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Abstract. Factorization of matrices where the rank of the two factors diverges
linearly with their sizes has many applications in diverse areas such as unsu-
pervised representation learning, dictionary learning or sparse coding. We con-
sider a setting where the two factors are generated from known component-wise
independent prior distributions, and the statistician observes a (possibly noisy)
component-wise function of their matrix product. In the limit where the dimen-
sions of the matrices tend to infinity, but their ratios remain fixed, we expect to be
able to derive closed form expressions for the optimal mean squared error on the
estimation of the two factors. However, this remains a very involved mathemat-
ical and algorithmic problem. A related, but simpler, problem is extensive-rank
matrix denoising, where one aims to reconstruct a matrix with extensive but
usually small rank from noisy measurements. In this paper, we approach both
these problems using high-temperature expansions at fixed order parameters.
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This allows to clarify how previous attempts at solving these problems failed
at finding an asymptotically exact solution. We provide a systematic way to
derive the corrections to these existing approximations, taking into account the
structure of correlations particular to the problem. Finally, we illustrate our
approach in detail on the case of extensive-rank matrix denoising. We com-
pare our results with known optimal rotationally-invariant estimators, and show
how exact asymptotic calculations of the minimal error can be performed using
extensive-rank matrix integrals.

Keywords: learning theory, random matrix theory and extensions, statistical
inference, spin glasses
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1. Introduction

1.1. Motivation

Matrix factorization is a very generic problem that appears in a range of con-
texts. The goal is to reconstruct two matrices F� and X�, knowing only a noisy
component-wise function of their product F�X�. In the Bayesian setting that we
adopt here, one assumes some prior knowledge of the probability distributions from
which F� and X� have been generated. Depending on the context, this prior will
enforce some specific requirements like sparsity, or non-negativity. Applications that
can be formulated as matrix factorization include dictionary learning or sparse
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coding [OF96, OF97, KDMR+03, MBPS09], sparse principal component analysis
[ZHT06], blind source separation [BAMCM97], low rank matrix completion [CR09,
CT10], or robust principal component analysis [CLMW11].

Here, following exactly the problem setting of [KKM+16], we shall focus on the case
of synthetic data, and inquire about the statistical limit of recovering matrices F� and
X� from the observation of a function of their noisy product. While this problem has
been solved in detail in the case in which F�,X� are low-rank (see e.g. [BBAP05, EAK18,
LKZ17, DGJ18]), the case of extensive rank, where all dimensions of the matrices F�

and X� go to infinity (with fixed ratios), is a much more challenging problem. In this
limit, we are interested in two types of questions:

(a) Finding the theoretical limits of the recovery of F� andX�, in particular understand
when it is possible.

(b) Designing algorithms for this inference, and understanding their own limits.

These challenges were addressed in [KKM+16], and related message-passing algo-
rithms were developed in [PSC14a, PSC14b, ZZY21, LPPZ21]. We shall argue, however,
that these previous works actually neglected some relevant correlations and do not pro-
vide a solution that is exact in the limit mentioned above. In this work we propose a
systematic way to approach this problem with a high-temperature type of expansion at
fixed order parameter. While the second order of this expansion gives back the previous
result of [KKM+16], we show that higher order corrections are relevant and cannot be
neglected.

We validate our approach on the special case corresponding to Gaussian priors on
F� and X� and Gaussian additive noise on the observation of the product. This set-
ting can be solved exactly using high-dimensional ‘HCIZ’ matrix integrals [HC57, IZ80,
Mat94], or by leveraging known results on the denoising of rotationally invariant matrices
[BABP16].

The high-temperature expansions presented in this paper open the way to a system-
atic construction of the mean-field ‘TAP-like’ equations for this problem, which could
lead, with a proper iteration scheme, to an efficient message-passing algorithm. In future
studies, it will also be interesting to make the contact between our high-temperature
approach and the mean-field replica approach or the cavity method, which studies the
statistical properties of the solutions to the TAP equations. All these approaches should
eventually converge to a unified understanding of extensive-rank matrix factorization,
and hopefully to efficient message-passing algorithms.

1.2. Setting of the problem

We consider the matrix factorization problem in the extensive-rank setting, which we
define as the following inference problem:

https://doi.org/10.1088/1742-5468/ac7e4c 4
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Model FX (Extensive-rank matrix factorization)

Consider n,m, p � 1. Extensive-rank matrix factorization is the inference of the matrices F� ∈ R
m×n andX� ∈ R

n×p

from the observation of Y ∈ Rm×p, generated as:

Yμl ∼ Pout

(
·
∣∣∣∣ 1√

n

n∑
i=1

F�
μiX

�
il

)
, 1 � μ � m, 1 � l � p.

We assume that the matrix elements of F� and X� are both generated as i.i.d. random variables, with respective
prior distributions PF and PX , both having zero mean and all moments finite.
We consider this inference problem in the high-dimensional (or thermodynamic) limit, i.e. we assume n,m, p→∞
with finite limit ratios m/n→ α > 0 and p/n→ ψ > 0.

In order to estimate F� and X� the statistician can use the posterior distribution,
also referred to as Gibbs measure in the statistical physics literature6:

PY,n(dF, dX) ≡ 1

ZY,n

∏
μ,i

PF (dFμi)
∏
i,l

PX(dXil)
∏
μ,l

Pout

(
Yμl

∣∣∣∣ 1√
n

∑
i

FμiXil

)
. (1)

We assume that she/he knows the distributions P out,PF ,PX ; this is known as the
Bayes-optimal setting . In this case, it is well known that the mean under the poste-
rior distribution of equation (1) is the information-theoretically optimal estimator of F�

and X�.
In the thermodynamic limit, we can define the single-instance free entropy ΦY,n of

the system as7:

ΦY,n ≡ 1

n(m+ p)
ln

∫ ∏
μ,i

PF (dFμi)
∏
i,l

PX(dXil)
∏
μ,l

Pout

(
Yμl

∣∣∣∣ 1√
n

∑
i

FμiXil

)
. (2)

The averaged limit free entropy is denoted Φ ≡ limn→∞ EY ΦY,n. We finally define the
asymptotic minimal mean squared error (or MMSE) of the matrices F and X as:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
MMSEF ≡ lim

n→∞

1

nm

∑
μ,i

EY

∫
PF (dF

�)PX(dX
�)
(
〈Fμi〉 − F�

μi

)2
,

MMSEX ≡ lim
n→∞

1

np

∑
i,l

EY

∫
PF (dF

�)PX(dX
�)(〈Xil〉 −X�

il)
2,

(3)

where the bracket denotes an average with respect to the measure PY,n(dF, dX) of
equation (1).

Permutation symmetry—Note that since F�,X� are generated i.i.d., there is a
natural symmetry of the problem, in the sense that one can only recover them up to a
common permutation {i→ σ(i)} of the columns of F� and the rows of X�. Therefore a
meaningful definition of the MMSEs of equation (3) requires to add an infinitely small
side information to the system, breaking this symmetry. For lightness of the presentation,
and since we will not evaluate numerically the factorization MMSEs, we do not introduce
this technicality here. Note that this issue also arises in low-rank matrix factorization,

6We will generically use Greek indices μ, ν for indices between 1 and m, while Latin i, j, k indices will run from 1 to n, and the l
index between 1 and p.
7We normalize ΦY,n by the total number n(m+ p) of variables to infer, while the normalization of [KKM+16] is n2.
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and is treated in the same way [LML+17]. Another way to deal with this symmetry is
to compare quantities derived from F�,X� that are invariant under said symmetry.

We shall also consider a symmetric version of this problem, where the matrix has
been generated as an empirical covariance matrix.

Model XXᵀ (Symmetric extensive-rank matrix factorization)

Consider n,m � 1. Symmetric extensive-rank matrix factorization is defined as the inference of the matrix X� ∈
Rm×n from the observation of Y generated as:

Yμν ∼ Pout

(
·
∣∣∣∣ 1√

n

n∑
i=1

X�
μiX

�
νi

)
, 1 � μ < ν � m.

We also assume that the elements of X� are generated i.i.d. from a prior distribution PX . We consider this
inference problem in the thermodynamic limit, where n,m→∞ with finite limit ratio m/n→ α > 0.

As in the non-symmetric case, we can define both the posterior distribution of X
and the single-graph free entropy as:

The asymptotic MMSE on the matrixX is defined as in the non-symmetric model (again
assuming that we add an infinitely small side-information breaking the permutation
symmetry between the columns of X�):

MMSEX ≡ lim
n→∞

1

nm

∑
μi

EY

∫
PX(dX

�)
(
〈Xμi〉 −X�

μi

)2
, (5)

where the bracket denotes an average with respect to the measure PY,n(dX) of equation
(4a).

The Gaussian setting—In the remaining of this work, we will denote Gaussian
setting the specific models (both symmetric and non-symmetric) in which all the prior
distributions and the channel distributions are zero-mean Gaussian. We consider the
priors to have unit variance and the channel to have variance Δ > 0.

1.3. A related problem: matrix denoising

Matrix denoising is a fundamental problem as well, with deep connection to the estima-
tion of large covariance matrices in statistics and data analysis [BBP17]. In the problem
of denoising , one aims at reconstructing a matrix Y� given by

Y �
μl =

1√
n

n∑
i=1

F�
μiX

�
il (6)

from noisy measurements of its elements, Yμl ∼ Pout(Yμl|Y �
μl). The statistician knows that

the matrix Y� was generated as a product of F� and X�, and while she/he knows the
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prior distribution of F� and X�, she/he is only interested in reconstructing their product
Y�. If we denote by G the estimate of Y�, the posterior distribution P den

Y,n for denoising
is

P den
Y,n(dG) ≡

{∫
dF dXPY,n(dF, dX)

∏
μ,l

δ

(
Gμl −

1√
n

∑
i

FμiXil

)}
dG. (7)

This posterior is closely related to the posterior PY,n(dF, dX) of matrix factorization
defined in equation (1). In particular, these two posterior distributions share the same
partition function ZY,n and free entropy ΦY,n. In a sense they are governed by the same
measure, the difference being that the denoising statistician considers only observables
that are built from the product FX.

Similarly, in the symmetric setting, the denoising problem aims at reconstructing
the product X�(X�)ᵀ so that the denoising posterior is:

P den
Y,n(dG) ≡

{∫
dXPY,n(dX)

∏
μ<ν

δ

(
Gμν −

1√
n

∑
i

XμiXνi

)}
dG, (8)

which again can be obtained from equation (4a). In the random matrix literature
X�(X�)ᵀ would often be called the Wishart matrix and we will hence denote this problem
as denoising of a Wishart matrix. This case is particularly important as it corresponds
to the problem of ‘cleaning’ empirical correlation matrices.

1.4. Related works

Previous approximations to extensive-rank matrix factorization—Beyond
matrix factorization, many inference problems can be formulated in the statistical
physics language. The large range of tools developed in the framework of statistical
physics of disordered systems can then be used to tackle these models in the high-
dimensional (or thermodynamic) limit. This has been attempted for the extensive rank
matrix factorization problem with generic priors and output channels in a series of
papers [SK13, KMZ13, KKM+16] applying the replica method to the problem. How-
ever, as we argue in detail in section 2.2, these works only provide an approximation,
that is actually not exact in the thermodynamic limit due to some correlations between
the variables that have been neglected.

A parallel line of work derived ‘approximate message-passing types’ of algorithms for
the extensive rank matrix factorization problem [PSC14a, PSC14b]. By analogy with
other graphical models where these algorithms are amenable to an exact analysis via an
asymptotic description known as state evolution [BM11, BLM15, JM13, ZK16, GB21],
the authors of [KKM+16] derived such a state evolution, but again making the same over-
simplifying approximation. This implies that the state evolution stated in [KKM+16] is
actually not following the behavior of the algorithm in the thermodynamic limit. Other
recent works use related algorithms and their asymptotic analysis in a multi-layer setting
[ZZY21, LPPZ21], relying essentially on the same approximation, which indicates that
their analysis does not yield exact predictions in the thermodynamic limit.
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Toward the exact solution of extensive rank matrix factorization and
denoising—While the present authors realized the flaws in the solution presented
in [KKM+16] back in 2017, works aiming at fixing this problem and finding the exact
mean-field solution for the matrix factorization problems are scarce.

An important theoretical progress was made in the PhD thesis of Schmidt [Sch18],
who realized that the approximation of [KKM+16] is not asymptotically exact when
transposing it to the simpler case of matrix denoising with Gaussian additive noise
and Gaussian prior on X�. The optimal error of matrix denoising for that case follows
from a series of works on extensive-rank Harish–Chandra–Itzykson–Zuber (HCIZ) inte-
grals [Mat94, GZ02] that are expressed via the solution of a hydrodynamical problem.
In section 3, we show that in some cases this hydrodynamical problem can be solved
exactly by the Dyson Brownian motion, and numerically evaluated, complementing the
arguments of [Sch18]. The author of [Sch18] also attempted to correct the replica calcu-
lation of [KKM+16] including the missing correlations, but his proposition was also not
leading to an exact solution.

An important algorithmic version of the optimal denoising has been worked out
for rotationally-invariant estimators (RIE) in [BABP16]. In section 3 we confirm that
indeed the algorithm of [BABP16] gives exactly the error predicted from the HCIZ
matrix integrals.

Finally, another very recent work [BM21], came out during the completion of the
present paper. An attempt of correcting the replica solution of [KKM+16] has already
been provided in [Sch18]. Authors of [BM21] take this attempt further to develop a
‘spectral replica’ calculation for extensive-rank matrix factorization with non-Gaussian
prior and (only) Gaussian channel. Its main result is an expression of the asymptotic
free entropy, which is expressed as the function of a hydrodynamical HCIZ-like problem,
making critical use of the results of [FG16, GH21] on the high-dimensional limit of
‘rectangular’ HCIZ integrals. While the expression obtained in [BM21] is closed and
(conjectured to be) exact, a numerical solution of this hydrodynamical problem for
cases of interest is yet to be provided.

TAP equations and Plefka–Georges–Yedidia (PGY) expansion—An
important strategy of theoretical statistical physics, pioneered in the context of spin
glasses by Thouless–Anderson–Palmer [TAP77], is to write mean-field equations that
are exact for weakly coupled systems with infinite-range interactions. This was achieved
in the Sherrington–Kirpatrick (SK) model [SK75] by finding a free energy at fixed order
parameters: one constrains the average magnetization of each spin i to take a given value
mi, and writes a TAP free-energy as function of all the mi’s. This can then be optimized
in order to precisely describe the physics of the system. The cavity method [MPV86] can
be used both to derive the TAP free energy, and to perform a statistical analysis of its
solutions (by going back to cavity fields). In more general models where the variables are
not binary, the generalization of the TAP approach [Méz89] aims at computing the free
entropy of the system (e.g. equations (2) and (4a)), while constraining the first and sec-
ond moments of the fields (e.g. of {Xμi} in equation (4a)). These moments thus become
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parameters of the resulting ‘TAP’ free entropy, and extremizing over these variables
leads to the celebrated TAP equations . These equations can be turned into algorithms,
in which one seeks a solution of the TAP equations by iterating them, using appropriate
time-iteration schemes [Bol14].

The TAP line of approach has led to prolific developments in increasingly com-
plex models. For instance, when considering correlated data structures, such improve-
ments include adaptive TAP (adaTAP) [OW01a, OW01b], expectation-consistency
(EC) [Min01, OW05], as well as recent algorithmic approaches based on approximate
message-passing algorithms [Ran11, DJM13, RSF17, SRF16, OCW16].

In a recent work [MFC+19], all these approaches have been shown to lead to equiv-
alent approximation schemes for rotationally-invariant data structures in finite-rank
models. Moreover, it was shown that they could be understood in terms of another
technique in the theoretical physics toolbox, namely high-temperature expansions at
fixed order parameters. These expansions were introduced by Plefka [Ple82] for the SK
model, and then amply generalized by Georges and Yedidia [GY91]. In the following
of this paper we shall denote them as PGY expansions. The core of this method is to
systematically compute high-temperature expansions of the free entropy of the system,
while constraining the first and second moments of the fields. This provides a system-
atic and controllable way to derive the TAP free energy and the TAP equations. An
important aim of the present work is to apply these approaches to the extensive-rank
matrix factorization problem. Importantly, we will see that in model XXᵀ, this PGY
expansion turns out to be an expansion in powers of the parameter α = m/n.

1.5. Organization of the paper and main results

Let us describe the structure of the paper.

• Section 2 is dedicated to the detailed derivation of the PGY ‘high-temperature’
expansion at fixed order parameters for extensive-rank matrix factorization. We show
that the second order of the expansion gives back the results of the previous approach
of [KKM+16], but relevant new terms appear already at order 3 for the symmetric
problem, and order 4 for the non-symmetric. We also comment in detail on the type
of correlations that were neglected in [KKM+16]. In the majority of this section
we focus on the symmetric model, and we end the section by detailing the PGY
expansion for the non-symmetric matrix factorization problem.

• In section 3, we consider the simpler problem of extensive-rank matrix denoising
with Gaussian additive noise. First, we show that exact calculations of the minimal
error can be performed using extensive-rank spherical integrals [Har57, IZ80], and
that they match the error achieved by the RIE of [BABP16]. As far as we know the
explicit link between these approaches (one algorithmic, one asymptotic) has not
been made previously. Secondly, we compare these results to the predictions of the
PGY expansion developed in section 2, adapted for the denoising problem. We show
that the order-3 corrections found in the PGY approach and neglected in [KKM+16]
indeed match the optimal estimator, providing evidence for the correctness of our
PGY-based approach.
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Finally, note that while we focus in most of the following on model XXᵀ, in which
many of our results can be stated in a lighter manner, all our techniques can be
transposed to model FX, as we show for instance in section 2.3.

The main contributions of this paper can be summarized as follows.
Extensive-rank matrix factorization for generic prior and noise channel—

We develop the PGY expansion for model XXᵀ and model FX, for any priors PX ,PF

and observation channel P out. For the symmetric model XXᵀ, the second order provides
the approximation of [KKM+16]. However, we show that the third order of the PGY
expansion provides additional non-negligible terms. Going further, we conjecture that
the PGY approach at all orders would provide exact solution to the extensive rank
matrix factorization and denoising. The advantage of this approach with respect to
the replica method stems from its relation to the TAP equations and message-passing
algorithms: because of this connection, it is directly related to an algorithm that can be
used to solve practical instances of the problem. On the other hand, the recent replica
result of [BM21] might help understand the large-n behavior of the solution to the
TAP equations, what is called state evolution in the literature [BM11, BLM15, JM13,
ZK16, GB21]. Another important aspect is that the TAP equations are conjectured for
any type of output channel P out, while recent replica results [BM21] are restricted to
Gaussian additive noise.

Extensive-rank matrix denoising—We probe our theoretical calculations on the
simpler problem of matrix denoising described in section 1.3. Our contribution are as
follows:

• We derive an analytical expression for the asymptotic free entropy of the problem by
using HCIZ integrals [Mat94]. We provide an explicit solution to the optimization
problem resulting from these integrals, and show both analytically and numerically
that it agrees with the performance of the rotationally-invariant denoising algorithm
of [BABP16].

• We evaluate the MMSE of matrix denoising, both from our asymptotic formula based
on HCIZ integrals (red lines in figure 1), and from the algorithmic performance of the
RIE of [BABP16] (green points in figure 1). We compare this MMSE to the solution
of [KKM+16], that agrees with the second order of the PGY expansion developed in
the present paper (blue points in figure 1), and show that it falls short of the actual
MMSE.

• We truncate PGY expansion at third order (orange points in figure 1) and show that,
while we do not reach the MMSE at this order, at small α we obtain a significant
improvement with respect to the second-order truncation.

In figure 1 we illustrate some of the main results of this paper on the denois-
ing problem. The presented plots are for denoising of Wishart matrices as defined in
equation (8), with Gaussian output channel of zero mean and variance Δ. The factors
X� are generated with i.i.d. N (0, 1) components. The three panels correspond to differ-
ence aspects ratios α = m/n of X�. α � 1 corresponds to denoising a small-rank matrix,
a regime which we call undercomplete. On the other hand, the regime α  1 is called
overcomplete, and corresponds to denoising a matrix close to a Wigner matrix, i.e. with
random independent components. The four lines plotted in figure 1 are the following:
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Figure 1. Denoising of a Wishart matrix as defined in equation (8) observed with
Gaussian noise of zero mean and variance Δ. The factors X� are generated with
i.i.d. N (0, 1) components and α = m/n is their aspect ratio. We compare the MMSE
obtained from the analytic prediction using HCIZ integrals, the RIE estimator, and
the estimator obtained from the PGY expansion truncated at orders 2 and 3. Note
that the PGY expansion is an expansion at small α. In fact one sees that the third-
order truncation works very well at small α. The truncation at order 2 corresponds
to taking the limit α→ 0, and therefore to assuming that the underlying matrix is
a Wigner matrix.

• MMSE : the exact MMSE of the matrix denoising obtained analytically (as described
in section 3.2, using the matrix integrals presented in section 3.1). For small α
(in the overcomplete regime) the denoised matrix has almost independent elements,
and thus the MMSE is very close to the MMSE of Wigner denoising.

• RIE : the MSE obtained by the RIE of [BABP16], presented in section 3.3. The
algorithm was run on single instances of the problem with m = 3000 and the data
were averaged over three samples (error bars are invisible). The agreement with the
MMSE is perfect.

• PGY order 2 : as explained in section 2.2 the second order of the PGY expansion for
matrix denoising corresponds to ‘Wigner denoising’, that is it implicitly assumes that
the components of the ground-truth matrix are independent. The approximation
of [KKM+16] agrees exactly with the second order of the PGY expansion as we
explain in section 2.1.2, it thus corresponds to Wigner (scalar) denoising. As in the
overcomplete regime α  1 a Wishart matrix behaves like a Wigner matrix, this
approximation is good in this domain, and deteriorates as α grows, as shown in
figure 1

• PGY order 3 : this corresponds to truncating the PGY expansion at order 3, as
explained in section 3.4.1. It can be shown that increasing the order of the PGY
expansion is equivalent to increasing the order considered in a small-α expansion of
the denoiser, which can be analytically computed, see equation (81).
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2. Derivation of the PGY expansion

2.1. PGY expansion and TAP equations in the symmetric setting

For a given instance of the problem, a generic way to compute the single-graph free
entropy of equation (2) is to follow the formalism of [GY91] to perform the high-
temperature expansion at fixed order parameters pioneered in [Ple82]. Here we show
how this PGY method can be applied the symmetric model XXᵀ.

2.1.1. Sketch of the computation. In order to formulate our problem in a formal-
ism adapted to high-temperature expansions, we first introduce an auxiliary field
Ĥ ≡ XXᵀ/

√
n in equation (4a), which defines the free entropy:

enmΦY,n =

∫ ∏
μ,i

P (dXμi)
∏
μ<ν

[∫
dĤμν Pout(Yμν|Ĥμν)δ

(
Ĥμν −

1√
n

∑
i

XμiXνi

)]
. (9)

Using the Fourier transform of the delta function δ(x) = (2π)−1
∫
dheihx, we reach an

effective free entropy in terms of two fieldsX,H, withH ≡ {Hμν}μ<ν a symmetricm×m
matrix (whose diagonal can be taken equal to 0):

enmΦY,n =

∫ ∏
μ<ν

P μν
H,Y (dHμν)

∏
μ,i

PX(dXμi)e
−Heff[X,H], (10)

in which we introduced an effective Hamiltonian Heff [F,X,H] and un-normalized

probability distributions {Pμl
H,Y } defined as:

Heff[X,H] ≡ 1√
n

∑
μ<ν

∑
i

(iH)μν Xμi Xνi, (11)

Pμν
H,Y [dH] ≡

∫
dĤ

2π
eiHĤPout(Yμν|Ĥ). (12)

The PGY formalism allows to compute the free entropy of the system, constraining
the means and variances of each variable {Xμi,Hμν} by ‘tilting’ the Gibbs measure of
equation (10). We thus impose:{

〈Xμi〉 = mμi, 〈(iH)μν〉 = −gμν,

〈X2
μi〉 = vμi + (mμi)

2, 〈(iH)2μν〉 = −rμν + g2μν.
(13)

Here, 〈·〉 denotes an average over the (now tilted) Gibbs measure. Note that we will
sometimes symmetrize the quantities involved, e.g. we write gμν ≡ gνμ for μ > ν, and
moreover we adopt the convention gμμ = rμμ = 0. The resulting free entropy is a function
of the means and variances {m,v, g, r}, on which we will then have to extremize. The
conditions of equation (13) will be imposed via Lagrange multipliers, which we denote
respectively by {λ,γ,ω,b}. The free entropy can now be expressed as a function of
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all the parameters {m,v, g, r,λ,γ,ω,b} (we still denote it ΦY,n, with a slight abuse of
notations):

nmΦY,n =
∑
μ,i

[
λμimμi +

γμi
2

(
vμi + (mμi)

2
)]

+
∑
μ<ν

[
−ωμνgμν −

bμν
2

(
−rμν + g2μν

)]

+ ln

∫
PH,Y (dH)PX(dX) e−Seff[X,H], (14)

in which we introduced an effective action Seff :

Seff[X,H] ≡
∑
μ,i

[
λμiXμi +

γμi
2
X2

μi

]
+

∑
μ<ν

[
ωμν(iH)μν −

bμν
2
(iHμν)

2

]
+Heff[X,H]. (15)

We note that this effective action is a sum of decoupled terms, apart from a single ‘cubic
interaction’ term which is Heff defined in equation (11).

We now apply the standard PGY expansion by introducing a parameter η > 0 in
front of the interaction Hamiltonian, i.e. replacing Heff → ηHeff in equation (15). We
shall then expand in powers of η, and take η = 1 in the end. We denote the corresponding
free entropy ΦY,n(η). Importantly, for η = 0 all the fields {Xμi,Hμν} are independent,
which allows for an efficient perturbative computation.

In order to control the PGY expansion, we introduce two natural assumptions on
the structure of the correlations of the variables:

H.1 At their physical value, the variables {mμi} should be uncorrelated, in coherence
with the fact that the elements of X� are drawn i.i.d. Importantly, this is not true
for H: although the elements Hμν are independent by equation (12), their distri-
bution depends on (μ, ν) and therefore their statistics (e.g. the variables {gμν})
might be correlated through the correlation of the variables {Y μν}.

H.2 Recall that gμν is the average of (iH)μν, the conjugate variable to Ĥμν ≡∑
iXμiXνi/

√
n. In particular, as one can see from a simple calculation (see

equations (20) and (21) that follow), {gμν} takes the form of an independent-
component estimator of the error achieved by ω, which is the estimator of the
Wishart matrix XXᵀ/

√
n. In order to estimate this error, we use the observed

value of Yμν, built as an independent component-wise non-linearity applied to the
Wishart matrix X�(X�)ᵀ/

√
n. Similarly, we assume that the correlations of the

g = {gμν} scale as the ones of a matrix built as the f(MMᵀ/
√
n), for M a matrix

with i.i.d. zero-mean components, and f a—possibly random—component-wise
function.

Assuming H.1 and H.2, we derive in appendix B the first three terms of the small η
expansion. Note that H.2 is actually not necessary for result 2.1, as we stop our compu-
tation of the series at order 3. However we believe that understanding the structure of
{gμν} might prove critical when tackling higher-order terms in the expansion, similarly
as [MFC+19] for finite-rank problems. We leave for future work such a derivation of a
general expression at all orders, and possibly a resummation.
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Result 2.1 (First three orders of the PGY expansion for model XXᵀ)

At leading order as n,m→∞:

nm[ΦY,n(η)− ΦY,n(0)] =
η√
n

∑
μ<ν
i

gμνmμimνi −
η2

2n

∑
μ<ν
i

rμν [vμivνi + vμim
2
νi +m2

μivνi]

+
η2

4n

∑
μ,ν,i

g2μνvμivνi +
η3

6n3/2

∑
i

∑
μ1,μ2,μ3

pairwise distinct

gμ1μ2gμ2μ3gμ3μ1vμ1ivμ2ivμ3i +O(η4). (16)

The zero-order term ΦY,n(0) is given by (with implicit extremization over the Lagrange multipliers)

nmΦY,n(0) =
∑
μ,i

[
λμimμi +

γμi
2

(
vμi + (mμi)

2
)
+ ln

∫
PX(dx) e

−
γμi
2 x2−λμix

]

+
∑
μ<ν

⎡
⎣−ωμνgμν −

bμν
2

(
−rμν + g2μν

)
+ ln

∫
dz

e
− 1

2bμν
(z−ωμν )

2√
2πbμν

Pout(Yμν |z)

⎤
⎦. (17)

We now consider the fixed point equations that result from extremizing the free
entropy of result 2.1. Note that the Lagrange multipliers only appear in the η = 0 part
of the free entropy (this is a general consequence of the formalism of [GY91]), so we can
easily write the maximization over these parameters:

{
mμi = EP (λμi,γμi)[X ], vμi = EP (λμi,γμi)[(X −mμi)

2],

gμν = gout(Yμν,ωμν, bμν), rμν = −∂ωgout(Yμν,ωμν, bμν).
(18)

In equation (18) we defined Pλ,γ and gout as:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
P (λ, γ)(x) ≡ PX(x)e

− 1
2γx

2−λx∫
dx′ PX(x′)e−

1
2γx

′2−λx′
,

gout(y,ω, b)≡
1

b

∫
dz Pout(y|z) (z − ω) e−

(z−ω)2

2b∫
dz Pout(y|z) e−

(z−ω)2

2b

.

(19)

We shall then focus on the maximization over the parameters {m,v, g, r}. It is important
to first understand the physical interpretation of gμν and rμν.

General channels—Recall that we introduced the field Ĥ in equation (9), and
then its conjugate field H in equation (10). Recall as well that we defined {g, r} as the
first and second moments that we constraint on the Gibbs measure, cf equation (13).
Because the variables {Hμν} have been introduced as auxiliary parameters, the physical
interpretation of gμν and rμν is not totally obvious, but it can be found through simple

integration by parts, starting from equation (13). We get, with Ĥ ≡ XXᵀ/
√
n:
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gμν =

〈
∂ĤPout(Yμν|Ĥμν)

Pout(Yμν|Ĥμν)

〉
Y

; rμν =

〈
∂2
Ĥ
Pout(Yμν|Ĥμν)

Pout(Yμν|Ĥμν)

〉
Y

− g2μν. (20)

Simplification for Gaussian channels—For a Gaussian channel (as is the case in
the denoising problem), we have Pout(Y |·) = N (Y , Δ), and thus one gets:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
gμν =

1

Δ

[
Yμν −

1√
n

〈
n∑
i=1

XμiXνi

〉]
,

rμν =
1

Δ
− 1

Δ2

⎡
⎣〈(

1√
n

n∑
i=1

XμiXνi

)2〉
−

〈
1√
n

n∑
i=1

XμiXνi

〉2
⎤
⎦. (21)

Notice that, from these equations, the PGY estimator for the denoising of Y takes a
simple form in the case of a Gaussian channel:

Ŷμν ≡ Yμν −Δgμν. (22)

.

2.1.2. The series at order 2 and the approximation of [KKM+16]. We first examine
the second order of the perturbation series of result 2.1. The free entropy reads:

nm[ΦY,n(η)− ΦY,n(0)] =
η√
n

∑
μ<ν
i

gμνmμimνi −
η2

2n

∑
μ<ν
i

rμν
[
vμivνi + vμim

2
νi

+m2
μivνi

]
+

η2

4n

∑
μ,ν,i

g2μνvμivνi +O(η3). (23)

Since they are taken at η = 0, the fixed point equations of equation (18) are unchanged.
The maximization over the physical order parameters (the means and variances) can be
done and yields (we indicate on the right of the equation the corresponding parameter
over which we maximized):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bμν =
η2

n

∑
i

[vμivνi + vμi(mνi)
2 + (mμi)

2vνi], (rμν)

ωμν =
η√
n

∑
i

mμimνi − gμν

[
bμν −

η2

n

∑
i

vμivνi

]
, (gμν)

γμi =
η2

n

∑
ν

[rμνviν + rμν(mνi)
2 − g2μνvνi], (vμi)

λμi = − η√
n

∑
ν

gμνmνi +mμi

[
−γμi +

η2

n

∑
ν

rμνvνi

]
(mμi).

(24)

Taking η = 1, the reader can check easily that the combined equations (18) and (24) are
actually completely equivalent to the GAMP equations derived in [KKM+16], replacing
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the notations of the variables as follows8:

bμν → Vμν ωμν → ωμν gμν → gout(Yμν,ωμν,Vμν) rμν →−∂ωgout(Yμν,ωμν,Vμν)

γμi → Z−1
μi λμi →−Wμi

Zμi
mμi → f̂μi vμi → sμi.

In conclusion, the PGY expansion truncated to order η2 gives back exactly the stationary
limit of the GAMP algorithm of [KKM+16]. However, as we will see below, the higher-
order corrections of order η3 (and most probably beyond) cannot be neglected: this shows
explicitly how the GAMP equations of [KKM+16] (and also the BiGAMP equations of
e.g. [PSC14a, PSC14b, ZZY21], which are based on the same approximation) are missing
relevant terms.

2.1.3. The series at third order: a non-trivial correction. While the order η2 truncation
of result 2.1 yields back the approximation of [KKM+16], we have computed via the PGY
expansion the order η3, which we recall:

1

3!nm

∂3ΦY,n

∂η3
(η = 0) =

1

6mn5/2

∑
i

∑
μ1,μ2,μ3

pairwise distinct

gμ1μ2
gμ2μ3

gμ3μ1
vμ1ivμ2ivμ3i +On(1). (25)

A crucial observation is that in general the rhs of equation (25) is not negligible as
n→∞. This is a consequence of the diagrammatic analysis of [MFC+19]. As an example,
consider the case of a Gaussian additive noise for the observation channel. Given that
Y is the sum of a Wishart and a Wigner matrix, it is natural to assume that g behaves
like a rotationally-invariant matrix, see H.2. Assuming moreover for simplicity that the
variances are all equal vμi = v, theorem 1 of [MFC+19] (under the rotation-invariance
hypothesis we described) yields:

1

3!nm

∂3ΦY,n

∂η3
(η = 0) =

v3α3/2

6
c3(g/

√
m) +On(1),

in which the coefficients {cp(g/
√
m)} are the free cumulants of random matrix theory,

and are functions of the spectrum of g/
√
m, cf appendix A. Therefore, assuming that

the bulk of eigenvalues of g/
√
m stays of order 1 as n→∞ (which is a natural scaling

given equation (22)), this order-3 term gives a non-negligible contribution to the free
entropy. This indicates that the approximation of [KKM+16] breaks down, even in the
simple case of Gaussian noise.

8 [KKM+16] considers primarily the non-symmetric model FX, but one can very easily transfer their equations to model XXᵀ.

https://doi.org/10.1088/1742-5468/ac7e4c 16

https://doi.org/10.1088/1742-5468/ac7e4c


J.S
tat.

M
ech.

(2022)
083301

Perturbative construction of mean-field equations in extensive-rank matrix factorization and denoising

The third-order correction changes the order-2 TAP equation (24) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bμν =
η2

n

∑
i

[vμivνi + vμi(mνi)
2 + (mμi)

2vνi], (rμν)

ωμν =
η√
n

∑
i

mμimνi − gμν

[
bμν −

η2

n

∑
i

vμivνi

]
+

η3

2n3/2

∑
ρ

gνρgρμ
∑
i

vμivνivρi, (gμν)

γμi =
η2

n

∑
ν

[rμνviν + rμν(mνi)
2 − g2μνvνi]−

η3

n3/2

∑
ν,ρ

gμνgνρgρμvνivρi, (vμi)

λμi = − η√
n

∑
ν

gμνmνi +mμi

[
−γμi +

η2

n

∑
ν

rμνvνi

]
(mμi).

(26)

It is interesting to see the typical scaling of the correction terms of order η3 in the
thermodynamic limit:

• As we saw in the argument above, we expect the correction to the free entropy in
equation (25) to scale as η3α3/2 in the thermodynamic limit.

• The correction to ωμν scales as (η3/n3/2)
∑

ρ gνρgρμ
∑

i vμivνivρi, while the correction

to γμi scales as (η
3/n3/2)

∑
ν,ρ gμνgνρgρμvνivρi. Using similar arguments as above in the

case of Gaussian additive noise, we expect that these corrections scale respectively
as η3α1/2 and η3α3/2 in the thermodynamic limit.

Therefore the corrections at order η3 are relevant and cannot be neglected, except
in the small α limit where they become small. We end this discussion by a few remarks
on the results presented here:

• Similarity with finite-rank problems—One may notice that the first orders of
result 2.1 are very similar the TAP free entropy of simple symmetric models with
rotationally-invariant couplings, that is derived in [MFC+19], see equation (25) of the
mentioned paper. A crucial difference is that here the role of the coupling matrix is
played by g, which is itself a parameter of the TAP free entropy. While this limits to
the first order presented in result 2.1, this similarity is already striking. Importantly,
the resummation of all orders of the PGY expansion in [MFC+19] then suggests that
all orders p � 3 of the free entropy might perhaps be expressible solely in terms of
the eigenvalue distribution of g/

√
m.

• Nature of the order parameter—The previous remark suggests that the order
parameter in extensive-rank matrix factorization would be a probability distribution
of eigenvalues9. This is an important difference from the finite-rank case: for rank-k
matrix factorization (or in general for rank-k recovery problems), the state of the
system is governed by a k × k overlap matrix.

• Small α series—As we have seen, the corrections at order η3 to the free entropy
are of order α3/2. Here we remind that α is the ratio between the size of the observed
matrix m and the size of the factor n. Large α corresponds to the low-rank matrix
estimation (or undercomplete regime) and small α leads to the observed matrix

9This hint is strengthened by recent results in [BM21] using the spectral replica method: in the special case of Gaussian channels
P out, it analytically computes the asymptotic mean free energy with the replica method, and its results strongly suggest that the
proper order parameter is indeed a probability measure of eigenvalues.
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having elements close to i.i.d. (or overcomplete regime). It seems to us that the
expansion in powers of η, which is the core of the PGY approach, actually turns into
an expansion of the TAP equations in powers of α. While this is easily seen up to
order 3 from result 2.1, we have no formal proof of this statement for all orders, and
leave it as a conjecture.

• Iterating the equations—As thoroughly discussed in [MFC+19], the TAP
equations are in general not sufficient to obtain an algorithm with good conver-
gence properties. A classical example is given by the generalized vector approximate
passing algorithm (G-VAMP) [SRF16], for which the corresponding TAP equations
are derived in [MFC+19] using PGY expansions. As highlighted there, the TAP
equations correspond to the stationary limit of G-VAMP, however, there is no obvi-
ous iterative resolution scheme of the TAP equations that automatically gives the
GVAMP algorithm. This indicates that even if one obtains all the orders of pertur-
bations in result 2.1, turning them into an efficient algorithm may require further
work10.

2.2. Nature of the approximation in previous approaches

As we have found that the conjecture of [KKM+16] about exactness of their solution
is incorrect, it is useful to go back to it and understand where that approach failed.
In [KKM+16] the free entropy of the matrix factorization problem is estimated in the
Bayes-optimal setting, in two different ways, namely via the replica method and via
belief propagation (BP) equations. In both cases there are somewhat hidden hypotheses
which we think are not valid. These hypotheses are also present in the derivation of the
BiGAMP (and BiG-VAMP) algorithm (cf e.g. [PSC14a, PSC14b, ZZY21]). We therefore
believe that these algorithms are also not able to give an exact asymptotic computation
of the marginal probabilities in this problem.

Let us now describe both approaches taken in [KKM+16], and explain how the
assumptions behind them fail, focusing primarily on the replica analysis performed in
section V.B of [KKM+16]. The main idea behind the replica method is to compute the
quenched free entropy from the evaluation of the moments of the partition function,
using the relation [MPV87]:

lim
n→∞

1

n2
EY ln ZY,n =

∂

∂r

[
lim
n→∞

1

n2
ln EYZr

Y,n

]
r=0

.

The computation of the quenched free entropy then reduces to the evaluation of the
integer moments of the partition function, by analytically expanding the expression of
the rth moment to any r > 0. When writing out EYZr

Y,n there naturally appears (r + 1)
replicas of the system, that interact via the channel distribution term, as represented
in the following equation (here we consider model FX, to be in the same setting as
[KKM+16]):

10We unsuccessfully tried naive iteration schemes to solve equations (18) and (26), as we found the algorithm to always either
diverge or converge to a trivial solution m = 0. We leave a more precise investigation of the numerical properties of these iterations
to a future work.
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EYZr
Y,n =

∫
dY

[
r∏

a=0

PF (dF
a)PX(dX

a)

]
r∏

a=0

[∏
μ,l

Pout

(
Yμl

∣∣∣∣ 1√
n

∑
i

F a
μiX

a
il

)]
.

A key step in the calculation of [KKM+16] is the assumption that

Za
μl ≡

1√
n

∑
i

F a
μiX

a
il (27)

are multivariate Gaussian random variables. However, although {Fa} and {Xa} follow
statistically independent distributions, with zero mean and finite variances, this is not
enough to guarantee the Gaussianity of the Za

μl variables in the high-dimensional limit.

Indeed, there is a number O(n2) of variables Za
μl, and therefore classical central limit

results cannot conclude on the asymptotic Gaussianity of the joint distribution of such
variables. In general, this Gaussianity is actually false, as can be seen, e.g. by considering
the following quantity, for a single replica:

L4 ≡ lim
n→∞

E

[
1

n3

∑
μ1 �=μ2

∑
l1 �=l2

Zμ1l1Zμ1l2Zμ2l2Zμ2l1

]
. (28)

Let us assume that both PF and PX are standard Gaussian distributions for the sim-
plicity of the argument. The computation of L4 then yields L4 = α2ψ2. However, should
the joint distribution of the {Zμl} converge to a multivariate (zero-mean) Gaussian
distribution, such a distribution would satisfy by definition

E[Zμ1l1Zμ2l2 ] =
1

n

∑
i,j

E[Fμ1iFμ2j]E[Xl1iXl2j] = δμ1μ2
δl1l2 , (29)

and Wick’s theorem would give, wrongly, L4 = 0. Therefore the joint distribution of
{Za

μl} is not Gaussian.
The message-passing approach—Another approach to the problem are the

BP equations [MM09], also referred to as the cavity method in the physics literature
[MPV86]. The goal of BP is to compute the marginal distributions of each variable in
the system, by solving iterative equations involving probability distributions over each
single variable. These probability distributions are called messages in the BP language,
and the fixed point of the iterative equations yields an estimate of the marginal distri-
butions. While a detailed treatment of the BP derivation of [KKM+16] is beyond the
scope of this paper, we have seen in the previous section 2.1 that the message-passing
approach of [KKM+16] is equivalent to neglecting (wrongly) some higher order terms in
the PGY expansion.

2.3. Non-symmetric extensive-rank matrix factorization

Performing the PGY expansion for model FX is extremely similar to the calculation we
have done for model XXᵀ: one can introduce a field H̃ ≡ FX/

√
n, and then perform

the same calculations via the Fourier transform of the delta function. In the following
of section 2.3, we give the results of our derivation, while more details are given in
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appendix B.3. We adopt similar notations to the ones of section 2.1, adding additional
X,F subscripts to differentiate the two fields. More precisely, we impose the first and
second moment constraints:⎧⎪⎪⎨

⎪⎪⎩
〈Fμi〉 = mF

μi, 〈Xil〉 = mX
il ,

〈F 2
μi〉 = vFμi + (mF

μi)
2, 〈X2

il〉 = vXil + (mX
il )

2,

〈(iH)μl〉 = −gμl, 〈(iH)2μl〉 = −rμl + g2μl.

(30)

The PGY expansion at order η4—Similarly to result 2.1, we obtain the first orders
of the free entropy as:

Result 2.2 (First orders of the PGY expansion for model FX)

We have, at leading order as n→∞:

n(m+ p)[ΦY,n(η)− ΦY,n(0)] =
η√
n

∑
μ,i,l

gμlm
F
μim

X
il −

η2

2n

∑
μ,i,l

rμl[v
F
μi(m

X
il )

2 + (mF
μi)

2vXil ]

+
η2

2n

∑
μ,i,l

(g2μl − rμl)v
F
μiv

X
il +

η4

4n2

∑
i

∑
μ1 �=μ2

∑
l1 �=l2

gμ1l1gμ2l1gμ2l2gμ1l2v
F
μ1i

vFμ2iv
X
il1
vXil2 +O(η5).

Recall that the term ΦY,n(0) contains the dependency on the channel and priors
contributions, as well as the Lagrange multipliers introduced to enforce the conditions
of equation (30). Its precise form is:

n(m+ p)ΦY,n(0)

=
∑
μ,i

[
λF
μim

F
μi +

γF
μi

2

(
vFμi + (mF

μi)
2
)
+ ln

∫
PF (df) e

−
γFμi
2 f2−λFμif

]

+
∑
i,l

[
λX
il m

X
il +

γX
il

2

(
vXil + (mX

il )
2
)
+ ln

∫
PX(dx) e

− γX
il
2 x2−λXil x

]

+
∑
μ,l

[
−ωμlgμl −

bμl
2

(
−rμl + g2μl

)
+ ln

∫
dz

e
− 1

2bμl
(z−ωμl)

2√
2πbμl

Pout(Yμl|z)
]
. (31)

Higher-order terms, and breakdown of previous approximations—As in the
symmetric case, the approximation of [KKM+16, PSC14a, PSC14b, ZZY21] amounts
to truncating the perturbation series of result 2.2 at order η2. However, exactly as for
model XXᵀ, the higher-order terms in result 2.2 are in general non-negligible. Under a
similar hypothesis as H.2, they are related to the asymptotic singular value distribution
of g/

√
n, similarly to what happened in the symmetric case. The limit of such terms has

been worked out in [MFC+19]. Assuming, e.g. vFμi = vF and vXil = vX , we have at η = 0:
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1

4!n(m+ p)

∂4ΦY,n

∂η4
(η = 0) =

ψ

α + ψ

(vF )2(vX)2

4
Γ2

(
α

ψ
,
gᵀg

n

)
+On(1). (32)

The functions Γp are related to the rectangular free cumulants introduced in [BG11],
and their precise definition is given in [MFC+19]. Again, in general these coefficients are
non-negligible in the limit n→∞.

For completeness, let us write the TAP equations for this problem, with the correc-
tions arising from the order η4. As in the symmetric case the extremization with respect
to the Lagrange multipliers only depends on the zeroth order term, and yields:⎧⎪⎪⎨

⎪⎪⎩
mF

μi = EPF (λ
F
μi,γ

F
μi)
[f], vFμi = EPF (λ

F
μi,γ

F
μi)
[(f −mF

μi)
2],

mX
il = EPX (λXil ,γ

X
il )
[x], vXil = EPX (λXil ,γ

X
il )
[(x−mX

il )
2],

gμl = gout(Yμl,ωμl, bμl), rμl = −∂ωgout(Yμl,ωμl, bμl).

(33)

The fourth-order corrections affect the remaining TAP equations, which read:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bμl =
η2

n

∑
i

[vFμiv
X
il + vFμi(m

X
il )

2 + (mF
μi)

2vXil ],

ωμl =
η√
n

∑
i

mF
μim

X
il − gμl

[
bμl −

η2

n

∑
i

vFμiv
X
il

]
+

η4

n2

∑
i,μ′,l′

gμ′lgμ′l′gμl′v
F
μiv

F
μ′iv

X
il v

X
il′ ,

γF
μi =

η2

n

∑
l

[rμlv
X
il + rμl(m

X
il )

2 − g2μlv
X
il ]−

η4

n2

∑
μ′

∑
l1 �=l2

gμl1gμ′l1gμ′l2gμl2v
F
μ′iv

X
il1
vXil2 ,

λF
μi = − η√

n

∑
l

gμlm
X
il +mF

μi

[
−γF

μi +
η2

n

∑
l

rμlv
X
il

]
,

γX
il =

η2

n

∑
μ

[rμlv
F
μi + rμl(m

F
μi)

2 − g2μlv
F
μi]−

η4

n2

∑
l′

∑
μ1 �=μ2

gμ1lgμ2lgμ2l′gμ1l′v
F
μ1i
vFμ2i

vXil′ ,

λX
il = − η√

n

∑
μ

gμlm
F
μi +mX

il

[
−γX

il +
η2

n

∑
μ

rμlv
F
μi

]
.

(34)

3. Probing our results in symmetric matrix denoising

3.1. The free entropy of factorization and denoising

We consider the symmetric problem, specializing to the Gaussian setup in which the
prior PX = N (0, 1), and the measurement channel Pout = N (0,Δ). Then the partition
function of both matrix factorization and denoising, defined in equations (4a) and (8),
is given by11:

11 Note that we added the diagonal terms μ = ν with respect to equation (4a). However, this number O(n) of terms does not affect
the thermodynamic free entropy.
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ZY,n =

∫
Rm×n

dX

(2π)
mn
2 (2πΔ)

m(m−1)
4

e
− 1

2

∑
μ,i
X2

μi

e
− 1

4Δ

∑
μ,ν

(
Yμν− 1√

n

∑
i
XμiXνi

)2

. (35)

The corresponding free entropy ΦY,n ≡ (nm)−1 ln ZY,n can be computed for a given
signal Y, using random matrix techniques. We shall compute here its thermodynamic
limit ΦY ≡ limn→∞ ΦY,n, in the generic case where the asymptotic eigenvalue distribution
ofY/

√
m is well defined, and we denote it ρY. This computation relies on a sophisticated

result on the celebrated HCIZ integrals, that emerged in the theoretical physics literature
[Mat94], before being rigorously established [GZ02]. This approach was first discussed
in the context of extensive-rank matrix factorization in [Sch18]. Here we elaborate on
this work, filling in gaps in its arguments, and most importantly we work out how to
evaluate analytically and numerically the corresponding equations, in order to provide
explicit comparison to previous works and the PGY expansion proposed here. The recent
and independent work [BM21] also derives asymptotic results in matrix factorization
using Matytsin’s results [Mat94], but does not evaluate them or compare them to other
approaches (beyond scalar denoising).

Beyond Wishart matrices—While we focus on the denoising of Wishart matrices
(since we are initially interested in the matrix factorization problem), we emphasize
that one can easily generalize all the conclusions of sections 3.1, 3.2 and 3.3 to the more
general denoising of a rotationally-invariant matrix. This allows to compare our results
with the general ones on symmetric matrix denoising of [BABP16, BBP17] in the case
of Gaussian noise12.

.

3.1.1. The case α � 1. We shall first study the case α � 1 (i.e. m � n), so that the
distribution of S ≡ XXᵀ/

√
nm is non-singular. We can rewrite equation (35) as:

exp{nmΦY,n} =

∫
PS(dS)

e
− 1

4Δ

∑
μ,ν

(Yμν−
√
mSμν)

2

(2πΔ)
m(m−1)

4

, (36)

in which PS(dS) is the Wishart distribution given by (with Γp the multivariate Γ
function):

PS(dS) ≡
m

mn
2

(2
√
α)

mn
2 Γm(n/2)

(det S)
n−m−1

2 e−
√
nm
2 TrS dS. (37)

We can decompose the integration in equation (36) on the eigenvalues and eigenvectors
of S = OLOᵀ, where the diagonal matrix L contains them eigenvalues {lμ}. This change
of variables yields a combinatorial factor, that can be found, e.g. using equation (C.4)
of [Nic14] or propositions 4.1.1 and 4.1.14 of [AGZ10]. All in all, equation (36) turns
into:

12 Note that [BABP16, BBP17] also consider generic rotationally-invariant additive noise, beyond the Gaussian assumption. While
this is beyond our scope here, adapting the spherical integral techniques presented hereafter to this more generic setting could be
possible, and we leave it as an open direction of research.
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exp{nmΦY,n} =
m

mn
2 e−

1
4Δ

∑
μ,νY

2
μν

(2
√
α)

mn
2 Γm(n/2)(2πΔ)

m(m−1)
4

× π
m(m+1)

4

2m/2Γ(m+ 1)
∏m

μ=1Γ(μ/2)
(38)

×
∫
Rm
+

dL
∏
μ<ν

|lμ − lν|e
−m

2

∑m
μ=1

(
lμ√
α
+

l2μ
2Δ

)
+ n−m−1

2

∑m
μ=1 ln lμ

∫
O(m)

DO e
√
m

2Δ Tr[YOLOᵀ].

The last integral is given by the large-n limit of the extensive-rank HCIZ integral [Mat94,
GZ02]:

∫
O(m)

DO e
√
m

2Δ Tr[YOLOᵀ] � exp

{
m2

2
IΔ[ρY, ρS]

}
.

The function IΔ depends only on the asymptotic eigenvalue distribution ρY of Y/
√
m,

and on the asymptotic distribution of the eigenvalues of S. In principle, using the Laplace
method, the result should be expressed as a supremum over the asymptotic distribution
of these eigenvalues, and one would need to assume the existence of this asymptotic
distribution (this is justified as there is a number O(n) of eigenvalues, and we consider
asymptotics in the scale exp{Θ(n2)}). It turns out that in our case we do not need to
perform this complicated optimization on the spectrum of S. This is a consequence of
Bayes optimality . Indeed, ρS is the limit of the eigenvalue distribution of S under the
posterior measure. But by the Nishimori identity [Nis01], for any bounded function φ
we have:

E

〈∫
φ(λ)ρS(dλ)

〉
= E

∫
φ(λ)ρ�S(dλ), (39)

in which ρ�S is the limit eigenvalue distribution of the ground-truth signal S�. In other
terms, the Nishimori identity implies that the eigenvalue distribution of S under the
distribution of equation (36) concentrates on the Marchenko–Pastur law.

Therefore the function IΔ depends on two known spectra, ρS which is the
Marcenko–Pastur spectrum of the matrix X�(X�)ᵀ/

√
nm, and ρY which is the spec-

trum of the signal, equal to a Wishart matrix plus a Gaussian noise. We moreover have
from [Mat94, GZ02]:

IΔ[ρY, ρS] =
ln Δ

2
− 3

4
+

1

2Δ

[∫
ρY(dx)x

2 +

∫
ρS(dx)x

2

]
(40)

− 1

2

∫
ρY(dx)ρY(dy) ln |x− y| − 1

2

∫
ρS(dx)ρS(dy) ln |x− y|

− 1

2

{∫ Δ

0

dt

∫
dxρ(x, t)

[
π2

3
ρ(x, t)2 + v(x, t)2

]}
,
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where the function f(x, t) ≡ v(x, t) + iπρ(x, t) satisfies a complex Burgers’ equation with
prescribed boundary conditions:⎧⎪⎪⎨

⎪⎪⎩
∂tf + f∂xf = 0,

ρ(x, t = 0) = ρS(x),

ρ(x, t = Δ) = ρY(x).

(41)

We now evaluate the thermodynamic limit of the free entropy of equation (38), when
m,n→∞ with a fixed limit of α = m/n:

Ψ[ρY, ρS] ≡ lim
n→∞

ΦY,n = Ψ1 + Ψ2 + Ψ3, (42)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ1 ≡ lim
m→∞

[
1

2
ln m− 1

nm
ln Γm(n/2)−

1

nm

m∑
μ=1

Γ(μ/2)

]
,

Ψ2 ≡ − ln 2

2
− ln α

4
− 3α

8
− α

4
ln 2,

Ψ3 ≡
α

2

∫
dx dy ρS(x)ρS(y) ln |x− y| − α

2

∫
dx ρS(x)

[
x√
α
+

x2

2Δ

]
+
1− α

2

∫
dx ρS(x) ln x+

α

2
IΔ[ρY, ρS].

(43)

Ψ1 can be computed using the asymptotic expansion

1

nm
ln Γm(n/2) =

α

4
ln π +

1

nm

m∑
μ=1

ln Γ

(
n+ 1− μ

2

)
+On(1), (44)

and Stirling’s formula ln Γ(z) = z ln z − z +O(ln z) as z →∞. We get:

1

2
ln m− 1

nm
ln Γm(n/2)−

1

nm

m∑
μ=1

ln Γ(μ/2)

=
α+ (α− 1)2 ln(1− α)− (α− 2)α ln(α)

4α
− α

4
ln π +

1 + ln 2

2
+On(1). (45)

Collecting all pieces, we get the final expression for the free entropy density of extensive-
rank symmetric matrix factorization in the Gaussian setting:
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Ψ[ρY, ρS] =
1

8

{
2(α− 1)2 ln(1− α)

α
− α(3 + ln 4) + 2 ln α − 2α ln πα+ 6

}

+
α

4

∫
ρS(dx)ρS(dy) ln |x− y| −

√
α

2

∫
ρS(dx)x

− α− 1

2

∫
ρS(dx) ln x− α

4

∫
ρY(dx)ρY(dy) ln |x− y|

− α

4

∫ Δ

0

dt

∫
dxρ(x, t)

[
π2

3
ρ(x, t)2 + v(x, t)2

]
. (46)

As stated above, the function f(x, t) = v(x, t) + iπρ(x, t) satisfies the complex Burgers’
equation (41).

It turns out that we can greatly simplify equation (46). This simplification is a
consequence of two results, which we state hereafter. While the first of these two results
is not directly used in the simplification, we believe it also bears independent interest
that allows to understand the reasons allowing for such a simplification.

The first one is the analytical solution to equation (41), using the Dyson Brownian
motion. It was given in [Sch18], but incompletely justified.

Result 3.1 (Matytsin’s solution and Dyson Brownian motion)

Recall that Y/
√
m = S+

√
ΔZ/

√
m, with Z a Wigner matrix. For any S, the solution to equation (41) is given by

the Stieltjes transform13 of the Dyson Brownian motion Y(t)/
√
m

d
=S+

√
tZ/

√
m, with t ∈ [0, Δ]. More precisely,

if gY(t)(z) ≡
∫
ρY(t)(dt)/(t− z), the solution is given by:⎧⎪⎨
⎪⎩
ρ(x, t) =

1

π
lim
ε↓0

{
Im[gY(t)(x+ iε)]

}
,

v(x, t) = lim
ε↓0

{
−Re[gY(t)(x+ iε)]

}
.

(47)

Remark—Note that this result, while not stated exactly as here, was used before
in the mathematics literature, see e.g. [Gui04a, Men17]. Further, these works relate the
distribution ρ(x, t) that appears in the general formula of equation (40) of IΔ[ρA, ρB] to
the one of a Dyson Brownian bridge. More precisely, [Gui04a] shows that there exists a
joint distribution of two random matricesA′ and B′ such that ρA is the LSD ofA′, ρB the
one of B′, and ρ(t) is the asymptotic eigenvalue distribution of X(t) = (1− t/Δ)A′ +

tB′/Δ+
√

t(1− t/Δ)W/
√
m, with W a Gaussian Wigner matrix independent of A′

and B′. However, the joint distribution of (A′,B′) is unknown in general: result 3.1

shows that when B = A+
√
ΔZ/

√
m, one can take A′ = A and B′ = B.14 To the best

of our knowledge, the only other case in which this joint distribution is known is when A
and B are independent Gaussian Wigner matrices with arbitrary variances [BBMP14].

13 For more details on the Stieltjes transform, see appendix A.
14 Indeed, one has then X(t) = A+ [t/

√
ΔZ+

√
t(1− t/Δ)W]/

√
m. The last term of this equation is the sum of two independent

Gaussian matrices, therefore it is itself Gaussian, with variance t2/Δ+ t(1− t/Δ) = t. In distribution one has thus X(t)
d
=A+√

tW/
√
m, i.e. X(t) is the Dyson Brownian motion starting in A.

https://doi.org/10.1088/1742-5468/ac7e4c 25

https://doi.org/10.1088/1742-5468/ac7e4c


J.S
tat.

M
ech.

(2022)
083301

Perturbative construction of mean-field equations in extensive-rank matrix factorization and denoising

Our second result allows for a direct simplification of equation (46). It can be stated
as follows:

Result 3.2

For any well-behaved density ρA (corresponding to a random matrix A), we have with I = IΔ=1 the function of
equation (40):

sup
ρL

{
1

2

∫
ρ⊗2
L (dx, dy) ln |x− y| − 1

4

∫
ρL(dx) x

2 +
1

2
I[ρL, ρA]

}

= −3

8
+

1

4

∫
ρA(dx)x

2. (48)

Equivalently, if ρ(x, t) solves the Euler–Matytsin equation (41) between ρA and ρL, we have:

sup
ρL

{∫
ρ⊗2
L (dx, dy) ln |x− y| −

∫ 1

0

dt

∫
dx ρ(x, t)

[
π2

3
ρ(x, t)2 + v(x, t)2

]}
(49)

=

∫
ρ⊗2
A (dx, dy) ln |x− y|.

Moreover, in both previous equations the supremum is reached by the additive free convolution ρ�L = ρA � σs.c.

[Voi86, AGZ10], i.e. the eigenvalue density of A+ Z/
√
m, which is the Dyson Brownian motion at time t = 1.

In appendix C we give a complete justification of results 3.1 and 3.2. Using result
3.2, and the fact that Y/

√
m = S+

√
ΔZ/

√
m, equation (46) takes the final form:

Ψ[ρY, ρS] =
1

8

{
2(α− 1)2 ln(1− α)

α
− α(3 + ln 4) + 2 ln α− 2α ln πα+ 6

}

−
√
α

2

∫
ρS(dx)x− α− 1

2

∫
ρS(dx) ln x

+
α

2

∫
ρS(dx)ρS(dy) ln |x− y| − α

2

∫
ρY(dx)ρY(dy) ln |x− y|. (50)

Remark—Note that the derivation of equation (48) (presented in appendix C) does
not rely on the expression of IΔ[ρL, ρA] derived in [Mat94, GZ02] that involved Burgers’
equation, but is a simple consequence of the relation of the HCIZ integral to the large
deviations of the Dyson Brownian motion [GZ02, Gui04a, BBMP14, Men17]. One can
therefore recover equation (50) without appealing to the hydrodynamical formalism of
Matytsin.

.

3.1.2. The case α > 1. When α > 1, the calculation is very similar, but one considers
the limit spectral density of S′ ≡ XᵀX/

√
nm, which is now a full-rank matrix, rather

than the singular matrix S = XXᵀ/
√
nm. Denoting the asymptotic spectral densities of

these matrices by ρS and ρS′ , we have:

ρS(x) = α−1ρ′S(x) + (1− α−1)δ(x).

The issue that arises in the calculation is that ρS(x) has a singular component around
x = 0. In order to regularize this singularity, we consider an arbitrarily small ε > 0, and
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we replace in the asymptotic result:

ρS = α−1ρ′S(x) + (1− α−1)δ(x)→ ρ
(ε)
S = (α−1ρ′S(x) + (1− α−1)δ(x))� σε

s.c.. (51)

Here, σε
s.c. is the asymptotic eigenvalue distribution of

√
ε/mZ with Z a Gaussian Wigner

matrix15, and � is the free convolution [Voi86, AGZ10]. Assuming that the limit eigen-

value of S is given by ρ
(ε)
S , we perform calculations completely similar to what we did

for α � 1, and we reach, at leading order in ε:

Ψ[ρY, ρS] = C(α) +
1

2α

∫
ρ′S(dx)ρ

′
S(dy) ln |x− y| − α

4

∫ (
ρ
(ε)
S (dx)ρ

(ε)
S (dy)

+ρY(dx)ρY(dy)) ln |x− y|+ 1− α−1

2

∫
ρ′S(dx) ln x

− 1

2
√
α

∫
ρ′S(dx)x− α

4

∫ Δ

0

dt

∫
dxρ(ε)(x, t)

[
π2

3
ρ(ε)(x, t)2 + v(ε)(x, t)2

]
, (52)

with the constant C(α) given by:

C(α) =
2(α− 1)2 ln(α− 1) + α(−3α − 2α ln(2πα) + 2 ln α+ 6)

8α
. (53)

We also denoted v(ε)(x, t) and ρ(ε)(x, t) to make explicit the fact that the boundary

condition at t = 0 is determined by ρ
(ε)
S . Exactly as in the case α � 1 we make use of

result 3.2, which allows to reach the simplification:

Ψ[ρY, ρS] = C(α) +
1

2α

∫
ρ′S(dx)ρ

′
S(dy) ln |x− y|+ 1− α−1

2

∫
ρ′S(dx) ln x

− 1

2
√
α

∫
ρ′S(dx)x− α

2

∫
ρY(dx)ρY(dy) ln |x− y|. (54)

3.2. The MMSE of denoising

The information-theoretic MMSE for denoising is defined as:

MMSE(Δ) ≡ E

[
1

m

∑
μ,ν

(
S�
μν − 〈Sμν〉

)2]
, (55)

where S� = X�(X�)ᵀ/
√
nm is the original ‘ground-truth’ matrix, and the observation is

Y =
√
mS� +

√
ΔZ. Note that adding the diagonal terms μ = ν in this definition does

not change the asymptotic MMSE, cf appendix G.2. This definition satisfies, for any α:

lim
Δ→∞

MMSE(Δ) = 1. (56)

15 In simpler terms, σε
s.c. is a Wigner semi-circle law extending from −2

√
ε to −2

√
ε.

https://doi.org/10.1088/1742-5468/ac7e4c 27

https://doi.org/10.1088/1742-5468/ac7e4c


J.S
tat.

M
ech.

(2022)
083301

Perturbative construction of mean-field equations in extensive-rank matrix factorization and denoising

As is usually the case for Gaussian channels [GSV05], the MMSE is simply given by a
derivative of the asymptotic free entropy:

MMSE(Δ) = Δ− 4

α

∂Ψ[ρY, ρS]

∂Δ−1 . (57)

A proof of equation (57) is given in appendix G.3. We can now compute the MMSE
explicitly using equations (57), (46) and (54). Therefore the MMSE takes the form:

MMSE(Δ) = Δ+
4

α
Δ2 ∂

∂Δ
{Ψ[ρY, ρS]} = Δ− 2Δ2 ∂

∂Δ

∫
ρY(dx)ρY(dy) ln |x− y|.

(58)

Recall that ρY is the asymptotic eigenvalue density of Y/
√
m. As we show below, this

can be computed using free probability techniques.
A ‘miraculously simple’ solution—Equation (58) is particularly simple, as it

only depends on the eigenvalue distribution of the observations Y. This was noticed in
[BABP16] for an important class of RIE. Here, this arises as a consequence of the fact
that the only dependency in Δ in the free entropy of equations (46) and (54) is through
the eigenvalue density of Y.

Numerical evaluation of the MMSE—In order to compute the Stieltjes trans-
form gY(z) (and from it ρY and vY by equation (47)), we can use free probability
techniques. Indeed, we know the R-transform of Y/

√
m, since we have Y/

√
m =

XXᵀ/
√
nm+ (Δ/m)1/2Z:

RY(s) = g−1
Y (−s)− 1

s
=

1√
α(1−

√
αs)

+ Δs. (59)

This implies that s = −gY(z) can be found as the solution to the algebraic equation:

s3 −
√
αz +Δ√
αΔ

s2 +
1√
αΔ

(z +
√
α − α−1/2)s− 1√

αΔ
= 0. (60)

Equation (60) can be solved numerically. We then compute the derivative of the loga-
rithmic potential in equation (58) using finite differences, which allows us to efficiently
access the MMSE numerically.

3.3. Bayes-optimal estimator for denoising

3.3.1. From asymptotic results to estimation. While the derivations presented in
sections 3.1 and 3.2 allow to characterize the performance of the Bayes-optimal estima-
tor, they did not provide an actual estimation algorithm matching this performance. In
this section, we work out such an estimator using the asymptotic limits described above.
From Bayesian statistics, the Bayes-optimal estimator of S ≡ XXᵀ/

√
nm is Ŝ ≡ 〈S〉,

with 〈·〉 the average under the posterior distribution of equation (36).
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Starting again from equation (36), we have:⎧⎪⎪⎨
⎪⎪⎩
〈Sμν〉 =

Yμν√
m

−Δn
∂ΦY,n

∂(Yμν/
√
m)

,

〈Sμμ〉 =
Yμμ√
m

− 2Δn
∂ΦY,n

∂(Yμμ/
√
m)

.
(61)

Importantly, our results of equations (46) and (54) imply that, as n→∞, ΦY,n depends
on Y solely via the spectrum of Y/

√
m. This means that we can write equation (61) at

leading order as n,m→∞ as:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
〈Sμν〉 =

Yμν√
m

−Δn

m∑
ρ=1

∂ΦY,n

∂yρ

∂yρ
∂(Yμν/

√
m)

,

〈Sμμ〉 =
Yμμ√
m

− 2Δn
m∑
ρ=1

∂ΦY,n

∂yρ

∂yρ
∂(Yμμ/

√
m)

,

(62)

in which {yρ}mρ=1 are the eigenvalues of Y/
√
m. Let us denote {vρ} the corresponding

eigenvectors, and fix μ0 < ν0. By the Hellman–Feynman theorem, if we perturb the
matrix Y/

√
m as:

Yμν → Y γ
μν = Yμν + γ

√
mδμμ0

δνν0 , (63)

for a small γ ∈ R, then the corresponding transformation of an eigenvalue yρ is:

dyρ
dγ

=
∂yρ

∂(Yμ0ν0/
√
m)

=
∑
μν

(δμμ0
δνν0 + δμν0δνμ0

)vρμv
ρ
ν = 2vρμ0

vρν0. (64)

In the same way, we obtain for μ0 = ν0:

∂yρ
∂(Yμ0μ0

/
√
m)

=
∑
μν

δμμ0
δνμ0

vρμv
ρ
ν = (vρμ0

)2. (65)

Plugging equations (64) and (65) in equation (62) yields, for any μ, ν:

〈Sμν〉 =
Yμν√
m

− 2Δn
m∑
ρ=1

∂ΦY,n

∂yρ
vρμv

ρ
ν =

m∑
ρ=1

[
yρ − 2Δn

∂ΦY,n

∂yρ

]
vρμv

ρ
ν . (66)

Note that equations (50) and (54) have the following form at finite n:

ΦY,n = Fn(ρS)−
1

2mn

∑
μ �=ν

ln |yμ − yν|+On(1), (67)
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so that

n
∂ΦY,n

∂yμ
= − 1

m

∑
ν( �=μ)

1

yμ − yν
+On(1) = P.V.

∫
dy ρY(y)

1

y − yμ
+On(1), (68)

with P.V. the principal value of the integral. Stated differently, the Bayes-optimal
estimator has the form:⎧⎪⎨

⎪⎩
Ŝ =

m∑
μ=1

ξ̂μv
μ(vμ)ᵀ,

ξ̂μ = yμ − 2ΔvY(yμ, Δ).

(69)

In equation (69) we introduced the function:

vY(x, Δ) ≡ − lim
ε↓0

Re[gY(x+ iε)], (70)

with gY(z) the Stieltjes transform of Y/
√
m, cf appendix A.

An important consequence of equation (69) is that the optimal estimator Ŝ is diago-
nal in the eigenbasis of the observation Y. Such estimators are usually called RIE. Note
that one can argue that the optimal estimator is a RIE in this problem without going
through the derivation above, but simply as a consequence of the rotation-invariance
of the posterior distribution of equation (8), which was noticed in [BBP17]. The opti-
mal RIE (in the L2 sense) for the denoising of an extensive-rank matrix corrupted by
Gaussian noise has been worked out in [BABP16], in which the authors exactly obtained
the expression of equation (69). We therefore found back their main result using our
asymptotic derivation16.

As we mentioned at the beginning of section 3, one can easily see that none of the
results on the MMSE or the optimal denoiser are specific to the denoising of Wishart
matrices, but can be easily generalized to any rotationally-invariant matrix, so that our
derivation can be compared to the one of [BABP16] based on a direct minimization of
the L2 error, in the case of Gaussian additive noise. As we mentioned above, we leave for
future work an extension of our derivation to completely generic additive rotationally-
invariant noise (which is analyzed in [BABP16]). Note that the mean squared error
of the optimal estimator should be the MMSE of equation (58). We have checked this
numerically (see section 3.5) for two types of signals. Figure 4 shows that the two results
match, as expected.

.

3.3.2. Small-α expansion of the optimal denoiser. We shall use the optimal estimator
of equation (69) in order to test our PGY expansion for denoising in the Gaussian
setting. Recall that we are denoising a m×m Wishart matrix S = XXT/

√
nm, where

X is m× n, and α = n/m. We shall consider here an expansion of the denoiser in
the overcomplete regime of small α = m/n (i.e. close to the limit where S becomes
Gaussian), and work out in the next section the small-α expansion within the PGY
formalism.

16 As noticed in [BABP16], equation (69) is in a sense a ‘miracle’ similar to the one we described for the MMSE in section 3.2: the
eigenvalues {ξ̂μ} of the optimal estimator are expressed solely as a function of the spectrum of the observations Y.
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Note that in the PGY approach, we will not consider diagonal observations: we use
Y μμ = 0. Equivalently, by rotation-invariance, we assume here that Y has asymptoti-
cally zero trace, which we can do without any loss of generality. Simply, we shift the
observations by a deterministic term:

Y =
1√
n
XXᵀ − 1√

α
Im +

√
ΔZ. (71)

The computation detailed in appendix D expands the Stieltjes transform of Y/
√
m and

gives

vY(y) =
y

2(Δ+ 1)
+

(Δ + 1− y2)

2(Δ + 1)3
√
α+O(α). (72)

Using this expansion in the optimal estimator of equation (69), we get the result:

ξ̂μ =
1

Δ+ 1
yμ −

Δ

(Δ+ 1)2

[
1− y2μ

Δ+ 1

]√
α+O(α). (73)

This expansion describes how every eigenvalue y of
√
m should be denoised, in the limit

of small α. The leading term, ξ̂μ = yμ/(Δ + 1), is the standard expression for denoising
a Wigner matrix, as expected. The term of order

√
α is the first non-trivial correction,

we shall compare it to PGY-based denoising in the next section.

3.4. Denoising using the PGY expansion

3.4.1. PGY expansion for the denoising problem. In this section, we apply the PGY
expansion formalism to the symmetric matrix denoising problem, for a Wishart matrix
S ≡ XXᵀ/

√
nm. Recall that we observe Yμν ∼ Pout(·|

√
mSμν). We consider a general

channel P out (where the noise is applied independently to every component of the
matrix), and a general prior, factorized over the components of the input matrix:
PX(X) =

∏
μ,i PX(Xμi). Furthermore, we shall assume that the mean of PX is 0. With-

out loss of generality (as it can be absorbed in the channel), we also assume that the
variance of the prior is EPX

[x2] = 1.
The PGY expansion is very close to the computation that we did for the matrix

factorization problem, except that, in the denoising problem, we do not fix the first and
second moments of the field X. The free entropy thus takes a form which is simpler than
the one of equation (14). We get:

nmΦY,n =
∑
μ<ν

[
−ωμνgμν −

bμν
2

(
−rμν + g2μν

)]
+ ln

∫
PH(dH) PX(dx) e

−Seff[x,H], (74)

in which we introduced an effective action:

Seff[x,H] =
∑
μ<ν

[
ωμν(iH)μν −

bμν
2
(iH)2μν

]
+Heff[x,H], (75)

https://doi.org/10.1088/1742-5468/ac7e4c 31

https://doi.org/10.1088/1742-5468/ac7e4c


J.S
tat.

M
ech.

(2022)
083301

Perturbative construction of mean-field equations in extensive-rank matrix factorization and denoising

and the (un-normalized) distribution and effective Hamiltonian:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
PH [dH] ≡ dH

∏
μ<ν

∫
dH̃

2π
eiHμνH̃Pout(Yμν|H̃) =

∏
μ<ν

1

2π
e−

ΔH2
μν
2 +iYμνHμν dHμν,

Heff[x,H]≡ 1√
n

∑
μ<ν

∑
i

(iH)μνxμixνi.
(76)

We only impose the constraints gμν = −〈(iH)μν〉 and rμν = −〈(iH)2μν〉+ g2μν, using the
Lagrange multipliers ωμν and bμν.

The PGY expansion proceeds exactly as in section 2.1: for pedagogical reasons, we
detail the PGY expansion specifically for the denoising problem in appendix E. As shown
there, the result for denoising can be obtained by using the PGY expansion for matrix
factorization and imposing mμi = 0, vμi = 1, λμi = 0, γμi = 0. The PGY free entropy for
denoising at order η3 takes the form:

nmΦY,n =
∑
μ<ν

[
−ωμνgμν −

bμν
2

(
−rμν + g2μν

)
+ ln

∫
dz

e
− 1

2bμν
(z−ωμν)

2√
2πbμν

Pout(Yμν|z)
]

+
η2

2

∑
μ<ν

[g2μν − rμν] +
η3

6n1/2

∑
μ1,μ2,μ3

pairwise distinct

gμ1μ2
gμ2μ3

gμ3μ1
. (77)

.

3.4.2. Small-α expansion of the PGY denoiser. We can now expand the denoising
estimator predicted by the PGY expansion at order 3 in α as we did for the optimal
denoiser in section 3.3.2. We also remind what we noted above (see section 2.1.3) that
the PGY expansion at order η3 corresponds to an expansion of the optimal denoiser in
α, up to order

√
α.

We start from the expression of the free entropy in equation (77), evaluated at η = 1.
Using the fact that the diagonal elements of g are zero, the last term is just propor-
tional to Tr[g3]. Using that ∂gμν Tr[gk] = 2k(gk−1)μν, the TAP equations corresponding
to equation (77) are:⎧⎪⎪⎨

⎪⎪⎩
bμν = 1 ; gμν =

Yμν − ωμν

Δ+ bμν
,

ωμν = −bμνgμν + gμν +
1√
n
(g2)μν ; rμν =

1

Δ+ bμν
.

(78)

Therefore this can be reduced to a single equation on g:

Y√
m

= (Δ+ 1)
g√
m

+
√
α

(
g√
m

)2

−
√
α

m
Tr

[
g2

m

]
Im. (79)

Note that in equation (79) we added a last term to impose the zero-trace condition
on g and Y, since equation (78) only describes the off-diagonal terms17. We solve

17 Since these are rotationally-invariant matrices, having a zero trace is asymptotically equivalent to having a zero diagonal.
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equation (79) perturbatively in α.18 We denote by y a generic eigenvalue of Y/
√
m,

and gy the corresponding eigenvalue of g/
√
m (as is clear from equation (79), the two

matrices will be diagonal in the same eigenbasis). The first order is trivial, and given
by:

gy =
y

Δ+ 1
+O(

√
α). (80)

Plugging this back into equation (79) and considering the order
√
α, we reach (imposing

the zero-trace condition):

gy =
y

Δ+ 1
+

(Δ+ 1− y2)

(Δ + 1)3
√
α+O(α). (81)

This is the same result as the one obtained with the RIE of equation (73), and this is
the expression plotted in figure 1 in orange. Therefore the PGY expansion does capture
the asymptotic optimal estimator of the problem (in the overcomplete regime), as it
should.

Effect of the prior on the denoising problem—Note that the PGY expansion
suggests that the Bayes-optimal estimator for denoising is independent of the particu-
larities of the prior distribution PX , and only depends on its first two moments, assumed
here to be fixed. While this observation is only made here up to order η3, understanding
if (and how) an i.i.d. prior on X might enhance the denoising of the matrix XXᵀ by
going to higher orders in the PGY expansion is beyond our results. Note finally that the
universality suggested by the PGY expansion at order 3 might be better understood in
terms of random matrix theory, in which many such universality results are known in
the asymptotic limit, e.g. for the bulk spectral statistics of XXᵀ [MP67].

3.5. Numerical simulations

In this section, we present numerical results illustrating our contributions. The code is
available in a public GitHub repository [MKMZ22].

Denoising MMSE for Wishart denoising—In figure 2, we compare the
denoising errors reached by different procedures:

• The MMSE, that is the analytical value of the Bayes-optimal error predicted in
equation (58), is shown in the full red line. We discretize both parameters (t, x), to
obtain precise estimates of the involved integrals via Romberg’s method [Rom55],
and a polynomial solver to compute the Stieltjes transform of Y(t) above the real
axis by using equation (60).

• The denoising MSE reached by the optimal RIE of equation (69). For each value of Δ
(shown as green points), we compute the MSE achieved on three different instances
of Y, and error bars are too small to be visible. We use m = 3000 to generate the
matrices.

18 Note that one could also solve equation (78) iteratively, as what would usually be done for TAP equations. Here, we rather
leverage an analytical expression for the spectrum of the solution. In the more general matrix factorization case, there is no such
expression for the solution to the TAP equations (18) and (26), and we found ‘naive’ iterations to be numerically very ill-behaved,
see our remark at the end of section 2.1.
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Figure 2. (Extended version of figure 1) Denoising of a Wishart matrix, for dif-
ferent values of the aspect ratio α as a function of the additive noise variance
Δ: comparison of the analytic MMSE with the RIE estimator of [BABP16], and
the TAP-based estimator obtained from the PGY expansion truncated at orders 2
and 3.

• In blue points, we show the error reached by the PGY equations at order η2, that
is simply via the denoiser of equation (80). As for the RIE, we use m = 3000 and
average over three instances, while error bars are in practice invisible. Note that
the truncation at order 2 corresponds to assuming that the underlying matrix is a
Wigner matrix, as clearly shown in equation (80).

• Finally, orange points correspond to the PGY equations truncated at order η3, that
is equation (81). We use the same physical parameters as for the PGY at order 2.

In the inset of all figures shown in figure 2, we show the ratio of the error with the
analytical MMSE. It is clear that the optimal RIE achieves the Bayes-optimal error
within numerical accuracy. Moreover, the PGY at order 3 significantly outperforms the
order-2 method when α is not too large (recall that the order of the PGY expansion
can be understood as an order of perturbation in α). This strengthens our claim that
the PGY expansion captures the optimal estimator, although one would have to take
into account all orders of perturbation to turn it into an estimator for the factorization
problem, something which is beyond the scope of this paper. Interestingly, for large
values of α (e.g. α = 5 in figure 2) and small values of Δ, the order-3 method can
perform worse than the order-2. Such a peculiar behavior of the PGY expansion series
was already noticed for a class of Ising models in [RT12]. We remark that our evidence
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Figure 3. Denoising of a Wishart matrix: comparison of the analytical free entropy
computed using Matytsin’s equations (red curve), the one computed with the TAP
approach, truncated at orders 2 (blue points) and 3 (orange points), the annealed
free energy (dashed pink line) computed in appendix F, the denoising solution of
[KKM+16] in dashed cyan, and the (incorrect) solution for the factorization problem
proposed in [KKM+16] in purple.

combined with the one of [RT12] suggests that such a phenomenon might also be present
in the general PGY expansion of many rotationally-invariant inference problems which
was derived in [MFC+19]: this interesting question is however not in the scope of the
present paper and would deserve further studies.

Estimating the asymptotic free entropy—Similar observations can be made
by computing the free entropy predicted by the solution to the Matytsin problem and
comparing it to the predictions of the truncated PGY expansion. We present our results
in figure 3, in which we show the following curves for different values of α:

• The red curve is obtained by analytically estimating equations (46) and (54), depend-
ing on the regime of α. The discretization technique we use was detailed in the
description of figure 2.

• The blue and oranges points correspond to truncating the PGY expansion at order
2 and 3, as in figure 2, and the physical parameters used in the simulations are the
same. Note that truncating the PGY series at order 3 does not necessarily yield
a better approximation (to the free entropy or the MSE, see figure 2) than order
2 for low values of Δ: indeed, this truncation does not correspond to any physical
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Figure 4. Comparison of the denoising MMSE computed from the optimal RIE
of [BABP16], i.e. equation (69), for different ground-truth matrices S�. We use
m = 3000 and average over three instances, with no visible error bars. (Left) Denois-
ing of a uniformly-sampled symmetric orthogonal matrix. (Right) Denoising of a
Wishart matrix with various values of m/n = α. The well known denoising of a
Wigner random matrix (which is the overcomplete limit of a Wishart matrix when
α→ 0) is shown for reference.

approximation, while we saw that the truncation at order 2 is equivalent to assuming
that the matrix to denoise is Wigner.

• In dashed cyan, we show the free entropy prediction of [KKM+16] for the matrix
denoising problem, matching exactly the PGY expansion at order 2. Note that
[KKM+16] also tackled the more involved matrix factorization problem. Since the free
energies of factorization and denoising are the same, we show as well in solid purple
their (incorrect) prediction for the free entropy when analyzing the matrix factor-
ization problem. Recall that we analytically disproved their approach in section 2.2.
The computation of these two curves is elementary, and described in appendix G.1.

• For completeness, we compare all these curves to an annealed bound (in dashed
pink) that can be computed analytically, using a calculation presented in appendix
F. In particular, the PGY expansion at order 3 clearly violates the annealed bound
for small enough Δ and large enough α, indicating that it does not correspond to
a physical free entropy and that the PGY expansion would have to be carried to
further orders to correct this behavior.

Denoising of other rotationally-invariant matrices—In figure 4, we illustrate
the influence of the structure of the signal on the performance of the optimal denoiser.
We show how the structure of a symmetric orthogonal matrix (i.e. S� = ODOᵀ, with a

uniformly-sampled orthogonal matrix O, and Dμ
i.i.d.
= ± 1 with probability 1/2), or of a

Wishart matrix with different values of α, allows to significantly improve the denoising
performance over simple Wigner (scalar) denoising.
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Figure 5. Denoising MMSE for Wishart denoising at large α, and different values
of Δ. We show both analytical predictions using equation (58) (dashed lines) and
numerical applications of the RIE of equation (69) (using m = 20 000 and averag-
ing over three instances, error bars are invisible, dashed lines are covered by the
corresponding data points). Numerical errors arise in the MMSE calculation, due
to the difficulty of estimating the derivative in equation (69) for very large values
of the noise. We compare it with the performance of vanilla PCA, which is optimal
in the low-rank limit n = O(1).

Large-α behavior and the BBP transition—We conclude this presentation of
numerical results by figure 5, in which we investigate the denoising MMSE in the large
α (or undercomplete) regime. While this regime is not reachable by our PGY expansion,
we can evaluate the MMSE with the exact formula of equation (58) (dashed lines), or
by sampling large matrices and using the optimal RIE of equation (69). The agreement
between these two methods is again extremely good, showing in particular that the
RIE calculation is not affected strongly by finite-size effects (e.g. at α = 200, we have
n = m/α = 100, so that finite-size effects could have been present).

Interestingly, we can compare the performance in this regime to the low-rank limit
in which n = O(1). In the extreme case in which n = 1 (so that X = x is a vector), it is
known that the optimal procedure is PCA, which estimates x as the leading eigenvector
of Y/

√
α = xxᵀ/

√
m+

√
Δ/αZ. Its performance has been described very precisely, and

exhibits a transition, known as ‘BBP’ [BBAP05] at Δ/α = 1. More precisely, if v is the
leading eigenvector of Y, we have

lim
m→∞

1

m
|vᵀx|2 =

⎧⎨
⎩
0 ifΔ � α

1− Δ

α
ifΔ � α.

(82)

We show the corresponding denoising MMSE as a pink line in figure 5. It is clear that
the optimal denoiser approaches the PCA performance at large α. We note that in the
extensive-rank regime we observe no phase transition in the MMSE. We will further
comment on the description of the transition between the low-rank and extensive-rank
regimes in the coming conclusion.
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4. Conclusion and openings

In this paper, we have shown how the PGY formalism of high-temperature expan-
sions at fixed order parameters can be applied to the problems of extensive-
rank matrix factorization and denoising. The previous approaches to this problem
[SK13, KMZ13, KKM+16, PSC14a, PSC14b, ZZY21] turn out to be relying on a hid-
den assumption that amounts to truncating the PGY series at second order. Both in
the matrix factorization and in the denoising problem, we have shown, by an explicit
computation of the third order contribution, that the higher-order corrections are not
negligible.

The denoising of rotationally-invariant matrices provides a good test of our approach.
On the one hand it can be solved analytically using matrix integration techniques. On the
other hand there exists an optimal denoising algorithm that relies only on the observed
matrix, and denoises each eigenvalue. We have shown that these two approaches give
the same mean squared error, and that our PGY-based expansion, truncated at order
three, also agrees with these other approaches for denoising Wishart matrices in an
overcomplete (or small-α) regime close to the Wigner limit.

The interest of the formalism that we have presented here is that it opens the way
to an optimality-matching algorithm for matrix factorization in the extensive rank case
accounting for general prior and output channel. Indeed, the optimization of the PGY
free entropy leads to TAP equations which, properly iterated in time, develop into AMP-
type algorithms. An important step in that direction would of course be to work out
the PGY expansion to all orders, and re-sum it. On the other hand, as a first step, it
will be interesting to find out if the TAP equations that we have derived at order 3 can
be transformed into a useful algorithm for overcomplete matrix factorization.

It would also be interesting to perform a perturbative calculation of the free entropy
and MMSE in the opposite regime of large α, to analytically understand the limit
behavior observed in figure 5. Such a calculation is related to an important open problem
in random matrix theory, that is a sharp description of the transition between the low-
rank and extensive-rank spherical HCIZ integrals. Solving this later problem would
help to describe the transition between low-rank and extensive-rank results in the PGY
expansion.

Another interesting open problem is to relate the PGY-expansion to other
approaches. The recent conjecture proposed in [BM21] for solving matrix factoriza-
tion with replicas should be compared to the present approach. In general it is well
known that the two main approaches to disordered systems, the replica approach and
the cavity approach (that derives TAP equations) have the same physical content, the
second one having the advantage that it can be transformed into an algorithm. The
challenge that we face here is the extension of these two methods to the case where
the order parameter is a large matrix, and the contact that can be made between the
two. In particular, in both of these approaches, we have found that the effective order
parameter turns out to be a distribution of eigenvalues. Understanding the generality
of this statement is an important open challenge. On the other hand, it has been shown
in [MFC+19] in finite-rank problems that these expansions are equivalent to other tech-
niques, e.g. the EC or adaTAP approaches. This equivalence does not seem to easily
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transfer to the extensive-rank case: understanding how to apply these approaches here
is another interesting direction of research.
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Appendix A. Some definitions of probability theory

We introduce here a few notations and quantities particularly useful to study the
asymptotic spectra of random matrices. For more complete mathematical or physical
introductions to random matrix theory, the reader can refer to [Meh04, AGZ10, LNV18].
Let us consider a symmetric random matrix M ∈ Rn×n, with eigenvalues (λ1, . . . ,λn).
In general, we will consider random matrices that admit an asymptotic spectral density,
here denoted μ(x), such that

μ(x) = lim
n→∞

1

n

n∑
i=1

δ(x− λi). (83)

Here the limit is to be understood as the weak limit of probability measures. We
denote λmax ≡ max supp(μ) and λmin ≡ min supp(μ), assuming that the support of μ is
bounded from above and below. Letting C+ ≡ {z ∈ C s.t. Im(z) > 0}, one can introduce
the Stieltjes transform of μ as:

gμ(z) ≡ E

[
1

X − z

]
=

∫
R

dλμ(λ)
1

λ− z
= lim

n→∞

1

λi − z
, (84)

for all z ∈ C+. Note that then we also have gμ(z) ∈ C+. Moreover, on (λmax, +∞), gμ
induces a strictly increasing C∞ diffeomorphism Sμ :(λmax,∞) ↪→ (−∞, 0), and we denote
its inverse g−1

μ . One can then introduce the R-transform of μ as:

∀z > 0, Rμ(z) ≡ g−1
μ (−z) − 1

z
. (85)

Rμ(z) is a priori defined for −z ∈ gμ[(λmin,λmax)
c] and admits an analytical expansion

around z = 0. We can write this expansion as:

Rμ(z) =
∞∑
k=0

ck+1(μ) z
k. (86)
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The elements of the sequence {ck(μ)}k∈N� are called the free cumulants of μ. In particular,
one can show that c1(μ) = Eμ(X) and c2(μ) = Eμ(X

2)− (EμX)2. The free cumulants
can be recursively computed from the moments of the measure using the so-called free
cumulant equation:

∀k ∈ N
∗, EμX

k =

k∑
m=1

cm(μ)
∑

{ki}i∈[|1,m|]
s.t

∑
i
ki=k

m∏
i=1

EμX
ki−1. (87)

Appendix B. Technicalities of the PGY expansion

B.1. Setting of the PGY expansion

We describe here in more details the formalism we used to derive result 2.1: we follow the
formalism of [GY91] to perform a Plefka expansion [Ple82]. Note that some parts of the
derivation are very similar to what is done in [MFC+19]. We start from equation (14):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nmΦY,n =
∑
μ,i

[
λμimμi +

γμi
2

(
vμi + (mμi)

2
)]

+
∑
μ<ν

[
−ωμνgμν −

bμν
2

(
−rμν + g2μν

)]

+ ln

∫
PH(dH)PX(dX) e−Seff[X,H],

Seff[X,H] ≡
∑
μ,i

[
λμiXμi +

γμi
2
X2

μi

]
+

∑
μ<ν

[
ωμν(iH)μν −

bμν
2
(iH)2μν

]
+Heff[X,H],

Heff[X,H] ≡ 1√
n

∑
μ<ν

∑
i

(iH)μν Xμi Xνi.

For clarity, we will keep the dependency of all the Lagrange parameters on η explicit
when needed. For a given η and a givenY, one defines the operator U of Georges–Yedidia
[GY91]:

UY,η ≡ Heff − 〈Heff〉Y,η +
∑
μ,i

∂ηλμi(Xμi −mμi) +
1

2

∑
μ,i

∂ηγμi[X
2
μi − vμi − (mμi)

2]

+
∑
μ<ν

∂ηωμν(iHμν + gμν)−
1

2

∑
μ<ν

∂ηbμν[(iH)2μν + rμν − g2μν]. (88)

B.2. First orders of perturbation

Order 1 in η—At order 1, we have directly:(
∂ΦY,n

∂η

)
η=0

=
1

nm
〈Heff〉0 =

1

n3/2m

∑
i

∑
μ<ν

gμνmμimνi. (89)
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We can then use ‘Maxwell-like’ relations [GY91] to compute the derivatives of the
Lagrange parameters at η = 0. For instance, for λμi and γμi they can be read from
equation (14):

so that we can compute:

⎧⎪⎪⎨
⎪⎪⎩
∂ηγμi(η = 0) = 2nm

∂

∂vμi

[
∂ΦY,n

∂η
(η = 0)

]
= 0,

∂ηλμi(η = 0) = nm
∂

∂mμi

[
∂ΦY,n

∂η
(η = 0)

]
=

1√
n

∑
ν

gμνmνi.
(91)

In a similar fashion, we reach

⎧⎪⎪⎨
⎪⎪⎩
∂ηbμν(η = 0) = 2nm

∂

∂rμν

[
∂ΦY,n

∂η
(η = 0)

]
= 0,

∂ηωμν(η = 0) = −nm
∂

∂gμν

[
∂ΦY,n

∂η
(η = 0)

]
= − 1√

n

∑
i

mμimνi.
(92)

Using equations (91) and (92), we can compute UY,0 from equation (88). For
clarity of the notation, we will denote by lowercase letters centered variables ,
i.e. xμi ≡ Xμi −mμi and (ih)μν ≡ (iH)μν + gμν. We obtain after a straightforward
calculation:

UY,η=0 =
1√
n

∑
i

∑
μ<ν

[(ih)μνxμixνi − gμνxμixνi + (ih)μνmμixνi + (ih)μνxμimνi]. (93)

Order 2 in η—Relying on the formulas of [GY91], we have:

1

2

(
∂2ΦY,n

∂η2

)
η=0

=
1

2nm
〈U 2

Y〉0. (94)

Recall that at η = 0, all the variables {hμν, xρi} are independent and have zero mean.
Using this fact alongside with the expression of UY,η=0 given in equation (93) yields:
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1

2

(
∂2ΦY,n

∂η2

)
η=0

=
1

2n2m

∑
i,j

∑
μ<ν
μ′<ν ′

〈[(ih)μνxμixνi − gμνxμixνi + (ih)μνmμixνi

+(ih)μνxμimνi]× 〈(ih)μ′ν ′xμ′jxν ′j − gμ′ν ′xμ′jxν ′j

+ (ih)μ′ν ′mμ′jxν ′j + (ih)μ′ν ′xμ′jmν ′j ]〉0,

=
1

2n2m

∑
i

∑
μ<ν

[
−rμνvμivνi + g2μνvμivνi

− rμνm
2
μivνi − rμνvμim

2
νi

]
. (95)

Order 3 in η—At order 3, the formula of appendix A of [GY91] yields:

1

3!

(
∂3ΦY,n

∂η3

)
η=0

= − 1

6nm
〈U 3

Y〉0. (96)

In order to compute the right-hand side of equation (96), we decompose the operator U
of equation (93) as UY = Uc + Ug + Um, with⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Uc ≡ 1√
n

∑
i

∑
μ<ν

(ih)μνxμixνi,

Ug ≡ − 1√
n

∑
i

∑
μ<ν

gμνxμixνi,

Um ≡ 1√
n

∑
i

∑
μ<ν

[(ih)μνmμixνi + (ih)μνxμimνi].

(97)

Therefore, we obtain (dropping the 0 subscript in the averages to lighten the notations):

〈U 3
Y〉0 = 〈U 3

c 〉+ 〈U 3
g 〉+ 〈U 3

m〉+ 3〈U 2
c Ug〉+ 3〈U 2

c Um〉+ 3〈U 2
g Uc〉+ 3〈U 2

g Um〉 (98)

+ 3〈U 2
mUc〉+ 3〈U 2

mUg〉+ 6〈UcUgUm〉.

In equation (98), the terms 〈U 2
g Uc〉 and 〈U 2

g Um〉 are trivially zero since 〈h〉 = 0. Let

us now argue that, in equation (98), all the terms except 〈U 3
g 〉 are negligible in the

thermodynamic limit. We can for instance consider 〈U 3
c 〉, which can easily be written

from equation (97) as (using again 〈h〉 = 0):

〈U 3
c 〉 =

1

n3/2

∑
μ<ν

〈(ih)3μν〉
∑
i,j,k

〈xμixνixμjxνjxμkxνk〉, (99)

=
1

n3/2

∑
μ<ν

〈(ih)3μν〉
n∑

i=1

〈x3
μi〉〈x3

νi〉. (100)

In particular, this directly implies that 〈U 3
c 〉 = O(n3/2), and therefore that it will not

contribute to the asymptotic free energy, which is in the scale Θ(n2). In the same way,
one can show:
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All in all, equations (96) and (101) imply that:

1

3!

(
∂3ΦY,n

∂η3

)
η=0

= − 1

6nm
〈U 3

g 〉+On(1). (102)

This remaining term can be computed again by expanding the sums and using the
independence of all variables {hμν, xρi} at η = 0. Elementary combinatorics allow to
count the number of terms appearing in this expansion, and we reach:

〈U 3
g 〉 = − 1

8n3/2

{
3∏

a=1

∑
μa �=νa

gμaνa

} ∑
i1,i2,i3

〈
3∏

a=1

xμaiaxνaia

〉
,

= − 1

n3/2

{
3∏

a=1

∑
μa �=νa

gμaνa

}
δμ1ν2δμ2ν3δμ3ν1

n∑
i=1

3∏
a=1

vμai −
1

2n3/2

∑
μ �=ν

g3μν

n∑
i=1

〈x3
μi〉〈x3

νi〉. (103)

Note that the factor 8 in equation (103) disappeared since all possible pairings of indices
{μa, νa}3a=1 are equivalent, and one can easily count that there are eight such pairings.
The second term in equation (103) is again O(n3/2), and we reach:

1

3!

(
∂3ΦY,n

∂η3

)
η=0

=
1

6n5/2m

∑
i

∑
μ1,μ2,μ3

pairwise distinct

gμ1μ2
gμ2μ3

gμ3μ1

3∏
a=1

vμai +On(1). (104)

Note that the constraint of having pairwise distinct indices is a simple consequence of
the constraint μa �= νa in equation (103), associated with the form of the pairing.

Remark on higher-order cumulants—An important remark that one can
already conjecture by generalizing from equations (95) and (104) is that at any given
order of perturbation in η, only the first two moments of the fields H,X will appear at
dominant order . This conjecture arises as a consequence of a simple scaling argument:
the higher-order moments constraint too much indices on which we can sum, and thus
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the terms involving them can be neglected. This was already formulated for similar
Plefka expansions in symmetric and bipartite finite-rank models in [MFC+19].

B.3. PGY expansion in the non-symmetric model FX

In this section, we detail the derivation of result 2.2 from the PGY expansion formalism.
As many things are similar to the derivation of result 2.1, we will shorten some arguments
that can be easily transposed from the symmetric setting.

B.3.1. The method. As in the symmetric case, we start from the original expression
of the TAP free entropy, very similar to equation (14):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n(m+ p)ΦY,n(η) =
∑
μ,i

[
λF
μim

F
μi +

γF
μi

2
(vFμi + (mF

μi)
2)

]
+

∑
i,l

[
λX
il m

X
il +

γX
il

2
(vXil + (mX

il )
2)

]
,

+
∑
μ,l

[
−ωμlgμl −

bμl
2
(−rμl + g2μl)

]
+ ln

∫
PH(dH)PF (dF)PX(dX) e−Seff,η [F,X,H],

Seff,η[F,X,H] ≡
∑
μ,i

[
λF
μiFμi +

γF
μi

2
F 2
μi

]
+

∑
i,l

[
λX
il Xil +

γX
il

2
X2

il

]

+
∑
μ,l

[
ωμl(iH)μl −

bμl
2
(iH)2μl

]
+

η√
n

∑
μ,i,l

(iH)μl Fμi Xil,

Heff[F,X,H] ≡ 1√
n

∑
μ,i,l

(iH)μlFμiXil.

(105)

The operator U of Georges–Yedidia is defined similarly as the one of equation (88):

UY,η ≡ Heff − 〈Heff〉Y,η +
∑
μ,i

∂ηλ
F
μi(Fμi −mF

μi) +
1

2

∑
μ,i

∂ηγ
F
μi[F

2
μi − vFμi − (mF

μi)
2]

+
∑
i,l

∂ηλ
X
il (Xil −mX

il ) +
1

2

∑
i,l

∂ηγ
X
il [X

2
il − vXil − (mX

il )
2]

+
∑
μ,l

∂ηωμl(iHμl + gμl)−
1

2

∑
μ,l

∂ηbμl[(iH)2μl + rμl − g2μl]. (106)

Order 1 in η—At order 1, we have directly:

(
∂ΦY,n

∂η

)
η=0

= − 1

n(m+ p)
〈Heff〉0 =

1

n3/2(m+ p)

∑
μ,i,l

gμlm
F
μim

X
il . (107)
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We can then use the Maxwell relations we already described in equation (90), to
compute, e.g.⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂ηγ

F
μi(η = 0) = 2n(m+ p)

∂

∂vFμi

[
∂ΦY,n

∂η
(η = 0)

]
= 0,

∂ηλ
F
μi(η = 0) = n(m+ p)

∂

∂mF
μi

[
∂ΦY,n

∂η
(η = 0)

]
=

1√
n

∑
l

gμlm
X
il .

(108)

Applying this technique to all Lagrange multipliers, we compute UY,0 from
equation (106). Again we will denote by lowercase letters centered variables , e.g.
xμi ≡ Xμi −mX

μi. We obtain:

UY,0 =
1√
n

∑
μ,i,l

[(ih)μlfμixil − gμlfμixil + (ih)μlm
F
μixil + (ih)μlfμim

X
il ]. (109)

Order 2 in η—One can then compute, using the formulas of [GY91], and very similarly
to model XXᵀ:

1

2

(
∂2ΦY,n

∂η2

)
η=0

=
1

2n(m+ p)
〈U 2〉0,

=
1

2n2(m+ p)

∑
μ,i,l

[
−rμlv

F
μiv

X
il + g2μlv

F
μiv

X
il − rμl(m

F
μi)

2vXil − rμlv
F
μi(m

X
il )

2
]
.

(110)

Orders 3 and 4 are more tedious to compute, and we detail them in separate paragraphs.

B.3.2. Order 3 of the expansion. In order to compute this order of the PGY expansion,
we use again the formulas of appendix A of [GY91]:

1

3!

(
∂3ΦY,n

∂η3

)
η=0

= − 1

6n(m+ p)
〈U 3〉0. (111)

We will need to introduce the (centered) third moments of the distributions of
the independent variables {iHμl,Fμi,Xil} at η = 0. These moments are denoted

{c(3,H)
μl , c

(3,F )
μi , c

(3,X)
il }. We then decompose the operator of equation (109) as follows:

UY,0 =
1√
n

∑
μ,i,l

⎡
⎢⎣(ih)μlfμixil︸ ︷︷ ︸

A

+ (−gμlfμixil)︸ ︷︷ ︸
BH

+ (ih)μlm
F
μixil︸ ︷︷ ︸

BF

+ (ih)μlfμim
X
il︸ ︷︷ ︸

BX

⎤
⎥⎦. (112)

Since all the variables in the equation above are centered , we get easily:

〈A3 +B3
H +B3

F +B3
X〉0 =

1

n3/2

∑
μ,i,l

[
c
(3,H)
μl c

(3,F )
μi c

(3,X)
il − g3μlc

(3,F )
μi c

(3,X)
il (113)

+ c
(3,H)
μl (mF

μi)
3c

(3,X)
il + c

(3,H)
μl c

(3,F )
μi (mX

il )
3
]
.
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Using again the centering of the variables and the decomposition above, we get that
the only non-zero terms of the type 〈X2Y 〉0 with X , Y ∈ {A,BH ,BF ,BX} yields the
contribution:

3〈A2(BH +BF +BX)〉0 (114)

=
3

n3/2

∑
μ,i,l

[gμlrμlc
(3,F )
μi c

(3,X)
il + c

(3,H)
μl mF

μiv
F
μic

(3,X)
il + c

(3,H)
μl c

(3,F )
μi mX

il v
X
il ].

Finally, the last contribution to 〈U 3〉0 comes from the term:

6〈ABHBF + ABHBX + ABFBX +BHBFBX〉0 (115)

=
6

n3/2

∑
μ,i,l

[gμlrμlm
F
μiv

F
μic

(3,X)
il + gμlrμlc

(3,F )
μi mX

il v
X
il + c

(3,H)
μl mF

μiv
F
μim

X
il v

X
il

+ gμlrμlm
F
μiv

F
μim

X
il v

X
il

]
.

Summing the contributions from equations (113)–(115) yields 〈U 3〉0, which then yields:

1

3!

(
∂3ΦY,n

∂η3

)
η=0

=
−1

6n5/2(m+ p)

∑
μ,i,l

[c
(3,H)
μl c

(3,F )
μi c

(3,X)
il − g3μlc

(3,F )
μi c

(3,X)
il

+ c
(3,H)
μl c

(3,F )
μi (mX

il )
2 + c

(3,H)
μl (mF

μi)
3c

(3,X)
il + 3gμlrμlc

(3,F )
μi c

(3,X)
il

+ 3c
(3,H)
μl mF

μiv
F
μic

(3,X)
il + 3c

(3,H)
μl c

(3,X)
μi mX

il v
X
il

+ 6gμlrμlm
F
μiv

F
μic

(3,X)
il + 6gμlrμlc

(3,F )
μi mX

il v
X
il

+ 6c
(3,H)
μl mF

μiv
F
μim

X
il v

X
il + 6gμlrμlm

F
μiv

F
μim

X
il v

X
il

]
. (116)

From equation (116), since all involved terms inside the sum are of order ON (1), it is
clear that the third order is subdominant:

1

3!

(
∂3ΦY,n

∂η3

)
η=0

= On(1). (117)

Higher-order moments—An important remark that one can already conjecture by
generalizing from equations (116) and (117) is that at any given order of perturbation
in η, only the first two moments of the fields H,F,X will appear at dominant order .
This conjecture arises as a consequence of a simple scaling argument: the higher-order
moments constraint too much indices on which we can sum, and thus the terms involving
them can be neglected. Note that we noticed already a completely similar behavior in
the symmetric case in appendix B.2.

B.3.3. Order 4 of the expansion. At order 4, one can again use appendix A of [GY91].
The general (and quite heavy) formula is:
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n(m+ p)

(
∂4ΦY,n

∂η4

)
η=0

= 〈U 4〉0 − 3〈U 2〉20 − 3
∑
μ,i

[
∂2
ηλ

F
μi〈U 2fμi〉0 +

∂2
ηγ

F
μi

2
〈U 2(f2μi + 2mF

μifμi − vFμi)〉0
]

− 3
∑
i,l

[
∂2
ηλ

X
il 〈U 2xil〉0 +

∂2
ηγ

X
il

2
〈U 2(x2

il + 2mX
il xil − vXil )〉0

]

− 3
∑
μ,l

[
∂2
ηωμl〈U 2(ih)μl〉0 +

∂2
ηbμl
2

〈U 2((ih)2μl − 2gμl(ih)μl + rμl)〉0
]
. (118)

This section describes the calculation of the order 4 perturbation of the free entropy for
model FX. It is particularly tedious and lengthy, but the techniques involved are not
conceptually complicated. For simplicity, we will not consider terms involving cumulants
of order 3 and 4 of the variables ihμl, fμi and xil. One can check that the terms involving
these moments cancel out, and in the end only yield sub-dominant contributions in the
thermodynamic limit. From equation (110) and the Maxwell relations of equation (90),
we obtain the derivatives of the Lagrange multipliers at leading order and at η = 0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2
η ωμl =

2

n
gμl

∑
i

[(mF
μi)

2vXil + vFμi(m
X
il )

2],

∂2
η bμl = −2

n

∑
i

[vFμiv
X
il + (mF

μi)
2vXil + vFμi(m

X
il )

2],

∂2
η λ

F
μi =

2

n
mF

μi

∑
l

[rμl(m
X
il )

2 − g2μlv
X
il ],

∂2
η γ

F
μi = −2

n

∑
l

[rμlv
X
il + rμl(m

X
il )

2 − g2μlv
X
il ],

∂2
η λ

X
il =

2

n
mX

il

∑
μ

[rμl(m
F
μi)

2 − g2μlv
F
μi],

∂2
η γ

X
il = −2

n

∑
μ

[rμlv
F
μi + rμl(m

F
μi)

2 − g2μlv
F
μi].

(119)

Discarding as we mentioned the cumulants of order greater than 3, we can compute:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
〈U 2xil〉0 = − 2

n
mX

il v
X
il

∑
μ

rμlv
F
μi,

〈U 2(x2
il + 2mX

il xil − vXil )〉0 =
2(vXil )

2

n

∑
μ

[−rμlv
F
μi + g2μlv

F
μi − rμl(m

F
μi)

2]− 4

n
vXil (m

X
il )

2
∑
μ

rμlv
F
μi.

From this and equation (119), one can obtain the term involving the derivatives of the
Lagrange parameters λX and γX in equation (118):
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− 3
∑
i,l

[
∂2
ηλ

X
il 〈U 2xil〉0 +

∂2
ηγ

X
il

2
〈U 2(x2

il + 2mX
il xil − vXil )〉0

]
(120)

= −12

n2

∑
i,l

vXil (m
X
il )

2

[∑
μ

rμlv
F
μi

]2

− 6

n2

∑
i,l

(vXil )
2

[∑
μ

[rμlv
F
μi + rμl(m

F
μi)

2 − g2μlv
F
μi]

]2

.

Doing similarly for (ih)μl and fμi, we obtain all the terms involving derivatives of the
Lagrange multipliers in equation (118):

− 3
∑
μ,i

[
∂2
ηλ

F
μi〈U 2fμi〉0 +

∂2
ηγ

F
μi

2
〈U 2(f2μi + 2mF

μifμi − vFμi)〉0
]

(121)

= −12

n2

∑
μ,i

vFμi(m
F
μi)

2

[∑
l

rμlv
X
il

]2

− 6

n2

∑
μ,i

(vFμi)
2

[∑
l

[rμlv
X
il + rμl(m

X
il )

2 − g2μlv
X
il ]

]2

,

− 3
∑
μ,l

[
∂2
ηωμl〈U 2(ih)μl〉0 +

∂2
ηbμl
2

〈U 2((ih)2μl − 2gμl(ih)μl + rμl)〉0
]

(122)

=
12

n2

∑
μ,l

rμlg
2
μl

[∑
i

vFμiv
X
il

]2

− 6

n2

∑
μ,l

r2μl

[∑
i

[vFμiv
X
il + (mF

μi)
2vXil + vFμi(m

X
il )

2]

]2

.

The calculation at order 2 already gave (cf equation (110)):

−3〈U 2〉20 = − 3

n2

∑
μ,i,l
μ′i′l′

[−rμlv
F
μiv

X
il + g2μlv

F
μiv

X
il − rμl(m

F
μi)

2vXil − rμlv
F
μi(m

X
il )

2] (123)

× [−rμ′l′v
F
μ′i′v

X
i′l′ + g2μ′l′v

F
μ′i′v

X
i′l′ − rμ′l′(m

F
μ′i′)

2vXi′l′ − rμ′l′v
F
μ′i′(m

X
i′l′)

2].
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We finally have to compute 〈U 4〉0, whose calculation is very tedious, but not conceptually
difficult. We again make use of the decomposition of equation (112). A first simplification
arises when using that the variables are centered and that we can neglect their moments
of odd order. This implies:

〈U 4〉0 = 〈A4〉0︸ ︷︷ ︸
I1

+ 6〈A2(B2
H +B2

F +B2
X)〉0︸ ︷︷ ︸

I2

+ 〈(BH +BF +BX)
4〉0︸ ︷︷ ︸

I3

+On(1).

(124)

We now compute the three terms I1, I2, I3 independently. An explicit calculation gives

I1 =
6

n2

∑
μ,i,l

r2μl(v
F
μi)

2(vXil )
2 +

3

n2

∑
μ,i,l
μ′i′l′

rμlrμ′l′v
F
μiv

F
μ′i′v

X
il v

X
i′l′ (125)

+
6

n2

∑
μ,i,l

rμlv
F
μiv

X
il

⎛
⎝∑

μ′

rμ′lv
F
μ′iv

X
il +

∑
i′

rμlv
F
μi′v

X
i′l +

∑
l′

rμl′v
F
μiv

X
il′

⎞
⎠ +On(1).

Importantly, the indices are not supposed to be pairwise distinct unless explicitly stated
so. The terms I2, I3 can be explicitly computed as well, and are very lengthy:

I2 =
6

n2

∑
μ,i,l
μ′i′l′

rμlv
F
μiv

X
il [−g2μ′l′v

F
μ′i′v

X
i′l′ + rμ′l′v

F
μ′i′(m

X
i′l′)

2 + rμ′l′(m
F
μ′i′)

2vXil ] (126)

+
12

n2

∑
μ,i,l

rμlv
F
μiv

X
il [−g2μlv

F
μiv

X
il + rμlv

F
μi(m

X
il )

2 + rμl(m
F
μi)

2vXil ]

+
12

n2

∑
μ,i,l

∑
μ′

rμlv
F
μiv

X
il [−g2μ′lv

F
μ′iv

X
il + rμ′lv

F
μ′i(m

X
il )

2 + rμ′l(m
F
μ′i)

2vXil ]

+
12

n2

∑
μ,i,l

∑
i′

rμlv
F
μiv

X
il [−g2μlv

F
μi′v

X
i′l + rμlv

F
μi′(m

X
i′l)

2 + rμl(m
F
μi′)

2vXi′l]

+
12

n2

∑
μ,i,l

∑
l′

rμlv
F
μiv

X
il [−g2μl′v

F
μiv

X
il′ + rμl′v

F
μi(m

X
il′)

2 + rμl′(m
F
μi)

2vXil′ ] +On(1),
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I3 =
3

n2

∑
μ,i,l
μ′i′l′

[g2μlg
2
μ′l′v

F
μiv

F
μ′i′v

X
il v

X
i′l′ + rμlrμ′l′(m

F
μi)

2(mF
μ′i′)

2vXil v
X
i′l′ + rμlrμ′l′v

F
μiv

F
μ′i′(m

X
il )

2(mX
i′l′)

2]

− 6

n2

∑
μ,i,l
μ′i′l′

[−rμlrμ′l′(m
F
μ′i′)

2vFμi(m
X
il )

2vXi′l′ + g2μlrμ′l′(m
F
μ′i′)

2vFμiv
X
il v

X
i′l′ + g2μlrμ′l′v

F
μ′i′v

F
μi(m

X
i′l′)

2vXil ]

− 12

n2

∑
μ,i,l

⎡
⎣∑

μ′

g2μlrμ′l(m
F
μi)

2vFμi(v
X
il )

2 −
∑
i′

r2μl(m
F
μi′)

2vFμi(m
X
il )

2vXi′l +
∑
l′

g2μlrμl′(v
F
μi)

2(mX
il′)

2vXil

⎤
⎦

+
6

n2

∑
μ,i,l

⎡
⎣∑

μ′,i′

mF
μim

F
μ′im

F
μ′i′m

F
μi′rμlrμ′lv

X
il v

X
i′l +

∑
i′,l′

mX
il m

X
i′lm

X
i′l′m

X
il′v

F
μiv

F
μi′rμlrμl′

⎤
⎦, (127)

+
6

n2

∑
μ,i,l

⎡
⎣∑

μ′,l′

gμlgμ′lgμ′l′gμl′v
F
μiv

F
μ′iv

X
il v

X
il′

⎤
⎦+On(1).

Many simplifications occur in the terms of equations (120) to (123) and (125) to
(127). Two type of terms are for instance negligible:

• Terms of the type n−4
∑

μil Aμil, with Aμil typically of order 1. These terms are
negligible by a simple scaling argument.

• Terms involving mF or mX . For instance, the term:∑
μ

∑
i �=i′

∑
l �=l′

mX
il m

X
il′m

X
i′l′m

X
i′lrμlrμl′v

F
μiv

F
μi′ .

By hypothesis H.1, the variables mF ,mX behave like uncorrelated variables, so that
all these terms will be negligible. A more detailed explanation of how uncorrelated
variables leads to all these terms being negligible can be found, e.g. in [MFC+19].
This is precisely the sort of terms that are not negligible when involving gμl, because
of the structure described in H.2.

We can now sum all equations (120) to (123) and (125) to (127), simplifying
the terms that are negligible by the arguments above, and checking that almost all
non-negligible terms are canceling each other. This is a lengthy but straightforwards
calculation, and we reach the result:

1

4!

(
∂4ΦY,n

∂η4

)
η=0

=
1

4n3(m+ p)

∑
i

∑
μ1 �=μ2

∑
l1 �=l2

gμ1l1gμ1l2gμ2l2gμ2l1v
F
μ1i
vFμ2i

vXil1v
X
il2

+On(1). (128)

This ends the derivation of result 2.2.
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Appendix C. On the solutions to Matytsin’s equations

C.1. Derivation of result 3.1

Note first that this result is shown in the very particular case in which S is a Wigner
matrix in [BBMP14]. Let us recall the complete form of Burgers’ equation:{

∂tρ(x, t) + ∂x[ρ(x, t)v(x, t)] = 0,

∂tv(x, t) + v(x, t)∂xv(x, t) = π2ρ(x, t)∂xρ(x, t).
(129)

Recall that gY(t)(z) is the Stieltjes transform of the asymptotic eigenvalue distribution

of Y(t)/
√
m, and similarly gS is the Stieltjes transform of ρS. It is known by simple free

probability that for every z such that Im[z] > 0, we have that Im[gY(t)(z)] > 0 and that
gY(t) satisfies the free convolution identity:

gY(t)(z) = gS[z + tgY(t)(z)]. (130)

Note that defining ρ and v by equation (47), the boundary conditions of equation (41) are
directly satisfied by the Stieltjes–Perron theorem. In the following, we denote by (ρε, vε)
the functions defined by equation (47) without taking the ε ↓ 0 limit. By equation (130),
we have for any x, with fε(x, t) ≡ −gY(t)(x+ iε) = −gY(t)(x− iε) = vε(x, t) + iπρε(x, t):

∂tfε(x, t) = −{−fε(x, t)− t∂tfε(x, t)}g′S[x− iε− tfε(x, t)]},
∂xfε(x, t) = −{1− t∂xfε(x, t)}g′S[x− iε− tfε(x, t)]}.

This implies

∂tfε + fε∂xfε = −{−fε(x, t)− t∂tfε(x, t) + fε(x, t)− tfε(x, t)∂xfε(x, t)}
× g′S[x− iε− tfε(x, t)],

= t{∂tfε(x, t) + fε(x, t)∂xfε(x, t)}g′S[x− iε− tfε(x, t)].

This implies, that for any ε > 0, fε(x, t) satisfies the complex Burgers’ equation for all
t ∈ (0,Δ). Moreover, as ε ↓ 0, this solution satisfies the proper boundary conditions: this
ends our justification of result 3.1.

Remark: the derivation of [Sch18]—In the appendix of his PhD thesis [Sch18],
Schmidt states a result very similar to result 3.1. However, there is an essential issue
in his justification: the argument is based on the use of the methods of characteristics,
which is in general wrong for complex PDEs. Fortunately, the solution found remains
correct, as we show above.
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C.2. Derivation of result 3.2

In this part, we ‘shoot birds with cannons’ (in the words of [Sch18]), in order to derive
result 3.2. The idea is quite simple: consider A a symmetric n× n matrix, with a well-
defined asymptotic spectral distribution ρA. We define the Gaussian integral:

In(A) ≡ 1

n2
ln

∫ ∏
i�j

dHij√
2(1 + δij)π/n

exp
{
−n

4
Tr[H2] +

n

2
Tr[HA]

}
. (131)

It is trivial to compute it, and if I(ρA) ≡ limn→∞ In(A), we have directly

I(ρA) = lim
n→∞

1

4n

∑
i,j

A2
ij =

1

4

∫
ρA(dx) x

2. (132)

Now comes the cannon part. Can we find back equation (132) using Matytsin’s formalism
and HCIZ integrals? We start from equation (131), introducing the change of variable
to the eigenvalues of H, exactly as we did in equation (38):

In(A) =
1

n2
ln Cn +

1

n2
ln

∫
Rn

dL
∏
i<j

|li − lj| e
− n

4

∑
i
l2i
∫
O(n)

DOe
n
2 Tr[OLOᵀA],

Cn =
πn(n+1)/4

2n/2Γ(n+ 1)
∏n

i=1Γ(i/2)

1

(2π/n)n(n−1)/4

1

(4π/n)n/2
.

(133)

We worked out the asymptotics of Cn in section 3.1, and we derived:

1

n2
ln Cn =

3

8
+On(1). (134)

We can now use Laplace’s method on L, and we reach:

I(ρA) =
3

8
+ sup

ρL

{
1

2

∫
ρ⊗2
L (dx, dy) ln |x− y| − 1

4

∫
ρL(dx)x

2 +
1

2
I[ρL, ρA]

}
,

(135)

with I[ρL, ρA] = IΔ=1[ρL, ρA] the Matytsin function of equation (40). Using this explicit
form into equation (135) we reach:

I(ρA) =
1

4

∫
ρA(dx) x

2 + sup
ρL

{
1

4

∫
ρ⊗2
L (dx, dy) ln |x− y| (136)

− 1

4

∫
ρ⊗2
A (dx, dy) ln |x− y|

− 1

4

∫ 1

0

dt

∫
dx ρ(x, t)

[
π2

3
ρ(x, t)2 + v(x, t)2

]}
.

Comparing with equation (132) shows the equations presented in result 3.2.
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The last part of result 3.2 can be justified using known results on high-dimensional
HCIZ integrals and their links with large deviations theory [Gui04b, BBMP14]. Indeed,
these works show (see e.g. equations (14) and (15) of [BBMP14]) that the following
function:

S[ρL] ≡ −3

8
+

1

4

∫
ρA(dx)x

2 +
1

4

∫
ρL(dx) x

2 − 1

2

∫
ρ⊗2
L (dx, dy) ln |x− y|

− 1

2
I[ρL, ρA] (137)

is the rate function for the large deviations of the Dyson Brownian motion starting from
ρA, at time t = 1. In particular, the minimum of this rate function is reached in the
expected eigenvalue density of the Dyson Brownian motion, i.e. ρ�L = ρA � σs.c., which
shows the last part of result 3.2.

A long remark: an alternative derivation of result 3.2—Finally, we note that
we can show equation (48) (or equivalently equation (49)) in an alternative manner that
does not appeal to the Gaussian integral calculation we described. To see this, recall that
we know that ρ�L = ρA � σs.c., and we denote ρ(x, t) the density of the Dyson Brownian
motion (that solves the Euler–Matytsin equations between ρA and ρ�L, cf result 3.1). Let
us define

G(t) ≡
∫

dx dy ρ(x, t)ρ(y, t) ln |x− y|

−
∫ t

0

du

∫
dx ρ(x, u)

[
π2

3
ρ(x, u)2 + v(x, u)2

]
. (138)

We will obtain that G(t) is constant by showing G′(t) = 0. From the definition of G, we
have:

G′(t) = 2

∫
∂tρ(dx, t) ρ(dy, t) ln |x− y| −

∫
dx ρ(x, t)

[
π2

3
ρ(x, t)2 + v(x, t)2

]
.

(139)

Using equation (41) and integration by parts, we have, with P.V. the principal value of
the integral:

G′(t) = 2

∫
dx ρ(x, t)v(x, t)P.V.

{∫
dyρ(y, t)

1

x− y

}

−
∫

dx ρ(x, t)

[
π2

3
ρ(x, t)2 + v(x, t)2

]
. (140)

However, we know by result 3.1 that here we have:

v(x, t) = P.V.

∫
ρ(y, t)

x− y
dy, (141)

Let us emphasize that this equality, shown in result 3.1, is really specific to the fact that
we are considering the Matytsin equations between ρA and ρ�L = ρA � σs.c.. In general,
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there is a remainder term in v(x, t) beyond the Hilbert transform of ρ(x, t) [GZ02,
Gui04a, Men17]. This identity implies that equation (140) becomes:

G′(t) =

∫
dx ρ(x, t)v(x, t)2 − π2

3

∫
dx ρ(x, t)3. (142)

The result then follows by a simple consequence of the theory of Hilbert transformation,
which we give here as a lemma. It can be found in different forms, e.g. in [Tri85] or [GZ02,
Gui04a], and we give a short proof here for completeness.

Lemma C.1 (Properties of Hilbert transformation)

Let ρ be a (well-behaved) probability density, and denote H[ρ] its Hilbert transform:

H[ρ](x) ≡ 1

π
P.V.

∫
ρ(y)

x− y
dy = − 1

π
lim
ε↓0

Re[gρ(x+ iε)]. (143)

Then one has the identity:

1

3

∫
dx ρ(x)3 =

∫
dx ρ(x)H[ρ](x)2. (144)

Applying lemma C.1 with v(t) = πH[ρ(t)] ends our alternative derivation of
result 3.2.

Proof of lemma C.1. This simple fact can be shown in (at least) two ways. The more
pedestrian way is to use the Fourier transform of the Hilbert transformation, which
reads

Ĥ[ρ](u) ≡
∫

e−2iπxuH[ρ](x) dx = −i sign(u)ρ̂(u). (145)

Here we report a more clever proof that uses the general identity:

H[ρ]2 = ρ2 + 2H[ρH[ρ]]. (146)

This can be shown by an argument of complex analysis, based on the following theorem:
let f(z) be an analytic function in the upper-half of the complex plane. Then if a(x) ≡
limε↓0 Re[f(x+ iε)] and b(x) ≡ limε↓0 Im[f(x+ iε)], we have b = H[a]. Using this result
for f 2 (with f = ρ+ iH[ρ]) we reach equation (146). Therefore we have:∫

H[ρ](x)2 ρ(x) dx =

∫
ρ(x)3 dx+ 2

∫
dx ρ(x)H[ρH[ρ]](x). (147)

It is also a common property of the Hilbert transform (for all the mentioned properties
see e.g. [Tao04]) that

∫
gH[f] = −

∫
fH[g]. Applying it in the last equation yields:
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dx ρ(x)H[ρ](x)2 =

∫
ρ(x)3 dx− 2

∫
dx ρ(x)H[ρ](x)2, (148)

which is the sought result. �

Appendix D. Small-α expansion of the optimal RIE

Here we study the behavior of the optimal rotationally-invariant denoiser of [BABP16]
in the overcomplete limit of small α. Starting from the optimal denoiser found in
equation (69), we need to understand the behavior of the Stieltjes transform of Y/

√
m,

with Y the shifted observation matrix of equation (71).
At leading order as α→ 0, by the random matrix equivalent of the central limit

theorem (and somewhat informally), Y/
√
m should behave like W/

√
m+

√
ΔZ/

√
m,

with W and Z independent Gaussian Wigner matrices. The Stieltjes transform of a
Wigner matrix is well-known, and we get for any y eigenvalue of Y/

√
m that:

vY(y) =
y

2(Δ+ 1)
+Oα(1). (149)

This yields:

ξ̂μ =
1

Δ + 1
yμ +Oα(1), (150)

which corresponds to the limit of scalar denoising [BABP16]. Let us now go to higher
order in α. We need to consider the corrections of the spectrum of Y at first non-trivial
order in α. This can be done by recalling the R-transform of the shifted Wishart matrix
R/

√
m = XXᵀ/

√
nm− α−1/2Im:

RR(s) =
1√

α(1− s
√
α)

− 1√
α

= s+
√
αs2 +O(α). (151)

Therefore by free addition the R-transform of Y/
√
m is:

RY(s) = s(1 + Δ) +
√
αs2 +O(α) = g−1

Y (−s)− 1

s
.

Letting s = −gY(z), we reach the expansion:

gY(z) =

Wigner︷ ︸︸ ︷√
−4Δ− 4 + z2 − z

2(Δ+ 1

−

⎡
⎣ (z −

√
z2 − 4(Δ + 1))4

8(Δ + 1)3
(
4(Δ + 1) + z(

√
z2 − 4(Δ+ 1)− z)

)
⎤
⎦√α+O(α).

(152)
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For |y| � 2
√
Δ+ 1, this gives the expansion of vY(y) as:

vY(y) =
y

2(Δ+ 1)
+

(Δ + 1− y2)

2(Δ + 1)3
√
α+O(α). (153)

In the end, we reach the first non-trivial order:

ξ̂μ =
1

Δ+ 1
yμ −

Δ

(Δ+ 1)2

[
1− y2μ

Δ+ 1

]√
α+O(α). (154)

Appendix E. PGY expansion for denoising

As for the factorization problem (cf section 2), we replace Heff by ηHeff , and we do the
PGY expansion in η, and then take η = 1. The order 1 and the U operator of [GY91]
at η = 0 are very simple:

⎧⎪⎪⎨
⎪⎪⎩
nm

∂Φ

∂η
= −〈Heff〉 = 0,

Uη=0 =
1√
n

∑
μ<ν

∑
i

(iHμν)xμixνi =
1

2
√
n

∑
μ �=ν

∑
i

(iHμν)xμixνi.
(155)

Recall that here we consider the denoising problem, so xμi
i.i.d.∼ PX , with EPX

[x] = 0 and
EPX

[x2] = 1. For generality, we will not assume that P out is necessarily Gaussian so that
we can consider any noise applied component-wise, and not only additive Gaussian noise.
Order 2—From the Georges–Yedidia formalism, we can obtain the order 2:

1

2

∂2Φ

∂η2
=

1

2nm
〈U 2〉,

=
1

8n2m

∑
μ1 �=ν1

∑
μ2 �=ν2

∑
i,j

〈(iH)μ1ν1(iH)μ2ν2〉〈xμ1ixν1ixμ2jxν2j〉,

=
1

8n2m

∑
μ1 �=ν1
μ2 �=ν2

∑
i,j

(gμ1ν1gμ2ν2 − rμ1ν1 [δμ1μ2
δν1ν2 + δμ1ν2δν1μ2

])

× (δμ1μ2
δν1ν2δij + δμ1ν2δν1μ2

δij), =
1

4nm

∑
μ �=ν

(g2μν − rμν) =
1

2nm

∑
μ<ν

[g2μν − rμν].

Order 3—The order 3 can also be computed using [GY91]. We can actually use the
calculation that we described in appendix B.2, and decompose the operator UY as
UY = Uc + Ug, with terms given in equation (97). As we described very precisely in
appendix B.2, we reach:
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〈U 3〉 = − 1√
n

∑
μ1,μ2,μ3

pairwise distinct

gμ1μ2
gμ2μ3

gμ3μ1
+O(n3/2), (156)

in which the term O(n3/2) contains all the dependency on the third-order moments of
the i.i.d. variables {xμi}, and of the independent variables {(ih)μν}. All in all, we reach
the expression of equation (77):

1

3!

∂3Φ

∂η3
= − 1

3!nm
〈U 3〉 = 1

6n3/2m

∑
σ1,σ2,σ3

pairwise distincts

gσ1σ2gσ2σ3gσ1σ1 +O(n−1/2). (157)

Appendix F. Annealed calculations in the Gaussian setting

F.1. The symmetric case

Outline of the calculation—We consider the inference problem of model XXᵀ, in
the Gaussian setting. Equivalently, it can be written as (with λ ≡ Δ−1 and rescaling the
observation Y):

Y =

√
λ

n
XXᵀ + Z, (158)

in whichX ∈ Rm×n, with a signal-to-noise ratio λ > 0, andm/n→ α > 0. Without loss of

generality, we can assume that Xμi
i.i.d.∼ N (0, 1). Note that the scaling of equation (158)

implies that the empirical spectral distribution of Y/
√
n converges (as n→∞) to a

limit measure μY . Since we assumed a standard Gaussian prior on X, one can write the
partition function for this model as:

ZY,n ≡
∫
Rm×n

dx

(2π)mn/2
exp

{
−1

2
Tr (xxᵀ)

}exp

{
−1

4
Tr

(
Y −

√
λ
n
xxᵀ

)2
}

(2π)m(m+1)/4
,

Note that compared to equation (4a) we added the diagonal terms μ = ν. As there
are O(n) such terms, and the free energy is of order O(n2), this addition does not
affect the limit free entropy. We compute here the annealed free entropy Φan(α) ≡
limn→∞{(nm)−1 ln EZY,n}.

Averaging the first moment—Using the Bayes-optimality assumption, we have:

EY[ZY,n] =

∫ ∏
μ�ν

dyμν
∏
a=0,1

×

⎡
⎢⎢⎣
∫
Rm×n

dXa

(2π)
nm
2
e
− 1

2

∑
μ,i

(xaμi)
2 e

− 1
4

∑
μ,ν

(
yμν−

√
λ
n

∑
i
xaμix

a
νi

)2

(2π)
m(m+1)

4

⎤
⎥⎥⎦.
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We can now integrate over Y. We get:

EY[ZY,n] =
∏

a∈{0,1}

[∫
Rm×n

dXa

(2π)
nm
2
e
− 1

2

∑
μ,i

(xaμi)
2
]

×
∏
μ�ν

∫
dyμν
2π

e
− 1

2(1+δμν )

∑
a

(
yμν−

√
λ
n

∑
i
xaμix

a
νi

)2

,

= Dn(α)
∏

a∈{0,1}

{∫
Rm×n

dXa

(2π)
mn
2
e
− 1

2

∑
μ,i

(xaμi)
2
}

× e
− λ

4n

∑
μ,ν

∑
a

(∑
i
xaμix

a
νi

)2

+ λ
8n

∑
μ,ν

(∑
a

∑
i
xaμix

a
νi

)2

,

with a constant Dn(α) > 0. Note that the above equation can be rewritten, using the
identity:

e
− λ

4n

∑
μ,ν

∑
a∈{0,1}

(∑
i
xaμix

a
νi

)2

+ λ
8n

∑
μ,ν

( ∑
a∈{0,1}

∑
i
xaμix

a
νi

)2

= exp

⎧⎨
⎩− λ

8n

∑
μ,ν

[∑
i

x0
μix

0
νi −

∑
i

x1
μix

1
νi

]2
⎫⎬
⎭,

so that we decouple the replicas (up to a constant that only depends on n and α):

exp

⎧⎨
⎩− λ

8n

∑
μ,ν

[∑
i

x0
μix

0
νi −

∑
i

x1
μix

1
νi

]2
⎫⎬
⎭

�
∫ ∏

μ�ν

dQμνe
− n

4

∑
μ,ν

Q2
μν

exp

{
i
√
λ

2
√
2

∑
μ,ν

Qμν

[∑
i

x0
μix

0
νi −

∑
i

x1
μix

1
νi

]}
.

We can integrate over the prior distribution on {X0,X1} and reach, up to a constant
Bn(α) independent of λ:

EY[ZY,n] = Bn(α)

∫ ∏
μ�ν

dQμν e
− n

4

∑
μ,ν

Q2
μν

e
− n

2 ln det
[
Im+i

√
λ
2Q

]
− n

2 ln det
[
Im−i

√
λ
2Q

]
,

= Bn(α)

∫ ∏
μ�ν

dQμν e
− n

4

∑
μ,ν

Q2
μν

e−
n
2 ln det[Im+ λ

2Q
2]. (159)

The saddle point—We note that in equation (159) the integrand only depends on the
spectrum of the matrix Q. Since Q is integrated over the set of symmetric matrices, we
can write Q = ODOᵀ and use the classical change of variables to this representation
(see e.g. proposition 4.1.1 of [AGZ10]):
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EY[ZY,n] = Cn(α)

∫
Rm

dL

× exp

{
−n

4

m∑
μ=1

l2μ +
1

2

∑
μ �=ν

ln |lμ − lν| −
n

2

m∑
μ=1

ln

(
1 +

λ

2
l2μ

)}
,

(160)

with a constant Cn(α) that we will compute at the end by taking the λ ↓ 0 limit. In the
end we obtain the following variational principle for the annealed free entropy:

Φan(α) = c(α)

+ sup
ν∈M+

1 (R)

{
−1

4
Eν[X

2] +
α

2
EX,Y ∼ν ln |X − Y | − 1

2
Eν

[
ln

(
1 +

λ

2
x2

)]}
, (161)

in which c(α) ≡ limn→∞{(nm)−1lnCn(α)}, and M+
1 (R) is the set of real probability

measures.
Computing c(α)—When λ = 0 the solution to the variational problem is easily

known, as it is related to the celebrated Wigner semi-circle law. More precisely, the
solution to the variational problem of equation (161) at λ = 0 is:

ν�
α(dx) =

1

2πα
�|x|�2

√
α

√
4α− x2 dx.

And it satisfies:

−1

4

∫
ν�
α(dx) x

2 +
α

2

∫
ν�
α(dx)ν

�
α(dy) ln |x− y| = −3α

8
+

α

4
ln α.

Moreover, a direct calculation at λ = 0 gives Φan(α)|λ=0 = −(α/4)ln 4π. This yields

c(α) =
3α

8
− α

4
ln 4π − α

4
ln α. (162)

Exact resolution of the variational principle—We now detail an exact resolution
of the variational principle of equation (161). This calculation is very much inspired by
a similar derivation, for the Wigner semi-circle law, done in [LNV18]. We define the
potential

Vα(x) ≡
1

4α
x2 +

1

2α
ln

(
1 +

λ

2
x2

)
,

Going back to equation (160), prior to taking the n→∞ limit, we can apply the sad-
dle point method to the set of eigenvalues {lμ}mμ=1. The saddle-point equation for the
eigenvalues reads:
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1

m

∑
ν( �=μ)

1

lμ − lν
=

1

2α

(
lμ +

λlμ
1 + λ

2
l2μ

)
= V ′

α(lμ). (163)

A classical way to solve equations of the type of equation (163) is to use Tricomi’s
theorem [Tri85], as explained for instance in [LNV18]. Here we follow an alternative
(equivalent) way by writing a self-consistent equation on the Stieltjes transform. We
will multiply both sides of equation (163) by (z − lμ)

−1, before summing the result over
μ. Recall the definition of the Stieltjes transform for any z ∈ C+:

S(z) ≡ lim
n→∞

1

m

m∑
μ=1

1

lμ − z
.

As can be found, e.g. in [LNV18] (or very quickly derived), we have at large n,m:

1

m2

∑
μ �=ν

1

lμ − lν

1

z − lμ
=

1

2
S(z)2 +O(1/n).

We now focus on the right-hand side of equation (163), multiplied by (z − lμ)
−1, and

summed over μ. The first term can be simplified using the relation:

1

2α

1

m

m∑
μ=1

lμ
z − lμ

= −1 + zS(z)
2α

+O(1/n).

The other term can also be simplified:

Γ(z) ≡ 1

2α

1

m

m∑
μ=1

λlμ
1 + λ

2
l2μ

1

z − lμ
,

=
1

2αz

(
1

m

m∑
μ=1

λlμ
1 + λ

2
l2μ

+
1

m

m∑
μ=1

2

z − lμ

)
− 1

2αz

1

m

m∑
μ=1

2(
1 + λ

2
l2μ
)
(z − lμ)

.

(164)

Note that by the symmetry x→−x in the potential V α(x), the optimizing measure
should be symmetric with respect to 0. This implies that

lim
n→∞

1

m

m∑
μ=1

λlμ
1 + λ

2
l2μ

= 0.

Let us denote L > 0 the limit:

1

m

m∑
μ=1

1

1 + λ
2
l2μ

≡ L+On(1).

Finally, we have the relation
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1

m

m∑
μ=1

2(
1 + λ

2
l2μ
)
(z − lμ)

=
2

λz

1

m

m∑
μ=1

λlμ(
1 + λ

2
l2μ
)
(z − lμ)

+
2

z

1

m

m∑
μ=1

1

1 + λ
2
l2μ
.

Using these tricks, we reach for the term we were treating:

Γ(z) =
1

2αz
(−2S(z) +On(1))−

1

2αz

[
2

λz
2αΓ(z) +

2

z
L+On(1)

]
,

so that

Γ(z) = − λ

2α

L+ zS(z)
1 + λ

2
z2

+On(1).

Finally going back to equation (163) and taking the n→∞ limit, we obtain:

S(z)2 = − 1

α
[1 + zS(z)] − λ

α

L+ zS(z)
1 + λ

2
z2

.

We can solve this quadratic equation to obtain:

S(z) = −1

2

⎡
⎢⎣ λz

α
(
λz2

2
+ 1

) +
z

α
−

√√√√(
λz

α
(
λz2

2
+ 1

) +
z

α

)2

− 4

(
1

α
+

λL

α
(
λz2

2
+ 1

))
⎤
⎥⎦.

The solution is taken such that Im[S(z)] > 0 for z ∈ C+ and S(z) ∼ −1/z for z → +∞.
Using the Stieltjes–Perron inversion formula, the density of the maximizing measure ν�

α

is thus:

dν�
α

dx
= lim

ε→0+

1

π
Im[S(x+ iε)] =

1

2πα

√√√√4

(
α+

λαL

1 + λx2

2

)
−

(
λx

1 + λx2

2

+ x

)2

.

(165)

The constant L > 0 has to be chosen in order to ensure the proper normalization of the
probability distribution.

F.2. The non-symmetric case

The calculation—We consider now the non-symmetric setting, i.e. model FX, with
m/n→ α > 0 and p/n→ ψ > 0, and in the Gaussian setting:

Y =

√
λ

n
FX+ Z,

in which Y ∈ Rm×p, F ∈ Rm×n and X ∈ Rn×p. Without loss of generality, we assume an
i.i.d. standard Gaussian prior for both F,X, and that the quenched noise Z is Gaussian
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as well. The partition function of this model is:

ZY,n =

∫
df dx

e−
1
2

∑
μ,if

2
μi

(2π)
mn
2

e−
1
2

∑
i,lx

2
il

(2π)
np
2

e
− 1

2

∑
μ,l

(
yμl−

√
λ
n

∑
i
fμixil

)2

(2π)
mp
2

.

We can write the first moment of the partition function using Bayes-optimality:

EY[ZY,n] =

∫ ∏
μ,l

dyμl
∏

a∈{0,1}

[∫
df a dxa e

− 1
2 Trx

a(xa)ᵀ− 1
2 Tr f

a(fa)ᵀ

(2π)
mn
2 + pn

2

]

× e
− 1

2

∑
a∈{0,1}

∑
μ,l

(
yμl−

√
λ
n

∑
i
faμix

a
il

)2

(2π)mp
.

Integrating over Y, we reach:

EY[ZY,n] =
∏

a∈{0,1}

[∫
df a dxa e

− 1
2 Trx

a(xa)ᵀ− 1
2 Tr f

a(fa)ᵀ

(2π)
mn
2 + pn

2

]

×
exp

{
− λ

4n

∑
μ,l

[∑
if

0
μix

0
il −

∑
if

1
μix

1
il

]2}
2

mp
2 (2π)

mp
2

.

We can then use a Gaussian transformation in the last term:

exp

⎧⎨
⎩− λ

4n

∑
μ,l

[∑
i

f0μix
0
il −

∑
i

f1μix
1
il

]2
⎫⎬
⎭

=
( n

2π

)mp
2

∫ ∏
μ,l

dQμl e
− n

2

∑
μ,l

Q2
μl

× exp

{
i

√
λ

2

∑
μ,l

Qμl

[∑
i

f0μix
0
il −

∑
i

f1μix
1
il

]}
.

One integrates now over the prior distributions on fa,xa. The two replicas yield the same
contribution and we reach:

EY[ZY,n] = Dn(α,ψ)

∫ ∏
μ,l

dQμl e
− n

2

∑
μ,l

Q2
μl

e−n ln det[Ip+ λ
2Q

ᵀQ], (166)

with Dn a constant that only depends on n,α,ψ. To compute this integral, we use a
Weyl-type formula for integrating a function that only depends on the singular values
of the integrated matrix. It is stated for instance in proposition 4.1.3 of [AGZ10]. We
need to separate the two possibilities α � ψ and α > ψ.
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The case α � ψ—We directly obtain from equation (166) and the Weyl-type
formula:

EYZn(Y) = Cn(α,ψ)

∫
Rm
+

m∏
μ=1

dlμ

× e
− n

2

∑
μ
l2μ−n

∑
μ
ln(1+ λ

2 l
2
μ)+(p−m)

∑
μ
ln lμ+

1
2

∑
μ �=ν

ln |l2μ−l2ν |
,

in which Cn(α,ψ) is a constant and we denote C(α,ψ) ≡ limn→∞{lnCn(α,ψ)/(n(m+
p))}. Performing a saddle point finally yields:

Φan(α,ψ) = C(α,ψ) + sup
ν∈M+

1 (R+)

{
− α

2(α+ ψ)
Eν [X ]− α

α+ ψ
Eν

[
ln

(
1 +

λ

2
X

)]

+
α(ψ − α)

2(α+ ψ)
Eν [ln X ] +

α2

2(α+ ψ)
EX,Y ∼ν ln |X − Y |

}
. (167)

The caseα > ψ—This time, we obtain from equation (166) and the Weyl-type formula:

EYZn(Y) = Dn(α,ψ)

∫
R
p
+

p∏
l=1

dal

× e
− n

2

∑
l
a2l−n

∑
l
ln(1+ λ

2 a
2
l )+(m−p)

∑
l
ln al+

1
2

∑
l �=l′

ln |a2l−a2
l′ |
,

in which Dn(α,ψ) is a constant and we denote D(α,ψ) ≡ limn→∞[lnDn(α,ψ)/(n(m+
p))]. Performing a saddle point finally yields:

Φan(α,ψ) = D(α,ψ) + sup
ν∈M+

1 (R+)

{
− ψ

2(α+ ψ)
Eν [X ]− ψ

α+ ψ
Eν

[
ln

(
1 +

λ

2
X

)]

+
ψ(α− ψ)

2(α+ ψ)
Eν [ln X ] +

ψ2

2(α+ ψ)
EX,Y∼ν ln |X − Y |

}
. (168)

Computing the constants—The constants can again be found using the λ ↓ 0 limit. If
α � ψ, the extremizing measure ν�

α,ψ is a scaled Marchenko–Pastur distribution [MP67]
with ratio α/ψ � 1:

ν�
α,ψ(dx) =

1

2πα

√
(λ+ − x)(x− λ−)

x
�{λ− � x � λ+}dx, (169)

with λ± = (
√
ψ ±√

α)2. Indeed, ν�
α,ψ is the asymptotic eigenvalue distribution of QQᵀ,

in which {Qμl} are independent Gaussian random variables with zero mean and variance

n−1 = ψp−1. As an easy calculation gives Φan(α,ψ) = −[αψ/(2(α+ ψ))]ln 4π for λ = 0,
this yields after some computation:
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C(α,ψ) = −α2 ln(α) + αψ(−3 + 4 ln(2) + 2 ln(π))− (α− ψ)2 ln(ψ − α) + ψ2 ln(ψ)

4(α+ ψ)
.

In the same way, one can get D(α,ψ) = C(ψ,α).
Solving for the maximizing density—We can solve the variational principles

of equations (167) and (168) in a similar way as what we did in appendix F.1 for the
symmetric case. In the limit n→∞, the saddle point equation for xμ ≡ l2μ gives:

−1

2
− λ

2

1

1 + λxμ/2
+

1

n

∑
ν( �=μ)

1

xμ − xν
+

(ψ − α)

2

1

xμ
= 0.

As before we multiply by (z − xμ)
−1 and we sum over μ = 1, . . . ,m. In this way we get:

1

nm

m∑
μ=1

m∑
ν( �=μ)=1

1

xμ − xν

1

z − xμ
=

αS(z)2
2

+O(1/n).

Next, we add an arbitrary parameter γ > 0 in the calculation, before taking the limit
γ ↓ 0, as done in [LNV18]. In this way we can compute:

1

m

m∑
μ=1

(
(ψ − α)

2
+

γ

2

)
1

(z − xμ)

1

xμ
=

(
(ψ − α)

2
+

γ

2

)(
Q− S(z)

z

)
,

with the constant

Q ≡ 1

m

m∑
μ=1

1

xμ
=

∫
dx

ν(x)

x
.

Next we have:

λ

2

1

m

m∑
μ=1

1

1 + λxμ/2

1

z − xμ
=

λ

2

1

λz/2 + 1
(Y − S(z)),

with

Y ≡ λ

2

∫
dx

μ(x)

1 + λx/2
= S(−2/λ).

Altogether the equation for S(z) reads:

S(z) − λ

λz/2 + 1
(Y − S(z)) + (ψ − α+ γ)

Q− S(z)
z

+ αS(z)2 = 0,

from which we have (after taking the limit γ ↓ 0), for z > 0:

S(z) = 1

2α

[
−1 +

(ψ − α)

z
− λ

1 + λz/2

+
1

z

√(
z − ψ − α+

zλ

1 + λz/2

)2

− 4αz

(
(ψ − α)Q− zλ

1 + λz/2
Y

)⎤
⎦.
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The behavior at z →∞ fixes the constant Y :

Y =
1

2
((ψ − α)Q− 1).

From this one can deduce the final density which reads:

dν�
α,ψ

dx
=

1

2απx

√
−
(
x− ψ − α+

xλ

1 + λx/2

)2

+ 4αx

(
(ψ − α)Q − xλ

1 + λx/2

1

2
((ψ − α)Q − 1)

)
, (170)

where the value of Q should be determined by imposing the normalization of ν�
α,ψ.

Appendix G. Other technicalities

G.1. The free entropy of [KKM+16] in the Gaussian setting

In this symmetric Gaussian setting, with prior of variance 1 and noise Δ > 0 in the
channel, the prediction of [KKM+16] for the quenched free entropy is:

Φsec. = extr
q,q̂

{
1

2
qq̂ − q̂

2
− 1

2
ln(1− q̂)− α

4
(1 + ln 2π)− α

4
ln[Δ + (1− q2)]

}
.

(171)

We denote it Φsec., since we saw in section 2 that it corresponds to a second-order
truncation of the PGY expansion for the factorization problem. The extremum in
equation (171) is given by the set of equations:

q̂ = − αq

Δ+ (1− q2)
; q = − q̂

1− q̂
.

In the paramagnetic phase (which corresponds to the denoising solution) we moreover
have q = q̂ = 0 and thus:

ΦKab.(q = 0) = −α

4
(1 + ln 2π)− α

4
ln(1 +Δ).

Coming back to the factorization problem, the equation on q is q̂ = −q/(1− q) and (if
q �= 0):

α(1− q) = Δ+ 1− q2,

which easily solves into:

q =
α±

√
(2− α)2 + 4Δ

2
. (172)

Computing Φsec. can then easily be done: one must consider three possible solutions:
the paramagnetic one, and the two solutions of equation (172). One then checks if said
solutions are physical (i.e. if q ∈ [0, 1)). To finish, one must compute the free entropies
of all physical solutions, and the actual prediction for the free entropy is given by the
largest of those.

https://doi.org/10.1088/1742-5468/ac7e4c 65

https://doi.org/10.1088/1742-5468/ac7e4c


J.S
tat.

M
ech.

(2022)
083301

Perturbative construction of mean-field equations in extensive-rank matrix factorization and denoising

G.2. Absence of contribution of diagonal terms to the MMSE

Recall that we consider the denoising model:

Y =
1√
n
X�(X�)ᵀ +

√
ΔZ. (173)

We let S� ≡ X�(X�)ᵀ/
√
n, and we define the associated asymptotic free energy:

ΦY,n ≡ 1

nm
E ln

∫
DXe

− 1
4Δ

∑
μ,ν
(Yμν− 1√

n

∑n
i=1 XμiXνi)

2

. (174)

And the asymptotic MMSE is:

MMSE ≡ 1

m2
E

∑
μ,ν

(
S�
μν − 〈Sμν〉

)2
. (175)

In this paragraph, we also consider a definition of the MMSE ‘not taking into account
the diagonal’:

MMSE ≡ 1

m2
E

∑
μ �=ν

(
S�
μν − 〈Sμν〉

)2
. (176)

In the limit n→∞, we now show that equations (175) and (176) are equivalent.
Equivalently, we will show:

MMSEdiag ≡
1

m2
E

{
m∑

μ=1

(
S�
μμ − 〈Sμμ〉

)2}→ n→∞0. (177)

Proof of equation (177). We will make use of the Nishimori identity , a consequence
of Bayes-optimality. Physically speaking, the Nishimori identity shows that the planted
solution S� behaves like a replica of the system under the posterior distribution, and we
refer the reader to [BKM+19] for its elementary proof:

Proposition G.1 (Nishimori identity)

Let (X,Y ) ∈ Rn1 × Rn2 be a couple of random variables. Let k � 1 and let X(1), . . . ,X (k) be k i.i.d. samples (given
Y ) from the conditional distribution P(X = · |Y ). Let us denote 〈−〉 the expectation operator w.r.t. P(X = · |Y )
and E the expectation w.r.t. (X, Y ). Then, for all continuous bounded function g we have

E〈g(Y ,X (1), . . . ,X (k))〉 = E〈g(Y ,X (1), . . . ,X (k−1),X)〉.

By proposition G.1, we have

MMSEdiag =
1

m2
E

{
m∑

μ=1

(
S�
μμ

)2 − 〈Sμμ〉2
}
. (178)

https://doi.org/10.1088/1742-5468/ac7e4c 66

https://doi.org/10.1088/1742-5468/ac7e4c


J.S
tat.

M
ech.

(2022)
083301

Perturbative construction of mean-field equations in extensive-rank matrix factorization and denoising

Using the simple variance bound EX2 � (EX)2, and again the Nishimori identity, we
have:

MMSEdiag �
1

m2

m∑
μ=1

{
E

[(
S�
μμ

)2] − (E〈Sμμ〉)2
}
,

� 1

m2

m∑
μ=1

{
E

[(
S�
μμ

)2] − (
ES�

μμ

)2}
,

� 1

m2n

m∑
μ=1

{∑
i,j

E
[
(X�

μi)
2(X�

μj)
2
]
−

∑
i,j

E
[
(X�

μi)
2
]
E
[
(X�

μj)
2
]}

,

� 1

m2n

m∑
μ=1

{n2 + 2n− n2} � 2

m
,

since E[(X�
μi)

2] = 1. This ends the proof of equation (177). �

G.3. Proof of the I-MMSE theorem for denoising

We shall derive equation (57), making use several times of the Nishimori identity
(proposition G.1). We start with:

∂Ψ[ρY, ρS]

∂Δ−1 =
αΔ

4
+

1

4nm

∑
μ,ν

{
−2m

[
E(S�

μν)
2 − E(〈Sμν〉2)

]
+

√
ΔmE[Zμν〈Sμν〉]

}
. (179)

Moreover we have (taking into account both the μ � ν and μ > ν terms):

E[Zμν〈Sμν〉] =
√

m

Δ

[
E(S�

μν)
2 − E(〈Sμν〉2)

]
. (180)

So in the end we reach:

∂Ψ[ρY, ρS]

∂Δ−1 =
αΔ

4
− 1

4n

∑
μ,ν

[
E(S�

μν)
2 − E(〈Sμν〉2)

]
=

αΔ

4
− α

4
MMSE(Δ),

(181)

which ends the proof.
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