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Abstract

In this dissertation, I develop theory and evidence to argue that new technologies are central to

how firms organize to create and capture value. I use computational methods such as reinforcement

learning and probabilistic topic modeling to investigate three topics: the automation of routines,

the organization of artificial intelligence (AI), and the evaluation of technology risk. Overall, I

argue that new technologies are not a panacea for the firm but require deliberate strategic planning

to manage the potential downsides of myopic automation, AI interdependencies, and the disclosure

of technology risks.

In the first essay, I argue that while automation can increase productivity by reducing the costs

of coordinating individuals, the automation of routines can also incur an indirect opportunity cost

due to slow adaptation to environmental change. I develop a reinforcement learning simulation to

model the impact of automation on the returns from the division of labor in dynamic environments

and to show how automation incurs opportunity costs through lost learning and slow adaptation.

Moreover, automation can be suboptimal when it brings about myopic behavior, i.e. high returns

from the division of labor in the short term, but negative returns in the long term. Given the

simulation results, I argue that firms need dynamic routines to simultaneously balance learning

and automation. I open-source the simulation platform as OrgSim-RL on GitHub.

In the second essay, I argue that a data-driven culture – what I define as a Data Clan – can

help to coordinate complex interdependencies between AI components within a firm. I analyze

in-depth semi-structured interview data with a hierarchical stochastic block model (hSBM) and

hand-coding to find that managers focus primarily on building a strong culture and establishing

high-quality data assets when allocating resources to AI initiatives. Given the results, I inductively

develop implications for theory and argue that the emergence of a Data Clan can be a governance
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mechanism to reduce coordination frictions and build a competitive advantage in the age of AI.

In the third essay, I argue that investors require a higher initial return to take on more technology

risk disclosure during an IPO. I quantify the magnitude of disclosed risk and the risk disclosure

topics based on a latent Dirichlet allocation (LDA) topic model of IPO prospectus text and find

a return-for-risk association between text-based technology risk disclosure and underpricing. The

study also finds evidence that owning granted patents is associated with a lower return-for-risk

association, suggesting that intellectual property allows the disclosure of risk without losing the

competitive advantage. I open-source the code for quantifying risk disclosure as RiskyData-LDA

on GitHub.

In summary, this dissertation develops theory and finds evidence across three essays to argue

that leveraging new technologies requires deliberate strategic planning to manage potential down-

sides of new technologies, such as the opportunity costs of automation, coordination costs, and costs

associated with raising capital. The results suggest three mitigating solutions: dynamic routines

to balance learning and automation, a Data Clan to improve coordination, and disclosure through

patents to reduce underpricing.

Keywords: Strategic management, technology, automation, artificial intelligence, risk disclosure,

dynamic environments, organizational learning, initial public offerings, reinforcement learning, topic

modeling
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Résumé

Dans cette thèse, je développe des analyses théoriques et des indications qui proposent que les

nouvelles technologies soient au cœur de l’organisation des entreprises pour créer et capturer de

la valeur. J’utilise des méthodes informatiques telles que l’apprentissage par renforcement (re-

inforcement learning) et la modélisation thématique (topic modeling) pour analyser trois sujets:

l’automatisation des routines, l’organisation de l’intelligence artificielle (IA) et l’évaluation des

risques technologiques. Dans l’ensemble, je soutiens que les nouvelles technologies ne sont pas une

panacée pour les entreprises, mais qu’elles nécessitent une planification stratégique délibérée pour

gérer les inconvénients de l’automatisation myope, les interdépendances d’IA et la divulgation des

risques technologiques.

Dans le premier essai, je soutiens que si l’automatisation peut augmenter la productivité en

réduisant les coûts de coordination des individus, les routines d’automatisation peuvent également

entrâıner un coût d’opportunité indirect dû à une adaptation lente aux changements environnemen-

taux. Je développe une simulation d’apprentissage par renforcement pour modéliser l’impact de

l’automatisation sur les rendements de la division du travail dans des environnements dynamiques

et pour montrer comment l’automatisation entrâıne des coûts d’opportunité en raison de la perte

d’apprentissage et de la lenteur de l’adaptation. En plus, l’automatisation peut être sous-optimale

lorsqu’elle entrâıne un comportement myope, c’est-à-dire des rendements élevés de la division du

travail à court terme, mais des rendements négatifs à long terme. Compte tenu des résultats de

la simulation, je soutiens que les entreprises ont besoin de routines dynamiques pour équilibrer

simultanément l’apprentissage et l’automatisation. Je mets la plate-forme de simulation en libre

accès sous le nom de OrgSim-RL sur GitHub.

Dans le deuxième essai, je soutiens qu’une culture centrée sur les données – ce que je définis

comme un Data Clan – peut aider à coordonner les interdépendances complexes entre les com-

posants de l’IA. J’analyse les données d’entretiens semi-structurés avec un hierarchical stochastic

block model (hSBM) et un codage manuel pour constater que les managers se concentrent princi-
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palement sur la construction d’une culture forte et l’établissement des ressources de données lors

de l’allocation des ressources aux initiatives d’IA. Compte tenu de ces résultats, j’examine les im-

plications inductives pour la théorie afin de soutenir que l’émergence d’un Data Clan peut être

un mécanisme de gouvernance important pour réduire les frictions de coordination et de créer un

avantage concurrentiel à l’ère de l’IA.

Dans le troisième essai, je soutiens que les investisseurs exigent un rendement initial plus élevé

pour assumer davantage de divulgation des risques technologiques lors de l’introduction en bourse

(IPO). Je quantifie l’ampleur du risque divulgué et les sujets de divulgation des risques sur la

base d’un modèle thématique du texte du prospectus d’introduction en bourse. Je trouve une

corrélation return-for-risk de la divulgation des risques technologiques basée sur le texte. L’essai

trouve également que la possession d’un plus grand nombre de brevets délivrés est associée à une

corrélation return-for-risk plus faible, ce qui suggère que la propriété intellectuelle formelle permet

la divulgation des risques sans perdre l’avantage concurrentiel. Je mets en libre accès le code de

quantification de la divulgation des risques sous le nom de RiskyData-LDA sur GitHub.

En résumé, cette thèse développe une théorie et découvre des indications dans trois essais

pour soutenir que l’exploitation des nouvelles technologies nécessite une planification stratégique

délibérée pour atténuer les inconvénients potentiels des nouvelles technologies, tels que les coûts

d’opportunité de l’automatisation, les coûts de coordination et les coûts associés à la mobilisation

de capitaux. Les résultats suggèrent trois solutions d’atténuation : des routines dynamiques pour

équilibrer l’apprentissage et l’automatisation, un Data Clan pour améliorer la coordination et la

divulgation de brevets pour accrôıtre l’efficacité de la mobilisation de capitaux lors de l’introduction

en bourse

Mots clés: Stratégie d’entreprise, technologie, automatisation, intelligence artificielle, divulgation

des risques, environnements dynamiques, apprentissage organisationnel, introduction en bourse,

apprentissage par renforcement, modèle thématique
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Zusammenfassung

In dieser Dissertation argumentiere ich basierend auf der Entwicklung von Theorien und der Ana-

lyse von Evidenz, dass neue Technologien von zentraler Bedeutung für unternehmerische Prozesse

sind. Ich verwende computergestützte Methoden wie bestärkendes Lernen (reinforcement learning)

und probabilistische Themenmodellierung (topic modeling), um drei Aspekte zu analysieren: die

Automatisierung von Prozessen, die Organisation künstlicher Intelligenz (KI) und die Evaluierung

von Technologierisiken. Übergreifend argumentiere ich, dass neue Technologien kein Allheilmit-

tel für Unternehmen sind, sondern eine aktive strategische Planung erfordern, um potenzielle

Nachteile kurzsichtiger Automatisierung zu bewältigen, KI-Ressourcen zu koordinieren und Tech-

nologierisiken vorteilhaft offenzulegen.

Im ersten Artikel argumentiere ich, dass Automatisierung zwar die Produktivität steigern kann,

indem sie die Kosten für die Koordination von Einzelpersonen senkt, automatisierte Prozesse je-

doch auch indirekte Opportunitätskosten aufgrund der langsamen Anpassung an Veränderungen

im Umfeld verursachen können. Ich entwickle eine reinforcement-learning-Simulation, um die

Auswirkungen der Automatisierung auf die Erträge aus der Arbeitsteilung in dynamischen Umge-

bungen zu modellieren und zu zeigen, wie Automatisierung Opportunitätskosten durch verlorenes

Lernen und langsame Anpassung verursacht. Zudem kann Automatisierung suboptimal sein, wenn

sie kurzsichtiges Verhalten bewirkt, d.h. kurzfristig hohe Renditen aus der Arbeitsteilung gene-

riert, langfristig aber negative Renditen. Angesichts der Simulationsergebnisse argumentiere ich,

dass Unternehmen dynamische Routinen benötigen, um Lern- und Automatisierungsprozesse zu

kombinieren. Ich stelle die Simulationsplattform unter OrgSim-RL auf GitHub frei zur Verfügung.

Im zweiten Artikel argumentiere ich, dass eine datenzentrierte Kultur – die ich als Data Clan

definiere – helfen kann, komplexe Abhängigkeiten zwischen KI-Komponenten zu koordinieren. Ich

analysiere Interviewdaten mit einem hierarchical stochastic block model (hSBM) und kodiere Un-

ternehmensressourcen, um zu zeigen, dass Manager primär über die Allokation von Ressourcen für

den Aufbau einer starken Unternehmenskultur und den Aufbau hochwertiger Datensätze sprechen.
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Ich interpretiere die komplexen Wechselbeziehungen zwischen KI-Ressourcen und argumentiere,

dass ein Data Clan ein wichtiger Governance-Mechanismus sein kann, um im Zeitalter der KI

Koordinationskosten zu verringern und einen Wettbewerbsvorteil aufzubauen.

Im dritten Artikel argumentiere ich, dass Investoren einen höheren kurzfristig Ertrag erwarten,

um mehr Technologierisiken bei einem Börsengang zu tragen. Ich quantifiziere das Ausmaß des

offengelegten Risikos und die Risikothemen mit einem latent Dirichlet allocation (LDA) Themen-

modell. Die Resultate zeigen eine return-for-risk -Korrelation von textbasierten Technologierisiken.

Des Weiteren zeigt der Artikel, dass Patente die return-for-risk -Korrelation abschwächen können,

was darauf hindeutet, dass formelles geistiges Eigentum die Offenlegung von Risiken ermöglicht,

ohne den Wettbewerbsvorteil zu verlieren. Ich stelle den Code zur Risikoquantifizierung unter

RiskyData-LDA auf GitHub frei zur Verfügung.

Zusammenfassend sollen die entwickelten Theorien und die analysierte Evidenz in dieser Disser-

tation zeigen, dass die Nutzung neuer Technologien eine bewusste strategische Planung erfordert,

um potenzielle Nachteile neuer Technologien wie die Opportunitätskosten der Automatisierung,

Koordinationskosten und Kosten im Zusammenhang mit der Kapitalbeschaffung zu mindern. Die

Ergebnisse schlagen drei Lösungen vor: (1) dynamische Routinen, um Lernen und Automatisierung

in Einklang zu bringen, (2) ein Data Clan, um die Koordination zu verbessern, und (3) Offenlegung

von Patenten, um die Effizienz der Kapitalbeschaffung beim Börsengang zu steigern.

Schlagwörter: Strategisches Management, Technologie, Automatisierung, künstliche Intelligenz,

Offenlegung von Risiken, dynamische Umgebungen, organisatorisches Lernen, Börsengänge, Verstär-

kungslernen, Themenmodellierung
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Chapter 1

Introduction

“Arguably the most powerful firms today are not those with industry or

resource positions but those with technology positions.” — Furr (2021)

How can firms manage new technologies to create and capture value? In this dissertation, I

explore this question by focusing on three topics – the automation of routines, the organization of

artificial intelligence (AI), and the evaluation of technology risk – to develop new theory and insights

to argue that technology1 is a central consideration in how firms operate to create and capture value.

Across the three essays, I investigate the impact of automation on a firm’s returns from the division

of labor in dynamic environments (first essay), the coordination of AI components in incumbent

firms (second essay), and the disclosure of text-based technology risks when undertaking an initial

public offering (IPO) (third essay). The results and theoretical developments have implications

for strategic management research on dynamic capabilities in the age of automation (first essay),

coordination mechanisms for organizing interdependent AI assets (second essay), and text-based

risk disclosure at IPO (third essay). Moreover, this dissertation can help practitioners adopt an

informed approach to managing new technologies in dynamic environments.

In this introductory section, I position my dissertation in the broader context of the strate-

gic management of new technologies. Managing how firms can exploit technology is becoming

increasingly important as more and more products, services, and business models directly depend

on technology (Furr, 2021). However, I argue that technologies such as automation and AI are

1I refer to “technology” as a phenomenon put to use (Arthur, 2009). The internet, the smartphone, CRISPR, and
artificial intelligence (AI) are all examples of such technologies (Furr, 2021).
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not a panacea for firms but instead require deliberate strategic planning to capture the upsides

while mitigating potential downsides. The interdependent and intangible nature of many tech-

nologies can complicate the exploitation of productivity benefits due to automation (first essay),

the development of AI capabilities (second essay), and the disclosure of technology-related risks

(third essay). The dissertation establishes the following insights. First, while recent research has

examined a potential downside of automation in the equilibrium (Dogan and Yildirim, 2021), I

find evidence that automated routines can incur hidden opportunity costs due to slow adaptation

during nonlinear learning trajectories in dynamic environments. Firms benefit from dynamic rou-

tines that simultaneously balance learning and automation to mitigate opportunity costs. Second,

I collect qualitative evidence and develop theory to suggest that a strong, data-centric organiza-

tional culture – what I define as a Data Clan – can reduce intraorganizational coordination costs;

as such, a Data Clan can represent a valuable strategic asset for firms in the age of AI. Third, while

existing research has investigated general risk disclosures (e.g., Loughran and McDonald (2013)), I

develop new measures of text-based risk disclosure and find that technology-related risk disclosures

are significantly positively associated with IPO underpricing in a return-for-risk association. The

results show that patents can attenuate the return-for-risk association to suggest that intellectual

property can allow disclosure without threatening competitive advantage.

New Technologies, Firms, and Environmental Change

As the following observations suggest, technology is central to the organizational processes for

creating and capturing value. First, the most valuable public companies today, including Alphabet,

Apple, Amazon, and Microsoft, directly depend on advanced digital technologies for their products

and services (Brynjolfsson and McAfee, 2011). For example, approximately 81% of Alphabet’s

2021 revenue, according to the company’s 2021 annual report, comes from online advertising, which

2



builds on the Google AdSense software that matches ads with the most relevant audience (Vise

and Malseed, 2006). Second, the composition of corporate investments in the US and Europe

has shifted from tangible to intangible assets that often include technology-related assets such

as technical know-how, custom software, and patents (Haskel and Westlake, 2018). Corrado and

Hulten (2010) developed a new measure of intangible capital to find that total investments into

intangible assets have exceeded investments into tangible assets in the US since approximately

1995. Today, Bailey et al. (2022) argue that new technologies enable new interdependencies within

and beyond firm boundaries that shape all aspects of organizing and are, therefore, central to

organizational scholars.

Two technologies of organizational relevance include automation (e.g., Autor (2015)) and artifi-

cial intelligence (AI) (e.g., Von Krogh (2018)). While robots have been able to automate repetitive

physical tasks for a considerable period of time, new technologies can increasingly automate cogni-

tive tasks previously reserved for the human domain (Autor et al., 2003; Brynjolfsson and McAfee,

2014). Consequently, Frey and Osborne (2017) estimate that the computerization of work could

automate at least 40% of tasks across various occupations by 2030. Moreover, new technologies

for implementing AI solutions can detect patterns in large-scale data to make predictions or de-

cisions relevant to tasks such as hiring personnel, performing financial controlling, and scheduling

complex logistics (Raj and Seamans, 2019). Recent technological breakthroughs across a range of

complex learning problems as described in the 2022 AI Index Report by the Stanford Institute

for Human-Centered AI (Zhang et al., 2022) suggest that AI shares characteristics with existing

general-purpose technologies (GPTs) such as the steam engine or the internet (Cockburn et al.,

2018). However, exploiting new technologies can be challenging for firms, as automation can gener-

ate unexpected costs (Dogan and Yildirim, 2021) and GPTs can complicate performance evaluation

due to measurement delays (Brynjolfsson et al., 2021). In short, I argue that technologies such as
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automation and AI occupy a central role in organizing processes, making the study of technology

central to strategic management research (Bailey et al., 2022). At the same time, relatively little is

known about the potential trade-offs and downsides that firms can face when adopting automation

(Autor, 2015; Dogan and Yildirim, 2021), building AI capabilities (Von Krogh, 2018), or disclosing

risks related to technological innovation at IPO (Loughran and McDonald, 2013).

Today, firms often operate in unpredictable and rapidly-changing environments. Due to the

recent Covid-19 pandemic, for example, Bloom et al. (2021) found a shift in patent applications

toward technologies that support working from home, and Bloom et al. (2020) argue that the

pandemic might decrease longer-term total factor productivity due to diminished R&D expenditures

and diverted managerial attention. In response to such fundamental changes, the organizational

literature suggests that managers focus on coordination by mutual adjustment and reaction through

feedback (March and Simon, 1958), re-configuring capabilities to adapt to the new demands of

the dynamic environment (Teece et al., 1997), and engaging in search and learning activities to

develop and maintain organizational capabilities (Zollo and Winter, 2002). In addition, recent

developments toward explicitly integrating uncertainty into foundational strategic management

theory (e.g., Furr and Eisenhardt (2021)) emphasize the importance of dynamic environments to

management research.

Creating Value with New Technologies

The resource-based view (RBV) suggests that firms invest in creating and curating unique and

valuable asset positions to implement a strategy (Barney, 1986b). RBV theory suggests that supe-

rior asset positions can establish competitive advantage and, consequently, enable superior financial

performance (Wernerfelt, 1984; Barney, 1986b; Peteraf, 1993). Furr (2021) proposes that success-

ful firms today are not those with industry positions (Porter, 1980) or resource positions (Barney,
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1986b) but those with technology positions. Even though technology positions can become re-

source positions, Furr (2021, p.205) argues that jumping straight to a resource-based view is like

developing a theory of vegetable markets without a theory of farming. To continue the analogy,

the resource position that a farmer can establish in the vegetable market depends on its ability to

leverage agriculture technologies such as algorithmically optimized planting, computerized quality

assurance, and online platforms to purchase crops and sell fresh vegetables. More broadly, technol-

ogy positions seem particularly central to how firms operate given that “emerging technologies have

the potential to fundamentally shape all aspects of organizing” (Bailey et al., 2022). In short, one

can view technology strategy as a firm’s strategy for creating and capturing value with technology

in an environment shaped by technology.

Strategically acquiring resources to accumulate valuable asset positions typically requires luck

or superior insight (Barney, 1986b). One way to generate superior insight is to engage in deliberate

learning to generate new knowledge (Zollo and Winter, 2002). However, despite superior knowledge,

accumulating technology-related assets can be challenging due to asset erosion as a consequence

of technological obsolescence (Dierickx and Cool, 1989), asset interdependence (Teece, 1986), and

the immobility of invisible resources such as technical production skills or corporate culture (Itami

and Roehl, 1991). Ex-post limitations to imitating a stock of interdependent and often intangible

assets can enable firms with such asset stocks to gain superior returns; such limitations include

impediments to asset accumulation (Dierickx and Cool, 1989), causal ambiguity (Lippman and

Rumelt, 1982), and tacit knowledge (Polanyi, 1962). Taken together, I argue that accumulating

and organizing technology positions is strategically important to create and capture value with new

technologies but does not come without challenges.

Managers are central to implementing a strategy, in part due to their selection ability in al-

locating resources. For example, Mollick (2012) finds that variation among individual innovators
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and managers impacts firm performance, using data from the electronic games industry. Similarly,

Burgelman (1991) conducts a field study on Intel Corporation to find that a manager’s role in

selecting strategic initiatives can be important for enabling organizational change in a dynamic

environment such as the semiconductor industry. The importance of managerial selection for firm

performance and organizational change in technology-driven environments suggests that managers

take a central role in shaping technology positions. Accordingly, Aguinis et al. (2022) argue for

closely integrating managers when developing and analyzing propositions and when discussing po-

tential implications of research results.

For firms preparing to raise capital through an IPO, it is essential that potential investors can

value their technology positions as the firm might otherwise select a different path to raise capital.

Often, technology-related assets such as patents, licenses, and databases are intangible (Itami and

Roehl, 1991). Intangible assets can be difficult to evaluate due to various factors, including outdated

accounting methodologies for assets associated with the computerization of the economy (Yang and

Brynjolfsson, 2001). Consequently, the number of public firms might decrease as Kahle and Stulz

(2017) observe in the period between 1975 and 2015, and, when relatively young firms decide to

go public, potential investors tap into alternative sources of information such as text data (e.g.,

Loughran and McDonald (2013)). Whereas existing research has focused on the valuation effect

of technology-related aspects such as R&D expenditures (Griliches, 1981), patents (Heeley et al.,

2007), and commercialization strategies (Morricone et al., 2017), I investigate the disclosure of risks

related to an IPO firm’s technology asset stock and how investors might evaluate such text-based

technology risk disclosures for firms with and without granted patents.
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Computational Methods for Strategic Management

A secondary but complementary objective of this dissertation is to advance computational meth-

ods for strategic management research. I exploit computational methods in the dissertation for the

following reasons. First, machine learning methods can detect patterns in unstructured data that

researchers can then use in traditional econometric models (Mullainathan and Spiess, 2017). The

framework of “Text as Data” describes the process of turning textual data into tabular data for

further econometric analysis in the social sciences (Grimmer et al., 2022). Second, computational

methods such as probabilistic topic models (Hannigan et al., 2019) can uncover nonlinear patterns

in data (Choudhury et al., 2020) and enable the identification of novel perspectives of the data with

minimal researcher-driven interpretation. Third, simulation approaches can be beneficial for devel-

oping management theory by modeling nonlinear interactions among variables of interest (Davis

et al., 2007), especially when challenging empirical data restrictions exist (Zott, 2003). I create

a computational representation of an automation routine to simulate how automation interacts

with the division of labor, coordination between individuals, and the organizational learning pro-

cess; such interactions can be highly nonlinear and challenging to investigate empirically. Finally,

computational methods can generate artifacts, in the form of open-source code repositories, that

facilitate replication (Ethiraj et al., 2016) and support future work in the field.

Summary of Results

In the first essay (Chapter Two), I argue that automating can incur a hidden opportunity cost

due to its limited ability to learn and adapt. While automating tasks can reduce the coordination

costs associated with the division of labor, the rigid nature of automation routines can result

in opportunity costs due to slow adaptation to the changing environment and increased return

variability. The reinforcement learning (RL) simulation results show nonlinear myopic automation
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behavior: the static policy for automated routines can generate high initial returns to the division

of labor but negative long-term returns. Given these results, I argue that organizations can reduce

the opportunity costs of automation by developing dynamic routines that balance the learning

ability of humans with the productivity benefit of automation.

In the second essay (Chapter Three), I argue that a data-driven organizational culture – a Data

Clan – can reduce intraorganizational coordination costs that arise when accumulating interde-

pendent assets required for developing AI capabilities. The semi-structured interviews show that

managers in incumbent organizations frequently talk about assets related to culture (e.g., trust,

curiosity, mindset) and data (e.g., accessibility, reliability, quality). In the theoretical interpre-

tation of results, I argue that a Data Clan can be an effective governance mechanism to reduce

coordination costs in the face of complex asset interdependencies and unpredictable environments.

Therefore, a Data Clan might be a valuable asset for firms aiming to build a competitive advantage

in the age of AI. While the first two essays focus on the internal organizing processes, the third

essay examines how potential investors evaluate a firm’s technology-related risk disclosures at IPO.

In the third essay (Chapter Four), I argue that investors require compensation for taking on

technology risks disclosed by an IPO firm. I quantify risks disclosed in IPO prospectuses using a

latent Dirichlet allocation (LDA) topic model to investigate the magnitude of disclosed risk and

the disclosed risk topics. Using this new measure, I extract risk disclosures related to technology

to find a significant positive association between the magnitude of technology risk disclosure and

underpricing in a return-for-risk association. In other words, the results suggest that investors

demand higher short-term returns in the form of IPO underpricing for taking on more disclosed

technology risk. Moreover, the results show that granted patents can attenuate the positive return-

for-risk association of technology risk disclosure, suggesting that intellectual property can allow

the disclosure of technology information without threatening competitive advantage.
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Contributions

Across the three essays, I develop theory and insights to deepen our understanding of how automa-

tion can impact the returns from the division of labor, what AI asset stocks incumbent organizations

accumulate, and how text-based technology risk disclosure relates to underpricing at the IPO. To-

gether, the results in this dissertation suggest that “technology occupies a central and constitutive

role in the organizing process” (Bailey et al., 2022) and, by extension, that technology is central to

strategic management research.

The findings in the first essay contribute to the research on the impact of automation on the

organization of labor (Dogan and Yildirim, 2021) by linking value capture from the division of labor

(Becker and Murphy, 1992) with organizational search and learning in dynamic environments (e.g.,

March (1991); Zollo and Winter (2002)). The results suggest that firms might benefit from dynamic

routines, integrating learning with automation. In the second essay, I contribute to the literature

investigating AI in organizations (e.g., Raj and Seamans (2019); Raisch and Krakowski (2020);

Von Krogh et al. (2021)) by examining the assets that incumbent organizations accumulate to

build AI capabilities. The results and theoretical development suggest that strong data cultures

– Data Clans – are a governance mechanism to coordinate interdependencies between AI assets.

Finally, in the third essay, I contribute to the literature on the role of text-based risk disclosure

at IPO (Loughran and McDonald, 2013; Hanley and Hoberg, 2019) and the role of disclosing

technological innovations for firms conducting an IPO (Heeley et al., 2007; Morricone et al., 2017).

The results suggest that investors require short-term compensation for taking on technology risk

disclosures in a return-for-risk association and that patents mitigate the return-for-risk association

as they allow the disclosure of technology information without threatening competitive advantage.

Taken together, the above findings contribute to the body of research at the intersection of new
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technologies and organizing processes in dynamic environments (Furr, 2021; Bailey et al., 2022).

The dissertation also provides insights for managers. First, by investigating automation ini-

tiatives in rapidly changing environments, I point to a potential downside of using aggressive

automation strategies: the opportunity costs of slow adaptation. As such, I aim to help managers

understand the environmental conditions under which automated routines are more or less likely

to pay off. Second, by examining the types of asset stocks for building AI capabilities, I provide

evidence of the importance of human capital for real-world AI projects. In doing so, I propose

that a Data Clan can reduce coordination frictions and, therefore, can be a valuable component in

building AI capabilities. Finally, by developing a new approach to measuring text-based risk, I find

that text-based technology risk disclosures contain economically and statistically significant signal

that investors assess when evaluating an IPO firm. The results further show that patents allow

disclosing technology information without threatening competitive advantage as they attenuate the

return-for-risk association. For managers in firms preparing for an IPO, these insights can help

understand the potential consequences of risk disclosures and patenting activities. Overall, I aim

to support managers in adopting a realistic, informed, and prudent approach to governing new

technologies.

Finally, I attempt to make the following methodological contributions. Whenever appropriate,

I use computational methods, including RL and topic modeling, to develop new insights and ad-

vance theory (Davis et al., 2007; Hannigan et al., 2019; Choudhury et al., 2020). More specifically,

I develop an extension of the Dyna-Q RL algorithm (Sutton and Barto, 2018, p. 164) with mul-

tiple agents and organizational parameters to simulate the returns to the division of labor with

automation under varying environmental conditions. The algorithm enables simulating nonlinear

organizational dynamics over time that would be challenging to investigate empirically (Davis et al.,

2007). I also contribute to the management literature using topic models (Hannigan et al., 2019)
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with the following two applications. First, I apply a hierarchical stochastic block model (hSBM)

(Gerlach et al., 2018) for analyzing and visualizing interview transcripts, a valuable technique to

triangulate qualitative analyses (Molina-Azorin, 2012). Second, while existing research has inves-

tigated the risk magnitude and risk topics separately (e.g., Loughran and McDonald (2013); Bao

and Datta (2014)), I develop a new approach to quantify a firm’s disclosed risk magnitude and

risk topics relative to its year and industry group. Overall, I intend to facilitate future work us-

ing computational methods in strategic management through open-sourcing the RL simulation as

OrgSim-RL2 and the quantification of risk disclosures as RiskyData-LDA3 on GitHub.

2OrgSim-RL platform: https://github.com/mxhofer/OrgSim-RL, accessed 22 June 2022.
3RiskyData-LDA platform: https://github.com/mxhofer/RiskyData-LDA, accessed 22 June 2022.
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Chapter 2

Dynamic Routines: The Opportunity Costs of

Automation in Dynamic Environments∗

2.1 Introduction

“The greatest improvement in the productive powers of labour . . . seem to have been

the effects of the division of labour.” — Adam Smith (1965)

What impacts the returns that organizations gain from the division of labor? Smith (1965)

argues that the division of labor can raise productivity due to higher returns from time spent on

specialized tasks. While Smith points to the market as a limiting factor in the division of labor,

Becker and Murphy (1992) identify the costs of coordinating specialized knowledge as a limiting

factor. Coordination costs can occur due to, for example, principal-agent conflicts such as free-

riding and skirting (Jensen and Meckling, 1976) and transaction costs as a consequence of complex

economic organization, opportunistic behavior, and incomplete contracting (Williamson, 2002).

While management practices are often important for efficiently coordinating individuals, new

technologies are rapidly disrupting a range of tasks. Frey and Osborne (2017) estimate that 40%

of jobs might be automated by 2030. More specifically, automation can substitute for a wide range

of manual tasks (e.g., robotics technology in manufacturing) and cognitive tasks (e.g., machine

learning in accounting and sales) (Autor et al., 2003). On the one hand, new technologies for

automation can increase productivity by reducing costs that arise when coordinating tasks across

individuals (Acemoglu and Restrepo, 2019). On the other hand, there are reasons to suspect

∗The content of this chapter is based on: Hofer, M. W. and Younge, K. A. (2022). Dynamic Routines: The
Opportunity Costs of Automation in Dynamic Environments. Under review at Organization Science.
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that automation can incur indirect costs (Dogan and Yildirim, 2021). In particular, the challenge

of automating tasks that require flexibility and adaptability remains substantial (Autor, 2015),

especially for organizations in dynamic environments (Eisenhardt, 1989b). It is often unclear, a

priori, what the net effect of automation might be.

The purpose of this study is to examine how automation can shape the returns from the division

of labor under varying environmental conditions. Our unit of analysis is an organization in the

broad sense (e.g., a team, a business unit, an entire organization) with a given division of labor and

a given tendency to automate tasks. We design a two-dimensional grid-world representation of an

exploration-exploitation problem with reinforcement learning agents, where automation makes an

agent more efficient, but automation also restricts its flexibility to adapt to the environment.

Our simulation model provides the following results. First, organizations can use automation

in both stable and highly-dynamic environments to partially escape the limitations to the division

of labor set by coordination costs (Becker and Murphy, 1992). Second, automation can increase

the returns to the division of labor, but doing so comes at an indirect opportunity cost of slow

adaptation and increased return variability. Third, automation myopia can have high returns in

the short run but detrimental performance in the long run due to lost learning. Taken together,

our simulation generates findings on the dynamics of opportunity costs as a potential downside of

automation in dynamic environments.

We aim to contribute to the literature on automation with a novel perspective on the impact

of automation in the context of organizational learning (Dogan and Yildirim, 2021). Moreover, we

provide a new methodological approach for studying the automation of specialized knowledge in

organizations. Open-sourcing OrgSim-RL1 can support future investigations into related topics of

organizational significance. For more details, see Appendix B.

1OrgSim-RL on Github: https://github.com/mxhofer/OrgSim-RL, accessed 22 June 2022.
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We organize the paper as follows. First, we discuss theory around the division of labor, coordi-

nation, dynamic environments, and organizational learning (Section 2.2). Second, we describe our

research design and simulation implementation (Section 2.3). Third, we report and analyze the

simulation results (Section 2.4). Finally, we discuss organizational implications (Section 2.5) and

conclude (Section 2.6).

2.2 Theory

Our theoretical development proceeds as follows. The division of labor can increase the productivity

of an organization (Smith, 1965). However, coordination costs can limit the extent of the division

of labor (Becker and Murphy, 1992). We build on the basic model in Becker and Murphy (1992)

(hereafter, Becker & Murphy) to evaluate the impact of automation in the context of learning and

adaptation in dynamic environments.

2.2.1 Division of Labor

The division of labor is a cornerstone of economic progress (Smith, 1965).2 Smith argues that

the division of labor allows individuals to specialize in a narrower set of tasks. With specialized

knowledge, the returns to time spent working increase. More specifically, specialized individuals

can absorb and process new information efficiently (Bolton and Dewatripont, 1994) and increase

organizational knowledge through effectively acquiring new knowledge (Garicano and Wu, 2012).

As such, the division of labor can increase the productivity of individuals and, therefore, increase

the benefits to the organization.

More formally, the total benefit of the division of labor per team member, B, in Becker &

Murphy is a function of both general knowledge, H, and team size, n, as defined in Equation 2.1

2Adam Smith published the original edition of The Wealth of Nations in 1776.
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below. The marginal benefits of adding an additional team member are positive at a decreasing

rate, i.e. ∂B(H,n)
∂n > 0 and ∂2B(H,n)

∂n2 < 0.

B = B(H,n) (2.1)

While (Smith, 1965) notes that the market limits the extent of the division of labor, one can find

examples of limitations to the division of labor in the organizational literature. Kogut and Zander

(1992) argue that organizations exist because they can share and transfer knowledge more efficiently

than individual actors in a market could. The authors focus on tacit knowledge, a particular type

of knowledge that can be valuable to organizations but difficult to explicitly codify (Polanyi, 1962).

Tacit knowledge, however, can limit the division of labor as the noncodifiability can increase costs

associated with communicating between the principal and the agent (Garicano and Wu, 2012).

Taken together, the division of labor is often important for generating and maintaining knowledge

but can be challenging to organize efficiently.

2.2.2 Coordination Costs

The costs of coordinating specialized knowledge can limit the extent to which organizations divide

up labor (Becker and Murphy, 1992). Coordinating a group of individuals can be costly due to (at

least) two aspects. First, principal-agent conflicts such as free-riding and skirting can reduce the

returns to time spent working (Jensen and Meckling, 1976) and can increase costs in the form of

salaried compensation to control agent behavior (Eisenhardt, 1985). Second, issues due to incom-

plete contracting and opportunistic behavior, for example, can increase the internal transaction

costs within an organization (Williamson, 2002). The work on agency theory and transaction cost

economics suggests that the cost of coordinating a group of specialized individuals increases as the

number of individuals increases.
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The strategy literature investigates the coordination of specialized knowledge and identifies the

importance of management practices that reduce coordination costs. For example, Bolton and

Dewatripont (1994) argue that centralization can economize on coordination costs as it avoids

unnecessary duplicate communication processes. Garicano and Wu (2012) find that organizational

codes and culture can facilitate the coordination of dispersed knowledge because they make it

more efficient for individuals to identify problems and match them with an appropriate solution.

Reagans et al. (2005) show that when individuals work together in a team, they learn about who

knows what, which can facilitate the coordination of activities inside the organization. Investigating

production in teams, Deming (2017) shows that individuals with social skills can coordinate with

other individuals more efficiently because social skills reduce the costs of trading tasks in a team.

Overall, the research suggests that individual members of an organization and how they coordinate

matter for firm performance (Bloom and Van Reenen, 2007; Mollick, 2012).

We use the formal model in Becker & Murphy to motivate our investigation of the effect of

automation on the returns to the division of labor of an organization, and later we define functional

forms for many of the parameters in our simulation model to comply with and extend the Becker

& Murphy model. In their model, Becker & Murphy define total coordination costs per team

member, C, as a function of team size, n, as in Equation 2.2 below. The marginal costs of adding

an additional team member are positive at an increasing rate, i.e. ∂C(n)
∂n > 0 and ∂2C(n)

∂n2 > 0.

C = C(n) (2.2)

Given the benefits to the division of labor in Equation 2.1 and the costs to coordination in

Equation 2.2, it follows that the total net reward per team member is the difference between the

16



benefits and the costs as defined in Equation 2.3 below.

Net reward = B − C (2.3)

With both ∂B(H,n)
∂n > 0 and ∂C(n)

∂n > 0, an efficient team generally consists of more than one

individual and less than all individuals available in the market, N (Smith, 1965). Becker & Murphy

assume that ∂B(H,n)
∂n > ∂C(n)

∂n > 0 for small teams, meaning that the marginal benefits exceed the

marginal costs in small teams.

To provide visual clarity of the net reward of the division of labor, we assume functional forms

for the benefits and costs that conform with the properties in Becker & Murphy. Figure 2.1 shows

a basic representation of the Becker & Murphy model with the benefits to the division of labor (B)

and the costs of coordinating (C). N represents the limitation to the division of labor due to the

market (Smith, 1965) and n∗ represents the limitation due to coordination costs (Becker and Mur-

phy, 1992). The highest net reward equals the difference between the benefits b∗ and coordination

costs c∗ at a division of labor of n∗.

Figure 2.1: The basic model in Becker and Murphy (1992).
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2.2.3 Automation

Automation can disrupt the organization of labor as evidenced by Frey and Osborne (2017), who

estimate that 40% of jobs might be automated by 2030. More specifically, automation particularly

impacts middle-income, routine manufacturing jobs where robots and algorithms can efficiently

perform increasingly complex tasks (Charles et al., 2013). As a consequence, Autor and Dorn

(2013) observe a shift in the labor market, where individuals reallocate their labor away from

middle-income manufacturing jobs to lower-income service jobs. Autor et al. (2003) argue that

the manual tasks of service occupations are less susceptible to automation because they require

a higher degree of flexibility and adaptability. Given these findings, we conceptualize automation

as a computerized, static routine that executes a fixed sequence of actions without the ability to

learn and adapt (Autor, 2015). For example, automated teller machines (ATMs) automate the

task of dispensing cash (Bessen, 2015). As ATMs become increasingly popular, the number of bank

tellers tasked with dispensing cash to customers decreases and the productivity of dispensing cash

increases because the division of labor remains unchanged while the coordination costs decrease.

As such, we view automation as executing static, codified knowledge (e.g., knowing how to dispense

cash securely) without the flexibility to learn and adapt. A more recent example is robotic process

automation (RPA), a technology to automate business processes by following a sequence of actions

without human intervention. The following two paragraphs expand on this tension that automation

introduces.

On the one hand, adopting new technologies for automating tasks can increase the flexibility of

allocating tasks to factors of production and reduce costs associated with coordinating tasks across

individuals, which Acemoglu and Restrepo (2019) refer to as the productivity effect of automation.

Related research has shown that knowledge is becoming increasingly specialized, suggesting that
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successive generations have to absorb an increasingly large body of knowledge (Jones, 2009) and

that coordinating specialized knowledge within teams is becoming increasingly important to pro-

ducing knowledge (Wuchty et al., 2007). Substituting automation for human labor in specific tasks

could mitigate the organizational challenges due to coordinating increasingly specialized knowledge.

For example, Cockburn et al. (2019) find that artificial intelligence can increase research efficiency

by automating parts of the innovation process of developing specialized drugs. Moreover, Treleaven

and Batrinca (2017) describe how automated monitoring of online and social media for financial

compliance can increase back-office efficiency, reducing errors at lower costs to the organization.

The following proposition summarizes the insight that automation can reduce coordination costs.

Proposition 1: Replacing human labor with an automated routine
reduces coordination costs for a given division of labor.

On the other hand, automating might have a hidden downside for several reasons. First,

automating tasks that require flexibility is problematic due to the limited ability of automation

to learn and adapt (Autor, 2015). Mobius and Schoenle (2006) point to the product demand mix

as an example of an uncertain and dynamic factor that necessitates a flexible organization of work.

While the functionalities of ATMs have generally remained unchanged, one can think of more recent

automation of cognitive tasks in marketing, sales, and finance where a lack of adaptability could

result in indirect opportunity costs for the organization (Autor et al., 2003). Second, Dogan and

Yildirim (2021) point out that substituting automation for human labor in performing a task can

incur indirect costs due to a lack of incentive mechanisms for governing principal-agent conflicts

under automation. Third, Zollo and Winter (2002) argue that learning mechanisms for knowledge

accumulation and articulation are important for developing and refining the operating routines

of an organization. Often, automated routines cannot generate new knowledge or discuss such
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knowledge with others as humans can. For these reasons, we argue that automation might incur

indirect opportunity costs for the organization. The dynamics of such potential opportunity costs

under different environmental conditions remain unknown.

Taken together, the two sides of automation create a tension between coordination costs and

opportunity costs. To model this tension, we add automation (τ) and the frequency of environmen-

tal change (δ) to the total costs, C. Compared to the original Becker & Murphy model, we make

two changes. First, we refer to C as the total costs, including opportunity costs and coordination

costs. Second, we use λ instead of n for the division of labor to generally distinguish our model from

Becker & Murphy. The division of labor (λ), automation (τ), and environmental change (δ) are the

central elements of interest for our investigation. Therefore, the new total costs with automation

are defined as follows:

C = C(λ, τ, δ)

Given the cost structure defined above, an organization can decide whether to automate or not,

resulting in an Automation Mode and an Adaptation Mode. In Automation Mode, the organization

incurs lower coordination costs but cannot learn; in Adaptation Mode, the organization incurs higher

coordination costs but can learn and adapt to the environment. As such, we model a trade-off in

the benefits and costs of automation that can unfold dynamically over time, i.e. lower coordination

costs come at the expense of limited adaptation.

We assume that the general knowledge, H, in the Becker & Murphy model is constant over time

for all team members. As such, we depart from Becker & Murphy in that we are not concerned

with accumulating a stock of knowledge or human capital over time. Instead, our simulation study

will focus on routine optimization and adaptation dynamics. Therefore, we re-conceptualize the

total net reward per team member defined in Equation 2.3 in the context of organizational learning
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over time. The organizational net reward is our quantity of interest, defined in Equation 2.4 below.

Net reward = B − C

= B(λ)− C(λ, τ, δ) (2.4)

Comparing the Becker & Murphy model in Equation 2.3 to our model in Equation 2.4, one can

see how automating tasks might alter total costs, C, and, as a consequence, the net reward gained

from the division of labor.

As shown in Figure 2.2, the overall efficiency gain or loss of automation depends on how au-

tomation changes coordination costs and opportunity costs, holding the division of labor constant.

Automation could increase the net reward (b∗ − c−) or decrease the net reward (b∗ − c+).

Figure 2.2: The conceptual impact of automation as an extension of Becker and Murphy (1992).

Given the structure of benefits, costs, and the net reward developed above, we specify how au-

tomation affects coordination costs and opportunity costs under different environmental conditions

in the next section.
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2.2.4 Dynamic Environment

Today, organizations often operate in rapidly changing environments (e.g., Brown and Eisenhardt

(1997)). Adopting new technologies in such environments necessitates a balance between exploring

new opportunities and exploiting existing competencies (March, 1991). March suggests that finding

and maintaining the appropriate balance between exploration and exploitation can be challenging

as the effectiveness of generating new knowledge in turbulent environments deteriorates with time.

To cope with changing environments, Teece et al. (1997) proposes that organizations continuously

reconfigure internal and external competencies. Brown and Eisenhardt (1997) argue that success-

ful organizations adapt their managerial procedures and organizational structures in high-velocity

markets. The research generally suggests that environmental change can affect how organizations

operate.

The division of labor can enable the development of specialized knowledge assets (Garicano and

Wu, 2012). Developing, maintaining, and efficiently coordinating such a knowledge base is central

to the growth and survival of organizations (Kogut and Zander, 1992). However, environmental

change can render existing capabilities no longer effective (Tushman and Romanelli, 1985). More

specifically, environmental change can erode the future value of existing knowledge due to lost fitness

with the environment. Change can also mitigate the value of the effort to generate new knowledge

because change can erode the half-life of returns to new knowledge (Posen and Levinthal, 2012).

Changing environments necessitate organizational flexibility and adaptation to ensure fitness with

the environment. Given the limited ability to learn and adapt under automation, automation might

incur indirect opportunity costs in a dynamic environment, as the following proposition summarizes.

Proposition 2: Replacing human labor with automation reduces organizational capabilities
to learn and adapt to environmental change for a given division of labor,
resulting in an indirect opportunity cost.
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2.2.5 Learning and Adaptation

Modern business operations contain a large number of complex and interdependent elements (Scul-

ley et al., 2015) and human problem solvers often cannot calculate optimal solutions for such

complex systems because they lack complete knowledge of all the relevant aspects (Simon, 1955).

Moreover, even if a problem solver would have near-complete knowledge, the combinatorial com-

plexity of the solution space grows exponentially and quickly becomes intractable. Consequently,

problem solvers often engage in adaptive learning about the business environment to find and

maintain a satisfactory solution (Simon, 1955; March and Simon, 1958).

In organizational learning, agents balance between allocating resources to explore the novel or

exploit the known (March, 1991). For example, the agent might choose to invent a new technology

or refine an existing one, a trade-off that becomes especially challenging under environmental

instability and ambiguity (Levinthal and March, 1981). Zollo and Winter (2002) investigate how

different learning mechanisms for accumulating, articulating, and codifying knowledge can create

and maintain dynamic capabilities. Zollo and Winter note that the relative importance of learning

for accumulating knowledge depends on the rate of environmental change. Posen and Levinthal

(2012) suggest that both stable environments and environments with very high rates of change can

diminish the importance of learning new knowledge. To investigate the dynamic aspects of learning

and adaptation, we embed our modified version of the Becker and Murphy (1992) model into an

environment that we can simulate with reinforcement learning. We explain our hybrid approach in

the next section on research design.
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2.3 Research Design

We design a simulation to explore the effects that arise when organizations choose automation to

gain rewards from the division of labor. More specifically, we develop a computational represen-

tation of a multi-domain environment with a trade-off between exploration and exploitation, and

simulate learning and adaptation in that environment with reinforcement learning agents.

2.3.1 Simulation

Simulation approaches can be useful for investigating the outcomes of the interactions across multi-

ple underlying economic and organizational elements, especially as these evolve over time (Repen-

ning, 2002), and to develop theory around a fundamental tension (Davis et al., 2007). A simulation

is appropriate for our study because we investigate the potentially non-linear interactions across

organizational elements in the context of a dynamic learning problem.

Several studies in the organizational literature use a simulation approach to investigate problems

of dynamic learning and adaptation. One can group the types of simulations into (1) generative algo-

rithms, (2) NK models, and (3) reinforcement learning approaches. A generative algorithm models

assumptions to understand which dimension(s) generated the data. For example, Levinthal and

March (1981) and March (1991) use a generative model to investigate the exploration-exploitation

trade-off under varying learning and environmental conditions. The NK model builds on the work

by Kauffman et al. (1993) and allows researchers to model learning on a tunably rugged fitness

landscape.3 For example, Levinthal (1997) uses an NK model to investigate how different orga-

nizational forms can adapt to change more or less effectively. More recently, studies have turned

3N represents the attributes of an organization, where each attribute can take a binary value. Each of these attributes
can interact with K other attributes. The overall fitness of the organization depends on the combination of attribute
values and their interactions. For a more detailed introduction to the NK model in the organizational literature, see
Levinthal (1997).
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to reinforcement learning approaches. The multi-armed bandit problem is one representation of

the exploration-exploitation problem for studying path dependence (Denrell and March, 2001) and

turbulent environments (Posen and Levinthal, 2012). The bandit model represents a sequential

choice model, in which the organization has to select among alternative arms with associated re-

ward distributions. The agent reinforces its beliefs about the quality of each arm based on the

realized reward. Finally, reinforcement learning approaches with a grid world environment have

been used to model behavioral problems in an organizational context, such as procurement auctions

(Greenwald et al., 2010), the willingness to persist at innovating in the face of failure (Rosokha and

Younge, 2020), and devising optimal tax policies (Zheng et al., 2021).

2.3.2 Environment

We develop a grid world environment to represent the essential aspects of our propositions (see

Figure 2.3). We design that environment to have a structure and a set of rules such that: (1)

organizations with a stronger division of labor have superior knowledge, (2) learning agents trade-off

exploring a risky but potentially rewarding path and exploiting a risk-free path, and (3) researchers

can independently manipulate the parameters of interest. The environment is just one of many

possible grid world configurations that might be appropriate for our investigation, and we open-

source all source code to facilitate the study of alternative environments. As seen in Figure 2.3,

there are four separate domains within the environment, wherein a single domain is analogous to

the blocking maze and shortcut maze examples in Sutton and Barto (2018, p.167).

Structure

The simulation operates on a 13× 13 grid that consists of four domains (denoted as 1, 2, 3, and 4)

and three types of cells: walls (in light gray), doors (in dark gray), and empty cells (in blue, green,
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Figure 2.3: The two-dimensional grid world.

yellow, and red). The domain-specific colors have no purpose other than distinguishing domains

for the reader. Each domain contains a goal state, G, that is associated with a goal reward and a

door state, D. The agent reaches the goal state within seven steps if the door is open (short path)

or 11 steps (long path). The short path is risky as the door might close unexpectedly, in which

case the agent makes six steps and ends up at the start without obtaining the goal reward. The

long path is risk-free but takes more steps to reach the goal.

Rules

Agents can step through empty cells but cannot go through walls or closed doors. Agents start

a new episode at the start state, S. Agents are sent back to start when (1) reaching the goals

state (G) or (2) attempting a closed door (D). Agents are restricted to their domain and cannot

backtrack to the start state or within the domain. States only permit valid actions from the set

of all states, {up, down, left, right}. Valid actions are actions where the agent does not hit a wall
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or backtrack. We chose this channeled design with a restricted set of actions to remove learning

complications not directly relevant to our investigation.

The environment might be useful beyond the current study for the following reasons. First,

deciding which domain to enter at the start state, S, is essentially a multi-armed bandit problem.

The environment extends the bandit model to add flexibility for operationalizing elements of in-

terest. As such, the environment builds on existing research using a bandit model (e.g., Denrell

and March (2001); Posen and Levinthal (2012)) while enabling researchers to investigate questions

requiring a malleable simulation environment. Second, one can increase the number of domains

beyond the current four domains by increasing the number of actions available at the start state,

S, though at the expense of the ability to visualize more than four domains.

2.3.3 Learning and Adaptation

We select Q-learning (Sutton, 1990) to model how an agent learns while moving through the

environment. Q-learning has previously been used to investigate related topics such as credit

assignment (Denrell et al., 2004) and exploration versus exploitation in multi-stage problems (Fang

and Levinthal, 2009). An alternative simulation approach to investigate learning problems in the

management sciences is the NK model (Kauffman et al., 1993), a hill-climbing technique. However,

The NK model has two main limitations for our investigation. First, our research design requires

a simulation approach where we can inspect an agent’s internal understanding of the environment

to validate the speed and degree to which agents adapt to environmental changes under different

parameter combinations. While the NK model does not provide access to an agent’s understanding

about the environment and focuses on the outcome of the learning process, Q-learning allows

us to inspect the actual adaptive process. Second, the NK model only defines the statistical

properties of the landscape, not its actual shape (Valente, 2008). To operationalize the division of
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labor, automation, and environmental change, we require greater plasticity of the landscape. One

might alternatively investigate these topics through human subject experiments or formal economic

modeling, but we chose a computational approach because it requires precisely defined constructs,

logic, and assumptions that can improve internal validity (Davis et al., 2007).

We extend the Dyna-Q reinforcement learning algorithm in Sutton and Barto (2018, p. 164)

into a multi-agent system with division of labor, automation, and environmental change.4 In Dyna-

Q, an agent i learns by updating its beliefs based on a realized reward, R, of taking a particular

action, A, to move from the current state, S, to the next state, S′. Those beliefs are stored in a

Q-table, Qi. At each step t, the agent updates its Q-table according to the Bellman equation in

Equation 2.5 below, where α is the learning rate that controls the magnitude of the learning update

and γ is the discount factor that discounts future expected rewards.

Qi(S,A)←− Qi(S,A) + α
[
R+ γmax

a
Qi(S

′, a)−Qi(S,A)
]

(2.5)

2.3.4 Organizational Episodes

We conceptualize the organization in a broad sense as a team, a business unit, or an entire firm.

The organization has a given division of labor and a given tendency to automate, which it uses to

execute organizational episodes sequentially. Our terminology matches that in Sutton and Barto

(2018) such that a single simulation run consists of many episodes, which consist of individual steps

through the grid world.

Figure 2.4 depicts an organizational episode. The Organization starts an episode at the start

state, S in the grid world in Figure 2.3, and decides which of the four domains to enter – the

4The multi-armed bandit model is an alternative reinforcement learning model that has also been used in organiza-
tional studies (e.g., Denrell and March (2001); Posen and Levinthal (2012)). We use the Dyna-Q algorithm because
it gives us more flexibility in operationalizing the elements of interest to our study than a bandit model could.
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Figure 2.4: Organizational episode.

organizational decision at the start is essentially a four-armed bandit problem. The organization

can leverage specialized expertise in each domain by following the agent for that domain. Next, the

organization decides whether to automate the episode (Automation Mode) or not automate and

adapt (Adaptation Mode). At the end of the episode, the organization observes the goal reward, the

number of steps to reach the goal, and coordination costs to compute the net reward per episode,

our main outcome of interest. Equation 2.6 defines the organizational net reward per simulation

episode, where ϕ ∈ [0, 1) is the percentage of coordination costs incurred in the Automation Mode

– a type of “carrying cost” for running the automation system.

Net reward = Benefits − Costs

= Goal reward− Step cost−


ϕ · Coordination costs, if Automation Mode

1 · Coordination costs, if Adaptation Mode

(2.6)

The net reward defined in Equation 2.6 models the dynamic tension that Automation introduces:

in the short term, Automation might economize on coordination costs given that ϕ < 1. In the

longer term, however, Automation might incur higher step costs as it fails to find paths where the

door is open as the environment keeps changing, resulting in a low net reward. As such, Equation

2.6 implements the extension of the basic model in Becker and Murphy (1992) in Equation 2.4,
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where automation affects the total costs of gaining benefits from the division of labor. The following

sections describe the conceptualization and implementation of the elements of interest, where we

select functional forms and scalar values to correspond with the properties specified in the basic

model in Becker and Murphy (1992). More specifically, scaling the elements of interest is a form

of hyperparameter tuning to implement the baseline tension between the benefits and costs of the

division of labor without automation in stable environments.

Division of Labor (λ)

The number of agents, λ, defines the extent of the division of labor (DOL) of an organization

(Becker and Murphy, 1992). In the case of a single agent, the agent has to cover all four domains

in the grid world. Two agents split up the domains to cover two domains each, and in the case

of four agents, an agent covers a single domain. As such, our design contrasts no DOL (a single

agent, λ = 1) with intermediate DOL (two agents, λ = 2) and a high DOL (four agents, λ = 4).

Each agent has its own independent Q-table, which we initialize to zero (Sutton and Barto, 2018,

p.164). The DOL is exogenous to the learning and adaptation process. To correspond with Becker

and Murphy (1992), we have to operationalize the (1) benefits and costs to the DOL and the (2)

productivity of individuals.

Benefits. Modeling the benefits as a function of the DOL (λ) comes naturally in Q-learning.

A higher DOL increases the benefits (Becker and Murphy, 1992, p.1142). We operationalize the

benefits as a function of how efficiently agents learn about the environment and reach the goal

reward, B(λ). The DOL impacts the output per individual worker (Becker and Murphy, 1992),

represented by the goal reward amount in our simulation. We select the natural logarithm as one of

many functions that model the idea that the benefits to the DOL exhibit positive marginal returns

at a decreasing rate, and that corresponds with the properties specified in Becker and Murphy
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(1992). Equation 2.7 defines the goal reward per episode, where π scales the goal reward to an

appropriate amount and adding 1 to λ ensures a positive reward for the goal state with no division

of labor (i.e., λ = 1) as ln(1) = 0. The realized goal rewards equal π ln(2) ≈ π 0.69 with no division

of labor, π ln(3) ≈ π 1.1 with an intermediate division of labor, and π ln(5) ≈ π 1.61 with a high

division of labor.

Goal reward = π ln(λ+ 1) (2.7)

Costs. The DOL also impacts the knowledge of agents (Becker and Murphy, 1992), which they

use to navigate the grid world. We assign a cost of 1 to each step that the agent makes through

the grid world.

Productivity. We conceptualize the productivity of individuals as their learning ability. In other

words, a higher DOL means that individuals are more productive in adapting their knowledge of

the environment (Becker and Murphy, 1992). We operationalize the advantage of more specialized

learning in terms of the learning rate, α, with decreasing returns to model the cognitive limitations

of individuals and correspond with Becker and Murphy (1992). Higher learning rates are beneficial

as the environment is largely deterministic and there are very little disadvantages to rapid learning

given our operationalization of Environmental Change as described later in this section. We set

the actual learning rate, α′ as defined in Equation 2.8, where ν is a scalar value and the term ln(λ)

increments the base learning rate as the division of labor increases. With no division of labor,

α′ = α as ln(1) = 0.

α′ = α+ ν ln(λ) (2.8)

Coordination Costs

The DOL affects the costs of coordinating specialized individuals (Becker and Murphy, 1992).

We operationalize the costs associated with coordination as a polynomial function with increasing
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marginal returns to model the exponential growth in coordinating activities between individuals

as the number of individuals increases and to correspond with the properties specified in Becker

and Murphy (1992). We assume that knowledge is not perfectly codifiable as perfectly codifiable

knowledge would require no coordination across individuals. The coordination costs are exogenous

to the learning and adaptation process. Equation 2.9 defines coordination costs per episode, where

η scales the costs to an appropriate amount and an exponent on λ equal to 5
3 ensures that marginal

costs are positive at an increasing rate. We conduct robustness checks by varying the value of the

exponent in Section 2.4.5. Moreover, subtracting 1 from λ
5
3 ensures that the organization incurs

no coordination costs with no division of labor (i.e., λ = 1).

Coordination costs = η (λ
5
3 − 1) (2.9)

Automation (τ)

We operationalize Automation as an exogenous probability, τ , that the organization chooses a static

sequence of actions in a given episode. As such, Automation alters the reinforcement learning policy.

In the Automation Mode, the organization selects the argmax action from the start and uses the

Q-table of the agent in that domain to construct the fixed sequence of argmax actions to reach the

goal. Following the conceptualization of Automation as a static sequence of actions with limited

adaptability (as in Autor, 2015), an automated routine does not update the Q-table (α = 0) and

does not explore (ϵ = 0). It is important that the Q-table is not updated in the Automation Mode

to represent the limited adaptability and static nature of automated routines in organizations. We

implement the difficulty of automating tasks that require creativity (as discussed in Autor, 2015)

as a greedy policy that cannot take random actions. In the Automation Mode, the organization

incurs reduced coordination costs as defined in Equation 2.6 but has a higher likelihood of being
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stuck in a suboptimal outcome due to the inability to learn and a greedy action policy.

Environmental Change (δ)

It can be challenging to forecast when new opportunities open up or become unavailable, espe-

cially in the context of workplace automation (Brynjolfsson and Mitchell, 2017). Consistent with

studies investigating learning under environmental change (Robert Baum and Wally, 2003; Posen

and Levinthal, 2012), we conceptualize Environmental Change as the frequency of change in the

environment.

We operationalize Environmental Change as the exogenous frequency of doors opening and

closing per simulation run, δ. We designed doors to change at punctuated points (i.e., at equally

spaced intervals across all episodes, synchronized across simulation runs) to uncover the subtleties

of the dynamic learning behavior. For example, for δ = 3 and a simulation run with 1,000 episodes,

door states change at episodes 250, 500, and 750 in all simulation runs.5 Door states are initialized

at random but require that at every point in time, two doors are open and the other two are closed.

The door initialization strategy ensures that the expected reward remains constant throughout a

simulation run. Given our operationalization of Environmental Change, higher learning rates, as

described earlier, are beneficial because the agent benefits from rapidly learning the new mapping

of a state-action pair to the next state.

2.3.5 Execution Flow

We now combine the environment, the learning mechanism, and the organizational elements of

interest into a simulation procedure that we summarize visually in Figure 2.5 and algorithmically

5The organizational literature on dynamic environments often models environmental change as punctuated changes
that interrupt periods of stability (e.g. Tushman and Anderson (1986); Romanelli and Tushman (1994)). We also
test an alternative specification of Environmental Change where doors change smoothly at random episodes, which
corresponds to continuous environmental change as in Brown and Eisenhardt (1997).
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in Algorithm 1. Table 2.1 summarizes the pseudocode notation and Table 2.2 lists parameters

and parameter values along with a description and operationalization. All parameter values have

been tuned to match the functional forms and characteristics described earlier while scaling to

appropriate magnitudes that match our research design.

Figure 2.5 shows the execution flow of our simulation. Dashed arrows represent organization-

level connections. Solid arrows represent episodic connections. The starting point is denoted as

Start in the Organization plate. At the start of an episode, the organization makes an ϵ-greedy de-

cision that decides which domain it will enter. The organizational decision at the start is analogous

to a four-armed bandit model, in which an agent selects the arm with the highest expected reward,

1− ϵ percent of the time. We implement indirect learning from past experience as described in Sut-

ton and Barto (2018, p.161) to backpropagate changes in the environment more quickly, such that

the expected rewards per domain at the start state better reflect the value of entering a domain.

For indirect learning, we let each agent sample ρ state-action transitions at each step of an episode

in Adaptation Mode. The next step in the diagram shows the organizational decision to automate

the episode or not, based on the value of τ . When automating, the agent’s policy is to execute a

fixed argmax sequence of actions – the Automation Mode.6 When not automating, the agent takes

ϵ-greedy actions – the Adaptation Mode. Next, the agent evaluates the selected action, A, against

the environment, where doors change based on the value of δ. If the agent is not yet done with the

episode, it (1) skips learning in the Automation Mode or (2) updates its Q-values in the Adaptation

Mode (governed by parameters α, ρ, ν, and λ) before executing the next step. Finally, the episode

ends when the agent reaches the goal state (G) or attempts a closed door (D) – the agent is sent

back to the start (S ) in both cases. The organization now computes coordination costs (governed

6We assume that organizations can discard invalid automation routines, e.g., routines that never reach the goal state.
Therefore, the organization does not automate the first few episodes as it needs to make a first pass through the
environment. In a similar context, MacCormack et al. (2013) suggests that organizations can distinguish valid from
invalid innovations.
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by parameters η, ϕ, and λ) and observes the goal reward gained and the number of steps it took

the agent to reach the goal.

S Set of all non-terminal states A(s) Set of all actions available in state s
t Discrete time step e Episode
At Action at step t Astart Action at start for domain selection
St State at step t Rt Reward at step t
Sstart Start state De Domain in episode e (1, 2, 3, or 4)
Sgoal A goal state Me Mode in episode e
Sdoor A closed door state Qi Q-values of agent in the current domain
Qstart Q-values start Proutine Sequence of actions for automation

Table 2.1: Summary of pseudocode notation.

One might argue for empirical validation to ensure that the simulation results are generalizable

as opposed to particularities of the simulation model. Davis et al. (2007) suggest two avenues for

empirical validation. First, one could use large-scale empirical data to validate the predictions

generated by the simulation model. Second, one might conduct case study interviews to generate

qualitative data to assess the generalizability of the simulation results. Given that organization-level

data on automation initiatives are scarce as reported by a recent National Academies of Science

Report (NAS 2017) and case studies on automation initiatives lie outside the scope of the current

study, we mitigate concerns about the generalizability of our results with sensitivity checks for

alternative specifications as reported in Section 2.4.5.

To summarize, our simulation consists of a grid world environment and an organization with λ

agents that step through the environment. The DOL (λ) impacts the goal rewards and the learning

ability of the organization (Becker and Murphy, 1992). Automation (τ) alters the behavioral

policy to a fixed argmax sequence of actions based on the Q-values of the agent for that domain.

Environmental Change (δ) defines how frequently doors open or close. In the next section, we will

examine how organizational net rewards change for different paramater configurations of the DOL,

Automation, and Environmental Change.
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Algorithm 1: Dyna-Q with Division of Labor, Automation, and Environmental Change

1 Initialize an organizational-level Model(s, a) and λ independent Q(s, a) for all s ∈ S and a ∈ A(s).
2 Initialize Q-values to zero. Initialize half the environment doors as open, half as closed.

3 Set door switching episodes based on δ. Set automated episodes based on τ . Initialize S0 ←− Sstart

4 while e < episodes:

5 if λ == 1: // Division of labor (λ)

6 Qstart ←− Q1

7 elif λ == 2:

8 Qstart ←−
{
Q1(Sstart, {up, down} ), Q2(Sstart, {left, right} )

}
9 elif λ == 4:

10 Qstart ←−
{
Q1(Sstart,up), Q2(Sstart,down), Q3(Sstart, left), Q4(Sstart, right)

}
11 Astart ←− select ϵ-greedy action across all 4 action values in Qstart

12 Me ←− Adaptation Mode

13 De ←− select domain given Astart(domain for episode)

14 if e ∈ list of automated episodes: // Automation (τ)

15 Proutine ←− Construct routine from QDe as argmax sequence of actions from start

16 Me ←− Automation Mode

17 else:

18 Proutine ←− None

19 while St ̸= Sgoal or St ̸= Sdoor; loop through steps for t = 0, 1, 2, ... :

20 St ←− current state

21 if Me == Automation Mode :

22 At ←− next action from Proutine

23 else:

24 if t == 0:

25 At ←− Astart

26 else:

27 At ←− ϵ-greedy(St, Qi)

28 Take action At ; observe reward Rt and state St+1

29 if Me == Automation Mode : // Automation vs. Adaptation Mode

30 No learning, no experience gained

31 else:

32 Continue with standard tabular Dyna-Q learning (Sutton and Barto, 2018, p. 164)

33 Net reward = Rt − 1 · t−

ϕ · η (λ
5
3 − 1) , if Me == Automation Mode

1 · η (λ
5
3 − 1) , if Me == Adaptation Mode

(see Equation 2.6)

34 St+1 ←− Sstart

35 if e ∈ list of door switching episodes: // Environmental change (δ)

36 Open all doors; randomly select two new doors to close

37 e += 1
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2.3.6 Parameter Configuration

We configure the simulation to execute 10,000 runs of 1,000 episodes for each of the different

combinations of DOL, Automation, and Environmental Change conditions that are summarized in

Table 2.3.

None Intermediate High

Division of labor (λ) 1 2 4

Automation (τ) 0 0.5 0.95

Environmental change (δ) 0 10 1000

Table 2.3: Main parameter values.

2.4 Results

We organize our results as follows. First, we validate that our simulation captures the trade-off

between the benefits and costs of the division of labor that constitute the core of the Becker and

Murphy (1992) model. Second, we investigate how Automation and environmental change jointly

shape net rewards. Finally, we examine density estimates of the net reward and trace the trajectory

of learning over time.

2.4.1 Baseline

We first validate the benefits and coordination costs with no Environmental Change and no Au-

tomation (Becker and Murphy, 1992). Figure 2.6, Panel (A), shows functional forms for the benefits

and coordination costs that is consistent with the properties in Becker and Murphy (1992). Panel

(B) plots the benefits7 and coordination costs as they arise in our simulation. The result validates

that coordination costs and the division of labor are positively related and that an intermediate

7For a direct visual comparison of Becker and Murphy (1992) and our simulation output, the benefits in Panel (B)
have to equal the goal reward net of the step costs because the step costs are a feature of our behavioral learning
model that is not present in the formal model in Becker and Murphy (1992).
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DOL results in the highest net reward.8 Panel (C) plots the difference between the benefits and

costs, the accumulated net reward to the organization9, our main outcome of interest.

Figure 2.6: Baseline validation of DOL.

2.4.2 Automation

We now introduce Automation. Figure 2.7, Panel (A), shows the accumulated net reward in a

stable environment across levels of DOL for different levels of Automation. The dark grey line (no

Automation) corresponds to the baseline result in Figure 2.6, Panel (C). When adding Automation

in stable environments, the net reward generally increases. Automation is particularly beneficial

for highly specialized knowledge due to the considerable reduction in coordination costs. In short,

automation routines are generally beneficial in stable environments.

Upon further examination of Figure 2.7, Panel (A), however, one can see that with no DOL

in stable environments, intermediate Automation outperforms high Automation. We observe this

result because Automation is greedy: it automates the first path that reaches the goal, which might

not be the short path with the highest net reward. Intermediate Automation is more likely, on av-

erage, to find and automate the short path to the goal, resulting in higher accumulated net rewards.

8We validate that the functional form requirements for benefits in Becker and Murphy (1992) hold when introducing
Automation and Environmental Change. The functional form for coordination costs does not depend on Automation
or Environmental Change.

9The accumulated net reward equals the sum of episodic net rewards across all episodes, averaged across all indepen-
dent simulation runs.
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Figure 2.7: Automation by levels of DOL and Environmental Change.

2.4.3 Environmental Change

We add Environmental Change in Panel (B) and Panel (C) of Figure 2.7. In general, dynamic

environments reduce net rewards as agents invest in learning and adapting to unexpected changes

in the environment. In Panel (B), one can see that intermediate Automation strictly outperforms

high Automation. As doors change in the environment, intermediate Automation is more flexible

while high Automation gets locked into a fixed sequence of actions that can become unfit with the

environment. Despite higher coordination costs, no Automation outperforms high Automation for

low and intermediate DOL. In general, these results provide evidence that automation can incur

indirect opportunity costs in dynamic environments (Proposition 2 ).

In Figure 2.7, Panel (C), Environmental Change is random: doors change at each episode, elim-

inating any benefits to learning. High Automation strictly outperforms less aggressive automation

strategies. Agents do not benefit from learning these rapid changes, making the automation of

existing knowledge a more effective strategy. These results are in line with Posen and Levinthal

(2012), who find that under high environmental turbulence, the appropriate response can be a

“focus on exploiting existing knowledge and opportunities.”
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The results for Automation and Environmental Change suggest that Automation can be bene-

ficial to the organization in environments where learning and adaptation are ineffective, shown in

Figure 2.7, Panel (A) and Panel (C). However, in environments where learning and adaptation are

beneficial, plotted in Figure 2.7, Panel (B), automation incurs an indirect cost of lost learning and

slow adaptation that results in low net rewards when aggressively automating.

2.4.4 Opportunity Costs

To further investigate why high Automation underperforms for particular levels of Environmental

Change, we turn to the dynamic trade-off between efficiency and learning in Equation 2.6. We

measure the emergent opportunity costs of lost learning as the difference between the actual net

reward per episode and the best possible net reward per episode that an oracle with full information

could attain. Figure 2.8 shows the coordination costs (dark grey) and opportunity costs (light grey)

by Automation and Environmental Change with intermediate DOL (λ = 2). Coordination costs

generally decrease with automation, consistent with Proposition 1. Opportunity costs generally rise

as the environment changes more frequently. When the environment occasionally changes in Panel

(B), and the organization aggressively automates, opportunity costs rise because the automation

routine is unfit with the environment, consistent with Proposition 2. Opportunity costs have two

sources: (1) the organization automates the long path and cannot find the short path with an

open door because automation cannot take exploratory actions and (2) the organization automates

the short path with an open door but cannot adapt away from that path when the door closes.

In essence, automating when learning and adaptation are beneficial can be dangerous due to the

opportunity costs of lost learning and slow adaptation.
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Figure 2.8: Coordination costs and opportunity costs at an intermediate DOL.

2.4.5 Sensitivity

We examine the sensitivity of our results to alternative specifications of (1) Automation, (2) En-

vironmental Change, (3) learning rates, (4) levels of exploration, and (5) functional forms. The

results are robust in all cases. First, we altered levels of Automation to include τ = 0.25, τ = 0.75,

and τ = 1. Second, we evaluate levels of Environmental Change when δ = 5 and δ = 100. We

also change the operationalization of Environmental Change from punctuated to smooth changes.

While the number of door changes per simulation run, δ, remains unchanged, the door changes

occur at different episodes across simulation runs. In the aggregate across all simulation runs,

the learning trajectory appears smooth rather than punctuated.10 The results are robust to the

alternative levels of Environmental Change and the alternative operationalization. Third, we set

the learning rate (α) and the learning advantage (ν) in Equation 2.8 to pairs where (α = 0.3,

ν = 0.35) and (α = 0.7, ν = 0.15). Fourth, we examine the results with lower (ϵ = 0.05) and

higher (ϵ = 0.15) exploration rates. Our results for alternative learning rates and exploration rates

remain robust. Finally, we vary the functional form specifications of the goal reward (we replaced

the natural logarithm in Equation 2.7 with the logarithm with base 2 and 10, the square root, and

10We include the validation results of smooth Environmental Change in Appendix A.3.
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1− 1
λ+1), learning rate (we replaced the natural logarithm in Equation 2.8 with the logarithm with

base 2 and 10, the square root, and 1− 1
λ), and coordination costs (we replaced the exponent equal

to 5
3 in Equation 2.9 with 4

3 and 2) to find that the results remain robust.

2.4.6 Density Estimates

To gain a deeper understanding of the impact of automation routines on the net reward, we inspect

the distributional characteristics for different levels of Automation with intermediate DOL (λ = 2).

Figure 2.9 below shows the Gaussian kernel density estimates of accumulated net rewards by levels

of Environmental Change and levels of Automation. While the densities for low and intermediate

Automation are approximately normally distributed across all levels of Environmental Change, the

density for high Automation resembles a bimodal distribution in stable environments (Panel A) and

highly dynamic environments (Panel C). Further examination of the standard errors with Bessel’s

correction shows that the variability of accumulated net rewards across simulation runs increases

with Automation, irrespective of the level of DOL and Environmental Change. In short, the density

estimates suggest that automation can increase the variability of net rewards because locking into

an automation routine inhibits adaptation.

Figure 2.9: Kernel density estimate by levels of Environmental Change with intermediate DOL.
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One might find it counter-intuitive to see that outcome variability increases under automation,

given that automation cannot select random ϵ actions. The reason for observing this result lies in

how we operationalized Environmental Change. There are two paths to the goal for each domain

in our grid-world. When automation executes the short path and the door closes, the net reward

per episode is at the lowest possible value. However, when automation executes the short path and

the door is open, the net reward is the highest possible value.

Given that automation does not generate new knowledge, our results correspond to the obser-

vation by March (1991, p.83) that “increased knowledge seems often to reduce the variability of

performance rather than to increase it.” March argues that knowledge can reduce the variability

in the time it takes to complete a task and the quality of task performance. Similarly, the density

estimates show that more knowledge (i.e., no Automation) reduces the variability of net rewards.

2.4.7 Analysis of Learning Trajectories

In this section, we disaggregate the results above to understand the dynamic learning behavior for

different levels of Automation. We focus on the case of intermediate DOL (λ = 2) and intermediate

Environmental Change (δ = 10). The results for the other combinations of values of DOL (λ) and

Environmental Change (δ) are in Appendix A.1.

We first calculate the set of possible episodic net rewards based on Equation 2.6. The goal

reward per episode equals π · ln(λ + 1) = 10 · ln(2 + 1) ≈ 11 (Equation 2.7) and the coordina-

tion costs per episode equal η · (λ
5
3 − 1) ≈ 0.9 · (3.17 − 1) ≈ 2 (Equation 2.9). In an episode

through the grid-world (Figure 2.3), agents make six steps when attempting a closed door, seven

steps for the short path to the goal, and 11 steps for the long path to the goal. The cost of a

single step equals 1. Table 2.4 shows the possible episodic net rewards by Automation Mode and

Adaptation Mode. One can see that the short path is the most rewarding but risky path to the goal.
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Automation Mode Adaptation Mode

Short path (open door): 11− 7− 0.5 · 2 = 3 11− 7− 2 = 2

Long path: 11− 11− 0.5 · 2 = −1 11− 11− 2 = −2
Short path (closed door): 0− 6− 0.5 · 2 = −7 0− 6− 2 = −8

Table 2.4: Possible episodic net rewards by mode.

Myopic Automation

Figure 2.10, Panel (A), shows the episodic net rewards11 for different levels of Automation. One

can see the dips in the δ = 10 episodes in which doors can open or close. The net reward for those

episodes drops as the agent hits the newly closed door and fails to reach the goal reward, resulting

in the lowest possible net reward, as calculated above. High Automation performs well up to the

first environmental change at episode 91. After the first door change, however, automation incurs

low net rewards as it is unable to re-learn the changes in the environment.12 The episodic net

reward smaller than −1 suggests that automation might be locked into the short path with a closed

door for some time. Automation behaves myopically as it locks into the first path it can find to

reach the goal state, optimizing the short-run while overlooking the long-run consequences of such

a lock-in (Levinthal and March, 1993). Panel (B) shows the cumulative net rewards, underlining

the detrimental consequences of myopic automation to the organization over time. The high initial

net reward can provide a misleading signal that the automated routine performs well.

While the average episodic net reward of high Automation in Figure 2.10, Panel (A), is low, the

minimum episodic net reward is consistently higher than for lower levels of Automation. We observe

this behavior because, without Automation, the agent is more likely to find the short-but-risky path

through an open door that yields the worst possible outcome when the door closes unexpectedly.

11The episodic net rewards represent a mixture of realized net rewards across 10,000 simulation runs.
12Figure A.2 in Appendix A.2 validates that the opportunity costs increase after the first environmental change.

46



Figure 2.10: Net rewards at an intermediate DOL and intermediate Environmental Change.

As such, the inability to explore under automation can act as a hedge against the brief but very

low net rewards before adapting away from the closed door.

Failure to Adapt

Myopic automation can be detrimental because the organization is unable to efficiently adapt

away from the short path when the door closes. Figure 2.11 shows the average path shares across

simulation runs per episode by levels of Automation. The dark grey area shows the share of paths

where the agent attempts a closed door. These dark grey areas spike only for a few episodes under

no and intermediate Automation in Panel (A) and Panel (B), indicating that agents can re-learn

and adapt. High Automation in Panel (C), however, takes a long time to adapt, frequently incurring

the lowest possible net rewards.

Summarizing across all results, we find that automation can partially escape the coordination

costs that limit the division of labor (Proposition 1 ). However, automation can incur hidden

opportunity costs due to lost learning and slow adaptation (Proposition 2 ). Moreover, automation

can exhibit myopic behavior when it locks into the first viable path with negative consequences

for the long-term net rewards. Our approach to studying the impact of automation differs from
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Figure 2.11: Path shares at an intermediate DOL and intermediate Environmental Change.

existing research (e.g., Dogan and Yildirim (2021)) in that our simulation accounts for the inability

of automation to learn new knowledge and adapt (Autor, 2015). The results provide novel evidence

that automated routines can incur indirect opportunity costs that complicate capturing the returns

from the division of labor. In the next section, we discuss how organizations can manage these

hidden automation costs.

2.5 Discussion

Automation can introduce a tension between economizing on coordination costs and incurring

opportunity costs in the context of dynamic environments. We designed a reinforcement learning

simulation to investigate how automation and environmental change interact. The results show that

automation can partially escape the coordination costs that limit the division of labor. However,

the results suggest that hidden opportunity costs due to lost learning and slow adaptation can

reduce the returns to the division of labor and result in myopic automation behavior. Given these

results, we now discuss ways organizations can manage this tension when adopting automation in an

organization. We anchor our discussion in the research on dynamic capabilities and organizational

ambidexterity.
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2.5.1 Dynamic Capabilities

Teece et al. (1997) define the concept of dynamic capabilities as “the firm’s ability to integrate, build,

and reconfigure internal and external competencies to address rapidly changing environments”, but

leaves open how organizations can develop and refine such dynamic capabilities. In theorizing about

the development and evolution of dynamic capabilities, Zollo and Winter (2002) re-define dynamic

capabilities as “a learned and stable pattern of collective activity” that generates and maintains an

organization’s operating routines. Zollo and Winter refer to operating routines as the organization’s

operational activities. They argue that learning mechanisms for accumulating, articulating, and

codifying knowledge shape an organization’s operating routines in two ways. There exists a direct

link between learning and modifying operating routines and an indirect link where learning impacts

dynamic capabilities, which impact operating routines (Figure 1 in Zollo and Winter (2002, p.340)).

The authors conceptualize dynamic capabilities as “the firm’s systematic methods for modifying

operating routines.” One can regard automation as an operating routine that evolves through the

co-evolution of learning mechanisms and dynamic capabilities. While the results in this study show

how automation can codify and execute existing knowledge, we build on Zollo and Winter to discuss

how managers might develop dynamic capabilities to manage automation routines systematically.

For example, consider a commercial bank with an organizational routine for ensuring the secu-

rity and compliance of transactions. Today, banks like HSBC use machine learning fraud detection

systems to identify fraudulent transactions (Wilson and Daugherty, 2018). Zollo and Winter (2002)

separate routines depending on the rate of environmental change. In stable environments, it might

be enough for bank employees to complete a single learning episode, automate the knowledge they

have accumulated about detecting fraudulent transactions, and improve the routine incrementally.

In environments of rapid change, however, using the same sequence of actions can be hazardous
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because the value of existing value can deteriorate (Posen and Levinthal, 2012) as our results

on myopic automation show. A dynamic capability can modify the automated operating routine

through accumulating new knowledge (e.g., on how the characteristics of fraudulent transactions

change), articulating knowledge (e.g., coordinating with team members to identify appropriate

modifications), and codifying knowledge (e.g., re-training the predictive model to identify fraud-

ulent transactions accurately) (Zollo and Winter, 2002). One can view a dynamic capability for

automation as a systematic pattern of collective activity that integrates learning with automation,

ensuring the continuous fitness of automation routines. As such, the managerial challenge might

lie in handling the tension between flexibility through learning and efficiency through automation.

2.5.2 Organizational Ambidexterity

One view of how managers can resolve the tension between flexibility and efficiency emphasizes am-

bidexterity. The organizational ambidexterity literature studies the balancing and synchronization

between exploring new opportunities and exploiting existing capabilities (Tushman and O’Reilly III,

1996). Organizations can use various mechanisms to promote ambidexterity: Structural mecha-

nisms include semistructures that balance order with a lack thereof (Brown and Eisenhardt, 1997),

separating exploratory and exploitative activities into different integrated business units (Levinthal,

1997), and outsourcing a type of activities and establishing partnerships (Holmqvist, 2004). Fur-

thermore, a particular emphasis lies on the role of managers to shape internal processes (Tushman

and O’Reilly III, 1996) and contextual factors such as support and trust that can create ambidex-

trous capabilities (Gibson and Birkinshaw, 2004). Future research might further investigate how

different ambidexterity mechanisms can impact the efficiency of automation.

Ambidexterity only becomes a dynamic capability to the organization when exploratory and

exploitative activities are strategically integrated (O’Reilly III and Tushman, 2008). Our results
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show that successful automation requires integrating up-to-date knowledge about the environment.

Organizations that exclusively focus on learning and accumulating new knowledge miss out on the

productivity benefits of automation. Organizations that exclusively focus on automating existing

knowledge incur opportunity costs due to incongruity with the environment. Under this view, a

dynamic capability for automation consists of integrated learning and automation activities that

systematically refine and leverage organizational knowledge. As such, our discussion emphasizes

the complementarity of humans and machines in capturing value from the division of labor (Autor

et al., 2003; Wilson and Daugherty, 2018).

2.6 Conclusion

In this study, we investigate how automation can change the returns from the division of labor.

Given the context of changing environments and behavioral learning, we design a reinforcement

learning simulation to find that automation can be beneficial when efficient execution is more impor-

tant than learning and adaptation. However, when adapting to environmental change is beneficial,

automation can incur considerable opportunity costs due to lost learning and slow adaptation as

well as increased return variability. In such environments, superstitious automation can lead to

myopic behavior with detrimental consequences for an organization that aggressively automates.

Our insights have implications for how organizations manage automation. Based on our results,

the discussion suggests that organizations can develop a dynamic capability for automation that

combines learning mechanisms with automation to ensure that automation routines are congruent

with the environmental requirements (Teece et al., 1997; Zollo and Winter, 2002). While the

literature on organizational ambidexterity (Tushman and O’Reilly III, 1996) suggests a balance

between exploitation of the known and exploration of the new, our results shift the focus toward

balancing human learning with machine automation. These results are in line with recent studies
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on the effect of automation on labor, which suggest that successful organizations leverage the

complementary strengths of humans and machines in creating and capturing value from specialized

knowledge (Choudhury et al., 2020; Agrawal et al., 2021).

Our study has several limitations that open up potential avenues for future research. First,

the focus of this study is on the impact that automation can have on the returns to the division

of labor in uncertain environments. Future research could investigate how endogenous automation

strategies can balance the tension between economizing on coordination costs and incurring oppor-

tunity costs. Second, the current implementations of the benefits to the DOL and coordination

costs are determined algebraically and are exogenous to the learning problem; however, firms might

adjust the DOL and coordination mechanisms during learning. For example, coordination costs

might relate to how frequently the organization decides to shift between knowledge domains and,

therefore, between different agents. Future work might endogenize the DOL and coordination costs.

The OrgSim-RL platform can serve as a starting point for implementing endogenous conceptualiza-

tions of automation, the DOL, and coordination costs. Second, the organization in our simulation

currently pays no transition costs when starting or ending automation, and agents pay no “mes-

saging costs” to communicate or internalize feedback from the environment. However, changing

procedures (Feldman and Pentland, 2003) and sense-making about the environment (Weick, 1995)

in the real world involve their own costs and dynamics. Future work could examine such factors.
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Chapter 3

Data Clans: An Exploration of

the Organization of Artificial Intelligence∗

3.1 Introduction

“For more than 250 years the fundamental drivers of economic growth have been

technological innovations . . . The most important general-purpose technology

of our era is artificial intelligence, particularly machine learning.”

— Brynjolfsson and McAfee (2017)

General-purpose technologies (GPTs) such as the steam engine, the personal computer, and the

internet often require significant investments into complementary intangible assets such as business

processes, knowledge, and software to create value for organizations (Brynjolfsson et al., 2021).

Scholars have suggested that artificial intelligence (AI) exhibits characteristics of a GPT (Cockburn

et al., 2018; Brynjolfsson et al., 2021) as it becomes increasingly pervasive, improves over time,

and can spur complementary innovations (Bresnahan and Trajtenberg, 1995). While management

scholars have investigated the role of AI for innovation (Cockburn et al., 2018), human capital

(Choudhury et al., 2020), and the tension between human labor automation and augmentation

(Raisch and Krakowski, 2020), for example, foundational strategic management theory emphasizes

the importance of organizing strategic asset stocks (Barney, 1986b; Dierickx and Cool, 1989).

The resource-based view of the firm suggests that a sustainable competitive advantage requires

the possession of strategic assets that are rare, difficult to trade (i.e., immobile), difficult to imitate,

and difficult to substitute (Wernerfelt, 1984; Barney, 1991). While some strategic assets can be

∗The content of this chapter is based on: Hofer, M. W. (2022). Data Clans: An Exploration of the Development of
Artificial Intelligence Assets in Incumbent Organizations. Under review at the Journal of Engineering and Technology
Management.
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bought and sold on strategic factor markets (Barney, 1986b), other assets cannot be traded and must

be accumulated and developed inside a firm (Dierickx and Cool, 1989). In particular, intangible

assets such as knowledge, organizational culture, and custom software systems are often developed

internally as intangible assets can be co-specialized and interdependent, which makes them difficult

to decompose and trade on strategic factor markets (Teece, 1998). So far, the asset stocks necessary

for developing and organizing AI capabilities have received little attention in the management

literature.

AI is a new technology of economic and organizational significance (McAfee et al., 2012;

Von Krogh, 2018) as the following industry observations suggest. The 2021 McKinsey Global

Survey on AI, based on responses from 1,843 participants, finds that 56% of the organizations sur-

veyed have adopted AI in at least one business function (Chui et al., 2021). Furthermore, the 2022

AI Index Report curated by Stanford’s Institute for Human-Centered AI (HAI) reports that total

private corporate investment in AI was $93.54 billion in 2021, more than double the total private

corporate investment in 2020 (Zhang et al., 2022). Specific examples of recent real-world AI use

cases in incumbent organizations include improving the drug discovery and development process at

Pfizer (Fleming, 2018), streamlining the talent acquisition process at Unilever (Marr, 2018), track-

ing chicken inventory at Tyson Foods (Castellanos, 2020), detecting machine maintenance needs

at E.ON (Evgeniou and Boza, 2020), and detecting fraudulent transactions at UBS (Walsh, 2020).

At the time of this writing, the list of AI use cases is expanding rapidly.

One factor underpinning the organizational adoption of AI is recent technological innovations

in computer vision and natural language processing. The following technical advances described

in The AI Index Annual Report by Stanford University (Zhang et al., 2022) exemplify the recent

technological progress in AI. In computer vision, a team from Microsoft Research, for example,

surpassed human-level performance in 2015 on the task of classifying images into one of the nearly
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20’000 classes of the ImageNet dataset (He et al., 2015). In natural language processing (NLP), the

SuperGLUE benchmark contains tasks such as question answering, reading comprehension, and

common sense reasoning to evaluate natural language understanding (Wang et al., 2019). He et al.

(2021) trained a deep learning model with 1.5 billion parameters to surpass human performance on

SuperGLUE in 2021. Overall, the AI Index Reports show that the past decade has witnessed several

technological innovations that organizations aim to exploit as the growing amount of corporate

investments into AI underlines (Zhang et al., 2022).

Real-world machine learning (ML)1 systems in an organization contain numerous components

that are interdependent, which can complicate capturing value from a technological innovation as

Teece (1986) points out. Sculley et al. (2015) draw attention to such complex interdependencies

between components, conceptually shown in Figure 3.12. For example, the authors describe data

dependency, in which case there might be one engineering team responsible for the input data

and another engineering team responsible for maintaining the statistical learning model. In such

organizational settings, updating the input data by re-calibrating particular features might improve

data quality but can negatively affect the system consuming these new data. Put differently, the

data asset and the modeling asset are codependent. Another example is a code dependency, which

broadly refers to situations in which software code depends on other code (Sculley et al., 2015). The

authors describe how general-purpose ML software packages might require engineers to write “glue

code” to format the data going into the package and coming out of it. As package specifications

can change, maintaining such glue code can be expensive. In short, technology-related asset stocks

for real-world ML systems can contain complex interdependencies between individual assets.

1Consistent with Raisch and Krakowski (2020), we view AI as comprising rule-based systems and machine learning
(ML) approaches. Rule-based systems rely upon explicitly defined, discrete rules to make predictions. In contrast,
ML algorithms can recognize patterns in large amounts of data. In this study, we use a broad definition of AI,
containing related areas of ML, rule-based systems, business analytics, and big data.

2Reproduced with the written permission of the authors.
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Figure 3.1: Components of real-world ML systems (Sculley et al., 2015).

Interdependencies, however, do not only exist in the technical realm of AI. The strategic man-

agement literature has found interdependencies between information technology (IT) and organi-

zational assets. For example, Powell and Dent-Micallef (1997) investigate the retail industry to

discover that ITs alone do not generate sustainable performance advantages but that firms use IT

to leverage existing assets to capture value. In particular, the authors find that using IT to leverage

human assets, such as a flexible culture, is particularly predictive of overall firm performance. Sim-

ilarly, Tambe (2014) show that investments in Hadoop, a technology to manage large amounts of

data, are associated with 3% faster productivity growth, but only for firms with significant existing

data assets and employees with complementary technical skills. Finally, Rock (2019) finds that the

surprise launch of Google’s TensorFlow, a machine learning software package, is associated with a

4-7% increase in market value, but only for firms with existing AI skills. In brief, the management

literature shows interdependencies between technology-related and organizational assets such as

human capital and large-scale proprietary data.

The discussion up to this point leads to the two main starting points for our investigation.

First, we are witnessing an AI revolution of economic and organizational significance (Von Krogh,

2018). Second, existing literature examining IT and AI in organizations suggests that organizations

coordinate a stock of interdependent assets to create and capture value from the new technology
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(Tambe, 2014; Rock, 2019). These starting points lead to the research question, which is purpose-

fully general to guide data collection and analyses without leading to “prior hypothesis bias” (i.e.,

confirmation bias) (Gioia et al., 2012).

Research Question: What asset stocks do managers at incumbent organizations
focus on to develop artificial intelligence capabilities?

Given the novelty and complexity of AI solutions (Von Krogh, 2018), we argue that managers

are important informants for understanding AI assets because (1) they focus their attention and (2)

select initiatives to pursue. First, the attention-based view of the firm suggests that managerial at-

tention is central to strategic choice, particularly when adapting to changing environments (Ocasio,

1997). For example, Eggers and Kaplan (2009) investigate attention in the context of incumbent

firms to find that managerial attention toward new technologies is associated with faster entry while

attention to existing technologies is associated with slower entry. Ocasio and Joseph (2005) suggest

that attention structures can impact an organization’s strategic plan, which guides the allocation of

resources in organizations. Second, managers are agents of selection that allocate resources to build

and organize strategic asset stocks for the organization (Burgelman, 1991; Mollick, 2012). Taken

together, managerial attention and selection suggest that managers’ perspectives are particularly

salient for understanding AI assets, in line with recent calls for a renewed focus on managers in

management scholarship (Aguinis et al., 2022).

Data measuring the uses of AI in organizations are scarce (Seamans and Raj, 2018). Therefore,

we conduct an inductive study and analyze semi-structured interviews with 19 managers exposed

to AI initiatives at nine incumbent organizations with an office presence in Switzerland. Based

on managers’ exposure to and interpretation of the subject area, we first computationally explore

the topics that managers mention. The topic model analysis shows that managers talk about
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human-related and technology-related aspects of applying AI and use cases in areas such as asset

management, trading, and supply chain. Second, we manually code AI assets that managers

describe during the interviews to find that managers talk most frequently about investments into

building an organizational culture and developing data assets. Finally, in discussing the inductive

implications for theory, we develop theory to suggest that a strong, data-driven organizational

culture – what we define as a Data Clan – might be a mechanism to facilitate intraorganizational

coordination of interdependencies between AI assets in unpredictable environments.

We aim to contribute to the management literature investigating AI in organizations (Von Krogh,

2018; Raj and Seamans, 2019; Raisch and Krakowski, 2020). First, the qualitative evidence shows

that managers frequently talk about allocating resources to building a Data Clan to support AI

initiatives. Second, we develop theory to suggest that a Data Clan might be a mechanism for

intraorganizational coordination in the face of complex asset interdependence and unpredictable

environments. As such, we argue that investigating human coordination mechanisms such as a

Data Clan can be a useful approach to developing theory on organizing interdependent assets in

dynamic environments. While industry evidence suggests the importance of culture for AI ap-

plications (e.g., Bean (2022)), we are the first to our knowledge to investigate AI asset stocks in

the management literature. Finally, we aim to help practitioners adopt an informed and realistic

approach to governing AI initiatives.

We organize the paper as follows. Section 3.2 reviews the theoretical literature on the resource-

based view, asset accumulation, and interdependence. Section 3.3 describes the research design

and data collection. Section 3.4 describes the sample. Section 3.5 analyses the interview data with

an automated hierarchical topic model and manual coding to extract several inductively derived

AI asset stocks from the data. Finally, we revisit the theoretical literature on intraorganizational

coordination to discuss the results in Section 3.6. We conclude in Section 3.7.
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3.2 Theory

Given our focus on the asset stock for AI in organizations and the potential interdependence between

AI assets, we briefly review the theory on the resource-based view, asset accumulation, and asset

interdependence in the context of new technologies like AI. While we describe the relevant literature

prior to conducting interviews, we were careful to only start consulting existing literature in tandem

with the interview data to avoid a potential confirmation bias (Gioia et al., 2012).

3.2.1 Resource-Based View

The resource-based view provides a framework for how firms with strategic asset stocks3 can gain

a competitive advantage (Barney, 1986b; Dierickx and Cool, 1989). Starting with Penrose (1959),

researchers have proposed a resource-based view of the firm as an alternative to viewing strategic

management as primarily focused on industry structure and market position (Porter, 1980). Barney

(1986b, 1991) and Dierickx and Cool (1989), among others, have further developed the resource-

based view, arguing that ownership of strategic asset stocks can lead to sustained competitive ad-

vantage and superior firm performance when assets are valuable, rare, inimitable, non-substitutable,

and immobile. Barney (1986b) theorizes that assets can be bought and sold in “strategic factor

markets”, a conceptual market for trading factors necessary to implement a strategy. According

to Barney (1986b), when strategic factor markets are perfectly competitive, the price of these as-

sets will reflect the economic value they generate once they are applied to implement a strategy.

However, strategic factor markets may be imperfectly competitive when firms have different ex-

pectations about the future value of a strategic asset. In other words, firms can generate value by

3We follow Dierickx and Cool (1989) to distinguish between “resources” and “assets” conceptually. In the words of
Dierickx and Cool, firms allocate “resource flows to accumulate a desired change in strategic asset stocks.” The
asset stocks refer to all capabilities, organizational processes, (tacit) knowledge, and information firms can use to
implement their strategies.
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having better expectations about the future value of strategic assets (i.e., information asymmetry)

or luck (Barney, 1986b).

3.2.2 Asset Accumulation

Accumulating strategic asset stocks, however, can be challenging. Dierickx and Cool (1989) point

out that some assets (e.g., a reputation for quality) are not readily tradeable on a strategic factor

market, requiring organizations to develop such assets internally (e.g., by following a rigorous set

of quality controls). Consequently, Dierickx and Cool (1989) view organizations as containing a

certain level of strategic asset stocks, which are accumulated by adjusting appropriate time paths

of resource flows over a period of time. Competitors will try to follow the accumulation paths to

imitate an organization’s privileged asset position. Dierickx and Cool (1989) identify several process

factors that affect the relative difficulty through which assets are accumulated: time compression

diseconomies, asset mass efficiencies, the interconnectedness of asset stocks, asset erosion, and

causal ambiguity.

Issues around information, markets for ideas, timing, and measurement can further complicate

asset accumulation. Arrow (1972) argues that generating and purchasing information, an intan-

gible asset to the firm, is important, but contracting for information is difficult in the context of

uncertainty. Moreover, markets for exchanging ideas and technologies are fundamentally incom-

plete (Gans and Stern, 2010), making effective trading of intangible assets difficult. Finally, as

organizations adopt a new GPT like AI, they commit measurable resources to build largely unmea-

sured intangible asset stocks over prolonged periods of time. Brynjolfsson et al. (2021) describe the

measurement aspect of this phenomenon, the Productivity J-curve, which posits that productivity

growth will initially be underestimated because organizations invest measurable capital and labor

to build intangible assets. Later, measured productivity growth overestimates true productivity

60



growth because of the benefits flowing from these hidden, largely unmeasured intangible assets

(Brynjolfsson et al., 2021). In brief, the literature suggests that numerous factors can impede the

development of valuable intangible asset stocks.

3.2.3 Asset Interdependence

Asset interdependence can be of particular importance in the context of a new GPT like AI because

firms often fail to obtain significant economic returns from the technology alone, but rather, firms

require suitable complementary assets to profit from the innovation (Teece, 1986; Brynjolfsson

et al., 2021). Similarly, Clemons and Row (1991) argue that complementary strategic asset stocks

are central to explaining differences in competitive advantage derived from advances in information

technology (IT). Finally, Thomke and Kuemmerle (2002) also find in the context of drug discovery

that the inimitability of a particular asset is often determined by its interdependence with other

assets. In this study, we extend these insights to investigate further the role of interdependence

between the assets required to develop and organize AI capabilities.

The resource-based view suggests that socially complex assets might be important comple-

mentary assets to technology for building competitive advantage. For example, an organizational

culture, which Barney (1986a) defines as a “complex set of values, beliefs, assumptions, and symbols

that define the way in which a firm conducts its business”, can be a source of competitive advantage

if it is valuable, rare, and difficult to imitate. Moreover, the complexity of social interactions can

make it difficult to articulate why an organizational culture has value, generating causal ambiguity

about exactly which asset stocks to accumulate (Reeds and De Filippi, 1990). As Barney (1991)

points out, firms might possess the same technology, but only firms with the right culture and social

relations can fully exploit a particular technology for implementing strategies.

Taken together, we argue that there is a need to investigate asset interdependence in the context
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of AI for three main reasons. First, intangible assets are often interdependent and increasingly im-

portant for strategic planning in environments of rapid technological change (Teece, 2007). Second,

for GPTs like AI to generate value for a firm requires significant investments into complementary

assets that are largely unmeasured and, therefore, difficult to identify (Brynjolfsson et al., 2021).

Third, there exists limited research investigating asset interdependence in the context of new tech-

nologies such as AI (for a notable exception in the context of pharmaceutical drug discovery, see

Thomke and Kuemmerle (2002)).

3.3 Research Design

This section describes the research design and data collection for the study. We conducted semi-

structured interviews to understand what assets organizations accumulate for developing AI capa-

bilities. We designed the interview questions to allow for computational analysis of the interview

transcripts in addition to qualitative analyses. Our inductive research design is in line with other

inductive, theory-building studies related to resource-based strategies and technology-related assets

(e.g., Brown and Eisenhardt (1997); Maritan (2001); Thomke and Kuemmerle (2002)).

Inductive studies are particularly useful in the early stages of research on new technologies for

the following reasons. First, inductive theory-building is suitable when extant theory is of limited

use, and novel insights are less likely to emerge from existing research or laboratory experiments

(Glaser and Strauss, 1967). Rather, Gioia et al. (2012) emphasize the importance of structuring

qualitative data as the basis for modeling the phenomenon of interest. Second, Eisenhardt (1989a)

argues that inductive field research is particularly likely to generate novel theory to explain a new

phenomenon or topic better. In sum, we argue that inductive theory-building from interview data

can be a useful approach to exploring the emerging topic of AI asset interdependence.

Mixing quantitative and qualitative methods can strengthen conclusions compared to mono-

62



method approaches (Greene et al., 1989). In the field of strategic management, Molina-Azorin

(2012) found that articles using mixed-methods approaches tend to receive more citations compared

to monomethod papers and, therefore, have a larger impact. A possible explanation is that mixing

methods may enable a better understanding of the research problems and complex phenomena

(Creswell and Clark, 2017). We first conduct a computational analysis to understand the context

in which managers in our sample operate. Second, we manually code the asset stocks that managers

mention during the interviews and count codes as an indication of the asset stock’s prominence

across the sample (Hannah and Lautsch, 2011). We choose to run a computational analysis using a

topic model before manually coding asset stocks for the following reasons (Hannigan et al., 2019).

First, probabilistic topic models require minimal researcher input and interpretive rules on the

data, mitigating concerns around researcher bias. Second, a topic model can identify topics that

a human investigator might miss. In short, we mix computational and qualitative analyses to

generate deeper insights and stronger conclusions from qualitative data.

3.3.1 Interpretive Assumptions

The interpretive investigation in this study builds on the following assumptions. First, organiza-

tional members actively create, shape, and enact the professional reality they inhabit (Webb and

Weick, 1979; Ghoshal and Bartlett, 1994). In other words, managers make sense of the world to

create their version of history, “symbolic records of actions” (Smircich and Stubbart, 1985, p.726),

which they then use to predict and make sense of the future. Second, organizational members

make interpretations a posteriori, meaning that the elapsed actions may be altered through what

has happened since the action took place (Weick and Daft, 1983). Individuals in organizations can

impact each other’s interpretations of reality through social interactions (Daft and Weick, 1984).

Third, the interpretations of managers are particularly salient, partly because managers are at the
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center of organizing asset stocks through their actions, as discussed in Section 3.2. We put partic-

ular weight on what the managers say, treating them as “knowledgeable agents” that can explain

their thoughts, intentions, and actions (Gioia et al., 2012). Within the literature on how organiza-

tions operate in an environment of rapid change, Keisler and Sproull (1982) found that managerial

views are indeed critical to understanding the process of change and Aguinis et al. (2022) argue for

a renewed focus on integrating managerial perspectives in management scholarship.

3.3.2 Theoretical Sampling of Managers

In theoretical sampling, one selects subsequent interviews for theoretical reasons – not statistical

reasons – to replicate and extend emerging concepts (Glaser and Strauss, 1967), which can be

preferable to random sampling when limitations to the sample size exist (Eisenhardt, 1989a). We

argue that theoretical sampling is appropriate to investigate AI assets because we aim to build new

theory based on qualitative data – rather than validate existing hypotheses – and develop insights

into how asset stocks can help establish AI capabilities, which necessitates a deep understanding

of the emerging concepts.

The starting point for data collection was the “Data Science for Managers” (DSFM) executive

education course at EPFL. DSFM was a one-week course for managers interested in data science.

The process of gaining a deeper understanding of AI in organizations began with informal con-

versations with managers, in which we learned that strategic assets and developing AI capabilities

were topics of academic and practical relevance.

The unit of analysis is the manager and their understanding of their organizational priorities.

For the first few interviews, we randomly sampled managers from DSFM, a selected group of man-

agers particularly interested in AI. We then used theoretical sampling to gain access to managers

outside of DSFM. For example, as particular strategic asset stocks emerged during the first few
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interviews, we focused on sampling managers with profiles that could shed more light on allo-

cating resources toward developing AI asset stocks. At the same time, we used triangulation of

managers in different business functions (e.g., supply chain, sales, and product management) and

at different hierarchical levels (e.g., vice president, director, project manager) to provide stronger

substantiation of the emerging asset stocks.

3.3.3 Interview Format

During semi-structured, one-on-one intensive interviews between February and October 2020, each

manager was asked about their perspective on the role of AI inside the organization, how they

allocate resources to AI initiatives, and what they view to be the important factors for developing AI

capabilities. Due to the Covid-19 pandemic, we conducted some interviews via videoconferencing

software. While our theoretical interest lies in asset interdependence in the context of AI, the

interview questions focus on resource allocation to adopt the managers’ terminology in how they

think about building and organizing internal asset stocks and to correspond to our purposefully

general research question. We return to discussing the inductive implications for theory in Section

3.6.

To improve study validity, we also asked managers to define AI in their own words and then

compared their definitions of AI to the conceptualization of AI in organizations by Von Krogh

(2018) in order to clearly distinguish AI from other digital technologies (see Section 3.5; interview

questions are in Appendix C). Even though some managers were not directly involved in the

processes around organizing assets, we assume that the description they provided represents a

dominant reality, which they would have learned from others within their organization (Gephart,

1984).

We kept an interview diary to note themes that emerged as we conducted interviews throughout
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the interview process. We took field notes by hand during each interview to keep track of the

main concepts, relevant comments raised off the record, and non-verbal observations (e.g., tone,

body language, and gestures). In addition, we slightly adjusted the interview questions based on

managers’ responses to improve the reliability of the results (Charmaz, 2014). For example, the

manager in our fifth interview noted that “when you say investment, you automatically assume a

return on investment”, which was something we also observed with earlier managers. Therefore,

we changed the wording from “investment” to “allocation” to mitigate a possible instrumentation

bias, which might skew managers to only talk about assets with a directly measurable financial

return. Initial analyses and the detailed interview diary helped judge the point of saturation when

information is repeated, and existing conceptual categories solidify such that “fresh data no longer

sparks new theoretical insights, nor reveals new properties of your theoretical categories” (Charmaz,

2006, p.113).

3.3.4 Topic Modeling

Semi-structured interviews ensure that researchers ask the same questions in each interview while

keeping some flexibility to ask follow-up questions on particularly relevant topics during the in-

terview. As such, the interview transcripts can be used for computational analyses with a topic

model, similar to Huang et al. (2018), who apply a topic model to transcripts of conference calls.

Topic models are a computational tool useful for inductively discovering constructs in textual data,

such as interview responses (Roberts et al., 2014). One can also view topic models as a more

recent technique for visualizing and presenting qualitative data without inhibiting the meaning of

the data through intensive coding (Miles and Huberman, 1984). In essence, topic models cluster

word co-occurrences in text data to suggest topics. We select a topic modeling approach to set

the context of what interviewees discuss. Moreover, a topic model can mitigate the potential issue
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of investigator bias in qualitative analyses and triangulate emerging concepts vis-à-vis qualitative

analyses to converge to stronger conclusions (Greene et al., 1989).

A potential challenge when using a topic model is that managers use different words to refer

to the same concept. 90% of managers in the sample were non-native English speakers. While

humans can judge relatively well when managers refer to the same concept using different words,

the topic model algorithm might not. We mitigate this issue by manually coding the asset stocks

that managers mention. Furthermore, we use a topic model that incorporates polysemy by allowing

individual words to appear across different topics with different likelihoods (DiMaggio et al., 2013),

e.g., when managers use the same word to refer to different things. Mixing methods and using a

topic model that can model polysemy mitigate issues from managers using language differently.

Several different topic models exist, each with its advantages and disadvantages. The most

well-known type of topic model is likely the latent Dirichlet allocation (LDA) model (Blei et al.,

2003), which models documents as random mixtures of latent topics, where the topics themselves

are distributions over words. Since the introduction of LDA, other variants of probabilistic topic

models have been developed for different applications (Blei, 2012). A more recent variant is the

hierarchical stochastic block model (hSBM) (Gerlach et al., 2018). The main innovation of the

hSBM relative to the LDA is that the former is not limited to extracting a fixed number of topics

determined by the researcher. Instead, the hSBM automatically detects a hierarchical structure

of topics and subtopics to represent text data. More specifically, the hSBM first represents the

text corpus as a bipartite graph of documents and words. Next, a generative, mixed-membership

stochastic block model with non-parametric priors detects hierarchical clusters of documents and

words. Finally, we interpret the hierarchical clusters of words as topics. We select the hSBM

because it requires minimal researcher input and visualizes hierarchical topic relationships, which

might be relevant given our interest in asset interdependence. We use the Python implementation
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of hSBM that is publicly available on Martin Gerlach’s GitHub profile4 in combination with Tim

Hannigan’s pull request on GitHub from 29 November 2019 that prints the topic order on the

visualization.

3.3.5 Manual Coding

We code the particular AI-related asset stocks that managers mention. To start the initial hand

coding, we identify all assets that managers mention and summarize those text fragments in the

transcripts. Then, we continue with line-by-line coding to identify granular leads that emerge across

managers’ responses, resulting in a list of first-level codes. Finally, we associate first-level codes

with managers, who can be associated with at most one first-level code, even when they repeatedly

mention the same code, to ensure that the analysis is not biased toward managers that talk more.

Next, to triangulate the conclusions reached by purely qualitative hand-coding and to strengthen

the conclusion, we also count first-level codes as a form of corroborative counting (Hannah and

Lautsch, 2011). While we do not claim that higher frequency counts automatically imply higher

importance than lower frequency counts, managers tend to talk more about topics they find more

important than topics they find less important. As such, frequency counts might be useful to

triangulate between insights generated by the topic model, our field notes, and verbatim quotes.

Finally, we follow the procedures of Corley and Gioia (2004) to sum up the frequencies of initial

codes and iteratively move to second-level, aggregate codes, and create an overall “data structure”.

3.3.6 Reliability and Validity

To improve reliability in the analysis stage, we iteratively code the transcripts, link emerging con-

cepts to quotes, and use topic modeling, as described in Section 3.5. In addition, investigating

4See https://github.com/martingerlach/hSBM_Topicmodel, accessed 22 June 2022.
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the interview data with mixed methods and actively comparing concepts across interviews miti-

gates concerns about information-processing bias, which can lead to immature or false conclusions

(Eisenhardt, 1989a).

To improve the construct validity of the interview questions, we conducted and analyzed two

pilot interviews. We used the feedback to refine the interview questions and mitigate concerns

related to, e.g., leading questions (Chenail, 2011), removing references to specific assets in the

questions. In the data-gathering stage, we kept a detailed interview diary, took detailed field notes

during the interview, and compared these notes with the transcripts for analysis. Taken together,

we applied precautionary steps toward more reliable and valid conclusions.

3.4 Sample

Table 3.1 shows summary statistics of the anonymized sample. The sample consists of 19 man-

agers that work for nine different organizations (2.11 managers per organization, on average). The

managers’ job titles suggest direct exposure to the organizations’ technology initiatives and include

Head of AI, Group IT Manager, Director of Research, Head of Advanced Analytics, Head of Global

Product Management, and Senior Data Scientist. To characterize the sample in greater detail,

we include information about managers’ work experience, tenure at the current employer, whether

they work in a team dedicated to analytics, and whether they have a PhD degree. Managers have

an average of 19.61 years of work Experience and an average of 11.53 years of Tenure with their

current employer. Eleven managers (57.89%) work in teams Dedicated to big data and AI initia-

tives. 10 managers (52.63%) have completed a PhD degree. Seven managers (36.84%) graduated

from DSFM. On a firm level, the average founding year of the nine organizations is 1939 (the

median is 1971), with the oldest organization founded in 1836. According to publicly available

records, the nine organizations had an average revenue of more than $26bn and a median revenue
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of more than $11bn, both in 2019. The nine organizations had an average of 28’000 employees and

a median of 7’000 employees. All organizations have an office presence in Switzerland. At the end

of the interviewing process, we transcribed all 19 interviews, covering 18 hours and 52 minutes of

dialogue, into plain text documents.

Organization Industry Manager Job title Experience Tenure Dedicated PhD

Verbier Consumer electronics

V1 Senior Director; Head of AI 23 23 1 0

V2 Senior Data Scientist 15.5 2.5 1 1

V3 Senior Manager for Data Insights 20 6.5 0 1

V4 Senior Product Data Analyst 10 1 0 1

Engelberg Utilities

E1 Head of Business Management 25.5 11 0 0

E2 Head of Merchant Trading 20 20 0 1

E3 Head of Advanced Analytics 14 8 1 1

E4 Head of Strategy 14 10 1 1

Chamonix Telecommunications

C1 Director of Research 9.5 4 1 1

C2 Open Innovation Director 15 7 1 1

C3 Principal Product Manager 6 5 1 1

Zermatt Food production
Z1 Senior IT Manager 29 19 1 0

Z2 IT Business Partner 42 9 0 0

Davos Investment management
D1 Partner Private Equity 17 14 0 0

D2 Head of Quantitative Research 18 3 1 1

Andermatt Information Technology & Services A1 Sales & Channel Lead 32 30 1 0

Saas Fee Pharmaceuticals S1 Head of Site Quality 13 6 0 0

Wengen Electrical & Electronic Manufacturing W1 Group IT Manager & Vice President 25 25 1 0

Flumserberg Textiles F1 Head of Global Product Management 24 15 0 0

Notes: Experience represents the years of work experience after the last degree. Tenure represents the years of tenure at the current organization.

The Dedicated variable equals 1 if a manager works in a team dedicated to big data and AI, 0 otherwise. The PhD variable equals 1 if a manager

has completed a PhD degree, 0 otherwise. Organization names are pseudonyms for preserving confidentiality.

Industry categorization are retrieved from company profiles on LinkedIn.

Table 3.1: Descriptive statistics (n = 19).

3.4.1 Internal Validation

As the first step in describing the interview data, we aim to understand how managers define AI

in their own words. Managers generally defined big data and AI as making sense of vast amounts

of data, primarily through machine learning (ML) methods. Managers also mentioned several AI-

related projects at their organization to contextualize what AI means to them. Examples of such

projects include automating repetitive administrative tasks, recommendation systems for trading,
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and face detection for a better product experience. Five managers view big data as data that

require new tools and methods for processing, and four managers mention the four V’s of big data

(volume, variety, velocity, and veracity), a characterization of data that originated in the three V’s

(volume, variety, and velocity) described by Laney (2001). Taken together, managers view AI in

organizations as a set of technologies combining computational and statistical methods with large

amounts of data to generate business value.

16 managers (84.21%) note that AI is important or very important to their organizations.

The six organizations that these 16 managers work for have made concrete investments into AI,

including hiring engineering talent, establishing a central data management system, and setting

up a dedicated function to centralize AI efforts. Furthermore, all 19 managers note that AI has

become more important to their organization over the past two or more years. One might argue

that these managers have a vested interest in the success of AI because their careers likely benefit

from AI becoming more important. While managers might overestimate the true importance of AI

to the organization, their vested interests should not be an issue for investigating AI asset stocks.

On the contrary, having a personal stake in the success of AI initiatives might make managers more

engaged with building strategic AI asset stocks, which could benefit our analysis.

3.4.2 Text Preprocessing

Given the raw interview transcripts, we separated interviewee text from interviewer text. We then

trimmed the beginning and end of the interview because these sections did not contain data relevant

to answering the research question, such as small talk. Next, we split all interview transcripts into

individual responses to increase the number of documents, similar to Hannigan et al. (2019) and

Mohr and Bogdanov (2013), who both split articles into paragraphs for topic modeling. We only

keep responses longer than 140 characters to avoid known issues when using topic models with
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short texts (Yan et al., 2013) and to automatically filter out short, non-informative responses, like

“Okay.”, “Yes.”, and “Let’s see.”.

Next, we read through all transcripts to ensure that domain-specific language and abbreviations

(e.g., AI, ML) were correctly transcribed. We filter out any hypothetical or theoretical statements

that managers make about, for example, how allocation processes work “in theory”. Through

this preprocessing step, we aim to look beyond the current excitement around AI (Raisch and

Krakowski, 2020) that might blur this investigation. Next, we lowercase all words, remove all “stop

words” (e.g. “the”, “a”), and stem all words to transform them into their roots (Kobayashi et al.,

2018). As we go through these preprocessing steps, the number of words changes as summarized in

Table 3.2. Starting from raw text, the total number of words equals 97,698, and the unique number

of words equals 8,417. As one goes right, each column shows how the number of words changes for

each preprocessing step. Eventually, 2,963 unique word stems are fed into the topic model.

Raw text Stop-words Stemming

Total words 97,698 42,838 42,838

Unique words 8,417 4,683 2,963

Table 3.2: Dimensionality reduction through text preprocessing.

3.5 Results

This section reports results from two inductive analyses of the qualitative interview data. First,

we use an automated hierarchical topic model to show that interview participants talk about

technology-related and human-related topics as well as a range of AI applications, including as-

set management, trading, and customer support. Second, we manually code the transcripts to

investigate what particular asset stocks managers develop.
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3.5.1 Computational Analysis

The hSBM provides two major outputs: the network visualization in Figure 3.2 and the most likely

word stems per topic (Table D.1 in Appendix D). To render the topic model outputs, we start with

the raw subtopics from the hSBM algorithm to stay close to the data and label these subtopics as

first-level codes based on the subtopics’ most likely word stems and the interviewee responses with

the largest share of a topic or subtopic. Second, we move up one level in the hierarchy and label the

topics as second-level codes, identifying more abstract concepts and themes. Third, we analyze the

topic prevalence in all documents to assess the semantic validity of the discovered topics and refine

the topic and subtopic labels accordingly. In other words, we query the topic model for documents

with a high prevalence for that particular topic or subtopic. A known behavior of the hSBM model

is that it can cluster words frequently occurring across all documents (Gerlach et al., 2018). In

our application, the hSBM detects three subtopics with uninformative words common in human

conversations, such as “say”, “let”, and “right”, which we do not show in Figure 3.2 for clarity.

In Figure 3.2, one sees that the topic model identified five high-level topics: Computation,

Project management, Business impact, Business needs, and Governance. Each topic is further split

into subtopics, resulting in 43 unique subtopics. Often, these subtopics are more specific, which

facilitates labeling and refining the topic labels. We now briefly describe each topic and its subtopics

in turn.

T1: Computation. Within the Computation topic, managers discuss the use of Data and

algorithms Algorithms within the organization. Managers note that data are stored and configured

in some internal data platform to make “data accessible” (manager C25). Managers also mention

two concrete AI use cases: Asset management and Quantitative finance.

T2: Project management. The Project management topic includes different aspects of

5The manager labels correspond to the “Manager” column in Table 3.1.
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managing AI projects, including Project sponsoring, Implementation, Leadership, Analytics strategy,

and Building applications. Managers further talk about Convincing management and Use case

visibility as related aspects to managing AI projects. Within the Leadership subtopic, managers

describe the important role of “technical leadership in the business” (manager V2) and how efforts

go into “convincing our manager” (manager E1).

T3: Business impact. Within the Business impact topic, managers talk about how AI

can impact their organization. Subtopics include Prototyping, building a Product, and Measuring

impact. Another aspect of creating business impact is concerned with Data culture, Communicating

value, and Planning. Managers also mention concrete AI use cases in Trading and Supply chain.

Taken together, managers talk about building AI solutions and communicating the value of AI to

generate business impact.

T4: Business needs. The Business needs topic splits into subtopics that discuss internal Co-

operation between business representatives and engineers, mentioned explicitly by eight managers.

Managers across different organizations also note specific Business needs as a common starting

point for allocating resources to AI initiatives, mentioning that, “it starts with a business need”

(manager F1), “above all its the business need” (manager D1), and “we really tried to have the

business needs first” (manager C3). In other words, the topics and subtopics suggest that business

needs can be a starting point for AI use cases, which demands Cooperation between the “business

side and the technology side” (manager W1) around Business needs.

T5: Governance. The Governance topic describes change in organizations in the larger con-

text of a “digital transformation” (managers E3, E4, Z2, S1, and A1). The subtopic of Change

management spans many words, covering areas such as digitization efforts and employing exter-

nal advisors to support the change efforts. Other subtopics include Decision making, Business

processes, Human resources, Motivation, and Uncertainty.
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Overall, the hSBM identifies various topics and subtopics related to humans and the organization

of AI such as Project management, Leadership, Data culture to generate impact, and Cooperation

around business needs. The hSBM also clusters topics and subtopics related to technology and

engineering aspects such as Data (twice), Algorithms, and Machine learning. Finally, the hSBM

uncovers particular use cases, such as Asset management, Quantitative finance, Robotic process

automation (RPA), Trading, Supply chain, Customer support, and Network optimization. These

use cases provide context around potential practical AI applications that managers in our sample

are considering. One can summarize the topic model analysis as managers talking about human-

related aspects of organizing AI, technology-related aspects of applying AI, and concrete AI use

cases that provide additional context.

3.5.2 Qualitative Analysis

With the insights and the contextual understanding from the computational analysis in mind, we

use manual coding to investigate the specific asset stocks that managers mention for developing

AI capabilities. Table 3.3 presents the data structure, the analytical framework that illustrates

how we moved from raw data to codes to aggregate codes (Gioia et al., 2012). Human Assets and

Technology Assets emerged as the two major aggregate codes of AI asset stocks. We will examine

the four second-level codes, Culture, Knowledge, Data, and Computation in greater detail in the

following sections.

Human Assets

Culture. The most frequently mentioned second-level code concerns Culture, which includes as-

pects of the top management team, a willingness to take risks, a culture of experimentation, a

data-driven mindset, change management, and trust in data. The 31 counts of Culture-related
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First-level code Counts Second-level code Counts Aggregate code

Top management support 7

Culture 31

Human Assets

Willingness to take risks 6

Culture of experimentation & innovation 5

Data-driven mindset 4

Stakeholder engagement 4

Change management 3

Users’ trust in data 2

Domain knowledge 8

Knowledge 19Technical and communication skills 8

Temporary employees (e.g. interns) 3

High-quality data 16

Data 28

Technology Assets

Data engineering 4

Data augmentation 3

Data visualization 3

Data generation 2

Robust models 7

Computation 12Cloud computing resources 4

In-house algorithms 1

Notes: The table shows the result of iterative coding of interview transcripts to identify asset stocks

at different levels of granularity, based on the method described in Corley and Gioia (2004).

Table 3.3: Data structure of AI asset stocks with counts.

codes correspond to 16 managers in our sample. Managers mention Top management support

seven times. Toward the end of the interview with manager E3, we asked whether there were any

particularly important aspects that we had not yet discussed. He responded,

“I would say what is very important is that you have trust and curiosity from the

board, . . . particularly if you’re in an early phase like us. And trust also means

patience, right? You need to get . . . time to do this.”

Managers noted employees’ Willingness to take risks six times. A closely related first-level code

discusses a Culture of experimentation & innovation that encourages employees to be courageous

and curious in trying out new things. In response to hiring versus re-training employees, Manager

W1 pointed out that changing organizational culture is important. He noted,
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“I think in certain areas we must look into changing minds, changing cultural mindsets

by bringing in new people into the organization. We don’t like to say that, but what I

have seen so far with really, really young people with two, three years of development

experience, so not too much, those great ideas we would not have got from people who

have been with this company in a, let’s say, different cultural setup.”

One might argue that an “appropriate” culture is especially valuable for implementing AI

strategies. Consider organization Engelberg, for example. Engelberg’s board signed off a large

advanced analytics initiative in summer 2019, employed external consultants, and hired an initial

team of eight data scientists. Manager E3 led the implementation of this large initiative. The

historical conditions at Engelberg are such that traders are key to generating revenue. Working

effectively with traders requires a particular personality trait for new hires on top of engineering

skills. When asked about hiring, manager E3 emphasized the importance of cultural fit in developing

a valuable organizational culture. He noted,

“I also decided not to go to the super lead data scientist because you have to be very

humble. The team now comes in and goes to a trader and says, “Look, I can show you

how you can make more money.” And this doesn’t work if you think you’re the king . .

. You have to be very humble. So I think there were various elements let’s say in those

profiles that I thought were important.”

Regarding the coordination aspect across teams that manager E3 alludes to, manager C2 men-

tioned that a common difficulty in the resource allocation process is the “interdependence between

different teams” that can be “complicated to solve”. On a related note, managers characterize

the organizational environment under which they allocate resources as complex. For example, in

his reply to the question about his challenges in allocating resources to AI projects, manager Z2

noted the “complexity of actors” and “complexity of the organization” as the two main factors.

Similarly, manager A1 noted that complexity might be higher for incumbent organizations that

are “big and have a big legacy”. Finally, three managers explicitly mention Change management

capability. Manager V3 noted that what makes an AI-related investment successful is “the change
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management” and according to manager A1, “change management is very, very important”.

To summarize, the Culture asset comes up frequently when managers talk about allocating re-

sources to building AI capabilities. The interview data suggest that the Culture asset is concerned

with topics around aligning people, creating trust, learning, and bringing about change in complex

environments. In addition, the manual coding broadly corroborates the results from the compu-

tational analysis, which positioned the Data culture subtopic within the broader topic of Business

impact, for example.

Knowledge. The other second-level code within Human Assets is related to Knowledge assets.

The 19 counts of Knowledge-related codes correspond to 13 managers in our sample. Managers

mention Domain knowledge and Technical and communication skills an equal number of eight

times. Domain knowledge refers to understanding the business processes that can be “grown over

time and is not always applicable in the same way across products” (manager Z1). The quote below

suggests that AI requires considerable complementary, business-specific knowledge. When asked

about the details of a recent project on using AI for automatic network optimization at organization

Chamonix, manager C2 noted,

“This project is 85% domain knowledge, so trying to understand the antennas, and

then 15% machine learning. Let me put it differently. It’s 85% data wrangling, so

understanding the data, being able to know the data. For that, you need domain

knowledge, because otherwise, if you take random parameters, they’re not going to

work, and 15% is about machine learning . . .”

Regarding Technical and communication skills, manager E3 explains how he allocated extra

time to develop appropriate engineering skills that fit into the organization. In response to the

question about which parts of the resource allocation process went well, he noted,

“What went well is the hiring. Well, we made an extra investment there in terms of

that . . . I went through 250 CVs and . . . managed to hire six people out of them . . .

I’ve never done so much effort in hiring, . . . but I think it was really worthwhile.”
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Finally, managers find it challenging to judge whether an AI initiative was successful or not.

More specifically, eight managers said that assessing the direct and indirect returns on investment

was challenging to measure. For example, one can measure direct AI project returns in terms of

cost savings. Indirect returns, however, are particularly difficult to measure, as manager V1 pointed

out, saying that it was essentially impossible to tie the CTO team’s work on AI over the last six

months to future revenue. In short, managers talk about the challenges of assessing AI progress

and performance within the organization.

To summarize the section on Human Assets, we find that managers talk about Culture and

Knowledge assets. More specifically, managers explain how they allocate resources to building a

culture that supports AI initiatives, developing domain knowledge, and developing technical skills

and knowledge.

Technology Assets

Data. The most commonly mentioned Technology Asset concerns Data, which was mentioned 28

times, making it the most frequently mentioned first-level code. The 28 counts of Data-related

codes correspond to 17 managers in our sample. Managers talk about allocating resources to

develop High-quality data. Manager W1 describes allocating resources to develop and maintain

reliable, accessible, and configured data. He said,

“If you want to have artificial intelligence, you need to have reliable data first. And in

many cases this is exactly the issue. So, when we want to build an artificial intelligence

to predict, for example, customer behavior in the market, it’s only worth to build it if

we have reliable data. Otherwise, it’s going to be a kind of shit-in, shit-out topic.”

Data engineering aspects, such as Extract, Transform, and Load (ETL) pipelines, are technical

processes that help managers and engineers access data. When asked about recent AI-related

projects that she has been involved with, manager V4 described how she developed data pipelines
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to enable others to leverage data. She noted,

“When I joined there was a need to start from ground zero, meaning we had . . . three

year’s data . . . that . . . was not leveraged at all, and this data was captured in a raw

format, and my role actually, or the first thing I had to dig in was to prepare this data

and build all those data pipelines so that the data can be consumed and leveraged. ”

Other data-related assets include Data augmentation, Data visualization for continuous moni-

toring, and exploiting existing products for Data generation, i.e., leveraging sensor data generated

as a by-product by an organization’s hardware. Concrete examples of how organizations use data

generated by the organization’s hardware are to “classify the defects” (manager F1) in the textiles

industry and to “do face detection so that you can automatically pan, tilt, crop, and zoom on the

number of people in the room” (manager V1) in video conferencing systems.

Computation. Another commonly mentioned type of Technology Assets is related to Compu-

tation. The 12 counts of Computation-related codes correspond to nine managers in our sample.

Seven managers mention Robust models, including “neural networks” (managers C2, D2, and A1),

“random forest” (managers V3 and A1), “XGBoost” (managers D2 and E3), “decision trees” (man-

agers D2 and A1), and “linear regression” (manager C2). Given that these statistical models are

often available as open-source packages maintained by universities, for-profit and not-for-profit or-

ganizations, and individuals (Thompson et al., 2020), managers allocate resources to understanding

and applying these models. Four managers talk about Access to computing resources, especially

computing resources hosted in the cloud. Particular third-party providers of such cloud services

include “Amazon Web Services” (managers V1 and A1) and “Microsoft Azure” (manager W1).

Managers talk about allocating resources to set up “a stable cloud set up” (manager E3) and

“understanding the do’s and don’ts of a cloud environment” (manager E3). Finally, one manager

mentions that his team has developed In-house algorithms for a particular supply chain use case.

To summarize the section on Technology Assets, we find that managers talk about allocating
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resources primarily to develop and maintain Data assets. For example, manager Z1 calls resource

allocations to create a platform with high-quality, accessible data a “foundational investment” for

using AI. The prominence of data is not surprising given the topic of the interview and the practical

challenges to ensuring high-quality data infrastructure (Sambasivan et al., 2021). In addition, the

manual coding broadly corroborates the results from the computational analysis, which identified

the Computation topic and further technology-related subtopics such as Data, Algorithms, and

Machine learning.

3.5.3 Summary of Results

To summarize the computational and qualitative analyses on developing AI capabilities under a

resource-based view, we find that managers frequently talk about allocating resources to building

an organizational Culture and developing high-quality Data assets. The results suggest that a

strong, data-driven culture is central to building AI capabilities in an organization. On a high

level, one can summarize the results as proposing that humans matter in AI projects, as the words

of manager Z2 pointedly state. He concluded our interview by re-emphasizing that,

“Any of what we’re doing in here is a huge change. And we are totally

underestimating the change of any of those AI or Big Data projects.

Because everyone thinks it’s a technology project.

And yet it’s a human project.”

3.6 Discussion

“The more stable and predictable the situation, the greater the reliance on coordination

by plan; the more variable and unpredictable the situation, the greater the reliance on

coordination by feedback.” — March and Simon (1958, p.182)

We began by observing that AI is a new technology of economic and organizational relevance

(McAfee et al., 2012; Von Krogh, 2018) that necessitates investments into interdependent assets
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(Brynjolfsson et al., 2021). Some assets required to build and organize AI capabilities might not be

readily available on strategic factor markets (Dierickx and Cool, 1989). Therefore, we explored the

organizational asset stocks managers exposed to AI initiatives in incumbent organizations develop

and accumulate. On a very high level, the interview results suggest that managers often talk

about AI initiatives as a “human project”, frequently describing the allocation of resources toward

building an organizational culture that supports AI initiatives.

To examine the inductive implications for theory, we adopt a transaction cost perspective

(Williamson, 1973). The results suggest that managers view the organization of AI primarily

as a problem of building a strong, data-driven organizational culture. Given the complex and in-

terdependent AI components discussed in Section 3.1 and visualized in Figure 3.1, managers might

focus on a data-driven organizational culture as a way to govern intraorganizational contracting is-

sues when building AI capabilities. This section aims to discuss a speculative explanation as to why

managers emphasize solutions based on organizational culture to organize AI assets. We theorize

that asset interdependence is a problem of coordination in the face of complexity and uncertainty,

a context in which strong cultures might be particularly effective at reducing coordination costs.

3.6.1 Intraorganizational Coordination

In the context of interconnected assets, the terms “communication”, “coordination”, and “co-

operation” have slightly different meanings. Communication is concerned with the exchange of

information (Shannon, 1948). March and Simon propose that the greater the efficiency of commu-

nication within an organization, the greater its tolerance for interdependence among its component

parts. Coordination is concerned with aligning interdependent organizational activities to com-

plete collective organizational tasks (March and Simon, 1958) with shared and limited resources

(Malone and Crowston, 1994). Kogut and Zander (1996) conceptualize organizations as systems
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of coordination and learning that face a fundamental dilemma: productivity increases with the

division of labor, but specialization increases coordination costs. March and Simon (1958) note

that organizations can impact the volume of communication required within the organization by

coordination by feedback instead of coordination by plan. The authors argue that communication

can become more efficient through changing how to coordinate, and organizations can better man-

age highly complex interrelations. Cooperation between individuals occurs when a task is too large

for a single person (Ouchi, 1980). Ouchi introduces transaction costs as a solution to the problem

of internal cooperation, which necessarily requires mediating transactions through coordination be-

tween individuals. According to Ouchi, different governance mechanisms are more or less efficient

at mediating transactions and bringing about cooperation.

Coordination is central to allocating shared resources (e.g., money, an employee’s time) to de-

velop capabilities for several reasons. First, coordination theory proposes that coordination means

managing dependencies between activities, such as the activities that comprise the resource alloca-

tion process (Malone and Crowston, 1994). Second, Crowston (1997) finds that different coordina-

tion mechanisms for managing interdependent activities may also require or create resources that

can improve organizational processes. In the context of software bug fixing, Crowston (1997) notes

examples of such interdependent activities (e.g., writing code, integrating code with the rest of the

system), coordination mechanisms (e.g., plans, schedules), and intangible assets (e.g., knowledge

about problems, patch software). Third, Okhuysen and Bechky (2009) argue that coordination

mechanisms can impact organizations by creating conditions of accountability, predictability, and

common understanding, by which people accomplish their interdependent tasks. The coordination

literature argues that it is not only assets that can be interdependent but also that activities to

allocate resources to develop such assets can be interdependent.

There exists a tension between coordination by feedback and coordination by plan. On the one
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hand, organizations focus more on reactive coordination based on feedback and new information

under more variable and unpredictable conditions (March and Simon, 1958). For example, Adler

(1995) argues that when applying novel technologies, a high degree of informal interaction and mu-

tual adjustment between individuals can lower production costs. Similarly, Orlikowski (1996) finds

that in situations of organizational transformation and change, actors coordinate through mutual

adaptation, improvisation, and reaction – they are “going back and forth” – to manage interde-

pendencies. On the other hand, organizations focus more on coordination based on pre-established

plans under more stable and predictable conditions (March and Simon, 1958). For example, Argote

(1982) finds that programmed means of coordination have more impact on organizational effective-

ness under conditions of low uncertainty than under conditions of high uncertainty. Crowston

(1997) argues that coordination based on plans and rules can mitigate dependency constraints on

how tasks can be performed. In short, each of the two coordination mechanisms is more or less

appropriate under different conditions.

3.6.2 Clan Culture

Strong organizational cultures can mitigate coordination problems under conditions of high un-

certainty and complexity. Ouchi (1980) describes “clans” as particularly strong cultures that can

reduce transaction costs compared to other governance mechanisms – the market and bureaucracy

– under conditions of high performance ambiguity and high goal congruence. The shared under-

standing among employees in a clan can make governing particularly efficient under conditions of

high uncertainty and high complexity (Wilkins and Ouchi, 1983). The inductive results on the

challenges of assessing and measuring AI project success suggest that high performance ambiguity,

high uncertainty, and high complexity are common in AI initiatives. Therefore, managers might

focus on a strong culture to reduce coordination frictions through mutual adjustment and reaction.
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The clan governance mechanism might also be effective in situations of organizational change.

Under the market and bureaucratic mechanisms for mediating transactions, reciprocity and equity

have to be satisfied by incurring economic costs, e.g., compensation for labor (Ouchi, 1980). How-

ever, Ouchi proposes that reciprocity and equity can also be met by strong socialization, which is

the key governance mechanism of a clan. Topics such as a Culture of experimentation & innovation,

Data culture, and Change management in Figure 3.2 and Table 3.3 suggest that human aspects

related to socialization play a role in AI projects. Wilkins and Ouchi (1983) describes that clans are

especially efficient in mediating transactions under conditions of high uncertainty and complexity

through increased tolerance for internal contract misspecification. Uncertainty is a subtopic of the

Governance topic (Figure 3.2). Taken together, building a strong group of supporters with con-

gruent (not mutually exclusive) goals that establish a common understanding of the value of data

can be an antecedent to enabling organizational change. Under this view, managers might focus

on building a Data Clan as a mechanism to facilitate mutual adjustment and reaction through

feedback to bring about organizational change.

Effective clans, however, generally require a long history and stable membership (Wilkins and

Ouchi, 1983). Schein (1981), for example, investigates Japanese management styles and finds

that a long history and relatively stable membership in a group or team are required to develop

a complex social understanding. However, a long history is not typically found in situations of

complex technological change. Instead, rapid technological change characterizes the environment of

organizations that adopt AI technologies (Varian, 2018). Therefore, it is unclear how organizations

can develop a Data Clan quickly and effectively. What might be an effective process to build a

Data Clan? How do organizations maintain a Data Clan?

The present study establishes new insights for future research investigating how organizations

can develop AI capabilities with Data Clans. One possible avenue is to run a survey that investigates
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two aspects. First, the survey could examine how managers can go about developing a Data Clan

in the absence of a long history and stable membership. Second, the survey could test the extent

to which a Data Clan can support AI initiatives. Together, the survey could contribute to building

a process model that describes how organizations build a Data Clan and subsequently utilize it to

support AI initiatives.

3.6.3 Synthesis of Coordination, Clans, and Asset Stock Accumulation

To connect the implications with the initial discussion on the resource-based view, we propose that

a Data Clan is a strong, data-driven organizational culture that can be a valuable asset stock for an

organization to capture value by using AI for the following reasons. First, it takes time and effort

for GPTs like AI to impact organizations. Brynjolfsson et al. (2021) find empirical evidence for

what they call the Productivity J-curve, which describes how productivity growth is underestimated

in the early years of intangible asset investments and overestimated at a later stage when harvesting

the benefits from the investment. Second, socially complex resources can be imperfectly imitable

because they are beyond the ability of organizations to manage and shape systematically (Barney,

1991). Third, the asset stock accumulation process can have causal ambiguity as to what discrete

factors play a role in the accumulation process, even for organizations that already possess that

asset stock (Dierickx and Cool, 1989). In short, a Data Clan might be a strategically valuable asset

stock for an organization in the age of AI.

An alternative explanation for the prominence of a strong culture might be survivorship bias.

More specifically, one might argue that the managers in our sample have exposure to AI initiatives

because they use organizational culture as a ready scapegoat if projects do not progress as planned.

So, managers focusing on culture have “survived” within their organization and might bias the

results toward cultural aspects of AI. While we cannot exclude survivorship bias, it seems unlikely
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to have a notable effect because it is unclear why culture would be a more effective scapegoat than

knowledge or data, for example. In addition, participants’ Experience and a count of Culture codes

mentioned show a correlation of 0.13. One might also argue that the prominence of Human Assets

compared to Technology Assets is due to the sample consisting of managers whose job is to manage

people. While we cannot eliminate the possibility that our sample composition might bias the

results toward human-related aspects, our research question necessitates interviewing managers,

as argued in Section 3.1. Moreover, a considerable share of managers (52.63%) has completed a

PhD degree, as Table 3.4 shows, suggesting that managers have some level of technical training and

awareness. Finally, an alternative explanation for the prominence of Data might be selection bias, as

all managers in our sample are exposed to AI projects that require data. While we cannot exclude

selection bias, it is not clear that Data would be mentioned more frequently than Computation

assets, which are also required for AI projects.

The insights in this study contribute to the management literature on the organization of

strategic asset stocks in the age of AI. First, we extend our understanding of strategic assets and

their interdependence in the context of AI by re-interpreting interdependence as a problem of

informal human coordination. Second, a Data Clan might be a valuable strategic asset stock to

the firm, particularly for economizing on intraorganizational coordination (Ouchi, 1980) and for

adjusting flow variables to develop and maintain valuable asset stocks (Dierickx and Cool, 1989).

Finally, the results inform practitioners working on AI initiatives about what assets might be

relevant to developing AI capabilities. The insight of leveraging a strong culture for AI is in line

with popular science accounts of the importance of building a “data-driven culture” (Davenport

and Mittal, 2020), creating a “fertile environment” for implementing AI solutions (Ransbotham

et al., 2019), and overcoming “cultural obstacles as the greatest barrier to becoming data driven”

(Bean, 2022), for example.
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3.7 Conclusion

To conclude, this study uses a hierarchical topic model and manual coding of semi-structured

interviews to find evidence that managers who build AI capabilities focus on accumulating human

assets and technology assets. Managers put particular emphasis on establishing a strong, data-

driven organizational culture – something we call a Data Clan – to support AI initiatives. For

the theoretical interpretation of results, we adopt a transactional perspective. The interpretation

focuses on re-interpreting the interdependence between AI assets as a problem of informal human

coordination. We propose that a Data Clan can be a governing mechanism under conditions of

high uncertainty and complexity (Ouchi, 1980) by focusing on mutual adjustment and reaction

through feedback (March and Simon, 1958). Under an asset accumulation perspective, a Data

Clan shares characteristics with difficult-to-imitate strategic asset stocks that take time and effort

to build and accumulate (Dierickx and Cool, 1989). Therefore, a Data Clan might be a valuable

asset for building competitive advantage and, consequently, enable superior financial performance

in the age of AI (Barney, 1986a).

The study has limitations. First, the sample size of 19 managers makes it difficult to generalize

beyond the immediate research setting. Organizations of a particular size, industry, or country and

their managers might have different perspectives on allocating resources to build AI capabilities.

For example, firm size and internal structure can impact coordination costs (Malone and Crowston,

1994). Second, we do not account for the initial asset positions and conditions of organizations and

managers (Cockburn et al., 2000). While some managers mention the role of existing assets, no

robust patterns emerged.

The insights presented in this study open several avenues for future research. First, future

research could investigate how organizations can go about building a Data Clan in the rapidly
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changing environment of AI and assess the extent to which employees (as opposed to managers)

reflect a Data Clan culture. In particular, future work could study whether there exists a difference

between the managerial role and the execution role in leveraging a Data Clan to triangulate the

managerial perspective developed in our study. Second, we argue that coordination might be

an important strategic consideration when managing complex interdependencies arising from new

GPTs such as AI. Future research might design a survey based on the results in this study to examine

the mechanisms with which a Data Clan can facilitate the coordination of asset interdependencies

to support AI initiatives. Third, one might focus on a particular industry or firm size to extract a

richer understanding of the microfoundations for building a Data Clan. Finally, as the applications

of AI in incumbent organizations become increasingly pervasive, further research opportunities will

emerge for management scholars interested in AI in organizations.
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Chapter 4

Risky Data:

The Disclosure of Technology Risk at IPO∗

4.1 Introduction

Economists have documented how investments in information and communication technology (ICT)

are becoming an increasingly large part of the economy (Corrado and Hulten, 2010). However, the

intangible nature of a firm’s technology-related assets, such as proprietary software and databases,

can make them difficult to measure and evaluate (Heeley et al., 2007; Brynjolfsson et al., 2021) due

to, in part, outdated accounting standards that do not capitalize many intangible investments in

an increasingly intangible economy (Haskel and Westlake, 2018; Lev and Sougiannis, 1996). While

scholars in finance and strategic management have investigated the role of technological innovations

in the context of initial public offerings (IPOs) (Heeley et al., 2007; Morricone et al., 2017) and

the effects of text-based information disclosure at IPO (Hanley and Hoberg, 2010; Loughran and

McDonald, 2013), one aspect in the discussion on technology assets has received relatively little

attention: technology risk disclosure.

Firms preparing for an initial public offering (IPO) are often conducting business in high-tech

areas such as internet products, biotechnology, and science-based offerings that rely on intangible

assets (Morricone et al., 2017; Lev, 2018). Given that the economic characteristics of intangible

assets differ from those of tangible assets (Haskel and Westlake, 2018), Lev and Sougiannis (1996)

argue that the quality and relevance of earnings reports might decrease, and investors might shift

∗The content of this chapter is based on: Hofer, M. W. and Younge, K. A. (2022). Risky Data: The Disclosure of
Technology Risk at IPO. Under review at Research Policy.
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their attention to alternative sources of information. The IPO literature has investigated the role of

alternative disclosure content (i.e., non-accounting information), particularly textual information

disclosure. For example, Hanley and Hoberg (2010) found a positive effect of unique and informative

textual disclosure in the IPO prospectus on underpricing, the difference between the issue price

and the closing price at the end of the first trading day, and, therefore, the first-day return to an

IPO investor. A particular type of textual information disclosure concerns potential risk factors

for the IPO firm. Loughran and McDonald (2013) finds that the amount of risk-related words

in the prospectus is positively associated with underpricing. Given that IPO firms often rely on

technology assets for their offerings and text-based risk disclosures matter for underpricing, what

is the role of technology risk disclosure in evaluating IPO firms?

This study aims to develop a new approach to measuring text-based technology risk disclosure

at IPO and validate the measure with the return-for-risk association that finance theory suggests.

It is not the intention of this study to identify a causal effect of the around the complex choice

around disclosure and underpricing. The IPO context is particularly suited for a cross-sectional

examination of technology evaluation because firms are legally required to disclose relevant risk

factors before going public, IPO firms are at a similar stage of their life-cycle (Jain and Kini, 1994),

and many IPO firms directly rely on technology to generate revenue (Lev, 2018). Given the choice to

disclose or withhold risk factors, we argue that IPO firms aim to keep their technological know-how

secret to mitigate the risk of imitation (Barney, 1991). Consequently, IPO firms might only disclose

the technology risks that are necessary to avoid a post-IPO class action lawsuit (Hanley and Hoberg,

2012). We theorize that technology risk disclosure and underpricing are positively associated in

a return-for-risk association. Moreover, patents might attenuate the return-for-risk association of

technology risk disclosure as disclosing technology information through patents grants the IPO firm

the exclusive right to exploit that technology, can facilitate the evaluation of technology assets, and
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might signal technological capabilities.

Although risk is important for firm evaluation, the underpricing association of text-based risk

factors has been complicated by (at least) three problems: First, text data cannot be readily

transformed into observations for later use with econometric methods (Grimmer et al., 2022).

Second, off-the-shelf topic models compute a pre-defined number of risk topics, not risk magnitude

that can be compared to other firms in the sample. Third, managers decide which risk factors

to disclose or withhold. As such, it is challenging to empirically distinguish between managers

actively withholding risk disclosures and managers being unaware of risk in the first place. We

aim to alleviate these complications by computing a new measure of text-based risk that we call

aggregate risk disclosure to gauge the risk disclosed by the firm in the IPO prospectus. The new

measure of text-based risk normalizes risk relative to a firm’s year and industry peer group to enable

a direct comparison of risk magnitudes (i.e., how much risk is disclosed) and risk topics (i.e., what

risk factors are disclosed) across IPO firms. Our measure allows scholars to investigate particular

risk topics such as technology-related risks. We describe the measure of risk and its advantages in

more detail in Section 4.3.

Our results show that the new measure of risk exhibits a return-for-risk association, suggesting

that investors require higher first-day returns for taking on more technology risk (Validation).

Moreover, we discover that patents can act as an effective information disclosure mechanism to

attenuate the return-for-risk association of technology risk disclosure (Main Hypothesis). The

results are robust to changes in the measurement of technology risk disclosure and a firm’s patent

stock. Overall, the results suggest that formal intellectual property might allow the disclosure of

technology risks without losing the competitive advantage.

The paper contributes to the literature by showing how text-based risk disclosures apply to

evaluating a firm’s internal assets generated through technological innovation (e.g., Chondrakis
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et al. (2021)). Our insights also deepen the understanding of the role of text-based risk disclosure

in the context of IPOs (e.g., Hanley and Hoberg (2010)). Finally, our application of probabilistic

topic modeling contributes to the literature on using text data for economic and organizational

research (e.g., Hannigan et al. (2019); Bybee et al. (2020)) by open-sourcing the RiskyData-LDA

project1. To the best of our knowledge, we are the first to explicitly measure and investigate

text-based technology risk disclosure in the IPO context.

We organize the paper as follows. Section 4.2 describes how the increasing importance of

new technologies and intangible assets for strategic planning can shift attention from accounting

disclosure to textual disclosure content, why risk matters for evaluating firms at IPO, the validation,

and the hypothesis. Section 4.3 reviews challenges with measuring text-based risk disclosure and

summarizes how we compute aggregate risk disclosure. Section 4.4 contains an overview of the

data used, variable construction, and the regression model specification. Section 4.5 describes

the empirical results, which provide evidence for the return-for-risk association of technology risk

disclosure and the moderating effect of patents. Section 4.6 concludes by outlining our main

findings, limitations, and contributions.

4.2 Theory

4.2.1 Technology Assets

Technology assets such as patents (e.g., Heeley et al. (2007)) and proprietary data (e.g., Brynjolf-

sson and McElheran (2016)) are increasingly important for strategic planning (Teece, 2007; Furr,

2021). Such assets are often intangible, which makes them difficult to quantify and evaluate (Lev,

2018; Haskel and Westlake, 2018). In the context of research and development (R&D) and firm

1RiskyData-LDA on GitHub: https://github.com/mxhofer/RiskyData-LDA, accessed 22 June 2022.
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value, Griliches (1981) finds a positive relationship between the market value of the firm and its

investments in innovation, which the author proxies by using the number of patents applications

and past R&D expenditures. What is particularly relevant for the context of young firms preparing

for an IPO is Griliches’ comment that the valuation of R&D investments need not occur only after

converting inventions into product sales but that the valuation reflects the “current present value

of expected returns from the invention”. As such, inventions can create intellectual capital that

IPO firms commercialize after raising capital at the IPO, a common strategy in the biotechnology

industry (Hermans and Kauranen, 2005). Technology assets2 can hold important strategic value

but can be inherently ambiguous and risky to evaluate due to their intangible nature.

4.2.2 Evaluation of Technology Assets

As the strategic importance of technology assets is growing, several characteristics contribute to

making these assets inherently risky (Haskel and Westlake, 2018). First, Gans and Stern (2010)

argue that designing and operating a market mechanism to trade ideas or technologies can be

challenging, limiting price revelation of input factors required for developing technology assets.

Second, many technology-related investments represent sunk costs, meaning that when their de-

velopment stops, the entire investment amount will be lost (e.g., a drug under development that

fails clinical tests). Third, the non-rivalrous nature and limited excludability of technology mean

that non-owners can often benefit from someone else’s technological innovation through reverse

engineering products, for example. Fourth, assets created through technological innovation often

have complementarities that can make the value of a combination of assets very unpredictable

(Teece, 1986). For example, Haskel and Westlake (2018) describe how the MP3 protocol combined

with miniaturized hardware and Apple’s licensing agreements with record labels make up a very

2We use the term “technology asset” broadly to include patents, trademarks, licenses, proprietary databases and
libraries, software, pharmaceutical formulations, and algorithms, among others.
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valuable innovation: the iPod. In short, technology assets have economic attributes that can make

them inherently risky.

Evaluating technology assets, particularly internally-generated ones, does not come without

problems for analysts and potential investors (Heeley et al., 2007) as most measurement conven-

tions ignore intangible assets (Haskel and Westlake, 2018). In the accounting literature, Lev (2018)

summarizes how the US accounting standard (GAAP) and the international accounting standard

(IFRS) require firms to expense most internally-generated technology assets such as software and

business designs. Lev argues that the standard-setters exhibit a “resistance to change” the ac-

counting practices to an increasingly technology-based business world with potentially harmful

consequences for investors. Srivastava (2014) empirically shows that the earnings quality of suc-

cessive cohorts of newly listed firms has been continuously decreasing since 1970, mainly due to

the increasing intensity of technology assets. One possibility to provide investors with relevant in-

formation about technology assets is to use channels other than traditional accounting disclosures,

such as textual disclosures in 10-K annual report filings or 424(b) filings when going public.

4.2.3 Information Disclosure at IPO

Many young and successful IPO firms depend on technological innovations to create and capture

value in areas such as internet products and biotechnology (Heeley et al., 2007). Analyzing newly

listed firms in the US, Doidge et al. (2018) observe that from the listing peak in 1997 to 2015, the

likelihood for firms to list on a major stock exchange declined by 54%. On average, firms with

fewer employees have seen the steepest decline in the propensity to list. While many factors are

responsible for this decline, the authors point to the inability of accounting methods to reflect the

value of technology assets. The authors suggest that investors might be more skeptical about the

value of a firm in light of less-informative accounting information.
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One possible consequence of the decreasing relevance of accounting data is that young tech-

nology firms do not go public at all, knowing that investor skepticism likely raises the costs of

capital, making other capital-raising options such as debt offerings more attractive. Another pos-

sible consequence is that disclosure of accounting information becomes less relevant for investors

than open-ended textual information disclosures. Indeed, research has found that textual disclosure

can impact IPO underpricing. For example, Hanley and Hoberg (2010) distinguish between textual

information that is re-used across different IPOs in the same industry or year (the “standard” com-

ponent of disclosed risk) and text that is unique to a particular firm (the “informative” component

of disclosed risk). The authors find that informative textual disclosure is associated with lower

underpricing and thus higher proceeds. Along a similar line of investigation, Agarwal et al. (2017)

found that only textual information in the form of the “Risk Factors” section of the IPO prospectus

filed with the US Securities and Exchange Commission (SEC) directly affects underpricing. We

conceptually follow a similar approach to measure risk disclosed in the prospectus’ “Risk Factors”

section relative to a focal IPO firm’s year and industry group.

The decreasing relevance of accounting information for evaluating technology assets raises a

broader issue around whether to disclose or withhold text-based risk factors. On the one hand,

the SEC legally requires IPO firms to disclose all relevant risk factors. The omission of material

risk factors results in a post-IPO class-action lawsuit if the share price falls substantially lower

than the offer price due to the omission. Approximately 10% of IPO firms face such class-action

lawsuits up to three years after the issue date as Hanley and Hoberg (2012) report in a sample

of US IPOs issued between 1997 and 2005. On the other hand, we know that issuers conduct

strategic disclosure as a hedge against litigation risk – enhancing disclosure reduces the probability

of a material omission (Hanley and Hoberg, 2012).

The decision to disclose or withhold risk is directly related to strategic planning. While there are
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many definitions of what strategic planning entails, we follow Leiblein et al. (2018) to understand

what makes a strategic decision. First, disclosure integrates with other decisions the firm makes

internally regarding what assets and capabilities it develops. Second, the disclosure also affects the

firm’s relationship with other industry actors, e.g., its competitors and suppliers. Third, deciding

what to disclose is integrated across time, meaning that what a firm discloses now can affect what

the firm can, or cannot, do in the future. Considering these complexities, we view the IPO firm’s

decision to disclose or withhold risk as given.

Given our focus on text-based risk disclosure, it is important to describe what we mean by

risk. One can unpack risk by distinguishing between idiosyncratic risk (i.e., more firm-specific risks

that can be diversified away) and systematic risk (i.e., economy-wide market risks that cannot be

diversified away). Examples of idiosyncratic risk include unexpected poor earnings, an employee

strike, and the geographical location of production facilities, while systematic risk generally affects

all firms in a market. As Lopez-Lira (2020) notes, classifying text-based risk in 10-K annual reports

into either one type can be challenging. For example, many companies discussing a particular

supply chain risk does not automatically imply that investors can diversify away from that risk.

In practice, an economic war might trigger that supply chain risk, which can be a systematic risk.

For this study, we assume that disclosed risks are generally systematic.3

Our first-order concern in this study is developing a measure of text-based technology risk disclo-

sure and validating it in the context of IPO underpricing. We conceptualize text-based technology

risk disclosure as the component of a firm’s text-based risk disclosures that discusses technology-

related risks such as risks related to updating core technologies, the risk that technology does not

work reliably as the company scales, patent infringement litigation, and the risk related to licensing

a third-party technology. From existing research on corporate textual risk disclosures, we know

3For a more formal treatment of systematic and idiosyncratic text-based risk factors, see Lopez-Lira (2020) and
Hanley and Hoberg (2019).
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that risk factors identified and disclosed by the IPO firm “meaningfully reflect the risks they face”

(Campbell et al., 2014), on average. Therefore, we can take the disclosed risk factors at face value

without a more formal empirical distinction between different types of risk as the capital asset

pricing literature would suggest.

The firm’s decision to disclose or withhold risk might relate to the first-day return that IPO

investors receive. In the IPO literature, the term underpricing describes the commonly observed

phenomenon that IPO shares rise during their first trading day, making the issued shares under-

priced. More specifically, underpricing measures the difference between the issue price and the

closing price after the first trading day (Beatty and Welch, 1996). The IPO literature has investi-

gated how and why underpricing occurs (e.g., Lowry and Shu (2002); Bartov et al. (2002); Loughran

and Ritter (2004)). For example, the asymmetric information hypothesis explains underpricing as

a result of the asymmetry of information that often exists between new and existing, more informed

investors or between the issuing firm and the investment bank (Rock, 1986). The implicit insurance

hypothesis views underpricing as insurance against post-IPO litigation when the new issue performs

below expectations (Lowry and Shu, 2002). For an overview of further theoretical explanations of

underpricing see Certo et al. (2001).

One theoretical perspective views underpricing as a type of compensation or return to the

initial IPO investors (Hanley, 1993; Bruton and Prasad, 1997). Under this view, the book-building

process cannot resolve all risks and IPO investors bear some quantity of residual risk when the IPO

firm goes public. Logue (1973) argue that investment banks set the offer prize below the expected

market value to compensate IPO investors, the investment bank’s clients, for taking on the residual

risk. At the end of the first day on the public stock market, the assumption is that the closing

price fully reflects all available information, resolving all residual risks (Fama, 1970). Given this

logic, we consider underpricing as the return to the IPO investor for taking on the risk associated
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with investing in a particular IPO firm. We do not examine the information disclosure during the

book-building process or the channels through which the IPO firm, the underwriter, or the legal

team might disclose information a priori. Furthermore, our objective is not to explain underpricing.

Rather, we aim to investigate the role of technology risk disclosure at IPO and use underpricing to

validate our new measure of text-based risk.

4.2.4 Validation and Hypothesis Development

With our new measure of risk disclosure, we will investigate the return-for-risk association of

technology risk disclosure and underpricing as a validation of the new measure and test whether

patents moderate the risk-return relationship.

Risk Disclosure and Underpricing

One might not find any systematic association between risk disclosure and underpricing. Issuing

firms primarily consult with their underwriting investment bank(s) and legal counsel when prepar-

ing the filing documents for the SEC. After filing the S-1 document with the SEC, the IPO firm

receives comments from the SEC and feedback from investors during the book-building process.

The comments and feedback contribute to the updated, final prospectus called 424(b) prospectus.

Throughout this process, the underwriters and the legal counsel might re-use parts of past filings for

broadly applicable risks (e.g., loss of key personnel, demand uncertainty, macroeconomic effects).

Hanley and Hoberg (2010) find that the IPO “Risk Factors” section contains relatively less infor-

mative content compared to the prospectus summary, use of proceeds, and MD&A sections in the

same prospectus. Bao and Datta (2014) examine the “Risk Factors” section of 10-K annual reports

to find that disclosed risk can decrease and increase risk perception, depending on the type of risk

disclosed. In short, disclosed risk includes substantial amounts of re-used boilerplate risks, and
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individual risk factors can increase or decrease perceived risk, suggesting little systematic impact

to disclosing risk.

In contrast, disclosed risks might reveal unexpected or previously unknown risks, increasing

investors’ risk perception. Research on self-disclosed text-based risks in 10-K annual reports finds

that increased risk disclosure is associated with higher proxies for risk (Kravet and Muslu, 2013;

Campbell et al., 2014). For example, Campbell et al. (2014) find that longer Risk Factors sections

are associated with higher stock return volatility in the following year, a proxy for market partic-

ipants’ perceived fundamental risk. The authors further find evidence that firms exposed to more

risk disclose more risk factors and that those risk factors are not boilerplate, but that “managers

provide risk factor disclosures that meaningfully reflect the risks they face” (Campbell et al., 2014).

Similarly, Kravet and Muslu (2013) find that annual increases in textual risk disclosures are associ-

ated with high stock return volatility, suggesting higher perceived risk. In short, disclosing risk can

be positively associated with proxies for perceived risk. Cross-sectional studies have found empiri-

cal support for the risk-return relationship in IPOs. For example, Loughran and McDonald (2013)

count word frequencies of risk-related words (e.g., assume, risk, risky, and believe) in the Form S-1

document of 1,887 US IPOs as a proxy for risk. They find that word frequencies are significantly

positively related to underpricing, controlling for a range of valuation-relevant variables. In other

words, as investors perceive IPO firms as increasingly risky, investors demand higher returns in the

form of underpricing. While studies have investigated individual risk factors (Bao and Datta, 2014;

Agarwal et al., 2017), the role of text-based technology risk disclosure at IPO remains unknown.

Technology Risk Disclosure

Today, the concerns around managing and evaluating technology assets are central to how firms

operate (e.g., Furr (2021); Bailey et al. (2022)). In the IPO context, Aboody and Lev (2000) find
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that R&D is a major contributor to information asymmetry, suggesting that it is difficult for an

outsider to learn about the productivity potential and value of a firm’s R&D initiatives. Similarly,

the accounting literature describes that technology assets are difficult to value due to outdated,

insufficient, and inconsistent accounting standards (e.g., Lev (2000)). Loughran and McDonald

(2013) report that their measure of IPO firm uncertainty and post-IPO volatility was highest

during the Dot-com bubble (1999-2000), a time when many technology-intensive firms went public.

One implication of the difficulty to evaluate technology assets and the underpricing association

of aggregate text-based risk measures is that text-based technology risk disclosure might matter

for underpricing. For firms to capture value from their technology assets, protecting their unique

intellectual asset stock is essential. For example, Cohen et al. (2000) survey managers in US-based

R&D labs and found that secrecy is a central mechanism to capture value, especially from product

innovations. While firms can protect their technology with, e.g., nondisclosure agreements (NDAs)

during private financing rounds, they cannot use NDAs when going public. Firms preparing to go

public might be incentivized to restrict technology risk disclosure for the following reasons. For

example, the resource-based view suggests that disclosure might lower the barriers to imitation

for competitors (Barney, 1991). Moreover, extensive disclosure can increase the costs of market

participants in evaluating the firm, potentially discouraging the collection and analysis of informa-

tion about the firm (Litov et al., 2012). Overall, we argue that secrecy to protect technological

innovations can incentivize IPO firms to limit the amount of technology risk disclosure.

In the context of IPOs, we can distinguish between firm-level and cross-sectional arguments. We

argue that firms trade off the risk of being sued post-IPO for not disclosing enough and the strategic

consequences of revealing too much about their technology. If a firm underdiscloses, Lowry and Shu

(2002) argue that the firm increases underpricing by lowering the issue price per share as a form of

insurance against post-IPO lawsuits. If a firm overdiscloses, doing so might lower the issue price
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per share and increase underpricing as a way of compensating investors for reducing competitive

advantage due to revealing sensitive information. As a result, we argue that the relation between

technology risk disclosure and underpricing on the firm level is U-shaped; IPO firms attempt to

attain an optimal level of disclosure that maximizes proceeds and minimizes the risk of being sued

(due to not disclosing enough) and the risk of revealing sensitive information (due to disclosing too

much).

To investigate the cross-sectional argument, we return to core finance theory. Starting at

least with the work of Markowitz (1952) on portfolio selection and Sharpe (1964) on capital asset

pricing, finance scholars have argued that expected returns of an asset increase by taking on more

risk; what is often referred to as the “risk-return tradeoff”. In other words, investors demand

compensation in the form of financial returns for investing in risky assets. In the context of text-

based risk disclosures, Campbell et al. (2014) find that the disclosed risk factors meaningfully

reflect the actual risks the firm faces, suggesting that risk disclosures affect the expected return of

investors. Furthermore, Epstein and Schneider (2008) describe that when the information quality of

an asset is challenging to evaluate, investors require additional compensation for holding the asset

beyond the risk premium. Given that the economic attributes and outdated accounting measures

make evaluating technology assets challenging, as discussed earlier, we reason that more technology

risk disclosure suggests a greater reliance on difficult-to-evaluate assets, increasing the necessary

return to investors. Taken together, we argue that the magnitude of technology risk disclosure and

underpricing in the cross-section follows the typical return-for-risk association in financial markets.

Figure 4.1 summarizes the theorized firm-level dynamics and cross-sectional association.
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Figure 4.1: Firm-level and cross-sectional theorized associations of disclosed risk and underpricing.

To summarize the theorized association of technology risk disclosure and underpricing, our aim

is to validate the return-for-risk association between technology risk disclosure and underpricing:

Validation: Technology risk disclosure is positively associated with underpricing.

One might argue that the increasing use of machines to parse and evaluate textual risk disclo-

sures, as evidenced by Cao et al. (2020) in the context of 10-K and 10-Q filings, might give rise

to a selection effect in the words that IPO firms use in the IPO risk disclosures. The association

between text-based technology risk disclosure and underpricing might be weakened because it is in

the interest of the IPO firm to minimize underpricing.

Patent Moderation

Given that firms cannot use secrecy-preserving mechanisms such as NDAs when issuing shares to

the public, patents might take on an important role in protecting technology information. Patents
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might be a type of technology asset that is relatively easier to evaluate for potential investors than

other technology assets such as proprietary databases or path software, given that Hegde et al.

(2018) find that patent disclosures can reduce the perceived riskiness of a firm’s R&D investments.

We hypothesize that the association of technology risk disclosure and underpricing depends on

whether the IPO firm owns patents4 for the following reasons. First, firms receive the exclusive

right to exploit the patented innovation in return for disclosing technology information through

patents. Consequently, the incentives for IPO firms might be higher to disclose technology infor-

mation through patents than technology disclosures in SEC-mandated IPO filings. Second, patents

contain information about a technology, which can facilitate assessing technology assets (Heeley

et al., 2007). More specifically, Hsu and Ziedonis (2013) and Morricone et al. (2017) investigate

IPO firms in the semiconductor industry and find a negative association between patent stock at

the time of IPO and underpricing, suggesting that patents can reduce the information asymmetry

between the firm and potential investors. Third, patents can also signal the IPO firm’s ability to

generate technological innovations (Hsu and Ziedonis, 2013). Taken together, patents might be as-

sociated with a decrease in the perceived risk and attenuate the positive return-for-risk association

of technology risk disclosure and underpricing. Therefore, we hypothesize:

Main Hypothesis: The positive association of underpricing and technology risk disclosure
will be attenuated for firms with granted patents at the time of the IPO.

Figure 4.2 below summarizes how technology risk disclosure (TechRisk), patents (Patent), and

underpricing (Underpricing) are related. Solid arrows represent the theorized associations. Dashed

arrows represent the associations of control variables and fixed effects.

4Given our focus on evaluating a firm’s current technology assets, we follow Morricone et al. (2017) in considering
granted patents rather than patent applications at the time of IPO.
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Figure 4.2: Summary of how the variables and theorized associations are related.

4.3 Research Design

4.3.1 Text-Based Measures of Risk

Our primary empirical challenge is to develop measures of text-based technology risk. In this

section, we describe a series of methodological steps to compute tabulated risk topics for use as

explanatory variables. Figure 4.3 summarizes the conceptual model of how a measurement model

transforms text-based risk factors (X̃) into a technology risk disclosure measure (X) and how the

technology risk disclosure measure relates to underpricing (Y ) through an empirical model, esti-

mated by using, e.g., ordinary least squares (OLS). The theories about how risk might be related

to underpricing described in Section 4.2 connect X̃ and Y .

Figure 4.3: The conceptual framework.
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Our measure of risk combines the idea of counting risk factors (Arnold et al., 2010) for computing

risk magnitude and topic modeling of risk factor text (Bao and Datta, 2014; Lopez-Lira, 2020) for

discovering risk topics semantically. In short, we first compute “aggregate risk disclosure” through

z-score normalization of the output of a standard topic model and, second, extract “technology risk

disclosure” from the individual risk topics in aggregate risk disclosure. Before describing the details

of aggregate risk disclosure in Section 4.3.4, we briefly review how existing literature measures text-

based risk, how we preprocess text, and why we use a topic model.

How can investors gauge the level of risk of an IPO firm before the issue? We note that one

does not need to measure IPO firm risk using text but can use other proxies for risk, such as the

reciprocal of the offer price (Beatty and Welch, 1996). However, text data enables a more fine-

grained investigation, particularly of the meaning of risk topics. We briefly discuss two types of text-

based methods previously used in the IPO literature: dictionary-based methods and unsupervised

learning methods.

Dictionary Methods

A common approach to quantifying text-based information is to use a dictionary of keywords.

Given a pre-defined list of K risk topics, one could define a list of keywords for each risk topic

and look for keyword occurrences. For example, to measure regulatory risk exposure, one might

include the keyword law. We would then count its occurrences across all documents. However, law

has different meanings in different contexts. For example, law is a relevant keyword for describing

pharmaceutical product approval, but also for tax issues and supply chain partnerships - three

rather distinct contexts. Dictionary methods are not well-suited to modeling polysemy.

Li (2010) surveyed research on textual analysis of corporate risk disclosures, showing the im-

portance of understanding the types of risks that firms disclose. Dictionary methods for automated
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text extraction in the IPO context have been used to proxy text-based risk with strategic tone

(Loughran and McDonald, 2013; Brau et al., 2016) or prospectus informativeness (Hanley and

Hoberg, 2010), for example. Related measures extracted from prospectus texts with dictionary and

counting methods include uncertainty (Beatty and Welch, 1996), ambiguity (Arnold et al., 2010;

Park and Patel, 2015), and conservatism (Ferris et al., 2012), among others. As an example of

measuring a particular risk topic, Hassan et al. (2019) introduce a measure of firm-level political

risk. The authors set up two corpora, one concerned with political text (e.g., a political science

textbook, speeches by politicians) and another one concerned with nonpolitical topics, and use

these corpora as dictionaries. Finally, the measure of political risk considers the surrounding text

around words, including “risk” and “uncertainty”, and compares those words to the dictionaries.

Two limitations of this approach include the researcher-driven selection of appropriate corpora and

the limited ability to model polysemy.

Unsupervised Learning Methods

To mitigate concerns introduced by dictionary methods, we empirically compare different unsu-

pervised machine learning methods for dimensionality reduction, including non-negative matrix

factorization (NMF) (Lee and Seung, 2001), latent semantic indexing (LSI), latent Dirichlet allo-

cation (LDA) (Blei et al., 2003), and hierarchical Dirichlet processes (HDPs) (Teh et al., 2005).

Machine learning methods enable a probabilistic approach to model discrete, high-dimensional

data such as text. Using variation across all available documents, we task the model with finding

the optimal discrimination heuristics. We used the topic coherence measure (Röder et al., 2015)

to compare the above models and find LDA to yield the highest cross-validated coherence with

low variability across independent training processes relative to the other models. LDAs have been

adopted in the field of strategy (e.g., Bao and Datta (2014); Agarwal et al. (2017); Choudhury et al.
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(2019)), finance (e.g., Israelsen (2014); Hanley and Hoberg (2019); Lowry et al. (2020); Lopez-Lira

(2020)), economics (e.g., Hansen et al. (2017)), politics (e.g., Mueller and Rauh (2018)) and the

study of science (e.g., Griffiths and Steyvers (2004)).

Endogeneity, Measurement, and Identifiability

As pointed out by Healy and Palepu (2001), disclosure endogeneity might be a serious problem in

empirical studies of risk disclosure. For example, firms with high levels of disclosure were found to

be associated with other economic, governance, and financial variables such as earning performance

(Lang and Lundholm, 1993). Similarly, firms disclosing less risk might have more underpricing as a

form of insurance against litigation (Lowry and Shu, 2002), which makes the risk-litigation relation

suffer from substantial endogeneity concerns. In our context, disclosed risk and underpricing are

partially endogenous: the firm has considerable flexibility in deciding what to disclose, and the firm

decides on the offer price, which directly affects underpricing. We mitigate potential endogeneity

concerns with the following two steps, described in greater detail in Section 4.4. First, we control

for the observable factors potentially affecting risk disclosure and underpricing with a range of

environmental and financial variables that have been previously shown to be relevant (e.g., Heeley

et al. (2007), Loughran and Ritter (2004)). Second, we also control for the industry composition

and the time variation by including industry and IPO issue year fixed effects.

Another potential issue with studies using self-constructed measures of risk is researcher-induced

bias and measurement error (Healy and Palepu, 2001). Unless the paper describes the entire

measurement procedure in great detail, researcher-driven studies of risk factors are difficult to

replicate. We, therefore, minimize researcher influence by using unsupervised machine learning

methods, describing the measurement procedure in detail, and open-sourcing the code as RiskyData-

LDA on GitHub to enable replication and extension (we describe the method in detail in Section
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4.3 and Appendix E). We aim to reduce the measurement error by using unsupervised machine

learning methods to capture the underlying risk signal in the text-based risk disclosures. While

we cannot eliminate measurement error, we aim to minimize the potential attenuation bias due

to a noisy measure of risk by increasing the number of passes through the text corpus during

the training phase. Finally, we further alleviate measurement concerns by retraining alternative

implementations of our measure of risk to show that our results are robust (Section 4.5.3).

One more empirical challenge when using topic models is identifiability and stability. It has

been shown that topic model outputs can depend on the initialization specification (Belford et al.,

2018) and the random seed (Yang et al., 2016), even when using the same input corpus. We take

steps to increase the robustness of the topic model outputs by using cross-validation for finding an

appropriate number of topics (Appendix E.2) and independently retraining the topic model with

varying random seeds (Section 4.5.3) to show that our results are robust.

4.3.2 Text Preprocessing for Dimensionality Reduction

Text data consists of words5, a form of high-dimensional data. Most text analysis methods represent

documents as a bag of words, ignoring word order. In its most basic form, a document d can be

represented as the presence or absence of a unique word v in a vocabulary containing all corpus

words. Such a text representation is known as a document-term matrix of dimensionality (D,V ).

The corresponding document-term matrix is very large and sparse in settings with thousands of

documents and a vocabulary of tens of thousands of unique words (i.e., filled mostly with zeros).

At the core, text analysis methods are dimensionality reduction methods.

In the first step of reducing dimensionality, we focus on the words that contain most of the

5Note that the natural language processing field often uses the more general expression term to include words,
symbols, and other non-word sequences of characters. For our purposes, the distinction between word and term is
not important, so we use word and term interchangeably.
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information. Risk disclosures necessarily contain words like the, for, and but to construct gram-

matically correct sentences. However, these so-called stop-words do not contain information that

might be useful for discriminating different risk topics. Hence, we remove all stop-words using the

Python Natural Language Toolkit (NLTK) package (Bird et al., 2009) list of 179 stop-words6. We

also lowercase all terms and remove punctuation, digits, and single-character terms as these aspects

are unlikely to contain relevant signals for measuring risk and further reduce dimensionality.

Next, we use point-of-speech (POS) tagging to determine the grammatical type of each term as

described in Toutanova et al. (2003) and implemented by Explosion AI’s spaCy package (we used

the source code from https://github.com/explosion/spaCy). We only keep proper nouns (the

PROPN tag, e.g., apple), nouns (the NOUN tag, e.g., startup), and verbs (the VERB tag, e.g.,

buy). We remove all terms with other POS tags.

Finally, we use the NLTK Snowball stemmer, an updated version of the well-established Porter

stemmer (Porter et al., 1980), to stem all remaining terms. Stemming transforms terms into

their linguistic roots, such that, for example, the words technologies, technology and technological

all become technolog. Note that stemmed terms need not be words that appear in the English

dictionary.7

Table 4.1 summarizes the effect of preprocessing on data dimensionality. Starting from raw text,

the total number of words is nearly 35 million, and the unique number of words is nearly 60,000.

Each column shows how the number of words changes for each preprocessing step as one moves right.

While reductions in the total and the unique number of words are substantial, the vocabulary after

preprocessing still contains 40,190 unique words and, therefore, a 40,190-dimensional computational

problem.

6List of stop-words: http://snowball.tartarus.org/algorithms/english/stop.txt, accessed 22 June 2022.
7We have experimented with two more specific preprocessing steps used in Hansen et al. (2017): identifying collo-
cations (i.e., N-grams) and ranking words by their term frequency-inverse document frequency (tf-idf) score. Both
steps were judged not necessary given the characteristics of our text data.
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Raw text Stop-words POS filtering Stemming

Total words 34,820,313 19,422,424 15,005,162 15,005,162

Unique words 57,323 57,193 53,229 40,190

Table 4.1: Data dimensionality reduction through text preprocessing.

4.3.3 Topic Modeling

Topic models are an unsupervised learning method that reduces dimensionality by discovering

latent topics or themes in a set of documents. Topic models can be generally distinguished between

deterministic and probabilistic models. Using keyword lists and dictionaries is the de-facto standard

deterministic approach, where a list of keywords defines the latent theme of interest. Deterministic

methods have been used in the IPO literature (e.g., Loughran and McDonald (2011, 2013); Brau

et al. (2016)). These methods are easy to interpret and work well when there are few latent

topics, few documents, and well-defined topics - characteristics that are not satisfied in our research

setting. Probabilistic approaches, however, do not require researcher-specified word lists for each

latent topic. Rather, they require selecting an appropriate model, validating hyperparameters,

conducting robustness checks, and interpreting model outputs. Given the lack of an agreed-upon

set of risk topics and thousands of multi-page SEC filing documents, we will use a probabilistic

modeling approach to discover risk topics. In line with Hannigan et al. (2019), topic models are an

increasingly popular computational tool to explore conceptual relationships from textual data to

advance management scholarship.

LDA Statistical Model

The broader class of latent factor models includes negative matrix factorization (NMF), principal

component analysis (PCA), and latent semantic indexing (LSI). NMF, PCA, and LSI are all key

predecessors of the LDA model, which is a probabilistic latent factor model. In essence, an LSI
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model is a mixed membership model that applies PCA with singular value decomposition (SVD)

on the term-document matrix of dimensionality (V,D). NMF, PCA, and LSI are linear algebra

approaches that share the main issue with dictionary methods: the inability to model synonyms

and polysemy. LDA, however, is a generative model that treats each word in a document as a finite

mixture over an underlying set of topics. In other words, the same word can occur in different topics.

In turn, LDA treats each topic as an infinite mixture over an underlying set of topic probabilities,

which measure the extent to which a given document discusses that topic. Furthermore, LDA has

been used in the IPO literature (e.g., Israelsen (2014); Agarwal et al. (2017); Lowry et al. (2020)).

We will use the LDA topic model and describe it more formally in Appendix E.1.

Selecting the Number of Topics

As with other unsupervised algorithms, researchers have to select the number of topics, K, a priori.

There is no one correct value for K. In the literature of modeling text-based risk disclosures using

topic models, Lopez-Lira (2020) and Huang and Li (2011) both use 25 topics, Lowry et al. (2020)

use 8 topics, and Bao and Datta (2014), Agarwal et al. (2017), and Israelsen (2014) all use 30

topics. If one picks too many topics, topics become overly specific to particular risks disclosed,

while picking too few topics will result in generic, potentially overlapping topics (Hansen et al.,

2017). To avoid an arbitrary selection of the number of topics, K, we use cross-validation and topic

model coherence (Röder et al., 2015) as the quantitative evaluation metric to compare different

values for K, similar to Lopez-Lira (2020). We find the most coherent topic model at K = 20

topics as described in more detail in Appendix E.2.
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4.3.4 New Measures of Risk

The following example shows why one cannot use the standard (i.e., unchanged) topic model output

for comparing risk disclosures across IPO firms. Imagine a simple scenario with two documents,

DA and DB. DA has 15 paragraphs, five of which discuss topic T1. DB has three paragraphs, one

of which discusses topic T1. Which document has more exposure to risk topic T1? Standard LDA

output assigns a topic loading of approximately 0.33 to both documents because a third of each

document discusses T1. However, DA has arguably more exposure to risk topic T1 as five paragraphs

discuss that topic. To remedy this inaccuracy, we combine topic modeling with a counting approach:

we assign a dominant topic to each paragraph and count the dominant topics for each document.

Following the insight that risk disclosure changes over time and depends on the industry (Kravet

and Muslu, 2013), we then normalize risk exposure relative to a focal firm’s year and industry

group. The number of years and the number of industries are tunable hyperparameters, which we

examine in Section 4.5.3. Using our measure risk in the toy scenario above, the risk magnitude

will be larger for the firm with document DA than for the firm with document DB, ceteris paribus.

Firm-level aggregate risk disclosure is the sum of the normalized, individual risk topics. We describe

a step-by-step illustrative example in Appendix E.3.

Aggregate Risk Disclosure

We compute aggregate risk disclosure in the following steps. We first extract the “Risk Factors”

section of each IPO firm’s latest 424(b) prospectus, typically spanning many pages. We then split

each extracted section into its paragraphs, assuming that, on average, a single paragraph describes

a single risk topic. The assumption that one paragraph describes one topic, on average, is similar

to Bao and Datta (2014), who assume that a single sentence represents a single risk topic, and

Hanley and Hoberg (2019), who apply a topic model to paragraphs discussing risk factors. We
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find empirical support for this assumption using the Lorenz curve in Appendix E.4. The idea of

extracting the individual risk factors listed in the IPO prospectus was also used previously as a

count-based proxy for overall firm risk (e.g., Beatty and Welch (1996); Leone et al. (2007)).

Next, we apply a topic model to identify the dominant topic for each paragraph, i.e., the topic

with the highest probability. While this step might seem like a crude simplification, we found that it

makes the resulting measure more robust to noise. Dominant topics per paragraph do not directly

depend on how the researcher specifies the topic model (i.e., the number of topics, hyperparameter

values). Each IPO firm is represented as a count of its dominant paragraphs – firms disclosing

more risk paragraphs will, therefore, contain more dominant paragraphs and are more likely to

score high on aggregate risk disclosure.8

We then compute the mean dominant paragraph counts for each topic k in the same year and

industry group, µk,year,ind. Similarly, we compute the standard deviation of dominant paragraph

counts for each topic k by year and industry, σk,year,ind. Finally, we subtract the dominant para-

graph mean from the dominant paragraph counts for each topic in each document and divide the

result by the dominant paragraph standard deviation of the same year and industry group. Let X ′

represent the vector of counts of dominant topics for an IPO firm’s focal prospectus document i

and X the vector of individual risk disclosure topics for that focal document. Each dominant topic

count x′k ∈ X ′ for topic k is normalized to xk ∈ X as shown in Equation 4.1 below.

xk =
x′k − µk,year,ind
σk,year,ind

(4.1)

The aggregate risk disclosure for a focal IPO firm, AggregateRiski, is the sum of all K nor-

malized risk topics, shown in Equation 4.2 below.

8The correlation coefficient for aggregate risk disclosure and the number of paragraphs in the “Risk Factors” section
equals 0.64.
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AggregateRiski = X =
K∑
k=0

xk (4.2)

For simplicity, we will refer to aggregate risk disclosure as AggregateRisk from here onward.

We continue our investigation of firm-level disclosed AggregateRisk, normalized with respect to the

focal firm’s 4-year and Fama and French (1993) 12-industry group.9

Technology Risk Disclosure

We now investigate the individual risk topics to find a topic that discusses technology-related risks,

including patents (Heeley et al., 2007; Hsu and Ziedonis, 2013) and licensing (Morricone et al.,

2017). In related work on 10-K annual reports, Bao and Datta (2014) provide mixed evidence

for the effect of individual risk topics on perceived risk. The authors find that eight out of their

30 risk topics are significantly associated with post-disclosure risk perceptions of investors; three

are positively associated, and five are negatively associated. We argue that firms disclosing more

TechRisk contribute to investors’ risk perception and that those firms have higher Underpricing,

on average.

Equation 4.2 defines AggregateRisk as the sum of all K normalized risk topics. Each risk topic

computes how much of that particular risk a firm discloses relative to its year and industry nor-

malization group. Table 4.2 reports all risk topics, or “RT” for short, including a researcher-given

title and the most likely word stems per RT. We combine four approaches to finding human-

readable topic titles: the most likely words for each topic, the most likely paragraph for each topic,

a two-dimensional principal component (PCA) representation of all topics, and the distribution

of firm-level control variables for each topic. Given the unsupervised nature of our method and

9Robustness checks with different year and industry groups in Section 4.5.3 show that our main results are robust to
different normalization groups and remain qualitatively stable.
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the sample consisting of technology-based firms, we expect to find an RT discussing technology risk.

Topic Topic title Most likely word stems

0 Growth strategy compani, busi, acquisit, oper, assur, acquir, result, effect

1 Demand revenu, custom, sale, result, year, period, end, quarter

2 Tax tax, invest, incom, distribut, dividend, asset, proceed, valu

3 Competition product, develop, market, competitor, technolog, compet

4 Share price fluctuation market, price, stock, offer, trade, factor, secur, fluctuat

5 Share sales share, stock, offer, sale, secur, purchas, price, option

6 Top management stockhold, director, stock, control, provis, board, vote

7 Reporting requirements requir, control, report, account, act, compani, growth

8 Service interruption servic, system, custom, provid, softwar, internet, inform

9 Economic conditions I oper, affect, condit, result, risk, increas, busi, locat, impact

10 Operating results cost, oper, loss, increas, result, expens, incur, expect, risk

11 Debt financing capit, fund, loan, credit, interest, financ, debt, rate, abil

12 Economic conditions II result, busi, oper, affect, condit, chang, time, effect

13 Loss of key personnel manag, personnel, growth, employe, busi, abil, retain

14 Technology patent, properti, licens, protect, parti, claim, technolog

15 Regulatory compliance regul, law, state, requir, govern, subject, includ, compli

16 Healthcare regulation insur, liabil, claim, program, coverag, provid, reimburs

17 Supply chain product, manufactur, delay, requir, supplier, suppli, parti

18 Drug development product, approv, candid, trial, fda, obtain, drug, requir

19 Partnerships agreement, term, enter, termin, partner, contract

Table 4.2: Risk topics (n = 2,532 “Risk Factors” sections of the IPO prospectus).

We conduct two steps of analysis to select the appropriate RT for technology risk disclosure.

First, we assume that firms with a stronger dependence on technology disclose a larger amount

of technology-related risks. If this were not the case, investors would likely sue the firm for not

disclosing relevant risks (Loughran and McDonald, 2011). We, therefore, correlate all RFs with

the HighTech indicator variable in the SDC Global New Issues (GNI) database to find that RT

14 (0.1063) and RT 18 (0.127) have the highest positive correlations. Second, we examine the

most likely word stems in Table 4.2 shows that RT 14 discusses patents, intellectual property,

licensing, protection mechanisms, and technology. As a consequence, we select RT 14 as a proxy

for normalized disclosure of TechRisk because it corresponds with our broad conceptualization of
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technology, while RT 18 focuses on drug development risks only.

We also conduct an ex-post analysis of RT 14 by investigating the ten firms with the most ex-

tensive technology risk disclosure. These firms include three technology firms (iGo Corp, Plumtree

Software Inc, Palm Inc) and seven healthcare/biotech firms (Memory Pharmaceuticals Corp, Quan-

terix Corp, Idenix Pharmaceuticals Inc, Roka Bioscience Inc, Selecta Biosciences Inc, Pacific Bio-

sciences of CA Inc, Bionano Genomics Inc). For example, Quanterix Corp is a biotechnology firm

that went public on 6 December 2017. Quanterix provides a technology platform for biomarker

detection and testing called Simoa. The following excerpt from their IPO prospectus (424(b) fil-

ing), filed with the SEC on 7 December 2017, indicates the central role of technology in generating

revenues:

“We are an early, commercial-stage company and have a limited commercial history.
Our revenues are derived from sales of our instruments, consumables and services,

which are all based on our Simoa technology, . . .”

As an additional qualitative interpretative approach, we can plot the distribution of K = 20

RTs for a firm. For example, Figure 4.4 shows the risk profile for Quanterix Corp. The risk profile

shows that extensive disclosure of competitor risk (RT 3) and technology risk (RT 14) drive their

firm-level AggregateRisk. Positive (negative) deviation from the baseline means the firm discloses

more (less) of a particular risk topic relative to its year and industry group.

We open-source the code that implements our new measure of risk as the RiskyData-LDA on

GitHub. The repository also includes the textual risk disclosure data from the SEC 424(b) filings.

The tool aims to facilitate replication of our results and accelerate future work on textual data of

economic interest.

118



Figure 4.4: Example risk profile for Quanterix Corp.

4.4 Data and Model

4.4.1 Sources and Pipeline

We summarize the main steps of generating our cross-sectional data set in this section. We describe

the data ingestion and processing pipeline in more detail in Appendix F. A summary of variables is in

Table F.1 in Appendix F. We use text-based risk from SEC 424(b) filings and augment those filings

with the following data sources: Center for Research in Security Prices (CRSP), Securities Data

Company (SDC) Platinum VentureXpert, SDC Platinum Global New Issues (GNI), Compustat,

United States Patent and Trademark Office (USPTO), Carter and Manaster (1990) underwriter

reputation data updated by Loughran and Ritter (2004) and the Fama and French (1997) industry

classification.

In line with previous literature (Hanley and Hoberg, 2012), our initial list of IPOs comes from

the SDC GNI database. We consider issues between 1 January 1996 and 31 December 2018 on

the three major US stock exchanges (NYSE, NASDAQ, and AMEX), excluding follow-on offerings,
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American Depository Receipts (ADRs), and Real Estate Investment Trusts (REITs). The initial

sample from SDC GNI contains 3,700 observations.

We acquired all 424(b) filing documents from the SEC Edgar database for issues from 1996 to

2018. A firm planning to go public first files an S-1 IPO prospectus. In the weeks and months

preceding the offer date, the underwriter(s) and issuer promote the offering on a roadshow, meeting

with potential investors. During the roadshow, the IPO firm receives feedback from investors. The

S-1 is revised during this book-building process and re-submitted to the SEC as a 424(b) filing

shortly before the filing date. Knowing that the risk disclosure section often changes during the

book-building process (Lowry et al., 2020), we select the final 424(b) prospectus filed with the SEC

and extract its “Risk Factors” section for quantifying risk. We discard the rest of the prospectus.

Each IPO firm in our sample is associated with exactly one “Risk Factors” section.

The prospectus comes in either plain text (txt) or HTML format, requiring custom parsing

algorithms. For a firm to remain in our sample, its file has to include a table of contents (TOC) to

identify the start and end of the “Risk Factors” section (Hanley and Hoberg, 2010). We split each

“Risk Factors” section into paragraphs. We use a full stop for plain text documents, followed by

a new line, three empty spaces, and a capital letter as the primary paragraph divider. For HTML

documents, we use the bold-italics HTML tag sequence (i.e. <b><i>) as the primary paragraph

divider. We use a range of additional splitting rules for both plain text and HTML documents

to detect paragraphs. Each firm in our SEC filing sample has to match SDC GNI on one of the

following criteria: a fuzzy firm name match, the SEC filing number, or the ticker symbol and issue

year. For the 3,700 observations in our initial sample, we match 3,396 machine-readable documents,

equivalent to 126,343 paragraphs, to use for computing text-based aggregate risk disclosure. We

fit the topic model on paragraphs because we require paragraph-level topics.

Finally, we drop all IPOs with missing values in any variable and drop three observations after
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manual inspection. Due to many different data sources and the difficulty of finding reliable fields

for matching, the full sample used in the regression analysis consists of 2,532 observations. A

two-sample t-test indicates that firms that we dropped due to missing data were not significantly

different from those in the final sample on any dependent or explanatory variable. Therefore, drop-

ping observations does not change the underlying population for which we estimate the associations.

4.4.2 Variables

Dependent Variable

Underpricing. We compute underpricing, our outcome of interest, as the difference between the

offer price of a stock and its price at the end of the first day of trading, in percent of the original

offer price (e.g., Beatty and Welch (1996); Morricone et al. (2017)).

Explanatory Variable

TechRisk. We disaggregate aggregate risk disclosure (AggregateRisk) to extract the risk topic that

describes risks concerning patents, intellectual property, licensing, and technology as described

in Section 4.3.4. The estimated association of TechRisk tests the Validation. An unpublished

histogram of TechRisk shows an approximately normal distribution, so we do not further transform

the variable.

Moderator Variable

Patent. We queried the USPTO and matched firms to patents through disambiguated firm names

to create an indicator variable that equals 1 if the firm had at least one patent granted at the time

of IPO, 0 otherwise. We follow previous studies (Morricone et al., 2017) in querying patents by

grant date rather than the application date. We will estimate the effect of the moderator variable
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TechRisk * Patent to test the Main Hypothesis 2.

Control Variables

OtherRisk. We compute risk disclosure excluding technology risk disclosure by subtracting TechRisk

from AggregateRisk to control for variation in risk disclosure excluding the technology risk disclo-

sure topic. Inspecting an unpublished histogram of OtherRisk shows an approximately normal

distribution, which suggests no need to transform the variable further.

We also require firm-level covariates to estimate the association of risk while controlling for

common IPO variables affecting risk disclosure and underpricing. Financial control variables include

total proceeds from SDC GNI (Proceeds). We also include an indicator for venture capital backing

(VC ) as in Barry et al. (1990) and Megginson and Weiss (1991), an indicator for PE backing

(PE ) as found in SDC VentureXpert, and an indicator for the dot.com boom (Boom) equal to 1

if the firm issued between 1 January 1997 and 1 April 2000 (Aggarwal et al., 2009), 0 otherwise,

to absorb variation of IPOs during the dot.com boom. We proxy for high-tech IPO firms with

the SDC GNI indicator (HighTech). We further compute the count of IPOs in the same 4-digit

SIC code in the previous year as an indication of hot markets (Hot) (Ritter, 1984). Underwriter

reputation is coded as the Carter and Manaster (1990) and Loughran and Ritter (2004) tombstone

rank of the leading investment bank(s) (we take the maximum if more than one lead underwriter)

(Reputation)10, VC prominence follows Gulati and Higgins (2003), who consider all VCs with a

minimum 5% stake in the IPO firm and code VC prominence as 1 if the VC was listed among

the top 30 on the list of total dollar amount invested in the year prior to the firm’s IPO date and

0 otherwise (Prominence). From Compustat, we also include total assets (Assets), total revenue

10The lead underwriters bear the responsibility for determining the appropriate marketing method and pricing the
issue. The offer price range depends on the firm valuation estimated by the underwriting banks’ capital markets
groups, which can be more art than science. For their core role in the issuing process, lead underwriters receive the
largest share of fees of all underwriters.
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(Revenue), book value (Book), return on assets (ROA) and net income (Ni) to control for firm

size and other financial characteristics. We extract the EGC status from the IPO prospectus text,

where firms are required to declare it (EGC ). Location indicates that the firm headquarters are

in the US, controlling for spatial conditions (US ). Firm age in years (Age) is computed as the

difference between founding year data from Loughran and Ritter (2004) and the SDC GNI issue

year. We partially control for large issues through an indicator variable equal to 1 if the firm issued

on the NYSE (NYSE ), 0 otherwise. Finally, we use industry fixed effects based on Fama and French

(1997) 12 industries, similar to Hanley and Hoberg (2012). We winsorize the dependent variable

and explanatory variables at the 1% level to remove outliers, similar to (Loughran and McDonald,

2011). A two-sample t-test indicates that winsorizing does not significantly change the underlying

population distribution.

Other Variables

We compute post-IPO stock return volatility for robustness checks. Volatility is computed as

the standard deviation of daily returns over the 15 (Vola15 ), 30 (Vola30 ), and 90 (Vola90 ) days

following the issue, in line with Lowry et al. (2020). We limit the time frame to 90 days to stay well

within the share lockup period of typically 180 days post IPO (Field and Hanka, 2001) to ensure

clean measurement.

4.4.3 Econometric Model

For our full empirical model specification in Equation 4.3, we estimate the model via ordinary least

squares (OLS) with Huber-White robust standard errors to account for potential heteroscedasticity

(Huber, 1967; White, 1980). In Equation 4.3, Ci is a vector of control variables, Fi is a vector of

year and Fama and French (1997) 12 industry fixed effects, and ϵi is the error term. The estimated
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coefficient β1 tests the Validation and β4 tests the Main Hypothesis.

Underpricingi = β0 + β1 TechRiski + β2 OtherRiski

+ β3 Patenti + β4 (TechRiski ∗ Patenti) + β5 Ci + β6 Fi + ϵi (4.3)

Following the advice in Egami et al. (2018), it is important to keep the steps of measuring

TechRisk and estimating the association of TechRisk with Underpricing separate. Measuring builds

on an unsupervised model (such as LDA) to extract the quantified risk topics. Using the model

output for estimating associations means that we have to tune the LDA model independently of the

estimation results. Otherwise, one might tune the model until the estimation results are desirable.

Once the LDA is tuned, we can fit the LDA to all of the data without the risk of overfitting as

we are interested in understanding existing relations in the data, not in making accurate out-of-

sample predictions. Therefore, we do not claim that the topic model used in the estimation step is

generalizable to analyze the risk disclosures of firms currently preparing for an IPO.

4.5 Results

We begin our analysis by reviewing the sample of 2,532 IPO firms. Table 4.3 shows the sample

industry composition and Table 4.4 contains descriptive statistics for all variables. The sample

consists mostly of firms in the business equipment (33.45%) and healthcare (22.43%) industries

that are relatively young (median of 9 years), unprofitable (median net loss of USD 3.37 million),

substantially underpriced (mean of 27.07%), and primarily headquartered in the US (94%). Average

Underpricing during the dot.com boom reached levels of 60 − 70%, in line with Aggarwal et al.

(2009). According to our AggregateRisk measure, no obvious high-risk trait stands out among

the riskiest firms: the firms belong to a range of industries, vary in offer sizes, and issue years.
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29% of firms own at least one granted patent at the time of IPO. Firms with a Patent disclose

more TechRisk (mean of 0.13) compared to firms without (mean of -0.04), a difference that is

statistically significant at the 0.1% significance level. We detect no pattern for the mean or the

median AggregateRisk and TechRisk over time.

The bi-variate correlation coefficients in Table 4.5 are reasonably small for most variables. As

a direct consequence of constructing OtherRisk by subtracting TechRisk from AggregateRisk, Ag-

gregateRisk is highly correlated with OtherRisk (0.98). TechRisk and OtherRisk are moderately

correlated (0.21). The issue Year is highly negatively correlated with Boom (-0.66) and positively

correlated with EGC (0.76) because all three variables are time-dependent. The mean variance

inflation factors of the regression models (2.42 when estimating the model in Equation 4.3) suggest

no problems of multicollinearity.

Industry No. of firms

Business Equipment – Computers, Software, and Electronic Equipment 847

Healthcare, Medical Equipment, and Drugs 568

Other 365

Wholesale, Retail, and Some Services (Laundries, Repair Shops) 225

Manufacturing – Machinery, Trucks, Planes, Off Furn, Paper, Com Printing 125

Telephone and Television Transmission 104

Oil, Gas, and Coal Extraction and Products 78

Consumer NonDurables – Food, Tobacco, Textiles, Apparel, Leather, Toys 73

Finance 61

Chemicals and Allied Products 34

Consumer Durables – Cars, TV’s, Furniture, Household Appliances 29

Utilities 23

n 2,532

Table 4.3: Fama and French (1997) 12 industry distribution of the sample.
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Variable Observations Mean SD Min Median Max

Age 2,532 16.22 21.47 0.00 9.00 165.00

Assets 2,532 582.90 1,866.30 0.00 131.19 34,362.00

Book 2,532 192.21 591.27 -4,480.00 77.84 12,474.03

Boom 2,532 0.30 0.46 0.00 0.00 1.00

EGC 2,532 0.23 0.42 0.00 0.00 1.00

HighTech 2,532 0.63 0.48 0.00 1.00 1.00

Hot 2,532 9.16 17.21 0.00 2.00 90.00

Ni 2,532 -8.87 122.31 -3,445.07 -3.37 1,177.00

NYSE 2,532 0.23 0.42 0.00 0.00 1.00

Patent 2,532 0.29 0.45 0.00 0.00 1.00

PE 2,532 0.21 0.41 0.00 0.00 1.00

Proceeds 2,532 153.93 412.80 3.00 76.00 16,006.88

Prominence 2,532 0.37 0.48 0.00 0.00 1.00

Reputation 2,532 7.59 2.44 0.00 8.88 9.00

Revenue 2,532 448.83 1,642.12 -18.83 68.40 40,376.80

AggregateRisk 2,532 0.00 3.25 -6.75 -0.17 8.84

OtherRisk 2,532 0.00 3.08 -7.20 -0.18 9.66

TechRisk 2,532 0.00 0.58 -1.24 -0.11 1.85

ROA 2,532 -0.14 0.46 -12.46 -0.03 0.73

Underpricing 2,532 27.07 47.55 -21.41 12.50 256.25

US 2,532 0.94 0.24 0.00 1.00 1.00

VC 2,532 0.69 0.46 0.00 1.00 1.00

Year 2,532 2005.33 7.11 1996 2004 2018

Notes: The sample includes US IPOs between 1996 and 2018. An IPO firm Age equal to

zero can result from e.g. a merger in the same year as the IPO.

Table 4.4: Descriptive statistics (n = 2, 532).
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Table 4.6 contains the main results. All models include the full set of controls described in

Section 4.4.2, year fixed effects, 12-industry (Fama and French, 1993) fixed effects, and robust

standard errors.11 We use Underpricing as the dependent variable across all models. Model (1)

tests the association of TechRisk. Model (2) tests the association of OtherRisk. Model (3) tests the

association of TechRisk when controlling for OtherRisk. Model (4) tests the association of Patent.

Model (5) and Model (6) test the association of the moderator TechRisk * Patent without and with

controlling for OtherRisk, respectively. Model (6) corresponds to Equation 4.3.

4.5.1 Technology Risk Disclosure

We first examine the association of TechRisk and Underpricing (Validation) in Model (1) and Model

(3) of Table 4.6. In the Validation, we posit a return-for-risk relation between TechRisk and Un-

derpricing, suggesting that investors demand a higher initial return for taking on more technology

risk. Table 4.6 provides evidence in support of the Validation, showing a positive and significant

association of TechRisk and Underpricing when controlling for OtherRisk (p < 0.000001 in Model

(3)). Model (2) tests the association of OtherRisk and Underpricing to understand how the varia-

tion in risk disclosure quantity without technology-related risk relates to Underpricing. Model (2)

shows no evidence for a return-for-risk association for risks excluding technology risk. Comparing

Model (1) and Model (2) also shows that TechRisk explains 5% more variability in Underpricing

than OtherRisk. Together, Model (1), Model (2), and Model (3) suggest that technology risk dis-

closure is central to the market evaluation of risk. To interpret the magnitude of the coefficient in

Model (3), we first note that the TechRisk variable is approximately normally distributed in the

11One might argue for additionally clustering standard errors to account for within-group correlations across obser-
vations. We follow Abadie et al. (2017), who argue that clustering in a fixed-effects model with effect heterogeneity
is appropriate only in the case of clustered sampling or clustered assignment, which is not the case in our setting as
both the sampling and the assignment occur at the firm level. Therefore, while our reported results do not cluster
standard errors, we find that the main results are robust to clustering on 12-industry-level or year-level, both at
the 5% significance level.
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(1) (2) (3) (4) (5) (6)

Intercept 12.9655* 9.1761 12.6523* 9.5507+ 13.8038* 13.5016*

(5.747) (5.757) (5.753) (5.738) (5.755) (5.756)

VC 4.1626+ 5.0823* 4.2154+ 5.0577* 4.1594+ 4.2062+

(2.190) (2.191) (2.190) (2.209) (2.198) (2.198)

PE -6.9318*** -8.1705*** -6.9308*** -8.3030*** -6.6579*** -6.6536***

(1.937) (1.914) (1.938) (1.966) (1.997) (1.998)

Boom 68.3166*** 68.4335*** 68.4918*** 68.0442*** 68.1121*** 68.2781***

(10.450) (10.526) (10.459) (10.519) (10.427) (10.436)

Hot 0.0109 0.0164 0.0128 0.0122 0.0127 0.0146

(0.077) (0.078) (0.077) (0.078) (0.077) (0.077)

Reputation 1.2598*** 1.2656*** 1.2477*** 1.2935*** 1.2738*** 1.2624***

(0.308) (0.309) (0.307) (0.310) (0.308) (0.307)

Prominence 8.1651*** 8.4206*** 8.1704*** 8.4326*** 7.9295*** 7.9353***

(2.170) (2.181) (2.170) (2.182) (2.170) (2.170)

Assets -0.0001 -0.0000 -0.0001 -0.0000 -0.0001 -0.0001

(0.001) (0.000) (0.001) (0.000) (0.001) (0.001)

Book 0.0023+ 0.0022+ 0.0023+ 0.0023+ 0.0024+ 0.0023+

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

US -2.8338 -2.0187 -2.6691 -2.3108 -2.8379 -2.6849

(3.466) (3.448) (3.463) (3.451) (3.471) (3.469)

Revenue -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ROA 6.0895** 5.8021** 6.0719** 5.8173** 6.3361** 6.3181**

(1.988) (1.959) (2.010) (1.912) (2.037) (2.058)

Ni -0.0035 -0.0031 -0.0034 -0.0034 -0.0037 -0.0035

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

NYSE -2.8606+ -3.8549* -2.9261+ -3.7994* -2.7951+ -2.8568+

(1.556) (1.540) (1.555) (1.541) (1.553) (1.552)

EGC 0.4844 0.9739 0.4196 1.1787 0.4034 0.3393

(2.845) (2.829) (2.853) (2.807) (2.847) (2.856)

Age -0.0753** -0.0741** -0.0740** -0.0769** -0.0815** -0.0803**

(0.027) (0.028) (0.027) (0.028) (0.027) (0.027)

Proceeds -0.0020 -0.0019 -0.0019 -0.0020 -0.0021 -0.0021

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

HighTech 0.1578 2.0071 0.2944 1.8753 -0.2117 -0.0838

(2.643) (2.626) (2.648) (2.642) (2.657) (2.661)

Table 4.6: Main results (n = 2,532). (Results continue on the next page.)
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(1) (2) (3) (4) (5) (6)

TechRisk 6.6861*** 6.4173*** 9.7773*** 9.5096***

(1.555) (1.544) (2.123) (2.089)

OtherRisk 0.4767 0.2276 0.2150

(0.311) (0.310) (0.308)

Patent -0.1036 -0.3554 -0.3235

(1.918) (1.939) (1.936)

TechRisk * Patent -8.1664** -8.1371**

(3.028) (3.023)

Observations 2,532 2,532 2,532 2,532 2,532 2,532

Year FE Y Y Y Y Y Y

Industry FE Y Y Y Y Y Y

R-squared 0.310 0.305 0.310 0.304 0.312 0.312

Notes: The dependent variable is Underpricing as a percentage of the offer price.

The TechRisk and OtherRisk variables are mean-centered and winsorized at the 1% level.

All models are estimated by OLS with robust standard errors, using the Huber-White estimator.

Industry fixed effects are Fama and French (1993) 12 industries.

Two-tailed tests: *** p<0.001, ** p<0.01, * p<0.05, + p<0.1.

Table 4.6, continued: Main results. (Results continued from the previous page.)

range [−1.24, 1.85]. A unit increase in TechRisk is associated with an increase of approximately

6.42 percentage points of Underpricing and a percentage change of
(
27.07+6.42

27.07 −1
)
×100 ≈ 23.72%,

on average, ceteris paribus. Given the mean Proceeds12 of approximately USD 154 million, a unit

increase in TechRisk is therefore associated with a USD 36,528,800 initial return (23.72% of USD

154 million), on average, ceteris paribus, suggesting an economically considerable association of

technology risk disclosure.

12We do not take into account the exercise of overallotment options due to the unreliability of these data in the SDC
Global New Issues database, in line with Loughran and Ritter (2002).
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4.5.2 Patent Moderation

For evaluating the Main Hypothesis (HYP), we turn to hypothesis testing of our moderation condi-

tion. HYP specifies the condition that TechRisk might have a smaller association with Underpricing

for IPO firms with at least one granted patent. We hypothesize that a firm’s patents are associated

with a decrease in the perceived risk of a firm for a given level of technology risk disclosure relative

to a firm without granted patents. In other words, we expect the interaction coefficient of TechRisk

* Patent to be negative. Before investigating the interaction effect, we note that Model (4) shows no

significant association of Patent and Underpricing, in line with the results in Heeley et al. (2007).13

The interaction term, TechRisk * Patent, in Table 4.6, Model (6), shows a significant negative asso-

ciation with Underpricing (p = 0.007159), providing evidence in support of HYP. Model (6) controls

for variation in risk disclosure, excluding technology risk (OtherRisk) to show that the negative

interaction in Model (5) negligibly decreases while remaining highly significant. The association

of TechRisk and Underpricing is smaller for firms owning at least one granted Patent, reducing

the association of TechRisk from 9.51 percentage points to 1.37 (9.51 − 8.14) percentage points,

on average, ceteris paribus. Therefore, patent ownership reduces the return-for-risk association

of TechRisk by 8.14 percentage points and
(
27.07−8.14

27.07 − 1
)
× 100 ≈ −30.07% on average, ceteris

paribus. Given the mean Proceeds of approximately USD 154 million, a unit increase in TechRisk is

associated with a USD 54,100,20014 initial return for firms without a Patent and a USD 7,792,40015

initial return for firms with at least one granted Patent. It follows that Patent ownership reduces

13The effect of patent stock on Underpricing at the time of IPO can have ambiguous results, depending on the sample
investigated. For example, Heeley et al. (2007) (1,413 companies) find no direct association. Hsu and Ziedonis (2013)
(sample of 370 semiconductor companies) and Morricone et al. (2017) (sample of 130 semiconductor companies)
find a negative association. Our sample is most similar to Heeley et al. (2007), who find no direct association
between patents and underpricing.

14The percentage change in Underpricing for firms without a patent equals
(
27.07+9.51

27.07
− 1

)
∗ 100 ≈ 35.13% and

35.13% of USD 154 million equal USD 54,100,200.
15The percentage change in Underpricing for firms with a patent equals

(
27.07+1.37

27.07
− 1

)
∗ 100 ≈ 5.06% and 5.06% of

USD 154 million equal USD 7,792,400.
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the association of TechRisk and Underpricing by
(
27.07−8.14

27.07 − 1
)
× 100 ≈ −30.07%, which amounts

to a decrease of USD 46,307,800 million (30.07% of USD 154 million) in intial returns, on average,

ceteris paribus.

An alternative explanation of the moderation effect acknowledges that technology risk disclosure

(as opposed to patents) can be a mechanism to reduce information asymmetry, given that the firm

owns at least one granted patent. The issuing firm decides how much technology-related risk to

disclose when preparing for the IPO. The negative interaction effect of TechRisk * Patent suggests

that the level of technology risk disclosure, rather than the patent stock, can reduce the information

asymmetry when Patent equals one. As a consequence, one would expect that firms with patents

and extensive technology risk disclosure are associated with lower Underpricing. Heeley et al.

(2007) find that the effect of patent stock on underpricing is conditional on how transparent the

link between patents and inventive returns is, where patent stock in a transparent industry is

associated with lower underpricing. Our results are consistent with Heeley et al. (2007) in that

disclosing more technology risk might increase the transparency of how the firm can use its patents

to appropriate inventive returns, therefore reducing underpricing.

For the associations of control variables we interpret Model (6) because it contains all hypoth-

esized variables. We find that firms with private equity investors (PE ) are associated with signif-

icantly lower Underpricing (p = 0.000879). Firms issuing during the Boom period are associated

with significantly higher Underpricing (p < 0.000001), in line with the results in Aggarwal et al.

(2009). Firms working with underwriters with a high Reputation are significantly more underpriced

(p = 0.000041) (Baron, 1982) as are firms high Prominence VC backing (p = 0.000261). Finally,

firms with a higher ROA are associated with significantly higher Underpricing (p = 0.002164), and

older firms (Age) exhibit significantly less Underpricing (p = 0.003196), consistent with the view

that young (often high-tech) firms have greater growth opportunities (Younge, 2012).
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Figure 4.5: Marginal effect of TechRisk on Underpricing by Patent with 95% CIs.

Figure 4.5 shows the marginal effect of technology risk disclosure (TechRisk)16 and Under-

pricing by Patent to show that owning at least one patent attenuates the positive return-for-risk

association of TechRisk. The marginal effect when TechRisk is larger or equal to approximately

0.5 is statistically significantly higher for firms without a patent, suggesting that the Patent status

only matters when the firm extensively discloses TechRisk. Secrecy considerations can explain this

marginal effect as patents can mitigate the imitability concerns that might come with above-average

technology risk disclosure. Consequently, below-average TechRisk poses little imitability concerns,

reducing the importance of owning a Patent to deter imitation. Another explanation based on

information asymmetry theory suggests that potential investors expect more information on the

IPO firm’s technology in the form of patents for firms with above-average TechRisk. However,

the technology-related information asymmetry that patents could reduce is limited for firms with

below-average TechRisk, resulting in an insignificant difference in the marginal effect by Patent for

lower levels of TechRisk.

16The marginal effect estimations are supported by TechRisk in the range [-1.24, 1.85].
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To summarize this section, the results show that technology-related risk disclosure is positively

associated with Underpricing in a return-for-risk association, suggesting that the market expects

higher initial returns for taking on more TechRisk. We also find that other risk disclosures are

not significantly associated with Underpricing. Finally, owning at least one Patent attenuates the

return-for-risk association.

4.5.3 Robustness Checks

Risk and Volatility

In describing the return-for-risk association, we argued that disclosing more TechRisk can increase

investors’ risk perception of the firm. We now conduct a brief robustness check to investigate

this statement. Post-IPO stock return volatility has been used as a proxy for investors’ perceived

risk (Loughran and McDonald, 2011, 2013; Kravet and Muslu, 2013; Lowry et al., 2020). One

perspective is that investors’ estimates of firm value vary more for riskier firms than for less risky

firms, which means that the spread of daily stock returns is higher for riskier firms. We therefore

expect that TechRisk and post-IPO stock return Volatility are positively associated.

We set up three regression models where the dependent variable is Volatility and the explanatory

variable is TechRisk with all control variables and fixed effects specified in Equation 4.3. We measure

Volatility as three separate variables: the 15-day, 30-day, or 90-day rolling standard deviation from

the first trading day forward (Kravet and Muslu, 2013). We find that TechRisk is positively

significantly associated with Vola15 (p < 0.000001), Vola30 (p = 0.000219), and 90-day volatility

(p < 0.000001), providing support for TechRisk as a proxy of investor risk perception at the offering.
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Retraining with Varying Seeds

The output of a probabilistic topic model can change for different random seeds (Yang et al.,

2016). Therefore, we retrain ten LDA models with varying, randomly drawn seeds and extract

TechRisk from the resulting K = 20 topics following the steps outlined in Section 4.3.4. We use

these alternative measures of TechRisk and OtherRisk to estimate the regression model in Equation

4.3. The results are robust to retraining the topic model with varying seeds. More specifically, the

association of TechRisk remains significant at the 1% significance level, with coefficient sizes ranging

from 6.4475 to 8.6686. The association of OtherRisk remains non-significant. The moderating

effect of TechRisk * Patent remains significant at the 5% significance level, with coefficient sizes

ranging from -6.2144 to -8.7969. As such, the main results and conclusions of our analysis remain

qualitatively robust while showing marginal quantitative changes due to the probabilistic nature of

the LDA model.

Year and Industry Normalization Groups

We now validate the robustness of our results with respect to the year and industry normalization

groups for computing TechRisk and OtherRisk. Table 4.7 reports the robustness checks for the

regression model in Equation 4.3. Models (1) through (6) report the associations when normal-

ized with combinations of 2, 3, or 4 year groups and 5 or 12 Fama and French (1993) industries.

Our baseline normalizing group is Model (1) and spans two issue years (i.e. 1996 and 1997, 1998

and 1999, 2000 and 2001, etc.) and 12 Fama and French (1993) industries (i.e. Business Equip-

ment, Healthcare, Manufacturing, etc.). For estimating the associations of TechRisk, OtherRisk,

and TechRisk * Patent, we fit the regression model in Equation 4.3. All models include the full

set of control variables, year fixed effects, industry fixed effects, and robust standard errors. Ta-

ble 4.7 shows that the results are robust to different normalizing groups. First, all specifications
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for TechRisk exhibit positive associations with Underpricing at the 0.1% significance level (Valida-

tion). Second, all specifications of OtherRisk remain not significantly associated with Underpricing.

Finally, the moderating effect of TechRisk * Patent, is negatively significantly associated with Un-

derpricing at least at the 5% significance level across all specifications (HYP).

(1) (2) (3) (4) (5) (6)

2 years 2 years 3 years 3 years 4 years 4 years

12 ind. 5 ind. 12 ind. 5 ind. 12 ind. 5 ind.

TechRisk 9.5096*** 9.4488*** 9.2235*** 9.3362*** 9.2744*** 9.2789***

(2.089) (2.038) (2.057) (2.011) (2.121) (2.084)

OtherRisk 0.2150 0.2138 0.1840 0.2422 0.1753 0.1936

(0.308) (0.306) (0.297) (0.298) (0.304) (0.304)

TechRisk * Patent -8.1371** -9.1279** -7.7950** -8.7848** -7.7323* -8.7041**

(3.023) (2.908) (2.937) (2.811) (3.062) (2.979)

Observations 2,532 2,532 2,532 2,532 2,532 2,532

Controls & FEs Y Y Y Y Y Y

R-squared 0.312 0.312 0.305 0.312 0.312 0.312

Two-tailed tests: *** p<0.001, ** p<0.01, * p<0.05, + p<0.1.

Table 4.7: Robustness check for measuring risk disclosure with different normalization groups.

Patent

To account for variations in the timing and magnitude of patent stock of a firm, we vary the timing

and the minimum number of granted patents when computing the Patent variable in Equation 4.3.

Regarding the timing, we test alternative specifications of Patent to account for the possibility that

potential IPO investors assess the patent portfolio 1, 2, or 3 months prior to the IPO. Table 4.8 shows

that the associations of TechRisk, OtherRisk, Patent, and TechRisk * Patent with Underpricing

are robust to alternative points in time when investors might evaluate the patent portfolio. The

coefficient magnitudes for TechRisk decrease as the gap between the evaluation point in time and

the IPO date increases from Model (1) to Model (4).
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(1) (2) (3) (4)

At IPO 1 month before 2 months before 3 months before

TechRisk 9.5096*** 9.2646*** 9.0407*** 8.8544***

(2.089) (2.076) (2.064) (2.026)

OtherRisk 0.2150 0.2170 0.2181 0.2220

(0.308) (0.309) (0.309) (0.309)

Patent -0.3235 -0.3455 -0.7536 -0.7247

(1.936) (1.950) (1.916) (1.912)

TechRisk * Patent -8.1371** -7.6088* -7.0076* -6.7692*

(3.023) (3.031) (3.035) (3.037)

Observations 2,532 2,532 2,532 2,532

Controls & FEs Y Y Y Y

R-squared 0.312 0.312 0.312 0.312

Two-tailed tests: *** p<0.001, ** p<0.01, * p<0.05, + p<0.1.

Table 4.8: Robustness check for computing Patent at different points in time.

Concerning the number of granted patents, we test alternative specifications of Patent to counter

the argument that a single granted patent might not substantially reduce the information asym-

metry between the issuing firm and potential investors. We, therefore, increase the threshold such

that Patent equals 1 only when the IPO firm has at least 2, 3, 4, or 5 granted patents at the time

of the IPO, 0 otherwise. Table 4.9 shows that the associations of TechRisk, OtherRisk, Patent, and

TechRisk * Patent with Underpricing are robust. The coefficient magnitudes for TechRisk decrease

as the number of granted patents increases from Model (1) to Model (5).

To conclude this section, we find evidence that text-based risk disclosure matters for the under-

pricing of IPOs. Our results provide evidence for a return-for-risk association for risk disclosure,

driven by the disclosure of technology-related risks. We find no evidence for an association of

risk disclosure when excluding the disclosure about technological risks. Finally, we find evidence

that patents can considerably attenuate the return-for-risk relationship between technology risk

disclosure and underpricing.
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(1) (2) (3) (4) (5)

At least 1 At least 2 At least 3 At least 4 At least 5

TechRisk 9.5096*** 8.7226*** 8.2453*** 7.9517*** 7.7822***

(2.089) (1.945) (1.847) (1.783) (1.758)

OtherRisk 0.2150 0.2073 0.2071 0.2010 0.2015

(0.308) (0.309) (0.309) (0.309) (0.309)

Patent -0.3235 -0.1601 1.4391 2.2777 3.6484

(1.936) (2.039) (2.234) (2.203) (2.321)

TechRisk * Patent -8.1371** -7.9989** -7.8929* -8.0298* -7.8768*

(3.023) (3.041) (3.256) (3.300) (3.451)

Observations 2,532 2,532 2,532 2,532 2,532

Controls & FEs Y Y Y Y Y

R-squared 0.312 0.312 0.311 0.311 0.312

Two-tailed tests: *** p<0.001, ** p<0.01, * p<0.05, + p<0.1.

Table 4.9: Robustness check for computing Patent with different minimum counts.

4.6 Conclusion

Drawing on a cross-sectional dataset of IPO firms, we find evidence that information disclosure

for technology firms matters at the IPO. Using a novel approach to measuring text-based risk, we

validate the return-for-risk association for technology-related risk disclosures. Moreover, we find

that patents attenuate this return-for-risk association.

Our paper makes several contributions. First, we combine research on the economics of tech-

nology assets (e.g., Corrado and Hulten (2010); Brynjolfsson et al. (2021)) with the IPO literature

(e.g., Hanley and Hoberg (2012); Loughran and McDonald (2013); Morricone et al. (2017)) to con-

tribute to the broader discussion around managing a firm’s technology capabilities (Furr, 2021).

Using a new approach to measuring text-based risk disclosures, our analysis suggests that the tex-

tual risk disclosures around technology impact firm value. We are the first to explicitly investigate

technology risk disclosures in the IPO context to the best of our knowledge. Second, we contribute

to examining the role of text-based risk disclosure at IPO. We add to this field with dispersed and
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mixed evidence (Ritter and Welch, 2002) by connecting research on risk disclosure at IPO (e.g.,

Hanley and Hoberg (2010); Loughran and McDonald (2013)) and probabilistic text analysis with

topic models (Egami et al., 2018; Hannigan et al., 2019) to focus on a particular risk topic, namely

technology risk disclosure. By investigating the role of text-based risk at IPO, we further support

the evidence that text-based risk disclosure contains signals that affect IPO outcomes. Third, we

develop, apply, and open-source a new approach to measuring text-based risk disclosure that con-

siders the time and industry dimensions of IPO firms, two key components in light of the dynamic

nature of IPO phenomena (Ritter and Welch, 2002). The code is available as the RiskyData-LDA

platform on GitHub.

The results in this study also have potentially important managerial implications. For exam-

ple, technology-intensive firms without patents might face greater difficulties in raising financial

resources when they “leave money on the table” (Ritter et al., 1998) to compensate IPO investors

through underpricing or increasing the risk of a class-action lawsuit post IPO by withholding rel-

evant risk factors in the IPO prospectus. Therefore, our results can have several consequences for

the pricing of shares, patenting activity, and information disclosure when preparing for the IPO. In

short, our findings suggest that IPO firms should limit technology risk disclosure and coordinate

the IPO timing with their intellectual property activity.

Our findings come with limitations that open opportunities for future research. First, our

static, cross-sectional research design compares firms at similar stages of their life-cycle on the

one hand, but on the other hand, faces typical limitations of cross-sectional studies (Angrist and

Pischke, 2010). As such, our results are mostly correlational and indicative. Hence, we take advice

from Leamer (1983) to conduct robustness checks, investigating results under different variable

constructions and model specifications. A possible next step to overcome some of the above lim-

itations follows Sutton and Staw (1995), who point out that “one indication that a strong theory
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has been proposed is that it is possible to discern conditions in which the major proposition or

hypothesis is most and least likely to hold.” We could investigate the drivers of the return-for-risk

relation in more detail by looking at additional conditions under which the association strengthens

or weakens. Second, our measure of text-based risk is one of many possible ways of quantifying

the risk magnitude and risk topics disclosed by a firm (Bao and Datta, 2014; Hanley and Hoberg,

2019; Lopez-Lira, 2020). Despite a set of robustness checks, unsupervised learning methods lack a

“true” model of the world, by definition, and can be difficult to apply to hypothesis testing (Egami

et al., 2018). Future research might increase the robustness of risk topics by focusing on identifia-

bility in topic models (e.g., Huang et al. (2016)) through extending the RiskyData-LDA platform

on GitHub.
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Chapter 5

Conclusion

In this dissertation, I set out to explore the central role of new technologies in how firms operate

to create and capture value. Across the three essays, I have investigated automation, AI, and

technology risk disclosure. The theory and evidence I developed underline that new technologies

can affect organizing processes involving learning and adaptation, coordination under uncertainty,

and risk disclosure at IPO in strategically important ways. More specifically, the results point to

potential downsides of new technologies and suggest three mitigating solutions: dynamic routines

to reduce the opportunity costs of automation through combining learning and automation (first

essay), Data Clans to mitigate intraorganizational coordination costs when building AI capabilities

(second essay), and intellectual property to enable the disclosure of technology information without

threatening competitive advantage at the IPO (third essay).

The three topics selected are three of many aspects of technology strategy. Other relevant topics

include the role of ecosystems and technological evolution in how organizations use new technolo-

gies, for example. However, the dissertation emphasized a connecting theme around the role of

coordination and communication in an intangible, rapidly-changing business environment. The

first essay argues that while replacing human labor with automation routines can decrease intraor-

ganizational coordination costs, changing environments necessitate human learning to generate new

knowledge that enables adaptation. The second essay argues that a Data Clan can reduce intraor-

ganizational coordination costs between AI assets in an unpredictable environment through, e.g., a

shared understanding and an increased tolerance for internal contract misspecification. Finally, the
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results in the third essay suggest that communication between IPO firms and potential investors

through technology risk disclosures and patents matters for efficiently raising capital through an

IPO. These insights point to situations where coordination can inhibit or support creating and

capturing value in a dynamic environment shaped by new technologies.

The dissertation contributes to the work on integrating uncertainty into strategic management

research. For example, Furr and Eisenhardt (2021) argue that environmental uncertainty about the

value of firm resources requires a focus on learning and cognition to understand the strategic logic

of creating and capturing value. My work contributes to the field by investigating three topics on

managing new technologies under uncertainty. The results in the first essay show that the value of

automation strategies depends on the predictability of the environment and, consequently, the im-

portance of learning and cognition. The inductive insights in the second essay suggest that a strong

organizational culture can facilitate coordinating interdependent assets in the rapidly evolving con-

text of enterprise AI technologies. Finally, the results in the third essay propose that investors

perceive IPO firms disclosing more technology risk as riskier with important consequences for firms

raising capital. Taken together, the dissertation aims to contribute to the strategic management

literature by examining managerial complications that arise from exploiting new technologies under

uncertainty.

The two methodological innovations in this dissertation might further impact the work of man-

agement scholars. First, the OrgSim-RL platform supports investigating firm-level interactions

between the division of labor, coordination costs, and automation strategies in dynamic environ-

ments; interactions that are often non-linear and challenging to examine empirically. Second, the

RiskyData-LDA platform allows measuring the risk topics and magnitudes for texts with paragraphs

of risk factors beyond the IPO context, including annual and quarterly corporate SEC filings, for

example. As such, the new measure of risk opens up avenues for future work on the strategic
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consequences of disclosing particular risk topics. In short, the two open-source platforms encourage

the adoption of computational methods to study new research questions in the field.

The insights developed in the dissertation can be beneficial to managers to make more informed

decisions and establish realistic expectations about the value of new technologies. Managers can

make more informed decisions about which organizational processes to automate, what assets to

accumulate for building AI capabilities in incumbent organizations, and how to disclose technology

risks and organize patenting activities at the IPO. Understanding the challenges of leveraging new

technologies and potential remedies can help practitioners make better decisions about effectively

allocating capital within the organization. Furthermore, managers can establish realistic expecta-

tions for new technology projects and avoid disappointing project outcomes due to high stakeholder

expectations. Realistic expectations can further help to critically judge the value propositions of ex-

ternal technology vendors and “see through all the hype” (Von Krogh, 2018) that is often associated

with automation and AI technologies.

The findings in this dissertation open up at least three avenues for future research. First,

the future of work might change with the burgeoning adoption of automation in organizations

(Frey and Osborne, 2017; Acemoglu and Restrepo, 2018b; Dogan and Yildirim, 2021). Future

work might investigate questions such as the following ones. How might automation change the

relative importance of skills and tasks necessary for a job in different industries? How might novel

machine learning applications affect the conditions under which automation can be beneficial? The

conceptualization of automation in the OrgSim-RL platform can serve as the starting point for

investigating the above questions. Second, it remains an open question as to how the boundaries of

the firm might change as new technologies such as artificial intelligence (AI) become increasingly

central to organizational processes (Varian, 2018). Under what conditions are firms more or less

likely to develop an AI solution internally versus acquiring it on the market? How accurately does
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transaction cost theory describe empirical evidence on make-or-buy decisions? The results in the

second essay (Chapter Three) suggest that organizational culture might matter for make-or-buy

decisions in the context of AI solutions. Third, investors might increasingly focus on text-based

technology risk disclosure when evaluating firms as new technologies permeate businesses (Bailey

et al., 2022) and remain challenging to measure with existing accounting standards (Yang and

Brynjolfsson, 2001). How might technology risk disclosure in annual reports impact firm value?

What conditions amplify or attenuate the effects of technology risk disclosure? The RiskyData-

LDA platform can serve as a basis to quantify text-based risk disclosures and investigate the above

questions.
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Appendix A

Diagnostics and Validation

A.1 Learning Trajectories

In this section, we report the learning trajectory results for all combinations of DOL (λ) and

Environmental Change (δ). Figure A.1 shows the learning trajectories of episodic net rewards by

Environmental Change (δ) and levels of automation (τ). Panel (A) shows a stable environment,

where higher levels of automation are preferable because there is nothing to learn (except for the

short, initial learning effort). By the end of a simulation run, high automation approaches a net

reward of three, which is the highest possible net reward as noted in Section 2.4.7. Panel (B) plots

the case of intermediate Environmental Change that is described in detail in Section 2.4.7. Panel

(C) displays a very unstable environment, where higher levels of automation are preferable because

there are no benefits to learning and adaptation. The convergence around a net reward of −2

suggests the prominence of the long path under the automation mode (a net reward of −1) and

adaptation mode (a net reward of −2).

A.2 Opportunity Costs

Figure A.2 shows the opportunity costs per episode for the dynamic learning process in Panel (A)

and the cumulative opportunity costs in Panel (B). For high automation, opportunity costs soar

after the first change in the environment and remain elevated until the end of the simulation. We

observe this behavior because the opportunity costs of lost learning are highest when attempting a
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closed door as there are always two open doors in the grid world.

Figure A.1: Learning trajectories of episodic net rewards.

Figure A.2: Opportunity costs with intermediate DOL and intermediate Environmental Change.

A.3 Smooth Environmental Change

In this section, we change the operationalization of Environmental Change from punctuated changes

to smooth changes in the aggregate. As a result, we expect to no longer see the punctuated learning

trajectories but rather smooth learning trajectories that converge to a particular value. The results

are robust to this alternative operationalization of Environmental Change.

Figure A.3 shows myopic automation under smooth Environmental Change. In Panel (A), one
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can see that the learning trajectories converge to some net reward toward the end of the simulation.

As expected, high automation initially performs well, but its performance rapidly deteriorates as

doors start to open and close. Initially, intermediate automation outperforms no automation but

converges to the same episodic net reward approximately halfway through the simulation. Panel

(B) plots the cumulative episodic net rewards from Panel (A). In general, automation initially

performs well, but the net rewards start to decline as environmental changes become more likely.

Figure A.3: Net rewards at an intermediate DOL and intermediate smooth Environmental Change.

Figure A.4 validates that automation incurs opportunity costs due to lost learning under smooth

Environmental Change, in line with the opportunity costs under punctuated Environmental Change

shown in Appendix A.2. Panel (A) shows that the average opportunity costs per episode equal

approximately four for high automation, while for intermediate and no automation, they equal

slightly less than two. Panel (B) plots the cumulative episodic opportunity costs from Panel (A).

Figure A.5 reveals that the high opportunity costs for high automation are due to the inability of

automation to adapt away from the short path with a closed door. Dark grey represents the share of

runs in which the agent attempted a closed door in a particular episode. Medium grey indicates the

share of the long path and light grey the short path with an open door. Visually, the small “bump”

in the dark area in Panel (A) at the beginning of the simulation grows for intermediate and high
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Figure A.4: Opportunity costs at an intermediate DOL and
intermediate smooth Environmental Change.

automation, meaning that attempts at the closed door become more common with automation.

The more elongated the bump, the slower the adaptation to a closing door. Furthermore, in Panel

(C), one can see that high automation adapts away from attempting a closed door to the risk-free

long path. When automation is lower in Panel (A) and Panel (B), the share of the short path with

an open door is substantially higher by the end of the simulation than under high automation in

Panel (C).

Figure A.5: Path shares at an intermediate DOL and intermediate smooth Environmental Change.
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Appendix B

OrgSim-RL Platform

The OrgSim-RL platform is an open-source tool to simulate the returns to the DOL for an or-

ganization, available at https://github.com/mxhofer/OrgSim-RL. The tool aims to enable and

accelerate future research. At the core, the simulation uses the tabular Dyna-Q (Sutton and Barto,

2018, p. 164) learning mechanism with additional economic and organizational parameters.

B.1 Architecture and Usage

While the entire code base runs on a local machine, we recommend using a cloud environment to

cope with the considerable computational load. We architected OrgSim-RL to run in a Docker

container on the Google Compute Engine (GCE). The Docker container facilitates running the

simulation in other cloud environments such as Amazon Web Services (AWS) or Microsoft Azure.

The simulation stores output in Google Cloud Storage, which we then ingest into Google BigQuery

to efficiently query the output results. Finally, researchers can investigate results with a Streamlit

dashboard, hosted and deployed with Google’s Cloud Deployment Manager.

The codebase is written in Python with auxiliary YAML files and Unix shell scripts. Therefore,

running the simulation requires familiarity with Python and the Unix command-line interface (CLI).

For a detailed guide on using OrgSim-RL, consult the “readme.md” file in the root of the GitHub

repository.
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B.2 Diagnostic Capabilities

We implemented a range of diagnostic capabilities to monitor a simulation run and diagnose results

ex-post. There are three verbosity levels for logging for monitoring a running simulation, including

run-level, episode-level, and step-level logs. In the testing phase, we recommend granular step-level

or episode-level logging. We recommend run-level logging to limit the console output size when

running a full-scale simulation run. We also implemented an interactive grid world to visually

step through the grid world with keyboard input. Figure B.1 shows an example screenshot of the

diagnostic grid-world when the agent is at the start state (in red) in episode 128, which we selected

to show the learned Q-values after the first door change. The values represent the maximum Q-

value of the set of valid actions, and the arrows represent the action associated with the maximum

Q-value. The hashes represent wall states, the states filled with green “X”’s represent door states,

and the states with a blue “G” represent a goal state.

For diagnosing the simulation ex-post, the simulation outputs the net reward, coordination

costs, opportunity costs, and all parameter values for each episode. In addition, we keep track of

episodic diagnostic metrics, including the number of steps, the actions taken at the start state, the

path taken, and the proportion of optimal actions relative to all actions taken, among others.

B.3 Future Work

We see various avenues for future research that the OrgSim-RL platform can support. What follows

is a list of example avenues to explore. First, the nature of work is changing rapidly with the advent

of automation and machine learning (Frey and Osborne, 2017; Acemoglu and Restrepo, 2018a; Raj

and Seamans, 2019). How might automation change the relative importance of skills and tasks

necessary for a job? How might automation affect the way that individuals coordinate with each
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other? When and under what circumstances might individuals need to take over automated tasks?

Researchers might investigate how varying transition costs of entering and existing automation can

impact when and under what circumstances automation is desirable relative to human learning.

The parameter ψ models transition costs in the OrgSim-RL platform.

Second, organizations might learn when to automate and when not to. How can organizations

gauge when to automate and what knowledge to automate? How much better can organizations

perform with such “smart automation”? To what extent can competitors imitate a dynamic capa-

bility to automate? Researchers could change the operationalization of automation in OrgSim-RL

from an exogenous probability to automate to an endogenous mechanism that learns when to

automate.

Third, an organization’s current asset base might be more or less complementary to set up and

maintain automation (Teece, 1986). How might different existing organizational assets change the

effectiveness of automation? What assets make automation cheaper or more expensive to set up

and maintain? What might be the barriers to imitating an automation routine for firms with the

right complementary assets? To model variations in asset complementarity, one could change the

parameter ϕ in the OrgSim-RL platform to control the carrying costs of automation.
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Figure B.1: Grid world output. Researchers can interactively control the simulation step-by-step.
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Appendix C

Interview Questions

Characteristics of the interview participant

• What’s your role at Firm X? Seniority level? Tenure? Business unit?

• Could you briefly tell me about your background (education, work experience, etc.)?

• Do you have the authority to allocate money for your department/team?

• What are artificial intelligence (AI) / big data (BD) for you?

The role of AI in the organization

• How important are AI/BD to your organisation? How does it compare to 2 years ago?

• How important are AI/BD to your business unit? How does it compare to 2 years ago?

• Does Firm X have an explicit AI/BD Strategy (or similar)? If so, can you tell me more?

Understanding resource allocations and decision making

• What are some of the recent AI/BD projects at Firm X?

• Can you tell me about the decision making process around allocating resources to AI/BD?

• What and who typically starts the allocation process?

• Which aspects of the allocation process tend to go well and which ones are difficult?

• Who’s involved in making AI/BD allocation decision? Who makes the final decision? Who’s
accountable?

• If you could design the ideal AI/BD resource allocation decision making process, how would
it look like?

Details on resource allocation

• What makes an AI/BD resource allocation successful? Financial component? Measure-
ment(s)/metric(s)?

• How do you prioritize competing allocation opportunities?

• How do you decide which aspects to develop in-house and which ones to purchase?

Closing

• Do you think that there are any other relevant aspects that we haven’t covered yet?

• What do you think are the most important topics in this discussion?
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Appendix D

Labeling Topics

Table D.1 shows the hSBM topics and subtopics with their most likely word stems as visualized in

Figure 3.2. We used these word stems, the link between topics and subtopics, and the most salient

documents per topic to devise human-readable labels.

Topic Most likely word stems Subtopic Most likely word stems

T1 Computation

tool intellig fund artifici risk

relat qualiti equiti platform

algorithm

T 1.1 Asset management fund relat equiti privat asset public method document hedg sentiment

T 1.2 Data qualiti platform oh languag contamin amazon instrument shift textil toward

T 1.3 Algorithms tool intellig artifici algorithm forecast ad mind oppos promot academ

T 1.4 Quantitative finance risk perform test statist return care client account add robust

T2 Project management
use project case team build

end valu cost three basic

T 2.1 Product design user design exist devic extrem game instanc extract recent parti

T 2.2 Convincing management team person someon dedic concept c pipelin join entir blah

T 2.3 Project sponsoring initi obvious unit innov board present head respons bigger close

T 2.4 Data scientists three ago month potenti four p scientist role explor six

T 2.5 Implementation project basic implement defin

T 2.6 Leadership engin group experi cto vision skill offic hardwar cultur leadership

T 2.7 Analytics strategy analyt strategi whatev support top meet autom went educ singl

T 2.8 Use case visibility use case visibl

T 2.9 SAFe agile framework end valu cost discuss high stori task owner given epic

T 2.10 Building applications build question generat softwar requir general made type answer convinc

T3 Business impact
big tri product bit idea import

technolog custom market trade

T 3.1 RPA train rpa report valid code scale manual leader confer collabor

T 3.2 Product product technolog system r describ

T 3.3 Trading market trade trader hub short gas ineffici reduc layer fail

T 3.4 Supply chain chain suppli across insight phase grow assess analyst program outsid

T 3.5 Business result import result order improv expect l pretti faster life turbin

T 3.6 Data culture big got enabl water readi sudden plant allow afterward clean

T 3.7 Prototyping tri bit littl money sort effort plant seem

T 3.8 Measuring impact put ask success next tell number measur five sourc world

T 3.9 Customer support custom scienc sale quarter key integr interact critic absolut center

T 3.10 Communicate value show creat run cloud complex share almost et cetera accept

T 3.11 Product applic comput consum featur turn imag therefor sensor necessarili environ

T 3.12 Prioritization guy everyth piec everybodi huge listen adopt element criteria explain

T 3.13 Supply chain whether particular price factor vessel identifi china volum follow govern

T 3.14 Planning idea budget sometim alloc direct committe plan execut ceo formal

T4 Business needs
data say also need get

differ kind start manag right

T 4.1 Machine learning learn machin ai abl complet amount predict driven may access

T 4.2 Data data infrastructur collect

Stop words say let okay anoth usual

Stop words differ level give done cannot everi whole set capabl depend

T 4.3 Cooperation develop side might problem certain help solut togeth research topic

T 4.4 Model compliance get exampl look model opportun futur clear buy impact sell

Stop words kind right us understand term base inform better find stuff

T 4.5 Network optimization also take part mani cours optim less best appli network

T 4.6 Business needs need start manag first call said alreadi bring specif within

T5 Governance
one think peopl go realli busi

like would know compani

T 5.1 Change management compani lead transform never technic partner fact revenu robot rule

T 5.2 Decision making make mayb decis even good sure alway still happen sens

T 5.3 Business processes go busi thing way process come want chang talk yes

T 5.4 Human resources one like know year work actual two new move hire

T 5.5 Motivation think peopl realli mean someth time see lot yeah invest

T 5.6 Uncertainty would well much could resourc point around organ area probabl

Table D.1: Most likely word stems for all hSBM topics and subtopics in Figure 3.2.
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Appendix E

Measuring Risk Disclosure

E.1 LDA Topic Model

LDA (Blei et al., 2003) is a fully probabilistic Bayesian factor model for discrete data. Let D

represent all available documents that make up a corpus consisting of V unique words. As with

other unsupervised algorithms, one must select the number of topics, K, a priori. There is no one

correct value for K. Each topic k ∈ K is a vector of probabilities βk ∈ ∆V−1 over the V unique

words in the vocabulary. Intuitively, one can see a single topic k as a weighted word list where

words belonging to the same latent theme have similar weights. We use βk in Table 4.2 to give

each topic an interpretable title based on the most likely words given that topic.

Each document d ∈ D is a vector of probabilities θd across all K topics, summing to one.

Intuitively, each document can belong to multiple topics. For each document d and topic k, we

get a value of θkd , representing the “topic loading” of topic k in document d. The magnitude of a

focal topic loading is relative to all other topics disclosed in the document. We use relative risk

exposure, θ, in Section 4.3 to compute the aggregate risk disclosure for each IPO firm. Given the

document-term matrix, we then try to optimize the overall likelihood given by Equation E.1, where

pd,v = Σkβ
v
kθ

k
d represents the probability that a given word in document d is equal to term v in the

vocabulary and nd,v counts the number of times word v appears in document d.

∏
d

∏
v

p
nd,v

d,v (E.1)
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The subsequent inference problem requires approximating the posterior distributions of βk

and θd for every topic k and every document d given K with the hyperparameters of the prior

distributions.

E.2 Quantitative Model Evaluation

We implement the topic model in Python using the “gensim” package (Řeh̊uřek and Sojka, 2010)

and 3,396 firm-level documents consisting of 126,343 paragraphs (an average of 37 paragraphs per

document). We use paragraphs as inputs for all topic models, meaning that the topic model does

not know which paragraphs make up a “Risk Factors” section document.

Selecting an appropriate number of topics, K, can be challenging. Regarding quantitative

evaluation methods, we focus on coherence as a measure of semantic coherence. Perplexity, also

known as the predictive likelihood or the per-word likelihood bound, is a common measure of model

fit in machine learning (Hoffman et al., 2010). However, perplexity is not strongly correlated to

human judgment (Chang et al., 2009). Coherence is a proxy for how interpretable the topics are

for a human evaluator, computed by how semantically similar words are grouped within the same

topic. To compute coherence, we use the four-stage pipeline described in Röder et al. (2015),

designed to maximize correlation with human topic rankings. The four stages are segmentation of

the word space, probability estimation to measure sub-set quality, confirmation measure to compute

the support of different combinations of sub-sets, and aggregation to a single coherence score. The

pipeline uses a sliding window of 110 words for cross-validation, where we count co-occurrences

for the given words to calculate the normalized point-wise mutual information (NPMI) and cosine

similarity. Coherence is measured on a scale from 0 to 1, where 1 represents perfect coherence.

We run three-fold cross-validation on 80% of our data (i.e., 101,074 paragraphs) and compute

out-of-sample coherence on the remaining 20% in each of the three folds. We then average the three
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coherence measures to compare average performance and standard deviation. Given values for K

used in existing literature, we conduct cross-validation for all topic models with K ∈ [2, 30] with

a step size of 2. We find the Mallet implementation of LDA (McCallum, 2002) with K = 20 to

perform consistently well with an average coherence of approximately 0.575. Figure E.1 shows the

three-fold cross-validated, out-of-sample coherence with standard errors across different numbers

of topics, K. The highest coherence with a relatively narrow standard error is at K = 20.

Figure E.1: Topic model coherence of the LDA Mallet model (McCallum, 2002).
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E.3 Illustrative Example

Here, we illustrate how to compute aggregate risk disclosure with a toy example. The example

consists of three topics (K = 3), four documents (D = 4), two-year groups and three industries.

Di represents document i, Pij represents paragraph j in document i and Tk represents topic k.

First, we use a topic model to estimate topic loadings for all paragraphs, as shown in Table E.1.

Standard LDA output has row-wise sums equal to one.

T1 T2 T3 Σ

D1

P11 0.2 0.1 0.7 1

P12 0.02 0.82 0.16 1

P13 0.16 0 0.84 1

P14 0.89 0.04 0.07 1

D2

P21 0.76 0.14 0.1 1

P22 0.09 0.51 0.4 1

D3

P31 0.82 0.1 0.08 1

P32 0.9 0.03 0.07 1

P33 0.12 0.79 0.09 1

D4

P41 0.91 0.08 0.01 1

P42 0.02 0.24 0.74 1

P43 0.12 0.3 0.58 1

P44 0.08 0 0.92 1

P45 0.02 0.2 0.78 1

...
...

...
...

...
...

Table E.1: Paragraph-level LDA output.
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Second, we take the maximum topic loading for each paragraph and encode that topic-paragraph

pair to one, zero otherwise1. Table E.2 shows the dominant topics.

T1 T2 T3 Σ

D1

P11 0 0 1 1

P12 0 1 0 1

P13 0 0 1 1

P14 1 0 0 1

D2

P21 1 0 0 1

P22 0 1 0 1

D3

P31 1 0 0 1

P32 1 0 0 1

P33 0 1 0 1

D4

P41 1 0 0 1

P42 0 0 1 1

P43 0 0 1 1

P44 0 0 1 1

P45 0 0 1 1

...
...

...
...

...
...

Table E.2: Dominant topics per paragraph.

1To encode a topic-paragraph pair to one, we might introduce a minimum loading value for the dominant topic or a
minimum distance ahead of the next topic. The current implementation has no such restrictions.
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Next, we aggregate paragraphs to documents by counting dominant topics for each document

Di. Each document contains the year grouping and Fama and French (1997) industry data as

shown in Table E.3. Year and industry groups are required to adjust topic counts.

T1 T2 T3 year industry

D1 1 1 2 1996-1997 C

D2 1 1 0 1996-1997 B

D3 2 1 0 1996-1997 A

D4 1 0 4 1998-1999 B

...
...

...
...

...
...

Table E.3: Counts of dominant topic paragraphs per document.

To compute aggregate risk disclosure relative to a focal IPO’s year and industry group, we

compute the year-industry mean and year-industry standard deviation of the dominant topic counts.

The number of years to group and the number of industries are tunable hyperparameters. Increasing

hyperparameter values increases the likelihood of not observing an IPO in a given year-industry

group, which leads to a division-by-zero error. Hence, we add one (+1) to all standard deviations.

Alternatively, we replace the year-industry standard deviations equal to zero with one, which does

not change the results in a meaningful way.

Table E.4 shows the made-up mean of the counts of document-level dominant paragraphs by

two-year and industry group. For example, in industry A, the average IPO in 1996-1997 disclosed

0.35 paragraphs about topic T1. We came up with the values for means and standard deviations for

illustrative purposes. Table E.5 shows the standard deviation of the counts of dominant paragraphs

by two-year and industry group.
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year industry T1 T2 T3

1996-1997

A 0.35 0.63 1.12

B 0.57 1.13 1.07

C 0.4 2.63 0.83

1998-1999

A 0.66 1.17 1.2

B 0.74 1.69 1.12

C 0.48 0.54 0.06

...
...

...
...

...

Table E.4: Means of the counts of IPO document dominant paragraphs by normalization group.

year industry T1 T2 T3

1996-1997

A 1.46 1.77 1.08

B 1.95 1.93 1

C 1.59 3.54 1.1

1998-1999

A 1.31 1.25 1.1

B 1.91 1.04 1.52

C 1.87 2.12 1.56

...
...

...
...

...

Table E.5: Standard deviations of paragraph counts of dominant topics by normalization group.

Finally, we z-score all topic loadings. Intuitively, a firm’s exposure to a focal risk topic can

increase (decrease) due to two reasons. First, the firm’s year and industry group discuss the fo-

cal risk topic less (more) frequently. Second, the firm’s industry discusses the focal risk topic with

a lower (higher) variation. Table E.6 and Table E.7 show how aggregate risk disclosure is computed.
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T1 T2 T3

D1 =(1-0.4)/1.59 =(1-2.63)/3.54 =(2-0.83)/1.1

D2 =(1-0.57)/1.95 =(1-1.13)/1.93 =(0-1.07)/1

D3 =(2-0.35)/1.46 =(1-0.63)/1.77 =(0-1.12)/1.08

D4 =(1-0.74)/1.91 =(0-1.69)/1.04 =(4-1.12)/1.52

...
...

...
...

Table E.6: Computing aggregate risk disclosure: intermediary step.

T1 T2 T3 Σ = AggregateRisk

D1 0.38 -0.46 1.06 0.98

D2 0.22 -0.07 -1.07 -0.92

D3 1.13 0.21 -1.04 0.3

D4 0.14 -1.625 1.89 0.41

...
...

...
...

...

Table E.7: Aggregate risk disclosure as the sum of all normalized risk topics.

The resulting normalized risk topics have a mean of zero and a standard deviation close to one.

We can see in Table E.7 that firms with more paragraphs of risk disclosed (D1 and D4) have higher

aggregate risk disclosure. We set up the toy example to work out this way to convey the intuition

behind aggregate risk disclosure, of course.
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E.4 Lorenz Curve

A core assumption of our approach to measuring aggregate risk disclosure is that, on average, one

paragraph discusses one risk topic. Reading through numerous “Risk Factors” sections suggests

that the assumption holds, but we investigate further using a Lorenz curve. Figure E.2 shows the

cumulative share of topics from lowest to highest topic loading. The topic loadings are the raw

outputs of the topic model. Intuitively, we expect one dominant topic for each paragraph (i.e.,

a solid line that goes through the bottom right) rather than a uniform distribution across all K

topics (i.e., the dashed diagonal line of perfect equality). The Lorenz curve in Figure E.2 shows that

the solid line is indeed relatively far away from the dashed diagonal, suggesting that paragraphs

generally have a dominant topic loading.

Figure E.2: Lorenz curve for paragraph-level topic loadings.

163



Appendix F

Data Pipeline

In this section, we describe the IPO data ingestion and processing pipeline.

Variable Description Source

Underpricing Difference between the offer price and the first-day closing price (Beatty and Welch, 1996) SDC, CRSP

Age Firm age SDC

Boom Indicator for IPO boom years (1 January 1997 - 1 April 2000) (Aggarwal et al., 2009) SDC

HighTech Indicator equal to one if SDC classifies firm as high-tech SDC

Hot Hot markets measure as the count of IPOs in the same 4-digit SIC code in the previous year SDC

NYSE Indicator equal to one if the firms issued on New York Stock Exchange (NYSE) SDC

PE Indicator equal to one if the firm was funded by a private equity firm at the time of the IPO filing SDC

Proceeds Amount for the entire transaction plus overallotment amount (or green shoe) sold SDC

Prominence Indicator equal to one if the VC firm was among the top 30 investors in the prior year (Gulati and Higgins, 2003) SDC

Reputation Tombstone ranking of lead underwriter (maximum if more than one) from Carter and Manaster (1990) SDC

VC Indicator equal to one if the firm was funded by a venture capital firm at the time of the IPO filing SDC

Assets Total assets Compustat

Book Book value Compustat

Ni Net income Compustat

Revenue Total revenue Compustat

ROA Return on assets Compustat

Patent Indicator equal to one if the firm had at least one granted patent at the time of IPO USPTO

EGC Indicator equal to one if the firm self-classified as an emerging growth company (EGC) in the JOBS Act SEC EDGAR

US Indicator equal to one if the firms is headquartered in the US at the time of IPO SEC EDGAR

Vola Post-IPO volatility (15, 30, and 90 days) CRSP

AggregateRisk Aggregate risk disclosure based on the “Risk Factors” section, as described in Section 4.3.4 SEC EDGAR

TechRisk Technology risk disclosure based on the “Risk Factors” section, as described in Section 4.3.4 SEC EDGAR

OtherRisk Risk disclosure without technology risk based on the “Risk Factors” section, as described in Section 4.3.4 SEC EDGAR

Year Issue year SDC

Industry Industry classification based on mapping in Fama and French (1997) Compustat, CRSP

Table F.1: Summary of variables.
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F.1 Sample Selection and Financial Meta-Data

The sample is defined using SDC Global New Issues (GNI) data. Figure F.1 outlines the major

steps of the data pipeline.

Figure F.1: Combining various data sources to build a sample of 3,700 IPOs.

First, we access SDC GNI and download all IPOs with common stock issued between 1.1.1996

and 31.12.2018. We download all corresponding meta-data fields available. Next, we define our
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sample along the following dimensions. First, we IPOs are required to have the Standard Initial

Public Offering Eligible Flag set to true, which eliminates non-underwritten transactions and trans-

actions without a manager. Next, we require the Exchange Location to be in the US and restrict

our sample to the main US stock exchanges: NASDAQ, NYSE, and AMEX. Finally, we only con-

sider issues with Master Deal Type equal to C (i.e., US Common Stock, Class A Common Shares,

Ordinary Shares). We count unique IPOs based on their CUSIP code throughout the entire data

pipeline. The SDC GNI data consists of 4,935 IPOs.

Secondly, we augment SDC GNI data with filings from the US Securities and Exchange Commis-

sion (SEC) EDGAR database. Mergent, Inc., a subsidiary of the London Stock Exchange Group,

provided us with all SEC 424(a) and 424(b)-type filings (also called prospectuses) for IPOs between

1996 and 2018. These data include 403,370 unique HTML and plain text documents. We combine

three different merging approaches to join SEC EDGAR and SDC GNI data. Each approach dis-

ambiguates matched entries on the filing year. First, we match on disambiguated firm name and at

least one of ZIP code, SEC code, or ticker symbol. First, we match on SEC filing number, which

refers to the registration number used by the SEC. 2,353 IPOs match on the SEC filing number.

Secondly, we match on ticker symbol and filing year. Each match on ticker and filing year must

also match at least one of ZIP code or SEC filing numbers. 2,828 IPOs match on ticker and filing

year. Finally, using a software tool developed by the TIS Lab at EPFL called bizy, we disambiguate

firm names by removing suffixes, special symbols, and other ambiguous sub-strings, lowercase firm

names, and run a fuzzy match based on the Levenshtein distance measure. Manual inspection at

different cut-off points generates the set of tuples of matched firm names. 2,762 IPOs match on

the firm name. Matched IPOs from all three approaches are then concatenated, resulting in 6,927

IPOs, before removing duplicates. Due to the importance of text data for downstream analyses, we

require each IPO firm to have an entry in the SDC GNI and SEC data. The final, de-duplicated,
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and disambiguated sample includes 3,700 IPOs.

Thirdly, we augment SDC GNI and SEC sample with these data sources: Compustat, Center for

Research in Security Prices (CRSP), SDC VentureXpert, patents data from PatensView.org, the US

Patent Office (USPTO), Fama and French (1997) industry classifications, and Loughran and Ritter

(2004) investment banking underwriter reputation data as defined by Carter and Manaster (1990).

The first three data sources are queried through the Wharton Research Data Services (WRDS),

using the ticker symbol and CUSIP identifiers to increase the number of unique samples returned

by WRDS. First, as explained earlier, we match Compustat data by combining three different

approaches. We match on CUSIP9 and issue year, CUSIP6 and issue year, and ticker symbol and

issue year. 3,303 Compustat entries match. Second, we match CRSP data on CUSIP9 and issue

date, CUSIP6 and issue date, and ticker symbol and issue date to find 3,574 CRSP matches. Next,

we match one-line SDC VentureXpert data on the industry statistics level on CUSIP6. These data

include the VC backing dummy, for example. 2,229 VentureXpert entries match. Next, we query

PatentsView.org (i.e., the rawassginee.tsv file) for a list of patent assignee firm names, which we

disambiguate with the bizy software tool, developed by the TIS Lab at EPFL. Next, we compute

firm-level patent portfolios at the time of IPO. To do so, another software tool developed by the

TIS Lab at EPFL called paty automatically downloads and joins patent data from PatentsView.org

for later use. For each of the 3,700 IPO firms in the sample, we find the patent grant numbers with

a grant date on or before the IPO issue date. The patent grant numbers associated with each IPO

firm come from paty/PatentsView.org. We find 932 patent IPO firms with 19,470 granted patents

(i.e., an average of 21 patents per firm) at the time of IPO. We then concatenate Compustat and

CRSP SIC codes to create a complete SIC code master field. We map the SIC code to Fama

and French (1997) 5, 12, and 48 industries classifications, which are “defined with the goal of

having a manageable number of distinct industries that cover all NYSE, AMEX, and NASDAQ
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stocks” (Fama and French, 1997, p. 156). Finally, the underwriter reputation data from Carter

and Manaster (1990), published in Loughran and Ritter (2004) is a score from 1 to 9, where more

reputable IB firms have higher scores than less reputable IB firms. We successfully match 3,103

IPO firms using CUSIP6 and year, and CUSIP6 and ticker symbol.

To conclude this section, the final sample contains 3,700 IPO firms. In the absence of a static and

universally unique identifier, the sample contains missing values, which we treat on a case-by-case

basis.

F.2 Risk Factor Parsing

SEC 424(b)-type prospectuses include a “Risk Factors” section, which describes various types

of risks investors face when purchasing shares in the issuing firm. Here, we describe the steps

implemented to extract these sections from the SEC EDGAR data.

Due to the high volume of data of approximately 1 TB, we configure a distributed PySpark

(a combination of Python and Spark) cluster on Google Cloud. More specifically, the risk factors

parsing step takes approximately 30 minutes on a high-memory master node with 8 CPUs and

20 worker nodes with eight high-memory CPUs each. The key steps of Risk Factor Parsing are

outlined in Figure F.2.
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Figure F.2: Risk Factors parsing pipeline based on HTML and plain text SEC IPO prospectuses.

We split the data into HTML and plain text (txt) files to extract the Risk Factors section. Older

prospectuses tend to be stored in plain text, while more recent ones tend to be stored in HTML

format. We first identify the table of contents (TOC) for either type to identify the starting and

ending page numbers. TOCs cannot be automatically identified in 104 HTML and 49 plain text

prospectuses. All other prospectuses are parsed, resulting in 3,456 extracted Risk Factor sections.

244 prospectuses (136 HTML and 108 plain text) failed to be extracted automatically and will have

to be reviewed manually.

Risk Factors sections are generally well-structured, consisting of a set of paragraphs. Extract-

ing these paragraphs might be useful for applying advanced text analysis later on. We successfully

extract 3,456 “Risk Factors” sections, of which 3,396 filings have machine-readable paragraph di-

viders.
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