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Abstract

This work is devoted to nonperturbative methods to study quantum field theories in
curved maximally symmetric spacetimes like de Sitter and Anti-de Sitter.
In the first part, we cover some preliminary facts about conformal field theories in flat-
space. Therein, the conformal algebra is derived and the unitarity bounds as well as the
conformal bootstrap are discussed. Furthermore, we cover the basics of quantum field
theories in a fixed de Sitter background. We develop the Hilbert space decomposition of
quantum field theory in d+1-dimensional de Sitter into irreducible unitary representations
of its isometry group SO(d+ 1, 1) as well as the notion of late-time boundary operators.
We also review the massive free field theory, in-in formalism and de Sitter-Euclidean
anti-de Sitter dictionary used in perturbative calculations.
The second part deals with the bulk two-point function and the boundary four-point
function. Firstly, the Källén–Lehmann spectral decomposition of the bulk two-point
functions is recovered and two inversion formulas for the spectral densities are presented –
one through analytical continuation from the sphere and the other through analytical
continuation from Anti-de Sitter. In the process, we exhibit a relation between poles in the
corresponding spectral densities and boundary CFT data. Next, we study the conformal
partial wave decomposition of the four-point functions of boundary operators. These
correlation functions are very similar to the ones of standard conformal field theory but
have different positivity properties that follow from unitarity in de Sitter. We conclude
by proposing a nonperturbative conformal bootstrap approach to the study of these
late-time four-point functions, and we illustrate our proposal with a concrete example for
two-dimensional de Sitter.
The last part develops a nonperturbative method called Hamiltonian truncation to
compute the energy spectrum of quantum field theories in two-dimensional anti-de Sitter.
The infinite volume of constant timeslices of anti-de Sitter leads to divergences in the
energy levels. We propose a simple prescription to obtain finite physical energies and test
it with numerical diagonalization in several models: the free massive scalar field, λϕ4

theory, Lee-Yang and Ising field theory. Along the way, we discuss spontaneous symmetry
breaking in AdS and derive a compact formula for perturbation theory in quantum
mechanics at arbitrary order. Our results suggest that all conformal boundary conditions
for a given theory are connected via bulk renormalization group flows in Anti-de Sitter.
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Résumé
Ce travail est consacré aux méthodes nonperturbatives pour étudier les théories quantiques
des champs dans des espace-temps courbes à symétrie maximale comme de Sitter et
Anti-de Sitter.
Dans la première partie, nous présentons quelques faits préliminaires sur les théories
des champs conformes dans l’espace plat. L’algèbre conforme est dérivée et les limites
d’unitarité ainsi que le bootstrap conforme sont discutés. De plus, nous abordons les
bases des théories quantiques des champs dans un arrière-plan fixe de de Sitter. Nous
développons la décomposition de l’espace de Hilbert de la théorie quantique des champs
dans un espace de de Sitter de dimension d+ 1 en représentations unitaires irréductibles
de son groupe d’isométrie SO(d+ 1, 1) ainsi que la notion d’opérateurs sur le bord au
temps tardif. Nous passons également en revue la théorie des champs libres massifs, le
formalisme in-in et le dictionnaire de Sitter-Anti-de Sitter Euclidéen utilisés dans les
calculs perturbatifs.
La deuxième partie traite de la fonction à deux points massive et de la fonction à quatre
points au bord. Tout d’abord, la décomposition spectrale de Källén–Lehmann des fonctions
à deux points de l’intérieur est obtenue et deux formules d’inversion pour les densités
spectrales sont présentées - l’une par continuation analytique à partir de la sphère et
l’autre par continuation analytique à partir d’Anti-de Sitter. Au cours du processus,
nous montrons une relation entre les pêles des densités spectrales correspondantes et les
données de la CFT au bord. Ensuite, nous étudions la décomposition en ondes partielles
conformes des fonctions à quatre points d’opérateurs au bord. Ces fonctions de corrélation
sont très similaires à celles de la théorie des champs conforme standard mais ont des
propriétés de positivité différentes qui découlent de l’unitarité en de Sitter. Nous concluons
en proposant une approche non-perturbative par bootstrap conforme pour l’étude de ces
fonctions à quatre points en temps tardif, et nous illustrons notre proposition par un
exemple concret pour l’espace de de Sitter à deux dimensions.
La dernière partie développe une méthode non-perturbative appelée troncature Hamilto-
nienne pour calculer le spectre d’énergie des théories quantiques des champs en Anti-de
Sitter à deux dimensions. Le volume infini des tranches de temps constant en Anti-de
Sitter conduit à des divergences dans les niveaux d’énergie. Nous proposons une prescrip-
tion simple pour obtenir des énergies physiques finies et la testons par diagonalisation
numérique dans plusieurs modèles : le champ scalaire massif libre, la théorie λϕ4, les
théories des champs de Lee-Yang et d’Ising. En cours de route, nous discutons de la
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Résumé

brisure spontanée de symétrie en AdS et nous déduisons une formule compacte pour la
théorie des perturbations en mécanique quantique à un ordre arbitraire. Nos résultats
suggèrent que toutes les conditions au bord conformes pour une théorie donnée sont
connectées via des flux du groupe de renormalisation à l’intérieur d’Anti-de Sitter.

Mots clés :

Théorie quantique des champs, Méthodes nonperturbatives, de Sitter espace-temps, Anti-
de Sitter espace-temps, Bootstrap conforme, Troncature Hamiltonienne
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Introduction

Why theoretical physics?1

Human beings have always been questioning. From the very early stages of history, we
were amazed by the surrounding phenomena and tried to categorize, describe or explain
them. Thanks to our arguably most important intellectual tool, logic, not only did we
understand some of these phenomena, but also we were able to conquer nature with
technology and predict other phenomena. At the top of these logical approaches to the
world around us, sits a branch of science called physics. Some of the non-trivial byproducts
of this approach to the world are its mysterious relation to abstract mathematics, its
power to predict and its extreme objectiveness that unlike art does not vary in the
spacetime of the cultures and subcultures. In the next few paragraphs, I will briefly use
the historical facts I have in mind to describe my own motivation to study theoretical
physics!

The modern scientific method went on a long journey after its birth by Galileo Galilei2. It
went ahead of mathematics in the 17th and 18th centuries, enjoyed the powerful back and
forth between abstraction and observation by the beautiful mind, Sir Isaac Newton and it
got to relate the seemingly distinct subject of magnetism, electricity and light by James
Maxwell. But in the early 20th century, it reached the most exciting time of its life when it
got to the regime of Quantum Mechanics and Relativity. This stage has undeniable effects
on every physicist’s mind: First, the existence of phenomena well beyond our intuition.
Second, the almost purely theoretical motivation for the development of general relativity
by Albert Einstein, without the need to explain an already observed phenomenon. General
relativity surpassed expectations and predicted the Big Bang, expansion of the universe,
black holes, gravitational waves, etc that leads to Nobel prizes to this day. This theory
was so beautiful and successful that every physicist dreams of coming up with a new

1This subsection is a personal reply to a non-physicts and can be skipped.
2“All knowledge of reality starts from experience and ends in it. Propositions arrived at by purely

logical means are completely empty as regards reality. Because Galileo saw this, and particularly because
he drummed it into the scientific world, he is the father of modern physics – indeed, of modern science
altogether”–Albert Einstein
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Introduction

theory like that!

Our universe is ruled by quantum mechanics and our macroscopic life is only a classical
limit of it – whilst many of our daily experiences, like typing this thesis on a computer
with billions of transistors, rely on quantum mechanical principles. The rapid and glorious
development of quantum mechanics in the 1920s followed by Dirac’s genius led to a
relativistic wave equation with the prediction of the existence of a particle with the
same mass and spin as the electron but the opposite electric charge – positron3. The
field description of electromagnetism in classical physics motivated the development of
a new quantum theory of fields that later on included other particles and gave birth to
Quantum Electrodynamics (QED), “the most stringently tested and the most dramatically
successful of all physical theories” [2]. These developments went on to make quantum
field theory a framework that is now one of the pillars of modern physics. The fact that a
person sits in a room and uses the mixture of his logic and some basic observations to
build a consistent theory and then tells you to go out and find this particle in a lab or
that pattern in the sky is like magic. The only difference is that that person, a theoretical
physicist, quite willingly shares his tricks!

Nonperturbative quantum field theory

Quantum field theories (QFTs) have had incredible success in describing various phenom-
ena in particle physics, condensed matter physics and cosmology. In spite of the extensive
work on QFT in the last century, most of these studies are in a perturbative regime
where a quantity such as interaction coupling or one over the rank of the gauge group is
assumed to be very small (λ≪ 1, 1

N ≪ 1). These systems make up a very small region
in theory space and cannot describe many of the most interesting physical phenomena.

The goal of this thesis is to nonperturbatively study QFT in a (d + 1) fixed curved
background4 and in particular maximally symmetric spacetimes. Maximally symmetric
spacetimes are homogeneous and isotropic. Hence, they have the maximal number of
isometries of 1

2(d + 1)(d + 2) with a constant Ricci scalar. A maximally symmetric
spacetime with (negative)positive curvature is called (Anti-)de Sitter ((A)dS). There are
multiple motivations to study (A)dS physics. First, let us mention the motivations for dS.

3As pointed out in [1], “there are serious reasons for being dissatisfied with the Dirac’s original
rationale” as (i) it would seem to rule out the existence of any particle of zero spin, (ii) the negative
sea argument does not work for charged bosons and (iii) magnetic moment of the electron predicted by
Dirac theory can be rescaled by adding another Lorentz invariant term called the Pauli term into wave
equation. These issues all will be solved by quantum field theory.

4In contrast with dynamical background, where the gravity is quantized and we need a theory of
quantum gravity.

2



Introduction

Quantum field theory in dS: Motivation

It is widely believed that our universe has gone through an exponential expansion of
spacetime called inflation [3–5]. Moreover, observations show that the universe is in an
accelerating expanding state called the cosmological constant dominated phase. Both of
these epochs are very well approximated by QFT in fixed background de Sitter [5].

It is difficult to put gravity and quantum mechanics together. String theory provides us
with a perturbative description of quantum gravity in which it uses perturbative techniques
to calculate the scattering amplitude of strings. Maldacena, in his revolutionary work of
AdS/CFT correspondence [6], paved the way for a nonperturbative definition of quantum
gravity in asymptotic AdS spacetime through the holographic principle. Now, the question
is: “can we propose a non-perturbation definition of quantum gravity in de Sitter and
ultimately the universe we live in?”. In this spirit, one finds the failed attempts to define
a stable de Sitter vacuum in string theory that motivated several conjectures called
Swampland–the low energy theories which are not compatible with string theory [7–12].
While QFT in rigid dS is fundamentally different from quantum gravity in a dynamical
background, it shows us the (indirect) path to cosmology in quantum gravity. For instance,
some large N QFTs on a rigid dS are the holographic dual of a gravitational spacetime
that includes an FRW-like geometry [13–18].

In contrast with the extensive studies of theories in other maximally symmetric spaces,
i.e. flat and AdS spacetimes, at both perturbative and nonperturbative levels, the QFT
in dS stayed rather unexplored. Some of the more recent works include the study of non-
gaussianities and perturbative calculations of boundary correlators such as cosmological
collider [19], cosmological optical theorem [20], dS-AdS dictionary [21, 22] and cosmological
bootstrap [23–25] as well as the resolution of IR instabilities [26]. The goal of this work
is to approach dS physics from a nonperturbative perspective.

The dS late-time correlation functions transform as conformal correlation functions under
the isometry group SO(d + 1, 1) of dSd+1 [19]. This suggests that one can employ
conformal bootstrap methods to study QFT in dS which is the key ingredient of our
study section 4. Let us briefly recall the main ingredients of the conformal bootstrap
approach [27, 28] applicable to Conformal Field Theories (CFTs) in Rd.

Conformal bootstrap

An abstract picture of the space of QFTs is that they are Renormalization Groups
(RG) flows between the scale-invariant theories called the UV and IR fixed points. For
most of the known examples, the scale invariance enhances to conformal symmetry
meaning that they are invariant under angle preserving transformations.5 Conformal

5It is proven that scale invariance in two dimensional unitary theories get enhanced to conformal
symmetry [29, 30] but for higher dimensions it is still an open problem [31–34]
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Introduction

Field Theories(CFTs) play a central role in different areas of physics such as critical
phenomena in statistical mechanics and quantum gravity in AdS via holography, to
name a few. They are highly constrained and the different microscopic systems can be
described by the same CFT (universality classes). The surprising fact is that very different
microscopic systems are described by the same CFT. The motivation to classify and
solve the space of CFTs using basic properties such as symmetries and other consistency
conditions led to a program called conformal bootstrap.

O3

O2 O4

O1

:
∑
k

f12kf34k

O1

O2

O3

O4

Ok =
∑
k

f13kf24k

O1 O3

O2 O4

Ok

Figure 1: A schematic illustration of crossing equation: Correlators can be expanded in
different channels using different operator product expansions with coefficients fijk that
enjoy positivity conditions derived from unitarity.

In a CFT, the two and three-point functions are fixed up to a discrete set of numbers.
Then, with the help of the Operator Product Expansion (OPE), which replaces a product
of two local operators with a sum of operators (as represented by fusions of two legs in
figure 1), higher-point functions can be reduced to infinite sums of three-point functions.
Therefore, knowing this basic set of numbers, the so called CFT data, is the same as
knowing all n-point functions. As illustrated in figure 1, depending on the order of
performing OPE in correlators one obtains different expansions of the same correlator.
The statement that all of these different expansions have to agree with each other is
called crossing symmetry and it results in the consistency conditions called the bootstrap
equations.

The idea of the conformal bootstrap, in fact, goes back to groundbreaking papers by
Ferrara, Gatto, Grillo, and Polyakov [35, 36] which led to a partial classification of
two-dimensional CFTs in the ’80s and ’90s while the study of higher dimensional theories
procrastinated. The conformal bootstrap experienced a renaissance when the authors
of [27] proposed a numerical method based on linear programming which extracts rigorous
bounds on CFT data from conformal bootstrap equations.

Now let us sketch the key points of this method where the central observables are
four-point functions of primary operators– see section 1.4. For simplicity, consider four
identical scalar operators in Euclidean space,

G(x1, x2, x3, x4) = ⟨O(x1)O(x2)O(x3)O(x4)⟩ (1)
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such that crossing symmetry is just invariance under permutations of the points xi ∈ Rd.
Using the convergent Operator Product Expansion (OPE), one can derive the conformal
block decomposition

G(x1, x2, x3, x4) =
∑
∆,ℓ

C2
∆,ℓG

12,34
∆,ℓ (x1, x2, x3, x4) , C2

∆,ℓ ≥ 0 , (2)

where C∆ are theory-dependent OPE coefficients corresponding to fOOOk in figure. 1.
G12,34

∆,ℓ are kinematic functions called conformal blocks. SO(d, 2) unitarity implies that
C2
∆,ℓ ≥ 0 and imposes lower bounds on the dimensions ∆ that can appear in (2).

Remarkably, the compatibility of crossing symmetry, unitarity and the conformal block
expansion (2) leads to non-trivial bounds in the space of CFTs. For example, it leads to
a very precise determination of critical exponents in the Ising and O(N) models in three
dimensions [37].

Nonperturbative cosmological bootstrap

QFT in dS contains observables like (1). These are obtained by studying four-point
correlations functions in the late-time limit. In this context, crossing symmetry still holds.
In fact, invariance under permutation of the points xi ∈ Rd is an immediate consequence
of operators commuting at spacelike separation. We can use the resolution of the identity
decomposed into unitary irreducible representations of SO(d+ 1, 1) to obtain

G(x1, x2, x3, x4) =
∑
ℓ

∫
dν Iℓ(ν)Ψ

12,34
d
2
+iν,ℓ

(x1, x2, x3, x4) , Iℓ(ν) ≥ 0 , (3)

where Ψ is a kinematic function often termed conformal partial wave6. SO(d + 1, 1)

unitarity implies positivity of the expansion coefficients Iℓ(ν) ≥ 0. Our main message in
part I of this thesis is that the similarity between these two setups

Conformal Bootstrap : (1) + (2)

QFT in dS Bootstrap : (1) + (3)

suggests that one may be able to develop (numerical) conformal bootstrap methods to
obtain non-perturbative constraints on the space of QFTs in dS. In this work, we give
the first steps in this program.

Quantum field theory in AdS: Motivation

After a brief introduction on the Quantum field theory in dS spacetime, let us change the
curvature sign and go to AdS. There are various motivations to study QFTs that live in

6For simplicity, here we assumed that only principal series representations contribute to this four-point
function. We discuss the appearance of other representations in more details in section 2.2.
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AdS. One is that it is the leading semi-classical approximation to quantum gravity where
the gravitational fluctuations are suppressed and one can assume a rigid background. So,
it carries some of the structures that appear in quantum gravity in AdS.

Second is that one can take the curvature of AdS to zero and recover the flat space
limit in which instead of directly studying the flat space physics, we can look at the
boundary correlation functions that define a conformal theory 7 and employ the power of
the conformal bootstrap. The AdS zero curvature-limit corresponds to the large scaling
dimension of the boundary operators. For instance, the authors of [38] find universal
bounds on the cubic couplings in 2D flat space QFTs using 1D conformal bootstrap by
obtaining flat space scattering amplitudes from the boundary correlators in this limit.

Lastly, AdS is like a box in both classical and quantum mechanical senses. At the classical
level, massive (or massless) particles in AdS would propagate close to the boundary
(in case of massless/light-like: all the way to the boundary) and bounce back. In the
quantum mechanical sense, AdS introduces an IR cutoff where it forbids large wavelength.
This leads to a discrete energy spectrum. Strictly speaking, the energies take the form of
∆+m where m is a set of non-positive integers. The discretized-spectrum nature of AdS
makes it a great lab for numerical investigations such as Hamiltonian truncation.

Hamiltonian truncation

Hamiltonian truncation methods in QFT are the generalized versions of the variational
method of Rayleigh-Ritz in quantum mechanics. They are numerical methods to find
the energy spectrum and eigenstates of a theory. In these methods, one starts from a
solvable theory with a known Hamiltonian H0 deformed by potential V:

H = H0 + λV (4)

where deformation parameter λ is not necessarily small meaning that this method is
nonperturbative. Then, after introducing a UV cutoff Λ, the Hamiltonian matrix will
be constructed in a truncated basis of the unperturbed theory, where the states have
energy less than Λ. By diagonalizing this matrix, one expects to recover the spectrum of
the theory as we increase Λ. Introducing a UV cutoff helps us to truncate the infinite-
dimensional Hilbert space to a finite-dimensional basis and makes it possible to feed it to
a computer.

In equal-time quantization of QFT in Minkowski or Euclidean space, one deals with the
spectrum that is labeled with a continuous parameter like momentum. So, there are
infinite number of states with energy less than a UV cutoff that makes it impossible to
truncate the Hilbert space to a finite-dimensional basis. There are different approaches to

7Here we avoid to call it a conformal "field" theory as this boundary theory does not possess stress
tensor.
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this technical problem. One is to put the theory on a spacetime with a compact spatial
section, for instance, on a cylinder R×Sd [39–41] or sphere Sd+1 [42] so that the spectrum
becomes discretized with the natural IR regulator coming from the geometry. Then, one
can recover the Rd or Md by taking the limit of radius R to infinity. Another approach is
to discretize the momentum directly [43, 44]. AdS spacetime, on the other hand, has a
discretized spectrum to begin with. So it is a great candidate to implement Hamiltonian
truncation.

Hamiltonian truncation in AdS

In this thesis, we shall study deformations of exactly solvable theories. The action is
given by

S = S0 + λ

∫
AdSd+1

dx
√
g V(x) (5)

where g is the metric of AdSd+1 and V is a bulk local operator with mass dimension
∆V < d+ 1. Let us emphasize that the metric is non-dynamical: this is a study of QFT
in a fixed curved background. The unperturbed theory described by S0 can either be a
free theory or a solvable Boundary CFT (BCFT).8

In this setup, physical observables depend on the dimensionless parameter λ̄ ≡ λRd+1−∆V .
This parameter allows us to continuously connect the perturbative regime of small λ̄ with
the strongly coupled regime of large λ̄. This is similar to the case mentioned above of
QFT on R× Sd. The choice of the AdSd+1 background has two main advantages. The
first is that it preserves more symmetry. The isometry group of (Lorentzian) AdSd+1 is
the conformal group SO(2, d). This means that the Hilbert space of the theory organizes
into representations of the conformal algebra. The second advantage is that AdS has
a conformal boundary where we can place boundary operators and their correlation
functions solve conformal bootstrap equations. This means that the well-established
conformal bootstrap methods can be used to study non-conformal QFTs [38]. Notice that
the extrapolation to λ̄→∞ corresponds to the flat space limit where the mass spectrum
and scattering amplitudes of the QFT in flat space can be recovered.

In the present thesis, we choose to study the above setup in the Hamiltonian framework.
To be precise, we study the theory (5) in global coordinates, which endow AdS with
the topology of a solid cylinder. The Hilbert space is that of the undeformed theory

8Notice that AdSd+1 is conformally equivalent to Rd × R+. This is obvious in Poincaré coordinates

ds2AdS =
R2

z2

(
dz2 + dxidxi

)
, xi ∈ Rd , z > 0 .
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corresponding to S0. The time evolution is governed by a Hamiltonian of the form9

H = H0 + λ̄ V (6)

where H0 is the Hamiltonian of the λ = 0 theory, and the interaction term V corresponds
to V integrated over a timeslice (this is explained in detail in section 7.3).

The key problem we address in our work is the diagonalization of H for finite λ, which
describes how the states and their energies change after turning on the bulk interaction V .
Since the strength of the dimensionless coupling λ̄ grows with R, the small-radius limit
can be attacked in Rayleigh-Schrödinger perturbation theory (see e.g. [45]), but when R
is sufficiently large the theory is in a strong-coupling regime, and perturbation theory
breaks down10. Nevertheless, we can attempt to study this diagonalization problem using
the Hamiltonian truncation toolbox. In this work, as the first step in this direction, we
focus on two-dimensional theories. We study several two-dimensional QFTs in AdS2

including deformation of free massive scalar with ϕ4 interaction and relevant deformations
of minimal models such as the Lee-Yang model and the Ising model. It is worth stressing
that the application of equal-time Hamiltonian truncation to infinite volume physics is
new — although lightcone conformal truncation [43, 44] can be used to treat flat-space
physics using Hamiltonian truncation technology.11 In this respect, AdS is an ideal
playground: due to the UV/IR connection familiar from AdS/CFT, the conformal theory
on the boundary provides a handle on the infrared behavior of the observables.

Outline

This thesis is made of three main parts.

Part l is devoted to a brief summary of the basics of conformal field theories in d ≥ 3

dimensions as well as QFT in dS. In section (1), we derive the conformal algebra and its
representations, we discuss the state-operator correspondence, the unitarity bounds and
operator product expansion, and we conclude with the conformal block expansion of the
four-point functions and the conformal bootstrap. Although on the way we might spell
out some details that have been skipped in standard sources, this section should be seen
more as a review rather than a complete pedagogical reference. For a more detailed and
self-contained discussion we refer to [48–51]. Section 2, provides some preliminaries for
Part II. It includes a review of the basics of maximally symmetric geometries to highlight
the similarities between (E)AdS, dS and Sphere, with a special emphasis on dS. Next,

9The Hamiltonian is dimensionless because we measure energies in units of 1/R, with R the AdS
radius.

10See the recent work [46] for a lattice Monte Carlo approach to address the finite-coupling regime in
AdS2.

11In lightcone conformal truncation, the need to work with a finite basis of states leads to an effective
IR cutoff, see for instance the discussion in appendix F of [47].
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in section 2.2, we review the unitary representations of QFT in dS and and present a
nonperturbative definition of dS correlation functions in section 2.3. Later, we solve free
field theory in dS, canonically quantize it and construct its Hilbert space. In section 2.5,
we review the in-in formalism that is used for perturbative calculations in dS, derive
the massive free field two-point function in dS and EAdS and state why they are very
similar. Then, we construct the dictionary between EAdS and dS Feynman diagrams. We
conclude part I with a section that is less pronounced in the literature where we construct
the Hilbert space representations and spell out the resolution of identity in (2.117).

Part ll aims to initiate a nonperturbative treatment of QFT in rigid dS background. In
section 3, the focus is on the bulk two-point function, where we derive the Källén–Lehmann
representation as well as an inversion formula for the spectral density with two different
methods: analytical continuation from sphere in eq. (3.50a) and analytical continuation
from EAdS in eq. (3.58). Next, we clarify the concept of boundary operators by relating
them to spectral density poles and conclude with concrete examples of massive free field
and CFT in bulk.

In section 4, we study the partial wave expansion of boundary four-point functions
and derive the corresponding positivity conditions. We then calculate the partial wave
coefficient of massive free theory in bulk as well as for the leading order of λϕ4 interaction
in section 4.2. It turns out that unitarity requires appearance of local terms in free
theory discussed in section 4.2.2. Lastly, in section 5, we focus on dS2 to set up a de
Sitter bootstrap program. After reviewing basics of the one-dimensional CFTs, we discuss
the convergence issue of partial wave expansion in dS. This issue has been overcome by
proposal of a regularization scheme in 5.3. In the end, a concrete example of non-trivial
bound on partial wave coefficietns is presented in section 5.4

Part lll develops a Hamiltonian truncation method to compute the energy spectrum
of QFTs in two-dimensional EAdS. In section 7, we review some basic features of the
physics and symmetries of AdS2. In section 8, we explain in detail the existence of UV
divergences that arise in the Hamiltonian truncation scheme, and we explain how to
obtain the correct continuum limit in a large class of theories. This section contains one
of the main results of the this part, i.e. eq. (8.1), which allows to obtain the correct
energy gaps. Finally, in sections 9 and 10, we present results for several theories. The
massive free scalar deformed by ϕ2 and ϕ4 operators is discussed in detail in section 9.
Next, in section 10, we study relevant deformations away from the Lee-Yang and Ising
minimal models. The exactly solvable models – e.g. the massive free theories – allow to
test the formula (8.1). On the contrary, figures 9.7, 10.5, 10.6, 10.17 and 10.18 contain
genuinely nonperturbative results on the spectrum of strongly coupled theories in EAdS.
Throughout this part and the corresponding appendices, we deal only with EAdS and
not AdS. So for convenience, we drop "Euclidean" and simply use AdS for EAdS.

We also include several complementary appendices. Some of them are devoted to the
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list of identities: sections A and F, as well as detailed calculations and derivations of
certain formulae: section B and C; while some of them are independent but conceptually
important discussions that do not fit within the storyline of the main parts. This includes
the derivation of a new simple formula for the order-λn correction to the eigenvalues of the
Hamiltonian in perturbation theory in appendix G, discussion of spontaneous symmetry
breaking in EAdS in appendix J and decomposition of unitary irreps of SO(2, 2) into
SO(2, 1) in appendix D.

Notation and conventions

• In this thesis we use mostly positive metric signature. We also used the shorthand
notation of x.y for xµyµ and x2 for xµxµ. We discuss the dSd+1 and AdSd+1 with
d-dimensional boundary theories.

• In the first and second part, when we are using the irreducible representations of
SO(d+1, 1) or dimension of operators in QFT in dS, we frequently use ∆ = d

2 + iν.
Plus

• Any place we use iϵ prescription as a regulator, we assume ϵ > 0 with ϵ→ 0+.

• xij is a short notation for xi − xj .

• In the third part and its corresponding appendices, we consider Euclidean AdS but
simply call it AdS for brevity.
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1 Conformal field theories

1.1 Conformal transformations

The IR and UV fixed points of the Renormalization Groups (RGs) are scale invariant.
The scale-invariance usually gets enhanced to the conformal invariance. This is proven in
two-dimensional unitary theories [29] but there is no proof for higher dimensions [31–34].
For a pedological discussion see [49, sec. 1.3] or [30]. This makes the study of CFTs an
important subject in theoretical physics.

Conformal invariance as transformations xµ → x̃µ that preserve the angles translate to
diffeomorphisms in which the metric transforms as1

gµν(x)→ g̃µν(x̃) =
∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ(x) = Ω−2(x)gµν(x) . (1.1)

From now on, we work in Euclidean space with gµν(x) = δµν except it is mentioned
otherwise and µ = 1, 2, · · · d. The generators of these diffeomorphisms are labelled by the
conformal Killing vector ϵ. For an infinitesimal transformation xµ → x̃µ = xµ + ϵµ(x),
eq. (1.1) gives the conformal Killing equation:

∂µϵν + ∂νϵµ =
2

d
∂.ϵ δµν . (1.2)

This is similar to the Killing equation with the difference that right-hand side there is

1This can be seen by considering the fact that the angle θ between two vectors Aµ(x) and Bµ(x) are
cos(θ) = A.B

|A||B| =
Ã.B̃

|Ã||B̃| , where A.B = AµBνgµν and |A| =
√
A.A.
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Chapter 1. Conformal field theories

zero (∂.ϵ = 0). The solution to eq. (1.2) is

ϵµ(x) = aµ , (translation)

ϵµ(x) = mµ
νx

ν , (rotation)

ϵµ(x) = cxµ , (dilatation)

ϵµ(x) = 2(x.b)xµ − x2bµ , (SCT)

(1.3)

where aµ,mµ
ν , c, b

µ are constants and mµ
ν is an antisymmetric tensor. Note that the

first two are associated with the Poincare transformations (∂.ϵ = 0) only coming from
homogeneity and isotropy of the space. One may exponentiate these and find the finite
version of these transformations:

x̃µ(x) = xµ + aµ , (translation)

x̃µ(x) = Rµνx
ν , (rotation)

x̃µ(x) = cxµ , (dilatation)

x̃µ(x) =
xµ − bµx2

1− 2b.x+ b2x2
, (SCT)

(1.4)

where Rµν are rotation matrices in Rd. The first three are easy to proof. To proof the last
one, note that the infinitesimal version of SCT can be written as an inversion defined as

I : xµ → x̃µ =
xµ

x2
. (1.5)

followed by a translation of −bµ and another inversion:

xµ

x2
− bµ

|xµ
x2
− bµ|2

= xµ + 2(x.b)µ − x2bµ (1.6)

where we dropped the higher order terms in b. Now since I2 = 1, the finite version of
SCT is also an inversion followed by a finite translation of −bµ and another inversion
which is given in (1.4).

1.2 Conformal algebra

The infinitesimal transformations of coordinates and the fields can in general be seen as

x̃µ = xµ + ϵµ = xµ + ωa
δxµ

δωa
, Õ(x̃) = O(x) + ωa

δF
δωa

(x) (1.7)
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where ωa represent an infinitesimal parameter and index a is just a label, not a Lorentz
index. The generator Ga is defined as2

Õ(x)−O(x) ≡ −ωaGaO(x) (1.8)

– the variation of the field discarding the change of coordinates. Then by using the fact
that

Õ(x̃) = O(x̃)− ωa
δxµ

δωa
∂µO(x̃) + ωa

δF
δωa

(x̃) (1.9)

one finds
GaO(x) = −

δxµ

δωa
∂µO(x) +

δF
δωa

(x) . (1.10)

Now, by asking that infinitesimal conformal transformations (1.3), leave our field invariant:
δF/δωa = 0, we find the generators of the conformal group

P̂µ = −∂µ , (translation)

M̂µν = xµ∂ν − xν∂µ , (rotation)

D̂ = −x.∂ , (dilatation)

K̂µ = (x2∂µ − 2xµx.∂) , (SCT)

(1.11)

We name these differential generators with Q̂ to contrast with the definition of corre-
sponding charges that will be defined later in section 1.3, but for convenience we will
drop the hat from now on. These generators satisfy commutation relation

[D,Pµ] = Pµ , [D,Kµ] = −Kµ , [Kµ, Pν ] = 2δµνD − 2Mµν ,

[Mµν , Pρ] = δνρPµ − δµρPν , [Mµν ,Kρ] = δνρKµ − δµρKν ,

[Mµν ,Mρσ] = δνρMµσ − δµρMνσ + δνσMρµ − δµσMρν

(1.12)

as well as [Pµ, Pν ] = 0 , [Kµ,Kν ] = 0 and [D,Mµν ] = 0. This is called the Euclidean
conformal algebra. Note that we found these commutation relations solely using group
theory facts. Now let us define the following generators

D = J−1,0 , Mµν = Jµν ,

J−1,µ =
1

2
(Pµ −Kµ) , J0,µ =

1

2
(Pµ +Kµ)

(1.13)

where JAB = −JBA and A,B ∈ −1, 0, 1, · · · , d. These generators obey commutation
relations:

[JAB, JCD] = −ηACJBD − ηBDJAC + ηBCJAD + ηADJBC , (1.14)

where ηAB = diag(−1, 1, . . . , 1). This is the familiar so(d + 1, 1) algebra reminding us
that the Euclidean conformal group is isomorphic to the Lorentz group SO(d+1, 1). This

2Some of the sources define Ga with a −i in their definition: Õ(x)−O(x) = −iωaGaO(x). We picked
the convention without i as it will put the commutation relation (1.12) in a more convenient form.
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Chapter 1. Conformal field theories

means that the d-dimensional conformal group, unlike its rather non-trivial action on Rd,
acts much more naturally (linearly) on the Rd+1,1. This is the basis of the embedding
space formalism. One application of the embedding space formalism, for instance, is an
easier way of finding the two and three-point functions. See e.g. [49, 50, 52].

1.3 Ward identities and conformal charges

A local QFT possesses a stress tensor that satisfies the Ward identity3

∂µ ⟨TµνO1(x1) · · · On(xn)⟩ = −
∑
i

δd(x− xi)∂ν ⟨O1(x1) · · · On(xn)⟩ , (1.15)

that in classical level reduces to the conversation of the stress tensor

∂µT
µν = 0 . (1.16)

For each conformal Killing vector ϵ, there exists a conserved charge operator defined as

Qϵ(Σ) = −
∫
Σ
dSµϵν(x)T

µν(x) , (1.17)

where Σ is a closed and oriented codimension-1 surface. Now, we will argue that the
traceless-ness of the stress tensor implies (1.2)4. First, note that the Qϵ(Σ) being a
conserved charge means that it is invariant under the deformations of surface Σ as long
as it does not cross any operator. These type of operators are called topological surface
operators. The integration in (1.17) can be rewritten using the divergence theorem as an
integral over V , the interior of Σ:

Qϵ(Σ) = −
∫
V
dV ∂µ(ϵν(x)T

µν(x)) , (1.18)

At the classical level, since the integration is valid for any deformation of Σ, one finds

0 = ∂µ(ϵµT
µν) (1.19)

= ∂µϵνT
µν + ϵν∂µT

µν (1.20)

=
1

2
(∂µϵν + ∂νϵµ)T

µν , (1.21)

where we used the conservation of the stress tensor and the fact that it is a symmetric
tensor. If we do not consider the traceless-ness of the stress tensor and take Tµν as a
generic tensor, we arrive at (1.2) with right-hand side equal to zero. The solution of ϵ is
the translation and rotation that exist in any QFT with Poincare invariance. However,
if traceless-ness is asked, the constraints are more powerful and we find (1.2) with the

3For the definition of the stress tensor see e.g. section 2.3 of [50]
4Here we are neglecting Weyl anomoly as we focus on flat metric.
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conformal Killing solution (1.3). At the quantum level, consider the correlation function

⟨Qϵ(Σ)O1(x1) · · · On(xn)⟩ , (1.22)

as long as we do not cross any operator by a deformation of Σ1 to Σ2, the charge Q
would not change, then one finds (1.2) using the Ward identity (1.3). In summary, the
assumption of traceless-ness of the stress tensor and the existence of the conserved charges
imply the conformal Killing equation.

The inverse is also true: the conformal Killing equation and traceless-ness define conserved
charges. The corresponding charges of the four types of the conformal transformation is
defined by (1.17) as

aνP
ν = −

∫
Σ
dSµaνT

µν → P ν = −
∫
Σ
dSµT

µν ,

mνσM
νσ = −

∫
Σ
dSµmνσx

σTµν → Mνσ = −1

2

∫
Σ
dSµ (x

σTµν − xνTµσ) ,

cD = −
∫
Σ
dSµcxνT

µν → D = −
∫
Σ
dSµxνT

µν ,

bνK
ν = −

∫
Σ
dSµ

(
2(x.b)xν − x2bν

)
Tµν → Kν = −

∫
Σ
dSµ

(
2xνxσT

µσ − x2Tµν
)
.

These charges satisfy the conformal algebra of (1.12). For a proof look at e.g [51, sec 3.2]
where the commutation relations of charges with the stress tensor are established first.

1.4 Conformal representation: Primary operators

As usual in QFTs, we are interested in irreducible representations (irreps) of the symmetry
group to describe the Hilbert space5. In what follows we will build this irreducible
representation of the conformal group by organizing operators of the theory.

The dilatation and rotation in conformal algebra commute i.e. they belong to the
Cartan subalgebra. That means we can diagonalize them simultaneously and label our
representation with their eigenvalues. We choose to name the eigenvalue of rotation
operator Mµν , the spin ℓ and the eigenvalue of dilatation operator D, the scaling dimension
∆. The reason for this particular naming will be apparent shortly. In summary, we have:

[D,O(0)] = ∆O(0) , [Mµν ,Oa(0)] = (Σµν)
a
bOb(0) (1.23)

where a, b are SO(d) representation indices of O and Σµν matrix satisfies the SO(d)
algebra that is same algebra as Mµνs among themselves. According to (1.12), similar
to quantum harmonic oscillator problem, Pµ and Kµ respectively raise and lower the

5As a result of state-operator correspondence, we are able to do this for the operators as well. See
section 1.6
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Chapter 1. Conformal field theories

scaling dimension. It is also a reasonable physical assumption to ask that the scaling
dimension be bounded from below6. So we define the conformal primary operators as

[Kµ,Oa(0)] = 0 . (1.24)

By this, we reach a lowest weight representation in which each multiplet is made of a
primary operator and its tower of descendants with scaling dimensions integer-ly separated
from ∆ defined as:

O(0)→ Pµ1 · · ·PµnO(0) , ∆→ ∆+ n . (1.25)

It turns out that in a unitary CFT, all operators can be written as a linear combination
of primaries and their descendants. This makes the spectrum and operator content of
CFTs pretty peculiar. As a side comment note that (1.23) commutation relations are not
necessarily valid for a generic operator.

To find the commutation relations of a primary operator at location x, one can use the
relation O(x) = ex.PO(0)e−x.P , the Baker-Campbell-Hausdorff formula and the conformal
algebra to reach:

[Pµ,Oa(x)] = ∂µOa(x)
[Mµν ,Oa(x)] = (xν∂µ − xµ∂ν)Oa(x)

[D,Oa(x)] = (x.∂ +∆)Oa(x)
[Kµ,Oa(x)] = (2xµx.∂ − x2∂µ + 2∆xµ − 2xν(Σµν)

a
b)Ob(x)

(1.26)

1.5 Radial quantization

No matter how one quantizes the field theory – canonical quantization or path integral
formalism – one needs a notion of the foliation of space-time. These foliations are
the Cauchy surfaces on which one asks particular boundary conditions for the path
integral quantization or particular commutation relations for canonical quantization.
Then one can evolve to another foliation by a time-like vector field like hamiltonian. We
usually quantize the theory with constant-time foliations (like most of the standard QFT
textbooks). Even if the space is Euclidean, we chose one of the coordinates to be the time
and foliate the space with constant-times. However, this is not the only way to quantize
the theory. Consider the foliation of space with spheres of radius r centered at the origin.
The time-evolution from one sphere with radius r1 to sphere with radius r2 is with the
dilatation operator ∆̂ = x.∂x = r∂r. It turns out that this quantization – so-called radial
quantization – is a more convenient quatization in a CFT:

6For example, as we see in section 1.8.1, the scale invariance of a theory results in the two-point
function of type: ⟨O(x1)O(x2)⟩ ∝ |x1 − x2|−2∆. We expect that a physically sensible theory does not
have growing two-point function when two operators are far from each other. This is similar to ask that
the energy of the system be bounded from below.
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1.6 The state-operator correspondence and OPE

Cylinder interpretation

The correlation functions of primary operators under Weyl transformations

gµν → g̃µν = Ω2(x)gµν (1.27)

satisfy the relation:

⟨O1(x1) · · · On(xn)⟩Ω2(x)gµν
=

(∏
i

1

Ω∆i(xi)

)
⟨O1(x1) · · · On(xn)⟩gµν . (1.28)

This is not a trivial statement and we do not provide a proof here. For the sketch of the
proof see for example [51, section 6.4]. Equation (1.28) says that the correlation functions
of a CFT in flat space are related to the correlation functions of a CFT with a metric
equivalent to the flat space by Weyl transformation up to a product of some rescalling
Weyl factors.

Now consider the cylinder R × Sd−1 that has the metric of the flat space Rd in radial
coordinates:

ds2Rd = dr2 + r2dΩ2
d−1

= e2τ
(
dτ2 + dΩ2

d−1

)
, with r = eτ .

= e2τds2R×Sd−1

(1.29)

up to a Weyl factor of Ω = eτ . So each sphere of radius r corresponds to a constant
time slice τ on the cylinder. Therefore the radially quantized theory on flat space is
equivalent to the theory with ordinary equal-time quantization on the cylinder up to
the Weyl factors in (1.28). Moreover, the Dilatation in flat space is equal to the time
translation on cylinder: D = r∂r = ∂τ . This says that the spectrum of the dilatation on
Rd is the same as the energy spectrum for the theory on R× Sd−1. These are the basic
ingredients of one of the proofs of the state-operator correspondence:

1.6 The state-operator correspondence and OPE

The state-operator correspondence states that there is a one-to-one map between states
and local operators in a CFT. This can be seen by the cylinder picture we gave above. A
local operator at origin in Rd, prepares a state on τ = −∞ in the cylinder that can evolve
and produce the state at time r or τ : Operator → State. On the other hand, a state at
time defined in time τ can evolve back to τ = −∞ by the hamiltonian (and Dilatation
operator at the same time) on the cylinder. This process translates to the shrinking of
the spheres on Rd all the way to the origin and defining a local operator at the origin:
State → Operator. In summary, we have:

O(0)←→ O(0) |0⟩ ≡ |O(0)⟩ (1.30)
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Chapter 1. Conformal field theories

One can also see that the operator at position x is a linear combination of descendants:

O(x) |0⟩ = ex.PO(0)e−x.P = ex.P |O(0)⟩ =
∞∑
n=0

(x.P )n |O(0)⟩ . (1.31)

In the arguments above we used the flat space-cylinder map that takes advantage of the
full conformal symmetry in equation (1.28) to prove the state-operator correspondence.
However, only scale invariance is enough to derive the state-operator map. We refer
to [51, sec 6] for the proof.

Operator product expansion

In a generic quantum field theory, one can expand a product of two operators in terms of
a linear combination of local operators:

O1(x)O2(0) =
∑
n

Cn12(x)On(0) . (1.32)

This is called the Operator Product Expansion (OPE). In a radially quantized conformal
field theory, such a product produces a state on a sphere with radius r > |x|. Since
every state in a CFT is a linear combination of primaries and their descendants, we can
decompose this state as

O1(x)O2(0) |0⟩ =
∑
k

C12k(x, P )Ok(0) |0⟩ , (1.33)

in which the sum is over primaries Ok and C12k(x, P ) produces descendants with its
dependency on translation generator P . As a result of the state-operator correspondence,
one can write the equation above in the terms of operators

O1(x1)O2(x2) =
∑
k

C12k(x12, ∂x2)Ok(x2) . (1.34)

This is convergent inside any correlation function where one can find a sphere that involves
only operator O1 and O2 (|x12| < |x1n| and |x12| < |x2n| ). The convergence can be easily
shown by using the state operator-correspondence. Here we present a sketch of the proof
based on [53]. Imagine the product O1(x1)O2(x2) inside a correlation function (we may
change the ordering as it is a Euclidean correlation function):

⟨ϕ1(y1) · · ·ϕn(yn)O(x1)O(x2)⟩ . (1.35)

Now we choose our quantization scheme to be a radial quantization of spheres with their
center at x2. The action of the operators O and ϕ on vacuum creates unique states in
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1.7 Unitarity bounds

the Hilbert space according to the state-operator map:

|Ψ⟩ = O1(x1)O2(x2) |0⟩ , ⟨Φ| = ⟨0|ϕ1(y1) · · ·ϕn(yn) , (1.36)

and the correlation function (1.35) is the scalar product ⟨Φ|Ψ⟩. Since the dilatation
operator in radial quantization has a the hamiltonian interpretation on the cylinder, one
can expand the state |Ψ⟩ as energy eigenstates with some coefficients:

|Ψ⟩ = αn(x12) |En⟩ . (1.37)

Note that the states |En⟩ are made up of the action of operators with scaling dimension
∆n = En according to the state-operator map and they can be written as primary
operators acting on vacuum following (1.31):

|En⟩ ∼ (x.P )nO(0) |0⟩ , with En = ∆O + n . (1.38)

which means that there is a one-to-one map between coefficients C12k and αn(x12). Now
let us remind you that if one of the states in a scalar product of two states in a Hilbert is
expanded in a basis, then the expansion is convergent. Here |En⟩s make up such a basis
as they are eigenvalues of the hamiltonian in the cylinder. Therefore, the expansion (1.34)
is convergent.

This was another important application of the state-operator correspondence. The
convergence of OPE has an important consequence in what comes next in this section.
In particular, it makes the conformal block expansion in (1.59) exponentially convergent
which is responsible for the power of the numerical bootstrap.

1.7 Unitarity bounds

The hermitian conjugation of real scalar operators in Euclidean signature translates to
the reflection τ → −τ :

O†(τ, x⃗) = e−τHO†(0, x⃗)eτH = O(−τ, x⃗) (1.39)

where H is the hamiltonian–the time translation generator. A similar relation holds for
spinning operators:

O†
µ1···µℓ(τ, x⃗) = θν1µ1 · · · θνℓµℓO

†
ν1···νℓ(−τ, x⃗) , θνµ = δνµ − 2δ1µδ

ν
1 (1.40)

where the euclidean time τ corresponds to the index µ, ν = 1. Now consider a state of
the form

|ψ⟩ = O1(τ1, x⃗1) · · · On(τn, x⃗n) |0⟩ (1.41)
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Chapter 1. Conformal field theories

where the operators are time-ordered (τ1 > τ2 > · · · > τn). The norm of this state in a
unitary theory has to be positive. This leads to the condition

⟨ψ|ψ⟩ = ⟨On(−τn, x⃗n) · · · On(−τ1, x⃗1)O1(τ1, x⃗1) · · · On(τn, x⃗n)⟩ ≥ 0 (1.42)

often called the reflection positivity.

The conjugation τ → −τ in a theory on the cylinder will be an inversion when we go
back to flat space with radial quantization. More precisely we have:

Oµ1,··· ,µℓ(xµ) = Iν1µ1 · · · Iνnµnx−2∆Oν1,··· ,νℓ(
xµ

x2
) , Iνµ = δµν −

2xµxν
x2

. (1.43)

Using this, one can show how the stress tensor and consequently the conformal charges
would transform under hermitian conjugation in radial quantization and find:

D† = D , M †
µν = −Mµν , P †

µ = Kµ . (1.44)

Finally, let us consider the state

|ψ⟩ = PµP
µ |O⟩ (1.45)

where O is a scalar primary operator. By demanding positivity for ⟨ψ|ψ⟩ ≥ 0, and using
P †
µ = Kµ from (1.44) as well as conformal algebra in (1.12), one obtains bounds on

dimensions of primary operators:

∆ = 0 (identity operator) or ∆ ≥ d− 2

2
. (1.46)

Similarly, there is a bound on the dimension of spinning primary operators given by:

∆ ≥ d− 2 + ℓ (1.47)

1.8 Correlation functions

The lack of existence of a scale in conformal theories, makes the notion of asymptotic
states and consequently S-matrix hard to define (See [54] for a more recent discussion).
However, we have the notion of correlation functions that are perfectly definable either
through canonical quantization or path integral. This makes correlation functions of
operators and in particular primary operators the central objects in CFTs. For simplicity,
we focus on the scalar operators from now on except it is mentioned otherwise. Most of
the found general properties are true for the spinning operators as well. For a systematic
approach to the spinning correlators see [52].
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1.8 Correlation functions

1.8.1 Two-point functions

Due to translation and rotation invariance, the two-point functions is only a function of
the distance between two points:

⟨O1(x1)O2(x2)⟩ = f(|x1 − x2|) , (translation and rotation invariance) . (1.48)

Using (1.26) and scale invariance (meaning that the simultaneous action of D on all
operators in a correlator must vanish), we have

0 = (x1.∂1 +∆1 + x2.∂2 +∆2)f(|x1 − x2|) , (scale invariance) . (1.49)

which leads to
f(|x1 − x2|) =

C

|x1 − x2|∆1+∆2
(1.50)

where C is some normalization constant. Then after using the same procedure for the
special conformal transformation, one finds

⟨O1(x1)O2(x2)⟩ =
δ∆1,∆2

|x12|2∆1

=
δ1,2

|x12|2∆1

(1.51)

where in the second line we chose a basis in which the primaries are orthogonal. From
now on we work in this basis.

1.8.2 Three-point functions

With a more involved but similar calculation, one can find the three-point function of
primary operators as7

⟨O1(x1)O2(x2)O3(x3)⟩ =
λ123

|x12|∆1+∆2−∆3 |x23|∆2+∆3−∆1 |x13|∆1+∆3−∆2
(1.52)

where λ123 is the three-point function coefficient that cannot be set to 1 by rescaling.
This coefficient is in fact same as the OPE coefficient this is easy to verify by simply
writing OPE expansion of any two operators above and using (1.51)

⟨O1(x1)O2(x2)O3(x3)⟩ =
∑
i

λ12i

|x12|∆1+∆2−∆i
Ca(|x12, ∂2|) ⟨Oai (x2)O3(x3)⟩

=
λ123

|x12|∆1+∆2−∆3
C(|x12|, ∂2)

1

|x23|2∆3
.

(1.53)

7see e.g. [55] that carries out the calculations directly or for example [49] that uses the embedding
space formalism for a more staightforward derivation
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Chapter 1. Conformal field theories

Since C(|x12|, ∂2), depends only on ∆i’s and xi’s and their derivatives and it should
produce the three-point function structure of

1

|x12|∆1+∆2−∆3 |x23|∆2+∆3−∆1 |x13|∆1+∆3−∆2
(1.54)

in (1.52), one can identify the three-point function coefficient f123 with the OPE coefficient
λ123:

f123 = λ123 . (1.55)

1.8.3 Four-point function

CFT four-point function is the first non-trivial n-point function in the sense that it is not
totally fixed (up to a coefficient) by conformal symmetry. Still, the conformal symmetry
constraints the four-point function. In particular, it is a function two variables

u = zz̄ =
|x12|2|x34|2

|x13|2|x24|2
, v = (1− z)(1− z̄) = |x14|

2|x23|2

|x13|2|x24|2
, (1.56)

that are called conformal cross ratios (this is true for d > 1. for d = 1 look at sec-
tion 5.1)[56]:

⟨O1(x1)O2(x2)O3(x3)O4(x4)⟩ =
( |x14|
|x24|

)δ21 ( |x14|
|x13|

)δ34 g(z, z̄)

|x12|∆1+∆2 |x34|∆3+∆4
, (1.57)

where δij = ∆i −∆j .

Let us give an intuitive way to see that the four-point function is indeed only a function
of two cross ratios (up to the scaling factors behind g(z, z̄ above)). Consider the following
conformal transformation. First, perform an inversion around a random point that does
not coincide with any of the points xi. Then with a translation, move the origin to
point x4 and perform another inversion to send x4 to ∞. So far this was only a special
conformal transformation. Next, using translation place x1 at the origin and afterward
with a rotation put x3 on the x-axis. Plus with a scaling, one can place x3 at position
(1, 0, 0, · · · ). Finally, we can rotate to place all the operators in one plane and end up
with two free parameters for the position of O2:

x1 = (0, 0, 0, · · · ) , x2 = (x, y, 0, · · · ) , x3 = (1, 0, 0, · · · ) , x4 =∞ (1.58)

which plugging it back in (1.56), one finds z = x+ iy and z̄ = x− iy. This is showing
the fact that in the Euclidean CFT that is the main focus of this thesis, all operators are
spacelike separated. So, z, z̄ are complex conjugates of each other since u, v are both real.
However, in Lorentzian signature z, z̄ are real but free parameters.
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1.9 Conformal blocks

1.9 Conformal blocks

The CFT four-point function is the first non-trivial correlation function in CFTs that has
dynamical content. For simplicity let us consider correlators with all identical operators
from now on. The generalization to non-identical operators is straightforward. The
four-point function can be expanded by taking the OPE of the first and the second
operators plus the OPE of the third and the fourth operators:

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ =
∑
O,O′

fϕϕOfϕϕO′Ca(x12, ∂x2)Cb(x34, ∂x4) ⟨Oa(x2)O′b(x4)⟩

=
∑
O
f2ϕϕOCa(x12, ∂x2)Cb(x34, ∂x4) ⟨Oa(x2)Ob(x4)⟩

=
1

|x12|2∆ϕ |x34|2∆ϕ
∑
O
f2ϕϕOG∆O,ℓO(z, z̄) ,

(1.59)
in which a, b are short notations for the spin indices and fϕϕO are the OPE coefficients
that are real in a unitary theory. The function G∆O,ℓO(z, z̄) is called the Conformal
Block. This function is the solution of the Casimir equation meaning that if we act with
a Casimir operator

C = D2 − 1

2
(KµP

µ + PµK
µ +MµνM

µν) = ∆(∆− d)− ℓ(ℓ+ d− 2) (1.60)

on both sides, we find

Ĉ G∆O,ℓO(z, z̄) = (∆(∆− d)− ℓ(ℓ+ d− 2))G∆O,ℓO(z, z̄) . (1.61)

The solution to this equation has been found in d = 1, d = 2 and d = 4 [56, 57]:

G1d
∆,ℓ(z) = k2∆(z)

G2d
∆,ℓ(z, z̄) = k∆+ℓ(z)k∆−ℓ(z̄) + k∆−ℓ(z)k∆+ℓ(z̄)

G4d
∆,ℓ(z, z̄) =

zz̄

z − z̄ (k∆+ℓ(z)k∆−ℓ−2(z̄)− k∆−ℓ−2(z)k∆+ℓ(z̄))

(1.62)

with
kβ(z) = zβ/2 2F1(β/2, β/2, β, z) . (1.63)

Note that in d = 1, there is only one cross ratio. This can be seen in (1.58) as there
is only one coordinate (x and no y (no angle)). We have a specialized section about
one-dimensional CFTs: section 5.1. For the odd dimension (except d ̸= 1) there is no
know closed formula for the conformal blocks; however, the solutions can be derived from
series expansion or recursion relations [58]. For the case of spinning operators see for
example [59].

The moral of this section is that four-point functions can be expanded in kinematical
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functions of conformal blocks with some theoretical-dependent positive coefficients.

1.10 The conformal bootstrap

In the previous section, we expand the four-point function by applying the OPE (1.59).
There are multiple ways to apply the OPE. We fuse operators (1,2) and operators (3,4)
in (1.59). Equivalently we could perform OPE between (1,3) operators and (2,4) operators
or (1,4) and (2,3):

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ = ⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ = ⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ (1.64)

which is visualized in figure 1. The important point is that no matter in what channel
we expand the four-point function, they are still the expansion of the same four-point
function and they have to be equal. This statement is called the crossing symmetry
and (1.64) is called the crossing equation. The remaining question is: are the crossing
equations trivial? The answer is no. Because of the positivity of the conformal block
coefficients f2ϕϕO, the crossing equations put constraints on OPE data: f2ϕϕO and ∆O, ℓO.
This is the philosophy behind the conformal bootstrap.

Let us illustrate the idea above with a concrete example. Take a four-point function of
identical scalar operators and expand them in two channels: OPEs (1,2) and (3,4), and
OPEs (1,4) and (2,3). The crossing equation reads

((1− z)(1− z̄))∆ϕ g(z, z̄) = (zz̄)∆ϕg(1− z, 1− z̄) (1.65)

where we use the fact that channel (1,4)-(2,3) is related to channel (1,2)-(3,4) by exchanging
points x1 ↔ x3 or x2 ↔ x4. The above equation can be rewritten in a more convenient
form of

1 =
∑
∆,ℓ

f2∆,ℓF∆,ℓ(z, z̄) (1.66)

where we define

F∆,ℓ(z, z̄) =
v∆ϕG∆,ℓ(u, v)− u∆ϕG∆,ℓ(v, u)

u∆ϕ − v∆ϕ (1.67)

and the sum is over all ∆, ℓ corresponding to the operators O ∈ ϕ× ϕ except the identity
that we isolated on the left side of the equation (= 1) and we used new subscripts for f .
Before presenting a systematic treatment let us illustrate how the crossing equation (1.66)
can lead to non-trivial bounds with a simple example. For simplicity, let us focus on
d = 1 where the crossing equation is the same as (1.66) with z = z̄ and there is no sum
over spin (only parity even (ℓ = 0) operators show up). There is a similar discussion for
d = 4 in [27]. Let us look at the plot of functions F∆ for a list of ∆s taking ∆ϕ = 1.2 for
instance – figure 1.1. It turns out that function F∆ has a similar shape for different ∆s.
In particular, pay attention to the symmetric point z = 1

2 . After a certain ∆∗(∼ 4.431),
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1.10 The conformal bootstrap

as we increase ∆, all the second derivatives of F∆ are positive.

Now imagine a theory in which the first operator that shows up in ϕ × ϕ OPE has
dimension higher than ∆∗. If we apply the second derivative of z to both sides of (1.66)
for such theory, the left hand is trivially zero but the right-hand side will be a sum
of positive terms F ′′

> 0 with positive coefficients f2. This is a contradiction. The
conclusion is that: there is no CFT in which the first non-trivial operator in ϕ× ϕ OPE
has a dimension higher than ∆∗ or equivalently any consistent CFT should have at least
one non-trivial operator with a dimension less than ∆∗ in its ϕ× ϕ OPE. Therefore we
put a bound on dimension of the first operator in the OPE.

Let us conclude this section with a systematic method to put bounds on CFT data. The
methodology is the same as above – finding an inconsistent theory. If one finds a linear
functional such that

α[1] = 0 ,

α[F∆i ] > 0 , ∀∆ ≥ ∆∗ ,
(1.68)

then a theory that does not have any operator in OPE with ∆ < ∆∗ is ruled out. It was
pointed out in [27] that this problem can become a simple linear programming question.
Take α to be

α→
Nmax∑
m,n

amn∂
(2m)
z ∂

(2n)
z̄ . (1.69)

The set of am,n that satisfies (1.68) is a linear programming problem that can be solved
for example by LinearProgramming function of Wolfram Mathematica. As one increases
Nmax, a better bound will be achieved. It is analytically shown in [60, 61] that for d = 1,
the saturation of bounds is given by generalized free fermion with ∆∗ = 2∆ϕ+1, meaning
no theory has its first operator in ϕ × ϕ OPE with a dimension bigger than 2∆ϕ + 1.
Numerically this can be seen as the ruled out region in the space of inconsistent ∆∗s
converges to ∆∗ = 2∆ϕ + 1 as one increases the cut-off Nmax.

The situation in higher dimensions is different. There is no analytical solution for such
problems and the power of numerical methods is more appreciated. In particular, it
turns out that sometimes there are kinks and islands in the space of allowed CFT
data. Interestingly enough, these points happen to be known theories – the Ising model,
see figure 1.2. The conformal bootstrap program has the record of the most precise
determination of the 3d Ising critical exponents to this date [37].
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Figure 1.1: The plot of F∆(z) for CFT1 with ∆ϕ = 1.2. For all ∆ ≥ 4.4, the second
derivative at z = 1

2 is positive.
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Figure 1.2: Constraints on CFT data of a theory with Z global symmetry that includes
one Z2-even operator ϵ and Z2-odd operator σ. The white region is the ruled out region
while the shaded region is allowed by the crossing symmetry constraint. The boundary of
this region has a kink remarkably close to the known 3D Ising model operator dimensions.
The plot is taken from [62].
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2 Quantum field theory in de Sitter

This section reviews the basics of QFT in a fixed de Sitter background. After defining
some maximally symmetric spaces including dS as hypersurfaces in the embedding space
and introducing some commonly used coordinate systems, we discuss the isometry group
of dS in detail. After that, we review the quantization of a massive free scalar field in
de Sitter. In section 2.5 we restate the Feynman rules of dS correlators using the in-in
formalism and derive the dS-EAdS dictionary. In 2.6, we state some non-perturbative
properties of QFT in dS. Namely, we discuss the structure of the Hilbert space and
correlation functions of bulk and boundary operators.

2.1 Geometry of maximally symmetric spaces

A d+1-dimensional maximally symmetric space is an isotropic and homogeneous manifold.
Maximally symmetric spaces, therefore, have the maximum number of isometries of (d+
1)(d+ 2)/2 with a constant curvature. For each signature of metric (−, · · · ,−,+ · · · ,+),
they are categorized into three types: Zero curvature or flat, Positive curvature or de
Sitter/sphere and negative curvature or anti-de Sitter/hyperbolic space1.

In this section, we focus on two Euclidean space(time)s of Euclidean Anti-de Sitter
(EAdSd+1) and Sphere (Sd+1) as well as two Lorentzian2 spacetimes of de Sitter (dSd+1)
and Anti-de Sitter (AdSd+1). In what follows we discuss these geometries and some of
their coordinate systems. Since we are mostly focusing on dS and EAdS, we cover them
in more detail.

1Strictly speaking, the list of maximally symmetric spaces are longer and it includes the quotients/covers
of the mentioned spaces. For example cylinder Rd/Z and torus Rd/Zd are also maximally symmetric.
See for example [63]

2By Lorentzian spacetime we mean the spacetimes that have only one time coordinate, meaning that
their metric has the signature (−,+. · · · ,+).
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Chapter 2. Quantum field theory in de Sitter

2.1.1 Sphere

d+ 1-dimensional sphere Sd+1 is a compact Riemannian manifold which can be realized
as the embedding of set of points that are a distance R from the origin in Rd+2:

Sd+1 : (X0)2 + (X1)2 + . . . + (Xd+1)2 = R2 . (2.1)

Its symmetry group as seen from the definition (2.1) is SO(d+2) with rotation generators
that (2.1) is invariant under:

JAB = XA
∂

∂XB
−XB

∂

∂XA
(2.2)

with A,B = 1, . . . , d+ 2. These generators obey commutation relations

[JAB, JCD] = −δACJBD − δBDJAC + δBCJAD + δADJBC (2.3)

where δAB is the Kronecker delta or equivalently the metric on Rd+2.

There are multiple coordinate systems for Sd+1 but we present some of them that are
closely related to the ones we introduce later on for dS and (E)AdS. First, let us introduce
the global coordinates given by

X0 = R sin θ , Xi = R cos θ yi (2.4)

where i = 1, . . . , d + 1, θ ∈ [−π/2, π/2)3, yi ∈ Rd+1 and themselves belong to a lower
unit-dimensional sphere Sd meaning that yiyi = 1. The induced metric then reads

ds2 = R2(dθ2 + cos2 θ dΩ2
d) (2.5)

where dΩ2
d is the metric of the unit Sd. Another coordinate system can be found by the

change of variable tanh(ϕ/2) = tan(θ/2) which leads to

X0 = R
sinhϕ

coshϕ
, Xi = R

yi

coshϕ
(2.6)

with ϕ ∈ R. This coordinate system has the conformally flat metric of

ds2 =
R2

cosh2 ϕ

(
dϕ2 + dΩ2

d

)
. (2.7)

3Except for S1 that requires θ ∈ [−π, π)
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2.1 Geometry of maximally symmetric spaces

2.1.2 Euclidean Anti-de Sitter spacetime

Euclidean anti-de Sitter spacetime can be defined as a set of points embedded in Minkowski
space Md+1,1:

EAdSd+1 : −(X0)2 + (X1)2 + . . . + (Xd+1)2 = −R2 , (2.8)

which defines two disconnected hypersurfaces. In our convention, we pick EAdS to be
the one with X0 > 0. This definition makes it manifest that EAdS is invariant under
SO(d+ 1, 1) rotation and boosts and hence its (d+ 1)(d+ 2)/2 generators satisfy the
commutation relations of SO(d+ 1, 1) algebra in (2.33). Let us present three coordinate
systems that are useful for us in this thesis. One is the global coordinate that is given by

X0 = R cosh ρ cosh τ , Xd+1 = R cosh ρ sinh τ , Xµ = R sinh ρ yµ . (2.9)

where µ = 1, . . . , d, Euclidean time τ ∈ R, ρ ∈ R+(see footnote 4) and yµ ∈ Rd is a unit
vector (yµyµ = 1). This coordinate system leads to the induced metric of

ds2 = R2(cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2
d−1) . (2.10)

with the change of variable of tanh ρ = sin r, we find radial coordinates:

X0 = R
cosh τ

cos r
, Xd+1 = R

sinh τ

cos r
, Xµ = R

sin r

cos r
yµ , (2.11)

where r ∈ [0, π/2)4. It is clear that these two coordinates satisfies X0 > 0. Radial
coordinate has the induced metric of

ds2 = R2dτ
2 + dr2 + sin2 r dΩ2

d−1

cos2 r
(2.12)

which shows that it is conformal to a solid cylinder with the boundary at r = π/2.
An important feature of this coordinate system that is useful for the argument of bulk
state-boundary operator map [38] is that the dilatation operator is the Hamiltonian
conjugate to the global time τ : D = ∂τ .

Another extremely useful conformally flat coordinate system called Poincare coordinates
is defined as

X0 = R
z2 + x2 + 1

2z
, Xd+1 = R

z2 + x2 − 1

2z
, Xµ = R

xµ

z
(2.13)

with metric

ds2 = R2dz
2 + dx⃗2

z2
(2.14)

where xµ ∈ Rd with µ = 1, · · · , d makes a flat d-dimensional Euclidean spacial slice and

4This is true for d ≥ 2. In d = 1 the range is instead r ∈ (−π/2, π/2) or ρ ∈ R.
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Chapter 2. Quantum field theory in de Sitter

z > 0 to satisfy X0 > 0 condition. z = 0 plane is its conformal boundary meaning
that all of the EAdS generators in these coordinates will boil down to generators of a
d-dimensional conformal theory. We do not spell them out here but they are the same as
the dS counterparts in (2.34) if η → z.

2.1.3 Anti-de Sitter spacetime

Anti-de Sitter spacetime is a Lorentzian spacetime with a constant negative curvature
defined as a universal cover of the set of points embedded in Rd,2 with the signature
(−,+, . . . ,+,−):

AdSd+1 : −(X0)2 + (X1)2 + . . . − (Xd+1)2 = −R2 (2.15)

which is related to EAdS by wick rotation of Xn → iXn for one of the n’s: 1 ≤ n ≤ d+1.
Eq. (2.15) shows that the symmetry group of AdS is SO(d, 2). We are not going to discuss
about AdS spacetime in this thesis. Only for the sake of completeness let us introduce
three coordinate systems. First is the global coordinates defined as

X0 = R cosh ρ cos t , Xd+1 = R cosh ρ sin t , Xµ = R sinh ρ yµ . (2.16)

for µ = 1, · · · , d with ρ ∈ R+ except for d = 1. t ∈ [0, 2π) covers the whole hyperbola
in (2.15) but to avoid closed timelike curves, we define AdS to be the universal cover with
t ∈ R. Global coordinates therefore have the metric

ds2 = R2(− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2
d−1) . (2.17)

Radial coordinates are defined with the change of variable tanh ρ = sin r:

X0 = R
cos t

cos r
, Xd+1 = R

sin t

cos r
, Xµ = R

sin r

cos r
yµ , (2.18)

with r ∈ [0, π/2) (except for d = 1 similar to EAdS case that is explained in footnote 4). In
this coordinate system AdS is conformal to a solid cylinder with the conformal boundary
at r = π/2. The metric in these coordinates reads:

ds2 = R2−dt2 + dr2 + sin2 r dΩ2
d−1

cos2 r
. (2.19)

The Poincare coordinates are defined as

X0 = R
z2 + x2 − t̄2 + 1

2z
, Xd = R

z2 + x2 − t̄2 − 1

2z
, Xd+1 = R

t̄

z
, Xj = R

xj

z
(2.20)
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2.1 Geometry of maximally symmetric spaces

where j = 1, · · · , d− 1 and z > 0. z is a spatial coordinate as can be seen in the metric5:

ds2 =
−dt̄2 + dz2 + dx⃗2

z2
. (2.21)

One important point is that unlike in Euclidean AdS, the Poincare coordinates do not
cover all AdS(similar to dS conformal coordinates) and it only covers a sub-region bounded
by a causal diamond wrapped around AdS. The z = 0 is the AdS conformal boundary
and the z →∞ is the lightlike surface X0 −Xd = 0 that is called the Poincare horizon.

As one can explicitly see from the coordinates or metrics, AdS and EAdS are related by
the wick rotation in time coordinate t→ iτ or t̄→ ixd; hence, the "Euclidean" in EAdS.

2.1.4 de Sitter spacetime

De Sitter space in d+ 1 dimensions (or dSd+1) can be realized as the embedding of the
set of points that are a distance R from the origin6 in Minkowski space Md+1,1 with the
signature (−,+, . . . ,+):

dSd+1 : −(X0)2 + (X1)2 + . . . + (Xd+1)2 = R2 . (2.22)

At this basic level, one can see the similarity between dS and sphere. They transform to
each other by wick rotation in X0. However, note that the embedding spaces are different.
Indeed sphere is embedded in a Euclidean space while dS is embedded in a Minkowski
space.

Let us present three different coordinate systems that cover all or part of dS. To start,
we may introduce global coordinates as follows

X0 = R sinh t , Xi = R cosh t yi (2.23)

in which i = 1, . . . , d + 1 and yi ∈ Rd+1 are unit vectors (yiyi = 1), so they span the
d-sphere Sd . The induced metric in global coordinates is given by

ds2 = R2
(
−dt2 + cosh2 t dΩ2

d

)
, (2.24)

where dΩ2
d denotes the standard metric of the unit Sd. After the change of variable

tan(τ/2) = tanh(t/2), we find

X0 = R
sin τ

cos τ
, Xi = R

yi

cos τ
(2.25)

5This metric goes to EAdS metric in Poincare coordinates by t̄→ ixd which is Xd → iXd

6Often the Hubble scale H = 1/R is used instead of R.
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Chapter 2. Quantum field theory in de Sitter

from which the metric reads

ds2 = R2−dτ2 + dΩ2
d

cos2 τ
, (2.26)

with τ ∈ (−π/2, π/2) . We conclude that in these coordinates dS is conformally equivalent
to (part of) the Minkowski cylinder. This observation is important in the analysis of
conformal field theories in dS (see section 2.6.3).

Finally, it will be useful to foliate dS using flat slices. This can be done by

X0 = R
η2 − 1− x2

2η
, Xd+1 = R

x2 − 1− η2
2η

, Xµ = −Rx
µ

η
(2.27)

for µ = 1, . . . , d. For definiteness, we will pick the Poincaré patch covering X0+Xd+1 ≥ 0.
So, strictly speaking, such foliations only cover half of de Sitter space. However, this
region is causally complete, in the sense that it is impossible to send a message to the
other patch with X0 +Xd+1 < 0. This parametrization is called conformal or Poincaré
coordinates in which η < 0 and xµ ∈ Rd.

The coordinate η plays the role of a conformal time, whereas the xµ are spatial coordinates.
Poincare coordinates have the conformally flat metric of

ds2 = R2 −dη2 + dx⃗2

η2
. (2.28)

This will be the main coordinate system we use throughout this thesis, as it makes
manifests the conformal symmetry of the late-time boundary η = 0. Global and conformal
coordinates are related via the dictionary

η = − 1

sinh(t) + cosh(t)yd+1
, xµ =

yµ

tanh(t) + yd+1
, (2.29)

which maps the late-time Poincaré patch to the subset of global coordinates satisfying
yd+1 + tanh(t) ≥ 0. Figure 2.1 shows a picture of dSd+1 in the global coordinates of
Eq. (2.26), along with a Penrose diagram which shows timeslices with η = constant.

Let us draw your attention to the connection between dS and sphere. At the level
of embedding space, they are related by wick rotation X0 → iX0. Moreover, the
corresponding coordinates and metrics map to each other by a wick rotation in time
t→ iθ or τ → iϕ7. In other words, Euclidean dS is indeed the sphere.

In summary, each of the mentioned d+ 1-maximally symmetric spaces can be realized as
d+1-hypersurface of the set of points with distance R from the origin in a d+2-dimensional
embedding space: AdS in Rd,2, dS and EAdS in Rd+1,1 and sphere in Rd+2. The sphere

7This argument does not work for Poincare coordinates as we picked half of the space by condition
X0 +Xd+1 ≥ 0 and such a transformation does not match with this condition
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2.1 Geometry of maximally symmetric spaces

Figure 2.1: Left: de Sitter spacetime dSd+1 as a hollow Minkowski cylinder, cf. equa-
tion (2.26). Time τ runs upwards from −π/2 to π/2. Every horizonal timeslice corresponds
to a copy of Sd. The infinite past (resp. future) is shown as a solid red (blue) line. The
light blue area is the Poincaré patch X0 + Xd+1 ≥ 0; the boundary between the two
patches is shown as a dashed line. Right: Penrose diagram of the same spacetime,
specializing to d = 1. Spatial slices S1 are parametrized by an angle ϕ ∼ ϕ+ 2π. Several
timeslices of fixed η < 0 in the conformal coordinates (2.28) are shown as thin purple
lines. The left and right sides of the diagram are identified, owing to the periodicity of ϕ.

and EAdS are respectively the Euclidean version of dS and AdS with a Wick rotation of
the time coordinate. dS and Sphere have positive Ricci curvature of R = d(d+ 1)/R2

while AdS and EAdS have the negative sign: R = −d(d+ 1)/R2.

Symmetries of dS

de Sitter space dSd+1 is manifestly invariant under SO(d+ 1, 1), as can be seen from its
definition (2.22). As such, it has 1

2(d+2)(d+1) Killing vectors. The symmetry generators

JAB = XA
∂

∂XB
−XB

∂

∂XA
, A,B = 1, . . . , d+ 2 (2.30)

are rotations and boosts that preserve the dS hypersurface in the embedding space, and
they obey commutation relations

[JAB, JCD] = −ηACJBD − ηBDJAC + ηBCJAD + ηADJBC (2.31)

where ηAB = diag(−1, 1, . . . , 1). After relabeling the symmetry generators as follows

D = J0,d+1 , Mµν = Jµν ,

Pµ = J0,µ + Jd+1,µ , Kµ = Jd+1,µ − J0,µ
(2.32)

35



Chapter 2. Quantum field theory in de Sitter

with µ, ν = 1, . . . , d, we find that the new generators D, Pµ, Kµ, and Mµν obey the
familiar Euclidean conformal algebra:

[D,Pµ] = Pµ , [D,Kµ] = −Kµ , [Kµ, Pν ] = 2δµνD − 2Mµν ,

[Mµν , Pρ] = δνρPµ − δµρPν , [Mµν ,Kρ] = δνρKµ − δµρKν ,

[Mµν ,Mρσ] = δνρMµσ − δµρMνσ + δνσMρµ − δµσMρν

(2.33)

as well as [Pµ, Pν ] = 0 , [Kµ,Kν ] = 0 and [D,Mµν ] = 0. In our conventions, all these
generators are anti-hermitian.

Expressed in flat coordinates (η, xµ), the corresponding Killing vectors of dSd+1 can be
expressed as follows:8

Pµ :
∂

∂xµ
,

Mµν : xν
∂

∂xµ
− xµ

∂

∂xν
,

D : η
∂

∂η
+ xµ

∂

∂xµ
,

Kµ : (η2 − x2) ∂

∂xµ
+ 2xµη

∂

∂η
+ 2xµx

ν ∂

∂xν
.

(2.34)

Note that at the late-time boundary η = 0, the generators are the standard generators of
the conformal algebra in flat space. We will exploit the conformal symmetry of late-time
dS extensively throughout this thesis.

Finally, local operators in de Sitter transform under the SO(d+1, 1) isometries according
to (2.34). To be precise, a local scalar operator ϕ(η, x) transforms under the conformal
generator Q as

[Q,ϕ(η, x)] = Q̂ · ϕ(η, x) (2.35)

where Q̂ is the Killing vector differential operator from Eq. (2.34) — for instance

[Pµ, ϕ(η, x)] = ∂µϕ(η, x) , [D,ϕ(η, x)] = (η∂η + x · ∂)ϕ(η, x) (2.36)

and likewise for the other generators.

2.2 Representation theory of SO(d+ 1, 1)

Throughout this thesis, we will need to deal with Hilbert spaces of QFTs in de Sitter. Such
Hilbert spaces are organized into unitary irreducible representations of the dS isometry

8Strictly speaking, the Killing vectors from Eq. (2.34) need to be defined with an additional minus
sign to be consistent with (2.33). The notation (2.34) will prove to be convenient later on. Here we avoid
equality sign and instead used “ :” to emphasis these are not the isometry generators or Killing vectors Q̂.
Instead we use the notation Q for the corresponding conserved charges.
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2.2 Representation theory of SO(d+ 1, 1)

group, SO(d + 1, 1). The representation theory of this group is rather complicated,
owing to its non-compactness, but for our purposes we will only need to recall some
basic facts about the most common representations. In general, we refer to [64, 65] for
an in-depth discussion of SO(d+ 1, 1) group theory relevant to high-energy physics, or
more recently [66–68]. For a more pedological review also see [69, 70]. A technical and
explicit discussion for general d with a focus on special functions is presented in Ref. [71].
Concerning the case of dS2, the representation theory of SO(2, 1) or its double cover
SL(2,R) is discussed for example in [72–76].

As is well-known from d-dimensional CFT, one can construct infinite-dimensional rep-
resentations of SO(d+ 1, 1) labeled by a dimension ∆ and a representation ϱ of SO(d).
In the present thesis, only traceless symmetric tensor representations of SO(d) will play
a role, and these are labeled by an integer ℓ = 0, 1, 2, . . ., with ℓ = 0 corresponding to
the trivial representation. The dimension ∆ can be any complex number, contrary to
unitary CFTs where ∆ is always real and positive. We define ∆ so that the SO(d+ 1, 1)

quadratic Casimir given by

C = D2 − 1
2(KµP

µ + PµK
µ +MµνM

µν) (2.37)

have the Casimir eigenvalue of the

C(∆, ℓ) = ∆(∆− d) + ℓ(ℓ+ d− 2) . (2.38)

So each multiplet of representation is defined by a pair of a dimension and a spin: [∆, ℓ].
For generic values of ∆, the [∆, ℓ] representation is not unitary, and for special values of
∆ it is reducible. In any dimension d, there are two continuous families of unitary irreps:

• The principal series P has ∆ = d
2 + iν with ν ∈ R, and it exists for any spin ℓ;

• The complementary series C has ∆ = d
2 + c with c ∈ R, and the range of c

depends on ℓ. To wit:

for spin ℓ = 0, 0 < |c| ≤ d
2 ;

for spin ℓ ≥ 1, 0 < |c| ≤ d
2 − 1.

The endpoints of the complementary series are known as exceptional series of
representations.

• In odd d, there are in addition discrete series representations D with integer or
half-integer values of ∆.

Finally, we stress that the representation [∆, ℓ] and its so-called shadow [d −∆, ℓ] are
unitarily equivalent. This means that principal series irreps with ∆ = d

2 ± iν can be
identified, as well as complementary series irreps with ∆ = d

2 ± c.
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Chapter 2. Quantum field theory in de Sitter

In d = 1, the group SL(2,R) ∼= SU(1, 1) has both “even” and “odd” principal series.9

The odd series of irreps does not factor down to an irrep of SO(2, 1) ∼= PSL(2,R) ∼=
SL(2,R)/{±1}.

Tensor products

In this thesis, we expand correlation functions using the Hilbert space decomposition
into unitary irreducible representations. More precisely, we inject the resolution of
identity (2.117) into correlation functions of scalar operators. Therefore, to know which
irreps have a non-zero contribution to our correlation function expansion, we have to
know the decomposition of the tensor products of the mentioned irreps. We shall use
the notation R0 to denote the scalar representation and Rs for the spinning one. In this
work we start from states that belong to scalar principal series representations and then
analytically continue to complimentary series. We will come back to the complimentary
series shortly. Here we mention the list of tensor products of different representations
that would shed lights on what we expect to appear in correlation functions. However,
the two-point and four functions, we present a direct reasoning of what representations
to expect.

For dimensions d ≥ 2, it is known that the tensor product of two (scalar) principal series
representations of the SO(d+1, 1) is decomposable into principal series representations [64,
77, 78] only. Schematically10:

P0 ⊗ P0 = P0 for d ≥ 2 . (2.40a)

In the case of d = 1 (that is to say dS2); however, the tensor product of two (even or odd)
principal series irreps generally contains both principal states irreps, as well as discrete
series irreps [79]:

P0 ⊗ P0 = P0 ⊕ D0 for d = 1 . (2.40b)

For tensor products involving discrete series, we have schematically the tensor products

P0 ⊗ D0 = P0 ⊕ D0 , (2.40c)

D0 ⊗ D0 = D0 . (2.40d)

In summary, in decomposition for d ≥ 2 only principal series show up, while for d = 1 one
has to add discrete series too. Note that this discussion is about the bulk states, not the

9For an explicit definition of these irreps, see [72, Ch. II §5], where they are labeled as P±,iv.
The irreps P± are indistinguishable at the level of the Lie algebra, but they differ for finite group
transformations.

10In the case of spinning this is not the case and the discrete series show up:

Ps ⊗ Ps = Ps ⊕ Ds . (2.39)
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2.3 Correlation functions and boundary operators

boundary operators. In fact, because of the lack of bulk state-boundary operator map
in dS, the boundary operators follow (2.40) only in special cases like the free theory. In
other words, in a generic interacting QFTs, late-time operators in dS do not necessarily
fall into unitary irreps.

There are indirect ways to see the results above. For example in the case of boundary
four-point function, the injection of resolution of identity (2.117) leads to conformal partial
wave expansion (see 4). The completeness of partial waves that belong to principal series
in d ≥ 2 is another way to see the result above. For the case of d = 1, one indeed needs
to add discrete series to the expansion. See [80, A.3] for a more detailed discussion11.
Another indirect way to find the list above is to take a bulk CFT with symmetry group
of SO(d+ 1, 2) and decompose its irreps to SO(d+ 1, 1) unitarity irreps. For the case of
d = 1, we explicitly construct the states and recover the results above in appendix D.

Complementary series

The complementary series of representations can be thought of as the analytic continuation
of the principal series. Moreover, it is shown in [81] that the complementary series would
generally show up in tensor products as a discrete set of isolated points, not a continuous
family:

C0 ⊗ C0 = P0 ⊕ C0 (isolated points) . (2.41)

This can also be seen in examples in [80, A.3] and section 3.5.3 for instance. As we shall
see, the free massive scalar field with m2 ≥ 0 has single-particle states that fall into
principal or complementary series representations depending on the value of m2R2. Since
the Casimir eigenvalue is related to m via ∆(d −∆) = m2R2, “light” fields with mass
mR < d/2 give rise to states in the complementary series while “heavy” fields with mass
mR ≥ d/2 give rise to principal series states.

The full treatment of tensor products of unitary irreps of SO(d+ 1, 1) is quite technical
and deserves a more detailed discussion. We postpone it to upcoming work of [81].

2.3 Correlation functions and boundary operators

Correlation functions of local operators are one of the most basic observables in QFT. In
this thesis, we are interested in the expectation values of local operators in the Bunch-
Davies vacuum of de Sitter spacetime. These can be conveniently defined by the analytic
continuation of correlation functions of the same QFT on the Euclidean sphere Sd+1. As

11The discussion there is about boundary operators with dimensions in the principal series or on the
real line, but one can generalize the arguments to arbitrary dimensions by analytic continuation–taking
the pole crossings into account
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Chapter 2. Quantum field theory in de Sitter

discussed in 2.1, in global coordinates this corresponds to writing t = iθ, which transforms
the metric (2.24) into the sphere metric

ds2 = R2
(
dθ2 + cos2 θ dΩ2

d

)
= R2dΩ2

d+1 , (2.42)

where θ ∈
[
−π

2 ,
π
2

)
. We can then write12

⟨Ω|ϕ1(t1, y1) . . . ϕn(tn, yn)|Ω⟩ =
lim

0<ϵn<···<ϵ1→0
⟨ϕ1(θ1 = ϵ1 − it1, y1) . . . ϕn(θn = ϵn − itn, yn)⟩Sd+1 , (2.43)

recalling that yj ∈ Sd. We shall make heavy use of this approach in section 3.

The space of local operators of a QFT is independent of the background geometry where
it is placed. Moreover, for a UV-complete QFT defined as a relevant deformation of a UV
CFT, the space of local operators is the one of the UV CFT. In de Sitter, one can also
define boundary operators by pushing bulk local operators to future (or past) infinity.
This is more conveniently stated in conformal coordinates as an expansion around η = 0,

ϕ(η, x) =
∑
α

bϕα(−η)∆α
[
Oα(x) + c1 η

2∂2xOα(x) + c2 η
4(∂2x)

2Oα(x) + . . .
]

(2.44)

=
∑
α

bϕα (−η)∆α0F1

(
∆α − d

2 + 1, 1
4η

2∂2x
)
Oα(x).

The operators Oα are primary boundary operators, obeying [Kµ,Oα(0)] = 0, whereas
operators of the form □nOα are SO(d + 1, 1) descendants. In passing to the second
line in (2.44) we used the fact that the coefficients c1, c2, . . . are fixed by de Sitter
isometries.13 It is also easy to check that Oα satisfy the other commutation relation of
primary operators of a conformal theory– i.e. they define a conformal boundary theory. If
the bulk operator ϕ is hermitian, then the boundary operators Oα can either be hermitian
with real ∆α or appear in conjugate pairs Oα and O†

α with scaling dimensions ∆α and
∆∗
α. The dimensions ∆α of boundary operators should not be confused with the labels ∆

of unitarity irreps in the Hilbert space. In particular, the values of ∆α are not restricted
to be real or of the form d

2 + iν with ν ∈ R.

For QFT in Anti-de Sitter spacetime (or Boundary CFT), there is a similar expansion

ϕ(z, x) =
∑
α

aϕαz
∆α [Oα(x) + descendants] . (2.46)

12For simplicity we restricted to scalar local operators.
13In practice, this can be done by using the expansion above to compute the two-point function

⟨Ω|ϕ(η, x)Oα(y)|Ω⟩ = bϕα
(−η)∆α

[(x− y)2 − η2]∆α
, (2.45)

which is fixed by symmetry. We normalize boundary operators to have unit two-point function. Also
notice that the 0F1 function in (2.44) can be recast as a Bessel function.
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2.4 Free scalar field in de Sitter

The convergence of this type of Operator Product Expansion (OPE) can be established
using a state-operator map [82, 83, 38]. In dS, the convergence of the series (2.44) is more
subtle. In particular, the OPE does not converge inside all matrix elements. For instance,
using conformal symmetry we easily find that

⟨Ω|ϕ(η, x)|d2 + iν, y⟩ = cϕ(iν)

( −η
|x− y|2 − η2

) d
2
+iν

, cϕ(iν) ∈ C. (2.47)

At the same time,

∆α ̸= d
2 ± iν ⇒ ⟨Ω|Oα(x)|d2 + iν, y⟩ = 0 (2.48)

as also follows from a symmetry argument. If the OPE (2.44) converged, then (2.48)
would imply that cϕ(iν) vanishes unless the late-time expansion (2.44) of ϕ contains an
operator of dimension ∆α = d

2 ± iν. Yet we will see later that cϕ(iν) is in general a
smooth, non-zero distribution for any non-trivial bulk operator ϕ, even when its late-time
expansion (2.44) does not contain any principal series operators.

2.4 Free scalar field in de Sitter

Let us start the discussion of QFT in dS by constructing an explicit example: the massive
free scalar field. We will do so by canonically quantizing the theory in the flat slicing of
Eq. (2.28). In the process, we will describe in detail the Hilbert space and its symmetry
properties.

In order to construct the free scalar in dSd+1, we start from the action

S = −
∫
dd+1x

√−g
[
1

2
gµν∂µϕ∂νϕ+

1

2
m2ϕ2

]
(2.49a)

= Rd−1

∫
ddx

∫ 0

−∞

dη

(−η)d+1

[
η2
(
1

2
ϕ̇2 − 1

2
(∇ϕ)2

)
− 1

2
R2m2ϕ2

]
(2.49b)

where we define ϕ̇ ≡ ∂ϕ/∂η.14 The Euler-Lagrange equation of motion for the field ϕ

reads
η2ϕ̈(x⃗, η)− η(d− 1)ϕ̇(x⃗, η) +

(
m2R2 − η2∂2x

)
ϕ(x⃗, η) = 0 . (2.50)

Introducing Fourier modes

ϕ(x, η) =
1

R(d−1)/2

∫
ddk

(2π)d
eik·x ϕ(k, η) (2.51)

14Strictly speaking, in passing from the first to the second line in (2.49), we have discarded the
early-time Poincaré patch covering X0 +Xd+1 < 0, but this will not influence the following discussion.
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Chapter 2. Quantum field theory in de Sitter

the equation of motion reads

η2ϕ̈(k⃗, η)− η(d− 1)ϕ̇(k⃗, η) +
(
∆(d−∆) + k2η2

)
ϕ(k⃗, η) = 0 (2.52)

using the notation
∆(d−∆) = m2R2 (2.53)

for future convenience.

As we will see later, ∆ can be interpreted as a scaling dimension once the limit η → 0 is
taken. Depending on the value of m2R2, the dimension ∆ can either be real or complex.
Let us discuss these cases separately. If 0 ≤ m2R2 < d2/4, then ∆ takes values in the
range (0, d), which is the ℓ = 0 complementary series. On the other hand, if m2R2 ≥ d2/4
then ∆ takes complex values: ∆ = d

2 + iν with ν ∈ R. This is exactly the ℓ = 0 principal
series. Remark that the label ν is only determined up to a sign. For a discussion of the
m2 < 0 case, we refer to [84].

To proceed, we note that the solutions to the equation of motion can be written as Hankel
functions. The exact mode decomposition reads

ϕ(η, k) = fk(η)a
†
k + f̄k(η)a−k (2.54)

where ak and a†k obey canonical commutation relations

[a
k⃗
, a†
k⃗′
] = (2π)dδd(k⃗ − k⃗′) (2.55)

and fk, f̄k are solutions to (2.52). As a second order differential equation, Eq. (2.52) has
two solutions: Hankel functions of the first and second kind. It turns out that by looking
at early times η → −∞ and requiring the absence of the states with negative energy, one
of the solutions is not allowed. Look at our detailed discussion of the wave function of a
generic QFT in section 3.1 or [85, section 7.2]. One then finds that the solutions are

fk(η) = (−η)d/2 hiν(|k|η) , f̄k(η) = (−η)d/2 h̄iν(|k|η) (2.56a)

where

hiν(z) :=

√
π

2
eπν/2H

(2)
iν (−z) , h̄iν(z) :=

√
π

2
e−πν/2H

(1)
iν (−z) . (2.56b)

In particular, notice that hiν and h̄iν are invariant under ν 7→ −ν, which is to be expected
since only the product ∆(d−∆) = d2/4 + ν2 is physical. Note that the normalization of
the mode functions is chosen so that they obey

fk(η)
d

dη
f̄k(η)− f̄k(η)

d

dη
fk(η) = −i(−η)(d−1) (2.57a)
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2.4 Free scalar field in de Sitter

from which it follows that ϕ and its conjugate Π satisfy canonical commutation relations:

[ϕ(η, x),Π(η, x′)] = iδ(d)(x− x′), Π(η, x) =
δS

δϕ̇
= (−R/η)d−1 ϕ̇(η, x) . (2.57b)

At early times η → −∞, the field ϕ(η, x) behaves similarly to a massless scalar field in
(d+ 1)-dimensional flat space:

ϕ(η, x) ∼
η→−∞

(−η/R)(d−1)/2

∫
ddk

(2π)d
√

2|k|
[
eik·x+iη|k|+iπ/4 a†k + h.c.

]
, (2.58)

The factor −η/R is exactly the Weyl factor corresponding to the metric (2.28). This
result can for instance be understood from the equation of motion (2.52), since at early
times both the damping term ϕ̇ and the mass term proportional to ∆(d −∆) become
irrelevant. Finally, we define the Bunch-Davies vacuum |Ω⟩ to be the state annihilated by
all ak, so that correlators at η → −∞ are similar to ordinary Minkowski correlators.

The Hilbert space of free theory

Analogously to the quantization of a scalar field in flat space, the Hilbert state of the scalar
theory in dS is a Fock space consisting of a zero-particle vacuum state |Ω⟩, single-particle
states a†k |Ω⟩ and multi-particle states a†k1 · · · a

†
kn
|Ω⟩. It will be instructive to study the

properties of single-particle states, which we will denote by

|∆, k⟩ := a†k|Ω⟩ . (2.59)

These states inherit a normalization from (2.55), namely

⟨∆, k|∆, k′⟩ = (2π)dδd(k − k′) . (2.60)

We claim that the |∆, k⟩ form an irreducible representation of the SO(d+ 1, 1) algebra.
In order to obtain the transformation properties of the states in question, let us define
wave functions

Φk(η, x|∆) := R(d−1)/2⟨Ω|ϕ(η, x)|∆, k⟩ = e−ik⃗·x⃗(−η)d/2 hiν(|k|η) (2.61)

where the explicit expression on the RHS was obtained using (2.54), and we set ∆ = d
2+iν.

We will use the expression (2.61) to show how the states |∆, k⟩ form a representation of
SO(d+ 1, 1).

To start, notice that the vacuum state |Ω⟩ is annihilated by all generators. Moreover,
since ϕ(η, x) is a local operator, it transforms under infinitesimal transformations as
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Chapter 2. Quantum field theory in de Sitter

in (2.35). From the above facts, we deduce for example that

−ikµΦk(η, x|∆) = ∂µΦk(η, x|∆) (2.62a)

= ⟨Ω|[Pµ, ϕ(η, x)]|∆, k⟩ (2.62b)

= 0− ⟨Ω|ϕ(η, x)Pµ|∆, k⟩ (2.62c)

hence it follows that
Pµ|∆, k⟩ = ikµ|∆, k⟩ . (2.63a)

For the other generators, we find that similarly

D|∆, k⟩ = −
[
k · ∂ + d

2

]
|∆, k⟩, (2.63b)

Kµ|∆, k⟩ = i

[
kµ∂

2 − 2(k · ∂)∂µ − d ∂µ + (∆− d
2)

2 kµ
|k|2

]
|∆, k⟩ , (2.63c)

Mµν |∆, k⟩ = [kν∂µ − kµ∂ν ] |∆, k⟩ (2.63d)

where all derivatives act in k-space, that is to say ∂µ = ∂/∂kµ. The derivation of the
identities (2.63) is tedious but straightforward. We perform these calculations in full
detail in appendix B

It is easy to check that the commutators of (2.63) are consistent with the conformal
algebra (2.33). Moreover, the Casimir (2.37) evaluates to

C|∆, k⟩ = ∆(∆− d)|∆, k⟩ . (2.64)

The action (2.63) is exactly the ℓ = 0 representation of SO(d + 1, 1) from section 2.2.
Multi-particle states can also be organized in representations of SO(d+ 1, 1). If m2 is
sufficiently large, then the single-particle state |∆, k⟩ is in the principal series, because
∆ = d

2 + iν for some ν ∈ R. In d ≥ 2 dimensions, two-particle states are then a
superposition of other principal series states [d2 + iν

′, ℓ] with ν ′ ∈ R and ℓ = 0, 1, 2, . . . [65].
For d = 1, we expect that the Hilbert space of the theory also contains states in the
discrete series, having integer ∆. This observation will be important in section 5 when
we set up the bootstrap for QFT in dS2.

2.5 Perturbative QFT in de Sitter

In this section, we mention some of the tools that help us perform perturbative calculations
in dS. We start with a quick review of in-in or Schwinger-Keldysh formalism that provides
a recipe similar to Feynman rules in flat space to calculate correlators of dS. Moreover,
we discuss the fruitful relation between de Sitter space dSd+1 and EAdSd+1. This relation
paves the wave of perturbative calculation in dS by introducing a simple map between
dS late-time correlators and Witten diagrams in EAdS that have already developed to a
great extent in the past few decades. We conclude this section by explicitly carrying out
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2.5 Perturbative QFT in de Sitter

the relation between contact diagrams in dS and EAdS. Many of the results presented
below have appeared before, in particular in [86–88, 21]. We reproduce them here for
convenience but refer to the original works for more details.

2.5.1 In-in formalism

In the present section, we will briefly review the in-in formalism used in the computation
of dS correlators. Recall that the flat-space S-matrix is related to correlation functions
via LSZ reduction. There we assume cluster decomposition, meaning that in the far
past (starting from a so-called “in” state) and the far future (evolving towards an “out”
state), the states can be written as the product of non-interacting single-particle states.
In particular, we assume that the vacuum is the free theory vacuum |0⟩. In other words,
we assume that we turn the interaction on and off adiabatically. In the case of dS,
we still may ask to turn interactions on adiabatically, but correlation functions at late
times (which are of interest to us) do not necessarily decompose into products of free
single-particle states. As such, there is no well-defined notion of “out”-states.15

Consider correlator

⟨Q(η)⟩ = ⟨O(η, x1)O2(η, x2) · · · On(η, xn)⟩

at some time η. To calculate this correlation function, we use the in-in formalism in
which we evolve with a unitary operator from time η0 = −∞ to η and evolve back in
time again to η0 = −∞ as follows:

⟨Q(η)⟩ = ⟨T̄{ei
∫ η(1−iϵ)
η0(1−iϵ)

dη′′HI(η
′′)}QI(η)T{e−i

∫ η(1+iϵ)
η0(1+iϵ)

dη′HI(η
′)}⟩ (2.65)

where the T (resp. T̄ ) time-orders (anti-time-orders) operator products, cf. formula (1)
from [86]. Note that the iϵ on the right-hand side comes with a plus sign while the
one on the left has a minus sign. This has a convenient representation in the so-called
Schwinger-Keldysh picture, where we have a branch cut on the real axis of the η-plane.
To calculate the above correlator ⟨Q(η)⟩, we first evolve from η = −∞ and move below
the cut to η (time ordered and η(1 + iϵ) with η < 0, ϵ > 0) and go back from above the
cut (anti-time ordered and η(1− iϵ)).

The prescription (2.65) results in a new set of Feynman rules, which are for instance
explained in the appendix of [86]. We review them here for completeness:

15One way to derive perturbation theory in QFT textbooks makes use of the formula

⟨Ω|T{ϕ(x)ϕ(y)} |Ω⟩ = lim
T→∞(1−iϵ)

⟨0|T{ϕI(x)ϕI(y)e−i
∫∞
−∞ dtHI (t)} |0⟩

⟨0|T{e−i
∫∞
−∞ dtHI (t)} |0⟩

where the |0⟩ and |Ω⟩ are respectively the vacuum of the free theory and interacting theory. However, to
derive this formula, one needs to assume that it is possible to evolve back |0⟩ with a unitary operator
U(t, t′) from T → +∞ to some t∗ = max(x, y, tintegral). This is not possible in dS.
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right

left

ϵ

η

Figure 2.2: The contour integral of the in-in formalism.

• Two different sets of vertices correspond to time-ordered and anti-time-ordered
terms. We call them right and left vertices, referring to their position in the operator
product (2.65). The right vertex gets multiplied by −i, while the left vertex gets
multiplied by +i.

• The external propagator emanating from a right vertex and the propagator between
two right vertices refer to the time-ordered propagator Grr = ⟨Tϕ(η1, x1)ϕ(η2, x2)⟩.

• Similarly, the external propagator leaving a left vertex and the propagator between
two left vertices denotes the anti-time ordered propagatorGll = ⟨T̄ ϕ(η1, x1)ϕ(η2, x2)⟩.

• The propagator between a right and a left vertex represents the Wightman function
Glr = ⟨ϕ(η1, x1)ϕ(η2, x2)⟩.

Another way to look at Grr, Gll, Glr is indeed via their position on Schwinger-Keldysh
contour. More precisely:

Grr = ⟨ϕ(ηr1, x1)ϕ(ηr2, x2)⟩ ,
Gll = ⟨ϕ(ηl1, x1)ϕ(ηl2, x2)⟩ ,
Glr = ⟨ϕ(ηl1, x1)ϕ(ηr2, x2)⟩

(2.66)

where the left and right are respectively corresponding to time and anti-time ordered part
of the contour with different iϵ prescription:16

ηl = η(1 + iϵ) , ηr = η(1− iϵ) . (2.67)

Consequently, to perform perturbation theory computations in dS, one requires the two-
point function of free theory. In the next section we restate the connection between EAdS
and dS, find the explicit expressions of their propagators and establish the relation between
the perturbative calculation of QFT in dSd+1 and EAdSd+1 via analytical continuation.

16Note that one could equivalently define the integral paths in (2.65) to be η ∓ iϵ instead of η(1± iϵ),
and consequently ηl = η − iϵ, ηr = η + iϵ considering η < 0. However, this will modify the sign of iϵ
prescription in (2.81) to −iϵ.
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2.5 Perturbative QFT in de Sitter

2.5.2 Two-point function in EAdS and dS

EAdS and dS are both maximally symmetric spacetimes that can be seen as hypersurfaces
living in the Minkowski space of Md+2. In what follows we will show that this simple
fact implies that the Wightman two-point function of one of these spacetimes can be
written as a linear combination of the other one. For simplicity, we focus on scalar fields
but a similar result holds for spinning two-point functions as well [89, 22]. This section is
heavily inspired by the beautiful paper of [89].

Let us, again, spell out the definition of dS and EAdS as hypersurfaces living in the
Minkowski space ofMd+2:

X.X = XAX
A = −(X0)2 + (X1)2 + . . .+ (Xd+1)2 = R2 dSd+1 (2.68a)

Y.Y = YAY
A = −(Y 0)2 + (Y 1)2 + . . .+ (Y d+1)2 = −R2 EAdSd+1 . (2.68b)

Notice that with the Wick rotation R→ iR one goes from dS to EAdS and vice versa.
Let us also define the two-point invariants σ as

σdS =
X1.X2

R2
, σEAdS =

Y1.Y2
R2

. (2.69)

which for instance in Poincare coordinates are given by

σdS =
η21 + η22 − |x12|2

2η1η2
, σEAdS = −z

2
1 + z22 + |x12|2

2z1z2
(2.70)

and are related to chordal distances via

ζdS ≡ (X1 −X2)
2

R2
= 2(1− σdS) , ζEAdS ≡ (Y1 − Y2)2

R2
= −2(1 + σEAdS) . (2.71)

Note that σEAdS ∈ (−∞,−1] and saturates the bound at −1 when the points are on
top of each other X1 → X2 while σdS ∈ R. Moreover σdS > 1 corresponds to timelike
separated point, σdS < 1 corresponds to spacelike separated points and σdS = 1 is when
the two points are on each other’s lightcone.

The Wightman two-point function of a massive free scalar theory in dS and EAdS

⟨ϕ(Z1)ϕ(Z2)⟩f =
1

Rd−1
Gf(Z1, Z2), (2.72)

is defined as the solution of the Klein-Gordon equation17 [89, 19, 90](
∇2 −m2

)
Gf(Z1, Z2) = 0 . (2.73)

17Strictly speaking, Wightman two-point function is the solution of Green’s equation with the right
hand side proportional to a δd+1(Z1 − Z2). We eventually find the solution of this equation by requiring
the short distance limit to match with the flat space solution.
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where ∇2 is the Laplacian in corresponding space that can be calculated from Laplacian
in embedding space

∓R2∇2 =
1

2
JABJ

AB = −Z2∂2Z + Z.∂Z(d+ Z.∂Z) (2.74)

followed by a projection to dS or EAdS [50, 3.1]. The minus in ∓ corresponds to dS
and the plus sign represents EAdS. The subscript “f” stands for the fact that we are
calculating the two-point function of the free theory. The solution to this equation is a
function of the two-point invariant σ = Z1.Z2/R

2 and reads[
(1− σ2)∂2σ − (d+ 1)σ∂σ ∓m2R2

]
Gf = 0 , (2.75)

which after a change of variable of ρ = (1∓ σ)/2 becomes a hypergeometric equation [90][
ρ(1− ρ)∂2ρ +

(
d+ 1

2
− (d+ 1)ρ

)
∂ρ ∓m2R2

]
Gf = 0 . (2.76)

The solutions to this equation can be expressed in terms of two independent solutions of
24 Kummer’s solutions. For later convenience, we chose the particular linear combination
of

Gf(ρ) = C∆ψ∆(1/ρ) +D∆ψd−∆(1/ρ) (2.77a)

with

ψ∆(ξ) = ξ∆ 2F1

[
∆,∆− d

2 + 1
2

2∆− d+ 1

∣∣∣∣ξ] , ∆ =
d

2
+

1

2

√
d2 ∓ 4m2R2 (2.77b)

where ∆ is the scaling dimension of dS in (2.53) and EAdS satisfying ∆(∆−d) = ∓m2R2.
So far the result of the calculations of dS and EAdS are the same up to the Wick rotation
of R→ iR. Moreover, it is now apparent that Wightman two-point functions of dSd+1

and EAdSd+1 are related with a linear map. We may now specify the boundary conditions
to fix C∆ and D∆ that appear in the eq. (2.77a):

• Regularity of the solution for

– EAdS: the long-distance limit corresponding to ρ→∞. Considering that for a
unitary theory in EAdS we have m2 ≥ 0 or equivalently ∆ ≥ d, this condition
leads to DEAdS

∆ = 0.

– dS: antipodal points i.e. σdS → −1 or ρdS → 1. This condition leads to
CdS
∆ = DdS

d−∆.

• Recovering the flat space limit in short-distance limit. According to (2.74) this
corresponds to σdS → 1 and σEAdS → −1 or equivalently ρdS → 0 and ρEAdS → 1.

In the end by recalling that σEAdS = 2ρ − 1 and σdS = 1 − 2ρ, one finds the EAdS
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propagator to be

GEAdS
f (σEAdS) =

C∆
(−2− 2σEAdS))

∆ 2F1

[
∆,∆− d

2 + 1
2

2∆− d+ 1

∣∣∣∣ 2

1 + σEAdS

]
(2.78)

where
C∆ =

Γ(∆)

2π
d
2Γ(∆− d

2 + 1)
, (2.79)

and the dS propagator to be

GdS
f (σdS) =

Γ(d2 −∆)Γ(∆)

2∆+2πd/2+1

1

(1− σdS)∆
2F1

[
∆,∆− d

2 + 1
2

2∆− d+ 1

∣∣∣∣ 2

1− σdS

]
+ ∆↔ d−∆

=
Γ(∆)Γ(d−∆)

(4π)
d+1
2 Γ(d+1

2 )
2F1

(
∆, d−∆;

d+ 1

2
;
1 + σdS

2

)
(2.80)

where we used the identity (A.10) to go from the first line to the second.

Remark that σEAdS ≤ −1, therefore two-point function found in (2.78) is indeed regular
at any separation as expected for a Euclidean free two-point function. On the other hand,
σdS ∈ R and when two points are timelike separated (σdS > 1), then one needs an iϵ

prescription to deal with the branch cut in (2.80). In practice, when we are calculating
the in-in diagrams, we have a definite iϵ prescription given by (2.66):

Grr = GdS
f (σdS− iϵ) , Gll = GdS

f (σdS+ iϵ) , Glr = GdS
f (σdS− iϵ sgn(ηl−ηr)) . (2.81)

One may also derive this by Fourier transforming the two-point function to momentum
space using (2.54). For future reference, we note the Fourier decomposition in question:

GdS
f (σdS) = (ηη′)d/2

∫
ddk

(2π)d
e−ik·(x−x

′) hiν(|k|η)hiν(|k|η′) . (2.82)

Let us comment on the meaning of regularity for antipodal separation in dS. This is
connected to the definition of the vacuum state. Indeed, dS does not possess a unique
solution for the vacuum state. There are a family of vacua that are invariant under dS
isometries. This family of vacua is labeled by a continuous complex parameter α and they
are called α-vacua. For more details look at e.g. [91–94]. Indeed the two-point function
in (2.80) is in the Bunch-Davies vacuum. We discussed a perturbative way of defining the
Bunch-Davies vacuum in section 2.4. Another way of defining the Bunch-Davies vacuum
is through analytical continuation from the sphere discussed in (2.3); hence, some call
the Bunch-Davies vacuum, the Euclidean vacuum. The vacuum state on the sphere is
well-defined and unique and it is natural to ask regularity of two-point functions when
the points are at antipodal positions. Therefore, after analytically continuing back to dS,
we require the two-point functions to be regular when σdS → −1. On the other hand,
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the two-point function in alpha vacuum admits solutions that are singular at antipodal
points [91]:

⟨α|ϕ(X1)ϕ(X2) |α⟩ = cosh2 αGBD(X1, X2) + sinh2 αGBD(X̃1, X̃2)

+
1

2
sinh 2α

(
GBD(X̃1, X2) + GBD(X1, X̃2)

)
(2.83)

where |α⟩ is the α-vacuum, and we pick α ∈ R (α = 0 corresponds to the Bunch-Davies),
GBD is the Wightman two-point function in the Bunch-Davies vacuum found in eq. (2.80)
and X̃ = −X is the antipodal transformation.

Late-time limit and boundary operators

Let us briefly discuss the late-time boundary operators in a massive free theory. Take the
bulk-to-boundary expansion in (2.46) and (2.44). The action of the symmetry group on
these fields will fix the dimension of the first (primary) operator that shows up in the
expansion:

EAdS: ϕ(z, x) ∼
z→0+

a∆ z
∆O(x)

dS: ϕ(x, η) ∼
η→0−

b∆ (−η)∆O(x) + b∗∆ (−η)∆∗O†(x) .
(2.84)

Note that since the scaling dimension ∆ in EAdS in real and positive, only one term
shows up in the expansion but in dS if the free field is heavy enough (m2R2 > d2/4)
then there appears a pair of hermitian conjugate operators with an equal real part for
scaling dimension. In the case of light fields (m2R2 < d2/4), the boundary operators
are hermitian O = O† and b∆ = b∗∆. Now let us look at the late-time of two-point
functions (2.78) (for z1 = z2 = z) and (2.80)(for η1 = η2 = η):

GEAdS
f ∼

z→0+

Γ(∆)

2π
d
2Γ(∆− d

2 + 1)
z2∆

1

|x12|2∆
,

GdS
f ∼

η→0−

Γ(∆)Γ(d2 −∆)

4π
d
2
+1

(−η)2∆ 1

|x12|2∆
+ ∆↔ d−∆ + (local terms) .

(2.85)

Note that both of them have the CFT two-point function structures on the right side
(|x12|−2∆). This is expected from (2.84) since, as mentioned in 2.3, the late-time boundary
is conformal meaning that the action of EAdS and dS isometries on the boundary operators
are the same as the ones of primary operators of a CFT. In this thesis, we pick the
convention that the two-point function is unit normalized: ⟨O(x1)O(x2)⟩ = |x12|−2∆, this
fixes the bulk-boundary coefficients of (2.84):

a∆ =
√
C∆ =

[
Γ(∆)

2π
d
2Γ(∆− d

2 + 1)

] 1
2

, b∆ =

[
Γ(∆)Γ(d2 −∆)

4π
d
2
+1

] 1
2

. (2.86)
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2.5 Perturbative QFT in de Sitter

Here, we neglect the local terms in eq. (2.85), but it turns out that their existence is
essential for maintaining unitarity. We will discuss this matter in detail in section 4.2.2.

2.5.3 EAdS-dS dictionary

In this section, we will reproduce the simple recipe to transform the Feynman diagrams
in dS to their EAdS counterparts with a Wick rotation. For definiteness, let us pick the
Poincare coordinates for both spacetimes. As discussed in section (2.5.1), the calculation
of Feynman diagrams in dS involves three types of propagators: Gll, Grr, Glr. These
propagators can be found by tracking their position on Schwinger-Keldysh contour (2.66)
and the notion of ηl and ηr defined in (2.67).

Consider the transformation that Wick rotate the left and right Euclidean times differently:

ηl → −eiπ2 z , ηr → −e−iπ2 z . (2.87)

This transformation implies

σdS
lr → σEAdS , σdS

rr(ll) → −σEAdS (2.88)

where σdS
ab corresponds to the two-point function invariant σdS in (2.70) with η1 = ηa and

η2 = ηb. Using the hypergeometric identity (A.8), one can easily show that under the
map of (2.87), Glr transforms as

Glr → g(∆)GEAdS
∆ (σEAdS) + g(d−∆)GEAdS

d−∆ (σEAdS) (2.89)

with

g(∆) =
b2∆
a2∆

=
Γ(∆− d

2)Γ(
d
2 −∆)

2π

(
∆− d

2

)
(2.90)

where we used the notation GEAdS
∆ for GEAdS

f with scaling dimension ∆. Moreover, by
plugging transformation (2.88) in the first equation of (2.80) and using the (2.81) iϵ
prescription, one finds transformation rules

Grr → e−iπ∆g(∆)GEAdS
∆ (σEAdS) + e−iπ(d−∆)g(d−∆)GEAdS

d−∆ (σEAdS) ,

Gll → eiπ∆g(∆)GEAdS
∆ (σEAdS) + eiπ(d−∆)g(d−∆)GEAdS

d−∆ (σEAdS) .
(2.91)

Equations (2.89) and (2.91) have a very important consequence: all dS in-in Feynman
diagrams map to a linear combination of EAdS diagrams. Notice that this statement is
true for any order in perturbation theory.

The only remaining required ingredient to complete the dS-EAdS dictionary is the measure
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of in-in left and right vertices that are given by

right vertex : −i
∫

dηr

(−ηr)d+1
→ ei

π
2
(d−1)

∫
dz

zd+1

left vertex : i

∫
dηl

(−ηl)d+1
→ e−i

π
2
(d−1)

∫
dz

zd+1
.

(2.92)

There is a beautiful way to organize these rules presented by [21]. In this paper, the
authors propose an effective action of a theory with potential V EAdS that naturally
produces the the correlator of a theory with potential V dS.

Example: dS contact diagram

As the simplest example of the mentioned dictionary, let us consider the first order
correction to the dS scalar boundary n-point function–generated by the n-point contact
diagram of a λϕ1 · · ·ϕn interaction:

⟨ϕ1(η0, x1) · · ·ϕn(η0, xn)⟩λ = ⟨ϕ1(η0, x1) · · ·ϕn(η0, xn)⟩free + λD(η0) (2.93)

where we set R = 1. According to the in-in formalism, this contact diagram is the sum of
two diagrams of n-external propagators that meet at left and right vertices:

D(η0) = −iDr(η0) + iDl(η0) , (2.94)

Dα(η0) =

∫ η0

−∞

dηα

(−ηα)d+1

∫
ddx

n∏
i=1

Gαα(η0, xi, η
α, x) . (2.95)

As seen in (2.91), each Gαα produces two bulk-boundary propagators related by a shadow
transformation corresponding to the two boundary operators O and O†. Therefore, to
calculate the perturbative contribution to the correlator

⟨O(x1) · · · O(xn)⟩dS ,

we assign the first terms in (2.91), and define bulk to boundary propagators as

Krr := lim
η0→0−

g(∆)e−iπ∆GEAdS
∆ ,

K ll := lim
η0→0−

g(∆)eiπ∆GEAdS
∆ .

(2.96)

We shall show that the dS contact diagram is simply proportional to the EAdS counterpart.
Let the dimension of each operator ϕi be ∆i. The two boundary correlators are generated
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by the corresponding bulk correlators as

⟨ϕ1 · · ·ϕn⟩EAdS :

n∏
i=1

a∆i z
∆t
0 ⟨O(x1) · · · O(xn)⟩EAdS ,

⟨ϕ1 · · ·ϕn⟩dS :
n∏
i=1

b∆i (−η)∆t0 ⟨O(x1) · · · O(xn)⟩dS .

(2.97)

where ∆t =
∑n

i=1∆i and a∆i , b∆i are field ϕi bulk-to-boundary coefficient in (2.84)–
explicitly given by (2.86). Using (2.91) and (2.92) we then find:

⟨O1 · · · On⟩contact
dS → 2 sin

(π
2
(d−∆t)

) ∏n
i=1 a∆i g(∆i)∏n

i=1 b∆i
⟨O1 · · · On⟩contact

EAdS (2.98)

where ⟨O1 · · · On⟩contact is the contribution of a bulk contact interaction (i.e. order λ
contribution) to the boundary n-point function.

It is customary to write the EAdS contact diagram as

⟨O1 · · · On⟩contact
EAdS =

(
n∏
i=1

a∆i

)
Dn(xi) (2.99)

with

Dn(xi) =

∫ ∞

0

dz

zd+1

∫
Rd
ddy

n∏
i=1

(
z

z2 + |y − xi|2
)∆i

(2.100)

which is know as the D-function in the literature. Consequently, we have

⟨O1 · · · On⟩contact
dS = 2 sin

(π
2
(d−∆t)

)( n∏
i=1

b∆i

)
Dn(xi) . (2.101)

2.6 Non-perturbative QFT in de Sitter

2.6.1 Hilbert space

In a general QFT, we expect that the Hilbert space falls into irreducible representations of
the isometry group of its spacetime, plus any additional global symmetries of the theory
in question. For a QFT on dSd+1, we therefore expect that all states form representations
of SO(d + 1, 1), like the single-particle states |∆, k⟩ from section 2.4. In this section,
will argue that after taking spin into account, the representation (2.63) is essentially
unique up to a choice of ∆. For generic ∆ such representations are non-unitary, but for
special values of ∆ these states form principal, complementary or discrete series irreps, as
described in section 2.2. To prove this, let us write a generic state as |∆, k⟩A, where A is
an abstract SO(d) index. Since the anti-hermitian momentum generators Pµ commute,
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we can diagonalize them
Pµ|∆, k⟩A = ikµ|∆, k⟩A (2.102)

as in (2.63). Next, let us briefly introduce some notation to describe spinning states
|∆, k⟩A where A is an abstract SO(d) index. Rotations act on such a state as

Mµν |∆, k⟩A = (kν∂µ − kµ∂ν +Σµν)|∆, k⟩A (2.103)

where Σµν = −Σνµ acts on the A indices and obeys the same commutation relations
as Mµν . In the present thesis, we will only deal with states that transform as traceless
symmetric tensors of spin ℓ. It will be convenient to use an index-free notation as follows:

|∆, k, z⟩ := |∆, k⟩µ1···µℓ zµ1 · · · zµℓ (2.104)

where the indices µ1, . . . , µℓ run over 1, . . . , d. The tensor properties of the above state
imply that

zµ
∂

∂zµ
|∆, k, z⟩ = ℓ |∆, k, z⟩ and

∂

∂zµ
∂

∂zµ
|∆, k, z⟩ = 0 . (2.105)

The spin operator Σµν now acts as

Σµν |∆, k, z⟩ =
(
zν

∂

∂zµ
− zµ

∂

∂zν

)
|∆, k, z⟩ (2.106)

such that
−1

2ΣµνΣ
µν |∆, k, z⟩ = ℓ(ℓ+ d− 2) |∆, k, z⟩ (2.107)

which recovers the usual SO(d) Casimir eigenvalue of a spin-ℓ representation. From
Eqs. (2.102) and (2.103), the action of the other generators is fixed up to a single
parameter. For instance, the generator D should act as a scalar that assigns appropriate
weights to kµ and ∂/∂kµ because [D,Pµ] = Pµ. Hence D should be of the form

D|∆, k⟩A = − (k · ∂ + β) |∆, k⟩A (2.108)

with some constant β to be determined. Likewise, we can write down a completely general
ansatz for Kµ which transforms as a vector and is built out of kµ, ∂/∂kµ and Σµν . By
imposing that [D,Kµ] and [Kµ, Pν ] close as in (2.33), and that [Kµ,Kν ] = 0, we find that
Kµ is fixed to

Kµ|∆, k⟩A =

i
[
kµ∂

2 − 2(k · ∂)∂µ − d ∂µ + (∆− d
2)

2 kµ
|k|2 − 2Σµν

(
∂ν ± (∆− d

2)
kν

|k|2
)]
|∆, k⟩A (2.109)

where ∆ is now an arbitrary parameter. The requirement that [Kµ, Pν ] reproduces the
commutation relation (2.33) fixes β = d/2 in (2.108). The equations (2.103), (2.102),
(2.108) and (2.109) thus form the most general consistent representation of SO(d+ 1, 1)
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2.6 Non-perturbative QFT in de Sitter

that diagonalize Pµ. In addition, it is easy to see that the state |∆, k⟩A will have
conformal Casimir eigenvalue ∆(∆−d)− 1

2Σ
2
µν , which for a spin-ℓ representation becomes

∆(∆− d) + ℓ(ℓ+ d− 2).

Notice that in (2.109) the action of Kµ is only determined up to a choice of sign, at
least for spinning states where Σµν ̸= 0: both sign choices respect the conformal algebra
and lead to the same Casimir eigenvalue. Changing the sign is equivalent to redefining
∆ 7→ d−∆. In what follows, we will choose the + sign for definiteness.

Finally, the ground state |Ω⟩ of any QFT in dS must be annihilated by all of the symmetry
generators, and as such it transforms as a trivial representation of dimension ∆ = 0, ℓ = 0

and kµ = 0.

2.6.2 Representations in position space

Although the above representations look complicated, we can show that they take a more
familiar form after introducing a specific Fourier-like transformation. To wit, define a
new family of states as18

|∆, x⟩A :=

∫
ddk

(2π)d
eik·x |k|∆−d/2 |∆, k⟩A (2.110)

where a factor of |k|∆−d/2 has been introduced for future convenience. We will argue that
the state |∆, x⟩A transforms just like a primary operator of dimension ∆ in flat-space
CFT. As a first hint, one readily computes that for a scalar state

⟨∆, x|∆, x′⟩ =
∫

ddk

(2π)d
eik·(x−x

′) |k|∆+∆̄−d (2.111)

provided that the k-space state |∆, k⟩ is normalized such that

⟨∆, k|∆, k′⟩ = (2π)dδd(k − k′) . (2.112)

There are now two possibilities: if ∆ is real (i.e. when ∆ is in the complementary series),
then ∆̄ = ∆. On the other hand, if ∆ is in the principal series then ∆̄ = d −∆. We
conclude that

⟨∆, x|∆, x′⟩ =
{
δd(x− x′) ∆ ∈ d/2 + iR

c∆/|x− x′|2∆ ∆ ∈ R
(2.113)

for some computable coefficient c∆.19 For real ∆ this is the form of a two-point function
in flat-space CFT, but when ∆ is in the principal series the states |∆, x⟩A have a delta
function normalization.

18These states can be found in the literature with different but equivalent definitions. see e.g. [64, 69, 70]
19The integral (2.111) diverges for ∆ ∈ R, so (2.113) is only true in the sense of distributions.
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Let us make the above statement precise by computing the action of the SO(d+ 1, 1)

generators. On a state of the form (2.110), Pµ acts as

Pµ|∆, x⟩A =

∫
ddk eik·x |k|∆−d/2(ikµ)|∆, k⟩A =

∂

∂xµ
|∆, x⟩A (2.114a)

and likewise

D|∆, x⟩A = (x · ∂ +∆) |∆, x⟩A (2.114b)

Mµν |∆, x⟩A = (xν∂µ − xµ∂ν +Σµν)|∆, x⟩A (2.114c)

Kµ|∆, x⟩A =
(
2xµ(x · ∂)− x2∂µ + 2∆xµ − 2Σµν x

ν
)
|∆, x⟩A (2.114d)

where all derivatives act on x. We spell out the derivation for the case of the scalar states
in appendix B. These formulas are exactly identical to those obtained by applying a
fictitious CFT operator O(∆)

A (x) of dimension ∆ to the Bunch-Davies vacuum. From a
practical point of view, this implies that any n-point amplitude

⟨Ω|ϕ(η1, x1) · · ·ϕ(ηn, xn)|∆, x⟩A (2.115a)

has the exact same SO(d+ 1, 1) transformation properties as an (n+ 1)-point vacuum
expectation value with an insertion of an operator O(∆)

A (x):

⟨Ω|ϕ(η1, x1) · · ·ϕ(ηn, xn)O(∆)
A (x)|Ω⟩ . (2.115b)

However, unlike in flat-space CFT there is no state-operator correspondence: in general
there is no relation between the states |∆, x⟩A and the algebra of local operators on the
timeslice η = 0.

For future reference, we remark that from (2.113) it follows that the resolution of the
identity operator inside an irrep can then be written as

∆ ∈ d
2
+ iR :

∫
ddx |∆, x⟩A A⟨∆, x| (2.116)

that after summing over all the irreps leads to:

1 = |Ω⟩⟨Ω|+
∑
A

∫ d
2
+i∞

d
2
−i∞

d∆

2πiNx(∆, ℓ)

∫
ddx |∆, x⟩A A⟨∆, x| + other irreps (2.117)

where the sum over A formally stands for the sum over SO(d) representations, which for
our case of traceless symmetric representation will be simply a sum over spin ℓ. Here we
did not explicitly spell out contributions from the irreps other than principal series as it
will not be apparent in our discussion for scalar operators in the next sections. Nx(∆, ℓ)

is a positive normalization coming from the Plancherel measure that we do not need its
explicit expression and the subscript x stands for normalization in position space. There
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is a similar formula in momentum space that we mention here for completeness and future
convenience:

1 = |Ω⟩⟨Ω|+
∑
A

∫
d∆

2πi

1

Nk(∆, ℓ)

∫
ddk

(2π)d
|∆, k⟩A A⟨∆, k| + other irreps . (2.118)

2.6.3 Conformal Field Theory in de Sitter

It is instructive to consider the case of a CFT on a de Sitter background. Given that the
de Sitter metric (2.28) is conformally flat, we can immediately write

ϕ(η, x) = (−η/R)∆ϕϕflat(η, x) , (2.119)

where we assumed that ϕ is a primary scalar operator of the bulk CFT and we denoted
by ϕflat(η, x) the same operator in flat Minkowski space with metric ds2 = −dη2 + dx2.
The OPE (2.44) then follows from expanding ϕflat(η, x) around the constant timeslice
η = 0. Clearly, in this case, the primary boundary operators Oα are nothing but time
derivatives of ϕflat. Thus a conformal primary of dimension ∆ϕ gives rise to a family of
boundary operators with dimensions ∆α = ∆ϕ + p with p = 0, 1, 2, . . . .

This construction is useful because it gives us an infinite set of data to test any bootstrap
approach to QFT in de Sitter. In particular, any CFT correlation function with all
operators inserted on a constant timeslice in Minkowski (or Euclidean) space can be
interpreted as a correlation function of operators on the future boundary of de Sitter
spacetime.

As mentioned above, the metric of de Sitter space (2.26) is a Weyl transformation of a
part of the Minkowski cylinder. It is instructive to understand how a unitary conformal
highest-weight representation on the Minkowski cylinder decomposes into irreps of the dS
isometry group. For this purpose it is useful to think of the CFT living on the lightcone

−(X−1)2 − (X0)2 + (X1)2 + . . . (Xd+1)2 = 0 (2.120)

of the embedding space Rd,2. Then dSd+1 is the section defined by X−1 = R — compare
with (2.22) — and the Minkowski cylinder is the universal cover of the section defined by
(X−1)2 + (X0)2 = R2. The de Sitter isometry group SO(d+ 1, 1) can immediately be
identified as the subgroup of SO(d+ 1, 2) that leaves the coordinate X−1 invariant.

In appendix D, we focus on the d = 1 case and build unitary irreps of SO(2, 1) inside the
usual conformal family of SO(2, 2) labeled by the primary state |∆̃, ℓ⟩ of dimension ∆̃

and spin ℓ. We show that there are principal series irreps with ∆ = 1
2 + iν for all ν ∈ R

and one discrete series irrep as long as ℓ ≥ 1. We also found a complementary series irrep
if ∆̃ < 1

2 . We leave for the future the instructive exercise of extending this analysis to
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general spacetime dimension.
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3 Bulk two-point function

In this chapter, we compute the two-point function (3.1) using the Hilbert space framework
from section 2.6 and in particular the resolution of identity in (2.118). This will lead to an
expression for G12(ξ) in terms of a spectral integral with definite positivity properties, also
known as the Källén–Lehmann decomposition. After that, we relate the correlator (3.1)
to its counterpart on sphere Sd+1 and its decomposition in terms of spherical harmonics.
After employing a Watson-Sommerfeld transformation, this leads to an explicit formula,
the so-called inversion formula, expressing the Källén–Lehmann spectral density in terms
of an integral over the discontinuity of G12(ξ). Moreover, we find another inversion
formula from the analytical continuation and harmonic analysis in EAdS and prove their
equivalence. Finally, we analyze the Källén–Lehmann decomposition in several examples.

3.1 Källén–Lehmann decomposition

Consider the two-point function of two scalar operators. Due to the translation and
rotation invariance of dS, this correlation function should be of the form

⟨Ω|ϕ1(η, x)ϕ2(η′, x′)|Ω⟩ = G12(ξ) (3.1)

where we define

ξ =
4R2

(X −X ′)2
=

2

1− σdS =
4ηη′

−(η − η′)2 + |x⃗− x⃗′|2 (3.2)

as another representation of the only SO(d+ 1, 1) invariant that can be built out of two
bulk points. We used the conformal coordinates defined in (2.27) for definiteness. Using
ξ instead of σ is for later convenience. The invariant ξ is positive (ξ > 0) when X,X ′ are
spacelike separated, negative (ξ < 0) when they are timelike separated and ξ diverges
when X,X ′ are lightlike separated. As such an iϵ prescription is required to define (3.1)
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properly when ξ < 0. As discussed in full detail in section 2.5.2, the free propagator reads

⟨ϕ(η, x)ϕ(η′, x′)⟩f =
1

Rd−1
Gf(ξ; ν) , (3.3)

where

Gf(ξ; ν) :=
Γ(d2 + iν)Γ(d2 − iν)
(4π)

d+1
2 Γ(d+1

2 )
2F1

(
d

2
+ iν,

d

2
− iν; d+ 1

2
; 1− 1

ξ

)
(3.4)

writing m2R2 = (d/2)2 + ν2 as before. From now on we will set R = 1 unless otherwise
noted.

Let us now turn to the analysis of a generic two-point function of identical operators,
⟨Ω|ϕ(η, x)ϕ(η′, x′)|Ω⟩. We will assume that ϕ(η, x) is a Hermitian operator, although
much of the argument holds as well for a generic two-point function ⟨ϕi(η, x)ϕj(η′, x′)⟩
of different scalar operators. We can analyze the ⟨Ω|ϕ(η, x)ϕ(η′, x′)|Ω⟩ correlator by
inserting a resolution of the identity (2.118):

1 = |Ω⟩⟨Ω|+
∑
ℓ

∫
d∆

2πi

1

N(∆, ℓ)

∫
ddk

(2π)d
|∆, k⟩µ1...µℓ µ1...µℓ⟨∆, k|+ . . . (3.5)

writing . . . for states with SO(d) representations other than traceless symmetric tensors. In
the above formula, we allow for an arbitrary normalization factor N(∆, ℓ) > 0, depending
on the normalization of the states |∆, k⟩µ1...µℓ (which cannot depend on kµ). We also
dropped the subscript k compare to (2.118) to avoid clutter. Of course, there might
be several irreps with the same quantum numbers {∆, ℓ}, in which case an additional
label α is needed to distinguish such states. We will not explicitly write such a label,
but it is straightforward to adapt our analysis to this degenerate situation. In (3.5)
we assume that only states in the principal series contribute, so the ∆-integral runs
from d/2− i∞ to d/2 + i∞. This assumption seems to be correct in general; in specific
examples we will briefly revisit this assumption. For a more complete discussion, we refer
to section 2.2. Moreover, when we find an inversion formula, based on completeness of
Gegenbauer functions in the sphere or harmonic functions in EAdS, we basically prove
the completeness of principal series as far as the inversion formula is convergent.

After inserting the resolution of the identity (3.5) in the two-point function, one finds

⟨Ω|ϕ(η, x)ϕ(η′, x′)|Ω⟩ = ⟨Ω|ϕ(η, x)|Ω⟩⟨Ω|ϕ(η′, x′)|Ω⟩

+
∑
ℓ

∫
d∆

2πi

1

N(∆, ℓ)

∫
ddk

(2π)d
⟨Ω|ϕ(η, x)|∆, k⟩µ1...µℓ µ1...µℓ⟨∆, k|ϕ(η′, x′)|Ω⟩ . (3.6)

First of all, remark that the one-point functions ⟨Ω|ϕ(η′, x′)|Ω⟩ do not depend on the
coordinates η and xµ because |Ω⟩ is SO(d + 1, 1) invariant. Hence we can replace the
second term with the constant ⟨ϕ⟩2 := ⟨Ω|ϕ|Ω⟩2.
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3.1 Källén–Lehmann decomposition

Moving to the second term of (3.6), one can show that matrix elements of the form
⟨Ω|ϕ(η, x)|∆, ℓ⟩ with ℓ ≥ 1 vanish. This can be proven either by using an explicit
computation or by working in embedding space. Therefore, only states with ℓ = 0

contribute, and the contribution of such a state is fixed by SO(d+ 1, 1) symmetry up to
two constants. Using an SO(d+ 1, 1) symmetry argument, one can show that the most
general form of the amplitude with the ℓ = 0 state is given by

⟨Ω|ϕ(η, x)|∆, k⟩ = e−ik·x (−η)d/2
[
cϕ(iν) h̄iν(η|k|) + c♯ϕ(iν)hiν(η|k|)

]
, (3.7)

for two undetermined coefficients cϕ(iν), c
♯
ϕ(iν) ∈ C and ∆ = d

2 + iν. We will now argue
that c♯ϕ(iν) has to vanish in any unitary QFT. For this argument, consider the early-time
limit η → −∞, where dS can be compared to flat space. Using the asymptotics of the
Hankel functions, the matrix element behaves in this limit as

⟨Ω|ϕ(η, x)|∆, k⟩ ∼
η→−∞

e−ik·x(−η)(d−1)/2√
2ω(k)

[
cϕ(iν)e

−iηω(k)−iπ/4 + c♯ϕ(iν)e
iηω(k)+iπ/4

]
(3.8)

with ω(k) := |k| and two important phases ±iηω(k). The formula (3.8) is reminiscent of
flat-space QFT, where operators evolve in time as

ϕ(t, x) = eiHtϕ(0, x)e−iHt . (3.9)

Moreover, according to the Wightman axioms, the state ϕ(0, x)|Ω⟩ can only have support
inside the positive future lightcone. Consequently, if |E, k⟩ is a state that diagonalizes H
and Pµ, we must have

flat space : ⟨Ω|ϕ(t, x)|E, k⟩ ∝ Θ(E)e−ik·xe−iEt (3.10)

up to some constant that depends on the local operator ϕ. We thus interpret the second
term in (3.8) as originating from a state of negative energy, which would violate the
Wightman axioms. Consequently, we have to require that c♯ϕ(iν) = 0 for all ν.

We are now ready to compute the k-integral in (3.6). Since ϕ is a hermitian operator, it
follows that

⟨∆, k|ϕ(η′, x′)|Ω⟩ = ⟨Ω|ϕ(η′, x′)|∆, k⟩∗ = cϕ(iν)
∗ eik·x

′
(−η′)d/2 hiν(η′|k|) (3.11)

using the properties of the Hankel functions under complex conjugation. By performing
the k-integral in (3.6) and using Eq. (2.82), we conclude that

⟨Ω|ϕ(η, x)ϕ(η′, x′)|Ω⟩ = ⟨ϕ⟩2 +
∫

R

dν

2π
ρϕ(

d
2 + iν)Gf(ξ; ν) (3.12)

with

ρϕ(
d
2 + iν) :=

|cϕ(iν)|2
N(d2 + iν, 0)

≥ 0 . (3.13)
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Chapter 3. Bulk two-point function

This is the desired Källén–Lehmann decomposition which applies to any two-point function
of bulk scalar operators. It is clear that similar Källén–Lehmann decompositions exist for
all possible time-orderings.

In passing, let us comment on the apparent absence of states in the complementary
series of SO(d + 1, 1), having 0 ≤ ∆ ≤ d, or even discrete series states. We did not
explicitly include such states in the resolution of the identity (3.6). One can nevertheless
accommodate for complementary series states in (3.12), by modifying the contour and
integrating over small imaginary values of ν. This is equivalent to looking for a pole
crossing after analytical continuation off of the principal series.

Finally, we want to mention that (3.12) is not a novel result. Versions of the Käl-
lén–Lehmann decomposition have already appeared in the literature, using different
derivations and levels of mathematical rigor. An early reference to the Källén–Lehmann
decomposition in dS appeared in [95], and later works using such a representation can be
found in [96–104, 84].

3.2 Late-time limit and boundary OPE

Starting from the Källén–Lehmann representation (3.12), let us consider the late-time
behavior of the correlator ⟨ϕ(η, x)ϕ(η′, x′)⟩ in the limit η, η′ → 0− at fixed x, x′. At the
level of the invariant ξ from (3.2), this corresponds to the limit ξ → 0+. Also notice that
for sufficiently small η and η′ the two insertions are spacelike separated, so there are no
subtleties regarding iϵ prescriptions.

Let us rewrite Gf(ξ; ν) in (3.4) in terms of a function ψν(ξ) and its shadow (ν 7→ −ν or
∆ 7→ d−∆) given by (2.80):

Gf(ξ; ν) =
g(d2 + iν)ψ d

2
+iν(ξ) + (ν 7→ −ν)

2
(3.14a)

with

g(∆) =
Γ(d2 −∆)Γ(∆)

22∆+1πd/2+1
and ψ∆(ξ) = ξ∆ 2F1

∆, ∆− 1
2(d− 1)

2∆− d+ 1

∣∣∣∣∣∣ ξ
 . (3.14b)

The representation (3.14) is convenient to study the ξ → 0 limit of the correlator because
when ξ is small the hypergeometric function simplifies and we can replace it with the
leading term ψ∆(ξ) ≈ ξ∆.

We would now like to perform the Källén–Lehmann integral (3.12) by deforming the
contour. As it stands, we can interpret the contour in (3.12) as running upwards in the
complex ∆ plane, along the vertical line ℜ(∆) = d/2. We would like to close the contour
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3.2 Late-time limit and boundary OPE

to the right by adding an arc at infinity and picking up any possible poles. As a first step,
we therefore write

⟨Ω|ϕ(η, x)ϕ(η′, x′)|Ω⟩ = ⟨ϕ⟩2 +
∫ d

2
+i∞

d
2
−i∞

d∆

2πi
ρϕ(∆)g(∆)ψ∆(ξ) (3.15)

exploiting the shadow symmetry of the representation (3.14) to drop one of the terms.
We claim that for sufficiently small ξ, the integration contour in (3.15) can be deformed
by closing the contour to the right. To prove this, we first notice that for sufficiently
small ξ > 0, the function ψ∆(ξ) falls off for large real ∆:

0 < ξ ≪ 1 : ψ∆(ξ) ∼
∆→∞

w(ξ)∆, w(ξ) =
4ξ

(1 +
√
1− ξ)2 (3.16)

and for the limit in question 0 ≤ w(ξ) ≈ ξ ≪ 1, so the special function ψ∆(ξ) indeed
decays exponentially fast on the right half-plane. This statement does not hold for the
shadow function ψd−∆(ξ). Next, let us investigate the function g(∆). On the real line,
we have

g(∆) ∼
∆→∞

1

2πd/2
· ∆d/2−1

4∆ sin
(
π(d2 −∆)

) (3.17)

up to a ∆-independent coefficient. It follows that g(∆) has single poles at ∆ = d
2 + N.

Away from the real axis, the function g(∆) decays rapidly.

Finally, we need to make some assumptions about the behavior of the distribution ρϕ(∆):
(i) Originally ρϕ(∆) is only defined on the axis ℜ(∆) = d/2, but we assume that it can be
analytically continued away from this axis. (ii) ρϕ(∆) does not grow too fast at infinity.
This is not a strong condition as

g(∆)w(∆) ∼
∆→∞

1

2πd/2
· ∆d/2−1ξ∆

4∆ sin
(
π(d2 −∆)

) (3.18)

for small ξ. (iii)we assume that
ρϕ(d/2) = 0 (3.19)

in order to avoid picking up the pole at ∆ = d/2 coming from g(∆). The assumption (3.19)
seems to be satisfied in all known examples, cf. later in this section. However, this
assumption can be relaxed by explicitly adding the residue of the possible pole at
∆ = d/2. (iv) we assume that ρϕ is meromorphic, with single poles ∆∗ on the right
half-plane:

ρϕ(∆) ∼
∆→∆∗

Res ρϕ(∆∗)

∆−∆∗
, ℜ(∆∗) > d/2 . (3.20)

Considering these assumptions now, we may deform the contour. By Cauchy’s theorem,
the ⟨ϕϕ⟩ correlator will pick up two series of poles: one family coming from the function
g(∆) at ∆ = d

2 + {1, 2, 3, . . .}, and a second family of poles coming from the spectral
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Chapter 3. Bulk two-point function

density ρϕ. Bringing everything together, we have1

⟨Ω|ϕ(η, x)ϕ(η′, x′)|Ω⟩ = ⟨ϕ⟩2 −
∑
∆∗

Res ρϕ(∆∗) g(∆∗)ψ∆∗(ξ)

+

∞∑
n=1

(−1)nΓ(d2 + n)

2d+1+2nπd/2n!
ρϕ(

d
2 + n)ψ d

2
+n(ξ) .

(3.21)

In particular in the late-time limit, setting η = η′ for convenience:

⟨Ω|ϕ(η, x)ϕ(η, x′)|Ω⟩ ∼
η→0−

⟨ϕ2⟩ −
∑
∆∗

Res ρϕ(∆∗) g(∆∗)

( −2η
|x− x′|

)2∆∗

(3.22)

omitting terms that are subleading as η → 0.2 Here we did not write the contributions
from residues of g(∆∗). We will come back to that shortly at the end of this section.
From (3.22) it is clear that the leading late-time behavior of the ⟨ϕϕ⟩ correlator comes
from poles in ρϕ(∆) with the smallest real part, or to be precise the smallest ℜ(∆∗− d

2 ) > 0.
In addition, if ρϕ(d2 + n) ̸= 0 then there are terms that scale as (−η)d+2n with n ≥ 1.

Boundary OPE

We may now derive the result above from the OPE (2.44). This bulk-boundary OPE is
not necessarily convergent, but we can still try to reproduce the late-time behavior of the
⟨ϕ(η, x)ϕ(η, x′)⟩ correlator. The two-point function of conformal operators can only be
non-vanishing if they have the same scaling dimension3:

⟨Oα(x)Oα′(y)⟩ = δαα′

|x− y|2∆α (3.23)

which still holds when ∆α is a complex number. The double sum over boundary operators;
therefore, collapses to a single sum, hence

⟨Ω|ϕ(η, x)ϕ(η′, x′)|Ω⟩ ∼ ⟨ϕ2⟩+
∑
α

(bϕα)
2(ηη′)∆α Dα(η∂x)Dα(η′∂x′)

1

|x− x′|2∆α (3.24a)

where
Dα(η∂x) = 0F1

(
∆α − d/2 + 1, 1

4η
2∂2x
)
= 1 +O(η2∂2x) . (3.24b)

1The minus sign in the second term of (3.21) arises from the fact that the contour is taken in the
clockwise direction.

2There are two types of subleading terms. First, we have only kept the leading term in ξ in the
hypergeometric function ψiν(ξ). Second, we have approximated the invariant ξ by its leading piece in the
limit η → 0.

3Here we are assuming that x and y are separate points. So we do not deal with contact terms
discussed in 4.2.2
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3.2 Late-time limit and boundary OPE

As before, we are interested in the limit η, η′ → 0−. Hence we can approximate the
differential operator Dα by its leading term, which leads to the asymptotic behavior

⟨Ω|ϕ(η, x)ϕ(η, x′)|Ω⟩ ∼
η→0−

⟨ϕ2⟩+
∑
α

(bϕα)
2

( −η
|x− x′|

)2∆α

(3.25)

For this expansion to match (3.22), we require first of all that the poles ∆∗ equal the
boundary operator spectrum {∆α} exactly. Moreover, the residues of ρϕ are related to
the bϕα according to the dictionary

(bϕα)
2 = −4∆αg(∆α)Res ρϕ(∆α) . (3.26)

This result should not be surprising. After all, the special functions ψ∆(ξ) appearing
in (3.21) are nothing but boundary conformal blocks [82] in d+ 1 dimensions. To wit,
the spectral integral and its counterpart (3.21) appeared before in the BCFT context in a
slightly different form [105].

Notice that neither bϕα nor Res ρϕ(∆α) is required to be real-valued: in a generic QFT in
dS they are complex-valued. Nevertheless, the hermiticity of ϕ implies that

ρϕ(∆)∗ = ρϕ(∆
∗) (3.27)

hence the residue of a pole at ∆α and its complex conjugate ∆∗
α are necessarily related

via complex conjugation.

Finally, the terms scaling as ξd/2+n with n = 1, 2, 3, . . . in (3.21) and (3.22) cannot be
reproduced from the bulk-boundary OPE (2.44). It is therefore natural to assume that

ρϕ(
d
2 + n) = 0 for all n = 0, 1, 2, . . . . (3.28a)

We do not have a proof of this fact, beyond the fact that in all known examples

ρϕ(
d
2 + iν) ∝ ν sinh(πν) =

π

Γ(∆− d
2)Γ(

d
2 −∆)

(3.28b)

which indeed vanishes at ∆ = d/2 + N. Likely this phenomenon has a group-theoretical
explanation. In the literature, it is common to write spectral integrals with a Plancherel
measure, schematically 1/(2πi)

∑
ℓ

∫
d∆P(∆, ℓ) — see for instance [65, Eq. (8.7)] or [106,

Eq. (74)] and [67]. This measure is not physical: from our point of view, it amounts
to a simple redefinition of ρϕ(∆) 7→ ρϕ(∆)/P(∆, 0) which does not affect observables.
Nevertheless, the analytic structure of ρϕ(∆) is affected by this rescaling, and indeed the
ℓ = 0 Plancherel measure P(∆, 0) contains a factor ν sinh(πν) which furnishes the desires
zeroes (3.28a).
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Chapter 3. Bulk two-point function

3.3 Analytic continuation from Sd+1

As discussed in section 2.3, the dS correlation functions, and in particular two-point
functions, can be defined by the analytic continuation of correlation functions on the
sphere Sd+1. In what follows, we use this fact to find a formula for the spectral density
of a generic scalar field theory in dS as an integral over the discontinuity of the two-point
function.

Let us therefore consider the two-point function ⟨ϕ(X)ϕ(X ′)⟩Sd+1 of a hermitian operator
ϕ(X) on the sphere, where we parametrize Sd+1 by embedding space coordinates XA ∈
Rd+2 obeying X ·X = R2. Such a two-point function can only depend on the invariant

x :=
X ·X ′

R2
, −1 ≤ x ≤ 1 (3.29)

where x = 1 (resp. x = −1) corresponds to identical (resp. antipodal) insertions. Conse-
quently we write

⟨ϕ(X)ϕ(X ′)⟩Sd+1 = Ĝ(x) (3.30)

for some function Ĝ(x) which is not determined by symmetries. This correlator maps to
the dS two-point function from Eq. (3.1) via

ξ =
2

1− x , or Ĝ(x) = G

(
ξ =

2

1− x

)
. (3.31)

From now on we will use this formula to identify both correlators, and write G(x) instead
of Ĝ(x) to avoid clutter.

It is well-known that any function of the invariant x can be decomposed in terms of
SO(d+ 2) Gegenbauer polynomials:

G(x) =
∞∑
J=0

aJ C
d
2
J (x) (3.32)

for some coefficients aJ that depend on the ⟨ϕϕ⟩ correlator in question. The Gegenbauers
form an orthogonal basis with respect to the norm

||f ||2 :=
∫ 1

−1
dx (1− x2)(d−1)/2 |f(x)|2 . (3.33)

Most physical correlators are not square-integrable with respect to the measure (3.33)
due to singularities near x = 1. To be precise, for a correlator G to be square integrable,
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3.3 Analytic continuation from Sd+1

we need that4

G(ξ) ∼
ξ→∞

ξγ and G(ξ) ∼
ξ→1+

1/(ξ − 1)γ with γ < (d+ 1)/4 . (3.34)

The Gegenbauer polynomials obey

||C
d
2
J ||2 = 1/κJ , κJ :=

2d−1J !(J + d
2)Γ(

d
2)

2

πΓ(d+ J)
(3.35)

and in particular it follows that the coefficients aJ can be recovered using orthogonality
of Gegenbauer polynomials (A.5) as

aJ = κJ

∫ 1

−1
dx (1− x2)(d−1)/2C

d
2
J (x)G(x) . (3.36)

for J = 0, 1, 2, . . ..

Let us print a formula for the aJ in a specific case, taking ϕ to be a free massive scalar,
so G(x) is the function Gf(ξ; ν) from Eq. (3.3). The correlator in question is not square-
integrable in d ≥ 3 dimensions: indeed the correlator grows as Gf(ξ; ν) ∼ ξ(d−1)/2, so in
d ≥ 3 dimensions it does not represent a square-integrable function on Sd+1. Nevertheless
one can compute the cofficients aJ using the inversion formula (3.36), for instance by
analytically continuing in d. This computation was carried out in [100], yielding

aJ =
1

Rd−1

Γ(d2)

4π
d
2
+1

2J + d

J(J + d) +m2R2
. (3.37)

We will shortly revisit the formula (3.37) from a different point of view in (3.60).

In Eq. (3.36), we presented a formula to invert the expansion (3.32), expressing aJ as an
integral over the correlator G(x). The inversion formula (3.36) applies to integer J . In
appendix C, we obtain an alternative inversion formula that applies to complex values of
J . This inversion formula reads

aJ =
1

2πi

Γ(d2)Γ(J + 1)

Γ(J + d
2)2

J

∫ ∞

1
dx

(x+ 1)
d
2
− 1

2

(x− 1)J+
d
2
+ 1

2

2F1

[
J + d, J + d

2 + 1
2

2J + d+ 1

∣∣∣∣ 2

1− x

]
Disc[G(x)]

(3.38)
where the discontinuity Disc[G(x)] is defined as

Disc[f(x)] := f(x+ iϵ)− f(x− iϵ) . (3.39)

Since the RHS of (3.38) is an analytic function of J , the above identity extends aJ to an
analytic function of J on the complex plane.

4An equivalent condition for square integrability is that the coefficients aJ decrease faster than
|aJ | ∼

J→∞
1/J(d−1)/2, as follows from Parseval’s theorem.
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Chapter 3. Bulk two-point function

Let us briefly discuss the convergence of the integral in (3.38). Suppose that near x = 1

and x =∞ the discontinuity of G(x) behaves as

DiscG(x) ∼
x→1

1

(x− 1)δ
and DiscG(x) ∼

x→∞
xε (3.40)

for some exponents δ, ε. Then convergence requires that δ < 1 and ℜ(J) > ε, as follows
from analyzing the x→ 1,∞ asymptotics of the 2F1 hypergeometric appearing in (3.38).
Whenever ℜ(J) ≤ ε, the function aJ can have singularities in the complex J-plane. Also
notice that the integrand involves the correlator G(x) analytically continued beyond the
Euclidean region −1 ≤ x ≤ 1. In fact, x ≥ 1 maps to ξ < 0, which describes timelike
separated points in de Sitter. In practice; however, one can calculate aJ for a two-point
functions with δ ≥ 1 by means of analytical continuation from the convergent region, see
e.g. (3.5). In what follows, we will rederive the Källén–Lehmann decomposition using the
above inversion formula.

Recovering the spectral density

In order to derive the desired decomposition (3.12), let us turn our attention to the
original expansion (3.32). The two-point function is a sum over non-negative integers:

G(x) =
∞∑
J=0

gJ(x) , gJ(x) := aJ C
d
2
J (x) . (3.41)

Suppose that we can extend gJ(x) to a function g̃J(x) which is analytic in J and coincides
with gJ(x) at integers: g̃J(x) = gJ(x) at J = 0, 1, 2, . . .. Moreover, we imagine that we
are given a kernel K(J) that is meromorphic, having poles at the non-negative integers
with unit residue. We can then replace the sum (3.41) by the following integral:

G(x) =

∮
c0

dJ

2πi
K(J) g̃J(x) (3.42)

where the contour c0 consists of small circles around the non-negative integers, passed in
the counterclockwise sense. Such a contour is illustrated in figure 3.1. If we in addition
assume that the product K(J) g̃J(x) decays sufficiently fast at large |J |, one can deform
the contour to an integral over a line with fixed real part, e.g. c2 in figure 3.1. The
act of expressing a discrete sum as contour integral in the complex plane is known as a
Watson-Sommerfeld transformation, see for instance [100].

The discussion so far was general and did not involve details about the decomposition (3.32)
of the ⟨ϕϕ⟩ correlator. At this point, we will use some properties of the Gegenbauer
polynomials, and we will propose an explicit kernel K(J) as well as an analytic extension
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−d
2

c0

J

−d
2

c1

c2

ϵ
J

Figure 3.1: Illustration of contour integrals of Watson-Sommerfeld transformation. Left:
sum over non-negative integers as a set of contour integrals around the integers (3.42).
Right: Deforming the contour to a line integral with constant real part.

g̃J(x) of gJ(x), to wit

K(J) :=
πeiπJ

sin(πJ)
and g̃J(x) := e−iπJaJ C

d
2
J (−x) (3.43)

cf. [100, Eqs. (20) and (21)]. For J /∈ N, the functions C
d
2
J (−x) are so-called Gegenbauer

functions, which can be expressed as hypergeometric functions, cf. equation (A.4). The
choice of writing the function in terms of −x will be apparent soon in (3.47). For integer J ,
the Gegenbauer functions reduce to the Gegenbauer polynomials that we have encountered
so far, up to a sign:

J ∈ N : C
d
2
J (−x) = (−1)JC

d
2
J (x) ⇒ g̃J(x) = gJ(x) (3.44)

as required. Moreover, it is easy to check that K(J) from (3.43) has poles at integer J
with unit residue.

To see that we are able to deform the contour, let us comment on the large-J behavior of
the integrand in (3.42). In appendix C.3, we show that the leading contribution at large
J of (3.38) is dominated by the x→ 1 part of the integral. For a two-point function with
a power-law singularity at x = 1

G(x) ∼
x→1

1

(1− x)δ , (3.45a)

the large-J behaviour of aJ is given by5

lim
J→∞

aJ ∼
1

|J |d−2δ
(3.45b)

5The proof in question assumes that δ < 1. We expect (3.45) to hold for larger values of δ as well.
This can be seen, for example, if one calculates aJ for a CFT in the bulk.
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Chapter 3. Bulk two-point function

up to a J-independent constant. We are now ready to analyze the product K(J)g̃J(x) at
large J :

K(J)g̃J(x) ≈
e−arccos(x)| Im(J)|

|J |d/2−2δ+1
(3.46)

so away from the real axis, the function decreases exponentially, provided that x is in
the Euclidean region (−1, 1). For sufficiently small δ the function decays as a power law
along the real axis as well. It is therefore possible to deform the contour c0 to c2, as in
Figure 3.1.

At this point, let us go back to the expression of the free theory two-point function
in eq. (3.3). The formula in question is valid both for Sd+1 and dSd+1–as long as the
insertions are spacelike separated, otherwise an iϵ prescription is required. Given the
definition of the Gegenbauer functions (A.4) and (3.29), one can rewrite the propagator
as

Gf(ξ; ν) =
Γ(d2)

4π
d
2 sin(π∆)

C
d
2
−∆(−x) , ∆ =

d

2
+ iν . (3.47)

using the invariant ξ instead of x for convenience from (3.31). Identifying −J with ∆,
we can therefore recast Eq. (3.42) as an integral of a−∆ running over the principal series
spectrum ℜ(∆) = d/2, to wit

G(ξ) =

∫ d
2
+i∞

d
2
−i∞

d∆

2πi

4π
d
2
+1

Γ(d2)
a−∆Gf(ξ; ν) , (3.48)

Note that the minus sign aJ 7→ a−∆ has changed the orientation of the c2 contour.
Of course, we recognize the above equation (3.48) as the Källén–Lehmann decomposi-
tion (3.12), after identifying

ρϕ(
d
2 + iν) =

2π
d
2
+1

Γ(d2)
lim
ϵ→0+

(
aiν− d

2
+ϵ + a−iν− d

2
+ϵ

)
(3.49)

where we used the symmetry of the free propagator Gf(ξ; ν) = Gf(ξ;−ν) to replace
a−∆ = a−iν− d

2
in (3.48) by the shadow symmetric combination. We also kept the ϵ

regulator that is important if aJ has singularities on the line ℜ(J) = −d
2 as depicted in

figure 3.1. The only difference between (3.48) and (3.12) is the missing ⟨ϕ⟩2 term, which
should correspond to a pole at ∆ = 0 (or equivalently J = 0).

In case of no singularity on ℜ(∆) = d/2, one can use the hypergeometric identities (A.8)
and (A.9) to rewrite (3.49) as

ρϕ(∆) = β(∆)

∫ ∞

1
dx 2F1

[
1−∆, 1− d+∆

3−d
2

∣∣∣∣1− x2

]
Disc[G(x)] (3.50a)
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3.4 Analytic continuation from EAdSd+1

where

β(∆) =
−i(4π)(d+1)/2

Γ(3−d2 )

Γ(1−∆)Γ(1− d+∆)

Γ(∆− d
2)Γ(

d
2 −∆)

(3.50b)

writing ∆ = d/2 + iν. This is the promised inversion formula for spectral density. Let
us remind you that the integration is over timelike separation x = X.X ′ > 1 which
corresponds to the timelike separated points in dS. So we expected a discontinuity in
the two-point function in this region. We will use this formula in section 3.5 to find for
instance the spectral density for a two-point function of a scalar operator of a bulk CFT.

The derivation in Sec. 3.1 was based on symmetry properties of the dS Hilbert space
alone which the positivity of ρϕ(d2 + iν) at real values of ν is manifest there. The present
derivation was based on the analytic continuation of correlators from Sd+1 to dSd+1 which
leads to an explicit formula for ρϕ(∆) at complex values ∆ but does not show a positivity
manifestly.

Note that we assumed that the complimentary series are not apparent here; however,
contour c2 in figure 3.1 can be extended (to the dashed line) to take the complimentary
series into account. As is discussed in section 2.2, the complimentary series can be seen
as an analytic continuation of the principal series that will appear as pole crossings over
the solid line c2 in figure 3.1. In section (3.5) we will see that this precisely happens for a
range of dimensions of operators in a bulk CFT.

3.4 Analytic continuation from EAdSd+1

In this section, we derive an inversion formula for spectral density similar to the one
in (3.50a); instead, by analytic continuation of correlators from EAdSd+1 to dSd+1. In
the end, we show that these two inversion formulae are equivalent.

There is a simple dictionary between EAdS correlaros and dS correlators. We reviewed it
in section 2.5.3. In particular, the free scalar two-point function in dS can be written as

Gf(ξ) = Γ(iν)Γ(−iν)Ων(ξ) (3.51)

where ξ is the dS two-point function invariant defined in (3.2), again ∆ = d
2 + iν and

Ων(ξ) is the EAdS harmonic function [107]:

Ων =
iν

2π
(GEAdS

ν −GEAdS
−ν ) (3.52)

This can be easily derived by using identity (A.8) in the definitions (2.78) and (2.80), or
directly from (2.89).
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Chapter 3. Bulk two-point function

The harmonic functions are orthonormal basis in AdS [107]:∫
AdS

dY Ων(X1, Y )Ων̄(Y,X2) =
1

2
[δ(ν + ν̄) + δ(ν − ν̄)] Ων(X1, X2) (3.53)

Here we explicitly use the coordinates on EAdS with uppercase letterd instead of the
EAdS two-point function invariant ξAdS. Now, imagine that one analytically continues
the formula (3.12) to EAdS. Then the above orthogonality relation can be easily used to
invert (3.12) to find

ρ(
d

2
+ iν) =

2π

Γ(iν)Γ(−iν)Ων(X1, X2)

∫
AdS

dY Ων(X1, Y )G(Y,X2) (3.54)

using that spectral density is shadow symmetric: ρ(ν) = ρ(−ν). Here G(X1, X2) is the
dS two-point function in (3.12) analytically continued to EAdS for two separate points
X1 and X2.

An important feature of this equation is that after the integration over EAdS, the integral
should produce something proportional to Ων(X1, X2). In other words, the equality above
is true for any X1 and X2, so we are free to pick any two points on EAdS. A convenient
choice is to take them equal and place them at the origin:

X = X1 = X2 = Origin , EAdS origin in global coordinates: ρ = 0

Note that unlike the AdS propagator, Ων(X,X) is regular. Since we put X on the origin,
the angular part of the integral (3.54) is trivial. In global coordinates (2.16), we have

s ≡ X.Y = − cosh(ρ) , dY = dρ sinhd(ρ)dΩd . (3.55)

where dΩd is the angular volume element that after integration produces the vol(Sd)
spelled out in (4.14). Here, again we set AdS radius R = 1. Note that s = σEAdS is equal
to x after analytical continuation. We keep two separate letters for them to emphasize
which analytical continuation we are doing. Now we analytically continue back to dS by
requiring that

ξ =
2

1− s . (3.56)

Substituting the ratio

Ων(X,Y )

Ων(X,X)
= 2F1

[
d
2 + iν, d2 − iν

d+1
2

∣∣∣∣1 + s

2

]
(3.57)
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and (3.55) in (3.54), we find an inversion formula for the spectral density:

ρϕ(∆) =
4π

d+3
2

Γ(∆− d
2)Γ(

d
2 −∆)Γ(d+1

2 )

∫ −1

−∞
ds (s2 − 1)

d−1
2 2F1

[
∆, d−∆

d+1
2

∣∣∣∣1 + s

2

]
G(s)

(3.58)
where G(s) is the dS Wightman two-point function ⟨Ω|ϕ(η, x)ϕ(η′, x′)|Ω⟩ with the two-
point invariant ξ related to s by (3.56).

This is another version of the inversion formula (3.50a) that was found by analytical
continuation from the sphere. The integration in (3.58) is over the spacelike separated
region where the Wightman two-point function is assumed to be well-defined and single-
valued, while the integral in 3.50a is over the timelike separated region (x ∈ [1,∞)) where
the two-point function has a branch cut and the integration is over its discontinuity.

We now argue that these two formulae are simply equivalent assuming that the Wightman
two-point function G is analytic in s (or x) except for the cut on timelike separated region
corresponding to x > 1.

Consider the integral (3.50a). The integral can be written as a contour integral going
around the branch cut x ∈ [1,∞) using the definition of discontinuity in (3.39). One
can deform the contour to the branch cut of 2F1 in the integral that is x ∈ (−∞,−1].
In this contour deforming process we assumed G(x) is analytic everywhere but the
mentioned branch cut and it decays sufficiently fast so that the contribution from the arc
at infinity vanishes6. Discontinuity of the hypergeometric functions is given by (A.15).
So discontinuity of the hypergeometric function in (3.50a) reads

Disc[2F1

[
1−∆, 1− d+∆

3−d
2

∣∣∣∣1− x2

]
] =

22−dπiΓ(3−d2 )

Γ(1−∆)Γ(1− d+∆)Γ(d+1
2 )

(x2 − 1)
d−1
2 2F1

[
∆, d−∆

d+1
2

∣∣∣∣1 + x

2

]
. (3.59)

Using this, one finds that (3.58) and (3.50a) are equivalent.

3.5 Examples

In the final part of this chapter, we will consider the Källén–Lehmann decomposition in
two different settings. First, we will consider the ⟨ϕϕ⟩ and ⟨ϕ2ϕ2⟩ correlator in the theory
of a free massive scalar ϕ, followed by the analysis of a generic conformally invariant
two-point function in dS.

6The hypergeometric in (3.50a) falls like x−1+ d
2 , so the G(x) has to fall faster that x−

d
2 for this

contribution to vanish.
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Chapter 3. Bulk two-point function

3.5.1 Massive free boson: ⟨ϕϕ⟩

As a first example, consider the correlator ⟨ϕϕ⟩ = Gf where ϕ is a free massive field
in the bulk with mass m. Let us write ∆ϕ(d − ∆ϕ) = m2R2 and set ∆ϕ = d

2 + iµ in
order to avoid overloading the labels ∆ and ν. There are two possible ways to obtain the
distribution a−∆ for complex values of ∆. On the one hand, in Eq. (3.37), a formula for
aJ at integer J was presented, and the formula at hand can be analytically continued
simply by replacing J 7→ −∆. Alternatively, one can explicitly perform the integral (3.38),
as is done in appendix C.2. Regardless of the chosen method, the result reads

4π
d
2
+1

Γ(d2)
a−∆ =

2∆− d
∆(d−∆)−m2R2

= − 1

∆−∆ϕ
− 1

∆− d+∆ϕ
. (3.60)

This has poles at ∆ = ∆ϕ and ∆ = d−∆ϕ, which fall exactly on the axis of integration
ℜ(∆) = d

2 . Using the prescription (3.49), we find

1

2π
ρf(

d
2 + iν) =

δ(µ+ ν) + δ(µ− ν)
2

(3.61)

which reproduces the correct answer. In the case where m2 < d2/4 such that ∆ϕ is on
the complementary series, it is straightforward to adapt the above argument to obtain
a similar result. This can be done by two different means, one is take the contour c2
to include dashed line around complimentary series in figure 3.1 or simply take the
results from principal series and analytically continue ∆ϕ away from principal series to
complimentary series.

3.5.2 Massive free boson: ⟨ϕ2ϕ2⟩

Next, we can consider the two-point function of the (normal-ordered) operator ϕ2 in the
Gaussian theory. By Wick’s theorem

⟨ϕ2(η, x)ϕ2(η′, x′)⟩ = 2Gf(ξ;µ)
2 (3.62)

and as a matter of principle, the spectral density ρϕ2(∆) can be obtained by applying the
inversion formula to the RHS of (3.62). For the moment let us assume that ∆ϕ belongs to
principal series. We will comment on the case of complementary series shortly. It turns
out that ρϕ2(∆) has already been computed through other means in Ref. [84, Eq. (3.25)]7.

7In that work, the Källén–Lehmann decomposition of the more general correlator Gf(ξ;µ1)Gf(ξ;µ2)
is presented, which reduces to (3.63) for µ1 = µ2.
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The resulting formula is given by

ρϕ2(∆) =
ν sinh(πν)

23π
d
2
+2Γ(d2)

Γ2(∆2 )Γ
2(d−∆

2 )

Γ(∆)Γ(d−∆)

× Γ

(
2∆ϕ +∆− d

2

)
Γ

(
2∆ϕ −∆

2

)
Γ

(
d− 2∆ϕ +∆

2

)
Γ

(
2d− 2∆ϕ −∆

2

)
(3.63)

writing ∆ = d/2 + iν as usual. It is easy to check that ρϕ2 is invariant under ∆ 7→ d−∆.
Moreover, the correlator is apparently completely representated by the principal series:
the contour in (3.12) does not need to be deformed to account for complementary series
states.

At this point, we can analyze the spectrum of late-time operators appearing on the
bulk-boundary OPE of ϕ2 ∼ ∑αOα. On the right half plane, the density has three
families of single poles:

∆ = 2∆ϕ + 2N , ∆ = 2(d−∆ϕ) + 2N and ∆ = d+ 2N . (3.64a)

Because of their dimensions, the corresponding operators Oα(x) can be interpreted as
scalar “double-trace” operators of the late-time CFT, schematically

O□nO , O†□nO† and O†□nO +O□nO† (3.64b)

where O and O† have dimension ∆ϕ = d/2 + iµ resp. d − ∆ϕ = d/2 − iµ. Since the
late-time CFT is a mean-field theory built out of the operators O, O†, this is exactly the
expected result: there are no other SO(d) scalar operators built out of two operators in
the CFT in question that one can write down. Of course, the bulk-to-boundary OPE
coefficients bϕ2k can be obtained from (3.63) by computing residues.

In the case where ∆ϕ is real and belongs to the complementary series, one can repeat the
above analysis by analytic continuation. Notice that (3.63) has poles at

∆ = 2∆ϕ − d− 2n

for non-negative integers n. When one analytically continues ∆ϕ to the real line a pole
crossing in integral of (3.12) can happen. More precisely, for 3d

4 < ∆ϕ < d one has to
deform the contour to go around these poles. Similar to what was discussed above and
in 2.2, one might interpret these poles as the complementary series contribution to (3.12).
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Chapter 3. Bulk two-point function

3.5.3 Bulk CFT correlator

As the second applicatoon of the Källén–Lehmann representation, we consider the corre-
lation function of the following form:

Gδ(x) =
1

(1− x)δ i.e. Gδ(ξ) =
1

2δ
ξδ . (3.65)

Such a correlator arises for instance when one constructs a bulk CFT in de Sitter: the
correlator (3.65) corresponds to a scalar two-point function of an operator φ of dimension
[φ] = δ. Unitarity requires that

δ ≥ d− 1

2
, (unitarity). (3.66)

Note that δ = (d− 1)/2 corresponds to a conformally coupled free boson. One can easily
check that (3.4) boils down to (3.65) after requiring ∆ϕ = δ = (d − 1)/2 up to some
normalization.

The spectral density ρδ(∆) for (3.65) can be computed in several ways, for instance
using alpha space techniques [105]. Alternatively, it can be computed starting from the
inversion formula (3.58) or (3.50a), making use of the fact that

DiscGδ(x) =
2i sin(πδ)

(x− 1)δ
.

The integral appearing in the inversion formula can be computed exactly using (A.7)
yielding to

ρδ(∆) =
2d+2−δπ(d+1)/2

Γ(δ)Γ(δ − d
2 + 1

2)
ν sinh(πν) Γ(δ −∆)Γ(δ − d+∆) . (3.67)

As before, the spectral density has support on the axis ℜ(∆) = d/2 and does not require
separate contributions from states in the complementary series – except for δ < d/2 that
we will come back to it shortly. This appears to be specific to scalar two-point functions.
For the two-point functions of spinning bulk operators in dS2, it seems possible to have
contributions of discrete series states, as is discussed in appendix D. In an upcoming
work, we calculate the spectral density of bulk CFT for spinning operators and show that
indeed for d ≥ 2 only principal series appear while for d = 1 there are contributions from
discrete series.

The bulk-boundary OPE of the CFT operator φ ∼∑αOα can be analyzed by closing
the contour in (3.12) and picking up poles on the right half-plane. For the density in
question (3.67), there is a single family of poles at

∆ = δ + N . (3.68)
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An exception is given by the massless case δ = (d− 1)/2, where only the term with ∆ = δ

arises. This set of boundary operators is precisely what we expect from the discussion in
2.6.3.

Finally, some care must be taken when (d − 1)/2 < δ < d/2. In that case, the first
pole in (3.68) has ℜ(∆1) = ℜ(δ) < d/2, so it is located left of the axis ℜ(∆) = d/2. To
reproduce the full correlator G(ξ), the contour in (3.12) must be deformed to include this
pole (and to exclude its shadow). This pole again can be interpreted as the contribution
from complementary series states. This is consistent with our analysis of the decomposition
of an SO(2, 2) conformal family into irreps of SO(2, 1), in appendix D.
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4 Boundary four-point function

The late-time expansion (2.44) defines boundary operators Oα. The action of the
conformal generators on these boundary operators is like that of Euclidean conformal
generators on primary operators. In particular, (2.34) shows that the late-time boundary
operator Oα(x) transforms as a primary operator with dimension ∆α. The (infinite) set
of correlation functions of the {Oα} therefore defines a d-dimensional CFT on the η = 0

timeslice. This CFT lacks some useful features of flat-space CFT, e.g. the state-operator
correspondence and OPE convergence. Moreover, the late-time CFT does not have a
stress-energy tensor Tµν . Nevertheless, one still can use the conformal symmetry on the
boundary to find non-trivial constraints.

In this section, by writing the complete set of states introduced previously, we expand the
four-point function of boundary operators in conformal partial waves and using unitarity,
we find positivity properties of their coefficients. We analyze the corresponding partial
wave expansion extensively in the case of the free massive field, and furthermore we
explore the λϕ4 theory in dSd+1 to leading order in λ. Along the way, we show that
unitarity suggests the existence of local terms in two-point functions.

4.1 Partial wave expansion

A four-point function of boundary operators can be expressed in terms of conformal
partial waves by adding a complete set of states (2.116)

⟨O1O2O3O4⟩ = ⟨Ω|O1O2|Ω⟩⟨Ω|O3O4|Ω⟩

+
∑
ℓ

∫ d
2
+i∞

d
2

d∆

2πi

1

N(∆, ℓ)

∫
ddx ⟨O1O2|∆, x⟩µ1...µℓ µ1...µℓ⟨∆, x|O3O4⟩

(4.1)
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Chapter 4. Boundary four-point function

omitting the explicit xi-dependence of the operators Oi(xi) and dropping x subscript of
N(∆, ℓ) to avoid clutter. Once again we are assuming that the operators Oi are scalars, so
only traceless symmetric tensor states are exchanged. We take only principal series states
contribution to the decomposition of this four-point function; however, the complimentary
series contribution can be recast by analytic continuation as discussed in 2.2. In the next
chapter, we revisit this decomposition by reintroducing the discrete series that appear
only in d = 1 for scalar four-point functions. We shall often omit the vacuum symbol |Ω⟩
to avoid cluttering.

We now establish explicitly the crucial fact that the matrix elements ⟨O1O2|∆, x, z⟩
and ⟨∆, x, z|O3O4⟩ have the same structure as the three-point function ⟨O1O2O(x)⟩ and
⟨Õ(x)O3O4⟩, where O is a fictional operator of dimension ∆ and Õ its shadow [108] of
dimension d−∆.1 Here we used the index-free notation mentioned in 2.104. We stress
that O and Õ are not physical operators: they are only used to label certain conformally
covariant objects. This follows from the fact that the action of isometries on |∆, x, z⟩ and
O(x)|Ω⟩ are the same. The action of a general conformal charge on a correlator is

(Q̂1 + Q̂2 + . . .+ Q̂n)⟨O1 · · · On⟩ =
∑
i

⟨O1 · · · [Q,Oi] · · · On⟩

= ⟨QO1 · · · On⟩ − ⟨O1 · · · OnQ⟩ = 0

(4.2)

in which Q̂i is a differential operator acting on xi, that is to say

[Q,Oi(xi)] = Q̂iOi(xi) . (4.3)

Similarly, we have

(Q̂1 + Q̂2 + Q̂∆)⟨O1O2|∆, x, z⟩
= ⟨[Q,O1]O2|∆, x, z⟩+ ⟨O1[Q,O2]|∆, x, z⟩+ ⟨O1O2Q|∆, x, z⟩
= ⟨QO1O2|∆, x, z⟩ = 0

(4.4)

in which we used the result of the previous section to substitute the action of differential
operator with the Hilbert space operator Q on state |∆, x, z⟩. This is exactly the same
differential equation one finds for a three-point function. Therefore, ⟨O1O2|∆, x, z⟩ is
proportional to the conformal three-point structure (4.6b) which is fixed by the conformal
symmetry:

⟨O1O2|∆, x, z⟩ = F12(∆, ℓ) ⟨O1O2O(x, z)⟩ , (4.5)

where F is independent of position. Using the shorthand notation |xij | = |xi − xj |, the
three-point structure is given by

⟨O1(x1)O2(x2)O3(x3, z)⟩ = ⟨O1(x1)O2(x2)Oµ1...µℓ3 (x3)⟩zµ1 . . . zµℓ (4.6a)

1Here we used that the three-point structure of ⟨O†(x)O3O4⟩ is proportional to ⟨Õ(x)O3O4⟩ when O
is living on principal series, having ∆ ∈ d

2
+ iR.
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4.1 Partial wave expansion

with

⟨O1(x1)O2(x2)Oµ1...µℓ3 (x3)⟩ =
Zµ1 . . . Zµℓ − traces

|x12|∆1+∆2−∆3 |x13|∆1+∆3−∆2 |x23|∆2+∆3−∆1
, (4.6b)

Zµ ≡ |x13||x23||x12|

(
xµ13
x213
− xµ23
x223

)
. (4.6c)

Let us stress that the notation ⟨O1O2O(x, z)⟩ in (4.5) does not refer to a physical
correlation function: it is just a shorthand notation for the object (4.6b). Similarly, we
can write

⟨O†
1O†

2|∆, x, z⟩ = F1†2†(∆, ℓ)⟨O†
1O†

2O(x, z)⟩ ,
⟨∆, x, z|O1O2⟩ = F∗

1†2†(∆, ℓ)⟨Õ(x, z)O1O2⟩ ,

where the second line is obtained from the first by complex conjugation. We also used
⟨O†

1O†
2O(x)⟩∗ = ⟨Õ(x)O1O2⟩ which can be explicitly checked from eq. (4.6b) when O is

in the principal series.

Using the above facts, Eq. (4.1) can be recast as

⟨O1O2O3O4⟩ =
∑
ℓ

∫ d
2
+i∞

d
2

d∆

2πi
I∆,ℓ Ψ

∆i
∆,ℓ(xi) + ⟨O1O2⟩⟨O3O4⟩ (4.7)

where we defined

I∆,ℓ :=
F12(∆, ℓ)F∗

3†4†
(∆, ℓ)

N(∆, ℓ)
, (4.8)

Ψ∆i
∆,ℓ(xi) :=

∫
ddx ⟨O1(x1)O2(x2)Oµ1...µℓ(x)⟩⟨Õµ1...µℓ(x)O3(x3)O4(x4)⟩ . (4.9)

We emphasize that unitarity leads to positivity properties of the partial wave coefficients
I∆,ℓ. In particular, we have

I∆,ℓ ≥ 0 if : O1 = O†
3 and O2 = O†

4 . (4.10)

Note that ⟨O1O2|∆, x, z⟩ is symmetric under exchange of O1 and O2 because boundary
operators commute, while the three-point structure (4.6b) changes by the factor (−1)ℓ.
This means F12 changes by the same factor under exchange of O1 and O2. This leads to

Ī∆,ℓ ≡ I∆,ℓ(−1)ℓ ≥ 0 if : O1 = O†
4 and O2 = O†

3 . (4.11)

This positivity property is at the core of the bootstrap approach to dS late-time correlators
that will be presented in the next section. The function Ψ∆i

∆,ℓ defined in (4.9) is a solution
of the conformal Casimir equation, and is known as the Conformal Partial Wave.
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Chapter 4. Boundary four-point function

The set of conformal partial waves with ∆ running over the principal series forms a
complete basis of four-point correlation functions, in a way that can be made precise [80].23

In the case of d = 1, we need to add discrete series states with ∆ ∈ N+ to have a complete
set of states. Strictly speaking, eq .(4.7) will have an extra sum over positive integers.
We will see this explicitly in section 5.

We would like to briefly mention some properties of the conformal partial waves. The
partial waves satisfy the orthogonality relation∫

ddx1 . . . d
dx4

vol(SO(d+ 1, 1))
Ψ∆i

∆,ℓ(xi)Ψ
∆̃i
∆̃′,ℓ′

(xi) = 2πn∆,ℓ δℓ,ℓ′δ(ν − ν ′) , (4.12)

where ∆ = d
2 + iν, ∆′ = d

2 + iν ′ and the normalization factor reads

n∆,ℓ =
πd+1vol(Sd−2)
vol(SO(d− 1))

(2ℓ+ d− 2)Γ(ℓ+ d− 2)Γ(ℓ+ 1)

22ℓ+d−2Γ(ℓ+ d
2)

2(∆ + ℓ− 1)(∆̃ + ℓ− 1)

Γ(∆− d
2)Γ(∆̃− d

2)

Γ(∆− 1)Γ(∆̃− 1)
.

(4.13)
Here we use the shorthand notation ∆̃ = d−∆ and [109]

vol(Sd−1) =
2πd/2

Γ(d2)
, vol(SO(d− 1)) =

2d−2π(d−2)(d+1)/4∏d−1
j=2 Γ(

j
2)

. (4.14)

The partial waves can also be written in terms of conformal blocks,

Ψ∆i
∆,ℓ(xi) = K∆3∆4

∆̃,ℓ
G∆i

∆,ℓ(xi) +K∆1,∆2

∆,ℓ G∆i
∆̃,ℓ

(xi) , (4.15)

K∆1,∆2

∆,ℓ =
π
d
2Γ(∆− d

2)Γ(∆ + ℓ− 1)Γ( ∆̃+∆1−∆2+ℓ
2 )Γ( ∆̃+∆2−∆1+ℓ

2 )

Γ(∆− 1)Γ(d−∆+ ℓ)Γ(∆+∆1−∆2+ℓ
2 )Γ(∆+∆2−∆1+ℓ

2 )
(4.16)

where G∆i
∆,ℓ(xi) is proportional to the usual conformal block G∆i

∆,ℓ(z, z̄), to be precise:

G∆i
∆,ℓ(xi) =

1

|x12|∆1+∆2 |x34|∆3+∆4

( |x14|
|x24|

)∆2−∆1
( |x14|
|x13|

)∆3−∆4

G∆i
∆,ℓ(z, z̄) , (4.17)

and we have introduced cross ratios z, z̄ as

|x12|2|x34|2
|x13|2|x24|2

= zz̄,
|x14|2|x23|2
|x13|2|x24|2

= (1− z)(1− z̄) . (4.18)

For small z, z̄, the above definition of the conformal blocks fixes their short-distance

2Whenever ℜ(∆1 −∆2) or ℜ(∆3 −∆4) are large, the question of completeness of the principal series
of partial waves is subtle, see for instance [80, appendix A.3].

3When the external operators Oi all belong to the principal series, e.g. when the Oi appear in the
boundary OPE of a massive free field ϕ, this follows also from the tensor products (2.40).
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4.2 Examples of partial wave coefficients

behavior to be

G∆i
∆,ℓ(z, z̄)→ (−1)ℓ Γ(ℓ+ 1)Γ(d−2

2 )

2ℓΓ(ℓ+ d−2
2 )

(zz̄)
∆
2 C

d−2
2

ℓ

(
z + z̄

2
√
zz̄

)
z ∼ z̄ ≪ 1 , (4.19a)

G∆i
∆,ℓ(z, z̄)→

(
−1

2

)ℓ
z

∆−ℓ
2 z̄

∆+ℓ
2 z ≪ z̄ ≪ 1 . (4.19b)

OPE for boundary operators

Combining (4.7) with (4.15), one can write

⟨O1O2O3O4⟩ =
∑
ℓ

∫ d
2
+i∞

d
2
−i∞

d∆

2πi
I∆,ℓ K

∆3∆4

∆̃,ℓ
G∆i

∆,ℓ(xi) + ⟨O1O2⟩⟨O3O4⟩ . (4.20)

Since the conformal block G∆i
∆,ℓ(xi) decays exponentially when Re∆→∞ (whilst keeping

the xi fixed) we can deform the contour to the right and pick up poles along the way.
This gives

⟨O1O2O3O4⟩ = −
∑
ℓ

∑
∆α

Res∆=∆αI∆,ℓ K
∆3∆4

∆̃α,ℓ
G∆i

∆α,ℓ
(xi) + ⟨O1O2⟩⟨O3O4⟩ . (4.21)

As discussed in [110, 65, 80] there are non-trivial cancellations among poles of the
conformal blocks and poles of the partial wave coefficients. When the dust settles, what
is left is the contribution from the dynamical (not spurious) poles of I∆,ℓ; these therefore
control the expansion in powers of |x1 − x2|2.

This gives rise to an OPE between boundary operators, and we can read off the dimension
of the exchanged boundary operators from the position of the poles in the partial wave
coefficients I∆,ℓ. This is similar to what we saw in section 3.2 for the late time expansion
of the bulk two-point function from the Källén-Lehnmann spectral decomposition.

4.2 Examples of partial wave coefficients

Before using the partial wave expansion in crossing equations to find non-trivial bounds,
we would like to present some simple examples to gain more intuition about the partial
wave coefficients I∆,ℓ. In what follows, we first consider a free massive field in dS which
leads to Mean Field Theory (MFT) type conformal correlators for late-time boundary
operators. We shall see that the positivity condition (4.10) requires a careful treatment
of contact terms in late-time correlators. Then, we consider a λϕ4 bulk interaction and
calculate the partial wave coefficients to the leading order in λ.

85



Chapter 4. Boundary four-point function

4.2.1 Mean Field Theory

Consider the following four-point function of late-time boundary operators of a free
massive scalar field in dS,

⟨O1O†
2O†

3O4⟩ (4.22)

where we used Oi as a short notation for O(xi). Since the bulk field is free, the four-point
function is given by three Wick contractions. Of course, this has the same structure as
MFT,

⟨O1O†
2O†

3O4⟩MFT = ⟨O1O†
2⟩⟨O†

3O4⟩+ ⟨O1O4⟩⟨O†
2O†

3⟩+ ⟨O1O†
3⟩⟨O†

2O4⟩ (4.23)

which can also be expanded as

⟨O1O†
2O†

3O4⟩MFT = ⟨O1O†
2⟩⟨O†

3O4⟩

+
∑
ℓ

∫ d
2
+i∞

d
2

d∆

2πi
IMFT
∆,ℓ Ψ∆i

∆,ℓ(xi) +
∑
ℓ

∫ d
2
+i∞

d
2

d∆

2πi
Iδ∆,ℓΨ

∆i
∆,ℓ(xi)

(4.24)

Here we wrote the partial wave decomposition in the (12)(34) channel, identifying the
expansion of each of the 3 terms in (4.23). Namely, the first corresponds to the vacuum
contribution, the second we call IMFT

∆,ℓ and the third we denote as Iδ∆,ℓ because it is a
pure contact term. Moreover, as we will see in (4.34), the operators O and O† do not 
commute. For the four-point function (4.22) we implictly use the radial ordering and
therefore MFT expansion of it has the unique form of (4.23). 

Let us first calculate IMFT
∆,ℓ . We have

⟨O1O4⟩⟨O†
2O†

3⟩ =
1

|x1 − x4|d+2iµ

1

|x2 − x3|d−2iµ
=
∑
ℓ

∫ d
2
+i∞

d
2

d∆

2πi
IMFT
∆,ℓ Ψ∆i

∆,ℓ(xi) .

Using the orthogonality relation (4.12), one finds

IMFT
∆,ℓ =

1

n∆,ℓ

∫
ddx1 . . . d

dx5
vol(SO(d+1,1))

⟨O1O4⟩⟨Õ2Õ3⟩⟨Õ1O2Õµ1...µℓ(x5)⟩⟨Oµ1...µℓ(x5)O3Õ4⟩

=
S([Õ]OO)S([O]OO)

n∆,ℓ

∫
ddx1d

dx2d
dx5

vol(SO(d+1,1))
⟨Õ1O2Õµ1...µℓ(x5)⟩⟨Oµ1...µℓ(x5)Õ2O1⟩

= (−1)ℓ 2
ℓ−1Γ(ℓ+ d

2)

π
d
2Γ(ℓ+ 1)

Γ(iµ)Γ(−iµ)
Γ(d2 + iµ)Γ(d2 − iµ)

(∆ + ℓ− 1)(∆̃ + ℓ− 1)Γ(∆− 1)Γ(∆̃− 1)

Γ(∆− d
2)Γ(

d
2 −∆)

(4.25)

where we used shorthand notation ∆̃ = d − ∆ as well as O to denote the exchanged
operator with spin ℓ in the integral representation of the conformal partial wave to
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contrast with external operator O. In addition, we used the identity [67]

ζd,ℓ ≡
∫

ddx1d
dx2d

dx5
vol(SO(d+1,1))

⟨O1(x1)O2(x2)O5,ℓ(x5)⟩⟨Õ5,ℓ(x5)Õ1(x1)Õ2(x2)⟩

=
vol(Sd−2)

π
d
2
−1vol(SO(d− 1))

Γ(ℓ+ d− 2)

2ℓ+d−2Γ(ℓ+ d
2 − 1)

,

(4.26)

and the notion of shadow transform S[O(x)] that creates a linear map on the space of
three-point functions as [67]4

⟨S[O1](x1)O2(x2)O3(x3)⟩ = S([O1]O2O3)⟨Õ1(x1)O2(x2)O3(x3)⟩ . (4.27)

In particular, for scalar operators O1 and O2 we have the explicit formula

S([O1]O2O3,ℓ) =
π
d
2Γ(∆1 − d

2)Γ(
d−∆1+∆2−∆3+ℓ

2 )Γ(d−∆1+∆3−∆2+ℓ
2 )

Γ(d−∆1)Γ(
∆1+∆2−∆3+ℓ

2 )Γ(∆1+∆3−∆2+ℓ
2 )

. (4.28)

Note that in (4.25), we used the fact that by swapping O1 and O2 in the three-point
structure defined in (4.6b), one picks a factor of (−1)ℓ.

IMFT
∆,ℓ is negative for odd spins. On the other hand, according to (4.10) the partial wave

coefficients of the correlator (4.22) have to be non-negative for all spins and values of
∆ = d

2 + iν with ν ≥ 0. We shall now see that the third term in (4.24) solves this problem.

4.2.2 Local terms in the Gaussian theory

At late times, the propagator of a massive field in dSd+1 contains a delta function term [19].
In this section, we calculate this local term explicitly, starting from the momentum-space
expression (2.82) of the propagator. We will also make contact with the boundary
OPE (2.44).

As before, we encode the mass m2 of the scalar by the dimension ∆ = d/2+iµ. Expanding
the Hankel functions in (2.82) around η = 0, we obtain

⟨ϕ(η, x)ϕ(η, y)⟩ ∼
η→0

(−η)d
∫

ddk

(2π)d
e−ik·(x−y)

[
Γ(−iµ)2

4π

(−|k|η
2

)2iµ

+ c.c +
coth(πµ)

2µ

]
.

(4.29)

4The shadow transformation is defined as

S[O(x)] =

∫
ddy⟨Õ(x)Õ(y)⟩O(y)

where ⟨Õ(x)Õ(y)⟩ = 1

|x−y|2d−2∆ is two-point structure of operators Õ with dimension ∆̃ = d−∆.
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Performing the k-integral using∫
ddx eik·k|x|−2a = π

d
2
Γ(d2 − a)
Γ(a)

( |k|
2

)2a−d

we find that

⟨ϕ(η, x, )ϕ(η, y)⟩ ∼
η→0−

(−η)d+2iµ Γ(−iµ)Γ(d2 + iµ)

4π
d
2
+1

1

|x− y|d+2iµ
+ c.c.

+(−η)d coth(πµ)
2µ

δ(d)(x− y) .
(4.30)

In what follows, we will refer to the third term as a local term.5

This expression should be compared with the expectation from the late-time OPE (2.44),
which in the case of a free massive bulk field simplifies to

ϕ(x, η) ∼
η→0−

b(−η)∆O(x) + b∗(−η)∆∗O†(x) , ∆ =
d

2
+ iµ . (4.31)

The late time limit of the bulk two-point function is then given by

⟨ϕ(x, η)ϕ(y, η)⟩ ∼
η→0−

(−η)2∆b2⟨O(x)O(y)⟩ + (−η)2∆∗
b∗2⟨O†(x)O†(y)⟩

+ (−η)d|b|2
(
⟨O(x)O†(y)⟩+ ⟨O†(y)O(x)⟩

)
.

(4.32)

Comparing with (4.30), one finds the anti-commutator to be

{
O(x),O†(y)

}
=

coth(πµ)

2µ|b|2 δ(d)(x− y) , b =

√
Γ(−iµ)Γ(d2 + iµ)

4π
d
2
+1

(4.33)

Let us draw your attention to the fact that O(x) and O(y)† do not commute at coinciding
points x→ y6. One way to see this is the canonical commutation relations of ϕ and its
conjugate Π in (2.57b) which gives[

O(x),O†(y)
]
=

1

2µ|b|2 δ
(d)(x− y) . (4.34)

5The local term in (4.30) can be derived in an alternative way. Recall that the two-point function
can be written as ⟨ϕ(x, η)ϕ(y, η)⟩ = F (ξ) with ξ = 4η2/|x − y|2. In the limit η → 0, we can then
write ⟨ϕ(x, η)ϕ(y, η)⟩ ∼ (−η)dδ(d)(x− y)

∫
ddwF (4/|w|2) + . . . where the remaining terms vanish when

integrated over
∫
ddx. Using the explicit expression F = Gf(ξ;µ) given in (3.4) one recovers the coefficient

of the local term in (4.30).
6We thank Victor Gorbenko and Matteo Delladio for pointing out this fact[111].
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This together with (4.33) leads to

⟨O(x)O†(y)⟩ = coth(πµ) + 1

4µ|b|2 δ(d)(x− y) ≡ Cδδ(d)(x− y) , (4.35a)

⟨O†(x)O(y)⟩ = coth(πµ)− 1

4µ|b|2 δ(d)(x− y) ≡ C̄δδ(d)(x− y) (4.35b)

where b here is same as b∆ in (2.86) with ∆ = d
2 + iµ.

Now, let us go back to (4.24) and find Iδ∆,ℓ. The calculation is very similar to the one of
IMFT
∆,ℓ in (4.25) except that we have the delta function of (4.35b) instead of the conformal

two-point functions that can easily be calculated by (4.26):

Iδ∆,ℓ =
CδC̄δ
n∆,ℓ

∫
ddx1 . . . d

dx5
vol(SO(d+1,1))

δ(d)(x1 − x3)δ(d)(x2 − x4)⟨Õ1O2Õ5⟩⟨O5O3Õ4⟩

= ζd,ℓ
CδC̄δ
n∆,ℓ

= (−1)ℓIMFT
∆,ℓ > 0 .

(4.36)

This leads to the total partial wave coefficient

I∆,ℓ = IMFT
∆,ℓ + Iδ∆,ℓ =

(
1 + (−1)ℓ

)
Iδ∆,ℓ . (4.37)

∆,ℓ

This means that the total partial wave expansion vanishes for the odd spin and is 
positive for even spins which agrees with the positivity condition (4.10). In
summary, the existence of the local terms is essential in unitary Mean Field Theories in 
dS.

Let us remark that one could consider the correlator ⟨O1(x1)O2(x2)O2(x3)O1(x4)⟩ with 
two different bulk fi elds. In  th is ca se, we  would find a s im ilar exp ression for  IMF T as

in (4.25) but there would be no local contribution. This is not in contradiction with
unitarity as this correlator no longer fulfills the positivity condition (4.10).

4.2.3 Adding interactions; ϕ4 theory at leading order

So far, we have considered the spectral decomposition of the correlator ⟨OO†O†O⟩, where
O and O† were boundary operators with scaling dimensions d/2 ± iµ. This led to the
spectral density IMFT

∆,ℓ from Eq. (4.25). Closing the contour and picking up poles in the
∆-plane, we find that the x12 → 0 OPE limit of ⟨OO†O†O⟩ is governed by boundary
operators with dimension

∆ = d+ ℓ+ 2N, ℓ = 0, 1, 2, . . . . (4.38a)
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Chapter 4. Boundary four-point function

Had we instead considered the correlators ⟨OOOO⟩ or ⟨O†O†O†O†⟩, then we would have
instead found double-trace operators with dimensions

d+ 2iµ+ ℓ+ 2N resp. d− 2iµ+ ℓ+ 2N . (4.38b)

The locations of these three families of poles are depicted in figure 4.1.

∆

O

O†

d
2

d

[OO†]n

[OO]n

[O†O†]n

Figure 4.1: Analytic structure of the spectral density I∆,ℓ=0 in the case of a free and a
weakly-coupled theory in dS. The solid circles are the locations of the poles for “single-
trace” and “double-trace” operators of the dS mean field theory. The single-trace poles
appear for instance in the two-point function of the bulk field. The three families of
double-trace poles are visible in different correlators, namely ⟨OOOO⟩, ⟨OO†OO†⟩ and
⟨O†O†O†O†⟩. After turning on interactions, the locations of the poles shifts, indicating
that boundary operators pick up anomalous dimensions. These shifted poles are shown
as crosses in the figure. Of course, new poles may appear too.

The above picture must be modified in interacting theories. If one can construct a QFT
in dSd+1 that is controlled by a small coupling λ≪ 1, we expect that its spectrum is close
to (4.38), up to corrections of order λ (or λ2, depending on the operator and interaction
in question). Let us denote the dimensions of some boundary operator Oα as ∆α(λ), such
that ∆α(0) = ∆MFT

α . The shifting of poles is shown in figure 4.1. We can ask how this
behavior can be reproduced from perturbation theory. Including interactions, a general
four-point function is modified according to

⟨O1O2O3O4⟩λ = ⟨O1 · · · O4⟩MFT + λA(x1, . . . , x4) + O(λ2) (4.39a)

for some diagram A(x1, . . . , x4), or by passing to the spectral representation

I∆,ℓ(λ) = IMFT
∆,ℓ + λIA∆,ℓ +O(λ2). (4.39b)
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Now suppose that the full spectral density I∆,ℓ(λ) has a simple pole at ∆ = ∆α(λ) with
residue s(λ). Expanding around λ = 0, we then must have

s(λ)

∆−∆α(λ)
=

s(0)

∆−∆MFT
α

+ λ

[
s′(0)

∆−∆MFT
α

+
s(0)∆′

α(0)

(∆−∆MFT
α )2

]
+O(λ)2. (4.40)

In particular, a double pole in the spectral density IA∆,ℓ signifies the fact that Oα has an
anomalous dimension already at order λ.

To give an example of this phenomenon, let us consider ϕ4 theory in dSd+1. Despite the
extensive literature calculating Witten diagrams in AdS (starting with [112, 113]), the
knowledge of late-time correlators in dS has been primitive until recent years. A recent
series of papers [87, 114, 115] has shed light on the relation between tree-level diagrams
in AdS and dS. We reviewed their result in section 2.5.2. For the case at hand, let us
rewrite (2.101), which states that for a general dS contact diagram

⟨O1(x1)O2(x2)O3(x3)O4(x4)⟩contact = −2 sin(
π

2
ζ)

4∏
i=1

b∆i D∆1∆2∆3∆4(xi) (4.41a)

where
∆i =

d

2
+ iµi and ζ = d+ i(µ1 + . . .+ µ4) . (4.41b)

and b∆ is given by (2.86). The special function that appears here,

D∆1∆2∆3∆4(x1, . . . , x4) =

∫ ∞

0

dz

zd+1

∫
Rd
ddy

4∏
i=1

(
z

z2 + |y − xi|2
)∆i

, (4.41c)

represents a contact diagram in Euclidean AdS. For definiteness, let us compute the
leading correction to the four-point function

⟨O(x1)O(x2)O†(x3)O†(x4)⟩ (4.42)

which according to (4.10) has a positive spectral density. This is an example of a correlator
of the above type, with µ1 = µ2 = µ and µ3 = µ4 = −µ, such that ζ = d in the phase
factor sin(π2 ζ). Moreover, the D-function has a known spectral representation [116].
Using these facts, we conclude that

Icontact
∆,ℓ = − sin(π d2)

Γ(d2 ± iµ)Γ(±iµ)
8πd+2

×

Γ

(
∆

2
± iµ

)
Γ

(
d−∆

2
± iµ

)
Γ
(
∆
2

)2
Γ
(
d−∆
2

)2
Γ(d2 −∆)Γ(∆− d

2)
δℓ,0 . (4.43)

Here we use the shorthand notation of Γ(a± b) := Γ(a+ b)Γ(a− b). Interestingly, the
above analysis seems to indicate that the diagram in question vanishes identically when d
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is even.

In order to read off the physical content of the partial wave coefficient Icontact∆,0 , one
has to multiply Icontact

∆,ℓ by the coefficient K∆3,∆4

∆̃,0
, see for instance Eq. (4.20). In the

s-channel, corresponding to O × O → O† × O†, we find that the physical poles are at
∆ = d± 2iµ+ 2N:

K
d
2
−iµ, d

2
−iµ

∆̃,0
Icontact
∆,0 ∼

∆→d±2iµ+2n

ρ±n
∆− d∓ 2iµ− 2n

. (4.44)

Since these are single poles, they do not have an interpretation of giving rise to anomalous
dimensions: instead, they mean that the boundary OPE coefficients cOO[O†O†]n,0 and their
counterparts with O ↔ O† are generated at order λ. In the cross-channel, corresponding
to the exchange O ×O† → O×O†, we find both double and single poles at ∆ = d+ 2N:

K
d
2
+iµ, d

2
−iµ

∆̃,0
Icontact
∆,0 ∼

∆→d+2n

σn
∆− d− 2n

+
τn

(∆− d− 2n)2
, n = 0, 1, 2, . . . (4.45)

but there are no other physical poles present. This indicates that the double-trace
operators [OO†]n,0 with spin ℓ = 0 and dimension ∆ = d + 2N have their scaling
dimension corrected at tree level. The presence of a single pole in (4.45) indicates that
their residues, i.e. the OPE coefficients c2OO†[OO†]

, also get renormalized.
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5 Setting up the QFT in dS Bootstrap

The Euclidean conformal boundary four-point functions enjoy crossing symmetry. In
other words, the four-point function is invariant under permutations of the external
operators. The partial wave expansions in each channel do not transform trivially under
these permutations. This results in a non-trivial set of equations called crossing equations.
This is the basic idea behind the conformal bootstrap program [27, 117]. Let us see how
the same philosophy works for QFTs in de Sitter.

Consider the four-point function of late-time boundary operators

⟨O1(x1)O2(x2)O3(x3)O4(x4)⟩ . (5.1)

Out of 24 permutations of partial wave expansions for scalar operators, there are 3
equivalence classes. This can be checked from explicit expression of partial waves in
(4.15). We choose the channels s, t and u as representatives of these equivalence classes.
Hence, we end up with two sets of non-trivial crossing equations

∑
ℓ

∫ d
2
+i∞

d
2

d∆

2πi
Is∆,ℓ Ψ

s
∆,ℓ(xi) +Ds(xi) =

∑
ℓ

∫ d
2
+i∞

d
2

d∆

2πi
It∆,ℓ Ψ

t
∆,ℓ(xi) +Dt(xi) ,

∑
ℓ

∫ d
2
+i∞

d
2

d∆

2πi
Is∆,ℓ Ψ

s
∆,ℓ(xi) +Ds(xi) =

∑
ℓ

∫ d
2
+i∞

d
2

d∆

2πi
Iu∆,ℓ Ψ

u
∆,ℓ(xi) +Du(xi) ,

(5.2)

where Dj(xi) is the contribution from the vacuum state in channel j:

Ds(xi) =
δO1O2δO3O4

x2∆1
12 x2∆3

34

, Dt(xi) =
δO2O3δO1O4

x2∆3
23 x2∆1

14

, Du(xi) =
δO1O3δO2O4

x2∆1
13 x2∆2

24

, (5.3)
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and we defined the s, t and u channel partial waves as follows

Ψs
∆,ℓ(xi) = Ψ∆1,∆2,∆3,∆4

∆,ℓ (x1, x2, x3, x4)

Ψt
∆,ℓ(xi) = Ψ∆3,∆2,∆1,∆4

∆,ℓ (x3, x2, x1, x4)

Ψu
∆,ℓ(xi) = Ψ∆1,∆3,∆2,∆4

∆,ℓ (x1, x3, x2, x4) .

(5.4)

As discussed in section 4.1, the partial wave expansion is derived by inserting a complete
set of states in the four-point function and the unitarity of the bulk theory puts positivity
constraints on partial wave coefficients.1 As a simple first step to extend the conformal
bootstrap approach to cosmological correlators, we will focus on correlators of the form

⟨O(x1)O†(x2)O(x3)O†(x4)⟩ (5.5)

where O may have complex dimension ∆O = ∆re + i∆im with real part ∆re ≥ d
2 . In this

case, the t and s channels are equivalent, therefore It∆,ℓ = Is∆,ℓ. In addition, the positivity
conditions (4.10) or (4.11) are satisfied in all channels. More precisely, we have

Īs∆,ℓ ≡ Is∆,ℓ(−1)ℓ ≥ 0 , Iu∆,ℓ ≥ 0 .

For simplicity, from now on we focus on QFT on dS2, i.e. we take d = 1. This has the
important advantage of removing the infinite sums over spin ℓ. However, it forces us to
take into account discrete series irreps of SO(2, 1) ∼= SL(2,R) [80, 119, 120, 79]. This is
what we explain next. We plan to extend the analysis to higher dimensions in the future.

5.1 Review of CFT1

We shall proceed with reviewing some basics of d = 1 conformal partial waves similar to
what we did in section 4.1. The four-point function, after stripping out the appropriate
scaling factors, is a function of a single cross ratio,

⟨O1(x1)O2(x2)O3(x3)O4(x4)⟩ =
1

|x12|∆12 |x34|∆34

∣∣∣∣x14x24

∣∣∣∣δ21 ∣∣∣∣x14x13

∣∣∣∣δ34 G(z) (5.6)

with a single cross ratio of

z =
x12x34
x13x24

∈ R , (5.7)

where we used xij = xi − xj , ∆ij = ∆i +∆j and δij = ∆i −∆j . G(z) is singular at z =
0, 1,∞ corresponding to coincident points. We will fix the external dimensions accordingly

1The constraints are more general for mixed correlators. The conformal bootstrap approach to mixed
correlators has been studied in great detail. A similar approach can be taken here by considering the
analogy between F12(∆, ℓ) in (4.5) and the OPE coefficients λ12O in the usual conformal bootstrap.
Then, we reach a more general bootstrap problem. e.g. look at eq. (2.10) of [118].
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with the correlator (5.5), i.e. ∆1 = ∆3 = ∆re + i∆im and ∆2 = ∆4 = ∆re − i∆im.

Let us expand the correlator G(z) in a complete set of eigenfunctions of the Casimir
operator, orthogonal with respect to inner product [120, 119]

(f, g) =

∫ ∞

−∞
dzz−2f(z)g(z) . (5.8)

These are the conformal partial waves introduced in the previous chapter. However, for
d = 1 the complete basis includes both principal and discrete series (∆ ∈ N) with both
parities, which we denote by spin ℓ ∈ {0, 1} [80]. These obey the orthogonality relations

(Ψ 1
2
+iα,ℓ,Ψ 1

2
+iβ,ℓ′) = 2πn∆,ℓ δℓℓ′δ(α− β) α, β ∈ R+ , (5.9)

(Ψm,ℓ,Ψn,ℓ′) =
4π2

2m− 1
δℓℓ′δmn m,n ∈ N , (5.10)

with vanishing inner product between partial waves in the discrete and principal series.
Notice that in this equation δ is the Kronecker delta. The normalization factor n∆,ℓ will
be given below. Using this basis, we can write the s-channel decomposition

G(z) =
∑
ℓ=0,1

∫ ∞

0

dν

2π
Is1

2
+iν,ℓ

Ψ 1
2
+iν,ℓ(z) +

∑
n∈N
ℓ=0,1

Ĩsn,ℓΨn,ℓ(z) , (5.11)

that replaces (4.7) in d = 1.

The partial waves are given by integrals of the product of three-point structures as in
(4.9). More precisely, for ℓ = 0 we have

Ψ∆,0(z) =

∣∣∣∣x14x24

∣∣∣∣δ12 ∣∣∣∣x14x13

∣∣∣∣δ43 ∫ ∞

−∞
dx5

|x12|∆

|x15|∆+δ12 |x25|∆−δ12
|x34|1−∆

|x35|1−∆+δ34 |x45|1−∆−δ34

= |z|∆
∫ ∞

−∞
dx

|x− 1|∆−1−2i∆im

|x− z|∆−2i∆im |x|∆+2i∆im
, (5.12)

where in the second line, we fixed the conformal gauge by setting x1 = 0, x2 = z, x3 = 1,
x4 =∞ and x5 = x. In the case ℓ = 1, the three-point structure has an extra numerator
Z that can be derived from the higher dimensional scalar-scalar-spin-ℓ correlator in (4.6b)

⟨O1(x1)O2(x2)O3(x3)⟩ =
Z

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆1+∆3−∆2
13

, (5.13)

with Z = |x13||x23|
|x12| ( 1

x13
− 1

x23
) = − sgn(x13) sgn(x23) sgn(x12). Let us define Θ ≡
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sgn(x12x15x25x34x35x45), then one finds

Ψ∆,1(z) =

(
x14
x24

)δ12 (x14
x13

)δ43 ∫ ∞

−∞
dx5

|x12|∆

|x15|∆+δ12 |x25|∆−δ12
|x34|1−∆

|x35|1−∆+δ34 |x45|1−∆−δ34 Θ

= |z|∆
∫ ∞

−∞
dx

|x− 1|∆−1−2i∆im

|x− z|∆−2i∆im |x|∆+2i∆im
sgn(xz(x− 1)(z − x)) . (5.14)

For z ∈ (0, 1), the partial waves with ∆ on the principal series can be written as a linear
combination of a conformal block and its shadow

Ψ∆,ℓ(z) = K1−∆,ℓ G∆,ℓ(z) +K∆,ℓ G1−∆,ℓ(z) , (5.15)

where

G∆,ℓ(z) = (−1)ℓz∆ 2F1(∆ + 2i∆im,∆− 2i∆im; 2∆; z) , (5.16)

K∆,ℓ =

√
πΓ(∆− 1

2)Γ(∆ + ℓ− 1)

Γ(∆− 1)Γ(1−∆+ ℓ)

Γ(1−∆+2i∆im+ℓ
2 )Γ(1−∆−2i∆im+ℓ

2 )

Γ(∆+2i∆im+ℓ
2 )Γ(∆−2i∆im+ℓ

2 )
. (5.17)

One way to find these expressions is to perform integrals (5.12) and (5.14) explicitly.
Alternatively, one can set d = 1 in the general formula (4.15). For integer ∆, corresponding
to the discrete series, we have instead

n ∈ N : Ψn,ℓ(z) = K1−n,ℓGn,ℓ(z) . (5.18)

Finally, we would like to show that

n∆,ℓ =
4π tan(π∆)

2∆− 1
. (5.19)

As it is stated in [80]2, n∆,ℓ in general dimension d can be written as

n∆,ℓ =
vol(Sd−2)(2ℓ+ d− 2)Γ(ℓ+ d− 2)

vol(SO(d− 1))

πΓ(ℓ+ 1)

22ℓ+d−2Γ(ℓ+ d
2)

2
K∆̃,ℓK∆,ℓ . (5.20)

In order to take the limit d → 1 of this expression, we shall analytically continue in d

using the recursion relation

vol(SO(d)) = vol(Sd−1) vol(SO(d− 1)) , (5.21)

and the fact that vol(SO(2)) = vol(S1) = 2π. This leads to the formal results
vol(SO(1)) = 1 and vol(SO(0)) = 1

2 . Therefore, we find limd→1 n∆,ℓ = 0 for all ℓ ≥ 2.

2There is a slight difference in notations: Ihere = Itherenthere, Khere = Sthere = (−2)JKthere but
nhere = nthere.
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On the other hand, we find

lim
d→1

n∆,0 = lim
d→1

n∆,1 =
4π tan(π∆)

2∆− 1
. (5.22)

5.2 A toy example: almost MFT

We would like to understand the convergence properties of the partial wave decomposition
(5.11). This is very important for the goal of developing a numerical bootstrap approach
to QFT in dS. With this in mind, let us consider the example of a weakly coupled massive
scalar field in dS2. In this case, we expect boundary operators almost on the principal
series, i.e. ∆re− 1

2 ≪ 1. On the other hand, the imaginary part ∆im can be large because
it is related to the mass of the bulk field via m2R2 = 1

4 +∆2
im, if we turn off interactions.

The disconnected part of four-point function ⟨O1O†
2O3O†

4⟩disc = ⟨O1O3⟩⟨O†
2O†

4⟩ gives:3

Gdisc(z) = |z|∆O+∆∗
O = |z|2∆re . (5.23)

Notice that if ∆re ̸= d
2 the local terms discussed in section 4.2.2 are not allowed in the

two-point function ⟨OO†⟩. Using orthogonality relation of Ψ∆, one is able to calculate
the partial wave coefficients. The basic integral to compute is the following

W∆,ℓ =

∫ ∞

−∞

dz

z2
Gdisc(z)Ψ∆,ℓ(z) (5.24a)

=

∫ ∞

−∞
dx
|x− 1|∆−1−2i∆im

|x|∆+2i∆im

∫ ∞

−∞

dz

z2
|z|∆+2∆re

|x− z|∆−2i∆im
(δℓ,0 + δℓ,1 sgn(xz(x− 1)(z − x))).

(5.24b)

This integral can be done explicitly:4

W∆,ℓ =
2ℓ
√
πΓ(ℓ+ 1

2)

Γ(ℓ+ 1)

Γ(12 + i∆im −∆re)Γ(
1
2 − i∆im −∆re)

Γ(∆re + i∆im)Γ(∆re − i∆im)

× Γ( ℓ−∆+2∆re
2 )Γ( ℓ−1+∆+2∆re

2 )

Γ(1+ℓ+∆−2∆re
2 )Γ(2+ℓ−∆−2∆re

2 )
. (5.25)

3In the case of a single real operator O = O†, there are two more contributions from other channels.
The (stripped) four-point function for identical external operators reads

Gdisc(z) = 1 + |z|2∆O +

∣∣∣∣ z

z − 1

∣∣∣∣2∆O

.

The first term (= 1, from the s-channel) is non-normalizable with respect to the inner product (5.8). The
spectral density I(3)∆,ℓ corresponding to the third term is equal to the density I(2)∆,ℓ up to a factor (−1)ℓ.
This is a consequence of the behavior of the partial waves under z 7→ z/(z − 1).

4In practice, we divide the integration domain in 9 regions according to the position of x with respect
to 0 and 1 and the position of z with respect to 0 and x.
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Then, the principal series partial wave coefficients are given by

Idisc
∆,ℓ =

1

n∆,ℓ
W∆,ℓ =

2ℓ−2Γ(ℓ+ 1
2)√

πΓ(ℓ+ 1)

Γ(12 + i∆im −∆re)Γ(
1
2 − i∆im −∆re)

Γ(∆re + i∆im)Γ(∆re − i∆im)

(2∆− 1)

tan(π∆)

× Γ( ℓ−∆+2∆re
2 )Γ( ℓ−1+∆+2∆re

2 )

Γ(1+ℓ+∆−2∆re
2 )Γ(2+ℓ−∆−2∆re

2 )
, (5.26)

for ∆ = 1
2 + iν and ν > 0, and the discrete series by

Ĩdisc
n,ℓ =

2n− 1

4π2
Wn,ℓ =

2ℓ−2Γ(ℓ+ 1
2)

π
3
2Γ(ℓ+ 1)

Γ(12 + i∆im −∆re)Γ(
1
2 − i∆im −∆re)

Γ(∆re + i∆im)Γ(∆re − i∆im)

× (2n− 1)Γ( ℓ−n+2∆re
2 )Γ( ℓ−1+n+2∆re

2 )

Γ(1+ℓ+n−2∆re
2 )Γ(2+ℓ−n−2∆re

2 )
. (5.27)

Notice that Idisc
∆,ℓ is shadow symmetric (i.e invariant under ∆→ 1−∆) and has poles on

the real line at ∆ ∈ Z and ∆ = 2∆re + 2k + ℓ for k ∈ N and their shadow. The attentive
reader may worry that these partial wave coefficients do not satisfy the unitarity condition
I 1

2
+iν,ℓ(−1)ℓ ≥ 0 for ν ∈ R. The obvious solution is that Idisc

1
2
+iν,ℓ

is different from the full
I 1

2
+iν,ℓ. Nevertheless, it would be useful to better understand the emergence of the free

theory in dS, described in section 4.2, as the limit of an interacting QFT in dS.

Let us go back to (5.11) and use (5.15) to write,

Gdisc(z) =
∑
ℓ=0,1

∫ 1
2
+i∞

1
2

d∆

2πi
Idisc
∆,ℓ Ψ∆,ℓ(z) +

∑
n∈N
ℓ=0,1

Ĩdisc
n,ℓ Ψn,ℓ(z) (5.28)

=
∑
ℓ=0,1

∫ 1
2
+i∞

1
2
−i∞

d∆

2πi
Idisc
∆,ℓK1−∆,ℓG∆,ℓ(z) +

∑
n∈N
ℓ=0,1

Ĩdisc
n,ℓ Ψn,ℓ(z) .

Now, we can deform the ∆-contour to the right and pick up residues of the poles on
the positive real line. The poles at integer ∆ precisely cancel the contribution from the
discrete series because Ĩdisc

n,ℓ = Res∆=nI
disc
∆,ℓ . We are left with the contribution of the poles

at ∆ = 2∆re + 2k + ℓ for k ∈ N,

Gdisc(z) = |z|2∆re = −
∑
ℓ=0,1

∞∑
k=1

Res∆=2∆re+ℓ+2k(I
disc
∆,ℓ )K1−(2∆re+ℓ+2k),ℓG2∆re+ℓ+2k,ℓ(z)

=:
∑
ℓ=0,1

∞∑
k=1

c2OO†[O†O]k,ℓ
G2∆re+ℓ+2k,ℓ(z). (5.29)

The second line defines OPE coefficients c2OO†O†[O†O]k,ℓ
. The latter must be positive

because the double-trace exchanged operators [O†O]k,ℓ are hermitian.
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(Non)-Convergence

Although the sum (5.29) converges for any external dimension ∆O = ∆re + i∆im, the
integral (5.28) is not always convergent. Let us take a closer look at this issue. We need
to study the asymptotic behavior of partial waves Ψ and the associated coefficients I.
Using Stirling’s approximation,

Idisc
1
2
+iν,ℓ

∼
ν→∞

Qν4∆re−1 , Ĩdisc
n,ℓ ∼

n→∞

Q

π
(−1)ℓ+nn4∆re−1 , (5.30)

where we defined

Q ≡ Γ(12 −∆re − i∆im)Γ(
1
2 −∆re + i∆im)

24∆re−1Γ(∆re + i∆im)Γ(∆re − i∆im)
. (5.31)

Using (5.15) and the known large ∆ behavior of conformal blocks [27, 121],

G∆,ℓ(z) ∼
∆→∞

(−1)ℓ (4ρ)∆√
1− ρ2

, (5.32)

one can find the asymptotic behavior of the partial waves:

Ψ 1
2
+iν,ℓ(z) ∼ν→∞

2(−1)ℓ
√
π

ν

(4ρ)
1
2√

1− ρ2
cos(x ν − π

4
) , (5.33)

Ψn,ℓ(z) ∼
n→∞

2

√
π

n

(−1)ℓ + (−1)n cosh(2π∆im)√
1− ρ2

ρn , (5.34)

where we used the ρ-coordinate defined as

ρ(z) =
z(√

1− z + 1
)2 , x = log(ρ(z)) . (5.35)

Finally, the large ν behavior of the integrand in (5.28) is

∼ ν4∆re− 3
2 cos(x ν − π

4
) , (5.36)

which means the integral is not convergent for ∆re >
1
8 .5 On the other hand, the structure

is somewhat familiar. This is like the Fourier transform of a monomial and it corresponds
to the behaviour ∼ |x| 12−4∆re as x → 0. Notice that x → 0 corresponds to z → 1 or
equivalently x2 → x3, which is the t channel OPE limit. In fact, it is instructive to
compute the behavior as z → 1 of each term in (5.28). Using [122, 123]

G∆,ℓ (z) ∼
∆→∞

(−1)ℓ4∆
√

∆

π
K0(2∆

√
1− z) when (1− z)− 1

2 ∼ ∆ , (5.37)

5One way to make this integral convergent is to introduce a Gaussian regulator e−ϵν
2

with ϵ→ 0.
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we find ∫ 1
2
+i∞

1
2

d∆

2πi
Idisc
∆,ℓ Ψ∆,ℓ(z) ∼

z→1

Q cos(2π∆re)Γ
2(2∆re)

2π

(−1)ℓ
(1− z)2∆re (5.38a)

∑
n∈N

Ĩdisc
n,ℓ Ψn,ℓ(z) ∼

z→1

Q cosh(2π∆im)Γ
2(2∆re)

2π

(−1)ℓ
(1− z)2∆re . (5.38b)

Although every term diverges as z → 1, the leading singular behavior cancels between the
spin 0 and spin 1 contributions. This had to happen because the correlator Gdisc(z) =

|z|2∆re is regular.

Consider now the u channel OPE limit z → ∞. For the case ∆im = 0, one can easily
obtain the the partial waves for negative z using the symmetry:

Ψ∆,ℓ(z) = (−1)ℓΨ∆,ℓ

(
z

z − 1

)
, z < 0 . (5.39)

This gives∫ 1
2
+i∞

1
2

d∆

2πi
Idisc
∆,ℓ Ψ∆,ℓ(z) ∼

z→−∞

Q cos(2π∆re)Γ
2(2∆re)

2π
(−z)2∆re (5.40a)

∑
n∈N

Ĩdisc
n,ℓ Ψn,ℓ(z) ∼

z→−∞

QΓ2(2∆re)

2π
(−z)2∆re (5.40b)

which means that every term in (5.28) contributes to the leading divergence of Gdisc(z) =

|z|2∆re as z →∞. In general, we expect G(z) ≈ Gdisc(z) as z →∞ because the identity
dominates the u channel OPE. Therefore, we expect the full partial wave coefficients
I 1

2
+iν,ℓ and Ĩn,ℓ to scale as in (5.30) for large ν or n.6

This argument shows that the integral over the principal series in the partial wave
decomposition (5.11) does not converge absolutely. This issue poses an important obstacle
to any numerical bootstrap approach. In what follows, we will overcome this obstacle by
integrating the crossing equation over z against functions that vanish sufficiently fast at
z = 0 and z = 1.

5.3 Regularized crossing equation

In this section, we want to explore the consequences of the crossing equation (5.2) for
the case of a general correlator ⟨O(x1)O†(x2)O(x3)O†(x4)⟩, which is invariant under
x1 ↔ x3 or x2 ↔ x4, which corresponds to the s− t channel. We start with a method to
regularized the convergence issue mentioned in the previous section. To do so, we shall

6Note that the precise asymptotic behavior must be different to be compatible with unitarity. Never-
theless, we expect the same asymptotic power law behavior.
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use the following linear functional,

ω[f ] :=

∫ 1

0
dz zγ(1− z)σf(z) , (5.41)

where γ and σ should be large enough.

Since the partial wave coefficient of s-channel and t-channel of the correlator

⟨O(x1)O†(x2)O(x3)O†(x4)⟩

are the same, the crossing equation will look like7∫ ∞

0

dν

2π

∑
ℓ=0,1

Is1
2
+iν,ℓ

F s−t1
2
+iν,ℓ

(z) +
∑
ℓ=0,1

∑
n∈N

Ĩsn,ℓF
s−t
n,ℓ (z) = 0 , (5.43)

where we define

F s−t∆,ℓ (z) ≡ (1− z)2∆reΨ∆,ℓ(z)− z2∆reΨ∆,ℓ(1− z) , (5.44)

and used Ψt
∆,ℓ(z) = Ψs

∆,ℓ(1− z) = Ψ∆,ℓ(1− z). Acting with the functional ω introduced
in (5.41) on this equation and using the identity (A.16), one finds a new form of the
crossing equation ∫ ∞

0

dν

2π

∑
ℓ=0,1

Is1
2
+iν,ℓ

F̃ s−t1
2
+iν,ℓ

+
∑
ℓ=0,1

∑
n∈N

Ĩsn,ℓF̃
s−t
n,ℓ = 0 , (5.45)

where

F̃ s−t∆,ℓ = (−1)ℓ
K∆re+i∆im,∆re−i∆im

1−∆,ℓ

Γ(∆ + 2∆re + γ + σ + 2)
(5.46)

×
[
Γ(∆ + γ + 1)Γ(2∆re + σ + 1)3F2

[
∆+2i∆im,∆−2i∆im,∆+γ+1

2∆,∆+2∆re+γ+σ+2

∣∣∣∣1]− γ ↔ σ

]
+ ∆↔ 1−∆ .

7In case of identical operators, there would be contributions from disconnected parts on the right side:∫ ∞

0

dν

2π
I 1

2
+iνF 1

2
+iν(z) +

∑
n∈2N

ĨnFn(z) = z2∆O − (1− z)2∆O . (5.42)
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The formula for F̃ s−tn,ℓ instead reads

F̃ s−tn,ℓ = (−1)ℓ
K∆re+i∆im,∆re−i∆im

1−n,ℓ
Γ(n+ 2∆re + γ + σ + 2)

(5.47)

×
[
Γ(n+ γ + 1)Γ(2∆re + σ + 1)3F2

[
n+2i∆im,n−2i∆im,n+γ+1

2n,n+2∆re+γ+σ+2

∣∣∣∣1]− γ ↔ σ

]
.

The advantage of the functional (5.41) is that we could compute its action on partial
waves in terms of the hypergeometric function 3F2(1). In principle another linear function
might not lead to an analytical expressions like what we found above.

In appendix A.2, we show that

F̃ s−t1
2
+iν,ℓ

∼
ν→∞

ν−2−4∆re−2min(σ,γ) , (5.48)

which together with (5.30) implies that the ν integral in the regularized crossing equation
(5.45) is convergent as long as

min(σ, γ) > −1 . (5.49)

Similar crossing equations can be written down for decompositions in the other channels.

5.4 An invitation to the numerical bootstrap

The crossing symmetry plus positivity (from unitarity) lead to bounds on the space on
conformal field theories. In this section, following the strategy of the conformal bootstrap,
we will show that the same is true for QFT in dS.

Consider for definiteness the s − t crossing equation in (5.43) that is anti-symmetric
under exchange of γ ↔ σ. Therefore, it is sufficient to concentrate on the case γ > σ.
In addition, we take external operators to be identical and hermitian with dimension
∆ϕ >

1
2 . This means we have to reintroduce disconnected terms in (5.43), which amounts

to adding a term

D(γ, σ) =
Γ(γ + 1)Γ(2∆ϕ + σ + 1)− Γ(σ + 1)Γ(2∆ϕ + γ + 1)

Γ(2∆ϕ + γ + σ + 2)
(5.50)

to (5.45). For identical operators, the parity odd sector (ℓ = 1) contribution vanishes and
we can rewrite a regularized crossing equation (5.45) as follows:∫ ∞

0

dν

2π
I 1

2
+iν,0F̃

s−t
1
2
+iν,0

(γ, σ) +
∑
n∈N

Ĩn,0F̃
s−t
n,0 (γ, σ) +D(γ, σ) = 0 , (5.51)

At this point, we can rule out putative theories by applying linear functionals to this
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equation (5.51). As an example of a putative theory, assume that the spectral density
obeys I d

2
+iν,0 = 0 for |ν| < ν∗. Now, if one finds a linear functional α satisfying

α

[
F̃ s−t1

2
+iν,0

(γ, σ)

]
> 0 , for all |ν| > ν∗,

α
[
F̃ s−tn,0 (γ, σ)

]
> 0 , for all n ∈ N, (5.52)

α [D(γ, σ)] = 1 ,

then (5.51) cannot be satisfied by a unitary QFT in dS (since in a unitary QFT we must
have I d

2
+iν,0 ≥ 0 and Ĩn,0 ≥ 0).

One may also find bounds on partial wave coefficients. For example, imagine that one
can find a linear functional α obeying the first two positivity conditions of (5.52), but
now α [D(γ, σ)] = −1. Then one obtains an upper bound on every discrete series partial
wave coefficient,

Ĩn,0 ≤
1

α
[
F̃ s−tn,0 (γ, σ)

] , (5.53)

and this bound can be optimized by maximizing α
[
F̃ s−tn,0 (γ, σ)

]
. We leave for the future

a systematic implementation using linear programming methods or the semidefinite solver
SDPB [124] that we expand a bit for the case of d = 1 in appendix E.

We conclude this section with a proof-of-concept example of a ruled-out theory. Consider
equation (5.51) for an external operator of dimension ∆ϕ = 1

2 +
1
8 and let γ = 2.1 and

σ = 2. It turns out that F̃ s−t1
2
+iν,0

(γ, σ) is positive for all ν ≥ 8.53 and F̃ s−tn,0 (γ, σ) is also

positive for all even n ∈ N.8 Imagine a theory with vanishing I d
2
+iν,0 for ν < 8.53. Then

there is an upper bound on Ĩ2,0:

Ĩ2,0 <
−D(γ = 2.1, σ = 2)

F̃ s−t2,0 (γ = 2.1, σ = 2)
≈ 6.43174 . (5.54)

One can improve this bound using linear programming methods. For example, taking
linear combinations with a specific set of eight different values of {γ, σ}, we found a
stronger bound

Ĩ2,0 <
−α [D(γ, σ)]

α
[
F̃ s−t2,0 (γ, σ)

] ≈ 5.67049 . (5.55)

We hope this simple example convinces the reader that these equations have the potential
to put non-trivial bounds on the space of QFTs in dS. Optimistically, with a proper
systematic treatment, they are sufficient to identify interesting theories at kinks or islands

8Note that odd values of n do not contribute for a four point function of identical hermitian operators
because F̃ s−tn,0 vanishes identically.
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of the allowed theory space.
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6 Conclusion

Albeit its direct connection to the real world, Quantum Field Theory (QFT) in de Sitter
(dS) spacetime has remained largely unexplored. d + 1-dimensional de Sitter (dSd+1)
is a maximally symmetric spacetime with the conformal group symmetry SO(d+ 1, 1).
The correlation functions of local operators, as the main observables of QFT in dSd+1

are constraint subject to the mentioned dS isometry group. In particular, the late-time
boundary of de Sitter defines a conformal theory in which one can define correlation
functions of primary boundary operators that satisfy the same Ward identities as the
correlation functions of primary operators in a CFT. Furthermore, the unitarity of the
theory in the bulk is highly constraining. All together, these properties of QFT in dS
suggest employing the conformal bootstrap methods [28, 27].

In this work, we took the first steps towards a nonperturbative treatment of QFT
in rigid dSd+1 utilizing the conformal bootstrap ideology. The main toolbox is the
Hilbert space decomposition derived from the first principles in 2. The identity operator
can be decomposed into the unitary irreducible representations of dS isometry group
SO(d+ 1, 1). In chapter 3, we make use of the resolution of identity in (2.118) to recover
the Källén–Lehmann decomposition of the bulk two-point function with a positive spectral
density. The spectral density carries information about the bulk-boundary expansion
spelled out in 3.2. In sections 3.3 and 3.4, we find two equivalent inversion formulas for
spectral density by analytic continuation from the sphere and Euclidean Anti-de Sitter
spaces. Through these inversion formulas, one can find the spectral density of theory such
as free field and bulk CFT and explore their boundary operator content – section 3.5.

The dS boundary four-point functions admit a partial wave expansion. The coefficients of
this expansion I satisfy positivity conditions due to the unitarity of the bulk theory. This
has been shown in section 4.1. We illustrate the concept of Is by explicitly calculating
them in Generalized Free Field theory and to the first order of perturbation theory for λϕ4

interaction. Along the way, it turns out that the local terms are unavoidable for a unitary
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Mean Field Theory. Finally, we focus on two-dimensional de Sitter spacetime and find
non-trivial bounds for partial wave coefficients in a particular setting as a proof-of-concept.

Our work, as a new approach, leaves many open questions for the future. Let us list some
of them:

• The Hilbert space of a QFT in dSd+1 must decompose in unitary irreducible
representations of SO(d + 1, 1). Although these are studied and classified in a
formal way in the past, a more straightforward and more intuition-friendly group
theoretical treatment is lacking. There are two concrete cases where this question
can certainly be answered using group theory. The first is CFT in dS where one
should be able to decompose conformal multiplets of SO(d + 1, 2) into irreps of
SO(d + 1, 1), as we illustrated in appendix D for the case of dS2. The second is
free QFT in dS where one should be able to decompose the Fock space into irreps
of SO(d + 1, 1). In this case, it would also be interesting to study the effect of
perturbative interactions on the structure of the Hilbert space. We investigate these
in a simple group theoretical approach using Harish-Chandra characters that we
hope to report on soon [81].

• What is the set of boundary operators present in a generic interacting QFT in
dS? For CFT in dS, we saw that all boundary operators are hermitian with real
scaling dimension ∆. On the other hand, a (sufficiently) massive free scalar in
dS gives rise to a pair of hermitian conjugate boundary operators of dimension
∆ = d

2 ± iµ with µ ∈ R. How do these two special cases change under continuous
deformations of the QFT? In practice, we can study deformations of the CFT by
relevant bulk operators and of the free theory by turning on interactions.1

• The generalization of the Källén-Lehmann decomposition of the bulk two-point
functions for local operators with spin would be very helpful to shed light on the
two previous questions. We are planning to report on this soon.

• We introduced regularised crossing equations to ameliorate the convergence
properties of the integral over the continuous label ν of principal series irreps. It is
important to develop a more systematic approach to this issue. In particular, we
did not address the case of higher dimensions d > 1.

• Pragmatically, the main open task is to set up a numerical conformal bootstrap
approach to the crossing equations for boundary four-point functions of QFT in
dS. We gave a proof of principle by deriving a bound in a toy example but it is
important to develop a systematic algorithm. To use SDPB [124] we will need

1One intriguing feature of the free limit of an interacting QFT is the appearance of local terms in the
two-point function of boundary operators ⟨OO†⟩ when ∆O = d

2
+ iµ. This seems to be a discontinuous

effect because conformal symmetry forces ⟨OO†⟩ = 0 as long as real part of the scaling dimension
ℜ∆O ̸= d

2
and we expect 0 < ℜ∆O − d

2
≪ 1 for a weakly coupled massive scalar field in dS.
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to devise a polynomial approximation to the partial waves (or their regularized
version). We initiated this for the case of d = 1 in appendix E.

• There is an alternative approach based on 6j symbols that does not use conformal
partial waves. For simplicity let us focus on the first equation in (5.2). Integrating
both sides over all points xi against Ψt

∆,ℓ(xi) and using orthogonality of partial
waves, we find

It∆,ℓ =
1

n∆,ℓ

∑
ℓ′

∫
d∆′

2πi
Is∆′,ℓ′ Jd(∆̃′, ℓ′, ∆̃, ℓ|∆̃1, ∆̃2, ∆̃3, ∆̃4) +Dst∆,ℓ , (6.1a)

Dst∆,ℓ ≡
1

n∆,ℓ

∫
ddx1 · · · ddx4

vol(SO(d+ 1, 1))

(
Ds

∆i(xi)−Dt
∆i(xi)

)
Ψt,∆̃i

∆̃,ℓ
(xi) , (6.1b)

where we used the notation of [125] for the 6j symbol Jd. The disconnected
contribution Dst∆,ℓ can be computed in a similar fashion to the MFT partial wave
coefficients in (4.25) [67]. For the simple case ⟨OO†OO†⟩ discussed in (5.5), there
is no s or t channel disconnect contribution and Is = It. Therefore, equation
(6.1a) says that Is is invariant under convolution with the 6j symbol. It would be
interesting to explore this constraint together with positivity of Is.

• What are the interesting questions about QFT in dS? In standard CFT, the
basic CFT data are scaling dimensions and OPE coefficients and most bootstrap
studies derive bounds on these quantities. For QFT in dS, partial wave coefficients
I∆,ℓ play a similar role to OPE coefficients in CFT. However, the former include
a set of non-negative functions of the continuous label ν of principal series irreps.
What type of bounds should we aim for such functions? It would be useful to
develop more intuition from perturbative computations. Ideally, we would like to
find questions that can isolate some physical theory inside an island of the allowed
space of QFTs.

• It would be interesting to understand the flat space limit of dS correlators [126, 23].
Perhaps there is a limiting procedure that takes dS partial wave coefficients I∆,ℓ into
flat space partial amplitudes fℓ(s), where the square of the center of mass energy
s ∼ ν2/R2. This is similar to known formulas for AdS [127–131, 38, 132, 133].

• The consequences of perturbative unitarity are currently being investigated in a
program known as the cosmological bootstrap [23, 25, 134, 20]. Is it possible to make
contact between our work and the perturbative cosmological bootstrap? Perhaps
recent advances concerning cutting rules in (A)dS [135–137] can play a role here.

• Massless fields in dS are known to give rise to infrared divergences in perturbation
theory [138–141]. Recently, the authors of [26] claimed to have resolved this issue. It
would be interesting to analyse this problem within our non-perturbative approach.

• Can quantum gravity in dS be studied with our conformal bootstrap approach?
In the case of AdS, there is a rather systematic way to go from QFT to quantum

107



Chapter 6. Conclusion

gravity. In fact, the conformal bootstrap equations for the boundary correlators
are unchanged. The sole effect of quantum gravity in the bulk is the appearance of
new boundary operator: the stress tensor. The stress tensor is a special operator
because its correlation functions are constrained by Ward identities. It is tempting
to imitate this strategy in dS. As a first step, one should study a bulk massless
spin 2 field and analyse the correlators of its associated boundary operators. It
would also be very interesting to compare this approach to previous proposals for a
dS/CFT correspondence [142–144].
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7 Set up of Hamiltonian truncation in
AdS2

As promised, we will study QFTs defined in the bulk of (d+ 1)-dimensional Euclidean
AdS spacetime, specializing to d = 1. We will drop the word “Euclidean” from now
on for convenience and simply use AdS. The generalization to higher d is relatively
straightforward, but will not be necessary in the rest of this work. For other studies of
QFT in AdS see e.g. [145–152]. In this section, we review some basic facts about the
correspondence between bulk (non-gravitational) AdS physics and the conformal theory
that lives on the boundary of AdS. For a more extensive pedagogical treatment, we refer
for instance to [153] and [50].

7.1 Geometry

Euclidean AdS2 with radius R can be defined as a hyperboloid

−(X0)2 + (X1)2 + (X2)2 = −R2 , X0 > 0 (7.1)

inside R1,2, which we will endow with global coordinates τ ∈ R and r ∈ [−1
2π,

1
2π] via

Xµ(τ, r) =
R

cos r
(cosh τ, sinh τ, sin r) . (7.2)

The coordinate τ (resp. r) plays the role of a Euclidean time (resp. a space) coordinate.
In the above coordinates, the AdS metric is given by

ds2 =

(
R

cos r

)2 [
dτ2 + dr2

]
. (7.3)

The conformal boundary of AdS2 is the union of the two lines r = ±1
2π.

It follows from the definition (7.1) that AdS2 is manifestly invariant under a group
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Chapter 7. Set up of Hamiltonian truncation in AdS2

SO(1, 2) ∼ SL(2,R) of continuous isometries. The corresponding Lie algebra is described
by three generators {H,P,K} with commutators

[H,P ] = P, [H,K] = −K, [P,K] = −2H. (7.4)

The generators act on local scalar bulk operators as

[G,O(τ, r)] = DG · O(τ, r) (7.5)

where

DH = ∂τ , (7.6a)

DP = e−τ (sin r ∂τ + cos r ∂r), (7.6b)

DK = eτ (sin r ∂τ − cos r ∂r). (7.6c)

In addition, there is a parity symmetry P (with P2 = 1) that maps r 7→ −r. Under parity,
the generators transform as

P

HP
K

 P−1 =

+H

−P
−K

 . (7.7)

The symmetries of AdS put strong constraints on correlation functions of bulk operators.
For instance, any one-point correlation function ⟨Oi(τ, r)⟩ = ⟨Ω⟩Oi(τ, r)Ω in the vacuum
state |Ω⟩ must be constant.1 Vacuum two point correlation functions of scalar bulk
operators — at say (τ, r) and (τ ′, r′) — only depend on a single SO(1, 2) invariant

ξ =
(Xµ(τ, r)−Xµ(τ ′, r′))2

4R2
=

cosh(τ − τ ′)− cos(r − r′)
2 cos r cos r′

≥ 0. (7.8)

Vacuum higher-point correlators or correlators inside excited states depend on a larger
number of SL(2,R) invariants.

7.2 The Hilbert space and the bulk-to-boundary OPE

The Hilbert space of a QFT in AdS2 decomposes into multiplets of the isometry group
SL(2,R). Such a multiplet is defined by a primary state |ψi⟩, satisfying H |ψi⟩ = ∆i |ψi⟩
and K |ψi⟩ = 0. In a unitary QFT, all primary states must have ∆i ≥ 0. Associated to
any primary state with ∆i > 0 are infinitely many descendant states of the form

|ψi, n⟩ :=
1√

n!(2∆i)n
Pn |ψi⟩ , n = 0, 1, 2, . . . (7.9)

1By assumption, the vacuum state |Ω⟩ is annihilated by all SL(2,R) generators.
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7.2 The Hilbert space and the bulk-to-boundary OPE

identifying |ψi, 0⟩ = |ψi⟩, and writing (x)n = Γ(x+ n)/Γ(x) for the Pochhammer symbol.
The normalization in (7.9) is chosen such that the descendant states are unit-normalized,
as long as the primary state |ψi⟩ is unit-normalized as well. The state |ψi, n⟩ has energy
∆i + n, and the generators K and P act as

K |ψi, n⟩ = γ(∆i, n) |ψi, n− 1⟩ and P |ψi, n⟩ = γ(∆i, n+ 1) |ψi, n+ 1⟩ (7.10)

using the shorthand notation γ(∆, n) :=
√
n(2∆ + n− 1). In addition, there is a unique

vacuum state |Ω⟩ without descendants that is annihilated by all SL(2,R) generators, so
in particular it has ∆Ω = 0. Moreover, if the theory is invariant under parity, all primary
states have a definite parity, meaning that P |ψi⟩ = πi |ψi⟩ with πi = ±1. Then from (7.7)
it follows that descendant states transform as

P |ψi, n⟩ = (−1)nπi |ψi, n⟩ . (7.11)

In a QFT in AdS, one can define boundary operators as (rescaled) limits of local bulk
operators pushed to the conformal boundary of AdS. According to the bulk state –
boundary operator map [38], any primary state |ψi⟩ corresponds to a boundary primary
operator Oi with dimension ∆i, according to the rule

|ψi⟩ = lim
τ→−∞

e−∆iτOi(τ) |Ω⟩ . (7.12)

Often, we will therefore use the notation |Oi⟩ for boundary states instead of |ψi⟩. Likewise,
descendant states |ψi, n⟩ can be obtained from boundary descendants [P, · · · [P,Oi(τ)] · · · ].
Sometimes the operator picture will be useful, but we will not always explicitly identify
the local operators that generate specific states. For instance, a simple-looking state in
the Fock space of a massive boson could originate from a complicated-looking boundary
operator, and vice versa.

In turn, the state-operator map implies that any bulk operator can be expanded in a basis
of boundary scaling operators, placed at an arbitrary point in AdS. For instance, one can
replace a bulk operator V(τ, r) with its bulk-to-boundary operator product expansion
(OPE) at the r = π/2 boundary:

V(τ, r) =
∑
i

bi

(π
2
− r
)∆i

[Oi(τ) + descendants] (7.13)

where the sum runs over all primary operators Oi and the bi are so-called bulk-to-
boundary OPE coefficients. As we will see shortly, the low-lying operators in the
bulk-to-boundary OPE of the deforming operator in eq. (5) are important in establishing
the UV completeness of the resulting interacting QFT.

In particular, all the examples treated in sections 9 and 10 belong to a special class of
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QFTs in AdS: the Hilbert space of the undeformed theory has a gap larger than one
above the vacuum. In equations:

∆i > 1 , ∀ |ψi⟩ ≠ |Ω⟩ . (7.14)

The absence of relevant deformations on the boundary removes the necessity of fine
tuning. Together with the absence of bulk UV divergences, which are the same as in flat
space, this condition ensures that the action (5) is well-defined without the addition of
counterterms, in a neighborhood of λ = 0.2 Concretely, we shall point out at various
points in the next subsection and in section 8 where this condition is important.

7.3 The interacting Hamiltonian

Suppose that we’re given an exactly solvable QFT in AdS2; denote its Euclidean action
by S0. This can for instance be a two-dimensional rational BCFT, or a theory of free
massive bosons and/or fermions.3 We can then turn on a relevant interaction, by shifting

S0 7→ S = S0 + λ

∫
AdS2

√
gd2xV(x) (7.15)

where V(x) is a bulk operator to which we can assign a scaling dimension ∆V < 2.4 The
generalization to multiple relevant operators Vi is straightforward, but won’t be discussed
explicitly here. In the Hamiltonian picture, this translates to

H0 7→ H = H0 + λ̄V, V := R∆V

∫ π/2

−π/2

dr

(cos r)2
V(τ = 0, r) (7.16)

writing λ̄ := λR2−∆V . The factor of R∆V is absorbed into V in order to make the matrix
elements of V dimensionless.

We would like to study the spectrum and eigenstates of H by diagonalizing it inside the
Hilbert space from section 7.2. Before we do so, let us first remark that the Hamiltonian H
from eq. (7.16) is not necessarily well-defined, since V may not exist. A sufficient condition
for V to be well-defined is that V(τ, r) vanishes sufficiently fast near the boundary. In
particular, we require that

lim
r→±π/2

1

cos r
V(τ = 0, r) = 0 (7.17)

2Non-perturbatively, the scaling dimension may be pushed down to ∆ = 1 at some value λ̄∗. In this
case the boundary condition becomes unstable and generically the theory cannot be defined beyond this
value. In chapters 9 and 10 we shall see that this phenomenon is generic. Further discussion can be
found in section 7.5 and section 11.

3See for example appendix A of [149] for a discussion of general free fields in AdSd+1.
4In the 2d Landau-Ginzburg theory of a scalar ϕ, all polynomial operators V = ϕp have ∆V = 0.
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7.3 The interacting Hamiltonian

inside any normalizable state. This means that the bulk-to-boundary OPE (7.13) of
V should not contain operators with ∆i ≤ 1. If this condition is not satisfied, an
IR regulator needs to be introduced and boundary counterterms corresponding to the
offending operators must be added to H. In particular, we require that the bulk one-point
function ⟨V⟩, which corresponds to the identity on the r.h.s. of eq. (7.13), vanishes.5 From
the point of view of the boundary, the condition (7.14) corresponds to the fine tuning of
relevant operators at leading order in λ̄. Therefore, it is not surprising that it may not be
sufficient for the theory to be well defined at finite λ̄. Nevertheless, (7.17) is special from
the point of view of Hamiltonian truncation, since it ensures that the matrix elements of
V are finite. Notice also that it is special to AdS: for instance, it does not appear when
one attempts to study renormalization group (RG) flows on the strip R× [0, π] using the
Truncated Conformal Space Approach (TCSA) [154]. Although we will focus on theories
which do not require an IR cutoff owing to the condition (7.14), we will nevertheless
introduce an IR cutoff ϵ in certain arguments in chapter 8.

Even after ensuring that all the individual matrix elements of V are well-defined, the
operator H may not be diagonalizable due to the presence of high-energy states in the
UV theory. This is a familiar problem in Hamiltonian truncation: for instance, it is
well-known in TCSA on R × Sd that any perturbation with ∆V ≥ 1

2(d + 1) leads to
a divergent cosmological constant [40]. As we mentioned, this is not surprising, since
UV-completeness in perturbation theory may require fine tuning at all orders in the
coupling. However, it turns out that any AdS2 theory suffers from this problem, regardless
of the unperturbed theory S0 or the pertubation V. We shall address this issue in detail
in chapter 8.

In actual Hamiltonian truncation computations, one diagonalizes the Hamiltonian (7.16)
inside a subspace of the full Hilbert space. Typically, one fixes a UV cutoff Λ and keeps
all states with energy smaller than Λ in the λ = 0 theory. Let us make this procedure
explicit by introducing some notation. In the Hilbert space, the action of the operator V
can be represented by a matrix V, namely:

V |ψi, n⟩ =
∑
j

∞∑
m=0

Vj;m
i;n |ψj ,m⟩ . (7.18)

In turn, the matrix elements of V can be computed by integrating wavefunctions over
timeslices:

Vj;m
i;n = R∆V

∫ π/2

−π/2

dr

(cos r)2
⟨ψj ,m|V(0, r)|ψi, n⟩. (7.19)

Such integrals always exist, owing to the condition (7.17). Consequently, the operator H

5In fact, removing the identity operator does not require the introduction of an explicit IR cutoff.
Since ⟨V(0, r)⟩ does not depend on r, one can simply replace V → V − ⟨V⟩, which is equivalent to adding
a cosmological constant counterterm to S.
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acts as

H |ψi, n⟩ = (∆i + n) |ψi, n⟩+ λ̄
∑
j

∞∑
m=0

Vj;m
i;n |ψj ,m⟩ . (7.20)

In Hamiltonian truncation, one defines a truncated Hamiltonian H(Λ) simply starting
from (7.20) by discarding all states with energy strictly larger than Λ.

Due to the SL(2,R) symmetry of the theory, matrix elements with different m,n are
linearly related — see e.g. Ref. [45] for a discussion of this phenomenon in AdS3. The
resulting constraints on the matrix elements are discussed in appendix F.

Finally, let us comment on the choice of basis of the Hilbert space. In a unitary QFT, it
is always possible to organize the states such that the primaries are orthonormal, that is
to say ⟨ψi|ψj⟩ = δij for all i, j. This convention is assumed above in (7.18) and (7.19).
In practice, it is not necessary to organize the Hilbert space in terms of primaries and
descendants, let alone to impose an orthonormality condition between different primaries
of the same dimension ∆. Working in a completely general basis of states |φi⟩, the
eigenvalue equation H |Ψ⟩ = E |Ψ⟩ can be recast as

Hij β
j = E Gij βj , |Ψ⟩ = βi |φi⟩ (7.21)

where Hij = ⟨φi⟩Hφj and Gij = ⟨φi|φj⟩ are Hermitian; the matrix G is known as the
Gram matrix corresponding to the basis |φi⟩. The energies E and eigenstates |Ψ⟩ of
H are physical (up to a choice of normalization of |Ψ⟩), although the coefficients βi

are basis-dependent. This is particularly important when the unperturbed theory is
non-unitary, in which case the Gram matrix is not positive definite, and there exists no
orthonormal basis of states. We will encounter a non-unitary QFT in the form of the
Lee-Yang model, discussed in section 10.2.

7.4 The energy spectrum

Let ∆i(λ̄) be the eigenvalues of the AdS Hamiltonian. The dimensionless coupling
appearing in the Hamiltonian is λ̄ = λR2−∆V so in the limit R → 0 the interaction
vanishes and ∆i(0) is the dimension of the i-th state in the non-interacting theory. At
small radius we can write

∆i(λ̄) = ∆i(0) + ωi,1λ̄+ ωi,2λ̄
2 + . . . (7.22)

for some coefficients ωi,n that can be determined through Rayleigh-Schrödinger perturba-
tion theory (or alternatively, using Witten diagrams). In the presence of multiple relevant
interactions, Eq. (7.22) is modified in a straightforward way. Depending on the UV theory
and the perturbation in question, the perturbative expansion (7.22) can be asymptotic,
or it can have a finite radius of convergence. Crucially, every level ∆i(λ̄) corresponding
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7.5 Spontaneous symmetry breaking

to an SL(2,R) primary is accompanied by an infinite tower of descendants with energies
∆i(λ̄) + N.

When AdS has a large radius, it is expected to approximate flat-space physics. In this
work, we are interested in massive flows, where at low energies the Hamiltonian H

describes a theory of particles with masses mi > 0. We then have

∆i(λ̄) ∼
λ̄→∞

miR = κiR̄ , (7.23)

for the lightest primary states, corresponding to single-particle states in the flat space
limit. In eq. (7.23), we defined the radius of AdS in units of the coupling:6

R̄ := |λ|1/(d+1−∆V )R = |λ̄|1/(d+1−∆V ). (7.24)

A simple way to derive the linear growth in eq. (7.23) is by noticing that a rescaling
(τ, r)→ (τ, r)/R is needed to obtain the flat space metric from eq. (7.3) in the R→∞
limit. The dimensionless coefficients κi > 0 can in general only be determined non-
perturbatively. More generally, the eigenvalues ∆i will grow like EiR when R→∞, with
Ei the center of mass energy of the corresponding state in the flat space limit.

In figure 7.1 we have drawn a schematic plot of the first few energies of an AdS Hamiltonian
as a function of R. Notice that the structure of SL(2,R) multiplets implies the existence
of many level crossings. These must occur whenever two primary states asymptote to
states of different (center of mass) energy in the flat space limit R→∞. This is surprising
because the interaction V has non-zero matrix elements between different (undeformed)
SL(2,R) multiplets and generic Hamiltonians show level repulsion. In fact, this is what
we see at finite truncation Λ, since the cutoff breaks the SL(2,R) symmetry. As we shall
see, exact level crossing only happens in the limit Λ→∞.

Alternatively, it is possible to flow to a massless theory at large radius. In that case, the
levels ∆i will have a finite limit as R → ∞, coinciding with the spectrum of a specific
boundary CFT. Such RG flows will not be encountered in the present work, hence we
will not discuss this case in more detail.

7.5 Spontaneous symmetry breaking

In flat space and infinite volume, QFTs may spontaneously break symmetries. It is natural
to ask if the same can happen in AdS. The answer is not obvious because AdS spatial
slices of constant τ have infinite volume but behave like a box of finite volume, in the
sense that they give rise to a discrete energy spectrum. In addition, one may entertain
the possibility that a symmetry may be spontaneously broken inside a finite region of

6The notation R̄ becomes ambiguous when there is more than one coupling, but this will not play a
role in the present work.
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R

Δ

Perturbative regime Crossover Flat space limit

Figure 7.1: Sketch of the spectrum of the AdS Hamiltonian as a function of the AdS
radius R. The solid lines describe different primary states, and for every primary we have
drawn its five lowest descendants (dotted). Additional states at higher energies are not
shown (shaded region). The slope of the lines on the right side of the plot measures the
masses of different particles in flat space.

AdS and restored near the boundary due to the effect of symmetry-preserving boundary
conditions.

In [147], the phases of the O(N) model in AdS where studied at large N . The effective
potential was found to allow for symmetry preserving and symmetry breaking vacua, both
stable under small fluctuations of the fields. Expanding the fields around the two vacua,
the properties of the two phases where studied, but the existence of a phase transition
and the possibility of phase coexistence were not clarified.

In order to address these questions, in appendix J.1, we consider the following simple
model of a scalar field in AdS with Euclidean action

S =

∫
dd+1x

√
g

[
1

2
(∂ϕ)2 + V (ϕ)

]
, (7.25)

where V (0) = 0 and V (−ϕ) = V (ϕ) is Z2 symmetric. Furthermore, we impose symmetry-
preserving boundary conditions ϕ → 0 at the AdS boundary. The global minimum of
V (ϕ) is attained at ϕ = ϕt ̸= 0 in order to favour spontaneous symmetry breaking.

We claim that there are only two possibilities:

1. The global minimum of the action is zero and it is attained by the constant solution
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7.5 Spontaneous symmetry breaking

ϕ = 0.

2. The action is not bounded from below and its value can always be decreased further
by setting ϕ = ϕt in a bigger region of AdS.

The main consequence of this claim is that there is no choice of potential V (ϕ) for which
the Euclidean path integral is dominated by a finite size bubble of the true vacuum
surrounded by a region of false vacuum close to the boundary of AdS. Notice that this
scenario would conflict with the homogeneous property of AdS. Indeed, if we could
decrease the action with a finite size bubble then we would decrease the action further
with several of them placed far apart. But merging bubbles of true vacuum decreases the
action further and we fall into case 2..

In flat Euclidean space only 2. is possible, except if ϕ = 0 is the global minimum of
V (ϕ). This is obvious because a large bubble of true vacuum gives a negative contribution
to the action (from the potential term) proportional to the volume of the bubble and
a positive contribution (from the kinetic term) proportional to the surface area of the
bubble. However, in AdS, area and volume both grow exponentially with the geodesic
radius and it is not obvious which term dominates. In appendix J.1 we will use the thin
wall approximation to get some intuition for the claim above. We present a more general
argument in appendix J.1. A quantitative conclusion of the argument presented there
is that, at least at the classical level, the symmetry preserving vacuum is unstable if
V ′′(0) < −d2/4. We recognize this as the Breitenlohner-Freedman bound [155].

The analysis of this simple model suggest that spontaneous symmetry breaking can
happen for QFT in AdS. Moreover, when it happens, it is very similar to infinite volume
flat space time. The main novelty is that symmetry preserving AdS boundary conditions
can make some stationary points of the potential fully stable even if they are not its global
minimum. However, if these vacua become unstable, then the true vacua correspond to
field configurations that break the symmetry all the way to the AdS boundary. Moreover,
as in flat space, they give rise to superselection sectors.

In this thesis, we shall study the theory of a scalar field with a quartic potential in
section 9.2. The considerations presented above suggest that the theory in AdS has two
phases, where the Z2 symmetry is respectively preserved or broken. While in the flat
space limit the phase transition is continuous, we do not expect this to be the case at
finite R, since, as discussed, the Z2 preserving boundary conditions may stabilize the
theory for a negative value of the mass square mass. Although studying the symmetry
breaking line will prove difficult in Hamiltonian truncation, we shall offer some more
comments in section 9.2.
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8 How to tame divergences

The computation of the spectrum of the interacting theory via Hamiltonian truncation is
straightforward in principle. The Hamiltonian of the exactly solvable theory induces a
grading of the Hilbert space, which is labeled by the discrete set of energies ei. We can
truncate the Hilbert space to the finite-dimensional space of states with energies ei ≤ Λ,
and diagonalize the interacting Hamiltonian (6) in this subspace. As the cutoff is raised,
one expects to approximate the exact spectrum of the interacting energies with increasing
accuracy.

However, a naive implementation of this procedure for any theory in AdS2 runs into
trouble: the vacuum energy Evac(Λ), as well as the rest of the spectrum Ei(Λ), diverge in
the Λ→∞ limit. Let us remark that these divergences do not arise from short-distance
singularities in the bulk. Rather, they are related to the non-compact nature of space.
Due to the UV-IR connection familiar from the AdS/CFT correspondence, in Hamiltonian
truncation the same divergences originate from the high-energy tail of the unperturbed
spectrum.

As a matter of principle, it is possible to subtract Evac(Λ) from the Hamiltonian (adding
a cutoff-dependent counterterm proportional to the identity operator), which amounts to
measuring energy gaps Ei(Λ)−Evac(Λ). Surprisingly, these gaps display a systematic shift
away from their physical values: they oscillate and fail to converge to a definite value
in the Λ→∞ limit — see figure 8.3. Instead, we claim that the exact physical energy
spectrum is recovered by means of the following prescription:

Ei − Evac = lim
Λ→∞

Ei(Λ + ei)− Evac(Λ) . (8.1)

The aim of this chapter is to illustrate the origin of the divergences, describe their nature
in Rayleigh-Schrödinger perturbation theory, and give an argument for the validity of the
simple prescription (8.1) to all orders. The examples in chapters 9 and 10 provide further
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Chapter 8. How to tame divergences

evidence to our claim.

8.1 An example

To get some intuition for the prescription (8.1), let us start with an example where we
know the exact spectrum of the Hamiltonian. Consider the case where H0 describes a
free scalar ϕ of mass m in AdS2. The field ϕ admits the following mode expansion

ϕ(τ = 0, r) =
∞∑
n=0

fn(r)
(
a†n + an

)
. (8.2)

The functions fn(r) are given explicitly in eq. (9.4), but their form will not be important
here. The creation and annihilation operators satisfy the usual commutation relations[
an, a

†
m

]
= δnm. The Hilbert space of the theory is the Fock space generated by acting with

creation operators on the vacuum |Ω⟩. In this basis, the non-interacting normal-ordered
Hamiltonian reads

H0 =
∞∑
n=0

(∆ + n)a†nan , (8.3)

where ∆ is related to the mass m of the scalar field via ∆(∆− 1) = m2R2.

We will study the following Hamiltonian:

H = H0 + λ̄ V (8.4)

where λ̄ = λR2 and

V =

∫ π/2

−π/2

dr

(cos r)2
:ϕ2(τ = 0, r) : . (8.5)

The new Hamiltonian H describes a free massive scalar with mass squared m2 + 2λ.
Therefore, its spectrum is the same as H0 if we replace ∆ by

∆(λ̄) =
1

2
+

√(
∆− 1

2

)2

+ 2λ̄ = ∆+
λ̄

∆− 1
2

− λ̄2

2(∆− 1
2)

3
+O(λ̄3) . (8.6)

Let us now see how this result emerges in the Hamiltonian truncation approach. Firstly,
we write V in terms of the ladder operators

V =

∞∑
m,n=0

Amn(∆)(a†ma
†
n + 2a†man + aman) , (8.7)

where the coefficients Amn(∆) are given explicitly in eq. (9.15), but their form will not be
important here. Secondly, we truncate the Hilbert space to the states with unperturbed
energy less than Λ. We will finally diagonalize H inside this truncated Hilbert space.
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8.1 An example

It is instructive to study this problem perturbatively in λ, using Rayleigh–Schrödinger
perturbation theory. We focus on the vacuum |Ω⟩ and on the first excited state |χ⟩ :=
|0⟩ = a†0 |Ω⟩. Explicitly, we obtain

Evac(Λ) = −λ̄2
m+n+2∆<Λ∑
m≥n≥0

|⟨Ω|V |m,n⟩|2
2∆ +m+ n

, (8.8a)

Eχ(Λ) = ∆+ λ̄⟨χ|V |χ⟩ − λ̄2
m+∆<Λ∑
m≥1

|⟨χ|V |m⟩|2
m

− λ̄2
m+n+3∆<Λ∑
m≥n≥0

|⟨χ|V |m,n, 0⟩|2
2∆ +m+ n

,

(8.8b)

where we omit O(λ̄3) terms with the sums running over normalized single-particle
states |m⟩ = a†m|Ω⟩, two particle states |m,n⟩ ∝ a†ma

†
n|Ω⟩ and three-particle states

|m,n, 0⟩ ∝ a†ma
†
na

†
0|Ω⟩ with unperturbed energy less than Λ. It is possible to use a

diagrammatic language to depict the terms in these expressions, as shown in figure 8.1.
In these diagrams, time runs upwards and the horizontal axis corresponds to different
mode numbers, e.g. the state |1, 2, 2, 4⟩ ∝ a†1(a†2)2a†4 |Ω⟩ would be represented by single
lines at n = 1 and n = 4 and a double line at n = 2. The vertex V is represented by
crosses on the same dashed horizontal line and it can either lower or raise occupation
numbers according to (8.7). The original state appears both at the bottom and at the
top of the diagram. At order λ̄2, the operator V is applied twice and, in principle, all
possible intermediate states need to be taken into account. However, working at finite
cutoff Λ means that only a finite number of intermediate states are allowed, namely those
with unperturbed energy smaller than Λ. This diagramatics is explained in more detail
in appendix G.2.

As shown in appendix G.3, both energies (at order λ̄2) diverge linearly with Λ,

Evac(Λ) ≈ Eχ(Λ) ≈ −σ∞(∆)λ̄2Λ . (8.9)

This divergence emerges from the double sums in (8.8), or equivalently from the diagrams
on the left most column of figure 8.1. Naively, one could think that the energy gap could
be obtained from the difference

lim
Λ→∞

Eχ(Λ)− Evac(Λ) . (8.10)

However this does not reproduce the exact result (8.6) at O(λ̄2). To find the solution of
this puzzle, let us look more carefully at the structure of the perturbative formulas (8.8).
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Chapter 8. How to tame divergences

We can write

Eχ(Λ1)− Evac(Λ2) =∆+ λ̄⟨χ|V |χ⟩ − λ̄2
m+∆<Λ1∑
m≥1

|⟨χ|V |m⟩|2
m

− λ̄2
m+3∆<Λ1∑

m≥0

|⟨χ|V |m, 0, 0⟩|2
2∆ +m

(8.11)

+ λ̄2
m+2∆<Λ2∑

m≥0

|⟨Ω|V |m, 0⟩|2
2∆ +m

− λ̄2
m+n+3∆<Λ1
m+n+2∆>Λ2∑
m≥n≥1

|⟨Ω|V |m,n⟩|2
2∆ +m+ n

+O(λ̄3) ,

where we used that ⟨χ|V |m,n, 0⟩ = ⟨Ω|V |m,n⟩ for both m and n different from 0. Notice
that the last sum is suspicious because it only involves two-particle states with energy
between Λ2 and Λ1 −∆.1 Indeed, the exact result is obtained in the limit Λ1,Λ2 →∞
simply by dropping the contribution of the last term. This is what happens if we apply
the prescription (8.1). Diagrammatically, this corresponds to the cancellation of the
diagrams on the first two columns in figure 8.1. Although the diagrams in the first column
give rise to a linear divergence, the prescription (8.1) ensures that they cancel exactly.
Notice that, if we keep Λ1−Λ2 fixed in the limit Λ1,Λ2 →∞, then the last sum in (8.11)
gives a finite contribution, due to the growth of the overlaps |⟨Ω|V |m,n⟩|. This is the
same growth responsible for the linear divergence (8.9). Furthermore, the discreteness of
the unperturbed spectrum, labeled by integers m, n, generates the order one oscillation
visible in the left panel of figure 8.3. We shall comment further on these oscillations in
section 8.4.

0 1 2 3 n

1

Figure 8.1: Diagrams contributing at second order in perturbation theory to the vacuum
energy (top row) and to the energy of the first excited state |χ⟩ = a†0|Ω⟩ (bottom row).
In the top row, we have intermediate two-particle states, while in the bottom row, we
have intermediate one and three particle states.

The divergence of the ground state energy as the cutoff is removed is a consequence of
the infinite volume of space. In fact, it is instructive to regulate the interaction term in

1For simplicity, we assumed Λ2 < Λ1 −∆.
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8.1 An example

the free boson example so that it affects only a finite volume:

Vϵ =

∫ π/2−ϵ

−π/2+ϵ

dr

(cos r)2
:ϕ2(τ = 0, r) : . (8.12)

For ϵ > 0 the eigenvalues of the Hamiltonian are finite as Λ→∞. In particular, in figure
8.2 we compare the order λ̄2 contribution to the vacuum energy, as given by (8.8), for the
theory with ϵ = 0 (in blue) with the same quantity for ϵ = 1/10 (in green) and ϵ = 1/5

(in orange). The Casimir energy of the ϵ = 0 theory grows linearly with Λ, whereas the
regulated theories have a finite limit as Λ→∞.

0 10 20 30 40 50 60

0

1

2

3

4

Figure 8.2: Order λ2 contribution to the Casimir energy of the ϕ2 flow, where the UV
theory is a massive free boson with ∆ =

√
2. The notation ci,n is defined in (8.19). Blue

dots: the theory without a spatial cutoff as given by (8.8a); green resp. orange dots: the
same theory cut off at ϵ = 1/10 resp. ϵ = 1/5. Notice that the Casimir energy of the full
theory diverges linearly with Λ, whereas the same interaction with ϵ > 0 asymptotes to a
finite value. The asymptotic value appears to be reached when Λ ∼ 1/ϵ. The dotted blue
line shows the large-Λ behavior predicted using (8.9).

We can also study the energy gap between the state |χ⟩ = a†0|Ω⟩ and the vacuum. In the
theory regulated with ϵ > 0, we can compute the energy gap as in (8.10) because the
energy levels remain finite as Λ→∞. However, convergence only emerges for Λ ≳ 1/ϵ.
This explains why we cannot use the naive prescription (8.10) in the unregulated theory.
These issues are depicted in figure 8.3.

Let us summarize the general lesson. If we fix the vacuum energy to vanish for the
unperturbed Hamiltonian, then the energy of each state receives an infinite contribution
in the perturbed theory. The divergence of the vacuum energy is a general feature
of any QFT in infinite volume, and is not an issue in the continuum limit, since in a
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Figure 8.3: Order λ2 contribution to the energy gap of the massive boson with ∆ =
√
2,

comparing the naive prescription (8.10) (left) and the prescription (8.1) (right). The
unregulated theory is shown in blue; the same theory regulated with ϵ = 1/10 (resp.
ϵ = 1/5) are shown in green (orange). For ϵ > 0 the two prescriptions agree as Λ→∞.
However, there are significant deviations (oscillations) for Λ ≲ (few)/ϵ. In particular,
for ϵ = 0, only the prescription (8.1) converges to the exact result shown as a solid red
line; there are O(1) oscillations that persist up to arbitrarily large cutoff if the naive
prescription is used.

fixed background the vacuum energy is not observable. On the other hand, this means
that the spectrum of the Hamiltonian does not have a limit as the truncation level is
increased, which is the source of the ambiguity in the determination of the energy gaps.
We saw in a specific example that the divergence of the vacuum energy is linear with the
truncation cut-off Λ. In section 8.3, we show that this is a general feature of second order
perturbation theory. More generally, we expect this to be true at all orders, as we will
explain in section 8.5. In the same example, we also saw that the prescription (8.1) solves
the ambiguity and leads to the correct energy gaps.

It is worth noticing that, due to the mentioned UV/IR connection, the manifestation
of the problem in perturbation theory, i.e. the state-dependence of the contributions of
intermediate states close to the cutoff, is analogous to the situation in flat space when
authentic UV divergences are present [156, 47]. Contrary to the latter, though, the infinite
volume divergences we are concerned with all come from disconnected contributions. This
makes it plausible that the simple prescription (8.1) has a chance of working at all orders.
Indeed, let us now justify eq. (8.1) for a generic QFT in AdS2.

8.2 The strategy

As remarked in section 7.3, the theory associated to the action (5) may require a regulator
to cutoff divergences close to the boundary of AdS. If the QFT is UV complete, as we
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shall assume in this thesis, a set of counterterms exist such that all correlation functions
are finite and invariant under the AdS isometries when the cutoff is removed [157]. This
ensures that the energy gaps above the vacuum are well defined in the continuum limit,
as it can be seen for instance via the state operator map. In the following, we assume the
spectral condition (7.14), together with ⟨V⟩ = 0, so that such a procedure is not necessary.
Furthermore, we also assume that local UV divergences in the bulk are absent.

Nevertheless, our strategy will precisely consist in introducing a local cutoff at the AdS
boundary, such that, in the regulated theory, the individual energy levels are finite as
well. We shall find the regulated spectrum via Hamiltonian truncation, and analyze the
convergence properties as the truncation cutoff Λ is removed. Concretely, let us regulate
the theory by cutting off all integrals over AdS at a coordinate distance ϵ from the
boundary, i.e. r ∈ [−π/2 + ϵ, π/2− ϵ]. This means modifying the operator V from (7.16)
as follows:

Vϵ := R∆V

∫ π/2−ϵ

−π/2+ϵ

dr

(cos r)2
V(τ = 0, r). (8.13)

We shall keep ϵ finite for the moment, and take the limit ϵ → 0 only when computing
physical observables. Quantities computed in the regulated theory will contain ϵ as a
subscript or a superscript.

Our argument in favor of the validity of eq. (8.1) at all orders requires recasting the usual
Rayleigh-Schrödinger perturbation theory in a convenient if unusual form. A reminder
of perturbation theory in Quantum Mechanics can be found in appendix G, together
with the proof of the formulas which we use below. The interacting energies admit an
expansion of the form2

Eϵi = ei +
∞∑
n=1

(−1)n+1cϵi,n λ̄
n , (8.14)

including the vacuum to which we associate the index i = Ω. Notice that the bare energies
ei do not need to be regulated. The coefficients cϵi,n admit a compact expression in terms
of the spectral densities defined as follows:

⟨i|Vϵ(τ1 + . . . τn−1) · · ·Vϵ(τ1 + τ2)Vϵ(τ1)Vϵ(0)|i⟩conn

=

n−1∏
ℓ=1

∫ ∞

0
dαℓ e

−(αℓ−ei)τℓ ρϵi,n(α1, . . . , αn−1) . (8.15)

The correlator on the left hand side is depicted in figure 8.4. Crucially, it is connected
with respect to the state |i⟩, meaning that all the subtractions are evaluated in the same
state. Explicit examples for the first few values of n are given in appendix G, along with
the expression of the spectral densities in terms of the matrix elements of V . Now, the

2We assume that the ith state is non degenerate. We will comment on the degenerate case in section
8.6.
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Vϵ(τ1 + . . . τn−1)

τn−1

Vϵ(0)

τ1

ϵ |i⟩
⟨i|

Figure 8.4: A depiction of the correlation function on the l.h.s. of eq. (8.15). The vertical
thick lines denote the boundary of AdS2. The horizontal lines denote insertions of the
regulated potential Vϵ, as defined in eq. (8.13). The subtractions of disconnected pieces,
which define the connected correlator in eq. (8.15), are not shown.

general term in the perturbative expansion (8.14) reads

cϵi,n =

∫ ∞

0

n−1∏
ℓ=1

dαℓ
αℓ − ei

ρϵi,n(α1, . . . , αn−1) . (8.16)

This remarkably compact expression, compared to the increasingly convoluted textbook
formulas, does not seem to be well-known in the QFT literature. The fact that the Casimir
energy can be expressed in terms of connected Feynman diagrams appears (without proof)
already in refs. [158, 159] by Bender and Wu. A proof of the formula for the Casimir
energy is given in ref. [160] by Klassen and Melzer, specializing to the case of a perturbed
2d QFT. Finally, in [161, eq. (2.25)] by the same authors a formula is given (without
proof) for the Rayleigh-Schrödinger coefficients of the i-th state in the case of a perturbed
2d CFT on the cylinder. The formula appearing in [161] is generically divergent and needs
to be regulated — in the time domain, its integrands generically blow up as τi →∞. We
prove (8.16) in appendix G. Notice that, as long as ϵ is finite, the integrals in eq. (8.16)
converge.

The coefficients of the perturbative expansion of the physical energy gaps can be written
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as follows:
ci,n − c0,n = lim

ϵ→0

∫ ∞

0

dα⃗

α⃗− ei
[
ρϵi,n(α⃗)− ρϵ0,n(α⃗− ei)

]
, (8.17)

where the vector notation abbreviates the product in eq. (8.16). This formula is crucial
and deserves an important comment: the ϵ→ 0 limit is not guaranteed to commute with
the integral. The fact that it does is equivalent to the validity of eq. (8.1). Indeed, if
the limit can be taken inside the integration, we obtain the following simple chain of
equalities:

ci,n − c0,n = lim
ϵ→0

lim
Λ→∞

∫ Λ

0

dα⃗

α⃗− ei
[
ρϵi,n(α⃗)− ρϵ0,n(α⃗− ei)

]
= lim

Λ→∞

∫ Λ

0

dα⃗

α⃗− ei
[ρi,n(α⃗)− ρ0,n(α⃗− ei)] (8.18)

= lim
Λ→∞

(ci,n(Λ)− c0,n(Λ− ei)) ,

where we defined the expansion of the truncated energies:

Ei(Λ) = ei +

∞∑
n=1

(−1)n+1ci,n(Λ) λ̄
n . (8.19)

Hence, we are left with the task of proving that the ϵ → 0 and the Λ → ∞ limits do
commute. Of course, for this to be true it is not sufficient that the integral in the second
line of eq. (8.18) converges. Indeed, intuitively we should rule out the existence of
bumps which give a finite contribution to the integral, and run away to infinity as ϵ→ 0.
Formally, the dominated convergence theorem states that the limits commute if, for all
ϵ < ϵ0, the integrand is bounded by a fixed function whose integral from 0 to∞ converges.

Before engaging in the details of the argument, let us describe the main ingredients, which
are few and simple. Clearly, establishing the validity of the manipulations in eq. (8.18)
requires to bound the large α⃗ limit of the spectral densities ρϵi,n. It is intuitive, albeit
hard to prove, that this limit is controlled by the small τ⃗ limit of the correlator on the
l.h.s. of eq. (8.15). As it can be seen in figure 8.4, when one, or more, of the τm go to
zero, the insertions of the potential collide. Non-analyticities in these limits may arise
because a subset of the perturbing operators V collide in the bulk, or, if ϵ = 0, on the
boundary. Both contributions are important in establishing the rate of convergence of the
energy gaps as we lift the cutoff Λ, which we will analyze in section 8.7. On the contrary,
by assumption, the individual energy levels themselves are finite as long as ϵ > 0. Hence,
in order to establish the prescription (8.1) we are only interested in the fusion of the
insertions V with the boundary of AdS. As explained above, our assumptions also imply
that the OPE (7.13) is sufficiently soft to make the matrix elements of V finite. We
conclude that the relevant small τ⃗ singularities are due to the simultaneous collision of
multiple local operators V on a unique point on the AdS boundary. This prompts us to
study the OPE depicted in figure 8.5: the lightest operator appearing in the OPE, whose
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V V

V =
∑

O O
Figure 8.5: Sketch of the OPE channel relevant to establishing the singular behavior of
the correlator in eq. (8.15) as some of the τm → 0. The OPE is obtained, as usual, by
projecting the insertions of the V operators on the l.h.s. onto a complete set of states on
the dashed semicircle. The coefficients of the OPE are higher-point functions involving
the insertions of V and the boundary operator O. An explicit example is considered in
appendix H.2, see eq. (H.31) and figure H.3.

expectation value in the external state |i⟩ does not vanish, is responsible for the small τ⃗
singularity, and eventually for the growth of the spectral density at infinity.

In the following, we shall detail the above steps in the first non-trivial order in pertur-
bation theory. Then, we will discuss the generalization of the procedure to all orders
in perturbation theory. Finally, we will discuss the rate of convergence of Hamiltonian
truncation in AdS.

8.3 Divergence of the vacuum energy at second order

Let us begin by showing that the linear divergence of the vacuum energy with the
truncation level, which we observed in the example 8.1, is a general feature at second
order in perturbation theory. Since ⟨Ω|V|Ω⟩ = 0, eq. (8.15) reduces in this case to

⟨Ω|V (τ)V (0)|Ω⟩ =
∫ ∞

0
dα e−ατ ρ0,2(α) . (8.20)

Since we are interested in characterizing the behavior of the first energy level as a function
of the cutoff Λ, we set ϵ = 0 in this section. More general results can be found in appendix
H.1. As explained in section 8.2, we need to extract the large α behavior of ρ0,2(α).
Reflection positivity ensures that ρ0,2(α) > 0. This allows us to invoke a Tauberian
theorem [53] to rigorously tie the large α limit of the spectral density to the small τ limit
of the correlator on the l.h.s. of eq. (8.20).

The latter limit is computed in appendix H.1, and reads as follows:3

⟨Ω|V (τ)V (0)|Ω⟩ τ→0∼ c

τ2
. (8.21)

3As explained in appendix H.1, this result is valid if ∆V < 3/2, otherwise it must be replaced by eq.
(H.8). In particular, if ∆V > 3/2, the leading contribution to the divergence of the vacuum energy comes
from a bulk UV singularity, which we assumed to avoid in this work.
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The coefficient of the singularity is theory dependent, and, as explained in the same
appendix, it can be computed as follows:

R2∆V ⟨Ω|V(τ, r)V(0, r′)|Ω⟩ ≡ fΩ(ξ) , (8.22)

c = 8

∫ ∞

0
dξ arcsinh

(
2
√
ξ(ξ + 1)

)
fΩ(ξ) , (8.23)

where we recall that ξ is defined in eq. (7.8). In the language of the OPE described in
figure 8.5, the small τ limit corresponds to the contribution of the identity operator, the
only one surviving when the r.h.s. of the OPE is evaluated in the vacuum.

As advertised, the Tauberian theorem reviewed in [53] implies the following asymptotics
for the integrated spectral density:∫ Λ

0
dα ρ0,2(α)

Λ→∞∼ c

2
Λ2 . (8.24)

The contribution to the vacuum energy at second order can then be extracted from eq.
(8.14), by truncating the integral in eq. (8.16) to the region [0,Λ] and integrating by
parts:

EΩ(Λ) Λ→∞∼ −cΛ λ̄2 +O(λ̄3) . (8.25)

We will have opportunities to check this formula in the examples of chapters 9 and 10.

8.4 The argument at second order

Let us now turn to our goal of establishing the prescription (8.1). At second order in
perturbation theory, the object of interest is the two-point function of the potential:

⟨i|Vϵ(τ)Vϵ(0)|i⟩conn = ⟨i|Vϵ(τ)Vϵ(0)|i⟩ − ⟨i|Vϵ|i⟩2 . (8.26)

Let us first point out the following simple but crucial fact. The difference of the spectral
densities appearing in eq. (8.18), with the shift in their arguments, is the spectral density
of the difference of the correlators in state |i⟩ and in the vacuum:

gϵ(τ) = ⟨i|Vϵ(τ)Vϵ(0)|i⟩conn − ⟨Ω|Vϵ(τ)Vϵ(0)|Ω⟩conn

=

∫ ∞

−ei
dα e−ατ

(
ρϵi,2(α+ ei)− ρϵ0,2(α)

)
. (8.27)

We shall denote the new spectral density as

∆ρϵi,2(α) = ρϵi,2(α+ ei)− ρϵ0,2(α) . (8.28)
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We are interested in the large α behavior of the spectral density, and we would like to
leverage our knowledge of the correlation functions in position space. While it is clear that
singularities at small τ in gϵ(τ) are related to the large α behavior of the spectral density,
it is non-trivial to obtain a precise correspondence. Indeed, ∆ρϵi,2(α) is a non-positive
distribution, and the Tauberian theorems which usually provide those estimates cannot
be applied.4 Instead, we shall tackle the question directly, and point out the additional
assumptions necessary to obtain the needed asymptotics. Let us first recall the naive
answer. If the correlator has a singular power-like small τ limit, i.e.

if gϵ(τ)
τ→0∼ τ−β , β > 0 , (8.29)

and if the spectral density had a power-like behavior at large α as well, then we would
conclude that

∆ρϵi,2(α)
α→∞∼ αβ−1 . (8.30)

Since the spectral densities are in general infinite sums of delta functions, we have to
interpret the last equation in an averaged sense. Let us describe how this works in more
detail.

We focus our attention on the following averaged spectral density:

Rϵ(Λ) =

∫ Λ

−∞
dα∆ρϵi,2(α) =

∫ γ+i∞

γ−i∞

dτ

2πiτ
eΛτgϵ(τ) , γ > 0 . (8.31)

Rϵ(Λ) is a finite sum which can be easily inferred from eq. (G.8b). The right hand side
is obtained by commuting the α-integral with the inverse Laplace transform of gϵ(τ), and
one can explicitly check that eq. (8.31) gives the correct result.5 While the correlation
functions in eq. (8.27) are analytic when ℜτ > 0, singularities may arise in the left half
plane. In particular, as we show in appendix H.2, gϵ(τ) generically has a branch point at
τ = 0,

gϵ(τ)
τ→0∼ τ∆∗−2 , (8.32)

where ∆∗ is the dimension of the leading boundary operator above the identity in the
OPE illustrated in figure 8.5 - see also figure H.3 and the detailed explanation in appendix
H.2. If the exactly solvable Hamiltonian corresponds to a CFT, then ∆∗ ≤ 2, due to the
universal presence of the displacement operator, see e.g. [163]. If ∆∗ = 2, the singularity
is logarithmic. More precisely, in appendix H.2, we show that, if ∆∗ ≤ 2, gϵ(τ) is bounded

4See however [162], where a lower bound on the average of a non-positive spectral density was obtained,
subject to a condition on the amount of negativity allowed.

5This is how it goes: gϵ(τ) =
∑∞
n=0 ane

−αnτ . This sum converges absolutely for ℜτ > 0. Hence, we
can commute the sum and the integral to get Rϵ(Λ) =

∑∞
n=0 an

∫ γ+i∞
γ−i∞

dτ
2πiτ

e(Λ−αn)τ . The last integral
converges and the result is the expected Rϵ(Λ) =

∑
αn<Λ an.
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as follows:6

|gϵ(τ)| < C(τ0)

{
|τ |∆∗−2 , ∆∗ < 2

log |τ | , ∆∗ = 2 ,
|τ | < τ0 . (8.33)

Here, τ0 > 0 is an arbitrary fixed number. The crucial step in the derivation of this result
is that, when replacing the OPE of figure 8.5 in the left hand side of eq. (8.27), the
identity operator cancels out, and with it the strongest singularity (8.21) at small τ . As
a consequence, the spectral density (8.28) has a softer large α behavior than what would
happen without the shift. It is important that the bound (8.33) is uniform in ϵ.

In chapter 9, we will consider deformations of free massive QFTs, for which ∆∗ > 2 is
possible. Although we have not analyzed this case in detail, we are confident that the
bound (8.33) still holds, up to analytic terms at τ = 0. In other words, a strict bound can
be obtained when ∆∗ > 2 by taking enough derivatives of gϵ(τ). We offer some comments
in this direction in appendix H.2. This turns into a bound for a higher moment of ∆ρ,
which still allows to proceed with the argument. The examples in chapter 9 lend support
to this conclusion.

On the other hand, further singularities may appear on the imaginary τ axis. A generic
example of the analytic structure in the τ plane is depicted in figure 8.6. Let us now

τ

−τ0 γK

Figure 8.6: A sketch of the generic singularity structure of gϵ(τ) The singularities are
generically branch points, and the cuts are oriented away from the region ℜτ > 0, where
the correlator is analytic. The black dashed contour is the original one in eq. (8.31), while
the blue dashed one is shifted to the left in order to leverage the exponential suppression
at large Λ. Finally, the red contour is K in eq. (8.34).

shift the integration contour in (8.31) to the left, as shown in figure 8.6. It is clear from
6More precisely, this result assumes that the bulk OPE is non-singular. In appendix H.2 we also

discuss what happens if this is not the case, in a restricted scenario – see the paragraph around eq.
(H.42). See also the discussion in section 8.7. In general, as long as the small τ limit is less singular than
τ−1 and it is uniform in ϵ, the rest of the argument goes through. The first condition is equivalent to
∆Ṽ > 2∆V − 2, ∆Ṽ being the first operator above the identity in the V × V OPE. This is the same as
requiring that bulk UV divergences are absent, which we assume in this work.
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eq. (8.31) that the part of the contour which runs in the left half plane is exponentially
suppressed at large Λ. As for the ℜτ = 0 axis, if ∆ρϵi,2(α) was positive, the stronger
singularity would be at τ = 0, as it is easy to deduce from eq. (8.27). The large Λ limit of
Rϵ(Λ) would then be controlled by the strength of this singularity, a result familiar from
the Hardy-Littlewood Tauberian theorem. Since the spectral density is not necessarily
positive, we will assume that the large Λ behaviour of Rϵ(Λ) is still dominated by the
singularity at τ = 0. This assumption is not harmless, and we shall offer some comments
about it at the end of this chapter. Keeping in mind figure (8.6), we then obtain

|Rϵ(Λ)| ∼
∣∣∣∣∫

K

dτ

2πi

eΛτ − 1

τ
gϵ(τ) +

∫
K

dτ

2πiτ
gϵ(τ)

∣∣∣∣ . (8.34)

Here, K is a keyhole contour around the origin which extends up to ℜτ = −τ0. With the
benefit of hindsight, we added and subtracted 1. Indeed, we can now shrink to the real
axis the first K contour, and we can use the inequality (8.33) to write

|Rϵ(Λ)| ≤ 2C(τ0)

∫ 0

−τ0

dτ

2π
|eΛτ − 1||τ∆∗−3|+

∣∣∣∣∫
K

dτ

2πτ
gϵ(τ)

∣∣∣∣ . (8.35)

Notice that the first integral converges if ∆∗ > 1, which is guaranteed by the condition
(7.14). The second integral is finite and Λ independent. Therefore, under the assumptions
we have made, we conclude that7

|Rϵ(Λ)| ≤ F (Λ) Λ→∞∼ Λ2−∆∗ , (8.36)

with F (Λ) independent of ϵ. We shall now assume (8.36) to prove (8.18). It is sufficient
to integrate by parts once, to express the energy shift (8.17) in terms of Rϵ(Λ):

ci,2 − c0,2 = lim
ϵ→0

lim
Λ→∞

(
Rϵ(Λ− ei)
Λ− ei

+
Rϵ(−ei)

ei
+

∫ Λ

0

dα

(α− ei)2
Rϵ(α− ei)

)
. (8.37)

Thanks to eq. (8.36), we clearly can swap the small ϵ and the large Λ limits in the first
two addends. As for the last integral, we can fix a constant Λ∗ and write the following

7It should be noted that, when ∆∗ = 2, one obtains F (Λ) ∼ log2 Λ in eq. (8.36). This is sufficient
to prove the prescription (8.1), but is a weak bound. Indeed, the integrated spectral density R(Λ) is
expected to only grow like log Λ. The weak point is the inequality (8.35): when we shrink the contour K
onto the real axis, the integral of the left hand side reduces to the discontinuity, which replaces log τ
with a constant and does lead to the expected asymptotics.
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inequality: ∫ Λ∗

0

dα

(α− ei)2
R0(α− ei)−

∫ ∞

Λ∗

dα

(α− ei)2
F (α− ei)

≤ lim
ϵ→0

∫ ∞

0

dα

(α− ei)2
Rϵ(α− ei) (8.38)

≤
∫ Λ∗

0

dα

(α− ei)2
R0(α− ei) +

∫ ∞

Λ∗

dα

(α− ei)2
F (α− ei) .

Here, we took the ϵ→ 0 limit inside the integral over the finite domain [0,Λ∗], and used
the inequality (8.36) to express the remaining integrand in terms of the positive and ϵ

independent function F (Λ). Taking Λ∗ →∞, we finally obtain the sought result (8.18).
The prescription (8.1) at order λ2 in perturbation theory immediately follows.

Let us now come back to the additional singularities on the Im τ axis in figure 8.6.
Contrary to the singularity at τ = 0, the contribution of each of them is not enhanced by
the 1/τ pole in (8.31). Hence, if they are not enhanced with respect to eq. (8.33), they
are subleading at large Λ. This assumption hides a remarkable series of cancellations,
analogous to the cancellation of the identity block at τ = 0, which, as discussed, leads
to the bound (8.33). Indeed, each of the correlators in eq. (8.27) is expected to have an
infinite series of double poles along the imaginary axis. The reason for this is that such
double poles lead to order one oscillations in the ci,2(Λ), the second order energy shifts in
eq. (8.19). The oscillations, visible for instance in figure 8.2, are a generic consequence of
the discreteness of the spectrum. Without an exact cancellation, the oscillations affect
the energy gaps as well, as in figure 8.3. The absence of order one oscillations in the
examples treated in chapters 9 and 10, then, gives evidence for the correctness of the
prescription (8.1) beyond the arguments presented so far. Analyzing these cancellations in
detail requires studying the correlators of the deformation Vϵ in Lorentzian kinematics: an
interesting task for the future. For the moment, let us make a couple of simple remarks. If
the unperturbed spectrum has integer scaling dimensions, then all correlators are periodic
for τ → τ + 2πi. This is the case for the minimal models with the boundary condition we
choose in chapter 10. Then, barring additional singularities within the first period, the
cancellation of all the double poles simply follows from the result we proved for τ = 0. On
the other hand, the periodicity is broken in the general case, including the perturbation
of massive free theories which we will treat in chapter 9. An example of this non periodic
behavior can be seen in appendix H.3. Nevertheless, we can still envision a mechanism for
the cancellation of the double poles. As we discussed in section 8.3 and in appendix H, the
double pole at τ = 0 in each correlator in eq. (8.27) is due to a disconnected contribution.
If the unperturbed theory is free, such contribution corresponds to a disconnected Witten
diagram, where the boundary operators which create and annihilate the states |i⟩ are
spectators. Such diagrams exchange a fixed number of particles, and so they are periodic
in Im(τ) with period 2π up to a phase, which is crucially independent of the boundary
state |i⟩. Therefore, again, each correlator in eq. (8.27) has an infinite series of double
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poles, which all cancel in gϵ(τ). The absence of the double poles can be exhibited in
the example of a massive free scalar, and we do so in appendix H.3. More specifically,
there we also check that the remaining non-analyticities on the imaginary τ axis are not
enhanced with respect to the τ = 0 singularity.

A last comment is in order. Even if the leftover singularities in figure 8.6 are softer than
the one at τ = 0, one could still worry that there is an infinite sum over all of them
at τ = itn for real tn. However, this sum is suppressed by the presence of the rapidly
oscillating phases eiΛtn . The convergence of the sum then depends on the density of
the singularities along the imaginary axis, as Im τ →∞. One might expect this density
to be approximately constant. If the boundary spectrum of the unperturbed theory is
integer, this is obvious. In the general case, the exact periodicity may be replaced by
some recurrence time, fixed by the scaling dimensions ∆, which nevertheless should not
change this picture. Notice, however, that it is conceivable that non-analyticities appear
with a periodicity of some multiple of π even in the general case, in keeping with the
periodic structure of AdS in real time: this happens in the scalar example analyzed in
appendix H.3. All in all, if the density is at most constant, the sum converges at least
conditionally.

8.5 Generalization at all orders

The aim of this section is to sketch the generalization of the previous argument to all
orders in perturbation theory. We shall not attempt to be detailed in this case, rather we
will stress the ingredients that should make the argument follow through.

At n-th order in perturbation theory, we need to bound the (average of the) spectral
density

∆ρϵi,n(α⃗) = ρϵi,n(α⃗+ ei)− ρϵ0,n(α⃗) , (8.39)

as the vector α⃗ becomes large in a generic direction of its (n− 1) dimensional space. The
bound should be uniform in ϵ and allow the integration of∫ Λ

0

dα⃗

α⃗− ei
∆ρϵi,n(α⃗− ei) (8.40)

over a hypercube of size Λ, as Λ→∞: see eq. (8.18). It is easy to see that, also in the
general case, ∆ρϵi,n(α⃗) is the Laplace transform of the following difference of connected
correlators:

gnϵ (τ⃗) = ⟨i|Vϵ(τ1 + . . . τn−1) · · ·Vϵ(τ1 + τ2)Vϵ(τ1)Vϵ(0)|i⟩conn

− ⟨Ω|Vϵ(τ1 + . . . τn−1) · · ·Vϵ(τ1 + τ2)Vϵ(τ1)Vϵ(0)|Ω⟩conn . (8.41)

Recall that all the subtractions of disconnected pieces are computed in the state |i⟩ for the
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first correlator and |Ω⟩ for the second. We maintain the assumption that the large α⃗ limit
of the spectral density is controlled by the limit of gnϵ (τ⃗) when a subset of components of
the vector τ⃗ vanish. In turn, this limit is controlled by the OPE channel of figure 8.5, at
the level of the correlation function of the local operators V.

Then, let us first consider the case where a proper subset of components of τ⃗ vanish
together. In this case, the contribution from the identity in the OPE in figure 8.5 vanishes
separately in each connected correlator on the right hand side of eq. (8.41). This is
a general property of cumulants, valid in any state: they vanish whenever a subset of
random variables is statistically independent from the others.8

On the other hand, if all the components of τ⃗ vanish together, then the contribution of
the identity does not cancel out at the level of the single connected correlator. Rather, it
cancels out in the difference (8.41), as it can be checked again by inserting a complete set
of states in the generating function.

The cancellation of the identity should be sufficient for the integral in eq. (8.40) to
converge uniformly in ϵ and allow the chain of equalities (8.18) to hold. Let us sketch the
argument at the level of power counting, and let us focus on the radial behavior, where
all components of α⃗ diverge with fixed ratios. In this case, the asymptotics of ∆ρϵi,n is
controlled by the small |τ⃗ | limit, for which we expect

|gnϵ (τ⃗)| < C(τ0)|τ⃗ |∆∗−n , |τ⃗ | < τ0 . (8.43)

Here, ∆∗ is the lowest state above the identity which couples to the n insertions of V,
and in the absence of selection rule it is the same as in eq. (8.32). The spectral density
would then be bounded by a function with the following asymptotics:

|∆ρϵi,n(α⃗)| ≲ |α⃗|1−∆∗ . (8.44)

Of course, this equation is understood in an averaged sense, and a detailed computation
would make use of the integrated density analogous to eq. (8.31). Convergence of eq.
(8.40) is then guaranteed in the limit under scrutiny as long as ∆∗ > 1, which is enforced
by the spectral condition (7.14).

Let us finally point out that, running the previous argument for each connected correlator
in eq. (8.41), the presence of the identity in the OPE implies that each individual energy
level diverges linearly with Λ at all orders in perturbation theory.

8In practice, it can be easily verified by noticing that the OPE can be applied at the level of the
generating function. Schematically, for the case where one subset Π of the insertions coalesce:

Z|i⟩ = ⟨i|e
∑

m J(xm)V(xm)|i⟩ → ⟨Ω|e
∑

p∈Π J(xp)V(xp)|Ω⟩⟨i|e
∑

m/∈Π J(xm)V(xm)|i⟩ ≡ ZΠZΠ̄ . (8.42)

Since the generating function factorizes, its log splits into a sum, and the connected correlator immediately
vanishes.
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8.6 Degenerate spectra

The main formula presented in (8.1) applies to any AdS Hamiltonian regulated by a
hard cutoff. However, the argument presented in chapter 8.4 and 8.5 is based on the
fact that in perturbation theory, energies Ei are closely related to integrated correlation
functions. To be precise, the n-th order contribution of the energy Ei is related to the
n-point connected correlator of V (τ) in the state |i⟩, as is shown in appendix G. This
relation does not hold in degenerate perturbation theory, as we will briefly discuss here.
Physically, theories with degenerate spectra are particularly important for Hamiltonian
truncation in AdS2, hence they deserve special attention. In 2d BCFTs degeneracies arise
because of the very nature of Virasoro modules, and in theories of free bosons or fermions,
degeneracies naturally arise from multi-particle states in Fock space.

For concreteness, we have in mind a unitary quantum theory where g ≥ 2 states have
the same unperturbed energy e∗. There are three different scenarios for the spectrum at
non-zero coupling λ:

(i) the g-fold degeneracy is completely lifted at first order in perturbation theory;

(ii) the degeneracy is only fully lifted at some order n ≥ 2 in perturbation theory;

(iii) the degeneracy is exact and present for any value of λ.

Let us focus on the first scenario, since it applies generically.9 It is well-known that the
appropriate eigenstates are eigenvectors |α⟩ of V restricted to the degenerate subspace D ,
that is to say states satisfying

H0 |α⟩ = e∗ |α⟩ and ⟨α|V |β⟩ = vαδαβ (8.45)

and the requirement that the degeneracy is lifted at first order means that all vα ∈ R
must be different. The energies Eα are then determined unambiguously, taking the form

Eα = e∗ + λ̄vα − λ̄2e(2)α + λ̄3e(3)α + . . . (8.46)

for some coefficients e(n)α that can be determined using Rayleigh-Schrödinger perturbation
theory. Using the shorthand notation Vϕψ = ⟨ϕ|V |ψ⟩, the first two coefficients can be
expressed as

e(2)α = Vαψ
1

eψ − e∗
Vψα (8.47a)

9Case (ii) can happen when V explicitly breaks a symmetry of the unperturbed Hamiltonian, and
(iii) is the hallmark of an unbroken symmetry/integrability, e.g. a boson or fermion perturbed by a mass
term ϕ2 or ψ̄ψ.
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and

e(3)α = Vαψ
1

eψ − e∗
Vψϕ

1

eϕ − e∗
Vϕα − vα · Vαψ

1

(eψ − e∗)2
Vψα

− Vαψ
1

eψ − e∗
Vψβ

1

vβ − vα
Vβϕ

1

eϕ − e∗
Vϕα . (8.47b)

In both (8.47a) and (8.47b) sums over intermediate states are implicit: sums over ψ, ϕ
run over all states outside of D , whereas the sum over β runs over all states in D except
the state |α⟩ itself. As a matter of fact, the second-order energy e(2)α can be extracted
from the connected correlation function

gα,2(τ) = ⟨α|V (τ)V (0)|α⟩ − ⟨α|V |α⟩2 (8.48)

exactly like in the case of non-degenerate quantum mechanics. However, the term in the
second line of (8.47b) appearing in the second line of the third-order energy (8.47b) is
qualitatively different. For one, it features four insertions of the matrix V , hence e(3)α is at
best related to a four-point function of V (τ) inside the state |α⟩. More importantly, one
of the factors appearing on the second line of (8.47b) has 1/(vβ − vα) as a denominator.
Such a denominator cannot arise from a correlation function of V (τ) in the interaction
picture, obeying ∂τV (τ) = [H0, V (τ)]. We conclude that in general, the e(n)α cannot be
expressed in terms of connected correlators of V (τ).

Nevertheless, it appears that the prescription (8.1) correctly predicts the spectra of AdS
theories with degenerate unperturbed spectra. It is not difficult to check the prescription
up to low orders in perturbation theory (for example in the case of a massive scalar
with integer ∆).10 In section 10.4, the ϵ deformation of the 2d Ising model is studied;
it is again degenerate at zero coupling, but its degeneracies are partially resolved at
finite coupling. This RG flow is studied using Hamiltonian truncation, and the results
agree well with analytic predictions (up to truncation errors), see figure 10.10. The
other Virasoro theories featured in this work also have denegeracies, but since they aren’t
exactly solvable, one cannot explicitly check the prescription (8.1) a posteriori.

In summary, there is no reason to doubt that the prescription (8.1) predicts correct spectra
for the case of degenerate AdS spectra, but we have not found a simple modification of
the proof from the non-degenerate case. We leave this problem open for future work.11

10For generic ∆, the degeneracies present in the spectrum spectrum of the free massive scalar theory
persist when a ϕ2 interaction is turned on. When ∆ is an integer there are additional degeneracies that
are lifted by a ϕ2 deformation.

11In the presence of degeneracies, it is tantalizing to split the Hamiltonian H = H0 + λV into two
pieces as H = H̃0 +λṼ , where H̃0 = H0 +λPV P and Ṽ = V −PV P, where P projects onto a degenerate
subspace. The new unperturbed Hamiltonian H̃0 is now non-degenerate when λ ̸= 0. One can try to
rederive the prescription by treating Ṽ as a perturbation instead of V .
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8.7 Truncation errors

In the previous sections, we have discussed in detail a procedure that is needed to study
AdS Hamiltonians using a hard energy cutoff. In particular, we showed that the standard
TCSA prescription — fixing a cutoff Λ and subtracting the Casimir energy — predicts
wrong energy spectra. Given the correct prescription (8.1), Hamiltonian truncation in
AdS is still an approximation, since one necessarily works at some finite cutoff Λ. In this
section, we estimate the error on the energy levels due to this truncation, comparing the
situation in AdS to the better-understood problem of Hamiltonian truncation on finite
volume spaces.

The basic result we will work towards is closely related to the discussion from section 8.4
and its generalization to higher orders in perturbation theory from section 8.5. Concretely,
let’s consider the second-order contribution of some interaction λ̄V to the i-th energy
level, working at cutoff Λ:

∆Ei(Λ) := Ei(Λ)− Evac(Λ− ei)

= ei + λ̄⟨i|V |i⟩+
∞∑
n=2

(−1)n+1λ̄n∆ci,n(Λ) , (8.49a)

where the first cutoff-dependent term is given by

∆ci,2(Λ) =

∫ Λ dα

α− ei
∆ρi,2(α− ei) . (8.49b)

Here, we use the definition (8.28) for the shifted spectral density ∆ρi,2(α). Likewise,
the higher-order coefficients ∆ci,n(Λ) can be expressed in terms of spectral densities
∆ρi,n(α⃗). In contrast to the previous sections, here we no longer consider a spatial cutoff
ϵ, working in full AdS2 with ϵ = 0 throughout. In an otherwise UV-finite theory, the
energy gap ∆Ei(Λ) has a finite limit as Λ→∞, so the cutoff error is given by tails of
spectral integrals:

cutoff error = ∆Ei(∞)−∆Ei(Λ) = −λ̄2
∫ ∞

Λ

dα

α− ei
∆ρi,2(α− ei) + O(λ̄3). (8.50)

If we can bound integrals like (8.50), we immediately obtain the desired error estimates
for energy gaps in AdS2. But this is precisely what we did in section 8.4, using the crucial
eq. (8.36). Recall that this equation follows from considering the leading non-trivial
contribution to the OPE of figure 8.5, coming from a boundary operator Ψ(τ) of dimension
∆∗. We should expect the bound to be saturated, generically, and therefore we obtain an
error of the order

∆Ei(∞)−∆Ei(Λ) ∼
Λ→∞

ci
Λ∆∗−1

. (8.51)

In light of the discussion in section 8.5, we expect eq. (8.51) to be true at all orders in
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λ̄. The state-dependent coefficient ci(λ̄) encodes the large-α asymptotics of the densities
∆ρi,n(α). For instance, eq. (9.21) gives c1, the coefficient of the first excited state for
a free massive boson, at second order in perturbation theory. More generally, ci can be
determined in perturbation theory following the computations of appendix H.2 – see in
particular formula (H.31). For later reference, we mention that ci is proportional to the
boundary OPE coefficient COiOiΨ (up to a number that depends on V and Ψ but not on
the state |i⟩), where Oi(τ) is the boundary operator corresponding to the state |i⟩.

Now, by assumption there are no boundary states of dimension ≤ 1 — otherwise, the
Hamiltonian is IR-divergent to begin with — hence error terms of the form (8.51) always
vanish as the cutoff is removed, but when the exponent ∆∗ − 1 is small, they can be
important. In particular, the identity module in Virasoro minimal models in AdS2 contains
a state with ∆∗ = 2 that describes the displacement operator, leading to a 1/Λ error.
For theories of massive particles in the bulk of AdS, the dimension ∆∗ of the leading
boundary state depends on the particle’s mass (in units of the AdS radius): the heavier
the bulk particle is taken to be, the smaller the error (8.51) will be.

We stress that eq. (8.51) is true asymptotically, that is to say for Λ bigger than some
cutoff scale Λ0 which is a priori unknown. In particular, if Hamiltonian truncation
computations only probe cutoffs below Λ0, the formula in question does not necessarily
predict the order of magnitude of actual cutoff errors. Nonetheless, the formula (8.51) is
consistent with all of the computations performed in the present work.

It is natural to ask whether the error (8.51) can be removed by adding so-called im-
provement terms to the Hamiltonian. These would be proportional to either boundary
or (integrated) bulk operators, with cutoff-dependent coefficients that vanish as Λ→∞,
and their role would be precisely to cancel large truncation errors in observables. Indeed,
since ci only depends on the state |i⟩ through the OPE coefficient COiOiΨ, it should be
possible to remove the error (8.51) by adding a term to the Hamiltonian of the form

H 7→ H +
ξΨλ̄

2

Λ∆∗−1
Ψ(τ = 0) + . . . (8.52)

for some computable coefficient ξΨ. As follows from eq. (H.31), the coefficient ξΨ is
theory-dependent: it’s related to the integrated bulk-bulk-boundary correlator ⟨VVΨ⟩,
which is not fixed by conformal symmetry alone. We have not undertaken this exercise in
the present work, but it looks like an important step to take with the goal of performing
high-precision Hamiltonian truncation computations in the future, especially in the case
of Virasoro minimal models.

As we emphasized, eq. (8.51) captures the contribution of the bundary of AdS to the
truncation error. However, the large α behavior of the spectral density is also influenced
by bulk contributions. Equivalently, the bulk OPE contributes non-analytic terms in τ to
the correlation functions (8.15). Let us focus again on the second order in perturbation
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Chapter 8. How to tame divergences

theory. The singularities in question are in one-to-one correspondence with operators
appearing in the V × V OPE (taking the UV theory to be conformal for concreteness).
Indeed, suppose that V × V contains an operator Ṽ of dimension ∆Ṽ . Then, as discussed
in appendix H.2 – see in particular eq. (H.42) – the subtracted two-point function of the
potential is expected to receive at small τ a contribution of the following kind:

⟨i|V (τ)V (0)|i⟩conn − ⟨Ω|V (τ)V (0)|Ω⟩conn ∼
τ→0

τ1−2∆V+∆Ṽ . (8.53)

Such terms have nothing to do with the geometry of AdS: they are also present if one
quantizes the same theory on the cylinder R× S1, see for example [40]. When eq. (8.53)
gives the leading small τ behavior, the energy gaps have errors that go as

∆Ei(∞)−∆Ei(Λ) ∼
Λ→∞

di
Λh
, h = ∆Ṽ − 2∆V + 2 (8.54)

for some coefficient di which is proportional to the matrix element ⟨i|Ṽ(τ = 0, r)|i⟩,
integrated over a timeslice. Here the exponent h only depends on the UV properties of
the theory: it does not depend on the choice of boundary conditions, for instance. By
definition, h > 0 in a UV-finite theory, as is the case for all theories discussed in the
present work, so errors of the above type vanish as the cutoff is removed. Nevertheless, a
word of caution is in order about eq. (8.53): boundary effects might modify it when the
integral of ⟨i|Ṽ|i⟩ over a time slice diverges. In appendix H.2, the precise conditions are
discussed. In the rest of the work, the bulk OPE will cause the leading truncation error
only for the ϕ4 deformation of a free massive scalar, see section 9.2. In that case, this
boundary enhancement does not take place.12

Truncation errors coming from bulk singularities can also be removed by adding local
counterterms to the Hamiltonian, i.e. by modifying H as follows:

H 7→ H +
cṼ λ̄

2

Λh

∫ π/2

−π/2

dr

(cos r)2
Ṽ(τ = 0, r) + . . . (8.55)

for some computable coefficient cṼ . For CFTs quantized on R× Sd−1, these counterterms
were discussed in detail in [40] (and in the d = 2 case before in [164] and [165]). A detailed
discussion for the massive scalar on R×S1 is presented in [41] and related works [166–168].
In this thesis, we will not actually add improvement terms of the form (8.55), so we will
not discuss Hamiltonians of the above form in detail. The computation of the coefficient
cṼ would go along the same lines as computations from the literature, apart from an
integration over an (infinite-volume) timeslice of AdS2, contrasting with the computation
on S1 from [166].13

12However, when h is integer, h = 2 in this case, the scaling (8.54) is typically enhanced by logarithms,
and in fact we will find the error to go as ln(Λ)/Λ2.

13The computation on S1 is simpler for an additional reason, namely the U(1) global symmetry that
acts by translations on the spatial circle, which is absent in AdS.
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9 Deformations of a free massive
scalar

After the general discussion of Hamiltonian truncation in the previous chapters, we will
now turn to a concrete quantum field theory: a massive scalar ϕ, described by the action:

S =

∫
d2x
√
g

(
1

2
(∂µϕ)

2 +
1

2
m2ϕ2 +

κ

2
Rϕ2 + local interactions

)
, (9.1)

where R = −2/R2 is the scalar curvature of AdS2. The curvature coupling κ is arbitrary,
but since the curvature is constant, any shift in κ can be reabsorbed into the definition of
m2, and henceforth we will set κ = 0. The free theory was briefly treated in section 8.1;
here we will discuss the quantization in slightly more detail. We recall that ϕ(τ, r) has a
mode decomposition

ϕ(τ = 0, r) =
∞∑
n=0

fn(r)(an + a†n) (9.2)

with creation and annihilation operators that obey canonical commutation relations

[am, a
†
n] = δmn . (9.3)

The mode functions fn(r) are given by

fn(r) =

√
4∆

4π

Γ2(∆)

Γ(2∆)

√
n!

(2∆)n
(cos r)∆C∆

n (sin r) . (9.4)

Here ∆ is a positive root of ∆(∆−1) = m2R2 and Cνn(·) denotes a Gegenbauer polynomial.
The free Hamiltonian H0 is given in (8.3), and from it we can deduce that the n-th mode
a†n has energy ∆+ n.

As a consistency check of the above, we find that the Green’s function of the field ϕ is
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Chapter 9. Deformations of a free massive scalar

given by

⟨Ω|Tϕ(τ, r)ϕ(τ ′, r′)|Ω⟩ = 1

4π

Γ2(∆)

Γ(2∆)
ξ−∆

2F1

[
∆,∆

2∆

∣∣∣∣− 1

ξ

]
=: G(ξ) (9.5)

where ξ is the cross ratio from Eq. (7.8). This result could also have been derived directly,
by looking for SL(2,R)-invariant solutions of the equation of motion with the correct
boundary conditions.

In what follows, we will analyze the scalar theory in AdS2 with the following interaction
terms turned on:

S = S0 +

∫
AdS2

(λ2ϕ
2 + λ4ϕ

4 + . . .) (9.6)

where the . . . can denote any local bulk interaction (not necessarily Z2-even, and possibly
containing derivatives). In the Hamiltonian language, these interactions read

H = H0 + λ̄2V2 + λ̄4V4 + . . . (9.7)

where1

λ̄n := λnR
2 and Vn :=

∫
dr

(cos r)2
:ϕn(τ = 0, r) :. (9.8)

The operators H, Vn etc. act on the Hilbert space of the free theory, which is the Fock
space generated by the modes {a†n}∞n=0. Its states can be labeled as follows

|ψ⟩ = 1

N|ψ⟩

∏
k≥0

(a†k)
nk |Ω⟩ , N|ψ⟩ =

√∏
k≥0

nk! . (9.9)

The factor N|ψ⟩ has been chosen to make such a state unit-normalized. A state of the
form (9.9) has energy

H0 |ψ⟩ = e|ψ⟩ |ψ⟩ , e|ψ⟩ =
∑
k≥0

nk(∆ + k) . (9.10)

In Hamiltonian truncation, we keep only states with energy e ≤ Λ below a cutoff Λ. Since
the spectrum of H0 is discrete, this means that H becomes a finite matrix, denoted by
H(Λ). If we let {|ψi⟩} be a basis of low-energy states, then the matrix elements of H(Λ)

have the following form:

H(Λ)ij = ⟨ψi|H0|ψj⟩+ λ̄2⟨ψi|V2|ψj⟩+ . . . = e|ψi⟩δij + λ̄2⟨ψi|V2|ψj⟩+ . . . (9.11)

Finally, the spectrum of H can be approximated by explicitly diagonalizing H(Λ) for
sufficiently large values of Λ. We will explore this for both a ϕ2 and a ϕ4 deformation in
the next sections.

1Here normal ordering simply means moving annihilation operators to the right, e.g. :a†1a1a
†
2 : = a†2a

†
1a1.
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9.1 ϕ2 deformation

9.1 ϕ2 deformation

In this section, we study the ϕ2 deformation, meaning that in (9.6) we allow for an
arbitrary value of λ = λ2, but all other couplings are set to zero. Since this theory is
exactly solvable, it provides a way to test the proposed diagonalization procedure in a
controlled setting. To be precise, the spectrum of the theory with λ ̸= 0 is that of a free
theory with redefined mass m2 → m2 + 2λ, or equivalently

∆→ ∆(λ̄) =
1

2
+
√
(∆− 1

2)
2 + 2λ̄ . (9.12)

The spectrum of the theory with coupling λ ̸= 0 consists of single-particle states with
energy ∆(λ̄) + N0 – N0 being the set of non-negative integers – two-particle states with
energies 2∆(λ̄) + N0 (most of which are degenerate), and likewise there are n-particle
states of energy n∆λ̄ + N0 for any integer n. The energy ∆(λ̄) can be computed in
perturbation theory; expanding (9.12) in a Taylor series around λ = 0, we find that
Rayleigh-Schrödinger perturbation theory converges if and only if

|λ̄| < λ⋆(∆) =
1

2

(
∆− 1

2

)2

. (9.13)

For couplings larger than λ⋆(∆), the correct spectrum can only be computed nonpertur-
batively.

In order to set up the Hamiltonian truncation, it will be convenient to express V2 in terms
of creation and annihilation operators

V2 =

∞∑
m,n=0

Amn(∆)(a†ma
†
n + 2a†man + aman) , (9.14)

with coefficients

Amn(∆) =

∫ π/2

−π/2

dr

cos2 r
fm(r)fn(r) =

Vmn(∆)

2∆− 1
, (9.15)

where the matrix Vmn is computed in appendix F.3, and we report here the result for
convenience:

Vmn(∆) =


0 if m+ n is odd;√
(m+ 1)n−m/(2∆ +m)n−m m ≤ n, m+ n even;

Vnm(∆) m > n.

(9.16)

An algorithm that can be used to compute and diagonalize H(Λ) is described in great
detail in appenidx I. In what follows, we will simply discuss the results of various numerical
computations. In particular, we will check whether the spectrum of H(Λ) reproduces the
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Chapter 9. Deformations of a free massive scalar

exact spectrum predicted by Eq. (9.12).

Before turning to the numerical results, let us comment on the role of discrete symmetries.
Both the ϕ2 and ϕ4 interactions are invariant under parity P and the Z2 symmetry
Z : ϕ→ −ϕ. The individual creation operators a†k have quantum numbers (−1)k under
parity and −1 under Z.2 Therefore, a Fock space state |ψ⟩ = |n0, n1, n2, . . .⟩ has quantum
numbers

P |ψ⟩ = (−1)πψ |ψ⟩ , Z |ψ⟩ = (−1)zψ |ψ⟩ , for πψ =
∑
k≥0

knk, zψ =
∑
k≥0

nk . (9.17)

Given these symmetries, the diagonalization of H(Λ) can be performed independently
in the four different sectors of Hilbert space that contain states with quantum numbers
P = ±1 and Z = ±1. Notice that the Casimir energy is determined by the vacuum state
which has quantum numbers P = Z = +1, so this sector plays a special role. For fixed
Λ and fixed couplings λ2, . . ., eigenvalues of H(Λ) corresponding to different symmetry
sectors are expected to cross. However, we stress that the physical energies are not quite
the eigenvalues of H(Λ): the Casimir energy needs to be subtracted from the individual
levels, in accordance to the discussion in chapter 8.

Cutoff effects

As mentioned in section 8.1, one expects that the vacuum energy EΩ(Λ) grows linearly with
the cutoff Λ. We can check this both perturbatively (by means of a Rayleigh-Schrödinger
computation at second order in λ2) and non-perturbatively, using Hamiltonian truncation.
Details for the perturbative computation are given in appendix G.3. The result of both
computations is shown in Figure 9.1. For concreteness, we take the single-particle energy
in the free theory to be ∆ = 1.62.3 For the nonperturbative plot on the right hand side
we have set λ̄ = 2, beyond the radius of convergence of perturbation theory (9.13). By
eye, the linear growth of E(Λ) ∼

Λ→∞
Λ can easily be seen in both cases.

Next, we can study the energy shift of the first excited state |χ⟩ = a†0 |Ω⟩. From (9.12),
we see that

∆χ(λ) = ∆+
λ̄

∆− 1
2

− cχλ̄2 +O(λ̄3), cχ =
4

(2∆− 1)3
. (9.18)

We can first of all reproduce this result analytically, using Rayleigh-Schrödinger pertur-
bation theory. This involves computing the difference gχ(τ) of the connected two-point
correlators of V2 inside the state |χ⟩ and the vacuum. For details, we refer to Appendix G;
the exact function gχ(τ) is spelled out in eq. (G.68). Integrating this correlator over τ

2For the V2 interaction, parity invariance follows from the fact that the coefficients Amn(∆) from (9.15)
vanish if m+ n is odd.

3This corresponds to a mass m2R2 = ∆(∆− 1) ≈ 1, so a mass ≈ 1 in units of the AdS radius.
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Figure 9.1: The vacuum energy linear growth in cutoff. The left plot shows the agreement
of the data with second order perturbation theory. The right plot shows the linear growth
beyond perturbation theory (λ̄ = 2). R̄ is the radius of AdS in units of the coupling, as
defined in eq. (7.24).

reproduces the exact result, as it should. At small τ , the function gχ(τ) behaves as

gχ(τ) ∼
τ→0

− 2π

(∆− 1
2) sin(2π∆)

τ2∆−2 + analytic +O(τ2∆−1). (9.19)

While a logarithmic singularity appears for integer ∆, here we will assume for simplicity
that ∆ is generic (and ∆ > 1). The expression (9.19) can be used to deduce the large-Λ
behavior of Hamiltonian truncation. Indeed, the Laplace transform of gχ(τ) must behave
as

∆ρχ(α) ∼
α→∞

Γ(2∆)

(∆− 1
2)

2
α1−2∆, gχ(τ) =

∫ ∞

0
dα e−(α−∆)τ ∆ρχ(α) (9.20)

so the cutoff error can be estimated to be

λ̄2
∫ ∞

Λ

dα

α−∆
∆ρχ(α) ∼

Λ→∞

Γ(2∆− 1)

(∆− 1
2)

2

λ̄2

Λ2∆−1
. (9.21)

This convergence rate is in complete agreement with the discussion from section 8.7, since
the lowest-dimension boundary state that can be generated is the two-particle state with
dimension 2∆. We therefore predict that at finite cutoff Λ, we measure an energy gap

∆Eχ = eχ +
λ̄

∆− 1
2

− λ̄2
(
cχ −

Γ(2∆− 1)

(∆− 1
2)

2

1

Λ2∆−1
+ . . .

)
+O(λ̄3)

≈ 1.62 + 0.893λ̄− λ̄2
(
0.356− 0.898

Λ2.24
+ . . .

)
+O(λ̄3)

(9.22)

plugging in ∆ = 1.62 when passing from the first to the second line.

In the left plot of figure 9.2, we compare Eq. (9.22) to Hamiltonian truncation data,
setting λ̄ = 0.1 such that terms of order λ̄3 and higher are subleading. We find excellent
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Chapter 9. Deformations of a free massive scalar

agreement between the numerical results and the analytical prediction (9.22). This
agreement relies crucially on the prescription (8.1): without the correct subtraction of the
Casimir energy, there would be a mismatch of order O(1)× λ̄2. The second excited state
is the first SL(2,R) descendent of |χ⟩, namely |χ′⟩ = a†1 |Ω⟩, which in the full theory has
energy ∆Eχ′ = ∆Eχ + 1: we will come back to this state in the next paragraph. After
that, the third excitated state is (a†0)

2 |Ω⟩, which describes two particles at rest. In the
right plot of figure 9.2, we compare Hamiltonian truncation data for this state to the
exact result ∆E = 2∆(λ̄).

10 15 20 25 30
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1.×10-5

5.×10-5

1.×10-4

10 15 20 25 30
5.×10-6

1.×10-5

5.×10-5
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Figure 9.2: Log–log plot of Hamiltonian truncation deviation from the exact value as a
function of the cutoff Λ for coupling λ̄ = 0.1. The left plot shows the convergence for the
first excited state with the blue line equal to −λ̄2 0.898

Λ2.24 extracted from eq. (9.22). The
right plot shows the convergence for the third excited state corresponding to a state with
two particles at rest. The blue line is a single parameter fit a

Λ2.24 .

An additional test of the truncation procedure involves computing differences of energies
between a primary state and its descendants. As a consequence of SL(2,R) invariance,
such differences must be exactly integer. However, the truncation breaks the SL(2,R)
symmetry, which can only be recovered in the continuum Λ→∞. We expect that the
energy of the second state in the spectrum |χ′⟩ = a†1 |Ω⟩ scales as

∆Eχ′(Λ)−∆Eχ(Λ) ∼
Λ→∞

1 +
a

Λb
+ . . . (9.23)

for some power b > 0 and some coefficient a. In figure 9.3, we check this prediction
numerically for different values of the coupling λ̄. Both for small (λ̄ = 0.1) and large
(λ̄ = 2) values of the coupling, we observe that SL(2,R) is restored in the continuum;
however, the plots show that this phenomenon is slower for the larger values of the
coupling. In passing, let us mention that it would be interesting to predict the coefficients
a, b appearing in (9.23), by analyzing the SL(2,R) breaking directly. We have not studied
this problem in more detail in the present work.
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Figure 9.3: Difference of energies between the first primary state |χ⟩ and its first descen-
dant, verifying that the SL(2,R) spacetime symmetry of AdS is restored in the continuum
limit Λ→∞.

Spectrum

So far, we have checked in some examples that with the prescription (8.1), Hamiltonian
truncation in AdS agrees with exact results in the limit where the cutoff Λ is sent to infinity.
At this point, we can be more systematic and compute the first six energy levels of the ϕ2

theory for a range of couplings, once more comparing the numerical data to exact results.
The results are shown in figure 9.4. Dots correspond to Hamiltonian truncation data; the
solid curves are the exact values. This plot probes couplings beyond the perturbation
theory radius of convergence λ⋆(∆), which for ∆ = 1.62 equals λ∗(1.62) ≈ 0.63. To show
the breakdown of perturbation theory, we have in addition plotted the energy of the state
|χ⟩ computed up to order λ̄2 (shown in red) resp. λ̄3 (green) in perturbation theory; it is
clear that these perturbative curves deviate from the exact levels when λ̄ ≳ λ⋆(∆). In
contrast, the Hamiltonian truncation data agrees with the exact data within error bars
also for larger values of λ̄. Finally, we want to mention that differences between energies
are indeed approximately integer, in accordance with SL(2,R) symmetry.

In figure 9.4, we notice crossings between one- and two-particle states, shown in black resp.
blue. These states have different quantum numbers: one-particle states have Z = −1,
whereas the blue curves have Z = 1. Therefore, there is no level repulsion even at finite
cutoff.

The data points in the above plot are extracted from “raw” Hamiltonian truncation data,
computed at some finite cutoff Λ, by extrapolating to Λ = ∞. Let us explain in some
detail the procedure that is used to go from unprocessed eigenvalues to these extrapolated
data with error bars. For the n-th excited state ∆En, we gather a sequence of energies
{∆En(Λ) | Λ ≤ Λmax} by varying the cutoff Λ, going up to some maximal cutoff Λmax.
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Figure 9.4: Spectrum of the first six excited energies in the ϕ2 theory with ∆ = 1.62.
Dots with error bars: Hamiltonian truncation data. Black and blue solid curves represent
the exact spectrum; the red and green dashed lines are exact results for the first level,
truncated to second resp. third order in perturbation theory. The black curves are the
one-particle state |χ⟩ and its first three descendants; the blue curves are the two-particle
state (a†0)

2 |Ω⟩ and its first descendant.

We then fit this sequence to the function

∆En(Λ|Λmax) ≈ an(Λmax) +
bn(Λmax)

Λ2∆−1
(9.24)

which gives an optimal value of an(Λmax), the energy in the limit Λ→∞. There are two
sources of error associated to this procedure:

• For a given cutoff Λmax, the truncation data don’t exactly match the fit (9.24). This
is the usual χ2 or goodness-of-fit error, caused by the fact that we are only taking
the leading cutoff error 1/Λ2∆−1 into account. The size of this error can be extracted
from the ParameterTable option of NonLinearModelFit in Mathematica.

• The restriction to cutoffs up to Λmax is arbitrary: if we changed Λmax by one or
several units, the fit procedure would lead to a different extrapolated energy an.
By computing an for a range of maximal cutoffs Λmax, we can obtain an estimate
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9.2 ϕ4 flow

for the uncertainty associated to this phenomenon.

The total error bar we assign to an energy En is the sum of these uncertainties.

9.2 ϕ4 flow

So far, we have discussed in detail Hamiltonian truncation result for the ϕ2 flow in AdS2.
This flow is exactly solvable, so it provided a good laboratory to test the prescription (8.1).
It is of course more interesting to study flows that are not exactly solvable, like the
ϕ4 interaction. To be precise, we will consider Hamiltonians of the form (9.7) with
λ̄4 ̸= 0. The two-dimensional ϕ4 flow has already been studied in detail using Hamiltonian
truncation, but on R× S1 (see [41, 166, 169, 168]): here we will explore the same QFT,
but defined in AdS2 instead of the cylinder.

Let us briefly discuss the physics to be expected as a function of the bare quartic coupling
λ4 and the bare mass m2. On R2, the theory displays spontaneous symmetry breaking
(SSB): if the dimensionless ratio m2/λ4 is sufficiently large, the vacuum is Z2-invariant,
but below some critical value the field ϕ obtains a VEV and the ϕ→ −ϕ symmetry is
broken.4 The transition between both phases is continuous and describes the 2d Ising
universality class. All of these effects have previously been observed in Hamiltonian
truncation on R× S1, which is Weyl-equivalent to R2. Away from this critical value, the
mass gap is finite.

What is the fate of the phase transition in AdS? At finite radius, the physics depends
now on the two dimensionless couplings m2R2 and λ̄4.5 As discussed in section 7.5, SSB
happens in AdS in a way analogous to flat space, up to boundary effects which might
make the false vacuum stable. Therefore, in the limit where m2R2, λ̄4 → +∞ with fixed
ratio, the physics ought to be the same as in flat space. In this thesis, we mainly focus
on testing this hypothesis. However, it is worth asking about the general features of the
phase diagram in the (m2R2, λ̄4) plane. In particular, does the line of phase separation
extend all the way to λ̄4 = 0? Is the phase transition continuous? Is it described by the
2d Ising CFT in AdS? As we shall see below, it is not easy to tackle these questions with
Hamiltonian truncation, so we will leave most of them open to future work. Nevertheless,
we can at least gather some information from the weak coupling side, λ̄4 ≪ 1. In this
limit, we can trust the semi-classical analysis of appendix J.1. In particular, let us recall
that the line λ̄4 = 0, m2R2 > −1/4, with Z2 preserving boundary conditions, belongs
to the symmetric phase. We expect therefore the line of phase transition to obey the
equation m2R2 = −1/4+O(λ̄4). This answers in the negative two of the above questions.

4The critical value of m2/λ4 is of course scheme-dependent.
5In this initial discussion, we absorb λ̄2 in m2R2. The distinction will become relevant in the next

paragraph, where λ̄2 will be chosen as a specific finite counterterm, to make the comparison to flat space
easier.
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Chapter 9. Deformations of a free massive scalar

At the phase transition, the expectation value of ϕ jumps from zero to a finite value:
i.e. the phase transition is discontinuous. Furthermore, as λ̄4 → 0, the spectrum is
continuously connected to the one of a free boson with ∆ = 1/2, while, as we shall recall
in section 10.3, the Ising CFT is described by a free fermion.

Fixing the ϕ2 counterterm

We are most of all interested in the flat-space limit R→∞, keeping the bare couplings
λ2 and λ4 fixed. Any “RG trajectory” (i.e. a sequence of spectra for a range of radii R)
therefore depends on the ratio λ2/λ4 and in addition on the UV scaling dimension ∆ of
the single-particle state (or equivalently on its mass m2 = ∆(∆− 1)/R2). Note that the
Hamiltonian is normal-ordered at fixed radius R. Therefore a trajectory of the form

H = H0 +
∑
k=2,4

λ̄kVk, λ2, λ4 fixed (9.25)

does not describe a good RG trajectory: the normal-ordering counterterms implicit
in (9.25) are not the same as those in flat space, as has been explained in [41]. Instead,
we should use a Hamiltonian of the form

H = H0 + λ̄V4 + 6z(∆)λ̄V2 (9.26)

omitting terms proportional to the identity operator, since the Casimir energy is not
observable in AdS. We can compute the coefficient z(∆) by adapting the derivation from
reference [41]. First, we notice that in flat space, the local operators ϕ2 and ϕ4 are
normal-ordered as follows

:ϕ2:∆ = ϕ2 − Z∆, :ϕ4:∆ = ϕ4 − 6Z∆ϕ
2 + 3Z2

∆ (9.27)

where Z∆ formally denotes the contraction

Z∆ = lim
Y→X

[ϕ(X)ϕ(Y )− :ϕ(X)ϕ(Y ) :] = lim
Y→X

⟨ϕ(X)ϕ(Y )⟩R (9.28)

keeping the dependence of the correlator on the AdS radius explicit. This expression is
formal, since the limit Y → X diverges. However, the difference of Z measured at two
different radii is physical. For instance, we can compare the theory at a given R to the
same QFT quantized in the flat-space limit R =∞. This leads to

z(∆) ≡ Z∆ − Z∞ =
1

2π

(
−1

2
log∆(∆− 1) + ψ(∆)

)
(9.29)

where ψ(·) is the digamma function. This completely fixes the Hamiltonian (9.26).
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9.2 ϕ4 flow

Convergence estimates

Before we turn to numerical computations, let us first of all discuss the convergence rate,
that is to say the error due to working at finite cutoff Λ. Although in the previous section
we fixed a specific ϕ2 counterterm, let us for now consider the general Hamiltonian (9.25)

H = H0 + λ̄2 V2 + λ̄4 V4. (9.30)

For definiteness, let us focus on the leading energy shift of the first excited state |χ⟩ = a†0 |0⟩,
although much of the discussion does not depend sensitively on the choice of state. In
Rayleigh-Schrödinger perturbation theory, we have

∆Eχ(λ̄2, λ̄4) = ∆ +
2

2∆− 1
λ̄2 −W · λ̄22 − 2A · λ̄2λ̄4 −B · λ̄24 + . . . (9.31)

subtracting the Casimir energy and omitting terms of cubic and higher order in pertur-
bation theory. The coefficients W , A and B depend on ∆, and importantly they are
sensitive to the cutoff Λ, although they should have a finite limit as Λ→∞. We have
already encountered the W -term in section 9.1, and found that it evaluates to

W (Λ) =
4

(2∆− 1)3
+O

(
1

Λ2∆−1

)
. (9.32)

The coefficients A and B cannot be calculated in closed form, but they can be obtained
as integrals over AdS:

A =

∫ ∞

0
dτ A(τ) and B =

∫ ∞

0
dτ B(τ) (9.33)

where

A(τ) = 24

∫ π/2

−π/2

drdr′

(cos r cos r′)2
f0(r

′)2G(ξ(τ, r, r′))2, (9.34a)

B(τ) = 192 cosh(∆τ)

∫ π/2

−π/2

drdr′

(cos r cos r′)2
f0(r)f0(r

′)G(ξ(τ, r, r′))3. (9.34b)

The expressions were obtained by evaluating connected two-point correlation functions of
V2 and V4 inside the state |χ⟩, and subtracting the same correlator inside the vacuum
state. In particular, G(ξ) was defined in eq. (9.5), and the cross ratio ξ of eq. (7.8) is
evaluated at τ ′ = 0. Let ρA(α) and ρB(α) be the spectral densities associated to A(τ)
resp. B(τ), that is to say

A(τ) =
∫ ∞

0
dα ρA(α)e

−(α−∆)τ (9.35)

and likewise for B(τ). We can likewise associate a spectral density ρW (α) to the diagram
W — in fact, ρW (α) is exactly identical to ∆ρχ(α) from (9.20). The total cutoff error is
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Chapter 9. Deformations of a free massive scalar

then

−
∫ ∞

Λ

dα

α−∆

[
ρW (α) · λ̄22 + 2ρA(α) · λ̄2λ̄4 + ρB(α) · λ̄24

]
+ subleading in pert. theory.

(9.36)
If Λ is large, this error term is controlled by the asymptotic behavior of the densities
ρW (α), ρA(α) and ρB(α). We have already seen that ρW (α) ∼

α→∞
1/α2∆−1. We will see

that for ∆ > 3/2, the error will be dominated by the other two terms. Indeed, we claim
that

ρA(α) ∼
α→∞

1/α2 and ρB(α) ∼
α→∞

ln(α)/α2. (9.37)

Numerical evidence for this claim is presented in figure 9.5. If this claim holds, then the
total error term is of the order of

error term =
(
2εA · λ̄2λ̄4 + εB · λ̄24 + ε′B · λ̄24 ln Λ

) 1

Λ2
+ . . . (9.38)

for some coefficients εA, εB and ε′B, omitting terms subleading in Λ and in perturbation
theory. The leading large-α behavior of the diagrams A and B is due to bulk effects,
contrary to the diagram W which was due to a contribution close to the boundary. Indeed,
the same scaling has been observed on the cylinder R× S1 [41].

To make (9.38) precise, it makes sense to estimate the large-α asymptotics of ρA and
ρB directly — or equivalently, the small-τ asymptotics of A(τ) and B(τ). We can do so
following the example of reference [41]. In particular, we choose to study dA(τ)/dτ and
dB(τ)/dτ instead of A(τ) and B(τ), and we replace the bulk-bulk propagator G(ξ) by its
Taylor series in the short-distance limit, to wit

G(ξ) ≈ − ln ξ + 2γE + 2ψ(∆)

4π
(9.39)

dropping analytic terms that vanish as ξ → 0. This yields

ρA(α) ∼
α→∞

24(∆− 1)

α2π(2∆− 3)(2∆− 1)
, (9.40a)

ρB(α) ∼
α→∞

144(∆− 1)

α2π2(2∆− 3)(2∆− 1)

[
2 lnα− 2

∆− 1
+ ψ(∆− 3

2)− 3ψ(∆− 1)

]
.

(9.40b)

These formulas make precise the scaling predicted by (9.37). At the same time, we
can compute the densities ρA,B(α) directly for finite values of α, by expanding the
integrals (9.34) around large τ . In figure 9.5, the asymptotic formulas are compared to
these exact results for ∆ = 2, 2.5 and 4, finding good agreement.

Let us make two comments about eqs. (9.40). For one, both densities have a pole at
∆ = 3/2. This is due to the truncation (9.39), which leads to additional divergences
close to the boundary of AdS — yet the full correlators A(τ) and B(τ) are integrable
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Figure 9.5: Left: the spectral density ρA(α) multiplied by α2, for ∆ = 2 (purple), ∆ = 2.5
(green) and ∆ = 4 (red), averaged over intervals [α− 2, α+ 2] (since the densities have
delta function support). The horizontal dashed lines are the large-α predictions from
formula (9.40). Right: the same plot for the spectral density ρB(α), plus comparison to
the asymptotic formula (9.40) (dashed).

for dimensions ∆ > 1, where eq. (7.14) holds. Second, the asymptotic density shown for
ρB(α) can become negative for small values of α; for instance for ∆ = 1.62, the terms
shown are only positive for α ≳ 43. However, it can be shown that the full density ρB(α)
is manifestly positive. This means that the asymptotic formula (9.40) is not necessarily a
good approximation to the actual density ρB(α) for values of α that can be realized in
Hamiltonian truncation (say α ≤ 25− 40), at least for small values of ∆. Nevertheless,
figure 9.5 shows that for sufficiently large α, the scaling behavior (9.37) is observed.

Let us finally compare this asymptotic prediction from second-order perturbation theory
to Hamiltonian truncation data. It follows from the above discussion that the truncation
error of the ϕ4 Hamiltonian should be of the order of ln(Λ)/Λ2, at least at second order in
the coupling6. We can thus fix the V2 counterterm according to section 9.2 and diagonalize
the Hamiltonian H for finite values of the cutoff Λ, computing the first excitated energy
level non-perturbatively using the presription (8.1). The results of this procedure are
shown in figure 9.6. As expected, we observe that the truncation data converge to a
constant in the limit Λ → ∞, and we see that the truncation error goes to zero as
ln(Λ)/Λ2.

Evidence for a phase transition

As we already discussed, we expect that the ϕ4 theory in AdS2 exhibits sponteanous
symmetry breaking, just as in flat space. Already in finite volume, working on R× S1

where the S1 has length L, truncation methods were used to study this transition [41]. In
that work, the bare mass m2 was fixed, and for fixed but large mL ≳ O(few) the authors

6We don’t expect higher-order diagrams to be more UV-sensitive.
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Figure 9.6: Hamiltonian truncation data for the energy shift of the state |χ⟩ due to the
ϕ4 Hamiltonian (9.26) with ∆ = 1.62, for a range of cutoffs up to Λ = 30. The left
(right) plot corresponds to quartic coupling λ̄ = 0.2 (λ̄ = 2). Blue curve: fit of the form
u− v ln(Λ)/Λ2, with the asymptotic value u shown as a horizontal dotted line.

scanned over the quartic coupling λ4. For λ4 sufficiently small and positive bare mass,
the system is in the unbroken phase. In this phase, the energy gap of the theory, closes
continuously as λ4 is increased to its critical value. For λ4 larger than its critical value
the system is in the broken phase.

Here we can attempt to do the same thing: we can fix the bare mass m2 and scan over
the dimensionless coupling λ/m2. Since we want to be close to the flat-space limit, we
need to make sure that R is large compared to m2, or in other words that the UV scaling
dimension ∆ is sufficiently large. To connect the notation used so far, this means that we
fix ∆ ≳ O(few) and scan over the dimensionless coupling λ̄/(m2R2) = λ̄/[∆(∆− 1)] =: x.
For any value of ∆ and x, we can measure the mass gap. The resulting curves ∆E(x,∆)

will depend on ∆, but if there is any universal flat-space physics, they should have a
well-defined limit as ∆ → ∞. The limiting curve ∆E(x,∞) should exhibit a gap that
closes in accordance with the critical exponents of the Ising universality class, and as a
matter of principle one should be able to read off the Ising BCFT spectrum. In fact, we
expect that the gap ∆E closes at the same critical coupling as in flat space.

In figure 9.7, we plot precisely these curves ∆E(x,∆). As always, we subtract the Casimir
energy according to (8.1), and we divide the mass gap by ∆ such that we can compare
curves of different UV dimensions ∆. On the x-axis, we vary the dimensionless quartic
coupling x = λ̄/[∆(∆− 1)]. The plot provides evidence that the curves ∆E(x,∆) indeed
have a finite limit as ∆→∞, although we cannot increase ∆ further than ∆ ≈ 10 for
computational reasons. Semi-quantitatively, the plot is consistent with a critical coupling
of the order of λ/m2 ≈ 3. Numerically, the convergence rate decreases rapidly for large
couplings: this can be seen for example by the large error bars appearing in figure 9.7.
Therefore, analyzing the phase transion in more detail is not feasible in the current set-up,
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9.2 ϕ4 flow

even by going to rather large cutoffs with ∼ 5 · 104 states.

The prescription (8.1) does not always lead to positive energies, contrary to differences of
energies of a Hamiltonian, which are positive by construction. The value of e.g. the first
excited state E1(Λ)− EΩ(Λ−∆) can indeed be negative, as seems to happen to points
with large couplings in figure 9.7. This would indicate that the vacuum exchanges roles
with an excited state (which has different quantum numbers!). However, we stress that
for the data points in question, the error bars are very significant, and it is not excluded
that the true energy in the limit Λ→∞ is in fact slightly positive. For this reason, and
to avoid clutter, we have not shown any points with a seemingly negative energy. In
appendix J.2, we study an inverted harmonic oscillator with Hamiltonian truncation to
illustrate how the states in the broken phase are expected to have a large overlap with
unperturbed states close to the cutoff.
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Figure 9.7: Mass gap of the ϕ4 Hamiltonian (9.26) for a range of quartic couplings λ̄
(x-axis), for a different set of UV scaling dimensions ∆ (different curves, see legend).
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10 Deformations of conformal field
theories

In this chapter, the unperturbed Hamiltonian corresponds to a conformal field theory in
AdS. The deformation is triggered by a relevant operator. We shall focus, in particular,
on the simplest two dimensional CFTs, i.e. the Lee-Yang and the Ising models. Since
AdS is conformally flat, a CFT placed in AdS is equivalent to a CFT in the presence of a
flat boundary. More precisely, the equivalence is true if the boundary conditions preserve
the Weyl invariance of the bulk. This setup is usually referred to as a boundary conformal
field theory (BCFT) [170]. Since the subgroup of the conformal group preserved by a flat
boundary coincides with the isometries of AdS, any CFT placed in AdS with isometry
preserving boundary conditions will be related to a BCFT by a Weyl transformation.1

In this chapter, we adopt the usual 2d CFT convention, reserving the name primaries
for the Virasoro primaries. On the other hand, the SL(2,R) primaries will be sometimes
denoted as quasiprimaries.

10.1 Virasoro minimal models and their deformations in
AdS2

We begin with a reminder of the basics of minimal models [171] in the presence of a
boundary, before moving on to AdS. A detailed exposition can be found in the original
references [170, 172–175], in chapter 11 of [48], or in the dedicated book [176]. A flat
boundary preserves a single copy of the Virasoro algebra, whose generators Ln, n ∈ Z
obey the usual commutation relation

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 , (10.1)

1We are assuming that conformal symmetry automatically promotes to Weyl invariance.
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Chapter 10. Deformations of conformal field theories

where c is the central charge of the 2d CFT.2 The SL(2,R) generators can be identified
with Virasoro generators as follows:

H = L0, P = L−1, K = L1. (10.2)

The spectrum of boundary scaling operators, corresponding to the constant time slice
Hilbert space in AdS, is organized in representations of the Virasoro algebra. In the
minimal models, there are a finite number of so called Verma modules, which have a
Virasoro primary |χi⟩ as a lowest-weight state. The primary satisfies Ln |χi⟩ = 0 for all
n ≥ 1. The full Hilbert space is spanned by states of the form

L−n1 · · ·L−np |χi⟩ (10.3)

running over all Virasoro primaries |χi⟩ and all integers n1, . . . , np ≥ 1. The SL(2,R)
primaries are those states |Ψ⟩ satisying L1 |Ψ⟩ = 0. Under the parity transformation
P : r 7→ −r, the Virasoro generators transform as

PLnP
−1 = (−1)nLn (10.4)

which generalizes eq. (7.7).

Given a minimal model, the set of consistent boundary conditions is known [173, 175].
They are in one to one correspondence with the scalar Virasoro primary operators of the
CFT. In the following, we will only consider diagonal minimal models, where all primaries
are spinless. For instance, the Ising model has three Virasoro primaries: the identity,
the spin field σ, the energy field ϵ. Correspondingly, there are three conformal boundary
conditions. The boundary spectrum supported by each boundary condition is determined
as follows. Consider the fusion coefficients in the OPE

Vϕ × Vϕ ∼ nϕϕiVi , (10.5)

where Vϕ and Vi denote representations of the Virasoro algebra. Then, the boundary
condition labeled by ϕ supports boundary operators falling in the representations such
that nϕϕi ≠ 0. For instance, the boundary spectrum of the σ boundary condition in the
Ising model comprises the identity and the ϵ module, whose Virasoro primaries have
dimension ∆0 = 0 and ∆ϵ = 1/2 respectively.

It is sometimes useful to map the theory to the exterior of the unit circle. In this setup,
the boundary condition generates a state in radial quantization, the so called Cardy
state, which allows for a decomposition in terms of local operators of the bulk CFT [174].
Only the operators appearing in this decomposition acquire a one-point function in the
presence of the boundary. For instance, the boundary state generated by the σ boundary

2A 2d CFT admits a conformal boundary only if the left and right central charges coincide, c = c̄
[163].
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10.1 Virasoro minimal models and their deformations in AdS2

condition in the Ising model is

|σ⟩Cardy = |1⟩⟩ − |ϵ⟩⟩ , (10.6)

where the Ishibashi states on the right hand side are a sum of left-right symmetric
descendants of the Virasoro primary, whose specific form we will not need [177]:

|ϕ⟩⟩ = |ϕ⟩+ L−1L̄−1

∆ϕ
|ϕ⟩+ . . . (10.7)

A special boundary condition exists in all the minimal models. It is the one labeled by
the identity operator. It only supports the identity module, hence it does not allow for
relevant deformations. In the generic minimal model, denoted by M(p, q) in [48], the
identity module has two null vectors, at level 1 and (p − 1)(q − 1). In particular, the
non trivial null states are found at level 4 in the Lee-Yang model and at level 6 in the
Ising model. The leading boundary operator supported by the identity Cardy state is the
displacement operator [163], i.e. L−2 |Ω⟩,3 which has ∆ = 2. This means that the rate of
convergence of TCSA in AdS cannot be faster than ∼ 1/Λ, as explained in subsection 8.7.
The identity boundary condition corresponds to the so called extraordinary transition
in the corresponding statistical models, i.e. it breaks all the global symmetries of the
CFT. Indeed, the boundary OPE (7.13) of any bulk operator cannot be empty, and
therefore it must contain the identity module. Hence, all the bulk scalar operators acquire
a one-point function in the presence of the boundary. Although we will comment about
other boundary conditions in what follows, we shall be mainly interested in the one
labeled by the identity.

When mapping the CFT with a flat boundary to AdS2, it is important to notice that
the anomalous contribution to the stress tensor vanishes. Hence, the ground state energy
vanishes.4 This is most easily checked in Poincaré coordinates. Using a pair of complex
coordinates z, z̄, the metric reads

ds2AdS =
R2

(Im z)2
dzdz̄ . (10.8)

Under the Weyl map from flat space, the stress tensor is in fact unchanged:

ds2AdS = e2σds2flat , σ = log
R

Im z
, TAdS

zz = T flat
zz +

c

12π

(
∂2zσ − (∂zσ)

2
)
= T flat

zz .

(10.9)
It is then easy to check that the generators (10.1), obtained as modes of the stress tensor,

3Recall that |Ω⟩ is the vacuum in radial quantization around a point on the defect. This quantization
scheme, which is the one relevant to the Hamiltonian truncation, should not be confused with the scheme
that gives rise to the Cardy states, as explained above.

4This should be contrasted with the BCFT on a strip, which is a finite volume system and as such
has a Casimir energy proportional to the central charge.
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provide conserved quantities in AdS as well.

In what follows, we will trigger an RG flow in AdS by turning on a relevant Virasoro
scalar primary V. The relation between such operator in AdS and in flat space is

VAdS =

(
Im z

R

)∆V

Vflat . (10.10)

One can then work out the action of the Virasoro generators on the AdS operator:

[Ln,VAdS] =

[
zn+1∂z + z̄n+1∂z̄ +

∆V
2

(
(n+ 1)(zn + z̄n)− 2

zn+1 − z̄n+1

z − z̄

)]
VAdS .

(10.11)
As expected, the term proportional to ∆V vanishes for the SL(2,R) generators (10.2),
which simply act as diffeomorphisms. Henceforth, we drop the subscript from VAdS, and
resume the convention set up in eq. (5). Eq. (10.11) allows to compute all the matrix
elements of the perturbing operator V between states of the kind (10.3), and hence the
matrix elements of the potential V , once the three-point functions ⟨χi|V|χi⟩ are known.5

Since the potential preserves the isometries of AdS, not all the matrix elements between
states belonging to the same SL(2,R) families are in fact independent. Rather, there
are recurrence relations between them, as is described in appendix F. Nevertheless these
relations do not speed up the computation of the matrix elements significantly, as we
discuss at the end of appendix I; instead, we compute all matrix elements individually in
our algorithm.

10.2 The Lee-Yang model

The Lee-Yang CFT is the diagonal modular invariant of the simplest minimal model,
denotedM(5, 2) in [48]. This model was the theater where TCSA was first applied [39],
and was studied with the same technique on a strip in [154, 178]. It has central charge

c = −22

5
, (10.12)

and it is therefore non unitary. It contains two scalar Virasoro primaries, the identity 1
and the field V, with scaling dimensions

∆1 = 0 , ∆V = −2

5
. (10.13)

5Of course, to obtain the potential one can alternatively compute the matrix elements of Vflat in flat
space, and multiply them by the Weyl factor in eq. (10.10) before integrating on a constant time slice.
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Consequently, it allows for two conformal boundary conditions6:

|1⟩Cardy =

(√
5 + 1

2
√
5

)1/4

|1⟩⟩+
(√

5− 1

2
√
5

)1/4

|V⟩⟩ , (10.14a)

|V⟩Cardy = −
(√

5− 2√
5

)1/4

|1⟩⟩+
(√

5 + 2√
5

)1/4

|V⟩⟩ . (10.14b)

As mentioned, we shall be primarily interested in the identity Cardy state. Eq. (10.14a)
implies that the operator V acquires a one-point function in the presence of the boundary:

⟨V|1⟩Cardy =

(√
5− 1

2
√
5

)1/4

. (10.15)

With the boundary state (10.14a), the partition function on the disk is not normalized to
one, rather

⟨1|1⟩Cardy = ⟨Ω|Ω⟩ = −
(√

5 + 1

2
√
5

)1/4

, (10.16)

where we emphasized that the same quantity gives the normalization of the vacuum
in AdS. This normalization is irrelevant to the problem of finding the spectrum of the
Hamiltonian, and we shall find it convenient to remove this factor from our basis of states,
multiplying each one by ⟨Ω|Ω⟩−1/2.7 Then, the expectation value of V in AdS, with unit
normalized vacuum, is

⟨V⟩ = (2R)−∆V
⟨V|1⟩Cardy

⟨Ω|Ω⟩ = −(2R)−∆V

(
2

1 +
√
5

)1/2

≡ −R−∆VaV . (10.17)

For the matrix elements of the potential to be finite, the one-point function of V must be
fine tuned in the Hamiltonian. We therefore perturb the conformal fixed point with the
following coupling:

λ̄V = λ̄

∫ π/2

−π/2

dr

(cos r)2

(
R∆V

aV
V(τ = 0, r) + 1

)
. (10.18)

The theory can be studied for both signs of the coupling. The expectation from the
flow in flat space [39] is that λ̄ > 0 leads to a well defined flat space limit. This will be
confirmed by the numerics.

The Hilbert space of the model at the conformal fixed point consists of the states (10.3),
where the primary |χ⟩ = |Ω⟩ is created by the identity operator on the boundary. The

6In order for the coefficients of the boundary state to be real, it is necessary to normalize the vacuum
in radial quantization around a point in the bulk as ⟨1|1⟩ = −1, see e.g. [178].

7The fact that this normalization is purely imaginary is not an issue. We simply define the scalar
product to be linear rather than sesquilinear, so that the vacuum is now unit normalized.
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first few states and their degeneracies can be found in the following table:

∆ 0 1 2 3 4 5 6 7 8 9 10

states 1 0 1 1 1 1 2 2 3 3 4
sl(2) primaries 1 1 1 1 1

In the flat space limit, the Lee-Yang model flows to a massive theory, whose spectrum
includes a single stable particle. Since the flat space flow is integrable, the mass is
computable as a function of the scale set in the UV [179, 180]. Recalling that λ̄ = λR2−∆V ,
we approach the flat space limit by taking R→∞ after the rescaling (τ, r)→ (τ, r)/R.
The flat space coupling is then found to be λ/aV . The mass of the stable particle is
expressed in term of the coupling as follows [180]:

m = κ

(
λ

aV

) 1
2−∆V

, κ = 219/12
√
π
(Γ(3/5)Γ(4/5))5/12

55/16Γ(2/3)Γ(5/6)
= 2.643 . . . (10.19)

Plugging this relation in eq. (7.23), we obtain a prediction for the slope of the energy
levels of single particle states in the flat space limit:

∆single particle

R̄
−→
R̄→∞

κ

a
1

2−∆V
V

= 2.603 . . . (10.20)

Here we used the definition of the AdS radius in units of the coupling, which in this case
reads

R̄ = Rλ
1

2−∆V = Rλ5/12 . (10.21)

Eq. (10.20) is useful because it allows to estimate the finite size corrections in AdS. As
we shall see, the non unitary nature of this model hinders our ability to reach large values
of the radius within our computational limits.

Cutoff effects

As with every QFT in AdS, the vacuum energy is not observable in the continuum limit:
it diverges linearly with the cutoff Λ, as showcased in figure 10.1. However, we explained
in section 8.3 that the vacuum energy is computable in the Hamiltonian truncation
framework. In particular, we can compare the function EΩ(Λ) at small λ̄ with its value at
second order in perturbation theory. We recall from section 8.3 that the linear divergence
is given by

EΩ(Λ) −→
Λ→∞

c

(
λ̄

aV

)2

Λ +O(λ̄3) , c = −8
∫ ∞

0
dξ arcsinh

(
2
√
ξ(ξ + 1)

)
F (ξ) , (10.22)
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where F (ξ) is the connected two-point function of the perturbation:

F (ξ) = R2∆V ⟨V(τ, r)V(0, 0)⟩ − a2V , (10.23)

with the cross ratio ξ defined in eq. (7.8). The correlation function is easily written as
a sum of two Virasoro blocks, corresponding to the fusion rule V × V = 1 + V, see e.g.
[178]:

F (ξ) = −f1(ξ) +
2

1 +
√
5

Γ(1/5)Γ(6/5)

Γ(3/5)Γ(4/5)
fV(ξ)− a2V , (10.24)

with

f1(ξ) =

(
4ξ

1 + ξ

)2/5

2F1

(
3

5
,
4

5
,
6

5
,

ξ

1 + ξ

)
, fV(ξ) =

(
16ξ

1 + ξ

)1/5

2F1

(
2

5
,
3

5
,
4

5
,

ξ

1 + ξ

)
.

(10.25)
Performing the integration in eq. (10.22) numerically, we obtain

c = 0.5786 . . . , EΩ(Λ) −→
Λ→∞

0.5377 λ̄2Λ +O(λ̄3) . (10.26)

The left panel of figure 10.1 shows that eq. (10.26) does indeed fit the data accurately
at weak coupling. In the right panel, we see that the behavior is still linear when the
coupling is order one, as expected.
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Figure 10.1: Vacuum energy as a function of the cutoff in the Lee-Yang model. The
black dots are the Hamiltonian truncation data: since the vacuum is parity even, the
Hamiltonian needs to be diagonalized anew only when Λ jumps by an even integer. In
the left plot, the solid red line is eq. (10.26). In the right plot, the solid blue line is a fit
to the data.

Since the lightest operator in the spectrum is the displacement operator, with ∆ = 2, the
rate of convergence of the truncated spectrum to the exact values is Λ−1 – see section 8.7.
This can be checked up to couplings of order one, as shown in figure 10.2.

On the other hand, the Lee-Yang model presents a specific obstruction to the computation

165



Chapter 10. Deformations of conformal field theories

10 15 20 25 30 35 40

2.05585

2.05590

2.05595

10 15 20 25 30 35 40
3.10

3.15

3.20

3.25

Figure 10.2: Energy of the first excited state in the Lee-Yang model, as a function of
the cutoff at weak and strong coupling. Notice that the first excited state is parity even,
hence again only points were Λ is even need to be computed. The asymptotic value is
obtained from the fit.

of the spectrum for large values of the coupling. Since the Hamiltonian is not Hermitian,
its eigenvalues are not guaranteed to be real at any finite value of the cutoff. In the
continuum limit, the spectrum is real in the flat space limit, and it is real at the conformal
fixed point. Our working hypothesis is that the Lee-Yang model is well defined in the
continuum in AdS for any value of the radius. However, for finite Λ the eigenvalues do
pick up an imaginary part when the radius is larger than a certain value R̄∗. For the
vacuum energy, this can be seen in figure 10.3.
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Figure 10.3: Imaginary part of the vacuum energy in the Lee-Yang model as a function
of the radius of AdS, for different cutoffs.
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In order to provide evidence for the reality of the spectrum in AdS, we explored the
dependence of R̄∗ on the cutoff. Figure 10.4 shows that a logarithmic fit describes
reasonably well the data in our possession. If this behavior is valid at asymptotically large
values of Λ, the Lee-Yang model does indeed possess real energy levels in the continuum
limit. However, the computational effort to reach this regime is severe: since the number
of states grows exponentially with the cutoff, the spectrum cannot be real for a given
value R̄ unless we include a number of states of the order ∼ exp(α exp(βR̄)), for some
positive constants α and β.

15 20 25 30 35 40

1.155

1.160

1.165

1.170

Figure 10.4: R̄∗ is the value of the coupling beyond which the vacuum energy in the
Lee-Yang model becomes complex. The logarithmic fit is phenomenological, and the best
fitting function is R̄∗ = 1.12 + 0.01 log(Λ). Notice that with the available range of values
for Λ it is hard to distinguish, for instance, between a logarithm and a power law with a
sufficiently small exponent.

The spectrum

Figure 10.5 shows the energy of the first excited state as a function of the radius of AdS.
At small radius, the slope of the curve is fixed by perturbation theory. The first excited
state starts its life as the displacement operator, with dimension ∆ = 2, and deviates from
that value as ∼ R2−∆V = R12/5. On the other hand, at radii of order 1 in units of the
coupling, the truncation effects become big, and our extrapolation to the continuum limit
correspondingly poor. This is related to the appearance of complex energies described in
the previous subsection. Since the Hamiltonian is real, complex eigenvalues can only arise
in pairs, and the vacuum energy in particular can only become complex after colliding
with the first excited state. This is clearly visible in figure 10.5. Finally, the bulk of
the plot contains genuine non perturbative data. The extrapolation to infinite cutoff is
reliable, and the curve can be trusted. Although the energy of the first excited state is
order one, we may be tempted to recognize a region where the dependence on the radius
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Figure 10.5: Main plot: energy of the first excited state in the Lee Yang model, as a
function of the radius of AdS, for various choices of cutoff. The error bars are computed
according to the procedure explained in subsection 9.1. In the inset, the derivative of the
gap is computed discretely, by measuring the gap at two nearby values of R̄.

is approximately linear, see eq. (7.23). To test whether this is the case, in the inset of
figure 10.5 we plot the derivative of the energy of a few states with respect to the radius
of AdS. The curves do not show a pronounced plateau, which casts doubts on the fact
that flat space physics is already visible in the plot. A quantitative check in this direction
is provided by comparing the maximal slope of the first excited state, about ∼ 1.85, with
the flat space prediction ∼ 2.60 in eq. (10.20). The inset also reports the slope of the
energy levels which in the flat space limit we can tentatively associate to two and three
particle states, with all particles at rest. The peaks in this case lie at about ∼ 3.5 and
∼ 5.1 respectively. The ratios of these slopes to the slope of the first excited state are 1.9
and 2.8 respectively, which are not too far from the value 2 and 3 expected in the flat
space limit.8

Figure 10.6 shows the dependence of the energy of the first few excited states on the AdS

8Notice that the deviation of the energies of the multiparticle states from the sum of their constituents
is a measure of the strength of the (non gravitational) interactions, and they do not need to be of the
same order as the deviation of the energy of the single particle state from its value in the flat space limit.
For instance, in the case of a free scalar the binding energies are exactly zero for any value of the radius.
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Figure 10.6: Spectrum of the Lee-Yang model. All the data points are computed with
cutoff Λ = 40. To avoid clutter, we did not plot the extrapolated data with their error
bars, although the latter would be pretty small up to R̄ ∼ 0.8 as in figure 10.5. As
discussed in text, we cannot trust the data beyond R̄ ∼ 1, due to large truncation effects.

radius. We highlighted in red the parity even and in blue the parity odd eigenstates of the
Hamiltonian, recognizable from their CFT ancestors according to eq. (10.4). As it can
be checked via the character of the vacuum module, there are two quasi-primaries in the
Lee-Yang CFT in the range of scaling dimensions shown in figure 10.6: the displacement
operator at ∆ = 2 and a new quasi-primary at ∆ = 6. These are marked with a solid line
in the figure. Correspondingly, all states up to level 5 are non-degenerate, while the states
at level 6 and 7 are two-fold degenerate. The quasiprimary state starting at level 6 is on
its way to become a two-particle state in the flat space limit. The connection between
quasiprimaries in the BCFT and multiparticle states in the flat space limit has been
explained in section 7.4: since in the continuum the SL(2,R) structure forces smooth
level crossing between a quasiprimary and the descendants of a different conformal family,
we can track the quasiprimary state all the way from its origin in the BCFT to the flat
space limit.

Finally, figure 10.7 shows the gap as a function of λ̄, for an interval extending to negative
values. The energy of the first excited state is monotonic with λ̄, and we expect that for a
certain value λ̄min of the coupling a new boundary operator with dimension ∆ = 1 emerges.
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We cannot reliably compute the spectrum for λ̄ close to λ̄min, since the truncation errors
become large, as it is visible towards the left of figure 10.7. Nevertheless, we can speculate
that λ̄min is the minimal value of the coupling for which the spectrum in the continuum
limit is real. Indeed, when the bulk perturbation turns on a marginal coupling, the latter
cannot be fine tuned, and generically a fixed point exists only on one side of λ̄min. In fact,
a natural scenario is that when λ̄ = λ̄min two fixed points collide and annihilate. In this
case, the only other available fixed point is obtained by deforming the Lee-Yang CFT
with the coupling (10.18), but this time starting from the boundary condition captured
by the Cardy state |V⟩Cardy (10.14b). This suggests a scenario analogous to the structure
of boundary conditions of a free scalar with negative mass squared in AdS. We shall
further discuss this hypothesis in section 11. For the moment, let us conclude by pointing
out an obvious consequence of these considerations: the theory defined by deforming the
Lee-Yang CFT with a coefficient λ < 0 does not admit a flat space limit. On the contrary,
it features a maximum radius Rmax = (λ̄min/λ)

5/12.
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Figure 10.7: First excited state energy in the Lee-Yang model in a range of couplings
around λ̄ = 0. For the values of λ̄ towards the left of the plot, the convergence with the
cutoff Λ is very slow, and does not allow to extrapolate the value λ̄min defined in the
main text.
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10.3 The Ising model

The Ising model is the diagonal minimal modelM(4, 3) with central charge

c =
1

2
. (10.27)

Its field content consists of three Virasoro families:

∆1 = 0 , ∆σ =
1

8
, ∆ϵ = 1 . (10.28)

The spin operator σ is odd under the Z2 symmetry of the model, while the energy operator
ϵ is even. The Ising model enjoys a Kramers-Wannier duality [181] which flips the sign of
the ϵ operator and replaces the σ operator with its disorder counterpart µ. The most
general bulk RG emanating from the 2d Ising model which preserves the AdS isometries
is given by the action

S = SIsing CFT − λϵ
∫
AdS

√
g d2x ϵ(x)− λσ

∫
AdS

√
g d2x σ(x) + λ1

∫
AdS

√
g d2x , (10.29)

where λϵ (resp. λσ) has mass dimension 1 (resp. 15/8) – there are no other relevant
scalar operators in the theory. The signs in front of λϵ and λσ are chosen for later
convenience. As before, the cosmological constant λ1 must be tuned to make the theory
finite. Physically, λϵ and λσ can be interpreted as a temperature T − Tc resp. a magnetic
field. The action (10.29) is sometimes referred to as the Ising field theory.

In the following sections, we will study the action (10.29) in AdS2, picking a definite
boundary state. Let us first discuss the phenomenology of (10.29) in flat space, where it
has been studied in detail. Notice that the long-distance physics of (10.29) is controlled
by the dimensionless coupling η = λϵ/|λσ|8/15, where the absolute value is a consequence
of the Z2 symmetry. Due to Kramers-Wannier duality, η parametrizes the projective
line: the points η = ±∞ are identified. There are two integrable points in the phase
diagram: η = 0 (λϵ = 0), called the magnetic deformation, and η = ∞ (λσ = 0), the
thermal deformation. The thermal deformation is identical to the theory of a Majorana
fermion with mass m = 2πλϵ, provided that ϵ has the canonical CFT normalization
⟨ϵ(x)ϵ(0)⟩ = 1/|x|2. Surprisingly, the magnetic deformation can be exactly solved as
well [182, 183], and its particle content is known. For generic η, the theory in flat space
or on the cylinder cannot be solved exactly, but a quantitative understanding of the
spectrum has been obtained in the series of papers [184–188], some of which use variants
of Hamiltonian truncation on the cylinder R× S1. Finally, the thermal deformation of
the Ising model in AdS2 was studied in Ref. [150].

Let us now turn to the definition of the model (10.29) in AdS. At the conformal fixed
point, as explained above, the relevant boundary conditions are labeled by the three
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primaries of the model:

|1⟩Cardy =
1

21/2
|1⟩⟩+ 1

21/2
|ϵ⟩⟩+ 1

21/4
|σ⟩⟩ , (10.30a)

|ϵ⟩Cardy =
1

21/2
|1⟩⟩+ 1

21/2
|ϵ⟩⟩ − 1

21/4
|σ⟩⟩ , (10.30b)

|σ⟩Cardy = |1⟩⟩ − |ϵ⟩⟩ . (10.30c)

The boundary conditions labeled by 1 and ϵ are mapped to each other by a spin flip:
they are fixed boundary conditions for the microscopic degrees of freedom. The spectrum
supported on both boundary conditions only includes the identity module. The σ Cardy
state, which is invariant under Z2, corresponds to free boundary conditions. Its spectrum
contains the identity module and the Z2 odd module labeled by ∆ = 1/2, which can be
identified with the family of states with an odd number of particles in the free fermion
description.

In the critical model, Kramers-Wannier duality can be implemented by a topological
defect Dσ [189], whose action on the boundary states teaches us how the boundary
conditions are mapped to each other:

Dσ |1⟩Cardy = Dσ |ϵ⟩Cardy = |σ⟩Cardy , Dσ |σ⟩Cardy = |1⟩Cardy + |ϵ⟩Cardy . (10.31)

As we shall discuss in a moment, the action of the duality is useful in understanding the
RG flow triggered by deforming the theory in AdS by the ϵ operator.

We shall perform a Hamiltonian truncation study of the RG flows emanating from the
critical Ising model with 1 boundary condition. Here are the first few states and their
degeneracies:

∆ 0 1 2 3 4 5 6 7 8 9 10

states 1 0 1 1 2 2 3 3 5 5 7
sl(2) primaries 1 1 1 1 2 2

We shall comment along the way about the other boundary conditions. Once we normalize
the vacuum state to one, the expectation values of the deforming operators are

⟨ϵ⟩ = (2R)−∆ϵ
⟨ϵ|1⟩Cardy

⟨Ω|Ω⟩ =
1

2R
, (10.32)

⟨σ⟩ = (2R)−∆σ
⟨σ|1⟩Cardy

⟨Ω|Ω⟩ =
21/4

(2R)1/8
. (10.33)

These values determine λ1 in eq. (10.29), as a function of λσ and λϵ.
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10.4 The Ising model with thermal deformation

In this section, we will consider the purely thermal deformation, setting λσ = 0 in eq.
(10.29). Keeping into account eq. (10.32), the potential reads

λ̄V = −λ̄
∫ π/2

−π/2

dr

(cos r)2

(
Rϵ(τ = 0, r)− 1

2

)
, (10.34)

with λ̄ = Rλϵ. This flow is exactly solvable, since, as advertised, it is described by a
free Majorana fermion in AdS, with mass m = 2πλϵ. In fact, there is hardly the need
to perform any computation in order to describe the spectrum. Let us start from the
critical theory. A free Majorana fermion on the upper half plane admits two boundary
conditions, ψ = νψ̄, with ν = ±1. The chiral flip (ψ, ψ̄)→ (−ψ, ψ̄), which corresponds
to the Kramers-Wannier duality of the Ising model, flips the sign of the mass and swaps
the boundary conditions. Hence, the theory in AdS is only allowed to depend on the
product mν. Furthermore, leading order perturbation theory is exact, so the trajectories
E(mR) must be linear. Finally, looking at the sign of m which admits a flat space limit,
we conclude that the slope of the first excited state is precisely the fermion mass:

E = mνR+
1

2
, ν = ±1 . (10.35)

The constant term is just the scaling dimension of a free massless fermion. The rest of
the spectrum is easily obtained by the usual Fock space construction. At the critical
point, a fermion in mode n has energy

ef =
1

2
+ n , (10.36)

and following the Pauli exclusion principle, no pair of fermions share the same mode.
Therefore, the energy of a state with N fermions is

EN = NmνR+
N

2
+

i=N∑
i=1

ni , ni ̸= nj (10.37)

where ni is a non negative integer: ni ∈ N0.

In fact, the argument above fixes eq. (10.35) only up to a sign, but we can define the sign
in front of m in the Hamiltonian so as to obtain eq. (10.35) as written. Of course, the
sign might be fixed by computing the leading (and only) order in Rayleigh-Schrödinger
(RS) perturbation theory. Further details about the quantization of the free Majorana
fermion in AdS2 can be found in [150]. Eq. (10.35) determines the spectrum of the Ising
model with any of the boundary states (10.30). Before comparing this prediction with
the result of Hamiltonian truncation, let us briefly discuss the cutoff effects.
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Cutoff effects

As for any minimal model with the boundary condition labeled by the identity, the leading
operator at the conformal fixed point has ∆ = 2. Hence, we expect the convergence
rate to approach Λ−1 for a large enough cutoff. This is indeed the case, as it can be
seen in figure 10.8. The right panel, in particular, shows that in this case we can follow
the first excited state up to a larger coupling than in our previous examples: λ̄ = 2

corresponds to Rm = 4π ≃ 12.6, so the radius of AdS is more than ten times larger
than the Compton wavelength of the fermion. On the other hand, it is worth mentioning
a feature of the convergence rate at weak coupling. Following appendix H.2, one can
compute the coefficient of the Λ−1 term – i.e. ci in eq. (8.51) – at second order in
perturbation theory. It turns out that c1 = O(λ̄3), c1 being the coefficient associated to
the convergence of the first excited state. By reproducing the left plot of figure 10.8 at
different values of λ̄, it is possible to confirm this fact.
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Figure 10.8: Energy of the first excited state in the Ising model deformed by ϵ versus
the cutoff, for weak and strong couplings. The dashed lines are the asymptotic values
extracted from the fit. The error bar can be found in figure 10.9.

Spectrum

Let us now associate the spectrum (10.35) to the boundary states (10.30) of the Ising
model. Again, let us start from the UV fixed point. The 1 and ϵ boundary conditions
only support the vacuum Virasoro character. Hence, their spectrum at the fixed point
is integer spaced, and can be obtained from the Majorana fermion by projecting onto
the states with even fermion number.9 The projection is obviously maintained by the
deformation (10.34). Therefore, the spectrum in AdS is obtained from eq. (10.37) with
the same projection. In particular, at λ̄ = 0 the first excited state is made of two fermions

9This projection is obtained by orbifolding the Z2 symmetry, the twisted sector being implemented by
Ramond boundary conditions. In fact, the Ramond Ishibashi state for the Majorana fermion equals |σ⟩⟩
in eq. (10.30) [190]. Correspondingly, the two available boundary conditions for periodic (Neveu-Schwarz)
fermions equal |1⟩Cardy + |ϵ⟩Cardy and |σ⟩Cardy respectively.
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Figure 10.9: Energy of the first excited state in the Ising model with thermal deformation
as a function of R̄.

in modes n = 0 and n = 1, with energy E = 2. Similarly, the lowest energy state with
four fermions appears at E = 8. In order to identify the spectrum, we still need to fix
the sign of ν in eq. (10.35). The simplest way to do it is to perform a leading order
computation in RS perturbation theory. The result shows that, with the identification
m = 2πλϵ, ν = +1 for the 1 boundary condition.

We are ready to compare with the results of Hamiltonian truncation. The gap is shown
in figure 10.9, where the good convergence up to large values of the coupling is evident.
Figure 10.10 gathers several low lying states, up to the first couple of four-particle states.
Comparing with the table of quasiprimaries presented above, we see that, contrary to
the other examples considered in this work, the second quasiprimary above the vacuum
(∆ = 4 at λ̄ = 0) has the same slope as the first excited state. This agrees with the usual
expectation: while all the excited single particle states are SL(2,R) descendants, the
spectrum of two-particle states includes infinitely many quasiprimaries. Truncation errors
are small, but visible: they begin to lift the degeneracies in the upper right corner of the
plot.
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Figure 10.10: Spectrum of the Ising model with thermal deformation. The color distin-
guishes parity even (red) from parity odd (blue) eigenstates. The data is computed at
Λ = 28. Black and green lines mark the exact spectrum for the states with two and four
fermions respectively.

The level crossing among the first four-particle state and the two-particle states leaving
from ∆ = 10 deserves a special discussion. This is the first example where level crossing
happens among states in the same parity sector. As we pointed out in subsection 7.4, in
the continuum limit the SL(2,R) symmetry implies exact level crossing. On the other
hand, at every finite truncation one expects level repulsion to take place. This creates a
puzzle for the prescription (8.1). What is the correct bare energy ei to be used in the
formula? The question is non trivial since our argument for the validity of eq. (8.1)
relies on studying the theory with a spatial cutoff, which again breaks SL(2,R). We find
experimentally that the correct procedure is to assign the bare energy ei following the
exact (Λ =∞) lines. In other words, the red data points on the green line on the right
of the crossing points are obtained from eq. (8.1) with ei = 8. Since level repulsion is
forbidden in the continuum, the prescription is in principle well defined. However, for a
finite cutoff Λ the levels do not exactly cross, so the procedure becomes ambiguous in a
region around the crossing point, whose size shrinks as the cutoff is increased.

Let us now briefly discuss the σ boundary condition, eq. (10.30c). Since Kramers-
Wannier duality maps 1 to σ – see eq. (10.31) – the spectrum originating from the
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Figure 10.11: Energy of the first excited state in the Ising model with thermal deformation,
in a range of couplings including λ̄ < 0. The solid line is the exact solution. Notice that
in this model λ̄ = R̄, hence this plot is the continuation of the plot in figure 10.9. We use
the label λ̄ for consistency with the other examples.
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Figure 10.12: Gap between the first excited state and its leading descendant, in the Ising
model with thermal deformation, for λ̄ < 0. When the coupling is sufficiently negative,
the restoration of conformal invariance is extremely slow, if at all present.

thermal deformation of the latter is obtained by choosing ν = −1 in eq. (10.37). Since
the σ boundary condition admits a state with ∆ = 1/2, the gap is given by the single
particle state in eq. (10.35), with slope −2π as a function of R̄. In general, the spectrum
is composed of both even and odd fermion states. The gap as a function of the radius of
AdS, for all the boundary conditions, is presented together in fig 11.2.
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Finally, let us again discuss what happens if we turn on the coupling with the wrong
sign, i.e. the sign which does not allow to reach the flat space limit. We expored this
question with Hamiltonian truncation, the result being shown in figure 10.11. Like with
the Lee-Yang model, our data become unreliable as the gap approaches ∆ = 1. This
is showcased not only by the discrepancy between the data and the exact solution, but
also by the lack of SL(2,R) invariance of the spectrum – see figure 10.12. In the exact
theory, the gap ∆ = 1 corresponds to λ̄ = −1/4π. There, the free fermion Hamiltonian,
with the boundary conditions we are considering, stops being well defined. Indeed, the
integral of the Hamiltonian density diverges due to the behavior of the Fermi fields close
to the boundary [150]. On the other hand, the theory emanating from the σ boundary
condition has rising trajectories in the direction of negative λ̄, and is well defined beyond
the ∆ = 1 point. Precisely at λ̄ = −1/4π, the spectra of the two theories, remarkably,
match, including all the multiplicities, as one can check by plugging mR = −1/2 in eq.
(10.37), and recalling that when ν = 1 the Ising model is obtained by restricting to even
N . This situation is coherent with both the free boson spectrum at the BF bound and the
picture we sketched while discussing the Lee-Yang model. Again, we delay until section
11 a unified discussion.

10.5 The Ising model in a magnetic field

We now move on to discuss the deformation triggered by λσ in eq. (10.29). More precisely,
we perturb the fixed point Hamiltonian with

λ̄V = −λ̄
∫ π/2

−π/2

dr

(cos r)2

(
R∆σ

aσ
σ(τ = 0, r)− 1

)
, aσ = 21/8 . (10.38)

Again, we consider the flow originating from the boundary condition labeled by the
identity. The sign is chosen so that, deforming the fixed point Hamiltonian with λ̄ > 0,
the energies monotonically increase with R. Notice that, since the Z2 symmetry maps the
1 boundary condition into ϵ, the sign of the magnetic field is meaningful. In particular,
comparing with eq. (10.33), we see that λ̄ > 0 corresponds to a magnetic field in the same
direction in the bulk as on the boundary. We shall analyze both positive and negative
values of λ̄ below.

In the R→∞ limit, the particle content is known thanks to the integrability of the flow
in flat space. The integrable flat space theory contains 8 particles, 3 of which have mass
below the two-particle continuum [182]. The mass ratio of the two lightest particles is
given by

m2

m1
= 2 cos

π

5
≈ 1.618 . (10.39)

The Ising model with a magnetic field is not exactly solvable in AdS, and the results for
the spectrum presented below are new.
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10.5 The Ising model in a magnetic field

Cutoff effects

The analysis of the cutoff effects proceeds in parallel with the previous examples. In
figure 10.13 the expected 1/Λ convergence rate is tested, for λ̄ > 0, both at weak and at
strong coupling. While the left plot gives confidence that the asymptotic region has been
reached, the fit in the right plot is poorer. A similar situation emerges from the study
of the gap between the first excited state and its first descendant. In the left panel of
figure 10.14, we observe a steady convergence to the unit gap expected in the continuum.
In the right panel, the size of the violation of the SL(2,R) symmetry rapidly drops, but
then the convergence becomes slow. These are signs that around λ̄ = 1 it may be worth
pushing the numerics further in the future, or improving the convergence rate along the
lines of subsection 8.7. However, it is not easy to draw an indication of the size of the
error. For instance, primaries and descendants may be affected by cutoff effects in a
similar way, thus reducing the violation of conformal symmetry visible in figure 10.14.
On the other hand, the procedure explained in subsection 9.1, which extracts error bars
from the quality of the fits in figure 10.13, yields a small error: the error bars are smaller
than the size of the points in figure 10.17.

Finally, in figures 10.15 and 10.16, we repeated the analysis with a choice of two negative
values for λ̄. As in the previous examples, if the sign of the coupling does not allow for a
flat space limit, the convergence rapidly deteriorates. As shown in the right panel of both
figures, at a coupling λ̄ ≃ −0.1 the spectrum is hardly converged in the range of cutoffs
available to us.
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Figure 10.13: Energy of the first excited state in the Ising model deformed by σ, as a
function of the cutoff, at weak and strong coupling.

Spectrum

We are ready to present the results of the TCSA applied to this model. Figure 10.17
shows the growth of the energy gaps with R, when the magnetic field in the bulk and on
the boundary are aligned (λ̄ > 0). Two conformal families are visible, the quasiprimaries
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Figure 10.14: Energy gap between the first primary and its first descendant for two
different couplings, in the Ising model with a magnetic field.
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Figure 10.15: Energy of the first excited state in the Ising model, as a function of the
cutoff, for two choices of negative magnetic field, λ̄ < 0.
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Figure 10.16: Energy gap between the first primary and its first descendant, as a function
of the cutoff, for two choices of negative magnetic field, λ̄ < 0.

being highlighted by black lines. They are on their way to become the first two particles
in the flat space spectrum with masses satisfying (10.39). However, the effects of the
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curvature are still sizable at these values of R̄: the ratio of the two slopes is at most
∼ 1.5, to be compared with the exact value 1.618.

Figure 10.18 again shows the low lying spectrum, this time as a function of the intensity
of the magnetic field λ̄. For negative values of λ̄, the first excited state approaches the
threshold ∆ = 1. As we pointed out in the previous examples, we expect the theory to
become unstable when this happens. Correspondingly, the convergence of the truncation
is poor for the leftmost points in the plot, and we cannot reliably draw conclusions about
the value of λ̄ where a new marginal operator arises, nor about the dependence ∆(λ̄)

close to that point.
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Figure 10.17: Spectrum of the Ising model in a positive magnetic field, λ̄ > 0, as a
function of the radius of AdS. The red and blue points are the extrapolated data, even
and odd respectively under parity. The black lines highlight the first two quasiprimaries,
and are only meant to guide the eye.
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Figure 10.18: Spectrum of the Ising model in a magnetic field, as a function of the
magnitude of the field. Error bars as measured from the uncertainty in the extrapolation
are not shown: they would be small, throughout the plot, but as discussed in the text
they probably underestimate the deviation from the continuum limit.
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11 Conclusion

AdS spacetime provides a maximally symmetric IR regulator for QFT. Furthermore, one
can place operators at the conformal boundary of AdS and their correlations functions
obey all the conformal bootstrap axioms (except for the existence of a stress tensor).
This opens the possibility to study massive QFT with the non-perturbative conformal
bootstrap methods [38]. There are two main difficulties to realize this idea in practice.
The first is technical: the standard numerical conformal bootstrap methods converge
poorly for large scaling dimension of the external operators, which corresponds to the
regime of large AdS radius. The second is conceptual: how to specify the particular
solutions of the bootstrap equations that corresponds to a particular QFT in AdS? One of
our motivations to develop the present work was the need for more data to help address
the second question.

In this work, we showed that QFT in AdS2 can be studied non-perturbatively using
Hamiltonian truncation. Our main target was the computation of the low-lying spectrum
of the Hamiltonian conjugate to global time (or equivalently the scaling dimensions of
boundary operators). We presented a concrete method to renormalize divergences in
Hamiltonian truncation and obtain finite physical results for the energy spectrum. In
this way, this work opens a new non-perturbative window into QFT on AdS spacetime.

Along the way, we gathered data about the spectrum at finite radius of a variety of two
dimensional QFTs. A striking feature of all the models we studied is the existence of
a minimal value of the coupling, λmin, beyond which the convergence of Hamiltonian
truncation becomes poor. When the model is exactly solvable, i.e. for the free boson and
the Ising model with zero magnetic field, the minimal coupling can be precisely identified:
it is the point where the spectra of the theories defined in the UV with different boundary
conditions become identical. This leads us to the following speculation:

All conformally invariant boundary conditions for a given CFT are connected by relevant
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deformations of this CFT in AdS.

In figures 11.1 and 11.2 we depict how this may work for the spectrum of boundary
operators in the Lee-Yang and the Ising field theories. This speculation is supported by
the numerical results in figures 10.7 and 10.18. In figure 11.3, we show the analogous
figure for the exactly solvable model of a free massive scalar in AdSd+1. It is interesting
to notice that the free massive fermion provides an additional, somewhat degenerate,
instance of this phenomenon. Indeed, the spectra obtained by quantizing the theory
with the two possible boundary conditions are reported in eq. (10.37): rather than being
connected by a flow in AdS, they precisely coincide at the conformal fixed point λ̄ = 0.1

Leaving aside the case of the free fermion, let us comment on the expected behavior close
to the merging point of two curves. For concreteness, consider figure 11.1. The theory
emanating from the V boundary condition has a relevant operator, which generically has
to be fine tuned on the boundary, in order to preserve the AdS isometries. Let us call
g the coupling of this operator. The fine tuning is possible as long as the operator is
not marginal, so this leads us to identify λ̄min with the coupling where ∆ = d = 1. If we
perturb λ̄ away from this value, the beta function has the form

β(g) = (λ̄− λ̄min)− g2 + . . . (11.1)

where we neglect higher order terms in the boundary coupling g and in the bulk coupling
(λ̄− λ̄min).2 We are also careless about the magnitude of the coefficients in eq. (11.1):
they can be related to the appropriate bulk-to-boundary two-point function and boundary
three-point function. On the other hand, the signs have been chosen to match the
phenomenology in figure 11.1. Indeed, for λ̄ > λ̄min there are two fixed points with
g = g± = ±

√
λ̄− λ̄min. These fixed points correspond to the two curves merging at

λ̄ = λ̄min. In fact, the corresponding scaling dimension of the lightest boundary operator
is given by

∆± = d+
dβ

dg
(g±) = d± 2

√
λ̄− λ̄min , (11.2)

in agreement with our sketch. The theory at λ̄ < λ̄min should instead be described by
a complex CFT [191, 192]. The same features present themselves in all of the figures
in this chapter, except for the left panel in figure 11.2. In this case, the two curves
cross rather than merging smoothly, and the lower curve is allowed to proceed to the
left towards the flat space limit. The reason for this exception is simple: the relevant
operator σb is Z2 odd, while the bulk perturbation is Z2 even. No fine tuning is necessary
in this case, hence no dangerous marginal operator is turned on at λ̄ = λ̄min. Finally,

1Notice instead that they do not coincide at λmin as defined in figure 11.2. As explained in section 10.4,
the spectrum of the Ising model with the |1⟩Cardy boundary condition equals the free fermion spectrum,
projected onto the even fermion number. It is this projected spectrum which merges with the full
fermionic theory flowing from the |σ⟩Cardy boundary condition. Without the projection, the two spectra
have different multiplicities at λ = λmin. Moreover, the |1⟩Cardy boundary condition has an additional
single fermion state with vanishing energy.

2A term proportional to g(λ̄− λ̄min) can be eliminated by shifting g.
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this discussion suggests that turning on the relevant boundary operator allows to flow
between the theories which merge at λ̄min.

We look forward to learn about other studies that confirm or disprove the speculation
above.

∆
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2
1
r

−2
5

Vr

1

λ̄min

6

∫
bry Vb

Figure 11.1: Sketch of the scaling dimension of the first boundary operator (above the
identity) for the scaling Lee-Yang model in AdS2. At λ = 0, the bulk theory is conformal
and the two black dots correspond to the two possible BCFTs (labeled by 1 and V) for
the Lee-Yang minimal model. We conjecture that the two curves merge (smoothly) at
λ̄ = λ̄min ≈ −0.5 and ∆ = 1 (see figure 10.7). We expect that ∆ becomes complex for
λ̄ < λ̄min similarly to what happens for complex CFTs [192]. There is also a boundary
RG flow generated by the relevant boundary operator with ∆ < 1 that goes from the
lower to the upper curve.

In this work, we also explored other aspects of QFT in curved space. In particular,
we discussed spontaneous symmetry breaking in AdS, both in the classical theory, in
section 7.5, and via Hamiltonian truncation for ϕ4 in section 9.2. Our considerations
leave open a few interesting questions, related to the nature of symmetry breaking at
finite AdS radius. Probably the most pressing one is: what is the signal on the boundary
of the phase transition in the bulk? When analyzing the ϕ4 theory, we provided evidence
for the fact that the bulk theory is not described by a CFT at the phase transition. This
evidence was based at weak coupling on connecting the phase transition line to a free
massive boson at the BF bound, whose stress tensor is not traceless. Hence, we should
not be looking for Virasoro symmetry in the boundary spectrum. On the other hand, the
appearance of the BF bound raises the tantalizing hypothesis that the (in)stability of
the false vacuum shares some similarities with the previously discussed (in)stability of a
theory under bulk deformations beyond a coupling λ̄min, due to the flow generated by a
marginal operator. It would be interesting to scrutinize this hypothesis further, perhaps
via a higher order computation at weak coupling.

Moving on to the more technical aspects, a lot of effort was devoted in this work to
overcome the challenges presented by Hamiltonian truncation in infinite volume, leading

185



Chapter 11. Conclusion

∆

λ̄

2
1,ϵq

1
2

σq1
λ̄min

6∫
bry σb

∆

λ̄

2
q 1ϵ

1
2

σq
1

λ̄min

6∫
bry σb

Figure 11.2: Sketch of the scaling dimension of the first boundary operator (above the
identity) for the Ising field theory in AdS2. The black dots mark the three possible BCFTs
(labeled by 1, ϵ and σ) for the Ising minimal model. On the left, we show the thermal
deformation that is exactly solvable in terms of a massive free fermion [150]. On the right,
we show (our best guess for) the magnetic deformation. The curve marked 1 was studied
with Hamiltonian truncation (see figure 10.18). The curve marked ϵ is obtained from this
one by the Z2 (spin flip) symmetry of the Ising model. This Z2 symmetry implies that
the right picture should be symmetric under the reflection λ̄→ −λ̄. We conjecture that
the curves merge (smoothly) at λ̄ = ±λ̄min ≈ ±0.1 and ∆ = 1. There is also a boundary
RG flow generated by the relevant boundary operator with ∆ < 1 that goes from the
lower to the upper curves. In the right plot, the flow is expected to land on the first
stable fixed point. This is clearly visible from the perturbative beta function (11.1) close
to λ̄min, which describes a one-parameter flow.

up to the prescription (8.1). We hope that the lessons learned here will be useful in
studying other UV sensitive flows with the same framework. While the prescription has
been tested in a variety of situations, we came short of rigorously proving its validity. The
main obstacle is the lack of positivity of the spectral densities involved in the computation,
whose large energy limit is therefore not easily tied to the short distance limit of the
Laplace transform. Famously [53], this problem would not be present if we wanted to
estimate the large energy limit of the spectral density averaged over a smooth measure.
This suggests that it may be worth applying to this problem the ideas of [193], where
a smooth cutoff was used instead of the usual sharp truncation of the Hilbert space to
a finite subspace. Another direction worth exploring is the possibility for eq. (8.1) to
emerge from a renormalization procedure, where the high energy tail of the spectrum is
integrated out systematically [40]. The difficulty is of course that the Hamiltonian in AdS
does not possess a continuum limit to start from. One possible starting point is the theory
with a spatial cutoff ϵ, as in eq. (8.13), which is well defined. An RG derivation of the
prescription might be useful in elucidating the UV sensitivity of eq. (8.1), which depends
explicitly on the bare energies. For instance, this feature gives rise to an ambiguity along
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Figure 11.3: Scaling dimension of the first Z2-even boundary operator (above the identity)
for a free massive scalar field in AdSd+1, namely ∆ = d ±

√
1 + 4λ̄. The value λ̄ = 0

corresponds to a conformally coupled scalar. The black dots mark the two possible BCFTs
(Dirichlet or Neunmann boundary conditions). We see that the 2 curves merge smoothly
at λ̄ = −1

4 and ∆ = d. There is also a (Z2 preserving) boundary RG flow generated by
the relevant boundary operator (ϕ2) with ∆ < d that goes from the lower to the upper
curve.

the flow, namely the identification of the correct shift in the neighborhood of a level
crossing, as discussed in section 10.4.

With the aim of obtaining high precision results in Hamiltonian truncation at larger values
of the the AdS radius, it will be necessary to systematically improve the action along the
lines explained in section 8.7. This was important in previous works [41, 166, 168], and it
would be especially worth trying it when the UV boundary spectrum contains operators
with low scaling dimension, like the in the case of the minimal models.

A more ambitious way of improving the procedure is related to the fact that, in this work,
we did not take full advantage of the symmetries of AdS spacetime. The isometry group
of AdS2 is SL(2,R) and states must fall into irreducible representations of this group.
We used this fact to test numerical convergence, but it would be interesting to exploit
it to accelerate the algorithm. Perhaps, we could start by finding the subspace of the
Hilbert space generated by primary operators by looking at the kernel of the symmetry
generator K, and then diagonalize H in this subspace. We leave the exploration of this
idea for the future.

One can also wonder if Hamiltonian truncation can be used to compute observables
other than the spectrum. One motivation is the following. It is well known that one
can extract scattering amplitudes from the finite size behaviour of the energy levels on a
compact space [194]. However, in its standard form, this method only gives access to the
elastic region of the 2 to 2 scattering amplitude. One advantage of AdS is that one can
extract scattering amplitudes at arbitrarily high energy from the flat space limit of the
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boundary correlation functions [128, 130, 38, 195, 132, 133]. It would be interesting to
adapt Hamiltonian truncation to compute boundary correlation functions and test this
idea in practice.

Finally, a rewarding byproduct of our efforts was the formula (G.9), which summarizes the
cumbersome sums characterizing Rayleigh-Schrödinger perturbation theory in a compact
and useful expression. We proved eq. (G.9) for non-degenerate perturbation theory. It
would be nice to generalize the formula to the degenerate case.
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A Special functions

In this appendix, we list a number of identities that are used throughout this thesis.

A.1 Common special functions

Gamma function

The large limit of the gamma function is given by Stirling’s approximation as

lim
|z|→∞

Γ(z) =

√
2π

z
e−zzz. (A.1)

This is true for any x on the complex plane but the negative real line. The convergence is
weaker as x approaches the negative real line and to get to the asymptotic regime, one
needs to go beyond |z| ∼ 1/θ in which θ is the angle with the negative real line. In the
case in which z = x+ iy with x, y ∈ R and |y| ≫ 1, one has:

Γ(x+ iy) = (1− i)√πe iπx2 −iy−πy
2 yiy+x−

1
2 . (A.2)

Barnes’s lemma

The following identity [196, Theorem 2.4.3] is known as Barnes’s second lemma:

1

2πi

∫ i∞

−i∞
ds Γ(−s)Γ(a+ s)Γ(b+ s)Γ(c+ s)Γ(1− e− s)

Γ(f + s)

=
Γ(a)Γ(b)Γ(c)Γ(1− e+ a)Γ(1− e+ b)Γ(1− e+ c)

Γ(f − a)Γ(f − b)Γ(f − c) (A.3)

which holds when e = a+ b+ c− d+ 1.
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Gegenbauer

The Gegenbauer function is defined as [197, 8.932.1]

CαJ (z) =
Γ(J + 2α)

Γ(J + 1)Γ(2α)
2F1

[−J, J + 2α

α+ 1
2

∣∣∣∣1− z2

]
(A.4)

which matches with the Gegenbauer polynomials when J is a non-negative integer with
the following orthogonality relations:∫ 1

−1
dx (1− x2)α− 1

2Cαn (x)C
α
m(x) =

π21−2αΓ(n+ 2α)

Γ(n+ 1)Γ(n+ α)Γ(α)2
. (A.5)

for n and m non-negative integer.

Hypergeometric function

In this thesis we may use two equivalent notation of hypergeometric functions:

pFq(a1, · · · , ap; b1, · · · , bq; z) = pFq

[
a1, · · · , ap
b1, · · · , b

∣∣∣∣z] . (A.6)

Integrating a hypergeometric function against a monomial yields [197, 7.511]:∫ ∞

0
dt tα−1

2F1(a, b; c;−t) =
Γ(c)Γ(α)Γ(a− α)Γ(b− α)

Γ(a)Γ(b)Γ(c− α) (A.7)

where we assume the 0 < ℜ(α) < min{ℜ(a),ℜ(b)} for the integral to be convergent.

It is very useful to change the last argument of hypergeometric to its inverse. This can
be done by the identity [198, sec 2.9]

2F1(a, b; c; z) =
Γ(b− a)Γ(c)
Γ(b)Γ(c− a)(−z)

−a
2F1

[
a, a− c+ 1

a− b+ 1

∣∣∣∣1z
]

+ a↔ b . (A.8)

There is also two other identities that happen to be helpful in some of the calculations in
this thesis [198, sec 2.9]:

2F1(a, b; c; z) = (1− z)c−a−b 2F1(c− a, c− b; c; z) , (A.9)

and

2F1(a, b; c; z) =
Γ(b− a)Γ(c)
Γ(b)Γ(c− a)(1− z)

−a
2F1

[
a, c− b
a− b+ 1

∣∣∣∣ 1

1− z

]
+ a↔ b . (A.10)

Let us collect some results that involve the branch cut of the hypergeometric function
2F1(a, b, c; z) across the cut z ∈ [1,∞). In particular, we want to find the discontinuity
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(Disc) and the average (Ave) along the cut, which are defined as

Disc [f(z)] := f(z+iϵ)−f(z−iϵ) and Ave [f(z)] :=
1

2
(f(z + iϵ) + f(z − iϵ)) . (A.11)

Using (A.8) and
Disc[za] = 2i sinπa (−z)a , (A.12)

we find that

Disc [2F1(a, b; c; z)] = cos(πa)
Γ(b− a)Γ(c)
Γ(c− a)Γ(b)z

−a
2F1

[
a, a− c+ 1

a− b+ 1

∣∣∣∣1z
]

+ a↔ b (A.13)

Ave [2F1(a, b; c; z)] = 2i sin(πa)
Γ(b− a)Γ(c)
Γ(c− a)Γ(b)z

−a
2F1

[
a, a− c+ 1

a− b+ 1

∣∣∣∣1z
]

+ a↔ b .

Another way to find the discontinuity is to consider the integral representation [199,
15.6.1]

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
xb−1(1− x)c−b−1(1− zx)−a dx ℜ(c) > ℜ(b) > 0.

(A.14)
together with A.12. This yields

Disc[2F1(a, b; c; z)] =
2πiΓ(c) z1−c (z − 1)c−b−a

Γ(a)Γ(b)Γ(c− a− b+ 1)
2F1

[
1− b, 1− a
c− a− b+ 1

∣∣∣∣1− z] (A.15)

which is in agreement with (A.1) using [199, 15.8.4].

Finally, the generalized hypergeometric function 3F2 has the following integral represen-
tation:

3F2(a1, a2, a3; b1, b2; t) =
Γ(b2)

Γ(a3)Γ(b2 − a3)

∫ 1

0
za3−1(1− z)−a3+b2−1

2F1(a1, a2; b1; z) .

(A.16)

A.2 Estimates for F̃ at large ∆

In this section we will provide some estimates for the quantity F̃ defined in (5.46)
appearing in the one-dimensional bootstrap equation (5.45). Since only expressions for
ℓ = 0 are used in the present work, we will focus on that case, although the ℓ = 1 case
can be studied similarly. The function F̃ consists of four terms:

F̃ s−t∆,ℓ=0 = I(∆, γ, σ)− I(∆, σ, γ) + I(1−∆, γ, σ)− I(1−∆, σ, γ) (A.17a)
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with

I(∆, γ, σ) = K∆re+i∆im,∆re−i∆im
1−∆,0

Γ(∆ + γ + 1)Γ(2∆re + σ + 1)

Γ(∆ + 2∆re + γ + σ + 2)

× 3F2

[
∆+ 2i∆im, ∆− 2i∆im, ∆+ γ + 1

2∆, ∆+ 2∆re + γ + σ + 2
, 1

]
. (A.17b)

Convergence of the hypergeometric functions requires that

1 + 2∆re + γ > 0 and 1 + 2∆re + σ > 0 . (A.18)

In order to study the convergence of the bootstrap problem, we need to consider the
large-ν limit for ∆ = 1/2 + iν and the large-n limit of ∆ = n ∈ N. Let’s treat these cases
separately.

Principal series

First of all, let’s set ∆ = 1/2 + iν and analyze the limit ν → ∞. Notice that the four
terms in F̃ are related to I(∆, γ, σ) via the permutations ν 7→ −ν and/or γ ↔ σ. Hence
if we understand the large-ν asymptotics of I(∆, γ, σ), it is straightforward to understand
the deduce the large-ν behavior of the full function F̃ .

For the case at hand, it will prove convenient to rewrite the 3F2(1) using a hypergeometric
transformation, which yields

I(∆, γ, σ) =K∆re+i∆im,∆re−i∆im
1−∆,0

Γ(∆ + γ + 1)Γ(2∆re + σ + 1)2

Γ(∆ + 2∆re + γ + σ + 2)

× Γ(2∆)

Γ(∆− 2i∆im)Γ(1 + ∆+ 2i∆im + 2∆re + σ)

×3F2

[
∆+ 2i∆i, 1 + 2∆re + σ, 2 + γ + 2i∆im + 2∆re + σ

2 + γ +∆+ 2∆re + σ, 1 + ∆+ 2i∆im + 2∆re + σ
, 1

]
.

(A.19)

The new 3F2(1) converges when ℜ(∆) > 0, which holds in particular on the axis ℜ(∆) =

1/2. To begin, let us analyze the different factors appearing in I from Eq. (A.19). The
K-function goes as

K∆re+i∆im,∆re−i∆im
d
2
−iν,0 ∼

ν→∞
e−iπ/4

√
π
4−iν√
ν

(A.20)

independently of ∆im (and in fact K1−∆ did not depend on ∆re in the first place). Next,
the gamma functions go as

Γ4

Γ3
∼

ν→∞

eiπκ√
π
Γ(1 + 2∆re + σ)2

4iν

ν3/2+4∆re+2σ
, κ =

5

4
− 2∆re − σ . (A.21)
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A.2 Estimates for F̃ at large ∆

It remains to find the ν →∞ asymptotics of the 3F2(1) hypergeometric function. But
it’s easy to show that

3F2

[
∆+ 2i∆i, 1 + 2∆re + σ, 2 + γ + 2i∆im + 2∆re + σ

2 + γ +∆+ 2∆re + σ, 1 + ∆+ 2i∆im + 2∆re + σ
, 1

] ∣∣∣∣
∆=

1
2+iν

∼
ν→∞

1 . (A.22)

One way to show this is using the series representation of the 3F2(1), which converges for
the case in question. Schematically it is of the form

3F2(1) = 1 +
∞∑
n=1

an(∆) with an(∆) ∼
∆→∞

1

∆n
(A.23)

so the terms with n ≥ 1 are unimportant in the limit |∆| → ∞. Bringing everything
together, we conclude that

I(12 + iν, γ, σ) ∼
ν→∞

Γ(1 + 2∆re + σ)2

ν2+4∆re+2σ
(A.24)

up to some O(1) numerical factor. Finally, we conclude that

F̃ s−t1
2+iν,ℓ=0

∼
ν→∞

1/ν2+4∆re+2min(γ,σ) . (A.25)

Discrete series

The analysis for ∆ = n ∈ N is similar. First note that F̃n only consists of two terms:

F̃ s−tn,ℓ=0 = I(n, γ, σ)− I(n, σ, γ) (A.26)

where I(n, γ, σ) is defined in (A.17b). For large n, the K-function behaves as:

K∆re+i∆im,∆re−i∆im
1−n,0 ∼

n→∞

√
π(1 + (−1)n cosh(2π∆im))

1

22n−1
√
n
. (A.27)

The large n limit of the rest of the terms in I(n, γ, σ) are thus very similar to the above
expression replacing ν → n. In the end, one finds:

I(n, γ, σ) ∼
n→∞

(1 + (−1)n cosh(2π∆i))
Γ(1 + 2∆re + σ)2

n2+4∆re+2σ
. (A.28)

Including the second term with γ ↔ σ, we find that

F̃ s−tn,ℓ=0 ∼
n→∞

1/n2+4∆re+2min(γ,σ) . (A.29)
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B Action of SO(d + 1, 1) generators

In this appendix, we find the action of SO(d + 1, 1) generators on scalar sates |∆, k⟩
and |∆, x⟩. For simplicity we focus on scalar states, but the generalization to traceless
symmetric spinning states is straightforward.

Take the wavefunction defined in (3.11) or (2.61):

Φx(x, η) = ⟨Ω|ϕ(x, η)|∆, k⟩ = e−ik.x(−η) d2hiν(|k|η) (B.1)

where |Ω⟩ is the Bunch-Davis vacuum. We again used ∆ = d
2 + iν. The action of the

conformal generators on the field can be also expressed as the differential operator

[Q,ϕ(x)] = Q̂ ϕ(x) , (B.2)

in which Q is the corresponding Hilbert space charge operator of the Killing vector
differential operator Q. We use notation Â to a distinguish differential operator from a
Hilbert space operator A. Acting on wavefunctions with Q̂ and using the fact that the
Bunch-Davis vacuum is invariant under our isometries i.e. Q|0⟩ = 0, one can find the
action of the charges on the states |∆, k⟩. For example, in the case of Q = Pµ:

P̂µ Φk(x, η) = ∂µΦk(x, η) = −ikµΦk(x, η) = −ikµ⟨0|ϕ(x)|∆, k⟩ (B.3)

= −⟨0|ϕ(x)Pµ|∆, k⟩ .

We find the familiar relation

Pµ|∆, k⟩ = ikµ|∆, k⟩ . (B.4)

With the same approach, one can find the action of the other generators on the chosen
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basis. The action of the dilatation operator is

D̂⟨0|ϕ(x)|∆, k⟩ = (η∂η + x.∂x)
[
(−η) d2hiν(|k|η)eik.x

]
(B.5)

=

[
(−ik.x+

d

2
)hiν(|k|η)(−η)

d
2 eik.x + k∂khiν(|k|η)(−η)

d
2 eik.x

]
= (k.∂k +

d

2
)
[
(−η) d2hiν(|k|η)eik.x

]
,

D̂⟨0|ϕ(x)|∆, k⟩ = −⟨0|ϕ(x)D|∆, k⟩ , (B.6)

in which we use the fact that hiν(|k|η) is symmetric under exchange of k ↔ η and
k.∂kf(k) = k∂kf(k) to change the time derivative to momentum derivative. Hence the
action of the Dilatation operator on this basis is

D|∆, k⟩ = −(k.∂k +
d

2
)|∆, k⟩ . (B.7)

Finally, for the case of Q = Kµ one finds

K̂µ⟨0|ϕ(x)|∆, k⟩ = c2((η
2 − x.x)∂xµ + 2xµη∂η + 2xµx.∂x)

[
(−η) d2H(2)

iν (−kη) eik.x
]

= c2

[
(−ikµ(η2 − x.x) + 2xµ(−ik.x+

d

2
))Hiν + 2(−kη)H ′

iν

]
(−η) d2 eik.x ,

K̂µ⟨0|ϕ(x)|∆, k⟩ = −⟨0|ϕ(x)Kµ|∆, k⟩ . (B.8)

where c2 =
√
π
2 e

πν
2 and we dropped the Hankel function type index and dependence on

−ηk to avoid clutter. We also write ∂−ηkHiν(−ηk) = H ′. In parallel, we have

∂kµΦ = c2(−ixµHiν +
kµ
k2

(−ηk)H ′
iν)(−η)

d
2 eik.x ,

∂kα∂kµΦ = c2[−xαxµHiν − ixµ
kα
k2

(−ηk)H ′
iν − ixα

kµ
k2

(−ηk)H ′
iν

+ (
δµα
k2
− kµkα

k4
)(−ηk)H ′

iν + (
kµkα
k4

)(−ηk)2H ′′
iν ](−η)

d
2 eik.x,

= c2[−xαxµHiν − ixµ
kα
k2

(−ηk)H ′
iν − ixα

kµ
k2

(−ηk)H ′
iν

+ (
δµα
k2
− 2

kµkα
k4

)(−ηk)H ′
iν − (

kµkα
k4

)(−ηk)2Hiν − (
kµkα
k4

)ν2Hiν ](−η)
d
2 eik.x ,

in which we exchange second derivative of Hankel function with terms of the first derivative
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and zero derivatives using the its generating differential equation. This leads to

kα∂kα∂kµΦ = c2(−η)
d
2 eik.x

[
− kµ
k2

(−ηk)H ′
iν − i(−ηk)H ′

iν(xµ + (k.x)
kµ
k2

)

− (k.x)xµHiν − η2kµHiν − ν2
kµ
k2
Hiν

]
,

kµ∂
kα∂kαΦ = c2(−η)

d
2 eik.xkµ

[d− 2

k2
(−ηk)H ′

iν − i(−ηk)
2k.x

k2
H ′
iν

− x.xHiν − η2Hiν −
ν2

k2
Hiν

]
.

Then the particular linear combination of (−2kα∂kα∂kµ + kµ∂
kα∂kα − d∂kµ)Φ is equal to

c2(−η)
d
2 eik.x

[
2i(−ηk)H ′

iνxµ − 2(k.x+ i
d

2
)xµHiν + (η2 − x.x)kµHiν +

ν2

k2
kµHiν

]
.

Considering what we found in (B.8), we arrive at the following expression for Kµ acting
on |∆, k⟩:

xKµ|∆, k⟩ = i

[
kµ∂

kα∂kα − 2kα∂kα∂kµ − d∂kµ −
ν2

k2
kµ

]
|∆, k⟩ . (B.9)

The action of Mµν is the trivial action of SO(d) rotation group on scalars that we
do not spell it out here. One can explicitly check the action of quadratic Casimir
C = D2 − 1

2(K
µPµ + PµKµ −MµνM

µν) will give the desired relation (2.64).

We may now derive the action of conformal generators on the position space states

|∆, x⟩ =
∫
ddk eik.xk∆− d

2 |∆, k⟩ (B.10)

mentioned in 2.114a and 2.114b.

One careful reader may ask why it is not simply the Fourier transformation and it has
an extra factor of k∆− d

2 . This is due to the fact that we wanted this state to be like
a primary state at point x with dimension ∆. In fact, one can put a general function
instead and after imposing the right transformations under dilataion or special conformal
isometries, will find the suggested factor. One can easily check the action of Pµ on these
states:

Pµ|∆, x⟩ =
∫
ddk eik.xk∆− d

2 Pµ|∆, k⟩

= i

∫
ddk eik.xk∆− d

2 kµ|∆, k⟩

= ∂µ

∫
ddk eik.xk∆− d

2 |∆, k⟩

= ∂µ|∆, x⟩

(B.11)
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We also may check the action of dilatation operator D:

D|∆, x⟩ =
∫
ddk eik.xk∆− d

2 D|∆, k⟩

= −
∫
ddk eik.xk∆− d

2 (k.∂k +
d

2
)|∆, k⟩

= i∂µ
∫
ddk eik.xk∆− d

2 ∂kµ |∆, k⟩ −
d

2
|∆, k⟩

= −i∂µ
∫
ddk ∂kµ(e

ik.xk∆− d
2 )|∆, k⟩ − d

2
|∆, k⟩

= −i∂µ
∫
ddk

[
ixµ + (∆− d

2
)
kµ
k2

]
(eik.xk∆− d

2 )|∆, k⟩ − d

2
|∆, k⟩

= (x.∂x + d+ (∆− d

2
)− d

2
)|∆, x⟩

= (x.∂x +∆)|∆, x⟩

(B.12)

where we performed integral by parts and dropped the boundary terms (at k →∞). The
action of Kµ on (2.110) is

Kµ|∆, x⟩ =
∫
ddk eik.xk∆− d

2 Kµ|∆, k⟩

= i

∫
ddk eik.xk∆− d

2 (−2kα∂kα∂kµ + kµ∂
kα∂kα − d∂kµ −

ν2

k2
kµ)|∆, k⟩

(B.13)

One might rewrite each of the four terms using integral by parts

1st term = −2∂α
∫
ddk eik.xk∆− d

2 ∂kα∂kµ |∆, k⟩

= 2∂α
∫
ddk

[
ixα + (∆− d

2
)
kα
k2

]
eik.xk∆− d

2 ∂kµ |∆, k⟩

= 2i(x.∂x +∆+
d

2
)

∫
ddk eik.xk∆− d

2 ∂kµ |∆, k⟩

= −2i(x.∂x +∆+
d

2
)

∫
ddk eik.xk∆− d

2

[
ixµ + (∆− d

2
)
kµ
k2

]
|∆, k⟩

= 2(xµx.∂x + (∆+
d

2
+ 1)xµ)|∆, x⟩ − 2i(x.∂x +∆+

d

2
)(∆− d

2
)Aµ

= 2(xµx.∂x + (∆+
d

2
+ 1)xµ)||∆, x⟩ − 2i(∆ +

d

2
)(∆− d

2
)Aµ − 2i(∆− d

2
)xα∂µAα ,

(B.14)
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2nd term = ∂µ

∫
ddk eik.xk∆− d

2 ∂k
α
∂kα |∆, k⟩

= −∂µ
∫
ddk eik.xk∆− d

2

[
ixα + (∆− d

2
)
kα
k2

]
∂kα |∆, k⟩

= ∂µ

∫
ddk eik.xk∆− d

2

[
ixα + (∆− d

2
)
kα

k2

] [
ixα + (∆− d

2
)
kα
k2

]
|∆, k⟩

+ (d− 2)(∆− d

2
)∂µ

∫
ddk eik.xk∆− d

2
1

k2
|∆, k⟩

= ∂µ

∫
ddk eik.xk∆− d

2 [−x2 + 2i(∆− d

2
)
k.x

k2
+

(∆− d
2)

2

k2
]|∆, k⟩

+ (d− 2)(∆− d

2
)∂µψ

= (−x2∂µ − 2xµ)|∆, x⟩+ 2i(∆− d

2
)∂µ(x

αAα)

+ i[(∆− d

2
)2 + (d− 2)(∆− d

2
)]Aµ ,

(B.15)

3rd term = id

∫
ddk eik.xk∆− d

2

[
ixµ + (∆− d

2
)
kµ
k2

]
|∆, k⟩,

= −dxµ|∆, x⟩+ id(∆− d

2
)Aµ ,

4th term = −iν2Aµ .

(B.16)

in which we defined Aµ ≡
∫
ddk eik.xk∆− d

2
kµ
k2
|∆, k⟩ and ψ ≡

∫
ddk eik.xk∆− d

2
1
k2
|∆, k⟩.

We also used the following identities: ∂µψ = iAµ and xα∂αAµ = xα∂µAα. Note that we
assume the boundary terms coming from integrals by parts vanish. Putting all these
together we find

Kµ|∆, x⟩ =
(
2xµx.∂x − x2∂µ + 2∆xµ

)
|∆, x⟩ (B.17)

In conclusion, we showed that under the action of conformal generators D,Kµ, Pµ and
Mµν , position space state |∆, x⟩ defined in (2.110) behaves like a primary state in a
conformal theory. Hence, anY correlation function made of n operators sandwiched
between vacuum state |Ω⟩ and primary state |∆, x⟩, behaves like n+ 1 point function
with a insertion of primary operator O(x) with dimension ∆ and spin ℓ:

⟨Ω|O1(x1) · · · On(xn) |∆, x⟩ ∼ ⟨ΩO1(x1) · · · On(xn)O(x)Ω⟩ . (B.18)
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C Spectral density inversion formula

In section 3.3, the analytic continuation of a two-point function on Sd+1 to de Sitter was
discussed. This appendix explains the proof of the inversion formula (3.38), which played
an important role in that section. In passing, we discuss its convergence and large J limit.

C.1 Froissart-Gribov trick

The standard Gegenbauer inversion formula on Sd+1 was shown in Eq. (3.36) in the main
text. In what follows we will derive the inversion formula (3.38) for complex J through
what is known as the Froissart-Gribov trick, which is a standard tool in S-matrix theory.
We refer [200] and [201] for recent discussions.

Let us write α = d/2 in what follows, and furthermore let

ω(x) := (1− x2)α−1/2 .

Suppose that the function G(x) appearing in (3.36) is analytic in a neighborhood of
[−1, 1]. Furthermore, suppose that we are given a function QαJ (z) that is analytic in a
neighborhood of [−1, 1] but has the following discontinuity:

Disc
[
(z2 − 1)α−1/2QαJ (z)

]
= −2πi ω(x)CαJ (x) for z ∈ [−1, 1] . (C.1)

Given such a function, we have the following identity:∫ 1

−1
dxω(x)CαJ (x)G(x) =

1

2πi

∮
c
dz (z2 − 1)α−1/2QαJ (z)G(z) (C.2)

in which the contour c is a closed loop around the line segment [−1, 1], circled in the
counterclockwise direction. It turns out that there exists a unique function satisfying (C.1),
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namely

QαJ (z) :=

∫ 1

−1
dx′

(
1− x′2
z2 − 1

)α−1/2
CαJ (x

′)

z − x′ (C.3)

which by construction obeys (C.1); in fact, it can be shown that QαJ is the unique function
obeying (C.1). In order to find an explicit representation of QαJ we first of all notice that
QαJ obeys the same ODE as the Gegenbauer function CαJ (x), namely[

(1− x2) d
2

dx2
− (2α+ 1)x

d

dx
+ J(J + 2α)

]
f(x) = 0

which has a two-dimensional solution space. Either by computing the integral (C.3)
explicitly, or by imposing (C.1), one concludes that QαJ (z) can be written as

QαJ (z) =
N

(z − 1)J+2α 2F1

[
J + α+ 1

2 , J + 2α

2J + 2α+ 1

∣∣∣∣ 2

1− z

]
(C.4a)

where
N =

πΓ(J + 2α)

2J+2α−1Γ(α)Γ(J + α+ 1)
. (C.4b)

An equivalent form is

QαJ (z) =
N

zJ+2α 2F1

[ J
2 + α, J+1

2 + α

J + α+ 1

∣∣∣∣ 1z2
]

(C.4c)

which agrees with [201], taking into account a different choice of normalization used there.
Moreover we see that

QαJ (z) ∼
z→∞

1/zJ+2α

so for sufficiently large J the function decreases rapidly at infinity.

The formula (C.2) already provides a formula for aJ that is analytic in J :

aJ =
22α−1J !(J + α)Γ(α)2

πΓ(J + 2α)

1

2πi

∮
c
dz (z2 − 1)α−1/2QαJ (z)G(z) . (C.5)

However, we can further massage the RHS of (C.5) to obtain a form that is more
convenient for computations. We already saw that the function QαJ (z) decreases faster
than 1/zJ at large z, so at least for large J we can deform the contour and drop any arcs
at infinity. Next, we expect that the function G(z) has a branch cut on the real axis past
the point z = 1, say at [1,∞). Physically, this cut reflects the kinematics of the Sd+1

correlator, since z = 1 amounts to measuring the correlator at coincident points X = X ′.
The function G(z) has to be finite on (−1, 1), since these points are physical. Finally
z = −1 describes the correlator at antipodal points X = −X ′, where it is completely
regular. Consequently, we do not expect G to have a branch cut on the negative real axis

204



C.2 Example: aJ of the massive boson

(−∞,−1]. Blowing up the contour c, we can therefore write

aJ =
J !Γ(α)

2JΓ(J + α)

1

2πi

∫ ∞

1
dx

(x+ 1)α−
1
2

(x− 1)J+α+
1
2

2F1

[
J + 2α, J + α+ 1

2

2J + 2α+ 1

∣∣∣∣ 2

1− x

]
Disc [G(x)] .

(C.6)
After setting α → d/2, this is precisely the inversion formula from Eq. (3.38). If G(x)
has any poles or other branch cuts beyond [1,∞), additional terms need to be added to
formula (C.6).

The derivation presented here suffers from one minor issue. In writing (C.2) we had to
assume that G(x) extends to an analytic function in a small neighborhood around [−1, 1].
Yet (C.6) allows for the possibility that G(z) has a branch cut starting at z = 1, and
indeed typical Sd+1 correlators have z = 1 as a branch point. In practice, if G(z) is not
too singular near z = 1 then the inversion formula still holds.

C.2 Example: aJ of the massive boson

We now check the proposed inversion formula in the case of the free field of mass
m2R2 = ∆ϕ(d−∆ϕ). In the x-coordinate, the propagator reads

Gf(x) =
1

Rd−1

1

4πd/2+1

Γ(d2)Γ(∆ϕ)Γ(d−∆ϕ)

Γ(d)
2F1

[
∆ϕ, d−∆ϕ

d+1
2

∣∣∣∣1 + x

2

]
. (C.7)

The coefficients aJ are computed in [100], and the result is printed in (3.37). Here we will
reproduce their result using the inversion formula. The discontinuity of the Gf(x) can be
computed in various ways, for instance using (A.1). Finding discontinuity of two-point
function reduces to calculating discontinuity of hyeprgeometric function in (C.7). Using
(A.15), one finds

Disc[Gf(x)] =
2dπiR1−d

4π1+
d
2

Γ(d2)Γ(
d+1
2 )

Γ(d)Γ(3−d2 )
(x2 − 1)

1
2
− d

2 2F1

[
1 + ∆ϕ − d, 1−∆ϕ

3−d
2

∣∣∣∣1− x2

]
.

(C.8)
Before calculating the inversion formula integral, let us comment on its convergence. By
examining the limits x→ 1+ and x→∞, we conclude that (C.6) converges iff

x→ 1+ : ℜ(J +∆ϕ) > 0, ℜ(J + d−∆ϕ) > 0 as well as x→∞ : d < 3 .

Let us now calculate the integral (C.6). Inside the integrand, we replace the 2F1 appearing
in DiscG(x) with the help of the Barnes hypergeometric integral representation

2F1(a, b, c, z) =
Γ(c)

2πiΓ(a)Γ(b)

∫ γ+i∞

γ−i∞
ds

Γ(s)Γ(a− s)Γ(b− s)
Γ(c− s) (−z)−s , (C.9)
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where γ is chosen in such a way that the three families of poles in the s-plane that move
to the left and right are separated. After the change of variable x→ t = 2

x−1 and using
the identity (A.7), we can compute the t-integral exactly. This yields

aJ =
Γ(3−d2 )

2J+dπiΓ(1−∆ϕ)Γ(1 + ∆ϕ − d)
Γ(2J + d+ 1)

Γ(J + d)Γ(J + d
2 + 1

2)

×
∫ γ+i∞

γ−i∞
ds
−Γ(1− s)Γ(s)Γ(1 + ∆ϕ − d− s)Γ(1−∆ϕ − s)Γ(J + s+ d− 1)

Γ(J − s+ 2)
. (C.10)

The remaining Mellin-Barnes integral can be done using (A.3), which yields

aJ =
R1−d

4π1+
d
2 22J

Γ2(d2)Γ(
d+1
2 )

Γ(d)

Γ(2J + d+ 1)

Γ(J + d
2)Γ(J + d

2 + 1
2)

1

(J + d−∆ϕ)(J +∆ϕ)
. (C.11)

Using some simplifications, we indeed recover the result (3.37).

C.3 Large J behavior

As discussed in section 3.3, we studied the analytic continuation of aJ using the inversion
formula (3.38) to find the spectral density of the theory. As we change the contour
in (3.42), we need to know the large J behavior of aJ and to be precise, we want to find
the upper bound of aJ as we approach the limit |J | → ∞. We will argue that the J →∞
behavior is related to the x → 1 (or ξ → ∞) limit of the correlator. We have already
encountered this in one example: for the bulk CFT correlator (3.65), we computed that

Gδ(x) =
1

(1− x)δ ⇒ ρδ(
d
2 + iν) ∼

ν→∞

2d+2π(d+3)/2

Γ(δ)Γ(δ − d
2 + 1

2)
ν2δ−d (C.12a)

or using (3.49) and setting ν → J , at least formally we obtain

aJ ∼
J→∞

1/Jd−2δ . (C.12b)

We want to put this relation (C.12b) on a more solid footing by means of Eq. (3.38).

Let us spell out the assumptions going in the derivation below. We assume that the
discontinuity of G(x) behaves as

x ≥ 1 : DiscG(x) =

(
x+ 1

x− 1

)δ
Ĝ(x) for some δ < 1 . (C.13)

Here Ĝ(x) is a bounded and slowly varying function on [1,∞), having a finite limit as
x→ 1. It turns out that the large-x behavior of Ĝ(x) is not really important, provided
that Ĝ(x) does not grow faster than any power law. The restriction δ < 1 is necessary to
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C.3 Large J behavior

guarantuee convergence of the inversion formula at finite J , and the second assumption
(which is stronger in d < 2 but weaker for d ≥ 2) is needed to have a uniform J → ∞
limit, as we will see. For values δ ≥ 1 the integrand needs to be regulated, and we will
not discuss this case at present.

Given the above, we write the inversion formula for this case as

aJ ≈
1

4JJd/2−1

∫ ∞

1

dx

(x− 1)δ

(
2

1 + x

)J+1−δ
FJ(x) Ĝ(x) (C.14)

where we defined

FJ(x) := 2F1

[
J + 1, J + d

2 + 1
2

2J + d+ 1

∣∣∣∣ 2

1 + x

]
. (C.15)

We have dropped some J-independent factors in the prefactor, as they will not play a
role later. Eq. (C.14) can be obtained from the inversion formula by a hypergeometric
transformation. The function FJ(x) is a manifestly decreasing function of x that has a
finite limit as x → 1 (unless d = 1, in which case FJ(x) diverges logarithmically) and
obeys FJ(x)→ 1 as x→∞.

We now claim that in the J →∞ limit, aJ is dominated by the part of the integral near
x = 1. To wit, fix some c > 1 and split the integral into two parts:

aJ = a
(1)
J + a

(2)
J , a

(1)
J =

∫ c

1
[. . .] and a

(2)
J =

∫ ∞

c
[. . .] .

Using the above assumptions, it is easy to show that

J ≫ 1 :
∣∣∣a(2)J ∣∣∣ ≤ C

2JJd/2
(C.16)

for some constant C > 0. This contribution is exponentially small, whereas a(1)J will scale
as a power law. In order to estimate a(1)J , we first estimate FJ(x) using steepest descent.
In order to do so we employ the integral representation

FJ(1 + y) =
Γ(d+ 2J + 1)

Γ
(
J + d

2 + 1
2

)2 ∫ 1

0
dt

(y + 2)(t(1− t)) d−1
2

2 + y − 2t

(
t(1− t)(y + 2)

2 + y − 2t

)J
. (C.17)

At large J , the integral is dominated by the contribution near

t = t∗(y) =
2 + y −

√
y(2 + y)

2
.

After evaluating the integral using steepest descent, at large J and fixed y we then obtain

FJ(1 + y) ∼
J→∞

4J F̂ (y) e−Jq(y) (C.18)
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where F̂ (y) is a rather complicated function of y that does not depend on J and

q(y) = ln 2− ln
[
2− (2 + y)

√
y(2 + y) + y(3 + y)

]
≈
√
2y +O(y) . (C.19)

Because of the exponential, values of x = 1 + y for which q(y) ≳ 1/J are suppressed in
the integral (C.14) (which is cut off at x = c). In terms of the variable

v :=
√
2yJ

this condition reads v ≲ 1. The relevant limit is then

FJ
(
1 +

v2

2J2

)
∼

J→∞
J1− d

2 2d+2J 1√
π

∫ ∞

0
dr r

d−3
2 e−r−

v2

4r = J1− d
2 2

3+d+4J
2

1√
π
v
d−1
2 K d−1

2
(v)

(C.20)
where we used the integral representation (C.17) with t = 1− r/J because the integral is
dominated by 1− t ∼ 1/J . We can therefore remove the cutoff c, perform the indicated
change of variable and take the limit J ≫ 1. Keeping track of powers of J , this results in
the following estimate:

a
(1)
J ∼

J→∞

1

Jd−2δ

2
3+d
2

+δĜ(0)√
π

∫ ∞

0

dv

v2δ−
d+1
2

K d−1
2
(v) =

Ĝ(0)

Jd−2δ

21+d−δΓ(1− δ)Γ(1+d−2δ
2 )√

π
.

(C.21)
This is the desired result, provided that the integral on the RHS converges. It does so
precisely because of the assumption made in (C.13). This concludes the proof.
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D From SO(2, 2) to SO(2, 1)

A generic quantum field theory on dS have the symmetries dicatated by background metric
of dS i.e. SO(d + 1, 1). A conformal theory, on the other hand, has more symmetries.
The fact that its energy-momentum tensor is traceless enhances it symmetry group to
SO(d+ 1, 2). In this appendix, we study how the unitary irreducible representations of
SO(d+ 1, 2) decompose into irreps of the subgroup SO(d+ 1, 1) in the case d = 1.

Take the generators of SO(d+1, 2) to be the Lorentz generators JAB in embedding space
Rd+1,2, with the metric η = diag(−1,−1,+1, . . . ,+1) in which A,B ∈ {−1, 0, 1, . . . , d+1}.
These satisfy these commutation relations (2.31) and are anti-hermitian J†

AB = −JAB.

The generators of the SO(d+ 1, 2) conformal group can be written as

D̃ = −iJ−10 (D.1)

P̃a = −iJ−1a + J0a (D.2)

K̃a = −iJ−1a − J0a (D.3)

M̃ab = −iJab . (D.4)

where a, b ∈ 1, 2, . . . , d+ 1 and we used tildes to distinguish from the SO(d + 1, 1)

generators defined by (2.32). The hermiticity properties are then

D̃† = D̃ , (P̃a)
† = K̃a , (M̃ab)

† =Mab . (D.5)

Notice that the conventions here differ from those in the main text, namely (2.32), which
led to anti-hermitian generators.

Let us now focus in the case d = 1 which corresponds to SO(2, 1) ∼= SL(2,R) (at the level
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Appendix D. From SO(2, 2) to SO(2, 1)

of the algebra). In this case, it is convenient to use the following basis for the algebra

Sz = −iJ12 = M̃12 ,

S+ = −iJ01 − J02 =
K̃2 − P̃2

2
+ i

K̃1 − P̃1

2
,

S− = −iJ01 + J02 = −
K̃2 − P̃2

2
+ i

K̃1 − P̃1

2
.

(D.6)

This leads to the usual SL(2,R) commutation relations

[Sz, S±] = ±S± , [S+, S−] = −2Sz , (D.7)

and Casimir
C = (Sz)2 − 1

2
(S+S− + S−S+) . (D.8)

The hermiticity properties are

(Sz)† = Sz , (S+)† = S− . (D.9)

Principal series representations have Casimir eigenvalue C = −1
4 − ν2 ≤ −1

4 . Comple-
mentary series have −1

4 ≤ C ≤ 0. Discrete series have C = k(k − 1) with k = 1, 2, . . . .

A highest weight representation of SO(2, 2) is the vector space generated by the states

|n, n̄⟩ = (P̃1 − iP̃2)
n(P̃1 + iP̃2)

n̄|∆, ℓ⟩ , n, n̄ ∈ {0, 1, 2, . . . } , (D.10)

with |∆, ℓ⟩ a primary state,1

K̃1|∆, ℓ⟩ = K̃2|∆, ℓ⟩ = 0 , M̃12|∆, ℓ⟩ = ℓ|∆, ℓ⟩ , D̃|∆, ℓ⟩ = ∆|∆, ℓ⟩ . (D.11)

We would like to diagonalize the Casimir C in this vector space. First notice that Sz is
already diagonal

Sz|n, n̄⟩ = (n− n̄+ ℓ)|n, n̄⟩ ≡ s|n, n̄⟩ . (D.12)

The action of the Casimir takes the form

C|n, n̄⟩ = q(n)|n, n̄⟩+ w(n)|n− 1, n̄− 1⟩+ 1

4
|n+ 1, n̄+ 1⟩ , (D.13)

where
q(n) = −n(∆− ℓ+ 2n̄)− n̄(∆ + ℓ) +

(
ℓ2 −∆

)
= ∆(−ℓ− 2n+ s− 1) + ℓ(s− 2n) + 2n(s− n) .

(D.14)

1Notice that here we use ∆ to denote the eigenvalue of the SO(2, 2) dilatation generator D̃. The
notation ∆̃, used in the main text, would be appropriate but we shall use simply ∆ to avoid cluttering
the equations in this appendix.
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and

w(n) = 4
n∑
k=1

(∆ + ℓ+ 2k − 2)
n̄∑
q=1

(∆− ℓ+ 2q − 2)

= 4n(∆ + ℓ+ n− 1)(ℓ+ n− s)(∆ + n− s− 1) .

(D.15)

These functions were computed using the commutators

[C,P ] = K(D̃ + Sz)− P (D̃ − Sz) ,
[C, P̄ ] = K̄(D̃ − Sz)− P̄ (D̃ + Sz) ,

[K, P̄ ] = 4(D̃ − Sz) ,
[K̄, P ] = 4(D̃ + Sz) ,

[K,P ] = 0 ,

[K̄, P̄ ] = 0 .

(D.16)

where P ≡ P̃1 − iP̃2, P̄ ≡ P̃1 + iP̃2, K ≡ K̃1 − iK̃2 and K̄ ≡ K̃1 + iK̃2. In practice, we
used

C|n, n̄⟩ =
n∑
k=1

Pn−k[C,P ]P k−1P̄ n̄|∆, ℓ⟩+
n̄∑
k=1

PnP̄ n̄−k[C, P̄ ]P̄ k−1|∆, ℓ⟩+ PnP̄ n̄C|∆, ℓ⟩

together with

KP̄ n̄|∆, ℓ⟩ =
n̄∑
q=1

P̄ n̄−q[K, P̄ ]P̄ q−1|∆, ℓ⟩ = 4

n̄∑
q=1

(∆ + q − 1− ℓ+ q − 1)P̄ n̄−1|∆, ℓ⟩

C|∆, ℓ⟩ =
(
ℓ2 −∆

)
|∆, ℓ⟩+ 1

4
PP̄ |∆, ℓ⟩ .

(D.17)

Simultaneous eigenstates of Sz (with eigenvalue s ≤ ℓ) and the Casimir C can be written
as

|ψ⟩ =
∞∑
n=0

an|n, ℓ− s+ n⟩ . (D.18)

Then, C|ψ⟩ = λ|ψ⟩ leads to the recursion equation

λan = q(n)an + w(n+ 1)an+1 +
1

4
an−1 . (D.19)

The eigenvalues λ will be fixed by requiring that the solution to this equation has finite
norm

⟨ψ|ψ⟩ =
∞∑
n=0

|an|2⟨n, ℓ− s+ n|n, ℓ− s+ n⟩

=

∞∑
n=0

|an|24ℓ−s+2nn!(ℓ− s+ n)!(∆ + ℓ)n(∆− ℓ)n+ℓ−s
(D.20)
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where we used
⟨n, n̄|n, n̄⟩ = 4n+n̄n!n̄!(∆ + ℓ)n(∆− ℓ)n̄ . (D.21)

This expression for the norm follows from (using (D.17))

⟨n, n̄|n, n̄⟩ = ⟨∆, ℓ|K n̄K̄nPnP̄ n̄|∆, ℓ⟩
= 4n̄(∆− ℓ+ n̄− 1)⟨∆, ℓ|K n̄−1K̄nPnP̄ n̄−1|∆, ℓ⟩
= 4n̄(∆− ℓ+ n̄− 1)⟨n, n̄− 1|n, n̄− 1⟩ .

(D.22)

It is convenient to define

cn = an

√
4ℓ−s+2nn!(ℓ− s+ n)!(∆ + ℓ)n(∆− ℓ)n+ℓ−s (D.23)

so that the inner product becomes

⟨ψ|ψ′⟩ =
∞∑
n=0

c∗nc
′
n . (D.24)

The recursion relation then becomes(
∆+ λ+ ℓ(∆ + 2n− s) + 2n2 + 2n(∆− s)−∆s

)√
n(∆ + ℓ+ n− 1)(ℓ+ n− s)(∆ + n− s− 1)

cn

−
√

(n+ 1)(∆ + ℓ+ n)(ℓ+ n− s+ 1)(∆ + n− s)
n(∆ + ℓ+ n− 1)(ℓ+ n− s)(∆ + n− s− 1)

cn+1 = cn−1 .

This implies the following asymptotic behavior

cn =
R

n
1−iν

2

[1 +O(1/n)] + c.c . (D.25)

where 4λ+1 = −ν2. The complex parameter R cannot be determined from an asymptotic
analysis of the recursion relation. Here we assumed that the parameter ν is real as
required for principal series representations. In this case, the state |ψ⟩ is delta-function
normalizable. Let us see how this works

⟨ψ|ψ′⟩ ∼ 2|RR′|
∞∑
n

1

n

[
cos

(
ν − ν ′

2
log n+ ϕ− ϕ′

)
+ cos

(
ν + ν ′

2
log n+ ϕ+ ϕ′

)]
∼ 2|RR′|

∫ ∞
dy

[
cos

(
ν − ν ′

2
y + ϕ− ϕ′

)
+ cos

(
ν + ν ′

2
y + ϕ+ ϕ′

)]
∼ 4π|RR′|

[
δ(ν − ν ′) + δ(ν + ν ′)

]
(D.26)

where we usedR = |R|eiϕ andR′ = |R′|eiϕ′ . Notice that the appearance of the δ−functions
follows solely from the asymptotic behavior of the coefficients cn. On the other hand,
orthogonality between eigenstates of different Casimir eigenvalue is guaranteed. We
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conclude that the SO(2, 2) highest weight unitary irreducible representations contains
SO(2, 1) principal series representations for all values of ν ∈ R (with ν and −ν identified).

For complementary and discrete series representations, we have 4λ+ 1 = v2 with v > 0.
This leads to

cn =
R+

n
1+v
2

[1 +O(1/n)] +
R−

n
1−v
2

[1 +O(1/n)] . (D.27)

Generically, this leads to non-normalizable states

⟨ψ|ψ′⟩ ∼
∞∑
n

n−1+ v+v′
2 →∞ . (D.28)

Of course, if R− = 0 then we obtain a normalizable state. In fact, we will now construct
some exact solutions with R− = 0. We suspect these exhaust the solutions with R− = 0

but have no proof of this fact.

Discrete series irreps are highest/lowest weight for Sz and therefore, they must contain
a state that is annihilated by S+/S−. This condition leads to a first order recursion
relation. Firstly, notice that

−2iS+|n, n̄⟩ = (K − P )PnP̄ n̄|∆, ℓ⟩ = 4n̄(∆− ℓ+ n̄− 1)|n, n̄− 1⟩ − |n+ 1, n̄⟩ (D.29)

where we used (D.17). Therefore, S+|ψ⟩ = 0 leads to

4(ℓ− s+ n)(∆− s+ n− 1)an − an−1 = 0 . (D.30)

In particular, the equation with n = 0 can only be satisfied if s = ℓ or a0 = 0.2 If a0 ̸= 0

then we find
an =

a0
4nn!(∆− ℓ)n

(D.31)

with associated norm

⟨ψ|ψ⟩ = |a0|2
∞∑
n=0

(∆ + ℓ)n
(∆− ℓ)n

∼
∞∑
n

n2ℓ (D.32)

which converges for (half-integer) ℓ ≤ −1. Indeed, this solves the recursion relation (D.19)
with λ = ℓ(ℓ+ 1). This matches exactly the expectation from the discrete series. In fact
there are more solutions of the form an = 0 for n < s− ℓ and

as−ℓ+n̄ =
as−ℓ

4n̄n̄!(∆− ℓ)n̄
, n̄ ≥ 0. (D.33)

2There is another formal solution with ℓ > s = ∆− 1. The unitarity bound ∆ ≥ |ℓ| then implies that
the second possibility only works for ∆ = ℓ and s = ℓ− 1. But then the states with non-zero n̄ have zero
norm (they are descendants of the state associated to the divergence of the conserved current).
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The norm of this state is (here n = n̄+ s− ℓ)

⟨ψ|ψ⟩ = |as−ℓ|2
∞∑
n̄=0

4n−n̄
n!

n̄!

(∆ + ℓ)n
(∆− ℓ)n̄

∼
∞∑
n̄

n̄2s . (D.34)

We conclude that there is a normalizable highest weight state for every s = −1,−2, . . . ,−|ℓ|.

Similarly, looking for lowest weight states obeying S−|ψ⟩ = 0 we find states with s =

1, 2, . . . , |ℓ|. We conclude that for each SO(2, 2) conformal family based on a primary of
non-zero spin ℓ, there are |ℓ| discrete series irreps of SO(2, 1) with Casimir eigenvalue
λ = s(s−1) with s ∈ {1, 2, . . . , |ℓ|}. This seems to be confirmed by numerical experiments
where we diagonalize matrix truncations of the Casimir operator.

There is also a complementary series irrep with Casimir eigenvalue λ = ∆(∆ − 1) for
conformal families with ∆ < 1

2 . In this case, there is an exact solution

an =
(ℓ− s)!

4n n!(n+ ℓ− s)!a0 . (D.35)

which matches the expansion (D.27) with R− = 0. This gives a normalizable state
in the complementary series. Notice that this state is really normalizable as opposed
to delta-function normalizable like the principal series states. Finally, notice that the
unitarity bound ∆ > |ℓ| implies that this complementary series irrep only exists for ℓ = 0

conformal families. The presence of this state matches the comments after equation (3.67)
about the Källén-Lehmann decomposition of the two-point function of a CFT primary
operator with scaling dimension smaller than d

2 .
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E Semidefinite Programming for Con-
formal Bootstrap

Semidefinite Programming (SDP) [202, 118, 124] has been proven to be a powerful
tool for the bootstrap program. The fact that, unlike linear programming, one is not
required to discretize the space of dimension of exchange operators, makes this method
incredibly faster especially for our case which involves numerically expensive functions
3F2. Therefore, it is convenient to set up SDP for the crossing symmetry equation of F̃
found in chapter 5 to bootstrap correlators. This section is based on [203].

Let us review the main idea of translating the conformal bootstrap crossing equation to
an SDP problem where the unitarity condition implies that the dimension of the exchange
operator to be non-negative. Later, we will go back to the dS crossing equation where
instead of a sum, we deal with an integral over principal series and we already traded
the z-dependence with parameters γ and σ. For simplicity, we focus on one-dimensional
CFTs while the generalization to higher dimensions is straightforward.

E.1 Expanding the blocks in polynomials of ∆

The s− t channel of conformal crossing equation for the four-point function of all identical
operators ϕ, takes the form of [60]∑

O∈ϕ×ϕ
c2ϕϕOF∆(z) = 0 . (E.1)

where

F∆(z) = z−2∆ϕG∆(z)− (1− z)−2∆ϕG∆(1− z) , (E.2)

and the sum is over the operators that appear in OPE of ϕ× ϕ with real OPE coefficient
cϕϕO and z and G(z) are the cross ratio and conformal block respectively, defined in (5.6).
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Note that since we deal with all identical operators, we only have parity even ℓ = 0

contribution with discrete series on even integers. One can expand the conformal block
as a sum over its poles. To see this, imagine a function f(z) that asymptote to f∞(z) at
large z which is analytical on the complex plane except on a series of poles. Then we have

f(z) =
1

2πi

∫
C

f(z′)

z′ − z = f∞(z) +
∑
poles

Res(f, zi)
z − zi

. (E.3)

Using this, we are able to expand the conformal blocks in its poles.

G∆(z) ∝ 2F1(∆,∆, 2∆, z) has poles on non-positive half integers: ∆k = −k
2 (k ∈ Z, k ≥

0). Following the logic above, after factoring out (4ρ)∆, the blocks in ρ coordinates look
like:

G∆,ℓ(z) = (−1)ℓ(4ρ)∆h∞(z) + (−1)ℓ
∞∑
k=0

(4ρ)∆k
Res(h,∆k)

∆−∆k
(E.4)

where

h∆(z) = (−1)ℓ(4ρ)−∆G∆(z), h∞ =
1√

1− ρ2
, ρ =

z

(1 +
√
1− z)2 .

The residues in the sum above decay exponentially which result in fast convergence. So,
it would be a good approximation even if we truncate the sum above at an upper limit
kmax. If one combines terms in the sum above over a common denominator, the n-th
derivative of the block will be of the form

∂nzG∆(z)

∣∣∣∣∣
z=z0

= (−1)ℓ(4ρ0)∆
P ′
n(∆)∏kmax

k=0 (∆−∆k)
≡ Θ′(∆,∆i)P

′
n(∆) , (E.5)

in which P ′
n(∆) is a polynomial of some degree n. Notice that since all of ∆is are negative

and ρ is a positive number, Θ′(∆,∆i) > 0. F∆(z) also has the same form at z = 1
2

∂nz F∆(z)

∣∣∣∣∣
z= 1

2

= (4ρ0)
∆ Pn(∆)∏kmax

k=0 (∆−∆k)
≡ Θ(∆,∆i)Pn(∆) (E.6)

with positive Θ(∆,∆i) and Polynomial Pn(∆).

E.2 SDP set up

Let us go back to the crossing equation. If we find a functional α e.g a linear combination
of derivatives of z evaluated at some point z = z0

α[f ] =
∑
n

αn∂
n
z f
∣∣∣
z=z0

.

216



E.3 SDP for F̃

such that

α[F0] = 1 , (E.7)

α[F∆i ] > 0, ∀∆ ≥ ∆∗ , (E.8)

then we rule out any theory that does not have any operator in OPE with ∆ < ∆∗. Since
Θ(D,∆i) > 0 the condition above is equivalent to:∑

n

αnP0(∆) = 1 , (E.9)∑
n

αnPn(∆) > 0, ∀∆ ≥ ∆∗ . (E.10)

With the help of the following elementary theorem, this set of conditions become a
Semidefinite Programming problem:

Theorem. Let P (x) be a polynomial in x. It satisfies

Pn(x) ≥ 0, ∀x ≥ 0 (E.11)

if and only if it can be written in the form of P (x) = vT (x)M1v(x) + xvT (x)M2v(x) for
some semidefinite matrices M1 and M2 and v = (1, x, x2, ..., x⌈

n
2
⌉)T .

We can find a bound for OPE coefficients too. Imagine we isolate a term in the sum of
eq. (E.1) corresponding to the operator O0. Then acting with a functional α we may
rewrite eq. (E.1) as

c2ϕϕO0
α[F∆0 ] = −α[F0]−

∑
Oi ̸=O0

c2ϕϕOiα[F∆i ] . (E.12)

Requiring the constraints

α[F∆0 ] = 1 , (E.13)

α[F∆i ] ≥ 0, ∀∆ ≥ ∆∗ , (E.14)

leads to the bound c2ϕϕO0
≤ −α[F0]. If we ask the SDP question to minimize −α[F0]

with the constraints above, we would find a bound on c2ϕϕO0
coefficients. For a more

pedological review of this see e.g. [27, 204, 203, 124]

E.3 SDP for F̃

For the crossing equation of F̃ s−t which has been integrated over z, we essentially follow
the logic presented above. We would like to expand F̃ s−t in terms of its poles and rewrite
it as a polynomial times a positive function like the right-hand side of eq. (E.6).
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The first step is to find the poles and residues of F̃ s-t. For later convenience let us split
F̃ s-t to four parts

F̃ s-t
∆,ℓ = f̃s∆,ℓ + f̃s1−∆,ℓ + f̃ t∆,ℓ + f̃ t1−∆,ℓ , (E.15)

where

f̃ t∆,ℓ = −f̃s∆,ℓ(γ ↔ σ) , (E.16)

f̃s∆,ℓ =
(−1)ℓKs

1−∆,ℓ

Γ(∆ + 2∆r + γ + σ + 2)
Γ(∆ + γ + 1)Γ(2∆r + σ + 1)×

× 3F2

[
∆+ 2i∆i,∆− 2i∆i,∆+ γ + 1

2∆,∆+ 2∆r + γ + σ + 2

∣∣∣∣1] . (E.17)

corresponding to the contribution of different channels and their shadow counterpart. We
use ∆i and ∆r as a shorter notation of ∆im and ∆re. For the moment, we focus on f̃∆,ℓ
and later we come back to F̃∆,ℓ.

The poles of f̃∆,ℓ have there different origins. One set of poles is coming from K1−∆,ℓ

and the rest is coming the Γ(∆ + γ + 1) and 3F2:

poles from 3F2 : ∆ = −k
2

; poles from Γ(∆ + γ + 1) : ∆ = −(1 + γ)− k

poles from K1−∆,ℓ :

{
∆ = 1

2 + k

∆ = −2k − ℓ± 2i∆i

where k is a non negative integer number.

Finding the residue of the poles coming from K1−∆,ℓ and Γ(∆+γ+1) are straightforward
considering that the residue of Gamma functions are: Res(Γ,−k) = (−1)k

k! . For the poles
of 3F2 term, we use the power series expansion of 3F2. After re-summing, we end up with
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E.3 SDP for F̃

another 3F2. In summary, we find Res(f̃s∆,ℓ) =

(−1)k+ℓ
√
πΓ(2k+2ℓ∓2i∆i)Γ(2k+ℓ∓2i∆i+

1
2
)Γ(−k±2i∆i)

k! Γ(k+ℓ+ 1
2
)Γ(k+ℓ∓2i∆i+

1
2
)Γ(2k+ℓ∓2i∆i)Γ(−2k±2i∆i)

Γ(2∆r+σ+1)Γ(∆+γ+1)
Γ(∆+2∆r+γ+σ+2)

×3F2

[
∆+2i∆i,∆−2i∆i,∆+γ+1

2∆,∆+2∆r+γ+σ+2

∣∣∣∣1] , ∆ = −2k − ℓ± 2i∆i

π(−1)k+ℓ+1Γ(ℓ−k− 1
2
)Γ( 1

2
(k+ℓ+2i∆i+

1
2
))Γ( 1

2
(k+ℓ−2i∆i+

1
2
))

k!Γ(k+ℓ+ 1
2
)Γ(−k− 1

2
)Γ( 1

2
(ℓ−k+2i∆i+

1
2
))Γ( 1

2
(ℓ−k−2i∆i+

1
2
))

Γ(∆+γ+1)Γ(2∆r+σ+1)
Γ(∆+2∆r+γ+σ+2)

×3F2

[
∆+2i∆i,∆−2i∆i,∆+γ+1

2∆,∆+2∆r+γ+σ+2

∣∣∣∣1] , ∆ = 1
2 + k

(−1)k

k!
Γ(2∆r+σ+1)K1−∆,ℓ

Γ(∆+2∆r+γ+σ+2)

×3F2

[
∆+2i∆i,∆−2i∆i,∆+γ+1

2∆,∆+2∆r+γ+σ+2

∣∣∣∣1] , ∆ = −(1 + γ)− k

− Γ(2∆r+σ+1)K1−∆,ℓ

2Γ(∆+2∆r+γ+σ+2)

(−1)k(1+γ− k
2
)k+1(− k

2
+2i∆i)k+1(− k

2
−2i∆i)k+1

k!(k+1)!(− k
2
+2∆r+γ+σ+2)k+1

×3F2

[
−∆+1+2i∆i,−∆+1−2i∆i,−∆+γ+2

−2∆+2,−∆+2∆r+γ+σ+3

∣∣∣∣1] , ∆ = −k
2 .

Having the residues’ explicit expressions in hands, the natural thing to do is to put the
residues back into the sum in eq. (E.3) and truncate the sum at some upper limit kmax

considering the fact that f̃∞ = 0. However, the residues above will grow and the sum
is not convergent. One may try to group the poles and sum the poles inside a circle of
radius R in ∆ plane but the sum would not be convergent.

Empirically, we know that the residues grow like

Res(f̃s∆) ∝ k2β ,

where β = 2∆ϕ+ γ+σ+1. We get around this problem by factorizing ∆δ +1 where δ is
an integer δ ≥ ⌈2β⌉+ 1, so the sum over residues converges. We pick δ to be an integer
to avoid any branch cut. Defining g̃ as

g̃s∆ =
1

∆δ + 1
f̃s∆ , (E.18)

we find the pole expansion of g̃ which is a convergent sum at a cost of introducing new
poles because of factor 1

∆δ+1
. In the end, one finds

f̃s∆ = (∆δ + 1)
∑
i

Res(g̃)
∆−∆i

. (E.19)

Indeed, one can check this numerically and find the convergence to the exact value in
eq. (E.17).
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Let us simplify the s-channel part of F̃ on principal series where by adding the shadow
part we find a function of ν2 for ∆ = d

2 + iν:

F̃ s
d
2+iν

= ((
1

2
+ iν)δ + 1)

∑
j

Res(g̃)j

iν − (∆j −
1

2
)︸ ︷︷ ︸

∆̄i

+ ((
1

2
− iν)δ + 1)

∑
j

Res(g̃)j

−iν − (∆j −
1

2
)︸ ︷︷ ︸

∆̄i

=
∑
j

i((1/2 + iν)δ)− (1/2− iν)δ)ν + ((1/2 + iν)δ) + (1/2− iν)δ)∆̄j + 2∆̄j

ν2 + ∆̄2
j

Res(g̃)j

=
∑
j

p(ν2)

ν2 + ∆̄2
j

=
Pn(ν

2)∏
j(ν

2 + ∆̄2
j )

where p(ν2) and Pn(ν2) are polynomials. As you can see, we end up with a similar form
as the theorem above where ν2 > 0 can be treated as x ≥ 0 which allows us to use the
powerful machinery of SDPB [124] to cosmological correlators.
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F Symmetry constraints on matrix
elements

In this appendix, we consider constraints coming from AdS isometries (or boundary
conformal symmetry) on matrix elements of the operator

V := R∆V

∫ π/2

−π/2

dr

(cos r)2
V(τ = 0, r) (F.1)

where V is any local bulk operator. To this end, we fix two boundary primary states |ψi⟩
and |ψj⟩ of dimension ∆i and ∆j . We will use SL(2,R) symmetry to derive relations
between different matrix elements between descendants, that is to say between the matrix
elements

Vj,m
i,n := ⟨ψj ,m|V |ψi, n⟩. (F.2)

The argument will make use of a second operator W , defined as follows:

W := R∆V

∫ π/2

−π/2

dr

(cos r)2
sin r V(0, r) (F.3)

along with its matrix elements which we denote as Wj,m
i,n as in eq. (F.2). Parts of our

discussion will be similar in spirit to section 2.1 of reference [45], where relations between
matrix elements in AdS3 were derived using SO(2, 2) group theory.

F.1 Relations between matrix elements of descendants

Let us proceed with the derivation of the promised relations. We derive them simply
by evaluating Ward identities. If G is a generator of SL(2,R), then G |ψi, n⟩ can be
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Appendix F. Symmetry constraints on matrix elements

computed using eq. (7.10). To wit

H |ψi, n⟩ = (∆i + n) |ψi, n⟩ , (F.4a)

K |ψi, n⟩ = γ(∆i, n) |ψi, n− 1⟩ , (F.4b)

P |ψi, n⟩ = γ(∆i, n+ 1) |ψi, n+ 1⟩ (F.4c)

where γ(∆, n) =
√
n(2∆ + n− 1). At the same time, G acts on the local operators V

as a differential operator DG, as specified in Eq. (7.6). For general G, we then have the
identity

⟨ψj ,m|[G,V(τ, r)]|ψi, n⟩ = DG · ⟨ψj ,m|V(τ, r)|ψi, n⟩ (F.5a)

= (⟨ψj ,m|G)V(τ, r) |ψi, n⟩ − ⟨ψj ,m| V(τ, r)(G |ψi, n⟩). (F.5b)

For G = H, this implies that(
∂

∂τ
+∆ij + n−m

)
⟨ψj ,m|V(τ, r)|ψi, n⟩ = 0 (F.6)

where ∆ij := ∆i −∆j . This completely fixes the τ -dependence of ⟨ψj ,m|V(τ, r)|ψi, n⟩.
Likewise, for P we get

DP · ⟨ψj ,m|V(τ, r)|ψi, n⟩ = γ(∆j ,m)⟨ψj ,m− 1|V(τ, r)|ψi, n⟩
− γ(∆i, n+ 1)⟨ψj ,m|V(τ, r)|ψi, n+ 1⟩ (F.7)

and finally for K we have

DK · ⟨ψj ,m|V(τ, r)|ψi, n⟩ = γ(∆j ,m+ 1)⟨ψj ,m+ 1|V(τ, r)|ψi, n⟩
− γ(∆i, n)⟨ψj ,m|V(τ, r)|ψi, n− 1⟩. (F.8)

To proceed, we explicitly apply the operators DP and DK , which are first order both in
∂τ and ∂r. The τ -derivatives can be computed by means of (F.6). The LHS of (F.7) then
becomes

(. . .) =

[
(−∆ij +m− n) sin r + cos r

∂

∂r

]
⟨ψj ,m|V(0, r)|ψi, n⟩ (F.9)

setting τ = 0 from now on. The sin r term can be integrated over r yielding something
proportional to the matrix element Wj;m

i;n. The second term can be computed similarly
after employing integration by parts:∫ π/2

−π/2

dr

(cos r)2
cos r

∂

∂r
⟨ψj ,m|V(0, r)|ψi, n⟩ = −

∫ π/2

−π/2

dr

(cos r)2
sin r ⟨ψj ,m|V(0, r)|ψi, n⟩

(F.10a)

= −Wj;m
i;n (F.10b)
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discarding a boundary term that vanishes. Integrating the RHS of (F.7) at τ = 0 as well,
we obtain the relation

(−∆ij +m− n− 1)Wj;m
i;n = γ(∆j ,m)Vj;m−1

i;n − γ(∆i, n+ 1)Vj;m
i;n+1. (F.11a)

If we repeat this for K, we get in addition

(−∆ij +m− n+ 1)Wj;m
i;n = γ(∆j ,m+ 1)Vj;m+1

i;n − γ(∆i, n)V
j;m

i;n−1. (F.11b)

Moreover, matrix elements with either n = 0 or m = 0 can be computed as definite
integrals over

fji(r) := ⟨ψj |V(0, r)|ψi⟩ (F.12)

which only involves the primary states |ψi,j⟩. To wit:

Vj;m
i;0 = (−1)m

√
m!

(2∆j)m

∫ π/2

−π/2

dr

(cos r)2
C

− 1
2
(m−∆ij)

m (sin r)fji(r), (F.13a)

Wj;m
i;0 = (−1)m+1(m+ 1)

√
m!

(2∆j)m

∫ π/2

−π/2

dr

(cos r)2
C

− 1
2
(m−∆ij+1)

m+1 (sin r)

m−∆ij + 1
fji(r).

(F.13b)

Here C(ν)
n (·) denotes a Gegenbauer polynomial. Matrix elements with m = 0 but n ̸= 0

can be computed similarly, exchanging ∆i ↔ ∆j in the above formulas. In order to
derive (F.13), let

Fm(r) := ⟨ψj ,m|V(0, r)|ψi⟩ (F.14)

omitting labels for the external states |ψi,j⟩, and in particular F0(r) = fji(r). Setting
n = 0 in (F.8), we get the recurrence relation

Fm+1(r) =
1

γ(∆j ,m+ 1)

[
(−∆ij +m) sin r − cos r

∂

∂r

]
Fm(r). (F.15)

After repeatedly integrating by parts and discarding (vanishing) boundary terms, the
formulas (F.13) are recovered.

The interpretation of the above results depends on the precise value of ∆ij = ∆i −∆j .
We will discuss the cases where ∆ij is fractional and integer separately:

• If ∆ij is non-integer, the relations (F.11) together with the “initial conditions” (F.13)
are sufficient to compute any matrix element of V. This can be done simply by
eliminating W from the equations (F.11).

• On the other hand, if ∆ij is an integer, it is not always possible to eliminate W

from the above equations. Instead, we find new relations between specific matrix
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elements:

γ(∆j ,m+ 1)Wj;m+1
i;m−∆ij

= γ(∆i,m−∆ij)W
j;m

i;m−∆ij−1 +Vj;m
i;m−∆ij

,

(F.16a)

γ(∆i,m+ 1)W
j;m+∆ij

i;m+1 = γ(∆j ,m+ δij)W
j;m+∆ij−1

i;m +V
j;m+∆ij

i;m

(F.16b)

which are once more derived by a judicious application of integration by parts. It
turns out that these identities are again sufficient to reduce the computation of the
matrix V to its boundary.

If ∆ij is integer, certain selection rules apply. For concreteness, consider the case ∆i = ∆j .
Then by setting m = n+ 1 in the first relation of (F.11), we obtain the identity

0 = γ(∆i, n+ 1)Vj;n
i;n − γ(∆i, n+ 1)Vi;n+1

i;n+1 (F.17)

which implies that all matrix elements Vj;n
i;n with n = 0, 1, 2, . . . are identical. This result

has a simple physical meaning. Indeed, if ψj = ψi, the diagonal of the matrix Vi;n
i;n is

proportional to the tree-level energy shift of the states |ψi, n⟩. But by conformal symmetry,
all such energy shifts (or anomalous dimensions) must be identical. Consequently, it is
necessary that for ∆i = ∆j , the diagonal of the matrix V is constant.

Next, consider the case where ∆ij is a non-zero integer, say ∆ij =: s with s ∈ {1, 2, 3, . . .}.
Then from (F.13a) it follows that Vj;s

i;0 vanishes — this is simply a property of the
Gegenbauer polynomials. But from Eq. (F.11) it follows that

γ(∆j , n+ s+ 1)Vj;n+s+1
i;n+1 = γ(∆i, n+ 1)Vj;n+s

i;n (F.18)

for any n. Consequently, all matrix elements of the form Vj;n+s
i;n vanish! If ∆ij is a

negative integer, a similar argument can be made.

Let us finally comment on parity. If |ψi,j⟩ have the same parity and V respects parity,
then fji(r) is even under r 7→ −r. But then using (F.13) and (F.11), it can be shown
that matrix elements of V (resp. W) vanish if m+n is odd (resp. even). The same result
could have been derived directly since

⟨ψi,m|PV P−1|ψj , n⟩ = (−1)m+n⟨ψi,m|V |ψj , n⟩ = +⟨ψi,m|V |ψj , n⟩ (F.19)

(using the fact that PV P−1 = +V ) which for odd m+ n is only possible if Vj;m
i;n = 0. A

similar argument can be applied to the case where |ψi,j⟩ have opposite parity.
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F.2 Example: vacuum amplitudes

As an application of the above formalism, let’s consider the case where the in-state is the
vacuum |Ω⟩. By SL(2,R) symmetry, the wavefunction fi,Ω is completely fixed, up to an
overall constant:

fi,Ω(r) = ⟨ψi|V(r)|Ω⟩ = αi(cos r)
∆i . (F.20)

The coefficient αi can be interpreted as the bulk-boundary OPE coefficient of V → Oi
(up to a convention-dependent constant), see (7.13). A short computation shows that

Vi;2n+1
Ω = 0, Vi;2n

Ω = αi(∆i + 2n)B(12∆i − 1
2 ,

3
2)

√
(12)n(∆i)n

n!(∆i +
1
2)n

(F.21)

where B is the beta function. As an application of this result, we note that

lim
n→∞

Vi;2n
Ω√

nVi;0
Ω

=
2

∆
√
B(12 ,∆)

(F.22)

that is to say that the matrix elements Vi;2n
Ω grow as

√
n at large n. In particular,

this result implies that the Casimir energy diverges at least linearly at second order in
perturbation theory.

F.3 Universality of matrix elements if ∆i − ∆j is an even
integer

If ∆ij is an even integer, that is to say |∆i −∆j | = 2s for some integer s, and the in- and
out-states |ψi,j⟩ have the same parity, the matrix Vj;m

i;n is severely constrained. In fact,
we will prove that it is fixed in terms of s+ 1 constants.

Theorem: let |ψi,j⟩ be two primaries with πi = πj that satisfy ∆j = ∆i ± 2s with
s ∈ {0, 1, 2, . . .}, and let V be a parity-preserving bulk perturbation. Then the matrix
Vj;m

i;n is completely fixed by SL(2,R) symmetry in terms of the s+ 1 constants

ca(ψj , ψi) :=

∫ π/2

−π/2

dr

(cos r)2
(sin r)2afji(r), a = 0, 1, . . . , s. (F.23)

Proof: by parity, only matrix elements with even m + n can be non-zero. Thus all
non-vanishing matrix elements with n = 0 are proportional to the following integral:

Vj;2m
i;0 ∝

∫ π/2

−π/2

dr

(cos r)2
C−m±s
2m (sin r)fji(r), m = 0, 1, 2, . . .
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as an immediate consequence of (F.13). But it’s easy to show that any such Gegenbauer
polynomial is a polynomial of degree ≤ s in the variable z = (sin r)2. Indeed, we have

C−m+s
2m (sin r) =

(1− s)m
m!

2F1(−m, s, 12 , z), C−m−s
2m (sin r) =

(1 + s)m
m!

2F1(−s,−m, 12 , z).
(F.24)

The first of these functions vanishes if m ≥ s, due to the prefactor (1− s)m; for m < s

it’s indeed a polynomial of degree m in the variable z. Likewise, the second function
in (F.24) is a polynomial in z of degree min(m, s). Consequently, any matrix element
with n = 0 can be expressed in terms of the parameters ca(ψj , ψi).

Now, the same argument can be applied to matrix elements with m = 0. Finally, all
other matrix elements, having m,n ̸= 0 can be computed in terms of the previous ones
using the relations described in section F.1.

In particular, for s = 0 (i.e. whenever ∆i = ∆j) the matrix Vj;m
i;n is completely universal,

meaning that it is fixed by symmetry up to an overall normalization. To be precise, we
have the following corollary:

Corollary: let |ψi,j⟩ be two primaries with ∆i = ∆j and πi = πj . Then for any
parity-preserving bulk perturbation V , we have

⟨ψj ,m|V |ψi, n⟩ = Vmn(∆i) ⟨ψj |V |ψi⟩ (F.25)

where Vmn(∆i) is a matrix that only depends on ∆i, to wit:

Vmn(∆) =


0 if m+ n is odd;√
(m+ 1)n−m/(2∆ +m)n−m m ≤ n, m+ n even;

Vnm(∆) m > n.

(F.26)

Note: setting m = n, we see that the diagonal matrix elements are constant (since
Vnn(∆) = 1). This is consistent with the discussion from the end of section F.1.
Proof. Since any possible solution to the Ward identities is unique in this case, it suffices
to check that Vmn(∆i) solves (F.11). Indeed (F.26) is a valid solution, if we also have

⟨ψj ,m|W |ψi, n⟩ = Wmn(∆i) ⟨ψj |V |ψi⟩ (F.27a)

for

Wmn(∆) =


0 if m+ n is even;√
(m+ 1)n−m/(2∆ +m)n−m m < n, m+ n odd;

Wnm(∆) m > n.

(F.27b)

This can be checked easily.

226



G Rayleigh-Schrödinger perturbation
theory revisited

G.1 Rayleigh-Schrödinger coefficients and connected corre-
lators

In this appendix, we prove a relation between coefficients in Rayleigh-Schrödinger pertur-
bation theory and correlation functions. To be precise, we have in mind a Hamiltonian of
the form H = H0 + λV , where H0 has a non-degenerate discrete spectrum

0 = e0 < e1 < e2 < . . .

associated to normalized eigenstates |i⟩, such that |0⟩ is the H0 vacuum state. In
perturbation theory, the interacting energies can be expanded as

Ei = ei +

∞∑
n=1

(−1)n+1ci,nλ
n (G.1)

for some constants ci,n to be determined. Moreover, we can expand the eigenstates |Ωj⟩
of H in terms of the eigenstates of H0 with certain coefficients:

|⟨i|Ωj⟩|2 = δij +

∞∑
n=2

(−1)nan(j → i)λn. (G.2)

Normalization of the states |Ωi⟩ and |i⟩ means that

an(i→ i) = −
∑
j ̸=i

an(i→ j) = −
∑
j ̸=i

an(j → i). (G.3)

From now on, we will use rule (G.3) to only consider coefficients with j ̸= i.

It’s the goal of Rayleigh-Schrödinger perturbation theory to provide formulas for ci,n and
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an(j → i). Some simple formulas are

ci,1 = ⟨i|V |i⟩, ci,2 =
∑
j ̸=i

|⟨i|V |j⟩|2
ej − ei

and a2(j → i) =
|⟨i|V |j⟩|2
(ej − ei)2

. (G.4)

At higher orders in perturbation theory, similar formulas quickly become cumbersome.

We claim that, roughly speaking, the coefficients ci,n can be expressed as an integral over
the n-point correlation function of the operator V inside the state |i⟩. Considering the
vacuum state at second order in perturbation theory, it is for instance well-known that

c0,2 =

∫ ∞

0
dτ ⟨0|V (τ)V (0)|0⟩conn (G.5)

where the subscript ⟨i|On · · · O1|i⟩conn means that contractions between the operators Oj
must be subtracted in the state |i⟩, e.g.

⟨i|V (τ)V (0)|i⟩conn = ⟨i|V (τ)V (0)|i⟩ − ⟨i|V |i⟩2 =: gi(τ) (G.6a)

⟨i|V (τ1 + τ2)V (τ1)V (0)|i⟩conn = ⟨i|V (τ1 + τ2)V (τ1)V (0)|i⟩ − ⟨i|V |i⟩3

− ⟨i|V |i⟩
[
gi(τ1) + gi(τ2) + gi(τ1 + τ2)

]
(G.6b)

and so forth. However, it’s not possible to simply replace the in- and out-states in (G.5)
by |i⟩ and ⟨i| to reproduce the expression from Eq. (G.4) — in fact, the resulting integral
would diverge for a generic state |i⟩. To proceed, we therefore define a spectral density
ρi,n as follows:

⟨i|V (τ1 + . . .+ τn−1) · · ·V (τ1)V (0)|i⟩conn =
n−1∏
ℓ=1

∫ ∞

0
dαℓ e

−(αℓ−ei)τℓ ρi,n(α1, . . . , αn−1)

(G.7)
which has the following inverse:

ρi,n(α⃗) =
n−1∏
ℓ=1

∫ γ+i∞

γ−i∞

dτℓ
2πi

e(αℓ−ei)τℓ ⟨i|V (τ1 + . . . τn−1) · · ·V (τ1 + τ2)V (τ1)V (0)|i⟩conn

for γ > 0.1 For n = 1, 2, 3 we have for instance

ρi,1 = ⟨i|V |i⟩ (G.8a)

ρi,2(α1) =
∑
k ̸=i

δ(α1 − ek) |⟨i|V |k⟩|2 (G.8b)

ρi,3(α1, α2) =
∑
k,ℓ̸=i

δ(α1 − ek)δ(α2 − eℓ) ⟨i|V |ℓ⟩
(
⟨ℓ|V |k⟩ − δkℓ⟨i|V |i⟩

)
⟨k|V |i⟩ . (G.8c)

1We use that on the right half plane ℜ(τj) > 0 the correlator is analytic.
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G.1 Rayleigh-Schrödinger coefficients and connected correlators

We will see that the Rayleigh-Schrödinger coefficients can be compactly expressed in
terms of the densities ρi,n, to wit:

ci,n =
n−1∏
ℓ=1

∫ ∞

0

dαℓ
αℓ − ei

ρi,n(α1, . . . , αn−1). (G.9)

For n = 1, 2, it is easy to check that (G.9) agrees with (G.4). In the rest of this section,
the proof of formula (G.9) will be explained.

First, let us comment on some general features of the ρi,n(α⃗).2 This object is generally a
complex-valued distribution, in fact a sum (generally infinite) of delta functions. Also
notice that ρ only has support on αℓ ≥ 0 since there are no states with energy e < 0, and
the distribution vanishes at αℓ = ei since ρ describes connected correlation functions. In
fact, it will be useful in the proof of (G.9) to write ρ as follows

ρi,n(α1, . . . , αn−1) =
∑
j1 ̸=i
· · ·

∑
jn−1 ̸=i

δ(α1 − ej1) . . . δ(αn−1 − ejn−1)Uj1,...,jn−1 . (G.10)

Moreover, since V is a Hermitian operator it can be shown that

ρi,n(α1, . . . , αk, . . . , αn−1) = ρi,n(αn−1, . . . , αn−k, . . . , α1) (G.11)

reflecting a peculiarity from the configuration of the τj in the correlator (G.7). For n = 2

the above identity means that ρi,2(α) ∈ R. We also remark that the behavior of the ρi,n
at infinity depends on the high-energy behavior of the quantum theory in question. For
instance, if κ ≥ 1 then

gi(τ) ∼
τ→0

c

τκ
↔ ρi,2(α) ∼

α→∞

c

Γ(κ)
ακ−1 (G.12)

appealing to a Tauberian theorem. In AdS2, this Tauberian formula applies with κ = 2,
but in UV-finite quantum mechanics all correlators are integrable (having in particular
κ < 1). In what follows it will be assumed that the integrals (G.9) are well-defined,
without requiring any additional subtractions.

The reader may worry about the seemingly divergent denominator
∏n−1
ℓ=1 1/(αℓ − ei)

in (G.9). However, recall that ρi,n vanishes on some domain |αℓ − ej | ≤ ϵ due to the
connectedness of the correlator it describes, and consequently the integral (G.9) is well-
defined. If necessary, one can therefore replace all of the integrals by their principal
value

n−1∏
ℓ=1

∫
R

dαℓ
αℓ − ei

ρi,n(α⃗)→ lim
ϵ→0+

n−1∏
ℓ=1

∫
R\[ei−ϵ,ei+ϵ]

dαℓ
αℓ − ei

ρi,n(α⃗) (G.13)

without changing the result.

2Here, we use the shorthand notation α⃗ = (α1, . . . , αn−1).
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Appendix G. Rayleigh-Schrödinger perturbation theory revisited

Proof of (G.9)

Let us now describe a proof of the identity (G.9). The proof will rely on a systematic
evaluation of the Dyson operator

U(b, a) := T exp

[
−λ
∫ b

a
dτ V (τ)

]
. (G.14)

inside matrix elements. The operator U has the defining property

e−H(b−a) = e−H0bU(b, a)eH0a (G.15)

which can easily be shown (the identity (G.15) is a tautology for b = a, and the two sides
obey the same differential equation with respect to b).

For concreteness, let us first consider the vacuum state |0⟩ = |vac⟩, for which the proof
of (G.9) is easiest. There we have for any T > 0 the exact identity

⟨vac|U(T, 0)|vac⟩ =
∑
j

⟨vac|eH0T e−HT |Ωj⟩⟨Ωj |vac⟩ =
∞∑
i=0

exp(−EiT )|⟨vac|Ωj⟩|2 (G.16)

where we have inserted a complete basis of states |Ωj⟩ and used Eq. (G.15) to rewrite U .
Taking the limit T →∞, we have3

E0(λ) = − lim
T→∞

1

T
ln ⟨vac|U(T, 0)|vac⟩. (G.17)

The object on the RHS is precisely the generator of connected correlation functions inside
the vacuum state. At n-th order in perturbation theory, we read off that

cvac,n =

n−1∏
ℓ=1

∫ ∞

0
dτℓ ⟨vac|V (τ1 + . . . τn−1) · · ·V (τ1 + τ2)V (τ1)V (0)|vac⟩conn (G.18a)

=
n−1∏
ℓ=1

∫ ∞

0

dαℓ
αℓ

ρvac,n(α1, . . . , αn−1) (G.18b)

as claimed. Formula (G.18a) for the vacuum energy is not new — see a disussion below
equation (8.16) — and a formal version of (G.9) appeared previously without proof
in [161].4

For excited states the proof of (G.9) goes along the same lines, but it is more complicated.
To proceed, we insert the operator exp(EiT ) exp(−HT ) inside the unperturbed state |i⟩.

3Notice that ⟨vac|U(T, 0)|vac⟩ > 0 so the logarithm is well-defined.
4The formula in question involves connected correlators that are integrated over all of spacetime.

Beyond short-distance divergences, such correlators are also IR-divergent due to intermediate states
of energy below the energy ei of the external state |i⟩. Our formula (G.9) takes such divergences into
account and does not need any additional renormalization.
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G.1 Rayleigh-Schrödinger coefficients and connected correlators

This yields

eδEiT ⟨i|U(T, 0)|i⟩ =
∞∑
j=0

|⟨i|Ωj⟩|2 e−(Ej−Ei)T

= 1−
∞∑
j ̸=i
|⟨i|Ωj⟩|2

[
1− e−(δEj−δEi)T e−(ej−ei)T

]
(G.19)

writing δEi = Ei − ei = O(λ). We have used the identity

|⟨i|Ωi⟩|2 +
∑
j ̸=i
|⟨i|Ωj⟩|2 = 1 (G.20)

to obtain the above expression. We will show that formula (G.9) follows from matching
the terms linear in T on both sides of (G.19).

The LHS of (G.19) can be recast as

ln(LHS) = δEi(λ)T +
∞∑
n=1

(−1)nλnXi,n(T ), (G.21)

Xi,n(T ) :=
∫ T

0
dτ1 · · ·

∫ T

τn−1

dτn ⟨i|V (τn) · · ·V (τ1)|i⟩conn. (G.22)

Using the spectral representation (G.7) we can write (G.22) as follows

Xi,n(T ) =
∫ ∞

0
dα1 . . . dαn−1Wn(α1 − ei, . . . , αn−1 − ei|T ) ρi,n(α⃗) (G.23)

where 5

Wn(α⃗|T ) =
∫ T

0
dt0

∫ T−t0

0
dt1 e

−α1t1 · · ·
∫ T−t0···−tn−2

0
dtn−1 e

−αn−1tn−1 . (G.24)

Equivalently, we can define W by

Wn(α⃗|T ) =
∫ T

0
dt0Qn−1(α1, . . . , αn−1|T − t0) (G.25)

with Q defined recursively

Qi(α1, . . . , αi|T ) =
∫ T

0
dt e−α1tQi−1(α2, . . . , αi|T − t) , Q0 = 1 . (G.26)

5This follows from (G.22) changing integration variables to ti = τi+1 − τi with i = 0, 1, . . . , n− 1 and
τ0 = 0.
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Appendix G. Rayleigh-Schrödinger perturbation theory revisited

It is not hard to see that this recursion relation leads to

Qi(α1, . . . , αi|T ) =
1

α1α2 . . . αi
−

i∑
ℓ=1

e−αℓT

αℓ

i∏
j=1
j ̸=ℓ

1

αj − αℓ
. (G.27)

This can be easily checked by plugging (G.27) in (G.26) and using the identity

0 =
1

α1α2 . . . αi
−

i∑
ℓ=1

1

αℓ

i∏
j=1
j ̸=ℓ

1

αj − αℓ
, (G.28)

which follows from the fact this rational function of α1 vanishes as α1 → ∞ and does
not have any poles (the reader may easily check that the apparent poles have vanishing
residue).

We can now use (G.27) in (G.24) to obtain

Wn(α⃗|T ) =
T

α1α2 . . . αi
−Kn(α⃗|T ) (G.29)

where

Kn(α⃗|T ) :=
n−1∑
ℓ=1

1− e−αℓT
α2
ℓ

n−1∏
j=1
j ̸=ℓ

1

αj − αℓ
. (G.30)

This allows us to write (G.23), for n ≥ 2, as follows:

Xi,n(T ) = T

∫ ∞

0

dα⃗

α⃗− ei
ρi,n(α⃗)−

∫ ∞

0
dα⃗ Kn(α⃗− ei|T )ρi,n(α⃗) . (G.31)

Here and in what follows we use a vector notation for spectral integrals, for instance∫ ∞

0

dα⃗

α⃗− ei
f(α⃗) =

n−1∏
ℓ=1

∫ ∞

0

dαℓ
αℓ − ei

f(α1, . . . , αn−1). (G.32)

We will now show that the only term that grows linearly with T in (G.31) is the first
term. More precisely, we will show that the second term in (G.31) evaluates to something
of the form

const. +
∑
β ̸=0

Pβ(T )e
−βT , (G.33)

for some values of β ̸= 0 and Pβ(T ) some polynomial of T . For n = 1 we simply have

Xi,1(T ) = Tρi,1 = T ⟨i|V |i⟩. (G.34)
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G.1 Rayleigh-Schrödinger coefficients and connected correlators

For n = 2 the second integral is straightforward to do:∫ ∞

0
dαK2(α− ei;T )ρi,2(α) =

∑
j ̸=i
|⟨i|V |j⟩|2K2(ej − ei|T ). (G.35)

However, for n ≥ 3 we have to worry about the denominators αj − αℓ. It is clear from
the definition (G.24) that Wn(α1, . . . , αn−1|T ) is completely regular when some of its
arguments αℓ coincide. Therefore, from (G.29) we conclude the same must be true of Kn
although this is not obvious from the explicit formula (G.30).

For instance for n = 3 we have

lim
α′→α

K3(α, α
′|T ) = 2

α3
− 2 + αT

α3
exp(−αT ) =: K♯3(α|T ). (G.36)

Therefore, for n = 3 the second term in (G.31) evaluates to∫ ∞

0
dα⃗ K3(α⃗− ei|T )ρi,3(α⃗) =

∑
j,k ̸=i ∧ j ̸=k

⟨i|V |k⟩⟨k|V |j⟩⟨j|V |i⟩K3(ej − ei, ek − ei|T )

+
∑
j ̸=i

(⟨j|V |j⟩ − ⟨i|V |i⟩)|⟨i|V |j⟩|2K♯3(ej − ei|T ), (G.37)

which is of the general form (G.33).

For general n, we can use (G.10) to write the second term in (G.31) as follows∫ ∞

0
dα⃗ Kn(α⃗− ei|T )ρi,n(α⃗) =

∑
j1 ̸=i
· · ·

∑
jn−1 ̸=i

Uj1,...,jn−1Kn(ej1 − ei, . . . , ejn−1 − ei|T ) .

(G.38)
Clearly the arguments of Kn are always different from zero. Therefore, from (G.30) we
conclude that this is of the general form (G.33). The only subtlety is that for some terms
in the sum (G.38) the arguments of Kn are exactly equal. In this case, one cannot use
(G.30) due to the presence of vanishing denominators. However, as explained above Kn
always has a finite limit when several of its arguments coincide. Moreover, we can write

Kn(α⃗|T ) = g0(α⃗)−
n−1∑
ℓ=1

e−αℓT gℓ(α⃗) , (G.39)

with gℓ(α⃗) some rational functions that can be read off from (G.30). If α1 and α2 coincide
then

Kn(α1, α1, α3, . . . |T ) = g0(α⃗)−
n−1∑
ℓ=3

e−αℓT gℓ(α⃗)− e−α1T g̃1(α⃗|T ) , (G.40)
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Appendix G. Rayleigh-Schrödinger perturbation theory revisited

where g0 and gℓ≥3 have finite limits when α2 → α1 and

g̃1(α⃗|T ) = lim
ϵ→0

[
g1(α1, α1 + ϵ, α3, . . . ) + e−ϵT g2(α1, α1 + ϵ, α3, . . . )

]
(G.41)

= T
1

α2
1

n−1∏
j=3

1

αj − α1
− ∂

∂α1

 1

α2
1

n−1∏
j=3

1

αj − α1

 . (G.42)

Due to the collision α2 → α1 the coefficient of the exponential e−α1T became a linear
function of T . This is a general phenomena. When several α’s coincide the coefficient
of the associated exponential e−αℓT becomes a polynomial in T .6 However, as long as
every αℓ ̸= 0 the exponential never disappears and therefore (G.38) is indeed of the form
(G.33).

The RHS of (G.19) can also be expanded to

ln(RHS) =
∞∑
n=2

(−1)nλnYi,n(T ) (G.44)

for some functions Yi,n(T ):

Yi,2(T ) = −
∑
j ̸=i

a2(j → i)
[
1− e−(ej−ei)T

]
(G.45a)

Yi,3(T ) = −
∑
j ̸=i

a3(j → i)
[
1− e−(ej−ei)T

]
− T

∑
j ̸=i

(cj,1 − ci,1)a2(j → i)e−(ej−ei)T

(G.45b)

and likewise for higher n. The coefficients an were defined in (G.2).

We can now directly compare (G.22) and (G.44) to obtain the desired formula, Eq. (G.9).
For n = 2, we obtain the relation

T

[
ci,2 −

∫ ∞

0

dα

α− ei
ρi,2(α)

]
=∫ ∞

0
dα

1− e−(α−ei)T

(α− ei)2
ρi,2(α)−

∑
j ̸=i

a2(j → i)
[
1− e−(ej−ei)T

]
. (G.46)

Since this equation must hold for any T > 0, we recover the n = 2 case of (G.9) along
with the standard result

a2(j → i) =
|⟨i|V |j⟩|2
(ei − ej)2

. (G.47)

6For example,

lim
α′,α′′→α

K4(α, α
′, α′′|T ) = 3

α4
+

6 + 4αT + α2T 2

2α4
exp(−αT ). (G.43)
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The same strategy can be used to prove (G.9) for higher n. The logic is always the same,
namely to match all terms of order λn appearing in Eqs. (G.22) and (G.44). The LHS
has two purely linear pieces in T , namely

(−1)n+1ci,nT + (−1)nT
∫ ∞

0

dα⃗

α⃗− ei
ρi,n(α⃗) + . . . . (G.48)

which perfectly cancel, provided that (G.9) holds. The remaining term on the LHS comes
from the kernel Kn, and crucially it never contains a term growing linearly with T at
large T : at most it contains a constant and polynomials in T multiplied by (growing or
decaying) exponentials. This remainder term can be matched against the RHS — which
does not contain any term growing linearly with T — and this procedure gives expressions
for the coefficients an(j → i).

As mentioned at the beginning, the spectrum of the unperturbed Hamiltonian was taken
to be non-degenerate. Let us briefly discuss how the proof breaks down in case H0 is
degenerate. Suppose for instance that there are two vacua, that is to say g ≥ 2 states
|vacα⟩ with eα = 0. Equation (G.16) still holds when |vac⟩ is replaced by any of the |vacα⟩,
or in fact by any linear combination |v⟩ = cα |vacα⟩. Equation (G.17) also holds, provided
that the true vacuum |Ω⟩ at finite coupling has non-zero overlap with the starting state |v⟩.
However, it is no longer true that the coefficients cvac,n are described by equation (G.18a),
and indeed such integrated correlators generically diverge. In other words, the T →∞
limit and the perturbative expansion do not commute.

G.2 Feynman diagrams

This section is dedicated to a detailed explanation of the diagrammatic representation of
RS perturbation theory, introduced in section 8.1. The reader may refer to figure G.1
to fix ideas, although similar pictures can be drawn for a generic interaction term. The
diagram is to be read from bottom to top, with time flowing upwards. The horizontal
axis corresponds to the mode numbers, e.g. the state |1, 2, 2, 4⟩ would be represented by
single lines at n = 1, 4 and a double line at n = 2. Polynomial vertices can either lower
or raise occupation numbers. The diagram in figure G.1 would occur at second order in
perturbation theory for a theory with potential V3 =

∫
:ϕ3 : . In the time domain it can

be read as
⟨0, 1|V3(τ2)|1, 1, 3⟩⟨1, 1, 3|V3(τ1)|0, 1⟩ (G.49)

or when computing energies it would contribute an amount

δE0,1 ⊃ λ̄2
|⟨1, 1, 3|V3|0, 1⟩|2
E0,1 − E1,1,3

= − 72λ̄2

∆+ 4

∣∣∣∣∣
∫ π/2

−π/2

dr

(cos r)2
f0(r)f1(r)f3(r)

∣∣∣∣∣
2

(G.50)
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Appendix G. Rayleigh-Schrödinger perturbation theory revisited

to the energy of the state |0, 1⟩. The functions fn(r) are defined in eq. (9.4). Vice
versa, by “cutting open” diagrams like figure G.1 horizontally, one easily recovers the
intermediate state and its energy.

0 1 2 3 n

Figure G.1: An example Feynman diagram arising at second order in ϕ3 perturbation
theory. This diagram involves |0, 1⟩ resp. ⟨0, 1| as in- and out-states and |1, 1, 3⟩ as an
intermediate state.

G.3 Explicit calculations at second order in perturbation
theory

This section is a complement to section 8.1. There, after writing the potential V in
terms of ladder operators and introducing a truncation cutoff Λ, we expand the energy
of the vacuum |Ω⟩ and of the excited state |χ⟩ ≡ a†0 |Ω⟩ up to second order in λ̄ using
Rayleigh-Schrödinger perturbation theory:

EΩ = eΩ + λ̄⟨Ω|V |Ω⟩ − λ̄2
∑

i=2 p.s.

|⟨Ω|V |i⟩|2
ei − eΩ

+O(λ̄3) , (G.51a)

Eχ = eχ + λ̄⟨χ|V |χ⟩ − λ̄2
∑

i=1 p.s.,
3 p.s.

|⟨χ|V |i⟩|2
ei − eχ

+O(λ̄3) . (G.51b)

in which “n p.s.” stands for n-particle states and we used the fact that :ϕ2 : acting on an
n-particle state produces n− 2, n and (n+ 2)-particle states. Substituting the operator
V in the sums above in terms of Amn using eq. 9.15 and summing the states up to cutoff
Λ gives
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EΩ(Λ) = −4λ̄2
m+n+2∆≤Λ∑

m,n=0

1

N(m,n)

A2
mn(∆)

2∆ +m+ n
,

Eχ(Λ) = ∆+ 2λ̄A00 − 4λ̄2
m+∆≤Λ∑
m=1

A2
0m(∆)

m

− 4λ̄2
m+n+3∆≤Λ∑

m,n=0

1

N(m,n, 0)

(Amn(∆) + δ0mA0n + δ0nA0m)
2

2∆ +m+ n
.

where N(ℓ,m, . . . , n) is the norm of the state a†ℓa
†
m · · · a†n |Ω⟩. In particular,

N(m,n) = 1 + δm,n , (G.53a)

N(m,n, 0) = 1 + δm,n , m, n ̸= 0 , (G.53b)

N(m, 0, 0) = 2 , m ̸= 0 , (G.53c)

N(0, 0, 0) = 6 . (G.53d)

In the large Λ limit, the two double sums in eq. (G.52) have the same linear asymptotic
behaviour. To see this, let us define

σN (∆) :=
∑

m+n=2N

|⟨Ω|V2|m,n⟩|2
2∆ +m+ n

. (G.54)

such that

EΩ(Λ) ∼
Λ→∞

−λ̄2
1
2
Λ∑

N=0

σN (∆) + O(λ3) . (G.55)

Eq. G.54 is a sum of O(N) terms that can be expressed in terms of the explicit coefficients
Vmn(∆) from eq. 9.16 . At large N we can replace this sum by an integral

lim
N→∞

σN (∆) = σ∞(∆) =
1

(2∆− 1)2

∫ 1

0
dx

(
x

2− x

)2∆−1

, (G.56)

which can be expressed in terms of special functions if desired. We then have

EΩ(Λ) ∼
Λ→∞

−λ̄2σ∞(∆)Λ + O(λ3,Λ0) , (G.57a)

Eχ(Λ) ∼
Λ→∞

−λ̄2σ∞(∆)Λ + O(λ3,Λ0) . (G.57b)

As emphasized in section 8, the naive difference Eχ(Λ)− EΩ(Λ) does not reproduce the
exact result (8.6). Let us show instead that the prescription (8.1) does the job. We begin
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by computing

Eχ(Λ)−EΩ(Λ−∆) = ∆+2λ̄A00− 4λ̄2
m+∆≤Λ∑
m=1

A2
0m(∆)

m
− 4λ̄2

m+3∆≤Λ∑
m=0

A2
0m(∆)

m+ 2∆
. (G.58)

In the limit Λ→∞, the above sums can be written in terms of hypergeometric functions:

∞∑
m=1

A2
0m(∆)

m
=

2

∆(2∆− 1)2
3F2

 1
2 , 1, 1

1
2 +∆, 1 + ∆

∣∣∣∣∣∣ 1
 , (G.59)

∞∑
m=0

A2
0m(∆)

m+ 2∆
=

2

∆(2∆ + 1)(2∆− 1)2
3F2

 3
2 , 1, 1

3
2 +∆, 1 + ∆

∣∣∣∣∣∣ 1
 . (G.60)

These formulas furnish a completely explicit expression for the energy shift (G.58) in the
limit Λ→∞, which agrees with the expected result (9.18).7

Similarly, we have checked that the second-order energy shift of the states a†n |Ω⟩ for small
values of n is correctly reproduced with our prescription. In addition, we also checked
that the third -order energy shift of the state |χ⟩ is correctly reproduced.

Alternatively, we can reproduce the second-order energy shift of the state |χ⟩ by computing
the two-point connected correlator of V2(τ) inside the state |i⟩. Computing such correlators
is an efficient way to extract spectral densities more generally, that is to say for other
states or for energy shifts at higher orders in perturbation theory. Let us therefore briefly
spell out this computation. The correlator we need to compute is given by

gχ(τ) := ⟨χ|V2(τ)V2(0)|χ⟩conn − ⟨Ω|V2(τ)V2(0)|Ω⟩conn. (G.61)

We will see that gχ can be expressed in terms of the special function

g∆(z) :=
∞∑
n=0

V0,2n(∆)2zn = 3F2

 1
2 , 1, 1

∆, ∆+ 1
2

∣∣∣∣∣∣ z
 . (G.62)

To derive this result, we recall that |χ⟩ = a†0 |Ω⟩ and use the identities

[ak, :ϕ
n(τ, r) :] = n · e(∆+k)τ fk(r) :ϕ

n−1(τ, r) : ,

[:ϕn(τ, r) :, a†k] = n · e−(∆+k)τ fk(r) :ϕ
n−1(τ, r) :

7This check requires verifying an identity involving a sum of two hypergeometric 3F2(1) functions.
We have checked this identity numerically for many values of ∆, but we do not have an analytical proof
for any ∆.
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G.3 Explicit calculations at second order in perturbation theory

for k = 0 and n = 2. Now, equation (G.61) can be restated as

gχ(τ) = ⟨Ω|[a0, V2(τ)][V2(0), a†0]|Ω⟩+ ⟨Ω|[V2(τ), a†0][a0, V2(0)]|Ω⟩ − ⟨χ|V2|χ⟩2 (G.63)

using the fact that ⟨Ω|V2|Ω⟩ vanishes. The first term in (G.63) works out to

4e∆τ
∫
[dr][dr′] f0(r)f0(r

′)G(τ, r|0, r′) = 4
∞∑
n=0

e−2nτA0,2n(∆)2

=
4

(2∆− 1)2
g∆(e

−2τ ) (G.64)

where G = ⟨ϕϕ⟩ is the scalar propagator and using the shorthand notation∫
[dr] :=

∫ π/2

−π/2

dr

(cos r)2
. (G.65)

Here we have used that all odd matrix elements A0,2n+1 vanish, and that Am,n is
proportional to Vm,n. The second term in (G.63) works out to

4e−∆τ

∫
[dr][dr′] f0(r)f0(r

′)G(τ, r|0, r′) = 4

(2∆− 1)2
e−2∆τ g∆(e

−2τ ). (G.66)

Finally,

⟨χ|V2|χ⟩2 =
4

(2∆− 1)2
(G.67)

and thus
gχ(τ) =

4

(2∆− 1)2
[
(1 + e−2∆τ ) g∆(e

−2τ )− 1
]
. (G.68)

Indeed we recover (by testing for various values of ∆) that∫ ∞

0
dτ gχ(τ) =

4

(2∆− 1)3
. (G.69)
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H Short time singularities in the corre-
lators of V

In this appendix, we study the singularities of the following class of correlators,

⟨i|Vϵ(τ1 + . . . τn−1) · · ·Vϵ(τ1 + τ2)Vϵ(τ1)Vϵ(0)|i⟩conn , (H.1)

when a subset of the τi goes to zero. The subscript ϵ denotes the regularized interaction,
as defined in eq. (8.13).

In this appendix, it will be convenient to redefine the spatial coordinate as

θ = r +
π

2
, (H.2)

so that θ ∈ [0, π]. Hence,

Vϵ(τ) = R∆V

∫ π−ϵ

ϵ

dθ

(sin θ)2
V(τ, θ). (H.3)

Furthermore, we set R = 1 from now on.

H.1 The vacuum two-point function

Let us begin with the vacuum two-point function of the potential:

⟨Ω|Vϵ(τ)Vϵ(0)|Ω⟩ =
∫ π−ϵ

ϵ

dθ1dθ2

sin2 θ1 sin
2 θ2
⟨Ω|V(τ, θ1)V(0, θ2)|Ω⟩ . (H.4)

The matrix elements in eq. (H.4) are computed by a Euclidean correlator as long as τ > 0,
which we assume throughout this section. Notice that, since the vacuum expectation
value of Vϵ vanishes by definition, the full correlator coincides with its connected part.
It will be convenient to keep in mind that the two-point function of V depends on the
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Appendix H. Short time singularities in the correlators of V

position of the insertions only through their geodesic distance, or equivalently through
the cross ratio ξ defined in eq. (7.8), which in the notation of this section reads

ξ =
cosh τ − cos(θ1 − θ2)

2 sin θ1 sin θ2
. (H.5)

Hence, we also denote
⟨Ω|V(τ, θ1)V(0, θ2)|Ω⟩ = fΩ(ξ) . (H.6)

As discussed in section 8.3, the large energy limit of the Laplace transform of this correlator
controls the cutoff dependence of the vacuum energy at second order in perturbation
theory.

We start by discussing the ϵ = 0 case. There are two possible sources of non-analyticities
as τ → 0. First, the two-point function of the perturbing operator V has a short distance
singularity fixed by the OPE at the UV fixed point:1

fΩ(ξ) ∼ (4ξ)−∆V , ξ → 0 . (H.7)

In order to isolate the contribution of this short distance limit to eq. (H.4), we approximate
fΩ as in eq. (H.7) and we rescale the difference (θ1 − θ2)→ τ(θ1 − θ2), keeping θ1 + θ2
fixed. After sending τ → 0 and integrating, we obtain

⟨Ω|V (τ)V (0)|Ω⟩ ∼ π Γ
(
∆V − 3

2

)
Γ
(
∆V − 1

2

)
Γ(∆V)Γ(∆V − 1)

τ−2∆V+1 + . . . τ → 0 . (H.8)

It is interesting to notice that the exponent is a property of the short distance physics,
and accordingly the integral over (θ1 − θ2) reduces to an integral over a flat space two-
point function. It converges as long as ∆V > 1/2, otherwise an IR divergence makes
the approximation (H.7) inadequate. On the other hand, the integral over (θ1 + θ2) is
sensitive to the AdS geometry, and requires the stronger condition ∆V > 3/2. As we
shall see momentarily, precisely when this condition is not satisfied the leading small τ
singularity is not given by eq. (H.8).

Indeed, a second source of non-analyticity arises from the region where both insertions of
V reach the same point on the boundary. In this case, the important contribution comes
from the region where θ1 ∼ θ2 ∼ τ , and from its image under parity (π−θ1) ∼ (π−θ2) ∼ τ .
It is simple to guess that this is the case by considering the cross ratio ξ in eq. (H.5).
When θi and τ all vanish at the same rate, ξ attains a finite limit. After performing the
change of variables θi = ziτ in eq. (H.4) – still at ϵ = 0 – and multiplying by 2 to keep
into account the contribution from the other AdS boundary, the leading contribution as
τ → 0 is

⟨Ω|V (τ)V (0)|Ω⟩ ∼ 2

τ2

∫ ∞

0

dz1dz2
z21z

2
2

fΩ

(
1− z212
4z1z2

)
+ . . . (H.9)

1Logarithms arise when the UV fixed point is a free theory, like in chapter 9. Also, notice that the
subtraction of the vacuum expectation value of V has no effect on the leading singularity.
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H.1 The vacuum two-point function

Let us briefly discuss the convergence of this integral. As at least one of the zi’s goes
to zero, the boundary OPE can be used to factorize the double integral into a product.
We conclude that the integral converges at small zi if the boundary OPE of V does
not contain operators with scaling dimension ∆ ≤ 1. This is precisely the condition
(7.17) which ensures finiteness of the matrix elements of V , and is therefore satisfied by
assumption. At the other end of the integration region the integrand is suppressed, unless
z12 stays finite. In the latter case, fΩ is dominated by the bulk OPE limit as in eq. (H.7).
Hence, the integral in (H.9) converges as long as ∆V < 3/2 . In the opposite case, the
leading small τ singularity comes instead from the bulk OPE limit considered above, see
eq. (H.8).

Notice that, contrary to eq. (H.8), the theory dependence of the singularity in eq. (H.9)
is through the full two-point function fΩ. Although we could still perform one of the
two integrals to simplify the coefficient, we shall later obtain precisely this result as a
by-product of a more general analysis – see eqs. (H.10,H.17).

Although the previous analysis is sufficient to isolate the leading small τ singularities,
for completeness we now develop a more systematic formalism, which yields the matrix
element in eq. (H.4), with ϵ = 0, as a single integral over the correlator (H.6). Since fΩ
only depends on the coordinates through the cross ratio ξ, it is convenient to separate
the kinematical from the theory dependent data as follows:

⟨Ω|V (τ)V (0)|Ω⟩ =
∫ ∞

ξmin(τ)
dξ K(ξ|τ)fΩ(ξ) , ξmin(τ) =

1
2(cosh τ − 1) . (H.10)

The kernel K is defined as

K(ξ|τ) :=
∫ π

0

dθ1 dθ2

sin2 θ1 sin
2 θ2

δ(ξ(τ, θ1, θ2)− ξ), ξ(τ, θ1, θ2) =
cosh τ − cos(θ1 − θ2)

2 sin θ1 sin θ2
.

(H.11)
The kernel (H.11) can be expressed in terms of an elliptic integral for generic τ > 0. We
will first integrate in θ2. In Poincaré coordinates, the curve of constant geodesic distance
from a point x1 = (z, z̄), z = exp(τ + iθ), is a circle:

ξ =
(z − z′)(z̄ − z̄′)
4 Im z Im z′

, ⇐⇒ (ℜz′ −ℜz)2 + (Im z′ − c)2 = r2,

c = Im z(1 + 2ξ) , r = 2 Im z
√
ξ(ξ + 1) . (H.12)

Therefore, the δ-function in eq. (H.11) has support at most in two points, at fixed θ1, see
fig. H.1. We can then evaluate the integral in dθ2 by changing variables, being careful
about the sign of the Jacobian ∂ξ(τ, θ1, θ2)/∂θ2. Referring again to fig. H.1, the geodesic
distance of the marked point at angle θ2 from the point at angle θ1 is decreasing while
the former enters the solid circle, and increasing while it exits it. This fixes the sign of
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Appendix H. Short time singularities in the correlators of V

V

V

θ2

θ1

1 eτ

Figure H.1: The dashed semi-circles are constant global time surfaces. The solid circle is
a surface of fixed geodesic distance from the V insertion at angle θ1. The V insertion at
angle θ2 is generic. The δ function in eq. (H.11) has support at the location of the two
red points.

the Jacobian. We obtain the following expression for the kernel:

K(ξ|τ) = 4(1 + 2ξ) cosh τ√
ξ(ξ + 1)

∫ π/2

θmin(τ)
dθ1

1(
sin2 θ1 + 4ξ(1 + ξ) sin2 θmin(τ)

)√
sin2 θ1 − sin2 θmin(τ)

, (H.13)

where
θmin(τ) = arcsin

sinh τ

2
√
ξ(1 + ξ)

, (H.14)

We used the reflection symmetry θ → π − θ to restrict the integration region to θ1 < π/2.
At the minimal angle θmin the solid circle of fig. H.1 becomes tangent to the semi-circle of
radius 1. As promised, eq. (H.13) expresses the kernel in terms of the incomplete elliptic
integral of the third kind:

K(ξ|τ) = 4(1 + 2ξ)√
ξ(ξ + 1) cosh τ

1√
1− sin2 θmin(τ)

Π

(
1

cosh2 τ
,
π

2
− θmin(τ),

1

1− sin2 θmin(τ)

)
.

(H.15)
The full matrix element at fixed τ may now be obtained by integrating the kernel as in
eq. (H.10). Alternatively, one can recover the small τ limits in eqs. (H.8,H.9) as limits of
the kernel itself.

In particular, the bulk channel singularity is obtained by rescaling ξ → τ2ξ. In the τ → 0
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H.2 The two-point function in a generic state

limit, this reduces the kernel to a complete elliptic integral of the second kind:

K(τ2ξ|τ) ∼ 16

τ

√
ξ E

(
1− 1

4ξ

)
, τ → 0. (H.16)

This approximation to the kernel can then be used in eq. (H.10) together with eq. (H.7),
to recover eq. (H.8).

The kernel K(ξ|τ) is more useful in deriving the coefficient of the boundary channel small
τ singularity, eq. (H.9). Indeed, in this case the cross ratio is held fixed, and the rescaling
θ → τ θ in the integral form (H.13) yields a simple algebraic result:

K(ξ|τ) ∼ 8

τ2
arcsinh

(
2
√
ξ(ξ + 1)

)
, τ → 0 . (H.17)

Replacing eq. (H.17) in eq. (H.10), we obtain the coefficient of the small τ singularity in
eq. (H.9) as a single integral over the cross ratio, as promised.

To conclude this section, let us describe how the introduction of a non vanishing ϵ cutoff
changes the kernel (H.11). Referring to fig. H.1, now the integration region of the
potential only extends on the wedge defined by θ ∈ [ϵ, π − ϵ]. Depending on the values of
ξ, τ and ϵ, one of three cases happens: none, one or both of the intersections marked in
red lie inside this wedge. Hence, the kernel is a piecewise continuous function. We shall
focus on the limit ϵ, τ → 0, while keeping ϵ/τ fixed. It is useful to define the following
constants:

α =
τ2

ϵ2
, α∗ = 4ξ(ξ + 1) , ξ∗ =

1

2

(√
α+ 1− 1

)
. (H.18)

If we perform the change of variable θ → ϵθ, it is not difficult to find the following result:

K(ξ|τ, ϵ) ∼ 1

τ2


8 arcsinh

√
α∗ , ξ < ξ∗ ,

−4 log
[√

α∗+1−√
α∗√

α∗+1+
√
α∗

(√
α∗+1+

√
α∗−α√

α∗+1−√
α∗−α

)2]
, ξ∗ < ξ < α/4 ,

−2 log
[
(α+ 1)

(
(
√
α∗+1−√

α∗)(
√
α∗+1+

√
α∗−α)√

α∗+1+
√
α∗

)2 √
α∗+1+

√
α∗−α√

α∗+1−√
α∗−α

]
, ξ > α/4 .

(H.19)
We plot this function in fig H.2. As expected, the contribution to the two-point function
(H.4) of points whose cross ratio is larger than the value ξ∗ is suppressed.

H.2 The two-point function in a generic state

The aim of this section is to prove eq. (8.33). As discussed in section 8.4, this result is
instrumental in deriving a bound on the UV behavior of the spectral density ∆ρϵi,2(α).
The object of interest is the following difference of correlation functions:

gϵ(τ) = ⟨i|Vϵ(τ)Vϵ(0)|i⟩conn − ⟨Ω|Vϵ(τ)Vϵ(0)|Ω⟩conn . (H.20)
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ξ

τ2K(ξ|τ, ϵ)

ξ∗
α
4

Figure H.2: Plot of eq. (H.19) for a choice of α.

The operators in the expectation values are ordered as written. Hence, only for τ > 0 is
gϵ(τ) computed by a Euclidean correlator. The left hand side of eq. (H.20) is defined by
analytic continuation everywhere else. We shall make the simplifying assumption that the
leading non-analytic behavior in gϵ(τ) as τ → 0 can be detected by approaching the limit
from real and positive τ . This is true in particular if τ = 0 is not an essential singularity.2

As discussed in the previous section, there are two sources of non analyticities at small
τ : the bulk V × V OPE, and the simultaneous fusion of the same operators with the
boundary of AdS. Let us first focus on the latter, more complicated scenario. Clearly, as
long as ϵ is finite, this singularity cannot arise. In other words, assuming for a moment
that the bulk OPE is sufficiently soft, gϵ(τ) is bounded by a constant as τ → 0. However,
the bound is lost as we also take ϵ→ 0. What we need is a different bound, which persist
as the spatial cutoff is removed.

Let us begin by recalling that the connected two-point function with respect to any state
|i⟩ can be written as

⟨i|V(τ, θ1)V(0, θ2)|i⟩conn = ⟨i|V(τ, θ1)V(0, θ2)|i⟩ − ⟨i|V(τ, θ1)|i⟩⟨i|V(0, θ2)|i⟩ . (H.21)

Although the connected correlator is invariant under a shift of V by any c-number, recall
that our definition of V includes the subtraction of the cosmological constant, when
needed to make the matrix elements of the potential well defined. In this way, the second
addend on the right hand side of eq. (H.21) is τ independent and, upon integration,
gives a finite contribution to gϵ also in the ϵ → 0 limit. Since we are interested in the
non-analytic part, we shall drop it from now on. Hence, we replace eq. (H.20) by the
following:

Gϵ(τ) =

∫ π−ϵ

ϵ

dθ1dθ2

sin2 θ1 sin
2 θ2

f(τ, θ1, θ2) ,

f(τ, θ1, θ2) = ⟨i|V(τ, θ1)V(0, θ2)|i⟩ − ⟨Ω|V(τ, θ1)V(0, θ2)|Ω⟩ . (H.22)

2For instance, logarithmic singularities are allowed as well.
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r1

V

r2

V

φ

Oi Oi

Figure H.3: The configuration which defines the ρ-coordinates. The largest dashed
semicircle has unit radius. Notice that an isometry can be used to place one of the
bulk operators perpendicularly above the middle point between the boundary operators,
without displacing the latter. Furthermore, using an inversion one can set r1 < 1.

We immediately obtain an ϵ-independent bound as follows:

|Gϵ(τ)| ≤
∫ π

0

dθ1dθ2

sin2 θ1 sin
2 θ2
|f(τ, θ1, θ2)| . (H.23)

Our aim will be now to bound the right hand side as τ → 0. Let us make some simplifying
assumptions, which will be reconsidered at the end:

1 the state |i⟩ is created by a primary operator Oi,

2 the boundary spectrum contains at least one operator with ∆ ≤ 2, and the three-
point function ⟨O∆VV⟩ is non zero,

3 the bulk OPE V × V does not contain operators of dimension smaller than 2∆V ,
apart from the identity.

Since we are interested in the limit where both V ’s go to the boundary simultaneously, it
is convenient to introduce the ρ-coordinates depicted in fig. H.3. These are related to the
(τ, θ) coordinates as follows:

r1 = tan
θ1
2
, r2 =

(
1 + e2τ − 2eτ cos θ2
1 + e2τ + 2eτ cos θ2

)1/2

, cosφ =
1− e−2τ

√
1 + e−4τ − 2e−2τ cos 2θ2

.

(H.24)
Notice that the inversion symmetry (r1, r2, cosφ)→ (1/r1, 1/r2, cosφ) is mapped to the
symmetry (θ1, θ2) → (π − θ1, π − θ2). We used it to restrict θ1 to lie in the interval
[0, π/2], and correspondingly r1 ∈ [0, 1]. On the other hand, the symmetry under swapping
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Appendix H. Short time singularities in the correlators of V

x1 ↔ x2 is not explicit in eq. (H.24). The inverse map is

θ1 = 2arctan r1 , cos θ2 =
1− r22√

1 + (2− 4 cos2 φ)r22 + r42
, τ = −1

2
log

1− 2r2 cosφ+ r22
1 + 2r2 cosφ+ r22

.

(H.25)
Although the integration domain in eq. (H.23) covers a region where r2 > 1, the singularity
at small τ arise from the limits θ1, θ2 → 0 or π. Up to the inversion symmetry, both of the
limits are mapped to r1, r2 → 0. Hence, we can focus on the region where r1, r2 < r0 < 1.
It is convenient to trade (θ1, θ2) for r1 and r2 in the integral (H.23), while keeping the τ
dependence explicit. Therefore, we use

θ1 = 2arctan r1 , θ2 = arccos

(
1− r22
1 + r22

cosh τ

)
, cosφ =

1 + r22
2r2

tanh τ , (H.26)

to obtain

|Gϵ(τ)| ≤
cosh τ

2 cosh6 τ2

∫ r0

0
dr1

∫ r0

tanh(τ/2)
dr2

1 + r21
r21

r2(1 + r22)|f(r1, r2, φ(r2, τ))|[(
r22 − tanh2 τ2

) (
1− r22 tanh2 τ2

)]3/2
+ terms finite at τ = 0 , (H.27)

In eq. (H.27), we slightly abused notation in the argument of f . Notice also that we
inserted a factor 2 accounting for the inversion symmetry. We can further simplify the
integrand by bounding with constants all the parts which are regular, at τ = 0, throughout
the region of integration. We thus obtain

|Gϵ(τ)| ≤ A(r0, τ)G(t) , t = tanh
τ

2
, (H.28)

G(t) =

∫ r0

0
dr1

∫ r0

t
dr2

r2

r21
(
r22 − t2

)3/2 |f(r1, r2, φ(r2, t))| , cosφ =
(1 + r22)t

(1 + t2)r2
.

(H.29)
The function A in eq. (H.28) has a finite value at τ = 0, and since G(t) turns out to
diverge at small t, A can be chosen large enough to also account for the dropped finite
terms in eq. (H.27).

Let us discuss the dangerous limits in the region of integration of eq. (H.29). Due to
assumption 3 and the subtraction of the vacuum correlator in eq. (H.22), the bulk OPE is
non singular, hence the limit r1 → r2 as t→ 0 will not be discussed. The singularities at
the lower end of the integration range for r1 and r2 are associated to the infinite volume
of AdS. At finite t, the condition (7.17) guarantees the integrability of the function in
the region where either r1 or (r2 − t) are small: notice in particular that both limits are
boundary OPE limits, since φ = 0 when r2 = t. On the other hand, the singularity of the
integrand is enhanced at t = 0, and the boundary OPE of each of the V’s does not fix
the behavior of f when r1 ∼ r2 → 0. The usefulness of the ρ-coordinates is precisely that
they allow to write a power expansion for the correlator centered around r1, r2 = 0 with
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H.2 The two-point function in a generic state

a finite radius of convergence. Indeed, the quantization on the unit half-circle dashed in
fig. H.3 yields an expansion in term of boundary operators. Dubbing rM = max(r1, r2),
rm = min(r1, r2), we find3

f(r1, r2, φ) =
∑
∆>0

r∆M ⟨Ω|Oi(−1)Oi(1)|∆⟩⟨∆|V(1, φM )V(rm/rM , φm)|Ω⟩ , (H.30)

where
(φM , φm)↔

(
φ,
π

2

)
. (H.31)

Again, we are abusing notation with respect to, e.g., eq. (H.22): the arguments of V are
(r, φ) from now on. The assignment of (φM , φm) depends on rM . Here, the states |∆⟩
form a complete set of eigenstates of the unperturbed Hamiltonian, but notice that the
identity is excluded from the sum, due to the subtraction of the vacuum correlator in
eq. (H.22). This subtraction differentiates the energy gaps from the eigenvalues of the
Hamiltonian themselves, and is ultimately what makes the former finite.

We first focus on the finitely many terms in eq. (H.31) with ∆ ≤ 2, which are present by
the assumption 2 above. To this end, we separate them using the triangular inequality:

|f(r1, r2, φ)| =

∣∣∣∣∣∣
∑
∆≤2

ci,∆block∆ + fR(r1, r2, φ)

∣∣∣∣∣∣ ≤
∑
∆≤2

|ci,∆block∆|+ |fR(r1, r2, φ)| ,

(H.32)
with

ci,∆ = ⟨Ω|Oi(−1)Oi(1)|∆⟩ ,

where block∆ is a shorthand notation for each addend in eq. (H.31) and fR is defined by
the equation itself. We dub G∆ the contribution of each block with ∆ ≤ 2 to eq. (H.29).
It is convenient to extract the singularity as r1 ∼ r2 ∼ t→ 0 via the change of variables
ri = zit, which yields

G∆(t) = t∆−2

∫ r0
t

0
dz1

∫ r0
t

1
dz2

z2

z21
(
z22 − 1

)3/2 z∆M ⟨∆|V(1, φM )V(zm/zM , φm)|Ω⟩ ,

(φM , φm)↔
(
arccos

(
1 + (z2t)

2

z2(1 + t2)

)
,
π

2

)
. (H.33)

Let us now discuss the behavior of the double integral as t → 0. In this limit, when
1 < z2 < r0/t, cosφ→ 1/z2 uniformly. Hence, the only t dependence is left in the upper
limits of integration. But firstly, there are the infinite volume singularities of the measure,
at z1 = 0 and z2 = 1. Close to this point, zM = z2 ∼ 1 and we can study the following

3The operators Oi are normalized so that ⟨Ω|Oi(−1)Oi(1)|Ω⟩ = 1.
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simpler integral:∫
0

dz1
z21

∫
1

dz2

(z22 − 1)3/2
|⟨∆|V(1, φ(z2))V(z1, π/2)|Ω⟩| , sinφ(z2) ∼

√
2(z2 − 1)1/2 .

(H.34)
The z1, (z2 − 1)→ 0 limits are controlled by the boundary OPEs of the two insertions
respectively. Hence, the integrals factorize and we get∫

0

dz1
z21
z∆0
1

∫
1

dz2

(z22 − 1)3/2
(z2 − 1)∆0/2 . (H.35)

Here, ∆0 is the lightest operator in the boundary OPE of V. As advertised, well-
definiteness of the matrix elements of the potential V (τ) – i.e. eq. (7.17) – requires
∆0 > 1. Therefore the integrals converge in this region. We also need to show convergence
in the region zi ∼ r0/t → ∞. Here, we can use a different approximation to the full
integral. Defining z1 = ν cosω and z2 = ν sinω, the relevant integral is

∫ 1
t

dνν∆−3

∫ π
2

0
dω

1

sin2 ω cos2 ω
max(sinω, cosω)∆

× |⟨∆|V
(
1,
π

2

)
V
(
min(tanω, cotω),

π

2

)
|Ω⟩| . (H.36)

The limits ω → 0, π/2 are identical and are again OPE limits for the correlator. For
instance, at small ω the integrand behaves as ω∆0−2, and so it converges. The integral
over ν converges as t → 0 if ∆ < 2. On the contrary, if ∆ = 2 this region gives the
dominating logarithmic contribution to the bound of the correlator at small τ .4

We now need to go back and estimate the contribution to G(t) of all the states with
∆ > 2 in the decomposition (H.31). Using eq. (H.32), this amounts in replacing f → fR
in eq. (H.29). In this case, we can simply set t = 0 in the right hand side of the equation,5

and study the following integral:∫ r0

0

dr1dr2
r21r

2
2

|fR(r1, r2, π/2)| . (H.37)

Now, fR is a finite linear combination of two-point functions of V in the presence of
various boundary operators, and as such, it has the same OPE bounds already discussed
as r1 → 0 at fixed r2 or vice versa. Hence, the integral converges there. On the other

4We would like to remark that this bound does not need to be saturated: there is no fundamental
reason why the correlator on the right hand side of eq. (H.36) cannot vanish in this specific configuration.
This happens for instance in the Ising model with a thermal deformation – see section 10.4 – as it is
easy to check directly. While this implies the absence of a log τ for any external state at second order
in perturbation theory, the connected correlator (H.20) can be computed exactly at ϵ = 0 at least for
|i⟩ = L−2 |Ω⟩: g0(τ) = 8π2 cosh 2τ in this case. Not only there is no log τ , g0 is in fact analytic at τ = 0.
The corresponding spectral density has a finite number of states, whose contribution to the energy gap
cancels exactly, as expected for the theory of a free fermion.

5One might object that cosφ(r2, t) has a non uniform limit as t→ 0. However, fR depends on φ only
through the positions (r2 cosφ, r2 sinφ), which approaches (0, r2) uniformly.
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H.2 The two-point function in a generic state

hand, when r1 ∼ r2 ∼ ν → 0, the subtractions make the behavior of the integrand softer:
fR ∼ ν∆ with ∆ > 2. To show rigorously that this suffices for the integral to converge,
let us go to polar coordinates in the (r1, r2) plane:∫ r0

0

dν

ν3

∫ π
2

0
dω

1

cos2 ω sin2 ω
|fR(ν, ω)| . (H.38)

At any fixed value of ν, the angular integral converges. Since fR can be expressed as an
absolutely convergent series there, using eq. (H.31), the series can be integrated term by
term, and we obtain ∫ r0

0

dν

ν3

∑
∆>3

κ∆ν
∆ . (H.39)

While the κ∆ are theory dependent, the previous equation shows that the small ν behavior
of the integrand is not enhanced by the integration over ω. This is sufficient to show that
the integral converges. This concludes the proof that eq. (H.33) provides the leading
singularity as τ → 0. As we stated at the beginning of the section, we work under the
assumption that the strength of the singularity is independent of the phase of τ . Hence,
although our manipulations are only valid for τ > 0, we extend the conclusion to a
neighborhood of the origin:

|Gϵ(τ)| < C(τ0)

{
|τ |∆∗−2 , ∆∗ < 2

log |τ | , ∆∗ = 2 ,
|τ | < τ0 . (H.40)

Here, ∆∗ is the lowest dimensional operator in the OPE (H.31).

We would like now to comment on the assumptions 1 - 3 above, in reversed order. If the
bulk OPE contains singularities above the identity, they can be added to the analysis.
In this thesis, the bulk OPE is relevant only for the ϕ4 deformation of a massive theory
considered in section 9.2, so we analyze this case separately in section 9.2. Here, we
limit ourselves to the simple scenario where the unperturbed Hamiltonian is a CFT,
and furthermore we assume the gap in the boundary spectrum is large enough to avoid
any enhancement of the bulk OPE singularity by boundary effects. As we will see in a
moment, a sufficient condition for this to happen is that the lowest boundary operator
has dimension ∆ > 3. The limit where the two operators collide is controlled by the OPE
in the UV theory, schematically:

V × V = 1 + Ṽ . (H.41)

The contribution of the identity cancels in the difference in eq. (H.22), so we concentrate
on the first non-trivial operator. Its contribution to eq. (H.23) can be computed by
rescaling (θ1 − θ2)→ τ(θ1 − θ2), as we did in section H.1. In the small τ limit, we obtain

Gϵ(τ) ∼ τ1+∆Ṽ−2∆V

∫ π−ϵ

ϵ

dθ

sin4 θ
⟨i|Ṽ(0, θ)|i⟩

∫ ∞

−∞
dθ−(1 + θ2−)

∆Ṽ/2−∆V . (H.42)
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The integral over θ− = (θ1 − θ2)/τ is dominated by the UV and is the same as in flat
space. The integral over θ = (θ1 + θ2)/2 is sensitive to the AdS geometry. The former
converges only when ∆Ṽ/2−∆V is large enough. However, this IR feature is spurious:
one can for instance take derivatives of Gϵ(τ), improving convergence without modifying
the non analytic parts of the result. On the other hand, the integral over θ converges
when the leading boundary operator coupling to Ṽ has dimension ∆ > 3. If this is not
the case, the crude approximations in eqs. (H.41,H.42) are inadequate: both bulk and
boundary effects must be taken into account to compute the small τ singularity. We shall
not treat this more general case here.

The remaining assumptions are easier to relax. The role of assumption 2 is to make the
τ → 0 limit singular, so that any finite contribution to Gϵ(τ) can be disregarded. When
this is not the case, one may consider derivatives of Gϵ(τ) instead. Clearly, the leading
non analytic behavior can be made singular in this way. What needs to be proven, is that
said non analytic behavior can also be traced to the region covered by eq. (H.33), and
so still leads to an equation analogous to (H.40). Technically, this should come about
because of the dependence of r2 from τ in eq. (H.24), which turns derivatives wrt τ
into derivatives wrt rM in eq. (H.31), in the region where rM = r2. We have not done
this analysis in detail, but these considerations prompt us to claim that eq. (H.40) can
be extended to ∆∗ > 2, simply by taking enough derivatives of both sides so that the
right hand side becomes singular. This is confirmed, for instance, in the case of the ϕ2

deformation in section 9.1.

Finally, the purpose of assumption 1 is to make the transformation properties of the
matrix elements involved under AdS isometries simple. This is used in eq. (H.31) to write
f(r1, r2, φ) in terms of the scaling operator Oi evaluated at special positions. Had the
state |i⟩ been created by a descendant in the origin, a more complicated linear combination
of descendants would have appeared in eq. (H.31). However, this only contributes a
numerical prefactor to the final result, and does not affect the τ dependence. Hence, the
result (H.40) immediately extends to generic states in the Hilbert space. This concludes
our analysis.

H.3 Free scalar example

In this example, we consider the potential

V (τ) =

∫ π/2

−π/2

dr

cos2 r
:ϕ2(τ, r) : . (H.43)

Let us concentrate to the the second-order contribution to the energy of the state
|χ⟩ = a†0 |vac⟩. The relevant object is

gχ(τ) = ⟨χ|V (τ)V (0)|χ⟩conn − ⟨Ω|V (τ)V (0)|Ω⟩conn . (H.44)
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H.3 Free scalar example

This difference was computed exactly in appendix G.3, with the result

gχ(τ) =
4

(2∆− 1)2
[
(1 + e−2∆τ )g∆(e

−2τ )− 1
]
, (H.45)

where

g∆(z) :=
∞∑
n=0

V0,2n(∆)2zn = 3F2

 1
2 , 1, 1

∆, ∆+ 1
2

∣∣∣∣∣∣ z
 . (H.46)

We can use the result to explore in particular the behavior of gχ(τ) for imaginary τ ,
which escapes the analysis of the previous sections. But first of all, at small τ we have

gχ(τ) ∼
τ→0

analytic− 4π

(2∆− 1) sin(2π∆)
τ2∆−2 + . . . (H.47)

which is consistent with eq. (H.40), since the leading operator in the boundary OPE of
ϕ2 has dimension ∆∗ = 2∆.

On the other hand, the behavior of gχ(τ) for imaginary τ depends on ∆. The function
g∆(e

−2τ ) is invariant under τ → τ + πi. Now if ∆ is rational, say of the form ∆ = p/q,
the exponential e2∆τ = e2p/q·τ appearing in gχ(τ) is invariant under τ → τ + q · πi.
Consequently, on the imaginary axis gχ is exactly periodic, with period q · π. The same
behavior occurs in the case of minimal models in the identity module: there, all correlators
are exactly invariant under τ → τ + πi. In contrast, if ∆ is irrational, the function gχ(τ)
cannot be exactly periodic. In Fig. H.4 we plot |G(τ = it)| for a range of t, both for
rational and irrational ∆ (namely ∆ = 2 and ∆ =

√
7). Nevertheless, in both cases we

can check that there are no non-analyticities stronger than the one in eq. (H.47) for
imaginary τ . This fact simply follows from eqs. (H.45) and (H.46). Indeed, the only
source of singularities in gχ(it) is the hypergeometric function, and, as stated above,
g∆(e

−2it) is periodic in t with period π. Then, the only non-analyticity along the path is
the branch point at t = πn, n ∈ Z. We conclude that the analytic structure of gχ(τ) is of
the form presented in figure 8.6, with power law monodromies along the imaginary axis,
all with the same exponent.
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Figure H.4: Plot of the correlator gχ(τ) for imaginary τ , for both ∆ = 2 (blue) and
∆ =

√
7 (orange). Notice the periodicity of the blue curve (rational ∆), whereas the

orange curve (irrational ∆) does not have any obvious features.
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I Algorithms

In this chapter, we present some of the algorithms we used in the numerics. The
calculations consist of three parts:

• finding the basis of states,

• constructing the Hamiltonian,

• diagonalizing the Hamiltonian.

Depending on the theory we study and the algorithm we use, each of the above can be
the bottleneck in runtime or memory.

I.1 Scalar field

As discussed in chapter 9, we construct the Hamiltonian in the truncated Fock space of
the free theory. The basis at cutoff Λ is made of states1

|ψ⟩ = |n0, n1, n2, ..., nimax⟩ ≡
1

N|ψ⟩
(a†imax

)nimax ... (a†2)
n2(a†1)

n1(a†0)
n0 |Ω⟩ , (I.1)

with energies E|ψ⟩ =
∑i=imax

i=0 ni(∆ + i) ≤ Λ. In particular, imax = ⌊Λ−∆⌋ is the
highest mode possible for a one-particle state. The factor N|ψ⟩ > 0 makes the state
unit-normalized. Finding the set of states in the free scalar theory is very fast and requires
little memory, compared to the other parts of the code. In table I.1, we present the
number of states for a few different cutoffs.

1The labelling of the states introduced here differs from the one used in the rest of the thesis: see e.g.
eq. (8.8a).
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Table I.1: Number of states at cutoff Λ for ∆ = 1.62 in scalar theory

Λ 10 15 20 25 30 35 40
#states 52 237 886 2904 8613 23620 60783

To build the Hamiltonian, we construct the V matrix once for each desired ∆ and then
save it. The Hamiltonian can then quickly be calculated using H = H0 + λ̄V .

One method to build the V matrix is to directly compute ⟨ψj |V |ψi⟩ by commuting the
ladder operators.2 A generic matrix element Vij is given by

(V2)ij = ⟨ψj |
∞∑

m,n=0

Amn(∆)(a†ma
†
n + 2a†man + aman) |ψi⟩ ,

(V4)ij = ⟨ψj |
∞∑

m,n,p,q=0

Amnpq(∆)(a†ma
†
na

†
pa

†
q+

+ 4a†ma
†
na

†
paq + 6a†ma

†
napaq + 4a†manapaq + amanapaq) |ψi⟩ ,

where the states ψi are defined as in eq. (I.1). Here Amn can be expressed in closed
form in eq. (9.15), and if desired the Amnpq can be computed analytically via a recursion
relation [205]. However, we calculated each of the Amnpq numerically and independently,
since the runtime of this operation is negligible compared to other parts of the code. Let
us emphasize a few points regarding the calculation of V :

• Both the ϕ2 and ϕ4 deformations preserve parity and Z2 symmetry. Therefore, we
divide the Fock space into four sectors according to the eigenvalue under these
symmetries.

• The matrix Amn is symmetric. So, the sum above can be reduced to m ≥ n. This
decreases the runtime by almost a factor of 2. Similarly, the runtime for the ϕ4

deformation decreases with a factor of ∼ 4!, as we can reduce the sum
∑

m,n,p,q=0

to
∑

m≥n≥p≥q≥0.

• The potential is symmetric: Vji = Vij . So, it is sufficient to calculate the upper
triangular part.

• Most of the elements of the potential Vij vanish: V is a sparse matrix. This is
because :ϕ2:, acting on a state with p particles, only produces states with p and
p± 2 particles. Of course, taking this into account drastically reduces the number
of matrix elements which it is necessary to compute and store.

2Another way is to act with the V operator on the state |ψi⟩ and expand it in our basis: V |ψi⟩ =∑
j V

j
i |ψj⟩. Typically, the method we used takes up more memory, whereas this method requires longer

runtimes.
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I.2 Minimal models

The last step is the diagonalization of the Hamiltonian. As we mentioned, we diagonalize
the four sectors with different parity and Z2 symmetry separately. In this work, we
used Spectra, a C++ library, which uses the Arnoldi/Lanczos method to find the smallest
eigenvalues of a sparse matrix.

Let us give the reader an idea of the runtime of a typical code. In the case of the ϕ2

deformation, for ∆ = 1.62 and Λ = 34.13 (which corresponds to 19939 states), it takes
∼ 44 CPU-seconds to compute the matrix V and ∼ 5 CPU-seconds to diagonalize the
full Hamiltonian, for a single coupling λ̄.

I.2 Minimal models

In the case of a minimal model, as discussed in chapter 10, the Hilbert space is composed
by states of the form:

|ψ⟩ = L−np · · ·L−n1 |Ω⟩ , (I.2)

where n1, . . . , np ≥ 1. In fact, it is sufficient to choose, say, 1 ≤ n1 ≤ . . . ≤ np in order to
span the whole Hilbert space. We dub this the ascending basis. We also define the level
of the state (I.2) as the sum

∑
i ni. The level is the eigenvalue of the state (I.2) under

the application of the unperturbed Hamiltonian L0.

The states (I.2) form in general a reducible representation of the Virasoro algebra. Indeed,
the identity module of a minimal modelM(p, q) has two null primary states at level 1 and
(p− 1)(q − 1). The set of physical states is obtained by quotienting out the submodules
composed of all the Virasoro descendants of these two states. The null state at level 1 is
L−1 |Ω⟩, for every minimal model. The other primary null state, for the Lee-Yang model
and the Ising model respectively, is

|null⟩LY =

(
L−4 −

5

3
L2
−2

)
|Ω⟩ , (I.3a)

|null⟩Ising =

(
L−6 +

22

9
L−4L−2 −

31

36
L2
−3 −

16

27
L3
−2

)
|Ω⟩ . (I.3b)

Let us emphasize that null states constitute the large majority of the states (I.2): for
instance, in the Lee-Yang model, at level 30 there are 5604 states of the kind (I.2), and
only 568 physical states. Quotienting out the submodule generated by L−1 |Ω⟩ is trivial
in the ascending basis: we just take n1 > 1. On the contrary, in order to quotient out
the descendants of (I.3) we need to write them in the ascending basis, which requires
performing a large number of commutators. Rather than performing the commutators
directly, we employed a more efficient method, which we briefly describe with an example.
Consider the state

L−3L
2
−2L−4 |Ω⟩ . (I.4)

It is not hard to understand which states of the ascending basis are required to decompose
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it. We first consider all distinct subsets of the indices of the Virasoro generators which
appear in eq. (I.4) already in ascending order, i.e. excluding −4:3{

(−3), (−2), (−3,−2), (−2,−2), (−3,−2,−2)
}
. (I.5)

Then, we sum the elements of each subset to −4, and we apply the resulting Virasoro
generator on the vacuum, together with the complement of the generators in the same
subset. Finally, we add the obvious L−4L−3L

2
−2 |Ω⟩ to the basis which is an element of:

Span
{
L−7L

2
−2 |Ω⟩ , L−6L−3L−2 |Ω⟩ , L−9L−2 |Ω⟩ , L−8L−3 |Ω⟩ , L−11 |Ω⟩ , L−4L−3L

2
−2 |Ω⟩

}
The coefficient of each state in the decomposition can be easily computed knowing the
multiplicities of the subsets (I.5) and the Virasoro algebra (10.1). The reason why this
method is faster than the blind application of the Virasoro algebra follows precisely
from the multiplicities of the subsets. When considering a descendant built by applying
the same generator many times, the distinct subsets are far less than the total number.
Correspondingly, when applying the commutation relations, a large number of identical
sub-operations are performed. The method just described allows to avoid this redundancy.

Since L0 is the unperturbed Hamiltonian, truncating the spectrum at cutoff Λ translates
into keeping physical states of level p ≤ Λ. We collect in the table below the dimension
of the truncated Hilbert space for a few values of the cutoff:

Λ 5 10 15 20 25 30 35 40
#states of
Lee-Yang

5 19 52 126 276 568 1103 2059

#states of
Ising

7 30 95 260 632 1426 3019 6099

Contrary to the case of free theory, the basis of states obtained with the procedure above
is not orthogonal. Hence, before proceeding to the computation of the potential V , we
need to evaluate the Gram matrix G, i.e. the matrix of scalar products in the basis of
physical states. This essentially reduces to the computation of overlaps of the kind

⟨ψj |ψi⟩ = ⟨Ω|Lj1 · · ·LjqL−ip · · ·L−i1 |Ω⟩ , (I.6)

where the indices obey ip ≥ . . . ≥ i1 > 1 and jp ≥ . . . ≥ j1 > 1. Since L0 is Hermitian,
and the states (I.2) are eigenvectors of L0 with eigenvalues equal to their level, the matrix
element (I.6) vanishes unless

∑
m jm −

∑
n in = 0. Then, the overlap is simply computed

by using the Virasoro algebra to commute the generator with a larger index towards the
right, and recalling that the vacuum is annihilated by all the modes Ln, n > −2.

The potential V involves the integral over the local operator V, see e.g. eq. (10.18).
3When decomposing more complicated states, in general not all the subsets contribute to the result.

The condition for a subset to be relevant is immediate and easy to implement in the code.

258



I.2 Minimal models

Therefore, to compute its matrix elements we need the overlaps

⟨ψj |V|ψi⟩ = ⟨Ω|Lj1 · · ·Ljq V L−ip · · ·L−i1 |Ω⟩ . (I.7)

Notice that this vanishes unless |ψi⟩ and |ψj⟩ share the same parity. These overlaps can
be computed by applying the Virasoro algebra, together with the action of the generators
on V, eq. (10.11),

[Ln,V] =
[
zn+1∂z + z̄n+1∂z̄ +

∆V
2

(
(n+ 1)(zn + z̄n)− 2

zn+1 − z̄n+1

z − z̄

)]
V , (I.8)

that we define as D̂n(z, z̄)V . Finally, using the fact that the expectation value of V in the
vacuum is a constant. More specifically, the strategy goes as follows. We first commute V
all the way to the left vacuum in eq. (I.7), and we reorder the result, such that in

⟨Ω| V L−ip′ · · ·L−i1 |Ω⟩ (I.9)

there are only negative Virasoro modes. Then we commute the generators again to the
left of V . In the end, we find a sum over a set of differential operators acting on a constant
aV :

⟨ψj |V|ψi⟩ =
∑
l

cl
∏
ml

D̂ml(z, z̄) aV =
∑
l

clDl(z, z̄) aV . (I.10)

In order to compute the integral of eq. (I.7) over AdS, it is useful to describe the objects
Dl(z, z̄) in some detail. Since, albeit not explicitly, the operators (I.8) are polynomials
in z and z̄, it follows that Dl(z, z̄) are polynomials as well. Furthermore, they are
homogeneous, and their degree d equals the sum of the indices ml in eq. (I.10). This sum
is independent of l, since it equals the difference of the levels of the states |ψj⟩ and |ψi⟩:

d =
∑

ml = (j1 + j2 + . . .+ jq)− (i1 + i2 + . . .+ ip) . (I.11)

Finally, Dl(z, z̄) is symmetric under z ↔ z̄. Now, Dl(z, z̄) can be easily evaluated on the
τ = 0 slice in global coordinates, which corresponds to z = 1/z̄ = i eir. The previous
constraints then translate in the following equality:

Dl =

d/2∑
k=0

αl,k

(
z2k + z−2k

)
=

d/2∑
k=0

αl,k

(
eik(2r+π) + e−ik(2r+π)

)
=

d/2∑
k=0

2αl,k cos(2kr+ kπ) .

(I.12)
To find V , we now need to integrate these trigonometric functions against the AdS
measure. It is simple to do this analytically, keeping in mind that we know that all the
matrix elements are finite. Hence, the constant terms αl,0 in eq. (I.12) must all combine
to yield integrals of the following form:∫ π

2

−π
2

cos(2kr + kπ)− 1

cos2(r)
dr = −2kπ , (I.13)
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where k ∈ N. Hence, the matrix elements of the potential are rational factors times π. Of
course, computing V once for the highest interesting cutoff yields the Hamiltonian for
any value of the coupling λ. Like in the free scalar case, both V and the Gram matrix
are symmetric, so we only compute their upper triangular part. Furthermore, V is parity
preserving, so H is block diagonal.

The last step is to diagonalize the Hamiltonian. Due to the presence of a non-trivial
Gram matrix G, we need to solve the following generalized eigenvalue problem:

H.v = E G.v , (I.14)

Empirically, we find that a higher precision in numerics is required to diagonalize the
Hamiltonian with respect to the scalar case. In fact, this step is the bottleneck in the code
runtime. Notice that, since the potential couples states with arbitrarily different unper-
turbed energy, when λ̄ is order one the off-diagonal matrix elements of the Hamiltonian
are large, contrary to the example discussed in section I.1.

We wrote the code for the minimal models in Mathematica. To give the reader an idea
of the runtime, it takes ∼ 100 core-hours to find V at cutoff Λ = 40 (with 2059 states)
in the Lee-Yang model, whereas it takes ∼ 400 core-hours to find V at cutoff Λ = 35

(with 3019 states) in the Ising model with thermal deformation. The diagonalization also
typically takes a core-hour for a single matrix. In order to produce a plot like the one
in figure 10.9, we need to diagonalize several Hamiltonians, corresponding to different
couplings λ̄ and truncation cutoffs Λ.

In appendix F, relations between matrix elements of the operator V were derived. As a
matter of principle, these recursion relations make it possible to compute many matrix
elements indirectly — once a small number of matrix elements is computed using the
algorithm discussed above, the rest of the matrix can be “filled in” using equations (F.11).
In our setup, we have instead chosen to compute all matrix elements directly. Indeed,
computing matrix elements indirectly requires organizing the Hilbert space of the theory
in terms of SL(2,R) primaries and descendants, which is doable but adds additional
complexity to the algorithm. Moreover, for moderate values of the cutoff Λ, a sizeable
fraction of the Hilbert space consists of SL(2,R) primaries, which in turns means that
many matrix elements of V still need to be computed explicitly.
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J Spontaneous symmetry breaking in
AdS

This appendix contain computations that have to do with symmetry breaking in AdS
and different boundary conditions.

J.1 All or nothing

Consider the following Euclidean action for a scalar field in AdS

S =

∫
dd+1x

√
g

[
1

2
(∂ϕ)2 + V (ϕ)

]
(J.1)

where V (0) = V ′(0) = 0. The global minimum of V (ϕ) is attained at ϕ = ϕt ̸= 0. We use
the AdS metric

ds2 = R2
[
dρ2 + sinh2 ρ dΩ2

d

]
(J.2)

and impose boundary conditions

lim
ρ→∞

ϕ(ρ)e
d
2
ρ = 0 , (J.3)

so that the action gets a finite contribution from ρ→∞. We claim that there are only
two possibilities:

1. Within field configurations satisfying the boundary condition (J.3), the global
minimum of the action is zero and it is attained by the constant solution ϕ = 0.

2. The action is not bounded from below and its value can always be decreased by
setting ϕ = ϕt in a bigger region of AdS.

In J.1 we will use the thin wall approximation to get some intuition for the claim above.
Then, we will present a more general argument in J.1.
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Thin wall approximation

In the thin wall approximation [206], the action is given in terms of the volume of the
region in the true vacuum and the area of the walls separating it from the false vacuum
ϕ = 0,

S = V (ϕt) volume + T area , (J.4)

where T is the tension of the walls. To minimize the action, it is preferable to use spherical
bubbles because these have the minimal area for a given volume. For this reason we
consider a single spherical bubble of geodesic radius ρ, centred at ρ = 0 in the coordinates
(J.2). This gives

S(ρ) = TRdVol(Ωd)

[
sinhd ρ− b

∫ ρ

0
dt sinhd t

]
, b ≡ |V (ϕt)|R

T
. (J.5)

Case 1. above corresponds to b ≤ d and the action is positive for bubbles of any
size. This follows from the fact that S(ρ) is positive for very small ρ and that its
derivative, dS

dρ ∝ d cosh ρ − b sinh ρ, is always positive if b ≤ d. Case 2. corresponds to
b > d and very large bubbles decrease the action without bound. Indeed, in this case
S(ρ) ∼ edρ

(
1− b

d

)
< 0 for large bubbles.

General spherical bubbles

Let us now consider the case of a general potential V (ϕ) and drop the thin wall approxi-
mation. We will analyse a single spherical bubble because breaking of spherical symmetry
should increase the action (from the kinetic term).

It is convenient to trade the boundary condition (J.3) for ϕ(ρ⋆) = 0 for some fixed ρ⋆.
The action for the finite region ρ < ρ⋆ is clearly bounded from below if V (ϕ) is bounded
from below. We will determine its absolute minimum and then study its dependence
with ρ⋆. This class of field configurations is sufficient to show that the action can be
unbounded from below in the limit ρ⋆ →∞.

We are interested in the field profile ϕ(ρ) that obeys the boundary condition ϕ(ρ⋆) = 0

and minimizes the action

S = Rd+1Vol(Ωd)

∫ ρ⋆

0
dρ sinhd ρ

[
1

2
ϕ′(ρ)2 + V (ϕ(ρ))

]
. (J.6)

The corresponding Euler-Lagrange equations,

ϕ′′(ρ) = V ′(ϕ(ρ))− d

tanh ρ
ϕ′(ρ) , (J.7)

describe a particle with position ϕ moving in the potential −V (ϕ) with a friction force
depending on the time ρ (see figure J.1). This equation of motion allows for the following
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behaviour when ρ→ 0: either ϕ′(ρ) ∼ ρ or ϕ diverges. We exclude the second possibility
because it would give an infinite contribution to the action (J.6).1 Therefore we can use
the boundary condition ϕ′(0) = 0, which means we are interested in trajectories that
start from rest. It is clear that ϕ(ρ) = 0 is a solution but it may not be the only one.
The particle motion interpretation of (J.7), depicted in figure J.1, makes it clear that if
there is a non-trivial solution that arrives at ϕ = 0 for some finite time ρ⋆ then a similar
solution will also exist for an arbitrary large ρ⋆. Recall that we are interested in the limit
of large ρ⋆ that allows for arbitrary large bubbles of true vacuum in AdS. Using standard
methods, we can compute2

1

Rd+1Vol(Ωd) sinh
d ρ⋆

d

dρ⋆
Smin = −1

2
ϕ′(ρ⋆)

2 . (J.8)

Moreover, if a non-trivial solution exist then ϕ′(ρ⋆)
2 tends to a positive constant as

ρ⋆ → ∞, which implies that Smin → −∞ in this limit.3 This corresponds to case 2.
above. If the potential is such that for any ρ⋆ the minimum of (J.6) is zero, then we fall
in case 1.

��t�(0)0

�V (�)

Figure J.1: The equation of motion (J.7) can be interpreted as a particle moving in the
potential −V (ϕ) with time-dependent friction. We are interested in trajectories that start
from rest at ρ = 0 and reach ϕ = 0 at the time ρ = ρ⋆. Apart from the trivial trajectory
ϕ(ρ) = 0, there may be other classical trajectories with lower action. This depends on
the potential. However, if such a trajectory exist for some ρ⋆ then it will also exist for
larger ρ⋆. Indeed, it is sufficient to start with a larger ϕ(0), and ϕ(0)→ ϕt when ρ⋆ →∞.
If V ′′(0) < −d2

4 then there is always another trajectory because the late time motion
around ϕ = 0 is oscillatory. This corresponds to the Breitenlohner-Freedman criteria for
the instability of the trivial vacuum around ϕ = 0.

1If the potential goes like V ∼ ϕn for large ϕ then the divergent solution has ϕ′(ρ) ∼ ρ−γ when ρ→ 0

with γ = min
(
d, n

n−2

)
. One can check that this leads to a divergent integral in (J.6).

2Recall the classical result ∂
∂tf

S(qi, ti; qf , tf ) = −E, relating the action S of the classical path from
q(ti) = qi to q(tf ) = qf to its energy E.

3Indeed, suppose that a solution exists which starts at rest at ϕ(0) = ϕ0 < ϕt and arrives at ϕ(ρ∗) = 0.
Then the solution with ϕ(0) → ϕt passes by ϕ0 with a non-vanishing velocity, and so arrives at ϕ = 0
with a larger velocity than the original solution.
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It is convenient to analyse the asymptotic behaviour of the equation of motion (J.7) for
large ρ and around ϕ = 0, where it reduces to a linear ODE:

ϕ′′(ρ) + dϕ′(ρ)− V ′′(0)ϕ(ρ) = 0 . (J.9)

The general solution is ϕ(ρ) = c+e
−α+ρ + c−e

−α−ρ with

α± =
d

2
±
√
d2

4
+ V ′′(0) . (J.10)

We conclude that for V ′′(0) < −d2

4 the late-time motion is oscillatory and therefore the
particle reaches ϕ = 0 in finite time. This means that the vacuum ϕ = 0 is unstable
if V ′′(0) is below the Breitenlohner-Freedman bound [155]. If V ′′(0) > −d2

4 then the
late-time motion is repulsive or over-damped and we cannot decide if we fall in case
1. or 2. with an asymptotic analysis. A purely quadratic potential with V ′′(0) > −d2

4

corresponds to case 1., as it can be checked explicitly.

J.2 Inverted harmonic oscillator

In this appendix we will consider the fact of the harmonic oscillator with a negative mass,
and in particular how such a system would be analyzed using Hamiltonian truncation
methods. To be precise, we consider the following Hamiltonian:

H = a†a+ g
[
(a†)2 + a2 + 2a†a

]
(J.11)

where [a, a†] = 1. Physically, this is nothing but a harmonic oscillator with unit frequency,
perturbed by the normal-ordered operator X2 with an (at least for now) arbitrary real
coupling g. The spectrum of H can easily be obtained using a Bogoliubov transformation,
using the Ansatz

b = cosh(θ)a+ sinh(θ)a† (J.12)

for some θ ∈ R to be determined. By construction, the annihilation operator b from (J.12)
and its partner b† obey the canonical commutation relation [b, b†] = 1 for any θ. Setting

θ =
1

4
ln(1 + 4g) (J.13)

we find that

H =
√

1 + 4g b†b+ EΩ, EΩ =
1

2

√
1 + 4g − 1

2
− g ≤ 0. (J.14)

In other words, H is a harmonic oscillator with frequency ω =
√
1 + 4g in disguise, up to

a finite shift in the ground state energy.

The above reasoning applies to positive g, and in fact it’s easy to see that the same
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formulas apply to slightly negative values of the coupling constant. By inspection of (J.13)
and (J.14) we see that the Bogoliubov transformation (J.12) works for any g ≥ g⋆ := −1/4.
However, the theory ceases to exist for g < g⋆ — for instance, the energy

√
1 + 4g has a

branch cut starting at g = g⋆.

At the same time, we can analyze H using truncation methods. To do so we work in Fock
space, in a basis of the first N eigenstates of the g = 0 Hamiltonian, to wit

|k⟩ := 1√
k!

(a†)k |vac⟩ for k = 0, . . . , N. (J.15)

The Hamiltonian then becomes a Hermitian matrix HN (g) of size (N + 1) × (N + 1),
which is diagonalizable for any real value of g. Note that HN (g) does not mix states
with even and odd mode number k, since the theory is invariant under the Z2 symmetry
(a, a†) 7→ (−a,−a†). In figure J.2 we plot the first 10 energy levels of HN (g) for a range of
negative g, working at cutoff N = 50. For g ≥ g⋆ Hamiltonian truncation is in excellent
agreement with the analytic formula (J.14). Yet for g < g⋆, we observe that states
with even and odd Z2 parity become near-degenerate, emulating spontaneous symmetry
breaking in quantum field theory.

-0.5 -0.4 -0.3 -0.2 -0.1 0.0

-40

-30

-20

-10

0

10

Figure J.2: Spectrum of the cutoff Hamiltonian HN (g) for N = 50 for g ∈ [−1/2, 0]. The
blue (resp. orange) curves have even (odd) Z2 parity. The dotted red lines for g ≥ g⋆
show the exact spectrum of the theory; the vertical black dotted line indicates g⋆.

Although the theory is unphysical for g < g⋆, we can nevertheless study the eigenstates
and eigenvalues of HN (g) numerically. When Hamiltonian truncation converges, the
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ground state |Ω⟩ should not be sensitive to the cutoff, N in this case. This means that
the overlap of |Ω⟩ with Fock space states |k⟩ having k ∼ N ought to be negligeable when
N is large. To make this quantitative, we can introduce the integrated probability density

P(N)
k =

k∑
j=0

|⟨Ω|j⟩|2 (J.16)

which grows with k and obeys P(N)
N = 1 (since |Ω⟩ is normalized). Below in figure

J.3 we display P(N)
k for various values of g, setting N = 200. For g > g⋆ we see that

|Ω⟩ has little overlap with states close to the cutoff, as expected (because Hamiltonian
truncation converges very rapidly in quantum mechanics). However, this behavior changes
dramatically as we lower g to g⋆. Already for g = g⋆− 10−3, the ground state |Ω⟩ consists
mostly of high-energy states, and as we lower g this effect becomes even more important.
Plots of P(N)

k are shown in figure J.3. It is clear that for g < g⋆, at least some states in

0 50 100 150 200
0.0
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0.8
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1
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Figure J.3: Probability P(N)
k to find the truncation ground state |Ω⟩ in the first k Fock

space states, working at cutoff N = 200. For g = 1 the ground state has almost no
overlap with high-energy states. As g ↘ g⋆, the overlap with states close to the cutoff
grows dramatically, and for values of g below g⋆, the ground state is very UV-sensitive.

the spectrum of HN are extremely UV-sensitive; indeed, the spectrum EΩ, E1, . . . for such
values of g depends strongly on the cutoff N , as shown in figure J.4.4 Surprisingly, the
parity of the k-th excited state goes as (−1)k+N , that is to say that it alternates with N .

4From the plot, it appears that E1 − EΩ has a finite limit as N → ∞, but E2 − EΩ does not converge
as the cutoff is removed.
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20 40 60 80 100
0

2
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Figure J.4: The first two energies E1 and E2 (after subtracting the Casimir energy EΩ) of
the Hamiltonian HN (g) for g = −1/2, scanning over a range of cutoffs N . Blue (resp.
orange) points label Z2 even (odd) states. In particular, it is clear that E2 − EΩ does not
have a finite limit as N →∞, and that the parity of the k-th eigenstate of H depends on
the sign (−1)N .
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