dataset allowing to integrate multimodal information in statistical and computational models. The
overall goal is to determine interactions between the different parameters and to determine
factors usable as biomarkers for phenotyping patients in regard of the course and the degree of

recovery.

Identifying such biomarkers might help (1) to predict the course of recovery, i.e. to early detect
patients that will spontaneously recover and those who will not and, consequently, (2) to
personalize the therapeutic strategies in order to meet the individual needs of each patient and to
maximize the treatment benefits. Therefore, this work will serve as a basis for improving existing
treatments or developing novel and innovative ones tailored to the individual patients’
characteristics by providing a better understanding of neural mechanisms underlying successful
recovery. For instance, non-invasive brain stimulation (NIBS) are neuro-technologies that are
more and more used in stroke rehabilitation to promote motor recovery (Hummel & Cohen, 2006;
Morishita & Hummel, 2017; Raffin & Hummel, 2018) due to their noninvasiveness, relatively low
cost and limited side effects. However, there is a high heterogeneity in the outcomes (Alia et al,,
2017; Coscia et al., 2019; Micera et al., 2020; Nicolo et al., 2015; Wessel et al., 2021): effects of
NIBS are still limited, which can be partly explained by the use of non-personalized approaches
(Grefkes & Fink, 2016; Morishita & Hummel, 2017). Some biomarkers have already been
identified to stratify patients in order to assess the individual recovery potential, for instance the
cortico-spinal tract integrity as measured by presence or absence of MEP (Lindenberg et al.,
2012). However there is still a lack of fundamental knowledge on the topic especially considering
the longitudinal changes in brain dynamics following stroke (Koch et al., 2016). The detailed
phenotyping based on the dataset from the present study might further help to provide extra
layers of stratifications allowing more precise predictions about treatment outcomes in order to
reduce the number of non-responders (Wessel et al, 2021). Therefore, some potential
perspectives are to further design interventional studies to analyze the efficacy of
neurotechnologies-based treatment personalized thanks to clustering and stratifying algorithms

arising from this research.

Since this work involves plural and extensive multi-modal assessments, it is worthwhile to
emphasize that the patients need to be physically and mentally capable of undergoing such

multiple recordings. Plus, as the patients need to understand what the project entails, severe
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language deficits prevent possible participants to be enrolled because they do not have the ability
to consent while being transparently informed. Furthermore, the presence of TMS recordings is
associated with a consistent list of exclusion criteria related to medication, epilepsy or metal
implants that could interact with the stimulation. These aspects might cause a bias in the
recruitment of patients that we need to consider when interpreting the results. Still, we look for
cohort as heterogeneous as possible to cluster patients and identify specific patterns of recovery

and brain reorganization.

Summary and conclusions

A better understanding of the neuronal mechanisms associated with recovery-related plasticity
and reorganization of the brain networks after a stroke is needed to enhance the understanding
of the recovery process, and to predict the outcome and course of recovery. This knowledge will
enable to develop and apply interventional strategies in a personalized way to enhance the effects
of the treatments for each individual patient. The TiMeS project is a longitudinal, multimodal, and
multidomain study of a large, representative cohort of patients during the first year after the
stroke, including neuro-imaging, electrophysiological and extensive behavioral evaluations. This
exploratory research will provide the opportunity to integrate and combine multidimensional
data from neuroscience systems methods together with detailed behavioral outcomes to identify
specific biomarkers of recovery. This phenotyping will serve as a basis to tailor current
rehabilitation strategies according to each patient’s individual needs and to develop innovative
personalized neuro-technologies based treatment like NIBS, beyond a one-fits-all approach.
Overall, the knowledge gained from this study will pave the way for establishing a close link
between basic neuroscience and the development of novel treatments into clinical routine
towards precision medicine in stroke, which is highly promising to reduce the burden of the

disease.
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Supplement 1 - Neuropsychological evaluation

Motor and cognitive tests

The battery of tests includes 14 tests assessing the sensory and motor functions, and 26 tests
assessing the cognitive functions (see Table 1). It covers the neurocognitive domains described in
the DSM-V (Sachdev et al., 2014), i.e. complex attention, language, learning and memory, executive
functions, social cognition, perceptual-motor functions, with the latter divided into perceptual and

motor functions.

The DSM-V does not name any proprietary tests to objectively assess these functions. Therefore,
we selected the tests and questionnaires on the basis of their validity and reproducibility as well
as the existence of normative data in the literature. We chose several tests per neurocognitive
domain to have an extensive and detailed evaluation, and also to have data that are representative

of the several subdomains for each neurocognitive domain.

We use the same battery for each timepoint, excluding a few tests that are skipped during the first
timepoint in order to reduce the total time of the evaluation as patients are in general highly
fatigable during the first week after the stroke. If possible, versioning was used to reduce learning

effects.

The entire evaluation is divided into at least two sessions of 2 to 3 hours per timepoint, depending
on the patients’ state and availability. Breaks are imposed to the patients during the session to
maintain their attention and concentration, but they are also able to take some rest at any time.
The order of the tests is pre-defined to reduce the possible interferences between the different
tests but the neuropsychologist keeps to possibility to adjust if this is needed regarding the
patients’ state. In any case, the final tests’ order for each evaluation is recorded on the patient’s

file.

Specific materials and license were acquired for each test. The evaluation is conducted by a
neuropsychologist with a relevant clinical experience who follows rigorously the instructions
provided by the authors of each test. The instructions of the tests are given, in French, Italian, or
German, depending on the patients’ first language. When possible, the version of the tests is
adapted to the language used, especially for memory tests for which we have French, Italian,

English, and Portuguese versions.
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uestionnaires

In addition, we use 16 questionnaires assessing daily life aspects of patients, including physical
and mental activity, functional level of dependance and level of reintegration, mental state, fatigue,
sleep; etc (see Table 1). The questionnaires are filled by the patients themselves when they are
able to, and checked by the neuropsychologist. If needed, the neuropsychologist helps the patients
by reading and filling the questionnaires for them. These questionnaires are used at each

timepoint plus an additional time between the third and the fourth time points.
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Supplement 2 - Neuro-imaging recordings

Data acquisition

Structural, functional, diffusion-weighted and susceptibility-weighted imaging data are acquired using

a 3T Magnetom Prisma scanner (Siemens, Erlangen, Germany) with a 64-channel head and neck coil.

Diffusion-weighted imaging (DWI)

Diffusion-weighted images are acquired using pulsed gradient spin echo technique (TR = 5000 ms; TE
=77 ms; slices = 84; FOV = 234 mm; voxel resolution = 1.6 x 1.6 x 1.6 mm; readout bandwidth = 1630
Hz/pixels; SENSE acceleration factor = 3). Seven T2-weighted images without diffusion weighting (b =
0 s/mm?2) are acquired, including one in opposite phase encoded direction. Further, 101 images with
noncollinear diffusion gradient directions distributed equally over the half-sphere covering 5 diffusion
gradient strengths are obtained (b-values = [300.0, 700.0, 1000.0, 2000.0, 3000.0] s/mm2; shell-
samples = [3, 7, 16, 29, 46]). Total acquisition time is 11:06 min.

T1-weighted image

A T1-weighted image is acquired using a 3D Magnetization-Prepared Rapid Gradient-Echo sequence
(MPRAGE, TR = 2300 ms; TE = 2.96 ms; flip angle = 9°; slices = 192; voxel size =1 x 1 x 1 mm, FOV 256

x 256 mm, acquisition time = 5:12min).
multi-echo GRASE

A multi-echo GRASE sequence supporting CAIPIRINHA parallel imaging is used for myelin water
imaging. Therefore multi-echo T, imaging are acquired. (in-plane resolution 1.6mm x 1.6mm; slice

thickness 1.6mm; 84 slices; acquisition time = 10:30min) (Piredda et al., 2021).

Blood oxygenation-level dependent (BOLD) MRI / functional MRI (fMRI)

Resting-state BOLD data (with fixation cross) is acquired using a multi-band echo-planar imaging (EPI)
sequence. In total, 385 functional volumes are acquired and every volume comprises 75 axial slices
covering the whole brain (in-plane resolution = 2mm x 2mm; slice thickness 2mm; no gap, FOV =

256mm, TE = 32ms, TR=1250ms, flip angle = 58°, Accel. Factor slice = 5, acquisition time = 8:13min).

GRE field mapping

GRE field mapping is acquired covering the whole brain (75 axial slices), using the following imaging
parameters: in-plane resolution = 2mm x 2mm; slice thickness = 2mm; FOV = 224mm, TR = 704mm TE1

=4.92ms, TE2 = 7.38ms, flip angle = 60°, acquisition time = 2:41min.
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mp2rage

3D T1-weighted Magnetization-Prepared 2 Rapid Gradient-Echo (MP2RAGE) sequence (INV1 or TI1 =
700 ms, flip angle = 4° and INV2 or TI2 = 2500 ms, flip angle = 5°, TE = 2.98 ms, TR = 5000 ms, acquisition

time = 8:22min) with an isotropic resolution of 1 mma3.

Susceptibility-weighted imaging (SWI)

We are using a susceptibility-weighed imaging sequence with a TR of 28ms, a TE of 20ms, FOV = 230mm,
FOV phase = 78.1%, in-plane resolution of 0.6mm x 0.6mm, slice thickness = 1.2mm, flip angle = 15°,

acquisition time = 4:07min.
Image Analysis

Lesion segmentation

All the lesion masks were hand-drawn using mrview from MRtrix3 (Tournier et al., 2019) and

subsequently verified by a neurologist.

Diffusion-weighted imaging

The diffusion-weighted images are preprocessed using, MRtrix3, FSL topup and eddy (Andersson et al.,
2003; Andersson and Sotiropoulos, 2016; Smith et al.,, 2004; Tournier et al., 2019). First, Gibbs ringing
artefacts are removed from the data (E et al., 2016; Tournier etal., 2019), then motion artefact reduction,
as well as field inhomogeneity, susceptibility-induced off-resonance field and eddy currents correction
are performed. Multi-shell multi-tissue constrained spherical deconvolution (B et al., 2014) is used to
estimate the fibre orientation distributions within each voxel. Whole-brain probabilistic tractography is
performed using the second-order integration over fibre orientation distribution (iFOD2(Tournier et
al,, 2019), initiating streamlines in all voxels of the white matter. For each dataset, 1 million streamlines
are selected with both endpoints in the individual cortical or subcortical mask using the Dipy software
package (Garyfallidis et al., 2014). The obtained tractograms are weighted fitting the underlying
diffusion compartment model using a Stick-Ball-Zeppelin model based on COMMIT (Daducci et al,,
2015). The stick compartment models the intra-axonal water with parallel diffusivity of 1.7E-3 mm2/s
and no perpendicular diffusivity. The Ball compartment models the extra-axonal water with isotropic
diffusivity of 1.7E-3 mm2 /s and free water with diffusivity of 3.0E-3 mm2/s. The Zeppelin compartment
models of the extra-axonal water with parallel diffusivity of 1.7E-3 mm2 /s and perpendicular diffusivity
of 0.51E-3 mm2/s. Tissue partial volume estimates are obtained from the T1-weighted image using the

FSL Fast (Zhang et al,, 2000) and BET (Smith 2002) methods. The T1-weighted image is registered to
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the average b0 image using FSL FLIRT (Jenkinson and Smith, 2001) and FNIRT (Andersson et al.,, 2007;
Jenkinson et al., 2012) methods.

For the cortical parcellation, we choose either the Destrieux (74 areas per hemisphere) (Destrieux et al.,
2010) or the Glasser atlas (180 areas per hemisphere) (Glasser et al., 2016) using FreeSurfer (Fischl et
al, 2004; Fischl, 2012). To the Destrieux parcellation, we add subcortical areas (6 areas per
hemisphere) and a subdivision of the brainstem (3 areas), totalizing 163 cortical and subcortical areas
for the “Destrieux parcellation”. The parcellations are performed on the T1 mprage image. For stroke
patients, the voxels corresponding to the lesion are stamped out and replaced by the mirrored voxels of
the contralateral side. For each participant, a structural connectome (SC) is built with 163 (Destrieux

atlas), respectively 360 (Glasser atlas), pairs of areas obtained through the parcellation.

Functional (BOLD) Imaging

All preprocessing and statistical analyses are conducted using the SPM12 package (Wellcome
Department of Cognitive Neurology, London, UK; www filion.ucl.ac.uk/spm) running on MATLAB
(v2020b, Mathworks, The MathWorks, Massachusetts, http://www.mathworks.ch). Functional images
are realigned to the mean functional image. Then, the anatomical image is co-registered to the mean
functional image. The anatomical image is segmented into tissue maps based on tissue probability maps
of SPM12 (for patients, voxels corresponding to the lesion are not considered). The resulting forward
deformation field is used to warp both the anatomical and functional images into MNI space. Finally, the
functional images are smoothed using a Gaussian kernel (FWHM = 6mm). The first 10 volumes are
discarded so that the fMRI signal achieves steady-state magnetization, resulting in 375 functional

volumes.

Using the conn toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012), voxel fMRI time courses are
detrended and nuisance variables are regressed out (6 head motion parameters, average cerebrospinal
fluid and white matter signal). Finally, a band-pass filter is applied (0.01-0.15Hz) to improve signal-to-
noise ratio. The average timeseries is then extracted for every ROI of the Glasser parcellation and a

functional connectome is obtained by computing the Pearson correlation between timeseries.
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Supplement 3 - Electrophysiological recordings

Electrophysiological recordings (resting-state EEG and TMS-EEG coupling) are performed at each time
point post stroke: within a week, three weeks, three months, and one year after the ictal event; not for

all patients the 4 timepoints are available.

Electroencephalography (EEG)

EEG recordings are acquired using a 64 passive electrodes EEG BrainCap-MR (Brain Vision LLC, North
Carolina, USA) with the reference electrode at FCz and the ground at AFz. The data is recorded with the
help of BrainVision Recorder (Brain Vision LLC, North Carolina, USA). The experiment is performed in
a faraday cage (IAC Acoustics, Illinois, USA) to limit power line interference. Each electrode is brought
to an impedance below 5 kOhm or as low as possible. Impedance levels are recorded at the beginning
and end of the session. Data are recorded using DC mode, a resolution of 0.5 pV and a low-pass filter

(cutoff frequency of 1 kHz) at a sampling rate of 5 kHz.

Electromyography (EMG)

The EMG activity is recorded using pairs of disposable Ag-AgCl electrodes on 7 muscles in the affected
side (First Dorsal Interossei, FDI; Abductor Digiti Minimi, ADM; Abductor Pollicis Brevis, APB; Flexor
Carpi Ulnaris, FCU; Flexor Carpi Radialis, FCR; Extensor Carpi Radialis, ECR; Extensor Carpi Ulnaris,
ECU) and 1 muscle on the non-affected one (FDI). The signal is amplified and sampled at 3 kHz using a
Noraxon DTS Receiver (Scottasdale, Arizona, United States) using a band-pass filter from 10 Hz to 1000
Hz, and digitized at 5 kHz using Signal software (Cambridge Electronic Design Limited, Cambridge, UK)

for further processing on a laptop.

Transcranial Magnetic Stimulation

Neuronavigated TMS is applied using a MagPro X100 stimulator connected to an MC-B70 coil
(Magventure, Farum, Denmark).A neuronavigation system (Localite GmbH, Bonn, Germany) is used
throughout the experiment to track and record the position of the stimulation coil in respect to the
patient’s individual anatomy, using T1-weighted images (see supp. 2). EEG channel coordinates are also
recorded using the neuronavigation system.Biphasic pulses inducing a posterior to anterior current
direction are delivered over the first dorsal intraosseous (FDI) hotspot of the affected arm. The
stimulation intensity is adjusted to produce MEPs presenting a peak-to-peak amplitude between 0.5 to
1 mV. If no visible MEP (50 pV) can be elicited at maximal stimulator output, the intensity is set similarly
on the unaffected hemisphere. The resting motor threshold (rMT) is defined as the lowest intensity
necessary to evoke MEPs higher than 50 pV in at least 5 out of 10 trials. Two types of stimulation are
applied: a single pulse at the supra-motor threshold intensity fixed earlier or a double pulse (Short-
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interval Cortical Inhibition; SICI) comprised of a condition pulse at 80% rMT followed by a test pulse at

the supra-motor threshold intensity, with an inter-stimulus interval of 3 ms.

In order to reduce electromagnetic and acoustic interference resulting from the TMS, electrodes wires
are oriented perpendicular to the magnetic field and a thin layer of foam is applied between the coil and

the scalp (Veniero et al., 2009; Braack et al:, 2015).

Data preprocessing

EMG: EMG data are exported to Matlab files to be used with a custom graphical interface for pre-
processing. Rejection criteria are as follows: trials with muscle pre-activation exceeding + 25 pV from
baseline less than 100 ms before TMS onset (Delorme & Makeig, 2004) and/or = 100 uV from baseline
500-100 ms before the pulse are rejected. Trials containing artefacts or with documented suboptimal

coil placement are rejected from further analysis.

EEG: EEG data are analyzed on Matlab (MathWorks, Massachusetts, USA) using the Fieldtrip
(Oostenveld et al., 2011), Brainstorm (Tadel et al., 2011), EEGLAB (Delorme A & Makeig S, 2004) and
TESA (Rogasch et al, 2017) toolboxes. Resting-state EEG recording are preprocessed following
international standards (Babiloni et al., 2020) that were successfully used in previous studies on stroke
patients (Snyder et al. 2021). First, the continuous data are epoched in non-overlapping 2 s time
windows. After removing bad channels and trials, an ICA is performed in order to filter out any
remaining ocular, muscular or electrical artifacts. Data are finally re-referenced (average reference), and
time-frequency maps are drawn from them by means of multitaper frequency transformation within
the 1-50 Hz frequency bandwidth. Regarding TMS-EEG recordings, the preprocessing pipeline is similar
to the one defined by Rogasch et al. (2017) and consists of: epoching, removing data corrupted by the
TMS pulse [-5,+#20ms], removing bad trials and channels after a visual inspection, removing the
remaining TMS artefact and others artefacts such as eye blinks or large muscle artefacts using two

rounds of ICA,and finally re-referencing to the average reference.
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5.2 Supplementary Study 2: Differential impact of brain network
efficiency on post-stroke motor and attentional deficits

Giorgia G. Evangelista,.2t Philip Egger,12t Julia Briigger,12 Elena Beanato,!2 Philipp J. Koch,34 Martino
Ceroni,12 Lisa Fleury,12 Andéol Cadic-Melchior,12 Nathalie Meyer,> Diego de Le6n Rodriguez,>6 Gabriel
Girard,”89 Bertrand Léger,!° Jean-Luc Turlan,® Andreas Miihl,10 Philippe Vuadens,!° Jan Adolphsen,1
Caroline Jagella,!2 Christophe Constantin,!3 Vincent Alvarez,13 Joseph-André Ghika,!3 Diego San Millan,13
Christophe Bonvin,!3 Takuya Morishita,12 Maximilian ]J. Wessel,1214 Dimitri Van de Ville!516 and
Friedhelm C. Hummelt.2.17

t both authors contributed equally

Abstract

Most studies on stroke have been designed to examine one deficit in isolation, yet survivors often have
multiple deficits in different domains. While the mechanisms underlying multiple-domain deficits
remain poorly understood, network-theoretical methods may open new avenues of understanding.

50 subacute stroke patients (7+3days post-stroke) underwent diffusion-weighted magnetic resonance
imaging and a battery of clinical tests of motor and cognitive functions.

We defined indices of impairment in strength, dexterity, and attention. We also computed imaging-
based probabilistic tractography and whole brain connectomes. Overlaying individual lesion masks
onto the tractograms enabled us to split the connectomes into their affected and unaffected parts and
associate them to impairment.

To efficiently integrate inputs from different sources, brain networks rely on a “rich-club” of a few hub
nodes. Lesions harm efficiency, particularly when they target the rich-club. We computed efficiency of
the unaffected connectome, and found it was more strongly correlated to impairment in strength,
dexterity and attention than efficiency of the total connectome. The magnitude of the correlation
between efficiency and impairment followed the order attention > dexterity ~ strength. Network
weights associated with the rich-club were more strongly correlated to efficiency than non-rich-club
weights.

Attentional impairment is more sensitive to disruption of coordinated network activity between brain
regions than motor impairment, which is sensitive to disruption of localized network activity. Providing
more accurate reflections of actually functioning parts of the network enables the incorporation of
information about the impact of brain lesions on connectomics contributing to a better understanding
of underlying stroke mechanisms.
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Introduction

It has long been acknowledged that different regions of the brain are linked with each other in complex
patterns, making networks a natural mathematical model for the brain, with regions of the brain serving
as nodes and edges being weighted according to structural characteristics.!* Furthermore,
neuroimaging evidence in humans suggests that stroke is a network disease, indicating that using
network theory as the basis of a model for strokes-7 might significantly enhance the understanding of
stroke, its deficits and the recovery from them.

It is useful to think of networks on a spectrum between regularity and randomness. Connectivity in
regular networks tends to feature well-defined local communities, while in random networks it tends to
feature one global community with costly long-distance connections;8 brain networks occupy the zone
on the spectrum in which the tradeoff between global integration and local segregation is optimal.l They
optimize the tradeoff with an architecture featuring a small set of hub nodes called a “rich-club” (RC).19
These hubs are “rich” because they are strongly connected to nearby nodes, and form a “club” because
they are strongly connected to each other. The RC can be thought of as a backbone for global
connectivity, and therefore “attacks” (e.g., stroke lesions) against it will have a greater impact on global
connectivity than random attacks of similar magnitude.?

When brain networks are “attacked” by a stroke, the effect on global integration can be considerable,
particularly when the attack focuses on the RC.10 Likewise, the effect on behavioral function can be
significant, particularly on cognitive functions, such as attention, that rely heavily on global integration
as opposed to those functions whose neurological substrate is more localized, such as sensory-motor
functions.11

Structural connectomics relies on models of white matter tractography computed from diffusion-
weighted imaging (DWI). In areas with high axon density, water molecule diffusion has a strong
preference for the direction of the axons, i.e., high anisotropy. By chaining together high-anisotropy
voxels in the relevant directions, one can extract a model for white matter tracts. Typically, stroke-
lesioned tissue in the brain undergoes significant changes including liquefactive necrosis reducing the
anisotropy impacting on the modelled white matter tracts. Nonetheless, many paths pass through
lesioned tissue, even though they might not correspond to a functioning axon bundle.

We set out to answer two questions. First, is the understanding of connectomics significantly enhanced
by the lesion structure information derived from DWI? To answer this question, we defined the
structural connectome with and without explicit lesion information, respectively, and compared the
data to behavioral metrics.

Second, how strongly are network-theoretic notions of global connectivity or RC integrity associated
with stroke-induced impairment in different behavioral domains? We hypothesized that global
connectivity and RC integrity will be associated with these behavioral functions, but that this association
will be stronger in the “less-localized” attentional domain than in the “more-localized” motor domain.
To test this hypothesis, we defined indices of impairment in motor and attentional functioning, and
correlated them with a mathematically-defined notion of global efficiency (GE).
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Materials and methods
Patients

We recruited eighty-five stroke patients admitted between 2018 and 2021 to the stroke unit of the
Hospital of Valais in Sion, Switzerland, of which N = 50 completed both imaging sessions and
behavioral tests and were therefore included in the study (Fig 1B). The inclusion criteria included being
older than eighteen years, presence of a motor deficit, and absence of contraindications for MRI or
noninvasive brain stimulation (NIBS). Exclusion criteria included requests not to be informed in case of
incidental findings, inability to provide informed consent, severe neuropsychiatric or medical disease,
history of seizures, pregnancy, regular use of narcotic drugs, presence of implanted devices
incompatible with MRI or transcranial magnetic stimulation, use of medication that interacts with NIBS,
severe sensory, musculoskeletal or cognitive deficit incompatible with understanding instructions or
performing experiments. For detailed patient characteristics please see Table 1. The lesion locations
were representative of the overall stroke patient population as shown in the lesion heatmap (Fig 14),
and were not used as a selection criterion. All patients gave written informed consent at the time of
enrolment. The current data was acquired in the framework of a larger project (TiMeS project work
package 1) and all research was approved by the local ethical committee swissethics (approval number
2018-01355).
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Figure 1. Cohort characteristics. (A) Lesion heatmap where all patients’ lesions are co-registered to
the MNI template brain and flipped onto the right hemisphere. Titles refer to z coordinates in the MNI
space, i.e. mm superior to the anterior commissure. (B) Patient flowchart. Please note that of the
recruited patients, only those who underwent MRI and all behavioral tests were included in the study.

Table 1. Patient characteristics

Value? Unit
Sex 38 male / 12 female Patients
Age 65.2 + 13.7 Years
Time of MRI 4+2 Days post-stroke
Time of behavioral tests 7+3 Days post-stroke
Paretic side 28 left / 22 right Patients
Thrombolysis 17 yes /33 no Patients
NIHSS 58+5 Points
FMUE 53.6 + 18.1 Points
Fist grip strength 28.1 £ 158 Kg force
Pinch grip strength 3622 Kg force
Key grip strength 58+33 Kg force
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Box & Block test 346 £ 18.6 Blocks
Purdue pegboard test 6.7 +44 Pegs

CTT part A 77 £ 56 Seconds
CTT part B 143 + 78 Seconds

RT on alertness test of TAP 342+ 130 Milliseconds
_Rr;Pon divided attention test (single condition) of 1012 + 205 Milliseconds

aCategorical values are given as breakdowns by level of the category, separated by forward slashes.
Numeric values are given with mean and standard deviation, separated by =.
NIHSS = National Institutes of Health Stroke Scale.

FMUE = Fugl-Meyer Upper Extremity score
RT = Reaction Time
Clinical Assessment

Each patient underwent MRI at the subacute stage in addition to a battery of clinical tests of motor and
cognitive function. The focus of the present work was on motor and attentional functions. Motor
strength was measured by performing the fist, grip and pinch strength tests2 on both hands, motor
dexterity by performing the Box&Block!3 and Purdue!# tests. Attentional functions were measured using
the Test of Attentional Performance (TAP),!5 the Color Trail Test (CTT) parts A and B,1617 and the Bells
test.!8 These tests were selected for fitting in the Sohlberg-Mateer model, which involves the use of five
types of attention of increasing difficulty.19

MRI Data Acquisition

All images were acquired using a 3T MAGNETOM Prisma (Siemens Healthcare, Erlangen, Germany) with
a 64-channel head and neck coil. T1-weighted anatomic images were acquired using 3D magnetization-
prepared, rapid acquisition gradient-echo sequence (MPRAGE) with the following parameters: 192 axial
slices, response time = 2300ms, echo time = 2.96ms, flip angle = 9°, voxel size = 1x1x1mm, field of view
= 256x256mm. For the DWI, diffusion gradients with five different gradient strengths (b-values =
[300,700,1000,2000,3000]s/mm?; shell-samples = [3,7,16,29,46]) were obtained in 101 non-collinear
directions distributed equally over the brain in 84 axial slices. The images were acquired using the
pulsed gradient spin echo technique with the following parameters: repetition time = 5000ms, echo time
= 77ms, field of view = 234x234mm, voxel resolution=1.6x1.6x1.6mm, readout bandwidth =
1630Hz/pixel, GRAPPA acceleration factor = 3. Seven T2-weighted images without diffusion weighting
(b=0s/mm?) were acquired, including one in opposite phase encoded direction.

Lesion Segmentation

All the lesion masks were hand-drawn using MRview from MRtrix320 and subsequently verified by a
neurologist. This enabled us to also compute, for each streamline, the binary value indicating whether
or not the streamline passed through the lesion as described in previous work.10

Image Analysis

Tissue partial volume maps were estimates from the T1-weighted image and registered to the average
b0 image using FSL.2! FreeSurfer was used to obtain a brain parcellation including 74 cortical areas per
hemisphere (Destrieux atlas), subcortical areas (thalamus, caudate, putamen, hippocampus, amygdala),

194 of 210



Appendix

the cerebellum, and a subdivision of the brainstem (midbrain, pons, medulla), yielding 163 brain areas.22
The voxels corresponding to the lesion were stamped out and replaced by the mirrored voxels of the
contralateral side.

The DWI were preprocessed using MRtrix3,20 and FSL2!(Gibbs ringing, motion, field inhomogeneity,
susceptibility-induced off-resonance field, eddy currents and bias-field correction). Multi-shell multi-
tissue constrained spherical deconvolution23 was used to estimate the fiber orientation distributions
within each voxel. Whole-brain probabilistic tractography was performed using the MRtrix3 second-
order integration over fibre orientation distribution method,2? initiating streamlines in all voxels of the
white matter. For each dataset, 1 million streamlines were selected with both endpoints in the individual
cortical or subcortical mask using the Dipy software package.2¢ Every streamline in the obtained
tractograms was weighted fitting the underlying diffusion compartment model using a Stick-Ball-
Zeppelinz®> model using COMMIT.26

For each patient, a structural connectome was built with 13,202 pairs of areas obtained through the
parcellation.10.27

Total and Unaffected Connectome

In our previous work,10 we computed whole brain connectomes as follows: for each pair of regions of
interest, we compute the sum of the COMMIT weights of the streamlines that are in between the two
regions. Then we use the binary map indicating whether or not the streamline passed through the
lesion to split the full connectome C;,q; into the sum

Ceotar = Cunaffected +D (1
Ctotal [i'j] = Zstreamline k goes fromito j Wk (2)
Cunaffected [i;j] = Z streamline k goes fromito j Wi (3)

and does not pass through the lesion

D [i,j] = Z streamline k goes fromito j Wk (4)
and passes through the lesion

In this way, we are able to incorporate the lesion more explicitly and we get a normalized way of treating
the affected and unaffected streamlines on the same footing. This novel construction of disconnectomes
provides a network-theoretic lesion profile, which quantifies the difference between the traditional
notion of connectome and our new notion of unaffected connectome.

Rich-club, Edge Weight, and Node Weight

We considered the same set of nodes as found by van den Heuvel and Sporns to form the RC, namely the
bilateral precuneus, superior frontal cortex, superior parietal cortex, hippocampus, putamen, and
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thalamus.® Finally, we split the edges into three groups (Fig 2): pure RC connections (between RC
nodes); feeder connections (between a RC node and a non-RC node); and local connections (between
non-RC nodes).

Each edge has a weight; each node has a weight, defined to be the sum of the weights of all edges linked
to that node.
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Figure 2. Connectome nodes and edges on glass brain. Our parcellation contains 163 nodes, depicted as dots on the brain. 18 of these nodes,
shown as enlarged dots, are the RC nodes. The edges are partitioned into pure RC (A, red), feeder (B, green), and local (C, blue) types.

Dimensionality Reduction

The behavioral metrics of the present project were combined for the 2 domains. There are numerous
methods to reduce the dimensionality of features. Popular methods include principal component
analysis28 and nonnegative matrix factorization (NMF);2% because the present data are nonnegative by
nature and distance from zero impairment has a relevant meaning, we chose NMF. The amount of
information that is lost by reducing features is captured by calculating the proportion of variance
accounted for (VAF) by the low-dimensional representation.2?

Behavioral Metrics

To measure strength impairment, we consider the average force in three trials exerted by the patients
on both hands, and calculate a normalized impairment metric as follows:

Fnonparetic - Fparetic
Foorm = (5)

Fnonparetic + Fparetic

in a fist grip, a pinch grip and a key grip,!2 giving the three features FIST,,o;-m, PINCH,, prm, and KEY,, .
These features are bounded between -1 and 1, where -1 means only the paretic hand exerts force, 0
means both hands exert equal force, and 1 means only the nonparetic hand exerts force. While mildly
negative values are possible, they are unlikely to be clinically meaningful, so we set negative values to
zero in order for the features to be nonnegative. Patients missing all three of FIST,,oym, PINCH o and
KEY, ,-m were excluded; those who were missing some but not all were replaced by the mean of all non-
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missing data in the respective field. Finally, we used NMF (VAF = 97%) to reduce the three features
into one strength impairment index strength = 1.39 X FIST,opm + 1.43 X PINCH,,p, + 1.53 X
KEYnorm- (6)

To measure dexterity impairment, we consider the number of fine motor tasks performed by the patient
with both hands in a given time limit. As before, we calculate the normalized functional metric

_ Nnonparetic - Nparetic (7)

Nnorm - N  +N .
nonparetic paretic

in the box-and-block test3? and the Purdue pegboard test,1* set negative values to zero, impute missing
data, and use NMF (VAF = 97%) to reduce the two features into one dexterity impairment index

dexterity = 1.43 X B&B,orm + 1.53 X Purdue,orm. (8)

To measure functional deficits in attention, we began with the widely-used model of Sohlberg-Mateer,1°
which suggests measuring five tasks of increasing difficulty, as described in Table 2:

Table 2. Sohlberg-Mateer attention model

Component Type of Task Metric Unit
Focused Response to discrete stimuli Mean RT on alertness test (no warning) of TAP Milliseconds
Sustained Ability to work in a quiet environment Completion time of CTT part A Seconds
Selective Ability to ignore distractors Completion time of Bells test* Seconds
Alternating Shifting attention between tasks Completion time of CTT part B Seconds
Divided Response to multiple stimuli Mean RT on divided attention test of TAP Milliseconds

aA penalty of 0.7 seconds was added for every omission in the Bells test

RT = Reaction Time

We normalize each of these features to have maximal value 1, impute missing values, and use NMF
(VAF = 94%) to reduce the five normalized features to one attention impairment index

attention = 1.34 X focused + 0.98 X sustained + 1.40 X selective + 1.32 X alternating + 2.35 X
divided. 9

Global Efficiency

Most networks lie on a spectrum from regularity to randomness, or equivalently from local segregation
to global integration. Many biological networks are “small-world” networks, which have both the
clustered nature of locally segregated networks and the short path length of globally integrated
networks.3132 The GE of a network with n nodes is defined by Rubinov and Sporns32 as

1 1
GE = —Y.,..—, 10
Sieia (10)

where d;; is the length of the shortest path between nodes i and j in the network. The quantity d;; is

defined to be the smallest sum of reciprocal edge weights in any path from i to j. GE of the brain networks
were computed using the Brain Connectivity Toolbox, a MATLAB toolbox developed by Rubinov and
Sporns.32
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Data availability

Data will be made available upon reasonable request.
Results

We used the Brain Connectivity Toolbox32 to compute the weighted GE of each patient’s total
connectome Cyyrq; and unaffected connectome Cyngsrecteq; and then correlated these with strength,
dexterity and attention impairment.

All correlations were estimated using bootstrap resampling33 with 10,000 iterations, i.e., at each
iteration we drew 50 patients from our sample of 50 (with replacement) and computed the respective
correlations on the subsample. We computed the Pearson correlation between GE;,,; and impairment
(Fig 3, blue; strength: r = —.20, P = .07, dexterity: r = —.11, P = .25, attention: r = —.41,P = .0001);
and between GEy,qfrecteq and impairment (Fig 3, green; strength: r = —.30, P = .02, dexterity: r =
—.30, P = .05, attention: r = —.55, P = .0001). The negative correlations are expected, given that GE is
known to contribute to better functional outcomes;!134 p-values are proportions of bootstrap
correlations that were non-negative.

We computed effect sizes for the difference between 7v(GEynafrectea, impairment) and
1(GEtotq1, impairment) across bootstrap iterations using Cohen’s d statistic rather than Student’s t due
to the latter showing inflated effect sizes with large datasets;35 p-values were computed by probability
of superiority.36 GEy a5 fectea Was more strongly correlated with impairment than GE4¢q; (strength: d =

—0.73,P = .07, dexterity: d = —1.1, P = .006, attention: d = —1.5, P = .004). We did not control for age,
as age was found not to be a meaningful covariate in previous studies of older healthy subjects.!!
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Figure 3. Bootstrapped correlations between connectome GE and impairment. Boxplots show bootstrapped Pearson correlations on the
ordinata between GE and the three types of impairment on the abscissa. Blue plots refer to G E;oq;,while green plots refer to GEynaffectea- Note
that all correlations tend to be negative and that correlations with GEy ;4 fecteq tend to be stronger (i.e. more negative) than those with GE¢o¢q:-
Note also that GE tends to be more strongly correlated to attention impairment than to strength or dexterity impairment, while it seems to be
equally strongly correlated to strength and dexterity impairment.

It is known from work of van den Heuvel and Sporns?® that attacks on pure RC edges result in more loss
of GE than attacks of similar magnitude on feeder or local edges. Conversely, we expected that greater
integrity of pure RC edges should correspond to greater GE in the network, and this is the case (Fig 44,
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left: one-way ANOVA F = 82.1, P = 0). Greater integrity of RC nodes also corresponds to greater GE in
the network (Fig 4B, left: two-sample ttest T = 2.6, P = .009).

It has been shown that among healthy older subjects, when considering correlations to attention, which
requires integration of inputs from across the brain, pure RC edges are strongest, then feeder, then local;
however, no such order exists for correlations to visual processing, which is more localized.!! The same
holds when considering RC nodes as opposed to non-RC nodes.

We have found analogous results to those reported by Baggio and colleagues!! in healthy older adults.
Pure RC edge weights have more negative (i.e. stronger) correlations to behavior than feeder and local
edges, and that this gap is smallest for strength and largest for attention (Fig 4A, right: one-way ANOVA.
Strength: F = 6.5, P = .001; dexterity: F = 19.7, P = 10~%; attention: F = 89.4, P = 1073°). Similarly,
RC node weights have stronger correlations to behavior than non-RC node weights, and this gap is
smallest for strength and largest for attention (Fig 4B, right: two-sample t test. Strength: T = 0.7, P =
474; dexterity: T = 2.0, P = .048; attention: T = 3.0, P = .003).
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Figure 4. Correlations between connectome GE, graph weights, and impairment. Plots show mean and standard deviation. (A, left)
Correlations between edge weight and GEnqffecteqa- Please note that the order pure RC > feeder > local holds. (A, right) Correlations between
edge weight and impairment. Please note that the order pure RC < feeder < local holds in all domains, and that the gap is largest in the
attentional domain. (B, left) Correlations between node weight and GEypnaffectea- Please note that RC nodes have stronger correlation to
GEynaffectea than non-RC nodes. (B, right) Correlations between node weight and impairment. Please note that RC nodes have stronger
correlations to behavior than non-RC nodes and that the gap increases between strength, dexterity, and attention.

Discussion

Given the complex pattern of interactions between different parts of the brain, mathematical tools for
complex network analyses offer an exciting opportunity to better understand underlying mechanisms
of neurological disorders, especially when current findings strongly support the maxim that many
neurological disorders, including stroke, are network disorders.537 Therefore, connectomics has great
potential to yield important insights into post-stroke impairment, recovery mechanisms and advance
our understanding by evaluation of the specific patient’s pattern of brain connectivity.
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Our data point toward the existence of considerable differences in the mechanisms underlying deficits
in the motor and attentional domains. These differences provide reason for optimism that while
treatments designed to promote more globally efficient brain networks are likely to have benefits in
treating many deficits, this is particularly true of attentional deficits.

While the stroke patients in the present study were selected for their motor deficit, a considerable share
of the patients also showed cognitive /attentional deficits (e.g., 39/50 pathological on MOCA). It has been
suggested from studies of older healthy subjects!! and stroke patients3839 that cognitive functions, such
as attention, memory or language functions, are more heavily reliant on integration of inputs from
different parts of the brain than functions such as motor and visual ones, which reside in “more
specialized” local brain networks. This important assumption has been confirmed by the present
findings that GEypnaffecteqa 1S more strongly correlated to attention than to motor strength or dexterity,
highlighting the reliance of the attentional domain on larger-scale emergent dynamics. It is of note that
the correlation between GEypnqffectea and strength does not seem to differ significantly from that
between GEynafrecteq and dexterity, highlighting the fact that the motor domain, whether for pure
strength production or for more fine motor skills, is less reliant on emergent (larger-scale) dynamics
than attention is. Mathematical modeling conducted by Sporns and van den Heuvel has found that the
resilience of brain networks to “attack” varies depending on the place of attack, indicating that attacks
on pure RC edges result in greater drops in GE than other (non-RC) attacks of similar magnitude.?
Accordingly, we found that RC node weight and pure RC edge weight were more strongly correlated to
attention than to motor functions, suggesting that the importance of the RC is derived from its
disproportionate impact on network efficiency.

The presented approach adds a layer of personalization to traditional connectomics by separating fibers
according to whether or not they are impacted by the patient’s particular lesion. This approach has
borne fruit, as the unaffected connectome is more strongly associated with behavior than the traditional
total connectome. From a hypothesis-driven perspective, the importance of including a lesion profile in
the measurement of brain networks is obvious as white matter tracts can be detected by DWI-derived
tractography, though probably with more diffusivity inhomogeneities, even if they are interrupted by a
lesion (particularly in the early post-stroke period). Such tractography by itself fails to acknowledge that
if tracts are interrupted by the lesion, their ability to transmit information is compromised and they will
not contribute to the normal functioning of the network. From a data-driven perspective, it has been
found that GE,,.,; does not differ significantly either over time, or even between stroke patients and
healthy controls,38 casting doubt on the value of GE;,, as a biomarker. By contrast, we provide
evidence that GEypnqffecteq differs significantly from GEy,¢q;, and that in stroke patients GEypafrectea 1S
more strongly correlated to behavior than GE;,;; is.

Consequently, we find that explicitly discarding tracts that pass through the lesion as inoperative
ensures that the unaffected connectome is a more accurate reflection of true patterns of connectivity
than the traditional structural connectome, and thus a better candidate as a stroke-related biomarker.

Limitations

The primary drawback of the present approach is that splitting the total connectome into its affected
and unaffected parts requires that one draw lesion masks and overlay them onto the tractography. This
imposes considerable additional work, yet we are convinced that the benefits in terms of relevance to
behavior and understanding of mechanisms are worth the cost. In addition to being time-consuming
and labor intensive, they require substantial anatomical expertise, which might introduce a
considerable source of variability; both on an inter-rater and (to a lesser extent) test-retest basis.40
While the use of machine learning algorithms to delineate lesions holds some promise, it is a sufficiently
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difficult task that at the time of writing, human-drawn lesions remain the gold standard, with even the
best available algorithms failing to come close to inter-rater levels of agreement with humans.#1

Future Work

The present study was conducted cross-sectionally, however longitudinal evaluation of parameters of
network efficiency in the affected and unaffected parts of the network will open novel opportunities to
study the mechanisms underlying recovery of multi-domain (e.g.,, motor and attention) post-stroke
deficits. It will provide novel insights into the reorganization of structural brain networks, how these
reorganizational patterns relate to recovery of behavioral functions, and whether they allow prediction
of outcome or treatment stratification. In particular, it would be worth investigating whether among our
cohort, patients’ increase in GE over time was associated with recovery from their impairment,
particularly attentional impairment.

There are biological reasons to expect that this might occur. Reparative axonal sprouting is
characterized by growth of long-distance connections,*2 the precise type of connections that contribute
most to GE. It has also been found to be clearly associated with post-stroke behavioral recovery.42

Conclusions

While the patients in the present cohort were selected for motor deficits, most of them also had an
attention deficit, which can have an additional impact on the recovery process. This considerable
overlap between motor and attentional deficits implies the need for finer-grained discriminators
between multidomain deficits and their underlying mechanisms.

Here, we suggest structural connectivity analyses of RC properties with a focus on affected and
unaffected parts of the network to better characterize these multi-domain deficits in the subacute stage
after stroke. These analyses allow the following conclusions: First, current approaches of structural
connectomics use DWI to trace axon fiber bundles and simply rely on lesion-induced tract
inhomogeneities. However, this implicit taking into account of the lesion is suboptimal, particularly in
the acute and subacute phase as it might lead to the tractography finding tracts that are no longer
functional. Therefore, the present results support the importance of explicitly overlaying lesion masks
onto the tractography to be able to split the structural connectome into its unaffected (well-functioning)
and affected (disconnectome, non-functional) parts to determine which parts of the brain network are
actually relevant to residual functions and impairment. Secondly, based on this approach, the present
results suggest that in stroke patients, attention is more sensitive to non-integrity of the connectome
(especially the RC) and the resulting deficiency of GE than motor functions, strongly underscoring the
differential importance of RC network properties for different behavioral functions. The present results
further confirm and are consistent with reports in healthy subjects that the neural substrate underlying
motor functions is rather localized, while that underlying attention is based on a more global
representation in terms of RC organization.
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