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Abstract
In this thesis, we study interactions between algebraic and coalgebraic structures in
∞-categories (more precisely, in the quasicategorical model of (∞, 1)-categories). We
define a notion of a Hopf algebra H in an E2-monoidal ∞-category and lift some results
about ordinary Hopf algebras, such as the fundamental theorem of Hopf modules, to this
setting. We also study Hopf–Galois extensions in this context. Given a candidate Hopf–
Galois extension, i.e., a map ϕ : A→ B of H-comodule algebras where H coacts on A
trivially, we construct a structured version of the comparison map B⊗AB → H⊗B that
allows us to compare the category of descent data for ϕ with a category of “B-modules
equipped with a semilinear coaction of H”. We provide further insights into the case of
commutative (i.e., E∞) comodule algebras over a commutative Hopf algebra, for instance
a description of the aforementioned category of modules equipped with a semilinear
coaction as the limit of a “categorified cobar construction”. Moreover, we provide a
simple description of comodules over a space in slice categories of the ∞-category of
spaces, which enables us to realize multiplicative Thom objects as comodule algebras
and thus incorporate them into the aforementioned framework.

Keywords: ∞-category, Hopf algebra, comodule, Hopf–Galois extension, descent,
Thom object

Résumé
Dans cette thèse, on étudie les interactions entre les structures algébriques et coal-

gébriques dans les ∞-catégories (plus précisément, dans le modèle quasi-catégoriel des
(∞, 1)-catégories). On définit une notion d’une algèbre de Hopf H dans une ∞-catégorie
E2-monoïdale et adapte quelques résultats sur les algèbres de Hopf ordinaires, comme
le théorème fondamental des modules de Hopf, à ce cadre. On étudie également les
extensions de Hopf–Galois dans ce contexte. Étant donné un candidat pour une extension
de Hopf–Galois, c.-à-d. un morphisme ϕ : A → B d’algèbres dans la catégorie des H-
comodules, où la coaction de H sur A est triviale, on construit une version plus élaborée
du morphisme de comparaison B⊗AB → H⊗B qui permet de comparer la catégorie des
données de descente pour ϕ avec une categorie de «B-modules munies par une coaction
semilinéaire de H ». Dans le cas des algèbres commutatives (c.-à-d. E∞) dans la catégorie
des comodules sur une algèbre de Hopf commutative, on démontre des résultats plus
explicites, par exemple, on décrit la catégorie susmentionnée des modules munies par
une coaction semilinéaire comme la limite d’une «construction de bar catégorielle». De
plus, on donne une description simple des comodules sur un espace dans les tranches
de la ∞-catégorie des espaces, qui permet de réaliser les objets de Thom multiplicatifs
comme algèbres dans une catégorie des comodules et donc les intégrer dans le cadre
susmentionné.

Mots-clefs: ∞-catégorie, algèbre de Hopf, comodule, extension de Hopf–Galois, de-
scente, objet de Thom
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Introduction
In algebraic topology, one studies spaces by associating algebraic invariants such as

homology groups to them and reducing topological questions to algebraic questions
about these invariants. These invariants often come equipped with several algebraic and
coalgebraic structures whose interplay can be very revealing.

For example, consider a space X equipped with a multiplication µ : X × X → X
that is associative and unital up to homotopy. Then the homology H∗(X; k) of X with
coefficients in a field k admits a k-algebra structure given by the Pontryagin product,
which is defined as the composite

H∗(X; k)⊗k H∗(X; k) ∼= H∗(X ×X; k) µ∗−→ H∗(X; k).

Moreover, H∗(X; k) (in fact, the homology of any space) also admits a k-coalgebra
structure, i.e., a comultiplication

∆: H∗(X; k) (IdX ,IdX)∗−−−−−−→ H∗(X ×X; k) ∼= H∗(X; k)⊗k H∗(X; k)

and a counit
ε : H∗(X; k) (X→{∗})∗−−−−−−→ H∗({∗}; k) ∼= k

which satisfy coassociativity and counitality conditions dual to the associativity and
unitality of algebras. These two structures are compatible with each other in the sense that
∆ and ε are homomorphisms of algebras (or equivalently, the Pontryagin product and the
associated unit map are maps of coalgebras) and thus define a bialgebra. The interactions
between these operations pose restrictions on the structure of the (co)homology of X,
whose study goes back to [Hop41].

One of the main insights of homotopy theory is that one should think of algebraic
structures of invariants of spaces as truncations of “homotopy coherent” algebraic struc-
tures in a higher category. For instance, many spaces such as loop spaces admit not
only a multiplication that is associative and unital up to homotopy, but in fact an
algebra structure over the little intervals operad E1, which encodes homotopies between
associativity and unitality homotopies, homotopies between those, and so on, whose
systematic analysis goes back to [Sta63]. The aforementioned algebra structure on the
homology is then obtained by transferring the E1-algebra structure of X along the functor
H∗(−; k), under which homotopies between maps become equalities.

In this thesis, we study analogues of the aforementioned interplay between algebraic and
coalgebraic structures in the higher categorical setting. An important class of examples
that can be viewed through this lens is Thom spectra, whose study goes back to [Tho54,
Chapitre IV] as a means to classify certain classes of manifolds up to bordism. Consider
an E1-map f : X → BGL1(S) into the classifying space of the automorphisms of the
sphere spectrum and its Thom spectrum M(f). We can view the space X as a bialgebra
in the (higher) category of spaces and thus its suspension spectrum Σ∞

+X as a bialgebra
in the (higher) category of spectra. The Thom diagonal M(f)→ (Σ∞

+X)⊗M(f) defines
a coaction of Σ∞

+X on M(f), which is also a map of E1-ring spectra.
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One of the main concepts we study here is that of a Hopf–Galois extension, which is a
generalization of the concept of a Galois extension, as we explain now. Let K ⊆ L be
fields and G a finite group acting on L via K-linear field automorphisms. Then L is a
G-Galois extension of K if and only if the following hold (cf. [Gre92, Section 0.1]).

• K agrees with the fixed field LG.

• The map γ : L⊗KL→
∏
g∈G L given by γ(l1⊗l2) = ((g.l1)·l2)g∈G is an isomorphism.

These conditions can be described in terms of the group algebra Z[G], or rather its
dual Z[G]∨, as follows. The group algebra is in fact a bialgebra whose comultiplication is
given by ∆(g) = g ⊗ g. This bialgebra structure induces a dual bialgebra structure on
Z[G]∨ such that the action of G on L can be transposed to a coaction ρ : L→ Z[G]∨⊗L
given by ρ(l) = ∑

g∈G g
∨ ⊗ (g.l), where g∨ is the dual basis element corresponding to the

basis element g ∈ Z[G]. Now the fixed point field LG can be alternatively described as
the primitives

PrimZ[G]∨(L) :=
{
l ∈ L : ρ(l) = 1Z[G]∨ ⊗ l

(
=
∑
g∈G

g∨ ⊗ l
)}

of this coaction. Moreover, there is an isomorphism ∏
g∈G L

∼= Z[G]∨ ⊗ L under which
γ(l1 ⊗ l2) can be identified with∑

g∈G
g∨ ⊗ ((g.l1) · l2) = ρ(l1) · (1⊗ l2).

Motivated by this description, one can define “Galois extensions” over an arbitrary
bialgebra H as follows. Given a ring map ϕ : A→ B and a coaction ρ : B → H ⊗B that
is a ring map and such that ϕ factors through PrimH(B), ϕ is called an H-Hopf–Galois
extension if the following maps are isomorphisms.

• The restriction A→ PrimH(B)

• The map γ : B ⊗A B → H ⊗B given by γ(b1 ⊗ b2) = ρ(b1) · (1⊗ b2)

The definition of Hopf–Galois extensions in this form in the algebraic setting goes back
to [KT81]. In the homotopical setting, Galois and Hopf–Galois extensions of ring spectra
were introduced in [Rog08, Part I]. Variations of the notion of a Hopf–Galois extensions
in the context of model categories were also studied in [Rot09], [Hes09], [Kar14] and
[BH18].

While we draw a lot of inspiration from these works in point-set models, we use the
framework of quasicategories (which we refer to simply as ∞-categories) developed in
[Lur09] and [Lur17]. Using non-strict models for higher categories appears to be necessary
in this context because, as shown in [PS18], all coalgebras in common point-set models
of spectra are cocommutative, whereas one would expect to have non-cocommutative
examples, such as dual group algebras of non-abelian groups. In the ∞-categorical
setting, bialgebras and comodule algebras over them were studied in [Bea16] and [Bea21],
results of which we use and build upon.
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Structure of this thesis
In Section 1, we review certain aspects of algebraic and coalgebraic structures in
∞-categories that we need later.

In Section 2, we consider coalgebraic structures in the ∞-category S of spaces. The
main result of this section (Proposition 2.0.6) states that a coaction of a space X on
an object f : Y → T of the slice category S/T is uniquely determined by a coaction
of X on Y , which allows us to view every such f as a comodule over its source Y
(cf. Construction 2.0.11). A monoidal version of this construction is used later in
Example 3.1.3 to realize multiplicative Thom objects as comodule algebras.

In Section 3, we discuss a precise definition of Hopf–Galois extensions in ∞-categories
and relate them to questions of descent. The crucial ingredient for this discussion is a lift
of the map B ⊗A B → H ⊗B sketched above to a map of comonads on the ∞-category
of B-modules (cf. Corollary 3.2.8).

In Section 4, we define a notion of Hopf algebras in ∞-categories and lift some results
about Hopf algebras in the 1-categorical setting to our setup. In Corollary 4.2.9, we
obtain an equivalence between the base category and an ∞-category of objects equipped
with an action and a coaction of a (certain type of) Hopf algebra that are compatible in
an appropriate sense. In Proposition 4.3.10, we identify the ∞-category of comodules
over a dualizable coalgebra with the ∞-category of modules over its dual.

In Section 5, we discuss the case where all the algebra structures in question are com-
mutative, which allows us to work with a simplified description of coalgebraic structures.
In Proposition 5.4.24, we show that for a commutative comodule algebra B over a commu-
tative Hopf algebra H, the ∞-category of B-modules in the ∞-category of H-comodules
is equivalent to the limit of a “categorified cobar construction” LComodΩ•

H(B)(C). In
Construction 5.5.6 we extend the map B ⊗A B → B ⊗H to more general “multiplicative
tensors with spaces”, which in particular yields an equivalence THHA(B) ' (1C⊗H1C)⊗B
for an H-Hopf–Galois extension A→ B (cf. Example 5.5.9).

There are two appendices dedicated to rather long proofs that do not fit well into other
sections. In Appendix A, we show that defining bialgebras as “algebras in a monoidal
∞-category of coalgebras” and “coalgebras in a monoidal ∞-category of algebras” yield
equivalent results (cf. Corollary A.0.17). In Appendix B, we show that an adjunction
F : D � E :G of lax monoidal functors can be lifted to an adjunction between ∞-
categories of R- and F (R)-modules for every algebra R in D (cf. Proposition B.0.6).

General conventions
As mentioned above, we work with quasicategories, which we refer to as ∞-categories.

We freely employ the terminology and some results from [Lur09]. In particular, when we
speak of (co)limits, we mean them to be invariant under homotopy equivalences, hence
homotopy (co)limits in the classical terminology.

Our notation mostly agrees with that of [Lur09] and [Lur17]. One significant difference
is that we implicitly identify a 1-category with its nerve in simplicial sets. For mapping
objects, we use the following notation.
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HomC(−,−) morphism set in the 1-category C
MapC(−,−) mapping space in the ∞-category C
Fun(−,−) functor (∞-)category

For the simplex category ∆ and its variations, we employ the following conventions.

Category . . . of . . . with objects . . . describing

∆+ finite ordinals [n] = {0, . . . , n},
n ∈ Z≥−1

(co)augmented
(co)simplicial

objects

∆ non-empty finite ordinals [n], n ∈ N = Z≥0
(co)simplicial

objects

∆⊥

finite ordinals with a
distinguished bottom

element

[n]⊥ = {⊥, 0, . . . , n},
n ∈ Z≥−1

(left) split
(co)simplicial

objects

∆>
finite ordinals with a

distinguished top element
[n]> = {0, . . . , n,>},

n ∈ Z≥−1

(right) split
(co)simplicial

objects

Fin∗ pointed finite sets 〈n〉 = {∗, 1, . . . , n},
n ∈ N = Z≥0

N/A

Recall that ∆ is generated by coface maps δi : [n] → [n + 1] and codegeneracy maps
σj : [n+ 1]→ [n] for varying n ∈ N, i ∈ {0, . . . , n+ 1} and j ∈ {0, . . . , n}. Moreover, ∆+
can be obtained from ∆ by adding an extra coface map δ0 : [−1]→ [0] subject to certain
relations. We sometimes abbreviate the image of δi under a functor as di and the image
of σj as sj. Besides the full inclusion ∆ ⊆∆+, we have non-full inclusions

∆+
add disjoint ⊥−−−−−−−−→∆⊥

forget distinction of ⊥−−−−−−−−−−−−→∆

and
∆+

add disjoint >−−−−−−−−→∆>
forget distinction of >−−−−−−−−−−−−→∆,

which we use, for instance, to restrict split (co)simplicial objects to (co)augmented
(co)simplicial objects.

Unless more precision is necessary or preferable, we employ the usual abuse of notation
of using “underlying objects” to refer to more structured objects. Moreover, we use the
following notation for certain maps and functors induced by (co)algebraic structures,
often without explicitly introducing them in the specific case in question.

µ? multiplication of an algebra ∆? comultiplication of a coalgebra
η? unit map of an algebra ε? counit map of a coalgebra
α? action map of a module ρ? coaction map of a comodule

U?
forgetful functor of a module
category V?

forgetful functor of a comodule
category

F? free module functor C? cofree comodule functor

12



1. Preliminaries
In this section, we discuss certain properties of ∞-categories of (co)algebras and

(co)modules that we will need later. In addition to stating precise mathematical results,
we try to establish some intuition about these categories. Readers familiar with the
algebraic theory of ∞-operads of [Lur17] and its extension to coalgebras and bialgebras
as discussed in, for instance, [Pér20], [Bea21] and [Lei22] could skip this section and look
up specific statements later as needed.

1.1. (Co)algebras and (co)modules
In [Lur17, Definition 2.1.1.10], ∞-operads (which are rather a generalization of colored

symmetric operads) are defined as functors p : O⊗ → Fin∗ satisfying certain properties.
We will not unpack the full definition here, but the following description of the fibers of
p will be useful, especially in Appendix A.

Recall that a map f : 〈m〉 → 〈n〉 in Fin∗ is called inert if it restricts to a bijection
from a subset of {1, . . . ,m} ⊆ 〈m〉 to {1, . . . , n} ⊆ 〈n〉 and maps the rest of 〈m〉 to the
base point. The definition of an ∞-operad guarantees that

• inert maps admit p-cocartesian lifts, which are called inert maps in O⊗, and

• for every partition n1 + . . .+ nk = n ∈ N, the functor O⊗
〈n〉 →

∏k
i=1O⊗

〈ni〉 induced
by cocartesian lifts of the inert maps (fi : 〈n〉 → 〈ni〉)1≤i≤k, where fi maps the i-th
part of the partition bijectively to {1, . . . , ni} and collapses the rest of 〈n〉 to the
base point, is an equivalence.

Given vi ∈ O⊗
〈ni〉 for 1 ≤ i ≤ k, the essentially unique object of O⊗

〈n〉 that corresponds
to (v1, . . . , vk) ∈

∏k
i=1O⊗

〈ni〉 under the equivalence above is denoted by v1 ⊕ . . . ⊕ vk
(cf. [Lur17, Remark 2.1.1.15]). Note that it comes equipped with inert morphisms
πvi

: v1 ⊕ . . .⊕ vk → vi for 1 ≤ i ≤ k.
We think of O := O⊗

〈1〉 as the “underlying∞-category” or “∞-category of colors” of O⊗.
Pushing the colored operad analogy further, given o1, . . . , on, o

′ ∈ O, multimorphisms
from (o1, . . . , on) to o′ are encoded by a certain subspace of MapO⊗(o1 ⊕ . . .⊕ on, o

′) (cf.
[Lur17, Notation 2.1.1.16]).

In this framework, monoidal categories and algebras are defined as follows.

• [Lur17, Definition 2.1.2.13] Given an ∞-operad O, an O-monoidal ∞-category is a
cocartesian fibration C⊗ → O⊗ such that the composite C⊗ → O⊗ → Fin∗ exhibits
C⊗ as an ∞-operad. In this case, we also informally speak of an O-monoidal
structure on C := C⊗

〈1〉. The idea is that cocartesian lifts of a multimorphism
φ : o1⊕ . . .⊕on → o′ define an associated operation ⊗φ : C⊗

o1⊕...⊕on
' ∏n

i=1 C⊗
oi
→ Co′ .

• [Lur17, Definition 2.1.2.7] A map Q⊗ → O⊗ of ∞-operads is a map over Fin∗
that preserves inert edges. The idea is that such a map is compatible with the
equivalences (−)〈n〉 ' ((−)〈1〉)n and thus induces maps on spaces of multimorphisms.

13



• [Lur17, Definition 2.1.3.1] Given a map f : Q⊗ → O⊗ of ∞-operads and an O-
monoidal ∞-category C⊗ → O⊗, the ∞-category AlgQ/O(C) of Q-algebras in C is
defined as the ∞-category of ∞-operad maps a : Q⊗ → C⊗ over O⊗. In this case,
the conditions guarantee that multimorphism φ : q1 ⊕ . . .⊕ qn → q′ of Q induces a
map ⊗f(φ)(a(q1), . . . , a(qn))→ a(q′) encoding an associated operation.
When Q⊗ → O⊗ is the identity map of O⊗, we also write Alg/O(C) instead of
AlgO/O(C). Note that the pullback C⊗ ×O⊗ Q⊗ → Q⊗ exhibits C ×O Q as a
Q-monoidal ∞-category such that AlgQ/O(C) ' Alg/Q(C ×O Q).

For a Q-coalgebra, we would like to have “cooperations” a(q′)→ ⊗f(φ)(a(q1), . . . , a(qn))
instead. We can achieve this by considering algebras in an appropriate “opposite O-
monoidal ∞-category”.
Construction 1.1.1 (cf. [Lur17, Remark 2.4.2.7]). Let O be an ∞-operad and p : C⊗ →
O⊗ an O-monoidal ∞-category.

Recall that under the straightening-unstraightening equivalence of [Lur09, Theorem
3.2.0.1], p : C⊗ → O⊗ corresponds to a functor p̂ : O⊗ → Cat∞ to the ∞-category of
∞-categories. Composing p̂ with (−)op and unstraightening back, we obtain a fiberwise
opposite cocartesian fibration pfop : (C⊗)fop → O⊗ satisfying (C⊗)fop

v ' (C⊗
v )op for all

v ∈ O⊗.1
Using that (−)op commutes with products and the criterion of [Lur17, Proposition

2.1.2.12], we see that pfop exhibits the fiberwise opposite Cfop of p〈1〉 : C = C⊗
〈1〉 → O

⊗
〈1〉 = O

as an O-monoidal ∞-category, which we call the (fiberwise) opposite O-monoidal ∞-
category of C.

Note that when O = O⊗
〈1〉 is a discrete ∞-category, Cfop can be identified with Cop, so

in that case, we obtain an O-monoidal structure on Cop. This will in fact be the case for
all the concrete operads we consider.
Definition 1.1.2. Let Q⊗ → O⊗ be a map of ∞-operads and C an O-monoidal ∞-
category. Using the opposite O-monoidal structure of Construction 1.1.1, we define the
∞-category of Q-coalgebras in C as

CoalgQ/O(C) := AlgQ/O(Cfop)op

and abbreviate CoalgO/O as Coalg/O.
Convention 1.1.3. Defining coalgebraic structures as algebraic structures in an opposite
category allows us to use formally dualize the theory of algebras to coalgebras to a certain
extent.2 When working with coalgebraic structures, we will often refer to algebraic
results and expect the reader to appropriately dualize them. This in particular applies
to the theory of monads developed in [Lur17, Section 4.7], which we apply extensively to
comonads (cf. Subsection 1.3).

1There is also a more direct construction of (−)fop carried out in [BGN18], which we will make use of
in particular in Appendix A.

2Note, however, that in many monoidal ∞-categories we are interested in (such as that of spectra),
the monoidal product commutes with colimits but not necessarily with limits, which breaks the
symmetry between the algebraic and the coalgebraic theory (cf. Remark 1.1.14).

14



Next, we discuss different notions of functors between O-monoidal ∞-categories.

Definition 1.1.4. Let O be an ∞-operad, and p : C⊗ → O⊗ and q : D⊗ → O⊗ O-
monoidal ∞-categories.

A lax O-monoidal functor F⊗ : C⊗ → D⊗ is a map of ∞-operads over O⊗ (i.e., a
functor over O⊗ that preserves inert morphisms). We view F⊗

〈1〉 : C⊗
〈1〉 = C → D = D⊗

〈1〉 as
the underlying functor of F⊗.

An oplax O-monoidal functor is a lax monoidal functor F⊗ : (C⊗)fop → (D⊗)fop between
the opposite O-monoidal ∞-categories. If F⊗

〈1〉 : (C⊗)fop
〈1〉 = Cfop → Dfop = (D⊗)fop

〈1〉 maps
pfop-cocartesian morphisms to qfop-cocartesian morphisms, then it induces a functor
(F⊗

〈1〉)
fop

: (Cfop)fop ' C → D ' (Dfop)fop, which we view as the underlying functor of
F

⊗ (viewed as an oplax O-monoidal functor). Note that if O⊗
〈1〉 is discrete, then F

⊗
〈1〉

always preserves cocartesian morphisms because cocartesian morphisms with respect to
a cocartesian fibration over a discrete ∞-category are given by equivalences.

A strongly O-monoidal functor F⊗ : C⊗ → D⊗ is a functor over O⊗ that maps all
p-cocartesian morphisms to q-cocartesian morphisms. We denote the ∞-category of such
functors by Fun⊗

O(C,D) (cf. [Lur17, Definition 2.1.3.7]). Note that a strongly O-monoidal
functor is in particular lax O-monoidal. Moreover, a strongly O-monoidal functor F⊗

induces a strongly O-monoidal functor (F⊗)fop : (C⊗)fop → (D⊗)fop between the opposite
O-monoidal ∞-categories, implying in particular that its underlying functor can be
viewed also as the underlying functor of an oplax monoidal functor.

We will often not notationally distinguish between a lax, oplax or strongly O-monoidal
functor and its underlying functor. In particular, we will speak of a functor F : C → D
between the underlying ∞-categories being lax, oplax or strongly O-monoidal.

In order to relate the notions of Definition 1.1.4 to 1-categorical ones, consider a
multimorphism φ : o1 ⊕ o2 → o of O⊗ and c1 ∈ C⊗

o1 , c2 ∈ C⊗
o2 . Let F⊗ : C⊗ → D⊗ be a

functor over Fin∗ preserving inert morphisms. Then we obtain a commutative diagram

F⊗(c1)⊕ F⊗(c2) ⊗φD(F (c1), F (c2))

F⊗(c1 ⊕ c2) F⊗(⊗φC(c1, c2))

'

u ,

where the upper horizontal arrow is a q-cocartesian lift of φ, the lower horizontal arrow is
the image under F⊗ of a p-cocartesian lift of φ, and u is induced by the universal property
of the diagonal composite as a q-cocartesian arrow. This induced map is analogous to the
comparison transformation F (−)⊗ F (−)→ F (−⊗−) of lax monoidal functors in the
1-categorical setting. Moreover, if F⊗ maps all p-cocartesian morphisms to q-cocartesian
morphisms, then the lower map is also q-cocartesian and hence u an equivalence, which
is the ∞-categorical analogue of the fact that “strongly monoidal functors commute with
tensor products”.

Remark 1.1.5. Let Q⊗ → O⊗ be a map of ∞-operads, and C⊗ → O⊗ and D⊗ → O⊗

O-monoidal ∞-categories. Then a lax O-monoidal functor F⊗ : C⊗ → D⊗ induces a
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functor AlgQ/O(F⊗) : AlgQ/O(C)→ AlgQ/O(D) via postcomposition because a composite
of maps preserving inert morphisms also preserves inert morphisms. Dually, an oplax
O-monoidal functor induces a functor between coalgebra categories. We will often not
notationally distinguish such induced functors from their underlying functors.

Recall that in the 1-categorical setting, a lax monoidal structure on a right adjoint
functor G gives rise to an oplax monoidal structure on its left adjoint F and vice versa.
For example, a natural transformation β : G(−) ⊗ G(−) → G(− ⊗ −) gives rise to a
natural transformation

F (−⊗−) unit−−→ F (G(F (−))⊗G(F (−))) β−→ F (G(F (−)⊗ F (−))) counit−−−→ F (−)⊗ F (−).

The following is an analogue of this phenomenon in the ∞-categorical setting.
Fact 1.1.6 ([HHLN21, Therem 3.4.7]). Let O be an ∞-operad, C⊗ → O⊗ and D⊗ → O⊗

O-monoidal ∞-categories, and G⊗ : D⊗ → C⊗ a lax O-monoidal functor. Assume that
for all o ∈ O, G⊗

o : D⊗
o → C⊗

o admits a left adjoint Fo. Then there exists an oplax
O-monoidal functor F⊗ : (C⊗)fop → (D⊗)fop such that the fiber of F⊗ over o ∈ O is given
by (F⊗

o )op : (C⊗
o )op → (D⊗

o )op.
In particular, if O = O⊗

〈1〉 is discrete, the left adjoint of the underlying functor of a lax
monoidal functor admits an oplax monoidal structure. Dually, the right adjoint of the
underlying functor of an oplax O-monoidal functor can be extended to a lax O-monoidal
functor.

Our most common application of Fact 1.1.6 will be constructing a lax O-monoidal
structure on the right adjoint of the underlying functor of a strongly O-monoidal functor.
Such a pair of functors induces further adjunctions of interest, to which Appendix B is
dedicated.

We will be mainly interested in (co)algebras over the ∞-categorical version E⊗
n of the

little n-cubes operad for some n ∈ N (see [Lur17, Definition 5.1.0.2]), whose main features
can be summarized as follows.

• It has a single color ∗, so we can think of multimorphisms ∗⊕m → ∗ as m-ary
operations, which are are given by rectilinear configurations of m n-dimensional
open cubes in an n-dimensional open cube.

• Its composition maps are given by grafting such configurations.

• (E⊗
n )〈1〉 is contractible because the endomorphism space of its single object, i.e.,

the space of rectilinear configurations of an n-cube in an n-cube, is contractible.

• For n ≥ 1 and m > 1, m-ary operations of En are generated by a single binary
operation (which is encoded by a disjoint embedding of 2 n-cubes in an n-cube)
under homotopies, permutations of inputs and grafting.

Notation 1.1.7. Let n ∈ N. When working with an En-monoidal ∞-category C, we will
denote its tensor product (induced by the generating binary operation of En) by ⊗C (or
simply ⊗ if there is no room for confusion) and its unit (induced by the unique 0-ary
operation of En) by 1C.
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Convention 1.1.8. In light of [Lur17, Example 5.1.0.7], E⊗
1 is one of the many incarna-

tions of the operad that encodes associative algebras. We will freely use results proven
for different (but equivalent) manifestations of associative algebras, including the planar
version of [Lur17, Section 4.1.3].

Moreover, when we speak of “algebras”, “coalgebras” etc. without further qualifiers, we
will mean algebras, coalgebras etc. over E1. In particular, we will employ the following
simplifications.

• By a “monoidal ∞-category” we will mean an E1-monoidal ∞-category.

• When a map E⊗
1 → O⊗ of operads is clear from context, we will simply write Alg

instead of AlgE1/O, and similarly for Coalg.

More generally, different En’s can be thought of encoding different levels of commu-
tativity of the generating binary operation. For instance, as any two embeddings of
two squares in a square are homotopic via embeddings, the binary operation of E2 is
commutative up to homotopy, which in particular yields a braiding (−)⊗ (?) ' (?)⊗ (−)
for every E2-monoidal ∞-category. E3-monoidality is sufficient to obtain a symmetric
monoidal structure on the homotopy category of an ∞-category (cf. [Lur17, Corollary
5.1.1.7]), but on the level of ∞-categories, there are higher coherences to consider.

Convention 1.1.9. Consider the maps E⊗
0 → E⊗

1 → E⊗
2 → . . . of ∞-operads given

by taking the product of configurations with an open interval. We will usually make
restrictions along these maps implicit, e.g., view an En-monoidal ∞-category as an
Em-monoidal ∞-category for all m ≤ n.

By [Lur17, Corollary 5.1.1.5], the colimit of this sequence is equivalent to the terminal
∞-operad Fin∗. When we want to refer to Fin∗ as this colimit, i.e., an∞-operad encoding
a “highly coherent” commutative multiplication, we will use the notation E⊗

∞. Moreover,
we will use the following terms for structures over E∞.

• By a “symmetric monoidal ∞-category” we will mean an E∞-monoidal category.

• By a “commutative algebra” we will mean an E∞-algebra. We will write CAlg
instead of Alg/E∞ .

• Dually, we will use the term “cocommutative” for E∞-coalgebras.

Next, we informally recall the operad LM of [Lur17, Section 4.2], which encodes a left
action of an algebra on an object.

• [Lur17, Remarks 4.2.1.8 and 4.2.1.10] LM = LM⊗
〈1〉 is a discrete category with

two objects a and m, encoding the algebra and the object it acts on, respectively.
There is a map E⊗

1 → LM⊗ of ∞-operads which, intuitively speaking, maps the
universal algebra in E1 to the algebra a in LM. We will always mean this map
when we speak of the map E⊗

1 → LM⊗.
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• [Lur17, Remarks 4.2.1.20 and 4.2.1.21] An LM-monoidal ∞-category p : D⊗ →
LM⊗ encodes a monoidal structure on Da given by the pulling back p along the
map E⊗

1 → LM⊗, and a left-tensoring of Dm over Da, in particular “an action
map” Da × Dm → Dm, which is informally also simply denoted by ⊗. When we
informally speak of an ∞-category left-tensored over a monoidal ∞-category, we
will implicitly have an LM-monoidal category with appropriate fibers in mind.

• [Lur17, Definition 4.2.1.13] Given an LM-monoidal ∞-category D, Alg/LM(D) is
called ∞-category of left module objects of Dm and denoted by LModDa(Dm) or
LMod(Dm) when there is no room for confusion. Intuitively, it can be thought of
as a category of pairs (A,M) where A is an algebra in Da acting on an object M
in Dm. The map E⊗

1 → LM⊗ induces a functor θD : LMod(Dm)→ Alg(Da) which
“forgets the module”. Its fiber over an algebra A ∈ Alg(Da) is called the∞-category
of left A-modules in Dm and is denoted by LModA(Dm). Similarly, evaluation at m
induces a functor ςD : LMod(Dm)→ Dm that “forgets the action of the algebra”.

• [Lur17, Remarks 4.2.1.5 and 4.2.1.9] The map E⊗
1 → LM⊗ admits a “retraction”

LM⊗ → E⊗
1 , which, intuitively speaking, classifies the universal algebra in E1 as a

left module over itself. Given a monoidal ∞-category C⊗ → E⊗
1 , pulling back along

this map yields an LM-monoidal ∞-category, which encodes the left action of C
on itself. When we speak of modules in a monoidal category, we implicitly employ
this construction.

Similarly, there is an ∞-operad RM encoding right modules and right-tensorings
(cf. [Lur17, Variant 4.2.1.36]), and an ∞-operad BM encoding bimodules (cf. [Lur17,
Definition 4.3.1.6]). Provided that the monoidal∞-category in question admits geometric
realizations and the tensor product commutes with them in each variable, there is a
theory of relative tensor products developed in [Lur17, Section 4.4], which is similar to
the 1-categorical case in the sense that it is associative, gives rise to restriction-extension
of scalars adjunctions etc. In particular, ∞-categories of modules have functoriality
properties similar to their 1-categorical analogues, which we record below.

Fact 1.1.10. Let M be an ∞-category left-tensored over a monoidal ∞-category C.
Then, by [Lur17, Corollary 4.2.4.8] for every algebra R in C, we have a free-forgetful
adjunction FR : M� LModR(M) :UR such that UR ◦FR ' R⊗ (−).

Moreover the forgetful functor θC : LMod(M)→ Alg(C) is a cartesian fibration, and a
map is θC-cartesian if and only if its underlying map in M is an equivalence (cf. [Lur17,
Corollary 4.2.3.2]). This means that to each map ψ : R→ S of algebras in C, one can
functorially associate a restriction of scalars functor ψ∗ : LModS(M) → LModR(M)
that does not change the underlying objects in M.

If we further assume that C and M admit geometric realizations, and that both the
tensor product in C and the action of C on M preserve them in each variable, then each
such ψ∗ admits a left adjoint ψ! : LModR(M)→ LModS(M), called extension of scalars
along ψ (cf. [Lur17, Proposition 4.6.2.17]). On the level of underlying objects, ψ! sends
M ∈ LModR(M) to the relative tensor product S ⊗R M . Moreover, as discussed in
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[Lur17, Lemma 4.5.3.6], this implies that θC is also a cocartesian fibration, i.e., extensions
of scalars are also functorial.

Remark 1.1.11. Let F : C → D be a lax monoidal functor between monoidal ∞-
categories. Then the functors induced on∞-categories of LM- and E1-algebras discussed
in Remark 1.1.5 fit into a commutative diagram

LMod(C) LMod(D)

Alg(C) Alg(D).

LMod(F )

θC θD

Alg(F )

In particular, for an algebra R ∈ Alg(C), F induces a functor LModR(C)→ LModF (R)(D),
which we will often abbreviate as FR or FR.

Moreover, LMod(F ) maps θC-cocartesian morphism to θD-cocartesian edges. Indeed, a
morphism f is θC-cocartesian if and only if its image under the functor ςC : LMod(C)→ C
that picks the the object being acted on is an equivalence, and similarly for θD. Now
ςD(LMod(F )(f)) ' F (ςC(f)), which implies that LMod(F )(f) is θD-cocartesian if f is
θC-cocartesian. This means that F is compatible with restrictions of scalars in the sense
that for every map ψ : R→ S of algebras in C, we have a commutative diagram

LModS(C) LModR(C)

LModF (S)(D) LModF (R)(D)

ψ∗

FS FR

F (ψ)∗

.

Now assume that C and D admit geometric realizations and their tensor products
preserve geometric realizations in each variable. Then, for a map ψ : R→ S of algebras
in C, we obtain a comparison map F (ψ)! ◦ FR → FS ◦ ψ! (cf. [Lur09, Remark 7.3.1.3]).
Unpacking the construction of relative tensor products as geometric realizations of bar
constructions ([Lur17, Theorem 4.4.2.8]), this map can be factored as

|F (S)⊗ F (R)⊗• ⊗ F (−)| → |F (S ⊗R⊗• ⊗ (−))| → F (|S ⊗R⊗• ⊗ (−)|),

where the former map is induced by the lax monoidality of F and the latter map is a
colimit comparison map. Therefore, it is an equivalence if F is strongly monoidal and
preserves geometric realizations. In summary, geometric-realization-preserving strongly
monoidal functors are also compatible with extensions of scalars.

We now move on to comodules.

Definition 1.1.12. Let D be an LM-monoidal ∞-category exhibiting M := Dm as
left-tensored over C := Da.

We define the ∞-category of left comodule objects in M as

LComod(M) := Coalg/LM(D) = Alg/LM(Dop)op,
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which is equipped with a forgetful functor

LComod(M) = Alg/LM(Dop)op → Alg(Cop)op = Coalg(C). (1.1.13)

We will employ similar notational conventions for LComod as for LMod, such as writing
LComodC(M) to disambiguate the monoidal category and denoting the functor (1.1.13)
by θ with appropriate indices.

For a coalgebra D in D, we define the ∞-category of left D-comodules in M as3

LComodD(M) := LComod(M)×Coalg(C) {D}.

Dualizing the first part of Fact 1.1.10, we obtain a cofree-forgetful adjunction

VD : LComodD(M) �M :CD .

Similarly, we see that the functor (1.1.13) is a cocartesian fibration, meaning that a map
ζ : D → E a map of coalgebras in C induces a corestriction of scalars functor

ζ? : LComodD(M)→ LComodE(M).

While these definitions are formally dual to the algebraic case, let us unpack them a bit
for the sake of clarity. Let D be a coalgebra with comultiplication ∆D : D → D⊗D and
counit εD : D → 1C. A left D-comodule is an object M equipped with a coaction map
ρM : M → D ⊗M satisfying duals of associativity and unitality conditions for an action.
The cofree left D-comodule on an object X ∈ C is D ⊗X equipped with the coaction
map ∆D ⊗ X : D ⊗ X → D ⊗ (D ⊗ X). This defines a right adjoint of the forgetful
functor LComodD(C) → C with unit transformation ρM : M → D ⊗M ' CD(VD(M))
and counit transformation εD⊗M : VD(CD(M)) ' D⊗M →M . Given a coalgebra map
ζ : D → E and a left D-comodule M with coaction map ρM : M → D⊗M , ζ?M has the
same underlying object and its coaction map is the composite M ρM−−→ D⊗M ζ⊗D−−→ E⊗M .
Note that corestrictions of scalars depend covariantly on coalgebra maps.

Remark 1.1.14. One might consider constructing a right adjoint ζ# of the corestriction
of scalars functor ζ? by dualizing the construction of the extension of scalars functor of
Fact 1.1.10. However, recall that that construction relies on the theory of relative tensor
products, which in turn requires that the tensor product preserves geometric realizations
in each variable. Since the dual condition for limits of cosimplicial objects is not satisfied
in important examples such as the category of spectra, we will need a construction that
does not rely on “relative cotensor products” directly, even though it will be of similar
flavor (cf. Corollary 1.3.15).

Convention 1.1.15. When we speak of “modules” or “comodules” without further
qualifiers, we implicitly mean left modules and left comodules, respectively.

3Informally speaking, LComodD(M) is just “LModD(Mop)op”, but we would like to emphasize that
we are taking the fiberwise opposite of D⊗ → LM⊗, not of C⊗ → E⊗

1 and M→ {∗} separately.
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Next, we recall some facts about how we can interpret monoidal ∞-categories as
algebras in the ∞-category of ∞-categories.

Fact 1.1.16 ([Lur17, Example 2.4.2.4 and Proposition 2.4.2.5]). Let O be an ∞-operad.
Consider the ∞-category Cat∞ of ∞-categories equipped with the symmetric monoidal
structure given by the cartesian product.

Then O-algebras in Cat∞ correspond to O-monoidal ∞-categories via an unstraighten-
ing construction. In particular, a monoidal structure on an ∞-category C corresponds
to an algebra structure on C in Cat∞ and a left-tensoring of an ∞-category M over
a monoidal ∞-category corresponds to a left module structure over the corresponding
algebra. Under this correspondence, maps of O-algebras in Cat∞ correspond to strongly
O-monoidal functors.

We will also use variants of this correspondence for presentable ∞-categories.4

Fact 1.1.17. Let PrL denote the ∞-category of presentable ∞-categories with colimit-
preserving functors between them (cf. [Lur09, Definition 5.5.3.1]). Then, by [Lur17,
Proposition 4.8.1.15], PrL admits a symmetric monoidal structure and, by [Lur17, Corol-
lary 4.8.1.4], the inclusion PrL → Cat∞ is lax symmetric monoidal. For an ∞-operad
O, we will call an O-algebra in PrL a presentably O-monoidal ∞-category.

Fact 1.1.18. By [Lur17, Example 4.8.1.20], the ∞-category S of spaces is the unit of
PrL. In particular, it admits a commutative algebra structure in PrL (given by the product
of spaces) and every presentable ∞-category C is a left module over it. We will denote the
corresponding action map by �C : S ×C → C. By virtue of [Lur09, Corollary 4.4.4.9], for
a space X and an object C of C, X �C C can be computed as the colimit of the constant
diagram X → C at C.

Moreover, by the initiality of the algebra structure of the monoidal unit S, for every n ∈
N∪{∞} and every presentably En-monoidal ∞-category C, the functor (−)�C 1C : S → C
lifts to a strongly En-monoidal functor.

Fact 1.1.19. By [Lur17, Proposition 4.8.2.1], the ∞-category S∗ of pointed spaces admits
a presentably symmetric monoidal structure (given by the smash product). Moreover, the
forgetful functor LModS∗(PrL)→ PrL is fully faithful and its image consists of presentable
pointed ∞-categories. Given a presentable pointed ∞-category C, we will denote the
action map of its S∗-module structure by ~C : S∗×C → C. By virtue of [RSV19, Corollary
2.40], for a pointed space iX : {∗} → X and an object C of C, X ~C C can be computed
as the cofiber of the morphism iX � C : {∗}� C → X � C.

For instance, when C is the ∞-category Sp of spectra, the functors (−) �Sp 1Sp and
(−)~Sp1Sp are given by the suspension spectrum functors Σ∞

+ : S → Sp and Σ∞ : S∗ → Sp,
respectively.

Viewing monoidal categories as algebras in Cat∞ allows us to relate comodules over
algebras in different ∞-categories as follows.

4Most of our statements regarding presentable ∞-categories can be generalized to ∞-categories
admitting all colimits, but we restrict our attention to the former class for the sake of convenience.
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Construction 1.1.20. Let F⊗ : D⊗ → E⊗ be a strongly monoidal functor between
monoidal ∞-categories and M an ∞-category left-tensored over E encoded by an LM-
monoidal ∞-category M⊗ → LM⊗.

Viewing F as a map in Alg(Cat∞), we see that the left-tensoring of M over D given
by the restriction of its left-tensoring over E along F is encoded by a cartesian lift of F
to LMod(Cat∞) with target M⊗ → LM⊗. In other words, we have an LM-monoidal
∞-category M⊗

F → LM⊗ equipped with an LM-monoidal functor F̂⊗ : M⊗
F → M⊗

such that

• M⊗
F ×LM⊗ E⊗

1 ' D⊗,

• the induced functor F̂⊗ ×LM⊗ E⊗
1 coincides with F⊗ : D⊗ → E⊗ under the above

identification,

• F̂⊗
m is an equivalence, in particular (M⊗

F )m 'M.

Hence F̂⊗ induces a commutative diagram

LComodD(M) LComodE(M)

Coalg(D) Coalg(E)

θD

Coalg/LM(F̂ )

θE

Coalg(F )

, (1.1.21)

and similarly for modules.

The diagram (1.1.21) is in fact a pullback square, but we found it more appropriate to
prove this statement in Corollary 1.3.21 after having discussed comonads.

1.2. Bialgebras
We now move on to bialgebras, which combine algebraic and coalgebraic structures

and can be defined as algebras in an appropriate monoidal category of coalgebras (or
as coalgebras in an appropriate monoidal category of algebras). In the context of 1-
categories, the tensor product D⊗E of two coalgebras in a braided monoidal category C
admits a coalgebra structure with comultiplication

D ⊗ E ∆D⊗∆E−−−−−→ D ⊗D ⊗ E ⊗ E ' D ⊗ E ⊗D ⊗ E

and counit
D ⊗ E εD⊗εE−−−−→ 1C ⊗ 1C ' 1C,

and this operation defines a monoidal structure on the category of coalgebras.
Viewing C as an E2-monoidal category, another explanation of this phenomenon is

as follows. Considering horizontal and vertical stacking of squares, the E2-monoidal
structure yields a horizontal and a vertical tensor product, which we denote by ?|? and
?
? , respectively. While these tensor products are equivalent, they play different roles

22



here. Given vertical comultiplications ∆D : D → D
D

and ∆E : E → E
E

, we can define a
horizontal comultiplication on the horizontal tensor product D|E by

D|E ∆D|∆E−−−−−→ D

D

|
|
E

E
.

Hence the category of “vertical coalgebras” admit a monoidal structure given by the
horizontal tensor product.

The distinction of the horizontal and the vertical binary operations of E2 can be
encoded in a “product map” E⊗

1 × E⊗
1 → E⊗

2 (cf. Example 1.2.4). One can generalize
this perspective to obtain monoidal structures on ∞-categories of (co)algebras as follows.
Following [Lur17, Definition 2.2.5.3], we call a functor f : P⊗ ×Q⊗ → O⊗ a bifunctor of
∞-operads if the diagram

P⊗ ×Q⊗ O⊗

Fin∗ × Fin∗ Fin∗

f

∧

,

where ∧ denotes the smash product of pointed finite sets, commutes, and f maps pairs
of inert morphisms to inert morphisms.

Construction 1.2.1 ([Lur17, Construction 3.2.4.1], see also [Lei22, Proposition E.4.1.4]).
Let f : P⊗ ×Q⊗ → O⊗ be a bifunctor of ∞-operads and p : C⊗ → O⊗ an O-monoidal
∞-category. By Funin(Q⊗, C⊗) ⊆ Fun(Q⊗, C⊗) we denote the full subcategory spanned
by functors that preserve inert morphisms. Let f̂ : P⊗ → Fun(Q⊗,O⊗) be the adjoint of
f . We define AlgP

Q/O(C)⊗ as the pullback

AlgP
Q/O(C)⊗ Funin(Q⊗, C⊗)

P⊗ Fun(Q⊗,O⊗)

y
pC

f
p∗

f̂

,

and let AlgP
Q/O(C) denote its fiber over P = P⊗

〈1〉.
Note that for all p ∈ P, the fiber AlgP

Q/O(C)⊗
p is the ∞-category of ∞-operad maps

φ : Q⊗ → C⊗ such that p ◦ φ = f̂(p), i.e., AlgQ/O(C), where we consider the algebra
category with respect to f̂(p) : Q⊗ → O⊗. We will therefore omit P from the notation
when P = P⊗

〈1〉 is contractible (in particular when P = Ek for some k ∈ N ∪ {∞}).

Fact 1.2.2 ([Lur17, Proposition 3.2.4.3]). In the situation of Construction 1.2.1, pC
f

exhibits AlgP
Q/O(C) as a P-monoidal ∞-category and an arrow in AlgP

Q/O(C)⊗, which is
represented by a natural transformation τ between functors Q⊗ → C⊗, is pC

f -cocartesian
if and only if for all q ∈ Q, its component τq is p-cocartesian in C⊗.

Remark 1.2.3. Construction 1.2.1 is functorial in P , Q and C as follows.
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Every map g : P⊗ → P⊗ of ∞-operads induces a bifunctor

f ′ : P⊗ ×Q⊗ g×Q−−→ P⊗ ×Q⊗ f−→ O⊗

whose adjoint f̂ ′ can be factored as P⊗ g−→ P⊗ f̂−→ Fun(Q⊗,O⊗). Hence we have an
equivalence AlgP

Q/O(C)⊗ ' AlgP
Q/O(C)⊗ ×P⊗ P⊗.

Similarly, every map h : Q⊗ → Q⊗ of ∞-operads induces a bifunctor

P⊗ ×Q⊗ P⊗×h−−−→ P⊗ ×Q⊗ f−→ O⊗

and precomposition with h induces a restriction functor h∗ : AlgP
Q/O(C) → AlgP

Q/O(C).
Moreover, the componentwise description of pC

f -cocartesian arrows from Fact 1.2.2 implies
that h∗ is strongly P-monoidal. In particular, considering the case where Q is the trivial
∞-operad T , we see that that for every q ∈ Q, the “forgetful functor” AlgP

Q/O(C) →
AlgP

T /O(C) ' C×OP given by evaluation at q is strongly P-monoidal (cf. [Lur17, Remark
2.1.3.6]).

Analogously, postcomposition with an O-monoidal functor C → C induces a strongly
P-monoidal functor AlgP

Q/O(C)→ AlgP
Q/O(C).

Example 1.2.4. Let k, l ∈ N. Then, by [Lur17, Construction 5.1.2.1], there is a bifunctor
E⊗
k × E⊗

l → E⊗
k+l of operads informally given by “taking products of configurations”,

which induces an Ek-monoidal structure on the ∞-category of El-algebras in an Ek+l-
monoidal∞-category C. This bifunctor is in fact universal in the sense that Alg/Ek+l

(C) '
Alg/Ek

(AlgEl/Ek+l
(C)) (cf. [Lur17, Theorem 5.1.2.2]).

Example 1.2.5. Let p : Q⊗ → Fin∗ be an ∞-operad. Then the composites

E⊗
∞ ×Q⊗ = Fin∗ ×Q⊗ Fin∗×p−−−−→ Fin∗ × Fin∗

∧−→ Fin∗ = E⊗
∞

and
Q⊗ × E⊗

∞ = Q⊗ × Fin∗
p×Fin∗−−−−→ Fin∗ × Fin∗

∧−→ Fin∗ = E⊗
∞

are bifunctors of operads.
In particular, the former bifunctor yields a symmetric monoidal structure on the
∞-category of Q-algebras in a symmetric monoidal ∞-category (cf. [Lur17, Example
3.2.4.4]). Moreover, when Q = E∞, this symmetric monoidal structure is cocartesian
by [Lur17, Proposition 3.2.4.7], i.e., the tensor product of commutative algebras is a
coproduct in the ∞-category of commutative algebras.

Convention 1.2.6. For k, l ∈ N∪{∞}, whenever we use a bifunctor E⊗
k ×E⊗

l → E⊗
k+l of

∞-operads (where k+ l =∞ whenever k or l is∞), we will mean the bifunctor discussed
in Example 1.2.4 (if k, l ∈ N) or Example 1.2.5 (otherwise).

We now have all the ingredients to define bialgebras.
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Definition 1.2.7. Let f : P⊗ × Q⊗ → O⊗ be a bifunctor of ∞-operads and C an
O-monoidal ∞-category. Note that the fiberwise opposite of the cocartesian fibration
AlgP

Q/O(Cfop)⊗ → P⊗ of Fact 1.2.2 defines a P-monoidal structure on CoalgP
Q/O(C)⊗ :=

AlgP
Q/O(Cfop)fop.

Moreover, note that taking pullbacks commutes with fiberwise opposites because under
the straightening-unstraightening equivalence, the pullback of a cocartesian fibration
along a functor corresponds to the restriction of its straightening along that functor.
Hence, for all p ∈ P , CoalgP

Q/O(C)⊗
p ' CoalgQ/O(C), where we consider coalgebras with

respect to f̂(p) : Q⊗ → O⊗.
We define the ∞-category of (P ,Q)-bialgebras in C as

BialgP,Q(C) := Alg/P(CoalgP
Q/O(C)).

For now, we view bialgebras as “algebras in coalgebras”, but Appendix A is dedicated
to showing that Alg/P(CoalgP

Q/O(C)) is in fact equivalent to Coalg/Q(AlgQ
P/O(C)), where

the latter is constructed with respect to the bifunctor Q⊗ ×P⊗ ' P⊗ ×Q⊗ → O⊗ (cf.
Corollary A.0.17). We will use this equivalent description of bialgebras in several places,
most notably throughout Section 5.

Convention 1.2.8. In line with Convention 1.1.8, we will refer to (E1,E1)-bialgebras
simply as bialgebras and write Bialg instead of BialgE1,E1 . Similarly, in line with Con-
vention 1.1.9, we will refer to (E∞,E1)-bialgebras as commutative bialgebras and write
CBialg instead of BialgE∞,E1 .

One of the main features of bialgebras is the fact that their (co)module categories admit
a monoidal structure given by the tensor product of underlying objects. Indeed, given
comodules M and N over a bialgebra H in a braided monoidal category, the composite

M ⊗N ρM ⊗ρN−−−−→ H ⊗M ⊗H ⊗N ' H ⊗H ⊗M ⊗N µH⊗M⊗N−−−−−−→ H ⊗M ⊗N

defines a coaction of H on M ⊗N .
In order carry out an analogous construction for an E2-monoidal ∞-category C, one

considers the bifunctor E⊗
1 ×LM⊗ → E⊗

2 given by precomposing the standard bifunctor
E⊗

1 × E⊗
1 → E⊗

2 with the ∞-operad map LM⊗ → E⊗
1 , and the associated monoidal

structure on LComod(C) (more precisely, CoalgLM/E2(C)) obtained via Fact 1.2.2. An
object of LComod(C) corresponds to a pair (D,M) where D is a coalgebra coacting on an
object M . Given another such pair (E,N), the tensor product “(D,M)⊗LComod(C) (E,N)”
is given by (D ⊗ E,M ⊗N) with coaction map

M ⊗N ρM ⊗ρN−−−−→ D ⊗M ⊗ E ⊗N ' D ⊗ E ⊗M ⊗N.

Hence, if D = E = H is a bialgebra, the desired tensor product of M and N in
LComodH(C) can be constructed as (µH)?((H,M) ⊗LComod(C) (H,N)). We review a
construction along these lines below.

While a significant portion of what we do with comodules over bialgebras can be
generalized to a bifunctor P⊗×E⊗

1 → O⊗, we restrict our attention to (Ek,E1)-bialgebras
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in Ek+1-monoidal ∞-categories for k ∈ N ∪ {∞} in order to avoid tracking bifunctors,
colors etc. In fact, we will be mostly interested in the cases k = 1 and k =∞.
Fact 1.2.9 ([Bea21, Proposition 3.16 and Theorem 3.18], [Lei22, Definition 3.4.2.1 and
Remark 3.4.2.3]). For k ∈ N ∪ {∞}, consider the standard bifunctor E⊗

k × E⊗
1 → E⊗

k+1
and the ∞-operad map LM⊗ → E⊗

1 . Let C be an Ek+1-monoidal ∞-category. Consider
the Ek-monoidal functor

θ⊗ : LComod(C)⊗ = CoalgLM/Ek+1
(C)⊗ → CoalgE1/Ek+1

(C)⊗ = Coalg(C)⊗

of Remark 1.2.3.
In this situation, θ⊗ is a cocartesian fibration. Moreover, given an (Ek,E1)-bialgebra

H in C, pulling back θ⊗ along the corresponding map E⊗
k → Coalg(C)⊗ yields an Ek-

monoidal structure on LComodH(C) such that VH : LComodH(C)→ C can be extended
to a strongly Ek-monoidal functor.

More generally, given a map ξ : H → H ′ of (Ek,E1)-bialgebras in C, the functor
induced on pullbacks of θ⊗ extends the corestriction of scalars functor ξ? : LComodH(C)→
LComodH′(C) to a strongly Ek-monoidal functor.
Remark 1.2.10. In the situation of Fact 1.2.9, note that the strongly Ek-monoidal struc-
ture on VH : LComodH(C)→ C induces a lax Ek-monoidal structure on its right adjoint
CH by virtue of Fact 1.1.6. Unpacking the constructions, we see that its comparison
transformation for X,Y ∈ C is given by the composite

CH(X)⊗ CH(Y ) ' (H ⊗X)⊗ (H ⊗ Y ) ∆H⊗X⊗∆H⊗Y−−−−−−−−−→ (H ⊗H ⊗X)⊗ (H ⊗H ⊗ Y )
' (H ⊗H)⊗ ((H ⊗X)⊗ (H ⊗ Y ))
µH⊗H⊗X⊗H⊗Y−−−−−−−−−−→ H ⊗ ((H ⊗X)⊗ (H ⊗ Y ))
H⊗εH⊗X⊗εH⊗Y−−−−−−−−−−→ H ⊗ (X ⊗ Y ) ' CH(X ⊗ Y ),

which can be simplified to

(H ⊗X)⊗ (H ⊗ Y ) ' (H ⊗H)⊗ (X ⊗ Y ) µH⊗X⊗Y−−−−−−→ H ⊗ (X ⊗ Y )

using the counitality of the comultiplication of H.
Definition 1.2.11. Let k ∈ N∪{∞}, C an Ek+1-monoidal∞-category, and H an (Ek,E1)-
bialgebra in C. We call Alg/Ek

(LComodH(C)) ∞-category of H-comodule Ek-algebras in
C.
Remark 1.2.12. In the situation of Definition 1.2.11, assume that C admits geometric
realizations and that the tensor product preserves them. Note that, by [Lur17, Corol-
lary 4.2.3.3], the forgetful functor VH : LComodH(C)→ C reflects colimits. Therefore,
LComodH(C) also admits geometric realizations and its tensor product preserves them
in each variable, which implies that extensions of scalars along maps of H-comodule
algebras exist (cf. Fact 1.1.10).

Moreover, note that VH is a strongly (Ek-)monoidal functor which preserves geometric
realizations, so as discussed in Remark 1.1.11, it is compatible with restrictions and
extensions of scalars.
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We conclude this subsection with an alternative description of comodule algebras.

Lemma 1.2.13. Let k ∈ N∪ {∞}, C an Ek+1-monoidal ∞-category, and H an (Ek,E1)-
bialgebra in C. Then Alg/Ek

(LComodH(C)) is equivalent to the fiber of

Alg/Ek
(θ) : Alg/Ek

(LComod(C))→ Alg/Ek
(Coalg(C))

over H.

Proof. Since Alg/Ek
(Coalg(C)) is a full subcategory of FunE⊗

k
(E⊗

k ,Coalg(C)⊗), H corre-
sponds to a functor h : E⊗

k → Coalg(C)⊗. Moreover, the fiber Alg/Ek
(LComod(C))H can

be identified with the pullback of the cospan

{IdE⊗
k
} h◦(−)−−−→ Alg/Ek

(Coalg(C))
Alg/Ek

(θ)
←−−−−− Alg/Ek

(LComod(C)⊗).

We would like to show that Alg/Ek
(LComodH(C)) is also a pullback of this cospan.

Now consider the commutative diagram

LComod(C)⊗
H LComod(C)⊗

E⊗
k Coalg(C)⊗

E⊗
k

y
q

ι⊗

θ⊗

h

p

,

where the upper square is a pullback square. This pullback square yields another pullback
square

FunE⊗
k

(E⊗
k ,LComodH(C)⊗) FunE⊗

k
(E⊗

k ,LComod(C)⊗)

{IdE⊗
k
} FunE⊗

k
(E⊗

k ,Coalg(C)⊗)

ι⊗◦(−)

q◦(−) θ⊗◦(−)

h◦(−)

.

Hence, restricting the functor on the right to the full subcategories of functors that
preserve inert arrows, it will suffice to show that a functor a : E⊗

k → LComodH(C)⊗ over
E⊗
k is in Alg/Ek

(LComodH(C)) if and only if ι⊗ ◦ a lies in Alg/Ek
(LComod(C)).

In order to do so, it will suffice to show that inert morphisms in LComodH(C)⊗ are
precisely those whose image under ι⊗ is inert. Note that, by [Lur09, Proposition 2.4.1.3],
an arrow in LComod(C)⊗ is inert if and only if it is a θ⊗-cocartesian lift of an inert arrow
in Coalg(C)⊗. Therefore, as q-cartesian arrows are exactly those whose image under ι⊗
is θ⊗-cocartesian, it will suffice to show that an arrow f in E⊗

k is inert if and only if h(f)
is inert. If f is inert, then h(f) is inert because h preserves inert morphisms. Conversely,
if h(f) is inert, then p(h(f)) = f is also inert.
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1.3. (Co)monads
Next, we review the theory of coendomorphism objects and comonads, which will be

crucial for certain constructions on categories on comodules. We will also need the dual
theory of endomorphism objects, but we expect the reader to dualize the statements
as usual. Instead of the classical terminology of (co)algebras over a (co)monad, we will
speak of (co)modules over a (co)monad, which is in line with our treatment of these
objects as (co)modules in an ∞-category left-tensored over a monoidal ∞-category (cf.
Example 1.3.4).

The citations in this section refer to different incarnations of (co)monads (the “operadic”
theory of monads of [Lur17, Section 4.7], the “cosmological” approach to monads of
[RV16] and [RV20, Chapter 10], and the “combinatorial” model for comonads of [Kra18,
Chapter 2]), but they are all equivalent, for instance by an application of the Barr–
Beck–Lurie (co)monadicity theorem (cf. [Lur17, Theorem 4.7.3.5] and [RV16, Theorem
7.2.7]).

Definition 1.3.1 ([Lur17, Section 4.7.1]). Let M be an ∞-category left-tensored over a
monoidal ∞-category C, M ∈M, and D ∈ C.

We say that a map ρ : M → D ⊗M exhibits D as a coendomorphism object for M if
for all X ∈ C, the composite

MapC(D,X) (−)⊗M−−−−→ MapM(D ⊗M,X ⊗M) (−)◦ρ−−−→ MapM(M,X ⊗M) (1.3.2)

is an equivalence.

The key feature of a coendomorphism object is that it admits a coalgebra structure
with a certain universal property.

Fact 1.3.3 ([Lur17, Corollary 4.7.1.40]). Let M be an ∞-category left-tensored over a
monoidal∞-category C and ρ : M → D⊗M a map exhibiting D ∈ C as a coendomorphism
object for M ∈M.

Then D admits an coalgebra structure, where, under the equivalence of (1.3.2), the
comultiplication map ∆: D → D⊗D is given by the preimage of (D⊗ρ)ρ ∈ MapM(M,D⊗
D⊗M) and the counit map ε : D → 1C is given by the preimage of IdM ∈ MapM(M,M).

Moreover, M admits a D-comodule structure where the coaction map is given by ρ,
which we call the tautological coaction of D on M . This coaction makes D the initial
E1-coalgebra coacting on M in the sense that for every E ∈ Coalg(C), there is a natural
equivalence

MapCoalg(C)(D,E) ' LComodE(M)×M {M}

such that an E-comodule structure with coaction map ρ′ : M → E ⊗M , corresponds to
an upgrade of the preimage of ρ′ under (1.3.2) to a coalgebra map D → E.

Our first example concerns in fact endomorphism objects and lays the foundation for
the study of (co)monads.
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Example 1.3.4. Consider the action of the ∞-category Cat∞ of ∞-categories equipped
with the monoidal structure given by the cartesian product on itself. Let M be an
∞-category.

We can construct a monoidal structure on Fun(M,M) whose tensor product is given
by the composition of functors by viewing it as a monoid object in marked simplicial
sets (where the marked edges are equivalences) and applying the rectification result of
of [Lur17, Example 4.1.8.7]. (Co)algebras with respect to this monoidal structure are
called (co)monads. Combining the point-set level description of this monoidal structure
with a similar rectification result for modules ([Lur17, Theorem 4.3.3.17]), we see that
∞-categories of the form Fun(N ,M) are left-tensored over Fun(M,M) via composition.

Similarly, M admits a left-tensoring over Fun(M,M) whose action map is the eval-
uation functor e : Fun(M,M) × M → M. In fact, e exhibits Fun(M,M) as an
endomorphism object for M. Indeed, for every ∞-category D, the composite

MapCat∞(D,Fun(M,M)) (−)×M−−−−→ MapCat∞(D ×M,Fun(M,M)×M)
e∗−→ MapCat∞(D ×M,M)

is the restriction of the usual “uncurrying” equivalence to the maximal ∞-groupoids of
functor categories.

The universal property of Fun(M,M) as an endomorphism object implies that the
adjoint C → Fun(M,M) of ⊗ : C×M→M can be upgraded to a map of E1-algebras in
Cat∞, i.e., to a strongly monoidal functor (cf. Fact 1.1.16). In particular, a left action of
Fun(M,M) on an ∞-category can be restricted to a left action of C along this functor.

As in the 1-categorical case, adjunctions give rise to (co)monads.
Example 1.3.5 ([Lur17, Lemma 4.7.3.1]). Let F : D � E :G be an adjunction with
unit u : IdD → GF and counit c : FG→ IdE . Consider Fun(D, E) as left-tensored over
Fun(E , E) via composition of functors.

Then the natural transformation Fu : F → FGF exhibits FG ∈ Fun(E , E) as a
coendomorphism object for F ∈ Fun(D, E). In particular, FG admits the structure of a
coalgebra in Fun(E , E), i.e., the structure of a comonad on E .

The descriptions of Fact 1.3.3 imply that the comultiplication of this coalgebra structure
is given by FuG : FG→ FGFG and its counit by c : FG→ IdE . Moreover, given another
comonad Θ on E coacting on F with coaction map r : F → ΘF , the induced comonad
map FG→ Θ is given by

FG
rG−→ ΘFG Θc−→ Θ.

Next, we record some facts about how functors into the coalgebra category of a comonad
encode “coalgebraic properties” of the comonad.
Fact 1.3.6 ([Kra18, Remark 2.4], see also [Lur17, Remark 4.7.3.8]). Let F : D → E be a
functor and Θ a comonad on E. Then Θ-comodule structures on F correspond to lifts

LComodΘ(E)

D E

VΘ

F

F̂ ,
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where a lift F̂ yields a coaction map

F ' VΘ F̂
VΘ uF̂−−−−→ VΘ CΘ VΘ F̂ ' ΘF

using the unit u : IdE → VΘ CΘ of the adjunction VΘ a CΘ.

Remark 1.3.7. Let F : D � E :G be an adjunction. Fact 1.3.6 applies in particular to
the tautological coaction of the comonad FG on F discussed in Example 1.3.5, yielding
the standard lift F : D → LComodFG(E). The adjunction is called comonadic if F is an
equivalence. By the Barr–Beck–Lurie comonadicity theorem ([Lur17, Theorem 4.7.3.5]),
this is the case if and only if F is conservative, and E admits and F preserves limits of
F -split cosimplicial objects.

Now let Θ be another comonad on E such that F admits a lift F̂ : D → LComodΘ(E).
Applying the equivalence

MapCoalg(Fun(E,E))(FG,Θ) ' LComodΘ(Fun(D, E))×Fun(D,E) {F}

of Fact 1.3.3 to the corresponding Θ-comodule structure on F , we obtain a comonad
map ζ : FG→ Θ.

By the naturality of the aforementioned equivalence, the image of the tautological
action of FG on F under ζ? is the coaction of Θ on F induced by the lift F̂ . On the
level of lifts, this yields a commutative diagram

LComodFG(E) LComodΘ(E)

D E

ζ?

VF G

VΘ

F

F
F̂ .

As for functors out of the coalgebra category of a comonad, they are often constructed
by defining the functor on the full subcategory of cofree comodules and “resolving” more
general comodules by cofree ones.

Definition 1.3.8. Let Θ be a comonad on an ∞-category E . A resolution system
for Θ is a pair of functors R̃•

Θ(−)+ : LComodΘ(E) → Fun(∆+,LComodΘ(E)) and
R•

Θ(−)⊥ : LComodΘ(E)→ Fun(∆⊥, E) such that the following hold.

1. They fit into a commutative diagram

LComodΘ(E) Fun(∆+,LComodΘ(E)) Fun(∆,LComodΘ(E))

Fun(∆⊥, E) Fun(∆+, E) Fun(∆, E)

R̃
•
Θ(−)+

R̃
•
Θ(−)

R•
Θ(−)⊥

R•
Θ(−)+ R•

Θ(−)

VΘ ◦(−)

(−)|∆

VΘ ◦(−)

(−)|∆+
(−)|∆

,

where R̃•
Θ(−), R•

Θ(−)+ and R•
Θ(−) are defined as appropriate restrictions.
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2. R̃−1
Θ (−)+ ' IdLComodΘ(E).

3. For k ≥ 0, R̃k

Θ(−)+ factors through the full subcategory of cofree Θ-comodules.

4. For every M̃ ∈ LComodΘ(E), R̃•
Θ(M̃)+ is a limiting cone.

We speak of cobar resolutions if for all M̃ ∈ LComodΘ(E), the following conditions
hold as well.

• For k ∈ Z≥−1, R̃k

Θ(M̃)+ ' (CΘ VΘ)k+1(M̃).

• Setting M := VΘ(M̃), the resolutions can be depicted as

M Θ(M) Θ2(M) Θ3(M) . . .
εΘM
ρ

M̃

εΘΘM
∆ΘM

ΘεΘM
Θρ

M̃

εΘΘ2M

∆ΘΘM
ΘεΘΘM
Θ∆ΘM

Θ2εΘM

Θ2ρ
M̃

,

where the solid arrows depict the coaugmented cosimplicial object R•
Θ(M̃)+ and

the dashed arrows arise from its lift R•
Θ(M̃)⊥ to a split coaugmented cosimplicial

object. In other words, the coface maps of the resolutions are given by applying the
unit of the adjunction VH a CH , and the codegeneracy maps are given by applying
its counit.

In this case, for k ∈ Z≥−1, we denote the coaugmentation map M̃ → (CΘ VΘ)k+1M̃ by
ρ

(k+1)
M̃

.

Fact 1.3.9 ([Lur17, Example 4.7.2.7 and Proposition 4.7.3.14], [RV20, Lemma 10.3.4
and Theorem 10.3.7]). Let Θ be a comonad on an ∞-category E. Then there exists a
cobar resolution system (R̃•

Θ(−)+,R•
Θ(−)⊥) for Θ.

Note that while any two cobar resolutions have homotopic coface and codegeneracy
maps, we cannot necessarily construct cosimplicial comparison maps between them be-
cause a cosimplicial object in an∞-category also involves possibly non-trivial homotopies
between composites of the generating maps. However, the arguments in this section will
depend only on the resolution properties and the maps that occur in the resolution, so
which “model” we use will not be relevant. The reason why we do not commit to a specific
one is that later, in Section 5, we will make use of a concrete cobar resolution system that
cannot be generalized to comodules over a general comonad (cf. Construction 5.1.17).

The idea of defining functors via resolutions is implemented as follows.

Proposition 1.3.10 (cf. [Kra18, Lemma 2.13]). Let Λ and Θ be comonads on ∞-
categories D and E , respectively. Assume that LComodΛ(D) admits limits of cosimplicial
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objects and that we are given a commutative diagram

LComodΛ(D) LComodΘ(E)

D E

F̃

VΛ VΘ

F

such that F admits a right adjoint G : E → D.
Then F̃ admits a right adjoint G̃ : LComodΘ(E)→ LComodΛ(D) such that G̃ ◦ CΘ '

CΛ ◦G.

Proof. Arguing as in the proof of [Lur17, Lemma 4.7.3.13], it will suffice to show that
for every M ∈ LComodΘ(E), the functor MapLComodΘ(E)(F̃ (−), M̃) : LComodΛ(D)→ S
is representable.

If M̃ ' CΘ(X) is cofree, then we have natural equivalences

MapLComodΘ(E)(F̃ (−),CΘ(X)) ' MapE(VΘ(F̃ (−)), X)
' MapE(F (VΛ(−)), X)
' MapD(VΛ(−), G(X))
' MapLComodΛ(D)(−,CΛ(G(X))), (1.3.11)

which defines the restriction G̃C of G̃ to the full subcategory LComodΘ(E)C of cofree
Θ-comodules with the desired property.

For general M̃ , we use a resolution R̃•
Θ(M̃), which exists by Fact 1.3.95. We have

M̃ ' lim∆ R̃•
Θ(M̃) and R̃•

Θ(M̃) is a diagram in LComodΘ(E)C. Hence we have natural
equivalences

MapLComodΘ(E)(F̃ (−), M̃) ' MapLComodΘ(E)(F̃ (−), lim
∆

R̃•
Θ(M̃))

' lim
∆

MapLComodΘ(E)(F̃ (−), R̃•
Θ(M̃))

' lim
∆

MapLComodΛ(D)(−, G̃C ◦ R̃•
Θ(M̃))

' MapLComodΛ(D)(−, lim∆ (G̃C ◦ R̃•
Θ(M̃))).

Remark 1.3.12. In the situation of Proposition 1.3.10, let M̃ ∈ LComodΘ(E) with
underlying object M ∈ E . Given a cobar resolution R̃•

Θ(M̃), we can describe the
cosimplicial object G̃C ◦ R̃•

Θ(M̃) : ∆ → LComodΛ(D) used to define G̃(M̃) a bit more
explicitly as follows.

5Note that while Fact 1.3.9 guarantees the existence of cobar resolutions, here we only need a resolution.
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Note that for a map f : CΘ(X)→ CΘ(Y ) between cofree Θ-comodules, G̃C(f) is given
by the image of IdCΛ(G(X)) under the composite

MapLComodΛ(D)(CΛ(G(X)),CΛ(G(X)))
(1.3.11)
' MapLComodΘ(E)(F̃ (CΛ(G(X))),CΘ(X))

f◦(−)−−−→ MapLComodΘ(E)(F̃ (CΛ(G(X))),CΘ(Y ))
(1.3.11)
' MapLComodΛ(D)(CΛ(G(X)),CΛ(G(Y ))).

While this yields a general formula for G̃C(f) in terms of units and counits of the
adjunctions involved, it is rather long, so we will unpack it only in some specific cases.

If f = CΘ(f ′) for some f ′ : X → Y , then the diagram

MapLComodΛ(D)(CΛ(G(X)),CΛ(G(X))) MapLComodΘ(E)(F̃ (CΛ(G(X))),CΘ(X))

MapLComodΛ(D)(CΛ(G(X)),CΛ(G(Y ))) MapLComodΘ(E)(F̃ (CΛ(G(X))),CΘ(Y ))

'

CΛ(G(f ′))◦(−) CΘ(f ′)◦(−)

'

commutes by the naturality of the equivalences (1.3.11), which implies that G̃C(f) '
CΛ(G(f ′)).

If Y = VΘ(CΘ(X)) and f is the unit map u : CΘ(X) → CΘ(VΘ(CΘ(X))) of the
adjunction VΘ a CΘ, then G̃C(u) is a map of the form

κX : CΛ(G(X))→ CΛ(G(VΘ(CΘ(X)))) ' CΛ(G(Θ(X)).

While “what it does” depends on the specific situation, it can in any case be thought of
as encoding a “right coaction” CΛ ◦G→ (CΛ ◦G) ◦Θ of Θ on CΛ ◦G.

Combining these, G̃C ◦ R̃•
Θ(M̃) can hence be depicted as

CΛ(G(M)) CΛ(G(Θ(M)) CΛ(G(Θ2(M)) . . .
κM

CΛ GεΘM
CΛ GρM̃

κΘ(M)

CΛ GεΘΘM
CΛ G∆ΘM

CΛ GΘεΘM
CΛ GΘρ

M̃

,

which can be thought of as a “two sided cobar construction”.
Corollary 1.3.13 (cf. [RV16, Theorem 7.2.4]). Let F : D � E :G be an adjunction.
Assume that D admits limits of cosimplicial objects. Then the standard lift F : D →
LComodFG(E) admits a right adjoint G.
Proof. We apply Proposition 1.3.10 to the diagram

LComodIdD(D) LComodFG(E)

D E

F◦VIdD

'VIdD VF G

F

G

a

.
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We will often be interested in the comonad associated to an extension-restriction of
scalars adjunction, for which we fix some terminology now.
Definition 1.3.14. Let C be a monoidal ∞-category. Assume that C admits limits of
cosimplicial objects and geometric realizations of simplicial objects, and that the tensor
product preserves geometric realizations in each variable. Let ψ : R → S be a map of
algebras in C and consider the extension-restriction of scalars adjunction ψ! a ψ∗.

We call the comonad ψ!ψ
∗ on LModS(C) induced by ψ! a ψ∗ the descent comonad of

ψ. Moreover, we say that ψ admits descent6 if the adjunction ψ! a ψ∗ is comonadic, i.e.,
if the standard lift ψ! : LModR(C)→ LComodψ!ψ∗(LModS(C)) of ψ! is an equivalence.

Now let M be an R-module. We call M S-complete if the unit map M → ψ∗(ψ!(M))
of the adjunction of Corollary 1.3.13 is an equivalence. Moreover, we set

C•(ψ)(M) := ψ∗ ◦ R̃•
ψ!ψ∗(ψ!(M)) : ∆→ LModR(C).

Note that as ψ∗(ψ!(M)) ' lim∆ C•(ψ)(M), the aforementioned unit map yields a lift of
C•(ψ)(M) to an M -coaugmented cosimplicial object, which we denote by C•

+(ψ)(M).
When M = R, we drop M from the notation and refer to C•(ψ) as the Amitsur complex
of ψ.

Unpacking the maps discussed in Remark 1.3.12, C•
+(ψ)(M) can be depicted as

M S ⊗RM S ⊗R S ⊗RM . . .ψ⊗RM

ψ⊗RS⊗RM

µS⊗RM

S⊗Rψ⊗RM

Moreover, note that ψ! is fully faithful if every R-module is S-complete. Hence, S-
completeness of R-modules can be viewed as a partial comonadicity condition for the
adjunction ψ! a ψ∗.

As another application of Proposition 1.3.10, we can construct a right adjoint of
corestriction of scalars functors in certain cases.
Corollary 1.3.15. Let M be an ∞-category left-tensored over a monoidal ∞-category
C and ζ : D → E a map of coalgebras in C. Assume further that LComodD(M) admits
limits of cosimplicial objects.

Then the corestriction of scalars functor ζ? : LComodD(M)→ LComodE(M) admits
a right adjoint ζ# : LComodE(M)→ LComodD(M).
Proof. Using the Barr–Beck–Lurie comonadicity theorem [Lur17, Theorem 4.7.3.5], we
identify the comodule categories ofD and E with the comodule categories of the associated
comonads D ⊗ (−) and E ⊗ (−), and ζ with a map D ⊗ (−)→ E ⊗ (−) of comonads.
The result then follows by applying Proposition 1.3.10 to the diagram

LComodD(M) LComodE(M)

M M

ζ?

VD VE
.

6Various other notions of (admitting or satisfying) “descent” exist in the literature. In particular, our
definition differs from [Mat16, Definition 3.17] (which requires pro-constantness of C•(ψ)) and [RV20,
Definition 10.5.12] (which only requires fully faithfulness of ψ!).

34



Notation 1.3.16. Let M be an ∞-category left-tensored over a monoidal ∞-category
C and D a coalgebra in C. When dealing with the various resolutions with respect to
the associated comonad D ⊗ (−), we will simplify the notation by writing RD instead of
RD⊗(−). Moreover, for a map ζ : D → E of coalgebras in C, we will denote the two sided
cobar construction (ζ#)C ◦ R̃•

E(−) of Remark 1.3.12 by Ω•
E(D,−).

Unpacking the descriptions of Remark 1.3.12, the two-sided cobar construction
Ω•
E(D,M) for a E-comodule can be depicted as

D ⊗M D ⊗ E ⊗M D ⊗ E ⊗ E ⊗M . . .
((D⊗ζ)◦∆D)⊗M

D⊗εE⊗M
D⊗ρM

((D⊗ζ)◦∆D)⊗E⊗M
D⊗εE⊗E⊗M
D⊗∆E⊗M
D⊗E⊗εE⊗M
D⊗E⊗ρM

,

which can be thought of as being formally dual to the two-sided bar construction for an
algebra. Hence ζ# can be thought of as “relative cotensor product” D�E(−).

We now fix some terminology for coalgebras equipped with a coalgebra map from the
tensor unit, which is the case, for instance, for bialgebras.

Definition 1.3.17. Let M be an ∞-category left-tensored over a monoidal ∞-category
C and D a coaugmented coalgebra in C, i.e., a coalgebra equipped with a coalgebra map
ηD : 1C → D.

Corestriction along ηD yields a functor

TrivD : M' LComod1C (M) (ηD)?−−−→ LComodD(M)

which we call the trivial comodule functor. Moreover, if M admits limits of cosimplicial
objects, then, by Corollary 1.3.15, TrivD admits a right adjoint

PrimD : LComodD(M) (ηD)#

−−−→ LComod1C (M) 'M.

which we call the primitives functor.

Remark 1.3.18. Note that in the situation of Definition 1.3.17, we have εD ◦ ηD ' Id1C ,
which implies that VD ◦TrivD ' IdM. This equivalence of left adjoints induces an
equivalence PrimD ◦CD ' IdM of right adjoints.

Remark 1.3.19. Let C be an Ek+1-monoidal ∞-category for k ∈ N, and H an (Ek,E1)-
bialgebra in C, which is in particular a coaugmented coalgebra via the unit map of its
algebra structure. Then, as a corestriction of scalars functor, TrivH : C → LComodH(C)
can be extended to a strongly Ek-monoidal functor with respect to the Ek-monoidal
structure of Fact 1.2.9. Hence, by Fact 1.1.6, its right adjoint PrimH admits a lax
Ek-monoidal structure.
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We conclude this subsection with some properties of restricted left-tensorings of
Construction 1.1.20.
Lemma 1.3.20. Let F : D → E be a strongly monoidal functor between monoidal ∞-
categories, M an ∞-category left-tensored over E (which we also view as left-tensored
over D via restriction along F ), and D a coalgebra in D. Then the functor

ΞD : LComodD(M)→ LComodF (D)(M)

induced by the functor LComodD(M) → LComodE(M) of Construction 1.1.20 is an
equivalence.
Proof. Note that ΞD and the forgetful functors fit into a commutative diagram

LComodD(M) LComodF (D)(M)

M

ΞD

VD VF (D)

,

to which we can apply the criterion of [Lur17, Corollary 4.7.3.16 and Remark 4.7.3.17].
As both VD and VF (D) are left adjoints of comonadic adjunctions, it will suffice to show
that for all X ∈M, the underlying map of the composite

ΞD CDX
u−→ CF (D) VF (D) ΞD CDX ' CF (D) VD CDX

c−→ CF (D) X,

where u is induced by the unit of adjunction VF (D) a CF (D), and c is induced by the
counit of the adjunction VD a CD, is an equivalence. This underlying map is given by
the composite

F (D)⊗X
∆F (D)⊗X
−−−−−−→ F (D)⊗ F (D)⊗X

F (D)⊗F (εD)⊗X'F (D)⊗εF (D)⊗X
−−−−−−−−−−−−−−−−−−−−→ F (D)⊗X,

which is indeed an equivalence.

While the proof of Lemma 1.3.20 does not mention comonads explicitly, it uses a
statement equivalent to the comonadicity theorem, which is arguably the “universal”
case. Indeed, the left-tensorings of M over C and D are given by restrictions of its left-
tensoring over Fun(M,M) along strongly monoidal functors FC : C → Fun(M,M) and
FD : D → Fun(M,M). The comonadicity of the categories of D- and F (D)-comodules
corresponds to the result of the lemma for FC and FD, which implies the result for F by
a 2-out-of-3 argument.
Corollary 1.3.21. Let F : D → E be a strongly monoidal functor between monoidal
∞-categories, M an ∞-category left-tensored over E , which we also view as left-tensored
over D via restriction along F . Then the diagram

LComodD(M) LComodE(M)

Coalg(D) Coalg(E)

θD

Coalg/LM(F̂ )

θE

Coalg(F )

of Construction 1.1.20 is a pullback square.
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Proof. Recall that θD and θE are both cocartesian fibrations and in both cases, cocartesian
edges are those whose underlying map in E is an equivalence. Hence, the projection
π : P → Coalg(D) of the pullback is a cocartesian fibration and the induced functor
Ξ: LComodD(M) → P preserves cocartesian edges. Therefore, by [Lur09, Corollary
2.4.4.4], it is enough to show that Ξ induces equivalences on the fibers, which is exactly
the statement of Lemma 1.3.20.

Remark 1.3.22. Let k ∈ N ∪ {∞} and F : D → E a strongly Ek+1-monoidal functor
between Ek+1-monoidal∞-categories. Then Coalg(F ) : Coalg(D)→ Coalg(E) is strongly
Ek-monoidal with respect to the Ek-monoidal structures discussed in Fact 1.2.2. Moreover,
θE : LComodE(E)→ Coalg(E) is strongly Ek-monoidal when we endow its source with
the Ek-monoidal structure discussed in Fact 1.2.9.

Therefore, since limits in AlgEk/E∞(Cat∞) can be computed in Cat∞ (cf. [Lur17,
Corollary 3.2.2.4]), the diagram

LComodD(E) LComodE(E)

Coalg(D) Coalg(E)

θD

Coalg/LM(F̂ )

θE

Coalg(F )

of Corollary 1.3.21 can be upgraded to a pullback square of Ek-monoidal ∞-categories.
In particular, LComodD(E) admits an Ek-monoidal structure such that the functors
Coalg/LM(F̂ ) and θD are strongly Ek-monoidal.

1.4. Linear functors
We will also need versions of Example 1.3.4 through Remark 1.3.7 that are in an

appropriate sense compatible with the action of a monoidal ∞-category, so we review
the relevant theory now. Besides the usual algebra-coalgebra duality, some references
to [Lur17, Chapter 4] in this subsection also implicitly switch the roles of left and right
actions.

As discussed in [Lur17, Remark 4.3.3.7], for an algebra R in monoidal ∞-category C,
LModR(C) admits a right-tensoring over C, which is encoded by an RM-monoidal ∞-
category. Informally speaking, if M is a left R-module with action map αM : R⊗M →M
and X ∈ C, M ⊗X admits a left action of R given by αM ⊗X : R⊗ (M ⊗X)→M ⊗X.
Dually, for every coalgebra D in C, we obtain a right-tensoring of LComodD(C) over C
by taking the fiberwise opposite of the right-tensoring of LComodD(C)op ' LModD(Cop)
over Cop. Moreover, note that if C admits geometric realizations and its tensor product
preserves them in each variable, also these right-tensorings preserve geometric realizations
in each variable.

Given ∞-categories M and N that are right-tensored over C, we will be interested
in functors F : M→N that are compatible with the tensoring in the sense that for all
M ∈M and C ∈ C, F (M ⊗ C) ' F (M)⊗ C, which can be formalized as follows.
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Definition 1.4.1 ([Lur17, Definition 4.6.2.7, Remark 4.6.2.8]). Let C be a monoidal
∞-category, M̄⊗ → RM⊗ and N̄⊗ → RM⊗ RM-monoidal ∞-categories exhibiting
M := M̄⊗

m and N := N̄⊗
m as right-tensored over C, with specified identifications

M̄ ×RM E⊗
1 ' C⊗ ' N̄ ×RM E⊗

1 .

of pullbacks along the ∞-operad map E⊗
1 → RM⊗ that “classifies the algebra in RM”.

Assume that M and N admit geometric realizations.
We call a strongly RM-monoidal functor F⊗ : M̄⊗ → N̄⊗ right C-linear if its restric-

tion along E⊗
1 → RM⊗ induces IdC⊗ under the aforementioned identifications. The full

subcategory of
FunRM⊗(M̄⊗, N̄⊗)×FunE⊗

1
(C⊗,C⊗) {IdC⊗}

spanned by right C-linear functors F⊗ : M̄⊗ → N̄⊗ such that F⊗
m : M→ N preserves

geometric realizations will be denoted by LinFun{∆op}
C (M,N ).

Note that under the correspondence of Fact 1.1.16, a right C-linear functor can be
viewed as map of right C-modules in Cat∞. As we discuss below, there is a similar
description if we add the condition of preserving geometric realizations.

Remark 1.4.2. Let C be a monoidal ∞-category that admits geometric realizations and
whose tensor product preserves geometric realizations in each variable, and M, N , L
∞-categories right-tensored over C that admit geometric realizations and such that the
right-tensoring preservers geometric realizations in each variable.

Note that composition of functors over RM⊗ preserves right C-linearity and preserva-
tion of geometric realizations in the fiber over m ∈ RM = RM⊗

〈1〉. Hence we can restrict
the composition operation to a functor

LinFun{∆op}
C (N ,L)× LinFun{∆op}

C (M,N )→ LinFun{∆op}
C (M,L).

These composition maps allow us to extend constructions of Example 1.3.4 from
functor categories to categories of right C-linear geometric-realization-preserving functors.
For instance, considering LinFun{∆op}

C (M,M) as a marked simplicial set by marking
equivalences, the composition map yields a monoid object in marked simplicial sets and
hence a monoidal structure on LinFun{∆op}

C (M,M). Similarly, ∞-categories of the form
LinFun{∆op}

C (N ,M) are left-tensored over LinFun{∆op}
C (M,M) via composition.

In fact, LinFun{∆op}
C (M,N ) can be seen as a “function object” in an appropriate ∞-

category as follows. By [Lur17, Remark 4.8.1.5] and [Lur09, Lemma 5.5.8.4], the cartesian
monoidal structure of Cat∞ restricts to a cartesian monoidal structure on the∞-category
Cat∞({∆op}) of∞-categories admitting geometric realizations and functors that preserve
geometric realizations. As discussed in [Lur17, Remark 4.8.1.9], the compatibility of
tensor products with geometric realizations means that C can be viewed as an algebra
and M, N , L as right modules over it in this ∞-category.

By [Lur17, Remark 4.8.4.14], LinFun{∆op}
C (−, ?), can be seen as a functor

RModC(Cat∞({∆op}))× RModC(Cat∞({∆op}))→ Cat∞({∆op}).
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On the other hand, we can lift the functor (−) ×M : Cat∞({∆op}) → Cat∞({∆op})
to RModC(Cat∞({∆op})), for instance by considering M as a 1Cat∞({∆op})-C-bimodule.
This functor is left adjoint to LinFun{∆op}

C (M,−), where the unit and the counit trans-
formations are induced by those of the adjunction (−)×M a Fun(M,−). In particular,
the evaluation functor LinFun{∆op}

C (M,M)×M→M induces an equivalence

FunCat∞({∆op})((−),LinFun{∆op}
C (M,M)) '−→ FunRModC(Cat∞({∆op}))((−)×M,M)

that exhibits LinFun{∆op}
C (M,M) as an endomorphism object for M.

We can therefore speak of right C-linear geometric-realization-preserving adjunctions
and (co)monads. In particular, one can construct linear (co)monads from linear adjunc-
tions as in Example 1.3.5, identify (co)module structures over linear (co)monads on
functors with certain linear lifts as in Fact 1.3.6 etc.

Lemma 1.4.3. Let C be a monoidal ∞-category that admits geometric realizations and
such that the tensor product preserves geometric realizations in each variable. Then,
for every algebra R in C, the adjunction FR : C � LModR(C) :UR is an adjunction of
right C-linear geometric-realization-preserving functors. Dually, for every coalgebra D
in C, the adjunction VD : LComodD(C) � C :CD is also an adjunction of right C-linear
geometric-realization-preserving functors.

Proof. Right C-linearity of these adjunctions follows from [Lur17, Lemmas 4.8.4.10 and
4.8.4.12], so it is enough to show that the functors preserve geometric realizations. The left
adjoints preserve colimits, in particular geometric realizations. Since the tensor product
preserves geometric realizations in each variable, [Lur17, Corollary 4.2.3.5] implies that
UR preserves geometric realizations. As for CD, first note that the composite VD ◦CD

preserves geometric realizations as it is given by tensoring with D. Now VD reflects
colimits, implying that CD preserves geometric realizations as well.

Linear functors between module categories admit an “algebraic” description in terms
of bimodule categories.

Fact 1.4.4. Let C be an monoidal ∞-category and R, S algebras in C. Assume that
C admits geometric realizations, and that the tensor product preserves them in each
variable. Then, by [Lur17, Theorems 4.8.4.1 and 4.3.2.7], the ∞-category R BimodS of
R-S-bimodules is equivalent to the ∞-category LinFun{∆op}

C (LModS(C),LModR(C)) via
functors informally given by

LinFun{∆op}
C (LModS(C),LModR(C))→ R BimodS

F 7→ F (S)

and

R BimodS → LinFun{∆op}
C (LModS(C),LModR(C))

X 7→ X ⊗S (−).
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Remark 1.4.5. Intuitively, the equivalences of Fact 1.4.4 can be thought of as the “mor-
phism part” of an equivalence between two incarnations of the “Morita (∞, 2)-category” of
C (cf. [Lur17, discussion on page 738]). In particular, in the case where R = S, the equiv-
alence R BimodR ' LinFun{∆op}

C (LModR(C),LModR(C)) is strongly monoidal when we
equip R BimodR with the relative tensor product and LinFun{∆op}

C (LModR(C),LModR(C))
with the composition monoidal structure. For the case where C is the module category of
an E2-ring spectrum, such a strongly monoidal equivalence appears in [Bea21, Theorem
4.2].

What we discuss here only suffices to construct a particular monoidal structure
on R BimodR whose the tensor product is given by ⊗R by transferring the monoidal
structure on LinFun{∆op}

C (LModR(C),LModR(C)) along the aforementioned equivalence.
In particular, it is not evident that this monoidal structure agrees with the one of [Lur17,
Proposition 4.4.3.12].

However, the only case where we will need more coherence than the pointwise equiv-
alences of the form (X ⊗R Y ) ⊗R (−) ' (X ⊗R (−)) ◦ (Y ⊗R (−)) is the case where
R = 1C, and in that case once can check that the “standard” monoidal structure on
C ' 1C Bimod1C agrees with the transferred one by observing that their action maps
C × C → C coincide and using the universal property of 1C Bimod1C ' LinFun{∆op}

C (C, C)
as an endomorphism object for C.

Remark 1.4.6. Let C be a monoidal ∞-category and D a coalgebra in C. Assume
that C admits geometric realizations, and that the tensor product preserves geometric
realizations in each variable.

Then, the forgetful-cofree adjunction VD : LComodD(C) � C :CD is an adjunction of
right C-linear functors that preserve geometric realizations by Lemma 1.4.3. Hence, by the
analogue of Example 1.3.5 for such functors, VD ◦CD ' D ⊗ (−) is a coendomorphism
object for VD ∈ LinFun{∆op}

C (LComodD(C), C) in LinFun{∆op}
C (C, C). Restricting this

along the strongly monoidal equivalence C ' LinFun{∆op}
C (C, C) of Remark 1.4.5 for

R = S = 1C, we see that the natural transformation VD(−)→ D ⊗ VD(−) given by the
coaction map exhibits D as a coendomorphism object for VD.
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2. Comodules over spaces
In this section, we review the theory of coalgebraic structures in the ∞-category S

of spaces and give a simple description of comodules over spaces in the slice category
S/T of a space T (Proposition 2.0.6), which will be useful later when we consider Thom
objects (cf. Example 3.1.3).

We start by recording a “purely categorical” description of coalgebras and comodules
in a cartesian symmetric monoidal ∞-category.

Fact 2.0.1. Let D be an ∞-category equipped with a cartesian symmetric monoidal
structure. Every object X of D admits a unique coalgebra structure whose comultiplication
is the diagonal map (IdX , IdX) : X → X ×X. More precisely, for all l ∈ N ∪ {∞}, the
(strongly symmetric monoidal) forgetful functor CoalgEl/E∞(D)→ D is an equivalence by
[Lur17, Proposition 2.4.3.9]. In particular, for all k ∈ N∪{∞}, we obtain an equivalence
BialgEk,El

(D) ' AlgEk/E∞(D).
Moreover, a coaction of an object X on another object Y is always of the form

(f, IdY ) : Y → X×Y for some map f : Y → X (cf. [BP19, Corollary 2.2]). More precisely,
by [HMS22, Corollary 2.6.6]7, we have an equivalence LComod(D) ' Fun([1],D) under
which evaluation at 1 corresponds to the forgetful functor θD : LComod(D)→ Coalg(D) '
D and evaluation at 0 corresponds to the to the functor ςD : LComod(D)→ D that picks
the object being coacted on.

In this situation, we will often implicitly identify D with Coalg(D). For instance, given
an∞-categoryM left-tensored over D and an object X ∈ D, we will write LComodX(M)
for the∞-category of comodules over the image of X under the equivalence D ' Coalg(D).

Applying this to the cartesian symmetric monoidal∞-category S, we obtain coalgebraic
structures that can be transferred to every presentably monoidal ∞-category as follows.

Remark 2.0.2. Let k, l ∈ N ∪ {∞} and C a presentably Ek+l-monoidal ∞-category.
Then, using the equivalences of Fact 2.0.1, we obtain lifts of the strongly Ek+l-monoidal
functor (−)�C 1C : S → C of Fact 1.1.18 to functors S → CoalgEl/Ek+l

(C) and AlgEk
(S)→

BialgEk,El
(C). Moreover, CoalgEl/Ek+l

(C) is presentable by [Pér20, Proposition 2.2.6] and
colimits in CoalgEl/Ek+1

(C) can be computed in C by [Lur17, Corollary 3.2.2.4]. Hence the
lift S → CoalgEl/Ek+l

(C) of (−) �C 1C can in fact be identified with (−) �CoalgEl/Ek+l
(C) 1C.

Now let l > 0. As every presentable∞-category is left-tensored over S in an essentially
unique way, pulling back the left-tensoring of C over itself along (−)�C 1C : S → C recovers
the original left-tensoring of C over S. In particular we obtain equivalent ∞-categories of
comodules over spaces (which we all denote by LComodS(C)) when we consider different
El-monoidal structures on C.

However, the Ek-monoidal structure on LComodS(C) discussed in Remark 1.3.22, and
therefore the Ek-monoidal structure on LComodX(C) ' LComodX�C1C (C) for an Ek-space

7The cited corollary yields in fact an equivalence between the ∞-category of coalgebras over the ∞-
operad BM, which classifies two (co)algebras and a bi(co)module over them, and Fun([1]q0 [1],D).
The desired equivalence for LComod(D) can be obtained by restricting that equivalence to those
BM-comodules for which the coalgebra coacting from the right is the terminal object.
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X, do depend on the Ek-monoidal structure of LComodC(C), hence that of C. We will
therefore prefer to speak of X �C 1C-comodules instead of X-comodules in C when the
Ek-monoidal structure of the comodule category is relevant.

Moreover, note that every colimit-preserving functor F : C → D between presentable
∞-categories (i.e., every morphism in PrL ' LModS(PrL)) induces a functor

LComodS(F ) : LComodS(C)→ LComodS(D)

and similarly functors between comodule categories over a fixed space.

We now move on to our analysis of comodules over spaces in slice categories of the
form S/T for a space T . We start by recording some properties of this ∞-category, which
are essentially consequences of it being a slice ∞-topos.

Fact 2.0.3 (cf. [Lur09, Proposition 6.3.5.1]). For a space T , S/T admits a cartesian
presentably symmetric monoidal structure given by fiber products over T .

Moroever, the forgetful functor VT : S/T → S admits a colimit-preserving right adjoint
CT : S → S/T sending X ∈ S to pr2 : X × T → T .8 In particular, VT preserves colimits
and thus induces functors on categories of comodules over spaces.

Viewing CT as a colimit-preserving functor that is strongly symmetric monoidal with
respect to the cartesian symmetric monoidal structures in its source and target, we see that
it agrees with (−)�S/T

IdT : S → S/T by the initiality of S in CAlg(PrL) (cf. Fact 1.1.18).
Hence, for a space X and an object f : Y → T of S/T , X �S/T

f ' (X �S/T
IdT )×T f is

given by CT (X)×T f , i.e., the composite X × Y pr2−−→ Y
f−→ T .

Even though LComodS(S/T ) depends only on the underlying ∞-category S/T , we will
use the cartesian monoidal structure on S/T to give an explicit description of comodules
over spaces. On the other hand, in our application to Thom objects, we will consider the
slice category of an Ek-space and equip it with a non-cartesian monoidal structure.

Fact 2.0.4 ([Lur17, Theorem 2.2.2.4], [ABG18, Corollary 6.13]). Let k ∈ N ∪ {∞} and
P an Ek-space. Then the slice category S/P admits a presentably Ek-monoidal structure,
which we informally call the convolution monoidal structure, such that the forgetful
functor VP : S/P → S is strongly Ek-monoidal.

Informally speaking, given two objects f : Y → P and g : Z → P , their tensor product
with respect to the convolution monoidal structure is given by the composite

Y × Z f×g−−→ P × P µP−→ P,

and the unit of the convolution monoidal structure is the unit map ηP : {∗} → P of P .
Note that for a space X, X �S/P

f can be alternatively described as the convolution
product of X �S/P

ηP and f , so it can be identified with

X × Y
constηP (∗) ×f
−−−−−−−−→ P × P µP−→ P.

8As the notation might suggest, the adjunction VT a CT corresponds to the forgetful-cofree adjunction
under the equivalence S/T ' LComodT (S).
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Moreover, Ek-algebras f : X → P with respect to this Ek-monoidal structure correspond
to maps of Ek spaces. For instance, the multiplication map of such an f in S/P is given
by a commutative diagram

X X

P × P

P

µX

f×f
f

µP

.

which witnesses the compatibility of the multiplications of X and P .
Notation 2.0.5. For a space T , we will abbreviate �S/T

as �T . For k ∈ N+ ∪ {∞} and
an Ek-space P , we will denote the tensor product of the convolution monoidal structure
of Fact 2.0.4 by ⊗P and its unit ηP : {∗} → P by 1P . Moreover, when we need to
disambiguate the monoidal structure we use, we will decorate the objects in question
with ×T (or ×P ) or ⊗P .

The key observation about comodules over spaces in S/T is that for a space X and
an object f : Y → T of S/T , an X-coaction f → X �T f corresponds to a commutative
diagram

Y X × Y

Y

T

ρ

f

pr2

f

.

For every map g : Y → X of spaces, we obtain such a diagram by setting ρ := (g, IdY ) and
every such diagram is of this form. Moreover, by Fact 2.0.1, a map Y → X corresponds
to an X-comodule structure on Y ∈ S. This informal description can be made precise as
follows.
Proposition 2.0.6. Let T be a space. Then the diagram

LComodS(S/T ) LComodS(S)

S/T S

ςS
S/T

LComodS(VT )

ςS

VT

, (2.0.7)

where the vertical functors pick the objects being coacted on, is a pullback square.
Proof. Let us first describe the pullback. Consider the span category K = (• ← • → •),
which we identify with the pushout [1] q0 [1] equipped with inclusions i1 : [1] ↪→ K
and i2 : [1] ↪→ K. Using the identification LComodS(S) ' Fun([1],S) of Fact 2.0.1, the
pullback in question can be computed as the iterated pullback

? Fun(K,S) Fun([1],S)

S/T Fun([1],S) S

y y
i2∗

i1∗

ev0

ev0

.
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Hence it will be enough to show that the functor Γ: LComodS(S/T )→ Fun(K,S) that
sends an object f : Y → T of S/T equipped with a coaction (g, IdY ) : Y → X × Y to
T

f←− Y
g−→ X exhibits its source as the fiber of i2∗ over S/T .

We can describe LComodS(S/T ) more explicitly by considering the cartesian monoidal
structure on S/T . Indeed, by Corollary 1.3.21, it is the pullback of the cospan

Coalg(S) Coalg((−)�T IdT )−−−−−−−−−−→ Coalg(S×T

/T )
θ

S
×T
/T←−−− LComodS×T

/T (S/T ),

which, by Fact 2.0.1, is equivalent to the cospan

S (−)�T IdT−−−−−−→ S/T
ev1←−− Fun([1],S/T ).

Now note that there is a pullback diagram

Fun([1],S/T ) Fun([1],S)

S/T S

y
ev1

VT ◦(−)

ev1

VT

.

Hence, pasting pullback squares, we can identify LComodS(S/T ) with the pullback of
the cospan

S S/T S Fun([1],S)

(−)×T

(−)�T IdT VT ev1 . (2.0.8)

Now we “vary T”. Note that the span category K is also isomorphic to the cone
([0]q [0])/. In this interpretation, the universal property of the product corresponds to a
pullback square

Fun(K,S) Fun([1],S)

S × S S

y
(evi1(1),evi2(1))

P

ev1

×

,

where P maps a span Z f←− Y
g−→ X to (g, f) : Y → X ×Z. Moreover, we can recover the

pullback of the cospan (2.0.8) by taking the pullback of (evi1(1), evi2(1)) along S ×{T} ↪→
S × S.

Tracing the functors in question, we see that the “projection” LComodS(S/T ) →
Fun(K,S) induced by this pullback description indeed agrees with the functor Γ discussed
above. Moreover, (evi1(1), evi2(1)) can be factored as

Fun(K,S)
(evi1(1),i2

∗)
−−−−−−−→ S × Fun([0],S) IdS × ev1−−−−−→ S × S,

which exhibits its fiber over S × {T} as the fiber of i2∗ over S/T .
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We could have stated and proven Proposition 2.0.6 purely in terms of slice categories
without mentioning monoidal structures or comodules, but the monoidal point of view will
be important when we consider Thom objects. In particular, we will use that the pullback
description of Proposition 2.0.6 is compatible with convolution monoidal structures in
the following sense.

Lemma 2.0.9. Let P be an Ek+1-space for some k ∈ N ∪ {∞} and consider Proposi-
tion 2.0.6 for T = P . Then all the functors in the square (2.0.7) are strongly Ek-monoidal
with respect to the convolution monoidal structure on S/P . In particular, as limits of
Ek-monoidal ∞-categories can be computed in Cat∞, (2.0.7) can be viewed as a pullback
square of Ek-monoidal ∞-categories.

Proof. The Ek-monoidality of the bottom arrow and the right arrow is clear. For
the top arrow and the left arrow, we consider the strongly Ek+1-monoidal functors
F := (−) ⊗P 1P : S → S/P and VP : S/P → S. Applying Coalg/LM(−) to various
restrictions of left-tensorings of S and S/P over themselves along these functors (cf.
Construction 1.1.20), we obtain a commutative diagram

LComodS(S/P ) LComodS⊗P
/P (S/P )

LComodS(S) LComodS⊗P
/P (S) LComodS(S)

LComodF (S/P )

LComodS(VP )
LComod(VP )

LComod
S

⊗P
/P (VP )

LComodF (S) LComodVP (S)

. (2.0.10)

Now recall that the monoidal structure on LComodS(S/P ) was defined in a way which
makes LComodF (S/P ) tautologically strongly Ek-monoidal (cf. Remark 1.3.22). As
LComod(VP ) is also strongly Ek-monoidal, the commutativity of (2.0.10) implies that
LComodS(VP ), i.e., the top arrow in (2.0.7), is strongly Ek-monoidal.

Now the left arrow in (2.0.7) is the composite of LComodF (S/P ) with the strongly
Ek-monoidal functor ςS/P

: LComodS⊗P
/P (S/P )→ S/P that picks the object being coacted

on, so it is also Ek-monoidal.

Given an object f : X → T of S/T , our description of comodules over spaces in S/T
allows us to view it as a comodule over X as follows.

Construction 2.0.11. We consider the regular coaction functor R : Coalg(S) →
LComodS(S) induced by the map of operads LM⊗ → E⊗

1 , which equips the under-
lying object of a coalgebra D with a D-coaction given by its comultiplication. Note that
under the equivalences Coalg(S) ' S and LComodS(S) ' Fun([1],S), R sends a space
X to IdX .
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Now let T be a space. Then R fits into a commutative diagram

S/T S Coalg(S)

LComodS(S/T ) LComodS(S) Coalg(S)

S/T S

ST

VT '
R

y

LComodS(VT )

ςS
S/T

θS

ςS

VT

,

(2.0.12)
in particular inducing the dashed functor ST : S/T → LComodS(S/T ) by virtue of
Proposition 2.0.6. Informally speaking, ST sends an object f : X → T to an X-comodule
with coaction map

X X ×X

T

(IdX ,IdX)

f f◦pr2

.

Note that if T = P is an Ek+1-space for some k ∈ N ∪ {∞}, then all the functors in
(2.0.12) are, hence SP is strongly Ek-monoidal when we equip S/P with the convolution
monoidal structure (cf. Lemma 2.0.9). On the level of Ek-algebras, this yields a functor
Alg/Ek

(SP ) : Alg/Ek
(S⊗P

/P )→ Alg/Ek
(LComodS(S/P )).

Now let X be a Ek-space, which we view as an (Ek,E1)-bialgebra in S. When we
equip S/T and LComodS(S/T ) with the functors into Coalg(S) depicted in (2.0.12), SP

can be viewed as a functor over Coalg(S) and hence Alg/Ek
(SP ) as a functor over

Alg/Ek
(Coalg(S)). Looking at fibers over X ∈ Alg/Ek

(Coalg(S)), we obtain a functor
Alg/Ek

(SP )X : Alg/Ek
(S⊗P

/P )X → Alg/Ek
(LComodS(S/P ))X . Combining Remark 1.3.22

and Lemma 1.2.13, we see that its target Alg/Ek
(LComodS(S/P ))X is equivalent to

Alg/Ek
(LComodX�P 1P

(S/P )). As for the source, an algebra f in S/P (i.e., a Ek-map into
P ) is in Alg/Ek

(S⊗P

/P )X if and only if its source is X. Hence, SP maps a map f : X → P
of Ek-spaces not only to an X-comodule, but in fact to an X �P 1P -comodule algebra.

From now on, when there is no room for confusion, we will abbreviate Alg/Ek
(SP ) and

Alg/Ek
(SP )X as SP .

Remark 2.0.13. We expect the results of this section to generalize from the slice category
over a space (i.e., an ∞-groupoid) to a slice category over a (presentable) ∞-category C
as follows.

Consider the ∞-category S/C of ∞-groupoids over C (i.e., the comma category of the
cospan {C} ↪→ Cat∞ ←↩ S). As in Proposition 2.0.6, we expect a comodule structure
over a space X on an object f : Y → C of S/C to be completely determined by a map
g : Y → X, and thus every such f to have a Y -comodule structure encoded by IdY as in
Construction 2.0.11.

Moreover, for k ∈ N∪ {∞}, we expect an Ek+1-monoidal structure on C to give rise to
a “convolution” Ek+1-monoidal structure on S/C such that an Ek+1-algebra f : Y → C
with respect to this monoidal structure corresponds to a map of Ek+1-algebras in Cat∞,
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i.e., a strongly Ek+1-monoidal functor. As in Construction 2.0.11, a strongly Ek-monoidal
functor f : Y → C would thus give rise to an (Y �S/C 1S/C)-comodule Ek-algebra using
the aforementioned comodule structure.
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3. Hopf–Galois extensions
In this section, we introduce one of the central concepts of this thesis.

Convention 3.0.1. We fix an E2-monoidal ∞-category C and a bialgebra H ∈ Bialg(C).
We further assume that C admits geometric realizations of simplicial objects and limits
of cosimplicial objects, and that the tensor product preserves geometric realizations in
each variable separately.

The examples we have in mind are the ∞-category S of spaces (equipped with the
cartesian product), the ∞-category Sp of spectra (equipped with the smash product),
the ∞-category LModR(Sp) of modules over an En-ring spectrum for n ≥ 3 (equipped
with the relative smash product over R), and various localizations of those.

3.1. Hopf–Galois contexts
Definition 3.1.1. An H-Hopf–Galois-context is a map

ϕ̃ : TrivH(A)→ B̃

of comodule algebras, where A ∈ Alg(C) is an algebra and B̃ ∈ Alg(LComodH(C)) is an
H-comodule algebra.

In this situation, we will denote the underlying algebra VH(B̃) ∈ Alg(C) by B and the
underlying map VH(ϕ̃) : A ' VH(TrivH(A))→ B by ϕ.

Example 3.1.2. Let A ∈ Alg(C). As the cofree comodule functor CH : C → LComodH(C)
is lax monoidal (cf. Remark 1.2.10), CH(A) lifts to an H-comodule algebra with multipli-
cation map

CH(A)⊗ CH(A) ' H ⊗ A⊗H ⊗ A ' H ⊗H ⊗ A⊗ A µH⊗µA−−−−→ H ⊗ A ' CH(A).

In particular, the underlying algebra of H lifts to H̃ := CH(1C) ∈ Alg(LComodH(C)).
Moreover, since both adjoints of the adjunction VH a CH are lax monoidal, it lifts

to an adjunction between ∞-categories of algebras (cf. Remark B.0.5). The adjoint
of the equivalence VH(TrivH(A)) ' A of Remark 1.3.18 can hence be upgraded to a
map nbA : TrivH(A)→ CH(A) of H-comodule algebras, i.e., an H-Hopf–Galois context,
which we call the normal basis context of A. Unpacking the definitions, we see that the
underlying map of nbA is given by ηH ⊗ A : A → H ⊗ A. Accordingly, we will denote
nb1C also by η̃H : TrivH(1C)→ H̃.

Example 3.1.3. Assume that C is presentably E2-monoidal and consider the Picard
space Pic(C) of ⊗-invertible objects of C. By [ABG18, Theorem 1.5], there is a “Thom
object” functor M: S/Pic(C) → C that sends a map X → Pic(C) to the colimit of
the composite X → Pic(C) ↪→ C and is E2-monoidal with respect to the convolution
monoidal structure in the source. In particular, for every E1-space X, M induces a
functor M̃X : Alg(LComodX�Pic(C)1Pic(C)(S/Pic(C)))→ Alg(LComodX�C1C (C)).
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Now let f : X → Pic(C) be a map of E1-spaces, which we view as an algebra in S/Pic(C).
In Construction 2.0.11, we saw that f can be lifted to an (X �Pic(C) 1Pic(C))-comodule
algebra SPic(C)(f) with coaction map

X X ×X

Pic(C)× Pic(C)

Pic(C)

f

(IdX ,IdX)

const1C ×f

µPic(C)

.

Let ηf : TrivX�Pic(C)1Pic(C)(1Pic(C))→ SPic(C)(f) denote its unit map, which we can view
as an (X �Pic(C) 1Pic(C))-Hopf–Galois context in S/Pic(C).

Applying M to f , we obtain a (X �C 1C)-comodule algebra M̃(f) := M̃X(SPic(C)(f)),
whose coaction map M(f)→ (X �C 1C)⊗M(f) ' X �C M(f) is an incarnation of the
“Thom diagonal”. The unit map M̃X(ηf) : TrivX�C1C(1C) → M̃(f) of M̃(f) yields an
(X �C 1C)-Hopf–Galois context, which we call the Thom context of f .

Remark 3.1.4. In the context of Example 3.1.3, one might ask whether colimits of
certain functors f : X → C that do not necessarily factor through Pic(C) admit the
structure of a (X �C 1C)-comodule algebra. One possibility for this would be using the
generalization sketched in Remark 2.0.13 and working with S/C instead of S/Pic(C), which
would yield such a comodule algebra structure on the colimit of a strongly monoidal
functor f : X → C.9 Another approach that could work also for lax monoidal functors is
as follows.

On the one hand, by [ABG18, Theorem 6.4], Fun(X, C) admits a pointwise monoidal
structure with respect to which const : C → Fun(X, C) is strongly monoidal. This induces
an oplax monoidal structure on its left adjoint colim: Fun(X, C)→ C. Hence, as every
functor f : X → C is a comodule over the unit const1C of the pointwise monoidal structure,
we obtain a coaction of colim(const1C) ' X �C 1C on colim f (cf. [Bea21, Corollary
4.14]).

On the other hand, when X is an E1-space, Fun(X, C) admits a Day convolution
monoidal structure by [ABG18, Theorem 6.15], with respect to which colim: Fun(X, C)→
C is strongly monoidal. Therefore, as algebras with respect to the Day convolution
monoidal structure correspond to lax monoidal functors, a lax monoidal structure on a
functor f : X → C induces an algebra structure on colim f .

Hence the question is whether the algebra structure on the colimit of a lax monoidal
functor f : X → C is compatible with its X-comodule structure. We expect this to be the
case because we expect the lift colim∼

X : Fun(X, C) → LComodX�C1C(C) of the colimit
functor to be strongly monoidal with respect to the Day convolution monoidal structure
in the source and the monoidal structure of Fact 1.2.9 in the target.

Indeed, the Day convolution monoidal structure can be constructed using a method
similar to that of Fact 1.2.9 as follows. There is a cocartesian fibration p : S⊗

/C → S⊗ whose
9Note, however, that if X is a grouplike E1-space, then every strongly monoidal functor f : X → C

factors through Pic(C), so that case is already covered by Example 3.1.3.
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straightening is a functor that extends Fun(−, C) : S⊗
〈1〉 ' S → Cat∞, where the functori-

ality is given by left Kan extension functors. The Day convolution monoidal structure on
Fun(X, C) can be obtained by pulling back p along the map X : E⊗

1 → S⊗ representing
the E1-structure of X. Hence, if we can define a functor colim : S⊗

/C → LComodS(C)⊗

over S⊗ whose fiber at Y ∈ S = S⊗
〈1〉 is colim∼

Y : Fun(Y, C) → LComodY �C1C(C) and
that preserves cocartesian arrows, we can obtain an extension of colim∼

X to a strongly
monoidal functor by considering the pullback of colim along the map X : E⊗

1 → S⊗.
The main challenge here is constructing a functor colim with the desired fibers; once

such a functor is constructed we expect it to be straightforward to see that it preserves
cocartesian arrows. For instance, for a map u : Y → Y ′ of spaces (i.e., a morphism in
S⊗

〈1〉), the underlying map of the comparison map u? ◦ colim∼
Y → colim∼

Y ′ ◦u! would simply
be the equivalence colimY ' colimY ′ ◦u!.
Definition 3.1.5. We say that an H-Hopf–Galois-context ϕ̃ : TrivH(A)→ B̃ satisfies
the primitives condition if the adjoint map ϕ̂ : A → PrimH(B̃) under the adjunction
TrivH a PrimH of Definition 1.3.17 is an equivalence.
Example 3.1.6. Let A be an algebra in C and consider the normal basis context
nbA : TrivH(A) → CH(A) of Example 3.1.2, which was defined as the adjoint of the
equivalence VH(TrivH(A)) ' A with respect to the adjunction VH a CH . The adjoint of
this under the adjunction TrivH a PrimH recovers the equivalence A ' PrimH(CH(A))
discussed in Remark 1.3.18, meaning that every normal basis context satisfies the
primitives condition.

For Thom contexts, the primitives condition is usually verified via a completeness
criterion that we will establish in Example 3.2.14.
Definition 3.1.7. Let ϕ̃ : TrivH(A) → B̃ be an H-Hopf–Galois-context and M ∈
LModB(C). The associated shear map is the composite10

shϕ̃M : B ⊗AM
ρ

B̃
⊗AM

−−−−−→ H ⊗B ⊗AM
H⊗αM−−−−→ H ⊗M.

When M = B, we will also simply write shϕ̃ instead shϕ̃B.
According to this definition, the shear map is only a map of objects in C, but we will

see in Corollary 3.2.8 that it underlies a more structured map.
Definition 3.1.8. We say that an H-Hopf–Galois-context ϕ̃ : TrivH(A)→ B̃ satisfies
the normal basis condition if shϕ̃ : B ⊗A B → H ⊗B is an equivalence.
Example 3.1.9. Let A be an algebra in C and consider the normal basis context
nbA : TrivH(A)→ CH(A) of Example 3.1.2. Note that we have an equivalence

shnbA
: (H ⊗ A)⊗A (H ⊗ A) H ⊗ (H ⊗ A)⊗A (H ⊗ A) H ⊗ (H ⊗ A)

shη̃H
⊗A : H ⊗H ⊗ A H ⊗H ⊗H ⊗ A H ⊗H ⊗ A

(∆H⊗A)⊗A(H⊗A)

'

H⊗µH⊗A

' '

∆H⊗H⊗A H⊗µH⊗A

.

10 Note that the first map is well-defined because ρ
B̃
ϕ ' (H⊗ϕ)ρTrivH (A) ' (H⊗ϕ)(ηH⊗A) ' ηH⊗ϕ.
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Hence shnbA
satisfies the normal basis condition if η̃H : TrivH(1C)→ H̃ does. Bialgebras

H such that η̃H satisfies the normal basis condition will be studied more closely in
Section 4, where we call them Hopf algebras.

Example 3.1.10. Let X be an E1-space, which we view as a bialgebra in S. Then the
shear map of the associated normal basis context η̃X is given by

X ×X (IdX ,IdX)×X−−−−−−−−→ X ×X ×X X×µX−−−−→ X ×X.

E1-spaces for which this map is an equivalence are called grouplike (cf. [Lur17, Definition
5.2.6.2]).

Example 3.1.11. Assume that C is presentably E2-monoidal, and let f : X → Pic(C)
be a map of E1-spaces. Consider the Thom context M̃X(ηf ) : TrivX�C1C (1C)→ M̃(f) of
Example 3.1.3.

Note that as M: S/Pic(C) → C is strongly E2-monoidal, the shear map

M(f⊗Pic(C)f) ' M(f)⊗M(f)
sh

M̃X (ηf )
−−−−−→ (X�C 1C)⊗M(f) ' M((X�Pic(C) 1PicC )⊗Pic(C)f)

agrees with M(shηf
). Viewing shηf

: f ⊗Pic(C) f → (X �Pic(C) 1Pic(C))⊗Pic(C) f as a map
of spaces over Pic(C), we can depict it as a commutative diagram

X ×X X ×X ×X X ×X

Pic(C)× Pic(C) Pic(C)× Pic(C)× Pic(C) Pic(C)× Pic(C)

Pic(C)

(IdX ,IdX)×X

f×f

X×µX

const1C ×f×f const1C ×f

µPic(C)

µPic(C)◦(Pic(C)×µPic(C))

µPic(C)

.

Now shηf
is an equivalence in S/Pic(C) if and only if the upper composite (X × µX) ◦

((IdX , IdX) × X), i.e., the shear map of the E1-space X, is an equivalence of spaces.
Hence shM̃X(ηf ) is an equivalence if X is a grouplike E1-space, in which case shM̃X(ηf ) is
an incarnation of the Thom isomorphism of [Mah79, Theorem 1.1].

Definition 3.1.12. An H-Hopf–Galois context ϕ̃ : TrivH(A)→ B̃ which satisfies both
the primitives condition and the normal basis condition (i.e., one for which ϕ̂ : A →
PrimH(B̃) and shϕ̃ : B ⊗A B → H ⊗ B are equivalences) is called an H-Hopf–Galois
extension.

This definition is a straightforward translation of [Rog08, Part I, Definition 12.1.5] for
point-set models, variants of which appeared as [Rot09, Definition 5.7], [Hes09, Definition
3.2] and [Kar14, Definition 2.3.1]. For coactions of spaces on ring spectra (in particular
for Thom spectra), it is essentially equivalent to [Bea16, Definition 4.2.2.5].
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3.2. The structured shear map
Convention 3.2.1. For the rest of this section, we fix an H-Hopf–Galois context
ϕ̃ : TrivH(A)→ B̃.

In applications such as Corollary 3.2.11 and Corollary 3.2.13, we will need a more
structured version of the shear map shϕ̃M : B ⊗A M → H ⊗M introduced in Defini-
tion 3.1.7. First we note that the source B⊗AM of the shear map can be identified with
the underlying object of the image of M under the endofunctor

ϕ!ϕ
∗ ' B ⊗A (−) : LModB(C)→ LModB(C).

Moreover, by Example 1.3.5, ϕ!ϕ
∗ admits a comonad structure which makes it the initial

comonad coacting on ϕ!.
Given this universal property of ϕ!ϕ

∗, we would like to lift H⊗(−) to a comonad Θ
B̃

on
LModB(C) and construct an appropriate coaction of it on ϕ! such that for M ∈ LModB(C),
the component ϕ!ϕ

∗M ' B ⊗AM → H ⊗M ' Θ
B̃
M of the comonad map ϕ!ϕ

∗ → Θ
B̃

given by the initiality of ϕ!ϕ
∗ is the shear map.

We will realize the comonad Θ
B̃

as the associated comonad of a “forgetful-cofree”
adjunction LMod

B̃
(LComodH(C)) � LModB(C) constructed using the machinery of

Appendix B. This method of constructing a comonad on LModB(C) with the desired
properties is due to Hadrian Heine.

Proposition 3.2.2. There is a comonadic adjunction

V
B̃

: LMod
B̃

(LComodH(C)) � LModB(C) :C
B̃

(3.2.3)

lifting the forgetful-cofree adjunction VH : LComodH(C) � C :CH .

Proof. As VH : LComodH(C) → C admits a strongly monoidal structure and a right
adjoint CH , Example B.0.4 and Corollary B.0.10 yield the desired lift.

Definition 3.2.4. Let Θ
B̃

:= V
B̃

C
B̃

, the comonad associated to the adjunction (3.2.3).

Remark 3.2.5. Note that Θ
B̃

is a lift of H ⊗ (−) ' VH CH : C → C to a functor
LModB(C)→ LModB(C), so the effect of Θ

B̃
on the underlying objects is indeed given

by tensoring with H.

Remark 3.2.6. The identification LMod
B̃

(LComodH(C)) ' LComodΘ
B̃
(LModB(C)))

allows us, in some sense, to swap the order in which we consider “B-modules” and
“H-comodules”. One should, however, be careful about such statements because the
coaction of H on B introduces certain “twists” (which is one of the reasons why we insist
on making the comodule structure explicit by writing B̃ instead of just B).

For example, unwinding the definitions of the functors constructed in the proof of
Proposition B.0.6, we see that C

B̃
is in fact given by the composite

LModB(C) CB
H−−→ LModCH(B)(LComodH(C))

(ρ
B̃

: B̃→CH(B))
∗

−−−−−−−−−−→ LMod
B̃

(LComodH(C)).
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Therefore, given a B-module M , the B-action on Θ
B̃
M ' V

B̃
C
B̃
M ' H ⊗ M is

informally given by b · (h ⊗ m) = ρ(b) · (h ⊗ m), not by b · (h ⊗ m) = h ⊗ (b · m) as
one might naively expect. One could say that objects of LComodΘ

B̃
(LModB(C)) are

B-modules equipped with a (ρ
B̃

-)semilinear coaction of H.
Next, we construct an appropriate Θ

B̃
-comodule structure on ϕ!.

Lemma 3.2.7. ϕ! : LModA(C)→ LModB(C) lifts to a functor

ϕ̂! : LModA(C)→ LMod
B̃

(LComodH(C)) ' LComodΘ
B̃

(LModB(C))

such that for all N ∈ LModA(C), the induced coaction map

rΘ
B̃

: ϕ!N ' B ⊗A N → H ⊗B ⊗A N ' Θ
B̃
ϕ!N

of Fact 1.3.6 is given by ρ
B̃
⊗A N .

Proof. We have a commutative diagram

LModTrivH(A)(LModH(C)) LMod
B̃

(LModH(C))

LModA(C) LModA(C) LModB(C)

ϕ̃!

VTrivH (A)
H VB̃

H

TrivA
H

ϕ!

,

yielding a lift ϕ̂! := ϕ̃! ◦TrivAH . Now, for N ∈ LModA(C), the H-coaction on TrivAH(N) is
given by ηH ⊗N : N → H ⊗N . ϕ̃! maps this to the coaction map

B⊗AN
ρ

B̃
⊗A(ηH⊗N)

−−−−−−−−→ (H ⊗B)⊗A (H ⊗N) ' H ⊗H ⊗B⊗AN
µH⊗B⊗AN−−−−−−−→ H ⊗B⊗AN,

which is homotopic to ρ
B̃

as µH ◦ (H ⊗ ηH) ' IdH .
Corollary 3.2.8. There exists a comonad map ϕ!ϕ

∗ → Θ
B̃

whose component at M ∈
LModB(C) is given by the shear map B ⊗AM ' ϕ!ϕ

∗M → Θ
B̃
M ' H ⊗M .

Proof. Applying Example 1.3.5 to the coaction of Lemma 3.2.7, we obtain a comonad
map ϕ!ϕ

∗ → Θ
B̃

with components

ϕ!ϕ
∗M ' B ⊗AM

rΘ
B̃
ϕ∗'ρ

B̃
⊗AM

−−−−−−−−−→ H ⊗B ⊗AM
Θ

B̃
cϕ'H⊗αM

−−−−−−−−→ H ⊗M ' Θ
B̃
M (3.2.9)

as desired.
Remark 3.2.10. Note that both ϕ!ϕ

∗ and Θ
B̃
' VB̃

H ◦(ρB̃)∗ ◦ CB
H are right C-linear

geometric-realization-preserving functors. Moreover, the factors that occur in (3.2.9),
hence shϕ̃(−) can be viewed as morphisms of right C-linear geometric-realization-
preserving functors.

Therefore, using the equivalence LinFun{∆op}
C (LModB(C),LModB(C)) ' B BimodB of

Fact 1.4.4, we see that the natural transformation shϕ̃(−) is an equivalence if and only if
its component at B, i.e., shϕ̃ : B ⊗A B → H ⊗B is.

In fact, one could equip B⊗AB and H ⊗B with appropriate B-B-bimodule coalgebra
structures and define the shear map as a morphism of such objects, which is the perspective
taken in [BH18, Definition 3.12].
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An immediate consequence of this structured shear map is the following “Hopf–Galois
descent” result.

Corollary 3.2.11. Assume that the shear map shϕ̃ : B⊗AB → H ⊗B is an equivalence.
Then ϕ : A→ B admits descent if and only if the lift

ϕ̂! : LModA(C)→ LComodΘ
B̃

(LModB(C))

of Lemma 3.2.7 is an equivalence.

Proof. As discussed in Remark 1.3.7, ϕ̂! can be factored as

LModA(C) ϕ!−→ LComodϕ!ϕ∗(LModB(C))
(sh

ϕ̃
)
?−−−→ LComodΘ

B̃
(LModB(C)).

Now (shϕ̃)
?

is an equivalence as it is the corestriction of scalars functor along an equivalence
of comonads, so ϕ̂! is an equivalence if and only if ϕ! is, i.e., if and only if ϕ admits
descent.

For Hopf–Galois contexts satisfying the normal basis condition, the structured shear
map also allows us to replace the primitives condition by a completeness condition, which
is an ∞-categorical version of [Rog08, Part I, Proposition 12.1.8].

Lemma 3.2.12. The functor

ϕ̂! : LModA(C) TrivA
H−−−→ LModTrivH(A)(LComodH(C)) ϕ̃!−→ LMod

B̃
(LComodH(C)).

of Lemma 3.2.7 admits a right adjoint Pϕ̃ whose effect on underlying H-comodules is
given by taking primitives.

Proof. As discussed in Remark 1.2.12, ϕ̃! admits a right adjoint ϕ̃∗ which does not change
the underlying H-comodule. Moreover, since TrivH : C → LComodH(C) is strongly
monoidal, Example B.0.4 and Corollary B.0.10 imply that the adjunction TrivH a PrimH

can be lifted to an adjunction TrivAH : LModA(C) � LModTrivH(A)(LComodH(C)) :PA.
Composing these two right adjoints, we obtain a right adjoint of ϕ̂! with the desired
property.

Corollary 3.2.13. Assume that the shear map shϕ̃ : B⊗AB → H ⊗B is an equivalence.
Then A→ PrimH(B̃) is an equivalence if and only if A→ lim∆ C•(ϕ) is an equivalence,
i.e., if and only if A is B-complete.

Proof. We have B̃ ' ϕ̂!(A), and the first map can be identified with the unit map of the ad-
junction ϕ̂! : LModA(C) � LComodΘ

B̃
(LModB(C)) :Pϕ̃ of Lemma 3.2.12. Moreover, the

second map is the unit of the adjunction ϕ! : LModA(C) � LComodϕ!ϕ∗(LModB(C)) :ϕ∗

of Corollary 1.3.13. Since we have an equivalence (shϕ̃)
?
: LComodϕ!ϕ∗(LModB(C)) →

LComodΘ
B̃

(LModB(C)) such that (shϕ̃)
?
◦ ϕ! ' ϕ̂!, one is an equivalence if and only the

other is.
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Example 3.2.14. Assume that C is presentably E2-monoidal. As discussed in Exam-
ple 3.1.11, the Thom context M̃X(ηf) : TrivX�C1C(1C) → M̃(f) associated to a map
f : X → Pic(C) of grouplike E1-spaces satisfies the normal basis condition, so it is a
Hopf–Galois extension if and only if 1C is M(f)-complete.

For Thom spectra, i.e., in the case where C = Sp, this completeness condition is
closely related to orientability (cf. [Rot09, Proposition 6.9]). Indeed, if the composite
X

f−→ Pic(Sp) HZ⊗(−)−−−−−→ Pic(LModHZ(Sp)) is null-homotopic, then M(f) is connective, and
using the Hurewicz theorem, its 0-th homotopy group can be computed as

π0(M(f)) ' π0(HZ⊗M(f)) ' π0(M(HZ⊗f)) ' π0(Σ∞
+X⊗HZ) ' H0(X;Z) ' Z[π0X].

Hence M(f) is a connective ring spectrum whose 0-th homotopy group is a group algebra.
The monoidal unit 1Sp, i.e., the sphere spectrum is complete with respect to all such ring
spectra (cf. [Bou79, Theorem 6.5]).
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4. Hopf algebras
In this section, we introduce a notion of Hopf algebras in the ∞-categorical setting

and lift some results about Hopf algebras in the 1-categorical setting to ∞-categories.
We continue to work with Convention 3.0.1, i.e., we consider a bialgebra H in a suitable
E2-monoidal ∞-category C. Recall that H can be lifted to an H-comodule algebra
H̃ := CH(1C) ∈ Alg(LComodH(C)) (cf. Example 3.1.2).

Definition 4.0.1. A bialgebra H is called a Hopf algebra if the associated shear map

shη̃H
: H ⊗H ∆H⊗H−−−−→ H ⊗H ⊗H H⊗µH−−−−→ H ⊗H.

of Definition 3.1.7 is an equivalence.

As discussed in Example 3.1.10, every grouplike E1-space X is a Hopf algebra in S.
Consequently, if C is presentably E2-monoidal, X �C 1C is a Hopf algebra in C.

4.1. The antipode
In the 1-categorical setting, Hopf algebras are usually defined in terms of an “antipode”

H → H (cf. [Mon93, Definition 1.5.1] and [Por15, Definition 32]). In this subsection, we
relate our notion of a Hopf algebra to the classical definition.

Fact 4.1.1 ([Por15, Proposition 22]). Given f, g : H → H, we call

f ∗ g : H ∆H−−→ H ⊗H f⊗g−−→ H ⊗H µH−−→ H

their convolution product. This operation endows π0 MapC(H,H) ' Homho(C)(H,H)
with the structure of a monoid with unit ηH ◦ εH .

Definition 4.1.2. A homotopy antipode for H is an inverse of IdH with respect to the
convolution product, i.e., a map χH : H → H in C such that

µH(H ⊗ χH)∆H = ηHεH = µH(χH ⊗H)∆H .

At first sight, a homotopy antipode is an additional structure map with which we can
equip a bialgebra. However, since the inverse of an element in a monoid is unique if it
exists, we can can speak of the property of “admitting a homotopy antipode”.

In the 1-categorical setting, an antipode χH : H → H always underlies a map of bialge-
bras when one considers the opposite multiplication and the opposite comultiplication in
either the source or the target (cf. [Por15, Proposition 36]). In the ∞-categorical setting,
lifting a homotopy antipode to a map of bialgebras would involve an infinite hierarchy of
coherence data and it is not clear whether it can always be done. This is the reason why
we prefer the term homotopy antipode, which is in line with the terminology of [Rot09,
Definition 5.9].

In order to relate the existence of a homotopy antipode with the invertibility of the
shear map, we generalize the construction of the shear map as follows.
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Proposition 4.1.3. The assignment that sends a map f : H → H to the composite

ΞH(f) : H ⊗H ∆H⊗H−−−−→ H ⊗H ⊗H H⊗f⊗H−−−−−→ H ⊗H ⊗H H⊗µH−−−−→ H ⊗H

defines a monoid homomorphism

ΞH : (Homho(C)(H,H), ∗, εHηH)→ (Homho(C)(H ⊗H,H ⊗H), ◦, IdH⊗H).

Proof. Let f, g : H → H. Then we have a commutative diagram

H ⊗H H ⊗H ⊗H H ⊗H ⊗H ⊗H H ⊗H ⊗H ⊗H

H ⊗H ⊗H H ⊗H ⊗H ⊗H

H ⊗H ⊗H H ⊗H ⊗H ⊗H H ⊗H ⊗H

H ⊗H H ⊗H ⊗H H ⊗H ⊗H H ⊗H

∆H⊗H

∆H⊗H H⊗∆H⊗H H⊗H⊗g⊗H

H⊗f⊗H⊗H
∆H⊗H⊗H

H⊗g⊗H
H⊗H⊗µH

H⊗µH⊗H
∆H⊗H⊗H

H⊗µH H⊗H⊗µH H⊗µH

∆H⊗H H⊗f⊗H H⊗µH

.

Now the left vertical composite is ΞH(g), the bottom horizontal composite is ΞH(f), and
the composite of the top horizontal and the right vertical arrows is ΞH(f ∗ g). Hence
ΞH(f ∗ g) = ΞH(f) ◦ ΞH(g).

As for units, we have a commutative diagram

H ⊗H H ⊗H ⊗H H ⊗H H ⊗H ⊗H H ⊗H∆H⊗H

IdH ⊗H

H⊗εH⊗H H⊗ηH⊗H

H⊗IdH

H⊗µH ,

implying that ΞH(ηHεH) = IdH⊗H .

Corollary 4.1.4. If H admits a homotopy antipode, then H is a Hopf algebra, i.e., its
shear map shη̃H

: H ⊗H → H ⊗H is an equivalence.

Proof. Note that ΞH(IdH) = shη̃H
. Hence, since ΞH is a monoid homomorphism, shη̃H

is
◦-invertible if IdH is ∗-invertible.

We can also go back from endomorphisms of H ⊗H to endomorphisms of H.

Proposition 4.1.5. The assignment that sends a map u : H ⊗ H → H ⊗ H to the
composite

Ξ′
H(u) : H H⊗ηH−−−−→ H ⊗H u−→ H ⊗H εH⊗H−−−→ H

defines a left inverse of the map ΞH : Homho(C)(H,H) → Homho(C)(H ⊗H,H ⊗H) of
Proposition 4.1.3.

58



Proof. Let f : H → H. Then we have a commutative diagram

H H ⊗H H ⊗H ⊗H H ⊗H ⊗H H ⊗H H

H ⊗H H H H ⊗H
∆H

H⊗ηH ∆H⊗H H⊗f⊗H

εH⊗H⊗H

H⊗µH εH⊗H

H⊗H⊗ηH

εH⊗H f H⊗ηH

µH
,

where the upper composite is Ξ′
H(ΞH(f)) and the lower composite is f .

Example 4.1.6. Consider the case where C is a preadditive (1-)category equipped with
the symmetric monoidal structure given by its biproduct ⊕. Then every object X admits
a bialgebra structure whose multiplication is the fold map X ⊕ X → X and whose
comultiplication is the diagonal X → X ⊕ X. Moreover, the convolution product of
endomorphisms of X coincides with the addition of endomorphisms obtained from the
preadditive structure.

Identifying HomC(X ⊕X,X ⊕X) with 2 × 2 matrices with entries in HomC(X,X),
ΞX sends an endomorphism f : X → X to the matrix

(
IdX f
0X IdX

)
,

which is where the terminology of “shear” maps comes from. Moreover, under this
identification, the retraction Ξ′

X sends a matrix A to the entry A1,2. In particular, we see
that Ξ′

X is not a monoid homomorphism in general because a matrix does not necessarily
have identities on the diagonal.

However, the restriction of Ξ′
H to the image of ΞH is a homomorphism because the

inverse of a bijective monoid homomorphism is a monoid homomorphism. Therefore, as
monoid homomorphisms preserve invertibility, we have the following partial converse of
Corollary 4.1.4.

Corollary 4.1.7. If the shear map shη̃H
: H ⊗H → H ⊗H admits an inverse that is in

the image of ΞH , i.e., is of the form

H ⊗H ∆H⊗H−−−−→ H ⊗H ⊗H H⊗χ⊗H−−−−−→ H ⊗H ⊗H H⊗µH−−−−→ H ⊗H,

then χ is a homotopy antipode for H.

As we will see in Proposition 5.4.1, another setting where we can extract a homotopy
antipode from an inverse of the shear map is that of (co)commutative Hopf algebras. This
applies in particular to a grouplike E1-space X, whose comultiplication (IdX , IdX) : X →
X ×X is cocommutative. An antipode X → X sends a point x ∈ X to an inverse of x
with respect to the multiplication of X.
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4.2. Hopf modules and descent
We now consider objects equipped with an action and a coaction of a bialgebra that

are compatible in an appropriate sense.

Definition 4.2.1. The category of (left) H-Hopf modules in C is

HopfModH(C) := LMod
H̃

(LComodH(C)) 3.2.2' LComodΘ
H̃

(LModH(C)),

where Θ
H̃

is the comonad of Definition 3.2.4.

In the 1-categorical setting, the fundamental theorem of Hopf modules states that
category of Hopf modules is equivalent to the base category (cf. [Mon93, Theorem 1.9.4]).
We prove an ∞-categorical version of this statement in Corollary 4.2.9, which requires
some preparation.

Let us first sketch the proof of the 1-categorical statement, on which our approach is
based. Note that every cofree H-comodule H ⊗X has a compatible H-module structure
given by µH⊗X : H⊗(H⊗X)→ X, yielding a lift ĈH : C → HopfModH(C) of the cofree
H-comodule functor. Now ĈH admits a left quasi-inverse because PrimH ◦U

H̃
◦ĈH '

PrimH ◦CH ' IdC, As for the right quasi-inverse, we can check that for every Hopf
module M , the composite

M
ρM−−→ H ⊗M ∆H⊗M−−−−→ H ⊗H ⊗M H⊗χH⊗M−−−−−−→ H ⊗H ⊗M H⊗αM−−−−→ H ⊗M (4.2.2)

lands in H ⊗ PrimH(M) and defines an inverse to the map H ⊗ PrimH(M) → M
given by the restriction of αM , hence yielding a natural isomorphism IdHopfModH(C) '
ĈH ◦ PrimH ◦U

H̃
.

In the 1-categorical setting PrimH(M) is an equalizer, whereas in the ∞-categorical
setting it is the limit of a cosimplicial diagram (cf. the proof of Proposition 1.3.10), which
makes it harder to show that the analogue of (4.2.2) factors through H ⊗ PrimH(M).
We circumvent this issue by working with a “dual shear map” instead of the antipode
(cf. Construction 4.2.6) and making the equivalence M ' H ⊗ PrimH(M) implicit in
equivalences of module categories induced by this variant of this shear map.

We start with a general “codescent” statement for coaugmented coalgebras, which
yields an ∞-category equivalent to C that is easier to compare with HopfModH(C).

Remark 4.2.3. Let ηD : 1C → D be a coaugmented coalgebra. Then the cofree co-
module functor CD : C → LComodD is conservative because it admits a left inverse
PrimD : LComodD → C.

Proposition 4.2.4. Let ηD : 1C → D be a coaugmented coalgebra. Then the adjunction
VD a CD is monadic, i.e., the standard lift CD : C → LModCD VD

(LComodD(C)) of CD

to the module category of the monad CD VD is an equivalence.

Proof. We apply the Barr–Beck–Lurie monadicity theorem ([Lur17, Theorem 4.7.3.5]).
First, note that CD is conservative by Remark 4.2.3.
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Moreover, as the forgetful functor of a comodule category, VD : LComodD(C)→ C re-
flects colimits, so CD-split simplicial objects in LComodD(C) admit geometric realizations,
as their images in C do.

Now let X. be a colimiting cocone of a CD-split simplicial object. Then D ⊗X. '
VD CDX

. is a colimiting cocone as the tensor product of C preserves geometric realiza-
tions, so CDX

. is a colimiting cocone because VD reflects colimits.

Remark 4.2.5. Remark 4.2.3 can be formally dualized to augmented algebras, i.e.,
algebras R equipped with an algebra map εR : R→ 1C. In that case, the functor FR '
(ηR)! : C → LModR(C) is conservative as it admits a left inverse (εR)! : LModR(C)→ C.
On the other hand, the proof of Proposition 4.2.4 cannot be directly dualized to augmented
algebras as R⊗− does not necessarily preserve limits of cosimplicial objects.

However, when R is dualizable11, R⊗− is right adjoint to R∨ ⊗−, so it does preserve
limits. Hence, dualizing the argument of Proposition 4.2.4, we see that augmented
dualizable algebras admit descent.

We now construct a lift of CH to HopfModH(C) and a dual version of the structured
shear map12.

Construction 4.2.6. As CH : C → LComodH(C) is lax monoidal, it sends 1C-modules
to CH(1C) = H̃-modules. More precisely, we have lift

LMod1C (C) LMod
H̃

(LComodH(C)) HopfModH(C)

C LComodH(C)
' U

H̃

CH

ĈH .

This lift exhibits the functor CH : C → LComodH(C) as a module over the monad
U
H̃

F
H̃

on LComodH(C). Unpacking the definitions, we see that the associated action
map at X ∈ C is given by

U
H̃

F
H̃

CH X ' H ⊗H ⊗X µH⊗X−−−−→ H ⊗X ' CH X.

Now consider the monad CH VH on LComodH(C), which is an endomorphism object
for CH , i.e., a terminal monad acting on it. The aforementioned action of U

H̃
F
H̃

yields
a map s̃hH : U

H̃
F
H̃
→ CH VH of monads, which we call the dual shear map. Unpacking

the constructions, we see that its component at M ∈ LComodH(C) is given by

U
H̃

F
H̃
M ' H ⊗M H⊗ρM−−−−→ H ⊗H ⊗M µH⊗M−−−−→ H ⊗M ' CH VHM.

11The notion of dualizability will be briefly reviewed in the beginning of Subsection 4.3
12We could formally dualize the construction in Subsection 3.2 where we consider maps of comodule

algebras to maps of module coalgebras, and apply it to the map εH : H → 1C in order obtain a
map from a certain monad to CH VH . However, Construction 4.2.6 has the advantage of explicitly
describing the source as the monad associated to the comodule algebra H̃.
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Moreover, dualizing the discussion in Remark 1.3.7, we obtain a commutative diagram

LModCH VH
(LComodH(C)) LMod

H̃
(LComodH(C))

C C

(s̃hH)
∗

UCH VH

V
H̃

CH

CH

ĈH .

Lemma 4.2.7. Let H be a Hopf algebra with a homotopy antipode and M ∈ LComodH(C).
Then the dual shear map s̃hH(M) : H ⊗ M → H ⊗ M of Construction 4.2.6 is an
equivalence.

Proof. Diagram chases similar to the one in the proof of Proposition 4.1.3 show that

H ⊗M H⊗ρM−−−−→ H ⊗H ⊗M H⊗χH⊗M−−−−−−→ H ⊗H ⊗M µ⊗M−−−→ H ⊗M.

is a two sided inverse for s̃hH(M) : H ⊗M → H ⊗M .

Corollary 4.2.8. If H is a Hopf algebra with a homotopy antipode, then the dual shear
map s̃hH : U

H̃
F
H̃
→ CH VH induces an equivalence s̃h∗

H : LModCH VH
(LComodH(C)) '−→

HopfModH(C).

Now we can prove our version of the fundamental theorem of Hopf modules.

Corollary 4.2.9. If H is a Hopf algebra with a homotopy antipode, then the composite
PrimH ◦U

H̃
: HopfModH(C) → C is an inverse of the functor ĈH : C → HopfModH(C)

of Construction 4.2.6.

Proof. Combining Proposition 4.2.4 and Corollary 4.2.8, we see that ĈH ' s̃h∗
H ◦ CH is

an equivalence. Moreover, we have PrimH ◦U
H̃
◦ĈH ' PrimH ◦CH ' IdC, meaning that

PrimH ◦U
H̃

is a left inverse for ĈH . As ĈH is an equivalence, PrimH ◦U
H̃

is also a right
inverse.

We end this subsection with another application of the dual shear map.

Lemma 4.2.10. If H is a Hopf algebra with a homotopy antipode, then the func-
tor ĈH : C → HopfModH(C) is equivalent to the functor (̂ηH)! : C → HopfModH(C) of
Lemma 3.2.7.

Proof. Note that the adjoint FCH VH
→ CH VH of the unit transformation IdLComodH(C) →

CH VH ' UCH VH
CH VH is an equivalence because its image under the conservative

functor UCH VH
is an equivalence UCH VH

FCH VH
' CH VH ' UCH VH

CH VH . Hence we
have a commutative diagram

LModCH VH
(LComodH(C)) HopfModH(C)

C LComodH(C) C LComodH(C)

UCH VH

s̃h
∗
H

U
H̃TrivH

FCH VH

VH

CH

CH

,
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which implies that

s̃h∗
H ◦ FCH VH

◦TrivH ' s̃h∗
H ◦ CH ◦ VH ◦TrivH ' s̃h∗

H ◦ CH ' ĈH . (4.2.11)

Now recall that (̂ηH)! is given by the composite

C TrivH−−−→ LComodH(C)
F

H̃
'(η̃H)!−−−−−−→ LMod

H̃
(LComodH(C)) = HopfModH(C).

Moreover, s̃hH is an equivalence by Corollary 4.2.8, so F
H̃
' s̃h∗

H ◦ FCH VH
as both

functors are left adjoint to U
H̃
' UCH VH

◦(s̃h∗
H)−1. Hence the left hand side of (4.2.11)

is in fact equivalent to (̂ηH)!.

Combining Lemma 4.2.10, Corollary 4.2.9 and Corollary 3.2.11, we obtain the following.

Corollary 4.2.12. If H is a Hopf algebra with a homotopy antipode, then we have
equivalences

C LComod(ηH)!(ηH)∗(C) HopfModH(C)(ηH)!
'

(̂ηH)!

'

(sh
η̃H

)
?

' .

In particular, ηH : 1C → H admits descent.

4.3. Comodules over dualizable coalgebras
Recall that an object X ∈ C is called right dualizable if there exists an object X∨ (a

right dual of X) together with morphisms cX : 1C → X ⊗ X∨ and eX : X∨ ⊗ X → 1C
such that the composites

X
cX⊗X−−−→ X ⊗X∨ ⊗X X⊗eX−−−→ X

and
X∨ X∨⊗cX−−−−→ X∨ ⊗X ⊗X∨ eX⊗X∨

−−−−→ X∨

are equivalent to identities, in which case we also say that X∨ is left dualizable with left
dual X (cf. [Lur17, Definition 4.6.1.1]). Note that this structure exhibits the functor
X ⊗ (−) as a right adjoint of the functor X∨⊗ (−) and determines X∨ up to equivalence.

An object X is called dualizable if it is both left and right dualizable. In general, left
dualizability is not equivalent to right dualizability. However, if the braiding τ : (−)⊗(?) '
(?)⊗ (−) squares to the identity, τX,X∨ ◦ cX and eX ◦ τX∨,X do exhibit X∨ as a left dual
of X, so that we can speak of the dual of X. We strengthen our assumption on C in
order to make use of this phenomenon.

Convention 4.3.1. In the rest of this section, we assume that the base category C is
E3-monoidal. This implies in particular that the braiding of C squares to the identity
and thus the notions of left and right dualizability coincide. We denote by Cfd ⊆ C the
full subcategory spanned by dualizable objects.
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Lemma 4.3.2. The E3-monoidal structure of C restricts to a E3-monoidal structure on
Cfd, and the assignment X 7→ X∨ can be extended to a strongly E2-monoidal equivalence
(−)∨ : Cfd → Cfd

op.

Proof13. Note that 1C is dualizable, and if X and Y are dualizable, then so is X⊗Y.
Now all the operations of E3 are generated by the unit and the tensor product, meaning
that Cfd is closed under all operations of E3. Hence, by [Lur17, Proposition 2.2.1.1], the
E3-monoidal structure of C restricts to a E3-monoidal structure on Cfd.

For the functoriality of (−)∨, we can adapt the argument of [Lur18, Proposition 3.2.4]
(which deals with the symmetric monoidal case) as follows. We consider the cospan
Cfd × Cfd

⊗−→ Cfd
pr←− (Cfd)/1C . The fact that every object of Cfd is dualizable implies the

projection λ : (Cfd×Cfd)×Cfd (Cfd)/1C → Cfd×Cfd is a perfect pairing in the sense of [Lur17,
Definition 5.2.1.8 and Corollary 5.2.1.22], yielding an equivalence (−)∨ : Cfd → Cfd

op.
Now, by the Dunn additivity theorem ([Lur17, Theorem 5.1.2.2]), Cfd can be seen as
an algebra in the ∞-category of E2-monoidal ∞-categories, implying that the functor
⊗ : Cfd × Cfd → Cfd is strongly E2-monoidal. Moreover, (Cfd)/1C admits an E3-monoidal
structure such that the projection (Cfd)/1C → Cfd is E3-monoidal (and hence E2-monoidal).
This means that λ can be upgraded to a pairing of E2-monoidal ∞-categories in the
sense of [Lur17, Definition 5.2.2.20], lifting the associated equivalence (−)∨ : Cfd → Cfd

op

to a strongly E2-monoidal equivalence.

The monoidal equivalence (−)∨ : Cfd → Cfd
op gives us more possibilities of dualizing

algebraic structures to coalgebraic structures and vice versa. For instance, we will show
that for every dualizable coalgebra D, there is an equivalence LComodD(C) ' LModD∨(C)
that does not change the underlying objects (cf. Proposition 4.3.10), which generalizes
an analogous statement in the 1-categorical setting (cf. [Mon93, Lemma 1.6.4]14).

Proposition 4.3.3. LetM be an∞-category left-tensored over Cfd, D ∈ Cfd and M ∈M.
A map ρ : M → D ⊗M exhibits D as a coendomorphism object for M in Cfd if and only
if the adjoint map ρ̂ : D∨ ⊗M → M exhibits D∨ as an endomorphism object for M in
Cfd.

Proof. For all X ∈ Cfd, there is a commutative diagram

MapCfd
(X∨, D∨) MapM(X∨ ⊗M,D∨ ⊗M) MapM(X∨ ⊗M,M)

MapCfd
(X∨ ⊗D,1C) MapM(X∨ ⊗D ⊗M,M) MapM(X∨ ⊗M,M)

MapCfd
(D,X) MapM(D ⊗M,X ⊗M) MapM(M,X ⊗M)

(−)⊗M

'

ρ̂◦(−)

(−)⊗M

'

(−)◦(X∨⊗ρ)

' '

(−)⊗M (−)◦ρ

.

13Note that for k ≥ 3, this proof applies verbatim to an Ek-monoidal ∞-category D to yield a strongly
Ek−1-monoidal equivalence (−)∨ : Dfd → Dfd

op.
14Note that the cited lemma compares right comodules with left modules. We will comment on this

discrepancy in Remark 4.3.5.
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Since (−)∨ is an equivalence, the upper composite is an equivalence for all X if and
only if ρ̂ : D∨ ⊗M →M exhibits D∨ as an endomorphism object for M , and the lower
composite is an equivalence for all X if and only if ρ : M → D ⊗M exhibits D as a
coendomorphism object for M .

Corollary 4.3.4. If D is a dualizable coalgebra in C, then there exists an algebra structure
on D∨ and a right C-linear geometric-realization-preserving lift

LModD∨(C)

LComodD(C) C

UD∨

ΦD

VD

sending a D-comodule M with coaction map ρ : M → D ⊗M to a D∨-module with the
same underlying object and action map given by the adjoint ρ̂ : D∨ ⊗M →M .

Proof. As discussed in Remark 1.4.6, the natural transformation ρ(−) : VD(−)→ D ⊗
VD(−) exhibits D as a coendomorphism object for VD ∈ LinFun{∆op}

C (LComodD(C), C).
Now, by Proposition 4.3.3, the adjoint transformation ρ̂(−) : D∨ ⊗ VD(−) → VD(−)
exhibits D∨ as an endomorphism object for VD. In particular, we obtain an algebra
structure on D∨ and an action of it on VD extending ρ̂(−). This action induces a lift
ΦD : LComodD(C)→ LModD∨(C) of VD against UD∨ with the desired properties.

Remark 4.3.5. Note that we have two different ways of dualizing the coalgebra structure
of a dualizable coalgebra D to an algebra structure on its dual D∨. Namely, we could
view D as an algebra in Cfd

op and transfer this algebra structure along the monoidal
equivalence (−)∨ : Cfd

op → Cfd of Lemma 4.3.2, or use Corollary 4.3.4. In this subsection
we work with the latter structure, but we expect the two to be opposites of each other.
We need to consider opposite algebras because Lemma 4.3.2 identifies (X ⊗ Y )∨ with
X∨⊗Y ∨, whereas composing the adjunctions X∨⊗(−) a X⊗(−) and Y ∨⊗(−) a Y ⊗(−)
as implicitly done in Proposition 4.3.3 yields an identification (X ⊗ Y )∨ ' Y ∨ ⊗X∨.

The following lemma provides some evidence that the algebra structure of Corol-
lary 4.3.4 is the “correct” one.

Lemma 4.3.6. If D is a dualizable coalgebra in C, then the coalgebra structure on
D ' (D∨)∨ constructed by iterating Corollary 4.3.4 agrees with its original coalgebra
structure.

Proof. Let Do denote the original coalgebra structure and Dn the new one. By definition,
Dn is a coendomorphism object for UD∨ ∈ LinFun{∆op}

C (LModD∨(C), C). Precomposing
the coaction of Dn on UD∨ with the functor ΦD : LComodD(C)→ LModD∨(C) of Corol-
lary 4.3.4, we obtain a coaction of Dn on UD∨ ΦD ' VD ∈ LinFun{∆op}

C (LComodD(C), C),
whose coaction map VD(−)→ D ⊗ VD(−) agrees with the coaction map ρ(−) of Do as
the adjoint of ρ̂(−) is ρ(−). Now, ρ(−) exhibits Do as a coendomorphism object for VD, so
by its universal property IdD extends to an equivalence Do ' Dn of coalgebras.
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Remark 4.3.7. Let D be a dualizable coalgebra in C. Applying (the dual of) Proposi-
tion 4.3.3 to D∨, we obtain a lift

LComodD(C)

LModD∨(C) C

VD

ΨD∨

UD∨

,

where the coalgebra structure on D agrees with the original one by Lemma 4.3.6.

Remark 4.3.8. The functoriality of our construction of the dual algebra structure is
witnessed on the level of (co)module categories. Indeed, a map ζ : D → E of dualizable
coalgebras in C yields a functor

LModD∨(C) ΨD∨−−−→ LComodD(C) ζ?−→ LComodE(C) ΦE−−→ LModE∨(C) (4.3.9)

lifting UD∨ : LModD∨ → C against UE∨ : LModE∨ → C and thus inducing an action of
E∨ on UD∨ .

As the action map of a D∨-module M is mapped as

(D∨ ⊗M αM−−→M) ΨD∨7−−−→ (M α̂M−−→ D ⊗M)
ζ?7−→ (M α̂M−−→ D ⊗M ζ⊗M−−−→ E ⊗M)
ΦE7−−→ (E∨ ⊗M ζ∨⊗M−−−−→ D∨ ⊗M αM−−→M),

the aforementioned action of E∨ on UD∨ is given by

E∨ ⊗ UD∨(−) ζ∨⊗UD∨ (−)−−−−−−−→ D∨ ⊗ UD∨(−)
α(−)−−→ UD∨(−).

Now, by the universal property of D∨ as an endomorphism object for UD∨ , this yields an
extension of ζ∨ : E∨ → D∨ to an algebra map such that (ζ∨)∗ agrees with the composite
(4.3.9). Compatibility with identities and composition can be computed similarly by
considering actions on forgetful functors of module categories.

Proposition 4.3.10. If D is a dualizable coalgebra in C, then the functors

LComodD(C) ΦD−−→ LModD∨(C) LModD∨(C) ΨD∨−−−→ LComodD(C)

(ρ : M → D ⊗M) 7−−→ (ρ̂ : D∨ ⊗M →M) (α : D∨ ⊗M →M) 7−−−→ (α̂ : M → D ⊗M)

of Corollary 4.3.4 and Remark 4.3.7 are equivalences.

Proof. We start by showing that ΨD∨ ◦ΦD : LComodD(C)→ LComodD(C) is an equiva-
lence. We have a commutative diagram

LComodD(C) LComodD(C)

C

ΨD∨ ◦ΦD

VD VD
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where VD is part of a comonadic adjunction VD a CD with unit u : IdLComodD(C) → CD VD

and counit c : VD CD → IdC. Applying [Lur17, Corollary 4.7.3.16 and Remark 4.7.3.17],
it will suffice to show that for all X ∈ C, the underlying map of

ΨD∨ΦD CDX
uΨD∨ ΦD CD X

−−−−−−−−→ CD VD ΨD∨ΦD CDX ' CD VD CDX
CD cX−−−→ CDX (4.3.11)

is an equivalence. Now, the underlying map of uΨD∨ ΦD CD X is simply the coaction map of
ΨD∨ΦD CDX, which agrees with the coaction map of CDX as it is given by the “adjoint
of its adjoint”. Therefore, the underlying map of (4.3.11) is equivalent to the composite

D ⊗X ∆D⊗X−−−−→ D ⊗D ⊗X D⊗εD⊗X−−−−−→ D ⊗X

which is an indeed equivalence.
By a dual argument, ΦD ◦ΨD∨ : LModD∨(C)→ LComodD(C) is also an equivalence.

Hence ΦD and ΨD∨ are both equivalences.

Convention 4.3.12. For a dualizable coalgebra D in C, we will from now on implicitly
identify LComodD(C) with LModD∨(C) via ΦD and ΨD∨ .

Remark 4.3.13. Let ζ : D → E be a map of dualizable coalgebras in C. Then we have
an adjunction

LModE∨(C) LModD∨(C)

LComodE(C) LComodD(C)

'
(ζ∨)!

(ζ∨)∗

a

'

ζ?

where the lower square commutes (cf. Remark 4.3.8). This yields a left adjoint of ζ?,
which we, in line with Convention 4.3.12, also denote by (ζ∨)!. Note that left adjoints
obtained this way are compatible with identities and composition of coalgebra maps as
the corresponding right adjoints are.

We have seen that, up to homotopy, the algebra structure on D∨ is functorial and
ΦD is natural with respect to coalgebra maps. We expect that this functoriality and
naturality can be made coherent, which we make precise below.

The statement will make use of a duality notion for (co)cartesian fibrations. Recall that
a cartesian fibration p : X → S classifies a functor Sop → Cat∞, which is also classified
by a cocartesian fibration p∨ : X∨ → Sop. An explicit model for (−)∨ can be found in
[BGN18, Definition 3.4]. Alternatively, p∨ can be thought of as (pop)fop. Intuitively, this
construction allows us to “take the opposite in the transversal direction without changing
the fibers”.

Conjecture 4.3.14. For every dualizable coalgebra D, the algebra structure on D∨

constructed in Corollary 4.3.4 agrees with the opposite of the algebra structure obtained
by transferring the coalgebra structure of D along (−)∨ : Cfd

op → Cfd.
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Under this identification, the functor ΦD : LComodD(C)→ LModD∨(C) is the fiber of
an equivalence Φ that fits into a commutative diagram

LComodCfd(C) LModCfd(C)∨

Coalg(Cfd) Alg(Cfd
op)op Alg(Cfd)op Alg(Cfd)op

'
Φ

θcoalg
Cfd

(θalg
Cfd

)
∨

'
Alg((−)∨)op

'
(−)rev

, (4.3.15)

where (−)rev denotes the opposite algebra functor (cf. [Lur17, Remark 4.1.1.7]). Moreover,
the equivalence Φ is strongly monoidal with respect to the monoidal structures induced by
the bifunctor E⊗

1 × LM⊗ → E⊗
2 (cf. Fact 1.2.2).

Remark 4.3.16. Compatibilities encoded in Conjecture 4.3.14 include the following.
For a dualizable bialgebra H, it implies that the equivalence ΦH : LComodH(C) '

LModH∨(C) is strongly monoidal with respect to the monoidal structure of Fact 1.2.9 in the
source and the analogous monoidal structure in the target. Indeed, the former monoidal
structure can be constructed as the pullback of (θcoalg

Cfd
)⊗ : LComodCfd(C)⊗ → Coalg(Cfd)⊗

along the map h : E⊗
1 → Coalg(Cfd)⊗ that corresponds to H and the latter as the

pullback of ((θalg
Cfd

)⊗)∨ along the composite of h with the lower composite Coalg(Cfd)⊗ →
(Alg(Cfd)op)⊗ of (4.3.15), which, under the equivalence Bialg(Cfd) ' Coalg(Alg(Cfd)) of
Corollary A.0.17, represents a dual bialgebra structure on H∨.

Moreover, as the lower composite in (4.3.15) maps a coalgebra of the form D ⊗ Erev

to the algebra D∨ ⊗ (E∨)rev, the conjectural equivalence Φ maps (D ⊗ Erev)-comodules,
i.e., D-E-bicomodules to D∨ ⊗ (E∨)rev-modules, i.e., D∨-E∨-bimodules.

We conclude this section with an informal discussion of how Conjecture 4.3.14 could be
used to develop an analogue of equivariant homotopy theory for dualizable Hopf algebras.
Consider a topological group (or more generally, a grouplike Ek-space) G and for the
sake of this illustration, assume that C is presentably E3-monoidal. Then G�C 1C, which
is an algebra (in fact, a Hopf algebra with a homotopy antipode) in C, can be thought
of as a group algebra, and the module category LModG�C1C (C) can be thought of as the
∞-category of objects of C with a G-action.

Note that a large portion of (naive) G-equivariant homotopy theory can be formulated
in terms of the bialgebra structure of G �C 1C. For instance, equipping the tensor
product X ⊗ Y of two G-objects with the diagonal G-action corresponds to their tensor
product with respect to the lift of the monoidal structure of C to LModG�C1C (C) obtained
via the dual of Fact 1.2.9. Moreover, restriction of scalars along the augmentation
εG�C1C : G �C 1C → {∗} �C 1C ' 1C corresponds to equipping an object with a trivial
G-action and extension of scalars along εG�C1C to the homotopy orbits functors.

Now assume that G �C 1C is dualizable. This is for example the case when G is a
compact Lie group, and C is the ∞-category Sp of spectra (or more generally, a stable
∞-category). There are also groups that are not dualizable in Sp but become such after
a localization, which have been studied under the name of stably dualizable groups (cf.
[Rog08, Part II]). Then, using the equivalence LModG�C1C (C) ' LComod(G�C1C)∨(C) and
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the identification (εG�C1C )∨ ' η(G�C1C)∨ , we can interpret G-homotopy fixed points as
primitives with respect to (G�C 1C)∨.

This interplay between modules over the group algebra and comodules over its dual is
also crucial for norm maps, whose analogue for general dualizable Hopf algebras with a
homotopy antipode we sketch now. We start with an analogue of homotopy orbits for a
dualizable coalgebra.

Definition 4.3.17. Let ηD : 1C → D be a coaugmented dualizable coalgebra in C.
Remark 4.3.13 implies in particular that TrivD ' (ηD)? ' (ηD∨)∗ admits a left ad-
joint given by (ηD∨)!. We call this left adjoint the coorbits functor and denote it by
CoorbD : LComodD(C)→ C.

Now consider the alternate norm map (−)hG → (((Σ∞
+G)∨)hG⊗ (−))hG of [Rog08, Part

II, Definition 5.2.7]. The analogue of the inverse dualizing object ((Σ∞
+G)∨)hG in our

setting is (D ⊗D∨ 1C). The observation that (D ⊗D∨ 1C)⊗ (−) : C → C can be lifted to
LComodD(C)→ LComodD(C) as D ⊗D∨ (−) leads to the following definition.

Construction 4.3.18 (assuming Conjecture 4.3.14). Let ηD : 1C → D be a coaugmented
dualizable coalgebra in C. Note that the composite

LComodD(C) CoorbD'(ηD
∨)!−−−−−−−−−→ C TrivD'(ηD

∨)∗

−−−−−−−−→ LComodD(C)

is given by tensoring over D∨ with the D∨-D∨ bimodule 1C. Now ηD : 1C → D, consid-
ered as a map of D-D-bicomodules and thus of D∨-D∨ bimodules, induces a natural
transformation

TrivD CoorbD ' 1C ⊗D∨ (−) ηD⊗D∨ (−)−−−−−−→ D ⊗D∨ (−).

Using the adjunction TrivD a PrimD, this yields a natural transformation

N′
D : CoorbD → PrimD(D ⊗D∨ (−)),

which we call the alternate conorm transformation.

If we had a suitable theory of a relative cotensor product �D, we could define an
analogue of the norm map ((Σ∞

+G)hG ⊗ (−))hG → (−)hG of [Rog08, Part II, Defi-
nition 5.2.2] dually as the adjoint CoorbD(D∨�D(−)) → PrimD of the transforma-
tion D∨�D(−) → 1C�D(−) ' TrivD ◦PrimD induced by the D-D-bicomodule map
ηD

∨ : D∨ → 1C. However, as discussed in Remark 1.1.14, we are lacking such a theory
for many of the examples we are interested in.

For a dualizable Hopf algebra H with a homotopy antipode, we expect that one can
circumvent this issue by showing that the twist CH := H ⊗H∨ (−) is invertible and
defining the norm map as N′

H(C−1
H (−)).

Indeed, in the case of G-equivariant homotopy theory, the inverse dualizing object
((Σ∞

+G)∨)hG is, as the name suggests, ⊗-invertible, and its inverse is (Σ∞
+G)hG (cf. [Rog08,

Part II, Theorem 3.3.4]). Hence, at least on the level of underlying twists, one might
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expect that H ⊗H∨ 1C is ⊗-invertible with inverse Primr
H(H∨), where the superscript r

indicates primitives with respect to the right coaction.
Now consider the variant of the equivalence C ' HopfModH(C) of Corollary 4.2.9 for

right Hopf modules. We expect that the right action map µ̂H∨ : H∨ ⊗H → H∨ can be
lifted to a right Hopf module structure on H∨, which would imply that

H∨ ' Cr
H(Primr

H(H∨)) ' Primr
H(H∨)⊗H,

which is an analogue of [Rog08, Part II, Theorem 3.1.4]. Applying (−) ⊗H∨ 1C, this
would yield the desired ⊗-invertibility result as

1C ' H∨ ⊗H∨ 1C ' Primr
H(H∨)⊗ (H ⊗H∨ 1C).

A construction of a norm map for cocommutative bialgebras assuming the existence of
such invertible objects was carried out in in [Rak20, Subsection 2.4].

A sufficiently structured correspondence between G-objects and (G�C 1C)∨-comodules
would also allow us to make the relationship between Galois and Hopf–Galois extensions
sketched in the introduction precise.

Remark 4.3.19 (cf. [Rog08, Part I, Example 12.1.6]15). Assume that C is presentably
E3-monoidal, and let G be a topological group such that G �C 1C is dualizable. Let
ϕ : A→ B be a map of algebras with G-action (i.e., algebras in LModG�C1C (C)), where
the action on the source is trivial. Let FC(G,−) be a right adjoint of G �C (−), for
instance (G�C 1C)∨ ⊗ (−). Then ϕ is a G-Galois extension in the sense of [Rog08, Part
I, Definition 4.1.3] if the induced map A→ BhG and the adjoint B ⊗A B → FC(G,B) of
G�C B ⊗A B

αB⊗AB−−−−→ B ⊗A B
µB−→ B are equivalences.

Assuming that Conjecture 4.3.14 holds, we can transfer ϕ to a (G�C 1C)∨-Hopf–Galois
context via the strongly monoidal equivalence LModG�C1C(C) ' LComod(G�C1C)∨(C).
Under this identification, the first map corresponds to the map A→ Prim(G�C1C)∨ B, so
the first condition can be viewed as a primitives condition. Moreover, the second map
can be identified with the shear map

B ⊗A B
α̂B⊗AB−−−−→ (G�C 1C)∨ ⊗B ⊗A B

(G�C1C)∨⊗µB−−−−−−−−→ B,

so the second condition can be viewed as a normal basis condition. This means that
ϕ is a Galois extension if and only if its image in LComod(G�C1C)∨(C) is a Hopf–Galois
extension.

15Note however, the cited example assumes that dual group algebras in EKMM spectra can be rigidified,
which is unlikely for non-abelian groups in light of [PS18, Theorem 1.1], which says that all comodules
in EKMM spectra are cocommutative.
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5. Hopf–Galois extensions of commutative algebras
Recall that by [Lur17, Proposition 3.2.4.7], the tensor product of commutative algebras

in a symmetric monoidal ∞-category is a coproduct in the ∞-category of commutative
algebras. In this section, we employ this fact to study Hopf–Galois extensions of
commutative algebras more closely.
Convention 5.0.1. Throughout this section, we work with a symmetric monoidal
∞-category C.

Due to the cocartesianness of the symmetric monoidal structure of CAlg(C), it will
be more convenient to consider coalgebraic structures in CAlg(C) instead of algebraic
structures in coalgebra or comodule categories.
Convention 5.0.2. In this section, our preferred model for the ∞-category of commuta-
tive bialgebras in C will be Coalg(CAlg(C)), which is equivalent to CAlg(Coalg(C)) used
in Definition 1.2.7 by Corollary A.0.17.

Similarly, we will work with LComod(CAlg(C)) instead of CAlg(LComod(C)) and
given H ∈ Coalg(CAlg(C)) ' Alg(CAlg(C)), with LComodH(CAlg(C)) instead of
CAlg(LComodH(C)) by employing the equivalences of Example A.0.18.

5.1. Overview of cosimplicial models
Coalgebras and comodules in cocartesian symmetric monoidal categories (such as

CAlg(C)) can be identified with cosimplicial objects that satisfy certain “dual Segal
conditions”.

Before we describe these “cosimplicial models”, let us first informally review the
general machinery that is used to construct such models.. We discuss the dual case
of algebraic structures, i.e., algebras over an ∞-operad O, in a cartesian symmetric
monoidal ∞-category D to avoid cluttering the notation with fiberwise opposites.

• [Lur17, Definition 2.4.2.1] An O-monoid in D is a functor M : O⊗ → D such that for
every o1, . . . , on ∈ O⊗

〈1〉, a certain comparison map M(o1 ⊕ . . .⊕ on)→ ∏n
i=1 M(oi)

is an equivalence. Let MonO(C) denote the full subcategory of Fun(O⊗, C) spanned
by O-monoids.

• [Lur17, Proposition 2.4.1.7] Let D× → Fin∗ be the cocartesian fibration encod-
ing the cartesian symmetric monoidal structure of D and π : D× → D be the
functor that sends a tuple (D1, . . . , Dn) ∈ D×

〈n〉 to ∏n
i=1 Di. Then the functor

π ◦ (−) : Fun(O⊗,D×) → Fun(O⊗,D) restricts to an equivalence AlgO/E∞(C) '
MonO(C).

• [Lur17, Definition 2.4.2.8 and Proposition 2.4.2.11] This “monoid model” can be
simplified further if we have a suitable weak approximation f : E → O⊗ to O in the
sense of [Lur17, Definition 2.3.3.6]. In that case, (−) ◦ f : MonO(D)→ Fun(E ,D)
is fully faithful and its image can be described in terms of certain “Segal-type
conditions”.
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In [Lur17, Construction 4.1.2.9], a weak approximation ∆op → E⊗
1 is constructed,

which yields the following.

Fact 5.1.1 ([Lur17, Definition 4.1.2.5 and Proposition 4.1.2.10]). The ∞-category
CBialg(C) ' Coalg(CAlg(C)) is equivalent to the full subcategory of Fun(∆,CAlg(C))
spanned by cosimplicial objects H such that for every n ∈ N, the coface maps

{H({i− 1, i}) H({i−1,i}↪→[n])−−−−−−−−−→ H([n])}1≤i≤n

exhibit H([n]) as a coproduct of {H({i− 1, i})}1≤i≤n. We will refer to this condition as
the dual Segal condition and objects satisfying it as comonoid objects.

Under this identification, the forgetful functor CBialg(C)→ CAlg(C) corresponds to
evaluation at [1] ∈∆.

Notation 5.1.2. When a commutative algebra H in C underlies a commutative bialgebra,
we will denote the corresponding cosimplicial commutative algebra by Ω•

H : ∆→ CAlg(C).

Remark 5.1.3. Let H be a commutative bialgebra in C. Unpacking the weak approxi-
mation ∆op → E⊗

1 of [Lur17, Construction 4.1.2.9], we see that the coalgebra structure of
H is encoded in Ω•

H as follows. First we note that for all n ∈ N, we have Ωn
H ' H⊗n by

the dual Segal condition. Under this identification, the codegeneracy map si is given by

Ωn+1
H ' H⊗i ⊗H ⊗H⊗(n−i) H⊗i⊗εH⊗H⊗(n−i)

−−−−−−−−−−−→ H⊗n ' Ωn
H .

As for coface maps, d0 is given by

Ωn−1
H ' 1C ⊗H⊗(n−1) ηH⊗H⊗(n−1)

−−−−−−−→ H⊗n ' Ωn
H ,

dn by
Ωn−1
H ' H⊗(n−1) ⊗ 1C

H⊗(n−1)⊗ηH−−−−−−−→ H⊗n ' Ωn
H ,

and di for 0 < i < n by

Ωn−1
H ' H⊗(i−1) ⊗H ⊗H⊗(n−i−1) H⊗(i−1)⊗∆H⊗H⊗(n−i−1)

−−−−−−−−−−−−−−−→ H⊗n ' Ωn
H .

Moreover, the cosimplicial identities encode the coassociativity and the counitality of the
coalgebra structure.

Lemma 5.1.4. Let K be a simplicial set such that CAlg(C) admits colimits of diagrams of
shape K. Using the equivalence of Fact 5.1.1, we view as Coalg(CAlg(C)) a full subcategory
of Fun(∆,CAlg(C)). Then Coalg(CAlg(C)) is closed under colimits of diagrams of shape
K in Fun(∆,CAlg(C)).

Proof. Let f : K → Coalg(CAlg(C)) be a diagram and f : K → Fun(∆,CAlg(C)) its
composite with the “inclusion” Coalg(CAlg(C))→ Fun(∆,CAlg(C)). Now colimK f ∈
Fun(∆,CAlg(C)) satisfies the dual Segal condition because each f(k) for k ∈ K satisfies
the dual Segal condition and colimits commute with colimits, so we indeed have colimK f ∈
Coalg(CAlg(C)).
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In [Lur17, Remark 4.2.2.8], a weak approximation ∆op × [1]→ LM⊗ is constructed,
which yields a cosimplicial model for comodules. For the sake of notational convenience,
we consider [1]×∆op instead of ∆op× [1] that appears there and identify ([1]×∆op)op '
[1]op ×∆ with [1]×∆.
Fact 5.1.5 ([Lur17, Definition 4.2.2.2 and Proposition 4.2.2.9]). LComod(CAlg(C)) is
equivalent to the full subcategory of Fun([1]×∆,CAlg(C)) spanned by B such that

• B|{0}×∆ is a comonoid object (i.e., encodes a commutative bialgebra in the sense
of the cosimplicial description of Fact 5.1.1),

• for all n ∈ N, the maps B(0, [n]) → B(1, [n]) and B(1, 0 7→ n) : B(1, [0]) →
B(1, [n]) exhibit B(1, [n]) as a coproduct of B(0, [n]) and B(1, [0]).

We will refer to this condition as the left coaction condition.
This identification yields a commutative diagram

Coalg(CAlg(C)) LComod(CAlg(C))

CAlg(C)

Fun(∆,CAlg(C)) Fun([1]×∆,CAlg(C))

θ

ς

(∆∼={0}×∆↪→[1]×∆)∗

ev(1,[0])

, (5.1.6)

where θ forgets and ς picks the object being coacted on, and the vertical arrows are
equivalences onto the full subcategories of comonoid and left coaction objects, respectively.

Notation 5.1.7. Let B be a commutative algebra in C equipped with a coaction of a
commutative bialgebra H in C. We will depict the functor [1]×∆→ CAlg(C) witnessing
the coaction as a map ι•H,B : Ω•

H → Ω•
H(B) of cosimplicial commutative algebras.

Remark 5.1.8. Let B be a commutative algebra in C equipped with a coaction of a
commutative bialgebra H in C. Unpacking the weak approximation ∆op × [1]→ LM⊗

of [Lur17, Remark 4.2.2.8], we see that Ω•
H(B) encodes the coaction of H on B as follows.

For all n ∈ N, we have Ωn
H(B) ' Ωn

H ⊗ B ' H⊗n ⊗ B by the left coaction condition.
Under this identification, the coface map dn is given by

Ωn−1
H (B) ' H⊗(n−1) ⊗B H⊗(n−1)⊗ρB−−−−−−−→ H⊗n ⊗B ' Ωn

H(B).

The other coface maps and the codegeneracy maps are given by tensoring the respective
maps of Ω•

H with B.
It is not a coincidence that the coface and codegeneracy maps of Ω•

H(B) are reminiscent
of those of the cobar resolutions of Definition 1.3.8. Indeed, unpacking the definitions,
Lurie’s version of cobar construction R•

H(B)⊥ : ∆⊥ → CAlg(C) from [Lur17, Example
4.7.2.7] can be identified as the restriction of Ω•

H(B) along the functor ∆⊥ → ∆ that
forgets the distinction of the bottom element. In Construction 5.1.17, we will construct
a version of cobar resolutions that is “internal to the cosimplicial models” and also has
this property, and see in Remark 5.1.23 that Ω•

H(B) can be identified with the two sided
cobar construction Ω•

H(1C, B) when working with these cobar resolutions.
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Notation 5.1.9. Note that in the cosimplicial context of Fact 5.1.5, a morphism in
LComod(CAlg(C)) corresponds to a commutative square

Ω•
H Ω•

H′

Ω•
H(B) Ω•

H′(B′)

ξ•

ι•H,B
ι•
H′,B′

φ•

(5.1.10)

of cosimplicial commutative algebras, where ξ• corresponds to a map of commutative
bialgebras with underlying commutative algebra map ξ := ξ1 : H → H ′ by virtue of
Fact 5.1.1 and φ := φ0 : B → B′ is a map of commutative algebras.

We will informally denote such a morphism as (ξ•, φ•) : (H,B)→ (H ′, B′).

Remark 5.1.11. Let H be a commutative bialgebra in C. Considering the fiber of
(∆ ∼= {0} ×∆ ↪→ [1]×∆)∗ : Fun([1]×∆,CAlg(C))→ Fun(∆,CAlg(C)) over Ω•

H , we see
that in the cosimplicial model of Fact 5.1.5, morphisms in LComodH(CAlg(C)) correspond
to commutative squares of the form (5.1.10) where ξ• is IdΩ•

H
. Alternatively, as the afore-

mentioned functor corresponds to ev0 : Fun([1],Fun(∆,CAlg(C)))→ Fun(∆,CAlg(C)),
LComodH(CAlg(C)) can be viewed as the full subcategory of Fun(∆,CAlg(C))Ω•

H/

spanned by the objects of the form ι•H,B : Ω•
H → Ω•

H(B).

Next, we give explicit descriptions of various constructions for comodule algebras in
the cosimplicial model.

Lemma 5.1.12. Assume that C admits geometric realizations and that the tensor product
preserves geometric realizations in each variable. Let ξ : H → H ′ be a map of commutative
bialgebras in C and B a commutative H-comodule algebra.

Then, in the cosimplicial description of Fact 5.1.5, the pushout square

Ω•
H Ω•

H′

Ω•
H(B) ?

ξ•

ι•H,B

p
. (5.1.13)

of simplicial commutative algebras corresponds to a cocartesian lift of ξ along the forgetful
functor θ : LComod(CAlg(C))→ Coalg(CAlg(C)). In particular, the right vertical arrow,
which we denote by ι•H′,B : Ω•

H′ → Ω•
H′(B), can be identified with ξ?B.

Proof. Note that by [Lur09, Lemma 6.1.1.1], cartesian arrows with respect to the functor
ev0 : Fun([1],Fun(∆,CAlg(C)))→ Fun(∆,CAlg(C)) correspond to such pushout squares.
Hence, as ev0 “restricts to θ” (cf. the diagram (5.1.6)), it is enough to show that the right
arrow in (5.1.13) lies in the full subcategory that corresponds to LComod(CAlg(C)), i.e.,
that it satisfies the left coaction condition. This is the case because ι•H,B : Ω•

H → Ω•
H(B)

satisfies the left coaction condition and colimits commute with colimits.

The following combinatorial constructions will be needed while dealing with cofree
comodule algebras and cobar resolutions.
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Construction 5.1.14. Let X• : ∆ → D be a cosimplicial object and Y •
+ : ∆+ → D a

coaugmented cosimplicial object in an ∞-category. Consider the ordinal sum functor
? : ∆+ ×∆+ → ∆+, which sends ([k], [l]) ∈ ∆+ ×∆+ to [k + l + 1]. We denote its
various restrictions to ∆, ∆> and ∆⊥ also by ?.

For q ∈ N, we will denote the cosimplicial object given by precomposing X• with
(−)?[q−1] : ∆→ ∆ informally also by X•+q, and use the notation Y •+q

+ for the analogous
construction for Y •

+.
Now let q ≥ 1. Then (−) ? [q − 1] can be viewed as a functor ∆+ → ∆, meaning that

X•+q can be extended to a coaugmented cosimplicial object ∆+ → D. Unpacking the
constructions, we see that its coaugmentation map Xq−1 → Xm+q at the m-th level is
induced by the map [q − 1]→ [m] ? [q − 1] ∼= [m+ q] that maps the q elements of [q − 1]
to the last q elements of [m+ q] in order.

Moreover, for a map β : [k]→ [l] in ∆+, the map β?Id[q−1] : [k]?[q−1]→ [l]?[q−1] maps
the top q elements to the top q elements in order. This means that (−)? [q−1] : ∆+ → ∆
can be factored as

∆+ ∆

∆> ∆>

(−)?[q−1]

add disjoint >

(−)?[q−2]

forget distinction of > .

Therefore, X•+q : ∆+ → D can be extended to a (right) split coaugmented cosimplicial
object ∆> → D.

Similarly, for q ≥ 1, [q−1]?(−) : ∆+ → ∆ factors through [q−2]?(−) : ∆⊥ → ∆⊥ and
X [q−1]?• admits a (left) split coaugmentation by Xq−1 whose m-th level Xq−1 → Xq+m is
induced by the map [q]→ [q − 1] ? [m] ∼= [q +m] that maps the elements of [q − 1] to
the first elements of [q +m] in order.

Moreover, note that for every map β : [k]→ [l] in ∆+, we have a commutative diagram

[k] [k + 1]

[l] [l + 1]

δk+1

β β?[0]

δl+1

,

which yields a natural transformation δ•+1 : Id∆+ → (−) ? [0], hence natural transforma-
tions d•+1 : X• → X•+1 and d•+1 : Y •

+ → Y •+1
+ .

We now generalize [Lur17, Example 4.2.2.4] to a description of cofree comodule algebras.
Lemma 5.1.15. Let H be a commutative bialgebra in C. Then, in the cosimplicial
description of Fact 5.1.5, the cofree functor CH : CAlg(C)→ LComodH(CAlg(C)) corre-
sponds to the functor that sends A ∈ CAlg(C) to d•+1

ΩH
⊗ ηA : Ω•

H → Ω•+1
H ⊗ A.

Proof. First we show that d•+1
ΩH
⊗ ηA satisfies the left coaction condition, so that we

obtain a well-defined functor C′ : CAlg(C)→ LComodH(CAlg(C)). When considered as
a functor [1]×∆→ CAlg(C), d•+1

ΩH
⊗ ηA maps (0, [n])→ (1, [n]) to the map

dn+1 ⊗ ηA ' H⊗n ⊗ ηH ⊗ ηA : H⊗n → H⊗n ⊗H ⊗ A
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and (1, β) := (1, 0 7→ n) to

Ωβ?[0]
H ⊗ A ' (ηH)⊗n ⊗H ⊗ A : H ⊗ A→ H⊗n ⊗H ⊗ A,

as β is the composite of “n δ0’s”. These two maps do exhibit their target as their
coproduct.

In order to identify C′ with CH , we show that the former is also a right adjoint of the
forgetful functor VH : LComodH(CAlg(C)) → CAlg(C), which maps Ω•

H → Ω•
H(B) to

Ω0
H(B) ' B. We define the counit c to be the transformation whose value at A ∈ CAlg(C)

is given by εH ⊗ A : VH(C′(A)) ' H ⊗ A→ A.
In order to define the unit, consider a commutative H-comodule algebra ι•H,B : Ω•

H →
Ω•
H(B). Note that the cosimplicial map

ι•+1
H,B : Ω•+1

H ' H⊗(•+1) H⊗(•+1)⊗ηB−−−−−−−→ H⊗(•+1) ⊗B ' Ω•+1
H (B)

and the coaugmentation

Ω07→(•+1)
H (B) : Ω0

H(B) ' B
(ηH)⊗(•+1)⊗B−−−−−−−−→ H⊗(•+1) ⊗B ' Ω•+1

H (B)

exhibit the target as the coproduct Ω•+1
H ⊗B. Hence we have a commutative diagram

Ω•
H(B)

Ω•
H Ω•+1

H Ω•+1
H (B)

Ω•+1
H ⊗B

d•+1
ΩH (B)

ι•H,B

d•+1
ΩH

d•+1
ΩH

⊗ηB

ι•+1
H,B

Ω•+1
H ⊗ηB

µΩ•+1
H

(B)◦
(
ι•+1
H,B⊗Ω0 7→(•+1)

H (B)
)

'

. (5.1.16)

Composing in the vertical direction, this yields a natural map ι•H,B → d•+1
ΩH
⊗ ηB '

C′(VH(ι•H,B)), which we take to be the value of the unit transformation u at ι•H,B : Ω•
H →

Ω•
H(B).
Now the triangle identity for VH holds because the composite

VH(ι•H,B) ' B
VH(uι•

H,B
)'VH(d•+1

ιH,B
)'d1'ρB

−−−−−−−−−−−−−−−−−−→ H ⊗B
cVH (ι•

H,B
)'εH⊗B

−−−−−−−−−−→ B ' VH(ι•H,B)

is the identity and the triangle identity for C′ holds because the composite

C′(A) ' H⊗(•+1) ⊗ A
uC′(A)'d•+1

C′(A)'d•+2
ΩH

⊗A'H⊗•⊗∆H⊗A
−−−−−−−−−−−−−−−−−−−−−−→ H⊗(•+2) ⊗ A
C′(cA)'H⊗(•+1)⊗εH⊗A−−−−−−−−−−−−−−→ H⊗(•+1) ⊗ A ' C′(A)

is the identity.
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Construction 5.1.17. Let H be a commutative bialgebra. We now construct a cobar
resolution system for H in the sense of Definition 1.3.8 using the description of cofree
H-comodule algebras discussed in Lemma 5.1.15 (and its proof), which will be our
preferred model of cobar resolutions for commutative comodule algebras.

Informally, this new model of the cobar resolution of a commutative H-comodule
algebra ι•H,B : Ω•

H → Ω•
H(B) can be depicted as

Ω•
H Ω•

H Ω•
H Ω•

H . . .

Ω•
H(B) Ω•+1

H (B) Ω•+2
H (B) Ω•+3

H (B) . . .

ι•H,B d•+1ι•H,B d•+2d•+1ι•H,B d•+3d•+2d•+1ι•H,B

d•+1
d•+1

s•+1

d•+2

d•+1

s•+1

d•+2

s•+2

d•+3

, (5.1.18)

where we think of the horizontal maps as defining a coaugmented cosimplicial object R+
in Fun([1]×∆,CAlg(C)).

Note that we can identify each column Ω•
H → Ω•+k

H (B) with (CH VH)k(B) by iterating
the equivalence Ω•+1

H (B) ' Ω•+1
H ⊗ B depicted in (5.1.16), so R+ can be viewed as a

coaugmented cosimplicial commutative H-comodule algebra. Moreover, unpacking the
construction of the unit and counit maps of the adjunction VH a CH from the proof
of Lemma 5.1.15, one sees that the coface and codegeneracy maps of this coaugmented
cosimplicial object are indeed the ones expected from a cobar resolution.

In order to implement this idea, we first consider the functors F0, F1 : ∆+×∆→ [1]×∆
given by F0([k], [n]) = (0, [n]) and F1([k], [n]) = (1, [n] ? [k]) for all [k] ∈ ∆+ and [n] ∈ ∆.
There is a natural transformation F0 → F1 whose component at ([k], [n]) ∈∆+ ×∆ is
given by (0→ 1, [n] ↪→ [n]? [k]), which gives rise to a functor F : ∆+× [1]×∆→ [1]×∆.

Precomposition with F induces a functor

F ∗ : Fun([1]×∆,CAlg(C))→ Fun(∆+ × [1]×∆,CAlg(C)),

which sends ι•H,B : Ω•
H → Ω•

H(B) to a coaugmented cosimplicial object of the form (5.1.18).
By the description of the levels of this coaugmented cosimplicial object (i.e., columns
of (5.1.18)) discussed above, F ∗(ι•H,B) factors through the full subcategory of objects
satisfying the left coaction condition, so F ∗ can be restricted to a functor

R̃•
H(−)+ : LComodH(CAlg(C))→ Fun(∆+,LComodH(CAlg(C))),

whose levels, face and degeneracy maps are those expected from a cobar resolution.
We move on to proving the remaining resolution properties. Consider the lower

row of (5.1.18) as a functor X : ∆+ ×∆ → CAlg(C), which is given by ([k], [n]) 7→
Ω[n]?[k]
H (B). Note that the n-th row of X is Ω[n]?•

H (B), which can be extend to a (left) split
coaugmented object because, as discussed at the end of Construction 5.1.14, the functor
[n] ? (−) : ∆+ →∆ can be extended to a functor ∆⊥ →∆.

Note that these row-wise splittings are not compatible with each other for varying n
because ? : ∆+ ×∆ → ∆ cannot be extended “globally” to a functor ∆⊥ ×∆ → ∆.
However, the existence of levelwise splittings does mean that R̃•

H(B)+ defined above is
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a limiting cone because limits in functor categories are computed pointwise (and the
“Ω•

H-component”, which is constant, is evidently also split).
Now consider VH ◦R̃

•
H(B)+, which is simply the 0-th row of X, i.e., Ω[0]?•

H (B). As
discussed above, it admits a splitting (that is natural in B). Hence we obtain a
functor R•

H(−)⊥ : LComodH(CAlg(C)) → Fun(∆⊥,CAlg(C)) such that R•
H(−)⊥|∆+

'
VH ◦R̃

•
H(−)+.

We conclude this subsection with cosimplicial descriptions of trivial coactions and
primitives.

Lemma 5.1.19. In the cosimplicial description of Fact 5.1.5, an object of the∞-category
Fun([1] ×∆,CAlg(C)) is equivalent to one in LComod1C(CAlg(C)) if and only if it is
equivalent to one of the form constηA

: const1C → constA for some A ∈ CAlg(C).

Proof. Note that const1C is an initial object of Fun(∆,CAlg(C)) and satisfies the dual
Segal condition, so by Lemma 5.1.4, it is an initial object of Coalg(CAlg(C)), which is
indeed the commutative bialgebra structure on 1C we consider.

Now let A ∈ CAlg(C). Then, as ηA : 1C → A and IdA : A→ A exhibit A as a coproduct
of 1C and A, constηA

: const1C → constA satisfies the left coaction condition, i.e., lies in
LComod1C (CAlg(C)). Moreover, the underlying commutative algebra of constηA

, i.e., its
evaluation at (1, [0]) ∈ [1]×∆ is A.

Hence A 7→ constηA
yields a section of the forgetful functor LComod1C(CAlg(C)) →

CAlg(C) and is thus an equivalence as the forgetful functor is.

Corollary 5.1.20. Let H be a commutative bialgebra in C. Then, in the cosimplicial de-
scription of Fact 5.1.5, the functor TrivH : CAlg(C)→ LComodH(CAlg(C)) corresponds
to the functor that sends A ∈ CAlg(C) to Ω•

H ⊗ ηA : Ω•
H → Ω•

H ⊗ A.

Proof. Consider the equivalence CAlg(C) ' LComod1C(CAlg(C)), under which A cor-
responds to constηA

: const1C → constA by Lemma 5.1.19 and thus TrivH A corre-
sponds to (ηH)?(constηA

). Now, by Lemma 5.1.12, (ηH)?(constηA
) is given by the

pushout of constηA
: const1C → constA along η•

H : const1C → Ω•
H , which is equivalent to

Ω•
H ⊗ ηA : Ω•

H → Ω•
H ⊗ A.

Lemma 5.1.21. Let H be a commutative bialgebra in C. Assume that CAlg(C) admits
limits of cosimplicial objects. Then, in the cosimplicial description of Fact 5.1.5, the
primitives functor PrimH : LComodH(CAlg(C))→ CAlg(C) corresponds to the functor
sending Ω•

H → Ω•
H(B) to lim∆ Ω•

H(B).

Proof. As PrimH is a right adjoint of TrivH , it will suffice to show that the functor
sending Ω•

H → Ω•
H(B) to lim∆ Ω•

H(B) is also a right adjoint of TrivH .
Let A ∈ CAlg(C) and B ∈ LComodH(CAlg(C)). Then, by Corollary 5.1.20, TrivH A is

given by Ω•
H ⊗ ηA : Ω•

H → Ω•
H ⊗A. Moreover, identifying LComodH(CAlg(C)) with a full

subcategory of Fun(∆,Coalg(C))Ω•
H/

as discussed in Remark 5.1.11, we see that a map
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ϕ : TrivH A→ B corresponds to a map ϕ• : Ω•
H⊗A→ Ω•

H(B) such that ϕ•◦(Ω•
H⊗ηA) '

ι•H,B. Depicting Ω•
H ⊗ A as a pushout, every such ϕ• yields commutative diagram

const1C Ω•
H Ω•

H

constA Ω•
H ⊗ A Ω•

H(B)
p

η•
H

constηA
Ω•

H⊗ηA ι•H,B

η•
H⊗A ϕ•

.

Translating this description to mapping spaces, we obtain a commutative diagram16

MapLComodH(CAlg(C))(TrivH A,B) [Ω•
H ⊗ A,Ω•

H(B)] [constA,Ω•
H(B)]

{ι•H,B} [Ω•
H ,Ω•

H(B)] [const1C ,Ω•
H(B)]

y y

(η•
H⊗A)∗

(Ω•
H⊗ηA)∗ (constηA

)∗

(η•
H)∗

.

Note that the left square is a pullback square by the aforementioned description of
LComodH(CAlg(C)) as the full subcategory of a coslice category. Moreover, the right
square is a pullback square by the universal property of Ω•

H ⊗A as a pushout. Hence the
composite square is also a pullback square. Now, MapFun(∆,CAlg(C))(const1C ,Ω•

H(B)) '
{∗} by the initiality of const1C , implying that the composite of the upper horizontal
arrows is in fact an equivalence as the lower composite is.

Hence we obtain natural equivalences

MapLComodH(CAlg(C))(TrivH A,B) ' MapFun(∆,CAlg(C))(constA,Ω•
H(B))

' MapCAlg(C)(A, lim∆ Ω•
H(B)),

which yields the desired adjunction.
Example 5.1.22. Let H be a commutative bialgebra and A a commutative algebra in C.
Then, by Lemma 5.1.15, Ω•

H(CH(A)) ' Ω•+1
H ⊗A. As discussed in Construction 5.1.14,

this cosimplicial object admits a split coaugmentation by Ω0
H⊗A ' 1C⊗A ' A, implying

that PrimH(CH(A)) ' lim∆(Ω•+1
H ⊗ A) ' A as expected.

Remark 5.1.23. Let B be a commutative algebra in C on which a commutative
bialgebra H coacts. Note that, with respect to the version of the cobar resolution from
Construction 5.1.17, the two sided cobar construction Ω•

H(1C, B) can be computed as

Ω•
H(1C, B) = PrimH ◦R̃

•
H(B) 5.1.21' lim

[n]∈∆
R̃•
H(B)n 5.1.17' lim

[n]∈∆
Ω[n]?•
H (B).

Now consider the bicosimplicial object ([k], [n]) 7→ Ω[n]?[k]
H (B). Analogous to the

coaugmentation in the horizontal direction discussed in Construction 5.1.17, its k-th
column Ω??[k]

H (B) is equipped with a (right) split coaugmentation by Ωk
H(B) obtained using

the extension of (−)?[k] : ∆+ → ∆ to a functor ∆> → ∆ discussed in Construction 5.1.14.
This exhibits each Ωk

H(B) as the limit lim[n]∈∆ Ω[n]?[k]
H (B) and hence yields an equivalence

Ω•
H(1C, B) ' Ω•

H(B).
16Here we use [−,−] instead of MapFun(∆,CAlg(C))(−,−) to save space.
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5.2. Relative Hopf–Galois contexts
Convention 5.2.1. For the rest of this section, we assume that C admits geometric
realizations of simplicial objects and limits of cosimplicial objects, and that the tensor
product preserves geometric realizations in each variable.

Note that, by [Lur17, Corollaries 3.2.2.5 and 3.2.3.2], these assumptions imply that
CAlg(C) also admits limits of cosimplicial objects and geometric realizations of simplicial
objects, and that these limits and colimits can be computed in C.

In this subsection, we introduce a relative variant of Hopf–Galois contexts for commu-
tative algebras. Even though it will not be important for the results of this thesis, the
relative perspective is crucial when one compares Hopf–Galois-extensions over different
bialgebras (cf. [Kar14, Chapter 4]).

Definition 5.2.2. A relative Hopf–Galois context of commutative algebras is a morphism
in LComod(CAlg(C)).

Note that the datum of a relative Hopf–Galois context (γ•, ϕ•) : (K,A)→ (H,B) of
commutative algebras is equivalent to that of a map γ : K → H of commutative bialgebras
and a map ϕ : γ?(A) → B of commutative H-comodule algebras. In [BH18, Section
3], the point-set analogue of this kind of datum is used to define relative Hopf–Galois
extensions, which transfer to our setting below.

We could have defined relative Hopf–Galois contexts also in the non-commutative
setting as morphisms in LComod(Alg(C)) ' Alg(LComod(C)). However, we refrained
from working in this more general setup because even our most basic constructions for
relative Hopf–Galois contexts such as Definition 5.2.9 rely on the cocartesian symmetric
monoidal structure on CAlg(C). We nevertheless expect that most of the constructions
of [BH18, Section 3] can be transferred to the non-commutative setting as well.

Remark 5.2.3. Since the unit map ηH : 1C → H of a commutative bialgebra H is
the unique map of commutative bialgebras it receives from 1C, a relative Hopf–Galois
context of commutative algebras of the form (1C, A)→ (H,B) is uniquely determined
by a morphism (ηH)?(A) ' TrivH(A)→ B of commutative H-comodule algebras. The
underlying H-comodule algebra map of such a map yields an H-Hopf–Galois context
in the sense of Definition 3.1.1, but in general this notion is stronger as it requires an
“H-coaction via E∞-maps”.

For example, given a map f : X → Pic(C) of E∞-spaces, X �C 1C is a commutative
bialgebra and the Thom context TrivX�C1C (1C)→ M(f) of Example 3.1.3 can be upgraded
to such a map of commutative (X �C 1C)-comodule algebras.

Example 5.2.4. Let γ : K → H be a map of commutative bialgebras and A a commu-
tative algebra. Then we have a commutative diagram

Ω•
K Ω•

H

Ω•+1
K ⊗ A Ω•+1

H ⊗ A

γ•

d•+1
ΩK

⊗ηA d•+1
ΩH

⊗ηA

γ•+1⊗A

.
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Note that, by Lemma 5.1.15, the vertical arrows can be identified with CK(A) and CH(A),
respectively. Hence this diagram depicts a relative Hopf–Galois context (K,K ⊗ A)→
(H,H⊗A) of commutative algebras which can be thought of as a relative and commutative
version of normal basis contexts of Example 3.1.2.

The primitives condition in the relative setting involves primitives of both the source
and the target.
Definition 5.2.5. We say that a relative Hopf–Galois context (γ•, ϕ•) : (K,A)→ (H,B)
of commutative algebras satisfies the primitives condition if the induced map

lim
∆
ϕ• : lim

∆
Ω•
K(A) 5.1.21' PrimK(A)→ PrimH(B) 5.1.21' lim

∆
Ω•
H(B) (5.2.6)

is an equivalence.
Remark 5.2.7. Let (η•

H , ϕ
•) : (1C, A) → (H,B) be a relative Hopf–Galois context of

commutative algebras. Then the map (5.2.6) agrees with the map A → PrimH(B)
adjoint to the map TrivH(A) → B induced by (η•

H , ϕ
•). Therefore, (η•

H , ϕ
•) satisfies

the primitives condition in the sense of Definition 5.2.5 if and only if the associated
H-Hopf–Galois context satisfies the primitives condition in the sense of Definition 3.1.5.
Example 5.2.8. Consider a relative normal basis context (γ•, γ•+1⊗A) : (K,K ⊗A)→
(H,H ⊗ A) as discussed in Example 5.2.4. As in the absolute case (cf. Example 3.1.6),
such a context always satisfies the primitives condition. In fact, by virtue of the split
coaugmentations Ω07→(•+1)

K : 1C → Ω•+1
K and Ω07→(•+1)

H : 1C → Ω•+1
H of Construction 5.1.14,

lim∆(γ•+1 ⊗ A) can be identified with γ0 ⊗ A ' Id1C ⊗A : 1C ⊗ A→ 1C ⊗ A.
Next, we would like to define a variant of the shear map in the relative setting. Recall

that for an H-Hopf–Galois context TrivH(A) → B̃, we needed the triviality of the
H-coaction on A in order to have a well-defined map ρ

B̃
⊗A B : B ⊗A B → H ⊗B ⊗A B,

which is the first factor of the shear map (cf. Footnote 10 on page 51). Therefore, in
order to construct a shear map for a relative Hopf–Galois context, we first “trivialize”
the coaction on the source.
Definition 5.2.9. For a map γ : K → H of commutative bialgebras, we define Cof(γ) :=
H ⊗K 1C, which is a pushout H qK 1C in CAlg(C). Using Lemma 5.1.4, we equip it with
the commutative bialgebra structure witnessed by the pushout Ω•

H qΩ•
K

Ω•
1C

(computed
in Fun(∆,CAlg(C))). Let π•

γ : Ω•
H → Ω•

Cof(γ) denote the quotient map.
Construction 5.2.10. Let (γ•, ϕ•) : (K,A)→ (H,B) be a relative Hopf–Galois context
of commutative algebras. Consider the commutative cube

Ω•
K Ω•

H

Ω•
1C

Ω•
Cof(γ)

Ω•
K(A) Ω•

H(B)

Ω•
1C

(A) Ω•
Cof(γ)(B)

γ•

ε•K

p

p

π•
γ

p
ϕ•

p

, (5.2.11)
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where all the faces except for the front and the back are pushout squares, and the left and
right squares witness corestrictions of scalars by Lemma 5.1.12. We denote the coaction
map Ωδ1

Cof(γ)(B) : Ω0
Cof(γ)(B) ' B → Cof(γ)⊗B ' Ω1

Cof(γ)(B) by ρB.
Now Ω•

1C
(A) is a constant cosimplicial object by Lemma 5.1.19, so the lower front

arrow constA ' Ω•
1C

(A)→ Ω•
Cof(γ)(B) yields a coaugmentation of the cosimplicial object

Ω•
Cof(γ) by A, i.e., a functor Ω•

Cof(γ)(B)+ : ∆+ → CAlg(C) such that Ω−1
Cof(γ)(B)+ '

A and Ω•
Cof(γ)(B)+

∣∣∣
∆
' Ω•

Cof(γ)(B). Moreover, under these identifications, the map
Ωδ0

Cof(γ)(B)+ : Ω−1
Cof(γ)(B)+ → Ω0

Cof(γ)(B)+ corresponds to the map A → Ω0
Cof(γ)(B) ' B

induced by the lower front arrow, i.e., to ϕ.
Definition 5.2.12. Let (γ•, ϕ•) : (K,A)→ (H,B) be a relative Hopf–Galois context of
commutative algebras. We define the associated shear map to be the composite

sh(γ•,ϕ•) : B ⊗A B
ρB⊗AB−−−−→ Cof(γ)⊗B ⊗A B

Cof(γ)⊗µB−−−−−−→ Cof(γ)⊗B,
which is a morphism of commutative algebras as the coaction map ρB : B → Cof(γ)⊗B
and the multiplication map µB : B ⊗A B → B are.
Remark 5.2.13. Note that for a relative Hopf–Galois context (γ•, ϕ•) : (K,A)→ (H,B),
the underlying map of the shear map sh(γ•,ϕ•) of Definition 5.2.12 agrees with the shear
map of Definition 3.1.7 associated to the Cof(γ)-Hopf–Galois context TrivCof(γ)(A)→ B
witnessed by the front face in the diagram (5.2.11) of Construction 5.2.10.
Lemma 5.2.14. Let (γ•, ϕ•) : (K,A) → (H,B) be a relative Hopf–Galois context of
commutative algebras. Consider the commutative diagram

A B

B Cof(γ)⊗B

ϕ

ϕ ρB

ηCof(γ)⊗B

(5.2.15)

obtained by applying Ω•
Cof(γ)(B)+ to the identity δ0δ0 = δ1δ0 : [−1] → [0]. Then the

associated map B ⊗A B → Cof(γ)⊗B induced by the universal property of B ⊗A B as a
pushout of commutative algebras agrees with the shear map sh(γ•,ϕ•) of Definition 5.2.12.
Proof. By the universal property of the pushout, it is enough to check that the restriction
of sh(γ•,ϕ•) : B⊗AB → Cof(γ)⊗B along the first and the second factor coincides with ρB
and ηCof(γ) ⊗B, respectively. This is indeed the case, as witnessed by the commutativity
of the diagram

B

B ⊗A B Cof(γ)⊗B ⊗A B Cof(γ)⊗B

B

B⊗Aϕ
ρB⊗Aϕ

ρB

ρB⊗AB Cof(γ)⊗µB

ϕ⊗AB ηCof(γ)⊗ϕ⊗AB
ηCof(γ)⊗B

.
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Definition 5.2.16. We say that a relative Hopf–Galois context (γ•, ϕ•) : (K,A)→ (H,B)
of commutative algebras satisfies the normal basis condition if sh(γ•,ϕ•) : B ⊗A B →
Cof(γ)⊗B is an equivalence.

Remark 5.2.17. Let (η•
H , ϕ

•) : (1C, A)→ (H,B) be a relative Hopf–Galois context of
commutative algebras. Then Cof(ηH) ' H ⊗1C 1C ' H and sh(η•

H ,ϕ
•) : B ⊗A B → H ⊗B

agrees with the shear map of the associated H-Hopf–Galois context. Therefore, (η•
H , ϕ

•)
satisfies the normal basis condition in the sense of Definition 5.2.16 if and only if the
associated H-Hopf–Galois context satisfies the normal basis condition in the sense of
Definition 3.1.8.

Example 5.2.18. Consider a relative normal basis context (γ•, γ•+1⊗A) : (K,K⊗A)→
(H,H ⊗ A) as discussed in Example 5.2.4. Then the square (5.2.15) of Lemma 5.2.14 is
of the form

K ⊗ A H ⊗ A

H ⊗H ⊗ A

H ⊗ A Cof(γ)⊗H ⊗ A

γ⊗A

γ⊗A

∆H⊗A

πγ⊗H⊗A

ηCof(γ)⊗H⊗A

,

i.e., given by tensoring the corresponding square for the relative Hopf–Galois context
(γ•, γ•+1) : (K,K)→ (H,H) by A. As (−)⊗A preserves colimits of commutative algebras,
Lemma 5.2.14 implies that sh(γ•,γ•+1⊗A) can be identified with sh(γ•,γ•+1)⊗A.

Therefore, as in Example 3.1.9, (γ•, γ•+1 ⊗ A) satisfies the normal basis condition if
(γ•, γ•+1) does. A bialgebra map γ : K → H satisfying this condition is called a relative
Hopf algebra.

Definition 5.2.19. A relative Hopf–Galois context (γ•, ϕ•) : (K,A)→ (H,B) of com-
mutative algebras which satisfies both the primitives and the normal basis condition (i.e.,
one for which lim∆ ϕ• : PrimK(A) → PrimH(B) and sh(γ•,ϕ•) : B ⊗A B → Cof(γ) ⊗ B
are equivalences) is called a relative Hopf–Galois extension of commutative algebras.

5.3. Another structured shear map
In this subsection, we discuss an extension of the shear map B ⊗A B → Cof(γ)⊗B

associated to a relative Hopf–Galois context (γ•, ϕ•) : (K,A)→ (H,B) to a cosimplicial
map C•(ϕ)→ Ω•

Cof(γ)(B) and its consequences. This extension is essentially equivalent
to the structured shear map of Subsection 3.2, but its construction is arguably simpler.

Remark 5.3.1. By [Lur17, Corollary 2.4.3.10], the forgetful functor CAlg(CAlg(C))→
CAlg(C) is a (strongly symmetric monoidal) equivalence. Hence we can view a morphism
ψ in CAlg(C) as a morphism in CAlg(CAlg(C)) and thus its coaugmented Amitsur
complex as a functor C•

+(ψ) : ∆+ → CAlg(C). We will use this variant of C•
+(ψ)

throughout the remainder of this section.
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In order to construct such a cosimplicial map, we will interpret the Amitsur complex
C•(ψ) of a map ψ : R → S of commutative algebras as a “dual Čech nerve”. Indeed,
writing SpecT for the object of CAlg(C)op corresponding to T ∈ CAlg(C), C1(ψ) ' S⊗RS
corresponds to SpecS ×SpecR SpecS, C2(ψ) ' S ⊗R S ⊗R S to a “triple self-intersection”
etc. In fact, when studying descent for commutative algebras, one usually defines the
Amitsur complex as such a dual Čech nerve (cf. [Lur11, Proposition 5.7] and [GL21, text
between Propositions 6.4 and 6.5]), but we proceed by relating our existing notions to
the ones used in the aforementioned references.

The idea of a dual Čech nerve can be formalized as follows (cf. [Lur09, discussion after
Proposition 6.1.2.11]).

Lemma 5.3.2. Let ψ : R → S be a map of commutative algebras in C. Then the
coaugmented Amitsur complex C•

+(ψ) : ∆+ → CAlg(C) is the left Kan extension of its
restriction to ∆≤0

+
∼= [1] (which is given by ψ : R→ S).

Proof. We verify the conditions of [Lur09, Proposition 6.1.2.11]. We need to show that
d0, d1 : C0(ψ) → C1(ψ) exhibit C1(ψ) as the pushout of d0 : C−1(ψ) → C0(ψ) along
itself, which is indeed the case because

R S

S S ⊗R S

ψ

ψ S⊗Rψ

ψ⊗RS

is a pushout square in CAlg(C). Moreover, we need to show that for all m,n ∈ N,
C[m]↪→[m]?[n](ψ) and C[n]↪→[m]?[n](ψ) exhibit C[n]?[m](ψ) as a pushout of C0 7→n+1(ψ) along
C07→m+1(ψ), which follows from the fact that

S S⊗R(n+1)

S⊗R(m+1) S⊗R(n+m+1)

ψ⊗Rn⊗RS

S⊗Rψ
⊗Rm S⊗R(n+1)⊗Rψ

⊗Rm

ψ⊗Rn⊗RS
⊗R(m+1)

is a pushout square.

Next, we would like to describe the comodule category LComodψ!ψ∗(LModS(C)) of
the descent comonad in terms of the cosimplicial commutative algebra C•(ψ), for which
some preparation will be needed.

Definition 5.3.3 ([Lur09, Definition 7.3.1.2]). Consider a commutative square

D′ E ′

D E

F ′

U1 U2

F

(5.3.4)
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of ∞-categories, i.e., an equivalence FU1 ' U2F
′ of functors.

If F admits a right adjoint R (with unit transformation u) and F ′ admits a right
adjoint R′ (with counit transformation c′), we obtain a mate transformation

U1R
′ uU1R′
−−−→ RFU1R

′ ' RU2F
′R′ RU2c′
−−−→ RU2.

We call the square (5.3.4) right adjointable if F and F ′ admits right adjoints and the
associated mate transformation is an equivalence.

Dually, if F admits a left adjoint L and F ′ admits a left adjoint L′, we obtain a mate
transformation L′U2 → U1L, and call the square left adjointable if it is an equivalence.

Lemma 5.3.5.17 Let ψ : R→ S and ν : R→ T be maps of commutative algebras in C.
Then the diagram

LModR(C) LModS(C)

LModT (C) LModS⊗RT (C)

ψ!

ν! (S⊗Rν)!

(ψ⊗RT )!

is right adjointable.
Hence every diagram of ∞-categories that is obtained by applying LMod(−)(C) (with

functoriality given by extension of scalars) to a pushout diagram of commutative algebras
is right adjointable.

Proof. The functors ψ! and (ψ ⊗ T )! admit right adjoints ψ∗ and (ψ ⊗ T )∗, respectively.
The component of the associated mate transformation at M ∈ LModS(C) is given by

T ⊗RM
ψ⊗RT⊗RM−−−−−−−→ S ⊗R T ⊗RM ' T ⊗R S ⊗RM

T⊗RαM−−−−−→ T ⊗RM,

which is indeed an equivalence.

Proposition 5.3.6. Let ψ : R → S be a map of commutative algebras in C. Then
there exists an equivalence LComodψ!ψ∗(LModS(C)) ' lim∆ LModC•(ψ)(C) that is com-
patible with the forgetful functor Vψ!ψ∗ : LComodψ!ψ∗(LModS(C))→ LModS(C) and the
projection lim∆ LModC•(ψ)(C)→ LModC0(ψ)(C) ' LModS(C).

Proof. First we note that for every β : [m]→ [n] in ∆+, the diagram

LModS⊗R(m+1)(C) LModS⊗R(m+2)(C)

LModS⊗R(n+1)(C) LModS⊗R(n+2)(C)

(S⊗R(m+1)⊗Rψ)!

Cβ(ψ)! Cβ?[0](ψ)!'(Cβ(ψ)⊗RS)!

(S⊗R(n+1)⊗Rψ)!

(5.3.7)

17It is likely that this lemma is a special case of the intended form of [Lur11, Lemma 6.15], but in
the cited lemma some arrows are reversed, and the proposition cited in its proof cannot be found
anymore, so we sketch a proof here.
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is right adjointable, which follows from Lemma 5.3.5 as the corresponding diagram before
applying LMod(−)(C) is a pushout diagram of commutative algebras.

This means in particular that [Lur17, Theorem 4.7.5.2] is applicable to the composite18

∆ (−)op

−−−→∆ C•(ψ)−−−→ CAlg(C)
LMod(−)(C)
−−−−−−−→ Cat∞,

which yields a right adjoint C: LModS(C) → lim∆ LModC•(ψ)(C) to the projection
V: lim∆ LModC•(ψ)(C)→ LModC0(ψ)(C) ' LModS(C) such that the adjunction V a C is
comonadic and V ◦C ' (S ⊗R ψ)∗(ψ ⊗R S)!. Note that (S ⊗R ψ)∗(ψ ⊗R S)! ' ψ!ψ

∗ by
Lemma 5.3.5 applied to the pushout of ψ along itself. This defines a comonad structure
on ψ!ψ

∗, which will turn out to be equivalent to that of Definition 1.3.14. When we want
to notationally distinguish these two comonad structures in this proof, we will refer to
the “new” comonad as Θ.

Now the coaugmentation of C•(ψ) by R induces a coaugmentation of LModC•(ψ)(C) by
LModR(C), hence a lift ψ̂! : LModR(C) → lim∆ LModC•(ψ)(C) ' LComodΘ(LModS(C))
of ψ! against V ' VΘ. By Fact 1.3.6, this lift yields a coaction of Θ on ψ!, which, by the
initiality of the coaction of ψ!ψ

∗ on ψ! discussed in Example 1.3.5, induces a comonad
map ψ!ψ

∗ → Θ. Writing u for the unit of the adjunction V a C and c for the counit of
the adjunction ψ! a ψ∗, the underlying map of this comonad map can be unpacked as

ψ!ψ
∗ ' V ψ̂!ψ

∗ Vuψ̂!ψ
∗

−−−−→ V C V ψ̂!ψ
∗ ' V Cψ!ψ

∗ V C c−−−→ V C .

Note that this map can be obtained by applying V to the right adjointability mate
transformation of the commutative square

LModR(C) LModS(C)

LComodΘ(LModS(C)) LModS(C)
ψ̂!

ψ!

V

, (5.3.8)

so it will suffice show that this square is right adjointable. In order to do so, we will make
use of the ∞-category FunRAd([1],Cat∞) of [Lur17, Definition 4.7.4.16], whose objects
are arrows in Cat∞ that admit right adjoints (which we display horizontally) and whose
morphisms correspond to right adjointable squares.

Consider the functor ∆+ → Fun([1],Cat∞) corresponding to the natural transformation
d•+1 : LModC•

+(ψ)(C)→ LModC•+1
+ (ψ)(C) (cf. Construction 5.1.14). We would like to lift it

to a functor A• : ∆+ → FunRAd([1],Cat∞), which amounts to showing that the naturality
squares for d•+1 are right adjointable. These squares are all of the form (5.3.7), so they
are indeed right adjointable.
18Precomposing a cosimplicial object X• with (−)op in particular swaps d0 : Xn → Xn+1, which is used

in the aforementioned theorem, and dn+1 : Xn → Xn+1, which we consider in our application. This
proposition could be proven without this “twist”, but the twist will be crucial for cosimplicial objects
of the form Ω•

H(B) (cf. Proposition 5.4.24).
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Now, by [Lur17, Corollary 4.7.4.18], limits in FunRAd([1],Cat∞) can be computed in
Fun([1],Cat∞). Moreover, limits in Fun([1],Cat∞) can be computed pointwise. Hence,
since the coaugmentation of LModC•+1(ψ)(C) by LModC0(ψ)(C) ' LModS(C) is split, the
limit of A•|∆ is given by V: LComodΘ(LModS(C)) ' lim∆ LModC•(ψ)(C)→ LModS(C).
Moreover, the underlying map of the induced map A−1 → lim∆(A•|∆) in Fun([1],Cat∞)
corresponds to the square (5.3.8), which shows that it is right adjointable as desired.

The dual Čech nerve interpretation of the coaugmented Amitsur complex allows us to
extend the shear map to a cosimplicial map as follows.
Construction 5.3.9. Let (γ•, ϕ•) : (K,A)→ (H,B) be a relative Hopf–Galois context
of commutative algebras. Recall that by Lemma 5.3.2, C•

+(ϕ) is the left Kan extension
of ϕ : [1] → CAlg(C) along the inclusion [1] ∼= ∆≤0

+ ↪→ ∆+, meaning that we have
equivalences

MapFun(∆+,CAlg(C))(C•
+(ϕ),Ω•

Cof(γ)(B)+) ' MapFun([1],CAlg(C))(ϕ,Ω
δ0 : [−1]→[0]
Cof(γ) (B)+)

' MapFun([1],CAlg(C))(ϕ, ϕ).
We let sh•

(γ•,ϕ•) : C•
+(ϕ)→ Ω•

Cof(γ)(B)+ be the map that corresponds to Idϕ under this
identification.

Note that we have equivalences
sh1

(γ•,ϕ•) ◦(B ⊗A ϕ) ' sh1
(γ•,ϕ•) ◦Cδ1(ϕ) ' Ωδ1

Cof(γ)(B) ◦ sh0
(γ•,ϕ•) ' ρB ◦ IdB ' ρB

and similarly
sh1

(γ•,ϕ•) ◦(ϕ⊗A B) ' sh1
(γ•,ϕ•) ◦Cδ0(ϕ) ' Ωδ0

Cof(γ)(B) ◦ sh0
(γ•,ϕ•) ' ηCof(γ) ⊗B.

Hence, by Lemma 5.2.14, sh(γ•,ϕ•) can be recovered as sh1
(γ•,ϕ•).

Lemma 5.3.10. Let (γ•, ϕ•) : (K,A) → (H,B) be a relative Hopf–Galois context of
commutative algebras. Then sh•

(γ•,ϕ•) : C•
+(ϕ) → Ω•

Cof(γ)(B)+ is an equivalence if and
only if its first level sh(γ•,ϕ•) : B ⊗A B → Cof(γ)⊗B is an equivalence.
Proof. The “only if” direction is clear, so we show that sh•

(γ•,ϕ•) is an equivalence if
sh(γ•,ϕ•) is an equivalence. Since the restriction of sh•

(γ•,ϕ•) to ∆≤0
+
∼= [1] is Idϕ, it will

suffice to show that shn(γ•,ϕ•) is an equivalence for all n > 0, which we do by induction.
The case n = 1 is precisely the assumption that sh(γ•,ϕ•) is an equivalence. Now let

n > 1. By the universal property of C•
+(ϕ), shn(γ•,ϕ•) can be described as as the dashed

arrow in the commutative diagram

B B⊗An

B Cof(γ)⊗(n−1) ⊗B

B ⊗A B B⊗A(n+1)

Cof(γ)⊗B Cof(γ)⊗n ⊗B

B⊗Aϕ
⊗A(n−1)

ϕ⊗AB

p

shn−1
(γ•,ϕ•)

ρ
(n−1)
B

ηCof(γ)⊗Cof(γ)⊗(n−1)⊗B

sh(γ•,ϕ•)

shn
(γ•,ϕ•)

ηCof(γ)⊗B

Cof(γ)⊗ρ(n−1)
B
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induced by the universal property of the pushout. Note that the front face is a pushout
square too. Now sh(γ•,ϕ•) and shn−1

(γ•,ϕ•) are equivalences by the induction hypothesis, so
the map shn(γ•,ϕ•) they induce on the pushouts is also an equivalence.

Corollary 5.3.11. Let (γ•, ϕ•) : (K,A)→ (H,B) be a relative Hopf–Galois context of
commutative algebras whose shear map sh(γ•,ϕ•) : B⊗AB → Cof(γ)⊗B is an equivalence.
Then LComodϕ!ϕ∗(LModS(C)) ' lim∆ LModΩ•

Cof(γ)(B)(C).

Proof. By Lemma 5.3.10, we have a cosimplicial equivalence C•(ϕ) ' Ω•
Cof(γ)(B). Hence

LComodϕ!ϕ∗(LModB(C)) 5.3.6' lim
∆

LModC•(ϕ)(C) ' lim
∆

LModΩ•
Cof(γ)(B)(C).

Example 5.3.12. Let H be a commutative bialgebra and A a commutative algebra.
Consider the normal basis context (η•

H , η
•+1
H ⊗A) : (1C, A)→ (H,H ⊗A). Then the asso-

ciated coaugmentation η⊗(•+1)
H ⊗A : A→ Ω•+1

H ⊗A ' Ω•
H(H ⊗A) of Construction 5.2.10

is split. Hence the induced coaugmentation LModA(C)→ LModΩ•
H(H⊗A)(C) is also split,

which means that it induces an equivalence F : LModA(C) ' lim∆ LModΩ•
H(H⊗A)(C).

This equivalence can be used to obtain an incarnation of descent for Hopf algebras
(Corollary 4.2.12) as follows. If H is a Hopf algebra, then sh(η•

H ,η
•+1
H ⊗A)

5.2.18' sh(η•
H ,η

•+1
H )⊗A

is an equivalence. Moreover, the functor F can be factored as

LModA(C) (ηH⊗A)!−−−−−→ LComod(ηH⊗A)!(ηH⊗A)∗(LModB(C)) 5.3.11' lim
∆

LModΩ•
H(H⊗A)(C),

implying that (ηH ⊗ A)! is also an equivalence, i.e., that ηH ⊗ A : A → H ⊗ A admits
descent.

5.4. Semilinear coactions of a commutative Hopf algebra
Let ϕ̃ : TrivH(A) → B̃ be an H-Hopf–Galois context of commutative algebras. We

have realized the associated shear map as a morphism ϕ!ϕ
∗ ' B⊗A (−)→ H⊗(−) ' Θ

B̃

of comonads in Corollary 3.2.8 and seen in Proposition 5.3.6 that the comodule category
of the source is equivalent to lim∆ LModC•(ϕ)(C).

In light of the extension C•(ϕ) → Ω•
H(B) of the shear map to a cosimplicial map

constructed in Construction 5.3.9, it is natural to ask whether the comodule category
of Θ

B̃
, which depends only on the H-comodule algebra B̃ and not on the Hopf–Galois

context, is equivalent to lim∆ LModΩ•
H(B)(C) in general. We will see in Proposition 5.4.24

that this is indeed the case when H is a Hopf algebra.
We start with some generalities about commutative Hopf algebras.

Proposition 5.4.1. If H is a commutative Hopf algebra, then H admits a homotopy
antipode. Moreover, this homotopy antipode can be lifted to a map of commutative
algebras.
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Proof. Note that for commutative algebra maps f, g : H → H, their convolution product
f ∗ g = µH(f ⊗ g)∆H is also a map of commutative algebras as µH , f ⊗ g and ∆H are.
Moreover, ηHεH and IdH are also maps of commutative algebras. Hence the convolution
product monoid structure of Fact 4.1.1 can be restricted to a monoid structure on
Homho(CAlg(C))(H,H), and it is enough to show that IdH has an inverse in this monoid.
We show that this monoid is in fact a group.

Since H ⊗H is a coproduct in CAlg(C), we have

Homho(CAlg(C))(H ⊗H,H) ' Homho(CAlg(C))(H,H)× Homho(CAlg(C))(H,H).

Under this identification, the map induced by precomposition with sh(η•
H ,η

•+1
H ) acts as

(f, g) 7→ µH ◦ (f ⊗ g)
7→ µH ◦ (f ⊗ g) ◦ sh(η•

H ,η
•+1
H )

7→
(
µH ◦ (f ⊗ g) ◦ sh(η•

H ,η
•+1
H ) ◦(H ⊗ ηH), µH ◦ (f ⊗ g) ◦ sh(η•

H ,η
•+1
H ) ◦(ηH ⊗H)

)
.

By Lemma 5.2.14, the first component can be simplified to µH ◦ (f ⊗ g) ◦∆H = f ∗ g
and the second component to µH ◦ (f ⊗ g) ◦ (ηH ⊗H) = µH ◦ (ηH ⊗ g) = g.

Hence, since sh(η•
H ,η

•+1
H ) is an equivalence, the map (f, g) 7→ (f ∗g, g) is a bijection. Con-

sidering a preimage of (ηHεH , g) under this map, we see that every commutative algebra
map g : H → H has a left inverse with respect to convolution, so Homho(CAlg(C))(H,H) is
a group as desired.

Remark 5.4.2. Dualizing the proof of Proposition 5.4.1, we see that also every cocom-
mutative Hopf algebra admits a homotopy antipode.

We have seen in Lemma 4.2.7 that the dual shear map associated to a Hopf algebra
with a homotopy antipode is an equivalence, so we obtain the following.

Corollary 5.4.3. Let H be a commutative Hopf algebra and M an H-comodule. Then
the dual shear map

s̃hH(M) : H ⊗M H⊗ρM−−−−→ H ⊗H ⊗M µH⊗M−−−−→ H ⊗M

of Construction 4.2.6 is an equivalence.

Next, we give an alternative description of the dual shear map that will be useful later.

Lemma 5.4.4. Let H be a commutative bialgebra coacting on a commutative algebra B.
Then the map H ⊗B → H ⊗B of commutative algebras induced by the cospan

B
ρB−→ H ⊗B H⊗ηB←−−− H (5.4.5)

by considering the source as the coproduct of H and B in CAlg(C) agrees with the dual
shear map s̃hH(B) : H ⊗B → H ⊗B.

In particular, if H is a Hopf algebra, (5.4.5) is a coproduct cospan because in that case,
the dual shear map is an equivalence by Corollary 5.4.3.
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Proof. As in the proof of Lemma 5.2.14, it is enough to check that restrictions of s̃hH(B)
along the structure maps of the coproduct recover the maps in (5.4.5), which is witnessed
by the commutativity of the diagram

H

H ⊗B H ⊗H ⊗B H ⊗B

B H ⊗B

H⊗ηB
H⊗ηH⊗ηB

H⊗ηB

H⊗ρB µH⊗B

ηH⊗B

ρB

ηH⊗H⊗B

.

So far, we have been rather imprecise about the distinction between commutative
comodule algebras and their underlying commutative algebras, but we fix the following
convention to match the notation of Section 3.

Notation 5.4.6. Given a commutative algebra B on which a commutative bialgebra H
acts, we use the notation B̃ to refer to the corresponding object in CAlg(LComodH(C)).

Before delving into the details, let us describe our overall strategy for proving the equiva-
lence LComodΘ

B̃
(LModB(C)) ' lim∆ LModΩ•

H(B)(C). Instead of LComodΘ
B̃

(LModB(C)),
we work with the equivalent ∞-category LMod

B̃
(LComodH(C)) (cf. Definition 3.2.4).

The idea is to construct a coaugmentation of the cosimplicial ∞-category LModΩ•
H(B)(C)

by LMod
B̃

(LComodH(C)) whose n-th level is given by the composite

LMod
B̃

(LComodH(C))
(

(CH VH)n(ρ
B̃

)◦...◦ρ
B̃

)
!
'
(
ρ

(n+1)
B̃

)
!−−−−−−−−−−−−−−−−−−−−−→ LMod(CH VH)n+1B̃

(LComodH(C))

Prim(CH VH )n+1B̃

H−−−−−−−−−−→ LModH⊗n⊗B(C) (5.4.7)

and show that the induced map to the limit is an equivalence.
While this resembles composing the coaugmentation of LModR̃

•
H(B)(LComodH(C)) with

a cosimplicial map LModR̃
•
H(B)(LComodH(C))→ LModΩ•

H(B)(C), the functors induced by
PrimH cannot necessarily be assembled into such a cosimplicial map because extensions
of scalars are not necessarily compatible with taking primitives. However, the extensions
of scalars in question will turn out to be compatible with taking primitives after pre-
composing with the coaugmentation of LModR̃

•
H(B)(LComodH(C)). In order to express

this phenomenon, we work with the associated cocartesian fibrations over ∆ instead of
cosimplicial ∞-categories.

Construction 5.4.8. Let H be a commutative bialgebra coacting on a commutative
algebra B. Consider the following functors.

• The projection LMod
B̃

(LComodH(C))×∆→∆. It is a bicartesian fibration and
the straightening of the underlying cocartesian fibration corresponds to the constant
cosimplicial category on LMod

B̃
(LComodH(C)).
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• L̃
B̃
→ ∆ given by the pullback of the forgetful functor θ̃ : LMod(LComodH(C))→

Alg(LComodH(C)) along the composite

Ã : ∆ R̃
•
H(B)−−−−→ LComodH(CAlg(C)) ' CAlg(LComodH(C))→ Alg(LComodH(C)).

As the pullback of a bicartesian fibration (cf. Remark 1.2.12), it is a bicartesian
fibration. The straightening of its underlying cocartesian fibration is the cosimplicial
∞-category LModR̃

•
H(B)(LComodH(C)).

• L
B̃
→ ∆ given by the pullback of the forgetful functor θ : LMod(C) → Alg(C)

along the composite
A : ∆

Ω•
H(B)
−−−−→ CAlg(C)→ Alg(C)

As the pullback of a bicartesian fibration (cf. Fact 1.1.10), it is a bicartesian
fibration. The straightening of its underlying cocartesian fibration is the cosimplicial
∞-category LModΩ•

H(B)(C).

Note that the lax monoidal functor PrimH : LComodH(C)→ C gives rise to a commu-
tative diagram

Alg(LComodH(C)) LMod(LComodH(C))

∆

Alg(C) LMod(C)

Alg(PrimH)

θ̃

LMod(PrimH)5.1.23
Ã

A

θ

.

Taking pullbacks, we obtain a functor P
B̃

: L̃
B̃
→ L

B̃
over ∆. As discussed in Re-

mark 1.1.11, LMod(PrimH) maps θ̃-cartesian arrows to θ-cartesian arrows, so the pullback
P
B̃

also preserves cartesian arrows. In other words, taking primitives is compatible with
restrictions of scalars.

Moreover, unstraightening the natural transformation

constLMod
B̃

(LComodH(C)) → LModR̃
•
H(B)(LComodH(C))

induced by the coaugmentation of the cobar resolution R̃•
H(B) by B̃, we obtain a functor

E
B̃

: LMod
B̃

(LComodH(C))×∆→ L̃
B̃

over ∆ that preserves cocartesian arrows.

Remark 5.4.9. In the context of Construction 5.4.8, the fiber of the composite
P
B̃
◦ E

B̃
: LMod

B̃
(LComodH(C)) × ∆ → L

B̃
at [n] ∈ ∆ coincides with the desired

coaugmentation map LMod
B̃

(LComodH(C)) → LModH⊗n⊗B(C) of (5.4.7). Therefore,
we can obtain the desired coaugmentation of LModΩ•

H(B)(C) by showing that P
B̃
◦ E

B̃

preserves cocartesian arrows and considering the natural transformation P
B̃
◦E

B̃
induces

between straightenings. As E
B̃

preserves cocartesian arrows, it will be enough to show
that P

B̃
preserves cocartesian arrows that are in the image of E

B̃
.
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Now let a be a cocartesian lift of a map β : [m]→ [n] in L̃
B̃

, exhibiting an object of
LModR̃

n

H(B)(LComodH(C)) as the image of an object M ′ ∈ LModR̃
m

H (B)(LComodH(C))
under R̃β

H(B)!. As discussed in [Lur09, Remark 7.3.1.3], since P
B̃

preserves cartesian
arrows, we have a simple criterion for determining whether P

B̃
(a) is a cocartesian lift of

β. Namely, this is the case if and only if the component

Ωβ
H(B)! PrimR̃

m

H (B)
H M ′ → PrimR̃

n

H(B)
H R̃β

H(B)!M
′ (5.4.10)

of the mate transformation associated to the commutative square

LModR̃
n

(B)(LComodH(C)) LModR̃
m

(B)(LComodH(C))

LModΩn
H(B)(C) LModΩm

H (B)(C)

R̃
β

H(B)
∗

PrimR̃
n
H (B)

H PrimR̃
m
H (B)

H

Ωβ
H(B)

∗

is an equivalence.
Specializing to the case where a is in the image of E

B̃
, it will be enough to show

that (5.4.10) is an equivalence when M ′ is of the form (ρ(m+1)
B̃

)
!
M for some M ∈

LMod
B̃

(LComodH(C)).
In other words, we would like to show that for every β : [m] → [n], the natural

transformation

Ωβ
H(B)! PrimR̃

m

H (B)
H (ρ(m+1)

B̃
)

!
→ PrimR̃

n

H(B)
H R̃β

H(B)!(ρ
(m+1)
B̃

)
!

obtained by precomposing (5.4.10) with (ρ(m+1)
B̃

)
!
, which we call the critical mate for

R̃β

H(B), is an equivalence. Moreover, by the horizontal pasting law for mate transforma-
tions, it will be enough to consider the critical mates for the generating maps of ∆, i.e.,
coface and codegeneracy maps of R̃•

H(B).

We start with a lemma that will allow us to identify objects of the form (ρ(m+1)
B̃

)
!
M .

For B̃ = TrivH(1C), it specializes to the equivalence H̃ ⊗ (−) ' CH VH given by the dual
shear map of Construction 4.2.6.

Lemma 5.4.11. Let B be a commutative algebra on which a commutative Hopf algebra
H coacts. Then the functor (ρ

B̃
)! : LMod

B̃
(LComodH(C))→ LModCH(B)(LComodH(C))

is equivalent to the composite

LMod
B̃

(LComodH(C)) VB̃
H−−→ LModB(C) CB

H−−→ LModCH(B)(LComodH(C)).

Proof. Recall that by Proposition 3.2.2 (or rather Proposition B.0.6 from which it follows),
VB̃
H admits a right adjoint given by ρ

B̃
∗ ◦CB

H , which is a lift of the right adjoint CH of VH .
Let u : IdLMod

B̃
(LComodH(C)) → (ρ

B̃
∗ ◦CB

H) ◦VB̃
H denote the associated unit transformation,
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whose underlying map is simply the coaction map of the underlying H-comodule. We
claim that for all M ∈ LMod

B̃
(LComodH(C)), the adjoint

(ρ
B̃

)!M
(ρ

B̃
)
!
uM

−−−−−→ (ρ
B̃

)!(ρB̃)∗ CB
H VB̃

HM
αCB

H
(M)

−−−−→ CB
H VB̃

HM (5.4.12)

of uM is an equivalence.
It is enough to show that the underlying map in C is an equivalence. For a map

ψ : R → S of algebras, we will write Sψ ⊗R (−) instead of just S ⊗R (−) in order
to distinguish tensor products with respect to different morphisms. Now, using the
description of the “summands” of the dual shear map s̃hH(B) : H ⊗B → H ⊗B from
Lemma 5.4.4, we see that it induces equivalences that fit into a commutative diagram

H ⊗M H ⊗H ⊗M

(H ⊗B)ηH⊗B ⊗B M (H ⊗B)ηH⊗B ⊗B ρB∗(H ⊗M)

(H ⊗B)ρB
⊗B M (H ⊗B)ρB

⊗B ρB∗(H ⊗M) H ⊗M

'

H⊗ρM

µH⊗M'

(H⊗B)ηH ⊗B⊗BρM

s̃hH(B)⊗BM ' s̃hH(B)⊗BρB
∗(H⊗M) '

(H⊗B)ρB
⊗BρM

αH⊗M

,

where the right triangle commutes because

αH⊗M(s̃hH(B)⊗H ⊗M)(H ⊗ ηB ⊗H ⊗M)
' αH⊗M(µH ⊗B ⊗H ⊗M)(H ⊗ ρB ⊗H ⊗M)(H ⊗ ηB ⊗H ⊗M)
' αH⊗M(µH ⊗B ⊗H ⊗M)(H ⊗ ηH ⊗ ηB ⊗H ⊗M)
' αH⊗M(H ⊗ ηB ⊗H ⊗M) ' µH ⊗M.

Note that the composite of the upper and the right curved arrow is the dual shear map
s̃hH(M) of M , which is an equivalence by Corollary 5.4.3. Therefore, the composite of
the lower arrows, hence (5.4.12) is also an equivalence.

Remark 5.4.13. Let B be a commutative algebra on which a commutative Hopf algebra
H coacts and n ∈ N. Recall that the coaugmentation map ρ(n+1)

B̃
: B̃ → (CH VH)n+1B̃ is

the composite ρ(CH VH)nB̃
◦ . . .◦ρCH VH B̃

◦ρ
B̃

. Hence, Lemma 5.4.11 implies that (ρ(n+1)
B̃

)
!

factors through the functor

CVH(CH VH)nB̃
H : LModVH(CH VH)nB̃

(C)→ LMod(CH VH)n+1B̃
(LComodH(C)).

Recall that all coface and codegeneracy maps that occur in R̃•
H(B) except for “d0’s”

are of the form CH(ψ) for a map ψ of algebras in C (cf. Definition 1.3.8), so the following
lemma about such maps will imply that their critical mates are equivalences.

Lemma 5.4.14. Let H be a bialgebra, ψ : R→ S a map of commutative algebras and
M ∈ LModR(C). We identify PrimH(CH(ψ)) with ψ. Then the component

ψ! PrimCH(R)
H CR

HM → PrimCH(S)
H CH(ψ)! CR

HM
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of the mate transformation induced by the equivalence ψ∗ PrimCH(S)
H ' PrimCH(R)

H CH(ψ)∗

is an equivalence.

Proof. Recall that like PrimH , CH is also lax monoidal and thus compatible with restric-
tions of scalars. Hence we have a commutative diagram

LModS(C) LModR(C)

LModCH(S)(LComodH(C)) LModCH(R)(LComodH(C))

LModS(C) LModR(C)

ψ∗

CS
H CR

H

CH(ψ)∗

PrimCH (S)
H PrimCH (R)

H

ψ∗

.

By the vertical pasting law for mates, the mate transformation for the composite square
is given by the composite

ψ! PrimCH(R)
H CR

HM
νCR

H
(M)

−−−−→ PrimCH(S)
H CH(ψ)! CR

HM
PrimCH (S)

H ξM−−−−−−−−→ PrimCH(S)
H CS

H ψ!M,
(5.4.15)

where ν is the mate transformation associated to the lower square and ξ is the mate
transformation associated to the upper square.

In order to show that νCR
H(M) is an equivalence, it is enough to show that ξM and the

composite (5.4.15) are equivalences, i.e., that the upper square and the composite square
are left adjointable. The composite square is left adjointable because it can be identified
with a “degenerate square” whose mate transformation is an equivalence by the triangle
identity for the left adjoint ψ! of adjunction ψ! a ψ∗.

As for the upper square, it is enough to show that VCH(S)
H ξM is an equivalence

because VH is conservative. Now the adjunction CH(ψ)! a CH(ψ)∗ is a lift of the
adjunction (H ⊗ ψ)! a (H ⊗ ψ)∗ along VCH(R)

H and VCH(S)
H , so under the identification

VCH(−)
H C(−)

H ' (ηH ⊗ (−))!, VCH(S)
H ξM corresponds to the mate transformation associated

to the commutative square

LModS(C) LModR(C)

LModH⊗S(C) LModH⊗R(C)

ψ∗

(ηH⊗S)! (ηH⊗R)!

(H⊗ψ)∗

,

whose commutativity is witnessed by the mate transformation associated to the equiv-
alence (H ⊗ ψ)!(ηH ⊗R)! ' (ηH ⊗ S)!ψ! (cf. Lemma 5.3.5). Hence, when we consider
the mate associated to this square, the unit and counit transformations “cancel each
other” by triangle identities and we recover the original equivalence (H ⊗ ψ)!(ηH ⊗R)! '
(ηH ⊗ S)!ψ!, implying that VCH(S)

H ξM is an equivalence.

As alluded to before, Remark 5.4.13 and Lemma 5.4.14 together yield the following.
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Corollary 5.4.16. Let B be a commutative algebra on which a commutative Hopf algebra
H coacts and β : [n]→ [m] a map in ∆ of the form σi : [m+ 1]→ [m] for 0 ≤ i ≤ m or
δi : [n]→ [n+ 1] for 0 < i ≤ n+ 1. Then the critical mate for R̃β

H(B) is an equivalence.

The remaining coface maps in R̃•
H(B) are of the form ρ(CH VH)kB̃

, which we take care
of now.

Lemma 5.4.17. Let B be a commutative algebra on which a commutative Hopf algebra
H coacts and M ∈ LModB(C). Consider the map ρCH VH B̃

: CH VH B̃ → (CH VH)2B̃ of
commutative H-comodule algebras, whose image under PrimH we identify with the map
ηH ⊗B : B → H ⊗B. Then the component

(ηH ⊗B)! PrimCH VH B̃
H CB

HM → Prim(CH VH)2B̃
H (ρCH VH B̃

)
!
CB
HM (5.4.18)

of the mate transformation associated to the equivalence (ηH ⊗B)∗ Prim(CH VH)2B̃
H '

PrimCH VH B̃
H (ρCH VH B̃

)∗ is an equivalence.

Proof. The map (5.4.18) is the composite

(ηH ⊗B)! PrimCH VH B̃
H CB

HM
υ−→ (ηH ⊗B)! PrimCH VH B̃

H (ρCH VH B̃
)∗(ρCH VH B̃

)
!
CB
HM

' (ηH ⊗B)!(ηH ⊗B)∗ Prim(CH VH)2B̃
H (ρCH VH B̃

)
!
CB
HM

ω−→ Prim(CH VH)2B̃
H (ρCH VH B̃

)
!
CB
HM,

where υ induced by the unit of the adjunction (ρCH VH B̃
)

!
a (ρCH VH B̃

)∗ and ω is induced
by the counit of the adjunction (ηH ⊗B)! a (ηH ⊗B)∗. We identify the underlying maps
of υ and ω as follows.

First, consider the equivalence ûCB
H M : (ρCH VH B̃

)
!
CB
HM ' CVH CH B

H VCH B
H CB

HM of
Lemma 5.4.11. By its construction, precomposing (ρCH VH B̃

)∗ûCB
H M with the unit map

CB
HM → (ρCH VH B̃

)∗(ρCH VH B̃
)

!
CB
HM of the adjunction (ρCH VH B̃

)
!
a (ρCH VH B̃

)∗ recov-
ers the unit map uCB

H M : CB
HM → (ρCH VH B̃

)∗ CVH CH B
H VCH B

H CB
HM of the adjunction

VCH B
H a (ρCH VH B̃

)∗ CVH CH B
H , whose underlying comodule map is the “coaction map”

ρCB
H M . This means that the composite

υ′ : (ηH ⊗B)! PrimCH VH B̃
H CB

HM

υ−→ (ηH ⊗B)! PrimCH VH B̃
H (ρCH VH B̃

)∗(ρCH VH B̃
)

!
CB
HM

' (ηH ⊗B)! PrimCH VH B̃
H (ρCH VH B̃

)∗ CVH CH B
H VCH B

H CB
HM

can be identified with (ηH ⊗B)! PrimCH VH B̃
H uCB

H M . Hence, since PrimH(ρCB
H M) '

ηH ⊗M , the underlying map of υ′ is given by

(H ⊗B)⊗B M
(H⊗B)⊗B(ηH⊗M)−−−−−−−−−−−→ (H ⊗B)⊗B (H ⊗M). (5.4.19)
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Now, under the identification

Prim(CH VH)2B̃
H (ρCH VH B̃

)
!
CB
HM ' Prim(CH VH)2B̃

H CVH CH B
H VCH B

H CB
HM ' H ⊗M,

ω corresponds to the action map

(H ⊗B)⊗B (H ⊗M)→ H ⊗M,

whose composite with (5.4.19) is an equivalence. Hence the mate transformation (5.4.18)
is an equivalence because its underlying map can be identified with this composite.

Remark 5.4.13 and Lemma 5.4.17 together yield the following.

Corollary 5.4.20. Let B be a commutative algebra on which a commutative Hopf algebra
H coacts and consider the coface map δ0 : [n]→ [n+ 1] for some n ∈ N. Then the critical
mate for R̃δ0

H (B) is an equivalence.

Notation 5.4.21. Let B be a commutative algebra on which a commutative Hopf
algebra H coacts. Corollaries 5.4.16 and 5.4.20 imply that the cosimplicial ∞-category
LModΩ•

H(B)(C) admits a coaugmentation by LMod
B̃

(LComodH(C)) as discussed in Re-
mark 5.4.9. We denote the associated functor ∆+ → Cat∞ by L

B̃
.

Remark 5.4.22. Let B be a commutative algebra on which a commutative Hopf algebra
H coacts and n ∈ N. Then the coaugmentation functor LMod

B̃
(LComodH(C)) →

LModΩn
H(B)(C) encoded in L

B̃
can be simplified as

Prim(CH VH)n+1B̃
H (ρ(n+1)

B̃
)

!

' Prim(CH VH)(n+1)B̃
H ◦(ρ(CH VH)nB̃

)
!
◦ . . . ◦ (ρ

B̃
)!

5.4.11' Prim(CH VH)n+1B̃
H ◦(CVH(CH VH)nB̃

H ◦V(CH VH)nB̃
H ) ◦ . . . ◦ (CVH B̃

H ◦VB̃
H)

' (V(CH VH)nB̃
H ◦CVH(CH VH)n−1B̃

H ) ◦ . . . ◦ (V(CH VH)B̃
H ◦CVH B̃

H ) ◦ VB̃
H

' (ηH ⊗H⊗(n−1) ⊗B)! ◦ . . . ◦ (ηH ⊗B)! ◦ VB̃
H ' ((ηH)⊗n ⊗B)! ◦ VB̃

H .

We would like to show that L
B̃

is a limiting cone, for which we will need one last
lemma.

Lemma 5.4.23. Let H be a commutative Hopf algebra coacting on a commutative algebra
B. Then the diagram

B H ⊗B

H ⊗B H ⊗H ⊗B

ρB

ρB ∆H⊗B

H⊗ρB

is a pushout square.

96



Proof. Consider the commutative diagram

1C B H ⊗B

H H ⊗B H ⊗H ⊗B

ηH⊗B

ηH

ηB ρB

ρB ∆H⊗B

H⊗ηH⊗B

H⊗ηB H⊗ρB

.

Note that the left square is a pushout square by Lemma 5.4.4. Moreover, the cospan
formed by the lower composite and the right map is of the form (5.4.5) for the coaction of
H on the cofree comodule algebra H ⊗B. Hence, again by Lemma 5.4.4, the composite
square is also a pushout square. Therefore the right square is a pushout square.

Proposition 5.4.24. Let H be a commutative Hopf algebra coacting on a commutative
algebra B. Then the functor LMod

B̃
(LComodH(C)) → lim∆ LModΩ•

H(B)(C) induced by
L
B̃

is an equivalence.

Proof. We apply [Lur17, Corollary 4.7.5.3] to the composite ∆+
(−)op

−−−→∆+
L

B̃−−→ Cat∞.19

First, we need to show that Lδ0

B̃
: L−1

B̃
→ L0

B̃
is conservative, L−1

B̃
admits limits of

Lδ0

B̃
-split cosimplicial objects and that Lδ0

B̃
preserves such limits. Now Lδ0

B̃
is given by the

composite

LMod
B̃

(LComodH(C))
(
ρ

B̃

)
!−−−→ LMod(CH VH)B̃(LComodH(C))

Prim(CH VH )B̃

H−−−−−−−−→ LModB(C),

which is, by Lemma 5.4.11, equivalent to Prim(CH VH)B̃
H CB

H VB̃
H ' VB̃

H . The functor VB̃
H is

the left adjoint in a comonadic adjunction (cf. Proposition 3.2.2), so it has all the desired
properties.

The other condition we need to check is the right adjointability of squares of the form

Lm
B̃

Lm+1
B̃

Ln
B̃

Ln+1
B̃

Lδm+1

B̃

Lβ

B̃
Lβ?[0]

B̃

Lδn+1

B̃

(5.4.25)

for all β : [m]→ [n] in ∆+. By the vertical pasting law for mate transformations, it is
enough consider the case where β is one of the generating morphisms of ∆+.
19As discussed in Footnote 18 on page 86, (−)op swaps the roles of d0, dn+1 : Ωn

H(B)→ Ωn+1
H (B), which

makes a substantial difference here because the former “inserts a unit” whereas the latter “applies
ρB”.
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For β = δ0 : [−1] → [0], we decompose the mate transformation associated to the
square (5.4.25) as20

LModB

LModCH VH B̃

LMod
B̃

LModB

LModCH VH B̃

LMod
B̃

LModCH VH B LModB

LModCH VH B̃
LMod(CH VH)2B̃

LModCH VH B̃
LModH⊗B

LModB LModH⊗B

LModB

CB
H

(ρ
B̃

)∗
c1

VB̃
H

u1

ν'

CB
H

(ρ
B̃

)∗

(ρ
B̃

)
!

(ρ
B̃

)
!

PrimCH VH B

H

(ρ
CH VH B̃

)
!�

ξ

(ηH⊗B)!

CH(ρ
B̃

)
!

'
CH(ρ

B̃
)∗ Prim(CH VH )2B̃

H

PrimCH VH B̃

H (ρB)∗ c2

(ρB)! u2

(ρB)∗

.

By the triangle identities for adjunctions, pasting c1 and u1 yields an equivalence, and
similarly for c2 and u2. Moreover, pasting ν and ξ yields an equivalence by Lemma 5.4.17.
Hence it is enough to show that the square � is right adjointable. By Lemma 5.3.5
(applied to the symmetric monoidal ∞-category LComodH(C)), it will suffice to show
that the corresponding diagram of commutative H-comodule algebras before applying
LMod(−)(LComodH(C)) is a pushout square. As VH is strongly symmetric monoidal
and reflects colimits, it is enough the show that the underlying diagram of commutative
algebras in C is a pushout square, which follows from Lemma 5.4.23.

The other generating maps β : [m] → [n] of ∆+ lie in ∆, in which case the square
(5.4.25) is of the form

LModH⊗m⊗B(C) LModH⊗(m+1)⊗B(C)

LModH⊗n⊗B(C) LModH⊗(n+1)⊗B(C)

(H⊗m⊗ρB)!

Ωβ
H(B)! Ωβ?[0]

H (B)!

(H⊗n⊗ρB)!

.

20We omit the “base categories” of module categories from the notation in order to save space.

98



Hence, by Lemma 5.3.5, it is enough to show that the corresponding diagram of commu-
tative algebras before applying LMod(−)(C) is a pushout square.

If β = δn : [n− 1]→ [n] for some n ≥ 1, then the diagram in question is of the form

H⊗(n−1) ⊗B H⊗(n−1) ⊗H ⊗B

H⊗(n−1) ⊗H ⊗B H⊗n ⊗H ⊗H ⊗B

H⊗(n−1)⊗ρB

H⊗(n−1)⊗ρB H⊗(n−1)⊗∆H⊗B

H⊗(n−1)⊗H⊗ρB

.

This square can be obtained by tensoring the pushout square of Lemma 5.4.23 with
H⊗(n−1), so it is indeed a pushout square.

Otherwise, the square in question is of the form

H⊗m ⊗B H⊗m ⊗H ⊗B

H⊗n ⊗B H⊗n ⊗H ⊗B

H⊗m⊗ρB

Ωβ
H⊗B Ωβ

H⊗H⊗B

H⊗n⊗ρB

,

which is also a pushout square.

As many “derivates” of Cat∞ admit limits that can be computed in Cat∞, Proposi-
tion 5.4.24 can be refined to yield equivalences in these categories. For instance, since
LModΩ•

H(B)(C) can be viewed as a diagram in PrL if C is presentably symmetric monoidal
and limits in PrL can be computed in Cat∞ by [Lur09, Proposition 5.5.3.13], we have
the following.

Corollary 5.4.26. Assume that C is presentably symmetric monoidal. Let H be a
commutative Hopf algebra in C and B̃ a commutative H-comodule algebra. Then
LMod

B̃
(LComodH(C)) is presentable. In particular, LModTrivH(1C)(LComodH(C)) '

LComodH(C) is presentable.

Similarly, as limits in CAlg(Cat∞), i.e., the ∞-category of symmetric monoidal ∞-
categories, can be computed in CAlg(Cat∞), we expect to have a symmetric monoidal
version of Proposition 5.4.24 as follows. The module category of a commutative algebra
R admits a symmetric monoidal structure given by ⊗R, and extensions of scalars along
morphisms of commutative algebras are strongly symmetric monoidal (cf. [Lur17,
Theorem 4.5.3.1]). In particular, LModΩ•

H(B)(C) can be viewed as a cosimplicial object
in CAlg(Cat∞). Moreover, in Remark 5.4.22 we have seen that the n-th coaugmentation
functor LMod

B̃
(C) → LModΩn

H(B)(C) is equivalent to ((ηH)⊗n ⊗B)! ◦ VB̃
H , which can

be lifted to a strongly symmetric monoidal functor. It is therefore plausible that the
cosimplicial object L

B̃
: ∆+ → Cat∞ can be lifted to CAlg(Cat∞), which would lift the

equivalence LMod
B̃

(LComodH(C)) ' lim∆ LModΩ•
H(B)(C) to a symmetric monoidal one.
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5.5. Tensors with spaces
We conclude this section with an interesting consequence of the normal basis condition

for certain tensors of commutative algebras with spaces.

Convention 5.5.1. For the rest of this section, we will assume that C is presentably
symmetric monoidal.

Remark 5.5.2. By [Lur17, Corollary 3.2.3.5], the assumption that C is presentably
symmetric monoidal implies that CAlg(C) is presentable. Now let R ∈ CAlg(C).
Then the coslice category CAlg(C)R/ is presentable by [Lur09, Proposition 5.5.3.11].
Moreover, by [Lur17, Corollary 3.4.1.7 and Theorem 5.1.4.10], we have an equiv-
alence CAlg(C)R/ ' CAlg(LModR(C)) when we equip LModR(C) with the relative
tensor product over R. Similarly, the slice category CAlg(C)R//R is presentable by
[Lur09, Proposition 5.5.3.10] and the aforementioned equivalence yields an equivalence
CAlg(C)R//R ' CAlg(LModR(C))/R. Moreover, CAlg(C)R//R is pointed with zero object
R = R = R (cf. [Lur09, Lemma 7.2.2.9]).

Notation 5.5.3. Given a commutative algebra R in a presentably symmetric monoidal
∞-category D, we abbreviate �CAlg(D)R/

: S × CAlg(D)R/ → CAlg(D)R/ as �R (cf.
Fact 1.1.18) and ~CAlg(D)R//R

: S∗×CAlg(D)R//R → CAlg(D)R//R as ~R (cf. Fact 1.1.19).
Moreover, we will implicitly identify left and right R-modules (cf. [Lur17, Section 4.5.1])
and denote the free left R-module functor also by (−)⊗R.

The following lemma will allow us to relate tensors in different slice categories.

Lemma 5.5.4. Let F : D → E be a colimit-preserving strongly symmetric monoidal
functor between presentably symmetric monoidal ∞-categories. Then the induced functor
CAlg(D)/1D → CAlg(E)/1E preserves colimits. In particular, it is compatible with the
respective tensorings over S∗, i.e., for a pointed space Y and an augmented commutative
algebra A in D, we have a natural equivalence. Y ~1E F (A) ' F (Y ~1D A).

Proof. As colimits in slice categories can be computed in the underlying category, it
will suffice to show that the induced functor CAlg(F ) : CAlg(D)→ CAlg(E) preserves
colimits. Combining [Lur09, Corollary 4.2.3.12] and [Lur17, Lemma 1.3.3.10], it will
suffice to show that CAlg(F ) preserves finite coproducts and sifted colimits. Now finite
coproducts in CAlg(D) are given by the tensor product, which is preserved as F strongly
symmetric monoidal. Moreover, by [Lur17, Corollary 3.2.3.2], sifted colimits in CAlg(D)
and CAlg(E) can be computed in D and E , respectively, so CAlg(F ) preserves sifted
colimits as F does.

Note that for a commutative algebra R in C, the free module functor (−)⊗R : C →
LModR(C) preserves colimits as it admits a right adjoint and is strongly symmetric
monoidal by [Lur17, Theorem 4.5.2.1], which implies the following.

Corollary 5.5.5. For a commutative algebra R, the functor

CAlg(C)1C//1C ' CAlg(C)/1C

(−)⊗R−−−−→ CAlg(LModR(C))/R ' CAlg(C)R//R
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preserves colimits. Moreover, for a pointed space Y and an augmented commutative
algebra A, we have a natural equivalence Y ~R (A⊗R) ' (Y ~1C A)⊗R.

Now we can carry out the key construction of this subsection.

Construction 5.5.6. Let (η•
H , ϕ

•) : (1C, A)→ (H,B) be a relative Hopf–Galois context
of commutative algebras. By [RS20, Proposition 3.20]21, there is a colimit-preserving
functor Tϕ : S∗ → CAlg(C)B//B sending Y ∈ S∗ to

B ' {∗}�A B
iY �AB−−−−→ Y �A B

pY �B−−−→ {∗}�A B ' B,

where iY : {∗} → Y denotes the inclusion of the base point and pY : Y → {∗} the
projection. Moreover, by Corollary 5.5.5, the composite

T ′
(H,B) : S∗

(−)~H−−−−→ CAlg(C)1C//1C

(−)⊗B−−−−→ CAlg(C)B//B,

which is equivalent to (−) ~B (H ⊗B), also preserves colimits.
Now, by [RSV19, Theorem 2.29], evaluation at S0 ∈ S∗ induces an equivalence

FunL(S∗,CAlg(C)B//B) ' CAlg(C)B//B. In particular, every map S0 �A B ' B ⊗A B →
H ⊗B ' (S0 ~1C H)⊗B of augmented commutative B-algebras extends uniquely to a
natural transformation Tϕ → T ′

(B,H).
We claim that the shear map associated to (η•

H , ϕ
•) is such a map. Indeed, we have a

commutative diagram

B B

B ⊗A B H ⊗B ⊗A B H ⊗B

B ⊗A B

B B

ϕ⊗AB ηH⊗ϕ⊗AB
ηH⊗B

ηH⊗B

ρB⊗B

µB

H⊗µB

εH⊗B⊗B

εH⊗B
µB

, (5.5.7)

where the left column depicts Tϕ(S0), the right column T ′
(H,B)(S0) and the middle row

sh(η•
H ,ϕ

•).
The value of the natural transformation Tϕ → T ′

(H,B) induced by the shear map at
Y ∈ S∗ is a map

shYϕ• : Y �A B → (Y ~1C H)⊗B

of augmented commutative B-algebras. Employing [RSV19, Theorem 2.29] again, we see
that shYϕ• is an equivalence for all Y if and only if it is an equivalence for Y = S0, i.e., if
and only if the shear map B ⊗A B → H ⊗B is an equivalence.
21In [RS20], the authors work with commutative algebras in the∞-category of spectra, but the argument

for the cited proposition applies verbatim to any presentably symmetric monoidal ∞-category.
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Remark 5.5.8. Using the notation of Construction 5.5.6, [RS20, Proposition 3.20] also
yields an identification Tϕ(Y ) ' Y ~B (B ⊗A B) under which shYϕ• is equivalent to the
map given by applying Y ~B (−) to the shear map B ⊗A B → H ⊗B.

Example 5.5.9. In the situation of Construction 5.5.6, we in particular have a comparison
map shS1

ϕ• : S1 �A B → (S1 ~1C H)⊗B. Note that the source S1 �A B can be identified
with the topological Hochschild homology THHA(B) of B relative to A.

We can describe this map more explicitly by considering S1 as the pushout of the span
{∗} ← S0 → {∗}. Applying (−) �A B and ((−) ~1C H)⊗B to this span and using the
commutativity of the lower half of (5.5.7), we obtain a map of spans

B B ⊗A B B

B H ⊗B B

µB µB

sh(η•
H

,ϕ•)

εH⊗B εH⊗B

.

Now the pushout of the upper span is equivalent to THHA(B), the pushout of the lower
span is equivalent to (1C ⊗H 1C)⊗B, and the map induced on the pushouts corresponds
to shS1

ϕ• . This is an analogue of the description of the relative Hochschild homology of
Hopf–Galois extensions in EKMM spectra from [Rot09, Theorem 10.7].

Example 5.5.10. Consider a map f : X → Pic(C) of grouplike E∞-spaces. Then, as
discussed in Example 3.1.11, the shear map M(f)⊗M(f)→ (X�C1C)⊗M(f) ' X�CM(f)
associated to the unit map 1C → M(f) is an equivalence.

Hence, for Y ∈ S∗, Construction 5.5.6 yields an equivalence

Y �1C M(f) ' (Y ~1C (X �C 1C))⊗M(f).

Now (−)�C1C : S → C is a colimit-preserving symmetric monoidal functor, so Lemma 5.5.4
implies that Y ~1C (X �C 1C) ' (Y ~{∗} X) �C 1C. We therefore have an equivalence

Y �1C M(f) ' ((Y ~{∗} X) �C 1C)⊗M(f) ' (Y ~{∗} X) �C M(f).

When C is the module category of a commutative ring spectrum, this recovers [RSV19,
Theorem 4.13].
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A. Algebras in coalgebras versus coalgebras in algebras
Convention A.0.1. For the rest of this appendix, we fix a bifunctor f : P⊗×Q⊗ → O⊗

of ∞-operads and a O-monoidal ∞-category p : C⊗ → O⊗.

In Definition 1.2.7, we defined the ∞-category of (P ,Q)-bialgebras as the ∞-category
of P-algebras in a P-monoidal category of Q-coalgebras and would now like to show
that this is equivalent to the ∞-category of Q-coalgebras in a Q-monoidal ∞-category
of P-algebras.

Equivalences along these lines were constructed in [Rak20, Propositions 2.1.2 and
2.2.10] in the case where P or Q is E∞, but the proofs rely on the fact that the symmetric
monoidal structure of CAlg(C) is cocartesian (and the dual property of cocommutative
coalgebras). In the case where f is the standard bifunctor E⊗

1 × E⊗
1 → E⊗

2 , the desired
equivalence could be recovered from [Tor21, Theorem 1.1] by realizing the E2-monoidal
∞-category C as a duoidal ∞-category in the sense of [Tor21, Definition 4.14].

Our proof strategy, which is due to Hadrian Heine, is as follows. Note that unpacking
Construction 1.2.1 and Fact 1.2.2, we can identify Alg/P(AlgP

Q/O(C)) with bifunctors
P⊗ × Q⊗ → C⊗ of ∞-operads over O⊗. Inspired by this and using the machinery of
monoidal envelopes of [Lur17, Section 2.2.4], we will show that both algebras in coalgebras
and coalgebras in algebras admit a description in terms of a notion of bifunctor, which
we define now.

Definition A.0.2. Let q : D⊗ → Q⊗ be a Q-monoidal∞-category and s : E⊗ → P⊗ a P-
monoidal ∞-category. A bifunctor of monoidal ∞-categories is a functor φ : E⊗ ×D⊗ →
C⊗ making the diagram

E⊗ ×D⊗ C⊗

P⊗ ×Q⊗ O⊗

φ

s×q p

f

commute and such that for every s-cocartesian morphism t in E⊗ and every q-cocartesian
morphism u in D⊗, the morphism φ(t, u) is p-cocartesian.

We denote the full subcategory of FunO⊗(E⊗ × D⊗, C⊗) spanned by bifunctors of
monoidal ∞-categories by BiFun⊗(E ,D; C).

Remark A.0.3. Note that Definition A.0.2 is “symmetric in E and D” in the sense that
the natural equivalence (−)× (?) ' (?)× (−) induces an equivalence

BiFun⊗(E ,D; C) ' BiFun⊗(D, E ; C).

Next, we would like to define an P-monoidal ∞-category whose fiber at p ∈ P
correspond to Q-monoidal functors D → C ×O Q, where the pullback is taken with
respect to f̂(p) : Q⊗ → O⊗.

Definition A.0.4. Let q : D⊗ → Q⊗ be a Q-monoidal ∞-category. As q is in particular
a map of ∞-operads by [Lur17, Remark 2.1.2.14], we can consider AlgP

D/O(C)⊗ with
respect to the bifunctor f ◦ (P × q) : P⊗ ×D⊗ → O.
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We define Fun⊗
f (D, C)⊗ ⊆ AlgP

D/O(C)⊗ as the full subcategory spanned by the objects
whose associated functor g : D⊗ → C⊗ maps q-cocartesian edges to p-cocartesian edges
and denote by pD,C

f : Fun⊗
f (D, C)⊗ → P⊗ the restriction of pC

f◦(P⊗×q) : AlgP
D/O(C)⊗ → P⊗.

Proving that this indeed yields a P-monoidal structure on an appropriate ∞-category
of Q-monoidal functors (Proposition A.0.10) will require some preparation. We start by
an alternative description of pD,C

f that makes it evident that it is a cocartesian fibration.

Definition A.0.5. Given cocartesian fibrations g : X → A and h : Y → B between
∞-categories, let Fun(g, h) denote the pullback

Fun(g, h) Fun(X ,Y)

Fun(A,B) Fun(X ,B)

y
prg,h h∗

g∗

.

We define Funcocart(X ,Y) ⊆ Fun(X ,Y) as the full subcategory spanned by the functors
which map g-cocartesian arrows to h-cocartesian arrows, and let hcocart

∗ be the restriction
of h∗ to Funcocart(X ,Y). Moreover, we define prcocart

g,h : Funcocart(g, h) → Fun(A,B) as
the pullback of hcocart

∗ along g∗.
For cartesian fibrations, Funcart(−, ?) is defined analogously.

Lemma A.0.6. In the situation of Definition A.0.5, h∗, hcocart
∗ , prg,h and prcocart

g,h are all
cocartesian fibrations.

Proof. As cocartesian fibrations are stable under pullback, it will suffice to show that h∗
and hcocart

∗ are cocartesian fibrations. By [Lur17, Proposition 3.1.2.1], h∗ is a cocartesian
fibration, and a natural transformation is h∗-cocartesian if and only if its components in
Y are h-cocartesian.

As for hcocart
∗ , it will suffice to show that for every h∗-cocartesian morphism τ : β → γ

such that β maps g-cocartesian arrows to h-cocartesian arrows, γ maps g-cocartesian
arrows to h-cocartesian as well. Now let a : v → w be a g-cocartesian arrow. Then we
have a naturality square

β(v) β(w)

γ(v) γ(w)

β(a)

τv τw

γ(a)

.

Note that τv and τw are h-cocartesian by the componentwise description of h∗-cocartesian
arrows. Therefore, as the composite γ(a) ◦ τv ' τw ◦ β(a) and τv are h-cocartesian, γ(a)
is h-cocartesian by [Lur09, Proposition 2.4.1.7].

Remark A.0.7. Let q : D⊗ → Q⊗ be a Q-monoidal ∞-category. Note that the adjoint
P⊗ → Fun(D⊗,O⊗) of f ◦ (P⊗ × q) can be factored as

P⊗ f̂−→ Fun(Q⊗,O⊗) q∗
−→ Fun(D⊗,O⊗).
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Therefore, we can describe Fun⊗
f (D, C)⊗ as the iterated pullback

Fun⊗
f (D, C)⊗ Funcocart(q, p) Funcocart(D⊗, C⊗)

P⊗ Fun(Q⊗,O⊗) Fun(D⊗,O⊗)

y
pD,C

f

y
prq,p p∗

f̂ q∗

.

In particular, pD,C
f is a cocartesian fibration as it is the pullback of the cocartesian

fibration prq,p.

Next, we discuss some properties of inert and more general cocartesian morphisms in
the ∞-operads in question. The following lemma will allow us to do induction along
decompositions of the form z ' v ⊕ w in an O-monoidal ∞-category. It is essentially a
repacking of the argument of [Lur17, Remark 2.2.4.8], but we include it here for the sake
of completion.

Lemma A.0.8. Let R be an ∞-operad, p : F⊗ → R⊗ an R-monoidal ∞-category.
Assume that we have a commutative diagram

v z w

v′ z′ w′

tv tz

g h

tw

g′ h′

in F⊗, where g, h, g′ and h′ are inert, and tv and tw are p-cocartesian. Then tz is also
p-cocartesian.

Proof. Let t : z → z be a p-cocartesian lift of p(tz). Then we have a commutative diagram

v z w

z′

v′ w′

z

tv

tz

g h

tw
g′

h′
t

s

g h

,

where the dashed arrows are obtained using the universal property of t as a cocartesian
arrow. As the composite g ◦ t ' tv ◦ g and t are p-cocartesian, g is p-cocartesian by
[Lur09, Proposition 2.4.1.7], and similarly for h.

Now let n,m ∈ N such that v′ ∈ F⊗
〈n〉 and w′ ∈ F⊗

〈m〉. As g and g′ are both p-
cocartesian, the equivalence Idv′ ◦g ' g′◦s implies that the image of s under the projection
F⊗

〈m+n〉 → F⊗
m is an equivalence, and similarly for its image under F⊗

〈m+n〉 → F⊗
n . As

these projections exhibit F⊗
〈m+n〉 as a product, this means that s is an equivalence. Hence

tz is p-cocartesian as it is equivalent to a p-cocartesian arrow.
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As a first application, we show that the cocartesian morphisms discussed in Fact 1.2.2
satisfy a stronger condition.22

Lemma A.0.9. Consider a cocartesian arrow with respect to pC
f : AlgP

Q/O(C)⊗ → P⊗,
which is represented by a natural transformation τ : φ→ φ′ between functors Q⊗ → C⊗.
Then τv is p-cocartesian for all vertices v of Q⊗.

Proof. Let n ∈ N such that v ∈ Q⊗
〈n〉. We argue by induction on n. For n ≤ 1, τv is

p-cocartesian by the description of Fact 1.2.2, so let n > 1. Then there exist v1 ∈ Q⊗
〈1〉

and v2 ∈ Q⊗
〈n−1〉 such that v ' v1⊕ v2, and τv1 and τv2 are p-cocartesian by the induction

hypothesis. Under this identification, the naturality of τ yields a commutative diagram

φ(v1) φ(v1 ⊕ v2) φ(v2)

φ′(v1) φ′(v1 ⊕ v2) φ′(v2)

τv1 τv

φ(πv1 ) φ(πv2 )

τv2

φ′(πv1 ) φ′(πv2 )

.

Now the horizontal arrows are inert as φ and φ′ preserve inert morphisms. Hence τv is
p-cocartesian by Lemma A.0.8.

We can now show that pD,C
f defines a P-monoidal ∞-category.

Proposition A.0.10. Let q : D⊗ → Q⊗ be a Q-monoidal ∞-category. Then the functor
pD,C
f : Fun⊗

f (D, C)⊗ → P⊗ of Definition A.0.4 exhibits Fun⊗
f (D, C) := Fun⊗

f (D, C)⊗
〈1〉 as a

P-monoidal ∞-category.

Proof. As discussed in Remark A.0.7, pD,C
f is a cocartesian fibration. By [Lur17, Propo-

sition 2.1.2.12], it will suffice to show that for all n ∈ N and all p1, . . . , pn ∈ P, the
comparison functor Fun⊗

f (D, C)⊗
p1⊕...⊕pn

→ ∏n
i=1 Fun⊗

f (D, C)⊗
pi

induced by πpi
’s is an equiv-

alence. As this functor is the restriction of the analogous functor for the P-monoidal
∞-category AlgP

D/O(C), it will suffice to show that an object of AlgP
D/O(C)⊗

p1⊕...⊕pn
lies in

Fun⊗
f (D, C)⊗

p1⊕...⊕pn
if its image in ∏n

i=1 AlgP
D/O(C)⊗

pi
lies in ∏n

i=1 Fun⊗
f (D, C)⊗

pi
, which we

do by induction on n.
For n ≤ 1, the statement holds tautologically, so let n > 1. Set v := p1 ⊕ . . .⊕ pn−1.

As the comparison functor Fun⊗
f (D, C)⊗

v →
∏n−1
i=1 Fun⊗

f (D, C)⊗
pi

is an equivalence by the
inductive hypothesis, it will suffice to show that every object of AlgP

D/O(C)⊗
v⊕pn

whose image
in AlgP

D/O(C)⊗
v × AlgP

D/O(C)⊗
pn

lies in Fun⊗
f (D, C)⊗

v × Fun⊗
f (D, C)⊗

pn
is in Fun⊗

f (D, C)⊗
v⊕pn

.
Let such an object be given, which is represented by a functor φ : D⊗ → C⊗ preserving
inert morphisms such that p ◦ φ ' f̂(v ⊕ pn) ◦ q. We would like to show that for all
q-cocartesian morphisms t : w → w′ in D⊗, φ(t) is p-cocartesian.
22In fact, the machinery of categorical patterns of [Lur17, Appendix B] used in the proof of [Lur17,

Proposition 3.2.4.3] seems to yield this apparently stronger notion, which has probably been simplified
in the statement of the cited proposition. Categorical patterns could possibly also be used to prove
Proposition A.0.10, but we include a more explicit proof here.
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Consider a pC
f◦(P⊗×q)-cocartesian lift of πv : v ⊕ pn → v, which, by Lemma A.0.9,

corresponds to a natural transformation πv : φ→ φ1 lying over f̂(πv) whose components
are p-cocartesian. Now for all z ∈ Q⊗, f̂(πv)(z) = f(πv, z) is an inert morphism in
O⊗ as f is a bifunctor of ∞-operads. Hence the components of πv are in fact inert
morphisms in C⊗, as they are p-cocartesian lifts of inert morphisms. We similarly have
a pC

f◦(P⊗×q)-cocartesian lift of πpn given by a natural transformation πpn : φ → φ2 with
inert components.

Using the naturality of πv and πpn , we obtain a commutative diagram

φ1(w) φ(w) φ2(w)

φ1(w′) φ(w′) φ2(w′)

φ1(t) φ(t)

(πv)w (πpn )w

φ2(t)

(πv)w′ (πpn )w′

,

where the horizontal morphisms are inert. Hence, using Lemma A.0.8, it will suffice to
show that φ1(t) and φ2(t) are cocartesian.

Now φ1 represents the first component of the image of φ in AlgP
D/O(C)⊗

v ×AlgP
D/O(C)⊗

pn
,

and φ2 its second component, which, by assumption, lie in Fun⊗
f (D, C)⊗

v and Fun⊗
f (D, C)⊗

pn
,

respectively. Therefore φ1 and φ2 map the q-cocartesian arrow t to a p-cocartesian
arrow.

Remark A.0.11. Let q : D⊗ → Q⊗ be a Q-monoidal ∞-category and s : E⊗ → P⊗

a P-monoidal ∞-category. In light of Proposition A.0.10, we can describe bifunctors
E⊗ ×D⊗ → C⊗ of monoidal ∞-categories alternatively as follows.

Viewing Fun⊗
f (D, C)⊗ as the pullback Funcocart(q, p) ×Fun(Q⊗,O⊗) P⊗ and using the

equivalence Fun(E⊗,Fun(D⊗, C⊗)) ' Fun(E⊗ × D⊗, C⊗), FunP⊗(E⊗,Fun⊗
f (D, C)⊗) can

be identified with the full subcategory of FunO⊗(E⊗ × D⊗, C⊗) spanned by functors
φ : E⊗ ×D⊗ → C⊗ over O⊗ such that for every object v in E⊗ and every q-cocartesian
morphism u in D⊗, the morphism φ(Idv, u) is p-cocartesian.

Moreover, by the componentwise description of cocartesian morphisms in Fun⊗
f (D, C)⊗,

the adjoint φ̂ : E⊗ → Fun⊗
f (D, C)⊗ of such a φ maps s-cocartesian morphisms to pD,C

f -
cocartesian morphisms if and only if for every s-cocartesian morphism t in E⊗ and every
object w in D⊗, φ(t, Idw) is p-cocartesian. As every morphism (t, u) in E⊗×D⊗ admits a
decomposition of the form (t, Idw) ◦ (Idv, u), this is the case if and only if φ is a bifunctor
of monoidal ∞-categories. This means that the equivalence Fun(E⊗,Fun(D⊗, C⊗)) '
Fun(E⊗ ×D⊗, C⊗) restricts to an equivalence

Fun⊗
P(E ,Fun⊗

f (D, C)) ' BiFun⊗(E ,D; C).

We now employ the monoidal envelopes of [Lur17, Section 2.2.4]. By [Lur17, Proposition
2.2.4.9]), for every map h : Q⊗ → Q⊗ of ∞-operads that is also a categorical fibration,
there exists a Q-monoidal ∞-category eQ : EnvQ(Q)⊗ → Q⊗ and an ∞-operad map
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iQ : Q⊗ → EnvQ(Q)⊗ that fit into a commutative diagram

Q⊗ EnvQ(Q)⊗

Q⊗
h

iQ

eQ

and such that for every Q-monoidal ∞-category D, restriction along iQ induces an
equivalence Fun⊗

Q(EnvQ(Q),D) ' AlgQ/Q(D). We now give an analogous description of
AlgP

Q/O(C).

Proposition A.0.12. Let g : Q⊗ → Q⊗ be a fibration of ∞-operads (i.e., a map of
∞-operads that is also a categorical fibration). Then the functor

Fun⊗
f (EnvQ(Q), C)⊗ → AlgP

Q/O(C)⊗

induced by iQ : Q⊗ → EnvQ(Q)⊗ is a strongly P-monoidal equivalence.

Proof. This comparison functor is the restriction of the strongly P-monoidal functor
AlgP

EnvQ(Q)/O(C)⊗ → AlgP
Q/O(C)⊗ (cf. Remark 1.2.3) to a full subcategory closed un-

der cocartesian morphisms, so it maps pEnvQ(Q),C
f -cocartesian morphisms to pC

f◦(P⊗×g)-
cocartesian morphisms, i.e., is indeed strongly P-monoidal. Hence, as discussed in
[Lur17, Remark 2.1.3.8], it will suffice to show that for all p ∈ P, the induced functor
Fun⊗

f (EnvQ(Q), C)⊗
p → AlgP

Q/O(C)⊗
p is an equivalence. Considering algebras with respect

to the ∞-operad map f̂(p) : Q⊗ → O⊗, this functor can be identified with the composite

Fun⊗
Q(EnvQ(Q), C ×O Q)→ AlgQ/Q(C ×O Q)→ AlgQ/O(C),

where the first arrow is an equivalence by [Lur17, Proposition 2.2.4.9] and the second by
the universal property of the pullback.

Next, we would like to identify CoalgQ/O(C) ' Fun⊗
Q(EnvQ(Q), Cfop ×O Q) with

Fun⊗
Q(EnvQ(Q)fop, C ×O Q)op, so that we can relate it to other constructions such as

AlgP/O(C) that involve functors into C⊗. For this, we need to show that taking fiberwise
opposites is compatible with Funcocart(−, ?) in an appropriate sense.

Lemma A.0.13. Let g : X → A and h : Y → B be cocartesian fibrations between
∞-categories. Then the cocartesian fibrations

(prcocart
g,h )fop : Funcocart(g, h)fop → Fun(A,B)

and
prcocart
gfop,hfop : Funcocart(gfop, hfop)→ Fun(A,B)

are naturally equivalent.
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Proof. Intuitively speaking, Funcocart(g, h)fop is the ∞-category of commutative squares

X Y

A B

γ

g h

γ

such that γ preserves cocartesian morphisms, but where a morphism γ → γ′ in the fiber
over γ ∈ Fun(A,B) is given by a natural transformation γ′ → γ in the opposite direction.
On the other hand, Funcocart(gfop, hfop) is the ∞-category of commutative squares

X fop Y fop

A B

γ̂

gfop
hfop

γ

such that γ̂ preserves cocartesian morphisms. These two types of squares correspond to
each other by taking fiberwise opposites of the vertical arrows.

Making this intuition precise requires a “sufficiently functorial” construction of (−)fop

that induces a comparison functor between Funcocart(g, h)fop and Funcocart(gfop, hfop). As
we discuss below, a construction suitable for this purpose is the point-set level description
of (−)fop given in [BGN18, Theorem 1.4]. Namely, there is a functorial construction
(−)∨ sending a cocartesian fibration q : Z → D over an ∞-category to a cartesian
fibration q∨ : Z∨ → Dop such that (q∨)op is a model for qfop. Similarly, there is a duality
construction mapping cartesian fibrations to cocartesian fibrations that is also denoted
by (−)∨.

Therefore, taking opposites, it will suffice to construct an equivalence Funcocart(g, h)∨ '
Funcart(g∨, h∨) over Fun(A,B)op ' Fun(Aop,Bop). Moreover, in order to avoid cluttering
the notation with even more (−)op’s, we will implicitly dualize our cocartesian fibra-
tions g and h to cartesian fibrations by taking opposites and construct an equivalence
Funcart(g, h)∨ ' Funcocart(g∨, h∨) over Fun(A,B)op ' Fun(Aop,Bop).

In order to construct the comparison functor, we need to unpack the definition of (−)∨ a
bit. In [BGN18, Definition 3.2], for an∞-category D equipped with suitable subcategories
D†,D† ⊆ D, the effective Burnside ∞-category Aeff(D,D†,D†) is constructed, whose
objects are those of D and whose morphisms are spans w ← u→ v in D such that u→ v
lies in D† and u → w lies in D†. Given a cartesian fibration q : Z → D, let ιD be the
subcategory of D that contains all objects and whose morphisms are equivalences, and
let ιDZ be the subcategory of Z that contains all objects and whose morphisms are
q-cartesian morphisms. By [BGN18, Proposition 3.3], q induces a cocartesian fibration

q′ : Aeff(Z,Z ×D ιD, ιDZ)→ Aeff(D, ιD,D)

such that a morphism w ← u→ v in Aeff(Z,Z ×D ιD, ιDZ) is cocartesian if and only if
u→ v is an equivalence. Then, in [BGN18, Definition 3.4], q∨ is defined as the pullback
of q′ along the equivalence

iD : Dop → Aeff(D, ιD,D)
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that sends a morphism v → w to the span w ← v = v.
In order to save space, we will abbreviate Aeff(−, (−)†, (−)†) as Aeff(−) when (−)† and

(−)† are clear from the context.
The next relevant property of Aeff(D,D†,D†) is the fact that it is a certain subsimplicial

set of a nerve construction NÕ([•])
op(D) with respect to the cosimplicial object Õ([•])op

given by opposites of twisted arrow categories (cf. [BGN18, Definition 2.1]). As NÕ([•])
op

commutes with products, we have a natural transformation

Φ: NÕ([•])
op(Fun(−, ?))→ Fun(NÕ([•])

op(−),NÕ([•])
op(?)).

This natural transformation yields a commutative diagram

Aeff(Funcart(g, h)) Funcocart(g′, h′)

Aeff(Fun(A,B)) Fun(Aeff(A), Aeff(B))

Fun(A,B)op

Φ

(prcart
g,h )′ prcocart

g′,h′

Φ

iFun(A,B) F

, (A.0.14)

where

• Φ and Φ are obtained by restricting Φ to appropriate subsimplicial sets,

• Φ maps (prcart
g,h )′-cocartesian arrows to prcocart

g′,h′ -cocartesian arrows,

• F is the functor induced by the functoriality of Aeff(−, ι(−),−).

Now, by the naturality of i(−), F can be identified with iB ◦ (−)◦ i−1
A : Fun(Aop,Bop)→

Fun(Aeff(A), Aeff(B)). Moreover, note that the equivalence (−)∨ ' (−)′ of cocartesian
fibrations induces a commutative diagram

Funcocart(g∨, h∨) Funcocart(g′, h′)

Fun(Aop,Bop) Fun(Aeff(A), Aeff(B))

prcocart
g∨,h∨

'

prcocart
g′,h′

'
iB◦(−)◦i−1

A

,

which we can in particular view as a pullback square.
Hence, considering the functor Φ induces between the pullbacks along the lower diagonal

arrows in (A.0.14), we obtain a commutative diagram

Funcart(g, h)∨ Funcocart(g∨, h∨)

Fun(A,B)op Fun(Aop,Bop)
(prcart

g,h )∨

Φ̂

prcocart
g∨,h∨

'

,
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where Φ̂ maps (prcart
g,h )∨-cocartesian arrows to prcocart

g∨,h∨ -cocartesian arrows.
We now use the fiberwise criterion of [Lur09, Corollary 2.4.4.4] to show that Φ̂ is an

equivalence. Let γ : A → B be a functor, which we can equivalently view as a functor
γop : Aop → Bop. Then Φ̂γ coincides with the functor Funcart(g, h)γ

op → Funcocart(g∨, h∨)γ
induced by the functoriality of (−)∨. Now (−)∨ is an equivalence as the “double dual”
construction is equivalent to the identity by [BGN18, Proposition 4.1], so Φ̂γ is indeed
an equivalence.

Corollary A.0.15. Let q : D⊗ → Q⊗ be a Q-monoidal ∞-category. Then the cocartesian
fibrations (pD,C

f )fop and pDfop,Cfop

f are equivalent, i.e., we have a strongly P-monoidal
equivalence Fun⊗

f (D, C)fop ' Fun⊗
f (Dfop, Cfop).

Proof. By Remark A.0.7, pD,C
f : Fun⊗

f (D, C) → P is the pullback of prq,p along f̂ and
pDfop,Cfop

f is the pullback of prqfop,pfop along f̂ . Now (prq,p)
fop ' prqfop,pfop by Lemma A.0.13,

so the result follows by the compatibility of fiberwise opposites with pullbacks.

Remark A.0.16. Applying Corollary A.0.15 to the case where P is the trivial operad,
we obtain an equivalence

Fun⊗
Q(D, C ×O Q)op ' Fun⊗

Q(Dfop, Cfop ×O Q)

for every map Q → O of ∞-operads.

We can now show that∞-categories of algebras in coalgebras and algebras in coalgebras
are equivalent.

Corollary A.0.17. There is an equivalence23

Alg/P(AlgP
Q/O(Cfop)fop) ' Alg/Q(AlgQ

P/O(C)fop)
op

that is natural in P⊗, Q⊗ and C⊗, where the right hand side is constructed with respect
to the bifunctor f ′ : Q⊗ × P⊗ ' P⊗ ×Q⊗ → O⊗.

23Or using the notation of Definition 1.2.7, Alg/P(CoalgP
Q/O(C)) ' Coalg/Q(AlgQ

P/O(C)).
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Proof. We have a chain

Alg/P(AlgP
Q/O(Cfop)fop)

[Lur17, Proposition 2.2.4.9]
' Fun⊗

P(EnvP(P),AlgP
Q/O(Cfop)fop)

A.0.12' Fun⊗
P(EnvP(P),Fun⊗

f (EnvQ(Q), Cfop)fop)
A.0.15' Fun⊗

P(EnvP(P),Fun⊗
f (EnvQ(Q)fop, C))

A.0.11' BiFun⊗(EnvP(P),EnvQ(Q)fop; C)
A.0.3' BiFun⊗(EnvQ(Q)fop,EnvP(P); C)
A.0.11' Fun⊗

Q(EnvQ(Q)fop,Fun⊗
f ′(EnvP(P), C))

A.0.12' Fun⊗
Q(EnvQ(Q)fop,AlgQ

P/O(C))
A.0.16' Fun⊗

Q(EnvQ(Q),AlgQ
P/O(C)fop)

op

[Lur17, Proposition 2.2.4.9]
' Alg/Q(AlgQ

P/O(C)fop)
op

of natural equivalences.

We end this appendix with a generalization of [Rak20, Proposition and 2.2.10].

Example A.0.18. Let k ∈ N ∪ {∞} and C an Ek+1-monoidal ∞-category. Consider the
standard bifunctor E⊗

k ×E⊗
1 → E⊗

k+1 and the bifunctor E⊗
k ×LM⊗ → E⊗

k+1 induced by the
∞-operad map LM⊗ → E⊗

1 . As discussed in Remark 1.2.3, we identify AlgLM
Ek/Ek+1(C)⊗

with AlgEk/Ek+1
(C)⊗ ×E⊗

1
LM⊗.

In this situation, Corollary A.0.17 yields a commutative diagram

Alg/Ek
(LComod(C)) LComod(AlgEk/Ek+1

(C))

Alg/Ek
(Coalg(C)) Coalg(AlgEk/Ek+1

(C))

'

'

.

Now let H ∈ Coalg(AlgEk/Ek+1
(C)) ' AlgEk/Ek+1

(Coalg(C)) be a bialgebra. Then, consid-
ering fibers over H, we obtain an equivalence

Alg/Ek
(LComodH(C)) 1.2.13' Alg/Ek

(LComod(C))H ' LComodH(AlgEk/Ek+1
(C)).
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B. Lifting adjunctions
In this appendix, we study certain adjunctions induced by an adjunction F : D � E :G

of lax monoidal functors. In particular, we show that such an adjunction gives rise to
an adjunction between LModR(D) and LModF (R)(E) for every algebra R in D, which is
used in Subsection 3.2 to construct a comonad on the ∞-category of modules over the
underlying algebra of a comodule algebra. We start by introducing some terminology.
Definition B.0.1. Let U1 : D′ → D, U2 : E ′ → E be functors and F : D � E :G an
adjunction. We call an adjunction F ′ : D′ � E ′ :G′ a lift of F a G (along U1 and U2) if
the front and back faces of the diagram

D′ E ′

D E

F ′

U1
G′

a

U2
F

G
a

commute, the image of the unit of F ′ a G′ under U1 is equivalent to the unit of F a G,
and the image of the counit of F ′ a G′ under U2 is equivalent to the counit of F a G.

When C := D = E and F a G is the identity adjunction, we call F ′ a G′ an adjunction
relative to C (cf. [Lur17, Remark 7.3.2.3]).
Remark B.0.2. Note that by [RV16, Theorem 4.4.11], there is (up to homotopy) at
most one adjunction extending the datum of two functors and either a candidate unit
or a candidate counit transformation. Therefore, in the context of Definition B.0.1, the
compatibility with the unit implies the compatibility with the counit and vice versa.

As alluded to before, we will be interested in lifts of adjunctions of lax monoidal
functors.
Definition B.0.3. Let O be an ∞-operad, D and E O-monoidal ∞-categories. An
adjunction of lax O-monoidal functors is an adjunction F⊗ : D⊗ � E⊗ :G⊗ relative to
O⊗ such that F⊗ and G⊗ are lax O-monoidal.
Example B.0.4. Let O be an ∞-operad, D and E O-monoidal ∞-categories. Our
main source of adjunctions of lax O-monoidal functors are strongly O-monoidal functors
F⊗ : D⊗ → E⊗ such that for every o ∈ O = O⊗

〈1〉, F⊗
o admits a right adjoint Go.

Indeed, viewing the underlying functor of F⊗ as the underlying functor of an oplax
O-monoidal functor, Fact 1.1.6 yields a lax monoidal functor G⊗ : E⊗ → D⊗ whose fiber
over o ∈ O is given by Go. Moreover, arguing as in the proof of [Lur17, Proposition
7.3.2.6], the adjunctions F⊗

o a Go can be extended to an adjunction F⊗ a G⊗ relative to
O⊗.

Alternatively, one can apply [Lur17, Corollary 7.3.2.7]24 to F⊗ in order to obtain a
right adjoint with the desired properties directly. In fact, the “only if” part of [Lur17,
24Note that while it is not made explicit in its statement, this corollary applies only to strongly O-

monoidal functors because its proof uses [Lur17, Proposition 7.3.2.6], which requires the functor in
question to preserve locally (co)cartesian morphisms.
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Proposition 7.3.2.6] implies that every adjunction D⊗ � E⊗ relative to O⊗ is induced by
such an F⊗ through this mechanism.

Remark B.0.5. Let f : P⊗ → O⊗ be a map of operads, D and E O-monoidal ∞-
categories, and F⊗ : D⊗ � E⊗ :G⊗ an adjunction of lax O-monoidal functors.

Using [Lur17, Proposition 7.3.2.5], we can pull back this adjunction along f to obtain
an adjunction F⊗

P : D⊗ ×O⊗ P⊗ � E⊗ ×O⊗ P⊗ :G⊗
P relative to P⊗. Note that F⊗

P a G⊗
P

is an adjunction of lax P-monoidal functors because inert morphisms in D⊗×O⊗ P⊗ and
E⊗ ×O⊗ P⊗ are detected in D⊗ and E⊗, respectively.

Similarly, we can pull back F⊗ : D⊗ � E⊗ :G⊗ to an adjunction F⊗
〈1〉 : D � E :G⊗

〈1〉.
Moreover, we can lift F⊗

〈1〉 a G
⊗
〈1〉 to an adjunction

AlgP/O(F⊗) : AlgP/O(D) � AlgP/O(E) :AlgP/O(G⊗)

by considering AlgP/O(−) as a full subcategory of FunO⊗(P⊗,−), and applying F⊗,
G⊗, the unit transformation and the counit transformation “objectwise” (cf. [Lei22,
Proposition E.3.3.1]).

We now move on to the main result of this appendix.

Proposition B.0.6. Assume that we are given the following.

• LM-monoidal categories D and E (exhibiting Dm as left-tensored over Da and Em
as left-tensored over Ea, respectively).

• An adjunction F⊗ : D⊗ � E⊗ :G⊗ of lax LM⊗-monoidal functors.

• An algebra R ∈ Alg(Da).

Then there exists a lifted adjunction

LModR(Dm) LModF (R)(Em)

Dm Em

FR

UR

GR

a

UF (R)
Fm

Gm

a

.

Proof. As discussed in Remark B.0.5, we can pull back the adjunction F⊗ a G⊗ along
the ∞-operad map E⊗

1 → LM⊗ to obtain an adjunction FE : D⊗
a � E⊗

a :GE1 of lax
monoidal functors. Moreover, F⊗ a G⊗ gives rise another adjunction

FLMod : LMod(Dm) = Alg/LM(D) � Alg/LM(E) = LMod(Em) :GLMod,

which is a lift of F⊗
〈1〉 a G

⊗
〈1〉 (and hence in particular of F⊗

m a G⊗
m). Similarly, we obtain

an adjunction FAlg : Alg(Da) � Alg(Ea) :GAlg lifting Fa a Ga. By their “objectwise”
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description, these adjunctions fit into a tower

LMod(Dm) LMod(Em)

Alg(Da) Alg(Ea)

Da Ea

FLMod

θD
GLMod

a

θE
FAlg

GAlg

a

Fa

Ga

a

of lifts.
Considering fibers over R ∈ Alg(Da), F (R) ∈ Alg(Ea) and G(F (R)) ∈ Alg(Da),

we obtain functors FR : LModR(Dm) → LModF (R)(Em) and G′
R : LModF (R)(Em) →

LModG(F (R))(Dm) lifting Fm and Gm, respectively. Moreover, note that the restriction of
scalars uR∗ : LModG(F (R))(Dm)→ LModR(Dm) along the unit uR : R→ G(F (R)) associ-
ated to the adjunction FAlg a GAlg is a lift of IdDm . Therefore, setting GR := uR

∗ ◦G′
R,

we obtain a functor LModF (R)(Em)→ LModR(Dm) that is also a lift of Gm.
For S ∈ Alg(Da), let ιS : LModS(Dm)→ LMod(Dm) denote the inclusion (and similarly

for algebras in Ea). Let υ : ιRuR∗ → ιG(F (R)) be a natural transformation whose compo-
nent at K ∈ LModG(F (R))(Dm) is given by a cartesian lift of uR : θD(uR∗(K)) ' R →
G(F (R)) ' θD(K). Let cLMod : FLModGLMod → IdLMod(E) be the counit of the adjunction
FLMod a GLMod. We define the counit cR : FRGR → IdLModF (R)(E) as the restriction of the
composite

ιF (R) ◦ FR ◦GR = ιF (R) ◦ FR ◦ uR∗ ◦G′
R 'FLMod ◦ ιR ◦ uR∗ ◦G′

R

FLMod◦υ◦G′
R−−−−−−−→FLMod ◦ ιG(F (R)) ◦G′

R ' FLMod ◦GLMod ◦ ιF (R)
cLMod ◦ιF (R)−−−−−−−→ιF (R)

to LModF (R)(Dm).
Now, as υ is a lift of the identity transformation of IdDm and cLComod is a lift the counit

of Fm a Gm, cR is a lift of the counit of Fm a Gm as well. Hence, by Remark B.0.2, it is
enough to show that cR is the counit of an adjunction FR a GR. It will therefore suffice
to show that for all M ∈ LModR(Dm) and N ∈ LModF (R)(Em), the composite

MapR(M,GRN) FR−→ MapF (R)(FRM,FRGRN) (cR)∗−−−→ MapF (R)(FRM,N) (B.0.7)

is an equivalence.
On the level of LMod and Alg, the relevant mapping spaces fit into a commutative
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diagram25

[M,uR
∗GLModN ] [R,R]

[FLModM,FLModuR
∗GLModN ] [FAlgR,FAlgR]

[M,GLModN ] [R,GAlgFAlgR]

[FLModM,FLModGLModN ] [FAlgR,FAlgGAlgFAlgR]

[FLModM,N ] [FAlgR,FAlgR]

y

θD

FLMod

υ∗

FAlg

(uR)∗

y
θE

FAlg(uR)∗
θD

FLMod

'

FAlg

'

FLModυ∗

θE

(cLMod)∗ (cAlg)∗

θE

.

(B.0.8)
Since υGLModN was chosen to be a cartesian lift of uR and therefore FLModυGLModN is a
cartesian lift of FAlguR (as its underlying morphism in Em is an equivalence), the upper
front and back squares in this diagram are pullback squares by [Lur09, Proposition 2.4.4.3].
In particular, the maps induced by υ∗ and FLModυ∗ on the fibers are equivalences.

Tracing IdR ∈ [R,R] on the right face of (B.0.8), we obtain a commutative diagram

{IdR} {IdFAlgR}

{uR} {FAlguR}

{IdFAlgR}

FAlg

(uR)∗ FAlg(uR)∗

FAlg

'

(cAlg)∗

,

which, taking fibers in the horizontal direction in (B.0.8), yields a commutative diagram

MapR(M,GRN) MapR(FRM,FRGRN)

fibuR
(θD) fibFAlguR

(θE)

MapF (R)(FRM,N)

FR

(υGLModN )∗ ' FLMod(υGLModN )∗'

FLMod

'
(cLMod)∗

.

Now the composite of the top horizontal map and the right vertical maps is precisely the
composite (B.0.7). As it is homotopic to the equivalence given by the composite of the
left vertical map and the lower diagonal map, it is itself an equivalence.
25Here we omit ι’s and use [−,−] instead of Map?(−,−) to save space.
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Next, we observe that the lifting process of Proposition B.0.6 “preserves comonadicity”.
Lemma B.0.9. In the situation of Proposition B.0.6, if the adjunction Fm : Dm � Em :Gm

is comonadic, then so is the lifted adjunction
FR : LModR(Dm) � LModF (R)(Em) :GR.

Proof. We would like to apply the Barr–Beck–Lurie comonadicity theorem ([Lur17,
Theorem 4.7.3.5]), so we need to show that FR is conservative, LModR(Dm) admits limits
of FR-split cosimplicial objects, and FR preserves such limits. For this, we consider the
commutative diagram

LModR(Dm) LModF (R)(Em)

Dm Em

FR

UR UF (R)

Fm

.

Let f be a morphism in LModR(Dm) such that FRf is an equivalence. Then the
morphism UF (R) FRf ' Fm UR f in Em is also equivalence. Now, Fm is conservative as
the adjunction Fm a Gm is comonadic, so UR f is an equivalence. Moreover, UR is
conservative as the forgetful functor of a module category, so f is an equivalence. Hence
FR is conservative.

Now let X : ∆→ LModR(Dm) be an FR-split cosimplicial object. Then UF (R) FRX '
Fm URX is also split, implying that URX is Fm-split. Hence, as Fm a Gm is comonadic,
URX admits a limit in Dm. Now, by [Lur17, Corollary 4.2.3.3], UR reflects limits, so X
admits a limit as well.

The argument for preservation is similar. Let X/ : ∆/ → LModR(Dm) be a limiting
cone for X. Then URX

/ is a limiting cone in Dm as UR also preserves limits by the
aforementioned corollary. Since Fm a Gm is comonadic, Fm preserves limits of Fm-split
cosimplicial objects, so Fm URX

/ is a limiting cone in Em. Now the limit-reflecting functor
UF (R) maps FRX/ to the limiting cone Fm URX

/, so FRX/ is also a limiting cone.

We conclude our discussion by specializing Proposition B.0.6 to LM-monoidal ∞-
categories induced by monoidal ∞-categories.
Corollary B.0.10. Let D and E be monoidal ∞-categories and F⊗ : D⊗ � E⊗ :G⊗

an adjunction of lax monoidal functors. Then the adjunction F : D � E :G lifts to an
adjunction

FR : LModR(D) � LModF (R)(E) :GR.

Moreover, if F a G is comonadic, then so is FR a GR.
Proof. We consider the left-tensorings of D and E over themselves. As discussed in
Remark B.0.5, we can pull back the adjunction F⊗ a G⊗ along the map LM⊗ → E⊗

1 of
∞-operads to obtain an adjunction

F⊗
LM : D⊗ ×E⊗

1
LM⊗ � E⊗ ×E⊗

1
LM⊗ :G⊗

LM

of lax LM-monoidal functors. Now we can obtain the desired results by applying
Proposition B.0.6 and Lemma B.0.9 to the adjunction F⊗

LM a G⊗
LM.
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