
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Robustness and invariance properties of image
classifiers

Apostolos MODAS

Thèse n° 9646

2022

Présentée le 18 août 2022

Prof. A. M. Alahi, président du jury
Prof. P. Frossard, directeur de thèse
Dr J.-H. Jacobsen, rapporteur
Prof. T. Goldstein, rapporteur
Prof. N. Flammarion, rapporteur

Faculté des sciences et techniques de l’ingénieur
Laboratoire de traitement des signaux 4
Programme doctoral en génie électrique

Philosophers have hitherto only interpreted the world in various ways.
The point is to change it.

— Karl Marx

To my beloved family. . .

Acknowledgements
First of all, I would like to express my sincere gratitude to my supervisor Prof. Pascal
Frossard. Not only he trusted me and gave me the opportunity to pursue my PhD
with him, but he also guided and supported me with patience even during the hardest
moments of my life. I will always be grateful!
I would also like to thank the members of my thesis committee, Prof. Alexandre Alahi,
Prof. Nicolas Flammarion, Prof. Tom Goldstein, and Dr. Jörn-Henrik Jacobsen for their
fruitful discussions and feedbacks.
I am extremely glad – and lucky – to have met and worked with Seyed and Guillermo. I
definitely enjoyed every single minute of our collaboration. Their fascinating knowledge
and intelligence helped me to evolve both as a researcher and as a person, and I am not
sure how much of this thesis would exist without their continued support.
I would like to extend my sincere thanks to Mathieu Sinn and Beat Buesser for their
hospitality during my internship at IBM Ireland. I also want to thank Prof. Andrea
Cavallaro from QMUL for our 3-year collaboration. I really enjoyed our many discussions,
and his constant motivation has always been a great support.
I also sincerely thank all the current and former LTS4 labmates Ádám, Ahmet, Alessandro,
Arun, Bastien, Beril, Clément, Clémentine, Dorina, Eda, Ersi, Guille, Harshitha, Hermina,
Isabela, Javier, Jelena, Mattia, Mireille, Nikos, Ortal, Renata, Roberto, Sahar, Seyed,
Stefano, William, Yamin. My special thanks go to Mireille for sharing the office with
me during a big part of my PhD years. It was really a pleasure to have such a kind and
understanding friend as an officemate. I also want to thank our administrative Anne for
her genuine help and for her incredible efficiency.
A very big thank you to my good friends Christos, Dimitris, George, Haris, Irene, Kostas,
Maksym, Manos, Marios, Nikos, Sotiris, Thanos, Vaggelis, Victoria and Vlasis for giving
me strength during all these years away from home.
Finally, I am indebted to my family for their unconditional love and support, and for
always being there for me since the beginning. And I am especially grateful to Meli for
her support and sacrifices during all these years. To all of you, I know that I cannot give
back all those things you have offered me.

Lausanne, June 1, 2022 Apostolos Modas

i

Abstract
Deep neural networks have achieved impressive results in many image classification tasks.
However, since their performance is usually measured in controlled settings, it is important
to ensure that their decisions remain correct when deployed in noisy environments. In fact,
deep networks are not robust to a large variety of semantic-preserving image modifications,
even to imperceptible image changes – known as adversarial perturbations – that can
arbitrarily flip the prediction of a classifier. The poor robustness of image classifiers to
small data distribution shifts raises serious concerns regarding their trustworthiness. To
build reliable machine learning models, we must design principled methods to analyze
and understand the mechanisms that shape robustness and invariance. This is exactly
the focus of this thesis.
First, we study the problem of computing sparse adversarial perturbations, and exploit the
geometry of the decision boundaries of image classifiers for computing sparse perturbations
very fast. We evaluate the robustness of deep networks to sparse adversarial perturbations
in high-dimensional datasets, and reveal a qualitative correlation between the location of
the perturbed pixels and the semantic features of the images. Such correlation suggests a
deep connection between adversarial examples and the data features that image classifiers
learn.
To better understand this connection, we provide a geometric framework that connects
the distance of data samples to the decision boundary, with the features existing in the
data. We show that deep classifiers have a strong inductive bias towards invariance
to non-discriminative features, and that adversarial training exploits this property to
confer robustness. We demonstrate that the invariances of robust classifiers are useful
in data-scarce domains, while the improved understanding of the data influence on the
inductive bias of deep networks can be exploited to design more robust classifiers.
Finally, we focus on the challenging problem of generalization to unforeseen corruptions of
the data, and we propose a novel data augmentation scheme that relies on simple families
of max-entropy image transformations to confer robustness to common corruptions.
We analyze our method and demonstrate the importance of the mixing strategy on
synthesizing corrupted images, and we reveal the robustness-accuracy trade-offs arising
in the context of common corruptions. The controllable nature of our method permits to
easily adapt it to other tasks and achieve robustness to distribution shifts in data-scarce
applications.
Overall, our results contribute to the understanding of the fundamental mechanisms

iii

Abstract

of deep image classifiers, and pave the way for building more reliable machine learning
systems that can be deployed in real-world environments.

Keywords: image classification, robustness, invariance, adversarial examples, distribu-
tion shifts, sparse perturbations, image transformations, data augmentation, decision
boundary, deep learning, convolutional neural networks.

iv

Résumé
Les réseaux de neurones profonds ont obtenu des résultats impressionnants dans de
nombreuses tâches de classification d’images. Cependant, comme leurs performances sont
généralement mesurées dans des environnements contrôlés, il est important de s’assurer
que leurs décisions restent correctes lorsqu’ils sont déployés dans des environnements
bruyants. En fait, les réseaux profonds ne sont pas robustes à une grande variété de
modifications d’images préservant la sémantique, même à des changements d’images im-
perceptibles – connus sous le nom de perturbations adverses – qui peuvent arbitrairement
faire basculer la prédiction d’un classificateur. La faible robustesse des classificateurs
d’images aux petits changements de distribution des données soulève de sérieuses inquié-
tudes quant à leur fiabilité. Pour construire des modèles d’apprentissage automatique
fiables, nous devons concevoir des méthodes fondées sur l’analyse et la compréhension
des mécanismes qui façonnent la robustesse et l’invariance. C’est l’objet de cette thèse.
Tout d’abord, nous étudions le problème du calcul de perturbations adverses éparses
et nous exploitons la géométrie des limites de décision des classificateurs d’images pour
calculer très rapidement des perturbations éparses. Nous évaluons la robustesse des
réseaux profonds aux perturbations adverses dispersées dans des ensembles de données à
haute dimension, et nous révélons une corrélation qualitative entre l’emplacement des
pixels perturbés et les caractéristiques sémantiques des images. Cette corrélation suggère
une connexion profonde entre les exemples adverses et les caractéristiques des données
que les classifieurs d’images apprennent.
Pour mieux comprendre cette connexion, nous fournissons un cadre géométrique qui
fait le lien entre la distance des échantillons de données à la frontière de décision et les
caractéristiques existant dans les données. Nous montrons que les classifieurs profonds
ont un fort biais inductif vers l’invariance des caractéristiques non-discriminatives, et que
l’entraînement contradictoire exploite cette propriété pour conférer de la robustesse. Nous
démontrons que les invariances des classifieurs robustes sont utiles dans les domaines où
les données sont rares, tandis que la meilleure compréhension de l’influence des données
sur le biais inductif des réseaux profonds peut être exploitée pour concevoir des classifieurs
plus robustes.
Enfin, nous nous concentrons sur le problème difficile de la généralisation aux corruptions
imprévues des données, et nous proposons un nouveau schéma d’augmentation des
données qui s’appuie sur des familles simples de transformations d’images à entropie
maximale pour conférer de la robustesse aux corruptions courantes. Nous analysons notre

v

Résumé

méthode et démontrons l’importance de la stratégie de mélange pour synthétiser les
images corrompues, et nous révélons les compromis entre robustesse et précision dans le
contexte des corruptions courantes. La nature contrôlable de notre méthode permet de
l’adapter facilement à d’autres tâches et d’atteindre la robustesse aux changements de
distribution dans les applications où les données sont rares.
Dans l’ensemble, nos résultats contribuent à la compréhension des mécanismes fondamen-
taux des classifieurs d’images profonds et ouvrent la voie à la construction de systèmes
d’apprentissage automatique plus fiables pouvant être déployés dans des environnements
réels.

Mots clés : classification d’images, robustesse, invariance, exemples adverses, change-
ments de distribution, perturbations éparses, transformations d’images, augmentation
des données, limite de décision, apprentissage profond, réseaux de neurones convolutifs.

vi

Contents
Acknowledgements i

Abstract (English/Français) iii

1 Introduction 1
1.1 Robustness of deep networks . 2
1.2 Adversarial robustness . 3
1.3 Towards better understanding of deep networks 5
1.4 Thesis outline . 7

2 Related work 9
2.1 Robustness to distribution shifts . 9

2.1.1 Evaluating robustness to distribution shifts 9
2.1.2 Improving robustness to distribution shifts 11

2.2 Robustness to adversarial perturbations 12
2.2.1 Evaluating robustness to adversarial perturbations 12
2.2.2 Improving robustness to adversarial perturbations 14

2.3 Understanding deep learning through robustness 15
2.4 Summary . 16

3 Sparse adversarial perturbations and image features 19
3.1 Introduction . 19
3.2 Minimal sparse adversarial perturbations 20

3.2.1 Sparsity constraints . 20
3.2.2 Linearization and boundary approximation 21
3.2.3 SparseFool . 24

3.3 Experimental evaluation . 26
3.3.1 Performance analysis . 27
3.3.2 Perceptibility . 28

3.4 Analysis of sparse perturbations . 30
3.4.1 Shared semantic features . 30
3.4.2 Exclusiveness of adversarial robustness 32

3.5 Conclusions . 33

vii

Contents

4 Analysis of learned features using adversarial proxies 35
4.1 Introduction . 35
4.2 Decision boundary and discriminative features 37

4.2.1 Proposed framework . 37
4.2.2 Evidence on synthetic examples 38

4.3 Discriminative features of real datasets 39
4.3.1 Boundary adaptation to data representation 42
4.3.2 Invariance and elasticity of decision boundary 42
4.3.3 Connections to catastrophic forgetting 44
4.3.4 Discussion . 45

4.4 Sensitivity to position of training samples 46
4.4.1 Evidence on synthetic examples 46
4.4.2 Connections to adversarial training 48

4.5 Implications in data-scarce applications 50
4.5.1 An off-the-shelf task: filling level classification 51
4.5.2 Adversarial invariance prevents overfitting 54
4.5.3 Discussion . 57

4.6 Conclusions . 57

5 Robustness to non-adversarial distribution shifts 59
5.1 Introduction . 59
5.2 Towards robustness to common corruptions 61

5.2.1 Invariance by removing features 61
5.2.2 General model of visual corruptions 63

5.3 PRIME data augmentations . 65
5.3.1 Instantiating the general model of visual corruptions 65
5.3.2 Performance on common corruptions 67
5.3.3 Unsupervised domain adaptation 70

5.4 Robustness insights . 70
5.4.1 Contribution of transformations 71
5.4.2 The importance of mixing . 72
5.4.3 Robustness vs Accuracy trade-off 74
5.4.4 Sample complexity . 75

5.5 Improving filling level classification with PRIME 76
5.5.1 Distribution shifts and PRIME augmentations 77
5.5.2 PRIME transformation parameters 79
5.5.3 Mixing parameters in PRIME . 79
5.5.4 Experimental validation . 81

5.6 Discussion . 82
5.7 Conclusions . 84

6 Conclusion 87
6.1 Summary . 87

viii

Contents

6.2 Future directions . 89

A Appendix of Chapter 4 91
A.1 Margin distribution of a linear classifier 91
A.2 Training parameters . 91
A.3 Cross-dataset performance . 93
A.4 Adversarial training parameters . 94
A.5 Spectral decomposition on frequency “flipped” data 94

B Appendix of Chapter 6 97
B.1 Maximum entropy transformations . 97

B.1.1 Spectral domain . 98
B.1.2 Spatial domain . 98
B.1.3 Color domain . 99

B.2 PRIME implementation details . 99
B.2.1 Additional transformed examples 99
B.2.2 Transformation parameters . 101

B.3 Performance per corruption . 101
B.4 Performance per severity level . 102

Bibliography 105

Curriculum Vitae

ix

1 Introduction

“It ain’t what you don’t know that gets you into trouble.
It’s what you know for sure that just ain’t so.”

— Mark Twain

In recent years, deep neural networks have become the state-of-the-art in most machine
learning benchmarks with the emergence of deep learning. Driven by the vast amounts
of available data, deep learning systems have achieved outstanding performance in a
wide range of applications, especially in the field of image classification. A standard way
of assessing the “outstanding performance” of a classifier, is through its generalization.
In practice, the generalization of a classifier is usually determined by its test accuracy,
which is the performance on some held-out (test) data that have never been observed
during training, but are typically assumed to come from the same distribution as the
training data.

When deploying deep learning models in the real world, though, we expect to face very
different environments than those of the training data, which sometimes can be noisy or
even hostile. Building classifiers that are able to generalize to such conditions is crucial,
especially for safety-critical applications like autonomous driving or biomedical imaging.
Therefore, it is of utmost importance that the decisions of the classifiers remain robust,
even in the presence of worst-case scenarios.

However, deep classifiers are actually brittle and far from robust, and their generalization
performance significantly degrades when evaluated in conditions that are slightly different
from the training ones. In particular, the decisions of deep classifiers can easily change
through small semantic-preserving modifications of their images, even if such changes

1

Chapter 1. Introduction

would not affect the human perception in general.

Building robust deep networks that are invariant to small modifications of their data is a
challenging problem, and a large body of research has focused on developing a variety of
techniques for improving the robustness of image classifiers. Nevertheless, the problem
of creating classifiers that are able to robustly generalize under different settings is far
from being solved, while the exact mechanisms behind the profound vulnerability of deep
networks are still not well understood. In this thesis, we propose novel algorithms for
evaluating and understanding the robustness and invariance properties of deep networks,
and build upon our insights to design methodologies for improving the robustness of
image classifiers to distribution shifts and nuisances of their data.

1.1 Robustness of deep networks

In general, the low robustness of deep networks to different types of data distribution
shifts can be observed in various scenarios and settings. For instance, deep classifiers
struggle to generalize to images that have been slightly modified by common types of
distortions that may occur during the acquisition or processing of the images (i.e., blur,
color jitter etc) [1]. In the spatial domain, carefully crafted shifts on the image pixels are
enough to cause significant performance drops [2]. In the spectral domain, the predictions
of image classifiers are more sensitive to small perturbations in the low-frequency part of
the image spectrum rather than the high-frequency one [3]. Furthermore, image classifiers
tend to rely on spurious features of the image background, and hence when image objects
appear on backgrounds that are typically presented in different object categories (i.e., a
fish on a grass field), is enough to force the network to an erroneous decision (i.e., rabbit
instead of fish) [4]. Finally, image classifiers do not exhibit low robustness only in cases
where the images are somehow manipulated or distorted, but they can also struggle with
completely new images, even if they are collected in the exact same way and from a
similar distribution as the one used for training [5, 6].

One way to improve the robustness of the classifiers to distribution shifts or distortions,
is by increasing the variability of the training data. The hope is that, the more samples
the classifier observes, the better knowledge it obtains about the data distribution; hence,
it is more likely to generalize to new samples. In this regard, an obvious approach
for improving the robustness of deep classifiers is to increase the amount of training
samples [7]. However, this technique might be impractical, since training on huge datasets
requires a lot of computational power, and for many tasks the available training data can
be quite scarce. In practice, one of the most common techniques for artificially increasing
the amount and variability of training data is the so-called data augmentation, where one
expects that the classifier becomes invariant – to some extent – to the transformations
used to generate the augmented data during training [8]. That is, the decision of the
classifier does not vary when test images are manipulated with the transformations

2

1.2 Adversarial robustness

used during training. Note here that the choice of transformations used during data
augmentation might be crucial for the overall robustness of the model. For instance, if we
want the classifier to be robust to image rotations, then applying a random rotation in
(0◦, 10◦] on the training images might not be sufficient to achieve robustness to rotations
that are larger than 10◦.

In general, although data augmentation or the use of additional data might work in
practice for specific tasks, these methods are not definitive solutions for building robust
classifiers. Ideally, given access to a finite amount of training data, we would still want a
robust classifier to maintain its predictions when new data come from a slightly shifted
distribution, or in the presence of distortions that do not change the semantics of the
image. This implies that, for achieving robust and invariant image classification, the
classifiers should ideally learn the underlying “concepts” that characterize the class of an
image, rather than learning spurious image features that provide generalization only to
specific test sets.

1.2 Adversarial robustness

Building classifiers with the desired invariance properties is however far from trivial. In
fact, the robustness of deep neural networks is heavily challenged by the existence of
the so-called adversarial examples [9]. These are data samples that have been modified
by carefully-crafted, semantic-preserving perturbations that are often imperceptible to
the human eye, but can change the prediction of the classifier to any arbitrary class.
Adversarial examples represent one of the most intriguing phenomenon in the robustness
literature, since their existence is not only constrained to image classifiers [10, 11, 12],
but extends to virtually any application of deep learning such as autonomous driving [13],
malware detection [14], natural language processing [15], speech recognition [16] and
reinforcement learning [17].

Formalizing adversarial examples is an ill-posed problem, since there can exist multiple
ways for defining and computing them depending on the data they are applied to, while
the notion of perceptibility is subjective and can be arbitrary. Nevertheless, it is common
in the literature to compute the ℓp-norm of the perturbations as a perceptibility proxy.
The goal then is to find adversarial perturbations of a small ℓp-norm. An illustration of
adversarial examples generated with adversarial perturbations of different ℓp norms are
shown in Fig. 1.1.

The simplest and most common adversarial perturbations are the additive ones. Let
x ∈ RD be a D-dimensional input, and f : RD → RK be the final layer of a neural
network (i.e., logits), such that, for any input x, F (x) = argmaxkfk(x) represents the
decision of that network, where fk(x) denotes the component of f(x) that corresponds
to the kth class. Formally, for a given data sample x along with its associated label y, an

3

Chapter 1. Introduction

Figure 1.1: Illustration of different additive adversarial perturbations (ℓ1, ℓ2 and ℓ∞) (top)
and the corresponding adversarial examples (bottom) that fool a deep neural network.
The norm of each perturbation is indicated below the corresponding image, except for
the ℓ1 perturbation (sparse) where the number of perturbed pixels is provided. The
resulting misclassified labels are shown below each adversarial example. In all cases the
adversarial example is hardly distinguishable by a human observer. The original image
is taken from the web.

additive ℓp-norm adversarial perturbation δ ∈ RD is defined as the one that maximizes
the classifier’s loss Lθ within an ℓp-ball of radius ε around x

argmax
δ
Lθ(x + δ, y)

s.t. ∥δ∥p ≤ ε

δ ∈ C,

(1.1)

where θ are the parameters of the classifier and C denotes a general set of constraints,
e.g., the perturbed image is within a valid pixel value range C = {δ : x + δ ∈ [0, 1]D}.
Alternatively, one can also define the minimal additive ℓp-norm adversarial perturbation
as the smallest additive perturbation that changes the decision of the classifier

argmin
δ
∥δ∥p

s.t. F (x) ̸= F (x + δ)
δ ∈ C.

(1.2)

In fact, this definition of minimal adversarial perturbations encapsulates the notion of
distance between a data sample and the decision boundary of a classifier, and has been
used to study the local geometry of the decision boundaries [18, 19]. Finally, we note that

4

1.3 Towards better understanding of deep networks

adversarial perturbations are not restricted to the additive ℓp-norm definitions of Eq. (1.1)
and Eq. (1.2), but can rather extend for instance to geometric [20, 21], functional [22],
or even physical perturbations [23, 24].

Building classifiers that are robust against adversarial perturbations is still an open
problem. Surprisingly, performing standard data augmentation does not improve ad-
versarial robustness, even when it boosts robustness to specific types of distortions and
transformations. Instead, one might need to adapt data augmentation in the worst-case
settings and perform adversarial training [11, 25]. Adversarial training is a data aug-
mentation method that replaces the clean images with their adversarial examples during
training, and has been empirically shown to consistently result into more robust classifiers.
Nevertheless, performing adversarial training can be computationally expensive, and it
also comes at the cost of building classifiers that may perform worse on their standard
test sets [26, 27]. Finally, adversarial training typically results into classifiers that are
robust mostly on the perturbations they were trained on (e.g., perturbations of a specific
ℓp norm) [28], while its contribution to the robustness to non-adversarial distortions
might not be significant [29].

1.3 Towards better understanding of deep networks

The profound gap between human and machine perception, along with the low robustness
of deep neural networks, raises serious concerns regarding the implications on the security,
safety, and fairness of deep learning systems. In order to integrate deep learning in
sensitive tasks, such robustness vulnerabilities should be addressed. Therefore, it is
imperative that we focus on understanding the mechanisms that govern the robustness
properties of deep networks, and eventually design principled methods for building
accurate and robust classifiers.

The main theme of this thesis is to exploit the connection between adversarial robustness
and the geometry of deep networks [19, 30] as a proxy for understanding some fundamental
properties of deep neural networks, and build upon our intuitions to design novel
methodologies that confer robustness to distribution shifts of the data. Our main
contribution is a better understanding of the role of data in the inductive biases of
(robust) deep neural networks, which enables us to design new methods for improving the
invariance properties of image classifiers and achieve better robustness to different types
of distribution shifts. In what follows, we provide more details regarding the individual
contributions of this thesis.

First, we focus on the computation of sparse adversarial perturbations. In general,
evaluating the robustness of deep networks to perturbations in non-standard ℓp regimes,
for instance sparse perturbations with p ∈ {0, 1}, can be useful for identifying salient image
features, due to the localized structure of the perturbations. However, generating sparse

5

Chapter 1. Introduction

adversarial perturbations can be computationally expensive, and existing methods [31,
32, 33] are impractical in large datasets. As a first contribution of this thesis, we provide
a very fast, geometry-inspired sparse attack that exploits the low mean curvature of
the decision boundaries to generate adversarial perturbations. This efficient algorithm
enables us to thoroughly analyze the transferability and spatial properties of sparse
perturbations, and provides empirical insights on the correlation between the data features
and adversarial perturbations.

As a second step, we study the relationship between adversarial perturbations and
the features of the data. The features of real datasets are not known a priori, and
hence current literature [34, 35] relies either on experimental evaluations or on synthetic
examples in order to investigate the connections between adversarial perturbations and
data features. It is still not established which mechanisms are responsible for creating
these connections, and it is unclear if this phenomenon depends on the data, the network
architecture, or the learning algorithm. Propelled again by the geometric properties of
adversarial examples, we propose a new geometric framework that connects the norm
of minimal adversarial perturbations (i.e., distance to the classifier decision boundary)
with the data features. By carefully manipulating the input data, we demonstrate that
deep classifiers have a strong inductive bias towards invariance to non-discriminative
features. In fact, we show that adversarial training actually exploits this property to
build more robust classifiers. Furthermore, our insights explain why some methods for
crafting adversarial examples are more efficient if they constrain the perturbations to
the low-frequency subspaces of the Fourier basis: the reason is that the discriminative
features of standard image datasets are aligned with low-frequency directions. Finally,
we also demonstrate that the invariance properties of robust classifiers are beneficial in
tasks where the available training data are scarce.

Last, we extend our focus to the more general case of robustness to non-adversarial
perturbations of the data. In particular, we deal with the problem of robustness to
common corruptions, a term that generally refers to typical image distortions (i.e., blur,
color jitter, brightness variations, random noise etc.) that can occur during acquisition,
storage, or processing of the images. In these settings, achieving robustness is more
complex than merely inducing invariance through simple data feature manipulations. At
the same time, defining such “common corruptions” is an ill-posed problem. For achieving
robustness to common corruptions, prior works [36, 37, 38] have built complex data
augmentation strategies, combining multiple methods to enrich the training data. These
works typically introduce intricate design choices or heuristics, and it is hard to understand
which elements of the methods are indeed crucial for improving robustness. We formulate
a set of primitive image transformations in the spatial, color and spectral domains, and
propose a systematic data augmentation scheme for improving the robustness of deep
classifiers to common corruptions of their data. Our method achieves state-of-the-art
robustness in multiple benchmarks, while its simplicity permits to perform an in-depth
analysis of robustness in the context of common corruptions. In particular, we highlight

6

1.4 Thesis outline

the importance of deploying a mixing strategy during the generation of the augmentation
instances, and analyze the potential robustness-accuracy trade-offs and the benefits of
generating the data augmentations during training (on-line). Finally, we demonstrate that
our method can serve as an off-the-shelf solution for achieving robustness to distribution
shifts that extend beyond the concept of common corruptions.

It should be noted that, although our focus in this thesis is on images, our geometric
framework for connecting the data features to the decision boundaries, as well as the basic
principles of our novel augmentation strategy can be easily extended to other modalities
of data.

1.4 Thesis outline

The rest of thesis is organized as follows:

In Chapter 2, we review some of the prior works related to the problem of (i) evaluating
the robustness of image classifiers, (ii) improving the robustness of classifiers to adversarial
examples and distribution shifts, and (iii) studying the connections between adversarial
robustness and the features learned by deep classifiers.

In Chapter 3, we study the problem of efficiently generating sparse adversarial per-
turbations. In particular, we design a geometry-inspired algorithm that is by orders
of magnitude faster than existing methods and efficiently scales to high-dimensional
datasets. Our empirical analysis sheds new light on the transferability of sparse adversar-
ial perturbations, and on the connections between the image semantics and the features
that deep networks learn.

In Chapter 4, we develop a novel methodology to characterize the relationship between
the distance of a set of samples to the decision boundary, and the discriminative features
of the dataset that are used by a classifier. We demonstrate that convolutional neural
networks are invariant to non-discriminative features of a dataset. We further show
that the decision boundary is very sensitive to the position of the training samples, and
that adversarial training exploits this sensitivity and invariance bias to build robust
classifiers. Finally, we demonstrate that the invariance properties of robust classifiers
prevent overfitting in the non-classical task of estimating the amount of content within a
container in scarce data regimes.

In Chapter 5, we study the general problem of robustness to common corruptions of
the images. We formulate a new model for semantically-preserving image corruptions,
and build on basic concepts to characterize the notions of transformation strength and
diversity using a few transformation primitives. We propose a general data augmentation
scheme that relies on simple yet rich families of max-entropy image transformations. Our
method tops the current baselines on different common corruption datasets, while its

7

Chapter 1. Introduction

simplicity makes it an effective tool for understanding common corruption robustness, and
build classifiers with improved out-of-distribution generalization properties. In particular,
we demonstrate that our method can easily be tuned for the context of classifying the
filling level within a container, and generate augmentations with properties that resemble
those of test-time distribution shifts.

Finally, in Chapter 6 we summarize the main outcomes of this thesis, and outline some
of the potential future research directions.

8

2 Related work

In this chapter, we review some of the relevant works from the literature that are linked
to the problems studied in this thesis. In particular, in Section 2.1 we summarize
the methods for evaluating and improving the robustness of deep neural networks to
distribution shifts, while in Section 2.2 we focus on robustness under adversarial settings.
Finally, in Section 2.3 we review related works that connect the robustness of deep
networks to different other properties of deep learning.

2.1 Robustness to distribution shifts

2.1.1 Evaluating robustness to distribution shifts

Natural distribution shifts Reliable classification under distribution shifts has
received a growing amount of interest in the field of machine learning [39]. Especially
in the context of image classification [40], measuring robustness to natural distribution
shifts (i.e., not synthetically induced through perturbations or transformations) that can
arise in the real world is very important for a broad deployment of machine learning
models. In fact, the authors in [5, 41] showed that classifiers that achieve state-of-the-art
performance on standard benchmarks practically overfit to the given test sets of such
benchmarks. In particular, they exhibit a significant accuracy drop on newly collected
unseen images (new test set), despite being sampled from a distribution that is very
similar to the one of the original test set. This phenomenon can be even more pronounced,
as shown in [6], if the new test set is explicitly selected (adversarially) to cause extreme
accuracy drops (up to 90%). Having a unified approach for evaluating the robustness
of classifiers to natural distribution shifts is very important. To this end, the authors
in [7] recently defined a very large testbed, and demonstrated that classifiers trained
on more diverse data typically achieve better robustness. At the same time, they also
demonstrated that robustness to synthetic shifts (i.e., through artificial perturbations or
transformations) does not necessarily imply natural robustness.

9

Chapter 2. Related work

Common corruptions and nuisances One of the most broadly studied distribution
shifts are those resulting from the different types of visual distortions, or nuisances, that
can synthetically/artificially happen on the images (i.e., during acquisition or processing
of the images, or through artificial occlusions). Note, that, it is important to focus on
cases where the distortions do not alter the semantic information of the images. For
instance, although deep networks are relatively robust to small random noise [42, 43],
they can still change their decision for larger random noise regimes, despite the fact
that the image semantics are preserved. In particular, as shown in [44, 45], although
the human visual system can be quite robust to different visual distortions (e.g., strong
Gaussian noise or blurs), deep networks are not. And even if the classifiers are trained
(i.e., through data augmentation) to be robust to some specific distribution shift (i.e.,
distortions introduced with Gaussian noise), they tend to overfit to that specific shift
and perform poorly on other type of distortion types [45].

Apart from the different types of additive noise or blur [46, 47], the generalization of deep
classifiers can also be affected by the existence of different types of nuisances in the data
distribution. For instance, deep classifiers can exhibit a very low robustness to slight
combinations of translations and rotations of the images [2, 48]. In general, measuring
the robustness of a classifier on every possible corruption or nuisance is an ill-posed
problem that lacks a formal description. For this reason, the research community has
developed multiple standardized benchmarks to measure the robustness of classifiers to
different distribution shifts, such as (i) common corruptions (e.g., noises, blurs, weather
effects, digital transforms, spectral transforms) [1, 49], (ii) naturally captured blurry
images [37], or (iii) visual artistic renditions [37].

Inductive and distribution biases Beyond standard corruptions or nuisances, deep
networks might have problems generalizing to other types of distribution shifts, where
one should not consider what the networks “have not seen”, but rather what they “have
already seen” or how they learn to generalize. Hence, we have to focus on the different
types of (inductive) biases that deep classifiers have, or inherit from the data. For
instance, the large accuracy drop on newly collected unseen images (new test set) that
was observed in [5] has been later found to be mainly caused by some statistical bias
introduced during the collection/replication of the new dataset [50]. Another example of
bias that can cause a generalization drop is the image resolution discrepancy between
train and test time [51]: if random resize and crop applied during training generate
images where the objects are larger, then the classifier might not perfectly generalize to
test images of smaller objects.

Apart from data- or user-induced biases, the inductive bias of the architecture and/or
the learning algorithm can also cause problems in generalizing to different distribution
shifts. The authors in [52] showed that CNNs are more biased towards the texture
rather than the shape of visual objects, and that they exhibit a significant accuracy drop
when the texture changes or is totally absent (i.e., edge-based images or silhouettes).

10

2.1 Robustness to distribution shifts

Furthermore, the authors in [4] showed that deep networks learn spurious background
features rather than focusing on the actual object, hence irrelevant background changes
result in quite low accuracy. Additionally, the authors in [3] showed that Gaussian data
augmentation and adversarial training, bias the model towards low-frequency information,
which increases its robustness to high-frequency changes but makes it more vulnerable
to low-frequency distortions. Furthermore, the authors in [53] and [54] showed that deep
classifiers have a very strong inductive bias on fitting the data along specific directions,
and that they cannot generalize to data where the information is not aligned with these
directions. Finally, a recent study in [55] has assigned the low robustness properties of
deep networks to the problem of shortcut learning, where the classifier learns some “easy”
features (i.e., background information) for specific objects, but those features are not
representative and generalizable for the actual object class.

2.1.2 Improving robustness to distribution shifts

Additional training data One straightforward approach to improve the robustness
of deep networks to natural distribution shifts, consists in increasing the size of the
training set by collecting new samples. However, this technique might be impractical,
since training on huge datasets requires a lot of computational power, while for many
tasks the amount of available data can be quite scarce. In particular, the authors in [56]
showed that exploiting unlabelled data in combination with knowledge distillation can
improve the generalization of a classifier to natural distribution shifts and corruptions.
Furthermore, the authors in [7] demonstrated through a big testbed that using more data
was the only technique that consistently led to better robustness on multiple distribution
shifts. Interestingly, though, they observed that some models did not have any robustness
benefits, since the are limited in exploiting further information from additional data (i.e.,
due to limited capacity).

Data augmentation The most common technique for improving the robustness
to image distortions/transformations and nuisances, is to artificially increase the size
and variability of the training set through data augmentation. The most standard
augmentation is to apply a random horizontal flip and crop on the training image, in
order to train classifiers so that they are invariant to the horizontal orientation and
location of the object, which can also be beneficial for handling occlusions. For the latter,
typical methods randomly mask part of the input [57, 58] in order to force the network
to focus on different image features and become robust to occlusions. Other methods
that prevent the network from overfitting to specific image features replace parts of the
image with crops of another image [59, 60] or synthesize a new image as an interpolation
of two images [61, 62]. Note here that such techniques necessarily require the use of soft
labels during classification. Also, the texture-shape bias introduced in Sec. 2.1.1 can be
avoided by training the classifier on a “’stylized” version of the dataset, such that the
classifier becomes invariant to the actual texture of the object [52].

11

Chapter 2. Related work

Another line of research has managed to increase the generalization performance of
image classifiers by exploiting during training a set of different spatial (e.g., translations,
rotations), color (e.g., brightness), and spectral (e.g., sharpness) image transforma-
tions [63, 64]. When properly combined with a mixing strategy, such transformations
during training have been later shown to be quite beneficial in improving the robustness
of classifiers to different corruption benchmarks [36]; especially if the mixing is performed
in an adversarial (worst-case) way [65]. Nevertheless, such transformations work well on
small benchmarks (i.e., CIFAR-10) but do not perform equally well on higher-dimensional
datasets. For this reason, the research community has proposed to address these limita-
tions (i) either with more complex methods that use large autoencoders for generating
more diverse augmentations [37, 38] or “denoise” the data [66], or (ii) with the creation
of multi-view networks in the spectral domain for learning invariant representations of
the data [67]. Nevertheless, such methods can be conceptually – and computationally –
complex, which prevents from pinpointing their elements that actually contribute to the
overall robust.

Adversarial training has also been used as a data augmentation method for improving the
robustness of image classifiers to different non-adversarial corruptions. The authors in [68]
proposed an adversarial training scheme that uses noise generated from uncorrelated
distributions that maximize the classification loss. The authors in [69] studied theoretically
and empirically the settings in which adversarial training improves robustness to out-of-
distribution samples, while the authors in [29] analyzed the effectiveness of standard ℓp

adversarial training against common image corruptions, and proposed a relaxation of
adversarial training in the embedding space [70].

Architecture choice Finally, it is important to mention that the deep network
architecture plays an important role in the robustness to distribution shifts. For instance,
compressing through pruning a standard CNN can significantly improve its robustness to
common corruptions [71]. In addition, Vision Transformers [72] have been shown to be
more robust to common corruptions of their data compared to standard CNNs [73, 74],
when trained on very large data regimes, i.e., ImageNet-21K [75]. This is due, in part,
to their different inductive bias [74]. Besides, performing properly tailored variants of
adversarial training on ViTs can further boost their robustness to common corruptions [76,
77].

2.2 Robustness to adversarial perturbations

2.2.1 Evaluating robustness to adversarial perturbations

Additive adversarial perturbations The most widely studied way of measuring the
adversarial robustness of deep networks is through the use of ℓp-norm additive adversarial
perturbations. These perturbations were first introduced in [9] and were computed using

12

2.2 Robustness to adversarial perturbations

a box-constrained L-BFGS algorithm, which is a simple method but not scalable to high
dimensional image classification tasks. Nevertheless, computing adversarial examples is
as fast and easy as slightly moving the image along the direction of the gradient of the
loss function. That was initially shown with the FGSM algorithm [10], which inspired
the creation of multiple gradient-based adversarial attacks that either solve Eq. (1.1)
for a given perturbation budget ε [25, 78, 79], or compute the minimal adversarial
perturbation of Eq. (1.2) that changes the decision of the classifier [11, 32, 80, 81]. Note
here that one quite particular case is the so-called universal perturbation, which is a single
perturbation that can be applied to every image and still change the classifier’s decision
with high probability [12]. Another interesting case is the construction of ε-constrained
adversarial perturbations (input space) that minimize the distance between specific
internal representations of the network [82].

In some applications, evaluating the robustness of classifiers to perturbations with certain
properties, such as sparsity, may be required. Sparse perturbations represent a very special
case, since they are constrained to non-standard ℓp norms, such as p = 0. Interestingly,
the vulnerability of deep classifiers is extreme, since they can rather easily “break” by
perturbing just a single or a few pixels of the image [31, 32, 33, 83, 84]. However, finding
such perturbations is an NP-hard problem and computationally expensive, and some of
the existing methods cannot scale in very high-dimensional datasets.

Another interesting type of structured perturbations is that of the subspace-constrained
perturbations, which were first studied in [42]. Such perturbations can be constrained to
any desired subspace, i.e., different frequency bands defined by the Fourier basis, and can
shed light onto multiple spectral properties of deep networks. In particular, it has been
shown that deep classifiers are more sensitive to low-frequency perturbations, compared
to their high-frequency counterparts [85]. Furthermore, low-frequency perturbations can
be more effective even against adversarially trained models [86, 87], while they have also
been exploited to design more efficient black-box attacks [88, 89, 90]. That is, adversarial
attacks where the adversary has access only to the output of the classifier.

Non-additive adversarial perturbations Beyond additive perturbations, one can
think of more sophisticated ways to construct adversarial examples. For instance,
the robustness of deep classifiers to adversarial geometric transformations is studied
in [2, 21, 48], where image classifiers are shown to be very vulnerable to small rotations,
translations and affine transformations. Furthermore, some works have evaluated the
robustness of deep classifiers to other adversarial perturbation regimes such as color
transformations [22, 91, 92], occlusions [23, 93, 94], and deformations [20, 94].

Black-box settings Finally, for the sake of completeness, note that the robustness of
deep networks can be evaluated in black-box settings, where the only available information
during the construction of the adversarial examples is represented by the predictions or
the class probabilities of the network. This scenario is quite realistic and many methods

13

Chapter 2. Related work

have been proposed for computing black-box adversarial perturbations [95, 96, 97, 98, 99].
However, this is mainly a security concern, which is not the main scope of this thesis.

2.2.2 Improving robustness to adversarial perturbations

Adversarial training The most standard way for building classifiers that are robust
to adversarial examples is the so-called adversarial training, which can be seen as a type
of data augmentation that replaces the clean images with their adversarial examples
during training. Adversarial training was early introduced together with the first methods
for computing adversarial examples [9, 10, 11]. One of the risks of using adversarial
training is that it can cause the classifier to overfit to specific types of adversarial
examples (i.e., generated with FGSM). One can avoid this issue if the algorithm that
generates adversarial perturbations is selected properly. In this sense, the scheme that
seems to consistently result into more robust classifiers against a variety of adversarial
attacks is the one proposed in [25], which generates adversarial examples using the PGD
algorithm [100]. This algorithm maximizes the classifier’s loss within a ball of specific
radius around the data samples. An alternative, as shown recently [70], would be to
perform adversarial training with adversarial examples that maximize the classifier’s loss,
but at the same time constrain the adversarial representations of the classifier to be close
to the original representations. This technique has been shown to build classifiers that are
more robust to a variety of adversarial attacks that also extend beyond ℓp-norm settings.
Nevertheless, the main problem with adversarial training is that it is computationally
expensive, and the main focus of current adversarial training schemes is to achieve similar
or higher robustness, but at a lower cost [101, 102].

Regularization In order to avoid the computational cost of adversarial training, many
works have focused on increasing the stability of the classifiers through different types of
regularization. The authors in [103] proposed to smooth the norm of the gradient at each
layer of the classifier, while other works have attempted to improve the robustness by
regularizing the input gradient or the full Jacobian [104, 105, 106]. Furthermore, it has
been shown that, second-order regularization techniques that penalize the curvature of
the input loss function [107, 108, 109] result into classifiers that exhibit robustness similar
to adversarial training. Lately, some works have focused on penalizing the curvature
of the loss landscape in the weight space to improve robustness [110], and others that
improve the stability of adversarial training by imposing constraints between the clean
and noisy input gradients [111].

Note here, that, reducing the curvature of the input loss landscape to create more robust
models can also be exploited to achieve robustness with guarantees, i.e., theoretical
certificates that demonstrate a specific level of robustness for a given neural network.
Indeed, certifiable adversarial defenses, like randomized smoothing [112, 113, 114], also
implicitly regularize curvature by averaging the decision of a classifier on randomly

14

2.3 Understanding deep learning through robustness

perturbed samples. This way, one effectively convolves the loss landscape of a classifier
with the probability density function of the perturbation distribution, hence, reducing the
mean curvature of the loss landscape and smoothing the input geometry of the classifier.

2.3 Understanding deep learning through robustness

Geometric insights Although the lack of robustness in deep networks raises serious
concerns regarding their security and trustworthiness, the whole process of evaluating and
improving their robustness has revealed many important properties of deep learning. The
first benefit of adversarial perturbations is that they enable us to study the local geometry
of the decision boundaries [18] and obtain multiple insights regarding the topology and the
geometry of the decision regions [115]. Furthermore, it has been shown that adversarial
perturbations span a low-dimensional subspace of the input space [116, 117], and that
such subspaces of different networks are also aligned, which can justify the transferability
properties of adversarial examples across neural networks [116]. In addition, it has been
observed that adversarial perturbations can exist in multiple directions [42, 115, 116]
and by studying these different perturbations one can reveal geometric properties such
as flatness and curvature of the decision boundaries. In fact, adversarial directions are
mostly assigned to curved decision boundaries, and universal adversarial perturbations
correspond to those shared curved directions [117]. Moreover, it has been observed that
adversarial training creates decision boundaries that lie further away from most data
samples [11] and with lower curvature compared to standard models [107], which justifies
why regularization methods improve the robustness of deep networks. Nevertheless, the
fact that the decision boundaries exhibit a low mean curvature might in some cases
increase the vulnerability of deep networks, since this “flatness” property can exploited
as a prior for designing better adversarial attacks [89, 90, 118].

Connection to data features In deep learning, the networks are supposed to find
“good” features of the training data, for a given learning task. It thus means that the key
to the success of deep learning is the choice of features exploited by a neural network,
and adversarial examples are actually correlated with such features. In particular,
the authors in [34] showed that adversarial perturbations span a low-dimension but
highly discriminative subspace of the input, and that deep networks exploit simple and
brittle features of the dataset, i.e., non-robust features that are aligned with adversarial
perturbations. Furthermore, this was also supported by the authors in [35]. They showed
that training on adversarial examples and with the corresponding adversarial labels,
results into classifiers that achieve non-trivial accuracy on the original unmodified dataset.
This means that, the only way that the network trained on the adversarial samples can
generalize to the unmodified test set, is by exploiting the non-human-aligned features
introduced by the adversarial perturbations themselves, i.e., the non-robust features.
On the other hand, it has been shown that adversarially trained (robust) classifiers
learn features that correlate better with semantically meaningful features of the input

15

Chapter 2. Related work

images [27, 119, 120, 121]. In this sense, one can actually use the (robust) representations
of these models as effective primitives for semantic image manipulations, in order to
perform complex tasks such as image generation or inpainting [119].

Generalization Adversarial training filters out the non-robust spurious features which,
however, would typically be used by the network to achieve good accuracy on the test set.
The effect of this is reflected on the so-called robustness/accuracy tradeoff [26, 27, 122],
while it also justifies the empirical observation that one needs more data to generalize
when adversarial training is used [123]. In practice, it has also been shown that adding
more data into the adversarial training process can improve robustness and decrease
the generalization gap [124, 125, 126]. On the contrary, humans are not susceptible to
adversarial perturbations, suggesting that they do not exploit non-robust features [127].
Hence, it is argued that deep networks should also be able to achieve good generalization
by using only robust features [128, 129]. Some theoretical results indicate that there
exist at least some synthetic distributions in which adversarial robustness and accuracy
are positively correlated [130, 131]. In fact, it has been recently shown that adversarial
robustness and generalization are tightly close, and that the gap between the data samples
and the decision boundary (minimal adversarial perturbations) can be used to predict
the test accuracy [132, 133].

Dynamics of learning and inductive bias Finally, by tracking the evolution of
adversarial perturbations during training, one can reveal different inductive biases
and geometric properties of deep networks. For instance, the inductive bias of deep
networks towards invariance has recently been argued to be prejudicial for classification
as it can decrease the alignment between our human perception and the network’s
decisions [134, 135]. This happens because adversarial training forces the networks
to latch onto overly-robust features of the training set that are not human-aligned.
Furthermore, in the deep learning community it is a common belief that neural networks
are relatively immune to overfitting [136]. Indeed, the train and the validation losses of
a neural network during training are clearly decreasing. Nevertheless, with adversarial
training, it has recently been shown that the best robustness in the validation set is
consistently found at the middle stages of training [137]. This confirms that adversarially
trained neural networks have a tendency to overfit to the adversarial examples observed
during training. This phenomenon is known as robust overfitting, and it has recently been
shown to be one reason for some of the reported differences between different adversarial
defenses. In fact, the state-of-the-art adversarial training technique uses early-stopping
to obtain the best robustness results [138].

2.4 Summary

We summarize the main points of this chapter, in the light of the contributions of this
thesis and upcoming challenges:

16

2.4 Summary

• Deep image classifiers are extremely vulnerable to adversarial manipulations of their
input samples. Different methods have been developed to assess their robustness
properties, even in very challenging settings where the perturbations are governed
by sparsity constraints. However, such methods are computationally expensive,
thus rendering them impractical for high-dimensional datasets. One of the goals of
this thesis is to provide a fast and scalable method for evaluating the robustness
of deep networks to sparse adversarial perturbations. This will allow to analyze
potential correlations between the spatial location of the perturbed sparse pixels
and the semantic features of the images.

• The role of data in the generalization and robustness properties of deep classifiers,
and the mechanisms that drive the networks to learn or ignore specific image
features are not fully understood yet. We here provide a framework that connects
the local geometry of the decision boundaries with the features of the dataset, and
demonstrate that adversarial training exploits the invariance bias of deep networks
and their sensitivity to the position of the training samples for building robust
classifiers.

• Deep networks are not only vulnerable to adversarial manipulations, but they
also exhibit poor robustness to common corruptions of their data. For improving
this vulnerability, prior works have mostly focused on increasing the complexity
of their training pipelines in the name of diversity, making it hard to pinpoint
which elements of these methods meaningfully contribute to the overall robustness.
In this thesis, we formulate a model for characterizing semantically-preserving
image corruptions, and propose a principled and simple approach that is based
on a mixture of few transformation primitives to confer robustness to common
corruptions.

17

3 Sparse adversarial perturbations
and image features

“It is the little bits of things that fret and worry us.
We can dodge an elephant, but we can’t dodge a fly.”

— Josh Billings

3.1 Introduction

Most of the existing methods in the adversarial robustness literature compute ℓp-norm
adversarial perturbations for p ∈ {2,∞}. However, understanding the vulnerabilities
of deep neural networks in non-standard ℓp regimes is also important. In particular,
sparse perturbations for p ∈ {0, 1} are quite interesting, since their localized nature can
reveal important parts of the image that such perturbations exploit [139]. Prior works
on sparse perturbations change the pixels either based on their saliency score [31], or
using evolutionary algorithms [33], or with greedy local search algorithms [83]. In general
though, computing sparse adversarial perturbations with minimal ℓ0 norm is an NP-hard
problem, and current algorithms are all characterized by high complexity and can hardly
scale to high-dimensional datasets. Hence, a fast and accurate method for computing
sparse perturbations is still needed to easily analyze different robustness properties of
image classifiers.

In this chapter, we propose SparseFool, a geometry inspired algorithm that exploits
the low mean curvature of the decision boundaries to linearize the sparsity constraints,
and thus compute adversarial perturbations efficiently. We show through extensive
evaluations that (i) our method computes sparse perturbations much faster than the

Part of this chapter has been published in
“SparseFool: A few pixels make a big difference”. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2019 [140].

19

Chapter 3. Sparse adversarial perturbations and image features

existing methods, and (ii) it can scale efficiently to high dimensional datasets. We further
propose a method to control the magnitude of the perturbation applied on every pixel –
and hence the perceptibility of the resulting perturbation –, while retaining the levels of
sparsity and complexity. We analyze visually the image features affected by our attack,
and show the existence of some shared semantic information across different images and
networks, which suggests a strong correlation between adversarial examples and the
semantic features of the images. Finally, we show that classifiers that are adversarially
trained with ℓ∞ perturbations are not robust to sparse perturbations, which indicates
that the image features that are related to ℓ1 perturbations are different from those of
ℓ∞ perturbations.

The rest of the chapter is organized as follows: in Sec. 3.2, we describe the challenges for
computing minimal sparse adversarial perturbations, and provide an efficient method that
linearizes the initial optimization problem to obtain an approximate solution. In Sec. 3.3
we evaluate our algorithm on multiple datasets and networks, and perform comparisons
with other state-of-the-art methods. Finally, in Sec. 3.4 we analyze empirically the
resulting perturbations and demonstrate visual correlations between the perturbed pixels
and the semantic information of the images.

3.2 Minimal sparse adversarial perturbations

3.2.1 Sparsity constraints

Recall from Sec. 1.2 that minimal adversarial perturbations are defined as

argmin
δ
∥δ∥p

s.t. F (x) ̸= F (x + δ)
δ ∈ C,

(3.1)

where f : RD → RK is the final layer of a neural network (i.e., logits), such that, for any
input x ∈ RD, F (x) = argmaxkfk(x) represents the decision of that network, with fk(x)
denoting the kth component of f(x) that corresponds to the kth class.

Most of the existing adversarial algorithms solve Eq. (3.1) for p = 2 or ∞, resulting
in dense but imperceptible perturbations. For the case of sparse perturbations, the
goal is to minimize the number of perturbed pixels required to fool the network, which
corresponds to minimizing ∥δ∥0. Unfortunately, this is an NP-hard problem, for which
reaching a global minimum cannot be guaranteed in general [141, 142, 143]. There exist
different methods [143, 144] to avoid the computational burden of this problem, with the
ℓ1 relaxation being the most common: the minimization of ∥δ∥0 under linear constraints

20

3.2 Minimal sparse adversarial perturbations

can be approximated by solving the corresponding convex ℓ1 problem [145, 146, 147]1.

DeepFool [11] is an algorithm that exploits such a relaxation, by adopting an iterative
procedure that includes a linearization of the classifier at each iteration, in order to
estimate the minimal adversarial perturbation δ. Specifically, at each iteration i, the
classifier f is linearized around the current point x(i), the minimal perturbation δ(i) (in
an ℓ2 sense) is computed as the projection of x(i) onto the linearized hyperplane, and
the next iterate x(i+1) is updated. Such a linearization procedure could actually be used
to solve Eq. (3.1) for p = 1, so as to obtain an approximation to the ℓ0 solution. In fact,
by generalizing the projection to any ℓp norm, ℓ1-DeepFool provides an efficient way for
computing sparse adversarial perturbations using the ℓ1 projection.

Although the ℓ1-DeepFool efficiently computes sparse perturbations, it does not explicitly
respect the validity of the adversarial image values; that is C = {δ : x + δ ∈ [0, 255]D}
in Eq. (3.1). For ℓ2 and ℓ∞ perturbations, almost every pixel of the image is typically
distorted with noise of small magnitude. Hence, one can practically “ignore” such
constraints [10, 11] since it is unlikely that many pixels will be out of their valid range;
and even then, clipping the invalid values after the computation of such adversarial
images could have a minor impact. This, however, is not the case for sparse perturbations,
which typically result in a few distorted pixels but of high-magnitude perturbation, and
clipping the values after computing the adversarial image can have a significant impact
on the success of the attack.

We investigate the effect of such clipping operation on the quality of adversarial per-
turbations generated by ℓ1-DeepFool. For example, with perturbations computed for a
VGG-16 [151] trained on ImageNet [152], we observed that ℓ1-DeepFool achieves almost
100% of fooling rate by perturbing only 0.037% of the pixels on average. However,
clipping the pixel values of adversarial images to [0, 255] results in a fooling rate of merely
13%. Furthermore, incorporating the clipping operator inside the iterative procedure of
the algorithm does not improve the results. In other words, ℓ1-DeepFool fails to properly
compute sparse perturbations. This underlies the need for an improved attack algorithm
that natively takes into account the validity of generated adversarial images, as proposed
in the next sections.

3.2.2 Linearization and boundary approximation

Based on the above discussion, minimal sparse perturbations should be obtained as

argmin
δ
∥δ∥0

s.t. F (x) ̸= F (x + δ)
l ≼ x + δ ≼ u,

(3.2)

1Under some conditions, the solution of such approximation is indeed optimal [148, 149, 150].

21

Chapter 3. Sparse adversarial perturbations and image features

x

B

xB

w

v

F(x) = 1

F(x) = 1

Figure 3.1: The approximated decision boundary B in the vicinity of the datapoint x
that belongs to class F (x) = 1. B can be seen as a one-vs-all linear classifier for class 1.

where l, u ∈ RD denote the lower and upper bounds of the values of x + δ, such that
li ≤ xi + δi ≤ ui, i = 1 . . . D.

To find an efficient relaxation to Eq. (3.2), we focus on the geometric characteristics of
the decision boundary, and specifically on its curvature. It has been shown [18, 34, 115]
that the decision boundaries of state-of-the-art deep networks have a quite low mean
curvature in the neighborhood of data samples. In other words, for a datapoint x and
its corresponding minimal ℓ2 adversarial perturbation v, the decision boundary at the
vicinity of x can be locally approximated by a hyperplane passing through the datapoint
xB = x+v, and a normal vector w (see Fig. 3.1 for an illustration). Hence, by exploiting
this property we can relax Eq. (3.2) so that sparse adversarial perturbations are computed
by solving the following ℓ1 box-constrained optimization problem

argmin
δ
∥δ∥1

s.t. wT
(
(x + δ)− xB

)
= 0

l ≼ x + δ ≼ u.

(3.3)

For solving Eq. (3.3), simply computing the ℓ1 projection of x onto the approximated
hyperplane does not guarantee a solution. For a perturbed image, consider the case
where some of its values exceed the bounds defined by l and u. Thus, by readjusting the
invalid values to match the constraints, the resulted adversarial image may eventually not
lie onto the approximated hyperplane. For this reason, we propose an iterative procedure,
where at each iteration we project only towards one single coordinate of the normal vector
w at a time. If projecting x towards a specific direction does not provide a solution,
then the perturbed image at this coordinate has reached its extrema value. Therefore, at
the next iteration this direction should be ignored, since it cannot contribute any further
to finding a better solution.

Formally, let S be a set containing all the directions of w that cannot contribute to the

22

3.2 Minimal sparse adversarial perturbations

Algorithm 1: LinearSolver
Input: image x, normal w, boundary point xB , projection operator Q.
Output: perturbed point x(i)

1 Initialize: x(0) ← x, i← 0, S = {}
2 while wT (x(i) − xB) ̸= 0 do
3 δ ← 0
4 d← argmax

j /∈S

|wj |

5 δd ←
|wT (x(i) − xB)|

|wd|
· sign(wd)

6 x(i+1) ← Q(x(i) + δ)
7 S ← S ∪ {d}
8 i← i + 1
9 end

10 return x(i)

minimal perturbation anymore. Then, the perturbation δ is updated through the ℓ1
projection of the current perturbed iterate x(i) onto the estimated hyperplane as

δd ←
|wT (x(i) − xB)|

|wd|
· sign(wd), (3.4)

where d is the index of the maximum absolute value of w that has not already been used

d← argmax
j /∈S

|wj |. (3.5)

Before proceeding to the next iteration, we must ensure the validity of the values of the
next iterate x(i+1). For this reason, we use a projection operator Q(·) that readjusts
the values of the updated point that are out of bounds, by projecting x(i) + δ onto
the box-constraints defined by l and u. Hence, the new iterate x(i+1) is updated as
x(i+1) ← Q(x(i) +δ). Note here that the bounds l, u are not limited to only represent the
dynamic range of an image, but can be generalized to satisfy any similar restriction. For
example, as we will describe later in Sec. 3.3, they can be used to control the perceptibility
of the computed adversarial images.

The next step is to check if the new iterate x(i+1) has reached the approximated hyperplane.
Otherwise, it means that the perturbed image at the coordinate d has reached its extrema
value, and thus we cannot change it any further; perturbing towards the corresponding
direction will have no effect. Thus, we reduce the search space by adding the direction d to
the forbidden set S, and repeat the procedure until we reach the approximated hyperplane.
The algorithm for solving the linearized problem is summarized in Algorithm 1.

Finally, in order to complete our solution we focus on the linear approximation of the

23

Chapter 3. Sparse adversarial perturbations and image features

decision boundary. Recall that we need to find a boundary point xB, along with the
corresponding normal vector w. Finding xB is analogous to computing (in a ℓ2 sense)
the minimal adversarial example of x. Recall that DeepFool iteratively moves x towards
the decision boundary, and stops as soon as the perturbed data point reaches the other
side of the boundary. Therefore, the final point usually lies very close to the decision
boundary, and thus, xB can be very well approximated by x + δDF, with δDF being
the ℓ2-DeepFool perturbation. Let us describe the decision boundary between the class
assigned to xB, F (xB), and any other class F (x), by considering the zero level set of f

B =
{

x : fF (xB)(x)− fF (x)(x) = 0
}

.

Using a first-order Taylor expansion at xB, the decision boundary can be expressed as

fF (xB)(xB) +∇fF (xB)(xB)T (x− xB)− fF (x)(xB)−∇fF (x)(xB)T (x− xB) = 0.

Since xB lies very close to the decision boundary, then fF (xB)(xB) ≈ fF (x)(xB) and(
∇fF (xB)(xB)T −∇fF (x)(xB)T

)
(x− xB) = 0.

We can then define the estimated normal vector w to the decision boundary as

w := ∇fF (xB)(xB)−∇fF (x)(xB), (3.6)

Hence, the decision boundary can now be approximated through the affine hyperplane
B ≜

{
x : wT (x − xB) = 0

}
, and sparse adversarial perturbations are computed by

applying Algorithm 1.

3.2.3 SparseFool

However, although we expected a single-step solution, in many cases the algorithm did
not fool the classifier. This is due to the fact that the decision boundaries of the networks
are only locally flat. Thus, if the ℓ1 perturbation moves the datapoint x away from the
flat area, then the perturbed point will not reach the other side of the decision boundary.

We mitigate this convergence issue with an iterative method, namely SparseFool, where
each iteration includes the linear approximation of the decision boundary. Specifically,
at iteration i, the boundary point x

(i)
B and the normal vector w(i) are estimated using

ℓ2-DeepFool based on the current iterate x(i). Then, the next iterate x(i+1) is updated
through the solution of Algorithm 1, having though x(i) as the initial point. The algorithm
terminates when x(i) changes the label of the network. An illustration of SparseFool is
given in Fig. 3.2, and the algorithm is summarized in Algorithm 2.

In our experiments, we observed that instead of using the boundary point x
(i)
B at the step

24

3.2 Minimal sparse adversarial perturbations

x(0)

x(1)

x(2)

x
(0)
B

x
(1)
B

Figure 3.2: Illustration of SparseFool algorithm. With green we denote the ℓ2-DeepFool
adversarial perturbations computed at each iteration. In this example, the algorithm
converges after 2 iterations, and the total perturbation is δ = x(2) − x(0).

Algorithm 2: SparseFool
Input: image x, projection operator Q, classifier f .
Output: perturbation δ

1 Initialize: x(0) ← x, i← 0
2 while F (x(i)) = F (x(0)) do
3 δDF = DeepFool(x(i))

4 x
(i)
B = x(i) + δDF

5 w(i) = ∇f
F (x

(i)
B

)(x
(i)
B)−∇fF (x(i))(x

(i)
B)

6 x(i+1) = LinearSolver(x(i), w(i), x
(i)
B , Q)

7 i← i + 1
8 end
9 return δ = x(i) − x(0)

6 of SparseFool, better convergence can be achieved by going further into the other side
of the boundary, and find a solution for the hyperplane passing through the datapoint
x(i) + λ(x(i)

B − x(i)), where λ ≥ 1. Specifically, as shown in Fig. 3.3, this over-shooting
parameter is used to control the trade-off between the fooling rate, the sparsity, and the
complexity. Values close to 1, lead to sparser perturbations, but also to lower fooling rate
and increased complexity. On the contrary, higher values of λ lead to fast convergence –
even one step solutions –, but the resulted perturbations are less sparse. Since λ is the
only parameter of the algorithm, it can be easily adjusted to meet the corresponding
needs in terms of fooling rate, sparsity, and complexity.

Finally, note that our approach is different from DeepFool’s. DeepFool approximates the
decision boundary by linearizing the classifier, while we rather linearize the approximated
decision boundary B. Furthermore, B is the boundary between the adversarial and

25

Chapter 3. Sparse adversarial perturbations and image features
Fo

ol
in

g
ra

te
 %

75

80

85

90

95

100

1.0 2.0 3.0 4.0 5.0 6.0
λ

M
ed

ia
n

nu
m

be
r o

f p
er

tu
rb

ed
 p

ix
el

s

1.0 2.0 3.0 4.0 5.0 6.0
λ

40

60

80

100

120

Av
er

ag
e

nu
m

be
r o

f i
te

ra
tio

ns

4

6

8

10

12

14

1.0 2.0 3.0 4.0 5.0 6.0
λ

Figure 3.3: Fooling rate, sparsity of the perturbations, and average iterations of SparseFool
for different values of λ, on 4000 images from ImageNet using an Inception-v3 [153].

the estimated true class, and thus it can be seen as an affine binary classifier. Since at
each iteration the adversarial class is computed as the closest (in an ℓ2 sense) to the
true one, we can say that SparseFool operates as an untargeted attack. Nevertheless, it
can be easily transformed to a targeted one, by simply computing at each iteration the
adversarial example – and thus approximating the decision boundary – of a target class.

3.3 Experimental evaluation

We evaluate SparseFool on deep convolutional neural network architectures with 10000
images of the MNIST [154] test set, 10000 images of the CIFAR-10 [155] test set, and
4000 randomly selected images from the ImageNet ILSVRC2012 validation set. In order
to evaluate our algorithm and compare with related works, we compute the fooling rate,
the median perturbation percentage, and the average execution time. Given a dataset D ,
the fooling rate measures the efficiency of the algorithm based on the formula∣∣x ∈ D : F (x + δx) ̸= F (x)

∣∣∣∣D ∣∣ , (3.7)

where δx is the perturbation of the image x, while the median perturbation percentage
is the median (across all images) percentage of pixels that are perturbed.

We compare SparseFool with JSMA [31]. Since JSMA is a targeted attack, we use its
“untargeted” version, where the target is chosen at random. We also make a modification
at the success condition; instead of checking if the predicted class is equal to the randomly
selected target, we simply check if it is different from the initial class. Note that JSMA
is not evaluated on ImageNet, due to its huge computational cost for searching over
all pairs of candidates, as also mentioned in [32]. We also compare SparseFool with
“One-pixel attack” (1-PA) [33]. Since 1-PA perturbs exactly k pixels, for every image we
start with k = 1 and increase it till 1-PA finds an adversarial example. Again, we do not
evaluate 1-PA on ImageNet, due to its computational cost in high dimensional images.

26

3.3 Experimental evaluation

Dataset Network Acc. (%) Fooling rate (%) Perturbation (%) Time (sec)
SF JSMA 1-PA SF JSMA 1-PA SF JSMA 1-PA

MNIST LeNet [156] 99.14 99.93 95.73 100 1.66 4.85 9.43 0.14 0.66 310.2

CIFAR-10 VGG-19 92.71 100 98.12 100 1.07 2.25 0.15 0.34 6.28 102.7
ResNet18 [157] 92.74 100 100 100 1.27 3.91 0.2 0.69 8.73 167.4

Table 3.1: The performance of SparseFool (SF), JSMA [31], and “One-pixel attack”
(1-PA) [33] on MNIST and CIFAR-10. Due to its high complexity, 1-PA is evaluated on
only 100 samples. All the experiments conducted on a GTX TITAN X.

Network Acc. (%) Fooling
rate (%)

Pert.
(%)

Time
(sec)

VGG-16 71.59 100 0.18 5.09
ResNet-101 77.37 100 0.23 8.07

DenseNet-161 77.65 100 0.29 10.07
Inception-v3 77.45 100 0.14 4.94

Table 3.2: The performance of SparseFool on the ImageNet dataset, using the pre-trained
models provided by PyTorch [158]. All experiments were conducted on a GTX TITAN
X.

3.3.1 Performance analysis

We first evaluate the performance of SparseFool, JSMA, and 1-PA on MNIST and
CIFAR-10. The control parameter λ in SparseFool was set to 1 and 3 for the MNIST
and CIFAR-10 datasets respectively. We observe in Tab. 3.1 that SparseFool computes
2.9x sparser perturbations, and is 4.7x faster compared to JSMA for the MNIST dataset.
This behavior remains similar for the CIFAR-10 dataset, where SparseFool computes
on average perturbations of 2.4x higher sparsity, and is 15.5x faster. Notice here the
difference in the execution time: JSMA becomes much slower as the dimension of the
input data increases, while SparseFool’s time complexity remains at very low levels.

Compared to 1-PA, SparseFool computes 5.5x sparser perturbations on MNIST, and is
more than 3 orders of magnitude faster. On CIFAR-10, SparseFool still finds very sparse
perturbations, but less so than the 1-PA in this case. The reason is that our method
does not solve the ℓ0 optimization problem, but it rather computes sparse perturbations
through the ℓ1 relaxation. The solution is often sub-optimal, and may be optimal when
the image is very close to the boundary, where the linear approximation is more accurate.
However, solving the linearized problem is fast and enables our method to efficiently
scale to high dimensional data, which is not the case for 1-PA. Considering the tradeoff
between the sparsity and complexity, we choose to sacrifice the former. In fact, our
method is able to compute sparse perturbations 270x faster than 1-PA.

Finally, due to the computational cost of JSMA and 1-PA, we do not evaluate them on
ImageNet. Instead, we compare SparseFool with an algorithm that randomly selects a

27

Chapter 3. Sparse adversarial perturbations and image features

subset of elements from each color channel, and replaces their intensity with a random
value from V = {0, 255}. The cardinality of each channel subset is constrained to match
SparseFool’s per-channel median number of perturbed elements: for each channel, we
select as many elements as the median, across all images, of SparseFool’s perturbed
elements for this channel. The performance of SparseFool on ImageNet is reported in
Tab. 3.2, while the corresponding fooling rates of the random algorithm are 18.2%, 13.2%,
14.5%, and 9.6% respectively. The fooling rates obtained by the random algorithm are
far from comparable to SparseFool’s, indicating that our algorithm cleverly finds sparse
solutions. Our method is consistent among different architectures, perturbing on average
0.21% of the pixels, with an average execution time of 7 seconds per sample.

To the best of our knowledge, we are the first to provide an adequate sparse attack
that efficiently achieves such fooling rates and sparsity, and at the same time scales to
high dimensional data. 1-PA does not necessarily find good solutions for all the studied
datasets, however, SparseFool – as it relies on the high dimensional geometry of the
classifiers – successfully computes sparse enough perturbations for all three datasets.

3.3.2 Perceptibility

We now illustrate some adversarial examples generated by SparseFool for three different
levels of sparsity: highly sparse perturbations, sparse perturbations, and somewhere
in the middle. For MNIST and CIFAR-10 (Fig. 3.4a and Fig. 3.4b respectively), we
observe that for highly sparse cases, the perturbation is either imperceptible or can be
easily ignored. However, as the number of perturbed pixels increases, the distortion
becomes even more perceptible, and in some cases the noise is detectable and far from
imperceptible. A similar behavior is also observed for the ImageNet dataset (Fig. 3.5).

To eliminate this perceptibility effect, we focus on the lower/upper bounds of the values of

7 7 9

6 3 2

8 8 2

(a) MNIST

dog dog cat

car car truck

bird deer truck

(b) CIFAR-10

Figure 3.4: SparseFool adversarial examples for (a) MNIST and (b) CIFAR-10. Each
column corresponds to different level of perturbed pixels.

28

3.3 Experimental evaluation

cockroach palace bathtub

sandal wine bottle bubble

Figure 3.5: SparseFool adversarial examples for ImageNet. Each column corresponds to
different level of perturbed pixels. The fooling labels are shown below the images.

the adversarial image x̂ = x + δ. Recall from Sec. 3.2.2 that the bounds l, u are defined
such that li ≤ x̂i ≤ ui, i = 1 . . . D. If these bounds represent the dynamic range of the
image, then x̂i can take every possible value from this range, and the magnitude of the
noise at the element i can reach visible levels. However, if the perturbed values lie close
to the original values xi, then we might prevent the magnitude from reaching very high
levels. Hence, assuming a dynamic range of [0, 255], we explicitly constrain the values of
x̂i to lie in a small interval ±α around xi, such that 0 ≤ xi − α ≤ x̂i ≤ xi + α ≤ 255.

The sparsity for different values of α is shown in Fig. 3.6. Higher values give more
freedom to the perturbations, but after α ≈ 25 the sparsity levels remain almost constant,

M
ed

ia
n

nu
m

be
r o

f p
er

tu
rb

ed
 p

ix
el

s

0 50 100 150 200 250

0

4000

8000

12000

Figure 3.6: The resulted sparsity of SparseFool perturbations for ±α around the values
of x, for 100 samples from ImageNet on a ResNet-101 architecture.

29

Chapter 3. Sparse adversarial perturbations and image features

xi ± 255

amphibian
(0.227%)

xi ± 30

amphibian
(1.058%)

xi ± 10

amphibian
(4.296%)

Arabian camel
(0.169%)

Arabian camel
(0.839%)

Arabian camel
(3.202%)

Figure 3.7: The effect of α on the perceptibility and the sparsity of SparseFool perturba-
tions. The values of α are shown on top of each column, while the fooling label and the
percentage of perturbed pixels are written below each image.

suggesting that we do not need the whole dynamic range. Furthermore, we observed that
the average execution time per sample of SparseFool from this value onward remains
constant as well, while the fooling rate is 100% regardless α. Thus, by properly selecting
α, we can control the perceptibility of the perturbations and retain sparsity at a sufficient
level. The influence of α on the perceptibility and sparsity is demonstrated in Fig. 3.7.

3.4 Analysis of sparse perturbations

3.4.1 Shared semantic features

We now analyze different properties of the perturbations generated with SparseFool.
We first investigate if the perturbations transfer across different architectures. For the
VGG-16, ResNet-101, and DenseNet-161 architectures, we report in Table 3.3 the fooling
rate of each model when fed with adversarial examples generated for another one. We
observe that sparse perturbations can generalize only to some extent, and that they are
more transferable from larger to smaller architectures. This indicates that there should
be some shared semantic information between different architectures that SparseFool
exploits, but the exact structure of the perturbations is mostly network dependent.

30

3.4 Analysis of sparse perturbations

VGG16 ResNet101 DenseNet161
VGG16 100% 10.8% 8.2%
ResNet101 25.3% 100% 12.1%

DenseNet161 28.2% 17.5% 100%

Table 3.3: Fooling rates of SparseFool perturbations between pairs of models for 4000
samples from ImageNet. Row/column denote the source/target model respectively.

(a) VGG-16 (b) ResNet-101 (c) DenseNet-161

Figure 3.8: Shared information of SparseFool perturbations across three different networks.
For all networks, the first row image was classified as “Chihuahua” and misclassified as
“French Bulldog”, and second row image as “Ostrich” and “Crane” respectively.

We inspect some animal categories of the ImageNet dataset and examine if semantic
information is shared across different architectures (Fig. 3.8). For all networks, the
perturbation consistently lies around the important – from a human perspective – areas
(i.e., head) of the image, but the way it concentrates or spreads differs for each network.
One could say that this is different from dense (p ∈ {2,∞}) perturbations, which exploit
more shared input directions and hence have higher transferability. In this sense, we
can say that sparse perturbations are identifying directions that align well with human
intuition, but at the same time are more unique to each architecture.

For the CIFAR-10 dataset, we observe that in many cases of animal classes, SparseFool
tends to perturb some common features around the area of the head (i.e., eyes, ears,
nose, mouth etc.), as shown in Fig. 3.9a. Furthermore, we tried to understand if there is
a correlation between the perturbed pixels and the fooling class. Interestingly, as shown
in Fig. 3.9b, we observe that in many cases the algorithm perturbs those regions of the
image that correspond to important features of the fooling class, i.e., when changing a

31

Chapter 3. Sparse adversarial perturbations and image features

cat dog dog

dog dog cat

cat cat deer

(a) Common features

cat deer plane

plane deer deer

deer deer deer

(b) Fooling class features

Figure 3.9: Semantic information of SparseFool perturbations for the CIFAR-10 dataset,
on a ResNet-18. Observe that the perturbation is concentrated (a) on some features
around the area of the face, or (b) on areas that are important for the fooling class.

“bird” label to a “plane”, where the perturbation seems to resemble some parts of the
plane (i.e., wings, tail, nose, turbine). This behavior becomes even more evident when
the fooling label is a “deer”, where the noise lies mostly around the area of the head in a
way that resembles the antlers.

3.4.2 Exclusiveness of adversarial robustness

Finally, we want to understand to what extent sparse perturbations can be “covered”
by dense perturbations of larger ℓp regimes, when building robust classifiers. To this
end, we perform adversarial training on a ResNet-18 on the CIFAR-10 dataset, using
ℓ∞ perturbations of ε = 8/255 crafted with the PGD attack, as described in [25]. Note
that these are the most commonly used settings for building more robust classifiers.
The accuracy of this more robust model on the CIFAR-10 test set is 82.17%. Then, we
compute the adversarial examples for this model using SparseFool and we measure the
fooling rate, median perturbation percentage, and average execution time.

Compared to the results of Tab. 3.1, the fooling rate is still 100%. Regarding the average
execution time, it dropped from 0.69 to 0.3 sec, which means that it is “easier” to fool
the more robust model compared to the original one. This behaviour can be explained
by the fact that adversarially trained classifiers have decision boundaries of very small
curvature [107], hence the linear approximation of SparseFool is better.

On the other hand, although the perturbation percentage increased from 1.27% to 2.44%,
SparseFool is still able to compute very sparse perturbations compared to ℓ∞ ones, which
perturb almost 100% of the pixels. This result indicates that the effect of ℓ1 and ℓ∞

32

3.5 Conclusions

perturbations on the robustness of the networks is somehow “mutually exclusinve”. This
also suggests that the image features exploited by ℓ1 perturbations are different from
those of ℓ∞ ones, and that building classifiers that are robust to a specific ℓp regime does
not guarantee robustness to other regimes.

3.5 Conclusions

In this chapter, we proposed a novel geometry-inspired algorithm to compute sparse
adversarial perturbations. In order to avoid the NP-hardness of minimizing the ℓ0 norm
to compute sparse perturbations, we focused on finding an efficient relaxation. To this
end, we exploited the low mean curvature of the decision boundaries in the vicinity of
the data samples and designed an iterative method that we coin SparseFool. At each
iteration SparseFool performs a linear approximation of the decision boundary and solves
the simpler ℓ1 box-constrained problem to compute sparse adversarial perturbations.

We experimentally demonstrated that SparseFool computes very sparse perturbations,
is by orders of magnitude faster than existing methods, and can easily scale to high-
dimensional datasets. Furthermore, it incorporates a simple technique to improve the
perceptibility of the perturbations, without sacrificing either sparsity or complexity.

By visually inspecting the generated adversarial examples, we observed that SparseFool
alters features that are shared among different images, and that in many cases the
perturbations resemble image features that are correlated with the fooling class. Finally,
we demonstrated that adversarial training with ℓ∞ perturbations does not build classifiers
that are invariant to sparse perturbations, suggesting that the image features exploited
by ℓ1 perturbations are different from those of ℓ∞ ones.

One intriguing observation comes from the visual inspection of the adversarial examples.
It actually hints that adversarial perturbations might not necessarily be a “hole” in the
system, but they might actually reflect some strong connection/correlation between the
features of the dataset and the features that the networks use for taking their decisions. In
fact, the authors in [34] showed that adversarial perturbations span a low-dimension but
highly discriminative subspace of the input, and that deep networks exploit simple and
brittle features of the dataset, i.e., non-robust features that are aligned with adversarial
perturbations. However, the potential explanations behind these connections is still an
open question. Hence, in the next chapter we investigate this question and provide a
novel framework for connecting the image features with the geometry of the decision
boundaries and the inductive biases of deep learning.

33

4 Analysis of learned features using
adversarial proxies

“An idea is always a generalization, and generalization is a property of thinking.
To generalize means to think”

— Georg Wilhelm Friedrich Hegel

4.1 Introduction

The existence of adversarial perturbations implies that the decision boundaries of deep
classifiers lie very close to any input sample, and in the previous chapter we demonstrated
that the local geometry of the decision boundaries can be used to design a novel
sparse attack. This unintuitive behaviour contradicts the common belief that classifiers
should be invariant to non-discriminative information of the data. However, using our
sparse perturbations we also revealed interesting correlations between the adversarial
perturbations and the semantic features of the images. This suggest that adversarial
examples might actually be something more than just superficial.

In fact, recent works have established that such perturbations are indeed not irrelevant
signals, but rather discriminative features of the training set [34, 35]. This has led to
the conjecture that, in most datasets, there exist both robust and non-robust features
that neural networks exploit to construct their decision boundaries. Besides, it has
also been argued that the excessive invariance in the decision boundaries introduced by

Part of this chapter has been published in
“Hold me tight! Influence of discriminative features on deep network boundaries”. In Neural

Information Processing Systems (NeurIPS), 2020 [159].
“Redundant features can hurt robustness to distribution shift”. In Uncertainty & Robustness in Deep

Learning Workshop (ICML), 2020 [160].
“Improving filling level classification with adversarial training”. In IEEE International Conference

on Image Processing (ICIP), 2021 [161].

35

Chapter 4. Analysis of learned features using adversarial proxies

Figure 4.1: Minimal adversarial perturbations constrained in different DCT frequency
bands (8× 8 subspaces taken from the top left and bottom right of the 224× 224 DCT
matrix) for a ResNet-50 trained (left), and adversarially trained (right) on ImageNet.

adversarial training can be harmful for standard accuracy, since this invariance causes
the classifier to rely on overly-robust features [135]. But, what exactly are these features,
and how do networks construct these boundaries? This is still unclear. In this chapter,
we propose a novel geometric framework that connects the discriminative features of the
training dataset to the norm of the adversarial perturbations. We shed light on these
phenomena by describing (i) the strong inductive bias of the networks towards invariance
to non-discriminative features, and (ii) the sensitivity of training to small perturbations.

Explaining the mechanisms that construct the decision boundaries is key to understand
the dynamics of adversarial training [25], which only differs from standard training in
that it slightly perturbs the training samples during optimization. However, these small
perturbations can utterly change the geometric properties of these classifiers [107]. An
example of such change can be seen in Fig. 4.1, which shows the minimal perturbations –
constrained to lie on a low and a high frequency subspace – required to flip the decision of
a network. The norm of the perturbations measures the distance (margin) to the decision
boundary in these subspaces. Clearly, reaching the boundary using high frequency
perturbations requires much more energy (larger ℓ2 norm) than using low frequency
ones [3, 86, 162]. But, surprisingly enough, when the network is adversarially trained [25],
the largest increase in margin happens in the high frequency subspace. Note that, on
the standard network, this distance is already much greater than the size of the training
perturbations. Based on this observation, we pose the following questions:

1. How is the margin in different directions related to the features in the training data?

2. How can very small perturbations significantly change the geometry of deep networks?

In this chapter, we propose a novel approach to answer these questions, and provide
a new perspective on the relationship between the distance of a set of samples to the
boundary, and the discriminative features used by a network. In particular, we develop a
new methodology to construct a local summary of the decision boundary from margin

36

4.2 Decision boundary and discriminative features

observations along a sequence of orthogonal directions. This framework permits to
carefully tweak the properties of the training samples and measure the induced changes
on the boundaries of deep classifiers trained on synthetic and large-scale vision datasets.
Via a series of carefully designed experiments, we rigorously confirm the “common belief”
that CNNs tend to behave as ideal classifiers and are approximately invariant to non-
discriminative features of a dataset. Furthermore, we show that the construction of the
decision boundary is very sensitive to the position of the training samples, such that
very small perturbations in certain directions can utterly change the decision boundaries
in these directions. In fact, we show that adversarial training exploits this training
sensitivity and invariance bias to build robust classifiers. Finally, we demonstrate that
the invariance properties of robust classifiers can be very beneficial for downstream
applications where the available training data are scarce.

The reset of the chapter is organized as follows: In Sec. 4.2 we define our framework and
demonstrate on synthetic data how it can be used to associate small margin directions
with discriminative features. Then, in Sec. 4.3 we deploy our framework on real datasets,
and demonstrate the strong inductive bias of deep networks towards invariance to non-
discriminative features. In Sec. 4.4 we use our framework to explain how adversarial
training exploits the sensitivity of the network to the position of the training samples, in
order to build robust models. Finally, in Sec. 4.5 we demonstrate that the invariances
of robust classifiers improve the performance on the off-the-shelf task of estimating the
filling level within containers, where the available training data are scarce.

4.2 Decision boundary and discriminative features

4.2.1 Proposed framework

Recall from Sec. 1.2 that we denote as f : RD → RK the final layer of a neural network
(i.e., logits), such that, for any input x ∈ RD, F (x) = argmaxkfk(x) represents the
decision function of that network, where fk(x) denotes the kth component of f(x) that
corresponds to the kth class. The decision boundary between classes k and ℓ is the set
Bk,ℓ(f) = {x ∈ RD : fk(x)− fℓ(x) = 0} (in general, we will omit the dependency with
k, ℓ for simplicity). Unless stated otherwise, we assume that all networks are trained
using a cross-entropy loss function and some variant of (stochastic) gradient descent.
We also assume that training has been conducted for many epochs, and that it has
approximately converged to a local minimum of the loss, achieving 100% accuracy on
the training data [136]. In general, all our experimental details are listed in App. A.

In this work, we study the role that the training set T = {(x(i), y(i))}N−1
i=0 has on the

boundary B(f). Specifically, we propose to use adversarial proxies to measure the
distribution of distances to the decision boundary along a sequence of well defined
subspaces. The main quantities of interest are:

37

Chapter 4. Analysis of learned features using adversarial proxies

Definition 1 (Subspace-constrained minimal adversarial perturbations). Based on the
definition of Eq. (1.2), for a decision function F , a sample x ∈ RD, and a sub-region of
the input space S ⊆ RD, we define the (ℓ2) minimal adversarial perturbation of x in the
subspace S as

δS(x) = argmin
δ
∥δ∥2

s.t. F (x) ̸= F (x + δ)
δ ∈ S.

In general, we will use δ(x) to refer to δRD (x).

Definition 2 (Margin). The magnitude ∥δS(x)∥2 is the margin of x in S.

Our main objective is to obtain a local summary of B(f) around a set of samples, by
measuring their margin in a sequence of distinct subspaces {Sj}R−1

j=0 . In practice, we use
a subspace-constrained version of DeepFool [11]1 to approximate the margins in each Sj .

DeepFool is regarded as one of the most efficient methods to identify minimal adversarial
perturbations. Since we want to measure margin, norm-constrained attacks like PGD [25]
are not suitable for our study. Besides, more complex attacks like C&W [32], or, even,
using unconstrained gradient descent in the input space, are computationally more
demanding and harder to tune than DeepFool. Since they in general find very similar
adversarial perturbations as DeepFool, we decided to opt for DeepFool in our work.s

4.2.2 Evidence on synthetic examples

In general, the distance from a sample to the boundary of a neural network can greatly
vary depending on the search direction [18]. This behaviour is typically translated into
classifiers with small margins along some directions, and large margins along others.
We now investigate if neural networks only construct boundaries along discriminative
directions, and remain invariant in every other direction2.

To this end, we generate a balanced training set T1(ε, σ) by independently sampling
N points x(i) = U(x(i)

1 ⊕ x
(i)
2), with x

(i)
1 = εy(i) and x

(i)
2 ∼ N (0, σ2ID−1), where ⊕ is

the concatenation operator, ε > 0 the feature size, and D = 100. The labels y(i) are
uniformly sampled from {−1, +1}. The multiplication by a random orthonormal matrix
U ∈ SO(D) is performed to avoid possible biases of the classifier towards the canonical
basis. T1 is a linearly separable dataset with a single discriminative feature parallel to u1
(i.e., first row of U), and all other dimensions filled with non-discriminative noise.

1We do not enforce the [0, 1]D box constraints on the adversarial images, as we are not interested in
finding “plausible” adversarial perturbations, but in measuring the distance to B(f).

2This is indeed a desired property for any classification method, but note that for neural networks the
existence of adversarial examples contests the idea of it being a reasonable assumption.

38

4.3 Discriminative features of real datasets

u1 span{u1}⊥ Sorth Srand

5-perc. 1.74 4.85 30.68 17.21
Median 2.50 12.36 102.0 27.90
95-perc. 3.22 31.60 229.5 80.61

Table 4.1: Margin statistics of an MLP trained on T1(ε = 5, σ = 1) along different
directions (N = 10, 000, M = 1, 000, S = 3).

To evaluate our hypothesis, we train an overparameterized multi-layer perceptron (MLP)
with 10 hidden layers of 500 neurons using SGD (test accuracy: 100%). Table 4.1 shows
the margin statistics on the linearly separable direction u1; its orthogonal complement
span{u1}⊥; a fixed random subspace of dimension S, Srand ⊂ RD; and a fixed random
subspace of the same dimensionality, but orthogonal to u1, Sorth ⊂ span{u1}⊥. From
these values we can see that along the direction where the discriminative feature lies,
the margin is much smaller than in any other direction. Therefore, we can see that the
classification function of this network is only creating a boundary in u1 with median
margin ε/2, and that it is approximately invariant in span{u1}⊥.

Comparing the margin values for Sorth and Srand we see that, if the observation basis
is not aligned with the features exploited by the network, the margin measurements
might not be able to separate the small and large margin directions. Indeed, since Sorth
is orthogonal to the only discriminative direction u1, we see that the margin values
reported in this region are much higher than those reported in Srand. The reason for
this is that the margin required to flip the label of a classifier in a randomly selected
subspace is of the order of

√
S/D with high probability [42], and hence the non-trivial

correlation of a random subspace with the discriminative features will always hide the
differences between small and large margin directions.

Finally, the margin fluctuations and the fact that the classifier is not completely invariant
to span{u1}⊥ might indicate that the network has built a complex boundary. However,
in App. A.1 we show that similar fluctuations and finite values in span{u1}⊥ are observed
even if the model is linear by construction and separates the training data perfectly.

4.3 Discriminative features of real datasets

In contrast to the synthetic data, where the discriminative features are known by
construction, the exact description of the features presented in real datasets is usually not
known. In order to identify these features and understand their connection to the local
construction of the decision boundaries, we apply the proposed framework on standard
computer vision datasets, and investigate if deep networks trained on real data also
present high invariance along the non-discriminative directions of the dataset.

39

Chapter 4. Analysis of learned features using adversarial proxies

In our study, we train multiple networks on MNIST [154] and CIFAR-10 [155], and for
ImageNet [152] we use several of the pretrained networks provided by PyTorch [158]3. Let
W, H, C denote the width, height, and number of channels of the images in those datasets,
respectively. In our experiments we use the 2-dimensional discrete cosine transform (2D-
DCT) [163] basis of size H ×W to generate the observation subspaces. In particular, let
D ∈ RH×W ×H×W denote the 2D-DCT generating tensor, such that vec(D(i, j, :, :)⊗ IC)
represents one basis element of the image space. We generate the subspaces by sampling
(see Fig. 4.2) K ×K blocks from the diagonal of the DCT tensor using a sliding window
with step-size T : Sj = span{vec (D (j · T + k, j · T + k, :, :)⊗ IC) k = 0, . . . , K − 1}.

Figure 4.2: Illustration of sampling from the diagonal of the DCT basis.

The sliding window on the diagonal of the DCT gives a good trade-off between visual-
ization abilities in simple one-dimensional plots, and a diverse sampling of the spatial
spectrum of natural images, with a well-defined gradient flowing from low to high fre-
quencies4. The DCT has a long application tradition in image processing due to its good
approximation of the decorrelation transform (KLT) [164]. Furthermore, in previous
studies on the robustness of deep networks to different frequencies, the DCT was also
the basis of choice [86] because it avoids dealing with complex subspaces.

The margin distribution of the evaluated test samples is presented in the top of Fig. 4.3.
For MNIST and ImageNet, the networks present a strong invariance along high frequency
directions and small margin along low frequency ones. We will later show that this is
related to the fact that these networks mainly exploit discriminative features in the low
frequencies of these datasets. Notice, however, that for CIFAR-10 the margin values
are more uniformly distributed; an indication that the network exploits discriminative
features across the full spectrum as opposed to the human vision system [165].

We observe in practice that the DCT basis is also quite aligned to the features of these
3Experiments on more CNNs (with similar findings) are presented in Appendix I of [159].
4A similar analysis including off-diagonal subspaces is presented in Appendix I of [159].

40

4.3 Discriminative features of real datasets

Low Frequency High
0

50
M

ar
g

in

(a) MNIST (99.4%)
Low Frequency High

0

5

M
ar

g
in

(b) CIFAR-10 (93.0%)
Low Frequency High

0

20

M
ar

g
in

(c) ImageNet (76.2%)

Low Frequency High
0

20

M
ar

g
in

(d) MNIST flipped (99.3%)
Low Frequency High

0.0

2.5

5.0

M
ar

g
in

(e) CIFAR-10 flipped (91.2%)
Low Frequency High

0

10

M
ar

g
in

(f) ImageNet flipped (68.1%)

Figure 4.3: Margin distribution of test samples in subspaces taken from the diagonal of
the DCT (low to high frequencies). Thick lines indicate the median values of the margin,
and shaded points represent its distribution. Parentheses contain the test accuracy.
Top: (a) MNIST (LeNet), (b) CIFAR-10 (DenseNet-121) and (c) ImageNet (ResNet-50)
Bottom: (d) MNIST, (e) CIFAR-10 and (f) ImageNet trained on frequency-“flipped”
versions of the standard datasets.

datasets, and hence it can give precise information about the discriminative features
exploited by the networks. A more aligned basis with respect to the discriminative features
would probably show a sharper transition between low and high margins. However, finding
such network-agnostic bases is a challenging task without knowing the features a priori.
The DCT is not perfectly feature-aligned, but it seems to be a good choice for comparing
different architectures, especially if we compare its results to those obtained using a
random orthonormal basis where differences in margin cannot be identified. Indeed, as
shown in Fig. 4.4 it is clear that a random basis is not valid for this task as the margin
in any random subspace is of the same order with high probability [42].

Low Frequency High
0

5

M
ar

g
in

(a) MNIST (Test: 99.35%)
Low Frequency High

0

2

M
ar

g
in

(b) CIFAR-10 (Test: 93.03%)

Low Frequency High
0.0

0.1

M
ar

g
in

(c) MNIST flipped (Test: 99.34%)
Low Frequency High

0

5

M
ar

g
in

(d) CIFAR-10 flipped (Test: 91.19%)

Figure 4.4: Margin distribution of test samples in subspaces taken from a random
orthonormal matrix arranged as a tensor of the same dimensionality as the DCT tensor.
Subspaces are taken from the diagonal with the same parameters as in DCT. Top: (a)
MNIST (LeNet), (b) CIFAR-10 (DenseNet-121) Bottom: (d) MNIST (LeNet) and (e)
CIFAR-10 (DenseNet-121) trained on frequency “flipped” versions of the datasets.

41

Chapter 4. Analysis of learned features using adversarial proxies

4.3.1 Boundary adaptation to data representation

Towards verifying that the proposed framework can capture the relation between the
data features and the local construction of the decision boundaries, we must first ensure
that the direction of the observed invariance (large margin) is related to the features
presented in the dataset, rather than being just an effect of the network itself.

Based on our observation that the margin tends to be small in low frequency directions
and large in high frequency ones, we carefully tweak the representation of the data such
that the low frequencies are swapped with the high frequencies. In practice, if D denotes
the forward DCT transform operator, the new image representation x′ is expressed as
x′ = D−1(flip(D(x))), where flip corresponds to one horizontal and one vertical flip of
the DCT transformed image. Some “flipped” examples are shown in Fig. 4.5.

Figure 4.5: “Flipped” image examples from ImageNet. Top: original. Bottom: “flipped”.

Thus, if the direction of the resulting margin is strongly related to the data features,
the constructed decision boundaries should also adapt to this new data representation,
and the margin along the invariant directions (high frequencies) should swap with the
margin of the discriminative ones (low frequencies). Informally speaking, the margin
distribution should “flip”.

We apply our framework on multiple networks trained on the “flipped” datasets, and the
margin distribution is depicted at the bottom of Fig. 4.3. For both MNIST and ImageNet,
the directions of the decision boundaries indeed follow the new data representation –
although they are not an exact mirroring of the original representation. This indicates
that the margin strongly depends on the data distribution, and it is not solely an effect
of the network architecture. Note again that for CIFAR-10 the effect is not as obvious,
due to the quite uniform distribution of the margin.

4.3.2 Invariance and elasticity of decision boundary

The second property we need to verify is that the small margins reported in Fig. 4.3 do
indeed correspond to directions containing discriminative features in the training set.

42

4.3 Discriminative features of real datasets

For doing so, we use the insights of Fig. 4.3b on CIFAR-10 – where, opposed to the
other datasets, we assume that there are exploited discriminative features in the whole
spectrum – and show that, by explicitly modifying its features, we can induce a high
margin response in the measured curve in a set of selected directions.

In particular, we create a low-pass filtered version of CIFAR-10 (TLP), where we retain
only the frequency components in a 16 × 16 square at the top left of the diagonal of
the DCT-transformed images. This way we ensure that no training image has any
energy/information outside of this frequency subspace. Examples of TLP images are
shown in the second row of Fig. 4.6.

Figure 4.6: Examples of filtered CIFAR-10 images. Top original images, middle low-pass
and bottom high-pass versions.

The median margin5 of CIFAR-10 test samples for a network trained on TLP is illustrated
in Fig. 4.7. Indeed, by eliminating the high frequency content, we have forced the
network to become invariant along these directions. This clearly demonstrates that there
existed discriminative features in the high frequency spectrum of CIFAR-10, and that by
removing these from all the samples, the inductive bias of training pushes the network to
become invariant to them.

Low Frequency High

0

50

100

150

200

M
ar

g
in

Fine-tuned on TLP

Trained on TLP

Figure 4.7: Median margin of test samples from CIFAR-10 for a DenseNet-121 (i) trained
on CIFAR-10 and fine-tuned on TLP (90.79%), and (ii) trained on TLP from scratch
(89.67%). Parentheses contain the test accuracy.

5We do not plot the full distribution to avoid clutter. The 5-percentile of the margin in the last
subspace is 5.05.

43

Chapter 4. Analysis of learned features using adversarial proxies

Low Frequency High

0

100

200

M
ar

g
in

TLP∪HP

Forget THP

Recover THP

Zoom-out for observing the general invariance.
Low Frequency High

0

5

10

15

M
ar

g
in

TLP∪HP

Forget THP

Recover THP

Zoom-in for a more detailed observation.

Figure 4.8: Median margin of TLP test samples for a DenseNet-121. Blue: trained on
TLP∪HP; Red: after forgetting THP; Green: after recovering THP.

Moreover, this effect can also be triggered during training. To show this, we start with
the CIFAR-10 trained network studied in Fig. 4.3b and continue training it for a few
more epochs with a small learning rate using only TLP. Figure 4.7 shows the new median
margins of this network. The fine-tuned network is again invariant to the high frequencies.

Finally, note that by training with only low frequency data, the test accuracy of the
network on the original CIFAR-10 only drops around 3%6. Because TLP has no high
frequency energy, a network trained on it will uniformly extend its boundaries in this
part of the spectrum and no high frequency perturbation will be able to flip the network’s
output. In contrast, testing TLP data on a CIFAR-10 trained network only achieves
27.45% test accuracy. This is because networks trained on CIFAR-10 do have boundaries
in the high frequencies, and hence showing them original samples perturbed in this
frequency range (i.e., TLP) can greatly change their decisions.

4.3.3 Connections to catastrophic forgetting

The elasticity to the modification of features during training gives a new perspective to
the theory of catastrophic forgetting [166], as it confirms that the decision boundaries of
a neural network can only exist for as long as the classifier is trained with the samples
(features) that hold them together. In particular, we demonstrate this by adding and
removing points from a dataset such that its discriminative features are modified during
training, and hence artificially causing an elastic response on the network.

To this end, we train a DenseNet-121 on a new dataset TLP∪HP = TLP ∪ THP formed by
the union of two filtered variants of CIFAR-10: TLP is constructed by retaining only the
frequency components in a 16 × 16 square at the top-left of of the DCT-transformed
CIFAR-10 images (low-pass), while for THP only the frequency components in a 16× 16
square at the bottom-right of the DCT (high-pass; cf. third row of Fig. 4.6). This
classifier has a test accuracy of 86.59% and 57.29% on TLP and THP, respectively. The

6Similar effect was shown on ImageNet [3], although the network was only tested on filtered data. For
MNIST, training on low-pass data yields no accuracy drop, since MNIST trained networks exploit mostly
low frequencies and already have large margins in the high frequencies. There might exist discriminative
information in the high frequencies, but the network does not exploit it.

44

4.3 Discriminative features of real datasets

median margin of 1, 000 TLP test samples along different frequencies for this classifier
is shown in blue in Fig. 4.8. As expected, the classifier has picked features across the
whole spectrum with the low frequency ones probably belonging to boundaries separating
samples in TLP, and the high frequency ones separating samples from TLP and THP

7.

After this, we continue training the network with a linearly decaying learning rate (max.
α = 0.05) for another 30 epochs, but using only TLP, achieving a final test accuracy
of 87.81% and 10.01% on TLP and THP, respectively. Again, Fig. 4.8 shows in red the
median margin along different frequencies on test samples from TLP. The new median
margin is clearly invariant on the high frequencies – where TLP has no discriminative
features – and the classifier has completely erased the boundaries that it previously had in
these regions, regardless of the fact that those boundaries did not harm the classification
accuracy on TLP.

Finally, we investigate if the network is able to recover the forgotten decision boundaries
that were used to classify THP. We continue training the network (“forgotten” THP) for
another 30 epochs, but this time by using the whole TLP∪HP. Now this classifier achieves
a final test accuracy of 86.1% and 59.11% on TLP and THP respectively, which are very
close to the corresponding accuracies of the initial network trained from scratch on
TLP∪HP (recall: 86.59% and 57.29%). The new median margin for this classifier is shown
in green in Fig. 4.8. As we can see by comparing the green to the blue curve, the decision
boundaries along the high-frequency directions can be recovered quite successfully.

4.3.4 Discussion

The main claim in Sec. 4.2 and Sec. 4.3 is that deep neural networks only create decision
boundaries in regions where they identify discriminative features in the training data.
As a result, there is a big relative difference in the large margin along the invariant
directions, and the smaller margin in the discriminative directions.

The main difficulty for establishing causation in this idea is the fact that the discriminative
features of real datasets are not known. Hence, determining their role on the geometry
of a trained neural network can only be done by artificially manipulating the data. In
particular, there are two main confounding factors that might alternatively explain our
results: the network architecture or the training algorithm. However, the experiments in
Sec. 4.3 are precisely designed to rule out their influence in this phenomenon.

Specifically, in the flipping experiments, flipping the data – ceteris paribus – also flips the
margin distribution, thus demonstrating that the margins are necessarily caused by the
information present in the data. The other interventions we do on the samples (e.g., low-
pass experiments) confirm that, in the absence of information in a certain discriminative

7TLP and THP have discriminative features only in the low and high frequency part, respectively.

45

Chapter 4. Analysis of learned features using adversarial proxies

subspace, the network becomes invariant along this discriminative subspace. Therefore,
we believe that there is indeed a causal connection between the features of the data and
the measured margins in these neural networks. In fact, parallel theoretical studies have
demonstrated that the ability of neural networks to distinguish between discriminative
and non-discriminative noise subspaces in a dataset is one of the main advantages of
deep learning over kernel methods [167].

4.4 Sensitivity to position of training samples

Our novel framework to relate boundary geometry and data features can help track the
dynamics of learning. In this section, we use it to explain how training with a slightly
perturbed version of the training samples can greatly alter the network geometry. We
further analyze how adversarial training can be so successful in removing features with
small margin to increase the network’s robustness.

4.4.1 Evidence on synthetic examples

We train multiple times an MLP with the same setup as Sec. 4.2.2, but this time using
slightly perturbed versions of the same synthetic dataset. In particular, we use a family
of training sets T2(ρ, ε, σ, K) consisting in N = 10, 000 independent D = 100-dimensional
samples x(i) = U(x(i)

1 ⊕ x
(i)
2 ⊕ x

(i)
3) such that x

(i)
1 = εy(i); x

(i)
2 = ρ · k when y(i) = +1,

and x
(i)
2 = ρ ·

(
k + 1

2

)
when y(i) = −1, where k is sampled from a discrete uniform

distribution with values {−K, . . . , K − 1}; and x
(i)
3 ∼ N (0, σ2ID−2) (see Fig. 4.9). Here,

ε, ρ ≥ 0 denote the feature sizes. Again, the multiplication by a random orthonormal
matrix U ∈ SO(D) avoids any possible bias of the network towards the canonical basis.
Note that for ε > 0 this training set will always be linearly separable using u1, but
without necessarily yielding a maximum margin classifier. Especially when ρ≫ ε.

Figure 4.9: Cross-section of an MLP trained on T2(ρ = 20, ε, σ = 1, K = 3) with ε = 1
(top) and ε = 0 (bottom). Axes scaled differently.

Figure 4.10 shows the median margin of M = 1, 000 observation samples for an MLP
trained on different versions of T2(ρ, ε, σ, K) with a fixed ρ = 20, but a varying small ε.
Based on this plot, it is clear that for very small ε the neural network predominantly uses
the information contained in u2 to separate the different classes. Indeed, for ε < 0.2, the

46

4.4 Sensitivity to position of training samples

0.0 0.2 0.4 0.6 0.8 1.0

Linear feature size ε

100

101

102

M
ar

g
in

u1

u2

Figure 4.10: Median margin values along u1 and u2 for MLPs (test: 100% always)
trained on T2 for different values of ε and ρ = 20.

network is almost invariant in u1, and it uses a non-linear alternating pattern in u2 to
separate the data8 (see bottom row of Fig. 4.9). On the contrary, at ε > 0.5 we notice a
sharp transition in which we see that the neural network suddenly changes its behaviour
and starts to linearly separate the different points using only u1 (see top row of Fig. 4.9).

We conjecture that this phenomenon is rooted on the strong inductive bias of the learning
algorithm to build connected decision regions whenever geometrically and topologically
possible, as empirically validated in [115]. Here, we go one step further and hypothesize
that the inductive bias of the learning algorithm has a tendency to build classifiers in
which every pair of training samples with the same label belongs to the same decision
region. If possible, connected by a straight path.

We see Fig. 4.10 as a validation of this hypothesis. For small values of ε, it is hard for
the algorithm to find solutions that connect points from the same class with a straight
path, as this is very aligned with u2. However, there is a precise moment (i.e., ε = 0.5)
in which finding such a solution becomes much easier, and then the algorithm suddenly
starts to converge to the linearly separating solution.

At this stage it is important to highlight that repeating the same experiment with a
different random seed, or for a fixed initialization, does not affect the results. Furthermore,
overfitting cannot be the cause of these results, as the MLP always achieves 100% test
accuracy for ε < 0.5, as well. Finally, adding a small weight decay (i.e., 10−3) does not
help the network find the linearly separable solution for ε < 0.5; it rather hinders its
convergence (i.e., final train accuracy is 50%).

It remains unclear whether this inductive bias is the only mechanism that can trigger a
sharp transition in the type of learned decision boundaries, or if there are other types
of biases that can cause the same effect. In any case, we believe that the significant
difference in the type of function that the algorithm learns when trained with very similar
training samples (see Fig. 4.9), is an unambiguous confirmation of the sensitivity of deep
learning to the exact position of its training input.

8This particular pattern can in principle classify any dataset with ρ = 20, no matter the value of ε.

47

Chapter 4. Analysis of learned features using adversarial proxies

Low Frequency High
0

100

200

300

M
ar

g
in

(a) MNIST (Test: 98%)
Low Frequency High

0

20

40

60

M
ar

g
in

(b) CIFAR-10 (Test: 83%)
Low Frequency High

0

1000

2000

M
ar

g
in

(c) ImageNet (Test: 76%)

Figure 4.11: Margin distribution of test samples in subspaces taken from the diagonal
of the DCT (low to high frequencies). Adversarially trained networks using ℓ2 PGD (a)
LeNet (Adv: 76%), (b) DenseNet-121 (Adv: 55%) and (c) ResNet-50 (Adv: 35%).

Concurrent work [168] has also used a similarly constructed dataset to T2(ρ, ε, σ, K) to
argue that the simplicity bias of a neural network when trained using standard procedures
might be responsible for the selection of non-robust features in the dataset [35].

4.4.2 Connections to adversarial training

Finally, we show that adversarial training exploits the type of phenomena described in
Sec. 4.4.1 to reshape the boundaries of a neural network. In this regard, Fig. 4.11 shows
the margin distribution across the DCT spectrum of a few adversarially trained networks9.
As expected, the margins of the adversarially trained networks are significantly higher
than those in Fig. 4.3.

Surprisingly, though, the largest increase can be noticed in the high frequencies for all
datasets. Considering that adversarial training only differs from standard training in
that it slightly moves the training samples, it is imperative that deep networks converge
to very different solutions under such small modifications. The next experiments on
CIFAR-10 shed light on the dynamics of this process.

Very small adversarial perturbations can trigger large invariance Slightly
perturbing the training samples can remove features in an unpredictable manner. Fig-
ure 4.12 shows the spectral decomposition of the adversarial perturbations crafted during
adversarial training of CIFAR-10. The energy of the perturbations during training is
always concentrated in the low frequencies, and has hardly any high frequency content.
However, the greatest effect on margin is seen on the high frequency directions (see
Fig. 4.11). This is similar to what is seen in Fig. 4.9, where slightly perturbing the
training samples along u2 drastically affects the margin along u2.

Overall, we see that adversarial training exploits the sensitivity of the network to small
changes in the training samples to hide some discriminative features from the model.
This is especially clear when we compare the CIFAR-10 values in Fig. 4.11b and Fig. 4.3b,
where it becomes evident that some previously used discriminative features in the high

9The analogous effect for the frequency-“flipped” datasets is detailed in Appendix M of [159]

48

4.4 Sensitivity to position of training samples

1 Epochs 50

High

Freq.

Low

0.25

0.50

0.75

Figure 4.12: Energy of adversarial perturbations on subspaces of the DCT during
adversarial training of CIFAR-10 (DenseNet-121). Plot shows 95-percentile.

frequencies are completely overlooked by the adversarially trained network. In the
following example, we show that, in practice, it is not actually necessary to change the
position of all training points to induce a large invariance reaction.

Invariance can be triggered by just a few samples Modifying the position of
just a minimal number of training samples is enough to locally introduce excessive
invariance on a classifier. To demonstrate this, we take a ResNet-18 (test: 90%) trained
on CIFAR-10, and randomly select a set of 100 training samples P ⊂ T . We fine-tune
this classifier replacing those 100 samples with (x + δo(x), y) in P (test: 90%), where δo

and δf represent the adversarial perturbations for the original and fine-tuned network,
respectively.

Figure 4.13: Margin distribution in different directions of a ResNet-18 trained on CIFAR-
10 and fine-tuned on 100 DeepFool examples.

Figure 4.13 shows the magnitude of these perturbations both for the 100 adversarially
perturbed points P ⊂ T and for a subset of 1, 000 unmodified samples U ⊂ T . Here, we
can clearly see that, after fine-tuning, the boundaries around P have been completely
modified, showing a large increase in the distance to the boundary in the direction of
the original adversarial perturbation ∆f

o(x) for (x, y) ∈ P. Meanwhile, the boundaries
around U have not seen such a dramatic change.

49

Chapter 4. Analysis of learned features using adversarial proxies

This means that modifying the position of only a small fraction of the training samples
can induce a large change in the shape of the boundary. Note that this dependency
on a few samples resembles the one of support vector machines [169], whose decision
boundaries are defined by the position of a few supporting vectors. However, in contrast
to SVMs, deep neural networks are not guaranteed to maximize margin in the input
space (see Fig. 4.10), and the points that support their boundaries need not be the ones
closest to them, hence rendering their identification much harder.

4.5 Implications in data-scarce applications

Interestingly, the invariances obtained by robust classifiers that we analyzed in the
previous chapters, have been recently shown to be quite beneficial when performing
transfer learning [170, 171]. In this section, we will demonstrate that the robust properties
of deep networks can be exploited to improve the generalization performance in the
off-the-shelf task of estimating the filling level within a container, where the available
training data are typically very scarce.

Consider a real-world example of collaborative interactions between humans and robots.
In such scenario, estimating through vision the physical properties of objects manipulated
by humans is important for performing accurate and safe grasps of objects handed over
by humans [172]. For achieving successful grasps, one important property that should be
estimated is the weight of the object based on the shape of the container [173], the type
of content inside the container, and the amount of that content.

In particular, estimating the amount of content (filling level) within an unknown container
is a quite challenging problem due to distribution shifts occurred at test time related
to, e.g., (i) occlusions caused by the hand holding the container, (ii) the transparencies
of both the container and the filling (e.g., depth estimation may be highly inaccurate
for transparent objects [174]), and (iii) by the differences in the shape of the containers.
Typically, the few approaches designed to tackle this problem use RGB [175], thermal [176],
or a combination of RGB and depth data [177, 178], and usually observe the action of
pouring content in a container over multiple frames [176, 177, 178, 179].

By approaching the problem as a classification task, the authors in [175] showed that
transfer learning [180] was the best-performing strategy: self-collected data were used as
task-specific dataset, the target domain, to fine-tune the parameters of a CNN pre-trained
on the much larger ImageNet dataset [152], the source domain. In the context of filling
level estimation, the available training data are usually rather scarce, hence transfer
learning introduces useful knowledge when fine-tuning on the target domain.

50

4.5 Implications in data-scarce applications

Figure 4.14: The six training strategies analyzed in our experiments: independent
standard training (ST) and adversarial training (AT) on the target domain, and four
transfer learning strategies from source to target domain via fine-tuning (FT).

4.5.1 An off-the-shelf task: filling level classification

Task description and training strategies

We approach the problem of estimating the filling level, y, of a container captured in
an image x, as a classification task. We express the filling level as a percentage of
the container’s capacity: y ∈ {0%, 50%, 90%, unknown}, where the unknown class helps
handling cases with opaque or translucent containers for which the filling level cannot be
estimated through direct vision. Given a train set of image-label pairs T = {(xi, yi)}Ni=1,
the goal is to find a classifier that minimizes a suitable loss function Lθ(x, y) such that
F correctly predicts y for x ∼ D but x /∈ T (generalization).

We refer to the common strategy for training a classifier on a train set, T , as Standard
Training (ST). A good generalization may be achieved if the number of image-label pairs
in T is very large, e.g., N ≈ 1.2 millions in ImageNet. However, for the target task of
classifying the filling level such amount of data is not available. Transfer learning helps
to overcome this limitation by using an additional training set S, with |S| = M ≫ N ,
that may not be related to the target task. Transfer learning pre-trains the parameters
of f on S (source domain) and then refines them on T (target domain) via fine-tuning
(FT). We refer to this strategy as ST→FT. With ST→FT, the parameters of some layers
in the pre-trained model are fixed and FT only refines those of the remaining layers. We
will denote with L the number of layers whose parameters are fixed.

Recall that with Adversarial Training (AT), the resulting models learn features that
correlate better with features of the classes of interest [27, 119, 120, 121]. Hence, f is
expected to learn more task-relevant features with AT. We aim to evaluate AT on the
filling-level classification task, and to compare it against five other strategies. As training
strategies we consider ST→FT [175]; ST on the target domain; AT on the target domain;
and three combinations of AT with transfer learning, namely AT on the source domain
(AT→FT), AT on the target domain (ST→AFT), and AT on both domains (AT→AFT).

51

Chapter 4. Analysis of learned features using adversarial proxies

Similarly to what was observed in [170, 171], we expect that the performance of fine-
tuning on T will further improve if we use a model trained on S with AT instead of a
model trained with ST, even if the classification performance of the robust model on S is
worse than the performance of the model trained with ST. The exact reason behind this
improvement is still an open question, but it is related to the differences in the learned
features between standard and robust models. Also, this improvement depends on the
value of ε used during AT, and the value that leads to better accuracy may differ across
tasks and domains. Smaller values for ε generally lead to better performance [171], but
its value will be selected empirically.

Finally, the last two training combinations apply AT either on the target domain
(ST→AFT) via FT or on both domains (AT→AFT). Considering the effect of AT on the
features learned by a classifier, we will investigate how f is affected when the transferred
learned features from S are further filtered by AT on T . Fig. 4.14 summarizes the
training strategies under analysis, which will be compared in the next section.

A novel dataset

Since the task is to classify the filling level from a single RGB image, the CCM dataset [181]
is a suitable choice due to its large variability in terms of capturing conditions. CCM
comprises of four views capturing under different backgrounds and illumination conditions
cups and drinking glasses. The containers are transparent, translucent or opaque. The
content is transparent (water) or opaque (pasta, rice). Each container stands upright on
a surface or is being manipulated by a person. We only consider data of the public CCM
repository, namely 4 cups and 4 drinking glasses.

From the CCM video data, we automatically sampled and then visually verified 10,269
frames of containers for which a pouring action was completed. To increase the variability
in the sampled data, we selected frames considering that the container is completely
visible or occluded by the person’s hand, and under different backgrounds.

For each frame, the final image is extracted by cropping only the region with the container
using Mask R-CNN [182], followed by visual verification. Each crop is associated to an
annotation of filling type and filling level (empty or filled at 50% or 90% of the capacity
of the container), hand occlusion, and transparency of the container. We call this image
dataset Crop-CCM or C-CCM. Sample C-CCM images10 are shown in Fig. 4.15.

Finally, in order to evaluate the robustness of the classifier to distribution shifts of the
test data, we focus mainly on the shape of the containers, but also in their color, texture,
transparency, and size. To investigate these aspects, we split C-CCM into train and test
sets under three configurations. The first configuration (S1) considers a champagne flute

10Sampled images can be found at https://corsmal.eecs.qmul.ac.uk/filling.html

52

https://corsmal.eecs.qmul.ac.uk/filling.html

4.5 Implications in data-scarce applications

Figure 4.15: Sample images (resized crops) from the CORSMAL Containers Manipulation
dataset [181]. Each column shows different filling types and levels, and each row shows
different backgrounds and hand occlusions.

Train set

Test set

S1
S2
S3

S1
S2
S3

(1,623) (1,639) (1,290) (1,566) (1,550) (1,059) (787) (702)

Figure 4.16: Comparison of three train and test splits (S1, S2, S3) of the public containers
from CCM for the shape analysis in the experiments. Black lines mean that the set of
images belonging to that container are part of the train (test) set in the data split. The
number of images for each container are shown in parentheses. Note the diversity in
shape, color, texture, transparency, and size.

in the test set to further increase the shape variability of containers not previously seen
in the train set. The second configuration (S2) swaps a beer cup with a wine glass to
analyze the influence of the stem of the wine glass. The last configuration (S3) places all
the containers with a stem in the train set, and the test set contains only cups without
stem, as well as a red cup and a green transparent cup, which are characterized by
differences in color, texture and transparency with respect to the training data. Fig. 4.16
shows the three configurations and the number of samples for each container type.

53

Chapter 4. Analysis of learned features using adversarial proxies

4.5.2 Adversarial invariance prevents overfitting

In this section we analyze the effect of the transfer learning parameters, and then
evaluate the generalization performance of the six different training strategies on the
C-CCM dataset. We use as classifier a ResNet-18 [157]. Note that we also conducted
experiments using a ResNet-50 and a WideResNet-50 [183], and the findings are similar
to the ones of ResNet-18. We will focus on ResNet-18 as it is the least complex network
among the three. With ST we train the classifier on C-CCM, whereas with AT we
train the classifier on images modified with ℓ2 adversarial perturbations crafted with the
10-iteration PGD [25]. With the transfer learning strategies we fine-tune the available
pre-trained models on C-CCM: for ST→FT and ST→AFT we use the pre-trained model
provided by PyTorch [158], whereas for AT→FT and AT→AFT we use the robust models
provided by [170].

For each strategy, we train or fine-tune the classifier for 30 epochs, using a cross-entropy
loss and stochastic gradient descent. The learning rate for updating the weights is set
to 0.1 when training directly on C-CCM, and 0.005 when performing transfer learning.
The learning rate decays linearly during training. Note that the models we evaluate
are the ones obtained at the end of the training epochs (no early-stopping), while for
dealing with class imbalances, the training images in a batch are randomly sampled with
probabilities that are inversely proportional to the number of images of each class.

Sensitivity analysis

We perform a sensitivity analysis on the number of fixed layers (L) in fine-tuning with
ST→FT, ST→AFT, AT→FT and AT→AFT; and to select the size of the bound for
crafting the adversarial perturbation for AT, ST→AFT, AT→FT and AT→AFT. Note
that we differentiate ε for the source, εs, and target, εt, domain. Specifically, we perform
the sensitivity analysis only for εs with AT→FT, and for each data split configuration
we select the εs for which AT→FT achieves the highest accuracy. Then, based on these
values of εs, for each data configuration we set εt = εs: since we use 10-iteration ℓ2-PGD,
performing a sensitivity analysis or a grid search on εt is computationally inefficient, as
it is analogous to increasing almost 10× the training epochs.

We first analyze the classification accuracy on the test sets of the three dataset splits
when varying the number of fixed layers for ST→FT as L = {0, 1, 2, 3, 4}. Here, L = 0
denotes that no layer remains fixed during fine-tuning (the full network is updated).
Note that for a ResNet-18 classifier, a layer is a ResNet block of convolutions and batch
normalization (see the original ResNet paper [157]). Since the target dataset is small, it
is reasonable to fix the first layer (L = 1) in order to prevent the classifier from a possible
overfitting [184]. Indeed, Fig. 4.17 (left) shows that the accuracy on the test set of all
configurations (S1, S2, S3) is consistently higher for L = 1 (78.34%, 65.63%, 82.32%),

54

4.5 Implications in data-scarce applications

0 1 2 3 4

50

60

70

80

L
A

cc
ur

ac
y

(%
)

.01 .05 .1 .5 1
60

70

80

90

εs

Figure 4.17: Sensitivity analysis for the number of fixed layers L with ST→FT (left)
and for the maximum amount of perturbation bound, εs, with AT→FT on test set of
the three dataset splits: first split S1 (), second split S2 (), third split S3 (). Red
indicates the highest achieved accuracy. Note the different scale of the y-axis, and the
logarithmic scale for the x-axis (right).

while it gradually decays as L grows. This is also expected [184], since we allow fewer
layers to be fine-tuned on the target datasets, and the classifiers then mostly use fixed
features from ImageNet. Therefore, we set L = 1 for ST→FT as well as for ST→AFT,
AT→FT, and AT→AFT.

Then, we setL = 1 and analyze the classification accuracy of AT→FT when varying
the perturbation size in the source domain, εs. Fig. 4.17 (right) shows that the highest
achieved accuracy is different for each dataset configuration: 80.97% for S1 with εs = 0.05,
73.27% for S2 with εs = 1, and 88.23% for S3 with εs = 0.5. As mentioned previously,
we use these values of εs also for εt when performing AT, ST→AFT, and AT→AFT.
However, we observed that the model trained with ST→AFT is unable to converge (train
accuracy around 45%) on S2 for εt = 1 and on S3 for εt = 0.5, while it successfully
converges on S1 for the smaller εt = 0.05. We believe that this might be caused by
the fact that AT with larger εt values eliminates many non-robust, yet useful, features
transferred from ImageNet, and prevents the model from fitting the remaining features.
Hence, we set εt = 0.05 for ST→AFT across all dataset configurations for the rest of the
experiments, since with this value the network converges for all dataset configurations.

Generalization to unseen data

Since all the parameters have been decided, we can now proceed with evaluating the
generalization performance of every training strategy on each container in the test set
individually. Note that, in this way, we can practically measure the robustness of the
classifier to the test-time distribution shifts.

Figure 4.18 shows the filling level classification performance. Constrained by the amount,
and hence by the diversity, of training images, the differently trained classifiers could
potentially develop biases or overfit to some features, such as the shape of a container.

55

Chapter 4. Analysis of learned features using adversarial proxies

1 2.5 4 6 7.5 9 11 12.5 14
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

S1 S2 S3

Figure 4.18: Comparison of the per-container filling level classification accuracy (%) for
the six training strategies. Note the different containers in the test set for each dataset
split (see Fig. 4.16 for the train set of each split). Legend: ST, AT, ST→FT,

ST→AFT, AT→FT, AT→AFT.

AT→FT achieved superior performance most of the times. With transfer learning,
the features introduced from ImageNet appear to decrease such biases, and enable
the classifiers to identify features in the train set that are more generalizable. When
combining transfer learning with AT at the source domain, the biases are modulated
with the transferred features that are also filtered by AT, and the generalization of the
classifier further increases. These results confirm that adversarial training improves
transfer learning, even in the context of the challenging filling level classification task.

Overall, whenever the performance of ST is low, all transfer learning strategies lead to a
significant improvement. On the contrary, whenever ST performs well, the contribution
of transfer learning is insignificant, and sometimes it even decreases the final performance.
Furthermore, applying AT on the target domain, either alone or combined with transfer
learning, may even be harmful for the classifier.

For S1, the accuracy of ST on the beer cup (middle) is already very high – due to the
similar shape of the small transparent cup in the training set – and the other training
strategies do not further improve it. The accuracy on the cocktail glass (right) is similar
for all strategies, with AT→FT performing slightly better. As for the champagne flute
(left), the performance of ST and AT is quite low (∼46%), which might be caused by the
unique shape of the flute with respect to the shapes in the training set. However, the
accuracy significantly improves with transfer learning, and AT→FT outperforms all the
other strategies by ∼30 percentage points (pp).

For S2, the accuracy of all strategies on the champagne flute (left) is similar to the
one achieved on S1. The accuracy on the cocktail glass (right) is much lower for most
strategies (∼10pp less compared to the performance on S1), except AT→FT, which drops

56

4.6 Conclusions

only by 3pp and again outperforms the rest of the strategies. The drop of the other
strategies could be caused by the lack of a container with a stem in the training set.
Finally, the performance on the wine glass (middle) is similar for most strategies, with
AT→FT being again slightly better than the rest. Compared to the cocktail glass, the
higher accuracy of all strategies on the wine glass could be caused by the similarity of its
shape above the stem with the other transparent cups in the training set, despite the
fact that no container with a stem is presented in the training set.

For S3, the accuracy of ST on the beer cup (right) is high and the other training strategies
do not improve it. Instead, the accuracy of ST on the green glass (middle) is lower
and reaches an accuracy of 66%. Although ST→FT does not improve the accuracy,
AT→FT significantly increases it (almost 10pp). The red cup (left) obtains the most
interesting improvement compared to the 0.005% accuracy of ST: all transfer learning
techniques achieve an accuracy above 90%, with AT→FT achieving 99.5% classification
accuracy. By inspecting the predictions of ST and AT, the classifier assigned the label
full (filling level: 90%) almost 99% of the times. In fact, predicting the unknown class is
conceptually different from estimating the filling level, and it is more related to classifying
non-transparent containers. In this sense, the features learned for transparent objects
that are full with rice or pasta might be correlated with the features of the red cup.

4.5.3 Discussion

In this section, we found out that using adversarial training on the source dataset
(ImageNet) followed by transfer learning on the target dataset (C-CCM), permits to
consistently improve generalization to unseen containers. Our analysis demonstrates the
possibilities of exploiting adversarial robustness for tasks that extend beyond classical
image classification settings.

However, adversarial robustness is not necessarily the best way to improve the robustness
to certain distribution shifts, such as the one introduced by common corruptions of the
data. This is gonna be the main focus of the next chapter, where we will design an
efficient data augmentation scheme for conferring robustness to such shifts. In fact, this
augmentation scheme can also be applied in the context of filling level estimation. As we
will see, transfer learning from adversarially trained models – and transfer learning in
general – is not necessary, since one can properly tune our data augmentation scheme of
the next section in order to achieve similar or even better generalization performance.

4.6 Conclusions

In this chapter, we proposed a new geometric framework that permits to relate the
features of a dataset with the distance to the decision boundary along specific directions.

57

Chapter 4. Analysis of learned features using adversarial proxies

Through a series of carefully designed experiments, both in synthetic and real image
datasets, we explained how the inductive bias of the learning algorithm shapes the
decision boundaries of neural networks, by creating boundaries that are invariant to
non-discriminative directions.

Furthermore, we demonstrated that the decision boundaries are very sensitive to the
position of the training samples, and that very small changes along specific directions can
cause large and sudden changes in these directions. In fact, adversarial training exploits
this sensitivity of the decision boundaries, as well as their inductive bias towards invariance
to non-discriminative features, in order to build more robust classifiers. Interestingly,
modifying the position of just a minimal number of training samples during adversarial
training is enough to locally introduce excessive invariance.

Finally, we studied the implications that the invariance properties of robust models
have in the downstream application of classifying the filling level within containers. In
particular, we showed that, during transfer learning, using robust models in the source
domain permits to consistently improve generalization to unseen containers in the target
domain that come from a shifted distribution.

We believe that our new framework can be used in future research to investigate the
connections between training features and the macroscopic geometry of deep models.
This can serve as a tool to obtain new insights on the intriguing properties of deep
networks, as we demonstrated for their catastrophic forgetting. On the practical side,
there are some important applications that could benefit from our findings. In terms of
robustness, identifying the small subspace of discriminative features of a network can lead
to faster black box-attacks by restricting the search space of the perturbations. In fact
our analysis answers why using low-frequency perturbations improves the query efficiency
in recent attacks [86, 87, 90]. Simultaneously, the dependency of boundaries to just a few
training samples can be exploited to design faster adversarial training schemes, and is a
clear avenue for future research in active learning. Finally, having a better understanding
about the mechanisms that lead to excessive invariance [135] after adversarial training
could help boost the standard accuracy of robust models.

58

5 Robustness to non-adversarial
distribution shifts

“Your favourite virtue... Simplicity!”
— Karl Marx

5.1 Introduction

In the previous chapters, we mainly exploited adversarial proxies for evaluating the
robustness of image classifiers, and for developing methodologies that enabled us to un-
derstand, analyze and further explore multiple properties of deep networks. Furthermore,
we also saw that, in some tasks, the invariances that adversarially trained classifiers
obtain can boost the robustness of deep networks to specific distribution shifts of the
data. In this chapter, we steer our focus from the adversarial to the more general setting,
and investigate the robustness of deep networks to common distortions of the images.

In general, deep image classifiers do not work well in the presence of various types of
distribution shifts [7, 44, 45]. Most notably, their performance can severely drop when the
input images are affected by common distortions that are not contained in the training
data, such as digital artefacts, low contrast, or blurs [1, 49].

“Common corruptions” is an umbrella term used to describe the set of distortions that can
happen to natural images during their acquisition, storage, and processing lifetime, which
can be very diverse. Nevertheless, while the space of possible perturbations is huge, the
term “common corruptions” is generally used to refer to typical image transformations

Part of this chapter appears in
“PRIME: A few primitives can boost robustness to Common Corruptions”, 2021 [185]. Under review.
“Data augmentation with mixtures of max-entropy transformations for filling-level classification”. In

European Signal Processing Conference (EUSIPCO), 2022 [186].

59

Chapter 5. Robustness to non-adversarial distribution shifts

that, while degrading the quality of the images, still preserve their semantic information.

Building classifiers that are robust to common corruptions is far from trivial. A naive
solution is to include data with all sorts of corruptions during training, but the sheer
scale of all possible types of typical perturbations that might affect an image is simply too
large. Moreover, the problem is per se ill-defined since there exists no formal description
of all possible common corruptions.

Due to the luck of such formal description, the research community has recently favoured
increasing the “diversity” of the training data via data augmentation schemes [36, 37, 63].
Intuitively, the hope is that showing very diverse augmentations of an image to a
network would increase the chance that the latter becomes invariant to some common
corruptions. Still, covering the full space of common corruptions is hard. Hence, current
literature has mostly resorted to increasing the diversity of augmentations by designing
intricate data augmentation pipelines, e.g., introducing DNNs for generating varied
augmentations [37, 38], or coalescing multiple techniques [65], and thus achieve good
performance on different benchmarks. This strategy, though, leaves a big range of
unintuitive design choices, making it hard to pinpoint which elements of these methods
meaningfully contribute to the overall robustness. Meanwhile, the high complexity of
recent methods [38, 65] makes them impractical for large-scale tasks. Whereas, some
methods are tailored to particular datasets and might not be general enough. Nonetheless,
the problem of building robust classifiers is far from completely solved, and the gap
between robust and standard accuracy is still large.

In this chapter, we take a step back and provide a systematic way for designing a simple,
yet effective data augmentation scheme. By focusing on first principles, we formulate a new
model for semantically-preserving corruptions, and build on basic concepts to characterize
the notions of transformation strength and diversity using a few transformation primitives.
Relying on this model, we propose PRIME, a data augmentation scheme that draws
transformations from a max-entropy distribution to efficiently sample from a large space of
possible distortions. The performance of PRIME, alone, already tops the current baselines
on different common corruption datasets, whilst it can also be combined with other
methods to further boost their performance. Moreover, the simplicity and flexibility of
PRIME allows to easily understand how each of its components contributes to improving
robustness. Finally, we demonstrate that PRIME provides a ready-to-use recipe for the
problem of filling level classification.

The rest of the chapter is organized as follows: In Sec. 5.2 we demonstrate that simple
pre-processing techniques might not be enough for inducing invariance to all possible
corruptions, and we formulate a new mathematical model for semantically-preserving
corruptions. Then, in Sec. 5.3 we provide a data augmentation scheme that utilizes the
proposed model of visual distortions, and evaluate its performance on multiple corruption
benchmarks. Furthermore, in Sec. 5.4 we use our method to investigate different aspects

60

5.2 Towards robustness to common corruptions

behind robustness to common corruptions, while, in Sec. 5.5 we tune PRIME to confer
robustness to distributions shifts in filling level classification. Finally, in Sec. 5.6 we
provide a discussion on open challenges and potential extensions of our method.

5.2 Towards robustness to common corruptions

5.2.1 Invariance by removing features

Data augmentation is the most common technique for improving the robustness of
classifiers to common distortions of the images. However, designing efficient data
augmentation schemes can be challenging, while at the same time the methods can be
computationally intense. To this end, it is reasonable to explore if the ideas introduced
in Chapter 4 can also be beneficial. That is, apply some simple pre-processing operations
for inducing specific invariances that can improve the robustness to common corruptions,
instead of generating augmentations at each training iteration.

In order to evaluate this approach, we will use the widely adopted Common Corruptions [1]
benchmark. This benchmark consists of 15 natural image distortions that can naturally
occur during acquisition, processing or storing of an image, each applied with 5 different
severity levels. At a higher level, these corruptions can be grouped into four categories,
namely “noise”, “blur”, “weather” and “digital”.

In previous works [3, 29] it was observed that some of these common corruptions affect
the high frequency part of the image frequency spectrum (i.e., high-frequency distortions).
Hence, following the exact same procedure as in Sec. 4.3.2, we can train the classifier on a
low-pass filtered version of the data, such that the network will be invariant to any high-
frequency changes introduced by the corruptions. Furthermore, color is another important
image space that can be affected by the aforementioned common corruptions. In this
sense, we might also want to introduce to the network some invariance to color changes,
similarly to what can be achieved by projecting the images onto the low-frequency part
of the spectrum to achieve invariance to the high-frequency one. Hence, we can remove
the color information from the data by training the classifier on grayscale images. Note,
however, that for retaining the architecture of the network such that it can still be able
to process standard RGB images at test time, we repeat the grayscale training images
along 3 channels.

In order to evaluate the aforementioned operations we conduct a small experiment.
Specifically, we train a ResNet-18 for 30 epochs on CIFAR-10 and its pre-processed
versions, using SGD and a cross-entropy loss function. For comparison, we also train a
network on CIFAR-10 using AugMix [36], a widely-used data augmentation method that
achieves very good robustness on the common corruptions benchmark. For simplicity, we
do not deploy the Jensen-Shannon Divergence (JSD) consistency loss – as introduced

61

Chapter 5. Robustness to non-adversarial distribution shifts

Standard LP Gray AugMix AugMix+LP
Gauss. noise 46.1 57.6 45.6 69.6 70.9
Shot noise 58.2 65.9 56.4 78.3 79.1
Impulse noise 54.5 56.2 57.4 77.5 78.5
Defocus blur 81.5 88.8 71.7 91.8 91.5
Glass blur 51.0 85.3 35.9 64.0 65.4
Motion blur 75.0 84.8 62.9 88.1 88.0
Zoom blur 75.3 87.6 62.0 89.9 89.6
Snow 80.6 85.7 73.0 84.5 85.0
Frost 75.5 86.9 66.5 83.8 84.3
Fog 88.0 81.2 82.3 89.9 89.7
Brightness 92.9 89.0 91.0 92.7 93.0
Contrast 76.1 68.8 78.4 83.6 84.5
Elastic 81.7 86.5 73.1 86.9 86.5
Pixelate 73.9 90.1 63.3 79.5 81.2
JPEG 77.4 83.1 73.0 82.4 83.2
Clean 94.4 91.1 92.4 94.1 94.1
Avg. Corruption 72.5 79.8 66.2 82.8 83.4

Table 5.1: Clean and corruption accuracy of ResNet-18 on CIFAR-10 using pre-processing
methods, AugMix, or combining AugMIx with low-pass filtering (AugMix+LP). Bold:
maximum value among Standard, LP, and Gray. Underline: maximum value per row.

in the original AugMix paper – when training with AugMix. Finally, we evaluate the
performance of the resulting networks by measuring their accuracy on the validation set
of CIFAR-10 (C-10) and its corruption counterpart, CIFAR-10-C (C-10-C).

The results are presented in Tab. 5.1. Focusing on the pre-processing methods, the first
thing to notice is that the low-pass (LP) filtering has a very strong effect on the robustness
of the classifier, mainly improving the accuracy on blurs and digital corruptions (e.g.,
Pixelate). However, as expected from Sec. 4.3.2, there is a drop of around 3% in the
clean accuracy of the model. It is quite interesting that such a simple operation of
low-complexity can boost the robustness significantly, which verifies the observation
that redundant features can hurt robustness to distribution shifts [160]. Nevertheless,
this might be just a CIFAR-10 artefact: recall from Sec. 4.3 that for other datasets like
ImageNet, the classifiers are already invariant to high-frequency features, and hence a
low-pass filtering might not have an effect similar to the one observed here. On the other
hand, training on grayscale images seems to hurt the robustness of the classifier, except
for the case of impulse noise and contrast. Hence, deploying such pre-processing method
to achieve robustness to color changes is not beneficial.

From the results with data augmentation, it is evident that AugMix achieves good results,
without really hurting the accuracy on the clean images. Interestingly, though, in many
corruption types low-pass filtering achieves better robustness than AugMix. Hence, and
in order to investigate any complementary gains between the two methods, we trained
the network by combining AugMix with low-pass filtering as well. Such combination can

62

5.2 Towards robustness to common corruptions

further increase the overall robustness, achieving better results than simply applying
AugMix or LP alone. Nevertheless, it seems that in some cases (i.e., glass blur) the
influence of AugMix dominates, and it constrains some beneficial properties of LP.

Overall, from our analysis we can highlight two main insights. First, pre-processing can
sometimes be beneficial, but some others can even be hurtful. Beyond the techniques
we deployed, there are many other ways to pre-process the data and possibly confer
robustness to some corruptions. However, the problem of common corruptions is ill-posed,
and it is difficult to introduce pre-processing methods that can cover every possible
corruption that might occur. Second, using data augmentation seems to be a sensible
direction. Yet, the AugMix+LP experiment hints that existing augmentation practices,
such as AugMix, might not properly cover the space of corruptions and can be further
improved. Hence, it is important to design a more general data augmentation framework
that effectively increases the coverage over the space of possible distortions.

5.2.2 General model of visual corruptions

Motivated by the “semantically-preserving” nature of common corruptions, we define a
new model of typical distortions. Specifically, we leverage the long tradition of image
processing in developing techniques to manipulate images while retaining their semantics
and construct a principled framework to characterize a large space of visual corruptions.

Let x : [0, 1]2 → [0, 1]3 be a continuous image1 mapping pixel coordinates r = (r1, r2)
to RGB values. We define our model of common corruptions as the action on x of the
following additive subgroup of the near-ring of transformations [187]

Tx =
{

n∑
i=1

λi gi
1 ◦ · · · ◦ gi

m(x) : gi
j ∈ {ω, τ, γ}, λi ∈ R

}
, (5.1)

where ω, τ and γ are random primitive transformations which distort x along the spectral
(ω), spatial (τ), and color (γ) domains. As we will see, defining each of these primitives
in a principled and coherent fashion will be enough to construct a set of perturbations
which covers most types of visual corruptions.

To guarantee as much diversity as possible in our model, we follow the principle of
maximum entropy to define our distributions of transformations [188]. Note that using a
set of augmentations that guarantees maximum entropy comes naturally when trying to
optimize the sample complexity derived from certain information-theoretic generalization
bounds, both in the clean [189] and corrupted settings [190]. Specifically, the principle of
maximum entropy postulates favoring those distributions that are as unbiased as possible
given the set of constraints that define a family of distributions. In our case, these

1We define our model of common corruptions in the continuous domain for simplicity. However, as is
common in image processing, in practice we will work with discrete images on a regular grid.

63

Chapter 5. Robustness to non-adversarial distribution shifts

constraints are given in the form of an expected strength σ2, some boundary conditions,
e.g., the displacement field must be zero at the borders of an image, and finally the
desired smoothness level K. The principle of smoothness helps formalize the notion of
physical plausibility, as most naturally occurring processes are smooth.

Formally, let I denote the space of all images, and let f : I → I be a random image
transformation distributed according to the law µ. Further, let us define a set of
constraints C ⊆ F , which restricts the domain of applicability of f , i.e., f ∈ C, and where
F denotes the space of functions I → I. The principle of maximum entropy postulates
using the distribution µ which has maximum entropy given the constraints:

maximize
µ

H(µ) = −
∫

F
dµ(f) log(µ(f)) (5.2)

subject to f ∈ C ∀f ∈ supp(µ),

where H(µ) represents the entropy of the distribution µ [188]. In its general form, solving
Eq. (5.2) for any set of constraints C is intractable. However, as we show in App. B.1,
for the distributions of each of our family of transformations we can derive an analytical
expression in closed form, by leveraging results from statistical physics [191].

In what follows, we describe the analytical solutions to Eq. (5.2) for each of our basic
primitives. In general, these distributions are governed by two parameters: K to control
smoothness, and σ2 to control strength. These transformations fall back to identity
mappings when σ2 = 0, independently of K.

Spectral domain We parameterize the distribution of random spectral transformations
using random filters ω(r), such that the output of the transformation follows

ω(x)(r) =
(
x ∗

(
δ + ω′)) (r), (5.3)

where, ∗ is the convolution operator, δ(r) represents a Dirac delta, i.e., identity filter,
and ω′(r) is implemented in the discrete grid as a finite impulse response (FIR) filter
of size Kω ×Kω with i.i.d random entries distributed according to N (0, σ2

ω). Here, σ2
ω

governs the transformation strength, while larger Kω yields filters of higher spectral
resolution. The bias δ(r) makes the output close to the original image.

Spatial domain We define our distribution of random spatial transformations, which
apply random perturbations over the coordinates of an image, using the following model

τ(x)(r) = x(r + τ ′(r)). (5.4)

This model has been recently proposed by Petrini et al. [192] to define a distribution of
random smooth diffeomorphisms in order to study the stability of neural networks to
small spatial transformations. To guarantee smoothness but preserve maximum entropy,

64

5.3 PRIME data augmentations

Petrini et al. propose to parameterize the vector field τ ′ as

τ ′(r) =
∑

i2+j2≤K2
τ

βi,j sin(πir1) sin(πjr2), (5.5)

where βi,j ∼ N (0, σ2
τ/(i2 + j2)). This choice of values guarantees that the resulting mapping

is smooth according to the cut frequency Kτ , while σ2
τ determines its strength.

Color domainWe follow a similar approach to define the distribution of random color
transformations. That is, we build random mappings γ between color spaces such that

γ(x)(r) = x(r) +
Kγ∑
n=0

βn ⊙ sin (πn x(r)) , (5.6)

where βn ∼ N (0, σ2
γI3), with ⊙ denoting elementwise multiplication. Again, Kγ controls

the smoothness of the transformations and σ2
γ their strength. Note however that,

compared to Eq. (5.5), the coefficients in Eq. (5.6) are not weighted by the inverse of
the frequency, and have constant variance. In practice, we observe that reducing the
variance of the coefficients for higher frequencies creates color mappings that are too
smooth and almost imperceptible, so we decided to drop this dependency in our model.

Finally, we note that our model is very flexible with respect to its core primitives. In
particular, it can be easily extended to include other distributions of maximum entropy
transformations that suit an objective task. For example, one might add the distribution
of maximum entropy additive perturbations given by η(x)(r) = x(r) + η′(r), where
η′(r) ∼ N (0, σ2

η). Nonetheless, since most benchmarks of visual corruptions disallow the
use of additive perturbations during training [1], our model does not include an additive
perturbation category.

Overall, based on the results in Secs. 5.3.2 and 5.4.2, our model is flexible and covers
a large part of the semantic-preserving distortions. It also allows to easily control the
strength and style of the transformations with just a few parameters. Moreover, changing
the transformation strength enables to control the trade-off between corruption robustness
and standard accuracy, as shown in Sec. 5.4.3. In what follows, we use our model to
design an efficient augmentation scheme to build classifiers robust to common corruptions.

5.3 PRIME data augmentations

5.3.1 Instantiating the general model of visual corruptions

We now introduce PRIME, a simple yet efficient augmentation scheme that uses our
PRImitives of Maximum Entropy to confer robustness against common corruptions.

65

Chapter 5. Robustness to non-adversarial distribution shifts

Algorithm 3: PRIME
Input: Image x, primitives G = {Id, ω, τ γ}, where Id is the identity operator
Output: Augmented image x̃

1 x̃0 ← x
2 for i ∈ {1, . . . , n} do
3 x̃i ← x
4 for j ∈ {1, . . . , m} do
5 g ∼ U(G) ▷ Strength σ ∼ U(σmin, σmax)
6 x̃i ← g(x̃i)
7 end
8 end
9 λ ∼ Dir(1) ▷ Random Dirichlet convex coefficients

10 x̃←
∑n

i=0 λix̃i

spectral

Figure 5.1: Example generated with the transformations of our common corruptions
model. Despite the perceptibility of the distortion, the image semantics are preserved.

The pseudo-code of PRIME is given in Algorithm 3, which draws a random sample
from Eq. (5.1) using a convex combination of a composition of basic primitives. Below
we describe the main implementation details of our algorithm.

Parameter selection It is important to ensure that the semantic information of an
image is preserved after it goes through PRIME. As measuring semantic preservation
quantitatively is not simple, we subjectively select each primitive’s parameters based on
visual inspection, ensuring maximum permissible distortion while retaining the semantic
content of the image2. To avoid relying on a specific strength for each transformation,
PRIME stochastically generates augmentations of different strengths by sampling σ from
a uniform distribution, with different minimum and maximum values for each primitive.

For the color primitive, we observed that fairly large values for Kγ (in the order of 500) are
important for covering a large space of visual distortions. Unfortunately, implementing

2All the selected transformation parameters of PRIME are provided in App. B.2.

66

5.3 PRIME data augmentations

PR
IM

E

Figure 5.2: Images generated with PRIME, a simple method that uses primitive families
of max-entropy transformations in different visual domains to create diverse data aug-
mentations.

such a transformation can be memory inefficient. To avoid this issue, PRIME uses a
slight modification of Eq. (5.6) and combines a fixed number ∆ of consecutive frequencies
randomly chosen in the range [0, Kγ]. Finally, as some of our transformations can push
the images outside of their color range, we always clip the output of each transformation
so that it lies on [0, 1]3.

Mixing transformations The concept of mixing has been a recurring theme in the
augmentation literature [36, 60, 61, 65] and PRIME follows the same trend. In particular,
Algorithm 3 uses a convex combination of n basic augmentations consisting of the
composition of m of our primitive transformations (see Fig. 5.2 for examples generated
with PRIME). In our experiments, we fix the total number of generated transformed
images (width) to be n = 3. As for the composition of the transformations (depth), we
follow a stochastic approach such that, on every iteration i ∈ {1, . . . , n}, only m̂ ∈ [1, m]
compositions are performed, with m = 3. In fact, in Algorithm 3 we do not explicitly
select randomly a new m̂ for every i but we provide the identity operator Id instead.
This guarantees that, in some cases, no transformation is performed.

In general, the convex mixing procedure (i) broadens the set of possible training aug-
mentations, and (ii) ensures that the augmented image stay close to the original one.
We later provide empirical results which underline the efficacy of mixing in Sec. 5.4.2.
Finally, note that, the basic skeleton of PRIME is similar to that of AugMix. However, as
we will see next, incorporating our maximum entropy transformations leads to significant
gains in common corruptions robustness over AugMix.

5.3.2 Performance on common corruptions

We compare the classification performance of PRIME on the common corruption
datasets [1], with that of two current approaches: AugMix [36] and DeepAugment

67

Chapter 5. Robustness to non-adversarial distribution shifts

Dataset Method Clean Common Corruption
Acc (↑) Acc (↑) mCE (↓)

C-10
Standard 95.0 74.0 24.0
AugMix 95.2 88.6 11.4
PRIME 94.2 89.8 10.2

C-100
Standard 76.7 51.9 48.1
AugMix 78.2 64.9 35.1
PRIME 78.4 68.2 31.8

IN-100

Standard 88.0 49.7 100.0
AugMix 88.7 60.7 79.1
DA 86.3 67.7 68.1
PRIME 85.9 71.6 61.0

DA+AugMix 86.5 73.1 57.3
DA+PRIME 84.9 74.9 54.6

IN

Standard∗ 76.1 38.1 76.7
AugMix∗ 77.5 48.3 65.3
DA∗ 76.7 52.6 60.4
PRIME† 77.0 55.0 57.5

DA+AugMix 75.8 58.1 53.6
DA+PRIME† 75.5 59.9 51.3

Table 5.2: Clean and corruption accuracy, and mean corruption error (mCE) for different
methods with ResNet-18 on C-10, C-100, IN-100 and ResNet-50 on IN. mCE is the mean
corruption error on common corruptions un-normalized for C-10 and C-100; normalized
relative to standard model on IN-100 and IN. † indicates that JSD consistency loss is not
used. ∗Models taken from [193].

(DA) [37]. Regarding the training setup, we consider four datasets: CIFAR-10 (C-10),
CIFAR-100 (C-100), ImageNet-100 (IN-100) and ImageNet (IN) [152]. IN-100 is a
100-class subset of IN obtained by selecting every 10th class in WordNet ID order. We
train a ResNet-18 [157] on C-10, C-100 and IN-100; and ResNet-50 on IN. Following
AugMix, and for a complete comparison, we also integrate the Jensen-Shannon divergence
(JSD)-based consistency loss with PRIME which compels the network to learn similar
representations for differently augmented versions of the same input image. Note that all
the models are trained for 100 epochs.

Regarding the experimental details, all models are implemented in PyTorch [158] and
are trained for 100 epochs using a cyclic learning rate schedule with cosine annealing
and a maximum learning rate of 0.2 unless stated otherwise. For IN, we fine-tune a
PyTorch regularly pretrained network with a maximum learning rate of 0.01 following
Hendrycks et al. [37]. We use SGD optimizer with momentum factor 0.9 and Nesterov
momentum. On C-10 & C-100, we set the batch size to 128 and use a weight decay
of 0.0005. On IN-100 and IN, the batch size is 256 and weight decay is 0.0001. We
employ ResNet-18 [157] on C-10, C-100 and IN-100; and use ResNet-50 for IN. The

68

5.3 PRIME data augmentations

augmentation hyperparameters for AugMix and DeepAugment are the same as in their
original implementations.

We evaluate our models on the corrupted versions (C-10-C, C-100-C, IN-100-C, IN-C)
of the aforementioned datasets, and the results are summarized in Tab. 5.2. Amongst
individual methods, PRIME yields superior results compared to those obtained by
AugMix and DeepAugment alone and advances the baseline performance on the corrupted
counterparts of the four datasets. As listed, PRIME pushes the corruption accuracy by
1.2% and 3.3% on C-10-C and C-100-C respectively over AugMix.

On IN-100-C, a more complicated dataset, we observe significant improvements wherein
PRIME outperforms AugMix by 10.9%. In fact, this increase in performance hints that
our primitive transformations are actually able to cover a larger space of image corruptions,
compared to the restricted set of AugMix. Interestingly, the random transformations in
PRIME also lead to a 3.9% boost in corruptions accuracy over DeepAugment despite the
fact that DeepAugment leverages additional knowledge to augment the training data via
its use of pre-trained architectures. Moreover, PRIME provides cumulative gains when
combined with DeepAugment, reducing the mean corruption error (mCE) of prior art
(DA+AugMix) by 2.7% on IN-100-C.

Lastly, we evaluate the performance of PRIME on full IN-C, but we do not use JSD
with PRIME to reduce the computational complexity. Yet, even without JSD, PRIME
outperforms, in terms of corruption accuracy, both AugMix (with JSD) and DeepAugment
by 6.7% and 2.4% respectively, while the mCE is reduced by 7.8% and 2.9%. Also, when
PRIME is combined with DeepAugment, it also surpasses the performance of DA+AugMix
(with JSD), reaching a corruption accuracy of almost 60% and an mCE of 51.3%.

Note here, that, not only PRIME achieves superior robustness, but it does so efficiently.
Compared to standard training on IN-100, AugMix requires 1.20x time and PRIME
requires 1.27x. In contrast, DA is tedious and we do not measure its runtime since it also
requires the training of two large image-to-image networks for producing augmentations,
and can only be applied offline.

Additionally, given the nuances amongst individual corruption types in common corrup-
tions, we perform a fine-grained analysis with PRIME on IN-100-C to ensure that our
method leads to general improvements against all corruption types. As evident from the
comparison in Tab. 5.3, PRIME alone, even without the JSD term, improves robustness
over current techniques to almost every corruption type except blur. Further, incorporat-
ing the JSD term with PRIME attains the best results on all the corruption categories.
Relative to the previous best by DeepAugment on IN-100-C, PRIME improves by 4.3%
on noises, 2% on blurs, 3.4% on weather changes and 5.8% against digital distortions.
This validates that PRIME helps against all common corruption types in IN-100-C,
underlining the generality of our model of common corruptions.

69

Chapter 5. Robustness to non-adversarial distribution shifts

Method IN-100-C Noise Blur Weather Digital IN-100
AugMix† 55.2 38.9 56.8 57.0 64.2 88.0
AugMix 60.7 44.8 63.1 60.7 70.3 88.7
DA 67.7 75.9 62.5 63.6 70.9 86.3
PRIME† 68.8 78.8 58.3 66.0 74.8 87.1
PRIME 71.6 80.2 64.5 67.0 76.7 85.9

Table 5.3: Classification accuracy (↑) of various methods on the different corruption
types contained in IN-100-C. † indicates that JSD consistency loss is not used. Network
used: ResNet-18.

5.3.3 Unsupervised domain adaptation

Recently, robustness to common corruptions has also been of significant interest in the
field of unsupervised domain adaptation [194, 195]. The main difference is that, in
domain adaptation, one exploits the limited access to test-time corrupted samples to
adjust certain network parameters. Hence, it would be interesting to investigate the
utility of PRIME under the setting of domain adaption.

To that end, we combine our method with the adaption trick by Schneider et al. [195].
Specifically, we adjust the batch normalization (BN) statistics of our models using a few
corrupted samples. Suppose zs ∈ {µs, σs} are the BN mean and variance estimated from
the training data, and zt ∈ {µt, σt} are the corresponding statistics computed from n

unlabelled, corrupted test samples, then we re-estimate the BN statistics as follows:

ẑ = N

N + n
zs + n

N + n
zt (5.7)

We consider three adaptation scenarios: single sample (n = 1, N = 16), partial (n =
8, N = 16) and full (n = 400, N = 0) adaptation. Here, we do not perform parameter
tuning for N . As shown in Tab. 5.4, simply correcting BN statistics using as little as 8
corrupted samples pushes the corruption accuracy of PRIME from 71.6% to 75.3%. In
general, PRIME yields cumulative gains in combination with adaptation and has the
best IN-100-C accuracy.

5.4 Robustness insights

In this section, we exploit the simplicity of PRIME to investigate different aspects
behind robustness to common corruptions. We first analyze how each transformation
domain contributes to the overall robustness of the network. Then, we empirically locate
and justify the benefits of mixing the transformations of each domain. Moreover, we
demonstrate the existence of a robustness-accuracy trade-off, and, finally, we comment
on the low-complexity benefits of PRIME in different data augmentation settings.

70

5.4 Robustness insights

Method
IN-100-C accuracy (↑) IN-100 (↑)

w/o single partial full single
adapt adapt adapt adapt adapt

Standard 49.7 53.8 62.0 63.9 88.1
AugMix 60.7 65.5 71.3 73.0 88.3
DA 67.7 70.2 72.7 74.6 86.3
PRIME 71.6 73.5 75.3 76.6 85.7

Table 5.4: Performance when in concert with domain adaptation on IN-100. Partial
adaptation uses 8 samples; full adaptation uses 400 corrupted samples. Network used:
ResNet-18.

5.4.1 Contribution of transformations

We want to understand how the transformations in each domain of Eq. (5.1) contribute
to the overall robustness. To that end, we conduct an ablation study on IN-100-C by
training a ResNet-18 with the max-entropy transformations of PRIME individually or
in combination. As shown in Tab. 5.5, spectral transformations mainly help against
blur, weather and digital corruptions. Spatial operations also improve on blurs, but
on elastic transforms as well (digital). On the contrary, color transformations excel on
noises and certain high frequency digital distortions, e.g. pixelate and JPEG artefacts,
and have a minor effect on weather changes. Besides, incrementally combining these
transformations lead to cumulative gains e.g. spatial+color help on both noises and blurs.
Yet, for obtaining the best results, the combination of all transformations is required.
This means that each transformation increases the coverage over the space of possible
distortions and the increase in robustness comes from their cumulative contribution.

Transform IN-100-C Noise Blur Weather Digital IN-100
None 49.7 27.3 48.6 54.8 62.6 88.0
ω 64.1 60.7 55.4 66.6 72.9 87.3
τ 53.8 30.1 56.2 57.6 65.4 87.0
γ 59.9 67.4 52.6 54.4 67.1 86.9
ω+τ 64.5 58.5 57.3 66.8 73.9 87.7
ω+γ 67.5 77.2 55.7 65.3 74.2 87.1
τ+γ 63.3 74.7 57.4 56.2 67.8 86.2
ω+τ+γ 68.8 78.8 58.3 66.0 74.8 87.1

Table 5.5: Impact of the different primitives of max-entropy (ω: spectral, γ: color, τ :
spatial) from PRIME on common corruption accuracy (↑). All the transformations
are essential for the performance of PRIME. All models are trained without JSD loss.
Network used: ResNet-18.

71

Chapter 5. Robustness to non-adversarial distribution shifts

spectral spectral
PRIME

(a) clean+spectral
+spectral ≈ brightness

spectral spectral
PRIME

(b) clean+spectral
+spectral ≈ contrast

PRIME

(c) clean+color
≈ gaussian_noise

PRIME

(d) clean+spatial+spatial
≈ zoom_blur

Figure 5.3: The mixing procedure creates distorted images that look visually similar to
the test-time corruptions. In each example, we show the clean image, the PRIME image
and the corresponding common corruption that resembles the image produced by mixing.
We also report the mixing combination used for recreating the corruption. Additional
examples can be found in App. D of [185].

5.4.2 The importance of mixing

In most data augmentation methods, besides the importance of the transformations
themselves, mixing has been claimed as an essential module for increasing diversity in the
training process [36, 60, 61, 65]. In our attempt to provide insights on the role of mixing
in the context of common corruptions, we found out that it is capable of constructing
augmented images that look perceptually similar to their corrupted counterparts. In
fact, the improvements on specific corruption types observed in Tab. 5.5 can be largely
attributed to mixing. As exemplified in Figs. 5.3a and 5.3b, careful combinations of
spectral transformations with the clean image introduce brightness and contrast-like
artefacts that look similar to the corresponding corruptions in IN-C. Also, combining
spatial transformations creates blur-like artefacts that look identical to zoom blur in
IN-C (Fig. 5.3d). Finally, notice in Fig. 5.3c how mixing color transformations helps
fabricate corruptions of the “noise” category. This means that the max-entropy color
model of PRIME enables robustness to different types of noise without explicitly adding
any during training. This might explain the significant improvement over the “noise”
category in Tab. 5.3.

Note that one of the main goals of data augmentation is to achieve maximum coverage
of the space of possible distortions using a limited transformation budget, i.e., within a
few training epochs. The principle of max-entropy guarantees this within each primitive,

72

5.4 Robustness insights

Method Min. cosine distance (×10−3)
Avg. (↓) Median (↓)

None (clean) 25.38 6.44
AugMix (w/o mix) 20.57 3.56
PRIME (w/o mix) 10.61 1.88
AugMix 17.48 2.61
PRIME 7.71 1.61

Table 5.6: Minimum cosine distances in the ResNet-50 SimCLRv2 embedding space
between 100 augmented samples from 1000 ImageNet images, and their corresponding
common corruptions.

but the effect of mixing on the overall space is harder to quantify. In this regard, we
can use the distance in the embedding space ϕ of a SimCLRv2 [196] model, as a proxy
for visual similarity [197, 198]. We are interested in measuring how mixing the base
transformations changes the likelihood that an augmentation scheme generates some
sample during training that is visually similar to some of the common corruptions. To
that end, we randomly select N = 1000 training images {xn}Nn=1 from IN, along with
their C = 75 (15 corruptions of 5 severity levels) associated common corruptions {x̂c

n}Cc=1,
and generate for each of the clean images another T = 100 transformed samples {x̃t

n}Tt=1
using each augmentation scheme. Moreover, for each corruption x̂c

n we find its closest
neighbor x̃t

n from the set of generated samples using the cosine distance in the embedding
space3. Our overall measure of fitness is

1
NC

N∑
n=1

C∑
c=1

min
t

{
1−

(
ϕ(x̂c

n)⊤ϕ(x̃t
n)

∥ϕ(x̂c
n)∥2 ∥ϕ(x̃t

n)∥2

)}
. (5.8)

Table 5.6 shows the values of this measure applied to AugMix and PRIME, with and
without mixing. For reference, we also report the values of the clean (no transform) images
{xn}Nn=1. Clearly, mixing helps reducing the distance between the common corruptions
and the augmented samples from both methods. We also observe that PRIME, even
with only 100 augmentations per image – in the order of number of training epochs –
can generate samples which are twice as close to the common corruptions as AugMix.
In fact, the feature similarity between training augmentations and test corruptions was
also studied in [49], with an attempt to justify the good performance of AugMix on C-10.
Yet, we see that the fundamental transformations of AugMix are not enough to span a
broad space warranting high perceptual similarity to IN-C. The significant difference in
terms of perceptual similarity in Tab. 5.6 between AugMix and PRIME may explain the
superior performance of PRIME on IN-100-C and IN-C (cf. Tab. 5.2).

3Examples of nearest neighbors can be found in App. E of [185].

73

Chapter 5. Robustness to non-adversarial distribution shifts

10−3 10−2 10−1 100 101 102

Parameter scale α

0.90

0.92

0.94

V
al

id
at

io
n

ac
c.

Robustness tradeoff on CIFAR-10

0.80

0.84

0.88

10−2 10−1 100 101 102

Parameter scale α

0.82

0.84

0.86

Robustness tradeoff on IN-100

0.55

0.60

0.65

R
ob

us
t

ac
c.

Figure 5.4: Robustness vs. accuracy of a ResNet-18 (w/o JSD) on CIFAR-10 (left)
and ImageNet-100 (right), when trained multiple times with PRIME. For each training
instance, the transformation strength is scaled by α. Note the different scale in axes.

5.4.3 Robustness vs Accuracy trade-off

An important phenomenon observed in the literature of adversarial robustness is the
so-called robustness-accuracy trade-off [26, 27, 126], where technically adversarial train-
ing [25] with smaller perturbations (typically smaller ε) results in models with higher
standard but lower adversarial accuracy, and vice versa. In this sense, we want to under-
stand if the strength of the image transformations introduced through data augmentation
can also cause such phenomenon in the context of robustness to common corruptions. As
described in Sec. 5.2.2, each of the transformations of PRIME has a strength parameter
σ, which can be seen as the analogue of ε in adversarial robustness. Hence, we can easily
reduce or increase the strength of the transformations by setting σ̂ = ασ, where α ∈ R+.
Then, by training a network for different values of α we can monitor its accuracy on the
clean and the corrupted datasets.

We train a ResNet-18 on C-10 and IN-100 using the setup of Sec. 5.3.2. For reducing
complexity, we do not use the JSD loss and we train for 30 epochs. This could cause
some performance drop compared to the results of Tab. 5.2, but we expect the overall
trends in terms of accuracy and robustness to be preserved. Regarding the scaling of
the parameters’ strength, for C-10 we set α ∈ [10−3, 102] and sample 100 values spaced
evenly on a log-scale, while for IN-100 we set α ∈ [10−2, 102] and we sample 20 values.

The results are presented in Fig. 5.4. For both C-10 and IN-100, there is a sweet spot
for the scale around α = 0.2 and α = 1 respectively, where the accuracy on common
corruptions reaches its maximum. For α smaller than these values, we observe a clear
trade-off between validation and robust accuracy. While the robustness to common
corruptions increases, the validation accuracy decays. However, for α greater than the
sweet-spot values, we observe that the trade-off ceases to exist since both the validation
and robust accuracy present similar behaviour (slight decay). In fact, these observations
indicate that robust and validation accuracies are not always positively correlated, and
that one might have to slightly sacrifice validation accuracy in order to achieve robustness.

74

5.4 Robustness insights

1 2 3 4 5 6 7 8 9 10

Additional augmented datasets k

0.86

0.88

0.90

A
cc

ur
ac

y

Off-line augmentation on CIFAR-10

On-line

1 2 3 4 5 6 7 8 9 10

Additional augmented datasets k

0.65

0.67

0.69

A
cc

ur
ac

y

Off-line augmentation on IN-100

On-line

Figure 5.5: Accuracy of ResNet-18 (w/o JSD) on CIFAR-10 (left) and ImageNet-100
(right) when augmenting the training sets with additional PRIME counterparts off-line.
Dashed lines denote the accuracy when training under the same setup, but generating
the augmentations during training (on-line). Validation accuracy is omitted because it is
rather constant: around 93.4% for CIFAR-10 and around 87% for ImageNet-100.

5.4.4 Sample complexity

Finally, we investigate the necessity of performing augmentation during training (on-line
augmentation), compared to statically augmenting the dataset before training (off-line
augmentation). On the one hand, on-line augmentation is useful when the dataset is
huge and storing augmented versions requires a lot of memory. Besides, there are cases
where offline augmentation is not feasible as it relies on pre-trained or generative models
which are unavailable in certain scenarios, e.g. DeepAugment [37] or AdA [38] cannot be
applied on C-100. On the other hand, off-line augmentation may be necessary to avoid
the computational cost of generating augmentations during training.

To this end, for each of the C-10 and IN-100 training sets, we augment them off-line with
k = 1, 2, . . . , 10 i.i.d. PRIME transformed versions. Afterwards, for different values of k,
we train a ResNet-18 on the corresponding augmented dataset and report the accuracy
on the validation set and the common corruptions. For the training setup, we follow
the settings of Sec. 5.3.2, but without JSD loss. Also, since we increase the size of the
training set by (k + 1), we also divide the number of training epochs by the same factor,
in order to keep the same overall number of gradient updates.

The performance on common corruptions is presented in Fig. 5.5. The first thing to notice
is that, even for k = 1, the obtained robustness to common corruptions is already quite
good. In fact, for IN-100 the accuracy (65%) is already better than the best achievable
result of on-line AugMix (60.7% with JSD loss cf. Tab. 5.3). Regarding C-10 we observe
that for k = 4 the actual difference with respect to the on-line augmentation is almost
negligible (88.8% vs. 89.3%), especially considering the overhead of transforming the
data at every epoch. Technically, this means that augmenting C-10 with 4 PRIME
counterparts is enough for achieving good robustness to common corruptions.

75

Chapter 5. Robustness to non-adversarial distribution shifts

Finally, we also see in Fig. 5.5 that the corruption accuracy on IN-100 presents a very
slow improvement after k = 4. Comparing the accuracy at this point (67.2%) to the one
obtained with on-line augmentation and without JSD (68.8% cf. Tab. 5.3) we observe a
gap of 1.6%. Hence, given the cost of on-line augmentation on such large scale datasets,
simply augmenting the training with 4 extra PRIME samples presents a good compromise
for achieving competitive robustness. Nevertheless, the increase of 1.6% introduced by
on-line augmentation is rather significant, hinting that generating transformed samples
during training might be necessary for maximizing performance. In this regard, the lower
computational complexity of PRIME allows it to easily achieve this +1.6% through on-line
augmentation, since it only requires 1.27× additional training time compared to standard
training, and only 1.06× compared to AugMix, but with much better performance. This
can be a significant advantage with respect to complex methods, like DeepAugment, that
cannot be even applied on-line (require heavy pretraining).

5.5 Improving filling level classification with PRIME

So far we demonstrated that data augmentation with PRIME improves the robustness of
classifiers to common corruptions of the data. In this section, we will see that PRIME
can also be efficiently applied to off-the-self tasks, and improve robustness to other types
of distribution shifts. In particular, we will focus again on the problem of estimating
the filling level of a container introduced in Sec. 4.5, and we will show that PRIME can
be easily tuned to effectively replace current transfer learning approaches, since it can
significantly improve the generalization of the classifier.

The main limitation of transfer learning is that it requires the overhead of pre-training
large models on very big datasets, while this overhead can further explode if these models
are trained adversarially [170, 171]. At the same time, there is actually no guarantee
that the transferred features are relevant for the target task, while the exact reason why
transfer learning is expected to work is rather obscure. An alternative for increasing the
variability of the training data is to perform data augmentation. However, generating
additional samples that resemble the previously unseen properties of the test-time data
can be quite challenging, since imposing such properties (i.e., changing shape) might
require more complex and sophisticated operations, i.e, composition of transformations
or mixing strategies [36]

In what follows, we will show that data augmentation using PRIME can improve
significantly improve the filling level classification. We will demonstrate that PRIME can
be easily tuned to generate augmentations that are tailored for learning classifiers that
generalize on test-time images with containers of previously unseen shape, color, and
spectral content. Using our scheme, we prevent the underlying classifier from overfitting
to undesired features, achieving a filling level classification accuracy that is on-par or
better than the one obtained with transfer learning. Yet, through a constructive approach

76

5.5 Improving filling level classification with PRIME

and without the need of pre-training on large datasets. Finally, we also show that the
performance of the classifier may further increase when our data augmentation scheme is
used in concert with transfer learning itself.

5.5.1 Distribution shifts and PRIME augmentations

Recall from Sec. 4.5 that in an attempt to empirically understand the dataset features
that the classifier relies on, we introduced C-CCM, a dataset of cups and glasses that
can be empty or filled with water, pasta or rice. The containers can vary a lot in terms
of shape and transparency, while they can be captured under different illuminations,
backgrounds and occlusions. We further defined three different training and validation
splits, where a distribution shift is introduced in the validation set, such that some
validation containers always have some property that does not exist in the training set
(i.e., a unique shape, a stem, or color).

By measuring the network performance, we observed that the accuracy on the “shifted”
containers was systematically lower than the one on containers that share similarities
with those in the training set (overfitting). This is probably due to some biases related
to the shape, color, and spectral content of the images, and that, with transfer learning,
the target model becomes more invariant to features related to these properties. When
the source model is also adversarially trained, then its stronger invariance to unnecessary
features [159, 160] enables the target model to avoid irrelevant correlations and to rather
identify features related to the actual task (i.e., filling level rather than shape).

To avoid both the computational cost of training robust models and the obscurity of
transfer learning, it is worth investigating if the variability of the training set can be
increased through data augmentation. When performing data augmentation, the choice
of the basic transformations used to compose the augmentations is very important. They
must be general and diverse enough to cover the desired changes to be induced. In
the context of filling level classification, and for the overfitting phenomena discussed in
Sec. 5.5.1, one should seek for image transformations that are sufficient to, i.e., change
the shape of the container or its color/frequency content.

To this end, PRIME can generate diverse augmentations using a set of primitive max-
entropy transformations on the spatial (τ), color (γ) and spectral (ω) domain. For filling
level classification, we expect these transformations to relate to the changes we want to
introduce during training: container shape through τ , container color through γ , and
illumination and texture through ω.

Recall from Sec. 5.3 that each RIME transformation has two control parameters: K for the
smoothness and σ2 for the strength. PRIME synthesizes a transformed image x̃ through
a convex combination of n basic augmentations (width) consisting of the composition of
m of its max-entropy transformations (depth). We make a small modification on the last

77

Chapter 5. Robustness to non-adversarial distribution shifts

Figure 5.6: Sample transformed images using diffeomorphisms with varying smoothness
level Kτ (top row, from left to right: original image, transformed image with Kτ = 2, 5, 10;
bottom row: Kτ = 20, 40, 100, 300).

Figure 5.7: Sample transformed images using color jittering with varying smoothness level
Kγ (top row, from left to right: original image, transformed image with Kγ = 2, 5, 10;
bottom row: Kγ = 20, 40, 100, 300).

step of Algorithm 3, such that the final image x̂ is synthesized as a linear combination
(mixing) of the original image x and the transformed image x̃ = ∑n

i=1 λix̃i, with the
coefficients of the linear combination drawn from a Beta distribution

x̂ = (1− p) x + p x̃ with p ∼ Beta(α, β). (5.9)

Note that, for the shape parameters α, β of the Beta distribution, when α > β more
importance is given to the pixels of the transformed image x̃, while when α < β more
importance is given to the pixels of the original image x.

In the next section, we will investigate if transfer learning can be replaced by a more
controlled data augmentation strategy tailored for filling level classification. We will
explore how to tune PRIME parameters for tackling the dataset-specific distribution
shifts and improve the performance of the network on estimating the filling level.

78

5.5 Improving filling level classification with PRIME

Figure 5.8: Sample transformed images using spectral filtering with varying kernel size
(smoothness level) Kω ×Kω (top row, from left to right: original image, transformed
image with Kω = 3, 5, 7; bottom row: Kω = 9, 11, 13, 15).

5.5.2 PRIME transformation parameters

We must first identify the proper parameter values, given the dataset-specific shifts that
arise for each validation split. We focus first on the splits S1 and S2 of the C-CCM
dataset, where the shifts are mostly related to the shape of the containers. Hence, the
most relevant transformation in PRIME is the one in the spatial domain. Intuitively, we
would like to enforce smooth, yet strong, diffeomorphisms that are able to alter the shape
of the whole container so it becomes as narrow as a champagne flute, or just a part of it
so it resembles the stem of a cocktail glass (see Fig. 5.6). Recall, that, for a fixed value of
smoothness Kτ the authors in [192] propose to randomly sample the strength σ2

τ from a
specific interval, such that the resulting diffeomorphism remains bijective. In practice, for
smaller values of Kτ (smoother), larger values of σ2

τ are allowed to be sampled. Hence,
we decided to set Kτ = 10 and let σ2

τ to be properly sampled during training. In practice
we observed that Kτ ∈ [10, 20] still leads to good results.

For the split S3, since we mostly deal with shifts related to the color and frequency
content of the containers (i.e., red and green glass, which can lead to different textures
and reflections), we focus on the color (see Fig. 5.7) and spectral (see Fig. 5.8) transforms
in PRIME. For the smoothness parameter K, we keep the values proposed in Sec. 5.3.1:
Kγ = 500 and Kω = 3 for the color and the spectral domain respectively. As for the
parameter strength, since very strong changes could potentially destroy the information in
the images, we decide to only slightly manipulate the color of the pixels and the frequency
information of the images, and hence we set σ2

γ = 0.001 and σ2
ω = 0.01 respectively.

5.5.3 Mixing parameters in PRIME

Regarding the mixing strategy, the width n specifies the number of transformed instances
to be used in the convex combination for synthesizing the transformed image x̃. It is
reasonable to assume that we must set n > 1 in order to increase the diversity of the

79

Chapter 5. Robustness to non-adversarial distribution shifts

m S1 S2 S3
1 82.69 73.42 67.91
2 83.16 70.95 65.90
3 84.93 68.92 75.03

Table 5.7: Validation accuracy of a ResNet-18 on the three C-CCM dataset splits
(S1, S2, S3), when the composition depth m of PRIME increases. Note that the transfor-
mation width is fixed to n = 3.

1 2 3 4 5 6
β

1

2

3

4

5

6

α

S1

80
81
82
83
84
85
86

1 2 3 4 5 6
β

1

2

3

4

5

6
α

S2

69
70
71
72
73
74
75

1 2 3 4 5 6
β

1

2

3

4

5

6

α

S3

60

65

70

75

80

Figure 5.9: Effect of the Beta(α, β) distribution on the validation accuracy of a ResNet-18,
trained with PRIME, on each split of C-CCM. Note that, during the mixing step of
PRIME, α > β imposes more importance to the pixels of the transformed image, while
α < β to the pixels of the original image.

generated transformed instances, and hence we decide to use the default value (n = 3).

The depth m specifies how many transformations will be sequentially applied on an
image. In general, it is not always possible to determine what will be the exact outcome
of such composition, and its impact on the overall performance. Hence, we let the mixing
coefficient p of Eq. (5.9) to be uniformly sampled (α = β = 1) and perform a sensitivity
analysis on the values of m (see Sec. 5.5.4 for training details). The performance of a
ResNet-18 on each dataset split is shown in Tab. 5.7. We observe that for S1 and S3
increasing the depth significantly improves the performance. For S2 though we observe
the opposite effect, indicating that applying multiple transformations on the image
degrades some important information.

Finally, for the best performing values of m in Tab. 5.7, we explore the effect of the
mixing coefficient p in equation Eq. (5.9). Specifically, we focus on the Beta distribution
parameters, which control the relative importance of the pixels of x or x̃. Intuitively,
since the classifier overfits to the training data we expect that more importance on x̂

is necessary. To that end, we perform a sensitivity analysis on α and β, by measuring
the performance of the network on their different combinations. Based on the results
in Fig. 5.9, our initial intuition was right: on every dataset split, the highest validation
accuracy is achieved when more importance is given to the pixels of the transformed
image. In particular, on S1 and S2 the best performance (86.73% and 75.66% respectively)
is achieved for Beta(5, 1), while on S3 (84.21%) it is achieved for Beta(6, 2).

80

5.5 Improving filling level classification with PRIME

5.5.4 Experimental validation

We conduct experiments on C-CCM [161] using a ResNet-18 [157]. From the C-CCM
pre-trained models provided by [161], we evaluate the ones trained with ST (baseline),
ST→FT, and AT→FT, with the latter currently being the best one for classifying C-
CCM. Furthermore, we train a model directly on C-CCM using data augmentations
generated with PRIME (DAPRIME), and, finally, we also explore the combination of fine-
tuning an adversarially trained model [170] with DAPRIME. We denote this strategy as
AT→DAPRIME. We evaluate and compare the different methods on the different splits of
C-CCM. Whenever PRIME is used, we use the parameters specified in Secs. 5.5.2 and 5.5.3.
All model definitions and training procedures are implemented in PyTorch [158].

For DAPRIME and AT→DAPRIME strategies we train or fine-tune the classifier for 50
epochs, using a cross-entropy loss and stochastic gradient descent. The maximum learning
rate for updating the weights is set to 0.05 and 0.005 when performing DAPRIME and
AT→DAPRIME respectively. The learning rate decays linearly during training. Note
that the models we evaluate are the ones that achieve the highest validation accuracy
(early-stopping), while for dealing with class imbalances, the training images in a batch
are randomly sampled with probabilities that are inversely proportional to the number
of images of each class.

Classification results

We now evaluate and compare the different methods on the different splits of C-CCM. For
the case of AT→DAPRIME, since there are multiple source models adversarially trained
with perturbations of different strength ε, we decided to choose those that lead to the
highest validation accuracy. Hence, for S1 we select a network trained with ε = 0.05, while
for S2 and S3 a network trained with ε = 0.5. Recall that, for the AT→FT models used
in [161] the selected values of ε were 0.05, 1 and 0.5 for each dataset split respectively.

Overall performance Figure 5.10 shows the classification performance of different
strategies on the three configurations, S1, S2 and S3. The results indicate that pre-
training might not be necessary: properly tuning data augmentation to compensate for
the dataset-specific distribution shifts, improves performance with a lower computational
cost than using transfer learning. DAPRIME requires only 1.2× additional training time
compared to ST on C-CCM, which is many orders of magnitude lower than (adversarially)
training a model on ImageNet for using transfer learning. When training time is not
an issue, transfer learning with AT at the source domain combined with DAPRIME
(AT→DAPRIME) generally improves performance. Note that when the performance of
ST is low, all strategies lead to significant improvements; whereas when ST performs
well, AT→FT has an insignificant contribution or decreases the final performance.

Detailed analysis for each split For S1, the low performance of ST on the cham-

81

Chapter 5. Robustness to non-adversarial distribution shifts

123 567 91 01 1
0

20
40
60
80

100

A
cc

ur
ac

y
(%

)

S1 S2 S3

V

Training:

(1,059) (787) (702)

(1,623) (1,639) (1,290) (1,566) (1,550)

(1,059) (1,550) (702)

(1,623) (1,639) (1,290) (1,566) (787)

(1,624) (1,566) (787)

(1,059) (1,639) (1,290) (1,550) (702)

Figure 5.10: Per-container filling level classification accuracy (top) on the three dataset
splits (bottom) of C-CCM. Parentheses denote the number of images for each type of
container. Legend: ST, ST→FT. AT→FT, DAPRIME, AT→DAPRIME.

pagne flute (left) is improved by both AT→FT and DAPRIME, and even more so by
AT→DAPRIME, suggesting that diffeomorphisms compensate for the unique narrow shape
of the flute. The accuracy of ST on the beer cup (middle) is high, due to the shape
similarity of the small transparent cup in the training set. AT→FT causes a small
accuracy drop, whereas DAPRIME retains the performance and AT→DAPRIME improves
it. The accuracy of ST on the cocktail glass (right) is slightly improved with AT→FT
and considerably improved by DAPRIME and AT→DAPRIME. Although there is another
container with a stem in the training set (wine glass), it seems that the diffeomorphisms
better compensate for the different shape above the stem of the cocktail glass.

For S2, the accuracy of all strategies on the champagne flute (left) and the cocktail glass
(right) is somehow similar in trend to that on S1. Note that there are no containers with
a stem in the training set. Yet, the performance on the wine glass (middle) is similar for
most strategies, which might be due to the similarity of its shape above the stem with
the other transparent cups in the training set.

For S3, there is no colored container in the training set. ST is unable to generalize for
the red cup (left), unlike AT→FT, DAPRIME and AT→DAPRIME. Still, the accuracy
with data augmentation is not on the same level as with AT→FT, which sets this specific
container case as an example of the benefits of adversarially pre-training the network on
a large and diverse source dataset. As for the green glass (middle) AT→FT increases on
ST, similarly to AT→DAPRIME. Finally, the accuracy of ST on the beer cup (right) is
high and the other strategies cannot reach that level, with AT→DAPRIME featuring the
lowest performance drop.

5.6 Discussion

Coverage over the space of corruptions In many parts of this chapter we implied
that, for conferring robustness to common corruptions, a good augmentation method

82

5.6 Discussion

should generate augmentations that cover a large space of possible corruptions. In general,
formally identifying the space of semantic-preserving corruptions, and providing solid
guarantees, is an utmost challenge. However, as with other problems in computer vision,
we can rely on empirical proxies to gauge the coverage of an augmentation method.
Specifically for PRIME, (i) its superior performance on multiple benchmarks (Tab. 5.2)
and (ii) the quantitative study of Sec. 5.4.2 along with the SimCLR embedding distances
of Tab. 5.6 suggest that PRIME achieves a broader coverage of the space of common
corruptions than other methods. Additionally, the max-entropy principle formally
guarantees a good coverage over the space of each of the three primitive transformations.
Note here, that similar transformations to our three primitives are commonly used to
model many types of image corruptions (e.g., color jitters, or lens artifacts).

The SimCLR embedding distances of Tab. 5.6 can be seen as a measure of “fitness” for
the common corruption benchmark; that is, how similar/representative are the generated
augmentations with respect to the actual corrupted images in the benchmark. Another
measure of interest would be to investigate how diverse are the generated augmentations;
that is, how large is the variance of the augmentations as measured in a given space
(i.e., embedding space of a network). Hence, to qualitatively compare the diversity the
augmentations of PRIME with respect to other methods, we can follow the procedure
in [65]. We randomly select 3 images from ImageNet, each one belonging to a different
class. For each image, we generate 100 transformed instances using AugMix and PRIME,
while with DeepAugment we can only use the original images and the 2 transformed
instances that are pre-generated with the EDSR and CAE image-to-image networks that
DeepAugment uses. Then, we pass the transformed instances of each method through
a ResNet-50 pre-trained on ImageNet and extract the features of its embedding space.
On the features extracted for each method, we perform PCA and then visualize the
projection of the features onto the first two principal components. We visualize the
projected augmented space in Fig. 5.11, which suggests that PRIME, not only generates
augmentations that fit better the benchmark of common corruptions (cf. SimCLR
embedding distances), but that are also more diverse than AugMix and DeepAugment.

Furthermore, for understanding the potential of PRIME in covering a large space of the
common corruptions, one can measure the capability of PRIME to create augmented
images that are very similar to those in the benchmark. Since the transformations of
PRIME are all differentiable, apart from the SimCLR embedding space distances, one
can try to optimize the parameters of the transformations to minimize ∥xt−xc∥2; that is,
the distance between a PRIME-transformed image xt and the corresponding image from
the corruption benchmark xc. Alternatively, one can focus on the mixing parameters
and follow the same approach as in [65]: to find the worst-case (adversarial) mixing
coefficients λ such that the mixed augmented images reach a part of the space that
causes the most significant change on the classifier.

83

Chapter 5. Robustness to non-adversarial distribution shifts

Figure 5.11: Projections of augmentations generated by different methods on the embed-
ding space of a ResNet-50.

Extensions The general model of common corruptions of Eq. (5.1) can be extended
with more transformations, as long as they follow the same principles as the ones we
introduced (i.e., sampled from a max-entropy distribution). We already discussed the
use of additive random noise η, which we do not include in our experiments due to its
overlap with corruptions that exist in the evaluation benchmarks. Another possibility is
to consider the transformations in the spatial domain. We chose to use diffeomorphisms,
but one can also introduce random affine or projective transformations instead. Finally,
our model can also easily accept other types of modifications, such as occlusions, or
transformations based on task-specific priors.

5.7 Conclusions

In this chapter, we took a systematic approach to formulate a universal model that
captures a wide variety of semantic-preserving image transformations. In particular,
we defined a set of primitive max-entropy transformations in the spatial, color and
spectral image domain, which guarantee that we provide the network with the maximum
additional information possible about the domain of the transformation. Relying on this
model, we proposed a novel data augmentation scheme called PRIME, which instantiates
our model of corruptions, to confer robustness against common corruptions.

From a practical perspective, our method is principled yet efficient and can be conveniently
incorporated into existing training procedures. Moreover, it yields a strong baseline on
existing corruption benchmarks outperforming current standalone methods. Additionally,
our thorough ablations demonstrate that diversity among basic augmentations (primitives)
– which AugMix and other approaches lack – is essential, and that mixing plays a crucial
role in the success of both prior methods and PRIME. In general, while complicated
methods like DeepAugment perform well, it is difficult to understand, ablate and apply
these online. Instead, we show that a simple model-based stance with a few guiding

84

5.7 Conclusions

principles can be used to build an efficient augmentation scheme that can be easily
understood, ablated and tuned.

We believe that our insights and PRIME pave the way for building robust models in
real-life scenarios. For instance, we demonstrated that PRIME already provides a ready-
to-use recipe for conferring robustness in the problem of filling level classification. We
believe that our method can be easily adapted to other for data-scarce domains such as
medical imaging.

85

6 Conclusion

6.1 Summary

In this thesis, we provided novel algorithmic tools, a large a set of new insights and
experimental evidences, as well as constructive solutions for understanding and improving
the robustness and invariance properties of image classifiers. Our tools allowed us
to efficiently evaluate the robustness of deep networks to non-standard adversarial
perturbation regimes, as well as to establish strong connections between the data features,
the geometric properties of deep classifiers, and their inductive biases. Furthermore, our
insights enabled us to further design principled methods for analyzing and improving the
robustness of deep classifiers to different types of distribution shifts in multiple tasks.

We first studied methods for measuring the robustness of deep classifiers to sparse additive
adversarial perturbations. For avoiding the NP-hardness of minimizing the ℓ0 norm in
computing sparse perturbations, we focused on finding an efficient relaxation method.
To this end, we exploited the low mean curvature of the decision boundaries in the
vicinity of the data samples and designed an iterative method that we coin SparseFool.
At each iteration SparseFool performs a linear approximation of the decision boundary
and solves the simpler ℓ1 box-constrained problem. Our method computes very sparse
perturbations, is by orders of magnitude faster than existing methods, and can easily scale
to high-dimensional datasets. By visually inspecting the generated adversarial examples,
we observed that SparseFool altered features that are shared among different images,
and that, in many cases, the perturbations resembled image features that are correlated
with the fooling class. Such observation suggested that adversarial perturbations might
not necessarily be a “hole” in the system, but they might actually reflect some strong
connection/correlation between the features of the dataset and the features that the
networks use for taking their decisions.

Then, we studied this connection in-depth, and we proposed a new geometric framework
that permits to relate the features of a dataset with the distance to the decision boundary

87

Chapter 6. Conclusion

along specific directions. Through a series of carefully designed experiments, both in
synthetic and real image datasets, we explained how the inductive bias of the learning
algorithm shapes the decision boundaries of neural networks by creating boundaries
that are invariant to non-discriminative directions. Furthermore, we demonstrated that
the decision boundaries are very sensitive to the position of the training samples, and
that small changes along specific directions can cause large and sudden changes in
orthogonal ones. In fact, adversarial training exploits this sensitivity, as well as the
inductive bias towards invariance, in order to shape the boundaries and build robust
classifiers. Interestingly, modifying the position of just a minimal number of training
samples during adversarial training is enough to locally introduce excessive invariance.
In general, our framework can be used to identify parts of the input space that are
important for the classifier, to understand intriguing properties of deep networks, such
as their catastrophic forgetting, and to design stronger defenses and black-box attacks
that exploit small discriminative subspaces. Furthermore, we studied the implications
that the invariance properties of robust classifiers have in the downstream, data-scarce
application of classifying the filling level within containers. In particular, we showed
that, during transfer learning, using robust models in the source domain permits to
consistently improve generalization to unseen containers in the target domain that come
from a shifted distribution, e.g., containers of unseen shape or color.

However, adversarial robustness is not necessarily the best way to improve the robustness
of classifiers to certain distribution shifts, such as common corruptions of the data.
Hence, we took a systematic approach to understand the notion of common corruptions
and formulated a universal model that captures a wide variety of semantic preserving,
common image transformations. In particular, we defined a set of primitive max-entropy
transformations in the spatial, color and spectral image domains, in order to guarantee
that, with each new augmentation, we provide the network with the maximum additional
information possible about the domain of the transformation. Relying on this model,
we proposed a novel data augmentation scheme called PRIME, which instantiates our
semantic-preserving transformations, to confer robustness against common corruptions.
From a practical perspective, our method is principled yet efficient and can be conveniently
incorporated into existing training procedures. Moreover, it yields a strong baseline on
existing corruption benchmarks and outperforms current similar methods. Additionally,
our thorough ablations demonstrate that diversity among basic augmentations (primitives)
– which AugMix and other approaches lack – is essential, and that mixing plays a crucial
role in the success of both prior methods and PRIME. Our findings also underlined the
benefits of using PRIME in on-line augmentation settings, due to its scalability and
efficiency. Finally, we demonstrated that PRIME already provides a ready-to-use recipe
for conferring robustness in the data-scarce problem of filling level classification. PRIME
can be easily tuned to generate samples, which are tailored for building classifiers that
generalize on images with containers of unknown shape, color, and spectral content.

88

6.2 Future directions

6.2 Future directions

First, we mostly studied the geometric and invariance characteristics of the decision
boundaries through the lens of the data features. However, we did not investigate other
factors that are responsible for shaping the decision boundaries, such as the architecture.
From our experiments we can observe that, when the frequency representation of the
data is flipped, the margin distribution is not an exact mirroring of the original one, and
that the margin along low-frequency directions cannot reach excessive levels. In fact,
this triggered some recent research, which demonstrated that the architecture itself has
a very strong inductive bias towards specific input directions, which are typically aligned
with low-frequency directions. Such directions are coined Neural Anisotropy Directions
(NADS) [53], and can shed new light onto the different types of inductive biases that deep
networks have, such as the one towards simple solutions [54]. Developing methodologies
for revealing, understanding, and controlling the inductive bias is very important, since
it can have strong implications in the generalization and robustness properties of deep
networks [199, 200].

On the practical side, the invariance insights of our geometric analysis have already been
exploited in [201] to control the excessive margin caused by adversarial training, and
eventually balance the robustness/accuracy tradeoff. Furthermore, in our experiments
we used the DCT basis. However, such basis is independent of the data and the training
process. Incorporating other task- or data-related priors to measure the geometric
properties or manipulate the data is quite important. This could have significant
application in fairness-sensitive tasks for identifying (or eliminating) the undesired bias
from the model. In addition, our framework could also be extended beyond image
classification, for example towards natural language processing tasks.

Then, we have seen that formally identifying the space of common corruptions is very
difficult and, probably, ill-posed. Currently, one can only follow qualitative or empirical
proxies to measure the efficacy of a method, i.e., through accuracy or through the features
of the embedding space (i.e., measure similarity or visualize projections on principal
feature directions). Nevertheless, it is important to analytically characterize this space,
even partially, since it will enable the development of more fundamental methods that
provide a good coverage over that space. Additionally, the same principles for identifying
the space of corruptions can be followed for characterizing other types of manipulations
or distribution shifts [37, 202].

In this regard, and from a practical perspective, it is worth investigating how the primitives
of PRIME can be extended for distributions shifts beyond common corruptions, but
also to downstream tasks and applications. For instance, it is interesting to explore
the applicability of PRIME on semantic segmentation and object detection, or even
speech recognition, but also in safety-critical applications, i.e., autonomous driving, or
data-scarce domains, i.e., medical imaging.

89

A Appendix of Chapter 4

A.1 Margin distribution of a linear classifier

In this section we demonstrate that even for linear classifiers trained on T1(ε, ρ, N) the
distribution of margins along non-discriminative directions will never be infinite. We
demonstrate this effect in practice by repeating the experiment of Sec. 4.2.2, where
instead of an MLP we use a simple logistic regression (see Tab. A.1). Clearly, although
the values along span{u1}⊥ are quite large, they are still finite. This demonstrates that
due to the finiteness of the training set and its high-dimensionality the influence of the
non-discriminative directions in the final solution is significant.

u1 span{u1}⊥ Sorth Srand

5-perc. 2.39 36.7 184.95 11.57
Median 2.49 38.3 192.98 12.08
95-perc. 2.60 39.9 201.16 12.59

Table A.1: Margin statistics of a logistic regressor trained on T1(ε = 5, σ = 1) along
different directions (N = 10, 000, M = 1, 000, S = 3).

A.2 Training parameters

Table A.2 shows the performance and training parameters of the different networks used
in the paper. Note that the hyperparameters of these networks were not optimized
in any form during this work. Instead they were selected from a set of best practices
from the DAWNBench submissions that have been empirically shown to give a good
trade-off in terms of convergence speed and performance. In this sense, especially for
the non-standard datasets (e.g., “flipped” datasets), the final performance might not
be the best reflection of the highest achievable performance of a given architecture. In
fact, since the goal of our experiments is not to achieve the most robust models on such
non-standard datasets, but rather investigate how the previously observed trends are

91

Appendix A. Appendix of Chapter 4

represented in these new classifiers, no further hyperparameter tuning was applied. All
the experiments with synthetic data were trained in the same way, namely using SGD
with a linearly decaying learning rate (max lr. 0.1), no explicit regularization, and trained
for 500 epochs.

Dataset Network Test
Acc. Epochs LR

Schedule max. LR Batch

MNIST LeNet 99.35% 30 Triang. 0.21 128ResNet-18 99.53%

MNIST
Flipped

LeNet 99.34% 30 Triang. 0.21 128ResNet-18 99.52%

CIFAR-10
VGG-19 89.39%

50 Triang. 0.21 128ResNet-18 90.05%
DenseNet-121 93.03%

CIFAR-10
Low Pass

VGG-19 84.81%
50 Triang. 0.21 128ResNet-18 84.77%

DenseNet-121 88.51%

CIFAR-10
Flipped

VGG-19 87.42%
50 Triang. 0.21 128ResNet-18 88.67%

DenseNet-121 91.19%

ImageNet
VGG-16 71.59%

– – – –ResNet-50 76.15%
DenseNet-121 74.65%

ImageNet
Flipped ResNet-50 68.12% 90(68) Piecewise

Constant 0.1 256

Table A.2: Performance and training parameters of multiple networks trained on different
datasets. All networks have been trained using SGD with momentum 0.9 and a weight
decay of 5 × 10−4. For ImageNet, we use the pretrained models from PyTorch. For
“flipped” ImageNet, the weight decay was set to 10−4, while for computational reasons
the training was executed until the 68th epoch.

92

A.3 Cross-dataset performance

A.3 Cross-dataset performance

We now show the performance of different networks trained with different variants of the
standard computer vision datasets and tested on the rest.

MNIST MNIST Flipped MNIST High Pass

MNIST LeNet 99.35% 18.73% 44.09%
ResNet-18 99.53% 11.88% 15.73%

MNIST
Flipped

LeNet 10.52% 99.34% 9.87%
ResNet-18 16.59% 99.52% 11.23%

MNIST
High Pass

LeNet 96.35% 42.36% 98.65%
ResNet-18 88.38% 21.48% 98.71%

Table A.3: Networks trained on a specific version of MNIST, but evaluated on different
variations of it. Rows denote the dataset that a network is trained on, and columns the
dataset they are evaluated on. Values on the diagonal correspond to the same variation.

CIFAR-10 CIFAR-10 Flipped CIFAR-10 Low Pass

CIFAR-10
VGG-19 89.39% 10.63% 61.4%

ResNet-18 90.05% 10% 46.99%
DenseNet-121 93.03% 10.3% 27.45%

CIFAR-10
Flipped

VGG-19 10.77% 87.42% 10.79%
ResNet-18 9.91% 88.67% 9.97%

DenseNet-121 9.98% 91.19% 10%

CIFAR-10
Low Pass

VGG-19 85.16% 10.52% 84.81%
ResNet-18 85.47% 10.45% 84.77%

DenseNet-121 89.67% 10.45% 88.51%

Table A.4: Networks trained on a specific version of CIFAR-10, but evaluated on different
variations of it. Rows denote the dataset that a network is trained on, and columns the
dataset they are evaluated on. Values on the diagonal correspond to the same variation.

ImageNet ImageNet Flipped

ImageNet VGG-16 71.59% 0.106%
ResNet-50 76.15% 0.292%

DenseNet-121 74.65% 0.22%

ImageNet
Flipped ResNet-50 0.184% 68.12%

Table A.5: Networks trained on a specific version of ImageNet, but evaluated on different
variations of it. Rows denote the dataset that a network is trained on, and columns the
dataset they are evaluated on. Values on the diagonal correspond to the same variation.

93

Appendix A. Appendix of Chapter 4

A.4 Adversarial training parameters

Table A.6 shows the performance and adversarial training parameters of the different
networks used in the paper. Note that the hyperparameters of these networks were not
optimized in any form during this work. Instead they were selected from a set of best
practices from the DAWNBench submissions that have been empirically shown to give
a good trade-off in terms of convergence speed and performance. Again, as stated in
App. A.2, especially for the non-standard datasets (e.g., “flipped” datasets), the final
performance might not be the best reflection of the highest achievable performance or
robustness of a given architecture, since no further hyperparameter tuning was applied.

Dataset Network Standard
Test Acc.

Adv.
Test Acc. Epochs ℓ2 ball

radius Steps

MNIST LeNet 98.32% 76.01% 25 2 7ResNet-18 98.89% 80.26%

MNIST
Flipped

LeNet 98.29% 74.68% 25 2 7ResNet-18 98.75% 81.97%

CIFAR-10
VGG-19 73.76% 50.15%

50 1 7ResNet-18 82.20% 52.38%
DenseNet-121 82.90% 54.86%

CIFAR-10
Flipped

VGG-19 71.39% 35.64%
50 1 7ResNet-18 73.64% 37.24%

DenseNet-121 78.32% 42.32%

ImageNet ResNet-50 57.90% 35.16 – 3 20

Table A.6: Performance and attack parameters of multiple networks adversarially trained
using ℓ2-PGD. The training parameters are similar to the ones of Tab. A.2. For ImageNet
we use the adversarially trained ResNet-50 provided by [203].

A.5 Spectral decomposition on frequency “flipped” data

Following the results presented in Sec. 4.4.2, we now show in Fig. A.1 the spectral
decomposition of the adversarial perturbations crafted during adversarial training for
the frequency “flipped” CIFAR-10 dataset on a DenseNet-121 network. In contrast to
the spectral decomposition of the perturbations on CIFAR-10 (left), the energy of the
frequency “flipped” CIFAR-10 perturbations (right) remains concentrated in the high
part of the spectrum during the whole training process, and has hardly any presence in
the low frequencies. In other words, the frequency content of the ℓ2-PGD adversarial
perturbations also “flips”.

94

A.5 Spectral decomposition on frequency “flipped” data

1 Epochs 50

High

Freq.

Low
0.25

0.50

0.75

(a) Adversarial training.
1 Epochs 50

High

Freq.

Low

0.25

0.50

0.75

(b) Frequency “flipped” adv. training.

Figure A.1: Energy decomposition in subspaces of the DCT diagonal of adversarial
perturbations used during adversarial training (ℓ2 PGD with ε = 1) on 1,000 (a) CIFAR-
10 and (b) frequency “flipped” CIFAR-10 training samples per epoch for a DenseNet-121.
The plot shows 95-percentile of energy.

95

B Appendix of Chapter 6

B.1 Maximum entropy transformations

To guarantee as much diversity as possible in our model of common corruptions, we follow
the principle of maximum entropy to define our distributions of transformations [188].
Note that using a set of augmentations that guarantees maximum entropy comes naturally
when trying to optimize the sample complexity derived from certain information theoretic
generalization bounds, both in the clean [189] and corrupted setting [190]. Specifically,
the principle of maximum entropy postulates favoring those distributions that are as
unbiased as possible given the set of constraints that defines a family of distributions. In
our case, these constraints are given in the form of an expected strength, i.e., σ2, desired
smoothness, i.e., K, and/or some boundary conditions, e.g., the displacement field must
be zero at the borders of an image.

Let us make this formal. In particular, let I denote the space of all images x : R2 → R3,
and let f : I → I denote a random image transformation distributed according to the
law µ. Further, let us define a set of constraints C ⊆ F , which restrict the domain of
applicability of f , i.e., f ∈ C, and where F denotes the space of functions I → I. The
principle of maximum entropy postulates using the distribution µ which has maximum
entropy given the constraints:

maximize
µ

H(µ) =
∫

F
dµ(f) log(µ(f)) (B.1)

subject to f ∈ C ∀f ∼ µ,

where H(µ) represents the entropy of the distribution µ [188]. In its general form,
solving Eq. (B.1) for any set of constraints C is intractable. However, leveraging results
from statistical physics, we will see that for our domains of interest, Eq. (B.1) has a
simple solution. In what follows we derive those distributions for each of our family of
transformations.

97

Appendix B. Appendix of Chapter 6

B.1.1 Spectral domain

As we introduced in Sec. 5.2.2, we propose to parameterize our family of spectral
transformations using an FIR filter of size Kω ×Kω. That is, we are interested in finding
a maximum entropy distribution over the space of spectral transformations with a finite
spatial support.

Nevertheless, on top of this smoothness constraint we are also interested in controlling
the strength of the transformations. We define the strength of a distribution of random
spectral transformations applied to an image x, as the expected L2 norm of the difference
between the clean and transformed images, i.e.,

Eω∥x− ω(x)∥22 = Eω′∥ω′ ∗ x∥22, (B.2)

which using Young’s convolution inequality is bounded as

Eω′∥ω′ ∗ x∥22 ≤ ∥x∥21 Eω′∥ω′∥22. (B.3)

Indeed, we can see that the strength of a distribution of random smooth spectral
transformations is governed by the expected norm of its filter. In the discrete domain,
this can be simply computed as

Eω′∥ω′∥22 =
Kω∑
i=1

Kω∑
j=1

Eω′ω′2
i,j . (B.4)

Considering this, we should then look for a maximum entropy distribution whose samples
satisfy

C =
{

ω′ ∈ RKω×Kω ∧ Eω′∥ω′∥22 = K2
ωσ2

ω |ω ∼ µω

}
. (B.5)

Now, note that this set is defined by an equality constraint involving a sum of K2
ω

quadratic random variables. In this sense, we know that the Equipartition Theorem [191]
applies and can be used to identify the distribution of maximum entropy. That is, the
solution of Eq. (B.1) in the case that C is given by Eq. (B.5), is equal to the distribution
of FIR filters whose coefficients are i.i.d. with law N (0, σ2

ω).

B.1.2 Spatial domain

The distribution of diffeomorphisms of maximum entropy with a fixed norm was derived
by Petrini et al. in [192]. The derivation is similar to the spectral domain, but with
the additional constraint that the diffeomorphisms produce a null displacement at the
borders of the image.

98

B.2 PRIME implementation details

B.1.3 Color domain

We can follow a very similar route to derive the distribution of maximum entropy among
all color transformations, where, specifically, we constraint the transformations to yield
γ(0) = 0 and γ(1) = 1 on every channel independently. Doing so, the derivation of the
maximum entropy distribution can follow the same steps as in [192].

B.2 PRIME implementation details

In this section, we provide additional details regarding the implementation of PRIME
described in Sec. 5.3. Since the parameters of the transformations are empirically selected,
we first provide more visual examples for different values of smoothness K and strength
σ. Then, we give the exact values of the parameters we use in our experiments supported
by additional visual examples.

B.2.1 Additional transformed examples

Here we provide additional visual examples for each of the primitives of PRIME illustrating
the effect of the following two factors: (i) smoothness controlled by parameter K, and
(ii) strength of the transformation σ on the resulting transformed images created by the
primitives. Figs. B.1, B.2 and B.3 demonstrate the resulting spectrum of images created
by applying spectral, spatial and color transformations while varying the parameters K

K
=

3

= 0.5 = 1.0 = 2.0 = 4.0

K
=

5
K

=
7

Figure B.1: Example images (IN-100) generated with spectral transformations from our
common corruptions model. In each row, we enlarge the transformation strength σω from
left to right. From top to bottom, we increase the spectral resolution of the filter Kω.

99

Appendix B. Appendix of Chapter 6

K
=

20
0

= 0.5 = 1.0 = 2.0 = 4.0

K
=

40
0

K
=

60
0

Figure B.2: Example images (IN-100) generated with spatial transformations from our
common corruptions model. In each row, we enlarge the transformation strength στ from
left to right. From top to bottom, we increase the cut frequency Kτ .

K
=

12
5

= 0.005 = 0.01 = 0.02 = 0.04

K
=

25
0

K
=

50
0

Figure B.3: Example images (IN-100) generated with color transformations from our
common corruptions model. In each row, we enlarge the transformation strength σγ from
left to right. From top to bottom, we increase Kγ .

and σ. Notice how increasing the strength σ of each transformation drifts the augmented
image farther away from its clean counterpart, yet produces plausible images when
appropriately controlled.

100

B.3 Performance per corruption

B.2.2 Transformation parameters

Spectral transform Regarding the spectral transform of Eq. (5.3) we found out that,
for the FIR filter ω′, a size of Kω = 3 results into semantically preserving images for
CIFAR-10/100 and ImageNet. For the latter, one can stretch the filter size to 5 × 5
or even 7 × 7, but then slight changes on the strength, σω, might destroy the image
semantics. Eventually, given Kω = 3, we observed that σω = 4 is good enough for
CIFAR-10/100 and ImageNet.

Spatial transform Concerning the spatial transform of Eq. (5.5), for the cut-off
parameter Kτ we followed the value regimes proposed by Petrini et al. [192] and set Kτ =
100 for CIFAR-10/100; Kτ = 500 for ImageNet. Furthermore, for a given Kτ , Petrini et al.
also compute the appropriate bounds for the transformation strength, σ2

τmin ≤ σ2
τ ≤ σ2

τmax ,
such that the resulting diffeomorphism remains bijective and the pixel displacement
does not destroy the image. In fact, in their original implementation, which can be
fount at https://github.com/pcsl-epfl/diffeomorphism, Petrini et al. directly sample
στ ∼ U(στmin , στmax) instead of explicitly setting the strength. In our implementation,
we also follow the same approach.

Color transform Regarding the color transform of Eq. (5.6) we found out that for
CIFAR-10/100 a cut-off value of Kγ = 10 and a strength of σγ = 0.01 result into
semantically preserving images for CIFAR-10/100; while for ImageNet, the corresponding
values are Kγ = 500 and σγ = 0.05. As for the bandwidth (consecutive frequencies)
∆ we observed that a value of ∆ = 20 was memory sufficient for ImageNet, but for
CIFAR-10/100 we can even afford all the frequencies to be used, e.g., ∆ = Kγ .

Finally, as mentioned in Sec. 5.3, we randomly sample the strength of the transformations
σ from a uniform distribution of given minimum and maximum values. Regarding the
maximum, we always set it to be the one we selected through visual inspection, while
the minimum is set to 0.

B.3 Performance per corruption

Beyond the average corruption accuracy that we report in Tab. 5.2, we also provide
here the performance of each method on the individual corruptions. The results on

Dataset Method Clean CC Noise Blur Weather Digital
Gauss. Shot Impulse Defoc. Glass Motion Zoom Snow Frost Fog Bright. Contr. Elastic Pixel. JPEG

C-10
Std. 95.0 74.0 45.1 58.7 54.9 83.2 53.3 76.9 79.1 83.1 79.3 89.0 93.6 76.3 83.9 75.1 77.9
AugMix 95.2 88.6 79.3 84.8 85.8 94.1 78.9 92.4 93.4 89.7 89.0 91.9 94.3 90.5 90.5 87.6 87.5
PRIME 94.2 89.8 86.9 88.1 88.6 92.6 85.3 90.8 92.2 89.3 90.5 89.8 93.7 92.4 90.1 88.1 88.8

C-100
Std. 76.7 51.9 25.3 33.7 26.6 60.8 47.1 55.5 57.6 60.8 56.2 62.5 72.2 53.2 63.4 50.1 52.7
AugMix 78.2 64.9 46.7 55.1 60.6 76.2 47.3 72.6 74.3 67.4 64.4 69.9 75.5 67.4 69.6 64.9 61.8
PRIME 78.4 68.2 59.0 62.1 68.1 74.0 58.3 70.5 72.3 68.9 68.5 69.8 76.8 74.4 70.1 65.5 64.4

Table B.1: Per-corruption accuracy of different methods on C-10 and C-100 (ResNet-18).

101

https://github.com/pcsl-epfl/diffeomorphism

Appendix B. Appendix of Chapter 6

Dataset Method Clean CC Noise Blur Weather Digital
Gauss. Shot Impulse Defoc. Glass Motion Zoom Snow Frost Fog Bright. Contr. Elastic Pixel. JPEG

IN-100

Standard 88.0 49.7 30.9 29.0 22.0 45.6 44.6 50.4 53.9 43.8 46.2 50.5 78.6 42.9 68.8 68.0 70.6
AugMix 88.7 60.7 45.2 45.8 43.4 58.7 53.3 69.5 71.0 49.1 52.7 60.2 80.7 59.6 73.3 73.6 74.7
DA 86.3 67.7 76.3 75.6 75.7 64.2 61.7 61.3 62.7 54.4 62.8 55.7 81.6 49.7 69.9 83.3 80.6
PRIME 85.9 71.6 80.6 80.0 80.1 57.2 66.3 66.2 68.2 61.5 68.2 57.2 81.2 68.3 73.7 82.9 81.9
DA+AugMix 86.5 73.1 75.2 75.8 74.9 74.1 68.5 76.0 72.1 59.9 66.8 61.4 82.1 72.4 73.1 83.8 81.1
DA+PRIME 84.9 74.9 81.1 80.9 81.2 70.5 74.2 72.0 71.5 66.3 73.6 56.6 81.9 72.8 74.8 83.4 82.3

IN

Standard∗ 76.1 39.2 29.3 27.0 23.8 38.8 26.8 38.7 36.2 32.5 38.1 45.4 68.0 39.0 45.3 44.8 53.4
AugMix∗ 77.5 48.3 40.6 41.1 37.7 47.7 34.9 53.5 49.0 39.9 43.8 47.1 69.5 51.1 52.0 57.0 60.3
DA∗ 76.7 52.6 56.6 54.9 56.3 51.7 40.1 48.7 39.5 44.2 50.3 52.1 71.1 48.3 50.9 65.5 59.3
PRIME† 77.0 55.0 61.9 60.6 60.9 47.6 39.0 48.4 46.0 47.4 50.8 54.1 71.7 58.2 56.3 59.5 62.2
DA+AugMix 75.8 58.1 59.4 59.6 59.1 59.0 46.8 61.1 51.5 49.4 53.3 55.9 70.8 58.7 54.3 68.8 63.3
DA+PRIME† 75.5 59.9 67.4 67.2 66.8 56.2 47.5 54.3 47.3 52.8 56.4 56.3 71.7 62.3 57.3 70.3 65.1

Table B.2: Per-corruption accuracy of different methods on IN-100 (ResNet-18) and
IN (ResNet-50). † indicates that JSD consistency loss is not used. ∗Models taken from
RobustBench [193].

CIFAR-10/100 and ImageNet/ImageNet-100 are shown on Tabs. B.1 and B.2 respectively.
Compared to AugMix on CIFAR-10/100, the improvements from PRIME are mostly
observed against Gaussian noise (+7.6%/12.3%), shot noise (+3.3%/7.0%), glass blur
(+6.4%/11.0%) and JPEG compression (+1.3%/2.6%). These results show that PRIME
can really push the performance against certain corruptions in CIFAR-10/100-C despite
the fact that AugMix is already good on these datasets. However, AugMix turns out
to be slightly better than PRIME against impulse noise, defocus blur and motion blur
modifications; all of which have been shown to be resembled by AugMix created images.
With ImageNet-100, PRIME enhances the diversity of augmented images, and leads to
general improvements against all corruptions except certain blurs. On ImageNet, we
observe that, in comparison to DeepAugment, the supremacy of PRIME is reflected
on almost every corruption type, except some blurs and pixelate corruptions where
DeepAugment is slightly better. When PRIME is used in conjunction with DeepAugment,
compared to AugMix combined with DeepAugment, our method seems to lack behind
only on blurs, while on the rest of the corruptions achieves higher robustness.

B.4 Performance per severity level

We also want to investigate the robustness of each method on different severity levels
of the corruptions. The results for CIFAR-10/100 and ImageNet/ImageNet-100 are
presented in Tabs. B.3 and B.4 respectively. With CIFAR-10/100, PRIME predominantly
helps against corruptions with maximal severity and yields +3.9% and +7.1% gains on
CIFAR-10 and CIFAR-100 respectively. Besides on ImageNet-100, PRIME again excels at
corruptions with moderate to higher severity. This observations also holds when PRIME
is employed in concert with DeepAugment. With ImageNet too this trend continues,
and we observe that, compared to DeepAugment, PRIME improves significantly on
corruptions of larger severity (+3.4% and +5.5% on severity levels 4 and 5 respectively).
Also, this behaviour is consistent even when PRIME is combined with DeepAugment
and is compared to DeepAugment+AugMix, where we see that again on levels 4 and 5
there is a significant improvement of +2.1% and +3.7% respectively.

102

B.4 Performance per severity level

Dataset Method Clean CC Avg. Severity
1 2 3 4 5

C-10
Standard 95.0 74.0 87.4 81.7 75.7 68.3 56.7
AugMix 95.2 88.6 93.1 91.8 89.9 86.7 81.7
PRIME 94.2 89.8 92.8 91.6 90.4 88.6 85.6

C-100
Standard 76.7 51.9 66.7 59.4 52.8 45.0 35.4
AugMix 78.2 64.9 73.3 70.0 66.6 61.3 53.4
PRIME 78.4 68.2 74.0 71.6 69.2 65.6 60.5

Table B.3: Average accuracy for each corruption severity level of different methods on
C-10 and C-100 (ResNet-18).

Dataset Method Clean CC Avg. Severity
1 2 3 4 5

IN-100

Standard 88.0 49.7 73.5 61.0 49.8 37.2 27.0
AugMix 88.7 60.7 80.4 71.8 63.8 50.3 37.2
DA 86.3 67.7 81.2 75.4 69.9 61.2 50.8
PRIME 85.9 71.6 81.7 77.5 73.4 66.9 58.4
DA+AugMix 86.5 73.1 82.7 78.0 75.5 69.6 59.9
DA+PRIME 84.9 74.9 82.0 78.7 76.4 71.8 65.5

IN

Standard∗ 76.1 39.2 60.6 49.8 39.8 27.7 18.0
AugMix∗ 77.5 48.3 66.7 58.3 51.1 39.1 26.5
DA∗ 76.7 52.6 69.0 61.7 55.4 44.9 32.1
PRIME† 77.0 55.0 68.9 63.1 56.9 48.3 37.6
DA+AugMix 75.8 58.1 70.3 64.5 60.5 53.0 42.2
DA+PRIME† 75.5 59.9 70.8 66.3 61.6 55.1 45.9

Table B.4: Average accuracy for each corruption severity level of different methods on
IN-100 (ResNet-18) and IN (ResNet-50). † indicates that JSD consistency loss is not
used. ∗Models taken from RobustBench [193].

103

Bibliography

[1] D. Hendrycks and T. Dietterich, “Benchmarking neural network robustness to
common corruptions and perturbations,” in International Conference on Learning
Representations (ICLR), May 2019.

[2] A. Fawzi and P. Frossard, “Manitest: Are classifiers really invariant?” in Proceedings
of the British Machine Vision Conference (BMVC), Sep. 2015.

[3] D. Yin, R. G. Lopes, J. Shlens, E. Cubuk, and J. Gilmer, “A Fourier perspective
on model robustness in computer vision,” in Advances in Neural Information
Processing Systems (NeurIPS), Dec. 2019.

[4] K. Y. Xiao, L. Engstrom, A. Ilyas, and A. Madry, “Noise or signal: The role of
image backgrounds in object recognition,” in International Conference on Learning
Representations (ICLR), May 2021.

[5] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do ImageNet classifiers
generalize to ImageNet?” in International Conference on Machine Learning (ICML),
Jun. 2019.

[6] D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and D. Song, “Natural adversarial
examples,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2021.

[7] R. Taori, A. Dave, V. Shankar, N. Carlini, B. Recht, and L. Schmidt, “Measuring
robustness to natural distribution shifts in image classification,” in Advances in
Neural Information Processing Systems (NeurIPS), Dec. 2020.

[8] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for
deep learning,” Journal of Big Data, vol. 6, no. 1, 2019.

[9] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus, “Intriguing properties of neural networks,” in International Conference
on Learning Representations (ICLR), Apr. 2014.

105

Bibliography

[10] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” in International Conference on Learning Representations (ICLR), May
2015.

[11] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A simple and
accurate method to fool deep neural networks,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Jun. 2016.

[12] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal Adversarial
Perturbations,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Jul. 2017.

[13] A. Modas, R. Sanchez-Matilla, P. Frossard, and A. Cavallaro, “Toward robust sens-
ing for Autonomous Vehicles: An adversarial perspective,” IEEE Signal Processing
Magazine (SPM), vol. 37, no. 4, pp. 14–23, Jul. 2020.

[14] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel, “Adversarial
examples for malware detection,” in European Symposium on Research in Computer
Security (ESORICS), Sep. 2017.

[15] M. Alzantot, Y. Sharma, A. Elgohary, B.-J. Ho, M. Srivastava, and K.-W. Chang,
“Generating natural language adversarial examples,” in Empirical Methods in
Natural Language Processing (EMNLP), Oct. 2018.

[16] N. Carlini and D. Wagner, “Audio adversarial examples: Targeted attacks on
speech-to-text,” in IEEE Symposium on Security and Privacy Workshops (S&Pw),
May 2018.

[17] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel, “Adversarial
attacks on neural network policies,” in International Conference on Learning
Representations Workshops (ICLRw), Apr. 2017.

[18] A. Fawzi, S.-M. Moosavi-Dezfooli, and P. Frossard, “The robustness of deep
networks: A geometrical perspective,” IEEE Signal Processing Magazine (SPM),
vol. 34, no. 6, pp. 50–62, Nov. 2017.

[19] G. Ortiz-Jimenez, A. Modas, S.-M. Moosavi-Dezfooli, and P. Frossard, “Optimism
in the face of adversity: Understanding and improving deep learning through
adversarial robustness,” Proceedings of the IEEE, vol. 109, no. 5, pp. 635–659, May
2021.

[20] C. Xiao, J.-Y. Zhu, B. Li, W. He, M. Liu, and D. Song, “Spatially transformed
adversarial examples,” in International Conference on Learning Representations
(ICLR), Apr. 2018.

[21] C. Kanbak, S.-M. Moosavi-Dezfooli, and P. Frossard, “Geometric robustness of
deep networks: Analysis and improvement,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Jun. 2018.

106

Bibliography

[22] C. Laidlaw and S. Feizi, “Functional adversarial attacks,” in Advances in Neural
Information Processing Systems (NeurIPS), Dec. 2019.

[23] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,
T. Kohno, and D. Song, “Robust physical-world attacks on deep learning visual
classification,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2018.

[24] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing robust adversarial
examples,” in International Conference on Machine Learning (ICML), Jul. 2018.

[25] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep
learning models resistant to adversarial attacks,” in International Conference on
Learning Representations (ICLR), Apr. 2018.

[26] A. Fawzi, O. Fawzi, and P. Frossard, “Analysis of classifiers’ robustness to adver-
sarial perturbations,” Machine Learning, vol. 107, no. 3, pp. 481–508, 2018.

[27] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry, “Robustness may
be at odds with accuracy,” in International Conference on Learning Representations
(ICLR), May 2019.

[28] P. Maini, E. Wong, and Z. Kolter, “Adversarial robustness against the union of
multiple perturbation models,” in International Conference on Machine Learning
(ICML), Jul. 2020.

[29] K. Kireev, M. Andriushchenko, and N. Flammarion, “On the effectiveness of
adversarial training against common corruptions,” arXiv:2103.02325, 2021.

[30] S.-M. Moosavi-Dezfooli, “Geometry of adversarial robustness of deep networks:
methods and applications,” Ph.D. dissertation, Ecole Polytechnique Fédérale de
Lausanne (EPFL), 2019.

[31] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, “The
limitations of deep learning in adversarial settings,” IEEE European Symposium
on Security and Privacy (EuroS&P), 2016.

[32] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,”
in IEEE Symposium on Security and Privacy (SP), 2017.

[33] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep neural
networks,” IEEE Transactions on Evolutionary Computation, vol. 23, no. 5, pp.
828–841, 2019.

[34] S. Jetley, N. Lord, and P. Torr, “With friends like these, who needs adversaries?”
in Advances in Neural Information Processing Systems (NeurIPS), Dec. 2018.

107

Bibliography

[35] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry, “Adversarial
examples are not bugs, they are features,” in Advances in Neural Information
Processing Systems (NeurIPS), Dec. 2019.

[36] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lakshminarayanan,
“AugMix: A simple method to improve robustness and uncertainty under data
shift,” in International Conference on Learning Representations (ICLR), Apr. 2020.

[37] D. Hendrycks, S. Basart, N. Mu, S. Kadavath, F. Wang, E. Dorundo, R. Desai,
T. Zhu, S. Parajuli, M. Guo, D. Song, J. Steinhardt, and J. Gilmer, “The many
faces of robustness: A critical analysis of out-of-distribution generalization,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun.
2021.

[38] D. A. Calian, F. Stimberg, O. Wiles, S.-A. Rebuffi, A. György, T. A. Mann, and
S. Gowal, “Defending against image corruptions through adversarial augmentations,”
in International Conference on Learning Representations (ICLR), Apr. 2022.

[39] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence, Dataset
shift in Machine Learning. The MIT Press, 2009.

[40] J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodríguez, N. V. Chawla, and F. Herrera,
“A unifying view on dataset shift in classification,” Pattern Recognition, vol. 45,
no. 1, pp. 521–530, 2012.

[41] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do CIFAR-10 classifiers
generalize to CIFAR-10?” arXiv:1806.00451, 2018.

[42] A. Fawzi, S.-M. Moosavi-Dezfooli, and P. Frossard, “Robustness of classifiers:
from adversarial to random noise,” in Advances in Neural Information Processing
Systems (NeurIPS), Dec. 2016.

[43] J.-Y. Franceschi, A. Fawzi, and O. Fawzi, “Robustness of classifiers to uniform
ℓp and Gaussian noise,” in International Conference on Artificial Intelligence and
Statistics (AISTATS), Apr. 2018.

[44] S. Dodge and L. Karam, “A study and comparison of human and deep learning
recognition performance under visual distortions,” in International Conference on
Computer Communications and Networks (ICCCN), Sep. 2017.

[45] R. Geirhos, C. R. M. Temme, J. Rauber, H. H. Schütt, M. Bethge, and F. A.
Wichmann, “Generalisation in humans and deep neural networks,” in Advances in
Neural Information Processing Systems (NeurIPS), Dec. 2018.

[46] S. Dodge and L. Karam, “Understanding how image quality affects deep neu-
ral networks,” in International Conference on Quality of Multimedia Experience
(QoMEX), 2016.

108

Bibliography

[47] I. Vasiljevic, A. Chakrabarti, and G. Shakhnarovich, “Examining the impact of
blur in recognition by convolutional networks,” arXiv:1611.05760, 2016.

[48] L. Engstrom, B. Tran, D. Tsipras, L. Schmidt, and A. Madry, “Exploring the
landscape of spatial robustness,” in International Conference on Machine Learning
(ICML), Jun. 2019.

[49] E. Mintun, A. Kirillov, and S. Xie, “On interaction between augmentations and
corruptions in natural corruption robustness,” in Advances in Neural Information
Processing Systems (NeurIPS), Dec. 2021.

[50] L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, J. Steinhardt, and A. Madry,
“Identifying statistical bias in dataset replication,” in International Conference on
Machine Learning (ICML), Jul. 2020.

[51] H. Touvron, A. Vedaldi, M. Douze, and H. Jegou, “Fixing the train-test resolution
discrepancy,” in Advances in Neural Information Processing Systems (NeurIPS),
Dec. 2019.

[52] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel,
“ImageNet-trained CNNs are biased towards texture: increasing shape bias improves
accuracy and robustness,” in International Conference on Learning Representations
(ICLR), May 2019.

[53] G. Ortiz-Jimenez, A. Modas, S.-M. Moosavi-Dezfooli, and P. Frossard, “Neural
Anisotropy Directions,” in Advances in Neural Information Processing Systems
(NeurIPS), Dec. 2020.

[54] G. Ortiz-Jimenez, I. F. Salazar-Reque, A. Modas, S.-M. Moosavi-Dezfooli, and
P. Frossard, “A neural anisotropic view of underspecification in deep learning,”
in RobustML workshop of International Conference on Learning Representations
(ICLR), May 2021.

[55] R. Geirhos, J.-H. Jacobsen, C. Michaelis, R. Zemel, W. Brendel, M. Bethge, and
F. A. Wichmann, “Shortcut learning in deep neural networks,” Nature Machine
Intelligence, vol. 2, no. 11, pp. 665–673, 2020.

[56] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training with noisy student
improves ImageNet classification,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Jun. 2020.

[57] T. DeVries and G. W. Taylor, “Improved regularization of convolutional neural
networks with Cutout,” arXiv:1708.04552, 2017.

[58] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing data augmen-
tation,” in AAAI Conference on Artificial Intelligence (AAAI), Apr. 2020.

109

Bibliography

[59] R. Takahashi, T. Matsubara, and K. Uehara, “RICAP: Random image cropping
and patching data augmentation for deep CNNs,” in Asian Conference on Machine
Learning (ACML), Nov. 2018.

[60] S. Yun, D. Han, S. Chun, S. J. Oh, Y. Yoo, and J. Choe, “CutMix: Regularization
strategy to train strong classifiers with localizable features,” in IEEE International
Conference on Computer Vision (ICCV), Oct. 2019.

[61] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “MixUp: Beyond empiri-
cal risk minimization,” in International Conference on Learning Representations
(ICLR), May 2018.

[62] H. Guo, Y. Mao, and R. Zhang, “Mixup as locally linear out-of-manifold regular-
ization,” in AAAI Conference on Artificial Intelligence (AAAI), Jan. 2019.

[63] E. D. Cubuk, B. Zoph, D. Mané, V. Vasudevan, and Q. V. Le, “AutoAugment:
Learning augmentation strategies from data,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Jun. 2019.

[64] E. D. Cubuk, B. Zoph, J. Shlens, and Q. Le, “RandAugment: Practical automated
data augmentation with a reduced search space,” in Advances in Neural Information
Processing Systems (NeurIPS), Dec. 2020.

[65] H. Wang, C. Xiao, J. Kossaifi, Z. Yu, A. Anandkumar, and Z. Wang, “AugMax:
Adversarial composition of random augmentations for robust training,” in Advances
in Neural Information Processing Systems (NeurIPS), Dec. 2021.

[66] I. Kim, S. Han, J.-w. Baek, S.-J. Park, J.-J. Han, and J. Shin, “Quality-agnostic
image recognition via invertible decoder,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2021.

[67] G. Chen, P. Peng, L. Ma, J. Li, L. Du, and Y. Tian, “Amplitude-phase recombina-
tion: Rethinking robustness of convolutional neural networks in frequency domain,”
in IEEE International Conference on Computer Vision (ICCV), Jun. 2021.

[68] E. Rusak, L. Schott, R. Zimmermann, J. Bitterwolf, O. Bringmann, M. Bethge,
and W. Brendel, “A simple way to make neural networks robust against diverse
image corruptions,” in European Conference on Computer Vision (ECCV), Aug.
2020.

[69] M. Yi, L. Hou, J. Sun, L. Shang, X. Jiang, Q. Liu, and Z. Ma, “Improved OOD
generalization via adversarial training and pretraining,” in International Conference
on Machine Learning (ICML), Jul. 2021.

[70] C. Laidlaw, S. Singla, and S. Feizi, “Perceptual adversarial robustness: Defense
against unseen threat models,” in International Conference on Learning Represen-
tations (ICLR), May 2021.

110

Bibliography

[71] J. Diffenderfer, B. R. Bartoldson, S. Chaganti, J. Zhang, and B. Kailkhura, “A win-
ning hand: Compressing deep networks can improve out-of-distribution robustness,”
in Advances in Neural Information Processing Systems (NeurIPS), Dec. 2021.

[72] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby,
“An image is worth 16x16 words: Transformers for image recognition at scale,” in
International Conference on Learning Representations (ICLR), May 2021.

[73] S. Bhojanapalli, A. Chakrabarti, D. Glasner, D. Li, T. Unterthiner, and A. Veit,
“Understanding robustness of transformers for image classification,” in IEEE Inter-
national Conference on Computer Vision (ICCV), Oct. 2021.

[74] K. Morrison, B. Gilby, C. Lipchak, A. Mattioli, and A. Kovashka, “Exploring
corruption robustness: Inductive biases in Vision Transformers and MLP-Mixers,”
Uncertainty & Robustness in Deep Learning Workshop, ICML, Jul. 2021.

[75] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and N. Houlsby,
“Big transfer (BiT): General visual representation learning,” in European Conference
on Computer Vision (ECCV), Aug. 2020.

[76] C. Herrmann, K. Sargent, L. Jiang, R. Zabih, H. Chang, C. Liu, D. Krish-
nan, and D. Sun, “Pyramid adversarial trianing improves ViT performance,”
arXiv:2111.15121, 2021.

[77] X. Mao, G. Qi, Y. Chen, X. Li, R. Duan, S. Ye, Y. He, and H. Xue, “Towards
robust Vision Transformers,” arXiv:2105.07926, 2021.

[78] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial machine learning at
scale,” in International Conference on Learning Representations (ICLR), Apr. 2017.

[79] F. Tramer, N. Carlini, W. Brendel, and A. Madry, “On adaptive attacks to
adversarial example defenses,” in Advances in Neural Information Processing
Systems (NeurIPS), Dec. 2020.

[80] W. Brendel, J. Rauber, M. Kümmerer, I. Ustyuzhaninov, and M. Bethge, “Accu-
rate, reliable and fast robustness evaluation,” in Advances in Neural Information
Processing Systems (NeurIPS), Dec. 2019.

[81] F. Croce and M. Hein, “Minimally distorted adversarial examples with a fast
adaptive boundary attack,” in International Conference on Machine Learning
(ICML), Jul. 2020.

[82] S. Sabour, Y. Cao, F. Faghri, and D. J. Fleet, “Adversarial manipulation of deep
representations,” in International Conference on Learning Representations (ICLR),
May 2016.

111

Bibliography

[83] N. Narodytska and S. Kasiviswanathan, “Simple black-box adversarial attacks
on deep neural networks,” in IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRw), Jul. 2017.

[84] F. Croce and M. Hein, “Sparse and imperceivable adversarial attacks,” in IEEE
International Conference on Computer Vision (ICCV), Oct. 2019.

[85] W. Zhou, X. Hou, Y. Chen, M. Tang, X. Huang, X. Gan, and Y. Yang, “Transferable
adversarial perturbations,” in European Conference on Computer Vision (ECCV),
Sep. 2018.

[86] Y. Sharma, G. Ding, and M. A. Brubaker, “On the effectiveness of low frequency
perturbations,” in International Joint Conference on Artificial Intelligence (IJCAI),
Aug. 2019, pp. 3389–3396.

[87] Y. Tsuzuku and I. Sato, “On the structural sensitivity of deep convolutional
networks to the directions of Fourier basis functions,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jun. 2019.

[88] C. Guo, J. Gardner, Y. You, A. G. Wilson, and K. Weinberger, “Simple black-box
adversarial attacks,” in International Conference on Machine Learning (ICML),
Jun. 2019.

[89] Y. Liu, S.-M. Moosavi-Dezfooli, and P. Frossard, “A geometry-inspired decision-
based attack,” in IEEE International Conference on Computer Vision (ICCV),
Oct. 2019.

[90] A. Rahmati, S.-M. Moosavi-Dezfooli, P. Frossard, and H. Dai, “GeoDA: a geometric
framework for black-box adversarial attacks,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Jun. 2020.

[91] H. Hosseini and R. Poovendran, “Semantic adversarial examples,” in IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops (CVPRw), Jun.
2018.

[92] A. S. Shamsabadi, R. Sanchez-Matilla, and A. Cavallaro, “ColorFool: Semantic
adversarial colorization,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2020.

[93] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to a crime:
Real and stealthy attacks on state-of-the-art face recognition,” in Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security, Oct.
2016, pp. 1528–1540.

[94] A. Fawzi and P. Frossard, “Measuring the effect of nuisance variables on classifiers,”
in Proceedings of the British Machine Vision Conference (BMVC), Sep. 2016.

112

Bibliography

[95] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, ZOO: Zeroth Order
Optimization Based Black-Box Attacks to Deep Neural Networks without Training
Substitute Models. Association for Computing Machinery, 2017, pp. 15–26.

[96] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial attacks: Reli-
able attacks against black-box machine learning models,” in International Confer-
ence on Learning Representations (ICLR), Apr. 2018.

[97] J. Uesato, B. O’Donoghue, P. Kohli, and A. van den Oord, “Adversarial risk and
the dangers of evaluating against weak attacks,” in International Conference on
Machine Learning (ICML), Jul. 2018.

[98] J. Chen, M. I. Jordan, and M. J. Wainwright, “HopSkipJumpAttack: A query-
efficient decision-based attack,” arXiv:1904.02144, 2019.

[99] M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein, “Square attack:
a query-efficient black-box adversarial attack via random search,” in European
Conference on Computer Vision (ECCV), Aug. 2020.

[100] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical
world,” arXiv:1607.02533, 2016.

[101] A. Shafahi, M. Najibi, M. A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S. Davis,
G. Taylor, and T. Goldstein, “Adversarial training for free!” in Advances in Neural
Information Processing Systems (NeurIPS), Dec. 2019.

[102] E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free: Revisiting adversarial
training,” in International Conference on Learning Representations (ICLR), Apr.
2020.

[103] S. Gu and L. Rigazio, “Towards deep neural network architectures robust to
adversarial examples,” arXiv:1412.5068, 2014.

[104] C. Lyu, K. Huang, and H.-N. Liang, “A unified gradient regularization family for
adversarial examples,” in IEEE International Conference on Data Mining (ICDM),
Nov. 2015.

[105] D. Jakubovitz and R. Giryes, “Improving dnn robustness to adversarial attacks using
jacobian regularization,” in European Conference on Computer Vision (ECCV),
Sep. 2018.

[106] A. S. Ross and F. Doshi-Velez, “Improving the adversarial robustness and inter-
pretability of deep neural networks by regularizing their input gradients,” in AAAI
Conference on Artificial Intelligence (AAAI), Feb. 2018.

[107] S.-M. Moosavi-Dezfooli, A. Fawzi, J. Uesato, and P. Frossard, “Robustness via
curvature regularization, and vice versa,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Jun. 2019.

113

Bibliography

[108] C. Qin, J. Martens, S. Gowal, D. Krishnan, K. Dvijotham, A. Fawzi, S. De,
R. Stanforth, and P. Kohli, “Adversarial robustness through local linearization,” in
Advances in Neural Information Processing Systems (NeurIPS), Dec. 2019.

[109] S. Singla and S. Feizi, “Second-order provable defenses against adversarial attacks,”
in International Conference on Machine Learning (ICML), Jul. 2020.

[110] D. Wu, S.-T. Xia, and Y. Wang, “Adversarial weight perturbation helps robust
generalization,” in Advances in Neural Information Processing Systems (NeurIPS),
Dec. 2020.

[111] M. Andriushchenko and N. Flammarion, “Understanding and improving fast adver-
sarial training,” in Advances in Neural Information Processing Systems (NeurIPS),
Dec. 2020.

[112] J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified adversarial robustness via ran-
domized smoothing,” in International Conference on Machine Learning (ICML),
Jun. 2019.

[113] G. Yang, T. Duan, J. E. Hu, H. Salman, I. Razenshteyn, and J. Li, “Randomized
smoothing of all shapes and sizes,” in International Conference on Machine Learning
(ICML), Jul. 2020.

[114] H. Salman, J. Li, I. Razenshteyn, P. Zhang, H. Zhang, S. Bubeck, and G. Yang,
“Provably robust deep learning via adversarially trained smoothed classifiers,” in
Advances in Neural Information Processing Systems (NeurIPS), Dec. 2019.

[115] A. Fawzi, S.-M. Moosavi-Dezfooli, P. Frossard, and S. Soatto, “Empirical study of
the topology and geometry of deep networks,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Jun. 2018.

[116] F. Tramèr, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel, “The space of
transferable adversarial examples,” arXiv:1704.03453, Apr. 2017.

[117] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, P. Frossard, and S. Soatto, “Robustness
of classifiers to universal perturbations: A geometric perspective,” in International
Conference on Learning Representations (ICLR), Apr. 2018.

[118] A. Rahmati, S.-M. Moosavi-Dezfooli, and H. Dai, “Adversarial training may be
a double-edged sword,” in RobustML workshop of International Conference on
Learning Representations (ICLR), May 2021.

[119] S. Santurkar, A. Ilyas, D. Tsipras, L. Engstrom, B. Tran, and A. Madry, “Image
synthesis with a single (robust) classifier,” in Advances in Neural Information
Processing Systems (NeurIPS), Dec. 2019.

[120] L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, B. Tran, and A. Madry, “Adversarial
robustness as a prior for learned representations,” arXiv:1906.00945, 2019.

114

Bibliography

[121] Z. Allen-Zhu and Y. Li, “Feature purification: How adversarial training performs
robust deep learning,” arXiv:2005.10190, 2020.

[122] A. Fawzi, H. Fawzi, and O. Fawzi, “Adversarial vulnerability for any classifier,” in
Advances in Neural Information Processing Systems (NeurIPS), Dec. 2018.

[123] L. Schmidt, S. Santurkar, D. Tsipras, K. Talwar, and A. Madry, “Adversarially
robust generalization requires more data,” in Advances in Neural Information
Processing Systems (NeurIPS), Dec. 2018.

[124] J. Alayrac, J. Uesato, P. Huang, A. Fawzi, R. Stanforth, and P. Kohli, “Are labels
required for improving adversarial robustness?” in Advances in Neural Information
Processing Systems (NeurIPS), Dec. 2019.

[125] Y. Carmon, A. Raghunathan, L. Schmidt, J. C. Duchi, and P. S. Liang, “Unla-
beled data improves adversarial robustness,” in Advances in Neural Information
Processing Systems (NeurIPS), Dec. 2019.

[126] A. Raghunathan, S. M. Xie, F. Yang, J. Duchi, and P. Liang, “Understanding
and mitigating the tradeoff between robustness and accuracy,” in International
Conference on Machine Learning (ICML), Jul. 2020.

[127] T. Serre, “Deep Learning: The Good, the Bad, and the Ugly,” Annual Review of
Vision Science, vol. 5, no. 1, pp. 399–426, Sep. 2019.

[128] C. Xie, M. Tan, B. Gong, J. Wang, A. L. Yuille, and Q. V. Le, “Adversarial
examples improve image recognition,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Jun. 2020.

[129] Z. Tang, Y. Gao, L. Karlinsky, P. Sattigeri, R. Feris, and D. Metaxas, “Onlin-
eAugment: Online data augmentation with less domain knowledge,” in European
Conference on Computer Vision (ECCV), Aug. 2020.

[130] E. Dohmatob, “Generalized no free lunch theorem for adversarial robustness,” in
International Conference on Machine Learning (ICML), Jun. 2019.

[131] J. Gilmer, L. Metz, F. Faghri, S. S. Schoenholz, M. Raghu, M. Wattenberg, and
I. Goodfellow, “Adversarial Spheres,” in International Conference on Learning
Representations Workshops (ICLRw), Apr. 2018.

[132] Y. Jiang, D. Krishnan, H. Mobahi, and S. Bengio, “Predicting the generalization
gap in deep networks with margin distributions,” in International Conference on
Learning Representations (ICLR), May 2019.

[133] R. Werpachowski, A. György, and C. Szepesvari, “Detecting overfitting via adver-
sarial examples,” in Advances in Neural Information Processing Systems (NeurIPS),
Dec. 2019.

115

Bibliography

[134] J.-H. Jacobsen, J. Behrmann, R. Zemel, and M. Bethge, “Excessive invariance causes
adversarial vulnerability,” in International Conference on Learning Representations
(ICLR), May 2019.

[135] F. Tramèr, J. Behrmann, N. Carlini, N. Papernot, and J.-H. Jacobsen, “Funda-
mental tradeoffs between invariance and sensitivity to adversarial perturbations,”
in International Conference on Machine Learning (ICML), Jul. 2020.

[136] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep
learning requires rethinking generalization,” in International Conference on Learn-
ing Representations (ICLR), Apr. 2017.

[137] L. Rice, E. Wong, and J. Z. Kolter, “Overfitting in adversarially robust deep
learning,” in International Conference on Machine Learning (ICML), Jul. 2020.

[138] S. Gowal, C. Qin, J. Uesato, T. Mann, and P. Kohli, “Uncovering the limits of
adversarial training against norm-bounded adversarial examples,” arXiv:2010.03593,
2020.

[139] K. Xu, S. Liu, P. Zhao, P.-Y. Chen, H. Zhang, Q. Fan, D. Erdogmus, Y. Wang,
and X. Lin, “Structured adversarial attack: Towards general implementation and
better interpretability,” in International Conference on Learning Representations
(ICLR), May 2019.

[140] A. Modas, S.-M. Moosavi-Dezfooli, and P. Frossard, “SparseFool: A few pixels
make a big difference,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2019.

[141] T. Blumensath and M. E. Davies, “Iterative thresholding for sparse approximations,”
Journal of Fourier Analysis and Applications, vol. 14, no. 5, pp. 629–654, 2008.

[142] M. Nikolova, “Description of the minimizers of least squares regularized with ℓ0-
norm. uniqueness of the global minimizer,” SIAM Journal on Imaging Sciences,
vol. 6, no. 2, pp. 904–937, 2013.

[143] A. Patrascu and I. Necoara, “Random coordinate descent methods for ℓ0 regularized
convex optimization,” IEEE Transactions on Automatic Control, vol. 60, no. 7, pp.
1811–1824, 2015.

[144] M. Nagahara, D. E. Quevedo, and J. Ostergaard, “Sparse packetized predictive con-
trol for networked control over erasure channels,” IEEE Transactions on Automatic
Control, vol. 59, no. 7, pp. 1899–1905, 2014.

[145] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE Transactions
on Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005.

[146] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

116

Bibliography

[147] B. K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM Journal
on Computing, vol. 24, no. 2, pp. 227–234, 1995.

[148] E. Candès, M. Rudelson, T. Tao, and E. Vershynin, “Error correction via linear
programming,” in IEEE Symposium on Foundations of Computer Science (FoCS),
2005.

[149] D. L. Donoho and M. Elad, “Optimally sparse representation in general (nonorthog-
onal) dictionaries via ℓ1 minimization,” National Academy of Sciences, vol. 100,
no. 5, pp. 2197–2202, 2003.

[150] R. Gribonval and M. Nielsen, “Sparse representations in unions of bases,” IEEE
Transactions on Information Theory, vol. 49, no. 12, pp. 3320–3325, 2003.

[151] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” International Conference on Learning Representations (ICLR),
May 2015.

[152] J. Deng, W. Dong, R. Socher, L.-J. Li, L. Kai, and F.-F. Li, “Imagenet: A large-
scale hierarchical image database,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Jun. 2009.

[153] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the
Inception architecture for computer vision,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Jun. 2016.

[154] Y. LeCun and C. Cortes. (2010) Mnist handwritten digits database. [Online].
Available: http://yann.lecun.com/exdb/mnist/

[155] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,” University
of Toronto, Tech. Rep., 2009.

[156] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[157] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun.
2016.

[158] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch:
An Imperative Style, High-Performance Deep Learning Library,” in Advances in
Neural Information Processing Systems (NeurIPS), Dec. 2019.

117

http://yann.lecun.com/exdb/mnist/

Bibliography

[159] G. Ortiz-Jimenez, A. Modas, S.-M. Moosavi-Dezfooli, and P. Frossard, “Hold me
tight! Influence of discriminative features on deep network boundaries,” in Advances
in Neural Information Processing Systems (NeurIPS), Dec. 2020.

[160] G. Ortiz-Jimenez, A. Modas, S.-M. Moosavi-Dezfooli, and P. Frossard, “Redundant
features can hurt robustness to distribution shift,” Uncertainty & Robustness in
Deep Learning Workshop, ICML, Jul. 2020.

[161] A. Modas, A. Xompero, R. Sanchez-Matilla, P. Frossard, and A. Cavallaro, “Im-
proving filling level classification with adversarial training,” in IEEE International
Conference on Image Processing (ICIP), Sep. 2021.

[162] S. R. Maiya, M. Ehrlich, V. Agarwal, S.-N. Lim, T. Goldstein, and A. Shrivastava,
“A frequency perspective of adversarial robustness,” arXiv:2111.00861, 2021.

[163] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete Cosine Transform,” IEEE
Transactions on Computers, vol. C-23, no. 1, pp. 90–93, 1974.

[164] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 4th ed. Pearson, 2017.

[165] F. W. Campbell and J. G. Robson, “Application of fourier analysis to the visibility
of gratings,” The Journal of Physiology, vol. 197, no. 3, pp. 551–566, 1968.

[166] M. McCloskey and N. J. Cohen, “Catastrophic Interference in Connectionist Net-
works: The Sequential Learning Problem,” Psychology of Learning and Motivation,
vol. 24, pp. 109–165, 1989.

[167] B. Ghorbani, S. Mei, T. Misiakiewicz, and A. Montanari, “When do neural networks
outperform kernel methods?” in Advances in Neural Information Processing
Systems (NeurIPS), Dec. 2020.

[168] H. Shah, K. Tamuly, A. Raghunathan, P. Jain, and P. Netrapalli, “The pitfalls of
simplicity bias in neural networks,” in Advances in Neural Information Processing
Systems (NeurIPS), Dec. 2020.

[169] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20,
no. 3, pp. 273–297, 1995.

[170] H. Salman, A. Ilyas, L. Engstrom, A. Kapoor, and A. Madry, “Do adversarially
robust ImageNet models transfer better?” in Advances in Neural Information
Processing Systems (NeurIPS), Dec. 2020.

[171] F. Utrera, E. Kravitz, N. B. Erichson, R. Khanna, and M. W. Mahoney,
“Adversarially-trained deep nets transfer better,” in International Conference on
Learning Representations (ICLR), May 2021.

118

Bibliography

[172] R. Sanchez-Matilla, K. Chatzilygeroudis, A. Modas, N. F. Duarte, A. Xompero,
P. Frossard, A. Billard, and A. Cavallaro, “Benchmark for human-to-robot han-
dovers of unseen containers with unknown filling,” IEEE Robotics and Automation
Letters (RA-L), vol. 5, no. 2, pp. 1642–1649, 2020.

[173] A. Xompero, R. Sanchez-Matilla, A. Modas, P. Frossard, and A. Cavallaro, “Multi-
view shape estimation of transparent containers,” in IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), May 2020.

[174] S. S. Sajjan, M. Moore, M. Pan, G. Nagaraja, J. Lee, A. Zeng, and S. Song,
“ClearGrasp: 3D shape estimation of transparent objects for manipulation,” in
IEEE International Conference on on Robotics and Automation (ICRA), Jun. 2020.

[175] R. Mottaghi, C. Schenck, D. Fox, and A. Farhadi, “See the glass half full: Rea-
soning about liquid containers, their volume and content,” in IEEE International
Conference on Computer Vision (ICCV), Oct 2017.

[176] C. Schenck and D. Fox, “Visual closed-loop control for pouring liquids,” in IEEE
International Conference on on Robotics and Automation (ICRA), May 2017.

[177] C. Do, T. Schubert, and W. Burgard, “A probabilistic approach to liquid level
detection in cups using an RGB-D camera,” in IEEE International Conference on
Intelligent Robots and Systems (IROS), Oct. 2016.

[178] C. Do and W. Burgard, “Accurate pouring with an autonomous robot using an
RGB-D camera,” in International Conference on Intelligent Autonomous Systems
(ICoIAS), Jul. 2018.

[179] C. Schenck and D. Fox, “Reasoning about liquids via closed-loop simulation,” in
Robotics: Science and Systems, Jul. 2017.

[180] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on deep transfer
learning,” in International Conference on Artificial Neural Networks (ICANN),
2018.

[181] A. Xompero, R. Sanchez-Matilla, R. Mazzon, and A. Cavallaro, “CORSMAL
Containers Manipulation,” 2020, (1.0) [Dataset]. Queen Mary University of
London. https://doi.org/10.17636/101CORSMAL1. [Online]. Available: https:
//corsmal.eecs.qmul.ac.uk/containers_manip.html

[182] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-CNN,” in IEEE
International Conference on Computer Vision (ICCV), Oct. 2017.

[183] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in Proceedings of the
British Machine Vision Conference (BMVC), Sep. 2016.

119

https://doi.org/10.17636/101CORSMAL1
https://corsmal.eecs.qmul.ac.uk/containers_manip.html
https://corsmal.eecs.qmul.ac.uk/containers_manip.html

Bibliography

[184] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features
in deep neural networks?” in Advances in Neural Information Processing Systems
(NeurIPS), Dec. 2014.

[185] A. Modas, R. Rade, G. Ortiz-Jiménez, S.-M. Moosavi-Dezfooli, and P. Frossard,
“PRIME: A few primitives can boost robustness to common corruptions,”
arXiv:2112.13547, 2021.

[186] A. Modas, A. Cavallaro, and P. Frossard, “Data augmentation with mixtures of
max-entropy transformations for filling-level classification,” in European Signal
Processing Conference (EUSIPCO), 2022, arXiv:2203.04027.

[187] F. Binder, E. Aichinger, J. Ecker, C. Nöbauer, and P. Mayr, “Algorithms for
near-rings of non-linear transformations,” in International Symposium on Symbolic
and Algebraic Computation, (ISSAC), Aug. 2000.

[188] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-
Interscience, 2006.

[189] A. Xu and M. Raginsky, “Information-theoretic analysis of generalization capability
of learning algorithms,” in Advances in Neural Information Processing Systems
(NeurIPS), Dec. 2017.

[190] M. S. Masiha, A. Gohari, M. H. Yassaee, and M. R. Aref, “Learning under distri-
bution mismatch and model misspecification,” in IEEE International Symposium
on Information Theory, (ISIT), 2021.

[191] P. Beale, Statistical Mechanics. Elsevier, 1996.

[192] L. Petrini, A. Favero, M. Geiger, and M. Wyart, “Relative stability toward diffeo-
morphisms indicates performance in deep nets,” in Advances in Neural Information
Processing Systems (NeurIPS), Dec. 2021.

[193] F. Croce, M. Andriushchenko, V. Sehwag, E. Debenedetti, N. Flammarion, M. Chi-
ang, P. Mittal, and M. Hein, “Robustbench: a standardized adversarial robustness
benchmark,” in Advances in Neural Information Processing Systems (NeurIPS),
Datasets and Benchmarks Track, 2021.

[194] P. Benz, C. Zhang, A. Karjauv, and I. S. Kweon, “Revisiting batch normalization
for improving corruption robustness,” in Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, Jan. 2021.

[195] S. Schneider, E. Rusak, L. Eck, O. Bringmann, W. Brendel, and M. Bethge,
“Improving robustness against common corruptions by covariate shift adaptation,”
in Advances in Neural Information Processing Systems (NeurIPS), Dec. 2020.

120

Bibliography

[196] T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. E. Hinton, “Big self-
supervised models are strong semi-supervised learners,” in Advances in Neural
Information Processing Systems (NeurIPS), Dec. 2020.

[197] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable
effectiveness of deep features as a perceptual metric,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jun. 2018.

[198] M. Moayeri and S. Feizi, “Sample efficient detection and classification of adversarial
attacks via self-supervised embeddings,” in IEEE International Conference on
Computer Vision (ICCV), Oct. 2021.

[199] G. Ortiz-Jimenez, S.-M. Moosavi-Dezfooli, and P. Frossard, “What can linearized
neural networks actually say about generalization?” in Advances in Neural Infor-
mation Processing Systems (NeurIPS), Dec. 2021.

[200] G. Yüce, G. Ortiz-Jimenez, B. Besbinar, and P. Frossard, “A structured dictionary
perspective on implicit neural representations,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Jun. 2022.

[201] R. Rade and S.-M. Moosavi-Dezfooli, “Helper-based adversarial training: Reduc-
ing excessive margin to achieve a better accuracy vs. robustness trade-off,” in
Adversarial Machine Learning workshop (ICML), 2021.

[202] P. W. Koh, S. Sagawa, H. Marklund, S. M. Xie, M. Zhang, A. Balsubramani,
W. Hu, M. Yasunaga, R. L. Phillips, I. Gao, T. Lee, E. David, I. Stavness, W. Guo,
B. Earnshaw, I. Haque, S. M. Beery, J. Leskovec, A. Kundaje, E. Pierson, S. Levine,
C. Finn, and P. Liang, “WILDS: A benchmark of in-the-wild distribution shifts,”
in International Conference on Machine Learning (ICML), Jul. 2021.

[203] L. Engstrom, A. Ilyas, S. Santurkar, and D. Tsipras, “Robustness (python library),”
2019. [Online]. Available: https://github.com/MadryLab/robustness

121

https://github.com/MadryLab/robustness

My main research focuses on the robustness of deep neural networks. I have designed novel
frameworks to evaluate the robustness and reveal the biases of deep image classifiers, in order
to build more robust and reliable deep learning systems. The spectrum of my work ranges from
understanding deep networks, to designing task-specific robust solutions.

EDUCATION

Sept. 2015
June 2017

Sept. 2009
Sept. 2015

ABOUT ME

Apr. 2018
May 2022

Feb. 2021
June 2021

July 2016
Sept. 2017

Research Assistant — EPFL

Research Assistant — University of Athens

PhD. Machine Learning — EPFL

MSc. Signal Processing & Machine Learning — University of Athens (Top graduate — GPA: 9.77/10)

BSc. Informatics & Telecommunications — University of Athens

Research Intern — IBM Research Dublin/Zurich

Supervisor: Prof. Pascal Frossard — LTS4

Supervisor: Prof. Pascal Frossard

Supervisor: Prof. Nancy Alonistioti

Supervisor: Dr. Alex Eleftheriadis

Thesis: “Robustness and invariance properties of image classifiers” (“Best Thesis Award” nominee)

Thesis: “Adaptive unmanned vehicle autopiloting using WebRTC video analysis”

Thesis: “Multi-user video conferencing using SSRC multiplexing and RTP packet retransmissions”

Supervisor: Dr. Mathieu Sinn — AI and Machine Learning Research Lab, Dublin

Supervisor: Prof. Nancy Alonistioti — SCAN Lab

I developed novel frameworks for evaluating the robustness of image classifiers to adversarial
perturbations, for connecting adversarial examples with the features in the datasets, and for
achieving state-of-the-art robustness to distribution shifts caused by common corruptions of
the data. My work has explained various mechanisms behind the robustness of classifiers, and
it has also been adapted in the context of human-to-robot collaborations of the CHIST-ERA
CORSMAL project, for improving robustness to real-world data distribution shifts.

WORK & RESEARCH EXPERIENCE

Apr. 2018
May 2022

Lausanne, Switzerland
APOSTOLOS MODAS
Deep Learning Robustness Computer Vision

I designed simple adaptive defences that can easily improve the robustness of image classifiers
against stochastic adaptive black-box adversarial attacks. My findings led to contributions to
the open-source Adversarial Robustness Toolbox (ART).

I worked on the detection of affected crop areas using drones (UAVs). Furthermore, I also
drafted a thorough plan of the multi-sensory infrastructure required to convert the city of
Argos, Greece, into a Smart City.

apostolos.modas@gmail.com

linkedin.com/in/amodas/
github.com/amodas

twitter.com/modasapo

Publication topics: Understanding deep networks through adversarial robustness [1], [2], [3], [4]
Robustness to distribution shifts [5], [6], [7]
Inductive bias of deep networks [8], [9]
Computer vision for robotics [10], [11]

FEATURED PUBLICATIONS

A. Modas, SM. Moosavi-Dezfooli and P. Frossard, “SparseFool: A few pixels make a big difference”, in
IEEE CVPR, 2019.

A. Modas*, R. Rade*, G. Ortiz-Jimmenez, SM. Moosavi-Dezfooli and P. Frossard, “PRIME: A few
primitives can boost robustness to Common Corruptions”, arXiv pre-print, 2021 (Under review).

G. Ortiz-Jimenez*, A. Modas*, SM. Moosavi-Dezfooli and P. Frossard, “Neural Anisotropy Directions”,
in NeurIPS, 2020.

R. Sanchez-Matilla, K. Chatzilygeroudis, A. Modas, N. Ferreira Duarte, A. Xompero, P. Frossard, A. Billard
and A. Cavallaro, “Benchmark for human-to-robot handovers of unseen containers with unknown filling”, in
IEEE RA-L, 2020.

A. Modas*, R. Sanchez-Matilla*, P. Frossard and A. Cavallaro, “Towards robust sensing for autonomous
vehicles: An adversarial perspective”, in IEEE SPM, 2020.

G. Ortiz-Jimenez, A. Modas, SM. Moosavi-Dezfooli and P. Frossard, “Optimism in the face of adversity:
Understanding and improving deep learning through adversarial robustness”, in Proc. of IEEE, 2021.

A. Modas, A. Cavallaro and P. Frossard, “Data augmentation with mixtures of max-entropy transformations
for filling-level classification”, in EUSIPCO 2022.

G. Ortiz-Jimenez, I.F. Salazar, A. Modas, SM. Moosavi-Dezfooli and P. Frossard, “A neural anisotropic view
of underspecification in deep learning”, in ICLR RobustML Workshop, 2021.

G. Ortiz-Jimenez*, A. Modas*, SM. Moosavi-Dezfooli and P. Frossard, “Hold me tight! Influence of
discriminative features on deep network boundaries”, in NeurIPS, 2020.

A. Modas, A. Xompero, P. Frossard and A. Cavallaro, “Improving filling-level classification with adversarial
training”, in IEEE ICIP, 2021.

A. Xompero, R. Sanchez-Matilla, A. Modas, P. Frossard and A. Cavallaro, “Multi-view shape estimation
of transparent containers”, in IEEE ICASSP, 2020.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

SOFTWARE SKILLS

Languages: Python, Matlab, C, Java, JavaScript
Frameworks: PyTorch, Torchvision
Featured repos: github.com/LTS4/SparseFool

github.com/LTS4/hold-me-tight
github.com/amodas/PRIME-augmentations
github.com/LTS4/neural-anisotropy-directions

Basketbal, playing the bass, cooking, theater

Greek
English
German

LANGUAGES

PERSONAL INTERESTS

Lausanne, Switzerland
APOSTOLOS MODAS
Deep Learning Robustness Computer Vision

apostolos.modas@gmail.com

linkedin.com/in/amodas/
github.com/amodas

twitter.com/modasapo

	Acknowledgements
	Abstract (English/Français)
	Contents
	Introduction
	Robustness of deep networks
	Adversarial robustness
	Towards better understanding of deep networks
	Thesis outline

	Related work
	Robustness to distribution shifts
	Evaluating robustness to distribution shifts
	Improving robustness to distribution shifts

	Robustness to adversarial perturbations
	Evaluating robustness to adversarial perturbations
	Improving robustness to adversarial perturbations

	Understanding deep learning through robustness
	Summary

	Sparse adversarial perturbations and image features
	Introduction
	Minimal sparse adversarial perturbations
	Sparsity constraints
	Linearization and boundary approximation
	SparseFool

	Experimental evaluation
	Performance analysis
	Perceptibility

	Analysis of sparse perturbations
	Shared semantic features
	Exclusiveness of adversarial robustness

	Conclusions

	Analysis of learned features using adversarial proxies
	Introduction
	Decision boundary and discriminative features
	Proposed framework
	Evidence on synthetic examples

	Discriminative features of real datasets
	Boundary adaptation to data representation
	Invariance and elasticity of decision boundary
	Connections to catastrophic forgetting
	Discussion

	Sensitivity to position of training samples
	Evidence on synthetic examples
	Connections to adversarial training

	Implications in data-scarce applications
	An off-the-shelf task: filling level classification
	Adversarial invariance prevents overfitting
	Discussion

	Conclusions

	Robustness to non-adversarial distribution shifts
	Introduction
	Towards robustness to common corruptions
	Invariance by removing features
	General model of visual corruptions

	PRIME data augmentations
	Instantiating the general model of visual corruptions
	Performance on common corruptions
	Unsupervised domain adaptation

	Robustness insights
	Contribution of transformations
	The importance of mixing
	Robustness vs Accuracy trade-off
	Sample complexity

	Improving filling level classification with PRIME
	Distribution shifts and PRIME augmentations
	PRIME transformation parameters
	Mixing parameters in PRIME
	Experimental validation

	Discussion
	Conclusions

	Conclusion
	Summary
	Future directions

	Appendix of Chapter 4
	Margin distribution of a linear classifier
	Training parameters
	Cross-dataset performance
	Adversarial training parameters
	Spectral decomposition on frequency ``flipped'' data

	Appendix of Chapter 6
	Maximum entropy transformations
	Spectral domain
	Spatial domain
	Color domain

	PRIME implementation details
	Additional transformed examples
	Transformation parameters

	Performance per corruption
	Performance per severity level

	Bibliography
	Curriculum Vitae

