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Robotic automation 
and unsupervised cluster assisted 
modeling for solving the forward 
and reverse design problem 
of paper airplanes
Nana Obayashi *, Kai Junge , Stefan Ilić  & Josie Hughes 

Although often regarded a childhood toy, the design of paper airplanes is subtly complex. The design 
space and mapping from geometry to distance flown is highly nonlinear and probabilistic where 
a single airplane design exhibits a multitude of trajectory forms and flight distances. This makes 
optimization and understanding of their behavior challenging for humans. By understanding the 
behavior of paper airplanes and predicting flight behavior, there is a potential to improve the design 
of aerial vehicles that operate at low Reynolds numbers. By developing a robotic system that can 
fabricate, test, analyze, and model the flight behavior in an unsupervised fashion, a wide design space 
can be reliably characterized. We find there are discrete behavioral groups that result in different 
trajectories: nose dive, glide, and recovery glide. Informed by this characterization we propose a 
method of using Gaussian mixture models to extract the clusters of the design space that map to these 
different behaviors. This allows us to solve both the forward and reverse design problem for paper 
airplanes, and also to perform efficient optimization of the geometry for a given target flight distance.

The design or structure of many biological systems exploit natural phenomena to manifest spontaneous behav-
iors of considerable complexity. This includes autorotating or burrowing seeds1,2, vortex-based propulsion3, and 
laminar boundary layer assisted drag reduction4. These all leverage interactions with fluids to achieve diversity 
in behavior, efficiency or other benefits. Driven by the inherent nonlinear dynamics5–7, the behavior of such sys-
tems can often appear random in their evolution and show multiple possible states or behaviors. Evolution has 
enabled the design of these systems which show complex emergent behaviors over significant periods of time8, 
and this optimization continues till this day. Developing means of artificially designing systems which exploit 
these nonlinear dynamics could allow for similarly complex behavior to be realized9, enabling improvements 
in the performance of system behaviors, be it locomotion10, flying, or other resultant or emergent behaviors11.

One such design system that seeks to exploit nonlinear physical phenomena is that of paper airplanes12. 
Outwardly a simple ‘toy’13, they show complex aerodynamic behaviors which are most often overlooked. This 
is a design space where flat deformable paper is constructed into a structure which often mimics the shape of 
a fixed-wing aircraft or a dart enabling gliding behavior. When launched, there are resulting complex physical 
interactions between the deformable paper structure and the surrounding fluid leading to a particular flight 
behavior. The resulting flight trajectories show discrete behavioral groups which are characterized by the shape 
of their trajectory; some nose dive, others glide, and others show a recovery glide. These discrete behavioral 
groups are widely seen across gliding, falling or flying paper structures14–17. A single airplane design can also show 
multiple behaviors on different launches, resulting in a probabilistic behavior and also considerable variation 
in resultant flight trajectory and corresponding flight distance. Resulting from the quest for efficient micro air 
vehicles (MAVs)18,19, there is a focus on understanding the behaviors of paper airplanes as they fly in the same 
Reynolds number range, but have a much simpler form than MAVs. A number of data-driven and analytical 
approaches have been explored to understand or predict the resulting flight path or behavior. Experimental 
analysis in flow channels has enabled flow visualizations and force measurements for specific dart morphology 
airplanes20. Later studies focused on the change in lift coefficient with the sweep angle of dart planes at low 
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Reynolds numbers21. The effect of changing morphology or structure has also been addressed by investigating 
the transformation of falling paper into a paper glider by changing the location of the center of mass22 and also by 
varying the span-wise flexibility of tumbling wings23. Simulation driven CFD analysis is an alternative approach 
which has enabled the exploration of a wider design space. For three different airplane geometries the resultant 
lift and drag coefficients12 were determined as a means of optimizing aerodynamic efficiency. Computational 
analysis has also provided a tool for simulating the flight dynamics for a sample of designs, yet this tool has 
remained fully theoretical and does not capture the observed stochasticity24. Despite the insights gained from 
these experimental and simulation studies the range of designs explored is limited. Furthermore, the identifica-
tion of a comprehensive and universal analytical solution to predict the resultant flight behavior or aerodynamic 
performance from the design of the airplanes has not yet been demonstrated.

Developing a means of solving the forward (geometry to resultant distance or behavior), or the reverse 
(behavior or distance to geometry) design problem (Fig. 1a), would enable physical programming and design 
of these structures, with the potential to improving flight capabilities of paper airplanes. Understanding these 
structures also has intrinsic scientific interest to explain the resulting complex behaviors. In the absence of ana-
lytically tractable solutions, physical experimentation is required. Preliminary work explored manually launch-
ing paper airplanes and using computer vision to extract flight trajectories25. This has examined the lift and 
drag coefficients for a small number of designs. Resulting from the computer graphics community there is a 
tool to perform aerodynamics driven optimization to constrain the design space to designs configurations that 
are likely to actually fly26, this is driven by a subset of experimental data from successfully launched airplanes. 
These approaches which utilize manual experimentation are labor intensive, time-consuming process and are 
sensitive to changes in fabrication or launching such that the true probabilistic nature of the behavior cannot be 

Figure 1.   (a) Summary of our design problems leveraging cluster-based mixture models. In forward design, 
flight behavior is predicted for a given airplane geometry and in reverse design, the geometry is predicted 
given a target flight behavior. (b) Summary of our proposed geometry sampling and optimization using a robot 
designer. (c) Flight behavior distribution and variance for the whole design space of paper airplanes. (d) Flight 
behavior and variance of four sample geometries and their cluster-based behavioral labeling.
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explored. To be able to solve the forward and reverse design problem we require large scale, intelligent methods 
for data-capture and data-driven interpretable models that account for the discrete behavioral groupings and 
the multiplicitous relationship between geometric parameters and flight behaviors.

The use of robots to perform large scale ‘physical’ experiments for optimization, discovery or modeling is 
becoming feasible due to increasing versatility of robotic manipulation and improvements in the accessibility of 
computer vision and optimization methods. The use of robots to automate laboratory tasks for the ‘discovery’ or 
‘design’ in chemistry has been shown27,28. Closer to the domain of paper airplanes, robotic automation for iterative 
exploration of falling paper29 showed large scale data capture, however, this did not extend to online optimiza-
tion or model forming. Within the domain of robotics, there has been demonstration of physical realization for 
testing of soft or deformable systems30, which has included using genetic algorithms or Bayesian optimization. 
Although promising, these approaches do not provide an interpretable model to allow both the forward and 
reverse design problem to be solved. This has been addressed in other domains for example for the design of 
biological oscillators31 or genetic circuits32, but has relied on extensive manual data capture.

We propose a robot designer (Fig. 1b), which fabricates simple paper airplanes, performs experiments, 
analyzes data, builds models, and optimizes, all without input from humans. Using this approach, over 500 
paper airplanes have been fabricated and thrown, with the behavior classified automatically using unsupervised 
approaches. This sheer number of experiments is far greater than has been seen previously, and shows a repeat-
ability in fabrication and experimentation that allows the true probabilistic and stochastic nature of the flight 
behavior to be observed. An interpretable Gaussian mixture model (GMM)33 is constructed that reflects the 
cluster-based nature of the design space, where clusters are identified using unsupervised methods in both the 
high dimensional trajectory data space and geometry space34. This model allows for the forward and reverse 
design problem to be addressed in a probabilistic manner. Furthermore, the GMM-based approach can be used 
to minimize the design space to allow for efficient and fully automated robot design of paper airplanes for target 
flight distances.

Results
The robot designer enables fabrication of a paper airplane constructed from a holder and paper wing planform 
where the geometry of the wing is parameterized (Fig. 1a). The area and weight of the paper airplanes are fixed, 
and the holder attachment location is standardized as a function of the wing aerodynamic center (AC). After the 
robot launches the fabricated airplane, the 2D trajectory of the plane is recorded allowing the distance flown and 
the characteristics of the trajectory to be analyzed. See Supplementary Video 1 for the robot designer fabricating 
and launching a paper airplane and Methods for more details. Like many physical phenomena, we see discrete 
behavioral groups of trajectory: nose dive, glide, and recovery glide. The behavior is also probabilistic, with the 
same design showing different distances traveled and different behaviors with repeated throws. Throughout this 
work, the three behavioral groups are referred to as ‘Behavior 1’, ‘Behavior 2’, and ‘Behavior 3’ or ‘B1’, ‘B2’, and 
‘B3’, respectively. The wings in Behavior 1 follow a trajectory with a curvature, similar to what looks like a ‘nose 
dive’ which results in a short flight distance. Many wings in Behavior 2 follow trajectories that are more of a ‘glide’ 
than in Behavior 1 with slightly longer flight distances. In Behavior 3, the flights have a characteristic trajectory 
containing one or more inflexion point. This is as if the paper airplanes are ‘recovering’ into level flight after a 
period of nose-down trajectory, often leading to a longer flight distance. See Supplementary Video 2 for example 
flights showing the three behavioral clusters.

Exploiting the precise and automated nature of the robotic setup, large scale experiments can be performed to 
enable design optimization. By testing and evaluating many airplanes the design space can be characterized and 
explored. The data collected can also be used to build a GMM assisted model to predict the probability of a given 
behavioral type given the geometry. The performance of the GMM assisted model is evaluated by considering the 
accuracy of the predictions for the forward and reverse design problems. Finally, we demonstrate how developing 
these models can be used to accelerate real-world robotic optimization of a design—to identify wing shapes that 
fly a given distance. This section shows key results in the exploration of the design space characteristics and and 
usage of the probabilistic model. For mathematical details, see Methods.

Exploration of the design space.  The design space of paper airplanes is complex, nonlinear and proba-
bilistic—the fluid-solid interactions are challenging to accurately capture making predicting the resultant behav-
ior and flight distance challenging. The robot allows for repeatable and systematic exploration of the design 
space to capture the relationship between geometric parameters, behavior type, and distance flown. A data-
set was created for characterization and development of the unsupervised modelling method by sampling 50 
designs across the design space using Latin hypercube sampling35. The fabrication and evaluation process takes 
approximately 4 min for each paper airplane. Each design was fabricated and flown five times, resulting in total 
250 flights, to allow the variability in the flight behavior and distance to be captured.

Figure  1c shows a histogram of the 250 flight distances flown by the 50 sample airplanes using 20 bins with 
a smoothing function fit. The range of distance flow for the three behavioral types is also shown. The airplanes 
land approximately within 1-5m , with the distribution skewed toward the lower distances. Thus, the probability 
of identifying a design to achieve a given target distance varies for different distances. Furthermore, airplane 
designs from different behavioral groups show different trends in terms of variability. In this sample of wing 
designs, Behavior 3 shows the largest variability with a range of 2m , and Behavior 1 the least with a range of 1m . 
Figure  1d shows four examples of wing geometry, with the extracted 2D trajectory for each of the five repeated 
flights and the variance of the flight distances. The behavior type is labeled automatically using unsupervised 
clustering on the flight trajectory. Within the five repeated experiments for each design, there can be consider-
able variation in the distance travelled, and also for the behavioral type. For example, we see for Geometry 2, the 
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same plane design can show a variation of 1.8m . For Geometry 4, its flight trajectory straddles between Behavior 
1 and 2. This illustrates the need for a probabilistic model.

To design airplanes to fly a given distance, an accurate relationship of geometric parameters to flight distance 
is required. The strength of the relationship between each geometry parameter and distance can be found by 
plotting the distance for each of the 250 flights against the design parameter and determining the R 2 value. For 
the three design parameters we see that this relationship is weak (Fig. 2a), particularly so for back sweep, whereas 
sweep angle has a weak negative correlation, and width-to-length a weakly positive correlation. The relationships 
make predicting the distance from geometry challenging.

In addition to analyzing the relationship between geometric parameters and distance we can also explore 
the relationship between geometric parameters and behavioral type. In Fig. 2b for the 50 airplane geometries, 
we see groupings of behaviors. However there are overlaps and the behavioral group show a number of distinct 
sub-clusters which also need to be captured in our approach.

GMM based modeling.  The analysis from the characterization data of 50 airplane designs and 250 flights 
shows that the behavior is a key means to understand the resulting flight distance, and also for sub-dividing or 
analyzing the design space.

Figure 2.   (a) Strength of relationship between geometry parameter and flight distance for 250 flights. (b) 
Relationship between geometry parameter and behavior type in geometry space G . (c) Flight trajectories, 
airplane geometries, and GMM representation for labeled behavioral types.
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However, the design space has overlapping clusters that correspond to the different behaviors. Furthermore, 
the relationship between geometry and behavior is probabilistic, with a given geometry exhibiting multiple 
behavioral types, and hence resulting in a variability in distance flown. This characteristic demonstrates the need 
for a probabilistic and cluster-based approach to analyze the design space, to identify these behavioral groups.

The final form of the model is a collection of Gaussian mixture models, with a single GMM corresponding 
to a behavior, to indicate the probability of a particular airplane geometry exhibiting each behavior. This GMM 
assisted model provides an observable and transparent approach to analyzing and representing the behavioral 
types. Enabling an insightful analysis into the design space, and assist with identifying paper airplanes that fly 
a given distance.

The GMM assisted model is built from the 50 geometries sampled. All 250 flights are first labeled with a 
behavior type using the unsupervised clustering method, where the resultant clustered trajectories are shown in 
Fig. 2c (top). For the three behavioral groups, the trajectories show distinct characteristics. Within these group-
ings, there are a large number of individual trajectories: 85 for Behavior 1, 83 for Behavior 2, and 82 for Behavior 
3. Each of these groups of trajectories contain sub-clusters in the geometry space. To identify these sub-clusters, 
unsupervised clustering within each behavioral group is performed, using the three geometrical parameters with 
the number of clusters optimized to find the best clustering.

Within Behavior 1 for example, two distinct clusters of geometries are found, one group with a high W/L, 
and a second more trapezoidal in shape. Thus, these two sub-clusters are used to form the GMM, which are 
represented as the ellipsoids in Fig. 2c (bottom). For Behavior 2, three sub-clusters are found in the geometrical 
space to form the GMM. The sub-clusters include a group of diamond shaped airplanes (higher � and lower 
�b ), rectangular airplanes (higher W/L), and more triangular shapes (higher � and higher �b ). Behavior 3 is 
also formed from three groups—the characteristics are similar to those in Behavior 2, but the geometries are 
grouped much stronger even by visual inspection. Comparing the GMMs developed for the three behaviors, it 
can be seen there is overlap, reflecting the probabilistic nature, and also that the behaviors span different volumes 
of the design space, with some of them more tightly clustered than the other.

Behavioral prediction and programming.  The GMM for each behavior built using the data collected 
by the robot can be utilised in two ways. First, to solve the so-called forward design problem: predicting the 
probability of behaviors for a given geometry. Predicting the behavioral probability can be used to provide an 
estimation of the average and distribution of likely distances flown. The second assessment, is to use the model 
to perform the reverse design problem: identifying designs that are likely to have a given probability of certain 
behaviors. The interpretability of the GMM is advantageous for performing this reverse design method over 
more traditional learning methods.

To assess the performance of the model for the forward design problem, GMMs were formed from 94 sampled 
geometries, each with five flights. 16% of the data was withheld for evaluation of the model. After forming the 
GMMs for each behavior type, the probability of a given behavior for a specific geometry can be determined by 
integrating the probability distribution function from the GMM.

Figure 3c shows the ground truth and predicted probability of behavior for a selection of wing geometries held 
out from the model. The probabilities are generally in agreement between the ground truth and predicted. It can 
be seen that certain wings are predicted to be very distinctly Behavior 1 while for example, certain wings are close 
to being half-way between two behaviors. In general, wings that fall in Behavior 1 fly very similarly however many 
times they are flown. The same is true for many wings that fall in Behavior 3. However as Behavior 2 is in the 
middle range, airplanes that display this behavior have characteristics overlapping with the other two behaviors.

The average absolute error across all withheld geometries is shown in Fig. 3b for each behavior type performed 
through the GMM-assisted method and Gaussian process regression (GPR). It can be seen that for all behavioral 
types the probability prediction errors are lower with the GMM-assisted method compared to GPR. Finally the 
probability predictions can be used to accurately predict the flight distance for a given geometry. As shown in 
Fig. 3a, for most of the withheld geometries, the flight distances can be predicted within 30% accuracy using 
the behavioral probability predictions compared to the measured distances. The forward design results show 
that the cluster-based mixture model is able to capture the probabilistic nature of this complex system to enable 
accurate predictions of behavior type and also estimate the distance flown.

To assess the performance of the GMM assisted model for the reverse design problem, the model is used to 
predict wing designs that give rise to a specific probability of behavior. To explore this problem, we pick 7 dif-
ferent desired target combinations of probability of behaviors. Combinations of probabilities were chosen that 
spanned the range of achievable outcomes. For the predicted geometry, each of these seven paper airplanes are 
flown 10 times each and the trajectories labeled using unsupervised behavioral clustering to allow the probability 
of the different behaviors to be determined. The desired and measured probabilities are shown on the ternary 
plot (Fig. 3d) with the average distance also represented. The corresponding predicted geometries are shown in 
Fig. 3e. For five of the airplane geometries (B, C, E, F and G), the error is less than 5%. However for geometries 
A and D where the probability of Behavior 1 is 0%, the airplanes show a larger error of more than 10%, with 
the airplanes showing lower than expected probability of Behavior 3. As seen in the behavioral distribution 
and flight distance variance of the whole design space of the paper airplanes, geometries labeled as Behavior 1 
tend to follow very similar, short-distance trajectories—having no or very little probability of Behavior 1 makes 
a flight more unpredictable. Furthermore, we also saw the skew in the distribution of flight distances toward 
shorter flights, and a high variance of trajectories labeled as Behavior 3. These also contribute to the result and 
explain the larger error for the geometries A and D. In this way, the reverse design results show that it is possible 
to program probabilistic behaviors in the design of a paper airplane wing.
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Bayesian optimization for target distance.  The GMM can be leveraged in conjunction with the auto-
mated robotic system to enable iterative, directed search to achieve a wing geometry that has a high likelihood of 
achieving a target flight distance. Bayesian optimization is used to perform iterative search of the design space, 
with each wing geometry tested five times by the robotic setup. Bayesian optimization is useful in trying to 
capture the stochastic and probabilistic nature of this design problem and allows for a sequential decision mak-
ing, iteratively sampling new geometries36–40. At each iteration of the optimization algorithm, the GMMs for all 
behaviors are updated. From this, the design space for the Bayesian optimization is adapted online to be defined 
by the GMM which has an average flight distance which is closer to the target distance. To explore the improved 
performance of this GMM-assisted method, Bayesian optimization for two target distances, 3m (Fig. 4 left) and 
5m (Fig. 4 right), are conducted. For each target distance the experiment was repeated twice, one where the 
optimization was aided by the GMM and one where Bayesian optimization was solely used.

The GMM-assisted optimization must be initialized by generating a behavioral model. The flight performance 
data of 10 wing geometries, randomly selected from the Latin hypercube samples as ‘seeds’ were used to create 
the cluster-based GMM. A target of 3m was chosen because none of the seed airplanes landed within a 20 cm 
tolerance of 3m , thereby challenging the optimization to search for wing geometries not yet explored in the 
seeds. As shown in Fig. 4a, the model-assisted experiment reaches within 5 cm of the target at iterations 12 and 
16. However, since the target is an intermediate distance not at the extremes of the system, there are multiple 
solutions or geometries that could potentially reach this target—the experiment progression also shows that the 
optimizer is still exploring possible designs (Supplementary Fig. S6). At iteration 18 and onward, the target of 
3m is reached consistently within a small tolerance and the ellipsoids (Fig. 4c) of allowable geometries also show 
how the space in which the experiment explores is being constrained (Fig. 4b). On the other hand the standard 
Bayesian optimization is never able to find a solution that is closer than 30 cm within the target.

To further validate the model-assisted optimization method, we now reduce the number of seed airplanes as 
well as set a target distance of 5m that from prior design space exploration we know to be at the extreme of this 
system. Contrasting from the previous experiment with a target distance of 3m , only a few wing geometries are 
expected to meet the new target. The aim of this experiment was therefore to see how quickly the model-assisted 
optimization would converge to a solution compared to the standard Bayesian optimization. By iteration 12, 

Figure 3.   (a) Comparison of average actual distance from experimentation to the predicted distance for 
airplane designs withheld from the model. (b) Comparison of absolute average error of probability prediction 
for all withheld airplane designs between the GMM-assisted method and GPR. (c) Forward design behavioral 
probability prediction of a sample of wings held out from the model compared to its ‘ground truth’ behaviors. 
(d) Reverse design behavior prediction for chosen target probabilities with corresponding average flight 
distances. (e) Airplane geometries that are predicted to display the target behavioral probabilities in reverse 
design.
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the geometry space is well-constrained (Fig. 4, Supplementary Fig. S6). The model-assisted method successfully 
reaches the target within a 20 cm tolerance at iteration 16 and quickly again at iteration 19. On the other hand, 
the standard optimization is stuck at a local maximum where the maximum obtained distance is 20% lower than 
the target. These results demonstrate that by introducing a probabilistic cluster-based model to constrain the 
design space, this can be used to reach a target faster in an optimization problem.

Figure 4.   Experiment results of iteratively designing a paper airplane to fly a target distance of 3m (left) and 
5m (right). (a) GMM-assisted and unassisted Bayesian optimization results of flight distance at each iteration 
with dots indicating the behavioral cluster the optimizer searches in. (b) Visualization of the geometry space 
constraints at each iteration and the sampled points. (c) Visualization of the geometric search space created by 
the GMM at the indicated iteration number, also corresponding to the dashed red box in (b).
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Discussion
The robot designer we propose can advance our understanding and exploration of design problems that may 
be highly probabilistic, and could otherwise be challenging to observe any trends. In this work, we present our 
approach in creating a cluster-based mixture model to perform behavioral labeling to model the relationship 
between the airplane geometry and its flight behavior. In forward design, our GMM-assisted model predicts 
the behavioral probability with an error of less than 15% for unseen airplane geometries. In reverse design, the 
behavioral probability for many of the predicted airplane geometries are less than 5%. The model is also shown 
to better inform the sampling process of a Bayesian optimization process to reach a particular target flight 
distance in fewer iterations. The GMM-assisted optimization for the longer target distance of 5m reaches the 
target in 9 iterations after the seeds. The wing geometries that fly far have high W/L and low to mid � . This is 
quite visually different from the planform of a classic dart paper airplane21, perhaps a shape often regarded as 
‘high performing’ by a human designer.

It was found through automated robotic experimentation and unsupervised clustering that the system of 
paper airplanes exhibit three distinct clusters of behavior: nose dive, glide, and recovery glide. Their behaviors 
are not only characterized by the flight distance but also by the flight trajectory. The probabilistic nature of the 
problem means multiple geometries exhibit similar behaviors, while concurrently a single geometry could exhibit 
multiple behaviors. This characteristic demonstrates the need for a probabilistic and cluster-based approach to 
analyze the design space. The model we use together with the robotic setup uses Gaussian mixture models to 
build a cluster-based probabilistic model to map geometry parameters to behavioral groups. Compared to other 
function approximation methods, this GMM-based model outperformed in its performance in forward and 
reverse design, while maintaining a good interpretability of its inner workings.

This approach could be improved and further validated by varying the airplane geometry parameterization, 
fabrication method, initial conditions, and selection/tuning of the optimization method. The chosen airplane 
geometry allows for simple ‘conventional’ wing shapes using only three parameters. The definition of the param-
eters and/or the number of parameters can be varied. Fabrication methods, for instance, such as the paper 
material is an interesting factor to explore further. A more flexible material may induce increased stochastic 
behavior, while a stiffer material (given that other factors such as wing area are tuned accordingly) may lead to 
reduced stochasticity and/or increased flight distance. Using alternate fastening methods for the holder may lead 
to weight changes that would change the probabilistic landscape of the system. Another factor that this work 
would benefit by investigating further is the launching conditions, such as the launching mechanism, velocity of 
the robot arm pushing the paper airplane, and the pitching of the nose at launch. Currently, these variables are 
arbitrarily chosen to ensure the repeatability of each launch while successfully accelerating the paper airplane. 
Small variation in the arm velocity for example, most likely will not change the airplane behaviors. Yet, large 
changes of arm velocity may not function mechanically with the current launch mechanism—the success of 
the launch depends on the consideration of the entire setup as a whole. While there are many fabrication and 
setup factors that can be considered, our probabilistic approach remains workable for the forward and reverse 
design problems of paper airplanes. To conclude the remarks for future recommendations, in this work, two 
target flight distances were chosen to optimize the airplane geometry using Bayesian optimization assisted by 
the GMMs. This optimization can be improved by searching for other flight distances, or other metrics such as 
flight time, velocity, or centerline deviation. The optimization algorithm itself can be modified by searching for 
better parameters of the Bayesian exploration or using an alternative sampling method.

It is demonstrated in this work that the airplane flight trajectory behaviors are complex, where the mapping 
between the geometry and behavior is unintuitive, probabilistic in nature, and cannot be solved analytically. 
Our approach serves as an exploration in using a robotic designer for understanding and exploiting a complex 
physical system. In the future, this approach could be extended to increasingly complex design spaces or other 
robotic setups, such as the design of MAVs to optimize its wing shape to maximize flight distances.

Methods
Central to the work is the development of methods for automating the fabrication, analysis, and model genera-
tion to enable design optimization.

Parametric wing design.  The paper airplane is composed of a wing planform cut out from deformable 
paper which is glued to a 3D-printed holder as shown in Supplementary Fig. S1 (right). The holder acts as a 
weight for the paper airplane structure to control the pitching of the nose and also as a structure through which 
the robot can manipulate the airplane. The parameterized paper airplane wing is shown in Fig. 1a and Supple-
mentary Fig. S1 (left). The wings are defined using three geometric parameters: front sweep angle, � ∈ [0◦, 74◦] , 
back sweep angle, �b ∈ [14◦, 152◦] , and width-to-length ratio, W/L ∈ [0.25, 1.71] . The 3-dimensional geomet-
ric design space could be described in many different ways—the silhouette score is used to find the geometric 
parameters that best cluster the different behavioral groups. Sample wings are shown in Supplementary Fig. S2. 
Several design constraints were placed to facilitate and standardize the automatic design of wings: i) wing sur-
face area is fixed at 200 cm2 ; ii) number of vertices is fixed at six; iii) wing must fit on an A4-sized paper with a 
5mm margin all around; iv) root chord, cr must be larger than tip chord, ct ; v) tip chord must be greater than or 
equal to zero; vi) the airplane nose must coincide with the (5, 105)mm point as shown in Supplementary Fig. S1 
(center). Fixing the wing area, paper material, and glue application, and thereby also fixing the total mass at 6 g 
allows meaningful comparison of different paper airplanes by keeping the wing loading constant. The fabrication 
of the wing is further standardized by always attaching the center of mass of the holder at a point on the wing 
that is 30% of length, l in Supplementary Fig. S1 (center) forward starting from the aerodynamic center (AC)41.
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Hardware setup.  A robot setup (Fig. 5a) has been created to fully automate the fabrication, testing and data 
collection of paper airplanes. The key components of the setup include a UR5 robot arm to perform the neces-
sary manipulation tasks, a desktop laser engraver to cut the wing planform from paper and an airplane launching 
system. The UR5 is equipped with two grippers: a ‘tack’ based gripper with an actuated ring for releasing objects 
that can be used to move paper around the setup, and a two finger gripper with silicone padding for manipulat-
ing the airplane holder and the assembled airplane. A glue tape dispenser is fixed to this gripper to enable the 
airplane holder to be attached to the cut wing shape.

A desktop laser engraver is used to cut the wing shape from paper enabling a precise and repeatable cutting 
process. The engraver utilizes G-code for coordinate specification and cutting parameters. G-code is automati-
cally generated based on a wing geometry that has been determined. The paper from which the wing is cut out 
needs to be resupplied by a human after fabricating approximately 100 paper airplanes. The launcher system is 
placed 1.4m above the ground and uses two high friction rotating wheels at then end of guide rails. When the 
airplane is pushed into the high speed wheels the holder is caught by the wheels and is rapidly accelerated to a 
fixed velocity launching the paper airplane.

The robotic setup is in an enclosed room of approximate size 5× 8m to minimize the effects of drafts and 
external disturbances. Cameras are placed to capture the 3D trajectory of the airplane, with one perpendicular 
to the plane of the trajectory, the other with a viewpoint along the trajectory. The system diagram of the experi-
mental setup is shown in Supplementary Fig. S3.

Figure 5.   (a) Robotic experimental setup for paper airplane fabrication and launching. (b) Iterative process 
followed by the robot designer alternating between experimentation and analysis in a closed-loop.
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Robotic fabrication process.  The robotic fabrication process of a paper airplane is summarized in Fig. 5b. 
Once a wing geometry for testing is selected, the robotic setup is able to fabricate the paper airplane and launch 
it. The fabrication process begins with the robot arm picking a single sheet of A4-sized 160 g/m2 DCP paper and 
placing it on the laser engraver bed. Then the robot picks a 3D-printed holder from a rack of holders. Glue tape 
is then applied to the sheet of paper, at a location which is programmatically chosen based on the aerodynamic 
center of each wing. Glue tape ensures that there is minimal weight increase on the paper airplane and that the 
adhesive properties are strong enough for the chosen paper and the holder material. After glue application, the 
laser engraver cuts out the wing shape. When the cutting process is completed, the holder is attached to the wing 
using the previously dispensed glue tape. The gripper grasps the assembled paper airplane, places it on the guide 
rails of the launcher, and finally performs a launch sequence by pushing the paper airplane at an acceleration 
of 1m/s2 to the launcher’s wheels rotating at 160 RPM. The guiding rails mounted horizontally parallel to the 
ground, and there is no pitching angle of the launched airplane. Flight data is acquired using two cameras and 
automatically analyzed. During the flight sequence and subsequent data analysis, the robot picks the waste spare 
paper on the laser engraver bed and disposes of it. To enable robust and reliable fabrication, the robot arm is 
controlled using force control when performing tasks such as picking up paper or the flight holder where the 
height of the position of the component can be variable.

Data capture.  The paper airplane flights are recorded using two Logitech cameras recording at 1280× 720 
resolution at 30 FPS . A visualization of the data capture setup from the top is simplified and illustrated in Supple-
mentary Fig. S4. The first camera, placed perpendicular to the plane of flight, is used to obtain the 2D trajectory 
of the flight from the side. A second camera is placed looking along the flight path to capture the out of plane 
motion to allow the flight distance to be adjusted for this motion. To extract the trajectory from the raw videos, 
each frame is compared to the first frame to obtain a binary difference image. Each of these images is blurred, 
and a binary mask is created to detect the largest object in each frame, which corresponds to the paper airplane. 
The mean location of the object in the two dimensions of the image frames is used to identify the location of the 
airplane in each frame. The final 3 cm before the airplane touches the ground is discarded as the trajectory and 
data capture is affected by the ground. A high friction mat covers the landing region of the paper airplane so that 
they slide on the floor minimally after first touching the ground.

To correct for any out of plane motion in the trajectory extracted from the side camera, the final landing spot 
is extracted from the motion in the second camera and this is used to scale the trajectory to the true distance 
accordingly. The pixel coordinates are converted into world coordinates of the environment using 2D projective 
transformation42 from vision markers placed on the floor. This results in a trajectory which is defined by a series 
of points in 2D space.

For each trajectory it is necessary to determine the distance flown and also the behavior label of each trajec-
tory. To do this, it must be converted into a usable form. A polynomial fit is used as it is well suited to the form 
of the trajectories and also has the necessary information in a reduced form to enable labeling of the behavior. 
A 5th degree polynomial is able to capture most trajectories well. As all flights fall approximately as a downward 
sloping trajectory, the 0th and 1st coefficients are discarded. Each flight can therefore be described in terms of 
the flight distance, s and the 2nd to 5th degree polynomial coefficients, c1 , c2 , c3 , and c4 , respectively.

Data‑set generation.  To understand the design space of the system and ultimately generate the GMM-
assisted model, 50 representative airplane geometries are sampled. To begin the process, first 800 airplanes 
which satisfy the constraints mentioned in “Parametric wing design” are uniformly sampled. Then, to choose a 
representative sample of 50 airplane geometries, Latin hypercube sampling (LHS) is used to sample 50 airplane 
geometries which do not necessarily satisfy the constraints mentioned in “Parametric wing design”. Finally, for 
each airplane geometry obtained through LHS, a corresponding airplane geometry from the initial 800 geom-
etries is found which minimizes the RMSE of the parameters, resulting in 50 airplane geometries which satisfy 
the constraints.

Creating a cluster‑based behavior model.  We observe that the system of paper airplanes form behav-
ioral clusters within the geometric space (Fig. 2b). The flight trajectories and distances shown in Fig. 1c,d also 
call for a method that is able to capture their probabilistic nature of behaviors. To obtain an insight into their 
behavior, a cluster-based Gaussian mixture model (GMM) assisted method is chosen instead of methods utiliz-
ing neural networks, for example, so the mapping between the geometry and behavior are interpretable to allow 
for solving the forward and reverse design problems.

The process of creating the model is shown in Fig.  6a. The model requires an aggregate data-set 
D = {d1, d2, . . .} , where each data point d ∈ D ⊆ R

5 , represents the behavior of each flight (as in 
d = [s, c1, c2, c3, c4] from “Data capture”). Each behavioral type must first be automatically labeled, such that the 
data corresponding to each behavior can be used to form a GMM. To do so, unsupervised k-means clustering 
is performed on D with k = 3 . Here, k = 3 was chosen by calculating the Calinski-Harabasz criterion43 for each 
k ≤ 6 using only the polynomial coefficient information of D. k = 3 matches the number of trajectory types 
visually observed (Fig. 1a) and provides confidence in the results of unsupervised clustering. This calculation is 
performed once, and k = 3 will be used for all future model generation steps.

With this clustering, each flight data d is classified into one of three behaviors (B1, B2, B3). this results in a 
behavior-classified data-set D = {DB1,DB2,DB3} and a data-set of a behavior X becomes DBX =

{

dBX,1, dBX,2, . . .
}

.

Each of the data points d in the set D can evidently be mapped to a wing geometry g =
[

�,�b,
W
L

]

 in the 
geometry space G ∈ G ⊆ R

3 . When we map every behavior-classified data point from D to G , we result in a 
behavior-classified geometry set G = {GB1,GB2,GB3}.
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The automatic classification allows for distinction between large differences in behavior. However, each GBX 
spans are large space in G , and lacks specificity. For instance, the R 2 values for each geometric parameter in rela-
tion to the flight distances are still weak (Supplementary Table S1). Therefore, each behavior geometry set GBX 
is further clustered using k-means, this time in geometry space G . The number of clusters is not chosen a priori, 
and its value for each geometry set GBX is automatically determined by Eq. (1) by evaluating the silhouette score.

As a result of this secondary clustering process, each point in G has a classification of its behavior, BX and 
the sub-cluster ‘component’ y: gBX,y.

Finally, for each behavior classification, a Gaussian mixture model is formed using the sub-clustering. The 
mixture model, MBX is generated for each geometry set GBX,1:kX such that M = {MB1,MB2,MB3} . Since the 
geometry space G ⊆ R

3 , the resulting model is a multivariate Gaussian mixture model with kX components 
that vary for each behavior. The set of cluster-based mixture models M serves as a function to relate the airplane 
geometry and its probabilistic flight behavior.

Using the cluster‑based behavior model.  The cluster-based model can be used to map between the 
wing geometry and probability of each behavior of the paper airplane, where the process is shown in Fig. 6b. In 

(1)kX = argmax
kX

silhouette(k- means(GBX))

Figure 6.   Schematic of the proposed method for (a) generating the GMMs for each behavioral type; (b) 
forward and reverse design problem in mapping between airplane geometry and behavior; (c) GMM-assisted 
and unassisted Bayesian optimization of airplane geometry.
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forward design, the probabilistic behavior can be predicted for an unseen airplane geometry. In reverse design, 
the geometry of the airplane can be predicted for a specified probabilistic behavior.

Forward design: geometry to behavior.  Before performing the forward design process of predicting behavior for 
a specified geometry, the model M must be generated. t paper airplane geometries are first sampled from G using 
Latin hypercube sampling. Each airplane geometry g1:t are flown five times each to obtain the data points d1:5t . 
M is then generated using d1:5t via the method described in “Creating a cluster-based behavior model”.

Using the cluster-based mixture model, we wish to determine the probability of a particular airplane geom-
etry, g exhibiting a behavior, BX , P(BX|g) . To simplify the computation, we consider an approximate solution, 
as shown in Eq. (2).

The integral in Eq. (2) is computed approximately through a discrete summation shown in Eq. (3). The N’s 
represent the minimum and maximum bounds of the numerical integration for the three geometric parameters 
centered around the mean of each in the GMMs.

Next, the behavior ratios, rBX(g) of a behavior for a given wing geometry can be calculated as Eq. (4). The 
rBX(g) is a vector of three probability values from 0 to 1 that represents how likely it is for a wing geometry, g to 
exhibit a behavior (B1, B2, B3). In the same way, the probabilistic behavior of an ‘unseen’ wing geometry held 
out during the model generation, can be predicted.

Reverse design: behavior to geometry.  The generated model can also be used for reverse design where a target 
behavior can be mapped backed to a wing geometry. The target behavior ratio, rBX,target is compared to the 
behavior ratio, rBX(g) for g1:t geometries that was used to generate the model. The RMSE is calculated between 
the two ratios and the predicted airplane geometry, g∗ is chosen using Eq. (5). To verify the accuracy of the 
reverse design problem, the geometries identified as g∗ were flown ten times each and their behavioral types 
identified as shown previously in “Behavioral prediction and programming”.

Optimization for distance.  The behavioral model can also be used in an iterative optimization loop, 
where the aim is to search for an airplane geometry which reaches some objective function. At each optimiza-
tion iteration, the behavioral model can be used to constrain the search space by identifying regions of interest 
based on the objective function. This method of utilizing the behavioral model is compared against the same 
optimization process without this additional constraint provided by the GMMs.

In this work, the objective of the optimization is a target flight distance. Bayesian optimization44 is used to 
perform the selection of airplane geometries at each iteration. The optimization method is described visually in 
Fig. 6c, and the purple shaded box highlights where the behavioral model is used in the process.

To initialize the optimization process, n random airplane geometries are sampled from G uniformly. These 
g1:n paper airplanes are flown five times each to produce d1:5n flight data points, which becomes the initialization 
data-set, Dn = {d1:5n} (where the superscript denotes the optimization iteration count).

The model is used to constrain the search space of the Bayesian optimization process. At every iteration, the 
model Mn is generated using all of the data captured including the initialization process.

Then, one out of three GMMs, MB∗ , is selected, where B∗ is the behavior which minimises the difference of 
the median of the flight distances in each behavior data-set and the target distance. Using Eqs. (2,3), the set of 
all points C ⊆ G where P̄(B∗|g) > 0.7 . The Bayesian optimization sampling process will only search within C 
to output the design gn+1.

(2)

P(BX|g) ≈ P̄(BX|g) = max
i∈[1...kX]

∫ ∞

−∞

hBX,i(x)1(x, g)dx x, g ∈ G

Where hBX,i(x) =
1

√

(2π)3|�BX,i|
exp

(

−
1

2
(x − µBX,i)

T
�BX,i

−1(x − µBX,i)

)

is the ithmixture component of behavior BX, and

1(x, g) =

{

1, if hBX,i(x) ≤ hBX,i(g)
0, otherwise

is the indicator function to define the region of integration.

(3)
N1
∑

x1=−N1

N2
∑

x2=−N2

N3
∑

x3=−N3

hBX,i(x)1(x, g)�x1�x2�x3 where x = [x1, x2, x3]

(4)rBX(g) =
P̄
(

BX|g
)

∑

X
P̄
(

BX|g
) , where X = 1, 2, 3

(5)g∗ = argmin
g∈[g1,...gt]

√

√

√

√

1

3

3
∑

X=1

(

rBX(g)− rBX,target
)2
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The newly sampled geometry, gn+1 is flown five times to obtain the next data points, dn+1 = d5(n+1)−4:5(n+1) . 
The aggregate data-set is updated with the new five data points as in Dn+1 =

{

Dn, dn+1
}

 . In this way, the updated 
behavioral model becomes Mn+1 in the next iteration. The optimization is continued until a predetermined 
stopping criterion is met to produce the optimized airplane design, ĝ = gn+1.

In the standard Bayesian optimization, the n airplanes used to create the model are used as ‘seed’ airplanes, 
and the behavioral model and the geometric space constraining is not performed.

Data availability
The associated code and data is available here: https://​gitlab.​epfl.​ch/​obaya​shi/​paper-​airpl​ane
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