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Abstract

The exploration of open quantum many-body systems —systems of microscopic size
exhibiting quantum coherence and interacting with their surrounding— has emerged
as a key research area over the last years. The recent advances in controlling and
preserving quantum coherence at the level of a single particle, developed in a wide
variety of physical platforms, have been a major driving force in this field. The driven
dissipative nature is a common characteristic of a wide class of modern experimental
platforms in quantum science and technology, such as photonic systems, ultracold
atoms, optomechanical systems, or superconducting circuits. The interplay between
the coherent quantum dynamics and dissipation in open quantum systems leads to
a wide range of novel out-of-equilibrium behaviours. Among them, the emergence in
these systems of dynamical phases with novel broken symmetries, topological phases

and the occurrence of dissipative phase transitions are of particular interest.

This thesis aims at establishing a theoretical framework to engineer, characterize and
control nonclassical states of light in photonic quantum optical networks in different
regimes. The emphasis is put on its implementation, in particular with respect to
integration and scalability in photonic platforms.

In this thesis, we tackle some interesting aspects arising in the study of the dynamics of
driven dissipative coupled nonlinear optical resonators. In that context, we consider the
dynamics of two coupled nonlinear photonic cavities in the presence of inhomogeneous
coherent driving and local dissipations using the Lindblad master equation formalism.
We show that this simple open quantum many-body system can be subject to dynamical
instabilities. In particular, our analysis shows that this system presents highly
nonclassical properties and its dynamics exhibits dissipative Kerr solitons (DKSs),
characterized by the robustness of its specific temporal or spatial waveform during

propagation.

In a second step, our intuition gained from this system composed of only few degrees
of freedom is expanded to the study of systems of bigger size. In particular, we
study DKSs originating from the parametric gain in Kerr microresonators. While
DKSs are usually described using a classical mean-field approach, our work proposes a
quantum-mechanical model formulated in terms of the truncated Wigner formalism.
This analysis is motivated by the fact that technological implementations push towards



the realization of DKSs in miniaturized integrated systems. These are operating at
low power, a regime where quantum effects are expected to be relevant.

Using the tools provided by the theory of open quantum systems, we propose a detailed
investigation of the impact of quantum fluctuations on the spectral and dynamical
properties of DKSs. We show that the quantum fluctuations arising from losses engender
a finite lifetime to the soliton, and demonstrate that DKSs correspond to a specific
class of dissipative time crystals.

Keywords: Open quantum many-body systems, Lindblad quantum master equation,
Truncated Wigner method, Non-equilibrium dynamics, Collective dynamics, Opti-
cal parametric oscillators, Dissipative phase transitions, Dissipative Kerr solitons,
Dissipative time crystals.
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Zusammenfassung

Die Erforschung offener Quanten-Vielteilchensysteme—Systeme mikroskopischer Grosse,
die Quantenkohérenz aufweisen und mit ihrer Umgebung interagieren— hat sich in den
letzten Jahren zu einem wichtigen Forschungsgebiet entwickelt. Die jiingsten Fortschrit-
te bei der Kontrolle und Erhaltung der Quantenkohérenz auf der Ebene eines einzelnen
Teilchens, die in einer Vielzahl von physikalischen Plattformen entwickelt wurden, waren
eine wichtige Triebkraft in diesem Bereich. Der Getrieben-Dissipativ-Charakter ist ein
gemeinsames Merkmal einer breiten Klasse von modernen Experimentierplattformen
in der Quantenwissenschaft und -technologie, wie zum Beispiel photonische Systeme,
ultrakalte Atome, optomechanische Systeme oder supraleitende Schaltkreise. Das
Zusammenspiel zwischen der kohédrenten Quantendynamik und der Dissipation in
offenen Quantensystemen fiihrt zu einem breiten Spektrum neuartiger Verhaltensweisen
ausserhalb des Gleichgewichts. Von besonderem Interesse sind dabei die Entstehung
dynamischer Phasen mit neuartigen gebrochenen Symmetrien, topologische Phasen

und das Auftreten dissipativer Phasentibergange in diesen Systemen.

Diese These zielt darauf ab, einen theoretischen Rahmen fiir die Entwicklung, Charak-
terisierung und Kontrolle von nichtklassischen Zusténden des Lichts in photonischen
quantenoptischen Netzwerken in verschiedenen Regimen zu schaffen. Der Schwerpunkt
liegt auf seiner Umsetzung, insbesondere im Hinblick auf die Integration und Skalier-
barkeit in photonischen Plattformen.

In dieser These befassen wir uns mit einigen interessanten Aspekten, die sich bei der
Untersuchung der Dynamik von getriebenen dissipativen gekoppelten nichtlinearen
optischen Resonatoren ergeben. In diesem Zusammenhang betrachten wir die Dyna-
mik von zwei gekoppelten, nichtlinearen photonischen Kavitdten in Gegenwart von
inhomogenen kohérenten Antrieben und lokalen Dissipationen unter Verwendung
der Lindblad Mastergleichung.

Wir zeigen, dass dieses einfache offene Quanten-Vielteilchensystem dynamischen In-
stabilitdten unterliegen kann. Insbesondere, dass dieses System hochst unklassische
Eigenschaften aufweist und seine Dynamik dissipative Kerr-Solitonen (DKSs) hervor-
bringt, die durch die Robustheit ihrer spezifischen zeitlichen oder rdumlichen Wellenform
wahrend der Ausbreitung gekennzeichnet sind.



In einem zweiten Schritt wird unsere Intuition, die wir aus diesem System mit nur
wenigen Freiheitsgraden gewonnen haben, auf die Untersuchung von Systemen mit einer
Grosszahl von Freiheitsgraden erweitert. Insbesondere untersuchen wir DKSs, die durch
die parametrische Verstiarkung in Kerr-Mikroresonatoren entstehen. Wéhrend DKSs
normalerweise mit einem klassischen Molekularfeldtheorie-Ansatz beschrieben werden,
schlagen wir in unserer Arbeit ein quantenmechanisches Modell vor, das in Form des
trunkierten Wigner-Formalismus ausgedriickt wird. Diese Analyse ist durch die Tatsache
motiviert, dass technologische Implementierungen in Richtung der Realisierung von
DKSs in miniaturisierten integrierten Systemen vorstossen. Diese werden mit geringer
Leistung betrieben, einem Bereich, in dem Quanteneffekte relevant sein diirften.

Unter Verwendung der Werkzeuge der Theorie offener Quantensysteme schlagen
wir eine detaillierte Untersuchung der Auswirkungen von Quantenfluktuationen auf
die spektralen und dynamischen Eigenschaften von DKSs vor. Wir zeigen, dass
die Quantenfluktuationen, die durch Verluste entstehen, dem Soliton eine endliche
Lebensdauer verleihen, und demonstrieren, dass DKSs einer bestimmten Klasse von

dissipativen Zeitkristallen entsprechen.

Schliisselworter: Offene Quantensysteme, Lindblad Quanten-Mastergleichung, Trun-
kierte Wigner-Methode, Nicht-Gleichgewichtsdynamik, Kollektive Dynamik, Optische
parametrische Oszillatoren, Dissipative Phaseniibergénge, Dissipative Kerr-Solitonen,
Dissipative Zeitkristalle.
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Résumé

L’exploration des systémes quantiques ouverts a plusieurs corps —des systemes de
taille microscopique présentant une cohérence quantique et interagissant avec leur
environnement — est devenue un domaine de recherche essentiel au cours des derniéres
années. Les récentes avancées dans le controle et la préservation de la cohérence
quantique au niveau d’une seule particule, développées dans une grande variété de
plateformes physiques, ont été une force motrice majeure dans ce domaine. La
nature dissipative entrainée est une caractéristique commune d’une large classe de
plateformes expérimentales modernes en science et technologie quantiques, telles que
les systemes photoniques, les atomes ultrafroids, les systemes optomécaniques ou les
circuits supraconducteurs. L’interaction entre la dynamique quantique cohérente et
la dissipation dans les systemes quantiques ouverts conduit a un large éventail de
nouveaux comportements hors équilibre. Parmi ceux-ci, I’émergence dans ces systemes
de phases dynamiques avec de nouvelles symétries brisées, de phases topologiques et
I’apparition de transitions de phase dissipatives sont particulierement intéressantes.

Cette these vise a établir un cadre théorique pour concevoir, caractériser et controler
les états non classiques de la lumiere dans les réseaux optiques quantiques photoniques
dans différents régimes. L’accent est mis sur sa mise en ceuvre, en particulier en ce qui

concerne l'intégration et la scalabilité dans les plateformes photoniques.

Dans cette these, nous abordons certains aspects intéressants de I’étude de la dynamique
des résonateurs optiques non linéaires couplés et dissipatifs. Dans ce contexte, nous
considérons la dynamique de deux cavités photoniques non linéaires couplées en présence
d’un pompage cohérent inhomogene et de dissipations locales en utilisant le formalisme
des équations maitresses de Lindblad.

Nous montrons que ce simple systeme quantique ouvert a plusieurs corps peut étre sujet
a des instabilités dynamiques. En particulier, notre analyse montre que ce systeme
présente des propriétés hautement non-classiques et que sa dynamique présente des
solitons de Kerr dissipatifs (SKDs), caractérisés par la robustesse de sa forme d’onde
temporelle ou spatiale spécifique pendant la propagation.

Dans un deuxiéme temps, notre intuition acquise a partir de ce systeme composé de
seulement quelques degrés de liberté est étendue a 1’étude de systémes de plus grande
taille. En particulier, nous étudions les SKDs provenant du gain paramétrique dans



les microrésonateurs de Kerr. Alors que les SKDs sont généralement décrits par une
approche classique de champs moléculaires, notre travail propose un modele quantique
formulé en termes du formalisme de Wigner tronqué. Cette analyse est motivée par le
fait que les implémentations technologiques poussent a la réalisation de SKDs dans
des systemes intégrés miniaturisés. Ceux-ci fonctionnent a faible puissance, un régime
ou les effets quantiques sont censés étre non négligeables.

En utilisant les outils fournis par la théorie des systemes quantiques ouverts, nous
proposons une investigation détaillée de 'impact des fluctuations quantiques sur les
propriétés spectrales et dynamiques des SKDs. Nous montrons que les fluctuations
quantiques résultant des pertes engendrent une durée de vie finie au soliton, et
démontrons que les SKDs correspondent a une classe spécifique de cristaux de temps
dissipatifs.

Mots clés : Systemes quantiques ouverts, équation maitresse quantique de Lindblad,
méthode de Wigner tronquée, dynamique de non-équilibre, dynamique collective,
oscillateurs paramétriques optiques, transitions de phase dissipatives, solitons de Kerr
dissipatifs, cristaux de temps dissipatifs.
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Sinossi

L’esplorazione dei sistemi quantistici aperti a molti corpi —sistemi di dimensioni
microscopiche che mostrano coerenza quantistica e interagiscono con il loro ambiente —
¢ diventata un’area di ricerca chiave negli ultimi anni. I recenti progressi nel controllo
e nella conservazione della coerenza quantistica a livello di una singola particella,
sviluppati in un’ampia varieta di realizzazioni sperimentali, hanno rappresentato una
forza trainante in questo campo. La natura dissipativa forzata (driven dissipation) &
una caratteristica comune a un’ampia classe di moderne realizzazioni sperimentali nella
scienza e nella tecnologia quantistica, come i sistemi fotonici, gli atomi ultrafreddi,
i sistemi optomeccanici o i circuiti superconduttori. L’interazione tra dinamica
quantistica coerente e dissipazione nei sistemi quantistici aperti porta a un’ampia
gamma di nuovi comportamenti fuori dall’equilibrio. Tra questi, '’emergenza in questi
sistemi di fasi dinamiche con nuove rotture di simmetrie, fasi topologiche e transizioni

di fase dissipative ¢ particolarmente interessante.

Questa tesi mira a stabilire un quadro teorico per ingegnerizzare, caratterizzare e
controllare gli stati non classici della luce in reti ottiche fotoniche quantistiche in diversi
regimi. L’accento e posto sulla sua implementazione, in particolare per quanto riguarda
I'integrazione e la scalabilita delle piattaforme fotoniche.

In questa tesi affrontiamo alcuni aspetti interessanti che emergono nello studio della
dinamica di risonatori ottici non lineari accoppiati e dissipativi. In questo contesto,
consideriamo la dinamica di due cavita fotoniche non lineari accoppiate in presenza di
un pompaggio coerente disomogeneo e di dissipazioni locali, utilizzando il formalismo
della master equation di Lindblad. Mostriamo che questo semplice sistema quantistico
aperto a molti corpi puo essere soggetto a instabilita dinamiche. In particolare, la nostra
analisi mostra che questo sistema presenta proprieta altamente non classiche e che la
sua dinamica presenta solitoni dissipativi di Kerr (SDK), caratterizzati dalla robustezza

della loro specifica forma d’onda temporale o spaziale durante la propagazione.

In una seconda fase, I'intuizione acquisita da questo sistema composto da pochi gradi
di liberta viene estesa allo studio di sistemi piu grandi. In particolare, studiamo i SDK
originati dal guadagno parametrico nei microresonatori di Kerr. Mentre i SDK sono
generalmente descritti da un approccio classico di campo medio, il nostro lavoro propone

un modello quantomeccanico formulato in termini di formalismo di Wigner troncato.
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Questa analisi e motivata dal fatto che le implementazioni tecnologiche si spingono
verso la realizzazione di SDK in sistemi integrati miniaturizzati. Questi funzionano
a bassa potenza, un regime in cui si prevede che gli effetti quantistici non siano
trascurabili. Utilizzando gli strumenti forniti dalla teoria dei sistemi quantistici aperti,
proponiamo un’indagine dettagliata dell’impatto delle fluttuazioni quantistiche sulle
proprieta spettrali e dinamiche dei SDK. Dimostriamo che le fluttuazioni quantistiche
derivanti dalle perdite generano tempi di vita finiti per i solitoni e dimostriamo che i

SDK corrispondono a una classe specifica di cristalli temporali dissipativi.

Parole chiave: Sistemi quantistici aperti e a molti corpi, equazione quantistica di
Lindblad, metodo di Wigner troncato, dinamica di non-equilibrio, dinamica collettiva,
oscillatori ottici parametrici, transizioni di fase dissipative, solitoni di Kerr dissipativi,

cristalli temporali dissipativi.
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General Introduction

uantum mechanics is a very successful mathematical theory explaining a wide
range of phenomena that occur at very small scales (including atoms, electrons, and
photons), where classical theories formulated by Galileo, Newton, Lagrange, Hamilton,
Maxwell and others, fail. Quantum physics has broadened our understanding of nature
and sparked a slew of technological breakthroughs.

0.1 A brief history of Quantum Mechanics

The first years of quantum mechanics. The quantum journey began with Max
Planck’s pioneering work in 1900, when he postulated that energy exchanges between
light and matter occurs in discrete irreducible quanta, with energy E proportional
to the frequency of radiation v,

E = hv, (1)

with h the Planck constant [6]. This new perspective allowed him to accurately describe
the spectrum of black body radiation — which can be used to approximately describe
the energy emitted by the sun for instance. Albert Einstein then generalized Planck’s
concept by theorizing that energy itself (not just the process of energy absorption and
emission) is quantized according to Eq. (1), with the energy E actually corresponding
to the energy of a particle. The concept that light must consist of tiny bullet-like
particles —the photons— allowed him to explain the photo-electric effect in 1905 [7],
work for which he received the Nobel Prize in Physics.

First quantum revolution (1920’s - 1980’s). These early accomplishments led
to the development of a full-fledged theory of quantum mechanics in the 1920s, which
describes how nature works at the quantum level —at least for isolated systems.
Standard quantum mechanics considers closed or isolated systems, i.e. systems that
are perfectly isolated from their surroundings. Such systems evolve deterministically,
their dynamics is unitary and is fully governed by the Schrodinger equation

L, 0 5
ih () = H Ol &)



0.1. A brief history of Quantum Mechanics

In the above, i = h/(27) denotes the reduced Planck constant, [¢(¢)) is the ket (vector
in the Hilbert space) describing the state of the system at a given time ¢, and H (t) is
the Hamiltonian of the system. Important aspects of quantum mechanics in closed

systems are reviewed in Chap I Sec. 1, and Chap II Sec. 2.

A striking outcome of the quantum theory is the existence of two kinds of elementary
particles in nature: fermions and bosons, distinguished by their quantum statistics.
Fermions! have half-integer spin, obey Fermi-Dirac statistics, and are the building
blocks of matter. Bosons? on the other hand have integer spin, obey Bose-Einstein
statistics, and are the mediators of interactions. An important interaction that will
play a central role in this thesis is the interaction between light (photons) and matter
(e.g. electrons). A fully quantum description of interactions between photons and
electrons is provided by a quantum field theory, namely quantum electrodynamics.
Dirac quantized in particular the electromagnetic field and more generally bosonic
fields, introducing the concept of quantum harmonic oscillators (QHO). The elemental
notions of the QHO and its importance in the treatment of the electromagnetic field
is presented in Chap. I Sec. 2.

Quantum mechanics can be formulated within the formalism of Schrédinger (wave
mechanics, as described above) or Heisenberg (matrix mechanics). * Besides the
Schrodinger and Heisenberg formulation, in 1932, Eugene Wigner introduced a phase
space formulation of quantum mechanics. This formulation shares interesting common
points with the classical phase space formalism. An important ingredient to phase
space methods is the concept of coherent states. Some basic concepts of these specific
set of states are presented in Sec. 3 of Chap. I, while some intriguing aspects of phase
space approaches are examined in Sec. 2 to 4 of Chap. III.

The success of these various formalisms of quantum mechanics was enormous and
allowed to understand the periodic table of elements, quantized energy levels of atoms
[8], chemical interactions, amazing properties of matter such as superconductivity
or superfluidity, or describe particle physics. This also led to discovery and debate
about the weirdness of quantum mechanics. The wave-particle duality was established:
light and matter can behave as either a particle or a wave. Entanglement —a spooky
action at a distance — was brought to light.

This sparked a technological revolution, with the invention of technologies based on
emergent quantum physics phenomena. The so-called first quantum revolution enabled
inventions such as the transistor (1948), atomic clock (1949) and laser (1960). These

!Described by E. Fermi, P. Dirac and W. Pauli. Leptons and quarks are fermions, as well as entities
made up of them like e.g protons, neutrons, atoms, molecules and humans.

2Described by S. Bose A. Einstein. Photons, gluons, the W, Z and Higgs bosons are bosons.

3The two formalisms were demonstrated equivalent by P. Dirac.

3At the time of its invention, the laser was called “a solution looking for a problem” [9]. Today its
ubiquity of applicability is striking in our society, ranging from medical and industrial applications
to fundamental biological or nuclear fusion research.
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inventions are at the heart of computers, the Global Positioning System, and optical
fiber telecommunications, all of which are vital to today’s world economy.

However, these technologies do not harness the full power of quantum mechanics.

Second quantum revolution (starts ~ 1980’s). Today, researchers and scientists
are working towards a second technological leap. This second quantum revolution
builds upon fundamental research at the crossroads between quantum mechanics
(i.e. atoms, photons, Josephson junctions, physics of computation) and information
science (i.e. computer science, communications, cryptography), giving birth to a new
discipline called Quantum Information Science.

The trademark of this second quantum revolution lies in overcoming the passive observer
status of the quantum world as it exists in nature, and to start using quantum effects
to tailor novel quantum states of our own design. For instance, in addition to providing
an explanation of the periodic table, new artificial atoms can be created —like e.g.
quantum dots, excitons or superconducting qubit— that can be engineered to have
the desired electronic and optical properties.

Puzzling properties of quantum mechanics —superposition principle, entanglement
and teleportation — are used to this aim.

This audacious program was pioneered by the experiments conducted in the 1970s
and 1980s, including the works by Serge Haroche and David J. Wineland, allowing to
measure and manipulate individual quantum systems (as said in their Nobel Prize).
Since then, more progress has been made in that direction, and it has become possible
to generate quantum states of coherent or entangled matter and energy that exist
(probably) nowhere else in the Universe. These new manufactured quantum states
offer novel properties—like e.g. sensitivity, entanglement or correlations— that are
extremely desirable in quantum devices.

Some interesting experimental platforms used extensively within this framework are

exposed in Chap I Sec. 4.

Still (a lot of) work to do! Recently, large companies like Google and Microsoft
started pouring a lot of energy into this field with the aim of building a quantum
computer. With all these technology-driven perspectives, one might believe that the
theory of quantum physics is completely and perfectly established. But even more
than a hundred years after Planck and Einstein’s ground breaking works, quantum
physics still presents conceptual challenges for the scientific community.

On one side, this is due to the fact that the quantum world is host to a plethora of
strange phenomena that are not yet fully under control. We can mention for instance
the superposition of states, the EPR paradox 4, the collapse of the wave function,

4Named after Einstein, Podolsky and Rosen the EPR paradox is a thought experiment questioning
the "completeness" of quantum mechanics.
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the paradox of measurement as well as the existence of non-locality, which all raise
interesting physical and philosophical questions.

Also, some general question are not well understood. Among them, the transition
between the microscopic world—governed by the laws of quantum physics— and the
macroscopic world described by classical physics, remain unanswered. A particularly
rapidly expanding field of quantum science and technology is the research related
to nonclassical states of light. By “nonclassical” it is meant that the outcome of
measurements cannot be explained in terms of a classical probability distribution, but
only in terms of quantum mechanics. Prominent examples are sub-Poissonian photon
number statistics, and quantum entanglement. This thesis aims at establishing a

theoretical framework to

engineer, characterize and control nonclassical states of light in
photonic quantum optical networks in different regimes.

These nonclassical states of light emerge from the interaction between driving — a
laser source is generally applied to the optical network — and dissipation. To describe
such driven-dissipative system it is necessary to go beyond the framework of isolated

quantum system and use the tools of open quantum systems instead.

0.2 Open quantum systems

The theory of quantum mechanics initially was solely limited to the description of
isolated systems — systems that are perfectly isolated, with none of its degrees of
freedom coupling to the rest of the Universe. This constitutes of course an idealization;
in nature every system is open and interacts with its environment, exchanging energy,
matter and information. While some physical platforms are characterized by a
particularly weak interaction between the system and its environment, legitimating
to treat them as being isolated, in this thesis we shall be (mostly) interested in those
setups where interactions with the environment is of critical importance.

A significant part of modern experimental platforms in quantum science and technol-
ogy—Ilike e.g. photonic, ultracold atoms, optomechanical, and superconducting circuits
systems— are open quantum systems by nature. In view of their omnipresence in
experimental setups, it is of paramount importance to understand the dynamics
of open quantum systems.

An introduction to open quantum systems can be found in Chap. II Sec. 1. Some
physical platforms realizing open quantum optical many body systems are presented
in Chap. I Sec. 4.
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Dynamics of open quantum systems. Open quantum systems can be divided
into two components: the system of interest and its environment, with non-trivial
coupling between them.

In practice we often can only track the physics of the system while the behavior of
the the surrounding environment is far too complex to be grasped. A consequence
of this lack of knowledge is that one can no longer work in terms of pure quantum
states — kets |¢(t)) — but rather one needs to introduce a new quantity — the density
matrix p(t) describing a statistical mixture of quantum states. In 1976 the Lindblad
master equation (or Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation) was
derived. This is the most general equation describing the dynamics of an open quantum
system under Markovian dynamics, and reads

L= L(t)p(t) (3)

where L£(t) is the Liouvillian superoperator, encoding the coherent and incoherent
evolution. The Lindblad master equation and Liouvillian superoperator are discussed
in Chap. II Sec. 3 and Chap. II Sec. 4 respectively.

A computational challenge. From a theoretical standpoint, the description of
closed interacting many-body quantum systems is already challenging. The dimension
of the Hilbert space expands namely exponentially with the number of particles since a
quantum mechanical state is defined as the superposition of all possible configurations.
The task becomes even more challenging when treating quantum many-body systems
within the master equation formalism. Indeed, in this scenario, the density matrix—with
corresponding Hilbert space dimension being the square of the dimension of the original
space — must be time-evolved. The computational challenges associated with the
numerical simulation of the Lindblad dynamics are discussed in Chap. II and Chap.
ITI. Different approaches have been established to overcome this challenge.

Some of these various theories are exposed in Chap. II Sec. 5

Truncated Wigner. In this thesis we will focus on one specific method, the truncated
Wigner approximation approach, which is a phase space method. It is an efficient
numerical method describing quantum fluctuations to leading order in h.

In Chap. III Sec. 1 I propose a general discussion to the truncated Wigner formalism,
in Chap. III Sec. 5 to Sec. 8 the truncated Wigner formalism is addressed.

While in Chap. IIT Sec. 9 the TW is applied to a simple system of a driven dissipative
quantum harmonic oscillator.

0.2.1 On the importance of dissipation

The interest generated in the field of open quantum systems in the last decades is
motivated at least by two reasons. Within this paradigm the fundamental, experimental
and technological actors are entangled.
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Dissipation as an obstacle. Tackling the dissipative nature of the dynamics of
quantum many-body systems is particularly relevant in the experimental area and
for the development of quantum technologies. Indeed, in these domains, a major aim
consists in creating complex quantum states and controlling them.

It comes as no surprise that the quantum properties of a quantum system can be
altered by the dissipation and decoherence induced by the interaction of quantum
devices with its surrounding.

It is therefore of paramount importance to achieve better understanding of these
destructive processes and develop techniques to protect quantum systems from them °.
Note that understanding dissipation is fundamental to reaching the goal of a large-
scale quantum computer. Notably, progress has been so significant in this area
that Google very recently announced that their quantum computer has achieved
“quantum supremacy” [10].

Dissipation as a resource. While the inclusion of a dissipative coupling to an
environment often appears to be harmful to the generation and preservation of quantum
states, it turns out that non-equilibrium effects can also be used constructively. ©
Any cooling procedure, for example, relies on artificially introducing dissipation and
transferring the heat of a system into a cold bath, thereby lowering the system’s
temperature and entropy. This is common practice in laser cooling of atoms and is
of paramount importance in various experimental setups.

Moreover, fundamental theoretical work was performed around the 2000s to utilize
dissipation for the preparation and protection of quantum states [11-15]. Building
upon this idea, various dissipative processes have been harnessed over the year to
create non-classical states [16-24]. Non-classical states of light, such as squeezed and
entangled states of light, are valuable resources for both, fundamental and applied
research of quantum mechanics. For example they constitute a key ingredient in
quantum information sciences, paving the way for more precise quantum metrology,
more secure quantum communication, and faster quantum computation[25-27].
The ability to control and protect quantum states also plays a central role for the
implementation of quantum computation protocols [28-32].

The so obtained states of matter are stable against perturbations and are therefore
candidates for emerging quantum technologies.

5This is especially true in the realm of quantum information processing. Indeed, in this field, the
study is often initially inferred from the perspective of a closed system for the sake of simplicity, and
only after re-examined in a open system situation.

6Thermal cycles—where the functioning of a given cycle is enabled by the dissipation induced by the
heat baths— are prime examples of such protocols.
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0.3 Critical phenomena and phase transitions

The presence of dissipation causes open quantum systems’ dynamics to become non-
unitary. This leads to an additional layer of complexity and offers novel potentials in
comparison to the unitary dynamics of closed systems. In particular, the competition
between the different coherent and dissipative processes can lead to quantum phase
transitions and the emergence of new phases of matter. This leads to applications
spanning from novel paradigms of quantum simulators [33, 34| to the accurate modeling
of noise in modern quantum computing platforms [35]. In particular, reservoir
engineering [12-14, 23, 36-46] made it possible to realize previously inaccessible

quantum phases of matter.

Quantum phase transitions. Phase transitions occur when the physical properties
of a system change radically as one varies a parameter. A common example are phase
transitions associated with a change in temperature, such as the phase transition
between the solid, liquid and gaseous phases of water. In classical thermodynamics,

" can be driven by the competition between the energy of the system

critical phenomena
and the entropy produced by thermal fluctuations [47]. Quantum phase transitions
(QPTs) on the other hand are phase transitions that occur at absolute zero temperature.
They are a central theme of many-body physics [48]. Quantum critical phenomena®
originate from collective behavior of strongly correlated particles. At zero temperature
the system is always in its ground state — which by definition is the state with lowest
energy — and a QPT results in an brusque change of the ground-state wave function,
with different qualitative features. A common example is the Bose-Hubbard model,
which describes bosons residing on a lattice with on-site interactions and nearest-
neighbour hopping. A quantum phase transition from a strongly localized (Mott
insulator) to a delocalized one (superfluid) occurs as the ratio between hopping and
interaction is varied. Chap. IV Sec. 1.1 discusses quantum phase transition.

While equilibrium quantum phase transitions have historically received a lot of attention,

the nonequilibrium scenario generates a whole new set of open questions.

Dissipative phase transitions. In open quantum systems, the competition between
Hamiltonian evolution and driving and dissipation processes can engender a non-
analytical change in the system’s steady state [49]. These critical phenomena emerging
in the nonequilibrium steady state of an open quantum system are dubbed as dissipative
phase transitions [33, 49-88]. These are discussed in Chap. IV Sec. 2

"The so-called contact process—a toy model for the propagation of an infection— is an (not so random)
example. This classical non-equilibrium system exhibit a phase transition in the long-time limit,
between a state where the population is healthy and a state where the infection becomes endemic.

8The notion of critical phenomena describes the particular behavior of a system which is exactly at,
or close to, the phase transition point.
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Critical phenomena in driven-dissipative many-body quantum systems have attracted
recently a lot of interest [89], propelled by the quest for new classes of phase transitions.
Examples of criticality and critical phenomena are e.g. hysteresis [63, 78, 90, 91]
and slowing-down [64, 67, 92].

Dissipative time crystals. Dissipative time crystals (DTCs) [93, 94] are a peculiar
phase of a driven-dissipative quantum system where the time-translational symmetry
of the equation of motion is broken and non-stationary long-lived states spontaneously
occur [95]. DTCs will be discussed in more detail in Chap. IV Sec. 3. From a
theoretical perspective, they are characterized by the presence of multiple eigenvalues
in the Liouvillian spectrum with vanishing real but finite imaginary parts. In Chap.
IV Sec. 5 we explore the dynamics of two coupled nonlinear photonic cavities, in
the presence of inhomogeneous coherent driving and local dissipations. This section
features the results of an article published in Physical Review A [1]:

K. Seibold, R. Rota, and V. Savona, Dissipative time crystal in an asymmetric
nonlinear photonic dimer, Physical Review A 101, 033839 (2020).

We numerically solve the quantum master equation in two different ways —by diago-
nalizing the Liouvillian superoperator and using the approximated truncated Wigner
approach — and show that this system exhibits a disspative phase transition with
the emergence of a time crystalline phase. Moreover, our work investigates the onset
of these dynamical instabilities in the framework of dissipative phase transitions,
whereby the soliton emerges as a critical phenomenon in the “thermodynamic” limit
of large field amplitude.

Dissipative Kerr solitons. When a powerful source of light such as a laser is
applied on a material, this can alter its refractive index — a number characterizing
how fast light can travel within the material. This non-linear effect is called “Kerr
non-linearity”. Kerr frequency combs are systems in which the Kerr non-linearity
results in an optical frequency comb, with the initial single-frequency spectrum of the
laser converted into a series of discrete, equally spaced frequency lines. If the material
is also dispersive, meaning that the speed of light in the medium will depend on the
frequency, then the dispersion and non-linearity effects can conspire to give birth to
solitons. These dissipative Kerr solitons (DKSs) are wave packets that propagate at
constant velocity and which maintain their form.

Optical frequency combs and Kerr frequency combs will be discussed in Chap. V Sec. 1
and Chap V sec 2 respectively, while Chap. V Sec. 1 focuses on the intriguing concept
of solitons. Combining our knowledge of open quantum systems, and in particular the
study of the Liouvillian gap, together with the truncated Wigner method, we explore
in Chap. IV Sec. 4 a simple and solvable system: namely a single Kerr cavity oscillator
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subject to single-photon driving and one-photon dissipation. In this minimal model,
there exists a first-order driven-dissipative quantum phase transition and hysteresis.
We then extend this analysis in Chap. IV Sec. 4 to analyse DKSs in Kerr microring
resonator. Up to now, DKS have been investigated according to classical mean-field
approach. Here we provide an analysis using an open quantum system approach, in
particular using the truncated wigner approximation to include first order quantum

fluctuations. This last section reproduces the article submitted to Physical Review A [3]:

K. Seibold, R. Rota, F. Minganti, and V. Savona, Quantum dynamics of dissipative
kerr solitons, Phys. Rev. A 105, 053530 (2022).

Description of other quantum states of light. During the journey of my thesis, I
got the great chance and pleasure to bring my theoretical knowledge to a project
of an experimental group.

Perfectly in phase with the goals of my thesis, this project explores the quantum
correlations between photons and phonons modes, theoretically modelled as QHOs.
In particular, this work presents techniques for creating, controlling, and measuring
vibrational modes in the quantum regime.

This bridge between the theoretical and the experimental world was crowned with 2
published papers; the first one in Physical Review Letters [4]:

M. D. Anderson et al., Two-color pump-probe measurement of photonic quantum
correlations mediated by a single phonon, Physical Review Letters 120, 233601 (2018)

and the second one in Physical Review X [5] :

S. T. Velez et al., Preparation and decay of a single quantum of vibration at ambient
conditions, Physical Review X 9, 041007 (2019).

This very enriching experience allowed me to have an insight into the world of
experimental physics. In particular, it is very instructive to handle the vocabulary,
jargon, or tools of this other word, and also to realize the constraints of experimental
physics, which can be completely different from theory. I am convinced that physics
benefits tremendously of such collaborations. I thank Vincenzo Savona and Christophe
Galland for having granted me their trust for this collaboration.

Finally, this document closes with a general discussion and outlook in Chap. VII.
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Light-matter interaction and quantum states
of light

The interaction between light and matter plays a fundamental role in science and
technology. The emission and absorption of light by electrons in matter is at the
heart of an impressive number of emerging and well-established technologies.
This chapter begins with an overview of some general (and relevant) concepts of
quantum physics. We continue with a brief summary of the quantum harmonic
oscillator, a headstone at the heart of the quantum description of bosonic fields
(the electromagnetic field, mechanical vibrations or environmental degrees of
freedom can all be modeled by Harmonic oscillators). This will lead us to the
concept of coherent states, an important building block of the Gross—Pitaevskii
and Truncated Wigner methods.

We round off this first chapter by giving various paramount examples of experi-
mental platforms.
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1.1. Preliminary background

1.4.4 Quantum optomechanical systems . . .. .. .. ... ... 31
1.4.5 ... and a lot of other platforms . . .. .. .. .. ... ... 32

1.1 Preliminary background

This introductory chapter aims at giving the reader all the tools necessary to grasp
and enjoy the discussions presented in this thesis and pinpoint the important aspects
connected to our work. We do not go into too much detail as this would be beyond
the scope of this document, but all the nitty-gritty details can be found e.g in these
resources [96-101] and we also provide abundant bibliographic references in this chapter.
We begin this chapter with a lightening review of quantum mechanics, the mathematical
model of the physical (quantum) world. In the specific case of closed systems—systems
which are perfectly isolated from their environment—this model can be characterized
by five axioms [102] that specify the representation of states, observable, measurements,
the system dynamics, and the recipe to obtain a composite system.

1.1.1 Hilbert space and quantum states

The state of a physical quantum system encodes all the accessible information about the
system.

Pure states. The description of a quantum system in terms of pure states is possible
provided (a) we have complete knowledge about the system, and (b) there is no
entanglement with other systems. A pure state is represented with a normalized state
vector in a complex vector space, denoted, for example, as a ket |¢) in the Dirac
formalism [103]!, and may be seen as a normalized column vector?.

For a given physical system, the set of all possible state vectors forms a complex vector
space H, known as the Hilbert space (or state space) of the system. Any quantum
system is thus characterized by its Hilbert space H. The latter is equipped with a
scalar product that is complete with respect to the norm induced by the scalar product.
For what follows, we can assume that this space is of finite size.

To each ket [¢)) belonging to H, there is a unique associated bra (its adjoint) (¢,
belonging to the dual space H*.

If a quantum system can be in multiple (pure) states |1;), the superposition principle®
stipulates that the superposition of states

[4) = >_ ¢l (1.1)

J

!The wavefunction is a representation of the state vector in a particular basis, usually the position
basis.

2A state vector is defined up to a (physically insignificant) phase: |1)) and e?|¢)) describe the same
state.

3The superposition principle is a cornerstone of the quantum theory and represents a major departure
from the classical one [104].
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is also a (pure) quantum state, with the coefficients ¢; denoting arbitrary complex
coefficients.

Beyond the bra-ket notation, states of a system can be expressed in the density matrix
(also called density operator?) representation [103, 105, 106]°. The density matrix®
corresponding to the pure state [¢) is

Ppure = V) (Y] . (1.2)

For pure states, the density matrix and the ket description are equivalent’.
However, this representation becomes essential for describing the most general states,
the so-called mixed states. We will now explore the concept behind this terminology.

Mixed states. Sometimes, the knowledge of the state of a quantum system is not
maximal. This incomplete information about the physical state of the system requires
to introduce the concept of mized states or mixture.

The lack of knowledge can either arise from the preparation (subjective lack of
knowledge) or from the embedding in a larger Hilbert space (objective lack of knowledge).
In the first case the system has been prepared in a completely known (pure) state, but
the observer has insufficient information about this state, while in the second case,
the system is entangled with one or several other systems.

This is in particular the case for open quantum systems, which will be discussed in
more detail in the dedicated chapter 2.

A mixed state implements two probabilistic layers, one coming from the intrinsic
probabilistic nature of quantum mechanics (resulting from the probabilistic “collapse”
of the state onto an eigenstate of the observable), and the second arising from the
classical averaging (resulting from the observer’s lack of knowledge about the (pure)
state of the system).

State vectors by themselves are not able to captures the statistical (incoherent) mixtures
characterizing the mixed states. For this one needs to introduce the density matrix
formalism, which encapsulates both probabilistic layers and thus completely encodes
all statistical properties of the system.

For an arbitrary basis { |wj>} _, of the Hilbert space, the density matrix in this
basis is written as

N

Z piil ) (51 (1.3)

4This (ab)use of notation between the abstract density operator and the corresponding density matrix
expressed in some basis is generalized in most of the literature, and will also be used here.

°The density-matrix formalism was introduced in 1927 by John von Neumann [107]. The theory of
density matrix can be looked up at e.g. [108].

6The density matrices describing a system belong to (form) the Hilbert space of that system.

"However the density matrix representation gets rid of the global phases : Ppure = |V)(WU| =
(e7]6)) (1 3.

To be precise, every quantum mechanical state, even those requiring a density matrix description,
can be associated to a (a priori purely algebraic) state description (described with a vector) through
the so-called Gelfand-Naimark—Segal (GNS) construction. Nevertheless, this vector representation it
often complicated and does not provide any advantage, in contrary of the density-matrix formalism.
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The (real, non-negative) diagonal elements p; € R{ are called populations. They
quantify the probability of the quantum system to be in state |¢);), and verify 3=, p;; = 1
(the density matrix has a unit trace, all probabilities add up to one).

The (complex valued) off-diagonal elements p;; € C are called coherences, they
characterize the superposition between state [¢;) and [¢;), and verify p;; = pj; (the
density matrix is Hermitian). Note that the density matrix is dependent on the
choice of basis vectors.

Properties of the density matrix. The density matrix is a positive semi-defined
hermitian operator on a Hilbert space® with a unit-trace [105]. The Hermiticity and
non negativity conditions ensure respectively real and not negative eigenvalues, and
the unit-trace imposes eigenvalues summing to one.

Since the density matrix is Hermitian, it can always be diagonalised in an orthogonal
eigenstate basis (|gpj>);.v:1 of H,

p=2_pilpi)(pil (1.4)

i=1
where 0 < p; < 1 and Y ,p; = 1.

From this point of view, the density matrix can be interpreted as an incoherent
statistical mixture (superposition) of pure states {p;, |¢;)}; “incoherent” means that
the relative phases of the |p;)’s are experimentally inaccessible [109].

This representation is not unique as it was for pure states.

Purity. The quantity Tr(p?) is called the purity and it is a good measure of the
mixedness of a density matrix.

For a Hilbert space of dimension N, the purity takes values between 1/N and 1,
corresponding respectively to the values of a maximally mixed state and pure state’.
Mixed states verify 1/N < Tr(p?,,) < 1.

Entropy. Another useful measure for the heterogeneity of a quantum system is the
von Neumann entropy, a quantum extension of the Shannon entropy, which measures
how much is missing from the maximal information. It is defined as

S(p) = —Tr(plogp) = — Zpi log p;

where the p; are the eigenvalues of p. The von Neumann entropy takes values
between 0 and log N, corresponding respectively to the values of a pure state and
a maximally mixed state.

1.1.2 Time-evolution

On the one hand, the time-evolution of a state vector |i(t)) is given by the Schrodinger
equation

_d :
ih (1) = HO(E)

8 An operator is said to be positive-semidefinite (or non-negative) if it is an Hermitian operator with
nonnegative eigenvalues (due to hermicity, the eigenvalues are necessarily real).
9Since Ppure is an idempotent operator, Tr(ﬁ%we) = Tr(ppure) = 1.

14



1. Light-matter interaction and quantum states of light

where H(t) denotes the Hamiltonian of the system.
On the other hand, the time evolution of the density matrix is governed by the
Von Neumann-equation!®:!!

d .

iha,P(t) = [ (1), p(1)], (1.5)

where [A, B] = AB — BA denotes the commutator of the operators A and B.

1.1.3 Physical observables and measurements
1.1.3.1 Observable

Consider an experimentally measurable quantity .4 (for instance, this could be position,
momentum, spin or energy) of a quantum system described by a Hilbert space H. The
observable A associated to the quantity A is a Hermitian operator on H, i.e. an operator
satisfying AT = A, where the “dagger” 1 operation denotes the complex conjugate
transpose. The expectation value of the observable A for a given state p is

(A) =Tr(pA) . (1.6)

Spectral representation Since an observable A is a Hermitian operator, it can be
diagonalized. The (real) eigenvalues'*!? a; are the only possible outcomes of a (idealized
projective) measurement of A. The (normalized) eigenstates |a;) associated to the a;’s
4 form a complete orthonormal basis'® in A, and thus A has the spectral decomposition

A = Zajflj (17)

with TI; = |a;)(a;|, the projector operator relative to the eigenvector |a;).
This spectral representation generates a projection-valued measure (PVM).

1.1.3.2 Standard measurement

A measurement is a process in which an observer acquires information about the state of
a physical system. The information encapsulated in the density matrix does not imply
a deterministic, but rather a statistical prediction of the outcome of the measurement,
leading to an intrinsic randomness of the measurement process. In the case of projective
measurements (also called von Neumann measurements, projection-valued measures or
PVDMs), the probability to find the eigenvalue a; of A in outcome is given by

10This equation can be derived from the Schrédinger equation.

' The Von Neumann equations are analogous to the Liouville equation in classical statistical mechanics
(See Dirac rule [110, 111]).

120r rigorously the spectral values, if we also include Hilbert spaces of infinite dimension.

BThe eigenvalues of an Hermitian operator are real. This Thus is a desirable feature if one wants to
interpret the eigenvalues of observables as measurement outcomes.

M Ajay) = apla;)

5The eigenstates verify the orthogonality relation (a;laj) = 6;; and the completeness relation

55l as] = 1.
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pj = (I1;) = Tr(pIl; ) 1° (1.8)

and the measurement of the observable A projects the system into the eigenstate
la;) associated to the eigenvalue a;.
The expected value of the measurement is given by the observable

<121> = Tr(flﬁ) = Zajpj 1w, (1.9)

The concept of projective measurement is insufficient. In reality, the ex-
perimenter never directly measures the system, but rather the effect of the system
on its environment'®.

In the same spirit of the density operators which generalize the ket states description,
projective measurements can be generalized to the so-called generalized measurements
or positive operator-valued measurements (POVMs).

1.1.3.3 Generalized Measurements (POVMs)

The generalized measurement, or positive operator-valued measurement (POVM), of a
system, is described by a set of measurement operators {M;} that act in the Hilbert
space of the system. The index j refers to the possible outcomes of the measurement.
The M; are positive operators (not necessarily projectors). Thus, they constitute a
non-orthogonal decomposition of the identity operator!?.

If a quantum system is in a state p just before the measurement, then the outcome
of the measurement is j with an a priori probability

p; = (Ej) = Te{pEj} (1.10)

where the E; = M ;MjQO do not need to be projectors, but must be positive (to guarantee
that p; is always positive) and must satisfy the completeness equation® >, Ei=1
Right after the measurement with outcome j, the (normalized) state of the system is [97]

M,pM|
py = —% (1.11)
pj

16Since the |a;) ’s come from a complete set of orthonormal states, then the completeness relation
Zj II; = 1 ensures that Zj pj = 1, phew!

17<A> is a prediction of the average value of repeated measurements, whereas Ala;) = aj|a;) is the

value of 1 (just 1) single measurement.

BFor example, if an experimenter observes the spontaneous emission from an atom, they measure the
radiation emitted (effect of the system on the environment) by the atom (the system) as a result of
its interaction with the ambient electromagnetic field (the environment). However, the experimenter
does not directly observe the emitted radiation.

9Note that if the M;’s are taken to be a complete set of orthonormal projection operators i.e.
M; = 15){j|, leading to E; = |j)(j|, we recover the usual projective measurement.

20Note that while the M; determine the E;, the other way around is not true (MU (UM;) = M] M;).

2'Which translates to probabilities summing to 1.
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1. Light-matter interaction and quantum states of light

It is important to note that, unless p is an eigenvector of the observable A, a finite

. R 2
uncertainty —the variance AA = <A2> — <A> — remains.
This directly relates to the Heisenberg uncertainty relation.

Heisenberg uncertainty relation. Given two symmetric operators A and B
satisfying [A, B] = C, the (Robertson—Schrodinger) uncertainty relation states that*

1 4
AAAB > 5](0)] (1.12)
The Heisenberg uncertainty principle follows and reads?®

AxAp > Z . (1.13)

States that satisfy the Heisenberg uncertainty principle with equality are called minimum
uncertainty states. As we will see hereafter, the ground state of the harmonic oscillator
and coherent states satisfy the minimum uncertainty relation.

Quantum fluctuations stem from the uncertainty principle®*.

1.1.4 Composite systems and entanglement

Consider now two distinct quantum systems A and B with associated Hilbert space
Ha and Hp respectively?. We also denote by {|a;)} and {|b;)} the orthonormal
basis in each subspace.

Compose. The Hilbert space of the composite system {A, B} is given by the tensor
product Hap = Ha ® Hp. We have dim(H ) = dim(H 4) x dim(Hp), expressing the
exponential complexity when interconnecting several quantum systems.

The tensor product construction applies for Hilbert spaces, vectors, and operators. For
instance, if system A is prepared in the state ps and system B is prepared in the state
pB, then the composite system’s state is the product pap = pa ® pp.

Reduce. The partial trace operation allows to obtain the state of system A when
considered alone, given by its reduced density operator

pa=Trg(pap) = Y _(b;lpanlb;) - (1.14)

J

22The uncertainty in operators is defined as the standard deviation AA = /(A2) — (A)? .

23While the version of the Heisenberg uncertainty principle for the position-momentum variables is
the one always present in the textbooks, this principle also applies to all canonical pairs, such as
phase and action, or time and energy.

24Quantum fluctuations play a critical role in various physical phenomena. E.g. the inhomogeneity in
the structure of the Universe in the temperature fluctuations of the cosmic microwave background
[112].

25 A bipartite system is used in this discussion for the sake of simplicity. It is straightforward to
generalize to a multipartite system.

17



1.2. The quantum harmonic oscillator

Starting from a bipartite system in a pure state (complete knowledge), we end up with
a mixed state (limited knowledge) by tracing out one subsystem?.

Separability. The density operator pap of the composite system {A, B} is separable
if it can be expressed as a convex combination of product states

ﬁAB = ijﬁjA ® ﬁjB
J

for some set of density operators {p;,} on H, and similarly for B, with p; >
0 and >;p; = 1L

Quantum Entanglement. A state that is not separable is called entangled state.
[113]%7.

Entangled states are characterized by the existence of quantum correlations between
the subsystems and are considered to be the most non-classical manifestations of
quantum physics. It is crucial to point out the fundamental difference between
quantum correlations (i.e. entanglements) and classical correlations. They lead to
new and puzzling phenomena, allowing e.g. quantum teleportation [114]. For this
reason, entangled states have attracted a lot of attention both from experimental
and theoretical point of view.

For more details on entanglement, see e.g. [113] for a complete review, or [115]
discussing more general types of quantum correlations.

1.2 The quantum harmonic oscillator

In this part, we address the main aspects of the one-dimensional quantum harmonic
oscillator. The model of the quantum harmonic oscillator is built in complete analogy
with the model of a classical harmonic oscillator. It models the behavior of a plethora
of physical systems, including the electromagnetic field or the vibrational modes in a
molecule. The reason for this ubiquity is that any smooth potential can usually be
approximated by a harmonic potential close to a stable equilibrium point?®.

In particular, the quantum harmonic oscillator also plays a central role in open quantum
systems, since for instance the environment of a quantum system subject to relaxation
processes can be modeled with an infinite set of quantum oscillators weakly coupled
with the system of interest.

We will now review some simple aspects of the harmonic oscillator and we refer to
[102, 116] for more detailed discussions.

The classical harmonic oscillator. Let us recall the good ol’ times of classical
mechanics lectures and write the Hamiltonian describing a classical one-dimensional
harmonic oscillator with angular oscillation frequency w and mass m [117, 118§]

26 And the other way around, the so-called purification procedure turns a mixed state into a pure one,
but living in a higher dimensional Hilbert space

2TVerschrankung in German.

28«The career of a young theoretical physicist consists of treating the harmonic oscillator in ever-
increasing levels of abstraction” —Sidney Coleman.
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1. Light-matter interaction and quantum states of light

o1
H = % + imw2$2 s (115)

where we use the dynamical variables {z, p} for position and conjugate momentum.

Phase space. Using the conjugate variables x and p, we can define

a= \/W;T<x+ n;wp) : (1.16)

In the complex phase space plane («, a*), the oscillator traces out a circle (with o =
alt = 0))

at) = ape™ ™" . (1.17)

The time evolution of the variables = and p can be recovered from (1.17) and we have

L * = l ela a
z(t) = W(a(t) +a*(t) = o Re[a(t)] (1.18a)
p(t) = —i % (a(t) — a*(t)) = vV2mw Im[a(t)] . (1.18h)

The energy of the system is given by

H(t) = w]ao|? . (1.19)

An established classic among the classics. We shall now consider the quantum
harmonic oscillator.

One-dimensional quantum harmonic oscillator. Moving to the quantum me-
chanical description, the canonical variables x and p for the classical system are
upgraded to their operator equivalents & and p.
In complete analogy to the classical case, the Hamiltonian of the quantum har-
monic oscillator reads
N ]52 1 9
H= o + 5w
The conjugate variables of position and momentum satisfy the canonical commutation re-
lation

7% (1.20)

[Z,p] =ihl, (1.21)
with the reduced Planck constant h.

To solve this model, and in analogy with (1.16), we introduce the so-called creation
and annihilation operators®, respectively a' and a

mw 7
a=+/——(2+—D 1.22
“ 2h <x+mwp>’ ( 2)
af = /mw(A_iA) 1.22
a 5% Z mwp ) (1.22b)

29These operators are also called ladder operators. They where introduced by Paul Dirac.
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1.2. The quantum harmonic oscillator

These operators verify the commutation relation
a,af[ =1, (1.23)
and provide the useful expression for the conjugate position and momentum operators®’

h

A At A
= (a"+a),

2me (1.24)
L hmw
p=1— (@' —a).

The Hamiltonian of the harmonic oscillator in terms of the ladder operators reads

ir = ho(ata ). (1.25)

The constant term fiw/2 in the Hamiltonian represents the vacuum fluctuation energy?!
We can define the number operator N = a'a, whose eigenstates are also the elgenstates
of H. Thus, solving the Harmonic oscillator problem is equivalent to finding the
cigenvalues of N. For this later, we have the ecigenvalue equation Nin) = nln),
where n is the eigenvalue associated to the eigenvector |n) of N. The ket |n) is
called number states or Fock states.

The operator N is Hermitian, thus its eigenvalues n are real and its eigenvectors |n) form
a complete set of orthogonal states. Hence, we have the closure relation >0 (|n)(n| = 1,
where 1 is the identity operator in the Hilbert space of the single-mode system.
The spectrum of the HO Hamiltonian is

B, hw(n + ;) , (1.26)

and is illustrated in Fig. 1.1.

It is the energy of n quanta Aw and can correspond to phonons or photons.

The allowed energy-levels of the quantum harmonic oscillator are discrete and equidis-
tant, of value fuww. In particular, the ground state of the QHO |0) has energy Fy = fuw /2
This means that, unlike a classical oscillator, a quantum oscillator is never at rest and
undergoes quantum fluctuations. The wave-function of the ground state of the Ho is
given by ¢o(z) = v/centered normal distribution with standard deviation Az .

The action of the ladder operators on the energy eigenstates |n) gives
a'ln) = vn+1|n+1)
aln) = v/nln — 1) with al0) =0.

All Fock states can be expressed in terms of the ground state |0) by repeated action
of the creation operator:

(1.27)

30Bear in mind that the operator & and p are Hermitian while the operator @ is not.
31'While this term can be canceled by redefining the energy origin, it can have drastic influence on the
system.
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1. Light-matter interaction and quantum states of light

3hw T

2w T

hw T

0

Figure 1.1: Energy level diagram of the canonical quantum harmonic oscillator. The ground
state energy is Ey = fuw/2, and the energy levels form an equidistant ladder with spacing hw.

(af)"
V!

We can point out that the Hilbert space dimension of a HO is unbounded.

n) = 10) - (1.28)

Time evolution. In analogy to the Hamilton equation, the dynamics of the quantum
operators is given by the Heisenberg equation

dO 1 A
— = —|H, 1.29
a =m0 (1.29)
From the Heisenberg point of view, all oscillator states become stationary and the
operators evolve in time. The dynamical equation for the annihilation operator is 32

da 1 .
i %[a,H] = —iwa . (1.30)
which has the solution

a(t) = a(0)e ™", (1.31)

32Tn what follows, we use systematically a tilde to denote the operators or state vectors in an interaction
representation with respect to a part or to the totality of the system’s Hamiltonian. This convention
applies to the Heisenberg point of view, which corresponds to the interaction representation with
respect to the total Hamiltonian.
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1.2. The quantum harmonic oscillator

1.2.1 Quantizing the electromagnetic field

Maxwell’s equations®® describe electricity and magnetism in terms of the electric
and magnetic fields.

We show here that a quantum approach to the electromagnetic field leads to its
description in terms of the quantum harmonic oscillator.

This enables the description of a single photon, and the emission and absorption of
photons is described via the creation and annihilation operators.

This quantization drove to the description of stimulated and spontaneous emissions
(and absorptions) of photons, leading to the study of Lasers, LEDs and photodiodes.

Wave equations resulting from Maxwell equations. Combining the Maxwell
equations in vacuum leads to the wave equations for the electric field E and magnetic
field B,

V2E—laz—E:0 VB—- =0 (1.32)

2 Ot? ’ ’ '

with ¢ the speed of light.
By considering an electromagnetic field in a finite empty (no charges or currents) cavity
of dimension L x L x L, and fixing periodic boundary conditions, the general solution
of these two wave equations consists in a sum of normal modes, each normal being
equivalent to a (classical) harmonic oscillator [109]. Hence, the electric (or magnetic)
field is equivalent to an infinite collection of independent harmonic oscillators.
The modes are labeled by the wave-vector k,, = 27/L(n,, ny,n.), with n, € N. The

dispersion relation is (in free space) w, = c\/k?m + k2, + k?m', and the associated
polarization vector of the light mode contained in the unit vector €,, verifying €,,-k,, = 0.

The quantization leads to the following expressions for the electric field E and magnetic

field B
: | o
E(r,t) = —i >\ 2oy (ane
1 , .
B(r,t) = - zn: 1/226:;/ (dne_’w"t“k”"’ + c.c.)k:n X €,

where V = L,L,L. is the volume of the cavity®*.

The electric and magnetic fields represent the two quadratures of the electromagnetic
field in analogy ot the position x,, and momentum p, of an ensemble of quantum
harmonic oscillators.

The creation (annihilation) operator produces (destroys) an excitation of a given plane

—iwnt+ikn r

— c.c.)en

(1.33)

wave mode and verify {dn,dl,} = Opn’-

33In classical electrodynamics, a free electromagnetic field (in vacuum) satisfies the source-free
Maxwell’s equations
V-E=0 VxE=-9,B
V-B=0 VXB:%&E

with the speed of light ¢ = 1/,/gop0 -
hwnp,
260V

34The quantity corresponds to the electric field per photon
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1. Light-matter interaction and quantum states of light

Thus, the Hamiltonian of the quantized free electromagnetic field is
1 - 1A, t 1

Hgy = —/ dr(eoE*(r) + —B*(r) | = > hwy (akak + —) . (1.34)
2Jv " = 2

Zero-Point Energy and the Casimir Force Let’s point out that the lowest energy
of a HO is hw/2, and corresponds to the zero-point energy. Since Eq. (1.34) accounts
for an infinite number of modes in a finite volume V, it follows that there is an
infinite amount of energy present in any finite volume of space. This can lead to some
interesting effects such as the vacuum-induced Casimir force [119, 120].

1.2.2 Correlation functions

Coherence
Quantum discord
Entanglement

Steerability

Nonlocality

Figure 1.2: Hierarchical structure among the various quantum correlations: quantum
coherence D (is the superset of) quantum discord O quantum entanglement O quantum
steering O Bell non-locality.

The superposition principle of quantum states (Eq.(1.1)) which is at the heart of
quantum mechanics leads to the concept of quantum coherence [104, 121-123]. Not only
can quantum coherence even arise in monopartite systems, but it can also encompass
all different flavor of quantum correlations, see Fig. 1.2. Therefore, it goes without
saying that this feature is an important resource in diverse quantum technologies
including design of strongly correlated photons [124, 125] and new light sources [126],
quantum metrology [127, 128], quantum computing [129], quantum simulation [130]
and quantum cryptography [131].

In this context, the coherence properties of a quantum state and in particular the
non-classical nature of light can be characterized via correlation functions [132-138].
A highly valuable correlation function is the normalized second order coherence function
that describes intensity correlations and reads

o TG+ ) (@0l nae+ na) B
Y O E (@ (0a(t))’ B

28



1.3. Coherent states

where I is the measured instantaneous intensity, and the colon “:” denotes normal order-
ing?".

The zero-delay second-order correlation function gives the field statistic, while the
derivative of the time-delayed correlation function characterises the arrival time
distribution [139] 7.

The condition ¢g®(0) > 1 corresponds to a super-Poissonian statistics and ¢ (7) <
g?(0) indicates photon bunching . In these two cases, the field is of classical nature.
The condition ¢®(0) = 1 corresponds to a Poissonian statistics and ¢'? (1) = ¢®(0) V7
indicates a coherent field.

Finally, the condition ¢®(0) < 1 corresponds to a sub-Poisson statistics and ¢®(7) >
g?(0) indicates photon antibunching. In the two later cases, the field is purely
quantum and has no classical counterpart.

Two particular cases are squeezed light, that verifies ¢ (0) < 1, and ¢ (0) = 2,
which corresponds to a thermal field.

The first order and cross correlation function are other useful correlation functions.
A particularly adequate method for studying the photon statistics is the quantum
jump approach (see next chapter).

1.3 Coherent states

In quantum optics, a coherent state [98, 136, 141-145]® refers to the specific state
of the quantum harmonic oscillator whose dynamics is closest to that of a classical
harmonic oscillator, and shows maximal coherence®.

Coherent states are important since they describe the quantum state of a laser,
superfluids and super-conductors. In this section, we present the concept of coherent
states, which is the basis of the truncated Wigner method, used in the simulation of

the works presented in this thesis, and presented in chapter 3.

1.3.1 Definition

The state of a classical harmonic oscillator can be described by using the contin-
uous variables x and p and is represented in phase space by the complex variable
x + tp. The quantum counterpart is given by the concept of coherent state o with
a = Re(a) + idm(a) € C.

A coherent state |a) is defined as the (unique) eigenstate of the annihilation operator
a with corresponding (complex) eigenvalue «:

ala) = ala) . (1.36)

35The second-order correlation function can be experimentally measured with using a Han-
bury-Brown—Twiss (HBT) setup.

36Normal ordering consists in putting the hermitian conjugate operators on the left

37The precise correspondence between (anti)bunching and the ¢(®) (1) (see hereafter) needs special
care in the definitions [137, 139, 140]

380r sometimes called Glauber Coherent States, or displaced ground states. They were introduced by
Schrodinger and reintroduced by Glauber.

39These states are not more “coherent” than other pure states, but they efficiently maintain their
coherence in the presence of dissipation.
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1. Light-matter interaction and quantum states of light

Since @ is not hermitian, « is, in general, a complex number*’

1.3.2 Properties

Decomposition in the Fock basis. Because the Fock states are a complete
orthonormal system of vectors (see section 1.2), a coherent state can be expanded
in terms of Fock states as

o i \/—|” = e_i nio% . (GT) = e_aT‘Q exp(aal)|0) . (1.37)

We can see from this expression that the distribution along the Fock states follows a
Poissonian distribution. The Fock state occupation probability amplitudes py(n) = |c,|?

follow a Poisson distribution of mean «, leading to an average phonon number n = |a/?
and variance /i (see Fig. 1.3).

Displacement operator. Coherent states can be viewed as displaced vacuum
states in phase space,

) = D()|0) (1.38)
with the displacement operator®!
D(a) = ¢4’ -0 (1.39)
which satisfies
D7Y(a) = D(a) = D(~a). (1.40)

Time evolution The time evolution of the coherent state |«) can be inferred from
Eq. (1.31) and reads

alt) = ape ™" . (1.41)

Thus coherent states remain coherent states during their time evolution and evolve
as a classical particle (this equation is identical to the one found for the classical
HO in Eq. (1.17)).

Expectation values The expectation values of 2 and p correspond to the classical
variables (1.18) with A =

(al#]a) = 277’; (a+a") = :@Z Re(a) (1.42a)
(a|pla) = —i hT;M (v — ") = V2hmw Im(«) . (1.42b)

40 Applying the creation operator on the coherent state leads to a more complicated result: af|a) =
(0o +a”)|e)

41 As its name suggests, the displacement operator displaces the state to which it is applied.
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1.3. Coherent states

The probability density of a general coherent state |«o) is a Gaussian distribution

with constant width, whose centroid oscillates in a harmonic oscillator potential®?,

with frequency w of the HO, and amplitude v/2'zg|a| in position and v/2'h|a|/zg
h

in momentum (zyp = /— ).
mw

The coherent state wave-function is the ground state wave-function shifted in momentum
and position. It corresponds to a minimal-uncertainty wave-packet. Thus, coherent
states correspond to the closest analogue to the free classical single mode field.

The transition from quantum to classical HO can be seen in the limit of large n as the
index of dispersion v/n'/n tends to 0, leading to a localized distribution.

Im(«) .
Ax (2) 0.2 o (b)
—
0.15
A —~
! I ! = 01
Q
o 0.05
. 0
Sl 10) Re(a) 0 5 179 15 20

Figure 1.3: Representation of coherent states in phase space (a) and Fock space (b). In
(a), the coherent state ) (red disc) can be obtained by displacing the ground state |0) (red
dashed) with the displacement operator ﬁ(a). A coherent state is represented in phase space
by a disc, which corresponds to a Gaussian wave packet with minimum uncertainty. In (b)
representation of a coherent state—of amplitude o = /6" (population n = |a|?> = 6)—using
the Fock space representation.

Phase space In classical mechanics, a configuration at point & with momentum
p is represented by a point (x,p) in phase space.

Egs. (1.42) show that similarly, in quantum optics, it is possible to build a 2D-phase
space associated with a single-mode field by mapping the complex a-space to the
phase space of a coherent state.

Minimum Uncertainty States For a coherent state |a), the Heisenberg uncertainty
relation (1.13) saturates i.e.

h
Azx|,Apla = 3 (1.43)

Thus, coherent states are states of minimal uncertainty. This is one of the reasons
why we say they are “most classical”.

Coherent state basis: orthogonality and completeness relations.

42Since all terms in the expansion are in phase, the wave packet of the coherent state is not spreading.
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1. Light-matter interaction and quantum states of light

Orthogonality. Let us consider |«) and |3) two coherent states, so d|a) = «a|a)
and a|3) = BI8).

The coherent states corresponds to the eigenstates of the not Hermitian annihi-
lation operator a.

Therefore, we cannot automatically assume the coherent states to be orthogonal.
Since (a|B) # 0 if a # B %3, the coherent states are not orthogonal®’.

Completeness of coherent states. However, coherent states satisfy the com-
pleteness (closure) relation

[EENS

[ a)a) = (1.44)

T

where the integral is over the whole complex plane, ie, where we used the notation

d*a/m = dRela]dIm[a] /7 = dada™ . (1.45)

Thus, {|a)} produces a non-orthogonal over-complete basis to span the Hilbert space [96]
45

Coherent representation of states and operators In the coherent state rep-
resentation, states can be decomposed as

9= [ aly) (1.46)
and operators as
F == [[ #ads{esp(=5(al +162) 7@, 6) Hay(s (1.47)

where we have defined the function F = exp(|a|? + |3[2)(«|F|5).

Diagonal coherent-state representation of quantum operators. Let B be
a bounded operator, or a polynomial in @ and af. The trace of the operator B
may be calculated by [146]

Tr(B) = i/dQQ(a|l§|a> (1.48)

These properties of the coherent states will be important when we will be considering
the phase space representations and in particular it is at the basis of the Truncated
Wigner method. This will be discussed in chapter 3.

43We have the scalar product/overlap (a|B3) = e*MJra*ﬁ, and thus |(a|B)* = e~lo=BI” £ 0 if
a # B.

44Two coherent states are never exactly orthogonal. We may note that they become approximately
orthogonal for | — 3] > 1

45The coherent states form an “overcomplete” basis. Thus—as a consequence of the nonorthogonal-
ity—any coherent state can be expanded in terms of all the other coherent states.
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1.4. Physical platforms of quantum many-body physics

1.4 Physical platforms of quantum many-body physics

The light-matter interaction is an ubiquitous process occurring in nature. Its simplest
realisation is through the interaction of a single atom with a single photon.

Reaching this regime attracts lot of interest in the fast evolving and interdisciplinary*®
field of many-body physics. This led to the development of a variety of experimental plat-
forms. Different systems provide different opportunities for control and measurement.

1.4.1 Optical resonators and photonic structures

Optical resonators provide spatially confined, spectrally filtered and temporally re-
circulated light fields?".

Typically, in a Fabry-Perot cavity, light bounces back and forth between two highly
reflecting mirrors facing each other, leading to a standing-wave pattern.

Cavity QED Within the framework of cavity-QED, the linear system of a single
bosonic mode in a cavity is turned into a nonlinear (interesting) system by coupling
to a two level system. The typical model of a cavity-QED system is pictured in
Fig. 1.4. The quantum treatment of this paradigm gives rise to the Rabi model [147,
148] and its approximate Jaynes Cummings model [149] (which is fully analytically
solvable). The Rabi Hamiltonian reads

1 1
H = hw, <€LT& + 2> + §hwaoz + hg, (U+€L + J_&T) (1.49)
where @ (a') are the destruction (creation) operators for a single bosonic mode of
frequency w,, o” are the Pauli matrices for a two-level system with level splitting w,,
and g, denotes the coupling strength between the two systems.

Ya
“— ga 1 ¢\||6>
R <Y g)

-

Figure 1.4: Typical model of a cavity QED platform. A single mode of the electromagnetic
field in a cavity (frequency w., decay rate k) interacts with a two-level system (transition
frequency wg, spontaneous decay rate 7,) The interaction between the two-level system and
the cavity is characterized by the coupling strength g,.

The optical ring resonator Apart from the linear resonators, in ring resonators
the confined light propagates in a low-loss bulk material in a circular path [150].
These resonators are auspicious for exhibiting high-quality factors (small mode volumes
and large intracavity photon lifetime) leading to strong light-matter interactions.
This platform can generate dissipative Kerr solitons. This will be studied in chapter 5.

46At the convergence of quantum optics, photonics, condensed matter physics and quantum
technologies.
47Optical resonators are at the base of the invention of the laser.
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1. Light-matter interaction and quantum states of light

Photonic crystals A Photonic cristal is a periodic arrangement of materials with
different refractive indices, affecting the propagation of light. In ordinary (spatial)
crystals, the periodic arrangement of atoms and molecules affects the propagation of
electrons by introducing gaps in the band structure, with allowed and forbidden energy
regions. Similarly, the periodic arrangement in photonic crystals creates gaps in the
light spectrum: only certain states (modes) can propagate throughout the crystal (see
Fig. 1.5). Similar to solid states crystals, we can also have defects in photonic crystals
which give rise to light localization or guiding. In the case of O-dimensional defects, they
are commonly named cavities. A lot of effort is put into optimizing the quality factor of
these cavities. The current theoretical world record of quality factors (February 2022) in
these systems has been established by a work of Juan Vasco and Vincenzo Savona [151].

Figure 1.5: Field intensity in a specific photonic crystal, an L3 cavity. Lot of interest is
devoted to the optimization of these structure to reach higher Q-factors. This picture is taken
from [151], and represents the non-optimized (a) and optimized cavity (b). More details can
be found in [151].

1.4.2 Superconducting architectures

In this section, we explore the world/circuitry of superconducting circuits. This is a
particularly prominent platform since it provides numerous useful building blocks to
explore the quantum, like e.g. quantum simulation, quantum information processing
and scalable quantum technology.

In this paradigm, a microwave cavity (modeled as a harmonic oscillator) couples
to nonlinear elements —the superconducting qubits (or higher-dimensional qudits)*®
as pictured in Figs. 1.6 and 1.7.

Superconducting qubits are implemented under the form of Josephson junctions [152,
153], existing in three basic types: charge qubits [154-157], flux qubits [158-160]
and phase qubits [161]%.

This offers exceptionally large nonlinearity with negligible dissipation and a very rich
parameter space of possible qubit properties and operation regimes.

The Hamiltonian for a phase-qubit is

Iy ~ IPp~
070 cosd — =25, (1.50)

27TC o

1 -~
H=_—0*—
20

48Superconducting qubits are also commonly referred to as artificial atoms.
49These varieties of qubits depends on the specific circuit and coupling, but have similar attributes.
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1.4. Physical platforms of quantum many-body physics

I..‘ Central conductor ) “"

Figure 1.6: Typical model of a circuit-QED platform. A single mode of the electromagnetic
field in a coplanar waveguide resonator interacts with a transmon qubit. This model is
analogue to the cavity-QED setup showed in Fig. 1.4

where C' is the capacitance of the tunnel junction, I is the critical-current, and
¢o = h/2e the superconducting flux quantum. The operators charge Q and phase
difference & obey the commutation relationship [5, Q} = 2ei.

The Hamiltonians for charge and flux qubits can e.g. be found in [162].

Figure 1.7: Picture of an integrated circuit QED device. Picture taken from [163].

More details can be found in the reviews [164, 165].
The theory of the canonical system is known as Circuit QED [60, 92, 166, 167]

Applications Superconducting architectures have applications such as high-fidelity

readout [152], quantum memory [168, 169], or quantum computation with cat states
[170-172]

1.4.3 Ultracold atoms

The field of ultra-cold atoms [174-178] attracts lots of interest in both fundamental
and applied science. In this realm, the dynamics of trapped atoms is controlled
and manipulated through the interaction with laser beams® [174, 176, 177, 179,

50For this application it is necessary to reach spectral purity, with a high degree of coherence and gain
control on the direction and polarization of laser beams.
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Figure 1.8: Schematic view of trapped cold atoms (red dots) in a cavity assisted ultracold
atoms platform. atom interferometer. Figure taken from [173].

180]. In an ultracold atom experiment, atoms are cooled down in optical lattices®!
Optical lattices are optical potentials in periodic form, analogue to the structures of
real crystal lattices in solid-state physics. The interaction among the atoms can be
controlled with light fields®® (see Fig. 1.8). When atoms are moving slowly (in the
order of mm/s), the wave nature becomes important, enabling the regime of non-
linear optics with atom-atom interaction. The beginnings of cold atom physics led to
the observation and study of Bose-Einstein condensate (BEC), where a phase-space
density of the order of one is reached.

Applications Cold atoms are valuable resources in spectroscopy [181], precision
measurements ranging from enhanced atomic clocks [182; 183] to sensing and navigation,
quantum simulation [184], and quantum information processing [185, 186].

On the fundamental side, the strong analogy between the physics of ultra-cold atoms and
solid-state physics crystals provides an ideal platform for analog quantum simulations
[178, 187]. In particular, many-body systems models such as the Bose-Hubbard
or Fermi-Hubbard models [188] can be implemented. It also enables the study of
many-body localization [189, 190], quantum phase transitions and engineering of
desired atomic states [191]. Moreover, ultra-cold atom physics is also a candidate
for quantum computation.

1.4.4 Quantum optomechanical systems

Light and mechanical degrees of freedom can interact through the radiation pressure
force [192]. The field of quantum optomechancis [193-197] harness this interplay and
explores the interaction of optical or microwave radiation with micro- or nanome-
chanical resonators.

51The interference arising from the intersection of two or more laser beams creates a periodic spatial
pattern for the light intensity, inducing a force on the atom (via the radiation pressure force), called
optical dipole force. This tightly traps the atoms in minima of the light potential.

52Via radiation pressure force.
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1.4. Physical platforms of quantum many-body physics

Hamiltonian and definition The canonical systems with one optical mode (a,
frequency w,, cavity with a mirror separation L) interacting with one mechanical mode
(b, mass m, frequency weyy,) is described with the optomechanical coupling term

Ho = hgmata(b + bt (1.51)
Here, g,, = wexzpr/L with the mechanical zero-point fluctuations® xzpp = (h/2mwem )/
quantifies the interaction strength between a single photon and the mechanical mode.

The typical model of an optomechanical system is pictured in Fig. 1.9 and a gallery
featuring some of the various experimental implementations is pictured in 1.10.

Ym

-4

Figure 1.9: Typical model of a cavity optomechanical platform. A single mode of the
electromagnetic field in a cavity (frequency w., decay rate k) interacts with a mechanical
oscillator (frequency wy,, dissipation rate ~,,). The interaction between the mechanical and
optical mode is characterized by the coupling strength g,,.

Applications Optomechanics have lots of technological applications [198], among
them ground state cooling of macroscopic mechanical resonators [199-202], quantum
squeezing of mechanical motions [203-206], production of squeezed light [207-209],
nonclassical correlations between an optical field and a mechanical resonator [210],
quantum entanglement between mechanical resonators [211, 212], coherent conversion
between optical and microwave signals [213] and non-reciprocal photonic devices [214-
219]. Optmechanical setups also find application in gravitational-wave detectors [220)].
It is also a prime system for the study of the quantum to classical “transition” [221].

1.4.5 ... and a lot of other platforms

Of course, the creativity of scientists makes this list quite incomplete. Some other exper-
imental platforms are electron spins in silicon [222-227], quantum dots [228-231], polari-
tons [232-234], trapped ions [235-239] and nitrogen-vacancies in diamonds [240, 241].

53Width of the mechanical ground state wave function.
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Chapter

Theory of open quantum systems

An open quantum system is a (small, or not so small') quantum system —“what we
are interested in”— interacting with its (macroscopic) environment (see Fig. 2.1).

~ Environment

H int

(57}AIE7pAE)

Figure 2.1: Schematic representation of an open quantum system, with the notation
used in this chapter. The system S (Hamitonian Hg, density matrix pg) interacts
with its environment £ (Hamitonian Hp, density matrix pE) through the interaction
Hamiltonian ﬁmt-

In many real-world situations, the coupling with the external environment
cannot be neglected?, making the application of the standard toolkit of coherent
(close/pure) quantum dynamics (e.g. Schrodinger or von Neumann equations)
insufficient®. Not only is the treatment as an open quantum system closer to

'E.g. a superconducting qubit is of macroscopic size.

2Tt’s worth noting that the concept of “openness” isn’t limited to quantum mechanics; understanding
the dynamics of systems in relation to their surroundings is relevant to a large number of natural
sciences. In fact, all systems are open.

3In general the large number of degrees of freedom of these systems (and precisely of the environment)
prevent an exact treatment with the current resources. Imagine solving the Schrédinger equation for
~ 10?3 quantum particles...
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2. Theory of open quantum systems

reality?, but also it often unveils a much richer physics compared to closed systems.
The theory of open quantum systems thus turns out to be a fundamental paradigm
in quantum mechanics and its applications.

The special interest in the study of an open quantum system is on the one hand the
steady-state properties, and on the other hand the relaxation dynamics towards
the steady state. The guiding idea of the theory of open quantum systems is to
focus only on the dynamics of a small number of degrees of freedom (d.o.f) of
interest (Hilbert space ‘H, dimension of the Hilbert space dimH = N), and trace
out all the other d.o.f. The precise dynamics of the environment is lost and only
its influence on the subsystem of interest is accounted for. Assuming simple (and
often reasonable) assumptions such as weak coupling of a small system to a much
larger memoryless environment, the reduced dynamics of the subsystem can be
found. The state of an open quantum system can be described by the N x N
(reduced) density operator pg which is an element of the Liouville space (also
called operator or coherence space, is of dim £ = N?) [242].

The Lindblad master equation formalism for pg is a successful theoretical frame-
work for describing the dynamics of open quantum systems.

However, analytic solutions to the master equation are only available for very
few cases [243-249], and it can become challenging to solve numerically (memory
problems), since O(N?) memory is needed at each timestep to store ps.

This problem can be mitigated in the framework of stochastic unraveling methods
of the Lindblad equations (also called quantum trajectories or Monte Carlo
methods). The basic concept behind this framework is to average over a large
set of stochastically time-evolved quantum state trajectories until convergence
criterion is met®. It reduces the cost from evolving a N x N density matrix, to a
wave-functions |¢) of only N elements®. The stochastic simulation technique lies
at the basis of the Truncated Wigner method, which is a central topic of this thesis.

In this chapter, we will first introduce the theory of open quantum systems
with the goal of setting the state for the original work presented in this thesis.
Afterward, we will have a brief overview of different methods used for solving
the dynamics of open quantum systems. Moreover, we will focus on the general
formalism leading to the Lindblad master equation. Among other aspects, we
address the dynamical map approach and bosonic bath. Then, we will analyze
the different spectral properties of the Liouvillian superoperator. We will end up
taking a look at the stochastic approach.

Contents
2.1 Opening . . . . .0 i i i i i it e e e e e e e e e e 37
21,1 What .. ..o 37
212 Why . .. o 38
213 How . . . . . . e 39
2.2 Time evolution of open quantum systems . . . .. ... .. 40
2.2.1 Time evolution of closed quantum systems . . . . . . .. .. 40

4The theory of open quantum systems has benefit of renewed interest through the advent of quantum
technologies. It’s due to the fact that a major obstacle to the elaboration of quantum devices is
decoherence caused by interaction with the environment.

5A lot of trajectories can be needed to reach convergence, but the process can be highly parallelized.

6Depending on the nature of the problem, additional approximations to the state can be made that
overcome the still exponential scaling (both when working with the master equation directly or with
trajectories) such as Gutzwiller, tensor network, neural network or Gaussian Ansatzes.
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2.1 Opening

We introduce here the general framework of the theory of open quantum systems, by
laying out the motivations, purposes and context.

2.1.1 What

Over the last years, the theory of open quantum systems (OQS) has received renewed
attention due to its utmost importance from both fundamental physics and applied
quantum science viewpoints.

The reason is simple: all systems found in nature, quantum or classical, are never
perfectly isolated from their surroundings. They continuously interact with their environ-
ment in the form of heat transfer, decoherence etc’, leading to a time-irreversible dynam-
ics.

In general, classical systems tend to be much less sensitive to external influences (e.g.
trajectories of celestial bodies) than quantum systems. In classical systems, tracing out
the environment makes the Hamiltonian descriptions incomplete and gives the system
a stochastic nature (e.g. the case of Brownian motion). Similarly, in open quantum
systems, the openness of a quantum system leads to additional “classical” fluctuations.
Different types of environments can affect the quantum system of interest.

The environment can be of quantum or classical nature. In the quantum environment
scenario, one can deal with bosonic or fermionic environments, stationary or non-
stationary environments. Within stationary environments there can be thermal
environments (often called reservoirs) and non-thermal environments (e.g. squeezed
reservoirs [250, 251]%).

“Within this regard, the environment can be viewed as a quantum version of Orwell’s Big Brother, as
it continuously monitors the system and collects information about it.

8Squeezed environment are important physical resource especially for quantum information processing
[252], and precision measurements like gravitational wave detection [253].
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2.1. Opening

When considering a single atom, the natural environment is the electromagnetic
field surrounding the atom”.

For an atom in a solid crystal instead, a possible environment is an assembly of phonons
(vibrational excitations) describing the vibrational motion of the crystalline structure.
In both examples above, the quantum environment is bosonic and is described in
terms of an infinite set of quantum harmonic oscillators representing the normal modes
of the electromagnetic or vibrational field.

Photons (or phonons) are quantum excitations of quantum harmonic oscillators having
different frequencies. The frequency spectrum of the environment and its density of
modes play a significant part in the description of open quantum system dynamics.
One should mention at this point that, due to the system-environment coupling, the
system could also influence the environment. However, under some general assumptions
(e.g. size and energy of the reservoir much greater than the ones of the system'?),
the changes induced by the system onto the environment are negligible, and the
latter can be considered as stationary.

2.1.2 Why

The theory of open quantum systems was born out of the aim to describe lasers [255,
256] and nuclear magnetic resonance (NMR) [257-259].

Then, from a fundamental perspective, the theory of open quantum systems attracts
interests as their dynamics, especially in a driven-dissipative context, exhibit a large
number of features not encountered in closed or equilibrium systems [14, 260] in
particular the emergence of novel out of equilibrium behaviors.

Of particular interest are dissipative phase transitions and critical behavior and the
appearance of dynamical phases with new broken symmetries [261-264]. These emergent
phenomena will be addressed in chapter 4 and chapter 5.

On the practical side, technological advances in the last few decades made possible to
manipulate quantum systems at the level of individual atoms or photons. The theory
of open quantum systems has an essential importance for these developments, enabling
the realization of quantum devices [265-270], including in particular the very trendy
quantum computers [10, 271-276], the description of chemical reactions [277-280],
or understanding biological complexes [281-286].

It turns out that the coherent dynamics of quantum systems—a key feature for quantum
technologies— is altered by their inevitable coupling to the external environment. The
latter, by continuously “reading” the state of the system, prevents quantum interference.
Thus, it appears to be crucial to consider the effects of dissipation when modeling
realistic quantum systems by numerical methods or quantum simulation.

The impressive variety of environments and system-environment interactions are
responsible for a vast spectrum of interesting physical phenomena. Among them,
and just to name a few, there are fluctuations and dissipation of course, but also loss of

9The coupling between the atom and the electromagnetic field is the source of the phenomenon of
spontaneous emission.

10Note however that in some cases the open quantum systems approach can be used to study finite-size
environments [254].
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quantum coherence, irreversibility and relaxation to equilibrium, processes enhancement
or the emergence of classical stochastic dynamics [105, 287-290].

An additional reason is that it allows to assess some important questions as for
example the quantum measurement problem, or the quantum to classical transition'!.
It has even cross field application as it is for example used for the theory of gravity [291].

From the applied perspective, open quantum many-body systems are at the centre
of the era known as the second quantum revolution'?.

These quantum technologies rely on the most definitively quantum features of mi-
croscopic systems, such as quantum superpositions and entanglement. In open
quantum systems the parameter offered by the dissipation channels can be used to
engineer specific desired quantum manybody steady-states. The quantum technologies
become commercially distributed and available on the market. These technologies
include quantum computers, quantum sensors, quantum cryptographic devices and
so on and so forth.

2.1.3 How

When a quantum system’s state is clearly defined (in a pure state), it can be described
in terms of vectors in Hilbert space, so called kets. However, for statistical mixtures,
e.g. the most general state a physical system can be in, this description is no longer
possible. The mathematical object used for the representation of statistical mixtures,
and also valid for pure states, is called density operator, which is defined in chapter 1.
Such mixed states inevitably arise in OQS. In general, the dynamics between an OQS
and its environment results in correlations (e.g., entanglement) between both parts, so
the state of the system can only be defined in terms of a density operator.

In OQSs, the properties of special interest are the steady-state properties and the
relaxation dynamics toward this steady-state.

With the intention to determine the time evolution of the system, we could, in
principle, resort to basic quantum mechanics [293, 294] and solve the Schrodinger
or von Neumann equation, for the state describing the entire system constituted of
the system and its environment.

This total system can indeed be considered as “closed” and therefore remains in a
pure state at all times'®. The system’s state could then be determined anytime by
tracing out the environment.

The problem, however, is that this approach is usually inconvenient and almost always
unfeasible, due to the far too large number of environmental degrees of freedom. Instead,

" The question about the border between the quantum description of reality, which generally applies
to microscopic objects such as atoms or electrons, and the classical description of the objects of our
every day experience. See e.g. [288]

12Why the second? Because there was already a first (see also discussion in the general introduction
of this thesis). The first quantum revolution is the one that led to a whole new range of technologies
based on the understanding of the quantum structure of microscopic systems as, for instance, the
invention of the laser, which is now widely used in a number of technologies. In the early 2000’s,
30% of the gross national product of the United States came from inventions enabled by quantum
physics [292].

13If one wants to be completely rigorous, the only system that is really closed is the whole Universe
(multiverse?)!
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2.2. Time evolution of open quantum systems

by analyzing the structure of the Hamiltonian, an effective, and /or approximate equation
of motion for the density operator describing the system can be derived.

This equation of motion —the so called quantum master equation 2.2.2— plays a major
role throughout this chapter. A general unified approach to open quantum many-body
systems doesn’t exist yet, but a large number of different simulation methods exists
for different scenarios (see e.g. [295] for a nice overview).

In the framework of closed system, solving the Schrodinger equation leads to a family
of unitary operators parameterized by time that, when applied to the initial state,
yield the state at later (all) times. The situation is rather different for open quantum
systems, because the time evolution is not unitary anymore. In this case, solving a
master equation results in a family of channels, physically consistent superoperators
mapping density operators into density operators, that go by the name of dynamical
maps and account for the temporal evolution of the system.

What about the treatment of the environment? A widely used approach is the so-
called harmonic bath assumption. It consists in modeling the environment with an
infinite ensemble of quantum harmonic oscillators which do not interact between
each other [296].

2.2 Time evolution of open quantum systems

In open quantum systems, the interaction of the system of interest with the external
environment is essential for an appropriate description of the dynamics of the system.
In most (almost all) cases, a model including all of the external degrees of freedom
that interact with the system is unsuitable. Indeed, their numbers is excessive, and
their dynamics aren’t sufficiently known to enable an explicit treatment.

A more refined approach consists in implementing the effect of the macroscopic
environment on the dynamics by partial trace operation, thereby averaging at any
time over the unknown state of the environment. This is the idea behind the open
quantum system approach that we will look at now.

2.2.1 Time evolution of closed quantum systems

We begin with an overview of the formalism treating the time evolution of closed
systems, i.e. systems which are fully isolated from their environment. These systems are
characterized by a unitary dynamics. Physical systems cannot be completely isolated
from their environment, hence this is an idealized vision.

Given an isolated quantum system described by a pure state |¢(¢)), and governed by
the Hamiltonian H (1), its dynamics is described via the Schridinger equation'®

i S l(0) = AR 2.1)

The generalization to an equation of motion for a mixed state described via a density

14While this approach is intuitive, it is however still unjustified [297].
5Postulate V) of quantum mechanics, see chapter 1.
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matrix p(t) 6 is given by the Liouville-von Neumann equation'”
ina0) = [A().5(0)] 22
dt ’

Egs. (2.1) and (2.2) are first order differential equations.

The linearity of these equations and the Hermicity of the Hamiltonian allows to
express their respective solution in terms of a handy unitary operator'®, the so-
called time evolution/propagator operator U (t,to). The operator U (t,to) represents
a finite time translation.

In the general case of a time dependent Hamiltonian, the expression of the time
evolution operator is given as a time-ordered exponential

. ot
Ult,ty) = ’Texp(—; dsH(s)) : (2.3)
to
and in the case of a time independent Hamiltonian, its expression boils down to
O(t, to) = exp (—;ﬁ(t - t0)> . (2.4)

The evolution operator obeys the combination law for all ¢ and 7

Ut +7,t0) = Ut, 7)U(T, t) , (2.5)
and deterministically relates the states at the initial and final times?.
Given the initial condition at an initial time t¢, |¢)(to)), respectively j(to), the state
at a later time ¢t > ¢y is given by

[W(t)) = U(t, to) (o)) , (2.6)

and respectively

pt) = Ut o) p(to) U (¢, to) - (2.7)
Having at hand the state at time ¢, we can compute the time dependence of the
expectation value of an observable A using (postulate number)

(A)(t) = (WD) Al(1)) (2:8)

in wave mechanics, or for matrix mechanics we have

(A)(t) = Tr(Ap(t)). (2.9)

6Note that a mixed state, as defined in (1.2), cannot in general be expressed in terms of a wave
function and there is no Schrédinger equation that describes the dynamics of the corresponding
system.

"The Liouville-von Neumann is isomorphic to the Heisenberg equation of motion, since p is also an
operator.

18 An operator U is unitary if Ut = U~ or UUT = 1.

9The time ordering operator 7 ensures that in a product of operators, the operators have increasing
time arguments from right to left.

20In other words, the knowledge of the state of the system —described either by a wave function or a
density matrix— at a particular time tg determines the entire trajectory at all times, in complete
analogy to the Hamilton or Euler-Lagrange equations of motion of classical mechanics.
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Note that due to the cyclic invariance of the trace, the time-dependent expectation value
of an operator can be calculated either by propagating the density matrix (Schrodinger
or interaction picture), or the operator A (Heisenberg picture). In the latter case we

have (A)(t) = Tr(A(t)p(to)).

Thereby, the Schrodinger and Liouville-von Neumann equations establish a continuous
group of unitary transformations via the map U (¢, t,), parameterized by the parameter
t and ty. This unitarity implies the reversible character of the system dynamics.

The reversible character of the dynamics of a closed system can be challenged when
a measurement of the system is performed. The measurement projects the system
into a new state—determined according to the probability distribution of the possible
outcomes of the POVM — breaking the smoothness and determinism of the time
evolution. Under this scenario, it becomes impossible to retrieve the state the system
was in just prior to the measurement, and this, even knowing the state of the system
after the measurement and the evolution operator.

Oppositely, we will observe that the evolution of an open system is generally irreversible,
even if no measurements are made: it is a probabilistic time evolution.

2.2.2 Let there be interaction!

We consider a generic open quantum system S (e.g. a two-level atom or a single-mode
optical cavity), coupled to an environment £ ?!. For the nomenclature, the subsystem
of interest S (environment &) lives in Hilbert space Hg (Hg) and is described by
the reduced density matrix ps (pg). This ensemble forms a large quantum system
described by the density matrix p;,; in Hilbert space Hg ® Hg.

The total Hamiltonian describing the system coupled to its environment can be
written under the form

Hyp = Hs + Hi + Hsp, . (2.10)

where Hg and Hy, are respectively the bare/free system and environment Hamiltonians
(embedded in the total Hilbert space using the tensor product??), and Hgp denotes
a suitable interaction Hamiltonian.

The combined ensemble {system-+environment} is considered as closed. Its state
described equivalently by |101) O pror = |Wior) (Vrer| evolves according to Eq. (2.7),
with the global unitary evolution operator defined as in Eq. (2.3).

We are interested in describing the system S solely, leaving aside what happens to £.
The system of interest treated alone is an open one and its state is expressed in
terms of the density operator pg.

The reduced dynamics of the system pg(t) is obtained by tracing over the environmental
degrees of freedom:

21Special type of environments are reservoirs and heat baths (see Fig. 2.1). A reservoir describes an
environment with an infinite number of degrees of freedom, and continuous energy spectrum of the
reservoir modes. On the other hand, a heat bath is a reservoir in thermal equilibrium state.

22The Hamiltonian describing the composite system is obtained by embedding the free Hamiltonians
in the higher dimensional Hilbert space using the tensor product i.e. Hg = hs ® 1g, where hg is the
system operator in Hg and 1lg is the identity operator in Hp.
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ps(t) := Tre(pror(t)) , (2.11)

where Trz denotes the partial trace?.

The expectation value of the observable Og at time ¢ is given by2*

<Os(t)> = Trg (Osps(t)> : (2.13)

The dynamics of pg takes the following form

ps(t) = Trg (U (t,t0)p(t0) U (1, 10)) (2.14)

In general, the time evolution for pg described in Eq. (2.14) is not unitary like Eq. (2.7).
The presence of the interaction term Hgp in the total Hamiltonian has the effect of
entangling the system with its environment during the time evolution: due to these
correlations, the reduced density matrix pg(t) is subject to a non-unitary evolution.
The type of non-unitary dynamics of a system depends on the characteristics of the
environment and coupling type and strength between the system and the environment.
It can involve several and different kind of dissipation and/or decoherence “channels”
and can lead to exotic features such as critical phenomena, and the occurrence of
phase transitions (See chapter 4) or superselection sectors.

In the framework of open quantum systems, it is common to resort to the assumptions
that S and £ are weakly coupled (i.e. S does not affect the state of £), and initially
uncorrelated i.e. we can write pir(0) = pg(0) @ pgr(0).

2.2.3 Time evolution of open quantum system
2.2.3.1 Universal Dynamical Maps of Open Quantum Systems

Equation (2.14) gives the time evolution of the reduced density matrix p, for closed
quantum systems, using a unitary operator.

Similarly, we are now interested in defining the most general map that gives the
time evolution of the reduced density matrix p, from a time ¢y to ¢; in the case
of open quantum systems.

This is given by the concept of universal dynamical map® [98, 298-300]. In this context,
the adjective “universal” means that the definition of these maps is independent from

the density matrix they are acting on?.

23The partial trace of an operator living in the product space of the system and environment is defined
as
ps = Trg(Os ® Op) = Tr(Op)0s = > _(Yf
k

plvi) s (2.12)
with {WJE)} a basis of the Hilbert space Hg.
pa = ,(Ia @ (b))pap(la ® |b)) = (id @ trp)pan

24We have <Os(t)> - Tr((OS ® 1E)p(t)> = Tig (OS TrE(p(t))) = Trg (Ospg(t)), and voila!

25Other names are used, such as quantum dynamical map or quantum operation. Quantum operation
is particularly used in the context of quantum computation.

26Indeed, the initial state of the system has to be independent from the environment.
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Formally, a dynamical map transforms quantum states into quantum states (e.g. through
time evolution, measurement, coupling to another system, etc...) and preserves the
superposition principle. Thus, a quantum dynamical map between two systems with
Hilbert spaces H; and Hs can be identified with a linear homomorphism M mapping
D(H,) into D(Hs) such that*’

Mo : D(H1) = D(Hz) 2.15
p(to) = p(t) = Mp(to)] 16

In this instance, we have
ﬁS(t) = Mt,to [ﬁs(to)] : (2'17)

The quantum map M is a superoperator, since it transforms an operator into another
and can be interpreted as the evolution superoperator for the the reduced density
matrix of the system.

Now, in addition to meeting the generic structure defined in Eq. (2.17), the map M
must also preserve the properties of the density operator during the time evolution.
This request of the physicality of the time evolution is guaranteed if the map satisfies
the following properties [105, 301]:

L. Linearity: M[Xip1 + Agpa] = AMiM[p1] + Ao M |ps].
2. Trace preserving: Tr(M]p]) = Tr(p).
3. Completely positive®: if p > 0 then M|p] > 0.
A map satisfying these properties is called a Completely Positive Trace Preserving

(CPTP) map [105].

Kraus-operator representation. Kraus-operator [302], also called operator-sum
[97, 303] representation is common representation of CPTP-maps.

The Kraus sum representation is given by a (not unique) set of Kraus operators {M}
such that the evolution of a density matrix pg is given by [98, 298, 304-307]

Mp(H)] = > My p(t) M}, (2.18)

with the property that the Kraus operators resolve the identity

STMIM, =1, (2.19)
k

The representation set out in Eq. (2.18) generalizes the unitary evolution expressed in
Eq. (2.7). A Kraus description of the map M need a maximal number of N? Kraus
operators, where N is the dimension of the Hilbert space Hg (an thus N? is the size
of the Liouville space). At the opposite, the minimum number of Kraus operators
corresponds to a unitary evolution parameterized by just one Kraus operator.

2TThe notation D(H) stands for the representation of the Hilbert space H.
28Complete positivity means that the extended map is positive for any dimension of the extended
space. Partial trace and transposition are examples of positive but not completely positive maps.
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2. Theory of open quantum systems

Unicity. The Kraus representation of the map M is not unique. There is unitary
freedom in choosing the Kraus operators and any linear unitary transformation mixing
them leaves the quantum map unchanged. Thus, the equivalent expressions of the
Kraus operators can be expressed as M, (t) = 3, M, (t)V,,,, where V,,,, are the elements
of an arbitrary unitary matrix.

A special representation—the Canonical Kraus Representation [308] — corresponds to
the unique set of Kraus operators satisfying the orthogonality relation

Tr(M], Mp) = Aadas - (2.20)

Besides being elegant, the representation in terms of Kraus operators is also very
powerful since the entire description of the influence of the environment onto the
system is cast into a set of operators M,,.

Choi-Kraus decomposition theorem. Given a system originally in a state pg,
coupled to an environment originally in a state pg. In the forgoing, the dynamics of
open quantum systems have been addressed following two different ways.

On the one hand the dynamics is expressed by Eq. (2.14). The system evolves
jointly with the environment according to a unitary evolution operator, and then
the environmental degrees of freedom are disregarded (i.e. traced out).

On the other hand, the evolution is expressed in terms of a linear, completely positive,
and trace preserving map —a universal dynamical map— that time evolve the density
matrix describing the system.

) Propagator
PSE PSE
U

TTE

Dynamical map

ps
Mo

Figure 2.2: Equivalence of the two formulations

ps(t) = Tre(pror(t)) = M, [ps(to)] (2.21)

The Choi-Kraus decomposition theorem states that these two formulations are equiv-
alent (see fig. 2.2)

Markovianity. The dynamical map is divisible if it can be written as the composition
of two CPTP maps

Mo = Mg MpoVt' <t (2.22)

If the dynamical map is divisible, the time evolution of the open quantum system
is memoryless, and the dynamic is called Markovian.

A typical scenario leading to Markovian dynamics is the weak coupling between system
and environment in addition to the condition that the environmental correlations decay
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2.8. The Lindblad quantum master equation

much faster than the timescales of the system dynamics.

Conversely, open quantum systems can exhibit pronounced memory effects: the
dynamics is then called non-Markovian.

Common origin of memory effects are e.g. structured spectral densities, nonlocal
correlations between environmental degrees of freedom and correlations in the initial
system-environment state [309, 310].

As we will see in the next section, the Markovian dynamics can be described via a
so called master equation in Lindblad form.

In the case of a non-Markovian dynamics, a similar unified framework does not exist.
Instead, various methods have been developed, each being characterized by its proper
assumptions, and range of validity [311].

When it happens that maps are not very useful, it is preferable to have a differential equa-
tion for pg(t). In the next section, we are seeking for an equation of motion describing
the dynamics of the system alone, and accounting for its coupling to the environment.

2.3 The Lindblad quantum master equation

We focus here in particular on the case where the system bath interaction is Markovian,
i.e. we assume that the environment has no memory of its previous states.

The most general generator of Markovian dynamics is given by the Lindblad (or
Gorini-Kossakowski-Sudarshan-Lindblad) master equation.

This equation turns out to be an essential tool in a variety of fields as e.g. quantum
optics [287], condensed matter [312], atomic physics [313], quantum information [15,
314], decoherence [315, 316] and quantum biology [317].

2.3.1 Some approximations

It is necessary to resort to some approximations to derive? a master equation in

a specific operatorial form, known as the Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) form, often referred to as the Lindblad form.

To begin with, note that the dynamics of the open quantum system is characterized
by three (independent) time scales

- the environment correlation time 7,

- the environment relaxation time 7., inversely proportional to the strength of the
system-environment interaction

- the characteristic time scale of the intrinsic evolution of the system 7¢ = 1/wg

An important step in the system-reservoir interaction description is to establish a
clear separation of timescales and to control the accuracy of the approximations we
undertake. We can usually make the three following approximations:

29Note that these approximations can fail to capture the effects of the interaction of the system with
its environment e.g. in the configuration where the timescales of the system-environment interaction
is comparable to those characteristic of the open system.
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2. Theory of open quantum systems

1. Weak-coupling (or Born) approzimation [105]: the system-environment interaction
is weak, so that the dynamics of the open quantum system does not affect the
dynamics of the environment. In other words, the characteristic time scale of the
time evolution of pg(t) is such that it can always be assumed that pg(t) = pg(t)
and treats the two systems as uncorrelated. This assumption allows to write the
initial state

Prot(to) = ps(to) @ pr(to) (2.23)

2. Markov approrimation: the relevant time scale of the system is much larger than
the time scale over which the environmental correlation functions decay?".

Thus, the time evolution of pg(t) only depends on its actual state and not on its
past states.

3. Rotating-wave (secular) approzimation: this approximation consists in neglecting
fast oscillating terms (with regard to a characteristic time scales of the system)?!.
There exist two different manners to implement this type of approximation.

In the rotating-wave approximation (RWA), the fast oscillating terms appearing
in the Hamiltonian expressed in the interaction picture [250, 318] are dropped. In
the secular approximation (SA) on the other hand, terms appearing in the master
equation for the reduced density operator, written in the interaction picture are
removed [105, 319].

2.3.2 The Lindblad master equation

Within these approximations (the Born-Markov approximation), the time evolution
of the density matrix p is governed by the so-called Lindblad master equation (or
Gorini-Kossakowski-Sudarshan-Lindblad [320]), which reads in its most general form
[105, 287, 321-325]

dpst) _ Lrp L Lo STt
0 — (A5 ps(t)] + > [Lkps(t)Lk — S (ELLaps(t) + p(t)LkLk)] (2.24)

Here pg is the density matrix of the system, Hg is the system Hamiltonian on the
Hilbert space Hg, of dimension Ng = dim Hg.

The superoperators L, are the so-called Lindblad (or quantum jump, or collapse)
operators. They are not necessarily Hermitian and they can be time-dependant. They
have to be bounded and fulfill the property >, L}Lj = 1. Their maximum number is
N2 — 1, one less than the square of the dimension of the system. The operators L,
model the different dissipation channels.

In what follows, we will drop the subscript S to lighten the notations, i.e. ps — p,
Hg — H, and Hg — H.

30Tn a nutshell, time scales related to the environment are fast, whereas time scales related to the
system are slow. See e.g. ref. [105] for more details.
3 Intuitively, the terms with fast frequencies will average to zero when integrating over a period.
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2.8. The Lindblad quantum master equation

It can be convenient to introduce L = /Vk fk, with the ~,’s being non-negative
quantities, and the dissipator superoperator

D[] p = Typl — 1/2(010;p + pIIT) . (2.25)

so that the master equation Eq. (2.24) can be written as

ih=— 2 = [H,p(t)] + > 7D[0y] (). (2.26)

Each quantum jump operator f’j is associated with a dissipation channel (decoherence
and loss processes) occurring at the characteristic rate +;.

We should also point out that the jump operators ['x do not need to be Hermitian,
despite the fact that by inverting the situation, it is always possible to interpret them
as resulting from a continuous measurement of Hermitian operators having an effect
just on the environment. In the specific situation where all the ['y’s are Hermitian, the
master equation can be seen as a continuous measurement of the system operators fk
The Lindblad equation contains more physics than the Schrodinger equation (which
is obtained in a limit).

Also note that the Lindblad equation (2.26) implies the trace-preserving property of

d5
the master equation®? i.e. Tr<d§> = 0, which guarantees probability conservation.

Derivation of the Lindblad master equation. There are many ways to derive the
Markovian master equation (see, e.g. [105, 287, 317, 323, 326]). The master equation
in the Lindblad form can be derived in (at least) two distinct ways:

» A microscopic and specific derivation which has to be carried out for each type
of system under consideration.

o A general and abstract derivation which does not relate directly to a particular
system [321, 322].

Computational aspect. In general, the resolution of the master equation for the
determination of the density matrix 5(¢) admits no analytic solution and must therefore
be solved numerically. While in theory this can be done with an arbitrary high precision
[327], it can lead to computational challenges due to the exponential scaling of the
size of Hilbert space. The exact simulation of the time evolution given by the master
equation is therefore often prohibited and computational improvement without resorting
to other methods (see subsection 2.5.2) seems to be limited [328, 329].

Adjoint master equation. The Liouvillian super-operator £ allows also to express
the dynamics of the Heisenberg operator Oy (t), corresponding to the time-independent
operator O in the Schrédinger picture. The dynamics of Og(t) is governed by the
so-called adjoint master equation and reads

32Due to the cyclic property of the trace.
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Non-Markovian dissipation. Let me note the existence of non-Markovian dynamics.
Numerous quantum systems exhibit pronounced memory effects [309-311, 330-337].
Memory effects of the environment originates from correlations in the initial system-
environment state, nonlocal correlations between environmental degrees of freedom,
and structured spectral densities [309, 310].

2.3.3 Environment types and modeling approaches

The environment of an open quantum system can be of various type and can be
constituted of several different microscopic degrees of freedom as elementary constituent.
A correct accounting of the effect of the environment on the dynamics of the system of
interest does not necessarily require an explicit definition of the microscopic structure
of the environment. The degree of accuracy with which the environment must be
accounted for a given model to be relevant varies considerably. Some scenarios
allow for approximations that significantly simplify the description of the system
dynamics, without compromising the accuracy of the model. In others, the system
dynamics shows extreme sensitivity to details of the environment, and requires a
precise and detailed model.

In the following, we will introduce some common types of environments. We will also
discuss how the environment can be effectively modeled, the coupling to a system
of interest, the different regimes that can arise.

Bosonic and fermionic environment. This thesis tackles open quantum systems
subject to irreversible dynamics: in absence of external driving, the system relaxes
toward equilibrium due to its coupling to it environment.

This behavior requires an environment of infinite size (infinite number of degrees of
freedom) in order to prevent quasi-periodic recurrences. In fact, irreversibility requires
a continuous energy spectrum [338, 339]. However, every physical environment is of
finite size, and thus has discrete energy levels. A good way to model an environment
for irreversible dynamics is to take a continuous infinite set of finite systems, whose
characteristics depend on the type of environment we want to model.

An ubiquitous type of quantum environment is an infinite set of quantum harmonic
oscillators. This can model a gas of bosons or an environment composed of a large
number of degrees of freedom oscillating around their equilibrium point.

2.3.3.1 Bosons

An environment consisting of a set of infinitely many bosonic modes (one dimensional
harmonic oscillators) labeled by the continuous frequency parameter w can be described
by the standard Hamiltonian of the form

Hyo = /oo dwhwb' (w)b(w) | (2.28)
0
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2.8. The Lindblad quantum master equation

where bf(w) (b(w)) is a bosonic creation (annihilation) operator of the mode at frequency
w obeying the canonical commutation relations

b(w),b(w)] =0, and [b(w),bl(w)] = d(w - ). (2.29)

where §(w) denotes the Dirac delta function.
It is worth noticing that the density of modes g(w) of the reservoir is in general
frequency-dependent.

This Hamiltonian models the interaction of a system with degrees of freedom obeying
the Bose-Einstein statistics such as photons and phonons.

Note that the Hamiltonian defined in Eq. (2.28) is quadratic in the creation and
annihilation operators. This leads to a Gaussian dynamics of the bosonic environment.

The interaction Hamiltonian. By assuming that the system-bath interaction
is linear in the bath harmonic oscillator operators, the interaction Hamiltonian
can be written as

Hyy = h/ooo dwg(w) (& + &) {Z;(w) + IA)T(w)} : (2.30)

where the g(w) is the bath-system coupling strength and ¢ denotes exemplarily one of
the system’s operator. In the specific case of an harmonic oscillator, we have ¢ = a,
if the system is a two-level system, we would have ¢ = 6.

Passing via the interaction picture, we can perform a rotating wave approximation
leading to the Hamiltonian®

B = B /_ O:o dug(w) [B (@)e + &b(w)] (2.31)

Moreover, we assume that the bath-system coupling constant is independent from
the frequency and can be written as

K

gw) = g(we) =/ 5 (2.32)

33Moving into the interaction picture using the operator U 1(t) = exp (Z(I:I s+ H E)t), the interaction

Hamiltonian (2.30) rewrites

Hing :Ul(t)f{int U}L (t)

zh/ dwg(w)(ée‘i“’ct + éTei“Ct) [l;(w)e_m +pf (w)ei‘”t} .

—o0
By developing the Hamiltonian defined in Eq. (2.30), two sorts of terms appear:

the terms ¢7b and b'é whose time dependence is given by e~ =)t and e!(@—we)t regpectively, and
the counter-rotating terms biéf and bé evolving according to e!@eT@)t and e~ wetw)t regpectively.

The counter-rotating terms are rapidly varying in comparison to the time dependence of the
co-rotating terms, especially when w, &~ w. As a result, the counter-rotating terms can be left aside.

Assuming ¢g(w) to be small, the only interaction terms which will contribute significantly in Eq. (2.31)
are those close to resonance w, ~ w. Thus, the lower integration limit can be sent towards —oo.
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2. Theory of open quantum systems

where k will be referred to as decay rate (i.e. the inverse of the lifetime). This
approximation is known as the Markov approximation.

2.3.3.2 Fermions

An environment consisting in a set of infinitely many one dimensional fermionic fields
can be described by the standard Hamiltonian of the form

Hi = / dnhni i, (2.33)
0

with the fermionic creation and annihilation operators a,, and &17 obeying the canonical
anticommutation relations

{ag.al} =0, {ayal}=o(n—n) (2.34)

with the definition of the commutator {4, B} := AB + BA.

This Hamiltonian models the interaction of a system with degrees of freedom obeying the
Fermi-Dirac statistics such as electrons, half-integer spin particles or fermionic atoms or
nuclei.

Since Hg,, is also quadratic in the fermionic creation and annihilation operators, the
dynamics of the fermionic reservoir is Gaussian, as in the bosonic case.

2.3.3.3 Drive

The previous discussion considered a system weakly coupled to its environment,
composed of an infinite number of degrees of freedom.

We will end this part by considering the case where the system coherently exchanges
excitations with its environment. Instead of appearing in the dissipative part of the
master equation, this will result in an additional effective term in the Hamiltonian.
As a typical example, we can consider the coherent driving of a cavity mode by
an external laser of frequency wy.

The Hamiltonian describing this coupling has the form

ﬁdrive = g<w0)<&Ti) + &BT) R (235)

where @ is the annihilation operator for the cavity mode, and b of the laser field.
Now, we assume the laser to be in a coherent state |3) of the operator b (i.e. a|g) =
B|B)). Tracing out the environmental degree of freedom, we obtain the Hamiltonian
describing a coherent drive

Hyiwe = Fa' + F*a. (2.36)

2.3.4 Intermezzo: example of a single bosonic (cavity) mode

In order to illustrate how this works, we will loose full generality, and write explicitly
the master equation for the simple and ubiquitous case of a single bosonic (cavity) mode.

Let us consider a single quantum harmonic oscillator with frequency w., coupled to a set
of quantum harmonic oscillators of frequencies w; modeling the environmental degree of
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2.4. The Liouvillian superoperator

freedom. Typically, this could model e.g. the coupling of a single mode of the electro-
magnetic field in a cavity with its environment in a cavity-QED setup (see section 1.4).
The system, environment and interaction Hamiltonian reads

Hg = hwa'a (2.37)

Hp = thjl;;l;j and (2.38)
J

Hop =Y (Na'h; + Ajabh) | (2.39)
J

where @ (b;) is the annihilation operator in the system (of the jth mode in the
environment) Hilbert space, and )\; is the coupling strength between the system and
the jth mode of the environment.

Assuming that there are no correlations between the system and reservoir at ¢t = 0,
the initial density matrix is of the separable form

p(t =0) = ps(0) ® p - (2.40)

By assuming a broadband environment —so that in the time domain, it returns to
its steady state value on a time scale far quicker than system dynamics— the density
operator describing the environment has no time dependence. We can also assume
that the total density matrix will stay separable at all times.

The environment is assumed to be in thermal equilibrium at temperature 7', which is de-
scribed by

Hp
exp(—-%
pp = M ) (2.41)

Tre(— )
by following one of the standard procedure to derive the master equation, that can be

found for instance in [105, 340], we eventually obtain the Lindblad master equation
for the damped harmonic oscillator

0

d—? = k(7 +1)Dla]p + siD|al] (2.42)
1

with the dissipator D |a]p = apat - 5 (@1ap+ pila), the decay rate 5 = 27D(we) [ A(we) |,

where D(w) is the density of states of the environment, and n = Trg (BT?)ﬁE), the
average number of excitations in the reservoir.

2.4 The Liouvillian superoperator

2.4.1 The Liouvillian superoperator

The linearity of the Lindblad master®! equation (2.24) in the density matrix p, makes
it possible to recast it into the following synthetic form

34Master equation is a historical name supposing to mean an equation from which all other properties
can be derived from.
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dp
— =L 24

where L is the so-called Liouvillian superoperator [341]. Superoperators are linear
operators acting on the vector space of operators. As operators act on vectors to
produce new vectors, superoperators act on operators to produce new operators.
Let me fix the nomenclature here; in the remaining of this document, operators will be
indicated with a hat (e.g., O) and superoperators with calligraphic symbols (e.g., O).
Moreover, we will assume a time-independent Liouvillian.

The superoperator L is trace-preserving and generates a completely positive map M; =
exp(Lt).

Eq. (2.43) is a first order homogeneous linear differential equation. Thus, given a
system initially in a state described by p(0), the solution of Eq. (2.43) at a time ¢ is
formally given by the theory of ordinary differential equations

(1) = MU[p(0)] = exp(£4)p(0) (2.44)
The structure of Eq. (2.43) also implies that M; must satisfy the semigroup property*

Mtht1 - Mt2+t1 . (245)

The structure of Eq. (2.44) justifies that the superoperator L is also called the time
evolution generator (note the parallel with (2.6)). £ contains all the information
on the dynamics of the system.

Properties. The Lindblad’s theorem [321] postulates that the generator of any
quantum operation satisfying the semigroup property must have the form:

. o &t lfata
£p = [, 00)] + X /[0t = 5{FF5 0} (2.46)
J

For a time-independent Liouvillian, and assuming a Hilbert space of finite dimension,
there is always at least one steady state [342], i.e., a matrix such that

Mathematically speaking, Eq. (2.47) means that the steady-state density matrix is
an eigenmatrix of the superoperator £ associated to the zero eigenvalue.

The steady-state density matrix ps; does not evolve anymore under the action of
the Lindblad master equation, meaning that pss represents the long-time dynam-
ics of the system

pss = lim e“'5(0) . (2.48)

35Tt is a semigroup because the inverse is not necessarily a member of the group.
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Moreover, under quite general conditions (see Refs. [343, 344]), it can be highlighted
that the steady state is unique and any initial state converges to it. In particular,
Spohn’s theorem shows that the Liouvillian for a finite system has a unique steady
state, provided the quantum dynamical semigroup is irreducible [345, 346].

Lately, systems that do not satisfy the criteria for Spohn’s theorem —and do not reach
a unique steady state— have raised considerable interest.

For example, and as we will see in the next chapter (chapter 4), dissipative phase
transitions are strictly related to the violation of this unicity condition.

Competition. A master equation such as (2.46) can be seen as a competition between
different terms. The effective steady-state will correspond to a compromise.

The first term in the dissipative part removes excitations and the second term adds
excitations into the system. Consequently, the system eventually settles down in
the steady state (2.47).

The terms coming from the unitary evolution also contribute to the competition and
this interaction of unitary and dissipative elements can lead to remarkable effects.

Spaces and dimensions. A note about spaces and dimensions. Let us call H the
Hilbert space of the system. Operators and density matrices belong to the operator
space H ® H. The Liouvillian superoperator space, instead, is (H ®@ H)* @ (H @ H).

2.4.2 Vectorization: the Choi-Jamiolkowski isomorphism

We notice that in the master equation, it is recurrent to multiply the density matrix on

both sides, e.g. fpr. From linear algebra courses, we recall that matrices also form a
vector space. Hence, we can picture superoperators (such as the Liouvillian) as big
matrices multiplying a big vector (the density operator). This idea is formalized using
the Choi-Jamiotkowski isomorphism [298, 347-349] or vectorization.

The representation of matrices as vectors on a higher dimensional Hilbert space is
referred to as vectorization. It transforms a p - ¢ matrix A into a pq - 1 column
vector denoted by vec(A) = fl# [350].

For example for a 2 x 2 matrix, we have

a
A a b A b
A= <C d) — Ay = c (2.49)
d
The following relation illustrates the concept of vectorization
|a) (0] — |a) ©[b) (2.50)

Thus, the density matrix can be rewritten as a one dimensional vector, and the
superoperators that act on the density matrices can be rewritten as a matrix.
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Properties. This vectorization trick is very useful, especially due to two main proper-
ties.
The first is related to the Hilbert-Schmidt inner product, defined as

(A, B) = Tr(A'B) (2.51)
in the vectorized representation, takes the intuitive
Tr(fUB) = vec(A) vec(B) = A;B# : (2.52)

The vectorized version of the identity operator is another important relation
1=>li)(i] — Ly => i) @ i) *. (2.53)

Thus, connecting this result to the normalization of a density matrix leads to

Tr(p) = Lps = 1 (2.54)
The second useful /not intuitive property is the vectorization of the product of three ma-

trices ABC:

vec(ABC) = (CT ® A) vec(B) 37 . (2.55)

The vectorized master equation. The linearity of the Liouvillian®® allows to
represent it as a matrix. These considerations and properties encountered above, allows
to write for the general Liouvillian structure such as (2.43):

Op=Lp = o)y = L4]D)y (2.56)

In line with Eq. (2.44), the time evolution of the density operator can then be rewritten
as

19(6)), = exp(Lat) [5(0)), (2.57)
The dynamics is now encapsulated by the matrix Ly. It is then possible to use an

eigendecomposition to extract all information from the time evolution. Bipartite
positive semidefinite operators

£#E;(1®H—HT®1)

) DR T (2.58)
k

Note that the crossed product £;£# is non-local. Since £ is not Hermitian, its
eigenvectors are, in general, not orthogonal.

36Note that the vectorization of the identity is the (unnormalized) maximally entangled Bell state.
37Note that what appears here is not the dagger, but the transpose.
3We have L[a161 + a262] = a1 L]61] + a2 L]6] for any operator o, and for any complex number «;.
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Dimensions. Within the procedure of vectorization, if we are initially working in a
Hilbert space of dimension dim(H) = N, the density operator —a matrix of dimension
N x N — becomes a vector of size N2. The Liouvillian becomes a matrix N? x N2,
Except for some very rare cases where the quantum master equation can be solved
analytically, in general, the quantum master equation needs to be solved numerically to
determine the time evolution of p . This can be done with arbitrarily high precision [327].
Nevertheless, because of the exponential scaling of the size of Hilbert and Liouville
space, the computational effort can rapidly become challenging

On the one hand, the exact diagonalization of the Liouvillian can be extremely memory
consuming due to the quartic scaling of the Liouvillian superoperator with respect to
Hilbert space of the system that is already of exponentially large dimension. On the
other hand, a direct time evolution implies to time evolve a N x N density matrix,
which can also turn out to be computationally challenging.

It may be worthwhile to use other methods, such as the stochastic method presented
in subsection 2.5.1 or the phase space methods presented in chapter 3.

2.4.3 Spectral properties of the Liouvillian superoperator

When considering closed systems, the eigendecomposition®” of the Hamiltonian provides
all the informations on the system [75, 351]. Indeed, the diagonalisation of H makes
possible to express the system dynamics in terms of the energies and eigenvectors of
H. In open quantum systems obeying the quantum Lindblad master equation, this
role is awarded to the eigendecomposition of the Liouvillian superoperator.
Assuming a Liouvillian £y of dimension N? x N?, the diagonalisation provides us with
a set of (complex®) eigenvalues \; and eigenmatrices (eigenstates) |p;) g such that

Ls1pi)y = AilDidy (2.59)
with j = 0,1,2,..., N2 Moreover, the left and right eigenvectors will in general
be different, and we have

ﬁ<5j|£# - #<6j|>‘j ) (2.60)

where 1¢<€7j| is the left eigenvectors of the Liouvillian L;.

Physically, the eigenvalues \; represent the timescales of the system, while the
eigenvectors p; correspond to the states explored along the system dynamics.

Since all the eigenvalues have negative real part (Re()\;) < 0), it is convenient to
order the eigenvalues by their real part, so that

IRe(Mo)| < [Re(\)] < [Re(Mo)| < ... . (2.61)

A typical Liouvillian spectrum is depicted in Fig. 2.3. A noticeable feature is the
reflexion symmetry of the eigenvalues with respect to the real axis. This is due to the
fact that the Lindblad master equation Eq. (2.43) preserves Hermicity such that

Lot =(Lp)'. (2.62)

39In linear algebra, the eigendecomposition corresponds to represent a matrix in terms of its eigenvalues
and eigenvectors.
4ONote that the eigenvalues are complex since the Liouvillian is non-hermitian.
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Figure 2.3: Schematic view of the spectrum of the Liouvillian £. The eigenvalues lie on the
negative complex plane, and the complex-valued eigenvalues exist in complex conjugate pairs.
The losses in the system are caused by the eigenvalues depicted by solid circles. The real part
contribution of the eigenvalues induces decay, the imaginary part oscillations. The red cross
represents the steady state, the eigenvalue that survives in the infinite time limit. A is the
Liouvillian gap: it determines the slowest non-zero rate of convergence towards the steady
state. The eigenvalues laying on the imaginary axis (red dashed circles) induce limit cycles.

This implies that for each eigenvalue of £, we can write A; = Re()\;) + iIm();) with
Im(A;) # 0, its complex conjugate A7 = Re();) — ilm();) is also an eigenvalue of L.

Note that in the special case where the Liouvillian superoperator corresponds to the
description of a closed system the eigenvalues are purely imaginary.

The Liouvillian spectrum provides the steady state and all the dynamical features
of an open quantum system. Indeed, according to Eq. (2.57), all properties can be
determined by exponentiating and therefore by the spectral properties of Ly.

The low-lying part of the Liouvillian spectrum turns out to be particularly useful in
several problems, where the nontrivial role of the Liouvillian long-lived metastable
states allows to correctly determine the scaling towards the thermodynamic limit.
This is particularly the case in the study of dissipative critical phenomena such
as dissipative phase transitions [49, 75|, (boundary) time crystals [1, 352, 353],
synchronization [354] and dissipative freezing [355]. Dissipative phase transitions
and time crystals will be the subject of the next chapter.

Starting at the origin of the complex plane, we retrieve the steady state density matrix

Ass = ~ s 2.63
’ Tr(po) (263)

associated to the eigenvalue \y = 0.

Another set of eigenvalue and eigenstate of particular interest are A\; and p; that
correspond to the slowest time dependent process present in the dynamics of the
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2.5. Various open quantum system methods

system. The timescale of the associated process is determined by A = Re(\;), called
the Liouvillian gap or asymptotic decay rate. As we will see in the next chapter, the
Liouvillian gap plays an important role in the study of dissipative phase transition
and dissipative time crystals.

Spectral decomposition of density matrices. Consider a system that admits
a single steady state. The condition of its physicality imposes to a density matrix
to be Hermitian, positive-definite with trace equal to one.

Knowing the Liouvillian spectrum it is possible to determine the time evolution of an
open quantum system. Indeed, any initial state can be recast as

plt =0) = pss + D cip; (2.64)
j>1
Then, knowing p; and A;, we can determine the time evolution of any density
matrix by applying

ﬁ(t) - ﬁss + Z Cje)\jtﬁj : (265)

Jj=1

Tricky numerical simulations. Let’s examine a moment from a computational
perspective, and assume that we are interested in the steady state pgs, or Liouvillian
gap A of an open quantum system.

As we mentioned previously, {\;, 51} corresponds to the slowest process present in
the dynamics of the system, and therefore, A\; is small or approximately zero. This
is not an issue if an exact eigendecomposition of the Liouvillian is possible. On the
contrary, methods based on a time evolution e.g. master equation, quantum trajectory
or truncated Wigner approach are needed (due to e.g. memory issues, due to the
N? x N? size of the vectorized Liouvillian), this becomes a problem since the system
has to be time-evolve for a very long time.

2.5 Various open quantum system methods

In both closed and open quantum systems, the computational complexity scales
exponentially with the system size. Moreover, in addition to the exponential scaling
due to the system size, the computational cost is even quadratically larger in OQS
than in closed systems, because of the need to work with density matrices.

The explicit matrix representation of operators [356] allows, in principle, an exact
diagonalisation by brute force using standard numerical software packages. While this
may work when dealing with small systems, it becomes numerically infeasible when
multiple modes come into play, or if these modes are fairly populated.

The use of sophisticated computational modeling and simulation methods are required
to obtain the desired results*'.

41Tt is interesting to notice that while it is experimentally easier to obtain the stationary state of an
open quantum system, compared of preparing a closed system in its ground state, it is (quadratically)
more difficult to numerically simulate open quantum systems than closed system on a classical
computer.
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2. Theory of open quantum systems

In recent years, great steps forward have been made. In this part, we review some
methods that are commonly used to solve the quantum master equation.

The first class of techniques we will be focusing on are the stochastic approaches.
These methods are based on an exact numerical treatment of the full Hilbert space
of the problem. We will then address other methods.

2.5.1 Stochastic approaches

Within this formalism, the deterministic dynamics described by the Markovian master
equation in the Lindblad form defined in Eq. (2.24) for the density matrix is unraveled
into a stochastic differential equation for a pure quantum state.

In trajectory-based methods, quantum effects are included via the concept of quantum
trajectories, which can be traced back to the early work by de Broglie and Bohm
[357, 358]. A quantum trajectory corresponds to a single solution for one realization
of the noise, and the unraveling is not unique.

The master equation is then reproduced by averaging the solutions over all real-
izations of the noise.

In the early 1990s, different implementations of stochastic approaches have emerged,
among them the jump methods —divided in Monte Carlo wavefunction simulations
(MCWF) (Dalibard, Castin, Molmer), and the quantum trajectories techniques (Zoller,
Carmichael)— and the quantum state diffusion (QSD) methods (Diosi, Gisin, Per-
cival...) [359, 360].

These algorithms were developed in order to study various open-quantum system
phenomenons like laser cooling [361-365], continuous measurements [366, 367], the
generation of non-classical states of light [368], and the modeling of a single radi-
ating atom [369, 370].

While all of these approaches are mathematically essentially equivalent, the numerical
implementations differ. Hereafter, we will focus on the quantum trajectories techniques.

2.5.1.1 The quantum trajectory technique

Quantum trajectory techniques [361, 362, 368, 371] can be applied for any open
quantum system whose dynamics can be described by the quantum master equation
in the Lindblad form Eq. (2.24).

The method. To begin with, recall the Lindblad operators, also called jump operators
Ly (L = 7,;1/21}) and note that the Lindbald master equation Eq. (2.24) can be
expressed in the alternative form

Ldp 1 P s 2
Zha = %(Heffp - pHgﬁ> + ;meLj‘n .

H.g, a non-Hermitian “effective” Hamiltonian including a decay part, and is defined by
ih o 2y -
Heﬂ‘ =H - §ZLjan .

With this in mind, let us jump into the formalism.
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2.5. Various open quantum system methods

This method provides numerical solution of a master equation without propagating
a density matrix directly.

Instead, pure states are propagated in time under the non-Hermitian effective Hamilto-
nian H.g, and experience quantum jumps —sudden changes in the state— at certain
points in time, defined with a certain probability.

The solution of the quantum master equation is then retrieved by taking an appro-
priate stochastic average over all the obtained trajectories. The stochastic average
is weighting the different times at which the jumps occur and all of the different
types of jumps that can occur. Expectation values can be reconstructed within
well-controlled statistical errors.

This formalism is particularly interesting with respect to continuous measurement
theory, as it can provide physical insight into the effects of the dissipative process
on the physical system.

1. Time evolution over time step dt via the Schrodinger equation

W) _ Balo ) , with Hop = H — # 5, L, L,

2. Generate random number 6p = 6ty (1| L L|t;), did jump occur?

v,/ e

3. Renormalize |¢;) before new time 3. Apply jump operator [A/j before new
step time step

| _ e—iHendt | (1)) | 3 L [0;(t))
|b; (t + 6t)) T |9 (t + 6t)) = TR

4. Ensemble average over |1)’s gives the density matrix and the expectation value

of any operator .
(A ) = 5 2 OIA; (1)

J

Motivations. The quantum jump method can be motivated twofold:

e On the one hand, the quantum jump method is a computational tool that allows
the unraveling of the quantum master equation into a set of quantum trajectories.

Within this formalism, the master equation is rewritten as a stochastic average
over individual realizations (trajectories), evolving in time as pure states.

Assume a system with Hilbert space dimension V.

The resolution of the quantum master equation which requires to time evolve a full
density matrix —an object of size N%>— in time, is replaced by the propagation
of a state vector of size N only. The significant reduction of the dimension of the
numerical problem makes larger systems tractable.
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2. Theory of open quantum systems

However, there is no such thing as a free lunch, and this benefit in terms of
computational resources should be balanced with the stochastic sampling. Indeed,
if one is interested in ensemble statistics, many trajectories can be needed in
order to minimize statistical errors*>. On a computational aspect, this method
can be highly parallelized, but trajectories are not orthogonal (redundancy).

e On the other hand, the quantum jump method is a physical model reflecting the
dynamics of single realizations of small quantum systems. The method provides
physical interpretation for the physics induced by the environment on single
realizations of the system. In fact each individual trajectory can be considered
as physical. Its evolution in time will depend on how the system is observed, in
accordance with the quantum measurement theory. Within the framework of
this method, we obtain insight into the dynamics of the system by measuring the
environment.

Equivalence to the master equation. It is possible to prove that the stochastic
propagation is equivalent to the master equation (see e.g. [371])

Different unraveling. There are different unraveling methods like e.g. the photon
(jump) counting unraveling method and the Homodyne and heterodyne unraveling
methods (see e.g. [373] for details).

Further details on this method would go beyond the scope of this section. Addi-
tional details, references, examples of applications, as well as details of its physical
interpretation can be found e.g. in refs [371].

2.5.2 Other approaches

A lot of other techniques constitute the vast constellation of methods for the simulation
of open quantum systems. Hereafter, we propose a small overview of some of them.
More details can be found e.g. in this review and references therein [315, 374].

Analytical model. First, there are some (rare) analytically solvable models [52,
243-249, 375-377] and integrable models [312, 378-381].

Also, the Keldysh formalism [382-385], based on the mathematical object of the non-
equilibrium Green’s function (NEGF), or the diagrammatic expansions like the linked-
cluster expansion [386, 387], provide a systematic way to study non-equilibrium systems
[388].

Mean-Field. A simple approach to the master equation is the (coherent) mean-field
approximation, which also exists in closed systems. Fluctuations are disregarded by
replacing field operators with their expectation values*:.

42For these methods to be efficient, it is important that the required sample remains smaller than
N, the size of the Hilbert space. Even if there is no clear cut in the advantage compared to direct
master equation simulation [372], some many body open quantum systems occur to have so many
degrees of freedom that even a single copy of the full density matrix would exceed all memory limits.
43This comes down to a coherent state Ansatz.
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2.5. Various open quantum system methods

This approach leads, for example, to the Gross-Pitaevskii equation [126]** or Lu-
giato—Lefever equation [389]. The validity of such approaches is strongly limited to
semiclassical behaviour, typically arising in the limit of large occupation, but they
may be the only workable ones.

Tensor network. Simulation techniques based on tensor network aim to describe
the “physical corner” of the Hilbert space, i.e., it only considers the quantum states
that are most relevant to describe the dynamical and steady states properties of
the quantum systems.

A particularly suited method for low-entropy systems is the so-called Corner-Space
Renormalization (CSR) method [390, 391], where the goal is to target a small corner
of the Hilbert space hosting the relevant states for the density matrix.

Variational methods. The variational methods approximate the true state “as close
as possible” by a variational state with a few adjustable parameters.

In the vast family of variational methods, the gaussian trajectory method combines
quantum trajectories with a Gaussian Ansatz [87, 126, 371, 392].

Density-Matrix Renormalization Group. These variational methods based on
a faithful representation of the density matrix formalized in tensor networks [374], in
terms of either Matrix-Product States (MPS) or Matrix-Product operators (MPO)
for systems in 1 dimension, and Projected Entangled-Pair States (PEPS) in 2D.
The guiding idea in tensor networks is to write the state of the full system as a
contraction over local tensors. This method can be generalized to a master equation
for open quantum systems [393, 394].

Recently, several groups converged in parallel to a method, combining the quantum
monte-carlo approach with a variational neural network ansatz [395-398].

Factorized solution. The assumption of a factorized density matrix, leads, for
example, to the Gutzwiller monte carlo approach [399-401]. This “refined mean field
methods” method can be generalized into the cluster Gutzwiller method [69, 402]. The
factorized solution shows limitations for capturing non-local correlations.

Phase-space methods. Finally, the phase space methods are based on the fact that
quantum mechanical states can be described as quasi-probability distributions in phase-
space. Of particular importance is the Truncated Wigner Approximation [126], effective
in the semiclassical limit characterized by high occupation and positive Wigner functions.
The approximation in this case consists of neglecting derivatives of order higher than two,
typically proportional to interaction constants. Noise enters both the initial conditions
and the dissipative evolution. This method will be detailed in the next chapter.

44The (time-dependent) GPE is commonly known as the (cubic) nonlinear Schrédinger equation
(NLSE) in other areas of physics and in mathematics.
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2. Theory of open quantum systems

Numerically exact approaches. There is also a variety of numerically exact
approaches that were worked out over the last two decades [311].

These approaches can be used to describe features that aren’t accurately expressed
by other methods. The hierarchical equations of motion [403—-405], path integral
methods [406-408], and Dissipation-Assisted Matrix Product Factorization [409] are
examples of exact approaches.
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Truncated Wigner method for simulating
dissipative many-body dynamics

The Truncated Wigner Approximation (TWA) approach provides a paradigm
for the numerical simulation of open quantum many-body systems. A crucial
point in the theoretical study of non-equilibrium systems is to go beyond the
classical analysis provided by standard mean field approximations by incorporating
quantum fluctuations into the model.

Precisely, the TWA is a phase space method that provides a practical framework
for solving the dynamics of a quantum system near the classical limit [410].
This chapter articulates around four points. First, we provide a general introduc-
tion, meant as a road-map for this chapter. Then, we lay the groundwork for
the TWA introducing the general framework of phase space methods. Next, we
propose a digest unwinding of the derivation of the TWA. Finally, we address
some important remarks and explicit a simple example of application. This
method has been the race horse in the two results presented in the next two
chapters. Ah-lon-zee!
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3.1 The Truncated Wigner formalism

Introduction The truncated Wigner approximation (TWA) [126, 318, 410-421] is a
common and convenient approach to simulate weakly interacting bosons in the limit
of a large mode occupation, where direct diagonalization approaches [422] become
computationally impossible and standard mean-field approximations are too coarse
to capture some important physical properties.

Motivation As discussed in chapter 2, the exponential growth of the Hilbert space
dimension with the number of particles' makes the numerical approaches challenging.
Concretely, imagine we want to simulate M = 100 interacting bosons on classical
computers. Further, we assume that the state of the system is encoded in double?. A
double needs 64 bits or 8 bytes of memory and thus, a complex number needs 16 bytes.
Imagine we cut the Hilbert-space of each mode j at N; = 99 + 1 excitations. The
size of the total Hilbert-space is® dim(#H) = 10'%. To fit the state vector describing
this system into a computer, we would need ~ 10°! Gigabytes. This number can
e.g. be compared to 10%2, the estimated total number of atoms in the (observable)
universe [424]. This definitely does not fit into the memory of my personal computer
and illustrates the fact that the simulation of the master equation for systems with
no particularly low numbers of modes and excitation numbers nor approximation, is
computationally challenging [137].

From another side, standard mean-field approximations (chapter 2), such as the Gross-
Pitaevskii (GP) equation [425-429], treat the dynamics of the macroscopically occupied
wave function, but neglect atomic correlations and fluctuations [430]. This turns out
to be a coarse approximation/bad description for numerous cases, especially when
modes with low occupation become relevant.

For example, experiments involving Bose-Einstein condensates (BEC) of ultracold
atoms are not always well modelled by the GP equation in general [431, 432].

The general idea The TWA method describes efficiently the dynamics beyond the
mean-field level, by taking into account both thermal and leading-order quantum fluctua-
tions.

IThis led to the trademark “Hilbert space is a big place!” [423].
2Double-precision floating-point data type.
3Here, we do not consider some refined applicable truncations like e.g. imposing Z;V:1 N; < Npaz-

66



3. Truncated Wigner method for simulating dissipative many-body dynamics

This approach is non-perturbative, and while quantum fluctuations are not incorporated
exactly, they can be well approximated. Their effect on the dynamics of the system
enters by (see also Fig. 3.1)

a) the initial value of the complex field is sampled over the Wigner quasi-distribution
of the initial quantum state. As a result, each unoccupied mode is populated by
fluctuations equivalent to one half of a particle.

b) the coupling to a reservoir is modeled by additional noise sources leading to
stochastic equations of motion i.e. classical random process are used to mimic
quantum mechanics.

’ Re(a) Re(a)

Figure 3.1: Schematic representation of the time evolution in phase space, obtained with the
Gross—Pitaevskii equation (GPE) method in (a), and with the truncated Wigner method in (b).
The red arrows indicate the flow of time. In (a), the GPE evolution brings deterministically
an initial state (blue point) to a further time. In (b), the TWA method stochastically time
evolve an initial states (blue points), taken within a specific distribution (green area).

Applications of the TWA method. The Truncated Wigner method found numer-
ous applications in quantum optics [287] and cold atom systems [414, 431, 433-435]
(chapter 1), where it predicted and/or explained various phenomena [436]. This includes
dynamical instabilities [437], quantum optical parametric oscillators [438], dark solitons
[439, 440], decoherence [441], and squeezing [442, 443].

While the TWA was traditionally used in various interacting spinless bosonic systems,
the method was recently extended to broader situations. It was e.g. successfully
applied to study the dynamics of the Dicke model [444], spinor condensates [445], or
the delicate computation of multi-time correlation functions [419].

In general, excellent agreement between the theoretical prediction of the TWA and
experiments are reported [432, 446].

The TWA method. In this chapter, we provide an overview (in a condensed way) of
the main key ingredients, tools and concepts involved in the derivation of the truncated
Wigner method. More details can be found e.g. in ref. [287, 413, 447]. The plan of this
chapter goes with the flow of the derivation of the TWA method and is as follows.
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3.1. The Truncated Wigner formalism

Phase space representation. First of all, the truncated Wigner formalism is part
of the broad class of phase space methods, and thus is based on the formulation
of quantum mechanics in phase space. We will present an overview of the phase
space representation in section 3.2. An important ingredient in the Truncated Wigner
formalism is the coherent state phase space [142, 144], which was introduced in chapter 1.
Indeed, the starting point consists in expressing/expanding the density matrix p in
the over-complete set of coherent states |a), with a € C [415].

Wigner phase-space representation. The TWA is a method based on the Wigner
quasi-probability distribution function [287, 318] of a bosonic mode?. We will discuss
the aspects of the Wigner phase space representation in section 3.3. In particular,
we will see the Weyl and Wigner transform, the Wigner function (or Wigner quasi-
probability distribution) and the computation of expectation values of symetrized
product of operators. The considerations will be made on a single bosonic field —in
order to dodge the notational cumbersomeness inherent to the full many-mode problem
— but the results can be easily expanded to the multi-modes case.

From master equation for p to PDE for W. We will see in section 3.4 that
in general, the Lindblad master equation —describing the evolution of the density
operator— (see chapter 2) can be mapped exactly into an equivalent third-order
differential equation for the quasi-probability Wigner function [318, 448]. The resulting
partial differential equation (also called Wigner-Moyal time-evolution equation or in this
context Fokker Planck-like equation) is exact and is equivalent to the master equation.

From PDE to FPE: the truncated Wigner approximation. The motivation
behind this step-by-step reasoning resides in the observation that any Fokker-Planck
equation (FPE) with a positive-definite diffusion matrix can be recast as a stochastic
differential equations (also called Langevin equations) [449, 450].

In a first step, the PDE for the Wigner quasi-probability distribution function is
“truncated” by mean of the truncated Wigner approximation. Under certain conditions
[318, 450] —broadly speaking with a high number of excitations in each mode or
small nonlinearity —, the third order derivative terms can be neglected. The resulting
equation is a FPE. This step will be addressed in section 3.5.

From FPE for W to SDE for bosonic fields The obtained FPE —a differential
equation for the truncated Wigner function (following this truncation, the Wigner
function is positively defined) — can be mapped to a stochastic differential equation
(SDE) for the bosonic fields (phase-space variables). This mapping is exposed in
section 3.6. More specifically, the determination of a coherent (in a not quantum
optical sense) initial condition will also be discussed.

Expectation values. To finish our trajectory in the truncated Wigner formalism,
in section 3.7, we show that the expectation values of symmetrized products of
operators [126, 412] can be retrieved by averaging over a set of interdependent
stochastic trajectories.

4A bosonic mode can be described with the ladder operator @ and a' (see chapter 1).
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3. Truncated Wigner method for simulating dissipative many-body dynamics

Epilogue and application to a single bosonic mode. We then close the chapter
by making some remarks on the TWA in section 3.8. In particular, we discuss
the limitations of this numerical technique and the physical interpretation of single
truncated Wigner trajectories.

Finally, in section 3.9, we provide a concrete illustration of the truncated Wigner
method by applying it to a driven dissipative harmonic oscillator.

3.2 Phase-space representations of quantum optics

Phase-space representations. There are several mathematical formulations of
quantum mechanics [451]. Among them, the Schrodinger wave function and Heisenberg
matrix formulations were the first to be established in 19255,

Another approach is the Feynman path integral introduced in 1948°.

A further approach tackling quantum mechanics is the phase-space formulation (See
refs. [142, 144, 411, 453-458] for the pioneering works and [287, 459-462] for textbook
treatments). It is based on quasi-distribution functions and Weyl’s correspondence [463,
464] establishing a correspondence between quantum-mechanical operators defined on
a Hilbert space and ordinary functions in phase space.

This formulation has recently attracted increasing interest propelled by its numerous
applications in quantum optics [415], e.g. in the field of cold atoms (see e.g. Ref. [410]
for a review), or in quantum technologies, especially for state tomography [465, 466].
From the dawning of quantum mechanics, drawing on the classical phase space
formulation, many theoretical works have explored the possibility of formulating
quantum mechanics using exclusively the language of phase space variables.
Within this context, several phase space functions playing a similar role of the
probability distribution for the phase space variables in classical physics have been
developed, including the Wigner quasi-probability distribution function” [411], the
Glauber-Sudarshan P-representation [142-144, 287, 318, 414, 456, 467-469] and the
Husimi Q-representation [470, 471].

Beside these phase space functions, the capture of the additional layer of quantum fluc-
tuations characteristic of quantum mechanics is treated by mean of statistical theories.
Within this framework, it is necessary to have a full parametrization €2 of the phase space.
This parametrization can e.g. be in terms of position and momentum coordinates
or eigenvalues of the annihilation operators.

Phase-space formulation of a bosonic system A system of M bosonic modes
can be represented using the annihilation and creation operators, respectively a; and

&;, with j =1, ..., M (see chapter 1). These satisfy the commutation relations
[ai,a}] =0, and [a;0) = [a},a}] =0. (3.1)

5This formulation builds around kets and operators in Hilbert space and was developed by Heisenberg,
Schrodinger, Dirac among others.

6This approach was already suggested by Dirac [452], but one had to wait the important work of
Feynman [406] to have a complete construction.

Tt is called a quasi-probability rather than a probability distribution because it is not necessarily
everywhere positive.
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3.3. The Weyl-Wigner phase-space representation

Coordinate-Momentum representation. The phase space can be constructed in
complete analogy with classical physics by placing on an equal footing the c-number
corresponding to canonical pairs of position and momentum (or any two quadratures
associated with orthogonal angles)®.

In quantum physics, this is realized in order to satisfy Heisenberg’s principle preventing
the simultaneous exact determination of the momentum and the position [472].

Coherent state representation. A coherent account of the concepts of coherent
states, needed in this part, was tackled in chapter 1. In particular, we have seen
that for a coherent state |a) with o € C

(@|2[er) ~ Re(a) (3

2)
{a|pler) ~ Im(a) (3.3)
so that the conjugate pair (a, o*) of the coherent state can be regarded as phase-space
parametrization for the bosonic field®.

Hereafter, all considerations will be developed using a coherent-states phase space
parameterization, but it would be equivalent to present this in position and mo-
mentum representation.

3.3 The Weyl-Wigner phase-space representation

Introduction. The successive works of Wigner [411], Weyl [463], Moyal [457], von
Neumann [454], Groenewold [455], Berezin [458] and others led to the Wigner phase
space representation.

Foremost, the Wigner quasi-distribution function —obtained via the expansion of the
density operator p in the overcomplete set of coherent states |a) — provides a complete
representation in phase space of the density matrix.

The Wigner quasi-distribution function corresponds to a quantum moment-generating
functional, by enabling the computation of the expectation values of quantum operators,
analogously to classical probability distribution of phase space variables.

On another side, Weyl’s correspondence introduces a map between functions in phase
space and operators living in a Hilbert space.

Finally, the expectation values of symmetrically ordered product of operators is obtained
by averaging over the Wigner distribution.

The Wigner functions have found a significant number of applications in various fields,
both experimental and theoretical [473-482]. The strong analogy to classical mechanics
makes it a powerful tool in the study of the quantum-classical transition [483-485].

In the subsequent section, we will address the major ingredients of this approach in
the simple case of a single mode of a bosonic field.

8The dimension of the phase-space is twice the configuration-space’s dimension.
9Note that a, a* are treated as independent variables.
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3. Truncated Wigner method for simulating dissipative many-body dynamics

3.3.1 The Weyl and Wigner transformations

The Wigner-Weyl transform'® for bosons [462, 486] is a one-to-one (invertible) mapping
between an arbitrary quantum operator O(d, a') defined on a Hilbert space (e.g. a
quantum observable) and a classical function Oy (o, a*) defined in the phase space
(e.g. classical observable):

Weyl W

T~
Ow (a, a*) O(a,a")

Wigner w1

Wigner transform The Wigner transform!' %/ is a mapping from an arbitrary
operator O(a,a') (written in the second quantization) on a Hilbert space *to its Weyl
symbol Ow (o, a*), a function defined on the phase space and defined through [453, 487]

) 1 A I
Ow(a,a”) = w[O(a,ah)] = /dndn*<a - 210(a,a1)a + 727>62(” ) (3.4)

where |a) denote coherent states, and 7 is a complex variable!®. An important
observation is that O is Hermitian if and only if Oy is real valued.

There are two other convenient and equivalent definitions of this transform.

a) By defining the Wigner operator '*'5 as the displaced parity operator A(a) =
D(a)IID'(a) with the displacement operator D(a) = exp(aa’ — a*a) and the

parity operator IT = ¢i™'@ 16 the Wigner transform can also be written as [488—

490]
Ow(a,a”) = QTI(OA(Q)) : (3.5)
b) By defining the quantum characteristic function (also called moment-generating
function)
Xo(a) = Tr(OD(a)) , (3.6)
we have
« 1 2 *a—na* 17
Ow(a,a") = — [ dpoln)e” o 17 (3.7

10 Also called Wigner-Weyl representation, correspondence or quantization.

1 Or sometimes called inverse Weyl transform.

121t is possible to unwind this reasoning either with the phase space variables & and p, or equivalently
with the bosonic operators.

13Here, the integral is over the configuration space and the integration measure is defined as d?n/7° =
dndn* /2 = dRendlmn/m where |n),n € C is a coherent state. d?)\/m = dRe[\]dIm[)].

14The Wigner operator is also sometimes called kernel, seed operator or Stratonovich-Weyl kernel.

15The Wigner operator is Hermitian.

16Note that the parity operator can also be expressed as IT = (—1)‘3‘-& = [dz|-z)(z|.
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3.3. The Weyl-Wigner phase-space representation

The Wigner transformation admits an inverse [410, 453]: the Weyl transformation.

Weyl transform. The Weyl transform is a mapping from functions on phase space
to operators in Hilbert space [463, 491] and is given by

O =wow] =~ [ @ xo(n)Di(n) (3.50)

=~ [@0oumam . (3.8)

Operator ordering. Provided that the Weyl symbol Oy, («, @*) only contains terms
linear in o and a* the corresponding operator O(a, a') is uniquely defined. An ambiguity
however arises if Oy («a, a*) contains products like ar™: while the two functions aa*
and a*« are identical, since the classical phase space variables a and o commute, they
lead to two different operators upon applying the Weyl transform. In order to define
uniquely the quantum mechanical operator, one need to specify an ordering rule.
Within the Weyl-Wigner formalism, the operators are symmetrically (or Weyl) or-
dered!?.

A symmetrically ordered product of operators is denoted by {- - - }sym
to the average of all ways of ordering the operators. We have e.g.

and corresponds

{aa*}sym = ;{aaf +ataf . (3.9)

The Moyal product [455, 491]?° and Bopp operators [492-494]%! are practical tools in
Wigner-Weyl quantization facilitating the computation of symetrized products.

3.3.1.1 The Wigner function

The Weyl symbol of a density matrix p is of particular interest, and corresponds to
the Wigner phase-space quasi-distribution or Wigner function [410, 411, 486]*2

1 * *
W(a,a") = pw(a, o) = 5/ dndn*<a - g|ﬁ|a + Z>€é(” a=na’) (3.10)

Thus the Wigner function is the phase-space distribution associated to the density ma-
trix. It allows the computation of expectation values of symmetrically ordered operators.

"The Weyl symbol corresponds to the Fourier transform of the symmetrically-ordered quantum
characteristic function of the operator.

18 An advantage in the Wigner function (with respect to other quasiprobability distribution functions)
lies in the fact that the same kernel is used for transforming the Wigner function to the operator
and for the reverse transformation.

9There are three types of ordering of operators : the normal ordering, the symmetric ordering and
the anti-normal ordering.

20Moyal product, which is the phase space product related to the Weyl transform, is denoted by *j;.

2IThe Bopp operators provide a natural interpretation of commutation relations through jumps in the
classical phase space.

22Presented in 1932 by Eugene Wigner.
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3. Truncated Wigner method for simulating dissipative many-body dynamics

Properties of the Wigner function

« Any density matrix can be mapped to a Wigner function (see [287] for a proof).
The Wigner distribution and density matrix contain the exact same informations.

 Since any (physical) density matrix is Hermitian, it can be showed that the
Wigner function is a real-valued function.

o The Wigner function is not positively defined on the whole phase space for a
general density matrix. For this reason, it is often referred to as the Wigner
quasi-probability distribution. In the case where the Wigner function is positive,
it behaves like a probability distribution for the phase space variables o and a*.

Conditions for non-negativity of the Wigner quasi-probability distributions have
been worked out. While for pure states this corresponds to Gaussian states [495,
496], it is still ongoing work in the case of mixed states [497, 498].

« For any physically valid density matrix, the Wigner function is normalized such
that

1
—/d2aW —1. (3.11)
n

3.3.2 Expectation values

Weyl symbols of quantum operators and the Wigner function provide a complete
phase-space description of a given system.

A key property of the Weyl transform is that for two operators A and B we have
(see e.g. [487])%

Tr(ﬁé) = i/dQOéAW(Oé,O./*)BW(Oz,Oz*) . (3.12)

It follows from (3.12) that the expectation value of a symmetrically ordered operator
O in the state defined with the density matrix p is given by** (see e.g. [499])

(0(a,a")) = Tr(0) = 71T [ #aOw(a.at)W(a,a%) . (3.13)

Thus—and in complete analogy to an ordinary phase-space probability density— the
Wigner function can be used for calculating averages?.

A 1 ~ 1
ZRemark that we have Tr(O) = — [ d?aO0w (o, a*) as a direct consequence of 1 = = [ d%ala)(al.
™ ™
Z4Note that this is always true, even for negative Wigner functions.
25This equation is correct whether in the Schrédinger TY(ﬁ(t)O) or Heisenberg TY(ﬁO(t)) picture.

26The Wigner function plays the role of a (quasi) probability distribution. In fact, the Wigner function
was historically exactly introduced for this reason.
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3.3. The Weyl-Wigner phase-space representation

Expectation value of symmetric ordered operators. In statistics, a probability
distribution can be completely characterized by mean of its moments (x™) [500].
The moments of the Wigner distribution correspond to symmetrically ordered operator
averages>.

In particular for the case of a product of bosonic operators a®(a’)" for integers

r,s > 0, we have
<{ar(af)s}sym> = [ aar(@) Wia,a"). (3.14)

Quantum fluctuations As a result of the symmetric averaging, the vacuum |0) (0|
receives a virtual occupation of half a particle. In order to yield the correct result
of zero occupation in the vacuum mode it is necessary to subtract the virtual half
occupation after the averaging is performed.

This population of virtual particles can lead to an ultraviolet divergence if no truncation
of the modes (momentum cutoff) is carried out [431].

3.3.3 Operator correspondences

In order to put in context, the operator correspondence will be a crucial result for
transforming the master equation into an equation for the Wigner function. The
operator correspondences translate the action of the ladder operators @ and a' on an
operator O with an equivalent expression defined as the action of differential operators
on the associated Weyl symbol. For any Hilbert-Schmidt operator O we have

w[a0) = (a + ; 8i*> w|[O] (3.15a)
wlal0] = <a* _ ;;@) w0 (3.15D)
w[0d] = (a - ; ai*) W[O] (3.15¢)
w|0a'| = (a* + ;51) w[O] . (3.15d)

The correspondence of eq. (3.15) translates immediately to the specific case where the
operator is a density matrix i.e. we take O = j(t), and we have W[p] = W (a, a*,t).
The correspondences for the density matrix can be used to recast a master equa-
tion—expressed in terms of ladder operators— as a partial differential equation for
the Wigner function.

27The four first moments are called: mean, variance, skewness, and kurtosis.

28This is found by integrating by parts the expression of the Wigner function in terms of characteristic
function and observing that symmetrically ordered moments are identified as derivatives of xy at
A=0.
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3. Truncated Wigner method for simulating dissipative many-body dynamics

3.3.4 The multi-mode generalization

The previous results can be generalized to the multi-mode case of M bosonic modes.
For example for an operator O and a complex vector of coherent states o, we have

* 1 * A 1 * *
Ow (o, ™) =0 /dn dn<a - g|O|a + 72’> exp{2 Z(njaj - njozj)} (3.16a)
j

=2 Tr(OA(av) ) (3.16b)

1 " > loj—au; .
:W/dn dnxo(n)e i ) (3.16¢)

A O
where D(c) = 22%% "% i the displacement operator.

On the other hand, taking advantage of the Bopp operators, we can find e.g. the
correspondence between the multimode operator products

d}dk — aGay  for j #£k (3.17a)
10 1 0 1
ATA * _ 2
CLJCLJ — (Oé] — 28%) <Oéj + 280[;‘)1 = |Oéj| — 5 (317b)
At ., 10 ., 10 4 1
a}a}ajaj — (aj - 280@) <ozj - 2&%) af = |og|* — 2a;|” + 5 (3.17¢)

3.4 Time evolution of the Wigner function

In this part we seek to write an equation governing the time evolution of any observable
of a system of bosonic modes. The general idea is made of two steps.

A first step consists in mapping the Markovian master equation in the Lindblad
form for a density matrix to an equivalent ordinary differential equation for the
Wigner quasi-probability distribution.

The second step consists in computing the time evolution of observables.

The starting point is the master equation for a single bosonic mode —written in terms
of creation and annihilation operators— discussed in chapter 2 and given by

PO _ L1, o)) + wDlala0) (318

where H is the Hamiltonian of the system, describing its coherent evolution. The Lind-
1

blad superoperator DM p(t) =ap(t)a — 5(&%,@@) + p(t)a'a) account for (incoherent)

coupling to the external bath with jump operators a and dissipation rate k.

Typically, the right hand side of eq. (3.18) involves products of the density operator

with the ladder operators.

The time-evolution equation for the density matrix eq. (3.18) can be transformed into

an equivalent partial differential equation for the Wigner distribution [457], using the
recipe of operator correspondences of egs. (3.15).
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3.5. From PDFE to FPE : the Truncated-Wigner approximation

3.4.1 Partial differential equation for the Wigner distribution

The mappings (3.15) allow the reformulation of the master equation eq. (3.18) in terms
of a partial differential equation (PDE) for the Wigner function

oW (a,t)

5 La)W(a,t), (3.19)
where
D DRV HPS D Sy RPN
; 80@ " Jaj0a 000 ’

The indices j and k£ run over the 2N components of the vector of a finite set of
continuous variables a = (a,a®).

Here A;(av) is the drift vector?® (first derivative), and Djx() is the diffusion matriz>°
(second order derivative), and the equation may contain third or higher order derivatives.
The formulation in eq. (3.19) is equivalent to the master equation eq. (3.18). Due to the
fact that this PDE contains third or higher order derivatives, it is called a generalized
Fokker Planck (Fokker Planck-like or also sometimes Wigner—-Moyal) equation for
the Wigner distribution [287, 318, 501]3!.

The PDE of the form given in eq (3.19) and (3.20) is common in quantum optics [450]
and are in general difficult to solve numerically.

But we do not sail in sight. Based on the concept of It6 calculus that maps FPE onto
a set of coupled SDEs, our goal is to transform the generalized FPE (3.19) into a FPE.
There are two conditions necessary that the generalized FPE eq. (3.20) is a FPE:

a) positive-semidefinite diffusion matrix i.e. the diffusion matrix can be written
under the form D = BB”, and

b) no derivatives of higher order than two.

3.5 From PDE to FPE : the Truncated-Wigner
approximation

The PDE involves third- and higher order derivatives with respect to the phase space
variable, originating both from the nonlinear term in the Hamiltonian, and loss terms.
It can be justified to neglecting the third and higher order derivatives in the generalized
FPE [287, 413, 502].

This approximation is called the truncated Wigner approzimation (TWA). If in addition
the diffusion matrix is positive-semi-definite, the resulting equation becomes a Fokker-
Plank equation (FPE) for the Wigner quasi-distribution function [126, 137, 412].

29The drift term causes probability to flow deterministically.
30The diffusion term causes probability to spread away from some give point.
31Tt is the quantum-mechanical version of the Liouville equation for a classical phase-space distribution.
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3. Truncated Wigner method for simulating dissipative many-body dynamics

Validity criteria for the truncated Wigner method. This powerful approxima-
tion is legitimate in the case of weak interaction and large modes occupation. Note
that in some cases, such as e.g. the treatment of the Bose-Hubbard model in the
framework of a closed system, the diffusion matrix is equal to zero and the SDEs reduce
further to a set of nonlinear ordinary differential equations.

The validity of this truncation is not trivial and is discussed e.g. in refs. [410,
416, 431, 432, 503, 504].

Intuitively, the truncation justifies for systems with “almost classical” quantum states,
where we expect that the system dynamics is essentially governed by classical equation of
motions.

For this case, we expect the Wigner function to behave as a sharply peaked probability
distribution centered around a macroscopic mean value. It can be showed [417]
that the contribution from the third-order derivative terms is negligible provided
the mean value is large3?33.

3.6 The Truncated Wigner-function Fokker-Planck
equation

Equivalence FPEs-SDEs. The obtained FPE governing the time evolution of the
Wigner function can then be mapped to a set of stochastic differential equations (or
Langevin equations) [448, 505] for a set complex-valued fields a;(t)**.

This partial differential equation can be solved by simulating a “large” number of
trajectories governed by the (It6) stochastic differential equation (SDE).

The theory behind the connection between FPEs and SDEs is described and explained
e.g. in ref. [448] and is established via Feynman-Kac formula and It6 rules [507, 508].
This mapping leads to the truncated Wigner-function Fokker-Planck equation

daj; = Aj(a)dt + Byj(a)dx;(t) (3.21)

with B(a) is the factorized diffusion matrix with B(a)B(a)" = D(c). The random
complex delta-correlated gaussian noise dy; can be decomposed as dx; = dW; + idWs,
where dW,, are real-valued independent Wiener processes with

AW (AW () = dtSmd(t — 1) . (3.22)

The set of equations defined in (3.21) can be efficiently simulated numerically.
Thus, instead of computing the full Wigner distribution, we obtain the expectation
values by averaging over Ny,; trajectories of the stochastic equations (3.21).

The quantum fluctuations present in this equation accounts for the decay and dephasing.

32 Actually, the third-order derivative terms give a correction to the classical trajectories (quantum
scattering processes) [417].

33Notice that even if a term is small, this doesn’t exclude the possibility that the build-up of this
small term during the time evolution leads to distortion.

34In fact, this comes back to solve the FPE using a stochastic Montecarlo approach [506] for the
a;(t)’s.
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3.7. Fxpectation values within the TWA formalism

Initial condition. Within the TWA method, the initial values of the complex
valued field o;(0) are non-deterministic and are obtained by stochastic sampling in
the coherent state phase space according to a given positive semi-definite Wigner
distribution W («, a*,0). This is pictured in Fig.3.1.

Thus, the quantum fluctuations are included in the initial condition via the stochastic
sampling of a Wigner distribution [414]. This sampling is designed to correspond
to the underlying (strictly positive) Wigner distribution® e.g. normalized random
complex gaussian noise.

Accordingly, every unoccupied mode has vacuum fluctuations equivalent to one half of
a particle, modeling correctly the uncertainty between conjugate variables [417].

It is thus important to include the modes with low occupation in the initial condition.
On the other hand, it is also necessary to truncate the number of modes taken
into account to avoid divergences.

The quantum corrections. In this method, the quantum corrections manifest
themselves in two ways:

» Stochastic initial condition reconstructing the Wigner distribution. The initial
conditions are constructed based on the Wigner transform of the initial density
matrix.

o Stochastic evolution due to third order truncation. Quantum scattering processes
occur during the time propagation.

Consequently, the TWA allows one to go beyond the mean-field approximation and
takes into account quantum fluctuations of lowest-order.

Now that we have the time evolution of the fields, we can access the expectation values.

3.7 Expectation values within the TWA formalism

Finally, the (approximate) expectation values of symmetrically ordered operator

expressions®® are obtained by

« integrating Eq. (3.21) over a set a; of independent time-evolved trajectories, and

« averaging the solution of Eq. (3.21) over the stochastic trajectories.

For a sufficiently number of trajectories and with initial values sampled according to the
Wigner distribution W (e, t = 0), we can use the Wigner distribution as in classical prob-
ability theory to compute expectation values of (symmetrically ordered) operators as

<{O(a,eﬁ)}sym> — Ola,a") . (3.23)

35Note that even if this method doesn’t allow for the exact inclusion of quantum fluctuations, it can
do it approximately by stochastic sampling of a Wigner distribution.

36Notice that other representation returns other ordering for the expectation values: e.g. the P
representations returns normally ordered averages.
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3. Truncated Wigner method for simulating dissipative many-body dynamics

Here {--- }4,m indicates symmetrization, and -~ indicates stochastic averages over
numerically evaluated truncated Wigner trajectories i.e.

> 0(a®, (a9)") (3.24)

where Ny, is the number of stochastic trajectories.

— 1
O= Ilim

Niraj—00 Ntraj

We obtain for example <(€LT€L) > = |af?2 — 1/2.
sym

3.8 Remarks

3.8.1 Accuracy

The Wigner approach seems to generate accurate results for the description of optical
systems in the large photon limit, where we expect the contribution of the third-
order quantum noise to be small.

3.8.2 Limitations of this numerical technique

Approximate nature. This method is intrinsically an approximation due to the
truncation procedure. This can in some cases lead to demonstrably wrong results [509].
Attempts to exactly map the master equation onto a Wigner representation were under-
taken [510]. Yet these attempts didn’t result in easily and widely applicable methods.

Ultraviolet divergence. The noise modeling (in an approximate way) the quan-
tum vacuum fluctuations leads to an ultraviolet divergence if all physically allowed
modes are included.

Multi-time commutators. The TWA returns symmetrized products of operators,
and do not give in general access to quantities like expectation values of time-normally
ordered operator products®’, unequal time averages like e.g. the different time
correlation functions or correlation functions for the full multimode field operator
[414, 511]. With the exception of the two-time normally ordered correlation function
for coherent initial states [512].

3.8.3 Single trajectory interpretation

In the case of highly populated fields, the behavior of a single trajectory obtained
with the TWA corresponds approximately to a possible outcome of an individual
experiment [410, 414, 436, 439, 513-517].

3.8.4 Extensions

In recent years, the TWA for bosons as described here has been transposed to study
the dynamics of spin-boson systems [414, 416, 518].

37These quantities can however be obtained by within the P representation formalism.
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3.9. Application to the driven dissipative harmonic oscillator

3.8.5 Exact limit

The TWA is exact in the limit of non-iteracting modes, which can be used for
benchmarking. The TWA is also exact in the fully classical limit, where coherences in
the density matrix vanish and the dynamics is governed by classical rate equations.

3.8.6 Connection with path-integral approach

Notably, the TWA including the different concepts of Wigner function, Weyl ordering
and quantum corrections, can be recovered within the Feynman’s path integral
formalism [410, 417].

3.9 Application to the driven dissipative harmonic
oscillator

We close this chapter with a concrete application of the TWA method to a simple
case of a single mode of a dissipative optical resonator driven by a coherent laser
field. The Hamiltonian describing this system is

H = hwa*a+ h(Fa + F*a) (3.25)

where w is the frequency of the resonator, and F' denotes the driving strength.
A realistic model accounting for the dissipative nature of the quantum system is
provided by the master equation
9 _ i)+ 1 (2apa" — afap - pa'a) . (3.26)
ot R 2
By taking this equation as a starting point and by unrolling the reasoning outlined
above —among which using the operator correspondences of eq. (3.15) — leads to
the equation of motion for the Wigner function

w _
ot (3.27)

2
+

o ([ . gl ,

Yo tiF) + L (civar + Lot —iF*) | W(a, a*
[ iwa a z) 804*( wa” + pat —i )] (v, 1)
7 W
2 dada* (o, 0%, 8).

This equation is a FPE with a drift term (the first derivative term in the first line) as
well as a diffusion term (the second derivative term in the second line).
This FPE can be mapped onto the SDE

da = (—iw — v/2)adt —iFdt + \/7v/2 dw(t), (3.28)

where the dissipative process translates into a diffusive term in the SDE (the last
term). The complex Gaussian noise satisfies (dw(t)) = 0 and (dw™(t)dw(t)) = dt.
The initial conditions «(0) is sampled from W (q,a*,0).
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Dissipative phase transition and dissipative
time crystals

Faster, lighter and smaller could be the leitmotiv of future quantum devices.

In nanoscale systems, fluctuations around ordered states are of particular impor-
tance. This remains true even at absolute zero temperature due to the presence
of quantum fluctuations. Whether the fluctuations are of classical (thermal) or
quantum nature (or both), they can lead to critical behaviors and trigger the
occurrence of phase transitions, with the emergence of new, exotic phases of
matter.

This is also true for open quantum system. As discussed in the previous chapter,
dissipation and irreversible effects are typically associated with the convergence of
a quantum system towards an asymptotic stationary state, by definition invariant
under time translations. However, groundbreaking recent works suggest that this
is not necessarily the case, leading to the concept of non-stationarity in open
quantum manybody systems.

The study of such phase transitions is of paramount importance, both from a
fundamental and technological perspective.

This chapter starts in section 4.1 with a review of some basic notions about
classical and quantum phase transitions in systems at equilibrium. In open
quantum systems, the competition between the coherent and dissipative dynamics
can lead to the critical phenomenon of dissipative phase transitions (DPTs),
which we explore in more details in section 4.2. Then, in subsection 4.3.1 we will
introduce the notion of time crystal, which is the first observed “out-of-equilibrium’
phase of matter. Not only can time crystals be implemented in open quantum
systems, but driving and dissipation can even be key to its formation, giving rise
to the so-called dissipative time crystals (DTCs). We will address some aspects
of DTCs in subsection 4.3.2. In particular, in section 4.4, we will explore the
paradigmatic example in quantum optics of the optical bistability occurring in
driven-dissipative nonlinear Kerr oscillators. Finally, we will present a numerical

Y
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4.1. Equilibrium phase transition

study of dissipative time crystals in an asymmetric nonlinear photonic dimer
section 4.5, reproducing the research paper [1] of the author.
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4.1 Equilibrium phase transition

4.1.1 Classical phase transitions

Equilibrium or quasi-equilibrium classical systems are described within the well-
established theoretical framework provided by classical statistical physics. Within
this paradigm, the physical properties of a system in (thermal) equilibrium allow to
classify states of matter into different phases.

Phase of matter. A phase of matter corresponds to a region in the space of
thermodynamic variables (pressure, temperature, etc.) where the physical properties
of a system (e.g. density, symmetries) are the same. Typical examples are the solid,
liquid, gas, superconducting, superfluid, and magnetic phases of matter.

Phase transitions. As the name suggests, phase transitions [519, 520]' are transitions
from one phase of matter to another that occur when an external system parameter
(e.g. temperature, pressure, magnetic field, chemical potential, external field) varies.
They are a prime example of collective phenomenon occuring in macroscopic systems. 2
Classical phase transitions are accompanied by a critical behavior resulting in an abrupt,
possibly discontinuous change in the physical properties of the system. They follow

IThe concept of phase transition is present and attracts attention in a wide variety of physical,
chemical, and biological systems and at all energy scales ranging from cosmology [521-526] to high
energy physics, as well as in condensed matter physics.

2To be more precise, let us mention that equilibrium phase transitions can only appear in the
thermodynamic limit of infinite size/many-particle systems. For finite systems, there exist no-go
theorems forbidding such transitions.



4. Dissipative phase transition and dissipative time crystals

from the competition between two processes : entropy maximization on the one hand
and energy minimization on the other hand. Energy minimization tends to keep the
system in an ordered phase of matter, while entropy maximization tends to push it
away from it. In classical phase transitions, the critical behavior is driven only by
thermal fluctuations; broadly speaking, ordering is destroyed by thermal fluctuations.?
Widespread examples of classical phase transitions are the liquid-gas transition (non-
analyticity of the density) or the paramagnet-ferromagnet transition (non-analyticity
of the magnetization). Phase transitions are usually classified into first-order and
continuous phase transitions depending on the precise nature of the non-analyticity.

First-order phase transitions. First order phase transitions* present a discontinuity
in the first order derivative of the free energy with respect to some thermodynamic
variables. They involve latent heat and phase coexistence.

Examples of first order thermal phase transitions include the melting of ice due
to the thermal motion of the water molecules destroying the crystal lattice, or
the ferromagnetic-paramagnetic transition at the Curie point due to the thermal
motion of the spins.

Continuous phase transitions. In contrast, for continuous phase transitions, the
first derivative of the free energy is continuous, with discontinuities only appearing
at higher order. ® At the transition point, the two phases are indistinguishable; the
system does not display coexistence of phases and there is no latent heat.

An example of a continuous phase transition is the ferromagnetic transition of iron at
the Curie temperature (770°C'), above which the material looses its magnetic properties
— the magnetic moment vanishes.

Interestingly, also infinite order continuous phase transitions exist. These do not break
any symmetries. A famous example is the Berezinsky-Kosterlitz-Thouless transition
in the two-dimensional XY model [528-530].

Critical phenomena and scale-invariance. In the case of continuous phase
transitions, the phase transition point —the point in the phase diagram that separates
the two phases — is called critical point and the behavior near it is referred to
as critical phenomena.

Close to the critical point both the typical length scale —the correlation length & —
and typical time scale —the correlation time 7.— diverge following a power law

o |t|™” and 7, o [t|77, (4.1)

where v (respectively z) is the correlation length (respectively time) critical exponent
characterizing the transition. The dimensionless quantity ¢ is a measure of the distance
to the critical point (for instance for a thermal phase transition ¢t = |T' — T,|/T,
where T, is the critical point).

3In contrast, quantum phase transitions are only driven by quantum fluctuations.

4The name refers to Ehrenfest’s classification of phase transitions [527].

SEhrenfest further subdivided continuous transitions into second order transitions, third order
transitions and so on according to which derivative of the free energy is discontinuous. Today,
this subdivision is not used very much because there are few qualitative differences between the
sub-classes.
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The divergences in (4.1) as t — 0 trigger a critical phenomena. Long-range correlations
emerge, with fluctuations occuring on all length- and time-scales. The system is
said to be scale-invariant.

In fact, close to the critical point, all observables in the system depend on ¢ via power
laws similar to (4.1) and the behaviour of the system is completely characterized by
the set of corresponding critical exponents. This implies a notion of universality.

Spontaneous symmetry breaking. Symmetry is a transformation that doesn’t
change the physics of the system, i.e. it does not change the expectation values of
the physical observables nor the probabilities.

Spontaneous symmetry breaking® (SSB) refers to the fact that the solution of a
problem” does not necessarily have the symmetry of the problem.

SSB is a widespread concept in various areas of modern physics — playing a key
role in atomic and condensed matter physics, high energy particle physics and even
cosmology. It gives rise to a wide spectrum of phenomena observed in nature, such as
superconductivity, superfluidity and Bose Einstein condensation, (anti)ferromagnets,
any crystal, electroweak interaction, and Higgs mechanism.

A prime example is when the continuous spatial translation symmetry is broken
to a discrete one, leading to crystallization (the formation of space crystals). The
atoms spontaneously localize in a periodic arrangement across the three dimensional
space, e.g. the carbon lattice of a diamond. This is the mechanism at work at
the liquid to solid transition.

4.1.2 Quantum phase transition

Up to this point, we discussed some general properties of phase transition occur-
ring at finite temperature where thermal fluctuations are responsible for destroying
the ordered phase.

At absolute zero temperature thermal fluctuations are no longer present, but a different
kind of phase transition, of quantum nature, can occur.

Quantum phase transitions. Quantum phase transitions (QPTS) [48, 531-539] are
phase transitions that occur at absolute zero-temperature, between two quantum phases
of matter (phases of matter at 7' = 0K) when a non-temperature parameter such as
pressure or magnetic field varies. QPTs rely on the presence of quantum fluctuations,
rather than thermal fluctuations as it was the case for classical phase transitions.

Motivation. QPTs have attracted a lot of interest over the past several decades, as
the increase of experimental capabilities made it possible to reach the low temperature
regime needed for such transitions to appear. Various QPTs have been investigated

6A symmetry is broken when a system switches from a symmetric state to an asymmetric one. This
can either occur through an ezplicit or the spontaneous symmetry breaking process. In the Explicit
symmetry breaking case, the symmetry is broken by additional objects. In the Spontaneous symmetry
breaking case, the underlying system remains symmetric but the symmetry is hidden in the ground
state.

"Lorentz symmetry or translation invariance are examples of symmetries of laws of nature.

84



4. Dissipative phase transition and dissipative time crystals

and observed experimentally [540-542]. Besides, the creation of entanglement in QPTs
[543, 544] is of particular relevance in the field of quantum computation.®

This intense research not only led to the explanation of critical behaviors at low
temperature, but also to the tailoring of novel states of matter displaying desired
features (e.g. superconductors or topological insulators [533, 547-549]).

However, QPTs still remain largely unexplored, and there is a lot to discover, see
[550, 551] or last section in [552].

QPTs differ in fact in many ways from their finite-temperature phase transition
counterparts. For example, the specific role played by the additional dimension of time
corresponds to a fundamental distinction between QPTs and thermal phase transitions.
Due to the non-commutativity of position and momentum in quantum mechanics, the
spatial and temporal fluctuations are linked together close to the critical point.

Examples. Some paradigmatic examples of QPTs in systems at thermodynamic
equilibrium are the

« Bose-Hubbard model and its superfluid-Mott insulator transition [553-559],

 one-dimensional Ising model with transverse magnetic field (shows continuous
and first-order quantum transitions) [560-573],

 Dicke-model quantum phase transition [574-580].

A broad spectrum of physical systems can exhibit QPTs, among them magnets [581],
superconductors and cold atomic gases [582, 583].

Ground state behaviour under QPT. A quantum system at zero temperature
is always in its ground state. To understand QPTs, it is therefore useful to analyse
the behavior of the ground state as one approaches the critical point. At the critical
point, two qualitatively different ground states compete. A small change in the external
parameter controlling the transition then selects one ground state, with the other
one becoming the first excited state.

The quantum states on either side of the critical point show different types of order.
In the typical scenario, one goes from a symmetric or disordered state, which reflects
the symmetries of the Hamiltonian, to a broken-symmetry or ordered state, which
does not posses (all of) these symmetries.

In QPTs, order is destroyed by quantum fluctuations instead of thermal fluctuations.
More mathematically, for a system modeled with a Hamiltonian H(g), where g is a
(dimensionless) control parameter, the QPT occurs at the critical value g = g. for which
the gap A(g) = E1(g9) — Eo(g) between the energy of the first excited state E;(g) and the
energy of the ground state Ey(g) closes, A(g.) = 0. (see fig. 4.2). To keep track of the
two different ground states, it is necessary to introduce an order parameter — a quantity
that distinguishes the degenerate ground states. The typical behavior in the critical
region of the order parameter O(g) and the gap A(g) is depicted in fig. 4.1. At the
critical point, the ground state observables are characterized by non-analytical behavior.

8E.g. the adiabatic quantum algorithms can be interpreted as a sweep through a quantum phase
transition [545, 546].
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Figure 4.1: Typical behavior of the order parameter O(g) versus the control parameter g in
the case of a first (red) and continuous (blue) phase transition.
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Figure 4.2: Typical behavior of the energy gap at a first (a) and continous (b) phase
transition. In (a) there is an energy level crossing between ground state and the first excited
state. In (b) there is no level crossing, but the gap closes when approaching the thermodynamic
limit.

Similarly to thermally driven phase transitions, QPTs can be classified into first-order
and continuous phase transitions. The two classes are discriminated by how the order
parameter O(g) behaves at the critical point, see right panel of Fig. 4.1.

4.1.2.1 First order quantum phase transitions

First order QPTs are characterized, in the thermodynamic limit, by a jump in the
order parameter O(g) and a non-analytic change in the ground state properties of
the Hamiltonian. In particular, this implies that at the critical point, the derivative
of the energy e with respect to the control parameter g

de
g ’

9=9c

(4.2)

is discontinuous. First order QPTs have been predicted and observed experimentally
[584-588].
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4. Dissipative phase transition and dissipative time crystals

There is a strong analogy between first-order quantum and first-order thermal phase
transitions. There is no diverging length or time and no scale invariance when tuning
the control parameter towards the critical point. In fact, the correlation length
exponent is given by v = 1/(d + z).

First order quantum phase transitions correspond to energy level crossings at which
two different ground states are exactly degenerate. The system is in two different states
on each side of the transition, and the system jumps from one state to the other when
crossing the transition at g = g.. In the vicinity of the critical point there can be a
region with coexistence of the two stable phases, this is the concept of bistability.

Bistability. Bistability is a major feature of first-order phase transitions. It corre-
sponds to the coexistence of the two stable phases with distinct properties. Bistability
is at the heart of the phenomenon of hysteresis. The phase in which the system will be
depends from which side the control parameter will approach the critical point. We
will see more about the phenomenon of bistability in subsection 4.2.3, and section 4.4.

4.1.2.2 Continuous quantum phase transitions

Second order (continuous) QPTs have a continuous order parameter O(g), but there
is a gradual change in the ground state properties, between a phase with long range
order and a disordered phase [589, 590]. A discontinuity appears in

J0"e

agn 9=4c ’

(4.3)

for some n > 2.
In complete analogy with the classical second order phase transitions, QPTs lead
to “quantum criticality”.

Quantum criticality. Two hallmarks of second order QPTs are the scaling hy-
pothesis and universality.

The quantum critical points are characterized by diverging length and time scales
[591], leading to temporal and spatial scale invariance. This latter translates into
a vanishing characteristic energy scale.

In particular at a critical point, quantum fluctuations are of vanishing energy and
spread over all time and length-scales.

Also, a critical point has diverging correlation length? —leading to long ranged
entanglement— and relaxation time —leading to the concept of critical slowing down.

Similarly to their classical counterparts, quantum critical regions exhibit universal
power-law behaviors!® with the set of critical exponents completely characterizing
the critical behavior.

9The correlation length corresponds to the length scale over which some variables —for instance
fluctuations — are related.

0F.g. power-law decay of correlation functions or power law dependence of the observables on the
external parameters.
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Figure 4.3: Schematic view of the vicinity of the quantum critical point g = g. in the (g,T)
space. Depicted are the critical region, and the part of the critical region dominated by the
classical (red) and quantum mechanical (brown) critical behaviour.

For continuous QPTs, the quantum-classical mapping establishes an equivalence
between a quantum model in d dimensions and an effective classical system in d + z
dimensions [532, 536, 560].

In the specific case of multi-critical points in a finite size system, finite size scaling
can be used to determine whether the system is subject to first or second order
phase transitions [592].

Examples. Examples of second order QPTs are the self-organization of a Bose-
Einstein condensate [53, 593], or the paramagnetic to ferromagnetic phase transition'!.

4.1.2.3 Extension to Finite Temperatures

While absolute zero temperature is hardy accessible in experiments, it is still possible
to detect signatures of quantum phase transitions at low temperatures, as long as
quantum fluctuations dominate over thermal fluctuations.

Let us take a system with characteristic energy hw. in thermal equilibrium at tem-
perature T'. The system is subject to two types of fluctuations: thermal fluctuations
with energy scale kgT and quantum fluctuations with energy scale Aw..

While the quantum transition point g = g. is present only at 7" = 0, influence of
the transition can be detected in a region of “quantum criticality” around g., where
hw. > kgT, as depicted in fig. 4.3.

This quantum critical region is subject to competition between classical and quantum
fluctuations.

4.1.2.4 Symmetry Breaking and phase transitions

Phase transitions are intimately linked with symmetry breaking, which occurs when
the ordered ground state does not share the symmetry of the system’s Hamiltonian.
QPTs are often associated to a spontaneous symmetry breaking pattern or a change
in the topological order. However, it is worth mentioning that phase transitions do
not necessarily imply a symmetry breaking.

"' The magnets on your fridge door are Ferromagnets.

88



4. Dissipative phase transition and dissipative time crystals

An example is the thermal first order phase transition between liquid and gas. Both
phases share the same symmetries (translation and rotation invariance).

Another example featuring such a symmetry breaking is the quantum phase transition
between quantum spin-liquid states.

Finally, the Berezinskii-Kosterlitz-Thouless transition, which has already been ad-
dressed, is a continuous phase transition without symmetry breaking.

4.2 Dissipative phase transitions

While phase transitions in systems at equilibrium have been extensively studied,
until recently, much less work was devoted to phase transitions in out of equilibrium
systems [594, 595]. Different paradigms —both in isolated and open quantum systems
— can lead to nonequilibrium dynamics:

a) quench scenario [596-603]: A parameter of the system undergoes an abrupt
change between two values corresponding to different equilibrium phases (closed
system). This realm leads to the concept of dynamical quantum phase transition,
which has attracted both theoretical [604-614] and experimental [70, 615-623]
interests, notably for the realization of time crystals.

b) let the system time-evolve from a specific initial condition (closed system),
c) steady-state dynamics of a driven dissipative system (open system).

In this thesis, we will focus on this last case and study non-equilibrium phase transitions
occurring in a driven dissipative system. They are called dissipative phase transitions.

Dissipative phase transitions. Just like their equilibrium counterparts, non-
equilibrium phase transitions are transitions between two phases with distinct properties,
separated by a critical point. However, while equilibrium phase transitions come in
two different categories — classical or quantum phase transitions — this distinction
fades away in non-equilibrium steady-state (NESS) quantum phase transitions. This
directly follows from the coexistence of classical and quantum fluctuations, which
leads to the occurrence of typical features of both thermal phase transitions and
zero temperature quantum phase transitions. On the one hand the ordered phase
is continuously connected to a thermal state, which is a feature of thermal phase
transitions, and on the other hand the transition is driven by interactions, which is
characteristic of quantum phase transitions.

In driven-dissipative quantum systems, the competition and interplay between coherent
dynamics and dissipation can lead the system towards a NESS [126, 624, 625], with
new, non-equilibrium phases and phase transitions.

The system steady state pss(g) depends on g a system and environment parameter.
As g is varied, the steady state abruptly changes [49], leading to a dissipative phase
transition (DPT) [14, 33, 49, 57, 69, 72, 73, 76, 77, 84, 92, 166, 604, 626-631]'2.

12Here, note that DPT is denoted Dissipative Phase Transition and not Dynamical Phase Transition,
which is another kind of PT.
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4.2. Dissipative phase transitions

Motivations. DPTs occur in very various systems, such as active biological matter
(632, 633], self-organized systems and quantum fluids of light [82, 634, 635].

The advent of new experimental techniques allowed their experimental observation.
Moreover, the development of tools for manipulating quantum systems has allowed
physicists to realize new phases of quantum matter with no equilibrium counterpart,
as for example the discrete time crystals (see next section).

Theoretical investigations. The perspective of experimental implementation of
DPTs is driving the interest devoted to DPTs [126, 624, 625]. Indeed, the possible
observation of DPTs is highlighted in several studies and for various platforms, e.g.
for photonic systems [52-56, 60, 62-64, 68, 74, 80, 81, 84, 85, 92, 166, 636, 637], lossy
polariton condensates [50, 82, 83] and coupled spins models [69, 71, 72, 79, 349].

Experimental realizations. The experimental advances of the last decade, especially
in the controllability, allowed the observations of DTCs in various experimental
platforms. Among them, photonic systems are of particular relevance,'® and DTCs
have been observed and studied e.g. in ultra cold atoms [51, 53, 54, 57, 70, 84,
260, 636, 637, 639, 640], trapped ions [239, 641], exciton-polariton condensates [67,
126], semiconductor microcavity [78], and arrays of coupled cavities QED [642] and
circuit QED [60, 92, 166, 643-645].

Let us also mention the case of a strongly driven Jaynes-Cummings system, where the
breakdown of photon blockade can lead to a first-order dissipative phase transition [60].
This was recently realised in a circuit-QED experiment [92]. Other examples include
the observation of bistability in one-dimensional circuit QED lattices [166], as well as
the probing of the dynamic optical hysteresis in the quantum regime [63, 78].

Technological applications. The exploration of driven-dissipative phase transi-
tions in open quantum systems is rapidly increasing, and the development of new
nonequilibrium quantum states with controllable properties are of particular interest
for applications in quantum sensing and quantum information processing.

To date, the potential of DPTs for technological applications are numerous, and
will for sure expand.

For example, quantum sensors based on DPTs [646] are specially robust against
disorder or decoherence. Moreover, their quantum properties are highly controlled
by the coupling with their environment.

Another example are quantum transducer'® [647].

4.2.1 Theoretical framework

While the (free-) energy analysis proves to be a valuable paradigm for investigating
thermal or quantum phase transitions, it cannot necessarily be applied for the study
of their dissipative counterparts.

BPhotonic systems are particularly suitable to explore dissipative phase transitions described by
Bose-Hubbard-like models [126, 624, 625, 638].

M Quantum transduction convert quantum signals from one form of energy to another. It is an
important ingredient of quantum science and technology.
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4. Dissipative phase transition and dissipative time crystals

Signatures of quantum critical phenomena in dissipative phase transitions are in the
dynamical properties. As we have seen in chapter 2, the Lindblad master equation
f) = Lp, where L is the Lindbladian superoperator, and p is the density matrix, is a
valuable equation for the description of open quantum systems.

DTCs are characterized by a non-analytical change of the steady state as a function of a
single parameter [49, 75]'°, due to the competition between coherent interactions,
drivings, and dissipation.

This thermodynamic non-analyticity can be observed in finite-size systems[49, 75],
and where experimentally demonstrated [67, 78, 166].

Dissipative phase transitions of M-th order are characterized with a singularity in
a thermodynamic limit'®

M

. |0 : . A
Jim g Jm Tr(pss(g, N )0)| = +00 (4.4)

N is the thermodynamic parameter, counting the number of sites, modes or par-
ticles in the system.

In what follows, we will write £(g) and pgs(g) to express the fact that these quantities
depend on a parameter g. Thus, we have

Oipss(g) = 0= L(g)pss(g) - (4.5)

The Liouvillian —and in particular its spectrum— are of key interest for the study of
DPTs [75]. If the Liouvillian spectral gap [49] closes in some thermodynamical limit
then we expect a DPT to occur.

At the critical point g = g., a dissipative phase transition (DPT) is signaled by a
non-analytic (discontinuous) change in the steady-state density matrix pss(g). For
a critical point g., this translates mathematically to,

lim 07 pss(g) — o0 (4.6)

9—gc I
for some integer n. The system is said to undergo a n-th order DPT.
It can be noticed that, in a very similar fashion to the close system case, where the
energy gap A(g) of the system’s Hamiltonian closes at the critical point, here it is the
Liouvillian gap which closes [49, 75, 648]. In other words, the eigenvalue A(g) with
the smallest nonzero real part (in absolute value) vanishes. The mode associated to
this eigenvalue then experiences an infinite lifetime and hence dominates the long-time
dynamics of the system. This leads to a slowing down of the system’s relaxation towards
its steady state. This phenomenon is known as critical slowing down, and it has lately
been investigated in driven-dissipative lattice systems as for example in ref. [87].
There exist strong analogies between QPTs and DPTs:

15To make connection with QPTs, note that the steady state in open quantum systems is the analogous
of the ground state in closed systems.

16For lattice systems, the thermodynamic limit corresponds to the number of sites going to infinity,
while for bosons, there is the additional thermodynamic limit characterized by the number of
particles per site going to infinity.
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Examples of DPTs. Here are some paradigmatic examples of DPTs
o first-order transitions in the driven-dissipative nonlinear Kerr oscillators.

o the Dicke model reveals first- and second-order phase transitions, multistability
and bipartite entanglement [649-653].

Note that equilibrium phase transitions in systems of one dimension (with only one
optical cavity) is prohibited [654], this is not the case in nonequilibrium phase transitions
in one dimension.

o The breakdown of photon blockade is the first observation of first order quantum
phase transition [60, 92].

4.2.2 Universal critical behavior and scaling invariance

The same critical behaviors present in QPTs can be observed in DPTs, namely critical
slowing down, divergence of the spatial fluctuations of the order parameter, as well
as power-law behavior.

While DPTs occur in the thermodynamic limit, their marks can already be catched
in finite-size scaling. In particular, the analysis of the spectrum of the Liouvillian
allows to witness the divergence of the timescales in the system.

4.2.3 Optical bistability

A particularly interesting feature associated to DPTs are optical bistabilities [375,
402, 412, 649, 655-675].

Optical bistabilities are first order dissipative phase transitions characterized by
the coexistence —in a generic nonlinear system described within the mean-field
approximation — of two distinct stable NESS within a regime of parameters. The
effective state of the system depends on the history of the system.

On the contrary, within a quantum treatment going beyond the mean-field analysis—e.g.
the Lindbald master equation— a unique solution is predicted [318].

Experimental studies have shown optical hysteresis cycles [663-665, 669, 676, 677],
in accordance with the semiclassical mean-field predictions.

The contradiction between the mean-field and quantum approach [375, 656] originates
from the quantum fluctuations triggering switches between the two metastable states.
The unique steady-state solution corresponds to the average.
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4. Dissipative phase transition and dissipative time crystals

A paradigmatic example in quantum optics is the optical bistability occurring in
driven-dissipative nonlinear Kerr oscillators. This phenomenon received lot of attention
and was intensively studied both theoretically [63, 678] and experimentally [78]. We
will discuss the main aspects in section 4.4.

4.2.4 Numerical methods

Let’s get straight to the point: there is no powerful systematic method addressing DPTs.
Except for very few specific problems that can be solved exactly [679, 680], numerical
techniques have to be used to characterize DPTs. Lots of them are not adequate as they
can only describe one-dimensional (e.g., t-DMRG [681]) or infinite-dimensional (nonequi-
librium dynamical mean-field theory [682, 683]) situations, or because they simply
cannot be applied to nonequilibrium systems (e.g. path-integral Monte Carlo [684]).
Moreover, while approximate methods such as mean-field theory have been abundantly
used [14, 66, 71, 402, 668, 673, 685—687], they can lead to wrong results [688—690)].
This led to the development of various numerical methods and framework to tackle
DPTs: variational methods [688, 689], generalized Gutzwiller mean field approxima-
tion [686], Keldysh action formalism [382, 384], third quantization [376, 691], and
approximate rate equations [690], and the study of exceptional points [692, 693]
and Liouvillian gaps [49, 75].

4.3 Dissipative time crystals

4.3.1 Time crystals

Breaking of time translation symmetry. Perhaps one of the most fascinating
symmetry breaking pattern, which gave food for thoughts for both scientists and
philosophers alike — as showed by the many attempts over time to propose a viable
perpetuum mobile!™ — is the breaking of time translation symmetry.

While the breaking of spatial translation in crystals or spin rotation in magnets
can easily be visualised, time translation symmetry breaking (TTSB) are much less
intuitive. In spatial crystals, the continuous translational symmetry'® in space is
broken, with only the discrete translation symmetry of the periodic crystal retained.
This is a spontaneous symmetry breaking: while the Hamiltonian (or equations of
motion) of the system is invariant under continuous translation symmetry, the ground
state of the system (the crystal lattice) is not. Only a discrete translation symmetry
remains, corresponding to the lattice spacing. Similarly, the spontaneous breaking
of the continuous time'? translational symmetry can lead to a ground state that is
periodic in time, rather than space, with only the discrete time period as a remnant
symmetry (see Fig. 4.4). Phases of matter with such ground states are dubbed time
crystals. See [694, 695] and e.g. [93] for a review. %

ITA perpetuum mobile is a machine or arrangement supposed to indefinitely keep in motion. Oh wait,
yes, this violates the first law of thermodynamics (energy conservation law).

18(and rotational symmetry)

19 A little digression here: the existence of “time” (the thermodynamic arrow of time) can be explained
by the fact that the universe is not in equilibrium.

20While this definition is rather intuitive, it is not very rigorous. Later, when considering discrete
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Figure 4.4: Sketch of the behavior of the probability of detecting a system—at a fixed
position— versus time leading to the time crystal formation. The case of the spontaneous
breaking of a continuous (top) and discrete (bottom) time-translation symmetry is depicted. In
the case of the discrete spontaneous symmetry breaking, the initial discrete time-translational
symmetry of the system—characterized by a periodicity 7— is replaced by another discrete
time-translational symmetry, but with another period, here taken to be 2T

An entirely new phase of matter. Because it is the ground state —which by
definition is the state with lowest energy — itself that is subject to a periodic behavior,
time crystals cannot come to rest by releasing energy to the environment. In other
words, they cannot reach thermal equilibrium. This makes time crystals the first
example of non-equilibrium matter?', an entirely new phase of matter [696, 697]. It is
completely robust, in the sense that no fine-tuning of parameters is needed.

Time crystals and the laws of thermodynamics. There is a crucial difference
between spatial and temporal directions. Unlike space, the passage of time is intimately
linked with the first and second law of thermodynamics, which state that 1) the
total energy of an isolated system is conserved and 2) that the entropy —the amount
of randomness or disorder in a closed system — cannot decrease over time. Those
laws make the perpetuum mobile impossible. So what about time crystals? By
definition, their ground state exhibits a perpetual periodic motion. Even though
this sounds suspiciously similar to a “perpetuum mobile”, time crystals actually do
not break any laws of physics. It turns out that there is no (conventional) kinetic
energy associated to this periodic motion — so that the first law is obeyed — and

rather than continuous time crystals (breaking respectively discrete and continuous time translation
symmetry, the former being the ones that have been observed in experiments) we will provide a
more robust definition, which also makes it clear that time crystals are no example of a perpetuum
mobile.

2In contrast to equilibrium matter of condensed matter physics such as metals or insulators.
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the entropy remains constant — which (marginally) complies with the second law
of thermodynamics. Concretely, time crystals are asymptotic non-stationary states,
in constant oscillation without addition of energy. These structures have movement
even at their lowest energy state.

Discrete time crystals. The pioneering idea and subsequent tweaking gave birth to
discrete time crystals, a concept first put forward in 2016 [698-700] and soon afterwards
experimentally observed [696, 697]. Discrete time crystals® refer to the spontaneous
breaking of the discrete time translation symmetry (dTTS) that can arise in a Floquet
system —closed quantum systems subject to a periodic driving.

Concretely, let us consider a Floquet system and call T' the period of the driving. The
system is not invariant under arbitrary time translations, but retains a discrete time
translation symmetry (dTTS) corresponding to shifts by a discrete amount ¢ — t + 7.
In particular, the Hamiltonian of the system obeys H(t + 1) = H(t) for any time ¢.
In a Floquet time-crystal, the dTTS is spontaneously broken: observables present a
“subharmonic” response and oscillate with a period that is an integer multiple of the
driving period. In other words, the response is only invariant under time translations
t = t+nT with n € N;n > 1. As an example, in [700] it was observed that in the
regime of strong disorder and interactions, the constituents of a closed spin system
organize themselves into a recurring spatial configuration with a period that is doubled
with respect to the driving one (n = 2) see Fig. 4.4.

An important ingredient for the stability of the emerging discrete time crystal is the
presence of strong disorder in the system. This leads to many-body localization [701],
preventing the system from absorbing the driving energy [702-704].

Another way of stabilizing the emerging discrete time crystal is through dissipation,
and will be discussed in subsection 4.3.2.

The essence of the discrete time-crystalline phase is an emergent, collective, subharmonic
temporal response, and can be identified by exhibiting:

(I) Discrete time-translational symmetry breaking: after a possible transient period,
the system oscillates with a period strictly greater than the driving force.

(IT) Crypto-equilibrium: the subharmonic oscillations do not produce any entropy,
which allows their infinite persistence in the thermodynamic limit?3.

(IIT) Rigid long-range order: rigidity on the subharmonic response. The subharmonic
oscillations are synchronized over arbitrarily long distances and time.

To date, an impressing amount of theoretical and experimental works have proven
the existence of discrete time crystals [696-698, 700, 705-721]. While strolling in
the literature, we can notice that discrete time crystals are often also referred to as
m-spin glasses [705] or Floquet time crystals [698].

22] refrain from using the usual short DTC for Discrete Time Crystal, since this will be used for
“Dissipative Time Crystal” (subsection 4.3.2).
Z3This ensures that time crystals are not in contraction with the second law of thermodynamics.
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4.3.2 Dissipative time crystals

We will now explore the possibility of having a time-crystal phase in open quantum
systems. From a general perspective, dissipation, decoherence and fluctuations are
expected to induce relaxation towards a stationary steady state and destroy the quantum
properties. This is why a lot of efforts have been undertaken to isolate systems from
the environment in order to experimentally realize (discrete) time crystals.
However, it turns out that this perspective is too naive. The fine tuning of the coupling
parameters of the system to its environment can actually stabilize the persistent periodic
motion within the system, instead of destroying it [709, 712, 716, 722, 723], giving
rise to so-called dissipative time crystals (DTCs).

DTCs [1, 95, 352, 648, 709, 711, 716, 722, 724-748] are many-body open quantum
systems exhibiting non-trivial persistent periodic oscillations arising spontaneously in
some system observable after a given evolution time and for generic initial conditions,
in an otherwise (discrete or continuous) time translation invariant system [722]. What
is the stabilization mechanism in DTCs? While discrete time crystals in closed systems
are stabilized through disorder, in DTCs, the stabilization mechanism relies on the
dissipation into the environment.

It is interesting to point out that a subtype of DTCs are not driven [352]. However,
in these cases the driving enters in a particular way, so that its time-dependence can
be removed by using a rotating frame [1, 648, 725, 728, 730, 732, 734, 741, 744, 747].
They are therefore realizations of continuous time crystals.

The conditions required for DTCs to arise in finite systems imply the existence of
strong dynamical symmetries [722].

The concept of DPT is particularly interesting from the perspective of an experimental
realization of time crystals, since in a real world realization, the quantum system
would inevitably be subject to some degree of external noise from an environment
that cannot be completely suppressed nor controlled. DTC have been observed
experimentally e.g. in [728, 729, 749].

The concept of DTC can be interpreted as a critical phenomenon in the spirit of
the discussion in subsection 4.2.1 [353].

Continuous dissipative time crystals versus boundary time crystals. There
is sometimes confusion in the literature about the distinction between dissipative
time crystals and boundary time crystals.

For boundary time crystals, the crystalline behavior is observed at the system boundaries
in the thermodynamic limit [352].

It is worth to emphasis that DTCs must be distinguished from their related boundary
time crystals [352, 750]. Indeed, these latter are usually considered systems exhibiting
sustained oscillations in spite of (and not due to) the dissipation processes. If these
systems where taken to the closed limit, they would still oscillate and exhibit Rabi
oscillations instead of evolving towards a steady-state (cf. [748]).

From Wilczek’s proposal to experimental observations and technological
applications. The existence of time crystals was first argued by Nobel laureate and
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physicist Frank Wilczek?* in 2012. He proposed it might be possible for atoms to change
over time even while at their lowest energy?, in the classical [695] and quantum [694]
domain. This proposal generated a fair amount of excitement and discussions [751-753].
Shortly after the proposal was made, no-go theorems ruling out the occurrence of
spontaneous breaking of time translation symmetry in the ground state of equilibrium
many-body systems [752, 754, 755] were derived. The essence of the argument is that
these systems have time-independent observables by construction.

This crucial insight has guided the explorations towards the possibility of realizing time
crystals in non-equilibrium quantum systems [352, 698, 700, 705, 706, 722, 727, 730,
734, 756-764], leading to the development of an active area of research [93, 94, 765-773]
Today, number of researchers have conducted experiments that show atoms behaving
in ways that could qualify as a time crystal.

Time crystals are expected to be very useful platforms for precision measurements [774,
775] and quantum simulation [776]. Not later than at the end of last year, Google has
implemented the first time crystal inside a quantum computer [777]%.

There are several definitions of time crystals for closed [94, 755], coherently driven
[94, 696, 697, 756] and incoherently driven systems [732].

4.3.3 Theoretical description of dissipative time-crystals

Let us recall that in the context of Markovian open quantum systems, the time evolution
of a system with Hamiltonian H weakly coupled to its environment, is governed by
the Lindbald master equation (see chapter 2)

p(t) = LIp()], (4.7)

where p is the density matrix and £ the Liouvillian superoperator.
We will assume the Liouvillian to be time-independent unless otherwise stated. The
formal solution of the master equation (4.7) then takes the form

p(t) = e“[p(0)], (4.8)

and the quantity e** has the interpretation of a time-translation operator which
propagates the system from the initial time ¢ = 0 to the time t.
Since we assume L to be time independent, one has

e, L] =0, (4.9)

time-translation is (trivially) a continuous “symmetry” of the system.

Within the paradigm of open quantum systems, the system is expected to time-evolve
towards a unique time independent/stationary steady-state i.e. p(t) — pss [see sketch
in Fig. 4.5(a)]. The steady-state pgs respects the time-translational invariance of
the generator £ since by definition

e [pss] = Pss (4.10)

24He was awarded the 2004 Nobel Prize, and even if it is about time translation symmetry here, it
was not for the prediction of time crystals.

25Remark that superconductor can technically carry an electrical current while in its lowest energy
state.

26Gee [778] for a simplified review.
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4.8. Dissipative time crystals
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Figure 4.5: Sketch of the dynamics of a system towards a stationary phase (a) or a dissipative
time-crystalline phase (b). In a system characterized by a Markovian dynamics, the Lindblad
master equation described by the Liouvillian super-operator £, typically time evolves towards
a steady state pgg. The order parameter O(t) and the fluctuations time evolve towards an
asymptotic value. In the dissipative time crystal phase case, the Markovian system reaches a
limit cycle, with a time-dependent state prc(t). In this case, typically the order parameter
oscillates in time and the fluctuations increase with time.

and hence it may be regarded as a symmetric “ground state” of L.

However, Markovian open quantum systems can also feature non-stationary asymptotic
behaviors [722]. In this scenario, the system never reaches a steady state, but is
subject to everlasting/sustained oscillations

dubbed as limit cycle [see Fig. 4.5(b)]. The system is no longer invariant under
an additional time-translation since

e"“pro(t)] = pre(t’ +1) # pro(t). (4.12)

The continuous time-translation symmetry of the generator is broken and the system
forms a crystalline structure in time.
In practice, the identification of a suitable system operator O such that the function

f(r) = lim Tr(Op(t + 7)) , (4.13)
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4. Dissipative phase transition and dissipative time crystals

is periodic in time signals the formation of a dissipative time crystal.
Importantly, the period is not limited to integer multiples of the driving period, and
can take any value that can be expressed as a function of the system parameters.

4.3.3.1 Spectral Requirements for Dissipative Time Crystals

It is possible to understand both DPTs and DTCs in terms of a critical property of
the spectrum of the Liouvillian superoperator [75, 352].

While DPTs emerge when one (or more) Liouvillian eigenvalues become zero in both
their real and imaginary parts [49, 75], DTCs occur when the Liouvillian acquires
eigenvalues with vanishing real part and nonzero imaginary part [352, 732, 779].
Moreover, a spectral analysis of the Liouvillian operator—and in particular the study of
the Liouvillian gap— allows to establish an equivalence between second order DPTs and
DTCs in the thermodynamic limit. In fact, DPTs and DTCs are the same phenomenon
but in a different representation. This result has been established in [353].

The eigensystem of L reads

L(pr] = Arpr (4.14)
ET[O'k] = )\kgk (415)
Tr(ofpw) = Ow (4.16)

where )\, denotes the eigenvalues of £, while the p; and o corresponds to respectively
the right and left eigenstates associated to .
For L to be a physical Liouvillian its eigenvalues Ay must obey Re(\;) < 0.

These quantities allow to express the time evolution of any system observable.
Given an initial state p(0), we have

(0)(t) = TH(Op(t) = 3 O (4.17)

where O = Tr(a,tﬁ((])) Tr(éﬁk)

The system exhibits non-stationarity if there are purely imaginary non-zero eigenvalues,
A = iwg, with w, # 0. Moreover, in order for this non-stationary behavior to be
periodic, the further condition of nowhere-dense and commensurability?” is required
(734, 780, 781], that is wy/w, € Q for all k,I.

These limit cycles emerge after a transient regime, whose duration is determined
by the Liouvillian gap, as this quantity characterizes the time scale of the slowest
decaying part of the system (see chapter 2).

4.3.3.2 From Finite to Inifinite Dissipative Time Crystals

In closed systems, the implementation of time crystals must be performed in the
thermodynamic limit in order to eliminate the oscillations arising from finite-size effects.

2TTwo non-zero real numbers a and b are called commensurable if their ratio a/b is a rational number.
If that is not the case then a and b are incommensurable.
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4.4. One mode critical phenomena: dynamical optical hysteresis in the Kerr
model

In the open many-body quantum systems case, however, dissipative time crystals
do not necessarily need this restrictive condition [95], and refer to the general idea
of non-trivial time translational symmetry breaking induced by dissipation. This is
particularly an important point in the optic of the experimental implementation of
DTCs, where only finite systems can be studied.

4.4 One mode critical phenomena: dynamical op-
tical hysteresis in the Kerr model

A single Kerr oscillator subject to single-photon driving can undergo a first-order phase
transition.

Interesting insight into this matter is provided e.g. in chapter 2 of [782], or chapter 4 of
[783].

This realm has been studied both theoretically and experimentally.

System Hamiltonian. The Hamiltonian of a coherently driven Kerr non-linear oscil-
lator reads:

H=—Aata+

U
Satataa + F(a'+a) (4.18)

where A = w; — w with w is the frequency of the optical mode, wy, the laser frequency,
the operator a is the annihilation operator of the cavity mode, amplitude F' the driving
amplitude and U the Kerr non-linearity (self-interaction).

The regime of interest is U <« v < F' (weak nonlinearity).

4.4.1 Semiclassical analysis
The semiclassical equation of motion for the mean field of the intracavity field a =
(a) = Tr(pa) is given by the Gross-Pitaevskii equation

Bror = —(iA + ;)a +iUlaffa — iF . (4.19)

This is a cubic nonlinear equation.

For some values of the parameters, this equation admits two distinct stable steady-state
solutions, thus exhibiting bistability. On the other hand, the equation of motion in
the steady state satisfied by the photon number n = |a|? reads

2
O/: U?n® — 2AUn® + <A2+ (;) >n—F2 = f(n) (4.20)
Steady-state condition

If A > v/3y/2, this equation admits three distinct solutions.

It is possible to perform a stability analysis of the different solutions by studying the
derivative of the function f defined in (4.20): the solution is stable when f’(n) > 0,
and the solution is not stable otherwise.
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4. Dissipative phase transition and dissipative time crystals

4.4.2 Quantum analysis

The quantum master equation reads

pt) = —iLp(t) (4.21)

this equation is linear and explicitly reads fo a single bosonic mode

oup = —ilH, j) + 5 (2apa" —alap— pa'a) (4.22)

This equation admits a unique steady-state.
Let me point out that the switching between the two states induced by the fluctuations

present in the system can be investigated using a quantum trajectory approach, see
e.g. [666, 667] and chapter 2.

4.5 Two mode critical phenomena: dissipative time
crystal in an asymmetric nonlinear photonic
dimer

This last section reproduces the article published in Physical Review A [1]:

K. Seibold, R. Rota, and V. Savona, Dissipative time crystal in an asymmetric
nonlinear photonic dimer, Physical Review A 101, 033839 (2020).

Resulting from a collaboration with all the authors, directed by Vincenzo Savona.
My contribution to the project was to provide the theoretical development, set up
the numerical implementation in Matlab and to perform the numerical simulations.
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A dissipative time crystal in an asymmetric non-linear photonic dimer

Kilian Seibold,! Riccardo Rota,! and Vincenzo Savona
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! Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland*
(Dated: March 4, 2020)

We investigate the behavior of two coupled non-linear photonic cavities, in presence of inhomoge-
neous coherent driving and local dissipations. By solving numerically the quantum master equation,
either by diagonalizing the Liouvillian superoperator or by using the approximated truncated Wigner
approach, we extrapolate the properties of the system in a thermodynamic limit of large photon oc-
cupation. When the mean field Gross-Pitaevskii equation predicts a unique parametrically unstable
steady-state solution, the open quantum many-body system presents highly non-classical properties
and its dynamics exhibits the long lived Josephson-like oscillations typical of dissipative time crys-
tals, as indicated by the presence of purely imaginary eigenvalues in the spectrum of the Liouvillian

superoperator in the thermodynamic limit.

I. INTRODUCTION

Open many-body quantum systems [1-3] have become
a major field of study over the last decade. The open
nature is common to a vast class of modern experimen-
tal platforms in quantum science and technology, such
as photonic systems [4], ultracold atoms [5-9], optome-
chanical systems [10-13] or superconducting circuits [14—
16], for which driving and losses are omnipresent. Open
quantum systems also display emergent physics, in par-
ticular dissipative phase transitions [17-39] and topolog-
ical phases [40-45].

Several studies have highlighted the possibility for a
continuous-wave driven-dissipative quantum system to
reach a non-stationary state in the long time limit in
which undamped oscillations arise spontaneously [46-53].
This phenomenon has been dubbed as boundary or dissi-
pative time crystal (DTC), in analogy with the time crys-
tals in some Hamiltonian systems [54]. Formally, DTCs
are associated with the occurrence of multiple eigenval-
ues of the Liouvillian with vanishing real and finite imag-
inary part [55-57]. The experimental feasibility of DTC
has been confirmed by their observation in phosphorous-
doped silicon [58]. The research for further platforms
showing this phenomenon is very active and important
to understand the mechanisms behind the spontaneous
breaking of the time-translation symmetry in open quan-
tum many-body systems.

One of the main difficulties in the realization of DTCs
in real system is related to the fragility of this phase to
external perturbations which affect the symmetric struc-
ture of the model. Indeed, in most of the cases consid-
ered so far, the engineering of the DTCs relies on the ex-
ploitation of certain symmetries (either manifest [48, 52]
or emergent [50]) in the Hamiltonian or in the dissipa-
tion mechanism, which can be hard to maintain in real
driven-dissipative systems out of equilibrium.

In this work, we show that a DT'C can arise in a simple
system of two coupled photonic cavities, whose equation

* kilian.seibold@epfl.ch

of motion does not preserve any symmetry but the time-
translation invariance. In a broad region of the parameter
space, the dynamics of this system presents limit cycles
associated to parametric instabilities [59], which can be
regarded as the classical limit of a DTC. In this regime
the system displays large fluctuations and entanglement,
thus departing from its classical analog. As symmetries
are not required for the occurrence of a DTC, this system
is very robust and may be easily realized for example on
a superconducting circuit architecture [60] or with cou-
pled semiconductor micropillars [61-64]. This prototyp-
ical system is also a minimal model of dissipative Kerr
solitons, that are emerging as the most suitable optical
system for precision frequency generation and metrology
[65], and therefore highlights the potential of these de-
vices as sources of strongly nonclassical light. Very re-
cently, the emergence of parametric instabilities in a pho-
tonic dimer has been observed in a classical regime of
large occupation [66].

The paper is organized as follows. In Sec. II we intro-
duce the quantum model and the theoretical tools used to
calculate its properties. In Sec. III we discuss the result
obtained for both the stationary-state and the dynamics
of the system. In Sec. IV, we draw our conclusions.

II. THEORETICAL FRAMEWORK

We consider two coupled Kerr cavities where only one
is coherently driven. The system Hamiltonian in a frame
rotating with the pump frequency reads (with 4 = 1)

H= —Adila; +
i=1,2 (1)
— J(alay + arad) + F(al +a1),

where @; is the bosonic annihilation operator of the i-th
mode, A is the frequency detuning between the pump
and the resonator, U is the on-site interaction strength,
J is the hopping coupling and F' is the driving ampli-
tude. The dissipative dynamics can be described within
the Born-Markov approximation, resulting in the follow-



ing Lindblad quantum master equation [67, 68] for the
density matrix p,
dp

o = Lp=—ilH.pl+ Z KkDa]p- (2)

Here D[a;]p = aspa) — 1/2(alaip + pala;) is the dis-
sipator in Lindblad form accounting for losses to the en-
vironment and x the dissipation rate. L is the Liou-
villian superoperator and its spectrum encodes the full
dynamics of the open quantum system. The expecta-
tion value of any quantum mechanical observable 6 over
the state characterized by the density matrix p is com-
puted as (6) = Tr(6p). In the long time limit, the
system evolves towards a non-equilibrium steady state
pss satisfying the condition dpss/dt = 0. We determine
the steady-state density matrix by numerically solving
the linear system Lpss = 0, and imposing the condition
Tr(pss) = 1. The dynamic properties of the system are
obtained by the numerical diagonalisation of the super-
operator £. The numerical calculations are performed in
a properly truncated Hilbert space, obtained by setting a
maximum value N/*** (i = 1,2) for the total photon oc-
cupancy per cavity. The convergence of the results versus
N is carefully checked by varying the cutoff number
of photons [69].

In order to study DTCs, that are collective phenom-
ena arising in a thermodynamic limit with large photon
number, it is necessary to define a proper scaling of the
physical parameters, allowing to reach this limit in a con-
trolled way. In this work we consider the thermodynamic
limit obtained by letting the interaction strength U — 0
and the driving amplitude F — oo in Eq. (2), while
keeping constant the product UF2. This approach has
already been used to study not only DTCs [52], but also
the dissipative phase transitions in photonic system of
finite size [32, 33, 70-73].

In the limit of large photon occupation, the dynamics
of a driven dissipative system can be generally recov-
ered by the solution of the Gross-Pitaevskii (GP) equa-
tion [2], a mean field approach neglecting all fluctua-
tions. The GP approximation is obtained from the mas-
ter equation 2 assuming only coherent states for fields,
p = |a1,a9){a1,as]. The two rescaled complex fields
) = \/ﬁ(dl) and asg = \/ﬁ<d2> evolve according to the
set of coupled equations:

0oy

oy = (=A —ir/2)a; + a2y — Jag + FVU
()
i% = (=A — ik/2)as + |as|?as — Ja; .

The steady-state GP solutions «; g are obtained solv-
ing Egs. (3) with the condition i0;c; s = 0. The sta-
bility of each solution can be assessed by evaluating the
spectrum of linearized excitations around them. If all
the frequencies of the linearized excitations have nega-
tive imaginary parts, then the corresponding solution is

stable and can describe the steady state of the driven-
dissipative system. Otherwise, the solution is unstable.
The parametric instability happens when the frequency
of the excitations presents a non-zero real part.

While the Gross-Pitaevskii formalism provides a sim-
ple approximation for the dynamics of the open quantum
system, it fails in the description of the mixed character
of its density matrix. To overcome this limitation, we
consider another approximated scheme: the truncated
Wigner approximation (TWA) method [74, 75]. This nu-
merical approach relies on the assumption that the equa-
tion of motion for the Wigner quasi-probability distri-
bution function obtained from the master equation, Eq.
(2), can be written as a Fokker-Planck equation in the
limit of small non-linearities. Namely, the state of the
photonic dimer can be described by two complex fields
a1 (t) and aso(t) which describe the coherence over the
two modes. Their time evolution follows the stochastic
differential equation

80@
ot

=—i[-(A+ik/2) + U(|ei|* = 1)]

- iF(si,l + Z'Jag_i + K/4X(t) 5

(4)

where x(t) is a normalized random complex Gaussian
noise with correlators (x(t)x(t')) = 0 and (x(¢t)x*(¥")) =
0(t—t") and describes the fluctuations arising in the quan-
tum system because of photon losses. Each TWA trajec-
tory corresponds to a different realization of the noise
term x(t). Therefore, the evolution of the density ma-
trix can be recovered by averaging many trajectories ob-
tained solving numerically the associated Langevin equa-
tion for the complex field, using stochastic Monte-Carlo
techniques. In spite of its approximated nature, this ap-
proach is very useful for studying our system in regimes
of high photon occupancy in the cavities, as it avoids the
use of large cut-off in the number of photons per cavity.

III. RESULTS
A. Mean-field analysis

We start the discussion of our results by providing a
mean-field analysis of our system, with the aim to deter-
mine the range of parameters where the DTC emerges.
We can expect that the DTC phase appears whenever the
GP approach predicts a unique parametrically unstable
steady-state solution. For this reason, we calculate the
number and the nature of the GP solutions as a function
of the physical parameters A, J and F = FVU/x%/?.
The results of this calculation, at the fixed value of
A = 2k, are shown in the phase diagram of Fig. 1-
(a). We clearly notice the emergence of a region where
the GP approach predicts a unique parametrically unsta-
ble steady-state solution. In this regime, if we compute
the time evolution of the mean fields «;(t) by integrating



F
1
(b) ___yez

05 -,
T X
g N
~ 05

15

02 0 2

FIG. 1. Panel (a): Phase diagram for the number and the
nature of the GP steady state solutions as a function of J
and F, for the fixed value of A = 2x. In the phase diagram,
we distinguish the case of a single stable solution (1 sol. S),
a single parametrically unstable solution (1 sol. P), three
solutions (either with or without one parametrically unstable)
and five solutions. The dashed line represent the value J =
1.2k, i.e. the value of J considered in the results of Sec. I11.B
and III.C. Panels (b) and (c): trajectories described by the
mean fields oy (red curve) and «s (blue curve) according to
the GP time evolution, for A = 2k, J/k = 1.2 and different
values of F: panel (b) for F = 0.95 (i.e. in the case of a
single stable solution) and panel (c) for F = 1.5 (i.e. in the
case of a single parametrically unstable solution). The shown
trajectories are obtained by numerically integrating the GP
equations (Eq. (3)) up to tk = 10°. The arrows indicate how
the fields evolve for increasing time.

Egs. (3), choosing the vacuum as the initial condition
(1(0) = 0, a2(0) = 0), we see the emergence of limit
cycles at long times, which represent the classical limit
of the dissipative time crystal in the quantum system. In
Fig. 1-(c), we plot the trajectories described by the two
mean fields «;(¢) in the plane Re(a) —Im(«): as the time
increases, the fields do not evolve towards a steady state,
but they display a periodic behavior. For comparison, in
Fig. 1-(b), we show the time evolution of a trajectory in
a regime where the GP equation predicts a single steady-
state solution: in this case, each of the two mean fields
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0
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2 2 z
F a F
FIG. 2. Region in the parameter space where GP predicts
a single parametrically unstable solution: each panel show
the results as a function of the parameters J/x and F, for
different values of detuning: A/k= 1 (a), 1.5 (b), 2 (¢), 2.5
(d), 3 (e), 3.5 (f).

a; evolve towards a single point, which corresponds to
the solution a; s.

For sake of completeness, we have derived the phase
diagram for several values of the detuning A > 0 in Fig.
2. We notice the presence of a region with a single para-
metrically unstable GP solution, for all the values of A
we have considered. Hence, it suggests that the DTC can
be achieved over a finite range of values of the detuning.

In our analysis, we have considered also the case of
a dimer made of two resonators with different proper-
ties. To this aim, we have solved the generalized Gross-
Pitaevskii equation

ZW = (—Al — im/2)a1 + U1|041|2Ck1 — JOCQ + F

(5)
0
Z% = (7A2 — 7;I<L2/2)O£2 + U2|a2|2a2 — Ja1 3

which assumes different values Ay # A, for the detuning
frequencies, U; # Us for the non-linearities or ki # Ko
for the loss rates of the two modes. The results of this
study are presented in fig. 3. The different panels show
the region in the parameter space with a unique para-
metrically unstable solution for the GP steady state and
indicate that the DTC phase can emerge even when the
dimer is formed by two resonators with different prop-
erties, highlighting the robustness of this phase in our
system.

B. Steady-state properties of the quantum system

We now consider the properties of the system obtained
within a fully quantum many-body approach. In Fig. 4
we show the steady-state expectation values for the pho-
ton occupation ny = (ala;) and ny = (ala,) in the two
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FIG. 3. Region in the parameter space where GP predicts a
single parametrically unstable solution, for the case of a dimer
made of resonators with different detuning frequencies [panels
(a-b)], nonlinearities [panels (c-d)] or loss rates [panels (e-f)].
The coefficients for the first cavity are A; = 2k are Uy = k1,
F = F\/U_1/n?/2; the coefficients for the second cavity are
specified in each panel.

cavities, as a function of the driving amplitude F', for
different choices of the non-linearity U: the other Hamil-
tonian parameters in Eq. (1), A =2« and J = 1.2k, are
chosen such that the GP equation predicts the emergence
of parametric instability in the system (these parameters
corresponds to the dashed line plotted in the phase dia-
gram of Fig. 1). By studying the behavior of n; and ng
for decreasing U, we can extrapolate their behavior in the
thermodynamic limit and compare it with the GP pre-
diction. We see that the mean-field approach is reliable
only in the limit of small and large driving, where the GP
equation predicts a unique stable steady-state solution,
but it fails for intermediate values of the rescaled driv-
ing amplitude I = F\/U/k*?. For F ~ 2, our results
show a steep increase of the photon occupancy in the
two cavities as a function of F', which becomes steeper
as the non-linearity U decreases. This behavior suggests
the emergence of a discontinuity in the thermodynamic
limit, and therefore the occurrence of a first-order phase
transition similar to that observed in a single cavity in
regimes of optical bistability [33]. Moreover, from the
results in Fig. 4 we can find a broad interval of F values,
ie. 1 S F < 2, where the expectation values computed
for the quantum model do not depend strongly on U (and
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FIG. 4. Rescaled steady-state expectation value of the pho-
ton occupation ny (a) and ng (b) in the two cavities, versus
the rescaled pump amplitude F. The lines with markers cor-
respond to the different values of U. The solid, dashed and
dotted lines correspond to the predictions obtained from the
steady-state solution of the GP equations, where the differ-
ent line styles represent different nature of the solution: sta-
ble (solid black line), one mode unstable (blue dotted line)
and parametrically unstable (red dashed line). The light blue
dot-dashed line represents the prediction for the photon occu-
pation calculated from the time-averaged density matrix pq.
(Eq. (6)). The shaded area indicates approximatively the
DTC phase. The other Hamiltonian parameters are A/k = 2,
J/k=1.2.

therefore we can safely assume that the thermodynamic
limit is already reached at the lowest values of U achiev-
able with our numerical approach) and are notably dif-
ferent from the GP predictions for the steady state. This
interval of F' corresponds roughly to the range where the
GP approach predicts a unique parametrically unstable
steady-state solution and represents the regime where the
DTC is observed (henceforth, we define this range of pa-
rameters as the DTC-phase).

Due to the emergence of limit cycles in the classical
regime of the DTC-phase, it is natural to ask whether a
more precise prediction for the steady state of the quan-



tum system in the thermodynamic limit can be obtained
from a time average of the dynamical solution of the GP
equation. Knowing the solution for the field «4(t) and
as(t) over a limit cycle of period T, we construct the
time-averaged density matrix

to+T
b= [ dnaxO)@@e0] . (©)

to

where |y (t), a2(t)) = |aq(t))®|aa(t)) is a coherent states
on the two modes of the dimer. We compute the expecta-
tion values for the photon occupation on the two cavities
Niqy = Tr(ﬁavdzéi) over this density matrix. The re-
sults for n; 4, as a function of F are showed in Fig. 4
and compared with the results obtained from the steady-
state solution of the master equation, Eq. (2). We notice
that n; 4, is in agreement with the quantum results in
the thermodynamic limit.

However, the density matrix p,, is not able to give
a complete description of the steady state pss of the
quantum system, as evidenced by the results for the log-
arithmic negativity Fn and for the von-Neumann en-
tropy, which are shown in Fig. 5. In Fig. 5-(a), we
show En = logy(|[pLt]|1), where pL1 indicates the par-
tial transpose with respect to the degrees of freedom of
the second cavity and ||.||; the trace norm, as a func-
tion of F. We can see that, in the DTC-phase, Exy > 0
and increases for decreasing U, showing the presence of
entanglement, which is absent per definition in pg, (Eq.
(6)). The von-Neumann entropy S = —Tr(pss In(pss)),
displayed in Fig. 5-(b), shows instead the mixed char-
acter of the steady state, arising because of the classical
fluctuations due to the photon losses from the cavities.
We see that S assumes large values for 1 < F < 2 and
increases for decreasing U. We notice that the classical
prediction Sgp = —Tr(Par In(Pav)), also shown in Fig. 5-
(b), does not agree with the quantum results in the ther-
modynamic limit. The analysis of En and S confirms the
important role played by fluctuations (both quantum and
classical) in the steady state of our system and therefore
the inaccuracy of the GP approach in the description of
the DTC-phase.

C. Quantum dynamics

In order to reveal the emergence of a DTC in the con-
sidered system, we study the dynamical properties by
computing the spectrum of the eigenvalues A; of the Li-
ouvillian. This is performed by numerically diagonalizing
the superoperator £ defined in Eq. (2). In Fig. 6, we
show the spectrum of the eigenvalues of £ with largest
real part, for different values of F' and U. Outside of
the DTC-phase [see Fig. 6-(a) for ' = 0.8 and Fig. 6-
(f) for F = 2.5, the eigenvalue with smallest absolute
value is purely real, independently of the value of U. In
this regime, the dynamics of the dissipative system at
long time is characterized by an exponential decaying to-

FIG. 5. Logarithmic negativity Fn (a) and Von Neumann
Entropy S (b) versus the rescaled pump amplitude and for
different values of the non-linearity U. The shaded area in-
dicates approximatively the DTC phase. In panel (b), the
light blue line represents the prediction for the von-Neumann
entropy calculated from the time-averaged density matrix pq.
(Eq. (6)). The other Hamiltonian parameters are A/x = 2,
J/k=1.2.

wards the steady state. At I =1 [Fig. 6-(b)], the onset
of long-lived oscillation at small U is revealed by the fact
that the eigenvalue Ay with largest real part has a finite
imaginary part. We also see, in this case, that the Liou-
villian gap A = |Re()\1)| decreases for decreasing U.

The typical Liouvillian spectrum in the DTC-phase is
shown in Fig. 6-(c) (F' = 1.5) and Fig. 6-(d) (F = 1.8).
From these plots, we clearly notice the presence of eigen-
values which, when U — 0, have a vanishing real part
and finite imaginary part. This means that the time
scale of the relaxation dynamics (which is determined by
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FIG. 6. Eigenvalues A of the Liouvillian superoperator, plot-
ted in units of k. Each panel shows the eigenvalues with
largest real part for a given pump amplitude F' and different
values of non-linearity U, corresponding to different colors and
marker types. The black cross indicates the unique steady
state. The different pump amplitudes corresponding to each
panels are: F = 0.8 (a), F =1.0 (b), F =15 (¢), F =18
(d), F=20 (e) and F=25 (f). The other parameters are
A/k =2, J/k =1.2.

the inverse of the Liouvillian gap 1/A) becomes increas-
ingly long when approaching the thermodynamic limit.
Even though the Lindblad master equation Eq. (2) pre-
dicts the existence of a time-independent steady state,
the evolution of the density matrix is characterized by
long lived oscillations: indeed, according to the spectral
decomposition of the density matrix [70],

p(t) = pss + Z Cj (O)EAjtij ) (7)

where p; are the eigenmatrices of the Liouvillian super-
operators associated to the eigenvalues A; # 0, and ¢;(0)
are the components of the initial density matrix p(0)
over the different p;. While all the components hav-
ing A; with sizeable real part decay rapidly, those with
|[Re(A;)| < [Im()\;)| will give rise to long lived oscillations
in p(t).

The results in Fig. 6-(c,d) suggest also that the imagi-
nary part of the eigenvalues with vanishing real part are

X TW
e Exact
---Fit

107 1072 107! 10°
U/k

FIG. 7. (a): Time evolution of the rescaled population differ-
ence z between the two cavities for FF = 1.5, A/k = 2, J/k =
1.2 and different values of U. The results are obtained by av-
eraging over 10° stochastic trajectories obtained with TWA.
(b): Liouvillian gap A as a function of the non-linearity U for
F =15, A/k =2, J/k = 1.2. The different symbols refer
to different methods to extract the value of A (exact diago-
nalization or fit of TWA results for z(t)). The dashed line
represents a power-law fit of the data.

integer multiples of a fundamental frequency. The two
features, i.e. the gapless Liouvillian spectrum and the
imaginary eigenvalues of the low excitations described
by bands separated by the same frequency, are the key
elements of a DTC, as also pointed out in Ref. [46].

Finally, for ' = 2.0 [Fig. 6-(e)], we notice that the
eigenvalue with largest real part is purely real, signal-
ing the disappearance of the long-lived oscillation of the
DTC-phase. Moreover, we can notice also that this eigen-
value goes to zero in the thermodynamic limit: this be-
havior can be associated to the closing of the Liouvillian
gap in the vicinity of a critical point, and hence supports
the evidence for a first-order dissipative phase transition
[70], as already indicated by the results in Fig. 4.

The occurrence of a DTC in our system is further
supported by a study of the dynamics with the Trun-
cated Wigner approximation (TWA) [74]. In Fig. 7-



(a), we show the TWA results for the time evolution
of the population difference between the two cavities,
z = (d{&l - &;&2), for the value of F = 1.5 inside the
DTC-phase, having chosen the vacuum as the initial con-
dition. The oscillating character of the dynamics is ev-
ident for all the values of the non-linearities considered
and persists on a time scale which is large with respect
to the inverse loss rate 1/k. By comparing the curves
obtained for different values of U, we can see that the
damping of the oscillation becomes smaller for decreas-
ing U, but their period is almost independent. These
results confirm what already observed in the analysis of
the Liouvillian spectrum: when approaching the ther-
modynamic limit, the Liouvillian gap goes to zero, as
indicated by the slowing down of the exponential decay
of the oscillation; instead its imaginary part, which is re-
lated to the period of the oscillations, remains finite. The
numerical estimates for the Liouvillian gap A and for the
relevant frequencies of the oscillation can be extracted by
fitting the curves z(t) at long times with a sum of expo-
nentially damped sine functions. The behavior of A as a
function of U for F = 1.5 is shown in Fig. 7-(b). First
of all, we notice that the values extracted from the fit of
z(t) are in good agreement with the results obtained by
the exact diagonalization of the Liouvillian, confirming
the validity of the TWA in this regime of small non-
linearities. Furthermore, the results show a power law
behavior A ~ U", with n = 1.02 £ 0.03, indicating that
the Liouvillian gap closes in the thermodynamical limit.
Concerning the oscillatory dynamics of the system in the
DTC-phase, the frequencies extracted from the fit of z(t)
at the largest U correspond exactly to the imaginary part
of the Liouvillian eigenvalues shown in Fig. 6-(c). When
U decreases, it becomes apparent that more frequency
components contribute to the oscillation of z(t). All the
frequencies extracted from the fit are integer multiples
of the same fundamental frequency: this picture strongly
supports the presence of a discrete set of equally spaced
Liouvillian eigenvalues, that is a sufficient condition to
have a persistent non-stationarity in the dynamics of the
open system [76]. A rigorous proof of this spectral struc-
ture in the thermodynamic limit is however beyond the
scope of this work.

In Fig. 7, we show the quantity z(¢) obtained from
the GP equation, when taking the vacuum as initial con-
dition at t = 0. The comparison with the TWA results
shows that the fluctuations do not affect the frequency
of the oscillations. Fluctuations are instead only respon-
sible for random relative phase shifts among single TWA
trajectories, resulting in the damping of oscillations at
long times. This last observation is verified by compar-
ing the behavior of individual TWA trajectories. In Fig.
8, we show the evolution of the population difference be-
tween the two cavities, over five TWA trajectories, for
different values of the non-linearity U and for the value
of F = 1.5, inside the DTC-phase. For all the values of
U, we notice that most of the single trajectories present
an oscillating behavior, which persists over a longer time

0 10 20 30 40

KT
FIG. 8. Time evolution of the population difference between
the two cavities obtained for 5 different TWA trajectories,
starting from the vacuum at ¢ = 0. The different panels show
the results for different non-linearities: U = 0.1 (a), U = 0.05

(b) and U = 0.01 (c). The other parameters are F = 1.5,
A/k=2and J/k =12

interval as the non-linearity decreases. From this analy-
sis, we can deduce that the fluctuations induced by the
noise term x in Eq. (4) do not suppress the oscillating
character of the trajectories, but induce a certain dephas-
ing among them, which results in the damping towards
the steady-state expectation value when the results of the
single trajectories are averaged (See Fig. 7).

To have a better understanding of how the fluctuations
influence the dynamics of the system in the DTC-phase,
we show in Fig. 9 the distribution of the fields «;(t) over
a set of 12000 TWA trajectories for different times ¢ and
non-linearities U. At small time, the distribution is a
Gaussian centered around the GP solution. At longer
times, the effect of the noise is to spread the distribution
of a; along the limit cycles defined from the GP equation
(showed in Fig. 1-(c)). Thus, even though a single TWA
trajectory does not reach a steady state but presents an
oscillating character similar to that of the GP parametri-
cally unstable solution, the full distribution becomes sta-
tionary for long time, showing the emergence of a steady
state. The time interval needed to reach the steady state
becomes larger when U decreases.
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FIG. 9. Distribution of the TWA fields a1 (in red) and a2 (in blue) in phase space at different times ¢ and non-linearities
U. The black markers give the GP solution for the first (4+) and second (Xx) cavity for the given time. The distributions are

obtained from the realization of 1.2 x 10* TWA trajectories.

IV. CONCLUSIONS

In conclusion, we have provided strong evidences of
the occurrence of a dissipative time crystal in a simple
driven-dissipative system of two coupled non-linear op-
tical resonators, under general conditions which do not
rely on the presence of symmetries. The DTC phase aris-
ing over a wide range of parameters is characterized by
spontaneous long lived oscillations of the system observ-
ables under continuous-wave driving, large fluctuations
and non-classical correlations. The scheme we propose
can be easily realized with current experimental tech-
nologies, such as superconducting circuits [60] or semi-
conductor micropillars [61-64], which have already been
used for the investigation of other collective phenomena
in open quantum system. The emergence of a DTC in

an optical dimer is directly related to the physics of Kerr
solitons, for which the quantum properties of the radi-
ation field are yet to be fully understood. The present
study is an important step toward the characterization of
quantum correlations and entanglement in Kerr-soliton
systems, opening the way to the design of optical devices
for the generation of non-classical light.
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Dissipative Kerr solitons as dissipative time
crystals

Dissipative Kerr solitons (DKSs) and their “dual” Kerr frequency combs (KFCs)
have unlocked a large bandwidth of novel arena in numerous and various fields.
DKSs and KFCs are characterized by strong correspondence articulated according
to a frequency- or temporal-domain approach, as schematized in Fig. 5.1.

J frequency
13 ﬁ
soliton comb

t w

Figure 5.1: KFCs and DKSs and their relationship. Mathematically, the correspon-
dance between KFCs and DKSs is established through the Fourier transformation.

They found application ranging from fundamental physics, metrology, precision

spectroscopy to communication, biology and astronomy.

A key step on this road to applications is the downscaling of DKS sources. While

in the infancy of the field of DKS, centimeter or meter-sized platforms where

required to generate them, today they can be generated within compact, scalable,

chip-scale platforms.

Motivated precisely by this “en marche” miniaturization, the goal of this chapter

is to propose a fully quantum approach in the spirit of open quantum systems

(This concept has been addressed in chapter 2).

Indeed, while DKS originate from quantum phenomena, mostly classical studies

have been performed and only a handful of publications adopt a quantum

approach.

This analysis leads us to make the connection between DKS and the concept of

DTC addressed in the previous chapter.

We will begin this chapter by reviewing some notions related to DKSs and KFCs.
113



5.1. Optical frequency combs

Afterwards, we will present a full study addressing the “quantum dynamics of
dissipative Kerr solitons” by reproducing the research paper [3] of the author.
Within this work, we provide a quantum model for DKSs within the dissipative
quantum system framework, and come up with a numerical study using the
truncated Wigner formalism (introduced in chapter 3). This quantum analysis
allows us to interpret DKSs as dissipative time crystals.
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5.1 Optical frequency combs

5.1.1 Introduction.

Optical frequency combs (OFCs) [784—787] are optical sources, whose spectrum is
composed of discrete and equally-spaced spectral lines. More precisely, the optical
frequencies w,, of these lines (the comb teeth) obey the comb equation

Wy = b+ wy +wp (5.1)

where w, is the repetition rate frequency, wy is the carrier-envelope offset frequency
[787], and p is an integer indexing the individual comb tooth. The spectrum of an
OFC spans from the infrared [788] to the visible [789] and ultraviolet [790-792].

Frequency “ruler”. The precise evenly-spaced sequence in the frequency domain
turns OFCs into valuable tools for measuring unknown light frequencies and time
intervals with an impressive precision® and speed, offering a wide range of applications.
They can also be used to couple an unknown optical frequency to a radio or microwave
frequency of reference [793, 794].

History. OFCs were initially developed to count the cycles of optical atomic clocks.
Schematically, an atomic clock consists of an oscillator (the atom) and a counter that

LOFCs are often called optical rulers in the literature and achieve accuracy that was previously
unattainable.
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counts the oscillations (the comb). In 2000 it was shown that the spectrum of OFCs can
span over an octave of optical bandwidth [793, 795, 796], which is a necessary condition
for many application. This opened up completely new scientific and technological
perspectives and OFCs are primary elements in a wide and growing range of applications
[797]2. They triggered outstanding breakthroughs in frequency metrology and precision
measurements [786, 793, 794], high precision spectroscopy [799, 800], communications
[801, 802], microwave photonics [803], frequency synthesis [784, 804], optical ranging
(805, 806], quantum sources [807, 808], metrology [809, 810] and astrocombs [811, 812].

Applications. The wide range of applications for OFCs is remarkable. OFCs have
proven to be indispensable tools in various arenas and their constant downscaling®
makes them very attractive for cutting-edge technological applications. Today, state
of the art OFCs have been taken out of scientific laboratories and are of chip scale,
operating in any environment, commercially available, cheap and mass produced.
The numerous and various fields where OFCs found applications include the gearwork
in optical atomic clocks [785, 814], fundamental physics [815-818], waveform synthesis
[784, 804, 819, 820] and measurement [802], X-ray and attosecond pulse generation
[821], precision ranging [822], LIDAR? [823], data center interconnects [824], molecular
fingerprinting [825], medical diagnostics [826], gas sensing [827-829], precision time or
frequency transfer over fiber and free-space [830], astronomy and cosmology [811, 812,
831, 832] including satellites [833]. The wide spectrum of scientific and technological
applications is e.g. reviewed in [834].

5.1.2 Generation of frequency combs

The last two decades have witnessed the development of several principles for the
generation of OFCs (see e.g. ref. [796] and in particular fig. 2 therein).

The original (and still cutting edge) method to generate OFCs are phase-stabilized
mode-locked lasers [796, 835-839].

In recent years, other methods have been developed, among them electro-optic fre-
quency combs [831, 840] and chip-scale systems based on semiconductor [841-844]
and microresonators® systems.

Within this thesis, we will focus on the microresonator-based frequency combs, also
known as Kerr frequency combs.

5.2 Kerr frequency combs

Kerr frequency combs (KFCs) [845-850] are optical frequency combs arising from
the interaction of a continuous wave (laser pump) with a material featuring a Kerr
nonlinearity. They have first been observed in 2007 [851] and since then, they have

2The importance of OFC science has been rewarded with the Nobel Prize in Physics in 2005 [798].

3In the past two decades, the generation of OFCs turned from mode-locked lasers with cavity lengths
of the order of cm to chip-scale sources based on microresonators fitting in a volume of ca. lcm3,
and working at less than 1 Watt of electrical power [813].

4LiDAR is the acronym for Light Detection And Ranging.

5Also called microring resonators, micro-cavity resonators, micro-combs or Kerr resonators. Microres-
onators are optical resonators whose size are typically of the micrometer order.
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been demonstrated in various materials [852-861]°. KFCs attract lot of interest
[851, 863] because they offer the vista of miniature comb systems integrated on
a semiconductor chip altogether the promise to reach the full capability of their
bulk counterparts [819, 864, 865].

Kerr nonlinearity. The Kerr nonlinearity/effect [866, 867] is present in media with
third-order nonlinear susceptibility x®). It provides a “self-interaction”, involving no
driving fields. It can be modeled by the interaction Hamiltonian

H =Ud'd'aa (5.2)

where U is proportional to x®. For instance, silica exhibits a Kerr nonlinearity.

5.2.1 Kerr comb generation

KFCs are multimode states of light generated via parametric frequency conversion
[868] in high-Q" microresonators. KFCs can be generated by driving —away from
material resonances — a high-() Kerr-nonlinear optical microresonator with a single-
frequency continuous-wave laser pump?®.

Depending on the regime of parameters, and in particular the strength of the driving,
the Kerr nonlinearity leads to different behaviors.

In the weakly driven Kerr resonator regime, the resonator modes are populated in
pairs through the spontaneous parametric processes. In this regime, the DKS can
be used to generate squeezed vacuum [870-872], heralded single photons [873-875],
multiphoton entangled states [807, 808, 876].

In the strongly driven Kerr resonator regime, the parametric gain can exceed the
loss of the resonator and gives rise to optical parametric oscillations and the for-
mation of bright combs.

By driving sufficiently above a power threshold determined by the Kerr nonlinearity, and
under appropriate conditions for the dispersion of the microresonator optical modes,
the parametric process generates a comb of evenly spaced peaks in the frequency
spectrum [786, 863].

Four-wave mixing. Despite the fact that KFCs have mostly been studied classically,
their emergence originates from a quantum parametric process.

Above a parametric threshold [877], the sequence of resonator modes is inter-coupled
through a cascaded four-wave-mixing (FWM) process [878] —a nonlinear parametric
frequency conversion— and described by the energy conservation relation

hwa + hwb — hwc -+ hwd . (53)

Here, two photons in input with frequency w, and wy, coherently interact via the Kerr
nonlinearity, leading to two photons in output with frequency w. and wy.

6 A website cataloging the publications on KFCs [862].

"The quality factor Q of a resonator with frequency w is given by Q = w/x.

8KFCs can also be generated through pumped optical pulses [869]. But here we will focus on the
continuous-wave laser pump case.
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Figure 5.2: Scheme of the comb generation in a Kerr resonator through degenerate —process
(1)— and non-degenerate —process (2)— FWM.

In microringresonators, the FWM process is based on the Kerr nonlinearity and can
produce in the frequency domain equidistant and coherent optical lines with a spacing
corresponding to the FSR of the microresonator. This mechanism is depicted in Fig.
5.2 and more details will be provided in subsection 5.4.4.

Enhanced within a high-quality (high-Q) microresonator’, the FWM processes initiated
by only pumping one mode can excite a broad bandwidth (as many as several hundred)
of equidistant cavity modes. This mechanism leads to a coherent optical frequency
comb [851], the so-called Kerr frequency combs.

Importantly, the temporal coherence and a constant phase between the cavity modes
is achieved through mode locking. Kerr resonators are modes locked through the
formation of optical solitons in the cavity [879, 880]. This will be discussed in
more detail in section 5.4.

More details about KFCs and the stages leading to the formation of Kerr combs
can be found e.g. in Refs [881, 882].

Power (a.u.)

] |

w

Figure 5.3: Resonator configuration.

Technological advantages and applications of Kerr combs. The interest in
microresonator-based frequency combs roots from a variety of technological advantages,
including low-energy requirements and robust structures that can be integrated in
scalable, chip platforms [845, 863, 883-885].

9The recipe to enhancing light-matter interaction inside the resonator consists in increasing the quality
factor and reducing the mode volume.
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Applications ranging from spectroscopy and metrology [799, 886] to LIDAR! [805,
806] and optical coherence tomography [889].

Frequency combs viewed in the frequency domain have close connection to solitons
in the time domain.

5.3 Temporal cavity solitons

5.3.1 Dissipative solitons

Dissipative solitons!' [890] are robust self-localized dissipative structures (LSs) that
can persist indefinitely.

It is a concept prevalent in various nonlinear open systems driven out of equilibrium!?.
These dissipative structures can be localized in space and/or in time: temporal solitons
where the nonlinear effect balances the dispersion broadening, and spatial solitons
[892-895] where the nonlinear effect balances the diffraction broadening.
Dissipative solitons can be found in various dissipative nonlinear systems, spanning
a broad spectrum of fields of natural science [896] like .e.g. plasma physics [897,
898], hydrodynamics [899], magnetic fluids [900], tsunami waves, cloud and sand dune
formation [896, 901], superconductivity [902], chemical reactions [903-905], biology
[906], and optics [893, 907-912].

One common denominator of this cross-disciplinary concept is that its existence relies
on a precise double balance between nonlinearity, diffusion-like processes, gain, and
loss [909, 913, 914].

Robustness. The driven-dissipative nature of dissipative solitons makes these at-
tractor states extremely stable and robust against fluctuations [896, 915].

Dissipative cavity solitons. Dissipative solitons in driven optical cavities or
Dissipative cavity solitons have been investigated theoretically since the early 1990s.
In experiments, they were first observed in two-dimensional spatial resonators [893]
and more recently in one-dimensional Kerr cavities [909, 910].

While in a first instance the focus was on spatial dissipative cavity solitons [892, 916]
the attention has now shifted towards their temporal counter-part [892, 914], which
have attracted lots of interest lately [909].

5.3.2 Temporal cavity solitons

In the particular framework of nonlinear optical systems, temporal cavity solitons
(TCSs)' [909, 917] are pulses of light propagating indefinitely, which preserve their
temporal and spectral shape in the course of propagation.
Their shape is maintained through an exact balance between gain and loss on one
hand, and nonlinearity and dispersion on the other hand.

10T aser detection and ranging is a key technology in scientific and industrial metrology. It provides
fast, long-range and high accuracy acquisition [887, 888].

' The name soliton comes from the term solitary waves.

12To have an overview from a broader perspective, see e.g. [891].

130r also sometimes called temporal dissipative solitons.
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TCSs emerge in various optical systems [896] like e.g. in mode-locked lasers [835-838],
coherently driven passive resonators, in particular fiber ring resonators [909] and
monolithic microresonators [810, 846, 909, 914, 918, 919].

TCSs have potential application as information carriers in all-optical memories [921].
State-of-the-art OFCs based on mode-locked lasers have been shown to exhibit relative
frequency uncertainties at the level of 10719 [922-925].

Recently, cavity solitons (CSs) have been demonstrated in microresonators [810,
918, 919, 926, 927].

Applications. Solitons of light propagating in optical fibers can be used for fast
data transmission. Solitons can also be used in the creation of optical frequency
combs in microresonators.

5.4 Dissipative Kerr soliton

Dissipative Kerr soliton (DKS)' are temporal dissipative solitons [896, 915] emerging
in Kerr nonlinear systems.

More explicitly, DKSs are stationary, localized and self-enforcing pulses of light that
circulate in coherently driven nonlinear optical resonators and maintain their shape
thanks to a double balance [846, 909, 918, 928].

Double balance. The shape preservation relies on an exact balance of Kerr nonlinear-
ity and cavity dispersion (the dispersive spreading is cancelled by the self-focussing Kerr
nonlinearity). The amplitude preservation is granted by the balance between parametric
gain from the driving and cavity losses (the energy that is lost gets constantly replaced
by new energy gained from the driving).

Dissipative Kerr solitons are the temporal representation of coherent frequency combs.
DKSs were first observed in 2010 [909].

DKSs constitutes another possible state of the nonlinear cavity field.

DKSs are time-periodic solutions of an otherwise time-independent open quantum
system dynamics [846, 929, 930]. This remark is important in view of the interpretation
of DKSs as dissipative time crystals, as discussed in subsection 5.4.2.

Formally, solitons are solutions to the Lugiato-Lefever equation [389] and travel on
top of a continuous-wave background [892, 914].

5.4.1 A rich dynamic

The DKSs can exhibit rich instability dynamics in specific regions of parameter space,
including oscillations and chaotic states.

DKSs can take many forms [915], like e.g. breather solitons [931-933] and soliton
crystals [848, 934].

L asers and passive resonator generated solitons differ by their pumping scheme, leading to profound
differences between the soliton train and associated OFCs generated via these two methods [920].
150r sometimes called Kerr cavity solitons.
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Implementation. Since their discovery in microresonators, the DKSs have been
observed in a variety of microresonators, ranging from bulk crystalline [918, 935] and
silica microdisks [919], to photonic chip-scale devices [810, 919, 927, 936], and have
been generated using both continuous-wave and pulsed excitation [869].

5.4.2 Solitons and frequency combs

The formation in the time domain of single temporal cavity solitons correspond in
the frequency domain to soliton frequency combs!®.
In partricular, DKS provide a KFC source:

DKS <= phase-locked KFC

Applications. DKS-based Kerr comb provide coherent optical combs, characterized
by large spectral bandwidth (bandwidth exceeding one octave), low-noise comb, smooth
spectral envelopes, high repetition rates from microwave to terahertz domains, low
energies, and compactness (chip-scale microresonators) [918, 928, 938|.

To date, these frequency comb sources have been successfully and extensively applied
for counting of optical frequencies and distance measurements, dual-comb spectroscopy
and telecommunications.

5.4.3 Theoretical description of solitons in a microresonator

5.4.4 Anatomy of KFCs

The (cold) resonance frequencies (eigenfrequencies) w,, of the p-th mode are given
through a Taylor expansion of the dispersion relation!” of the resonator around the
pump frequency u = 0

+o0 1

Wy = Wo + Z EDk,Uk (54)
k=1""

= wo + D1t + Dine (1) (5.5)

where we recall that p is the index labelling a specific comb tooth. It represents the
relative mode number with respect to the pumped mode wy.

In this relation, D; /27 corresponds to the free spectral range (FSR) of the microres-
onator'® at the frequency wy. In particular, we have D; = 27 /Tr where Ty is the
roundtrip time of the soliton in the resonator. Typically, the FSR of microresonator is
of several gigahertz up to terahertz.

D, is the second order dispersion, and its expression reads Dy = —c/ng - D? - 35, with
[ the anomalous group velocity dispersion (GVD) [878, 939], ¢ is the speed of light
and ng the refractive index. A positive (negative) Dy corresponds to an anomalous

16This is the case in passive [846, 918] and active [937] media.

"Dispersion refers to the frequency dependency of the refractive index—i.e. different frequency
components experience different phase velocities.

8Sometimes called reduced soliton repetition rate, in view of the comb equation eq. (5.1).
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(normal) dispersion.

Dy, for > 2 are higher-order dispersion terms, given usually in units of rad/s, so that
Dy /2w are given in units of Hz.

One usually gathers D, and the higher-order dispersion terms Dy, k > 2 into the
quantity D, the integrated dispersion, which describes the deviation of the resonance
frequencies w,, from the equidistant frequency lines defined by wy + pD;.

The intensity-dependant refractive index is responsible for a frequency shift of the
modes. In order to compensate this shift and obtain an equidistant spectral grid, the
FSR should increase with frequency [864]. This is the case for anomalous dispersion.

5.4.5 Lugiato—Lefever equation

The internal field in a nonlinear microresonator can be described by the paradigmatic
model provided by the mean-field Lugiato-Lefever equation (LLE) [389, 928, 940-951].
This is a damped, driven, detuned nonlinear Schrodinger equation accounting for
driving, dispersion, losses and Kerr nonlinearity. *

Let us start by defining the intracavity field £(0,t), where ¢ describes time and
0 € [—m, 7| is the azimutal angle along the perimeter of the resonator. Using the
parameters defined in subsection 5.4.4, the LLE governing the dynamics of this field is

ki O°E
K O0F

0 e g
— = —KE+i0E +ivg Y _(iQrsr)
=2

ot
2/§ext
+ ivgY[EPE + 4 VP .
g7| | Trsn L

In the above, B, = —(/(— QFSR) ve models the dispersion, and o = wy, — wy represents
the detuning between the laser and the resonance frequencies. Here we assume that
the normalization is such that |€|? is expressed in units of watts. In the specific case
of the absence of higher-order dispersion (8 = 0 for k& > 2) it will be convenient to
change normalisation and work in terms of a new, dimensionless, total intra-cavity
field ¢ = (yvg//i)lﬂg. The above equation can then be rewritten as

oY , BO*Y
E:—(l—i-la)?/}—lgw—i-lhﬂ v+ F, (5.6)
where 7 = £t is the dimensionless time, « = —o /& is the cavity detuning, 5 = —(3/k =

BavgQgr /K is the GVD (defined as normal for 3 > 0 and anomalous for § < 0), and
F? = (2yvy/Trsr) (Kext /K%) Py, is the dimensionless laser pump power.

Solitonic regime. The dimensionless Eq. (5.6) proves invaluable to study the
nonlinear dynamics of the optical dissipation [944], and is particularly suited for
a stability analysis [952]. DKSs are stable solutions of the LLE [909, 914, 953, 954].
The Lugiato—Lefever equation has been used as a valuable and handy tool for the
analytical study of the nature, stability and bifurcation behaviour of solitons. It’s worth

9The LLE was first introduced to describe spatial self-organization phenomena.
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noting that the study of the LLE presents also interest from a purely mathematical
point of view, especially regarding its dynamical properties [955-958].

The Lugiato—Lefever also provides a handy way to search for solitonic states in a
microresonator. Indeed, transitions to soliton states are marked by discontinuous
steps in the resonator transmission, while scanning the detuning of the driving
field [918, 944, 959].

5.5 Multi mode critical phenomena: quantum dy-
namics of dissipative Kerr solitons

This last section reproduces the article submitted to Physical Review A [3]:

K. Seibold, R. Rota, F. Minganti, and V. Savona, Quantum dynamics of dissipative
kerr solitons, Phys. Rev. A 105, 053530 (2022).

Resulting from a collaboration with all the authors, directed by Vincenzo Savona,
my contribution to the project was to provide the theoretical development, set up
the numerical implementation in Matlab and to perform the numerical simulations.
This work has benefited from the input of all the members of the LTPN group.
Addressed to both, the theoretical and experimental community, the journey was
marked and enriched by a subtle juggling between the different visions, concepts
and jargon of these two worlds.
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Quantum dynamics of Dissipative Kerr solitons

Kilian Seibold, Riccardo Rota, Fabrizio Minganti, and Vincenzo Savona
Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland”
(Dated: April 7, 2022)

Dissipative Kerr solitons arising from parametric gain in ring microresonators are usually de-
scribed within a classical mean-field framework. Here, we develop a quantum-mechanical model
of dissipative Kerr solitons in terms of the Lindblad master equation and study the model via the
truncated Wigner method, which accounts for quantum effects to leading order. We show that,
within this open quantum system framework, the soliton experiences a finite coherence time due to
quantum fluctuations originating from losses. Reading the results in terms of the theory of open
quantum systems, allows to estimate the Liouvillian spectrum of the system. It is characterized by
a set of eigenvalues with finite imaginary part and vanishing real part in the limit of vanishing quan-
tum fluctuations. This feature shows that dissipative Kerr solitons are a specific class of dissipative

time crystals.

I. INTRODUCTION

Kerr frequency combs (KFCs) [1-6] are optical fre-
quency combs generated by driving high-Q Kerr non-
linear optical microresonators with a single-frequency
continuous-wave laser [7, 8]. By driving sufficiently above
a power threshold determined by the Kerr nonlinearity,
and under appropriate conditions for the dispersion of
the microresonator optical modes, the parametric pro-
cess generates a comb of evenly spaced peaks in the fre-
quency spectrum [9, 10]. Since the first demonstration of
KFCs [7], they have been observed countless times in a
variety of platforms, materials, and spectral ranges, in-
cluding silica microtoroid resonators [11, 12], crystalline
microresonators [13], silicon nitride waveguide resonators
[14-18], diamond [19], aluminum nitride [20, 21], lithium
niobate [22, 23], and silicon [24].

KFCs emerge from multiple parametric resonant four-
wave mixing processes. On the one hand, they re-
sult from a double balance process, where the nonlin-
ear frequency shifts are balanced by the mode-frequency
dispersion in the microresonator. On the other, the
cavity losses are balanced by the gain induced by the
continuous-wave driving field.

For sufficiently strong drive, the frequency spacing in
the comb can be as small as the free spectral range of
the microresonator. In this case, a bright pulse circulat-
ing within the resonator, called dissipative Kerr soliton
(DKS) is formed [1, 10, 25-29]. DKSs are time-periodic
solutions of an otherwise time-independent open quan-
tum system dynamics [6, 30, 31]. A notable feature of
DKSs is that they are dynamically stable within a clas-
sical field approach: their waveform retains its shape in-
definitely, making DKSs a promising resource for preci-
sion measurements [6, 8], time keeping [32, 33], frequency
metrology [34-37], pulse shaping [15], communication en-
gineering [38-40], high-resolution spectroscopy [41-48],
and quantum information processing [49].

* kilian.seibold@epfl.ch

The rapid development of miniaturized integrated sys-
tems for KFCs and DKSs, operating at low power where
quantum effects are expected to be relevant, calls for a
detailed study of the influence of quantum fluctuations
on the spectral and dynamical properties of DKSs in
the low-power regime. While the quantum properties
of KFCs have been extensively investigated [2, 49-55],
only recently the quantum mechanical properties of the
DKS regime have been experimentally addressed [56].
In addition, both in the case of KFCs operated below
the parametric oscillation threshold and for DKSs, quan-
tum effects have been modeled under the assumption of
linearized quantum fluctuations, resulting in Gaussian
quantum fields [2, 49-57].

Here, we describe the quantum dynamics of DKSs us-
ing a Lindblad master equation, and investigate their
properties via the truncated Wigner approximation [58—
63] — an approximation to model driven-dissipative quan-
tum systems in terms of stochastic Langevin trajectories
sampled from the Wigner quasi-probability distribution.
The truncated Wigner approximation reliably describes
small quantum fluctuations, which are both due to the
presence of nonlinearity and to the influence of the envi-
ronment. These quantum fluctuations mainly introduce
spatio-temporal dephasing of the DKS among different
Langevin trajectories, as shown by our numerical sim-
ulations. When modeling the density operator of the
system, which describes the system properties averaged
over the statistical ensemble of Langevin trajectories, for
any finite value of the input power the DKS does not
persist indefinitely, but rather decays over time on aver-
age. We call the time scale, over which the soliton decays
on average the soliton coherence time. At times longer
than the soliton coherence time, the average dynamics
is described by a nonequilibrium steady state that re-
stores the time-invariant symmetry of the system. We
demonstrate that the soliton coherence time varies as a
power law of the strength of the nonlinearity, and the
semiclassical, dynamically stable DKS emerges from the
average dynamics in the limit of vanishing nonlinearity
and infinite driving field amplitude.

These results allow describing the DKS as an open



quantum system. The theory of open quantum systems
shows that, for any finite driving field and nonlinearity,
the system must reach a translationally invariant steady
state [64-66]. The decay of the DKS on average is a
manifestation of the approach to this steady state. We
demonstrate that the soliton coherence time corresponds
to the so-called Liouvillian gap, i.e., the slowest time scale
in the system.

Following the definition of Ref. [67], we can inter-
pret the emergence of a DKS as a specific manifesta-
tion of a dissipative time crystal (DTC'). DTCs [67, 70—
89] are a peculiar phase of a driven-dissipative quan-
tum system where the time-translational symmetry of
the equation of motion is broken and non-stationary
long-lived states spontaneously occur [90]. In the past
years, intense research has been devoted to investigat-
ing the conditions under which dissipation can prevent
a quantum many-body system from reaching a station-
ary state [84, 85, 90, 91]. This has led to numerous
proposals of quantum systems supporting a DTC phase
[67, 73, 76, 84, 92-99]. DTCs admit a natural explana-
tion in terms of the eigenvalues of the Liouvillian super-
operator, which generates the time evolution of the den-
sity matrix of an open quantum system [67, 100]. In a
DTC, multiple eigenvalues of the Liouvillian exist with
vanishing real and finite imaginary part [64, 101, 102],
giving rise to a nonstationary dynamics with diverging re-
laxation time towards a steady state. The present result
establishes thus a link between the long-lived DKS and
the DTC phenomenon. More specifically, the Liouvillian
is characterized by a set of eigenvalues whose imaginary
parts are integer multiples of the frequency defining the
free spectral range of the microresonator, and whose real
part goes to zero in the thermodynamic limit of infinite
photon number and vanishing nonlinearity.

The work is organized as follows. In Sec. II, we survey
the theoretical framework used for the quantum analysis
of DKSs. In Sec. III, we discuss the result obtained for
the dynamics of the system: in particular, we compute
the Liouvillian gap for decreasing drive power and depict
a schematic representation of the spectrum of the Liou-
villian. The main findings and conclusions of this work
are drawn in Sec. IV.

1 In this work, DTC stands for dissipative time crystal and not for
discrete time crystal [68]. In the context of open quantum sys-
tems, time crystals have been defined in several slightly different
ways. Here, we follow the definition of DTCs given in Ref. [67],
where DTCs are a critical phenomenon, emerging in the thermo-
dynamic limit, where an otherwise time-translational invariant
system develops everlasting oscillations. In discrete time crys-
tals, on the other hand, the discrete time-translation symmetry
is broken in a periodically-driven system. A recent experimental
demonstration of the realization of a discrete time crystal in a
simple, all-optical setup constituted of one resonator [69].
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Figure 1. Schematic representation of the generation of a Kerr
optical frequency comb using a high-Q Kerr optical ring mi-
croresonator. A continuous wave source drives the ring, which
induces the propagation of a soliton (depicted in red) along
the ring. The output signal shows the optical frequency comb.
When all the resonator modes participate in the parametric
process, the non-linear dynamics give rise to a DKS.

II. THEORETICAL FRAMEWORK

A. The open quantum system model and
Liouvillian gap

We consider a driven high-Q continuous optical ring
microresonator, whose schematic is shown in Fig. 1. The
system Hamiltonian, in a frame rotating at the driving
frequency, reads (h = 1):

1= oidfa + gF(dg + ao)
(1)

l
g At ata a
+ 5 Z 6m+p,n+qalagamap )
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where @ (d;r) is the annihilation (creation) operator of
the I-th angular momentum mode (i.e., the discrete set
of whispering gallery modes), satisfying the commutation
relation [&j, &H = Jjk. Only the lowest-energy mode
of the microresonator (I = 0) is driven by an external
continuous-wave laser of amplitude F'. The Kerr interac-
tion strength can be obtained from a microscopic model
as g = hwicng/(n3AcgL) [57, 103, 104], where c is the
speed of light in vacuum, ng is the refractive index of the
medium at the fundamental resonator frequency wq, no
is the Kerr parameter, A.g is the effective mode area,
and L is the resonator length. Note that miniaturizing
the resonator means decreasing the effective mode vol-
ume (Veg = AegL) and, hence, increasing the Kerr in-
teraction strength g. We set oy = 0¢ + wy — w;, where
09 = wp — wo is the detuning between the driving fre-
quency wy, and the fundamental resonator frequency wy,
and wy is the dispersion relation (which in this work is
assumed parabolic, w; o 12, see also Fig. 2).

In order to account for the finite lifetime of the pho-
tons inside the microresonator, we describe the dynamics



of the open system in terms of its reduced density ma-
trix p. Assuming a weakly interacting and a memoryless
environment (i.e., Born and Markov approximations), p
solves the Lindblad quantum master equation [58, 105]:

%:Cﬁ:fi[ﬂ,ﬁ]JrnZD[leﬁ- (2)

Here Da)]p = apa) — 1/2(afap + palay) is the dissi-
pator in Lindblad form accounting for the loss of pho-
tons from a mode [ into the environment and s is the
dissipation rate (which we assume uniform). £ is the
Liouvillian superoperator and its spectrum, defined by
the equation Lp; = A;p;, encodes the full dynamics of
an open quantum system. In most physically relevant
cases, the Liouvillian superoperator £ has a unique zero
eigenvalue, which defines the nonequilibrium steady state
dpss/dt = 0 [65, 66]. All other eigenvalues of the Liou-
villian have a negative real part, determining the irre-
versible dissipative dynamics towards the steady state.
The eigenvalue A;, whose real part is the smallest nonzero
in modulus, defines the Liouvillian gap A. A corresponds
to the inverse of the longest relaxation timescale of the
system. Critical phenomena, such as dissipative phase
transitions or the emergence of DTCs, are associated
with a closure of the Liouvillian gap, i.e., A — 0. A
complete account of the spectral theory of Liouvillians
can be found in, e.g., Ref. [66].

B. Classical-field approach to solitons

To numerically simulate the optical ring microres-
onator, we will consider a finite number of modes N,
around the [ = 0 driven mode. Except if differently spec-
ified, we will set N,, = 101 (i.e., we consider only the
modes [ = [—50,—49,...,50]). We verified that the re-
sults shown hereafter are only affected in one part in 10°
on the total population, as a result of this truncation in
the number of modes. Despite this simplification, the
numerically exact solution of the master equation (2), in
the regime of large occupation considered here, would be
computationally unfeasible.

DKSs in the weakly nonlinear regime are usually mod-
eled in terms of the classical Gross-Pitaevskii (GP) equa-
tion, whereby the classical field amplitudes of the res-
onator modes o = (@;) obey the equation

it +dt) = ay(t) +i { (al + zg) alt)

+9 D Snttmipm () ()ap(t) 3)

m,n,p

K
_Eps }dt ,
2 1,0

where &, indicates the complex conjugate of the field a,.
The GP equation leads directly to the Lugiato-Lefever

equation [106, 107] describing the real-space dynamics of
the soliton?.
Note that Eq. (3) is invariant under the scaling relation

& =a/VN, g=gN, F=F/VN, ()

where we introduced the dimensionless scaling parameter
N. The GP solution for the rescaled field ¢; only depends
on the product F?§ = F?g. In what follows, all reasults
are obtained by setting F2§ = 1, which corresponds to a
case well above the threshold for soliton formation (see

discussion in Sec. IITA).

C. The truncated Wigner approximation

Theoretical studies of DKSs beyond the GP approx-
imation have been mostly carried out by assuming lin-
earized quantum fluctuations around the GP solution,
i.e., Gaussian quantum fields [2, 49-57]. Quantum me-
chanical properties of the ring resonator can be better
described with methods based on quasi-probability dis-
tributions [58, 59], such as the truncated Wigner ap-
proximation (TWA). Indeed, in cases where the quan-
tum effects are a small (but non-negligible) correction
to the classical limit of very large photon occupation,
these methods account also for non-Gaussian quantum
fluctuations, which become relevant when increasing g.
Below, we recall the main ideas behind the TWA; for a
more detailed derivation, we refer the interested reader
to Refs. [58-63].

For a single mode of the electromagnetic field, the
Wigner quasi-probability distribution function W («) of a
given quantum state expresses the quasi-probability dis-
tribution function in the phase space spanned by @ and
P, with a = (Q + iP)/v/2. The quantities Q and P are
the (real) eigenvalues of the electromagnetic field quadra-
tures ¢, and p, with a = (¢ + ip)/v/2. For N,, modes,
the Wigner function W (&) is easily generalized in terms
of Ny, complex fields & = {a_p,,/2,...an,,/2}. The
density matrix can be expressed in terms of the Wigner
function as [109]

2 N, Nm /2 .
w@=(2) I denertni-ans.

(5)
where D(ay) = exp(al&zr — aja) is the displacement op-
erator. W(&) is a quasi-probability because it is real-
valued, but it can take negative values. The Lindblad

2 Usually, the GP (Lugiato-Lefever) equations are written as a
set of coupled ordinary differential equations. Here, we repre-
sent them as a set of differential forms in order to be consistent
with Eq. (6) below, which contains the stochastic term x;, ().
Otherwise, its definition would require to introduce stochastic
integration. We refer the interested reader to Ref. [108].



master equation for the density matrix of a quantum op-
tical system characterized by a Kerr nonlinearity maps
onto a third-order differential equation for W (&) in the
variables &. The exact solution of this equation is as
cumbersome as the solution of the corresponding mas-
ter equation. However, when in presence of a small Kerr
nonlinearity g and for sufficiently well-behaved functions,
the third-order terms can be neglected, resulting in the
TWA [60, 62]. The TWA correctly describes quantum
fluctuations up to the lowest (i.e. second) order in A
with respect to the mean-field equation, holding in the
limit of very large photon occupation [63].

The advantage of the TWA is that it defines a Fokker-
Planck equation for the complex fields @. By choosing an
appropriate initial distribution, the Fokker-Planck equa-
tion for W (&) can be cast into a set of Langevin equations
for the corresponding stochastic processes on the complex
fields oy, (t). Each instance of the stochastic process thus
results in a Langevin trajectory, and the average solutions
of the Fokker-Planck and master equations are obtained
from averaging over the statistical ensemble of possible
trajectories. In the case of the DKS model considered
here, the Langevin equations read

. R
au(t+dt) = @)+ { (o145 = 9) awu(®)
+9g Z Ont,m+pCm,pa (8) Oy () tp s (£) (6)

m,n,p

—%F&lﬁo} dt + \/rdt/2x1,,(t) -

Here, the index p runs on the distinct Langevin trajecto-
ries, and the term x;,,(t) is a complex Gaussian stochas-
tic variable defining each specific trajectory, and char-
acterized by correlation functions (x;(¢)x;(t')) = 0 and
(xi@®)xe(t')) = dtépd(t —t’'). The noise terms xi,,(t)
therefore account for the quantum fluctuations induced
by photon losses.

Within the TWA, it is possible to obtain the expecta-
tion value of symmetrized product of operators in terms
of an average over the sampled Langevin trajectories, ac-
cording to the formula

Tx [ﬁ(t) {@hr, @} } = ((@;(1))" (@1(t))™ stoc -

(7)
where we use the notation for the stochastic average
(@j(t))stoch = (Zg;ri” ozj,u(t)) /Niraj. In other words,
the expectation value of any observable is obtained by
sampling a sufficiently large number Ny.,;j of Langevin
trajectories, thus recovering the results of the Fokker-
Planck equation associated to the TWA. In the following,
the convergence of the results with respect to the number
of considered trajectories Niy,j used for the averaging is
carefully checked.

sym

From the solutions of the Langevin equations, the num-
ber of photons in each mode [ of the microresonator is

expressed by

Nl(t) = <‘O‘l(t)|2>stoch - % P (8)

and the photon density at position 6 is obtained as

N
4’

N9<t) = <|wﬂ(9>t)|2>stoch - (9)

where
1 )
Uu(0.6) = =3 (). (10)
l

Notice that Egs. (8) and (9) clearly illustrate how quan-
tum fluctuations are approximately described by the
TWA. In particular, Eq. (8) shows that the classical field
modeled by the Langevin equation contains quantum
fluctuations corresponding to half a photon per mode.
Similarly, Eq. (9) suggests that the Langevin field a dis-
crete element of real space Af, defined by the momentum
cutoff introduced by truncating to m modes, contains
quantum fluctuations corresponding to N,,/4m photons.
Contrarily to the GP equation, Eq. (6) is not invari-
ant under the rescaling introduced in Eq. (4). Indeed,
applying the same rescaling to Eq. (6), one obtains

G-+ ) = i 0) +{ (on 15— &) it

+g Z Ottt pQem,pu (8) G pu (8) G0 ()

m,n,p

. ~
_5p5w} dt +\/rdt/(2N)xi,(t)

(11)

which explicitly depends on N.

For coherent states, the scaling parameter N is pro-
portional to the ratio between the field intensity and the
fluctuations of the field quadratures, and therefore can be
interpreted as a measure of the classicality of the optical
system. Small values of N describe a regime with sizeable
quantum effects, where quantum fluctuations are of the
same order as the field intensity. As NN increases, fluc-
tuations become smaller compared to the field intensity,
and quantum effects become less relevant. This interpre-
tation of the quantity N holds also in the TWA, which
describes quantum states beyond the coherent-state ap-
proximation. Indeed, for large values of N, Eq. (11)
approaches the GP equation (3). Our goal is to investi-
gate how the quantum effects influence the dynamics of
a DKS by comparing the solution of Eq. (11) obtained
for different values of N, while keeping all the other pa-
rameters unchanged. Notice that, in light of the scaling
relations in Eq. (4), this procedure corresponds to solv-
ing the Lindblad master equation Eq. (2) for different
values of the nonlinearity g and the pump amplitude F,
in such a way that the product F2g remains constant.
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Figure 2. Integrated dispersion relation D;,:(l) versus rela-
tive mode number /. The red markers show the 101 spectral
modes that are considered in the numerical simulations. The
parameters are quoted in the text and correspond to typical
experimental situations [18].

III. RESULTS
A. Regime of parameters

A micro-ring resonator is characterized by its radius
R (and length L = 27w R), cross-section Aeg, quality fac-
tor @, resonant central frequency fo = wg /27, refractive
index mng, the Kerr parameter nq, and the group veloc-
ity dispersion fB5. The system is driven by a laser with
frequency wy.

From these quantities, the loss rate x and the non-
linearity ¢ in the Lindblad master equation (2) can be
determined respectively as [57, 103, 104]

wo

K= , 12
0 (12)
hwiens

— W 13

9= Al (13)

where c is the speed of light. Close to the driving field
frequency (i.e., wp >~ w,), the mode dispersion of the mi-
croresonator is approximated using a second-order poly-
nomial

1
wq :w0+Dll+§D2l2, (14)

where D; = ¢/(ngR) is the mean free spectral range
(FSR) and Dy = —(c/ng)D?B2. A positive value of Dy
characterizes the anomalous dispersion regime, which is
needed for the formation of DKSs [18]. The integrated
dispersion relation Dint(l) relative to the driving mode
at [ = 0 is defined by [c.f. Fig. 2]

Dint(l) =w; — (wo + Dll) . (15)

The driving parameter F is related to the power of
the external driving field through the relation P.,; =
hwypkF?/(4n), where 1 is the coupling efficiency (we as-
sume critical coupling, i.e., n = 1/2).

Typical parameters for a silicon nitride (SizNy) ring
resonator encapsulated in silica [18, 110], with R =
100 pm, are Aeg = 0.73 x 2.5 x 1072 m? [110], Q =
1.5 x 108 [18], fo = wo/2m = 193.5 THz [111] correspond-
ing to a wavelength A = 1.55 ym in the telecom range,
no = 1.99, ny = 2.4 x 10719 m?/W [112]. Consequently,
following Eqs. (12) and (13), /27 = 1.3 x 108 Hz and
g/2m = 0.39 Hz = 0.49 x 10~ %k.

Necessary conditions on the driving field detuning and
intensity must be fulfilled in order to observe a DKS in
the solution of the GP equation. In particular, we set
the driving field frequency to w,/2m = 193.47 THz, i.e.,
a detuning o¢/2m = —0.132 GHz [18]. The driving field
amplitude F' must be larger than a minimum threshold
value Fyr [26, 57, 107]. Expressing the minimum thresh-
old condition in terms of the parameters of the present
model results in F3 g/k = F3 §/k = 1/2. Given the val-
ues of k£ and g introduced above, the minimum thresh-
old is Fyy = 0.9 x 10%. Here, to ensure the appear-
ance of the DKS within the GP equation [107], we set
in all the analysis that follows, F' = 1.8 x 10%, i.e., twice
the minimum threshold, corresponding to a laser power
P.yt = 1.7 x 1072W (similar to that used in Ref. [18]).
This value, and the value chosen for g, therefore corre-
spond to the typical regime of current experiments, like
in Refs. [18, 110], where quantum fluctuations are very
small relative to the classical field. We arbitrarily set
N =1 for this choice of F' and g. In what follows, we
will study the results of the TWA for values of N rang-
ing between N = 6.3 x 1075 and N = 1. Values N < 1
describe cases with larger nonlinearity g and smaller driv-
ing field amplitude F', than the values of F' and g quoted
above, for which quantum effects are larger. Finally, we
define the dimensionless time parameter 7 = kt/2.

B. Dynamics of the soliton

We study the time evolution of DKSs by numerically
solving Eq. (11) for the rescaled fields &; obtained using
the TWA approach. Eq. (11) gives rise to a stochas-
tic trajectory in the space of the fields @&;, determined
by the specific realization of the noise term x; ,(¢). All
results in what follows are obtained by averaging over
several trajectories arising from different realizations of
X1,.(t). As initial conditions, we assume each mode to be
in a coherent state corresponding to the solution lePE
of the GP equation, which in turn is obtained by numer-
ically integrating Eq. (3) at long times. This choice has
the advantage of avoiding the integration of a possibly
long transient before the actual formation of a soliton
within a single trajectory. In the TWA formalism, this
choice of initial condition implies that the initial condi-
tion &;(t = 0) in Eq. (11) must be sampled from a Gaus-



8 - — — =
10 —N=1 -%-N=25x10"
(a) e N =10"2 —=N = 1.1 x 107°
- -N=10" N=6.3x10°
106 7..0 ...... .Q ...... 0 ...... .Q ...... .0 ...... .0 ...... .o ....... 0. ..... .o<>
=
3
=4
10435—-D--E--D--E--D-—E--D--E-I;]
B it Ao A o M o M S
*/-*—-*——-*—-*—-*—-*-—-*—-*—-m
102 .
0 10 20 30 40 50 60
T
10*
8| —
10 =
(b) X 110° §
107 ¢ X =
X 110t €
L 108 X g
3 X 102 I=
< 10° X ;=
X 1108 €
X g
0t o £
X 10 43
10%¢

Figure 3. (a) Time evolution of the total number of photons
in the ring for different values of N. (b) Total number of
photons in the ring and intracavity power versus the scaling
parameter N. The values are taken at 7 = 60, where the
photon number reached a stationary distribution.

sian distribution of variance 1/(2N) and average a°FF.

More precisely, we set

1
a1t =0)=af"® 4 — (16)

=M, »
Von "

where 7, is a complex random variable of zero mean,
verifying (my,,11,) = 0 and (7, ) = Oy

Fig. 3(a) displays the total number of photons in the
ring Nyot vs time, for varying N. The small initial tran-
sient is due to the difference between the solution of the
GP equation, which was used as initial condition, and the
actual TWA solution. In what follows, when analyzing
spectral features of the DKS, data will be taken in the
vicinity of 7% = 60, which are not affected by the tran-
sient. In Fig. 3(b) the dependence of Ny (7*) on N is
shown to be linear, Nyo; ~ N. Thus, also the intracavity
power Pr = hw,D1 Nyt /(27) (which is proportional to
the total number of photons in the microring) depends
linearly on N. We conclude that a small photon occupa-
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Figure 4. Snapshot of the mode occupation at 7* for N =
1 (a), 1072 (b), 107* (c), 2.5 x 107° (d), and 6.3 x 10~°
(e). The red dashed lines show the GPE prediction for the
mode occupation. Parameter values: o9 = —1.024k, D1 =
1.8587 x 103k, D2 = 2.02 x 1072k, g/2m = 0.49 x 10~°x and
F=1.8x 10"

tion and low intracavity power is reached only for small
N.

In Fig. 4, the photon number in the I-th mode N;(7*)
[c.f. Eq. (8)], is displayed for different values of N. For
the largest value of N, the output field is in agreement
with the prediction of the GP equation, while smaller val-
ues of N gradually display increasing features of quantum
fluctuations.

In Fig. 5 the photon density along the ring n(4,7) =
Ny(7)/(27), Ny being the number of photons in the po-
sition 0 [c.f. Eq. (9)]?, is displayed at increasing times
7 (left-to-right) and increasing N (bottom-to-top). For
N = 1 in Fig. 5(a-d), the soliton displays a constant
profile within the considered time window. However, for
smaller N, i.e., increasing the relevance of quantum fluc-
tuations, the soliton profile changes in time, in particular
by showing a decreasing contrast of the intensity profile
along the ring. For the smallest value N = 6.3 x 1076,
Fig. 5(m-p), the photon density quickly approaches a uni-
form distribution over the ring. We conclude that the
soliton is gradually smeared out over time by quantum
fluctuations, and smaller values of N correspond to faster

3 Notice that this definition ensures that Niot(T) =
Jdon(6, 7).

Zl Ny(r) =



disappearance of the soliton.

Single Langevin trajectories, from which TWA results
are drawn, give insight into the process leading to the
disappearance of the soliton in Fig. 5, as a result of quan-
tum fluctuations. A trajectory represents, in the limit of
small nonlinearities, the possible outcome of an exper-
iment with homodyne measurement of the output field
[113]. In Fig. 6, we plot three trajectories at different
values of N and at two different times. For N = 1072 a
sharp soliton peak in the photon density persists both at
short and long times. The position and height of the peak
slightly vary with the sampled noise realization, but this
difference is negligible with respect to the GP solution.
At the intermediate value N = 104, a similar behav-
ior only appears at shorter times, while at longer times
the trajectories differ significantly. For the smallest value
N = 4.4 x 1075 considered, we observe a faster loss of
coherence between different trajectories. Since the effect
increases when the nonlinerarity is larger, we conclude
that fluctuations, that are only responsible for a small
dephasing among different trajectories at short time, ac-
cumulate as time passes, leading to a loss of spatial and
temporal coherence, resulting in the smearing out of the
DKS once an average is taken (see Fig. 5).

From the point of view of open quantum systems, the
density matrix p(t), evolving under the Lindblad master
equation in Eq. (2), describes the average time evolution
of the microring resonator. Under quite general hypothe-
ses, an open quantum system admits a unique steady
state pss, towards which the system density matrix will
converge. In this sense, a system, which at ¢t = 0 dis-
plays a soliton, will eventually converge to such a steady
state. We can thus interpret the loss of soliton coher-
ence in Fig. 5 as the decay towards the steady state, and
call the timescale on which this process occurs the soliton
coherence time. Thus, to quantify the soliton coherence
time, we compute the Liouvillian gap A (i.e., the slowest
decay rate). Indeed, the DKS is the longest-lived process
of Eq. (2), and thus A is the inverse of soliton coherence
time (see Sec. ITA). To extract A, we consider the time
evolution of the contrast of the soliton defined by

maxg(n(f, 7))

el = 2 (0, 7)do /2

(17)

For a flat intensity profile along the ring, the value of
C(1) approaches 1. We estimate A by assuming an ex-
ponential behaviour vs time, C(7) ~ 1+ Aexp(—A7) and
fitting the numerical results.

_In Fig. 7, the Liouvillian gap is plotted as a function of
N. For large N the Liouvillian gap follows a power law
A ~ N with a < 0, indicating that the gap closes in the
classical limit N — oco. A similar power law emerges in
the dependence of A on Nyt (inset of Fig. Fig. 7). Here,
A~ N, with n = —0.97 &+ 0.01. This analysis indicates
the range of values of the input power for which a finite
soliton coherence time may be observed.

Summing up, the loss of coherence at the single tra-
jectory level appears mainly as a change in the soliton

position with respect to the GP solution. * And since
this effect emerges only in Langevin trajectories (stem-
ming from the TWA) and not in the GP equation, the
loss of coherence is due to quantum (i.e., beyond semi-
classical) fluctuations. Quantum fluctuations have two
contributions: One comes from the noncommutiative na-
ture of the Hamiltonian terms, and the other comes from
the system’s interaction with the environment, which in-
duces dissipation. The truncated Wigner approximation
takes them both into account (up to order ). The two
additional terms accounting for these fluctuations can be
obtained by comparing Eq. (6) with Eq. (3): a term pro-
portional to g (producing a deterministic effect with re-
spect to the GP equation), and the noise term x; ,, (which
induces random changes at a single trajectory, and thus
mixness in the density matrix). It is the combined ef-
fects of these two terms which leads to the soliton finite
coherence time.

C. DKS as a dissipative time crystal

The occurrence of a time-crystalline phase in a dis-
sipative system is signaled by the emergence of several
eigenvalues of the Liouvillian whose real part tends to
zero in the thermodynamic limit, and whose imaginary
part is a multiple of a finite frequency, as schematically
shown in Fig. 8.

We extract the imaginary part of the Liouvillian eigen-
values with the largest real part, by studying the Fourier
spectrum of the KFC

2
/2 to+NTT ) 5
SW(W) = ‘]V'T;T_‘ ; dteth()O(a = 07t) x N
0
(18)

where ¢(6,t) = Tr[p(t) x 1/vV2r >, 4], and T =
27/ D, is the rotation period of the soliton along the ring.
The parameters ty = 20s~! and Ny = 2 x 10* are set
to ensure that the dynamics is dominated by the eigen-
values with the largest real part. Notice that, for these
parameters, S, (w) does not depend significantly on the
position 6 at which the field ¢ is considered.

The computed power spectra are plotted in Fig. 9.
From the spectra, we extract the frequency spacing
Qgoliton = D1 = 1.86 x 103k, which coincides with the
classical prediction, indicating that quantum fluctuations
affect mainly the coherence time of the soliton, while hav-
ing negligible effects on the period of its motion along the
ring. For the smallest value of N = 6.3 x 107, where
A ~ 3x107 2k, the ratio A/Qgoliton is of the order of 1074,
These results indicate that the peculiar structure of the

4 While, at the single trajectory level, the processes of variation
in amplitude and spatio-temporal position is dominant, for even
smaller N and/or larger times, other phenomena like appearance
of multiple peaks are observed.
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Figure 5. Snapshot of the field density in real space at 7 = 0.5 x 10*x/2T = 8.5 (a,e,i,m), 7 = 1.5 x 10*x/2T ~ 25.4 (b,f,j,n),
7 =25 x 10*/2T ~ 42.3 (c,g,k,0), and 7 = 3.5 x 10*x/2T ~ 59.2 (d,h,l,p), for N = 1072 (a,b,c,d), 107* (e,f,g,h), 2.5 x 10~°
(i,j,k,]), and 6.3 x 107® (m,n,0,p). The density is plotted as a function of the coordinates z = Rcos(f) and y = Rsin(d), R
being the radius of the ring resonator. The soliton is depicted at times multiple of T' = 27/D; =~ 4.2 x 107*? s, the rotation
period of the soliton along the ring. For this choice of time, the peak of the soliton always occupies the same position in ring,

allowing an easier comparison between the different plots.

frequency comb (i.e. the presence of equally spaced, nar-
row spectral lines) is preserved even in the regime where
quantum effects produce a significant departure from the
predictions of the classical GP equation.

IV. CONCLUSIONS

We have carried out a theoretical study of DKSs in
microring resonators in terms of the truncated Wigner
approximation, which describes quantum fluctuations to
leading order in A and is therefore well suited for the de-
scription of regimes of large photon occupation as in cur-
rent experiments. We have shown that quantum effects
are responsible of a finite coherence time of the soliton,
which in the long time limit leaves place to an average so-
lution with the field uniformly distributed along the ring.
The timescale of the soliton decay towards the steady
state solution depends on the relative size of quantum
fluctuations, and decreases when quantum fluctuations
become larger. A scaling analysis of the TWA equations
indicates that a regime with large quantum effects may
be achieved by decreasing the driving field intensity while
correspondingly increasing the strength of the Kerr non-
linearity. The analysis provides clear indications about
whether this behaviour can be observed in experiments.

We have additionally shown that the timescale asso-

ciated with the soliton disappearance is determined by
the inverse Liouvillian spectral gap. More precisely, by
studying the power spectrum of the DKS, we have in-
ferred the complex eigenvalues of the Liouvillian super-
operator which governs the dynamics of the DKS as an
open quantum system. We have shown that the eigen-
values with the largest real part — besides the zero-
eigenvalue associated to the spatially uniform steady
state — are arranged to have a constant (negative) real
part, defining the Liouvillian gap, and evenly spaced
imaginary parts, corresponding to the Kerr frequency
comb. This arrangement emerges asymptotically in the
limit of large input power, and the Liouvillian gap van-
ishes as a power law of the total photon occupation in the
microring modes. We have therefore shown that DKSs
are a specific manifestation of a dissipative time crystal
— a general phenomenon which can arise in open quan-
tum systems and has been extensively studied in recent
times. Establishing the link between DKSs and dissipa-
tive time crystals is an important step in the study and
characterization of spontaneous time-translational sym-
metry breaking in quantum systems out of equilibrium.
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Figure 7. (a) Liouvillian gap A versus N. The error bars of
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law fit.
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Figure 8. Schematic representation of the spectrum of the Li-
ouvillian. The spectrum always has one zero eigenvalue, cor-
responding to the steady state (red cross). A set of eigenvalues
with vanishing real part and equally-spaced imaginary parts
emerges in the classical limit of large N (blue circles). The Li-
ouvillian gap is the distance between the complex eigenvalues
with the largest real part and the imaginary axis.
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(General discussion and outlook

In this thesis we explored the physics of driven-dissipative open quantum systems,
with a particular focus on the critical phenomena of dissipative Kerr solitons and
dissipative time crystals. Besides the theoretical study we were careful to address
the following points:

e the context and motivations in which the work is situated. Non-classical states of
light are the cornerstones of the second quantum revolution, leading to a plethora
of technological applications,

o the challenges involved in studying these systems numerically, with various
constraints either guiding or even imposing the choice of numerical method,

» experimental feasibility in terms of experimental platforms in quantum science
and technology. The emphasis is put on its implementation, in particular with
respect to integration and scalability in photonic platforms.

The driving idea was to provide a quantum study of the dynamics of several quantum
setups by means of the theory of open quantum systems. In particular, the quantum
master equation and the spectral analysis of the Liouvillian superoperator prove to be
invaluable tools for our analysis. The different results obtained in this thesis reflect
the power of these theoretical methods for the study of systems subject to critical
phenomena, such as dissipative phase transitions or dissipative time crystals.

On the methodology aspect, the quantum master equation was solved numerically by
exact diagonalization, as well as by the approximated truncated Wigner approach —
which accounts for quantum effects to lowest order.

We provide a quantum study of two different systems, characterized by a small,
respectively large, number of degrees of freedom. While the properties have been
obtained on systems of finite size and occupation, we extrapolated them in a “controlled”
thermodynamic limit of large photon occupation.
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We do also propose some experimental platforms in which theses models could be
implemented.

Let us summarise our findings here.

In chapter 4, based on the article [1], we investigate the behavior of two coupled
nonlinear photonic cavities, in the presence of inhomogeneous coherent driving and
local dissipations. Importantly, we do so under very general conditions which do not
rely on the presence of symmetries. We show that when the mean-field Gross-Pitaevskii
equation predicts a unique parametrically unstable steady-state solution, the open
quantum many-body system presents highly nonclassical properties.

This work provides strong evidence for the occurrence in this simple dissipative system
of a dissipative time crystal (DTC) phase characterized by spontaneous long lived
oscillations of the system observables, large fluctuations and non-classical correlations.
Moreover, the study of the dynamics in terms of the theory of open quantum systems
shows that this prototypical system is also a minimal model of dissipative Kerr solitons.
This therefore seems to indicate that DKSs are a specific manifestation of a DTC,
and the present study is an important step towards the characterization of quantum
correlations and entanglement in Kerr-soliton systems. It opens the way to the design
of optical devices for the generation of non-classical light.

Let us also note that this system presents interesting advantages in view of its realization
with current experimental technologies. Indeed, not only does the DTC phase persist
over a wide range of parameters, its occurrence does not require symmetries. This
system is therefore very robust and may be easily implemented experimentally, for
example on a superconducting circuit architecture or with coupled semiconductor
micropillars.

In chapter 5, we focus on dissipative Kerr solitons and present the findings of article
[3]. This is an expansion of the former studied dimer to the continuous version of
a ring resonator. We study the quantum dynamics of dissipative Kerr solitons that
can form in ring microresonators from parametric gain.

While usually described within a classical mean-field framework, I develop in my thesis
a quantum-mechanical model of dissipative Kerr solitons using the TWA. This allows
for an estimate of the Liouvillian spectrum of the system, and hence an analysis of the
phase structure. In particular, our results show that for any finite value of the input
power in the microresonator, the DKS solution does not persist indefinitely but decays
over time due to the presence of nonlinearity and fluctuations induced by losses.
The eigenvalues with the smallest (in absolute value) real part — besides the zeroeigen-
value associated to the spatially uniform steady state — are arranged to have a constant
(negative) real part, defining the Liouvillian gap, and evenly spaced imaginary parts,
corresponding to the Kerr frequency comb. Increasing the input power, the eigenvalues
of the Liouvillian get closer and closer to the imaginary line (the absolute value of
their real part shrinks), with the Liouvillian gap vanishing as a power law of the
total photon occupation in the microring modes. Eventually, in the infinite driving
strength limit, the gap closes and the DKS are expected to persist indefinitely. We
demonstrate that the timescale for this steady state to be reached has a power-law
behavior depending on the strength of the nonlinearity, and a true DKS emerges only
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in the limit of vanishing nonlinearity and infinite driving field amplitude.

This result allows us to show that dissipative Kerr solitons are a specific manifestation
of dissipative time crystals. Establishing the link between DKSs and dissipative
time crystals is an important step in the study and characterization of spontaneous
time-translational symmetry breaking in quantum systems out of equilibrium.

A scaling analysis of the TWA equations also indicates that a regime with large quantum
effects may be achieved by decreasing the driving field intensity while correspondingly
increasing the strength of the Kerr nonlinearity. The analysis provides clear indications
about whether this behaviour can be observed in experiments.

We have shown that quantum effects are responsible of a finite lifetime of the soliton,
which in the long time limit leaves place to a solution with the field uniformly distributed
along the ring. The timescale of the soliton decay depends on the relative size of quantum
fluctuations, and decreases when quantum fluctuations become larger.

Outlook

The results presented in this thesis pave the way for the possibility to use DKS as a
novel approach to the generation of quantum correlated states of photons.

This opens up various avenues for further research. For instance, it could be interesting
to explore in more detail the quantum properties of the soliton, like the existence of
squeezing or entanglement. Moreover, while we focused on the case in which there is
only one soliton in the resonator, a natural extension would be the quantum study
of the scenario with two or more solitons. In that case, entanglement between the
different solitons might appear.

On another side, it could be interesting to provide a detailed study of the phase transition
between dissipative time crystal and the normal phase, with an in-depth investigation
of how the spectrum of the Liouvillian changes between the phase characterized by one
zero eigenvalue, and the phase with the eigenvalues on the imaginary axis.

We leave this study for later times and/or for future generations of enthusiastic
open quantum system physicists.
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