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Abstract

Collapsing cell complexes was first introduced in the 1930’s as a way to deform a
space into a topological-equivalent subspace with a sequence of elementary moves.
Recently, discrete Morse theory techniques provided an efficient way to construct
deformation retracts collapsing one space into the other while preserving global
topological properties. This type of collapse, called a Morse matching, has been
widely used to speed up computations in (persistent) homology by reducing the
size of complexes.

Unlike classical collapses, in this thesis we consider topological spaces equipped
with signals or directions. The main goal is then to reduce the size of the spaces
while preserving as much as possible of both the topological structure and the
properties of the signals or the directions.

In the first part of the thesis we explore collapsing in topological signal pro-
cessing. In this context, each signal on the cells of a complex is processed using
the combinatorial Laplacian and the resultant Hodge decomposition.

In Article 2.1 we provide an approach to signal compression and reconstruc-
tion on chain complexes that leverages the tools of algebraic discrete Morse the-
ory. We first prove that any deformation retract of real finite-dimensional based
chain complex is equivalent to a Morse matching. We then study the interaction
between the Hodge decomposition and signal compression and reconstruction.
Specifically, we prove that parts of a signal’s Hodge decomposition are preserved
under compression and reconstruction for specific classes of discrete Morse defor-
mation retracts of a given based chain complex. Finally, we provide an algorithm
to compute Morse matchings with minimal reconstruction error.

Complementary to our theoretic results in topological signal processing, we
provide two applications in this field. Article 2.2 extends graph convolutional neu-
ral networks to simplicial complexes, while Article 2.3 presents a novel algorithm,
inspired by the well-known spectral clustering algorithm, to embed simplices in
a Euclidean space.

The object of our studies in the second part of the thesis is topological spaces
equipped with a sense of direction. In the directed setting, the topology of the

space is characterized by directed paths between fixed initial and terminal points.
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Motivated by applications in concurrent programs, we focus on directed Euclidean
cubical complexes and their spaces of directed paths.

In Article 3.1 we define a notion of directed collapsibility for Euclidean cubical
complexes using the notion of past links, a combinatorial local representations
of cubical complexes. We show that this notion of collapsability preserves given
properties of the directed path spaces. In particular, we give sufficient conditions
for a directed Euclidean cubical complex to have a contractible or a connected
space of directed paths from a fixed initial vertex.

In Article 3.2 we extend these results, providing further conditions for directed
collapses to preserve the contractability or conneectdness of spaces of directed
paths. Furthermore, we provide simple combinatorial conditions for preserving
the topology of past links. These conditions are the first step towards devel-
oping an algorithm that checks at each iteration if a collapse preserves certain

properties of the directed space.

Keywords: Collapsing topological spaces, topological signal processing, dis-

crete Morse theory, directed cubical complexes, concurrent programs.



Résumé

Les collapses de complexes cellulaires ont été introduit pour la premiére fois
dans les années 1930 comme un moyen de déformer un espace en un sous-espace
topologiquement équivalent & l'aide d’une suite de mouvements élémentaires.
Récemment, les techniques de la théorie de Morse discréte ont fourni un moyen ef-
ficace de construire des rétractions déformations collapsant un espace dans 'autre
tout en préservant les propriétés topologiques globales. Ce type de collapse , ap-
pelé correspondance de Morse, a été largement utilisé pour accélérer les calculs
en homologie (persistante) en réduisant la taille des complexes.

Contrairement aux collapses classiques, nous considérons dans cette thése des
espaces topologiques dotés de signaux ou de directions. L’objectif principal est
alors de réduire la taille des espaces, tout en préservant autant que possible a la
fois la structure topologique et les propriétés des signaux ou des directions.

Dans la premiére partie de la thése, nous explorons les collapses dans le traite-
ment topologique du signal. Dans ce contexte, chaque signal sur les cellules d’un
complexe est traité en utilisant le Laplacien combinatoire et la décomposition de
Hodge qui en résulte.

Dans I’Article 2.1, nous proposons une approche de la compression et de la
reconstruction des signaux sur les complexes de chaines qui exploite les outils
de la théorie algébrique discréte de Morse. Nous prouvons d’abord que toute
rétraction par déformation d’'un complexe de chaines réel de dimension finie est
équivalente & une correspondance de Morse. Nous étudions ensuite I'interaction
entre la décomposition de Hodge et la compression et la reconstruction du signal.
Plus précisément, nous prouvons que certaines parties de la décomposition de
Hodge d’un signal sont préservées par la compression et la reconstruction pour
des classes spécifiques de rétractions de déformation de Morse discrétes d’un com-
plexe en chaine basé donné. Enfin, nous fournissons un algorithme permettant
de calculer les correspondances de Morse avec une erreur de reconstruction min-
imale.

En complément de nos résultats théoriques sur le traitement du signal topolo-
gique, nous fournissons deux applications dans ce domaine. L’Article 2.2 étend

les réseaux de neurones convolutionnels de graphes aux complexes simpliciaux,
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tandis que I’Article 2.3 présente un nouvel algorithme, inspiré de ’algorithme
bien connu de regroupement spectral, pour intégrer les simpliciaux dans un es-
pace euclidien.

L’objet de nos études dans la deuxiéme partie de la thése est constitué par
les espaces topologiques dotés d’un sens de direction. Dans le cadre dirigé, la
topologie de l'espace est caractérisée par des chemins dirigés entre des points
initiaux et terminaux fixes. Motivés par des applications dans les programmes
concurrents, nous nous concentrons sur les complexes cubiques euclidiens dirigés
et leurs espaces de chemins dirigés.

Dans I’Article 3.1 nous définissons une notion de collapsibilité dirigée pour les
complexes cubiques euclidiens en utilisant la notion de liens passés, une représen-
tation locale combinatoire des complexes cubiques. Nous montrons que cette
notion de collapsabilité préserve des propriétés données des espaces de chemins
dirigés. En particulier, nous donnons des conditions suffisantes pour qu'un com-
plexe cubique euclidien dirigé ait un espace de chemins dirigés contractile ou
connecxe a partir d’'un sommet initial fixe.

Dans I’Article 3.2, nous étendons ces résultats, en fournissant des conditions
supplémentaires sur le moment ou les collapses dirigés préservent la contractabil-
ité ou la connexité des espaces de chemins dirigés. De plus, nous fournissons
des conditions combinatoires simples pour préserver la topologie des liens passés.
Ces conditions sont la premiére étape vers le développement d’un algorithme qui
vérifie & chaque itération si un collapse préserve certaines propriétés de ’espace

dirigé.

Mots clés: Collapses des espaces topologiques, traitement du signal topologique,
théorie discréte de Morse, complexes cubiques dirigés, programmation concur-

rente.
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CHAPTER 1

Introduction

This thesis consists of a collection of five papers co-written by the author [1, 2,
3, 4, 5] and connected by the leitmotif of collapsing topological spaces. Collapses
are commonly used in topology to reduce the size of a space while preserving
its global topological features. Unlike classical collapses, we consider here spaces
with additional information. Specifically, we consider topological spaces endowed
with signals or directions. Our goal is then to collapse these spaces while preserv-
ing as much as possible of both their topology and the properties of the signals
or the direction.

In this introduction we offer an non-technical overview of this problem. The
aim is to provide the reader with general intuition on how signals and direction
create additional properties of topological spaces and how questions on collapsing
these variables naturally arise. In Section 1.1 we recall classical notions of col-
lapsing for topological spaces. We then contextualize the problem of collapsing
spaces endowed with signals or directions, respectively in Section 1.2 and Section
1.3. Finally, in Section 1.2.1 and Section 1.3.1 we describe our contributions to
these fields. The articles about collapsing spaces with signal are then included
in Chapter 2, while Chapter 3 presents the articles on collapsing spaces with

directions.

1.1 Collapsing Topological Spaces

In this section, we first recall some basic notions in algebraic topology. We refer
the reader to [6] for a more detailed exposition. Then we present two methods
to collapse topological spaces. We start by introducing elementary collapses, a
sequence of elementary moves to reduce the size of a space while preserving its

topological features. Finally, we present the main concepts of discrete Morse
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theory, focusing on how to collapse spaces via acyclic partial matchings.

1.1.1 Background in Algebraic Topology

Definition 1.1 (Regular Cell Complexes). A finite reqular cell complex is a topo-
logical space X with a partition into subspaces { X, }acpy, called cells, satisfying

the following conditions.

1. For each x € X, every sufficiently small neighborhood of z intersects finitely

many X.
2. For all o, 8, Xo N X5 # 0 if and only if X5 C X,.

3. (Regularity) For every «, there is a homeomorphism ¢, of a closed ball in

R™ to X, that maps the interior of the ball homeomorphically onto X,.

A cell X, is called an n-cell (or an an n-dimensional cell) if it is homeomorphic
to R™ for some n. The space given by the union of cells of dimension less or equal
than n is called the n-skeleton of X and denoted by X,. A map ¢, satisfying
condition (3) such that the boundary of the closed ball is contained in X,,_; is

called a characteristic map of X,.

Note that condition (2) provides a poset structure on the indexing set Py
given by the relation B<a < Xz C X,, while condition (3) guarantees that this
poset structure encodes all the topological information about X. As a conse-
quence, regular cell complexes are essentially combinatorial objects whose struc-
ture is determined by the cells and their relations in the poset.

Intuitively, regular cell complexes can be constructed through an iterative
gluing procedure. One starts with a set of O-cells (vertices), then the 1-cells
(edges) are attached to these by gluing the end-points of closed line segments to
them. Then one can glue the 2-cells (closed disks) by attaching their boundary
to any cycle, and so on in higher dimensions. The class of regular cell complexes
includes simplicial complexes and Euclidean cubical complexes, which will be at

the center our studies in Chapter 2 and in Chapter 3 respectively.

Example 1.2. Simplicial complexes are cell complexes constructed by gluing
together points, line segments, triangles, and their n-dimensional counterparts

(see Figure 1.1).
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Figure 1.1: A simplicial complex.

Example 1.3. Euclidean cubical complexes are cell complexes whose n-cells are

unitary cubes in R™ (see Figure 1.2-A and Figure 1.2-B).
A Elementary Cubes

(1,1,1)
(0,1)

[ ]
| W

.
.

(0,0) (0,0.0)

B Euclidean Cubical Complex

.( 33)

Figure 1.2: A Euclidean cubical complex and elementary cubes up to dimension
3.

The attaching map structure of the cells in a complex can be encoded in
a purely algebraic framework, called a chain complex. To construct the chain
complex of a regular cell complex, we need a boundary operator and a notion of

orientation—a signed incidence function on Px.

Definition 1.4 (Incidence Function). An incidence function associated to a reg-
ular cell complex X is a map [e : o] : Px x Px — {—1,0,1} satisfying the

following conditions.
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1. If [o,7] # 0, then o<, and there are no cells between o and 7 in the

incidence poset.

2. Forany o<1, 3 cp [o:q][y:7]=0.
Definition 1.5 (Chain complex). The n-th chain group C,(X) of a regular cell
complex X is the free R-module with basis the n-cells of X. Given an incidence

function [e : e] : Px x Px — {—1,0,1}, we can define a boundary operator
Op : Cp(X) = Cp_1(X) by

OnT = Z [0 T]o.

oEPx
This leads us to define the chain complex over R associated to X as:
On+1 O
= Chpi(X) —/— Cp(X) - Cp1(X) — ...

Remark 1.6 (Based Chain Complex). Chain complexes are a purely algebraic
objects defined on a basis given by the cells of the complex. This structure is
generalized by based chain complezes [7], chain complexes with a graded structure
over a given base—not necessarily provided by geometric objects. Based chain

complexes will play a pivotal role in Article 2.1.

Note that condition (2) of Definition 1.4 implies that Im 9,1 C Ker 9, for

all n.

Definition 1.7 (Homology). Let X be a regular cell complex. The homology
of the real chain complex C(X) is the family of modules

Ker o,

H, (C(X),B) = 20

n € N.
The elements of Ker 0,, are called n-cycles, and the elements of Im 0,41 are called

n-boundaries.

Given two topological spaces X and Y, we now define an algebraic analogue
of the notion of deforming one space into the other while preserving topological
properties.

A chain map between two chain complexes (C,0) and (C',9') is given by
R-module homomorphisms ¥,, : C,, — C;1 for each n, such that

U, 100, =0,00,.
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It is easy to see that a chain map ¥ : C — C’ induces homomorphisms H,,(¥) :
H,(C) — H,(C’) in homology. A chain homotopy between two chain maps
U, ®: C — Cis given by maps h, : C,, — C;Hl, for all n > 0 such that

v, — &, = ;L_Hohn—l—hn_lo@n.

Two chain homotopic maps induce the same homomorphism on homology

modules. For two chain complexes (C,9) and (C’,9’), a pair of chain maps
UV:C—-Cand®:C' —C

are chain equivalances if ¥ o ® and ® o ¥ are chain homotopic to the identities
on C’ and C, respectively. Note that this implies that the maps induced on the
homology modules by ® and ¥ are isomorphisms. The chain equivalences W and
® form a deformation retract of the chain complexes C and C’ if ¥ o ® is the
identity map on C’. Deformation retracts will be often depicted as the following

diagram
r e Y
C = C Dn
where h is a chain homotopy from ®¥ to Idc.

1.1.2 Background on Elementary Collapses

Given two regular cell complexes and their associated chain complexes, it is usu-
ally very hard to decide whether there exists a deformation retract between them.
In the 1930’s J. H. C. Whitehead introduced the notion of collapsing as a simple
way to deform a space into a subspace by a finite sequence of elementary moves

called elementary collapses [8|.

Definition 1.8 (Elementary Collapses). Let X be a cell complex and Y a sub-
complex of X. Then X collapses to Y by an elementary collapse if the following

conditions hold.

1. X =Y UoUr, where dim(7) =n, dim(oc) =n—1and 0,7 ¢ Y

2. There exist a pair of disks (D, D,,—1) and a map ¢ : D,, — X such that
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(a) ¢ is the characteristic map for 7.
(b) ¢|p,_, is the characteristic map for o.

(C) ¢(Pn_1) - Yn—l where Pn—l = 8nDn \ Dn—1~

Note that the second condition ensures that by removing ¢ and 7, from X
we obtain a subcomplex of X with the correct attaching map structure.
We say that X collapses to Y if there exists a finite sequence of elementary

collapses from X to Y.

Example 1.9. In the setting of simplicial complexes, collapsibility is a com-
pletely combinatorial notion. Definition 1.8 is equivalent to checking the follow-
ing conditions. An elementary collapse in a simplicial complex X consists of

removing a pair of simplices (o, 7) such that
e dim(o) = dim(7) — 1.
e 7T is maximal—it is not contained in any other simplex than itself.
e 0 is a free face—the only simplices containing it are 7 and o.

Figure 1.3 shows an elementary collapse of a pair (o, 7) in a simplcial complex.

Y

Figure 1.3: Elementary collapse in a simplicial complex removing (o, 7).

The following theorem ensures that collapsing a cell complex X into a complex

Y preserves its homology.

Theorem 1.10 ([8]). Let X be a cell complex such that X collapses to' Y. Then

there exists a deformation retract

c(y) % C(X) _ On

Remark 1.11. Although elementary collapses are simple moves to reduce a
cell complex, it is not always possible to verify the homotopy-type of a space
by collapsing it. For example, the R. H. Bing’s house with two rooms [9] is

contractible (homotopy equivalent to a point), but not collapsible.
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1.1.3 Background in Discrete Morse Theory

Discrete Morse theory was originally developed by Forman in the 1990s as a
discrete version of Morse theory [10]. The main goal of discrete Morse theory
is to find critical cells on a cell complex, in order to collapse its structure while
preserving its topological features. Unlike elementary collapses, discrete Morse
theory reduces a complex to another complex that is not necessarily a subcomplex

via a sequence of allowed collapses defined by acyclic partial matchings.

Definition 1.12 (Acyclic partial matching). An acyclic partial matching V on a
regular cell complex X consists of a partition of the cells of X into three disjoint
sets M, D and U along with a bijection u: D — U satisfying:

1. o<p(o) for every o € D,

2. the transitive closure of the binary relation defined by ¢’ <, ¢ whenever

o’ <ap(o) is a partial order on the cells of D.

The cells of M are called the critical cells of V. The acyclic partial matching V

is called Morse matching.

Example 1.13. In Figure 1.4 we show a Morse matching V on a cell complex
X. The pairs (o, (o)) in the Morse matching V are visually depicted by blue
arrows running from the cell o to the cell u(o), see Figure 1.4-left. Alternatively,
one can visually depict the Morse matching in the Hasse diagram associated to
X. The Hasse diagram of X is the directed graph whose nodes are the cells of X
and whose edges are defined as follows. For every cell 7 and o we draw an arrow
from 7 to o if o <7. The edges corresponding to pairs (o, u(o)) in V are reversed,
namely we draw an arrow from o to pu(o), see Figure 1.4-right. The acyclicity
condition in the definition of Morse matching is satisfied if such a graph doesn’t
contain directed cycles [10]. Critical cells are represented by red nodes in the

graphs. The collapsed cell complex Xy, is showed in Figure 1.4-center.

A classical result of discrete Morse theory states that a cell complex equipped
with an acyclic partial matching V can be deformed into a cell complex with
number of cells equal to the number of critical cells in V [10]. In practice, for
a cell complex X and a partial matching V, one can construct the deformation

retract as follows. We define the collapsed complex Xy, as

Xy =X\ | (0,n(0)).

ceD
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V3 o
V1V2V3

/NN

O O @) @) @)
Vo U1 V1V2 VpVU2 V1 V3 V2U3

N

Vo U1 V2 V3

V1 Vg

Vo

Figure 1.4: Morse matching V on a cell complex X. Left: The cell complex X
with the Morse matching depicted by blue arrows. Right: The Morse matching
Y represented on the Hasse diagram of X. Center: The collapsed cell complex
Xy.

One can associate to Xy a chain complex by constructing a boundary operator
Oy as described in [11]. Then, Xy is related to X by the following theorem.

Theorem 1.14 ([10, 7, 11]). Let X be a regular cell complex and V an acyclic

partial matching on X. Then there exist a deformation retract

C(Xy) % C(X) _ On

The theorem above shows how discrete Morse theory allow us to reduce the
size of complexes and to preserve their topological features by constructing de-

formation retracts via acyclic partial matching.

Remark 1.15. Finding a Morse matching with given properties is usually a hard
problem. For example, the task of finding a matching that minimises the number
of critical cells is already known to be NP-hard [12].

1.2 Collapsing in Topological Signal Processing

In this section we contextualize the articles presented in Chapter 2. We first
present an overview on topological signal processing, a broad term used to refer to
the field concerned with topological spaces endowed with signals. Then we discuss
the idea of collapsing such spaces, and we provide intuition on the properties one
would like to preserve. Finally, we summarize our contributions and discuss

future perspectives.
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Topological Signal Processing Signal processing research concerns the anal-
ysis, synthesis, and modification of signals, which can be broadly defined as
functions conveying “information about the behavior or attributes of some phe-
nomenon [13]”. Examples of such signals include value of pixels of an image,
temperatures of cities in a given area, or any biological measurement.

Historically, signal processing was defined for data lying on metric spaces.
Techniques in this field have been extended only recently to a larger family of
topological spaces [14], such as graphs, simplicial complexes, and cell complexes
[15, 16, 17, 18]. Here, signals are functions on the cells, the building blocks of the
spaces, and relationships between signals are encoded by how cells are attached.
For instance, on a graph, functions on nodes are pairwise related by the edges
that connect them.

From a formal point of view, a signal s on a complex X can be thought as
an element in the real chain complex C(X). This mathematical object, when
endowed with a degree-wise inner product, allow us to define the combinatorial
Laplacian A,, [19], a natural generalization of the classical time-delay operator
[15, 20]. The eigenvectors of the Laplacian play the role of a ‘topological’ Fourier
basis transforming a signal into a topologically meaningful coordinate system.
Additionally, the combinatorial Laplacian gives rise to the combinatorial Hodge

decomposition [19]
Co(X)=Imd,y1 ®Ker A, ®Ima),

the components of which each have their own topological interpretation [15]|. For
instance, Eckmann proved that Ker A,, is isomorphic to the n-th homology group
H,(R) [19].

This Fourier representation has proven to be useful in multiple applications
[21, 22]. In graph signal processing, it has been exploited for signal smoothing
and denoising [23, 24|, node embeddings via Laplacian eigenmaps [25, 26|, graph
neural networks [27, 28|, and signal compression and reconstruction [29]. Some
of these applications have recently been extended to signal processing on cell and
simplicial complexes [30].

In this context, we present two articles providing novel applications of signal
processing on simplicial complex. In particular, Article 2.2 extends graph con-
volutional neural networks to simplicial complexes, while Article 2.3 presents an

algorithm to embed simplices inspired by Laplacian eigenmaps.
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Collapsing in Toplogical Signal Processing In Section 1.1, we discussed
how discrete Morse theory efficiently generates deformation retracts that reduce
the size of a cell complex while preserving its global topological structure. For
this reason, this technique has been widely used to compress 3D images [31] or
to speed up computations of (persistent) homology [11].

The main question we address here is how such deformation retracts act on
signals on a cell complex. Specifically, from a topological signal processing point
of view, it is interesting to study which parts of a signal’s projection on the Hodge
decomposition are preserved.

Recall that a deformation retract of a chain complex C onto D consists of

chain equivalences (¥, ®, h) in the diagram
v
D % C Dn

and a chain homotopy h : C — D between ®¥ and Id¢ such that Y& = Idp.

It is well known that usually neither chain or cochain maps between two com-
plexes with degree-wise inner product respect the grading of the Hodge decom-
position. Therefore, we focus on a different notion of preservation by examining
the effect of applying ®¥ to an element s € C,,. Here the composition ®V¥s
encodes the compression and reconstruction of a signal s € C when performing
a retraction to a chain complex D. In order to understand and evaluate how
compression and reconstruction changes the signal, one can study the topological
reconstruction error given by difference s — ®W¥s. Our main contribution in Ar-
ticle 2.1 is a theorem proving that, for a class of deformation retracts (¥, ®, h),
called (n,n — 1)-free, the topological reconstruction error has trivial cocycle re-
construction. In particular, we prove s and ®W¥s agree when projected on the
cocycles Ker 8;2 41

This results provides a clear topological interpretation of the compression and
reconstruction via discrete Morse theory. Additionally, it opens up to computa-
tional questions on how to minimize the reconstruction of the signal that is not
preserved. Article 2.1 offers a detailed discussion on this problem leading to al-
gorithms for computing optimal single collapses.

Such algorithms were motivated by defining pooling layers preserving topo-
logical features in simplicial neural networks, developed in Article 2.2. Despite
the recent development of further types of neural networks on topological spaces
[32, 33, 34, 35], such architectures do not include pooling layers that take into

account topological properties of both the signals and the spaces. We envision to
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define such layers using the theory developed in Article 2.1, which would allow
to reduce the size of a complex and pool the signal preserving topological com-
ponents.

Collapsing using discrete Morse theory has potential application also in the
harmonic clustering algorithm developed in Article 2.3. Here we developed a
clustering method for simplices of any dimensions via the eigenvectors of the
Laplacian. The algorithm for optimal collapses presented in Article 2.1 could
be use a pre-process method to reduce the size of a complex to speed up the

computations of the eigenvectors necessary for clustering.

1.2.1 Contributions in Topological Signal Processing

In this framework, we present three articles providing both novel theory and ap-
plications of topological signal processing. Our contributions can be summarized

as follows.

e Article 2.1, "Morse Theoretic Signal Compression and Reconstruction on
Chain Complexes", presents a novel approach to signal compression and
reconstruction on based chain complexes leveraging tools of discrete Morse
theory. We first prove that any deformation retract of real degree-wise
finite-dimensional chain complexes is equivalent to a Morse matching. We
then study how reducing the size of complexes by particular types of Morse
matchings changes the signal on its cells. In particular, we define specific
classes of discrete Morse theory deformation retracts (¥, ®, h) that perfectly
preserve parts of the signal’s Hodge decomposition. Specifically, they are
characterised by the following (co)cycle reconstruction properties (Theorem
4.5 Article 2.1).

1. (Cocycle Reconstruction) A signal s € C,, and its reconstruction ®W¥s

have the same cocycle information:
PrOjKeralH(@\I/s —s) =0 for all s € C,,.

2. (Cycle Reconstruction) A signal s € C,_; and the adjoint of the

reconstruction ¥ dTs have the same cycle information:
Projkes, ,(PT®Ts —s) =0 for all s € C,,_1.

Moreover, we provide an algorithm for computing optimal single collapses

that minimize the difference between the reconstructed and original sig-
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nals. The performance of these algorithms is tested on synthetic data and

compared to random collapses.

e Article 2.2, "Simplicial Neural Networks", proposes a generalization of
graph convolutional neural networks (GCNNs) to data lying on simpli-
cial complexes. We define a convolutional layer via the topological Fourier
transform using the eigenvectors of the combinatorial Laplacian. Similarly
to convolutional neural networks (CNNs) and GCNNs, this allows us to
take into account the locality of data lying on a simplicial complex and
achieve linear computational complexity. Finally, the performance of sim-
plicial neural networks is evaluated on the task of imputing missing data

on coauthorship complexes constructed from real-world data.

e Article 2.3, "A Notion of Harmonic Clustering in Simplicial Complexes"
presents a novel clustering algorithm for simplicial complexes. Inspired by
the classical spectral clustering algorithm, we provide an algorithm that
utilizes the eigenvectors of the Laplacian to embed simplices of any dimen-
sion in a FKuclidean space. Our method, unlike classical spectral clustering,
involves the eigenvectors associated to the zero eigenvalues. Using several
synthetic examples we show computationally that the algorithm produces
clusters of simplices in a way that is sensitive to the homology of the com-

plex.

While all the theory presented in the articles above can be defined for general
based chain complexes—thus is immediately generalized to cell complexes and
sheaves—in Article 2.2 and Article 2.3, we focus on simplicial complexes. This
choice is dictated by applications. Our examples, coming from synthetic and real-
world data, provide intuition on the theory using only simplicial complexes. On
the other hand, the theory in Article 2.1 is developed for based chain complexes,
a more general framework encompassing the chain complexes associated to cell

and simplicial complexes.

Related Work Signal compression and reconstruction on graphs has been
widely studied in different settings, ranging from the theory of sampling and
reconstruction to autoencoders [23, 36, 37|. Recently, Barbarossa et al. [15, 22|
presented a theory for sampling and reconstruction of bandlimited signals on

simplicial complexes, as well as a method for topology inference based on the
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signal supported on the simplices [38]. It is worth remarking that these theories
restrict exclusively to signals on edges. Another article that is closely related to
the signal reconstruction problem is that of Schaub et al. [30], where the authors
use interpolation on edge-data lying on simplicial complexes to predict signals of
unlabeled edges.

The theory developed in our Article 2.1 differs from previous work in two as-
pects. First, we deal with based chain complexes, a general algebraic framework
that includes the chain complexes associated to cell and simplcial complexes.
Second, our method for signal compression and reconstruction exploits Morse
collapses. To the best of our knowledge, no other result merging these two topics
has been published.

The theory presented in Article 2.2 is an extension of graph convolutional
neural networks [27] to simplicial complexes. Other convolutional architectures
based on the Laplacians [39, 40| were presented at the same conference as Article
2.2. In [39] they focus only on edge-data, whereas [40| presents the same frame-
work for cell complexes. These articles generated a subsequent interest for neural
networks for higher-structured data. Among these, Bodnar et al. [33, 32| defined
a more general architecture for message passing on simplicial and cell complexes,
allowing features on cells of different dimensions to interact. They proved that
their architecture has more expressive power than simplicial neural networks, by
showing that the number of linear regions of the functions represented by mes-
sage passing is higher than in simplicial neural networks.

Interestingly, the work of Nanda et al. [41] encompasses aspects of both
the harmonic clustering algorithm (Article 2.3) and simplcial neural networks
[2]. Exploiting properties of a particular graph Laplacian, they define novel
homologically-aware graph neural networks, whose input is built from simpli-
cial complexes. Theoretical and computational results on the properties of the
eigenvectors of the simplicial Laplacian to detect homological features are pre-
sented in [42], with promising results for the problem of the shortest homologous
loop detection. Other types of embeddings based on Laplacian eigenvectors are
presented in [30], where edge trajectories are projected and analyzed in the em-

bedding space of the harmonics.

Future Perspectives We propose three applications of topological signal pro-
cessing: to signal compression and reconstruction, to neural networks and to cell

embedding. The theoretical results presented in Article 2.1 are framed in the gen-
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eral algebraic setting of based chain complexes, which applies to a wide spectrum
of contexts including such as simplicial complexes, cell complexes, and sheaves.
We merge concepts from Hodge theory and discrete Morse theory, to gain insight
into how signals on complexes are compressed and reconstructed when perform-
ing particular types of collapses. These results were motivated by the desire to
define a meaningful, topologically-aware pooling layer for the simplicial neural
networks presented in Article 2.2. For this reason, we envision that the next
research steps in this direction will involve including such types of pooling in
existing experiments and studying how collapses could be learned by the neural
networks.

In the context of harmonic clustering, the results presented in [42], could
be extended to the eigenvectors corresponding to non-zero eigenvalues, shedding
light on the connection with spectral clustering.

Finally, from a computational perspective, a current limitation arises from the
restriction to modelling data with simplicial or cell complexes. In fact, real-world
data is not often naturally modelled as a cell complex with signals on its cells.
Much effort should go in this direction, to find applications where higher-order

relations can be efficiently represented by cells or simplicial complexes.

Author Contributions All papers were developed throughout regular discus-
sion with the co-authors. The contributions of the author of this thesis can be
found in all the aspects of the papers, from the theoretical results to the devel-

opment of the code and experiments.

1.3 Collapsing in Directed Cubical Complexes

In this section we provide an overview of the articles presented in Chapter 3. We
first introduce directed Euclidean cubical complexes and provide some motivating
examples. We then provide intuition on how to reduce such complexes while

preserving directional properties.

Directed Cubical Complexes Recently, topological spaces equipped with a
notion of direction have received substantial attention in the field of algebraic
topology [43, 44, 45]. In these spaces, direction usually comes from a notion

of time incorporated in their structure. More precisely, the notion of direction
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consists in specifying which paths in the space can be considered as “increasing”
or “directed”. The goal is then to study the topology of these spaces, and, in
particular, to find suitable notions of algebraic invariants for the space of directed
paths.

In applications directed spaces appear when modelling concurrent programs
[44], dynamical systems [46] or motion planning [47], and multiple notions of di-
rection have been proposed to deal with these different type of spaces. Motivated
by verifying the execution of concurrent programs, in this thesis we focus on a
model of directed spaces arising from this application. Concurrent programs are
multiple processes running in parallel, the execution of which usually depends on
the correct sequential schedule of its processes. For instance, it might happen
that if two process run at the same time, the program will not be executed cor-
rectly.

Verifying combinatorially such executions is usually a hard problem, where
the complexity can grow exponentially with the number of processes. A simpli-
fication of this problem can be obtained by modelling concurrent programs as
directed Euclidean cubical complexes where each axis represents a sequence of
actions a process completes in the program execution, and paths respecting the
time directions represent executions of programs [44].

In this context, two executions of a program are equivalent if their corre-
sponding directed paths are in the same equivalence class for a suitable notion
of directed homotopy. Then, the verification of concurrent programs boils down
to verifying only one execution from each connected component of the space of

directed paths, see Figure 1.5.

Collapsing Directed Cubical Complexes In our work we address the ques-
tion of how we can further simplify directed cubical complexes to easily compute
equivalence classes of directed paths corresponding to equivalent executions of
the concurrent program. The goal is to reduce the size of the directed cubical
complex via suitable collapses that preserve desirable properties of the directed
path spaces.

Although elementary collapses preserve the homotopy type of the underlying
space, this type of collapsing in directed Euclidean cubical complexes may not
preserve topological properties of spaces of directed paths. On the other hand,
defining collapses directly on the spaces of directed paths is infeasible due to their

continuous nature. This force us to utilize the notion of past links, a combinato-
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Figure 1.5: The Swiss-Flag Directed Cubical Complex. This complex models
a concurrent program with two processes that have two shared resources with
limited capacity. There are two distinct directed paths (solid and dashed) up to
directed homotopy equivalence. The two distinct paths represent which process
uses each shared resources first. See Article 3.1, Example 2.2 for a more detailed
explanation.

rial local representations of cubical complexes at vertices, to define the so-called
link preserving directed collapses (LPDC). These types of collapses preserve the
homotopy of past links, which is intrinsically related to the homotopy of the di-
rected path spaces. Therefore, the natural question is which exact properties of
directed path spaces are preserved by LPDCs? Answering such questions would
allow us to simplify the verification of execution of concurrent programs in a

reduced Euclidean cubical complex, see Figure 1.6.

(5,5)

0

Figure 1.6: The collapses Swiss-Flag Directed Cubical Complex. This complex is
the obtain by a sequence of LPDCs on the Swiss-Flag. It is easier to see in this
figure that there are only two distinct paths from the initial to final vertex.

1.3.1 Contributions in Directed Cubical Complexes

Our contributions can be summarized as follows.
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e Article 3.1, "Towards Directed Collapsability" shows how the topology of
the past links associated to vertices in a directed Euclidean cubical complex
is intrinsically related to spaces of directed paths. Specifically, we prove that
the contractability and/or connectedness of past links of vertices in directed
Euclidean cubical complexes with a minimum vertex implies that all spaces
of directed paths with initial point are also contractible and/or connected.
Additionally, we provide a partial converse in case of connectedness. These
results motivate us to define link-preserving directed collapses (LPDC) as
cubical collapses preserving the homotopy of past links. As an immediate
consequence, we show that, if we start with a directed Euclidean cubical
complex where all past links are connected and/or contractible, then any
sequence of LPDCs results in a directed Euclidean cubical complex with

connected and/or contractible directed path spaces.

e Article 3.2, "Combinatorial Conditions for Directed Collapsing" studies
combinatorial conditions for collapsing unit cubes in a directed Euclidean
cubical complex for which we can obtain an LPDC. Specifically, we show
that there exists simple combinatorial conditions on the vertices of a col-
lapse of unit cubes for being an LPDC. In practice, this condition allows us
to develop an algorithm that can check at each step if a collapse is preserv-
ing properties of the directed space. Moreover, we further develop results of
Article 3.1 that provide conditions on LPDCs to preserve the contractabil-
ity and/or connectedness of directed path spaces. Finally, we also provide

examples in which these properties are not preserved by LPDCs.

It is worth remarking that in both articles we restrict to directed topological
spaces arising from Euclidean cubical complexes. These are however not the
only type of directed spaces presented in the literature, see for example [43].
Our choice is dictated by applications to concurrent programs and allows us to
borrow definitions and results from collapsing cubical complexes in the undirected
sense. Furthermore, in article 3.1 we use the term directed collapses instead of
link preserving directed collapsed, introduced in Article 3.2. Although they refer
to the same mathematical object, we decided to introduce a more prescriptive
terminology to underline that directed collapses preserve properties about past

links and not necessarily about directed path spaces.
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Related Work. Many authors studied how to reduce the size of cubical com-
plexes via different types of collapses. For example, Vanessa Robins et al. [31],
present an algorithm to reduce the size of images using discrete Morse collapses
built from the grey-scale image values. In [48] they instead apply a coreduction
algorithm to compute persistent homology of both cubical and simplicial datasets
efficiently.

Our articles build upon the work on directed topological spaces presented
in [49, 50, 44, 51, 43] and, differently from other work, our notion of collapsing
takes into account the directionality of the space. In particular, under certain
conditions, we can preserve properties of the spaces of directed paths. To the best

of our knowledge, no other publications have explored this research direction.

Future Perspective. In Article 3.1 and 3.2, we prove that topological prop-
erties of past links of directed cubical complexes are inherently connected to the
topology of their directed path spaces. We then define link preserving directed
collapses (LPDCs), a novel notion of collapsing for directed cubical complexes
that preserves topological properties of past links. Finally, we provide an easy
combinatorial condition to determine when a collapse is an LPDC. In various
settings LPDCs preserve spaces of directed paths, however, there exist examples
of directed cubical complexes in which LPDCs do not preserve topological prop-
erties of the spaces of directed paths. A direction for future research could be to
further investigate whether there are additional conditions on LPDCs to preserve
spaces of directed paths between two given vertices. This would be another step
towards developing algorithms that compress directed Euclidean cubical com-
plexes and preserve directed topology. Another application of directed cubical
complexes might include multiparameter persistent homology. The first ques-
tion to address is how to find an appropriate representation of multi-paramenter
persistence spaces via directed cubical complexes. Ideally, in this representation
equivalence classes of directed paths would correspond to filtrations along which

persistence modules are equivalent.

Author Contributions. The articles presented in Chapter 3 are the product
of one of the working groups at the Women in Topology (WIT) workshop at MSRI
in November 2017. Since then the group has been regularly meeting online, and
all the results were developed throughout regular discussion with the co-authors.

The author of this thesis has contributed in all the aspect of the papers from the
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theoretical results to the writing of the manuscripts.
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CHAPTER 2

Articles in Topological Signal

Processing

2.1 Morse Theoretic Signal Compression and

Reconstruction on Chain Complexes

(joint work with Celia Hacker and Kelly Maggs)
Submitted to the Journal of Applied and Computational Topology

Abstract

At the intersection of Topological Data Analysis (TDA) and machine learning,
the field of cellular signal processing has advanced rapidly in recent years. In this
context, each signal on the cells of a complex is processed using the combinatorial
Laplacian and the resulting Hodge decomposition. Meanwhile, discrete Morse
theory has been widely used to speed up computations by reducing the size of

complexes while preserving their global topological properties.

In this paper, we provide an approach to signal compression and reconstruc-
tion on chain complexes that leverages the tools of algebraic discrete Morse the-
ory. The main goal is to reduce and reconstruct a based chain complex together
with a set of signals on its cells via deformation retracts, preserving as much as

possible the global topological structure of both the complex and the signals.

We first prove that any deformation retract of real degree-wise finite-dimensional
based chain complexes is equivalent to a Morse matching. We will then study
how the signal changes under particular types of Morse matching, showing its
reconstruction error is trivial on specific components of the Hodge decomposi-
tion. Furthermore, we provide an algorithm to compute Morse matchings with

minimal reconstruction error.
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1 Introduction

The analysis of signals supported on topological objects such as graphs or sim-
plicial complexes is a fast-growing field combining techniques from topological
data analysis, machine learning and signal processing [2,32,33]. The emerg-
ing field of simplicial and cellular signal processing falls within this paradigm
[1,34,35], and here the combinatorial Laplacian A,, plays a pivotal role. In this
context, a signal takes the form of a real-valued chain (or cochain) on a chain
complex (C,0) endowed with a degree-wise inner product. In particular, the
eigenvectors of A, called the Hodge basis, serve as a ‘topological’ Fourier basis
to transform a signal into a topologically meaningful coordinate system [10, 35].
Additionally, the combinatorial Laplacian gives rise to the combinatorial Hodge

decomposition [11]:
C,=Imd,11 PKerA, & Im 8];,

the components of which each have their own topological interpretation [1] and
respect the eigendecomposition of A,,.

The goal of the paper is to investigate signal compression and reconstruction
over cell complexes by combining tools of Hodge theory and discrete Morse
theory. We take an entirely algebraic approach to this problem, working at
the level of degree-wise finite-dimensional based chain complexes endowed with
inner products. The classical example is the chain complex of a cell complex
equipped with its canonical cellular basis, but more general constructions such
as cellular sheaves fit into this framework as well. This algebraic perspective not
only gives us greater flexibility, but also helps to illuminate connections between
Hodge theory and discrete Morse theory that occur only at the level of chain
complexes.

Our approach to compressing and reconstructing signals over complexes in-
volves deformation retracts of based chain complexes, which have the advantage
of reducing the size of complexes while preserving their homology. A deformation

retract of a chain complex C onto D consists of a pair of chain maps (¥, ®)
v
D<= C Dn
®

such that ¥® = Idp and a chain homotopy i : C — C between ®W¥ and Id¢. In
this context, the map W is used to compress the signal s onto the reduced com-
plex D, and ® serves to reconstruct it back in C. Thus, for every s € C one can
compute the difference ®Ws — s, called the topological reconstruction error, to

understand and evaluate how compression and reconstruction changes the signal.



Among the many topological methods to reduce the size of complexes [36,40],
discrete Morse theory [12, 13] provides the perfect tool to efficiently generate
such deformation retracts of chain complexes. This technique has already been
used with great success in the compression of 3D images [40], persistent homol-
ogy [29] and cellular sheaves [8]. In this paper we utilise Skoldberg’s algebraic
version of discrete Morse theory [37,38]. It takes as input a based chain complex
C and, by reducing its based structure with respect to a Morse matching M,
returns a smaller, chain-equivalent complex C™. The first result presented in
this article connects the Hodge decomposition of a complex with discrete Morse
theory by defining a natural pairing in the Hodge basis. In particular, we show
that any deformation retract (¥, ®,h) of degree-wise finite-dimensional, based
chain complexes of real inner product spaces can be obtained from a Morse
matching over the Hodge basis of a certain sub-complex. This process, called
the Morsification of (¥, ®,h), is described in Theorem 3.7. In the second part
of the paper, we study how the topological reconstruction error associated to a
deformation retract (¥, @, h) is distributed amongst the three components of the
Hodge decomposition. We define a class of deformation retracts (¥, ®, h), called
(n,n—1)-free, for which the topological reconstruction error has trivial (co)cycle
reconstruction. Specifically, they are characterised by the following properties
(Theorem 4.5).

1. (Cocycle Reconstruction) A signal s € C,, and its reconstruction ®Us

encode the same cocycle information:
ProjKerBl+1(q)\IjS —s) =0 for all s € C,.

2. (Cycle Reconstruction) A signal s € C,,_; and the adjoint of the recon-

struction UdTs have the same cycle information:
ProjKeran_l(\Iﬁ(I)TS - 5) =0 forall se C,_1.

Moreover, the Morsification concept defined above simplifies many of the proofs
and allows them to be extended into a more general framework (Corollary 4.6).

Finally, we study how the topological reconstruction error of (n,n — 1)-free
deformation retracts can be minimized while maintaining (co)cycle reconstruc-
tion. We develop an iterative algorithm to find the retract (¥, ®) that minimizes
the norm of the topological reconstruction error for a given signal s € C. Our
algorithm is inspired by the reduction pair algorithms in [8,25,29] and, like
these algorithms, computes a single Morse matching at each step with the ad-

ditional requirement of minimizing the norm. We show that its computational



complexity is linear when the complex is sparse, and discuss bounds on how well
the iterative process approximates the optimal deformation retract. Finally, we
show computationally that iterating single optimal collapses leads to topological
reconstruction loss that is significantly lower than that arising from performing
sequences of random collapses.

The paper is structured as follows. In Section 2, we present the necessary
background in algebraic topology, discrete Hodge theory, and algebraic discrete
Morse theory, giving the definitions and main results that will be used throughout
the paper. Section 3 introduces the notion of Hodge matching, which allows us
to prove that every deformation retract of a degree-wise finite-dimensional based
chain complex C of real inner product spaces is equivalent to a Morse retraction
(see Morsification Theorem 3.7). In Section 4 we investigate the interaction
between deformation retracts and Hodge theory. The main results, Theorem
4.5 and Corollary 4.6, utilise the Morsification theorem to prove that (n,n —1)-
free (sequential) Morse matchings preserve (co)cycles. Section 4.3 presents an
additional result that explains how the reconstruction ®W¥s can be understood as
a sparsification of the signal s (see Lemma 4.10). Finally, Section 5 is dedicated
to presenting algorithms to minimize the topological reconstruction error in case

of iterative single pairings (see Algorithms 1 and 2).

Related Work. Many articles incorporate topology into the loss or recon-
struction error function [5,14,26,30], however, these deal almost exclusive with
point cloud data. At the same time discrete Morse theory has been used in
conjunction with machine learning in [22] for image processing, but not in the
context of reconstruction error optimisation.

The notion of taking duals (over Z) of discrete Morse theoretic constructions
is featured in [13]. There, the dual flow is over Z, whereas we work with adjoint
flow over R, for which the orthogonality considerations are somewhat different,
as discussed in Appendix A.2.

On the computational side, the articles [8,24,25,29] involve algorithms to
reduce chain complexes over arbitrary PIDs, including those of cellular sheaves
but do not investigate the connection with the combinatorial Laplacian (or sheaf
Laplacian). Our algorithms are based on the coreduction algorithms of [24,25],
with the additional requirement of a topological loss minimization.

To the best of our knowledge, the only other contemporary work that ex-
amines the link between the combinatorial Hodge decomposition and discrete
Morse theory is [7], linking the coefficients of the characteristic equation of A,

to the n-dimensional paths in an acyclic partial matching.



2 Background

In this section, for the sake of completeness, we first recall some basic notions
in algebraic topology. We refer the reader to [18] for a more detailed exposition.
Then we present the main concepts of algebraic discrete Morse theory and finally,

we discuss the foundations of discrete Hodge theory.

Algebraic Discrete Morse Theory. For two chain complexes (C,d) and
(D, ), a pair of chain maps ¥ : C — D and ® : D — C are chain equivalances
if®PoV¥:C - Cand Vod : D — D are chain homotopic to the identities
on C and D, respectively. Note that this implies that the maps induced on the
homology modules by ® and ¥ are isomorphisms. The chain equivalences ¥ and
® form a deformation retract of the chain complexes C and D if ¥ o @ is the
identity map on D. Deformation retracts will be often depicted as the following

diagram.
W
D == C Dn
@

With a slight abuse of notation, we denote such deformation retract by the pair
(U, @) instead of (¥, P, h). Throughout the paper we will be working with the
following notion of based chain complexes, as defined in [37], which in this context

are chain complexes with a graded structure.

Definition 2.1. Let R be a commutative ring. A based chain complex of R-
modules is a pair (C,I), where C is a chain complex of R-modules and I =
{I}nen is a set of mutually disjoint sets such that for all n and all « € I,, there
exist C, C C,, such that C,, = C,.

aEIn

Similarly, a based cochain complex is a cochain complex with an indexing set
and graded decomposition as above. The components of the boundary operator
Op are denoted dg : Co — Cp for all o € I, and B € I,,_1. We will refer to
the elements of I,, as the n-cells of (C,I), and if 0g, # 0, we say that f§ is a
face of a. If C is endowed with a degree-wise inner product, we say that I is an
orthogonal base if C, L Cg for all a # 5 € 1.

Remark 2.2. In this paper, working with combinatorial Hodge theory means
that, if not specified otherwise, we restrict our study to degree-wise finite-
dimensional chain complexes over R with an inner product on each of the chain
module C,.! Moreover, we will refer to degree-wise finite-dimensional based

chain complexes as finite-type based chain complexes.

!We leave the original definition here to emphasise that algebraic discrete Morse theory

works in more generality.



The following examples motivate such a choice of terminology for based chain

complexes.

Example 2.3. In the special case where (C,I) is a finite-type based chain
complex over R and Cp, = R for all o € I, we can think of I as a choice of basis,
and each Jz, € Hom(R,R) = R as the (5, a)-entry in the boundary matrix

multiplying on the left with respect to such a basis.

Example 2.4 (CW complexes). The chain complex associated to a finite CW
complex with a basis given by its cells is an example of a based chain complex
(see [18] for a precise definition of CW complex). For two cells 0,7 in a CW
complex X, denote the degree of the attaching map of o to 7 by [0 : 7] and write
o > 7 whenever they are incident?. For two incident cells, Or,» is multiplication

by [0 : 7].

Example 2.5 (Cellular Sheaves). Here we present the main definitions for cel-
lular sheaves, following the more detailed exposition of sheaf Laplacians found
in [17]. A cellular sheaf of finite dimensional Hilbert spaces over a regular® CW
complex X consists of an assignment of a vector space F (o) to each cell o € X
and a linear map Frq, : F(7) — F(0) to each pair of incident cells o > 7. This
defines a cochain complex,with
C.,= P F(r),
TEX,

where X, denotes the set of n-cells of X', and coboundary maps 9, : C, — C,41
defined component-wise by 0y = [0 : 7| Frap : Cr = Co.

Using the inner product on C,, induced by the inner product on each Hilbert
space F (o), one can define a boundary map 9, : C,41 — C, as the adjoint
of the coboundary map d,. This chain complex is an example of a based chain
complex, where the n-cells of the base correspond the n-cells of the underlying

indexing complex.

Discrete Morse theory was originally introduced by Forman in [12] as a com-
binatorial version of classical Morse theory. Here we present its fundamental

ideas in a purely algebraic setting, following the exposition in [37].

Definition 2.6. Let (C,I) be a finite-type based chain complex with base I.
We denote by G(C,I) the graph of the complez, which is the directed graph
consisting of vertices I and edges o — 3 whenever 0g ,, is non-zero. When clear
from the context we will denote G(C, I) by G(C). For a subset of edges E of
G(C), denote by G(C)¥ the graph G(C) with the edges of E reversed.

2Here, incident means that the closure & of o contains 7.
3Regular here indicates that the attaching maps are homeomorphisms.



Using these notions we can define a Morse matching as follows.

Definition 2.7. An (algebraic) Morse matching M on a based complex (C,I)
is a selection of edges o —  in G(C) such that

1. each vertex in G(C) is adjacent to at most one edge in M;
2. for each edge @ — 3 in M, the map 93, is an isomorphism;

3. the relation on each I,, given by a >  whenever there exists a directed

path from a to 3 in G(C)M is a partial order.

For context, the third condition corresponds to acyclicity in the classical
Morse matching definition, where directed paths akin to gradient flow-lines —
which are non-periodic — in the smooth Morse theory setting [28].

When there is an edge a — 8 in M, we say that o and [ are paired in M,
and refer to them as a (dima,dima — 1)-pairing. We use M to denote the
elements of I that are not paired by M, and refer to them as critical cells of
the pairing. For a directed path v = «, 071, ...,0%, 3 in the graph G(C, )™ the
index Z(7y) of 7y is then defined as

I(f}/) =€, g”an 0...0 6182.1270.1 o 608;2701 : Ca — Cﬁ
where ¢, = —1 if 0; — 0441 is an element of M, and 1 otherwise. For any

a, 8 € I, we define the summed index I'y g to be

Fga = Z Z(y) : Co — Cp,
v:a—B
the sum over all possible paths from « to 8. In the case that there are no paths
from o — B then I'g , = 0.

The theorem below is the main theorem of algebraic Morse theory. While
this theorem was originally proved in [38], here we state it in the form presented
in [37] where it is proved as a corollary of the Homological Perturbation Lemma
([37], Theorem 1, [4,15]). This proof provides an explicit description of the chain
homotopy h : C — C that witnesses the fact that the algebraic Morse reduction

is a homotopy equivalence.

Theorem 2.8 (Skoldberg, [37]). Let (C,I) be a based chain complex indexed by
I, and M o Morse matching. For every n > 0 let

M
cl'= P C
acl,NMO

The diagram



N
CM <= C Dn
P
where for o« € MO N1, and x € C,,

dou(@)= Y Tpal) ®(x) =) Tpale)

BeMONI, 1 Bely,

and for a € I, and x € Cy,

V()= Y Tgale) ha) = ) Tgal2)

BeEMONI,_1 BEIn+1
is a deformation retract* of chain complexes.

We refer to the finite-type based chain complex (CM, dour, I N MY) as the
Morse chain complex. Moreover, we call this deformation retract of C into CM

the Morse retraction induced by M.

Example 2.9. Given a based chain complex (C, I') and a single (n+1, n)-pairing
M = (o — (), Lemma 2.8 can be used to get a simple closed form of the updated
complex (CM ,Ocm) as well as the chain equivalences. We write them explicitly

here, and will refer to them throughout the paper.

e For every 7,0 € MP, the Morse boundary operator is

M —
0S, = 0rg — 0r.a05 08,0

T,0
e The map V¥ is the identity except at components C,, and Cg, where it is

M _ -1 M _
Ul le, = D —Oradis Uitile, =0
7€l \o

e The map ® is the identity except at components C, for each n € M NI,
where it is

Ol c, ldc, - a_,iéaﬁm‘

Note that these equations are identical to those appearing in [25,29] in the case

that each component C\, is of dimension 1.

When (C, I) is a finite-type based chain complex of real inner product spaces,
the adjoints of the maps in Theorem 2.8 play an important role in later sections.
Their discrete Morse theoretic interpretation in terms of flow, however, hinges
on the orthogonality of the base of C (see Appendix A.2). We will require the

following basic result of linear algebra regarding adjoints throughout the paper.

“In fact the result is stronger. Specifically the maps form a strong deformation retract.
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Figure 1: The chain maps ¥ and ® operating on a signal s € Cj.

Lemma 2.10. Let V be an finite dimensional inner product space and W C'V
be a subspace. The adjoint of the inclusion map i : W — V is the orthogonal
projection Projy, = it onto W.

Example 2.11. Let (C,I) be the canonical based chain complex associated to
the cell complex in Figure 1, (left). Following the standard convention of discrete
Morse theory, we visually depict a pairing @ — § by an arrow running from the
cell 3 to the cell a. We consider the single (2, 1)-pairing M = («, 3), depicted by
the black arrow. Figure 1 illustrates how the maps ¥™ and &, made explicit

Example 2.9, operate on s € Cj.

Remark 2.12. Motivated by the emerging field of cellular signal processing, we

refer to elements s € C,, as signals ([1,35]).

In the next definition we introduce the concept of sequential Morse matching,
an iterative sequence of Morse matchings. This type of matching, unlike a Morse
matching, has a low computational cost to reduce the chain complex to a minimal

number of critical cells. We discuss this in detail in Section 5.

Definition 2.13. A sequential Morse matching M on a based chain complex
(C, 1) is a finite sequence of Morse matchings, My, ..., M) and bases I, ..., I,
such that the following conditions hold.

1. My is a Morse matching on (C, I).
2. M(j1y) is a Morse matching in (CMw, I;) for every j € {1,...,n —1}.
3. CMu is a based complex over I; C I, for every 1 < j <k < n.

We denote by (CM,dc,,) the based chain complex obtained from C by it-
eratively composing the Morse matchings in the sequential Morse matching M,
implying that (C, dcy,) = (CM<n),6C Miny ). Note that in this case, the critical
cells of each individual matching in M form a nested sequence M (01) 2D M, (On).
We denote by M the set of critical cells of the sequential Morse matching M
and define it to be the set of critical cells in the last Morse matching in the

sequence, namely M° = M (On).



Combinatorial Laplacians. For a finite-type based chain complex C over R
with boundary operator 0 and inner products (-, -),, on each C,,, define 8;2 :C, —
C,.+1 as the adjoint of 0, i.e., the map that satisfies (o, 8};7')” = (0p0, T)p—1 for
all 0 € C,, and 7 € C,,_;. The adjoint maps form a cochain complex

8:2 aT 8’(
O, R Cg L

where (01)% = 0 follows from the adjoint relation.

Remark 2.14. If 0, is represented as a matrix in a given basis, and the inner
products with respect to that basis are represented as (o, 7), = oW, m where
each W,, is a positive-definite symmetric matrix, then the matrix form of the
adjoint is given by 9} = (W, 1)0TW,,_;1. Note that in our definition the inner
product matrix W, does not necessarily preserve the orthogonality of the stan-
dard cellular or simplicial basis in case we are working with cell complexes. In
practice, other authors require W,, to be a diagonal matrix to keep the stan-
dard basis orthogonal [21]. In this way the coefficients of W,, can be thought as
weights on the n-cells, see Appendix A.1

Definition 2.15. The combinatorial Laplacian is then defined as the sequence
of operators
(A = 30y + 003181 : Crp — Cp)nz0.

For each n, the two summands can be further delineated into
1. the n-th up-Laplacian Aj{ = 8n+18:[b+1 :C,, — C,, and
2. the n-th down-Laplacian A, = 8,,18” :C, — C,,.

The fundamental results concerning the combinatorial Laplacian were proved by
Eckmann in the 1940s [11].

Theorem 2.16. (Eckmann, [11]) If C is a finite-type based chain complex over
R equipped with an inner product in each degree, then for all n > 0

1. Hy(C) 2 Ker A, and
2. C, admits an orthogonal decomposition
C,=Imd,11 ®KerA, @Imﬁl. (1)
The decomposition in the second point, called the combinatorial Hodge de-
composition, is the finite-dimensional analogue of the Hodge decomposition for

smooth differential forms. Two additional orthogonal decompositions associated

with adjoints that we will use frequently are

C,, = Ker OILJFI @ ImO,11 = Ker 9, ® Im 87‘;. (2)



Singular value decomposition. Let V,W be real finite-dimensional inner-
product spaces. Let f :V — W be a linear map and fT : W — V its adjoint.
The Spectral Theorem states that fTf and ff! have the same set of real eigen-
values A. Moreover, the singular value decomposition guarantees that there exist
orthonormal bases R(f) and L(f) of V and W formed by eigenvectors of fTf
and ffT such that for each non-zero X\ € A there exists a unique v € R(f) and
a unique w € L(f) such that

f(v) = Vaw.
We denote by L£4(f) and R4 (f) the subsets of L£(f) and R(f) respec-

tively corresponding to non-zero eigenvalues. Consider now f = 9, : C, —
C,_1,n > 0, the boundary operators associated to a based chain complex. Note
that £4(0n41) and R4 (0,), the sets of eigenvectors with positive eigenvalues
of Af = n+18jl 41 and AL = 828,1, form orthonormal bases for Im 0,41 and
Im 8}, respectively (by Equation (2)). In the next section we will see how these
eigenvectors together with the Hodge decomposition will allow us to define a

canonical Morse matching.

3 Morsification of Deformation Retracts

The aim of this section is to prove that every deformation retract of a finite-
type based chain complex C over R equipped with degree-wise inner products
is equivalent to a Morse retraction, with a canonical choice of basis. We first
introduce the notion of the Hodge matching on C, a Morse matching defined
over the eigenbasis of the combinatorial up and down Laplacians A} and A .
We can see the matching obtained by Hodge decomposition and the eigenvectors

of A and A, as a canonical Morse matching.

3.1 Hodge Matchings

The following concept marries the discrete Morse theoretic notion of pairing to
the pairing inherent to the eigendecomposition of A and A, which is intrinsi-

cally connected to the Hodge decomposition of a finite real chain complex.

Definition 3.1 (Hodge basis). Let C be a finite-type based chain complex over
R. A Hodge basis of C is the basis given by I* = {I2},.en, where

I3} = L4(On1) | J R (0) | B(Ker An),

for some choice of bases L4 (0p+1), R+(0y) and B(Ker A,,).
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Observe that in the definition above each set in I forms a basis for one of
the components in the Hodge decomposition (see Equation 1). Our discussion

on the singular value decomposition ensures that Hodge bases always exist.

Definition 3.2 (Hodge matching). Let C be a finite-type based chain complex
of real inner product spaces, and let I be a Hodge basis. The Hodge matching
on (C,I%?) is

M2 = J{v € Ry(8) = w € L4(8,) | div = ow, o # 0}

(]
Lemma 3.3. For a finite-type based chain complex (C,I?) of real inner product
spaces and I® be a Hodge basis. The Hodge matching M* on (C,I?) is a Morse

matching and satisfies

1. (M2)Y = Ker A, where A : C — C is the combinatorial Laplacian of C

and
2. 9M* — .

Proof. The description of orthonormal bases £(0,,) and R(0,) described at the
end Section 2 implies that each cell is adjacent to at most one other cell in
Gg(cM . This means there are no nontrivial paths from any n-cell to any other
n-cell for all n in Q(C)MA. Thus, condition (3) in Definition 2.7 is trivially
satisfied, and M% indeed constitutes a Morse matching. By definition,

Im 1 = span L (py1) and Im ) = span R4 (d,),

and all basis elements are paired. The remaining basis elements of C,, are critical,
and constitute (M2)? = Ker A,, for all n. Since there are no non-trivial paths,
M= agrees with the boundary operator 0 of C on Ker A, which is indeed the

Z€ero map.
O

We call the data

A
Ker A % C Dn

pMA
the Hodge retraction of (C,I?). Noting that the maps dM2 YM® are chain
equivalences reproves Eckmann’s result that Ker A is isomorphic to the homology

H(C) of the original complex.

The same proof also encompasses the case of cellular sheaves discussed in [17].
Note that here, a Hodge matching will be over a Hodge base I® rather than the
one specified by the cellular structure of the indexing complex. Nevertheless,

since Ker A does not depend on the choice of base, the result is the same.

11
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Figure 2: Two choices of bases and Morse matchings for the R-valued chain
complex of a simplicial complex. Edges in the Morse matchings are highlighted

in blue and critical cells in red.

Example 3.4. In Figure 2 we depict two different choice of bases — the stan-
dard cellular basis and the Hodge basis — for the celllular chain complex of the
pictured simplicial complex. Two matchings M and M* are visualized through
their corresponding Morse graphs G(C)™ and Q(C)MA. The structure of the
singular value decomposition of 0 and ensuing Hodge matching ‘straightens out’

the connections in the matching graph, as pictured in Figure 2.

3.2 Morsification Theorem

In this section, we say that two deformation retracts
14 o’
D—— C Dn and D' =—= C Dw
(I> (I>/
are equivalent if there exist isomorphisms of chain complexes, f : D — D’ and

g : C — C' such that the diagrams

D«Y¥Y ¢ D% .C

commute. Our goal is to show that any deformation retraction of finite-type
chain complexes of real inner product spaces is isomorphic to a Morse retraction
(Theorem 3.7).

In the special case that C = C’ and ¢ is the identity, the commutativity of

the diagrams above implies that
PV =0fLfU =0V, (3)

Thus, to study the topological reconstruction error of a deformation retract,

it is enough to study that of an equivalent deformation retract of the original

12



complex. Two equivalent deformation retracts over a shared domain C may have

different homotopies, however, they are related by
Oh+hd=1—-0U =1-dV =9n +1'd.

The main theorem of this section relies on the observation that deformation
retracts share a number of characteristics with projection maps in linear algebra
i.e. a linear endomorphism P : V — V of a vector space V satisfying P? = P.
For any projection map, there exists a decomposition V' = Im P & Ker P such

that P can be decomposed as
P=1lipmp+0:ImP P KerP — ImP & Ker P.

The following lemma describes an analogous structure for real chain complexes,

where a deformation retraction plays the role of a projection.
Lemma 3.5. For any deformation retract
D % C Dn
of chain complexes over R,
C=Ker¥ @ Im®. (4)
as chain complexes.
Proof. The deformation retraction condition ¥® = Idp implies that
(®,9,)* =2,7,0,7, =,V,,

i.e., each component ®,V¥, of ®V¥ is a projection operator. Thus there is a

splitting of vector spaces
C, = Ker(®¥),, ® Im (®7),,

for each n. Since @V is a chain map, the decomposition above commutes with

the boundary operator of C, whence
C =Ker®V ¢ Im oV

as chain complexes. Lastly, ¥ is surjective and ® is injective since ¥® = Idp,
implying that Im ®¥ = Im & and Ker ®¥ = Ker V. O

The decomposition defined in Equation 4 has an interesting interpretation
when passing to homology: all of the non-trivial homology of C arises from the
Im ® component of the decomposition. One way to think of this decomposition is
that Ker W is the component of C that is discarded by the deformation retraction,

whereas Im @ is preserved.

13



Lemma 3.6. Under the hypotheses of Lemma 3.5
1. H(C) 2 H(Im ®), and
2. HKer ¥) = 0.

Proof. Since VU is a weak equivalence, H(C) = H(D). Since ¥® = Idp, ® is
injective, so D 2 Im @ is an isomorphism of chain complexes, proving point (1).
Since C = Ker ¥ @ Im ® by Equation 4, it follows that H(Ker ¥) = 0. O

Theorem 3.7 (Morsification). Any deformation retract
v
D — C Dn

of finite-type chain complexes of real inner product spaces is equivalent to a Morse
retraction (PM, ®M) over C .

Notation 3.8. We refer to the pairing M in this theorem as the Morsification

of a deformation retract.

Proof. Define a pairing M = MAUM on C as the union of a Hodge pairing MA
on Ker ¥ (which is given the subspace inner product) and the trivial pairing M
on Im ®. We previously showed that C = Ker ¥ & Im ® and H(C) = H(Im ®),
implying that H(Ker ¥) = 0. Consequently, all the basis elements in Ker ¥ are
paired by the Hodge pairing, and further, the Morse retraction maps

M

H(Ker V) 20 =—— Ker ¥

M

defined by the matching MA are trivial.
On the other hand, since M is the trivial pairing, the entirety of Im @ is

critical in the pairing M. Further, the Morse boundary operator 8]\7[ is the same

as the boundary operator on C, implying C™ = Im ® and that the maps

\I/M
CM2Im® —— Im®

o
are identities. We conclude that ®MIM = i1 & O Mm &, Where i : Img — C
is the inclusion.

Now we show that this is equivalent to the original deformation retract. To

do so, first note that ® : D — Im @ is an isomorphism. We then need to show
that the following diagram

14



o

D—— Im®

C
1\ NA
P
commutes. For any (s, ®(t)) € C = Ker ¥ & Im @, we have

DU (s, (1)) = (PU(s), DUD(t)) = (0, P(t)) = iommma(s, B(t)) = PMIM (s, ®(1))

V

D——Im?®

as required. Finally, to see that

C
P

&l IR

commutes simply note that ®M is the inclusion map. O

Remark 3.9. When the original deformation retract comes from a Morse match-
ing, the subspace Im® = Im ®¥ = Ker(1 — ®V) is the space of flow-invariant
chains used by Forman in his foundational articles [12,13]. The difference here
is that these chains are linear combinations of genuine critical cells, albeit for a

Morse matching in a new base.

It is not difficult to see that the Morsification of a deformation retract is
unique up to a choice of bases in the eigenspaces of AT and A~, and that each
such choice produces equivalent deformation retracts. Combining Theorem 3.7
with Equation 3, we get a simple expression for the reconstruction error of a

deformation retract in terms of the paired cells in its Morsification.

Corollary 3.10. Any deformation retract
T
D *T C Dn
of finite-type chain complexes of real inner product spaces and Morsification M

1— U = Z i O Tay
aeM\ MO

Proof. By Equation 3 and Theorem 3.7, we have
1 =0V =1—41me O Tmd = iKer & © TKer & = Za € I\ Mg 0 mo

which proves the statement, noting that the paired cells in M span Ker ¥. [J
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In the case that the deformation retract arises from a Morse matching on
a based complex, the Morsification construction will most likely alter the base.
However, the number of pairings and critical cells in each dimension are related,

as described in the following proposition.

Notation 3.11. For a sequential Morse matching M on a based chain complex
(C, 1), let M, and M, denote the elements of I,, that are the union of all start
and endpoints respectively of edges in each of the matchings M;),, for all i. This
means that

I, =M, UMM}

Further, let
M= ) dimC,

aeM?y,
where * € {+, —, 0}, and the subscript n refers to the dimension of the cells.
Proposition 3.12. Let M be a sequential Morse matching on a finite-type based
chain complex (C,I) of real inner product spaces and M be its Morsification.

Then
M| = [ M|

for x € {+,—,0}, in each dimension n > 0.

Proof. By Theorem 3.7 we know that CX =~ CM implying that the dimensions

spanned by critical cells
|MY| = dim C¥ = dim C)* = | M)
are equal for all n. This implies that
M| + | M, | = dim C,, — dim CL = | M| + | M, | (5)

where we have used the identity dim C,, = ’MTﬂ + }Mg‘ + ’Mm

Since the chain complex is concentrated in non-negative degrees, cells in
dimension 0 can be paired only with elements in dimension 1, implying that
|M0_‘ = }Ma’ = 0. Combining this with Equation 5 we conclude that ‘M(ﬂ =
|./\/lg ’ The bijection between cells paired up in dimension ¢ with those paired

down in dimension ¢ + 1 then implies that
M| = |Mg| = [Mg| = |M],

and, again using Equation 5, that |M ﬂ = |M ﬂ By inductively performing

this procedure, we prove the result for all n as required. ]
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It is not difficult to see that two equivalent Morse retractions of C must have
the same Morsification. Thus the above proposition then implies that when two
sequential Morse retractions M and M’ of a complex C under two different bases
I and I’ are equivalent, there are equalities between the number of dimensions
paired up ‘ M fl ‘ = ‘ M ;;r and down ‘ M | M, ‘ for all n. Notably, this occurs
independently of the bases I and I'.

n‘_

4 (Co)cycle Preservation and Sparsification

Discrete Morse theory aims to reduce the dimension of a chain complex while pre-
serving its homology. Meanwhile, for combinatorial Hodge theory, understanding
the effect of deformation on the components of the Hodge decomposition is of
equal importance. However, because of the ‘adjointness’ inherent in the Hodge
decomposition, neither chain or cochain maps between two complexes usually
respect the grading of the Hodge decomposition.

Here, we define a different notion of preservation by examining the effect of

applying either ®¥ or ¥TdT to an element s € C,,. For a pair of chain maps

)
D C
D

we define the topological reconstruction error at s € C as ®¥s — s € C. The
goal of this section is to examine the projection of ®¥s — s on the different
components of the Hodge decomposition. In particular, we describe which com-
ponents of the signal are preserved and discarded by ®¥ when the deformation
retract arises from a (n,n—1)-free Morse matching, a special type of (sequential)
Morse matchings described in the next section. Further, we show that for such
matchings the reconstruction ®¥s (or WIdTs) is supported only on the critical
cells, and serves to sparsify the data on the original complex while preserving

the (co)cycle information.

4.1 (n,n — 1)-free Matchings
Definition 4.1. A Morse matching M is said to be (n,n — 1)-free if | M, | = 0.

An equivalent condition is that [M; ;| = 0. Put simply, a Morse matching
is (n,n — 1)-free if no n-cells are paired with (n — 1)-cells. In what follows, the
mantra is that preservation of (co)cycle information in dimension n — 1 (or n)
is equivalent to absence of such pairings. We define an (n,n — 1)-free sequential
Morse matching M = (Myy, ..., M) to be a sequential Morse matching where

all M; are (n,n — 1)-free Morse matchings.
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Figure 3: Two Morse matchings — the left is (1, 0)-free and the right is (2, 1)-free.

Example 4.2. Figure 3 shows a (1,0)-free and a (2,1)-free matching. The
matchings are computed on the cellular chain complex of the depicted cell com-
plex, based with the standard cellular basis. We visually depicted the pairings
in the macthings by black arrows. Note that being (n,n — 1)-free does not nec-
essarily prohibit all n or (n — 1)-cells from appearing in the matching, implying
that (n,n — 1)-free matchings can still lead to dimension reduction of both C,,
and C,,_1.

Example 4.3. If C is finite-type chain complex of real inner product spaces
such that 9, = 0, then the Hodge matching M2 is (n,n — 1)-free for some choice
of Hodge basis I2.

The corollary below, which follows immediately from Proposition 3.12, shows
that the property of being (n,n — 1)-free is not an artifact of our choice of
basis. Namely, if two Morse matchings are equivalent, then either they are both

(n,n — 1)-free or neither is.

Corollary 4.4. A sequential Morse matching M on a based chain complez (C, )
is (n,n — 1)-free if and only if its Morsification M is (n,n — 1)-free.

4.2 (Co)cycle Preservation for (n,n — 1)-free Matchings

The following reconstruction theorem shows that both the topological recon-
struction error of the deformation retract and its adjoint are supported on non-

kernel components of the Hodge decomposition.

Theorem 4.5 (Reconstruction). Suppose that M is a Morse matching on a

finite-type based chain complex (C,I) of real inner product spaces. Let
T
CM <——= C Dn
®
be the deformation retract given by Theorem 2.8. Then

1. for all s € C,,
ProjKeraILH((I)\Ils —5) =0, and
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2. for all s € Cp_q,
ProjKeranil(\IlTCDTs —-5)=0

if and only if M is a (n,n — 1)-free matching.

Proof. We first prove that if M is a (n,n — 1)-free matching, then conditions (1)
and (2) hold. If M,; = (), then there are no paths in G(C)™ from an (n — 1)-cell
to an n-cell. Theorem 2.8 then implies that h,_i(x) = 0 for all @« € I,,_; and

x € Cy, whence
(PV — 1), = Ont1hpn + hp—10n = Ony1hn. (6)
The first claim now follows from the orthogonal decomposition
Cn=Kerd!,, ©Imdy1.

The argument above also shows that h;_l = 0, since the adjoint of the zero
map is the zero map. By taking the adjoint of Equation 6 one dimension lower,
it then follows that

(‘I’T‘I)T — Dn-1=(2¥ — 1)1171 = alﬂhihz + hizﬂajz = alﬂhihz-

The second claim is then a consequence of the orthogonal decomposition C,,_1 =
Kerd,,—1 © Im 8}171.

For the other direction we will prove the contrapositive statement. It is
sufficient to show that if the Morse matching is not (n,n — 1)-free, then there
exists s € C,, such that

ProjKeralH(q)\Ils —s) #0.

The Morse matching M is (n,n — 1)-free if and only if its Morsification M is
(n,n — 1)-free (Corollary 4.4) and, further, 1 — @M¥M = 1 — MIM (Equa-
tion 3). Therefore, it is sufficient to prove the contrapositive statement for the
Morsification.

Since the Morsification is not (n,n — 1)-free, there exists an (n,n — 1)-pair
a — 3 such that Jg, is an isomorphism. Recall that by 3.10, we have that
(@MIM — 1)x = 2 for x € C,. The orthogonal decomposition of C,, implies
that

z = Projge 9,2 + Proj, PIEE

Applying 9,, and using the fact that 9,(x) # 0, we obtain

0 # 0nProjker,® + OnProjy 1+ & = 9, Projy o .
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Since Im 8;2 C Ker (9;2 41, this implies that
: . . Mg M
0 # PTOJKera:LJrléE = Prot]Keral+1 (@MIM — 1)z = Prot]Kera:L+1 (@7 PH — 1)z,

which proves our statement.
O

The utility of the theorem above is that an (n,n—1)-free matching M reduces
the dimension of C,,, while perfectly preserving the n-cocycles of a signal s € C,,
under the reconstruction ®,¥,,. The extent of this reduction depends on the (n+
1,n)-pairs in M. Indeed, the direct sum of the components P, . M C,, of n-cells
in such pairs is isomorphic to the subspace Ker ¥,, discarded by the deformation
retract. One way to see this is using the fact that the Morsification has the same
pair structure as the sequential Morse matching, and the Morsification ®M is
zero on non-critical cells.

If, on the other hand, one is interested in preserving the cycle information of
a signal s € C,,_1, then one can use the adjoint maps ®'UT to perform a similar
procedure. Namely, an (n,n — 1)-free matching M will perfectly preserve the
(n — 1)-cycle part of s under the reconstruction \I/L_ICDL_I. Analogously to the
dual case, the extent of reduction depends on the (n — 1,n — 2)-pairings, where
the subspace @, Mo C,, is isomorphic to the discarded subspace Ker ‘I)Ll-
Using Morsification, we can extend the (co)cycle reconstruction theorem to

(n,n — 1)-free sequential Morse matchings.

Corollary 4.6. Let M be a sequential Morse matching on a based chain complex
(C,I). Then the (co)cycle preservation conditions (1) and (2) of Theorem 4.5
hold if and only if M is (n,n — 1)-free.

Proof. By Corollary 4.4 we know that M is (n,n — 1)-free if and only if its

Morsification M is (n,n — 1)-free. Further, we know that
1— oMyl =1 pMgM

by Equation 3. Then the statement follows by applying Theorem 4.5 to C and
M. O

One may wonder whether there is a proof by induction that follows directly
from Theorem 4.5. The problem with using induction is that each chain complex
in the sequential Morse matching has a different Hodge decomposition, and that
the maps between them do not necessarily respect the grading. So Theorem 4.5
implies the (co)cycle preservation conditions will be satisfied between the i-th

and (i 4 1)-th chain complexes but not necessarily between C and CM.
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In the general case of deformation retracts that do not arise from a Morse

matching, combining Theorem 4.5 and Corollary 4.4 yields the following.

Corollary 4.7. Let (®,V) be a deformation retract of based finite-type chain
complezes (C,I) and (D, I') of real inner product spaces. Then the (co)cycle
preservation conditions (1) and (2) of Theorem 4.5 hold if and only if the Mor-
sification M associated to (®,V) is (n,n — 1)-free.

4.3 Sparsification for (n,n — 1)-free Matchings

In the previous section, we showed how a signal’s projection onto each Hodge
component is related to that of its reconstruction. In addition, one would like to
know how the reconstructed signal sits in the complex with respect to the base
on which the Morse matching is constructed.

In this section we will show that, for a (n,n — 1)-free (sequential) Morse
matching, the image of ®,V,, is supported only on the critical cells M? of I,,.
Intuitively, applying ®,,¥,, can be thought of as a form of sparsification which

preserves one of either cycles or cocycles (Theorem 4.5).

Lemma 4.8. Let M be an (n,n — 1)-free matching of an orthogonally based

finite-type chain complex (C,I) of real inner product spaces. Then
1. ®,:CM - C and

2. ¥l .cM C

are subspace inclusions and, thus, isometries.

Proof. By Theorem 2.8

®,, = Z Z Ts.a-

OCEM,,(% ﬂelﬂ,
A path in G(C)M starting at an n-dimensional critical cell must first step down
a dimension. Since M is (n,n — 1)-free, it cannot return to dimension n. This
shows that the only paths starting at critical cells in dimension n are trivial and

hence

Op(z) = > Tgalr)==

Beln

for all z € C,, v € M).
For point (2), recall that

Upg= Y Y Tap

a€MO_, €L, 1
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When o € M?_,, all non-trivial paths in G(C)™ from 8 € I,,_1 to a must pass
through dimension n. However, this is impossible since M is (n,n — 1)-free,
implying all paths out of critical cells in dimension (n — 1) to cells in dimension

(n —1) are trivial and } 5.,  I'ap = mq. This yields

v, 1= g Mo = ToM.
aeMO

n—1

According to Lemma 2.10, the inclusion i : CM — C is the adjoint of the
orthogonal projection Projoa, and is not necessarily the same as the categorical
projection mom. However, the condition that the base I is orthogonal, implies
that CM is is indeed orthogonal to C/C*, and that \I'Ihl is the inclusion map
i: CM < C as required. ]

Remark 4.9. The condition that the base is orthogonal is also important for
having a discrete Morse theoretic interpretation of the adjoint in terms of back-
wards flow within the Morse graph G(C)™. We explain this perspective in detail
in Appendix A.2.

Given that the composition of a sequence of inclusions of sub-spaces is again
an inclusion, Lemma 4.8 holds equally well for (n,n — 1)-free sequential Morse

matchings.

Corollary 4.10 (Sparsification). Let M be an (n,n — 1)-free sequential Morse
matching of an orthogonally based chain complex (C,I). Then

1.
MM () ¢ @ Cq for all s € C,,
aeMONI,
2.
\I/nMjl@nMjl(s) = @ Cps for all s € Cp_q.
BEMoﬁInfl

Proof. By definition we know that

Uii(s) € @ Co=CY and oMin-1(s) e @ Cp = nM_l.
QEMOQIR 5€Moﬂln_1

The result then follows from Lemma 4.8, which implies that both @nM and ‘I’nM_TI

are compositions of subspace inclusions. O

Example 4.11. In this example we consider the based chain complex C asso-

ciated to the cell complex X in Figure 4-A. We work with the standard basis
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generated by the n-cells and the standard boundary operator d,. The signal
s € Cj is obtained by randomly sampling from [0,1]. We consider the (1,0)-
free matching M in Figure 4-C, where there are two 1-cells are paired with two
2-cells, denoted by the arrows. All the other cells are critical.

In Figure 4-A we show how the signal s is transformed by the maps ® and
UM induced by the (1,0)-free matching M. The absolute value of the recon-
struction error, |s — ®MW¥M| is shown in Figure 5-B. As proved in Theorem 4.5,
we observe in Figure 5-D that the reconstructed signal ®M UM s is perfectly pre-
served on Ker 09 = Ker A} @ Im 81, and all changes in the reconstructed signal
are contained in Imd;. Note that ®M¥Ms is supported only on the critical

1-cells as proved in Lemmas 4.10 and 4.8.

A Transformation of the signal s B Reconstruction error

wM M oM M M M _ M
s _— Ts —_— T s L s—@ ¥ s
o ;

= NP &

C (1,0)-free matching M D Projection of s and ® &M s on the Hodge decomposition

KerA, Imd), Ima,

Figure 4: The life-cycle and reconstruction error of a signal s € C in the standard

basis of a simplicial complex under the maps associated to a Morse matching.

5 Algorithms and Experiments

The goal of this section is to reduce a based complex (C,I) together with a
signal s € C (or set of signals S C C) via a sequential Morse matching while
trying to minimize the norm of the topological reconstruction error.

We propose the following procedure to iterativly reduce a based chain com-
plex (C, I') with signal s via a sequential Morse matching. The method is inspired
by the classical reduction pair algorithm described in [24,25] but differs in the

optimization step in (1).
1. If 9 # 0, select a single pairing a — (3 in (C, d) minimizing ||s — ®Us||.

2. Reduce C to CM and repeat with C = CM and 0 = aoc™.
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Note that this procedure differs as well from that of Nanda et al. which, in the
context of both persistent homology [29] and cellular sheaves [8], requires an
actual Morse matching. The details of the algorithm are provided in Section 5.1
(see Algorithm 1 and Algorithm 2), where we also show that their computational
complexity is linear in the number of (n + 1)-cells. In Section 5.2 we discuss the
behaviour of the norm of the topological reconstruction error when performing
this type of iterated reduction. In Section 5.3 we prove that such an algorithm
converges to a based chain complex with the minimal number of critical cells.

Finally, in Section 5.4 we provide experiments on synthetic data.

Remark 5.1. Since in most of the applications dimC, = 1 for all a € I, we
will work with this assumption throughout the following sections. Thus, without
loss of generality, we will refer to the elements of I,, as a basis of C,, and denote

03,0 = [a : (] (see Example 2.3 for more details).

5.1 Algorithms for Optimal (sequential) Morse Matchings

For a pair of chain maps

14
D C
P

between based chain complex with inner product on each C,, and D,,, and a
signal s € C,, define the topological loss of the maps (®,¥) over s to be the
norm of the topological reconstruction error
Lo(0,®) = (s — ®Ws,5 — PUs) " = ||s — DUs||_ - (7)
For a finite subset S C C,,, the loss is defined to be the sum
Ls(U,®) =) L(T,T)
seES

of the individual losses. The loss of a single collapse can be given a closed form
by using Theorem 2.8, in the case of a deformation retract associated to a Morse
matching.

Specifically, suppose we have a single (n + 1, n)-pairing a — 3. Theorem 2.8
implies that the homotopy h maps S to —ﬁa and is zero elsewhere. For a

signal s € C,,, using the equations developed in Example 2.9, we have

i
[z f]

where sg is the component of s on basis element 3. Similarly, for a signal

LU, @)= ||(1—-2V)s|c, = H@nhnsﬂcn = - Opa1(a) (8)

Cn

s € Cp41 we have a dual topological loss

L@, ") = (1 - wieh)s|r1 = 0], hLs]ln 9)
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If I is an orthogonal basis for C, Theorem A.2 implies that we can write this

loss as

G
“ o B

Note that to write a compact form for Equation (7), in case M is not a

L0, wh) =

Cn+1

single Morse matching, one needs to sum over all possible non-trivial paths in
Theorem 2.8. Therefore finding the matching M minimizing this norm would
be computationally expensive, if not infeasible. On the other hand, it is not
hard to find the single (n + 1, n)-pairing @ — 8 minimizing the topological loss
in Equation (8). Therefore, as a first approach towards finding an approximate
solution of the problem, we begin by studying optimal matchings by restricting

to iterated single pairings.

Remark 5.2. Naturally, one can ask the same questions about finding the op-
timal pairing minimizing the topological loss for ¥T®ts — s. Given the duality
of the problem, we will present algorithms and experiments only for ®¥s — s.
The algorithms and computations for the dual topological loss can be found by

dualizing the chain and boundary maps.

Given a finite-type based chain complex (C,I) of real inner product spaces
and a signal s on the n-cells, our goal is now to find the the (n + 1,n)-pairing
a — [ minimizing the topological loss in Equation (8). Computing the minimum
and its arguments for a single pair boils down to storing for each (n + 1)-cell 7
in the basis the face ¢ where the quantity

|So|
m ||3n+1THn

is minimal, and choosing among all the (n + 1)-cells the one realizing the mini-

mum of L.

Example 5.3. Consider the based chain complex associated to a simplicial
complex X with basis induced by its cells and 0, the standard boundary operator.
Let s be a signal on the n-cells. The minimum of the reconstruction loss L in
Equation (8) is then realized on the n-cell 3, where |sg| is minimum, paired with
any of its cofaces a. Note that the minimum and its argument might not be

unique.

Following the idea above, Algorithm 1 returns a single (n + 1,n)-pairing
a — [ that minimizes the topological loss for a given based chain complex
(C,I) and signal s.
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Algorithm 1 Perform a single optimal pairing

Input A based chain complex C with basis I, a signal on C,,, 9,41, the non-zero n+1-boundary.

Output A a single (n + 1, n)-pairing @ — 8 which minimize the topological loss.

1:

2:

10:

11:
12:
13:

14:
15:
16:

17:

18:

19:
20:

function OPTIMALPAIRING(C, I, signal, On+t1)

for each n + 1-cell 7 in [,,41 do

OptCol[7]=0 i OptCol keeps track of the face which realizes the optimal collapse on

end for

for each n + 1-cell 7 in I,,41 do
ValOptCol[r]=co > ValOptCol keeps track of the value of the optimal collapse on 7
end for

for each n + 1-cell 7 in I,,41 do

for each face £ of 7 in F- do
signal
o1t 5. (),

|[7 : €]
ValOptCol[r]«+—minimum(z, ValOptCol[r])

o + random (arg min (M 1Ons1(T)la = ValOptCol[T])
cer, |[7: €]l "

> o is randomly chosen among the faces of 7 which have minimal reconstruction loss
OptCol[r]«+ o

end for

end for
TotalMin<minimum(ValOptCol) > The value TotalMin is the minimum
reconstruction loss.

a + random(arg min(ValOptCol=TotalMin)) > The n 4+ 1 cell « to collapse is
7€l 41

randomly chosen among the n + 1 cells where the reconstruction loss is minimal.
D <+ 0OptColq] > The n cell 8 to collapse is the face of 7 obtaining minimal
reconstruction loss.
return (o, )

end function
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The computational complexity of Algorithm 1 is O(pc?) + O(p), where p =
dim Cp,41 and ¢ = max,eg,,, |Op417|. The first term follows from the fact that
we need to iterate through all the (n + 1)-cells and their faces, computing the
minimum of lists of size at most ¢. The second summand follows from the fact
that the final step of the algorithm requires computations of the minimum of a
list of size at most c. Since the first summand dominates the second one, the
computational complexity of Algorithm 1 is O(pc?). We assume that in most of
the computations we are dealing with sparse based chain complexes, i. e. based
chain complexes in which the number of n-cells in the boundary of an (n + 1)-
cell is at most a constant ¢ < p. In this case the computational complexity of
Algorithm 1 is O(p).

In practice, one would like to further reduce the size of a based chain com-
plex. In Algorithm 2 we provide a way to perform a sequence of single optimal
collapses. For a based chain complex C and a signal s, the algorithm computes at
each iteration a single optimal pairing (a, ) and it updates (C, ) to (CM,9¢,,)
and the signal s to WM s,

Algorithm 2 Perform k single optimal pairings
Input A based chain complex C with basis I, a signal on Cn, 9p41 the non-zero (n + 1)-

boundary and parameter k£ of the number of single optimal collapses to perform.
OutputA based chain complex CM with basis ™ C I and its boundary Oc,, obtained by
iteratively computing k optimal pairings starting from C.
1: function K-OPTIMALPAIRINGS(C, I, signal, On+1, k)
2: i1
while i < k do
(a, B) <~ OPTIMALUPCOLLAPSE(C, I, signal, Opn41)
(C,0,1) « (C™,dc,,, In)
signal<— U(signal)
14141
8: end while
9: return C, 0

10: end function

In fact, Algorithm 2 consists of the classical reduction pair algorithm pro-
posed in [24,25] with the additional step of the loss minimization. If applied
only to a (n,n — 1)-free sequential Morse matching, Algorithm 2 will converge
to a based chain complex with given dimensions, as we prove in Proposition
5.9. Otherwise, if applied to cells of every size, it allows us to reduce a chain
complex up to a minimal number of critical n-cells, as proved in [25]. We state
again this result in Section 5.3. At the same time, the algorithm constructs a
(n,n—1)-free sequential Morse matching, therefore the original signal is perfectly

reconstructed on part of the Hodge decomposition, as proved in Theorem 4.5.
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Finally, a further justification for the choice of this iterative algorithm, is that
the loss on the original complex is bounded by the sum of the losses in the

iterative step. We further discuss this in the next section.

5.2 Conditional Loss

The computational advantages outlined above are dictated by the fact that Al-
gorithm 2 iteratively searches for optimal pairings. One important detail to
understand is then how the loss function interacts with such iterated reductions.
For a diagram of chain maps

P D - C

E N —
@’ P

and s € C,, define the conditional loss to be

LW, 0 | W, ®) = Ly (¥, ) = ||Us — D' Us|p,.

In practice, we will generate a sequential Morse matching by taking a series of

collapses and optimising the conditional loss at each step.

Lemma 5.4. Let C, D, and E be inner product spaces and suppose we have a
diagram of linear maps
Y’ LY
E s D S C
¢’ ¢

where ¢ is an isometry. Then for all s € C we have

11 = ¢¢'v'y)sllc < (1 = dv)sllc + [I(1 = ¢'¢')ib(s)llp-

Proof. Using the triangle inequality and the fact that ¢ is an isometry, we have

11 = ¢¢'¥'y)sllc = (1 — dvb)s + &(1 — ¢'¥)Y(s)llc
<@ =¢)slle + o1 — ') (s)llo
=11 = ¢¥)sllc + (1 = ¢ )v(s)lp

as required. O

The following corollary justifies the approach of minimizing the conditional
loss at each step. It states that the loss on the original complex will be bounded
by the sum of the conditional losses. Note that the same result and proof also
work for the adjoint case where s € C,,_1, as long as the complex is orthogonally
based.
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Corollary 5.5. Suppose we have a diagram of chain maps
v/ w
E D C
@’ ®

where each step arises from an (n,n — 1)-free Morse matching. Then for all
se C,
Ly(V'V, @P") < L(V, V) + L(V, 2" | T, D)

Proof. In the Sparsification Lemma 4.10, we showed that taking (n,n — 1)-
matchings implied that ®,,®! are isometries. The result then follows from

applying the lemma above. O

5.3 Reduction Pairings and Convergence

The following proposition ensures that the reduction pair algorithm proposed
in [25], which is the foundation of Algorithm 2, converges in a finite (and pre-
determined) number of steps to the homology of C. This advantage of being
able to maximally reduce a based complex is in contrast with the well-studied
NP-hard problem [23] of finding Morse matchings. In this section, we will prove

an analogous result for (n,n — 1)-free matchings.

Theorem 5.6 (Kaczynski et al. [25]). Let (C,I) be a finite-type based chain
complex over R, where dimCy, = 1 for all o € I. The iteration of the following

procedure
1. If 0 # 0, select a single pairing & — ( in (C,0).
2. Reduce C to CM and repeat with C = CM and 0 = d¢,, .

converges to the complex H(C) with 0 = 0 after
1 . .
N = B ;(dlm C,, —dimH,(C))

steps.

To prove a similar result for (n,n —1)-free matchings, we first prove two lem-
mas describing how the dimensions of the summands in the Hodge decomposition

of CM relate to those of C when M is a single pairing.

Lemma 5.7. Let M = (a — ) be an (n + 1,n)-pairing of a based complex
(C,I). Then
ImdM =1ma,
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Proof. Since no (n — 1)-cells are deleted by M, C,,_; = C* . The formulas in
the background section in Example 2.9 show that 9M = &JC%, implying that
Im M + 8,(Cs) = Im d,,. To prove the statement it then suffices to show that
0n(Cp) is contained in Im OM . Using 0,,0n41 = 0 and the fact that Ou,p is an

isomorphism, we then have that

0 = 0 (0n+1(Ca)) = 0n(93,a(Ca) + Z Ora(Ca))
Tel,\B
= 0n(Cp) = —0n( > 0r.a(Ca)) CIma,.
Tel\B

which proves the result. ]

Note that while the images of both 9 and 9, agree, the eigendecomposition
of their correspondent up- and down-Laplacians may not be related in a straight-
forward way. In other words, the combinatorial Laplacian eigenbases for C,,_1
and CM | can be rather different, even though the corresponding summands of

their Hodge decompositions have the same dimensions.

Lemma 5.8. Let M = (o — ) be an (n + 1,n)-pairing of a finite-type based

complex (C, 1) of real inner product spaces. Then

dimImd; —dimCg i=n+1

dimIm (OM)" = dim Im oM = (10)

dim Im 0; else
Proof. The left equality is a basic property of adjoints. For the right equality,
note that (1) C ~ CM implies dim Ker AM = dim Ker A; for all i and (2)Lemma
5.7 implies that dim Im (927" = dim Im on. Together these imply that

dim C,, — dim C}! = dimIm 0,41 — dimIm 92}, = dim Cp.

Equivalently, this says that dim Im 82 41— dimIm (87%1)T = dim Cy, and now all

of the change in dimension from C to CM has been accounted for. O

We can now state the convergence theorem for the (n, n—1)-sequential Morse
matchings over R in Algorithm 2. Along with homology, dim Im 0,, and dim Im o
provide a (strict) upper bound on how many pairings we can make in an (n,n—1)-

free sequential Morse matching.

Proposition 5.9 (Convergence). Let (C,I) be a finite-type based chain complex

over R with inner products. Then Algorithm 2 for (n,n—1)-free Morse matchings
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converges to a based chain complex D such that

H(C)®Imd] i=n
D, 2 {H(C;) ®@Imd;y1 i=n—1
H(C;) else

where 8? =0 for all i # n.

Proof. Given the conditions on the basis assumed at the beginning of the section,
Oq,p is an isomorphism if and only if it is a multiplication by a non-zero element of
R. Hence, 0; = 0 if and only if we are not able to make any more (i, i—1)-pairings,
implying the process must converge to some complex D with 8? = 0 for all i # n.
Since D is weakly equivalent to C, this proves that D; = H;(D) = H;(C) for all
i ¢ {n,n—1}.

By Lemma 5.8, each (n + 1,n)-pairing reduces the dimension of Im 0,41 by
1, and each (n — 1,n — 2)-pairing reduces the dimension of Im 8;271 by 1. One
can iterate the process of either (n + 1,n)-pairing or (n — 1, n — 2)-pairing, until
dimIm 0,41 = 0 or dim Im 8;2_1 = 0 respectively. Thus, the isomorphism in the
Lemma follows from this itarative process and from the Hodge decomposition of

D;. O

5.4 Experiments

In this section we provide examples of how algorithms 1 and 2 can be applied
to compress and reconstruct signals on synthetic complexes. Moreover, we show
computationally that the topological reconstruction loss of a sequence of optimal
pairings given by algorithm 2 is significantly lower than the loss when performing
sequences of random collapses (see Figure 5 and Figure 8). Our main goal is
to provide a proof of concept for the theoretical results and algorithms of this
article rather than an exhaustive selection of experiments. The code for the

experiments can be found in [39].

Example 5.10. In this example we consider the cell complex X in Figure 5.A-
left, constructed as the alpha complex of points sampled uniformly at random
in the cube [0, 1] x [0,1]. We work with the basis given the cells of X and the
standard boundary operator 0. The signal s on the 1-cells is given by the height
function on the 1-cells. The example illustrates a (1,0)-free sequential Morse
matching M obtained by iterating Algorithm 2 for & = 120. Note that the
optimal matchings correspond to 1-cells where the signal is lower (see Figure 5.A-
center). This can be explained by Remark 5.3 and the fact that Equation (8)

favors collapsing cells with lower signal even when X is not a simplicial complex.
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The absolute value of the reconstruction error after the sequential Morse
matching M is shown in Figure 5.B. As expected from Equation (8), the error
is mainly concentrated on the 1-cells that are in the boundaries of the collapsed
2-cells. Further, the map ®M is an inclusion as showed in Lemma 4.10. In panel
C of Figure 5 we show the projection of the signal s and the reconstructed signal
OMYMg on the Hodge decomposition. By Theorem 4.5 the signal is perfectly
reconstructed on Ker 9; = Ker A1 @ Im 8{, and only Im 0y contains non-trivial
reconstruction error. Due to formatting constraints, we show the projection onto

only 30 (randomly chosen) vectors of the Hodge basis in Im 8{ and Im 0s.

A Sequence of optimal pairings and reconstruction of the signal s

s = height function yMg PMPMg
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Figure 5: Optimal (1,0)-free sequential Morse matching (M) obtained by iter-
ating Algorithm 2 for £ = 120 on (2, 1)-pairs. The signal s on the 1-cells is given
by the height function.

In Figure 6 we propose the same example as above with a non-geometric
function on the 1-cells. Specifically, the signal s on the 1-cells is given by sampling
uniform at random in [0, 1] and the (1,0)-free sequential Morse matching M is

obtained by iterating Algorithm 2 until all 2-cells were removed.

To quantify how low the topological reconstruction loss is after performing a
sequential Morse matching with optimal pairings, we compare the reconstruction

loss after a sequence of k optimal matchings with the reconstruction loss after a
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A Sequence of optimal pairings and reconstruction of the signal s
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Figure 6: Optimal (1, 0)-free sequential Morse matching M obtained by iterating
Algorithm 2 until all 2-cells were removed. The signal s on the 1-cells is given

by sampling uniform at random in [0, 1].

sequence of k random matchings.

Example 5.11. In this example we compare the sequence of optimal collapses
presented in Example 5.10 in Figure 5 and in Figure 6 respectively with sequence
of random collapses. In particular, we consider the complex X of Example 5.10
with signal on the 1-cells s given by the height function as in Figure 7 and signal s
given by sampling uniformly at random in [0, 1] as in Figure 6. Instead of finding
a sequence of (2,1)-pairings minimizing the reconstruction loss, at each step of
algorithm 2 we will randomly remove a (2, 1)-pair. We apply this procedure for
k = 120 iterations in case s is the height function of the 1-cells and until all
2-cells are removed when the signal s is sampled uniform at random in [0, 1].
Figure 7.A shows the projection on the Hodge basis of s and ®M UM when
s is the height function and Figure 7.B shows the same result for s sampled
uniform at random. Due to formatting constraints, we show the projection onto
only 30 (randomly chosen) vectors of the Hodge basis in Im BI and Im 0. Note
that, for both types of signal, the projection of the reconstructed signal ®M ¥

and s on Im 3, differ significantly more than the the projection on Imds of
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the reconstructed error and the signal in the case of optimal sequential Morse

matching presented in Example 5.10 (see Figure 5.D and Figure 6.D)

Projection of s and ® UM s on the Hodge basis for random pairings
A s = height function B s = random uniform

2 3

2

1
||.|I|||| I u_d.th i o |,
[ L I ||I |_| I 1l I . ". "II- | . DL L el | I T v = m !
I I | I II | IIlI | | [ Il III I LR | =

KerA, Im(?lr Im, KerA; ImO; 1m0,

Figure 7: Projection of the signal and the reconstructed signal on the Hodge

basis after a sequence of random parings.

The quantitative results shown in the previous examples can be strengthened
by comparing the value of the topological reconstruction loss for random and
optimal sequence of pairings. In the next example we show that, for different
types of both geometric and random signals, the topological reconstruction loss is

significantly lower in sequentially optimal matchings than in random matchings.

Example 5.12. We consider again the same complex X as in Example 5.10.
Figure 8 shows the value of the topological reconstruction loss after a sequence
optimal and random pairings. We took sequences of length k = 1,2,...244,
terminating when all 2-cells were reduced. In panel A we consider a signal on
the 1-cells sampled from a uniform distribution in [0, 1], in panel B the signal is
the height function on the 1-cells, in panel C the signal is sampled from a normal
distribution (mean 0.5 and standard deviation 0.1), and in panel D the signal is
given by the distance of the middle point of the 1-cells from the center of the
cube [0, 1] x [0, 1]. The blue curve is the average over 10 instantiations of optimal
pairings while the green curve is the average over 10 instantiations of random
pairings. The filled opaque bars show the respective mean square errors. Note
that for all type of functions, the loss for the optimal pairings is significantly

lower than the loss of random pairings.

6 Discussion

Contributions. The contributions of this paper are threefold. First we demon-
strated that any deformation retract (®, ¥) of finite-type based chain complexes

over R is equivalent to a deformation retract (®M, TM) associated to a Morse
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Figure 8: Topological reconstruction error for sequences of optimal and random

up-collapses with different lengths.

matching M in a given basis. Second, we proved that the reconstruction error
s — ®Ws, associated to any signal s € C,, and deformation retract (®M, ¥M),
is contained in specific components of the Hodge decomposition if and only if
M is a (n,n — 1)-free (sequential) Morse matching. In the more general case,
we showed that the reconstruction error associated to a deformation retract of
a based chain complex is contained in specific parts of the Hodge decomposition
if and only if its Morsification M is (n,n — 1)-free. Moreover, we proved that
the composition ®M ¥M s can be thought as a sparsification of the signal s in the
(n,n — 1)-free case. Finally, on the computational side, we designed and imple-
mented algorithms that calculate (sequential) matchings that minimize the norm
of topological reconstruction error. Further, we demonstrated computationally
that finding a sequence of optimal matchings with our algorithm performs sig-

nificantly better than randomly collapsing.

Limitations. The type of collapses that preserve cocycles involve chain maps,
and those that preserve cycles involve the adjoints of these maps. This has two
main limitations. The first one is that one can pick only one of the two features
to be encoded at a time. The second limitation is the fact that chain maps do
not necessarily send cocycles in C to cocycles in D, and dually for cochain maps.

The proof of Theorem 4.5 hints at the difficulties of trying to define chain

maps that preserve cocycles and dually cochain maps that preserve cycles. Namely,
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to preserve cocycles with chain maps in dimension n, Morsification and Corollary
3.10 yield some insight, saying that this will occur only when the paired n-cells
of Morsification lie in 82. A sufficient condition for this is that Ker ¥ | Im ®,
in which case GZ)KGN = (Onlgerow)! (See Appendix A.2). This rarely occurs in
the standard CW or sheaf bases.

6.1 Applications and Future Work

Algorithms for optimal collapses. In this paper we minimize the recon-
struction error by considering only single collapses. It would be desirable to
find algorithms either for the optimal (n,n — 1)-free Morse matchings, with no
restriction on the length of the sequence, or for optimal (n,n — 1)-free Morse
matchings of given length k. We speculate that this task is likely to be NP-hard,
given that the simpler task of finding a matching that minimises the number of
critical cells is already known to be NP-hard [23,27]. In this case, it would be
useful to develop algorithms to approximate optimal matchings. These could be
then used to compare how far away the reconstruction error of a sequence of
k optimal pairings (Algorithm 2) is from the reconstruction error of a optimal

collapse of size k.

Applications with inner products. In this paper, we have chosen examples
that are helpful to visually illustrate the key results. However, the theory is built
to accommodate a far larger class of applications. Examples where our theory
may be useful for performing reductions that respect the inner product structure

include the following

e Markov-based heat diffusion. The foundational work of [6] introduces
a graph-theoretic model of heat diffusion on a point cloud, and can be
framed in terms of combinatorial (graph) Laplacians. Here, distance ker-
nel functions induce a weighting function on the nodes and edges of fully
connected graph over the points. This weighting function is equivalent
to specifying an inner product on C where the standard basis vectors are

orthogonal [21].

e Triangulated manifolds. If M is a Riemannian manifold with smooth
triangulation K, then C(K;R) has an inner product structure that con-
verges to the canonical inner product on the de Rham complex Q(M)
under a certain type of subdivision [9]. This inner product on C(K;R)
— and variations thereof — are useful in discrete Exterior calculus and its

applications [19,20].
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The main theorems of this paper will hold in any of the circumstances described
above, and provide a discrete Morse theoretic procedure for signal compression
that is aware of the geometric information contained in the inner product struc-

ture.

Pooling in cell neural networks. Complementary to theoretical ideas, this
research direction may have potential applications in pooling layers in neural
networks for data structured on complexes or sheaves, such as in [3,10,16]. One
could use Algorithm 2 to reduce the complex for a fixed sized k& and then the
map ¢ to send the signal onto the reduced complex. We also envision that in

pooling layers one could learn the (n,n — 1)-free Morse matchings.
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A Adjoints and Discrete Morse Theory

A.1 Matrix Representation of Adjoints and Weights

In this appendix we include a lengthier discussion about inner products and
weight functions. To begin, we state a basic result about the matrix representa-

tion of the adjoint in finite-dimensional inner product spaces.

Proposition A.1. Let V and W be finite-dimensional inner product spaces
where

(v1,v9)y = vlTAvg

and

(w1, we)w = wlTng

for some fixed bases of V. and W, where A, B are positive definite symmetric
matrices. If T : V — W, then the adjoint Tt : W — V of T satisfies

Th= (A HITTBT.

The idea is that inner products are a vehicle to incorporate data with weights
on the simplices into the linear algebraic world of combinatorial Laplacians. In
particular, as mentioned in Remark 2.14, there is a one-to-one correspondence
between inner products where elementary simplicial (co)chains form an orthog-
onal basis and weight matrices on the simplices. In the literature there are two
approaches to associate weights to the simplices.

Firstly, the work of [31] begins by letting 9, : C,(X) — C,_1(X) be the
standard cellular boundary operator on a simplicial complex X', and defines an

inner product structure with respect to a basis given by the simplices via
<U, T>n = UthT,

where where each W, is a diagonal matrix. The diagonal entries of W, can
be thought as weights on the n-cells. Then the coboundary operator 6}; :
Ch-1(X) — C,(X), is given by

ol =wtoTw,

following the proposition above.

The second approach, exemplified by the work of [21], starts instead with the
standard coboundary operator on a simplicial complex X, §,, = 9 : C,,_1(X) —
C,(X). Here the inner product structure on C,,(X") with respect to a basis given

by the simplices is defined instead to be

<Ua T>n = UthT,
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where where each W, is a diagonal matrix, the entries of which can be thought as
weights on the n-cells. In this approach, the boundary operator is then written
as

ol =w. L elw,. (11)

Because we are working with discrete Morse theory, which conventionally is
built for homology, we take the approach of always beginning with a boundary
operator before constructing its adjoint operator. If one starts by defining a

weighted boundary operator
5n = Wn__llanwm
then the adjoint operator induced by the weighted inner product yields

o =W, AWt w, W, = a7

n

In other words, the adjoint of this weighted boundary operator is the standard

coboundary operator, recovering the method of [21].

A.2 The Adjoint of a Morse Retraction

In this section, we explain why the orthogonality condition on the base I of a
based chain complex C is important for establishing a discrete Morse theoretic
interpretation when taking adjoints in Theorem 2.8. Omne can of course take
the adjoint of the maps in this theorem to construct a deformation retract of
the adjoint cochain complex, along with a coboundary operator, cochain weak-
equivalences, and a cochain homotopy between them. However, only in the
special case of an orthogonal base can these maps be decomposed in terms of

adjoint flow backwards along paths in the original matching graph G(C)™.

Adjoint paths and flow. Suppose we have a Morse matching M on any based
finite-type chain complex C over R with inner products. One can always define

a notion of adjoint flow. First, observe that
9pa =00}, =0
and further
8;3 ., isomorphism <« 93, isomorphism.

The opposite digraph GP(C)M (same vertices with edges reversed) of the di-
rected graph G(C)M then has an analogous relationship with the adjoint of the
boundary operator. Namely, there is an edge § — a whenever 8}; ., 18 non-zero,

and a reversed edge 8 — a in G?(C)M whenever a — 3 is in M and 8; o 18 an
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isomorphism. The same cells are unpaired in the adjoint world as the original
one, and thus the critical cells of both are the same.
For a directed path v = a,01,...,04, 3 in the graph G(C)M, the adjoint
index I () of 7 is written as
T'(7) = €0, 0...0adgii, oendly:Cs— Cy

«,00 On—2,0n—1 On,

where k; = —1if 0; — 0441 is an element of M, and 1 otherwise. For any o, 8 € I,
we can interpret this as following the path backwards and taking the adjoint of

each map. The adjoint of the summed index also has a similar structure:

Th.= Y Ii(y): Cs = Ca.

yia—

where the sum runs over all paths v from o — 8 in G(C)M or, equivalently, over
all paths 3 — « in G?(C)M.

Main theorem for adjoint matching. To see what can go wrong, we need
to be careful to distinguish categorical projections — those that simply delete
components of a direct sum — from orthogonal projections that arise from the
inner product structure.

Let f: C = ®,Co — D = ©3Dg be a map of finite-type graded Hilbert
spaces, based by I and J respectively. Each component fg, can be thought of

as the composition of maps
foa:CouincL D Dy (12)

such that we recover the total map f via sums
F=Y foa
a?ﬂ

In a Hilbert space, the the inclusion i, is adjoint to the orthogonal projection
Projg onto C, (Lemma 2.10), which not necessarily the categorical projection

Ta- The categorical projection map 7, agrees with Projo_ if and only if
Co L Cy (13)

for all o € I\ . If this equation holds for both « € I and 8 € J, then the

adjoint of the component map

(f32)7:Ds % D15 D D,
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agrees with the component maps of the adjoint

_ o
(fNap:Ds 2 D L5 DI D,

If Equation 13 holds for all @« € I and B € J, then

fT = @(f,@,a)T'

a?/B

In other words, the adjoint commutes with the direct sum.

The reasoning above underpins why orthogonal components lead to a natural
interpretation of the adjoint maps of 2.8 in terms of the adjoint flow. If this is the
case, we can take the adjoint of 2.8 everywhere to prove the following important

result.

Theorem A.2 (Skoldberg, [37]). Let C be a finite-dimensional chain complex

indexed by an orthogonal base I, M a Morse matching, and

c)'= P Ca

acl,NMO

The diagram

ot
M
C T> C Dnt

is a deformation retract of cochain complexes, where for x € Cg with 8 € I,
o Ohu)n(@) = Xacronr, Thale)

© W) = Cocr, Thal®)

o W) = Cacronr, Tha(@)

o Mh(#) = Yaer,, Thal@)

In most circumstances — weighted Laplacians, cellular sheaves, etc. — there
is indeed an orthogonal basis. However, in the Morsification Lemma 3.7, we

perform a reduction on the left component of
Ker U @ Im &

which, in general, is not orthogonal to Im ®. One needs to be careful in such

situations not to utilise the adjoint flow decompositions given in Theorem A.2.
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Abstract

We present simplicial neural networks (SNNs), a generalization of graph neu-
ral networks to data that live on a class of topological spaces called simplicial com-
plexes. These are natural multi-dimensional extensions of graphs that encode not
only pairwise relationships but also higher-order interactions between vertices—
allowing us to consider richer data, including vector fields and n-fold collaboration
networks. We define an appropriate notion of convolution that we leverage to con-
struct the desired convolutional neural networks. We test the SNNs on the task of
imputing missing data on coauthorship complexes. Code and data are available

at https://github.com/stefaniaebli/simplicial_neural_networks.


https://github.com/stefaniaebli/simplicial_neural_networks

1 Introduction

The key to convolutional neural networks (CNNs) lies in the way they employ
convolution as a local and shift-invariant operation on Euclidean spaces, e.g. R
for audio or R? for images. Recently, the concept of CNNs has been extended
to more general spaces to exploit different structures that may underlie the
data: This includes spherical convolutions for rotationally invariant data [1, 2,
3], more general convolutions on homogeneous spaces [4, 5, 6], or convolutions
on graphs |7, §].

Graph neural networks (GNNs) have proven to be an effective tool that
can take into account irregular graphs to better learn interactions in the
data [9, 10]. Although graphs are useful in describing complex systems of
irregular relations in a variety of settings, they are intrinsically limited to
modeling pairwise relationships. The advance of topological methods in
machine learning [11, 12, 13|, and the earlier establishment of topological data
analysis (TDA) |14, 15, 16, 17| as a field in its own right, have confirmed the
usefulness of viewing data as topological spaces in general, or in particular as
simplicial complexes. The latter can be thought of as a higher-dimensional
analog of graphs [18, 19]. We here take the view that structure is encoded
in simplicial complexes, and that these represent n-fold interactions. In this
setting, we present simplicial neural networks (SNNs), a neural network
framework that take into account locality of data living over a simplicial
complex in the same way a GNN does for graphs or a conventional CNN does
for grids.

Higher-order relational learning methods, of which hypergraph neural
networks [20] and motif-based GNNs [21] are examples, have already proven
useful in some applications, e.g. protein interactions [22]. However the
mathematical theory underneath the notion of convolution in these approaches
does not have clear connections with the global topological structure of the
space in question. This leads us to believe that our method, motivated by
Hodge-de Rham theory, is far better suited for situations where topological
structure is relevant, such as perhaps in the processing of data that exists
naturally as vector fields or data that is sensitive to the space’s global

structure.



2 Proposed method

Simplicial complexes. A simplicial complex is a collection of finite sets
closed under taking subsets. We call a member of a simplicial complex K
a simplex of dimension p if it has cardinality p + 1, and denote the set of
all such p-simplices K,. A p-simplex has p + 1 faces of dimension p — 1,
namely the subsets omitting one element. We denote these [vo, ..., 0;, ..., vp]
when omitting the i’th element. If a simplex o is a face of 7, we say that 7
is a coface of 0. While this definition is entirely combinatorial, there is a
geometric interpretation, and it will make sense to refer to and think of 0-
simplices as vertices, 1-simplices as edges, 2-simplices as triangles, 3-simplices
as tetrahedra, and so forth (see Figure 1, (b)).

Let CP(K) be the set of functions K, — R, with the obvious vector
space structure. These p-cochains will encode our data. Define the linear
coboundary maps 67 : CP(K) — CPTY(K) by

p+1

SP(F) ([0, - vpra]) = D (=1 f ([0, -, Bis - -, Vpsa])-

i=0
Observe that this definition can be thought of in geometric terms: The
support of §P(f) is contained in the set of (p 4+ 1)-simplices that are cofaces

of the p-simplices that make up the support of f.

Papers Authors  Citations

A 160
Paper 1 A, B, C 100 10 b
Paper II A, B 50 & -
Paper III A, D 10 B 100 4
Paper IV G D 4 150 100 104
(a) (b)

AB AC AD BC CD

3 0 1 0 0 AB

0 3 1 0 -1)| ac

1 1 2 0 1| ap

0 0 0 3 -1 BC

o -1 1 -1 2/ o

()

Figure 1: Constructing a simplicial complex from data. (a) Coauthorship data.
(b) Coauthorship complex with corresponding cochains from the data. (c) Degree-1

Laplacian Ly of the coauthorship complex.



Simplicial Laplacians. We are in this paper concerned with finite abstract
simplicial complexes, although our method is applicable to a much broader
setting, e.g. CW-complexes. In analogy with Hodge—de Rham theory [23],
we define the degree-i simplicial Laplacian of a simplicial complex K as the

linear map

Li:C(K)— CY(K)
ﬁi — E;lp + Eldown — 5@* o 51 _’_51'71 061’71*’

where §* is the adjoint of the coboundary with respect to the inner product
(typically the one making the indicator function basis orthonormal). In most
practical applications, the coboundary can be represented as a sparse matrix
B; and the Laplacians can be efficiently computed as L; = B] B; + B;_1B] ;.
The matrices Ly and By are the classic graph Laplacian and incidence matrix.
Note that the Laplacians carry valuable topological information about the
complex: The kernel of the k-Laplacian is isomorphic to the k-(co)homology

of its associated simplicial complex [24, 25]!.

Simplicial convolution. A convolutional layer is of the form 1 o (f *
©w), where x denotes convolution, py is a function with small support
parameterized by learnable weights W, and 1 is some nonlinearity and bias.
This formulation of CNNs lends itself to a spectral interpretation that we
exploit to extend CNNs to a much more general setting.

Following [8] and motivated by the fact that the discrete Fourier transform
of a real-valued function on an n-dimensional cubical grid coincides with its
decomposition into a linear combination of the eigenfunctions of the graph
Laplacian for that grid, we define the Fourier transform of real p-cochains on

a simplicial complex with Laplacians £, as
Fp : CP(K) — RI%|
]:p(c) = (<C, €1>p ) <C7 62>p R <Cv €|Kp‘>p> ’

where the e;’s are the eigencochains of £, ordered by eigenvalues A\ <--- <
Alk,|- The function F, is invertible since £, is diagonalizable; explicitly, if

we write U diag(A)UT for a normalized eigendecomposition, the orthonormal

In other words, the number of zero-eigenvalues of the k-Laplacian corresponds to the

number of k-dimensional holes in the simplicial complex.



matrices U and UT represent J,; L and Fp, respectively. This is the foundation
for Barbarossa’s development of signal processing on simplicial complexes [26].

Recall that on the function classes for which it is defined, the classical
Fourier transform satisfies F(f * g) = F(f)F(g), where the right-hand side
denotes pointwise multiplication. This will be our definition of convolution
in the simplicial setting. Indeed, for cochains ¢, € CP(K) we define their

convolution as the cochain
C*p d = .7-";1 (fp(c)]-"p(c')) .

Within this framework, we are led to define a simplicial convolutional

layer with input p-cochain ¢ and weights W as being of the form
b o (F, Hew) #p c)
for some as of yet unspecified oy € RIE»l To ensure the central property

that a convolutional layer be localizing, we demand that oy be a low-degree

polynomial in A = (A1,..., \g,|), namely

N N
pw = WA = ST W A Mg ),
i=0 =0

for small N. In signal processing parlance, one would say that such a convo-
lutional layer learns filters that are low-degree polynomials in the frequency
domain.

The reason for restricting the filters to be these low-degree polynomials
is best appreciated when writing out the convolutional layer in a basis. Let
L; denote the i’th power of the matrix for £, in, say, the standard basis for
CP(K), and similarly for ¢. Then (ignoring 1),

N N N
Fylew)spe = Y WU diag(A)UTe =Y W, (U diag(A)UT) ¢ = Y W;Lic.
=0 =0 =0

This is important for three reasons, like for traditional CNNs. First, the
convolution can be efficiently implemented by N sparse matrix-vector mul-
tiplications: This reduces the computational complexity from O(|K,|?) to
O(&]Kp|) where € is the density factor. Second, the number of weights to be
learned is reduced from O(]Kp|) to O(1). Third, the operation is N-localizing
in the sense that if two simplices o, 7 are more than N hops apart, then a
degree-N convolutional layer does not cause interaction between ¢(o) and ¢(7)
in its output (see the supplementary material). Those local interactions (in

the spatial domain) can be interpreted as message-passing between simplices.



3 Experimental results

As many real-world datasets contain missing values, missing data imputation
is an important problem in statistics and machine learning [27, 28]. Leveraging
the structure underlying the data, GNNs have recently proved to be a powerful
tool for this task [29]. Extending this view to higher-dimensional structure,
we evaluate the performance of SNNs in imputing missing data over simplicial

complexes.

Data. A coauthorship complez (CC) [19] is a simplicial complex where
a paper with k authors is represented by a (k — 1)-simplex. The added
subsimplices of the (k — 1)-simplex are interpreted as collaborations among
subsets of authors—a natural hierarchical representation that would be missed
by the hypergraph representation of papers as hyperedges between authors.
In general, a simplicial complex representing n-fold interactions (e.g. between
authors) can be constructed as the one-mode projection of a multipartite
graph (e.g. a paper-author bipartite graph). The (k — 1)-cochains are given
by the number of citations attributed to the given collaborations of k£ authors.
See Figure 1 and 4, and the supplementary material for details. We sampled
(see the supplementary material) two coauthorship complexes—CC1 and
CC2, see Table 2 for statistics—from the Semantic Scholar Open Research
Corpus [30], a dataset of over 39 million research papers with authors and

citations.

Method. We evaluated the performance of the SNNs on the task of im-
puting missing citations on the k-cochains (for k = 0,1, 2) of the extracted
coauthorship complexes. As in a typical pipeline for this task [28|, missing
values are artificially introduced by replacing a portion of the values with a
constant. Specifically, given a fixed coauthorship complex, missing data is
introduced at random on the k-cochains at 5 rates: 10%, 20%, 30%, 40%, and
50%. The SNN is given as input the k-cochains on which missing citations
are substituted by the median of known citations (as a reasonable first guess)
and is trained to minimize the L; norm over known citations. We trained
SNNs made of 3 layers with 30 convolutional filters of degree N = 5 with
Leaky ReLu for 1000 iterations with the Adam optimizer and a learning rate
of 1073.



Results. Figure 2 shows the mean accuracy and absolute error distribution
(see the supplementary material for definitions) of the SNN in inputing
missing citations on CC1. Observe that the distribution of the prediction

error accumulates close to zero.

Dimension 0 Dimension 1 Dimension 2
90 - - E
>
@ 80 - - -
3
o 70 - - ]
<€
60 - - =
1 1 1 1 1 1 1 1 1
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
% missing
Dimension 0 Dimension 1 Dimension 2
15 1 100 r 1
150
£ 10
3 50 100
@)
5 50
]
0 0 gl 9
1072 107! 10° 1072 107! 10° 1072 107! 10°
Error

Figure 2: Performance of SNNs. Top: Mean accuracy + standard deviation over 5
samples in imputing missing citations on CC1. Bottom: Absolute error distribution
over 1 sample for 40% missing citations on CC1.

Table 1 shows the performance of two baselines: missing values inferred
as (i) the mean or median of all known values, and (ii) the mean of the (k—1)
and (k + 1) neighboring simplices. SNNs well outperform these baselines.
Comparison with stronger imputation algorithms is left for future work.

To demonstrate that our filters transfer across complexes, we evaluated
how accurately an SNN trained on one coauthorship complex can impute
missing citations on a different complex. We found that when imputing
citations on CC1, a SNN trained on CC2 is almost as good as one trained
on CC1 (compare Figures 2 and 3). We expect this result as coauthorship
complexes share a similar structure, and the same process underlies the

generation of citations across coauthorship complexes.



Dimension 0 Dimension 1 Dimension 2

N 0 W
o O o
1 1 1
1 1 1
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10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
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Figure 3: Performance on CC1 with an SNN trained on CC2.

Method Dimension 0 Dimension 1  Dimension 2
Global Mean 3.30 £ 0.82 5.75+£1.28 2.96 £+ 0.49
Global Median 7.78 £2.70 10.44 £ 1.00 12.50 £ 0.63

Neighbors Mean  11.884+5.29 24.154+1.85 27.38 £1.18

Table 1: Performance of baselines: mean accu-
racy + standard deviation over 5 samples for

30% missing citations on CC1.

4 Conclusion and future work

We introduced a mathematical framework to design neural networks for data
that live on simplicial complexes and provided preliminary results on their
ability to impute missing data. Future work might include: (i) comparing
SNNs with state-of-the-art imputation algorithms, (ii) using SNNs to solve
vector field problems, (iii) generalizing coarsening and pooling to simplicial
complexes, (iv) using boundaries and coboundaries to mix data structured by
relationships of different dimensions, and (v) studying the expressive power
of SNNs.

Unrelated to the simplicial nature of this work, we would like to emphasize
how the spectral language was key to developing and even formulating our
method. On homogeneous spaces, convolutions are defined as inner-products
with filters shifted by the actions of a symmetry group of the space. They
are the most general shift-invariant linear operators. On non-homogeneous
spaces however, the spectral language yields generalized convolutions which
are inner-products with localized filters [31, Sec. 2.4]. Those too are invariant
to any symmetry the space might have. Convolutions exploit the space’s

structure to reduce learning complexity by sharing learnable weights through



shifts and localizations of filters.

S.E. and G.S. were supported by the Swiss National Science Foundation

grant number 200021 172636, and would like to thank K. Hess for valuable

discussions.
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Supplementary material

Simplicial distance and the localizing property of the Laplacian.

Suppose that o and 7 are p-simplices for which (vg,v1, ..., 14) is the shortest

sequence of p-simplices with the property that vy = o, vy = 7, and each v;

shares a face or a coface with v;_1, and a face or a coface with v;1. We say
that d is the simplicial distance between o and 7. Then for all N < d, the

entry of Lév corresponding to o and 7 is 0, and so the filter does not cause

10



interaction between ¢(o) and ¢(7). This is analogous to a size-d ordinary
CNN layer not distributing information between pixels that are more than d
pixels apart. We will refer to N as the degree of the convolutional layer, but

one may well wish to keep in mind the notion of size from traditional CNNs.

Simplicial complexes as the projections of bipartite graphs. Given a
bipartite graph X-Y, the simplicial projection on Y is the simplicial complex
whose (k — 1)-simplices are the sets of k vertices in Y that have at least
one common neighbor in X. Cochains on the simplicial projection are
naturally given by weights on X: Given any (k — 1)-simplex [y1, ..., yx] and
its neighboring vertices {x1,...,2;} C X, one can define a (k — 1)-cochain
as ¢({x1,...,2;}), for any function ¢ : P(X) — R. In our coauthorship
application, ¢ is the sum and the weight of a paper is the number of times it

is cited. See Figure 4.

Ae————eB
\\ T ~ -7 “
Paper I, 100 citations Author A AP i/
Paper 11, 50 citations Author B 100 50
s —————— o
Paper III, 10 citations Author C A 1-cochain B
Paper 1V, 4 citations Author D 150 = 100 + 50
(a) (b)
A 160
10
D
Q
N
100 14
B N
150 100 104

Figure 4: Constructing a simplicial complex and its cochain from a bipartite graph.
(a) Paper-author bipartite graph (same data as in Figure 1). (b) The 1-simplex
[A, B] is included in the coauthorship complex since authors A and B collaborated
on papers I and II. The 1-cochain on [A, B] is given by the sum of their common
papers’ citations. (c¢) Resulting coauthorship complex with cochains.

Sampling papers. From the Semantic Scholar Open Research Corpus [30],
we excluded papers with fewer than 5 citations or more than 10 authors. To

sample a CC, we sampled 80 papers (corresponding to maximal simplices

11



Dimension 0 1 2 3 4 5 6 7 8 9 10
CC1 352 1474 3285 5019 5559 4547 2732 1175 343 61 5
CC2 1126 5059 11840 18822 21472 17896 10847 4673 1357 238 19

Table 2: Number of simplices of the two coauthorship complexes sampled from

Semantic Scholar.

in the CC) by performing a random walk (of length 80, from a randomly
chosen starting paper) on the graph whose vertices represent papers and

edges connect papers sharing at least one author.

Mean accuracy and absolute error. A missing value is considered to be
correctly imputed if the imputed value differs by at most 10% from the true
value. The accuracy is the percentage of missing values that has been correctly
imputed and the absolute error is the magnitude of the difference between
the imputed and true value. For each rate of missing values, we compute the
mean accuracy + standard deviation over 5 samples with randomly damaged

portions.
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2.3 A Notion of Harmonic Clustering

in Simplicial Complexes
(joint work with Gard Spreemann)
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Abstract

We outline a novel clustering scheme for simplicial complexes that produces
clusters of simplices in a way that is sensitive to the homology of the complex.
The method is inspired by, and can be seen as a higher-dimensional version of,
graph spectral clustering. The algorithm involves only sparse eigenproblems, and
is therefore computationally efficient. We believe that it has broad application as
a way to extract features from simplicial complexes that often arise in topological

data analysis.



1 Introduction

An important objective in modern machine learning, and part of many
scientific and data analysis pipelines, is clustering [4]. By clustering, we
generally mean the separation of data into groups, in a way that is somehow
meaningful for the domain-specific relationships that govern the underlying
data and problem in question. However, the demands that the clustering
scheme should satisfy are of course inherently vague.

For data that form a point cloud in Euclidean space, and where one
expects k clusters to exist, one may employ elementary methods such as
k-means clustering [37]. For data in a more abstract “similarity space”,
for which no obviously meaningful Euclidean embedding exists, researchers
invented the schemes [35, 34| that we today refer to as hierarchical clustering.
Alternatively, one can derive a graph structure from some notion of similarity
between the data points. Treating the data points as vertices of a graph
allows one to exploit the popular and highly successful spectral clustering
techniques 41, 30] which developed from the field of spectral graph theory [9].

Although the graph structure provides us with additional information
about the data, graphs are intrinsically limited to modeling pairwise interac-
tions. The success of topological methods in studying data, and the parallel
establishment of topological data analysis (TDA) as a field [13, 42] (see also |6,
7, 12, 15] for modern introductions and surveys), have confirmed the useful-
ness of viewing data through a higher-dimensional analog of graphs [28, 32].
Such a higher-dimensional analog is called a simplicial complex, a mathemat-
ical object whose structure can describe n-fold interactions between points.
Their ability to capture hidden patterns in the data has led to various appli-
cations from biology [16, 33| to material science [21]. Recent work has also
expanded classical graph-centric results — such as Cheeger inequalities [17,
5], isoperimetric inequalities [31] and spectral methods [22] — to simplicial
complexes. This leads naturally towards a novel domain of “spectral TDA”
methods.

In this paper we present the harmonic clustering algorithm, a novel
clustering scheme inspired by the well-known spectral clustering algorithm for
graphs. Our method, like spectral clustering, does not require any parameter
optimization and involves only computing the smallest eigenvalue eigenvectors
of a sparse matrix. The harmonic clustering algorithm is applied directly

to a simplicial complex and it outputs a clustering of the simplices (of a



fixed degree) that is sensitive to the homological structure of the complex,
something that is highly relevant in TDA. Moreover, since simplices can
encode interactions of higher order than just the pairs captured by graphs,
our algorithm allows us to cluster complex community structures rather than
just the entities they comprise.

Our method can be seen as complimentary to the one presented in [5].

1.1 Spectral graph theory

The method we present in this paper does not require many formal results from
spectral graph theory. The notions relevant for our purposes are described
below for the sake of completeness.

In its simplest form, the Laplacian of an undirected and unweighted finite
graph G is taken to be the positive definite matrix L = D — A, where A is the
adjacency matrix of G and D its diagonal degree matrix (i.e. the row/column
sums of A). The normalized Laplacian is then defined as L = D~/2LD~1/2,
For reasons that will become clear later on (see 2.1), we will write Cy(G) for
the free real vector space generated by the vertices of GG, and consider L as
the matrix of a linear map Cy(G) — Co(G) in this basis.

Already in the middle of the 19th century it was clear that the eigenvalue
spectrum of L has a lot to say about G, as is evident from as early as a
historic theorem of Kirchhoff relating the eigenvalues of the Laplacian with the
number of spanning trees in the graph [25]. From the 1950s, graph theorists
and quantum chemists were independently discovering more relationships
between a graph and the eigenspectrum of its Laplacian. However, the
publication of the book [10] may be said to mark the start of spectral graph
theory as a field in its own right. A modern introduction to the field and
references to the results listed below can be found in [9).

The spectrum of L encodes information about the connectivity of the
graph. For instance, the number of connected components of the graph
is equal to the dimension of the kernel of L. Moreover, the eigenvectors
associated to the zero eigenvalues, also called harmonic representatives, take
constant values on connected components. A perhaps more interesting result
is given by the Cheeger constant [8], a measure of how far away a connected
graph is from being disconnected by bounding the smallest non-zero eigenvalue
of L.

Theorem 1 (Cheeger, 1969 [8]; see also e.g. [9]). Let G = (V; E) be a



finite, connected, undirected, unweighted graph. Write cut(G) for the triples
(S,5,08) with S,S CV and 8S C E such that SIS =V and

0S ={(u,w) € E:uc S,we S}

Define the Cheeger constant of G as

h(G) = min 05
(8.5,08)ccut(@) Min(Y2,e 5 deg(u), 32, e 5 deg(w))
Then the first non-zero eigenvalue A1 of the graph’s normalized Laplacian

satisfies

A partition of V as S LU S that attains the Cheeger constant is called a,
Cheeger cut. It is known that finding an exact Cheeger cut is an NP-hard
problem [38]. One of the best known approaches to approximating the Cheeger
cut is the spectral clustering method, which takes the first non-zero eigenvalue
eigenvector of the graph Laplacian as a relaxed real-valued solution of the
original discrete optimization problem [41]. Namely, the smallest non-zero
eigenvector of L, also called the Fiedler vector or the connectivity vector [14],
can be exploited to find the best partition of the graph into two “almost
disconnected” components. The Cheeger cut can be easily generalized to find
k+1 “almost disconnected” components using the k first non-zero eigenvectors

of the graph Laplacian [41].

1.2 Graph spectral clustering

The Fiedler vector being a relaxed solution of the Cheeger cut has im-
plications for clustering the vertices of a graph into “almost disconnected”
components [41, 3|. For the remainder of this section we will assume that
the graph under consideration is connected.

Graph spectral clustering of a graph G = (V, F) with Laplacian L works
in two steps. First, one uses the information encoded in the lowest-eigenvalue
eigenvectors of L to map V into low-dimensional FKuclidean space. One
thereafter uses standard k-means or any applicable Euclidean clustering
technique on the points in the image of this map, before pulling back to G.
Specifically, we will write ey, e, ..., e, for the eigenvectors associated with

the n first non-zero eigenvalues of L. One defines a function, also called a



spectral embedding, ¢ : Co(G) — R™ by

(25(1)) = (<U761> 7<U762> ,...,<U,€n>), (1)

where (e, ®) is the inner product on Cy(G) that makes V' orthonormal. As a
finite Euclidean point cloud, im ¢ is then clustered in R™ by standard k-means
or any suitable clustering algorithms. The clustering obtained is then pulled
back to V. Figure 1 shows an example. Observe that in this case, mapping

into the real line using only the Fiedler vector would suffice (i.e. n =1).

Figure 1: Graph spectral clustering of the nodes of a graph with two well-connected
components weakly interconnected. Clustering using the Fiedler vector produces as clusters

the well-connected components.

As pointed out in [41], spectral clustering is one of the standard approaches
to identify groups of “similar behavior” in empirical data. It is therefore
not surprising that it has been successfully employed in many fields ranging
from computer science and statistics to biology and social science. Moreover,
compared to other approaches, such as Gaussian Mixture Models clustering,
spectral clustering does not require any parameter optimization and can be

solved efficiently by standard linear algebra methods.

2 Harmonic clustering in simplicial complexes

Our method is inspired by spectral clustering in graphs, but applies instead
to a higher-dimensional analog, namely simplicial complexes. Instead of
clustering only vertices, which are the zero-dimensional building blocks of
graphs and simplicial complexes, the method clusters independently building
blocks of any dimension.

This section outlines the prerequisite basic constructions from algebraic
topology before describing our method. A reader interested in more back-

ground on algebraic topology is directed to standard textbooks [18].



Those wishing a quick overview of method can view it in algorithmic form

in figure 3.

2.1 Algebraic topology

A simplicial complez is a collection of finite sets closed under taking subsets.
We refer to a set in a simplicial complex as a simplex of dimension p if it has
cardinality p+ 1. Such a p-simplex has p+ 1 faces of dimension p — 1, namely
the sets omitting one element, which we will denote as (vo,...,0;,...,vp)
when omitting the :’th element. While this definition is entirely combinatorial,
we will soon see that there is a geometric interpretation, and it will make
sense to refer to and think of 0-simplices as wvertices, 1-simplices as edges,
2-simplices as triangles, 3-simplices as tetrahedra, and so forth.

Let Cp(K) be the free real vector space with basis K, the set of p-
simplices in a simplicial complex K. The elements of C,(K) are called
p-chains. These vector spaces come equipped with boundary maps, namely

linear maps defined by

ap : Cp — Cp_l
p

Op((v0, - - 0p)) =D (=) (vo, ..., By .., vp)
i=0
with the convention that C_;(K) = 0 and 0y = 0 for convenience. Figure 2
shows how the boundary maps give a geometric interpretation of simplicial
complexes.
One readily verifies that 0, 0 9,11 = 0, and so Co(K) is a real chain
complex. By the p’th homology vector space of K we will mean the p’'th

homology vector space of this chain complex, namely
H,(K) = Hp(Co(K)) = ker 0p/ im Op41.

The elements of ker 9, are called p-cycles, while those of im d,41 are called
p-boundaries, as can be seen geometrically in Figure 2. The Betti numbers
are the dimensions of the homology vector spaces, and we write §,(K) =
dim Hy(K). Intuitively, the Betti numbers count connected components,
non-bounding loops, non-bounding cavities, and so forth.

We emphasize again that this is homology with real coefficients, not

integer or finite field, as is common in TDA.
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Figure 2: A simplicial complex K with 20 O-simplices, 38 1-simplices (the edges) and 22
2-simplices (the filled triangles), with some highlighted 1-chains. The highlighted simplices
in these represent the edges with non-zero coefficient in each chain (the unfamiliar reader
is invited to fill in possible values for these coefficients). The red 1-chain consists of a
single 1-simplex, and is neither a cycle nor a boundary. The orange 1-chain has trivial
boundary, and is therefore a cycle. It is not a representative of any non-trivial homology
class, for it is the boundary of 2-chain consisting of the three 2-simplices it encloses. The
green and the blue 1-chains are cycles that represent the same homology class (intuitively
the 2-dimensional hole in the middle). Ho(K) is 1-dimensional, K’s single connected

component, while Hy(K) is 1-dimensional due to the central hole.

2.2 Simplicial Laplacians

We are in this paper concerned with finite simplicial complexes, and assume
that they are built in a way that encodes useful information about the
data being studied. We will briefly discuss the case where each simplex
in K comes equipped with extra data — including, but not limited to the
filtration/weighting information that is ubiquitous in TDA — or with a
normalization factor derived from the complex’s structure, in the form of a
function w : K — R4. The latter is analogous to the various normalization
schemes that are often used in graph spectral theory. Our computational
experiments, however, will only consider the case w = 1.

The weights are encoded into the chain complex by endowing each degree
with the inner product that makes all simplices orthogonal, and a simplex

have norm given by the weight, i.e.

(o,0), : Ci(K) x C3j(K) = R

w(o)? ifo=r1

(o, T>z’ = .
0 otherwise.
Further discussions of weighting schemes can be found in [22].
We place no further assumptions on the simplicial complex that we take

as input. In particular, it is not necessary for it to come equipped with some



embedding into Euclidean space, nor do we demand that it triangulates a
Riemannian manifold. Therefore dualities like the Hodge star, which is used
to construct the Hodge-de Rham Laplacian in the smooth setting [26] that
motivates us, are unavailable for our method. The same is true for discrete
versions of the Hodge star, such as that of Hirani [20]. Instead of dualizing
with respect to a Hodge star, to define a discrete version of the Laplacian
for simplicial complexes, we simply take the linear adjoint of the boundary

operator with respect to the inner product, defining 9 : C;_1 — C; by
(Ofo, 1), =(0,0i7);_, Yoe€K;,_1,7€Kj.

In analogy with Hodge-de Rham theory, we then define the degree-i simplicial
Laplacian of a simplicial complex K as the linear operator £; : C;(K) —
C;(K) such that

£i — £;1p + ﬁ?own
[:?p = 8i+1 o (9;-:_1 : CZ(K) — Cz(K)
LIV = 9% 0 9; : C3(K) — Ci(K).
The harmonics are defined as
Hi(K) = ker L;.

Observe that there are p Laplacians for a complex of dimension p. In most
practical applications, the matrices for the Laplacians are very sparse and
can easily be computed as a product of sparse boundary matrices and their
transposes.

The following discrete version of the important Hodge decomposition

theorem is a simple exercise in linear algebra in the current setting.

Theorem 2 (Eckmann, 1944 [11]). The vector spaces of chains decompose

orthogonally as
Ci(K) = Hi(K) @ im 941 & (ker ;)*.
Moreover,
1. Hi(K) = Hiy(K)

2. the harmonics are both cycles and cocycles (i.e. cycles with respect to

9t1)



3. the harmonics are the L?-minimal representatives of their (co)homology
classes, i.e. if h € H;(K) and h ~ z € ker 0; are homologous, then
<h7 h‘)z < <27 Z>z

The first detailed work on the spectral properties of this kind of simplicial
Laplacian was carried out by Horak and Jost [22]. Recently Steenbergen
et al. [36] provided a notion of a higher dimensional Cheeger constant for
simplicial complexes. At the same time, Gundert and Szedlak [17] proved a
lower bound for a modified version of the higher dimensional Cheeger constant
for simplicial complex which was later generalized to weighted complexes by
Braxton et al. Mukherjee and Steenbergen [29] developed an appropriate
notion of random walks on simplicial complexes, and related the asymptotic
properties of these walks to the simplicial Laplacians and harmonics. It is
worth mentioning that, to the best of our knowledge, no connection between
the eigenvectors of the simplicial Laplacian and an optimal cut for simplices
in higher dimensions is known.

Our contribution is a notion of spectral clustering for simplicial complexes

using the harmonics.

2.3 Harmonic clustering

Observe that the ordinary graph Laplacian, as described in section 1.1, is just
the matrix of Lo = £," in the standard basis for Cy(G). The function ¢ in
equation (1) can thus be seen as projecting the O-simplices onto a subspace of
low-but-nonzero-eigenvalue eigenvectors of Ly. The zero part of the spectrum
is not used. Theorem 2 makes the reason clear: harmonics in Ho(G) have
the same coefficient for every vertex in a connected component of G. As
connectivity information is easy to obtain anyway, there is little use in adding
these eigenvectors to the subspace that ¢ projects onto. This is not so for the
higher Laplacians. In fact, our method primarily uses the harmonics, and
only optionally ventures into the non-zero part of the eigenspectrum.

In what follows, K is a fixed simplicial complex arising from data. The
particulars of how K was built from data is outside the scope of this paper,
and is a topic that is well-studied in the field of TDA in general. Our goal is
to obtain a useful clustering of K, for some chosen p. We assume that K is
of low “homological complexity” in degree p, by which we mean that 3,(K)

is small (less than 10, say).



Analogously to ¢ above, we define the harmonic embedding

P K, — R
Yp=Eo pl"Oij(K) o1,

where i : K}, — Cp(K), proj : Cp(K) — Hp(K) is orthogonal projection, and
£ Hp(K) — RA(K) is any vector space isomorphism. In practice, we simply

pick an orthonormal basis hy, ..., hg (k) for H,(K) and let

W(o) = ((o, M), (o ha) s o, hﬁp(K)>p) .

In many situations of practical use, it turns out that many points in
im 1) lie along one-dimensional subspaces of R%(5) The membership of a
point ¥ (o) in such a subspace is what is used to cluster the p-simplex o
(or to leave it unclustered in case it is not judged to be sufficiently close to
lying in one of the subspaces). This amounts to clustering K, by performing
Euclidean subspace clustering of im¢. A variety of Euclidean subspace
clustering methods are available, but are outside the scope of this paper.
Examples include independent component analysis (23], SUBCLU [24], and

(K)—1 (or, more precisely, on ]R]P’BP(K)_I), which

density maximization on SP
itself has a multitude of approaches, including purely TDA-based ones by
means of persistent homology of sublevel sets.

We point out that the choice of the isomorphism & : H,(K) — RA(K) does
not matter on a theoretical level. It may, however, have practical implications
for how easy it is to perform subspace clustering. In experiments we typically
choose £ to be the isomorphism that sends h; to the standard basis vector e;.
Choosing a different orthonormal basis for #,(K) then just amounts to an
element of SO(B,(K)) acting on im .

Figure 3 summarizes our method in algorithmic form.

3 Experimental results

In this section we present experimental results for the harmonic clustering
algorithm on synthetic data. Specifically, we focus on clustering the edges of
various constructed simplicial complexes. The outcomes of our experiments
suggest that the harmonic clustering algorithm provides clusters sensitive
to the homology of the complex. Comparing our results with those of the

traditional spectral clustering algorithm applied to the graph underlying the



Require: Integer p > 0; simplicial complex K with £, = dim(H,(K)) small,
K, ={o1,...,0n}, and inner products (e, ) on Cp(K).
L, < matrix for £,
(h1,...,hg,) < orthonormal basis for ker £, (computed using iterative
methods [19] on L)
fort=1toi=N do
X (<O'Z', hi)y,-- - (04, hﬂp>p)
end for
(a1,...,ax) < subcluster(zy,...,zN)
fort=1toi=kdo
¢ —{oj e K,:j€a}
end for

Ensure: Homologically sensitive clustering c1, ..., ¢ of p-simplices in K.

Figure 3: Our method in algorithmic form. The subroutine subcluster refers to any
Euclidean subspace clustering scheme, such as independent component analysis [23],
SUBCLU [24], or density maximization on §Pp ) -1 (or, more precisely, on ]R]P*BP(K)A).
The latter can be done using methods from TDA, for example by means of persistent
homology of certain sublevel sets. Note that there may be unclustered simplices, i.e. it
may happen that UY_;¢; # K.

simplicial complex reinforces the idea that our algorithm reveals substantially
different patterns in data compared to the classical method.

Below, we consider four simplicial complexes. Three of them are complexes
built from Euclidean point clouds by standard methods from TDA, while
one is a triangulation of a torus. We reiterate that our method works with
abstract simplicial complexes without utilizing any embedding of these into
an ambient space. Euclidean point clouds just happen to be a good and
common source of simplicial complexes in TDA, and allow for visualization
of the obtained clustering in a way that easily relates to the original data.

An important step in preprocessing many kinds of input data in TDA is
constructing a simplicial complex satisfying certain theoretical properties. In
particular, if the input data come from points sampled from a topological
space X C R", one may wish for the homology of the complex to coincide
with the homology of X.

Two constructions for which some such guarantees exist are the alpha
complez [1] and the Vietoris—Rips (VR) complex [40]. Both can be seen as

taking a point cloud and producing a filtered simplicial complex K, i.e. a
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sequence (Ky)icr, with the property that K, C Ky whenever s < ¢. We wish
to work with a single simplicial complex, not a filtration, so we use persistent
homology (see e.g. [15]) to find the filtration scale ¢ for which K; has the
appropriate homology. Of course, since in practice one probably has little
or no knowledge of X itself, one cannot necessarily know the “correct” t to
consider. However, it is often the case in TDA that long-lived homological
features — that is to say, homology classes that remain non-trivial under
the induced maps H,(K;) — H,(K;) for large t — s — express interesting
properties of the underlying space. We therefore choose a K; to consider by
looking for a scale ¢ within the range of a manageable number of long-lived
features and few short-lived ones in the degree under consideration.

In the following experiments, we simplify the setup in the algorithm in
figure 3 by performing the subroutine subcluster in a somewhat ad hoc semi-
manual way. Specifically, all the images of the v’s lie in R? or R3 in these
experiments, so we manually pick out the subspaces V1, ..., Vi in question.
Then, the points in im 1) are orthogonally projected onto each of the subspaces.
A point (o) is determined to lie on subspace V; if projy. (¢ (o) /[[1(o)||) has
norm at least 0.98, while the onto all other subspaces has norm less than
0.02. The simplex ¢ is then said to be in cluster number . If the above is
not true for any of the subspaces, ¢ is considered unclustered.

In many of the experiments that follow, many points in im end up
determined as “unclustered” because they project well onto neither of the 1-
dimensional subspaces, or project too well onto multiple of them, as described
in 2.3. This is not necessarily a problem, as the parts that are clustered
contain a lot of useful information. Moreover, the problem can be reduced
by choosing less ad hoc subspace clustering methods than we are currently
employing.

To ease visualization, we focus on simplicial complexes that naturally live

in R? or R? because they arise from point clouds.

3.1 Wedge of a sphere and two circles

In this experiment, we consider a noisy sampling of X = S? v S! v S! realized
as a central unit sphere with unit circles wedged onto antipodal points. We
sampled 1000 points uniformly randomly from the central sphere, adding
radial uniform noise with amplitude 0.01. The circles were sampled using

100 points each, again with a radial noise of 0.01. This yields a point cloud
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with 1200 points, which is shown in figure 4. The VR complex is certainly a
suboptimal choice of simplicial complex to build on this kind of data, but we
chose it to demonstrate that our method works well also for such an overly
dense complex. The complex, constructed at scale 1/2 and denoted K within
this section, has 35722 1-simplices and 485189 2-simplices, and the Betti
numbers are 5y(K) =1, f1(K) =2, B2(K) =1, as for X itself.

Figure 4: The point sample under consideration in 3.1.

We focus on clustering the 1-simplices of the complex. The image of ¢ in
R? is shown in figure 5. The points are colored according to which of the two
one-dimensional subspaces they are deemed to belong to. The determination
was made by a simple criterion of projecting well enough onto one of the
lines, but not the other. Points that project well onto both or neither are
considered unclustered and shown as red. Figure 6 shows this clustering
pulled back to the complex itself, excluding the unclustered edges. Observe
how the method separates the 1-simplices of the VR complex in a manner
that is sensitive to the two non-bounding cycles that generate homology in

degree 1 (the two circles).
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Figure 5: The image of v for the 1-simplices in the VR complex from the experiment
in 3.1. The dashed lines indicate the subspaces used for clustering. The inset shows a
detailed view near the origin, where one can see a large number of points in gray that are

unclustered due to them projecting too well onto both subspaces.

We also repeated the experiment with one of the circles in X moved to
be attached to the other circle instead of the sphere. This space is obviously

homotopy equivalent to X, but is geometrically very different. figure 7 shows
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Figure 6: The clustering from figure 5 pulled back to the 1-simplices of the VR complex
from 3.1, which is here drawn in R® using the coordinates of the points for visualization

purposes only. The unclustered 1-simplices, 19254 in number, are not drawn.

the result. Observe that the sphere is now captured by its adjacent circle,
and that the unclustered edges tend to be those near where the two circles

intersect.

Figure 7: The result of clustering the rearranged point cloud from 3.1. Again the 1-simplices
of the VR complex are clustered in a way respecting the generators of 1-homology. The
unclustered simplices, 467 in number, are drawn in gray. (That the sphere appears solid is

only a visualization artifact; the 2-simplices are not drawn.)

3.2 Punctured plane

In this experiment we uniformly randomly sample 1000 points from a unit
square in R? with three disks of radius 1/10 cut out. The points are seen as
faint does in figure 8. We construct the alpha complex at parameter 0.1, and
denote it by K in this section. It has Betti numbers So(K) =1, 51(K) =3
and B;>1(K) = 0. There are 2914 1-simplices and 1912 2-simplices. We again
focus on the 1-simplices for clustering. The codomain of 1 is now R3, and
the image is clustered according to three 1-dimensional linear subspaces. The
result is shown in figure 8, and we again observe how the obtained clustering

occurs with respect to the punctures of the square.

3.3 Torus

We next perform clustering of the edges of two different tori.
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Figure 8: The point cloud of the experiment in 3.2 is shown as faint dots. The punctures
can be seen in near (0.5,0.8), (0.4,0.2) and (0.8,0.3), and one observes that the clustered
1-simplices (blue, green, orange, respectively) follow the punctures. The gray 1-simplices

are unclustered. The 2-simplices have not been drawn.

3.3.1 From a point cloud

We uniformly randomly sampled 1500 points from the unit square and map
these under (¢, 0) — ((2 + sin(27p)) cos(276), (2 + sin(27p)) sin(276), cos(2mp))
to produce a point sample of a torus in R?. The points were then given a
uniformly random noise of amplitude 0.01 in both radii. Again a VR complex
K was built, at scale 0.8. It has 35270 1-simplices and 377873 2-simplices,
and has the homology of a torus, i.e. So(K) =1, 51(K) =2, f2(K)=1. VR
was chosen in order for the clustering task to be more complicated than in a
more orderly alpha complex.

Figure 9 shows the image in R? of K; under ¢». The subspaces for
clustering are somewhat harder to make out than before, but they can still
be found. The result of clustering by them can be seen in figure 10. Observe

that the two clusters respect the two independent unfilled loops of the torus.
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Figure 9: The clustering of the 1-simplices from the simplicial complex obtained from the
sampled torus in the experiment in 3.3.1. The unclustered points are shown in gray. They

are 23103 in number.



Figure 10: The clustering in figure 9 pulled back to 1-simplices of the torus from the
experiment in 3.3.1. The unclustered ones are not shown, something which may make the

torus appear broken.

3.3.2 A triangulation of the flat torus

As a smaller, more abstract and noise-free example, we consider a triangulation
of a flat torus. The considered triangulation consists of a simplicial complex
with 9 vertices, 27 1-simplices and 18 2-simplices. The image of its 1-simplices
in R? under v is shown in figure 11. The arrangement into a perfect hexagon
means that there are in fact three subspaces that can be chosen for clustering.
The clusters are shown in figure 12. The arrangement into a hexagon, and
therefore the result of three instead of the expected two clusters, disappear if
one breaks some of the symmetry in the triangulation, for example by having

some of the diagonal edges go the opposite direction.
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Figure 11: The clustering of the 1-simplices from the simplicial complex obtained as a
triangulation of the flat torus from the experiment in 3.3.2. Note that many points overlap.
Three clusters are given by points lying on three different linear subspaces.

3.4 Clustering 2-simplices

We have illustrated our method only on 1-simplices so far for ease of visu-

alization. To point out that it also performs well in other dimensions, we
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Figure 12: A triangulation of the flat torus represented as a rectangle with pairs of opposing

edges identified. The 1-simpilces are clustered into three groups (orange, blue and green).
Those in orange and blue are representatives of the two 1-homology classes of the complex,

whereas the green ones are a linear combination of the others.

sampled 1000 points (each) from two spheres of radius 1 centered at (—1,0,0)
and (1,0,0), each with a radial uniform random noise with amplitude 0.01.
We computed the alpha complex K at parameter 0.3, so as to create a
rather messy region between the spheres. There are 8851 1-simplices and
10478 2-simplices, and Fy(K) = 1, 51(K) = 0 and [2(K) = 2 as expected.
Our clustering method performs as expected, producing clusters of Ky that

correspond to homological features, as is shown in figure 13.

Figure 13: The output of our method when clustering the 2-simplices from the complex
in the experiment in 3.4 are the blue and orange clusters. The 1485 gray simplices are

unclustered.

3.5 Comparison with graph spectral clustering

It is worth comparing clustering obtained from our method with the ones
obtained by clustering the nodes of the graph underlying each simplicial
complex using the graph spectral clustering algorithm. Figure 14 shows the
results of graph spectral clustering on the nodes of the graph underlying
the complex in figure 7. The two first graph Laplacian eigenvectors were
used to map the nodes into R?, and then k-means was used to find two
clusters. Similarly, figure 15 displays three clusters on the nodes of the graph
underlying the complex representing a punctured plane with three holes in

figure 8. The nodes are mapped to R? using the three first graph Laplacian
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eigenvectors, after which k-means was used to find three clusters. In both
cases we see that the clusters do not reflect any obviously meaningful property
of the underlying data, unlike our method, which clusters in a way sensitive

to homology.

Figure 14: Graph spectral clustering of the vertices of the graph underlying the VR complex
of figure 7.

00 02 04 0 0 10
Figure 15: Graph spectral clustering of the vertices of the graph underlying the alpha

complex from figure 8.

4 Conclusions and future work

In this paper we have presented a novel clustering method for simplicial
complexes, one that is sensitive to the homology of the complex. We see the
method as a contribution to an emerging field of spectral TDA |27, 2]. Our
results suggest that the algorithm can be used to extract homological features
for simplices of any degree. FExperiments in various simplicial complexes
demonstrate the ability of the method to accurately detect edges belonging
to different non-bounding cycles. Similar results, not shown in this article for
practical considerations of visualization, have been obtained by clustering
simplices in higher dimensions. The sub-problem of the structure of the linear
subspaces in the image of ¢, and how to accurately cluster based on demand,
require further investigation of both a mathematical and a algorithmic nature.

While our method seems robust to noise in the underlying data, a more

thorough investigation into the output’s dependence on noise, and the output’s
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dependence on the scale at which a point-cloud-derived simplicial complex is
built, is warranted.

Moreover, it has not eluded us that the method as outlined is not restricted
to clustering just simplices. Other finitely generated chain complexes, such
as discrete Morse complexes or cubical complexes, naturally lend themselves
to the same analysis. One may also want to consider if there are theoretical
implications even in the smooth case.

Further development will also include enlarging the target of the projection
in 7 to include non-zero eigenvectors of £, as in graph spectral clustering.
Preliminary results indicate that this yields a further refinement of the
homologically sensitive clusters into “fair” subdivisions.

Finally, further work needs to explore the effects of weighting. Both struc-
tural weighting, i.e. deriving weights from the local connectivity properties of
the complex, as is often done with graph spectral clustering, and weighting
originating from the underlying data itself, as is common in TDA.

A potential future application that we suspect fits our method well
is collaboration networks [32], where n-fold collaborations clearly cannot

accurately be encoded as (g) pairwise ones.
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CHAPTER 3

Articles in Directed Topology

3.1 Towards Directed Collapsability
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Published in Advances in Mathematical Sciences, AWM Series, Springer, 2020.

Abstract

In the directed setting, the spaces of directed paths between fixed initial and ter-
minal points are the defining feature for distinguishing different directed spaces.
The simplest case is when the space of directed paths is homotopy equivalent
to that of a single path; we call this the trivial space of directed paths. Directed
spaces that are topologically trivial may have non-trivial spaces of directed paths,
which means that information is lost when the direction of these topological
spaces is ignored. We define a notion of directed collapsibility in the setting of
a directed Euclidean cubical complex using the spaces of directed paths of the
underlying directed topological space, relative to an initial or a final vertex. In
addition, we give sufficient conditions for a directed Euclidean cubical complex
to have a contractible or a connected space of directed paths from a fixed initial
vertex. We also give sufficient conditions for the path space between two vertices
in a Euclidean cubical complex to be disconnected. Our results have applica-
tions to speeding up the verification process of concurrent programming and to

understanding partial executions in concurrent programs.
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1 Introduction

Spaces that are equipped with a direction have only recently been given
more attention from a topological point of view. The spaces of directed
paths are the defining feature for distinguishing different directed spaces.
One reason for studying directed spaces is their application to the modeling
of concurrent programs, where standard algebraic topology does not pro-
vide the tools needed [4]. Concurrent programming is used when multiple
processes need to access shared resources. Directed spaces are models for
concurrent program, where paths respecting the time directions represent
executions of programs. In such models, executions are equivalent if their
execution paths are homotopic through a family of directed paths. This
observation has already led to new insights and algorithms. For instance,
verification of concurrent programs is simplified by verifying one execution
from each connected component of the space of directed paths; see [4, 5.

While equivalence of executions is clearly stated in concurrent program-
ming, equivalence of the directed topological spaces themselves is not well
understood. Directed versions of homotopy groups and homology groups
are not agreed upon. Directed homeomorphism is too strong; whereas, di-
rected homotopy equivalence is often too weak, to preserve the properties
of the concurrent programs. In classical (undirected) topology, the concept
of simplifying a space by a sequence of collapses goes back to J.H.C. White-
head [11], and has been studied in [1, 6], among others. However, a definition
for a directed collapse of a Euclidean cubical complex that preserves spaces
of directed paths is notably missing from the literature.

In this article, we consider spaces of directed paths in Euclidean cubical
complexes. Our objects of study are spaces of directed paths relative to a
fixed pair of endpoints. We show how local information of the past links of
vertices in a Euclidean cubical complex can provide global information on
the spaces of directed paths. As an example, our results are applied to study
the spaces of directed paths in the well-known dining philosophers problem.
Furthermore, we define directed collapse so that a directed collapse of a
Euclidean cubical complex preserves the relevant spaces of directed paths in
the original complex. Our theoretical work has applications to simplifying
verification of concurrent programs without loops, and better understanding
partial executions in those concurrent programs.

We begin, in Section 2, with two motivating examples of how the execu-



tion of concurrent programs can be modeled by Euclidean cubical complexes
and directed path spaces. In Section 3, we introduce the notions of spaces of
directed paths and Euclidean cubical complexes. Given the directed struc-
ture of these Euclidean cubical complexes, we do not consider the link of a
vertex but the past link of it. In Section 4, we give results on the topology of
the spaces of directed paths from an initial vertex to other vertices in terms
of past links. Theorem 4.1 gives sufficient conditions on the past links of
every vertex of a complex so that spaces of directed paths are contractible.
Theorem 4.2 gives conditions that are sufficient for the spaces of directed
paths to be connected. In Theorem 4.8, we give sufficient conditions on the
past link of a vertex so that the space of directed paths from the initial
vertex to that vertex is disconnected. In Section 5, we describe a method of
collapsing one complex into a simpler complex, while preserving the directed

path spaces.

2 Concurrent Programs and Directed Path Spaces

We illustrate how to organize possible executions of concurrent programs
using Euclidean cubical complexes and directed spaces. An execution is a
scheduling of the events that occur in a program in order to compute a
specific task. In Example 2.1, we describe the dining philosophers problem.
In Example 2.2, we illustrate how to model executions of concurrent pro-
grams in the context of the dining philosophers problem in the case of two

philosophers.

Example 2.1 (Dining Philosophers). The dining philosophers problem orig-
inally formulated by E. Dijkstra [2] and reformulated by T. Hoare [7] illus-
trates issues that arise in concurrent programs. Consider n philosophers
sitting at a round table ready to eat a meal. Between each pair of neighbor-
ing philosophers is a chopstick for a total of n chopsticks. Each philosopher
must eat with the two chopsticks lying directly to the left and right of her.
Once the philosopher is finished eating, she must put down both chopsticks.
Since there are only n chopsticks, the philosophers must share the chopsticks
in order for all of them to eat. The dining philosopher problem is to design
a concurrent program where all n philosophers are able to eat once for some
finite amount of time.

A design of a program is a choice of actions for each philosopher. One



example of a design of a program is where each of the n philosophers does

the following:

1. Wait until the right chopstick is available, then pick it up.
2. Wait until the left chopstick is available, then pick it up.
3. Eat for some finite amount of time.

4. Put down the left chopstick.

5. Put down the right chopstick.

While correct executions of this program are possible (e.g., where the
philosophers take turns eating alone), this design has states in which ev-
ery philosopher has picked up the chopstick to her right and is waiting for
the other chopstick. Such a situation exemplifies a deadlock in concurrent
programming, an execution that gets “stuck” and never finishes.

The design described above also has states that cannot occur. For ex-
ample, consider the dining philosophers problem when n = 2. The state
in which both philosophers are finished eating and one is still holding onto
chopstick a while the other is holding chopstick b would imply that a philoso-
pher was able to eat with only one chopstick—an example of an unreachable
state in concurrent programming.

The dining philosophers problem illustrates the difficulties in designing
concurrent programs. Difficulties arise since each philosopher must use chop-
sticks that must be shared with the neighboring philosophers. Analogously,
in concurrent programming, multiple processes must access shared resources

that have a finite capacity.

The next example illustrates how to model executions of the dining
philosophers problem with a Euclidean cubical complex. When the problem
consists of two philosophers, the Euclidean cubical complex used to model

the dining philosophers problem is often referred to as the Swiss Flag.

Example 2.2 (Swiss Flag). In the language of concurrent programming,
the two philosophers represent two processes denoted by 77 and 7T5. The
two chopsticks represent shared resources denoted by a and b. One process
is executing the program P,P,V,V, and the other process is executing the

program P, P,V,V,. Here, P means that a process has a lock on that resource



while V means that a process releases a resource. To model this concurrent
program with a FEuclidean cubical complex, we construct a 5 x 5 grid where
the z-axis is labeled by P, P,V V,, each a unit apart, and the y-axis is labeled
by P,P,V,V4, each also a unit apart (see Figure 1). The region [1,4] x
[2,3] represents when both 77 and 75 have a lock on a. In the dining
philosophers problem, a single chopstick can only be held by one philosopher
at a given time. The mutual exclusion of the chopsticks translates to the
shared resources, a and b, each having capacity one, where the capacity of
a resource is the number of processes that can have access to the resource
simultaneously. We call the region [1,4] x [2,3] forbidden since Ty and Ts
cannot have a lock on a at the same time. The region [2, 3] x [1, 4] represents
when both 77 and T5 have a lock on b. This region is also forbidden. The
set complement of the interior of [1,4] x [2,3] U [2,3] x [1,4] in [0, 5] x [0, 5]
is called the Swiss flag and is the Euclidean cubical complex modeling this
program design for the dining philosophers problem.

In general, the Euclidean cubical complex modeling a concurrent pro-
gram is the complement of the interior of the forbidden region. An execution
is a directed path from the initial point to the terminal point. Executions are
equivalent if they give the same output given the same input, which can be
interpreted geometrically as the corresponding paths are dihomotopic in the
path space. The Swiss flag has two distinct directed paths up to homotopy
equivalence: one corresponding to 717 using the shared resources first, and

the other corresponding to 75 using the shared resources first. See Figure 1.

3 Past Links as Obstructions

In this section, we introduce the notions of spaces of directed paths and
Euclidean cubical complexes. The (relative) past link of a vertex of a Eu-
clidean cubical complex is defined as a simplicial complex. Studying the
contractibility and connectedness of past links gives us insight on the con-

tractibility and connectedness of certain spaces of directed paths.

Definition 3.1 (d-space). A d-space is a pair (X,?(X)), where X is a
topological space and ?(X) C P(X) := X0 is a family of paths on X
(called dipaths) that is closed under non-decreasing reparametrizations and
concatenations, and contains all constant paths.

For every z,y in X, let ?%(X) be the family of dipaths from x to y:
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Figure 1: The Swiss Flag. . The pink region is the forbidden region. Any bi-
monotone path outside of F' is a possible execution. The set of all executions
of two processes, 17 and 15, is called the state-space Two regions in the state
space are of particular interest. The black region is the set of all unreachable
states, and the blue region is the set of all states that are doomed to never
complete. A state is doomed if any path starting at that state leads to
a deadlock. The black curves in the figure are two possible paths in this

directed space.

?Z(X) ={ac€ ?(X) ca(0) =z and a(1) = y}.

In particular, consider the following directed space: the directed real
line ﬁ is the directed space constructed from the real line whose family of
dipaths ?(R) consists of all non-decreasing paths. The Fuclidean space ]@
is the n-fold product & x -+ x K with family of dipaths the n-fold product
P(R") = P(R) x --- x P(R).

Furthermore, we can solely focus on the family of dipaths in a d-space

and endow it with the compact open topology.

Definition 3.2 (Space of Directed Paths). In a d-space (X,?(X)), the
space of directed paths from x to y is the family ?%(X ) with the compact
open topology.

By topologizing the space of directed paths, we may now use topolog-
ical reasoning and comparison. Since ?%(X ) does not have directionality,
contractibility and other topological features are defined as in the classical
case. Moreover, observe that the set ?g(X ) might have cardinality of the
continuum, but is considered trivial if it is homotopy equivalent to a point.

The d-spaces that we consider in this article are constructed from Eu-

clidean cubical complexes. Let p = (p1,...,pn), 94 = (q1,...,qn) € R". We



write p = q if and only if p; < ¢; for all ¢ = 1,...,n. Furthermore, we
denote by q — p := (@1 — p1,---,qn — Pn) the component-wise difference
between q and p, |p| := Y ;~, p; is the element-wise sum, or one-norm, of
p. Similarly to the one-dimensional case, the interval [p,q] is defined as
{xeR":p=xx=q}.

Definition 3.3 (Euclidean Cubical Complex). Let p,q € R™. If q,p € Z"
and q — p € {0,1}", then the interval [p,q] is an elementary cube in R"
of dimension |q — p|. A Fuclidean cubical complez K C R™ is the union of

elementary cubes.

Remark 3.4. A Euclidean cubical complex K is a subset of R"™ and it has
an associated abstract cubical complex. By a slight abuse of notation, we

do not distinguish these.

Every cubical complex K inherits the directed structure from the Eu-
clidean space H@, described after Definition 3.1. An elementary cube of
dimension d is called a d-cube. The m-skeleton of K, denoted by K,,, is
the union of all elementary cubes contained in K that have dimension less
than or equal to m. The elements of the zero-skeleton are called the vertices
of K. A vertex w € Ky is said to be minimal (resp., mazimal) if w < v
(resp., w = v) for every vertex v € K.

Following [12], we define the (relative) past link of a vertex of a Euclidean
cubical complex as a simplicial complex. Let A" denote the complete
simplicial complex with vertices {1,...,n}. Simplices of A"~ is be identified
with elements j € {0,1}". That is, every subset S C {1,...,n} is mapped
to the n-tuple with entry 1 in the k-th position if k£ belongs to S and 0
otherwise. The topological space associated to the simplicial complex A"~

is the one given by its geometric realization.

Definition 3.5 (Past Link). In a Euclidean cubical complex K in R", the
past link, lk'z_gw(v)» of a vertex v, with respect to another vertex w is the
simplicial subcomplex of A"~! defined as follows: j € lk;(’w(v) if and only
if [v—j,v]C Knw,v].

Remark 3.6. While K is a cubical complex, the past link of a vertex in K

is always a simplicial complex.

Remark 3.7. Often the vertex w and the complex K are understood. In

this case, we denote the past link of v by (k™ (v).



Remark 3.8. Other definitions of the (past) link are found in the literature.
Unlike Definition 3.5, (past) links are usually subcomplexes of K. However,

the (past) links found in other literature are homeomorphic to the (past)
link of Definition 3.5.

In the following example, we show that a vertex v can have past links
with different homotopy type depending on what the initial vertex w is. We
consider as a Euclidean cubical complex the open top box (Figure 2) and
the past links of the vertex v = (1,1, 1), with respect to the vertices w = 0
and w' = (0,0,1).

Example 3.9 (Open Top Box). Let L C R? be the Euclidean cubical com-
plex consisting of all of the edges and vertices in the elementary cube [0, v]
and five of the six two-cubes, omitting the elementary two-cube [(0,0, 1), v],
i.e., the top of the box. Because the elementary one-cube [v — (0,0,1),v] C
Ln0,v] = L, lkp 4(v) contains the vertex in A? corresponding to j =
(0,0,1). Similarly, because the elementary two-cube [v — (0,1,1),v] C L,
the past link lki,o(v) contains the edge in A? corresponding to j = (0,1,1).
However, because the elementary two-cube [v — (1, 1,0), v] is not contained
in L, lkp o(v) does not include the edge corresponding to j = (1,1,0). In-
stead taking the initial vertex to be w = (0,0,1), we get that Ik} . (v)
consists of the two vertices corresponding to j = (0,1,0) and j’ = (1,0,0).

See Figure 2.

4 The Relationship Between Past Links and Path

Spaces

In this section, we illustrate how to use past links to study spaces of directed
paths with an initial vertex of 0. In particular, the contractibility and con-
nectedness of all past links guarantees the contractibility and connectedness
of spaces of directed paths. We also provide a partial converse to the result

concerning connectedness.

Theorem 4.1 (Contractibility). Let K C R™ be a Euclidean cubical complex
with minimal vertex 0. Suppose for all k € Ko, k # 0, the past link lkgy (k)
is contractible. Then, all spaces of directed paths 15(K) are contractible.

Proof. By [12, Prop. 5.3], if ?gfj(K) is contractible for all j € {0,1}",j # 0,
and j € Ik~ (k), then ?E(K) is homotopy equivalent to [k~ (k). Hence, it
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Figure 2: The Open Top Box. Left: the open top box and the geometric
realization of the past link of the red vertex v = (1,1, 1), with respect to the
black vertex 0. The geometric realization of lk; ,(v) contains two edges of
a triangle, since the two red faces are included in [0, v] and three vertices,
since the three red edges are included in [0, v]. Right: the open top box
and the geometric realization of the past link of the red vertex v = (1,1,1),
with respect to the black vertex w = (0,0, 1). The geometric realization of
lkiw (v) consists only of two vertices of a triangle, since the two red edges

are included in [w, v].

suffices to see that all the spaces ?gfj (K) are contractible. This follows by
structural induction on the partial order on vertices in K.
The start is at ?8+ei(K ), where e; is the i-th unit vector, and 0 +
e; € Ky. If the edge [0,0 + ¢;] is in K, then ﬁngei (K) is contractible.
Otherwise, kg (0 + €;) is empty, which contradicts the hypothesis that all
of the past links are contractible. By structural induction, using also that
?8 is contractible, the theorem now holds. O
Now, we give an analogous sufficient condition for when spaces of di-
rected paths are connected. We provide two different proofs of Theorem 4.2.
The first proof shows how we can use [9, Prop. 2.20] to get our desired result.
The second proof uses notions from category theory and is based on the fact

that the colimit of connected spaces over a connected category is connected.

Theorem 4.2 (Connectedness). With K as above, suppose all past links
lkg (k) of all vertices k # 0 are connected. Then, for all k € Ky, all spaces
of directed paths ﬁg(K) are connected.

In this first proof we show that [9, Prop. 2.20] is an equivalent condition

to all past links being connected.

Proof. In [9, Prop. 2.20], a local condition is given that ensures that all
spaces of directed paths to a certain final point are connected. Here, we ex-

plain how the local condition is equivalent to all past links being connected.



Their condition is in terms of the local future; however, we reinterpret this in
terms of local past instead of local future. Since we consider all spaces of di-
rected paths from a point (as opposed to to a point), then reinterpreting the
result in terms of local past is the right setting we should look at. The local
condition is the following: for each vertex, v, and all pairs of edges [v—e,, V],
[V —es, v] in K, there is a sequence of two-cells {[v — ey, —e;,, v]}7,, each
of which is in K such that [; = kj4q for ¢ = 1,...,.m — 1, k; = r and
I, = s. Now, we show that this local condition is equivalent to ours. In the
past link considered as a simplicial complex, such a sequence of two-cells
corresponds to a sequence of edges from the vertex r to the vertex s. For
x,y € lk—(v), they are both connected to a vertex via a line. And those
vertices are connected. Hence, the past link is connected.

Vice versa: Suppose [k~ (v) is connected. Let p,q be vertices in Ik~ (v)
and let v : I — lk=(v) € A" ! be a path from p to ¢q. The sequence of
simplices traversed by ~, S1,S52, ..., Sk, satisfies S; N S;y1 # 0. Moreover,
the intersection is a simplex. Let p; € S; N .S;+1. A sequence of pairwise
connected edges connecting p to ¢ is constructed by such sequences from p; to
Pi+1 in S; 41 thus providing a sequence of two-cells similar to the requirement
in [9]. Hence, by [9], if all past links of all vertices are connected, then all

Kk
0

are connected O
This second proof of Theorem 4.2 has a more categorical flavor.

Proof. We give a more categorical argument which is closer to the proof
of Theorem 4.1. In [10, Prop. 2.3 and Equation 2.2], the space of directed
paths 15 is given as a colimit over ?gfj. The indexing category is Jx with
objects {j € {0,1}": [k — j] € K} and morphisms j — j’ for j > j' given by
inclusion of the simplex AJ ¢ AJ'. The geometric realization of the index
category is the past link which with our requirements is connected. The
colimit of connected spaces over a connected category is connected. Hence,
by induction as above, beginning with edges from 0, the directed paths ﬁl{;—j

are all connected and the conclusion follows. O

Remark 4.3. Our conjecture is that similar results for k-connected past

links should follow from the k-connected Nerve Lemma.

Remark 4.4. The statements of both Theorem 4.1 and Theorem 4.2 con-

cern past links and path spaces defined with respect to a fixed initial vertex.



To see why past links depend on their initial vertex, consider the open top
box of Example 3.9. All past links in L with respect to the initial vertex
0 are contractible, but ?XV,(L), where w' = (0,0,1) and v = (1,1,1), is
not contractible. It is in fact two points. Note, this does not contradict

Theorem 4.1, which only asserts that ?B’(L) is contractible; see Figure 2.

We now show how Theorem 4.1 and Theorem 4.2 can be used to study the
spaces of the directed paths in slight modifications of the dining philosophers

problem.

Example 4.5 (Three Concurrent Processes Executing the Same Program).
We consider a modification of Example 2.1 where we have three processes
and two resources each with capacity two. All processes are executing the
program P, P,V,V,. The Euclidean cubical complex modeling this situation
has three dimensions, each representing the program of a process. Since each
resource has capacity two, it is not possible to have a three way lock on any of
the resources. The three processes have a lock on a in the region [P, V,]*3,
which is the cube [(1,1,1),(4,4,4)]. Similarly, the three processes have a
lock on b in the region [Py, V;]*3 which is the cube [(2,2,2),(3,3,3)]. The
forbidden region is the union of these two sets which is [(1,1,1), (4,4, 4)].
We can model this concurrent program as a three-dimensional Euclidean
cubical complex and the forbidden region is the inner 3 x 3 x 3 cube.

In order to analyze the connectedness and contractibility of the spaces of
directed paths with initial vertex 0, we study the past links of the vertices of
K. First, we show that not all past links are contractible. Let v = (4,4,4).
Then, lky o(v) consists of all j € {0, 1}3 except (1,1,1). The past link does
not contain (1,1,1) because the cube [(3,3,3), (4,4,4)] is not contained in
K, but [v—j,v] C K for all other j. Therefore, kg o (v) is the boundary of
the two simplex (see Figure 3). Because the boundary of the two simplex is
not contractible, the hypothesis of Theorem 4.1 is not satisfied. Hence, we
cannot use Theorem 4.1 to study the contractibility of the spaces of directed
paths.

Next, we show that all past links are connected. If we directly compute
the past link lkf_(’o(k) for all k € Ky, we find that the past link consists of
either a zero simplex, one simplex, the boundary of the two simplex, or a
two simplex. All these past links are connected. Theorem 4.2 implies that
for all k € Ky, the space of directed paths, ?S(K ) is connected.

We can generalize this example to n processes and two resources with
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Figure 3: Three processes, same program. Illustrating lk;ﬂ)(v) where K
is the cube [0, (5,5,5)] minus the inner cube, [(1,1,1),(4,4,4)], and v =
(4,4,4). The geometric realization of the simplicial complex lk:;q)(v) is
the boundary of the two simplex since the three pink faces and edges are

included in [0, v].

capacity n — 1 where all processes are executing the program P,P,V,V,. For

all n, Theorem 4.2 shows that all spaces of directed paths are connected.

The converse of Theorem 4.2 is not true. To see this, and give the
conditions under which the converse does hold, we need to introduce the

following definition:

Definition 4.6 (Reachable). The point x € K is reachable from w € K if
there is a path from w to z. A subcomplex of K is induced by the set of

points that are reachable from a vertex w.

Example 4.7 (Boundary of the 3x3x3 Cube with Top Right Cube). Let K
be the Euclidean cubical complex that is the boundary of the 3 x 3 x 3 cube
along with the cube [(2,2,2),(3,3,3)]. Observe that all spaces of directed
paths with initial vertex O are connected. However, K has a disconnected
past link at v = (3,2,2). If we consider the subcomplex K that is reachable
from 0, then K is the boundary of the 3 x 3 x 3 cube. The past links
of all vertices in K are connected. This motivates the conditions given
in Theorem 4.8 of removing the unreachable points of a Kuclidean cubical
complex. The connected components of a disconnected past link in the
remaining complex can then be represented by directed paths from the initial

point and not only locally.

Theorem 4.8 (Realizing Obstructions). Let K be a Euclidean cubical com-
plex with initial vertex 0. Let K C K be the subcomplex reachable from 0. If

11
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Figure 4: Motivating reachability condition. Let K be the boundary of the
3 X 3 x 3 cube union with [(2,2,2),(3,3,3)]. Then, the geometric realization
of the simplicial complex lky ,(v) is an edge and a point since the three

pink edges and one face are included in [(0, 0, 0), v].

forv e Ko, the past link in K is disconnected, then the path space ?X(K)

1s disconnected.

Proof. Let v be a vertex such that lky , (v) is disconnected and let ji,j2 be
vertices in lk;{(v) in different components. The edges [v — j;, v] are then in
K and, in particular, v — j; € K. Hence, there are paths p; : 7 — K such
that 1;(0) = 0 and p;(1) = v — j.

By [3], there are fi; which are dihomotopic to p; and such that f; is
combinatorial, i.e., a sequence of edges in K. Let ~; be the concatenation of
f; with the edge [v — j;, v].

Suppose for contradiction that v; and -9 are connected by a path in
?H(K) Let H : T x I — K be such a path with H(¢,0) = ~1(¢) and
H(t,1) = yo(t). Since H(t,s) is reachable from 0, H maps to K.

By [3], there is a combinatorial approximation H : T xI = K to
the 2-skeleton of K C K. Let B be the open ball centered around v with
radius 1/2. Since H is continuous, the inverse image of B under H is a
neighborhood of {1} x I C T xI For0<e< 1/2, this neighborhood
contains a strip (1 — €,1] x I (by compactness of I). Then H(1 —¢/2 x I)
gives a path connecting the two edges [v — j;,v]. This path traverses a
sequence of 2-cubes (the carriers). These correspond to a sequence of edges
in the past link that connect j; and js, which contradicts the assumption
that they are in different components. Therefore, v; and ~» correspond to

two points in ?B(K ) that are not connected by a path. O

In general, the reachability condition in Theorem 4.8 eliminates the spu-

rious disconnected past links that could appear in the unreachable parts of

12



a Euclidean cubical complex.

Example 4.9. To see how Theorem 4.8 can be applied, consider Exam-
ple 2.2, the Swiss flag. The Swiss flag has two vertices with disconnected
past links with respect to 0 namely (4, 3) and (3,4). These disconnected past
links imply that Theorem 4.2 is inconclusive. If the unreachable section of
the Swiss flag is removed, we obtain a new Euclidean cubical complex in
which the vertex v = (4,4) has a disconnected past link, consisting of two
points. By Theorem 4.8, the path space ?H(K ) is also disconnected. In
fact, ?(‘)’(K ) has two points, representing the dihomotopy classes of paths

which pass above the forbidden region, and those paths which pass below.

The disconnected path space, ?H(K ), found in the previous example
helps illustrate the following: given two vertices w and v in a Euclidean
cubical complex K, if the path space ﬁXV(K ) is disconnected, then there
exists a vertex in [w,v] that has a disconnected past link with respect to
w (the vertices (4,3) and (3,4) in the Swiss flag). If w = 0, then we get
the contrapositive of Theorem 4.2. If K is reachable from 0, Theorem 4.8

allows us to draw conclusions about the space of directed paths.

5 Directed Collapsibility

To simplify the underlying topological space of a d-space while preserving
topological properties of the associated space of directed paths, we introduce
the process of directed collapse. The criteria we require to perform directed
collapse on Euclidean cubical complexes involves the topology of the past
links of the vertices of the complex. We defined the past links as simplicial
complexes that are not themselves directed, so our topological criteria are

in the usual sense.

Definition 5.1 (Directed Collapse). Let K be a Euclidean cubical complex
with initial vertex 0. Consider o, 7 € K such that 7 C o, ¢ is maximal, and
no other maximal cube contains 7. Let K’ = K\ {y € K|t C v Co}. K’
is a directed (cubical) collapse of K if, for all v € K, lk;(v) is homotopy
equivalent to [k, (v). The pair 7,0 is then called a collapsing pair.

K’ is a directed 0-collapse of K if for all v € K, lk;(v) is connected if

and only if [k, (v) is connected.
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Remark 5.2. Asin the simplicial case, when we remove o from the abstract
cubical complex, the effect on the geometric realization is to remove the

interior of the cube corresponding to o.

Remark 5.3. Note for finding collapsing pairs, (7, 0), using Definition 5.1,
with the geometric realization of o given by the elementary cube, [w —j, w],
it is sufficient to only check v € K{j such that v =w — j’ where j —j > 0.
Otherwise the past links, Ik (v) and Ik, (v), are equal.

Definition 5.4 (Past Link Obstruction). Let w € K. A past link obstruc-
tion (type-oo) in K with respect to w is a vertex v € Ky such that [k (V)
is not contractible. A past link obstruction (type-0) in K with respect to w

is a vertex v € Ko such that [k, (V) is not connected.

Directed collapses preserve some topological properties of the space of

directed paths. In particular:

Corollary 5.5. If there are no type-oo past link obstructions, then all spaces
of directed paths from the initial point are contractible. If there are no type-0
past link obstructions, all spaces of directed paths from the initial point are

connected.

Proof. Contractibility is a direct consequence of Theorem 4.1. Likewise,

connectedness follows from Theorem 4.2. O

Corollary 5.6 (Invariants of Directed Collapse). If we have a sequence of
directed collapses from K to K', then there are no obstructions in K iff there

are no obstructions in K'.

Remark 5.7 (Past Link Obstructions are Inherently Local). The past link
of a vertex is constructed using local (rather than global) information from
the cubical complex. Therefore, a past link obstruction is also a local prop-
erty, which is not dependent on the global construction of the cubical com-

plex.

Below, we provide a few motivating examples for our definition of di-
rected collapse. In general, we want our directed collapses to preserve all
spaces of directed paths between the initial vertex and any other vertex in
our cubical complex. Notice, 7 from Definition 5.1 is a free face of K. Per-

forming a directed collapse with an arbitrary free face of a directed space K
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with minimal element 0 € Ky and maximal element 1 € Ky can modify the
individual spaces of directed paths ?H(K ) and ?‘1, (K) for v € K.

When ?%(K) = 0, we call v a deadlock. When ?})’(K) =0, we call v
unreachable. Deadlocks and unreachable vertices are in a sense each others
opposites. Notice if we take the same directed space K yet reverse the
direction of all dipaths, then deadlocks become unreachable vertices and vice
versa. However, as Example 5.8 and Example 5.9 illustrate, the creation of
an unreachable vertex in the process of a directed collapse might result in a
past link obstruction at a neighboring vertex while the creation of a deadlock

does not.

Example 5.8 (3 x 3 Grid, Deadlocks & Unreachability). Let K be the
Euclidean cubical complex in R? that is the 3 x 3 grid. Consider the Eu-
clidean cubical complexes K’ and K" obtained by removing (7,0) with 7 =
[(1,3),(2,3)],0 = [(1,2),(2,3)] and (7/,0’) with 7/ = [(1,0),(2,0)], ¢/ =
[(1,0), (2,1)], respectively. While K’ is a directed collapse of K, K" is not a
directed collapse of K because K" introduces a past link obstruction at (2, 1).
So, (7,0) is a collapsing pair while (7/,0”) is not. Collapsing K to K’ cre-
ates a deadlock at (1,3) but this does not change the space of directed paths
from the designated start vertex 0 to any of the vertices between 0 and the
designated end vertex (3,3) (see K’ in Figure 5). However, collapsing K
to K" creates an unreachable vertex (2,0) from the start vertex 0 (see K”
in Figure 5) which does change the space of directed paths from 0 to (2,0) to
be empty. Hence not all spaces of directed paths starting at 0 are preserved.

This motivates our definition of directed collapse.

Our next example shows how directed collapses can be performed with

collapsing pairs (7,0) when 7 is of codimension one and greater.

Example 5.9 (3 x 3 grid, Edge & Vertex Collapses). Consider again the
Fuclidean cubical complex K from Example 5.8. If we allow a collapsing
pair (7, 0) with 7 of dimension greater than 0, we may introduce deadlocks or
unreachable vertices. In particular, collapsing the free edge 7 = [(1, 3), (2, 3)]
of the top blue square o = [(1,2),(2,3)] in Figure 6 changes the space of
directed paths ﬁg’g; (K) from being trivial to empty in K\{v|r C v C o}.
Yet we care about preserving the space of directed paths from our designated
start vertex 0 to any of the vertices (7, j) with 0 < i, < 3 since we ultimately

are interested in preserving the path space 383’3) (K). Because of this, such
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Figure 5: Illustrating Example 5.8. On the left: the cubical complex K with
initial vertex 0 and final vertex (3, 3). In the center: The cubical complex K’
which is a directed collapse of K. The deadlock in blue does not change the
space of directed paths from 0 to any of the vertices between 0 and (3, 3).
On the right: the cubical complex K" which is not a directed collapse of K.
The space of directed paths into the unreachable red vertex, (2,0), becomes
empty. The empty path space is reflected in the topology of the past link of
the red vertex (2,1) (see Example 5.9).

collapses should be allowed in our directed setting. Note that, in these cases,
the past link of all vertices remains contractible. However, collapsing the
free edge 7" = [(1,0), (2,0)] of the bottom red square ¢’ = [(1,0),(2,1)] in
Figure 6 changes the path space 382’0) (K) from being trivial to empty. This
change is reflected in the non-contractible past link of (2,1) in K\{|r" C
v C o’} that consists of the two vertices j = (1,0) and j’ = (0,1) but not
the edge j” = (1,1) connecting them. Restricting our collapsing pairs to
only include 7 of dimension 0 allows for only two potential collapses, the
corner vertices (0,3) and (3,0) into the yellow squares [(0,2),(1,3)] and
[(2,0),(3,1)], respectively. Neither of these collapses create deadlocks or
unreachable vertices and the contractibility of the past link at all vertices is
preserved. Performing these corner vertex collapses exposes new free vertices

that can be a part of subsequent collapses.

Lastly, we explain how the Swiss flag can be collapsed using a sequence
of zero-collapses. The Swiss flag contains uncountably many paths between
the initial and final vertex. After performing the sequence of zero-collapses
as described in Example 5.10, the Swiss flag has only two paths up to
reparametrization between the initial and final vertex. These two paths
represent the two dihomotopy classes of paths that exists for the Swiss flag.
Referring back to concurrent programming, we interpret the two paths as

two inequivalent executions: either the first process holds a lock on the two
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(a) Edge Collapse (b) Vertex Collapse

Figure 6: Ilustrating Example 5.9. On the left: the collapsing of the free
edge in the blue squares is an admitted directed collapse. The collapsing of
the free edge in the red squares is not an admitted directed collapse. On the
right: the collapsing of the free vertex in the yellow squares is an admitted

directed collapse.

resources then releases them so the other process can place a lock on the

resources or vice versa.

Example 5.10 (0-collapsing the Swiss Flag). The Swiss flag considered as a
Fuclidean cubical complex in the 5 x 5 grid has vertices with connected past
links, except at (4,3) and (3,4). The vertex (2,2) and the cube [1,2] x [1, 2]
are a 0O-collapsing pair. The vertex (3,3) and the cube [3,4] x [3,4] are
not, since that collapse would produce a disconnected past link at (4,4).
A sequence of 0-collapses preserving the initial and final point will give a
one-dimensional Euclidean cubical complex and one 2-cube. Specifically, we
get the edges [0,1] x {0}, {1} x [0,1], {1} x [1,3], [1,3] x {1}, [1,2] x {3},
{3} x [1,2], {2} x [3,4], [3,4] x {2}, [2,3] x {4}, {4} x [2,3], the square
[3,4] x [3,4], and lastly the edges {4} x [4,5] and [4,5] x {5}.

6 Discussion

Directed topological spaces have a rich underlying structure and many inter-
esting applications. The analysis of this structure requires tools that are not
fully developed, and a further investigation into these methods will lead to
a better understanding of directed spaces. In particular, the development of
these notions, such as directed collapse, may lead to a better understanding
of equivalence of directed spaces and their spaces of directed paths.

Interestingly, when comparing directed collapse with the notion of cu-
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F ¥ 5

Figure 7: Zero-collapsing the Swiss Flag. A sequence of zero-collapses is
presented from the top left to bottom right. At each stage, the faces and
vertices shaded in blue represent the zero-collapsing pairs. The result of the
sequence is shown in the bottom right which is a one-dimensional Euclidean

cubical complex and one two-cube.

bical collapse in the undirected case, two main contrasts arise. First, the
notion of directed collapse is stronger than that of cubical collapse; any di-
rected collapse is a cubical collapse, but not all cubical collapses satisfy the
past link requirement of directed collapse. However, directed collapse is not
related to existing notions of dihomotopy equivalence which involve contin-
uous maps between topological spaces that preserve directed paths. Hence,
directed collapse contrasts cubical collapse in the undirected case since any
two spaces related by cubical collapses are homotopic. This contrast sug-
gests the need for dihomotopy equivalence with respect to an initial point.
Directed collapse may not preserve dihomotopy equivalence, so we can
collapse more than, e.g., Kahl. By Theorem 5.6, if K’ is a directed collapse
of K with respect to v and K’ has trivial spaces of directed paths from v,
then so does K. Similarly, if all spaces of directed paths are connected in K’,
then all spaces of directed paths are connected in K. Hence, our definition
of directed collapsibility preserves spaces of directed paths with an initial
vertex of 0. Preserving spaces of directed paths allows us to study more
types of concurrent programs and preserve notions of partial executions.

We plan to pursure many future avenues of research in the directed



topological setting. First, we hope to find necessary and sufficient conditions
for a pair of cubical cells (7,0) to be a collapsing pair. The key will be to
have a better understanding of what removing a cubical cell does to the past
link of a complex. Additionally, we would like to find directed conterparts
to the various types of simplicial collapses. For example, is there a notion
of strong directed collapse? As strong collapse also considers the link of a
vertex, a consideration of how strong collapse extends to a directed setting
seems natural.

Next, we would like to learn more about past link obstructions. We
know that performing a directed collapse will not alter the space of directed
paths of a Euclidean cubical complex; however, if we are unable to perform
a directed collapse due to a past link obstruction, what happens to the space
of directed paths? Theorem 4.8 is a start in understanding what happens
to spaces of directed paths for 0 collapses. Another question may be, in
what way are obstructions of type oo realized as non-contractible spaces of
directed paths?

Another direction of research we hope to pursue is defining a way to
compute a directed homology that is collapsing invariant. Even the two-
dimensional setting (where the cubes are at most dimension two) has proved
to be difficult, as adding one two-cell can have various effects, depending on
the past links of the vertices involved. We would like to classify the spaces
where such a dynamic programming approach would work.

Lastly, many computational questions arise on how to implement the
collapse of a directed cubical complex. In [8], an example of collapsing a
three-dimensional cubical complex is implemented in C++. This algorithm
could be used as a model when handling the directed complex.

Many interesting theoretical and computational questions continue to
emerge in the field of directed topology. We hope that our research excites

others in studying cubical complexes in the directed setting.
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Abstract

While collapsibility of CW complexes dates back to the 1930s, collapsibility
of directed Euclidean cubical complexes has not been well studied to date. The
classical definition of collapsibility involves certain conditions on pairs of cells of
the complex. The direction of the space can be taken into account by requiring
that the past links of vertices remain homotopy equivalent after collapsing. We
call this type of collapse a link-preserving directed collapse. In the undirected set-
ting, pairs of cells are removed that create a deformation retract. In the directed
setting, topological properties—in particular, properties of spaces of directed
paths—are not always preserved. In this paper, we give computationally simple
conditions for preserving the topology of past links. Furthermore, we give condi-
tions for when link-preserving directed collapses preserve the contractability and
connectedness of spaces of directed paths. Throughout, we provide illustrative

examples.



1 Introduction

A directed Euclidean cubical complex is a subset of R™ comprising a finite union
of directed unit cubes. Directed paths (i.e., paths that are nondecreasing in all
coordinates) and spaces of directed paths are the objects of study in this paper.
In particular, we address the question of how to simplify directed Euclidean
complexes without significantly changing the spaces of directed paths.

This model is motivated by several applications, where each axis of the model
corresponds to a parameter of the application (e.g., time). In particular, Eu-
clidean cubical complexes are used to model concurreny in computer program-
ming [4-6,21], hybrid dynamical systems [20], and motion planning [7]. Consider
the application to concurrency. In this example, each axis represents a sequence
of actions a process completes in the program execution. The complex itself
corresponds to “compatible” parameters (i.e., when the processes can execute
simultaneously). Cubes missing from the complex correspond to parameters for
which the processes cannot execute simultaneously for some reason, such as when
they require the same resources with limited capacity; see Fig. 1. A directed path
(dipath) in the complex represents a, possibly partial, program execution. Such
executions are equivalent if the corresponding dipaths are directed homotopic.
Simplifying the complexes allows for a more compact representation of the exe-
cution space, which, in turn, reduces the complexity of validating correctness of
concurrent programs.

A non-trivial Euclidean cubical complex contains uncountably many dipaths
and more information than we need for understanding the topology of the spaces
of dipaths. The main question we ask is, How can we simplify a directed Eu-
clidean cubical complex while still preserving spaces of dipaths?

Past links are local representations of a Euclidean cubical complex at vertices.
They were introduced in [21] as a means to show that any finite homotopy type
can be realized as a connected component of the space of execution paths for
some PV-model. In [1], we found conditions for when the local information of
past links preserve the global information on the homotopy type of spaces of
dipaths. Because of these relationships between past links and dipath spaces,
we define collapsing in terms of past links. We call this type of collapsing link-
preserving directed collapse (LPDC). We aim to compress a Euclidean cubical
complex by LPDCs before attempting to answer questions about dipath spaces.

The main result of this paper is Theorem 3.9, which provides a simple cri-
terion for such a collapsing to be allowed: A pair of cubes (1,0) is an LPDC
pair if and only if it is a collapsing pair in the non-directed sense and T does not

contain the minimum vertex of o. This condition greatly simplifies the defini-



Figure 1: The Swiss Flag and Three Directed Paths. The gray and blue squares
are the two-cubes of a Euclidean cubical complex. The bi-monotone increasing
paths are directed paths starting at (0,0) and ending at (5,5). This complex has
a cross-shaped hole in the middle. As a consequence, the solid directed paths are
directed homotopic while the dashed directed path is not directed homotopic to
either of the other directed paths. Each point highlighted in blue is unreachable,
meaning that we cannot reach any point highlighted in blue without breaking
bi-monotonicity in a path starting at (0,0). This complex models the dining
philsophers problem, a well-known example in concurrency, where two processes
require two shared resources with limited capacity [4,12]. The two distinct paths

(solid and dashed) represent which process uses both shared resources first.

tion of LPDC and is easy to add to a collapsing algorithm for Euclidean cubical
complexes in the undirected setting. Algorithms and implementations in this
setting already exist such as in [15]. Furthermore, we provide conditions for
when LPDCs preserve the contractability and connectedness of dipath spaces
(Section 4) along with a discussion of some of the limitations (Section 5). This
work provides a start at the mathematical foundations for developing polyno-
mial time algorithms that collapse Euclidean cubical complexes and preserve

dipath spaces.

2 Background

This paper builds on our prior work [1], as well as work by others [6, 9, 10,
16,21]. In this section, we recall the definitions of directed Euclidean cubical
complexes, which are the objects that we study in this paper. Then, we discuss
the relationship between spaces of directed paths and past links in directed
Euclidean cubical complexes. For additional background on directed topology
(including generalizations of the definitions below), we refer the reader to [5].
We also assume the reader is familiar with the notion of homotopy equivalence

of topological spaces (denoted using ~ in this paper) and homotopy between



paths as presented in [11].

2.1 Directed Spaces and Euclidean Cubical Complexes

Let n be a positive integer. A (closed) elementary cube in R™ is a product of

closed intervals of the following form:
[vr = J1,v1] X [vg = j2, v2] X o X [up = i, vn] S R™, (1)

where v = (v1,v9,...,v,) € Z" and j = (j1,J2,---,Jn) € {0,1}". We often refer
to elementary cubes simply as cubes. The dimension of the cube is the number
of unit entries in the vector j; specifically, the dimension of the cube in Eq. (1)
is the sum: » ;" | j;. In particular, when j = 0 := (0,0,...,0), the elementary
cube is a single point and often denoted using just v. If 7 and ¢ are elementary
cubes such that 7 C o, we say that 7 is a face of ¢ and that o is a coface of 7.
Cubical sets were first introduced in the 1950s by Serre [17] in a more general

setting; see also [2,8,13].

0

Figure 2: Euclidean cubical complex in R? with 24 zero-cubes (vertices), 28
one-cubes (edges), and six two-cubes (squares). By construction, all elementary
cubes in a directed Euclidean cubical complex are axis aligned. Consider the
vertex v = (3,4). The edge e = [(2,4),(3,4)] (written e = [2,3] x [4,4] in the
notation of Eq. (1)) is one of the two lower cofaces of v. Since e is not a face of
any two-cube, e is a maximal cube (since it is not a face of a higher-dimensional

cube).

Elementary cubes stratify R”, where two points z,y € R™ are in the same
stratum if and only if they are members of the same set of elementary cubes;
we call this the cubical stratification of R™. Each stratum in the stratification is
either an open cube or a single point. A Fuclidean cubical complez (K,K) is a
subspace K C R™ that is equal to the union of a finite set of elementary cubes,
together with the stratification K induced by the cubical stratification of R”; see
Fig. 2. We topologize K using the subspace topology with the standard topology



on R™. By construction, if ¢ € K, then all of its faces are necessarily in K as well.
If ¢ € K with no proper cofaces, then we say that o is a mazimal cube in K.
We denote the set of closed cubes in (K, K) by K; the set of closed cubes in K
is in one-to-one correspondence with the open cubes in K. Specifically, vertices
in K correspond to vertices in K and all other elementary cubes in K correspond
to their interiors in K. Throughout this paper, we denote the set of zero-cubes
in K by verts(K) and note that verts(K) C Z", since all cubes in (K, K) are
elementary cubes.

The product order on R™, denoted =, is the partial order such that for two
points p = (p1,p2,...,pn) and q = (q1,¢2, .. .,qn) in R, we have p < q if and
only if p; < ¢; for each coordinate ¢. Using this partial order, we define the

interval of points in R™ between p and q as

[p,q] == {x|p=Xx=q}

The point p is the minimum vertex of the interval and q is the maximum vertex
of the interval, with respect to <. Notationally, we write this as min([p, q]) := p
and max([p,q]) := q. When q € Z" and p = q + j, for some j € {0,1}", the
interval [p,q| is an elementary cube as defined in Eq. (1). If, in addition, j is
not the zero vector, then we say that [v — j, v] is a lower coface of v.

Using the fact that the partial order (R"™, <) induces a partial order on the
points in K, we define directed paths in K as the set of nondecreasing paths in
K: A path in K is a continuous map from the unit interval I = [0, 1] to K. We
say that a path vy: I — K goes from v(0) to v(1). Letting K’ denote the set of
all paths in K, the set of directed paths (or dipaths for short) is

BK) ={ye K| Vi,jst.0<i<j<10()=<v0)}

We topologize ﬁ(K ) using the compact-open topology. For p,q € K, we denote
the subspace of dipaths from p to q by ?E(K) We refer to (K,?(K)) as a
directed Euclidean cubical compler.! The connected components of P3(K) are
exactly the equivalence classes of dipaths, up to dihomotopy. If two dipaths, f
and g are homotopic through a continuous family of dipaths, then f and g are
called dihomotopic.

Given a directed complex, certain subcomplexes are of interest:

!Directed Euclidean cubical complexes are an example of a more general concept known
as directed space (d-spaces). To define a d-space, we have a topological space X and we
define a set of dipaths P'(X) C X7 that contains all constant paths, and is closed under taking
nondecreasing reparameterizations, concatenations, and subpaths. Indeed, ?(K ) satisfies these

properties.



Definition 2.1 (Special Complexes). Let (K, ) be a directed Euclidean cubical
complex in R". Let p € verts(K) and let o be an elementary cube (that need
not be in ).

1. The complex above p is Kp< :={q € K | p X q}.
2. The complex below p is K<p := {q € K | q < p}.
3. The reachable complex from p is reach(K,p) := {q € K | ?E(K) # (0}.

4. The complex restricted to o is

K|, := U{T € K| mino < min7 < max7 < maxo}.

5. If K = I", then we call (K,K) the standard unit cubical complex and
often denote it by (I",Z). If K = I" + x for some x € Z", then K is a

full-dimensional unit cubical complex.

2.2 Past Links of Directed Cubical Compelxes

An abstract simplicial complex is a finite collection S of sets that is closed under
the subset relation, i.e., if A € S and B is a set such that ) # B C A, then B € S.
The sets in S are called simplices. If the simplex A has k + 1 elements, then we
say that the dimension of A is dim(A) := k, and we say A is a k-simplex. For
example, the zero-simplices are the singleton sets and are often referred to as
vertices. Since every element of a set A € S gives rise to a singleton set in the
finite set S, A must be finite.

In a topological space embedded in R™, the link of a point v is constructed by
intersecting an arbitrarily small (n — 1)-sphere around v with the space itself. In
R™, the link of a point is an (n — 1)-sphere. Moreover, if v € Z", the link inherits
the stratification as a subcomplex of R”, and can be represented as a simplicial
complex whose i-simplices are in one-to-one correspondence with the (i + 1)-
dimensional cofaces of v. The past link of v is the restriction of the link using
the set of lower cofaces of v instead of all cofaces. Thus, we can represent
each simplex in the past link as a vector in {0,1}" \ {0}, where the vector
j €{0,1}™\{0} represents the cube [v—j, v] in the simplex-cube correspondence.
As a simplicial complex, the past link of v in R™ has n vertices {x;}1<i<pn, and j
represents the simplex {z;|1 <i < n, j; = 1} of dimension ||j||; — 1; for example,
(1,0,0) represents a vertex and (1,0,1) represents an edge. We are now ready

to define the past link of a vertex in a Euclidean cubical complex:
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(a) Past Link of v (b) Past Link of x

Figure 3: Past link in the Open Top Box. (a) The maximum vertex of this
complex is v = (vi,v2,v3). The past link lk,(v) is the simplicial complex
comprising three vertices and two edges (shown in blue/cyan). These simplices
are in one-to-one correspondence with the set of lower cofaces of v (highlighted in
pink). For example, the edges of Ik (v), which are labeled e; and e, are in one-
to-one correspondence with the elementary two-cubes that are lower cofaces of v
(01 = [(v1—1,v9,v3—1),v] and o9 = [(v1,v2 — 1,v3—1), V], respectively). In the
vector notation for simplices of 1k, (v), we write e; = (1,0,1) and ez = (0,1, 1).
(b) The past link of a vertex x that is neither the minimum nor the maximum

vertex in the complex.

Definition 2.2 (Past Link). Let (K, KC) be a directed Euclidean cubical complex

in R™. Let v € Z™. The past link of v is the following simplicial complex:

e (v) :={j € {0, 1}" \ {0} | [v —j, v] € K}

As a set, the past link represents all elementary cubes in K for which v is
the maximum vertex. As a simplicial complex, it describes (locally) the different
types of dipaths to or through v in K; see Fig. 3.

We conclude this section with a lemma summarizing properties of the past

link, most of which follow directly from definitions:

Lemma 2.3 (Properties of Past Links). Let (K,K) be a directed Euclidean

cubical complex in R™. Then, the following statements hold for all v € Z™:
1. Ik (v) = Upegrn lkf_fpj (v).
2. If (K',K') is a subcomplex of (K,K), then Ik, (v) C lkg(v).
8. Ik (v) =lkg_ (v).

4. If there exists w € Z" such that K = [w — 1,w], then 1k (w) is the

complete simplicial complex on n vertices.

5. Ik (v) is a subcomplex of the complete simplicial complex on n vertices.



Proof. Statement I: If K = (), then all past links are empty and the equality
trivially holds. If K # (), then verts(K) is a finite non empty set. Thus, there
exists q € R™ such that for all w € verts(K), q < w. Let j € Ik (v). Then, [v—
j,v] € K and so v — j € verts(K). Hence, q < v — j, which means that j €
lk[_(qj (v) € Upern lk;(pj (v). The reverse inclusion follows from the fact that
each of these statements holds if and only if.

Statement 2: Observe that if j € lk,,(v), then, by definition of the past
link, [v —j,v] € K'. Since K’ C K, we have [v —j,v] C K’ C K. Therefore, we
can conclude that j € Ik (v).

Statement 3: By Statement 2 (which we just proved), we have the following
inclusion Ik (v) C kg (v). To prove the inclusion in the other direction, let
j € kg (v). Since v —j = v, then [v — j,v] C K<y. Therefore, we conclude
that lkp(v) C Ik (v).

Statement 4: Since K = [w — 1,w]|, we know that K is full-dimensional,
and so for all j € {0,1}", [w —j,w] € K. Thus, by definition of past link, we
have that the past link of w is: 1k, (w) := {0,1}" \ {0}, which is the complete
simplicial complex on n vertices.

Statement 5: Let L = KN[v—1,v]. By definition of past link, we know Ik (v)
Ik (v). By Statement 2, since L is a subcomplex of [v —1, v], we know lk; (v) C
k1.9
vertices. Therefore, Ik} (w) is the complete simplicial complex on n vertices. [

(v). By Statement 4, Ik[:,_l vi (v) is the complete simplicial complex on n

2.3 Relationship Between Past Links and Path Spaces

The topology of the past links is intrinsically related to spaces of dipaths. Specif-
ically, in [1] we prove that the contractability and/or connectedness of past links
of vertices in directed Euclidean cubical complexes with a minimum vertex? im-
plies that all spaces of dipaths with w as initial point are also contractible and/or

connected.

Theorem 2.4 (Contractability [1, Theorem 1]). Let (K,K) be a directed Eu-
clidean cubical complex in R™ that has a minimum vertex w. If, for all ver-
tices v € verts(K), the past link 1k, (v) is contractible, then the space ?EV(K)
is contractible for all k € verts(K).

An analogous theorem for connectedness also holds.

*In [1], the minimum (initial) vertex was often assumed to be 0 for ease of exposition. We
restate the lemmas and theorems here using more general notation, where K has a minimum

vertex w.



Theorem 2.5 (Connectedness [1, Theorem 2]). Let (K,K) be a directed Eu-
clidean cubical complex in R™ that has a minimum vertex w. Suppose that, for
all v € verts(K), the past link 1k (v) is connected. Then, for all k € verts(K),
the space ?IJV(K) is connected.

Furthermore, we proved a partial converse to Theorem 2.5. Specifically, the
converse holds only if K is a reachable directed Euclidean cubical complex as
defined in Statement & of Definition 2.1. This is expected: Properties of parts of
the directed Euclidean complex which are not reachable from w, do not influence

the dipath spaces from w.

Theorem 2.6 (Realizing Obstructions [1, Theorem 3]). Let (K, K) be a directed
FEuclidean cubical complex in R". Let w € verts(K), and let L = reach(K,w).
Let v € verts(L). If the past link 1k, (v) is disconnected, then the space ?;’V(K)

1s disconnected.

3 Directed Collapsing Pairs

Although simplicial collapses preserve the homotopy type of the underlying space
[14, Proposition 6.14] and hence of all path spaces, this type of collapsing in
directed Euclidean cubical complexes may not preserve topological properties of
spaces of dipaths. In this section, we study a specific type of collapsing called a
link-preserving directed collapse. We define link-preserving directed collapses in

Section 3.1 and give properties of link-preserving directed collapses in Section 3.2.

3.1 Link-Preserving Directed Collapses

Since we are interested in preserving the dipath spaces through collapses, the
results from Section 2.3 motivate us to study a type of directed collapse (DC)
via past links, introduced in [1]. However, we call it a link-preserving directed
collapse (LPDC) (as opposed to a directed collapse) since we show in the last
sections of this paper that when the spaces of dipaths starting from the minimum
vertex are not connected, the following definition of collapse does not preserve

the number of components.

Definition 3.1 (Link Preserving Directed Collapse). Let (K, K) be a directed
Euclidean cubical complex in R™. Let ¢ € K be a maximal cube, and let 7 be
a proper face of o such that no other maximal cube contains 7 (in this case, we
say that 7 is a free face of o). Then, we define the (7, 0)-collapse of K as the

subcomplex obtained by removing everything in between 7 and o:

K'=K\{yeK|7C7yCT7}, (2)



and let K’ denote the stratification of the set K’ induced by the cubical stratifi-
cation of R™ (thus, ' C K).

We call the directed Euclidean cubical complex (K',K') a link-preserving
directed collapse (LPDC) of (K, K) if, for all v € verts(K’), the past link Ik (v)
is homotopy equivalent to lk,,(v) (denoted lk,(v) ~ lk,,(v)). The pair (7,0)
is then called an LPDC pair.

Remark 3.2 (Simplicial Collapses). The study of simplicial collapses is known
as simple homotopy theory [3,19], and traces back to the work of Whitehead in
the 1930s [18]. The idea is very similar: If C' is an abstract simplicial complex
and a € C such that « is a proper face of exactly one maximal simplex 3, then

the following complex is the a-collapse of C in the simplicial setting:
C'=C\{yeClacyCp}

Note that we use only the free face (a) when defining a simplicial collapse,
as doing so helps to distinguish between discussing a simplicial collapse and a
[13

directed Euclidean cubical collapse. In addition, we always explicitly state “in

the simplicial setting” when talking about a simplicial collapse.

Applying a sequence of LPDCs to a directed Euclidean cubical complex can
reduce the number of cubes, and hence can more clearly illustrate the number
of dihomotopy classes of dipaths within the directed Euclidean cubical complex.
For an example, see Fig. 4. However, it is not necessarily true that LPDCs
preserve dipath spaces. We discuss the relationship between dipath spaces and
LPDCs in Section 4.

3.2 Properties of LPDCs

We give a combinatorial condition for a collapsing pair (7,0) to be an LPDC
pair; namely, the condition is that 7 does not contain the vertex min(c). From
the definition of an LPDC, we see that finding an LPDC pair requires computing
the past link of all vertices in verts(K’). In [1], we discussed how we can reduce
the check down to only the vertices in ¢ since no other vertices have their past
links affected. In this paper, we prove we need to only check one condition to
determine if we have an LPDC pair. The one simple condition dramatically re-
duces the number of computations we need to perform in order to verify we have
an LPDC. This result given in Theorem 3.9 depends on the following lemmas

about the properties of past links on vertices.

Lemma 3.3 (Properties of Past Links in a Vertex Collapse). Let (K,K) be a

directed Fuclidean cubical complex in R™. Let o € K and 7,v € verts(o) such
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Figure 4: Collapsing the Swiss Flag. A sequence of vertex collapses is presented
from the top left to bottom right. At each stage, the faces and vertices shaded
in blue and purple represent the vertex collapsing pairs with the blue Euclidean
cube being o and the purple vertex being 7. The result of the sequence of
LPDCs is shown in (f) is a one-dimensional directed Euclidean cubical complex
and one two-cube. Observe that this directed Euclidean cubical complex clearly
illustrates the two dihomotopy classes of ?(()5’5) (K).

that T X v. If T is a free face of o and K' is the (7, 0)-collapse, then the following

two statements hold:

1. lk;(lg(v) ={j€{0,1}"\ {0} | min(o) < v —j}.

2. ke (v) =Tk (v)\N{j €{0,1}"\ {0} | v —j =7}

Proof. To ease notation, we define the following two sets:

J = {5 € 40,1\ {0} | min(0) < v — j}
Ii={je{0,13"\ {0} |v—j =7}

First, we prove Statement I (that lk;{‘a(v) = J). We start with the forward
inclusion. Let j € lkl_ﬂo (v). By the definition of past links (see Definition 2.2), we
know that [v—j,v] C K|,. By the definition of K|, (see Definition 2.1), we know
that min(o) < min([v —j, v]) = v —j. This implies j € J. Therefore, lk;qa(v) -
J. For the backward inclusion, let j € J. Then, since v € verts(c) and o is an
elementary cube by assumption, and min(o) =< v — j by definition of .J, we have

v —j € verts(o). Since o € K, all faces must be in ; hence, [v — j,v] C K|,.

10



Therefore, j € lk]_qa(v), and so Ik,
then Statement I holds.
Now, we prove Statement 2 (that lk;ﬂa(v) = J\ I). Again, we prove the

(v) D J. Since we have both inclusions,

inclusions in both directions. For the forward inclusion, let j € lk;(,‘a(v). By
Statement 2 of Lemma 2.3, we have lk]_(,la(v) C Ik
lk;qg(v) = J. Next, we must show that j ¢ I. Assume, for a contradiction, that
j € 1. Then, by definition of I, v — j = 7. Since 7 < v, we obtain the partial

(v), and so, we obtain j €

order v — j = 7 < v. This implies that [r,v] C [v —j,v]. Since [v —j,v] is an
elementary cube in K'|,, then its face [r, v] must also be an elementary cube in
K'|,. Setting ¥ = [r,v] and observing 7 =7 C 5 C 7, we observe that 7 is not
an elementary cube in K’ by Eq. (2). This gives us a contradiction and so j ¢ I.
Therefore, lk;(,‘a(v) CJ\I.

Finally, we prove the backward inclusion of Statement 2. Let j € J\I. Then,
by Statement 1, j € lkl_qg(v) and either 7 < v —j or 7 is not comparable to v —j
under <. Thus, by Eq. (2), [v — j, v] is an elementary cube of K’|,. Thus, by
Definition 2.2, we have that j € lk;(%(v). Hence, J\ I C lk;(%(v)v and so
Statement 2 holds. O

Using Lemma 3.3, we see why 7 cannot be the vertex min(o) when performing
an LPDC. If 7 = min(o), then

e (v) =i €{0,1}" \ {0} | min(0) = v — j}
\ i €{0, 13"\ {0} | v — j 2 min(0)}
— {5 €{0,1)"\ {0} | min(0) < v—j and v — j » min(0)}
= {i €{0,1}"\ {0} [ min(o) < v — j}
={ {0, 13"\ {0} [j < v — min(o)}.
If v is the maximum vertex of o, then we obtain lkl_(,‘a(v) ={0,1}"\ {0,v —

min(o)}. This computation gives us the following corollary, which we illustrate

in Fig. 5 when K is a single closed three-cube.

Corollary 3.4 (Caution for a (min(o),o)-Collapse). Let (K,K) be a directed
FEuclidean cubical complex in R". Let 0 € K, 7 = min(o), and v € verts(o). If

T is a free face and K' is the (7, 0)-collapse, then the past link of v in K'|, is:

{1 €{0,1}"\ {0} | j < v —min(0)}

In particular, if v.= max(o) and k = dim(o), then the past link is the
complete complex on k elements before the collapse, and, after the collapse, it is

homeomorphic to S*¥=2. Thus, (1,0) is not an LPDC pair.

11
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(a) Initial Complex (b) After Collapse

Figure 5: Removing the minimum vertex of a cube. Consider the directed Eu-
clidean cubical complex in (a), which as a subset of R? is a single closed three-
cube; call this three-cube o. Letting 7 = min(o), we observe that the past link
of v = max(o) is contractible before the (7, c)-collapse and is homeomorphic to
S! after the collapse. Thus, the past links before and after the collapse are not

homotopy equivalent, and so this collapse is not an LPDC.

The following lemma shows under which condition a directed Euclidean cu-

bical collapse induces a simplicial collapse in the past link.

Lemma 3.5 (Vertex Collapses that Induce Simplicial Collapse of Past Links).
Let (K,K) be a directed Euclidean cubical complex in R™. Let 0 € K and 7,v €
verts(o) such that 7 X v and T # min(c). If T is a free face of o and K' is the
(1,0)-collapse, then 1k, (v) is the (v — T)-collapse of Ik (v) in the simplicial

setting.

Proof. Consider K<y. Since 7,v € verts(o) and o is maximal in K, we know [min(o), v|
and [7, v] are elementary cubes in K<y. Since 7 is a free face of o, we further
know that [min(c), v] is the only maximal proper coface of [7,v] in K<y. By
definition of past link (Definition 2.2), we then have that v — min(o) and v — 7
are simplices in Ik (v), and v — min(o) is the only maximal proper coface
of v—7in Lo (v). Hence, v — 7 is free in kg, (v). Moreover, lkI_Qv (v)
is the (v — 7)-collapse of Ikj (v). One can see this by using Statement 2 of
Lemma 3.3 by which lkI_QV(V) can be characterized as the (v — 7)-collapse of
lkf_%v (v).

By Statement 3 of Lemma 2.3, we know that lkj(v) = k- _(v) and that Ik, (v) =
lk[_{,ﬂ (v), which concludes this proof. O

Next, we prove two lemmas concerning relationships of the past link of a
vertex in the original directed Euclidean cubical complex and in the collapsed
directed Euclidean cubical complex. These relationships depend on where v is lo-

cated with respect to 7. In the first lemma, we consider the case where min(7) £
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Figure 6: Past link of an “uncomparable” vertex before and after a collapse.
Consider the directed Fuclidean cubical complex shown, comprising a single
three-cube o and all of its faces. Let 7 = [x,y]. Since v and max(7) = y are
not comparable, by Lemma 3.6, the past link of v is the same before and after
the collapse. Indeed, we see that this is the case for this example. The past link

of v is the complete complex on two vertices, both before and after.

v, and we present a sufficient condition for past links in K and the (7, o)-collapse

to be equal. See Fig. 6 for an example that illustrates the result of this lemma.

Lemma 3.6 (Condition for Past Links in K and K’ to be Equal). Let (K,K) be
a directed Fuclidean cubical complex in R™. Let 7,0 € K such that 7 is a face of
o. If T is a free face of o and K' is the (1, 0)-collapse, then, for all v € verts(K)
such that max(7) A v, we have 1k (v) = Ik, (v).

Proof. By Statement 2 of Lemma 2.3, we have 1k}, (v) C Ik, (v). Thus, we only
need to show lkj (v) C Ik, (v). Suppose j € lkj(v). By the definition of the
past link (see Definition 2.2), we know that [v — j, v] is an elementary cube in
K. By assumption, max(7) A v. Thus, by Eq. (2), [v — j,Vv] is not removed
from K and thus is an elementary cube in K'. Thus, j € 1k, (v). O

In the following lemma, we consider the case where max(7) =< v, and we
present a sufficient condition for past links in the (7, o)-collapse and the (min(7), o)-

collapse to be equal. See Fig. 7 for an example that illustrates this result.

Lemma 3.7 (Comparing Past Links in a General Collapse with Past Links in
a Vertex Collapse). Let (K,K) be a directed Fuclidean cubical complex in R™
such that there exists cubes 7,0 € K with min(t) a free face of o. Let K' be
the (7,0)-collapse and let K be the (min(7),o)-collapse. If v € verts(K') and

~

max(7) =X v, then v € verts(K) and Ik, (v) = lk;?(v).

~

Proof. We first show v € verts(K). If 7 is a zero-cube (and hence in verts(K)),
then K’ = K, which means that v € verts(K). On the other hand, if 7 is not a

zero-cube, then we have min(7) < max(7) < v. In particular, min(7) # v. And
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(a) Original Com- (b)  The (r1,0)- (¢c) The (x,0)-
plex Collapse Collapse

Figure 7: Two collapses with same past links. For example, in the directed
Euclidean cubical complex K shown in (a), let o be the three-cube, and let 7 =
[x,y]. We look at the past link of the vertex v. In the original directed Euclidean
cubical complex, the past link of v is the complete complex on three vertices.
By Lemma 3.7, the past link of v is the same in both the (7, o)-collapse and the
(x,0)-collapse since max(7) = y = v. By Lemma 3.8, we also know that the
past links of v in K and the (x,0)-collapse are homotopy equivalent. Indeed,

we see that this is the case.

so, by definition of K as a (min(r),o)-collapse and since v € K, we conclude
that v € K.

Next, we show 1k, (v) = Ik~ (v). By Statement 2 of Lemma 2.3, we have Ik~ (v) C
Ik}, (v). Thus, what remains to be proven is Ik, (v) C k= (v). Let j € ki, (v).
By definition of the past link (Definition 2.2), we know that [v — j,v] C K.
Consider two cases: v —j = min(7) and v — j 2 min(7).

Case 1 (v —j 2 min(7)): Since v — j = min(7) < max(7) < v, we know that
7 C [v—Jj,v]. Thus, by Eq. (2), we have [v—j,v] € K’, which is a contradiction.
So, Case 1 cannot happen.

Case 2 (v —j A min(7)): If v —j Z min(7), then, by the definition of
a (min(7), o)-collapse in Definition 3.1, we know that [v —j,v] € K and thus j €

k= (v).
K
Hence, 1k, (v) C lkli((v). Since we have both subset inclusions, we con-
clude Ik, (v) = Ik~ (v). O

In general, the minimal vertex of 7 is not free in K and hence, there is
no vertex collapse. In the main theorem, the previous lemma is applied to a
subcomplex of K; specifically, it is applied to the restriction to the unit cube
corresponding to o, where all vertices, inculding min 7 are then free. The results
carry over to K.

The next result states that vertex collapses result in homotopy equivalent

past links as long as we are not collapsing the minimum vertex of the directed

14



Euclidean cubical complex.

Lemma 3.8 (Past Links in a Vertex Collapse). Let (K,K) be a directed Eu-
clidean cubical complex in R". Let o € K and let T € verts(o) such that
7 # min(o). Let v € verts(K) with v # 7. If 7 is a free face of o and K’
is the (1,0)-collapse, then 1k (v) ~ 1k, (v).

Proof. We consider three cases:

Case 1 (v ¢ verts(o)): By definition of past link (Definition 2.2), if v ¢
verts(co), then the past links Ik (v) and 1k, (v) are equal.

Case 2 (1 A v): By Lemma 3.6, if 7 = max(7) A v, again we have equality
of the past links 1k, (v) and Ik, (v).

Case 3 (v € verts(o) and 7 X v): By Lemma 3.5, we know that lk,,(v)
is the v — 7-collapse of 1k (v) in the simplicial setting. Since simplicial col-
lapses preserve the homotopy type (see e.g., [14, Proposition 6.14]), we con-
clude Ik (v) ~ Ik, (v).

[

We give an example of Lemma 3.8 in Fig. 7 by showing how the LPDC
induces a simplicial collapse on past links.

Lastly, we are ready to prove the main result.

Theorem 3.9 (Main Theorem). Let (K, K) be a directed Euclidean cubical com-
plex in R™ such that there exist cubes 7,0 € K with T a free face of 0. Then,
(1,0) is an LPDC pair if and only if min(o) ¢ verts(r).

Proof. Let v.= max(c) and k = dim(o). Let (K',K’) be the (7, c)-collapse of
K. Let (L,L) be the cubical complex such that L = K|,. Since ¢ € K, we
know L = & (i.e., L is a unit cube). Since L is a single unit cube and o is
a maximal elementary cube, all proper faces of o, including 7 and min(7), are
free faces in L. Thus, let (L', £') be the (r,0)-collapse of L, and let (L, L) be
the (min(7), o)-collapse of L.

We first prove the forward direction by contrapositive (if min(o) € verts(r),
then (7,0) is not an LPDC pair). Assume min(o) € verts(r). By Corollary 3.4,
we obtain 1k} (v) is homeomorphic to B! and Ik~ (v) is homeomorphic to SF¥—2.
Since min(o) € verts(7), we know that min(c) = min(7). Since 7 is a face of o,
we know max(7) < max(c) = v. Since min(c) = min(7) € verts(7) and since 7
is a proper face of o, we know that v # max(7). Thus, v € verts(L’). Applying
Lemma 3.7, we obtain 1k}, (v) = lk> (v). Putting this all together, we have:

Iy (v) = BT £ SM72 o~ 1k (v) = Tk (v),
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and so 1k, (v) % 1k}, (v).

Since no faces of o are in I\ £, the past link of v remains the same outside
of L in both K and K’. Thus, Ik (v) # 1k, (v) and so we conclude that (7,0)
is not an LPDC pair, as was to be shown.

Next, we show the backwards direction. Suppose min(o) ¢ verts(r). Let v €
verts(K'), and consider two cases: max(7) A v and max(7) < v.

Case 1 (max(7) A v): By Lemma 3.6, we have Ik (v) = 1k, (v). Hence, Ik (v) ~
Ik, (v). Since v was arbitrarily chosen, we conclude that (7, ) is an LPDC pair.

Case 2 (max(7) = v): By Lemma 3.7, we have that lk;,(v) = Tk~ (v).
Since min(o) ¢ verts(7), we know that min(7) # min(c). Applying Lemma 3.8,
we obtain 1k, (v) ~ lk%(v). Again, since no faces of o are removed from K
and K’ to obtain £ and L', the past link of v remains the same outside of L in
both K and K'. Thus, Ik (v) ~ lk,,(v). Since v was arbitrarily chosen, we
conclude that (7,0) is an LPDC pair. O

4 Preservation of Spaces of Dipaths

In [1], we proved several results on the relationships between past links and
spaces of dipaths. One result, Theorem 2.4, states that for a directed Euclidean
cubical complex with a minimum vertex, if all past links are contractible, then
all spaces of dipaths starting at that minimum vertex are also contractible. If we
start with a directed Euclidean cubical complex with a minimum vertex that has
all contractible past links, then all spaces of dipaths from the minimum vertex
are contractible by this theorem. We explain how those relationships extend to
the LPDC setting in this section.

Applying an LPDC preserves the homotopy type of past links by definition.
Hence, applying the theorem again, we see that any LPDC also has contractible
dipath spaces from the minimum vertex. Notice that the minimum vertex is not
removed in an LDPC, since it is a vertex and minimal in all cubes containing it

(including the maximal cube). We give an example of this in Example 4.1.

Example 4.1 (3 x 3 filled grid). Let K be the 3 x 3 filled grid. For all v €
verts(K), 1k (v) is contractible. By Theorem 2.4, this implies that all spaces
of dipaths starting at 0 are contractible. Applying an LPDC such as the edge
[(1,3),(2,3)] results in contractible past links in K" and so all spaces of dipaths

in K" are also contractible. See Fig. 8. We can generalize this example to any
k? filled grid where k,d € N.

An analogous result holds for connectedness (Theorem 2.5). If we start with

a directed Euclidean cubical complex such that all past links are connected,
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Figure 8: (a) The 3 x 3 filled grid has contractible past links and dipath
spaces. The pair comprising of the purple edge [(1,3),(2,3)] and the blue
square [(1,2),(2,3)] is an LPDC pair. (b) The result of performing the LPDC.

All past links are contractible and so all dipath spaces are also contractible.

then all dipath spaces are connected. Any LPDC results in a directed Euclidean

cubical complex that also has connected dipath spaces. See Example 4.2.

Example 4.2 (Outer Cubes of the 5 x 5 x 5 Grid). Let K = [0,5] \ [1,4]3,
which, as an undirected complex, is homeomorphic to a thickened two-sphere.
For all v € verts(K), Ik (v) is connected. By Theorem 2.5, this implies that
for all v € verts(K), the space of dipaths ?B(K ) is connected. Applying an
LPDC such as with the vertex (5,0,0) in the cube [(4,0,0), (5,1,1)] results in
connected past links in K’ and so all spaces of dipaths P (K’) are connected.
We can generalize this example to any k% grid where d > 3 and the inner cubes

of dimension d are removed.

Both Theorem 2.4 and Theorem 2.5 have assumptions on the topology of past
links and results on the topology of spaces of dipaths from the minimum vertex.
We may ask if the converse statements are true. Does knowing the topology of
spaces of dipaths from the minimum vertex tell us anything about the topology
of past links? The converse to Theorem 2.4 holds. To prove this, we first need

a lemma whose proof appears in [21].

Lemma 4.3 (Homotopy Equivalence [21, Prop. 5.3]). Let (K,K) be a directed
Euclidean cubical complex in R™. Let p,q € Z™. If gfj (K) is contractible for
all j € kg (@), then PR(K) =~ i _(q).

Thus, we obtain:

Theorem 4.4 (Contractability). Let (K, K) be a directed Euclidean cubical com-
plex in R™ that has a minimum vertex w. The following two statements are

equivalent:

1. For all v € verts(K), the space of dipaths ?XV(K) is contractible.
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2. For all v € verts(K), the past link 1k (v) is contractible.

Proof. By Theorem 2.4, we obtain Statement 2 implies Statement 1.

Next, we show that Statement I implies Statement 2. Let v € verts(K). For
all j € Ik (v), the cube [v —j,v] is a subset of K, which means that v —j €
verts(K). Thus, by assumption, all dipath spaces ?vaj(K ) are contractible. By

w
verts(K'), the dipath space ?X,(K ) is contractible. Therefore, 1k (v) is con-
tractible. O

Lemma 4.3, we know that By (K) = Ik (v) = Ikg(v). Again, since v €

As a consequence of this theorem, we know that if we start with a directed
Euclidean cubical complex with contractible dipath spaces starting at the mini-
mum vertex, then any LPDC also result in a directed Euclidean cubical complex
with all contractible dipath spaces starting at the minimum vertex, and vice

versa.

Corollary 4.5 (Preserving Directed Path Space Contractability). Let (K, K)
be a directed Fuclidean cubical complex in R™ that has a minimum verter w.
Let 7,0 € K such that T is a face of o. If T is a free face of o, let (K',K') be
the (7,0)-collapse. If K' is an LPDC of K, then the spaces of dipaths ﬁ},’v(K)
are contractible for all v € verts(K) if and only if the spaces of dipaths ?{;(K’)
are contractible for all k € verts(K').

Proof. We start with the forwards direction by assuming that the spaces of
dipaths ?;’V(K ) are contractible for all v € verts(K). Theorem 4.4 tells us
that all past links lkj (v) are contractible for all v € verts(/). This implies
that 1k, (k) is contractible for all k € verts(K') because K’ is an LPDC of K.
Applying Theorem 4.4 again, we see that all spaces of dipaths ?IJV(K’ ) are
contractible for all k € verts(K’).

Next we prove the backwards direction by assuming that the spaces of dipaths
?IV‘V(K’) are contractible for all k € verts(K’). Let v € verts(K). Either v €
verts(K') or v ¢ verts(K").

Case 1 (v € verts(K’)): By Theorem 4.4, we know that lky,(v) is con-
tractible. Since K’ is an LPDC of K, then Ik (v) is also contractible.

Case 2 (v ¢ verts(K')): If v ¢ verts(K), then 7 is a vertex and v = 7.
Observe that lk—(7) is contractible since 7 is an elementary cube and 7 does not
contain min(c). Furthermore, notice that Ik, (7) = lk, (7) because 7 is a free
face of 0. Hence, lkj(7) is contractible.

Therefore 1k (v) is contractible for all v € verts(K'). Applying Theorem 4.4,
we get that ?;’V (K) is contractible for all v € verts(K). O
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Using Theorem 2.5 and the partial converse to the connectedness theorem [1,
Theorem 3], we get that any LPDC of a directed Euclidean cubical complex with
connected dipath spaces and reachable vertices results in a directed Euclidean

cubical complex with connected dipath spaces.

Corollary 4.6 (Condition for LPDCs to Preserve Connectedness of All Directed
Path Spaces). Let (K,K) be a directed Euclidean cubical complex in R™ that has
a minimum vertexr w. Let (L,L) = reach(K,w). Let (1,0) be an LPDC pair
in L, and let L' be the (1,0)-collapse. The spaces of dipaths in ﬁl‘,‘v(L) are

connected for all v € verts(L) if and only if the spaces of dipaths ?;’V(L’) are

connected for all v € verts(L').

We note that reachability is a necessary condition. Below we give an example
of a directed Euclidean cubical complex K that has all connected dipath spaces

but an LPDC yields a directed Euclidean cubical complex with a disconnected

path space.
7Y v
z L Z_ /|
4 [/ 4
W/ yd L L [ [
. y g ¥
I V] 0 -
: V] V] 1 /9
JI. 1. | % T =
| V1 = v
) 7
’I / ’, r /
0 01/
(a) Original Complex (b) After Collapse

Figure 9: The bowling ball before and after the collapse described in Ex-
ample 4.7. Observe ?85’5’5)@( ) has one connected component. Addition-
ally, o = [(4,1,1), (5,2, 2)] (highlighted in blue) and 7 = [(5,1, 1), (5, 2,2)] (high-
lighted in purple) is an LPDC pair. After collapsing (7,0), ﬁg‘r”S’g))(K) changes
from having one connected component to three connected components. The

three connected components are represented by the three dipaths.

Example 4.7 (Bowling Ball). Let K be the boundary of the 5 x 5 x 5 grid
union [(4,1,1),(5,2,2)] and [(4,3,3),(5,4,4)] \ [(5,3,3),(5,4,4)]. See Fig. 9(a).
Notice that some vertices of K are unreachable, for example, vertex (4,1,1).
Furthermore, all past links of vertices in K are connected and so all dipath
spaces starting at 0 are also connected. After performing an LPDC with 7 =
[(5,1,1),(5,2,2)] and o = [(4,1,1),(5,2,2)], the dipath space between 0 and
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(5,5,5) changes from having one connected component to three connected com-
ponents, as shown in the figure. This example shows that the reachability con-

dition in Corollary 4.6 is necessary for preserving connnectedness in LPDCs.

LPDCs can also preserve dihomotopy classes of dipaths starting at the min-
imum vertex of many directed Euclidean cubical complexes that have discon-
nected past links. Recall the Swiss flag as discussed in Fig. 4. The Swiss flag has
disconnected past links at (3,4) and (4, 3), yet there exists a sequence of LPDCs
that results in a directed Euclidean cubical complex that highlights the two di-
homotopy classes of dipaths between 0 and (5.5). Example 4.8 gives another

similar situation.

(d) (e)

Figure 10: Link-preserving DCs of the window. A sequence of LPDCs is pre-
sented from (a)-(e). The directed Euclidean cubical complex in (b) comes from
performing several vertex LPDCs to remove the two-cubes along the border of
K. In (b)-(d), the LPDC pairs (7,0) are highlighted in purple and blue respec-
tively. The result of the sequence of LPDCs is a graph of vertices and edges that

more clearly illustrates the dihomotopy classes of dipaths in the dipath space.

Example 4.8 (Window). Let K be the 5 x 5 grid with the following two-cube
interiors removed: [(1,1),(2,2)], [(3,1),(4,2)], [(1,3),(2,4)], [(3,3),(4,4)]. See
Fig. 10(a). K has disconnected past links at the vertices (2,2), (4, 2), (2,4), (4,4)
so K does not satisfy Corollary 4.5 or Corollary 4.6. Observe that ?(K )5)5’5) has
six connected components. We can perform a sequence of LPDCs that preserves
the dihomotopy classes of dipaths between 0 and (5,5) at each step. First, we

apply vertex LPDCs to remove the two-cubes along the border. Then we can
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apply four edge LPDCs and one vertex LPDC to get a graph of vertices and

edges. This graph more clearly illustrates the six dihomotopy classes of dipaths
in B ().

5 Discussion

LPDCs preserve spaces of dipaths in many examples (see Section 4), in partic-
ular, if they are all trivial in the sense of either all connected or all contractible
and the directed Euclidean cubical complex is reachable for the minimum. How-
ever, LPDCs do not always preserve spaces of dipaths. We discuss some of those
instances here. One limitation of LPDCs is that the number of components may
increase after an LPDC as we saw in Example 4.7 or, as we see in Example 5.1,

they may decrease.

Example 5.1 (A Sequence of LPDCs of the Window That Decreases the Num-
ber of Connected Components of the Dipath Space). Consider K as given in Ex-
ample 4.8. After applying vertex LPDCs that remove the two-cubes on the
border of K, we can apply an LPDC to the edge [(2,4), (3,4)]. Now ?(K’)E)M’)
has five connected components; whereas, the dipath space P (K )85’5) has six con-

nected components. See Fig. 11. This example shows that there are both “good”

_.(575) _.(5.,5)

o 0®—

(a) Initial Complex (b) After Collapse

0

Figure 11: Link-preserving DC of the window that changes dipath space. The
LPDC of the edge [(2,4),(3,4)] changes the dipath space between 0 to (5,5)

from having six connected components to five connected components.

and “bad” ways to apply a sequence of LPDCs to a directed Euclidean cubical
complex. As illustrated in Example 4.8, there exists a sequence of LPDCs that
preserves the six connected components in ?(K )(()5’5). However, if we perform
a sequence of LPDCs that removes the edge [(2,4), (3,4)] as in this example,
then we get a directed Euclidean cubical complex that does not preserve the

dihomotopy classes of dipaths in ﬁ(K )85’5).
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Example 5.1 illustrates the need to investigate other properties if we want to
preserve dipath spaces when performing an LPDC.

In Example 4.7, the problem was the existence of unreachable vertices. In
Example 5.1, the vertex (2,4) is a deadlock after the LPDC: only trivial dipaths
initiate from there; whereas, before collapse, that was not the case. This seems to
suggest that the introduction of new deadlocks should not be allowed; in practice,
this would require an extra—but computationally easy—check on vertices of o.

In the non-directed setting, if K’ is obtained from K by collapsing a collapsing
pair (7,0), then not only is the inclusion of K’ in K a homotopy equivalence.
K’ is a deformation retract of K. The following example removes any hope of

such a result in the directed setting:

Example 5.2 (LDPC of the Four-Cube With No Directed Retraction to the
Collapsed Complex). Let (I*,Z%) be the standard unit four-cube. Let 7 be the
vertex (1,1,0,0), and o be the cube [0, 1]. Since 7 is free and not the minimum
vertex of o, the pair (7,0) is an LPDC pair. Thus, let (K’,K’) be the collapsed
complex. Next, we show that there is no directed retration, i.e., no directed map
from I* to K’ that is the identity on K’.

Suppose, for a contradiction, that f : I* — K’ is such a directed retraction.
Let p; = (0,1,0,0), p2 = (1,0,0,0), q1 = (1,1,1,0), and g2 = (1,1,0,1).
By the product order on R*, we have pi,p2 =< 7 and 7 < qi,qqe. Since the
points p1, p2, qi, and qs are vertices of I* and are not equal to 7, we also know
that p1, p2, qi1, and qo are points in K’. Since f is a directed retraction, we
have that p; = f(p1) =< f(7) and that ps = f(p2) = f(7). Similarly, we obtain
that f(7) = f(a1) = a1 and that f(7) < f(q2) = qo.

Let 1,22, 23,24 € I such that f(7) = (x1,x2,x3,24). Then,

p1 = f(7) = 22 > 1 and hence 23 = 1,
p2 < f(7) = x1 > 1 and hence z; = 1,
f(1) 2 q1 = x4 <0 and hence x4 = 0,

f(7) = @2 = x3 <0 and hence z3 = 0.

Thus, f(7) = (1,1,0,0) = 7, which is not in K’ and hence a contradiction. In
fact, this argument extends to (I*,Z%) for k > 4.

As further evidence that such a (7, 0)-collapse does not preserve the directed
topology, consider the spaces of dipaths in (I*,Z%) and (K’,K’). We would need
dipaths in the original space to map to dipaths in the collapsed space. However,
notice that the dipath from p; to q; through 7 cannot be mapped to a dipath
in (K',K').
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We observe that vertex LPDCs appear to not introduce the problems of
unreachability and deadlocks. These observations lead us to suspect that study-
ing unreachability, deadlocks, and vertex LPDCs can help us better understand
when LPDCs preserve and do not preserve dipath spaces between the minimum
and a given vertex. We leave this as future work.

In summary, we provide an easy criterion for determining when we have an
LPDC pair, as well as discuss various settings for when LPDCs preserve spaces
of dipaths. Fully understanding when LPDCs preserve spaces of dipaths between
two given vertices is a step towards developing algorithms that compress directed

FEuclidean cubical complexes and preserve directed topology.
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