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A Wearable Smart Glove and Its Application of Pose
and Gesture Detection to Sign Language Classification

Joseph DelPreto*1, Josie Hughes*2, Matteo D’Aria3, Marco de Fazio3, and Daniela Rus1

Abstract—Advances in soft sensors coupled with machine
learning are enabling increasingly capable wearable systems.
Since hand motion in particular can convey useful information
for developing intuitive interfaces, glove-based systems can have
a significant impact on many application areas. A key remaining
challenge for wearables is to capture, process, and analyze data
from the high-degree-of-freedom hand in real time.

We propose using a commercially available conductive knit to
create an unobtrusive network of resistive sensors that spans all
hand joints, coupling this with an accelerometer, and deploying
machine learning on a low-profile microcontroller to process
and classify data. This yields a self-contained wearable device
with rich sensing capabilities for hand pose and orientation, low
fabrication time, and embedded activity prediction.

To demonstrate its capabilities, we use it to detect static poses
and dynamic gestures from American Sign Language (ASL). By
pre-training a long short-term memory (LSTM) neural network
and using tools to deploy it in an embedded context, the glove and
an ST microcontroller can classify 12 ASL letters and 12 ASL
words in real time. Using a leave-one-experiment-out cross
validation methodology, networks successfully classify 96.3% of
segmented examples and generate correct rolling predictions
during 92.8% of real-time streaming trials.

Index Terms—Wearable Robotics; Gesture, Posture, and Facial
Expressions; Soft Sensors and Actuators; Embedded Systems.

I. INTRODUCTION

WEARABLE devices have many applications ranging
from health monitoring and analysis to virtual and

augmented reality. These devices must be robust, have a small
form factor, and provide significant information content such
as postures or motion. This is particularly challenging for
wearable devices focused on the hand and wrist, due to the
many joints and degrees of freedom that must be captured
simultaneously. This also raises a secondary challenge of
interpretation and analysis, requiring methods to classify or
understand this complex sensory data in real time.

Due to the many application domains for smart gloves, there
have been a variety of innovative approaches to capturing
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Fig. 1: The self-contained wearable system is based on a commercially
available conductive knit glove. Wires are added to the back to create
strain sensors. The board contains an accelerometer, and performs all signal
processing, real-time neural network evaluations, and communications.

postural or force information. These include research and
commercial devices based on strain, capacitance, and piezore-
sistance. For example, stretchable electronics can provide
high-resolution strain sensing [1], and small soft capacitive
sensors can detect micro-gestures from small postural changes
[2]. Combining such techniques with learning pipelines can
yield capable systems; neural networks can accurately recon-
struct hand poses based on capacitive sensing [3], or identify
grasp types and modalities from a high-resolution knitted
piezoresistive glove [4]. Multiple modalities can also aid hand
gesture classification, such as by combining muscle activity
with pressure-sensitive arrays [5] or with soft electronics that
measure strain and pressure [6]. Commercial gloves such as
the Manus system [7] can also provide high-fidelity pose
information for virtual reality or other applications, although
they are typically expensive and require intricate electronics.

Such gloves showcase promising sensory technologies and
learning architectures, but various challenges remain. These
include scalable and accessible fabrication, and the ability to
classify data online with small wearable microcontrollers.

Taking a step towards these goals, this paper presents the
smart multi-modal glove system shown in Fig. 1. It features
on-board classification, and is based on a commercially avail-
able glove. We sensorize its strain-sensitive conductive knit to
form 16 resistive sensors spanning the hand’s degrees of free-
dom. We combine this pose information with an accelerometer
on the back of the hand. A small STM32 microcontroller
processes signals and evaluates a neural network in real time.
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To demonstrate the capabilities of the glove, we perform
rolling time-series classification of 24 letters and words from
American Sign Language (ASL) [8]. This vocabulary has
been explored for wearable systems by many past research
endeavors, such as [9]–[11]. It offers impactful applications
such as improving communication between people or inspiring
alternative human-computer interfaces, especially involving
deaf participants or challenging auditory environments. The
vocabulary also includes both static poses and dynamic mo-
tions. Past work has often focused on only one of these di-
mensions or has not been implementable on microcontrollers,
which limits the wearability and practicality.

The current work builds on past research and develops
an embedded learning system that leverages both strain and
acceleration sensing to perform real-time pose and gesture
classification. In particular, its key contributions include:

• Sensorizing a commercially available strain-sensitive
glove for ease of fabrication and adding an accelerometer,
to capture both hand pose and gesture information;

• Developing a neural network pipeline to detect time-
series events, which is pre-trained and then embedded
on a microcontroller to run in real time;

• Preliminary experiments using a vocabulary of 24 ASL
words and letters, including static and dynamic gestures;

• Classification performance results evaluated on unseen
sessions of wearing the glove, using offline segmented
examples or online rolling predictions.

The remainder of this paper first focuses on sensoriza-
tion and electronics. It then describes the learning pipeline
including the experimental protocol, network, and training.
Results then investigate rolling gesture classification. The
paper concludes with a discussion and future directions.

II. RELATED WORK

With advances in soft or compliant strain sensors, there
has been significant growth in the availability and focus
on wearable devices [12]. This includes the development
of commercial solutions [13]. Due to the use of hands for
manipulation, communication, and more, there is a strong
focus on developing smart gloves to detect hand poses and
interactions [14]. Many previous approaches focus on applying
soft or compliant sensors to a glove to allow the deformation
of each degree of freedom of the hand to be measured.
This includes capacitive [15], resistive [16], ionic [17], or
even bi-modal sensing approaches [18]. Although these have
shown significant potential for pose reconstruction and motion
detection, there are remaining challenges regarding scalability
of the number of sensors and fabrication.

Knitted sensorized gloves are particularly attractive since
they do not require post-processing or the further addition
of sensors to the structure. This has the potential to make
the fabrication process rapid and repeatable, and also for the
number of sensors or sensory inputs to be high. Previous work
has demonstrated the capabilities of custom knit-based strain
sensors [19], identifying how fabric and knit parameters can
change the properties of the sensor [20]. Advances in digital
knitting systems have enabled many customized sensorized

gloves. This includes systems that allow selecting specific
yarns to design sensor characteristics and regions on the
knitted surface of the glove [21]. Such flexibility to customize
knitted regions or patterns has been shown to enable a variety
of applications [22]. Additional approaches include processing
yarns to allow the formation of sensors through knitting, such
as electrospun fibers [23] or highly conductive polymers [24].

While digital knitting can leverage custom materials and
form factors, using “off-the-shelf” gloves can provide an even
lower barrier for fabrication and utility. The current work
builds on an initial exploration of adapting a commercial
glove to create a mesh network of resistive sensors [16].
Compared to this past study, the current work increases the
capabilities by adding on-board signal processing and machine
learning, enhances the ability to capture dynamic motions,
simplifies fabrication by using fewer sensors, and explores a
new application domain. The presented device can be a stand-
alone wearable system rather than one that streams sensor data
to a laptop. It also omits adding pressure-sensing infrastructure
in favor of a more streamlined glove based on the commercial
knit. It adds an accelerometer to capture orientations and
motions relative to the world, rather than only sensing in
a hand-centric frame. Finally, a new learning pipeline and
experimental paradigm demonstrate applicability to real-time
gesture and pose detection.

III. FABRICATION AND ELECTRONICS

The deployed system can be considered as three main as-
pects: the sensorized resistive glove and accelerometer, custom
electronics with ST technologies for data acquisition and clas-
sification, and a neural network running on the microcontroller.
This section focuses on sensors and electronics, while the next
sections discuss the learning pipeline.

A. Resistive Knit

This work uses a commercially available knitted conductive
glove designed to work with capacitive touch screens, namely
the Original Sport glove by Agloves [25]. Due to the silver
threads within the knit, the glove has a resistance of approx-
imately 5 Ω/cm that varies when a strain is applied. Due to
the knit pattern, the material can undergo approximately 70%
strain without permanent deformation. Adding electrode con-
nections to this “off-the-shelf” glove enables rapid creation.

As explored in [16], the sensing properties of the knit can
be characterized by mounting a section of the material in an
Instron machine and cyclically applying 0-50% strain. Since
the knit pattern is directional, the resistance response curve
depends on the strain direction as shown in Fig. 2. It exhibits
high sensitivity to strain along the knit, and low sensitiv-
ity to strain across the knit. This is suitable for detecting
common hand deformations, since the interphalangeal finger
joints cause bending along the knit. Additionally, since the
glove is fully conductive, self-collisions between parts of the
hand will cause significant resistance changes regardless of
bending direction. The response along the knit exhibits high
repeatability between testing cycles as shown by the shading
in Fig. 2, which indicates that resistance varies consistently
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Fig. 2: The response of the glove material was characterized using 80 cycles
of straining either along or across the knit. Adapted from [16].

Fig. 3: Wires are connected to 17 points on the back of the hand to form strain
sensors on each finger segment and the hand, including a common ground.
An accelerometer is also on the PCB on the back of the hand. (a) depicts the
locations schematically, while (b) shows the connection method.

during stretching. However, it also exhibits high hysteresis;
this is likely due to the nonlinear behavior of the knitted fibers.
The average response and recovery times were found to be
0.35 s and 0.8 s, respectively; this is sufficient for the gesture
detection currently explored, but may hinder the use of the
glove in applications that require faster responses.

B. Glove Sensorization

To enable hand pose identification, we use this conductive
glove to form strain sensors spanning all joints of the hand.
A connection is made by simply weaving approximately 2 cm
of stripped wire through the knit in a rough loop as shown
in Fig. 3. Measuring the resistance between two such connec-
tions forms a strain sensor due to the knit’s strain-sensitive
response. In contrast to [16] which considered all pairs of
read-out points, the current work simplifies processing while
still detecting motions of all joints by only considering the
resistance between each of 16 read-out points and a common
ground. Connections are placed on each finger segment to
maximize the information content.

Wires are attached to the microcontroller with sufficient
slack to not hinder finger motion. In the future, they could
also be hidden and protected by a non-conductive glove layer.

C. Electronics Design

To achieve low-noise readings from the strain sensors in
a compact form that can be easily worn on the hand, a
custom electronics board was designed. It incorporates the

strain sensor reads-outs, an ST microcontroller, and a 3-axis
accelerometer. At the heart of the board is an STM32H7
microcontroller, which performs data acquisition, signal pro-
cessing, and real-time neural network evaluation.

The readout for the 16 strain sensors has been designed
to maximize stability and sampling frequency. The strain
sensors in the glove are connected between a constant current
source and ground. The voltage drop generated by this current
depends on the sensor resistance. It is amplified, adjusted
for offset, and acquired by the STM32H7 analog-to-digital
converter (ADC). Two digital-to-analog converters (DACs) of
the STM32H7 are used to control the analog front-end that
regulates the amount of current generated and the amount of
offset removed from the measurement.

To use the same circuitry for all sensors, two 16-channel
switches iteratively connect to each sensor; this multiplexing
thus performs sequential acquisition. This circuit, together
with the STM32H7, allows for the current and offset voltage
to be specified for each single sensor within fixed boundaries.
This can maximize the resolution of measurements for a range
of sensors which may not be homogeneous, may have different
sensitivities, or may have different base resistances.

The 3-axis accelerometer connects to the STM32H7 via I2C.
All data acquisition, signal processing, and computation

is performed on-board. The board also contains a Bluetooth
module, although the current tests used a USB connection to
report classification results and for power. Simply activating
the wireless transmission option and adding a small battery
allows the device to be untethered and self-contained.

IV. GESTURE VOCABULARY

The chosen vocabulary consists of poses and gestures repre-
senting 24 letters, words, or phrases of ASL. This highlights
the capabilities of the sensorized glove to detect both static
and dynamic gestures, and demonstrates a potential application
that could make human interactions more natural by translating
ASL into text or speech in real time.

Fig. 4 illustrates the 11 static poses and 13 dynamic ges-
tures. ASL naturally showcases the necessity of detecting both
hand pose and motion. Certain pairs of vocabulary entries,
such as I and J or A and Sorry, have the same pose but differ-
ent dynamics. Other sets, such as Eat, Home, and Thank You,
have subtle differences in hand poses, orientations, or motion
directions. Some gestures such as Please or Yes are periodic
motions that could have varying numbers of repetitions. Most
of the letters are static poses without motion. Altogether, the
chosen vocabulary thus probes the system’s ability to combine
pose and motion information for multi-class gesture detection.

V. TRAINING DATA COLLECTION

To train a classifier for this task and explore its robustness,
we performed 7 training experiments. These spanned multiple
days, and the glove was always removed between experiments.
Between same-day sessions, it was removed for an average of
1.4 hours. This allows us to explore the robustness of the
classifier across episodes of use, including effects such as the
glove being worn or stretched differently on the hand, general
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Fig. 4: A vocabulary of 24 ASL letters and words was selected, which requires identifying a range of poses and dynamic motions. This yields an informative
corpus for evaluating the combination of strain-based pose information and accelerometer-based motion information featured by the embedded glove system.

Fig. 5: The pipeline processes collected training data to create a neural network that can classify segmented examples or streaming real-time data.

wear-and-tear, and varying hand temperatures or moisture
levels. The current study involved a single ASL novice; this is
sufficient to demonstrate feasibility of the wearable system, but
future work should expand the subject pool. Each experiment
recorded 10 trials of each letter or word, with blocks recorded
sequentially. This provides 70 total examples of each gesture.

Data was recorded continuously throughout the experi-
ments. A 2.5 s cue was presented for each trial, which started
shortly after the correct starting position was achieved. A rest
pose was assumed once the cue ended. The status of the
gesture cue was recorded along with each data sample, creating
square waves of ground truth labels. Raw ADC values were
recorded from the 16 strain channels and the 3 acceleration
channels via USB serial at 100 Hz.

This data was then processed and used for training and
evaluation as described by Fig. 5 and the following sections.

VI. DATA PROCESSING AND FEATURE EXTRACTION

To create training data for the classifier, recorded data is seg-
mented into labeled examples, conditioned, and transformed
into feature vectors. Data augmentation is also used to improve
the robustness and accuracy of the trained network, especially
when applied to real-time streaming data.

A. Segmentation into Labeled Examples

Based on the stream of ground truth labels, a 2 s window
centered around each trial is extracted. This yields positive
gesture examples with 200 timesteps each. In addition, exam-
ples of not making any gesture are important for the network
to learn, and such unstructured activity may be highly variable.
Examples are extracted as 2 s windows in three possibly over-
lapping locations: ending 1 second before a trial label starts,
starting 1 second after the label ends, and centered between
successive trials. Overall, each 10-trial block of a word/letter
yields 10 positive examples and 29 baseline examples.

B. Data Augmentation

Although the network will be trained on extracted labeled
examples, it will ultimately be evaluated in a streaming fashion
by classifying rolling windows of real-time data. In addition,

dynamic gestures may be performed at different speeds. To
help address this, data augmentation is used to improve the
network’s robustness to the timing of gestures.

Time-shifted synthetic examples aim to encourage the net-
work to accommodate examples that are not perfectly centered
in its classification window. For each window of a positive
example, 3 new windows are defined that are shifted earlier
and 3 new windows are defined that are shifted later. Each
shift is a random duration between 50 ms and 400 ms. The
same procedure is applied to each baseline window as well,
but with only 1 shifted window in each direction.

Time-scaled synthetic examples aim to improve robustness
to varying gesture speeds. Compressing and dilating time is
used to represent faster or slower gestures; the timestamps
from the entire experiment are scaled by a chosen factor, and
then the data is resampled with linear interpolation to restore
a 100 Hz sampling rate. The 200 samples centered around
the original centered sample of a window is then used as
the new synthetic example. This procedure is performed 6
times for each window of a positive example: 3 times that
scale time by a random factor between 0.8 and 0.95, and 3
times that use a random factor between 1.05 and 1.2. Note
that the entire experiment is resampled for each augmentation,
since extra data on each side of the original window will be
needed when speeding up the gesture. This augmentation is not
performed for baseline examples, as the features are generally
not time dependent. Note that the current pipeline does not
address scaling of acceleration magnitudes to more completely
simulate varying gesture motion speeds.

C. Feature Extraction: Smoothing and Normalization
Data within each original or augmented window is then pre-

processed to generate features. To simplify the pipeline and
allow the network to uncover useful characteristics, processed
data is passed to the network directly instead of manually
defining a reduced set of features. Both strain and accelerom-
eter data are used, since the ablation results of Section VIII
confirm that both provide valuable information.

Firstly, each strain channel is smoothed by a moving mean
with a trailing window spanning 0.1 s (10 timesteps). This
helps remove any high-frequency noise or outliers.
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To make the classifier robust to short-term or long-term drift
in the strain sensors while also avoiding calibration routines,
the strain values are dynamically normalized on a rolling basis.
For each 2 s window, the minimum and maximum values
across all strain channels are computed, and then all values
are shifted down by this minimum and scaled by this range.
The new strain values in each window will thus be between
0 and 1. Jointly shifting and scaling all channels by the same
factor preserves the relative magnitudes between channels.
Computing these offsets and factors on a rolling basis can
accommodate drifts throughout experiments or across days due
to effects such as the glove’s hysteresis or fit on the hand, while
avoiding tuned factors or dedicated calibration periods.

For the accelerometer, recorded data is shifted and normal-
ized according to the bounds of the ADC outputs. Constant
values are used here instead of a rolling approach since both
absolute and relative magnitudes embed useful information,
such as motion speeds and the direction of gravity.

Feature matrices were then created from each window by
concatenating all 16 strain readings with the 3 accelerometer
readings. This yields a 200 x 19 matrix for each labeled
example, with its values ranging between 0 and 1.

VII. NEURAL NETWORK TRAINING

To classify the time series data, we use a long short-term
memory (LSTM) recurrent neural network. Since LSTMs have
feedback connections to process sequences of data, they are
well-suited to our task of classifying poses and motions.

The network accepts a 200 x 19 feature matrix representing
a sequence of strain and accelerometer readings. It then has
a single LSTM layer of size 100, a 20% dropout layer, and
a dense output layer with softmax activations. The output has
25 classes: the 24 letters and words, and a baseline class
representing that no gesture is being made.

This architecture was designed to be relatively lightweight
to facilitate evaluation on a resource-limited microcontroller,
but the size of the single layer was chosen to be large enough
to discover useful characteristics in the time-series feature
matrices. The dropout layer aims to reduce overfitting during
training. Alternative structures can be explored in the future,
but the current pipeline is demonstrated to be sufficient for an
initial exploration of the glove’s capabilities.

We use a leave-one-experiment-out 7-fold cross validation
strategy for training and evaluation. All examples from an
experiment are used as the test set, such that the network will
be tested on data from an episode of wearing the glove that did
not influence the training at all. Each experiment is iteratively
treated as the holdout experiment, so 7 different networks are
trained. Using each experiment as a test set instead of using
randomized k-fold cross validation helps avoid data leakage
between training and testing sets, since data within a session
is likely correlated along such aspects as user behavior or glove
properties. The selected procedure aims for a more robust
evaluation by simulating performance that would be expected
on a new day of using the glove without network retraining.

Each test set has 5,208 examples. This includes 3,120
positive examples that are originals, time-shifted augments, or

time-scaled augments. The set also includes 2,088 original or
time-shifted baseline examples. The remaining 6 datasets are
then split into training and validation sets, with the validation
set having the same size as the test set. This corresponds to
the training set having 26,040 examples. The random split
into training and validation sets is implemented to maintain
the original proportions of labels.

While the above procedure includes all data augmenta-
tion examples, analogous networks were also trained on
corpuses that left out time-shifted examples and/or time-
scaled examples. This facilitates evaluation of how the data
augmentation impacts performance. Similarly, networks were
trained using only strain-based features (200 x 16 inputs) or
only accelerometer-based features (200 x 3 inputs) to facilitate
ablation results exploring the impact of multiple modalities.

Each network was trained for 50 epochs using a batch size
of 32. The network and training process were implemented in
Python 3.9 using version 2.5 of TensorFlow and Keras.

A. Embedded Deployment

The ST CUBE-AI software converts the pre-trained network
to embedded code for the STM32 microcontroller. While the
current network is lightweight enough to be loaded directly,
the software offers options to trade off memory usage, speed,
and accuracy; this can be critical if using a more resource-
constrained device or a larger network. To optimize memory,
input and output buffers can be allocated in the same space
as activations by overwriting data once it is no longer needed;
this has no expected impact on accuracy, but may decrease
speed. Dense layers can also be compressed via floating-
point quantization by generating lookup tables, but this may
decrease accuracy. Section VIII-C explores these options.

VIII. RESULTS AND DISCUSSION

We consider three scenarios to evaluate the system: clas-
sifying segmented examples, streaming classifications using
recorded data to simulate real-time behavior, and the embed-
ded implementation on the microcontroller. Throughout the
discussion, distributions are often summarized as µ±σ, where
µ is the mean and σ is the standard deviation.

A. Performance on Segmented Examples

As described in Section VII, networks were trained using
leave-one-experiment-out cross validation. Using data aug-
mentation and both strain and acceleration features, training
and validation set accuracies averaged 99.2%± 0.2% and
99.1%± 0.3%, respectively. Each network was then evaluated
on the segmented examples from its held-out experiment
performed at a different time after glove removal. Accuracies
on these test sets averaged 96.3%± 2.1%, and the blue bars
of Fig. 6 illustrate the individual results. Some variation is
expected due to effects such as how the glove is positioned and
stretched, skin conductivity, or user behavior. The relatively
consistent performance across all held-out experiments is thus
promising and suggests that overfitting was mitigated. Future
investigations with multiple users and longer-term wear-and-
tear should further explore this generalizability.
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Fig. 6: Each experiment was iteratively left out of the training process, and
networks were evaluated on the left-out trials. The second bar of each group
uses the full pipeline; others explore removing augmentation or features.

Fig. 6 also summarizes ablation studies that probe aspects of
the presented learning pipeline. Removing data augmentation
decreased test set accuracy to 85.0%± 7.3%. Using time-
shifting alone yielded 93.5%± 3.3%, and time-scaling alone
yielded 94.2%± 3.2%. Combined with the results of the
full pipeline, this suggest that both types of augmentation
improved robustness and in complementary ways.

Only using strain-based features yielded test set accuracies
averaging 85.0%± 7.5%, and only using acceleration-based
features yielded 79.2%± 3.0%. This suggests that both types
of features provide useful information for classifying static and
dynamic gestures, and that the network successfully leveraged
these complementary modalities.

B. Performance on Streaming Data

1) Simulating Real-Time Behavior: While classification of
segmented examples is a good indication of performance, the
networks will ultimately be used in a rolling fashion on stream-
ing data. To simulate this using recorded data, a feature matrix
is created for every timestep of the experiment at 100 Hz, using
trailing 2 s windows. To mimic the microcontroller’s ability to
evaluate the embedded network at 5 Hz, every 20th matrix is
classified and a zero-order hold is applied between the results.

To help filter spurious predictions such as during a static
pose at the beginning of a dynamic gesture, we maintain a
trailing rolling window of four predictions (0.8 s). A filtered
prediction is outputted if all of them agree.

When a user makes a gesture, the streaming predictions
would ideally create a single pulse of correct labels lasting
one or more timesteps. To assess this, we compare rising edges
of the predicted label sequence with the sequence of ground
truth cues. If a rising edge is between 1.5 s before the start
of the ground truth label and 2 s after it ends, then the edge
is associated with that cue. Each true gesture may thusly be
matched with 0, 1, or many rising-edge predictions.

2) Aggregated Streaming Performance: Averaging across
all holdout experiments, the filtered networks made a single,
correct rising-edge prediction during 91.2%± 8.0% of the
cued windows. Multiple predictions, all for the correct gesture,
were made during 1.6%± 2.3% of the cues. There were no
trials in which only incorrect predictions were made, although
4.1%± 6.9% of the trials had both correct and incorrect
predictions. 3.1%± 3.6% of trials were missed altogether.

Augments:
Filtering:
Features:

Rolling Predictions on Streaming Data

Fig. 7: Classifying a rolling buffer at every timestep simulates real-time
performance, then results summarize the predictions that would have been
made while each true gesture was performed. The center outlined bar
represents the full selected pipeline, while the others ablate various aspects.

Fig. 7 illustrates these results and explores the impact of
parts of the learning pipeline. The first four bars demonstrate
that adding either type of data augmentation converts many
trials that were missed or incorrect into trials that have a single
correct prediction, and using both yields the best performance.
This suggests that augmentation successfully improved net-
work robustness in the streaming scenario, consistent with the
results observed for the segmented examples.

Comparing the fourth and fifth bars indicates that filtering
rolling classifications eliminated many spurious incorrect pre-
dictions and some redundant correct predictions. The filter thus
successfully created smoother and more reliable results.

The final two bars summarize the performance when us-
ing only accelerometer-based or strain-based features. This
decreases the percent of trials with a single, correct prediction
to 55.0%± 20.2% or 71.7%± 14.5%, respectively. This cor-
roborates the conclusion that both modalities provide valuable
and complementary information about the gestures.

3) Confusion Results: Fig. 8 further explores performance
of the full pipeline by considering each gesture separately. The
main section forms a confusion matrix focusing on the ideal
case of a single rolling prediction per gesture; each cell reports
the percent of trials in which the true gesture of the row yielded
a single rising edge of predictions for the column gesture. The
remaining possibilities are to have multiple, mixed, or missed
predictions for a gesture; these are summarized by the extra
four columns on the right, so each row sums to 100%. Results
aggregate all 7 classifiers evaluated on their respective hold-
out experiments, so each row summarizes 70 true gestures.

Results are promising for robust streaming performance,
highlighting that there were no cases of a gesture only being
associated with incorrect predictions. It is also interesting to
note that certain gestures yielded noticeably more missed or
redundant predictions. For example, single brief gestures often
have more missed trials, possibly since a small portion of the
2 s window actually contains the gesture; these include Home,
Eat, Thank You, Like, and Hello.

Certain gestures also had more instances of mixed correct
and incorrect predictions. To expand on this case, Fig. 9 reports
the number of times that each label was predicted during
each true gesture. Note that each row no longer sums to
the total number of true gestures, since varying numbers of
predictions may be made for each one. However, the results
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Streaming Results: Percent of Trials with Single Predictions
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Fig. 8: The main confusion matrix summarizes when gestures yielded a single
rising edge of streaming predictions. The extra four columns on the right
summarize when multiple or no predictions were made. Values are percents
of the 70 gesture trials represented by the row.

can provide insight into which gestures were confused by the
network. For example, the matrix shows that J often included
incorrect I predictions, but I was never incorrectly classified
as J. As demonstrated by Fig. 4, these use the same hand
pose but I is static while J involves a brief motion. Thus,
the erroneous predictions were likely during the initial static
phase of the J gesture and then followed by correct predictions,
leading to the observed mixed results. This particular case also
suggests that the network successfully used accelerometer data
to differentiate the two gestures.

The top row indicates 124 total false positives. This is
acceptable for the current application, considering that clas-
sifications were performed at 5 Hz over a total of 4.47 hours.

C. Online Results

Additional tests demonstrated feasibility of deploying the
pipeline on a self-contained embedded wearable system.

1) Embedded Deployment: The smoothing, normalization,
and feature extraction procedures were implemented in the
real-time embedded context. The network trained while hold-
ing out experiment 7 was then converted as described in
Section VII-A. Evaluating the network requires 9,622,900
multiply-accumulate operations. Optimization options were
tested via CUBE-AI. To measure inference time, it deployed
the network on the microcontroller and evaluated 10 random
inputs with values uniformly distributed between [0, 1]. To
measure correctness, it evaluated the network on a laptop using
10,000 random inputs and compared outputs with the original
Keras model. Table I summarizes the results. Accuracy con-
siders which class has the highest probability, while RMSE
considers the probabilities directly. Note that only marginal
resource impacts are observed for this network since only its
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Fig. 9: The matrix presents absolute counts of streaming classifications during
each true gesture. Each row spans 70 true gesture trials, but the rows may
have a different sum since multiple or no predictions can be outputted during
each trial. The top row represents false positives.

TABLE I: Embedded Network Deployment Options

input and output layers are affected. Based on these results, a
network with compression factor 8 was deployed; this reduces
memory without significantly impacting speed or accuracy.

2) Performance: Online results were obtained by perform-
ing each gesture 10 times and observing the streaming classifi-
cations. Prior to the experiment, the user could briefly practice
each gesture while watching the output. Future evaluations can
be more comprehensive, but the current study was designed
to demonstrate that the embedded system can successfully
implement the pipeline and validate the leave-one-experiment-
out simulated streaming results.

The network made predictions at approximately 5 Hz as
expected. Considering raw rolling classifications across all 240
gestures, 89.2% of trials yielded only the correct prediction.
5.8% of trials yielded mixed correct and incorrect predictions.
2.1% and 2.9% of trials had only incorrect predictions or no
predictions, respectively. When filtering rolling classifications,
86.7% of trials yielded only the correct classification, and
1.7% of trials yielded mixed correct and incorrect predictions.
1.3% and 10.4% of trials had only incorrect predictions or no
predictions, respectively.

This performance is comparable with the offline streaming
results. Qualitatively, the network was often sensitive to small
pose changes, especially regarding contact between fingers
which create large resistance changes. Additionally, the 2 s
classification window coupled with the previously observed
response times of the knit can cause some prediction delays.
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These results demonstrate that the pipeline was successfully
deployed in the embedded context. Future work can investigate
improving performance by expanding the training corpus,
adjusting the network structure, tuning filter windows, or
exploring optimal strain sensor placements.

IX. CONCLUSIONS AND FUTURE WORK

This paper presents a wearable smart glove that utilizes
a strain-sensitive resistive knit for postural information and
an accelerometer for motion. A small custom PCB and a
microcontroller read sensors, perform feature extraction, and
run a pre-trained neural network. The system is used to classify
sign language poses and gestures in real time.

This work demonstrates the potential of combining novel
soft sensors with state-of-the-art microcontrollers and machine
learning. However, future work can further characterize the
capabilities, limitations, and learning pipeline design.

Future studies should expand the subject pool to evaluate
robustness and generalizability, such as whether the network
can be plug-and-play for new users or whether a tuning proce-
dure should be added (either offline or online). They could also
explore factors such as the user’s ASL experience level, hand
size, or skin conductance. Insights from cross validation may
guide structural adjustments to improve robustness. Adjusting
the classification windows or filtering may also reduce latency.

Exploring the capacity and trade-offs of the learning
pipeline is also valuable. Adding gestures could be done with
minimal impact on speed or memory by simply adjusting the
softmax layer, but only until the LSTM’s learning capacity
saturates. Scaling the LSTM layer or adding layers scales how
many operations the microcontroller must perform to evaluate
the network. Network size and gesture count also impact how
much training data is required. Such trade-offs between size,
speed, accuracy, and training can be application-specific and
nontrivial to characterize for neural networks.

Finally, augmenting the glove with additional modalities
could unlock applications ranging from healthcare to sports.

This work thus takes a step towards more deployable
machine learning in embedded form factors that are suitable
for wearable devices. This moves closer towards the vision of
ubiquitous smart wearables that could improve communication
and lead to more intuitive human-machine interfaces.
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