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Pedestrian-Robot Interactions on Autonomous Crowd Navigation:
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Abstract— Autonomous navigation in highly populated areas
remains a challenging task for robots because of the difficulty in
guaranteeing safe interactions with pedestrians in unstructured
situations. In this work, we present a crowd navigation control
framework that delivers continuous obstacle avoidance and
post-contact control evaluated on an autonomous personal
mobility vehicle. We propose evaluation metrics for accounting
efficiency, controller response and crowd interactions in natural
crowds. We report the results of over 110 trials in different
crowd types: sparse, flows, and mixed traffic, with low- (<
0.15 ppsm), mid- (< 0.65 ppsm), and high- (< 1 ppsm)
pedestrian densities. We present comparative results between
two low-level obstacle avoidance methods and a baseline of
shared control. Results show a 10% drop in relative time
to goal on the highest density tests, and no other efficiency
metric decrease. Moreover, autonomous navigation showed
to be comparable to shared-control navigation with a lower
relative jerk and significantly higher fluency in commands
indicating high compatibility with the crowd. We conclude
that the reactive controller fulfils a necessary task of fast
and continuous adaptation to crowd navigation, and it should
be coupled with high-level planners for environmental and
situational awareness.

Index Terms— Mobile Service Robots, Human-Robot In-
teraction, Reactive Navigation Control, People detection and
tracking, autonomous navigation

I. INTRODUCTION

Mobile service robots offer great societal value, such
as transporting personal mobility devices (Segway, USA,
Rokuro, Japan), last-mile delivery services (Starship Inc.
USA), autonomous cleaning robots (Bluebotics, Switzer-
land), autonomous wheelchairs (Whill Inc. Japan), telepres-
ence robots and tour-guide robots. Nonetheless, most robots
are still limited to navigation in low-density areas, such as
pathways or large open areas with the basic safety control
system setting the robot to freeze as soon as it perceives
a likely contact with pedestrians [1], [2]. Such a reaction
would most likely be unexpected by pedestrians and lead
to more dangerous collisions with pedestrians stumbling on
the robot, a ”frozen” robot would become a danger to itself
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Fig. 1. Crowd navigation evaluation around the city of Lausanne, with the
robot Qolo using reactive navigation for obstacle avoidance and post-contact
compliance. Top, depicts the on-board people detection and tracking from
Lidar and RGBD data. Bottom, navigation view from the external camera
in dense mixed crowds environment

and bystanders [3], [4]. This is the case, in highly dynamic
environments such as malls, airports, markets, and mix-traffic
zones with other mobility vehicles (as shown in Fig. 1).

However, guaranteeing obstacle avoidance during navi-
gation in highly occupied areas would be unattainable for
current mobile service robots bounded by actuation power,
computational resources, and expected to behave as pedes-
trians, i.e., holonomic, reactive, communicative, and knowl-
edgeable of proxemics and other social rules. In this work,
we investigate possible reactive control strategies that avoid
the ”freezing” robot problem and experimentally validate the
compatibility and interaction with bystander pedestrians.

Different control approaches have been proposed for dy-
namic obstacle avoidance, from model predictive control
(MPC) applied as a quadratic program for avoiding collisions
(combining braking and steering) [5], or computing interac-
tions with other agents and formulating crowd navigation
as an optimal control problem [6]. As well, the partially
observable Markov decision process (POMDP) is a common
framework for planning with other agents’ uncertain inten-
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tions [7], [8], [9]. Other works in path planning solve the
dynamic environments through models of the crowd trained
in simulation. The work in [2] uses deep reinforcement
learning to plan the robot’s trajectory through a surrounding
crowd’s motion which is tracked and predicted by a separate
algorithm beforehand. [10] works similarly with predictions
of zones where the robot could become obstructing or
freeze, and the approach then avoids these zones. While the
work in [11] presents a time efficiency-based method for
path planning in crowd environments. Nonetheless, none of
these works guarantees continuous operation of the robot
navigation or offers a solution for fully blocked passages,
likely to occur in dense crowds. Moreover, none of these
methods has been systematically evaluated in natural crowds.

Dynamical systems (DS) based obstacle avoidance pro-
vides a fast and continuous solution through modulation
of obstacles, as offered in [12]. We have augmented this
approach with a compliant control mechanism, herewith miti-
gating risks and allowing the robot to navigate in post-contact
scenarios through sliding behaviour, as proposed in [13]. This
approach offers the reactivity of time-invariant DS combined
with contact estimations of impacts through a compliant
bumper, herewith ensuring impact absorption through passive
and active compliance for mitigating unexpected impacts
with mobile robots.

In this work, we provide a framework for crowd navi-
gation through an integrated reactive controller for obstacle
avoidance and post-contact sliding control. We contribute by
providing a systematic evaluation methodology and metrics
for robot assessment on crowd navigation tasks. We present
the results from testings in multiple natural crowd densities:
low (< 0.15 ppsm), medium (< 0.65 ppsm), and high
(< 1 ppsm), and crowd types: sparse, flows and mixed
traffics.

Previous works on crowd navigation have focused on three
main metrics: collisions, success rate, and time to goal [14],
[11]. While the work in [11], proposed a mid-density flow
evaluation (< 0.5ppsm) with volunteer participants in a
controlled setting, and used time efficiency and boundary
violations (virtual collisions) as main metrics. In contrast, we
propose evaluations on natural crowds with additional met-
rics that assess path efficiency, controller performance, and
robot-crowd interaction, similar to the simulation framework
offered in [15].

We validated the whole architecture for crowd navigation
and three reactive navigation controllers on a personal mo-
bility vehicle - Qolo [16] shown in Fig. 1, a type of powered
wheelchair for standing mobility of lower-limb impaired
people. Although results in this work were shown on a person
carrier robot, the proposed controller and metrics are equally
valid for any mobile robot. We provide the whole dataset of
the current experiments as open-access 1 in [17]. As well
as, all source code for processing and analyzing interactions

1Dataset website: https://www.epfl.ch/labs/lasa/
crowdbot-dataset/

2. Which should enable future research on understanding
people’s navigation around robots, and improving detection
and tracking methods.

II. PROBLEM STATEMENT

Obstacle avoidance methods usually consider a bi-state
problem with collisions as an absolute negative state which
in turn leads to the “freezing robot” problem [1], [2].
Nonetheless, contact might be inescapable when the robot’s
kinematic and dynamic constraints are below the pedestrians.
Hence, collisions might become unavoidable even in simple
scenarios. In our previous work [13], we focused on com-
bining active compliance with DS-based obstacle avoidance
which provides a way to slide around obstacles while in
contact and continue moving towards the goal. Sliding in
contact limits force to a determined safe threshold following
safe design considerations for robot impacts [18].

In this work, we target to prove the feasibility of crowd
navigation in natural crowds through reactive navigation con-
trol and developed appropriate metrics for its assessment. We
compare two methods for obstacle avoidance and compared
their performance with shared control (SC) as a baseline
with user-given commands [19]. We explored three different
controllers focusing on the following questions:

1) What difference can be observed in the representation
and control of an autonomous robot around actual
crowds?

2) How do the proposed reactive navigation methods
perform when the crowd density changes?

A. Control Architecture for Reactive Control in Dense
Crowd Navigation

In this work, we formulated the crowd navigation control
by dividing it into three main layers (as depicted in Fig. 2):
First, the high-level planner decides the motion direction and
velocity. In the robot Qolo a user intention recognition for
shared control is possible through a hands-free user interface
[19], or a standard virtual joystick. Second, a reactive control
layer that deals with local obstacle avoidance and post-
collision control through closed-loop dynamics of the robot
in its control space (ξ̇u). The main objective of the reactive
control module is to provide a layer for local navigation
assistance and immediate responsiveness to unmodeled or
unpredicted object occurrences or motions. Therefore, this
algorithm assumes a continuous dynamical system (DS)
guiding the robot’s motion to be existing and given by a
high-level algorithm that optimally plans towards its intended
goal (a user-given command, or a DS from planners).

For obstacle avoidance, we use a Modulated Dynamical
System (MDS) [12], representing obstacles analytically as
star-shaped level sets of a distance function that absorb the
robot’s footprint, thus, allowing the robot to be represented
as a point moving in Cartesian space. In the case of Qolo,
we control a single point in the bumper area as a holonomic

2Data analysis tools can be found here: https://github.com/
epfl-lasa/crowdbot-evaluation-tools
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Fig. 2. Controller architecture proposed for reactive navigation control on
crowds navigation. High-level planning was set from the user in shared-
control low-level blending or full autonomy it was replaced by a linear DS
towards an attractor at the desired location (20 to 50m ahead). Obstacle
avoidance used a VO-based optimization [20] or a modulated Dynamical
System (DS) [12]. Finally, a passive DS handles the post-collision through
sliding [13].

point. It guarantees to lead the robot to its goal (hereafter
called attractor) by assuming a circular virtual boundary (as
depicted in Fig. 3). Further details of this formulation are
described in [13]. Similarly, local obstacle avoidance could
be achieved through the Reactive Driving Support (RDS)
proposed in [20], which replicates the behaviour of the MDS
locally through Velocity Obstacles (VO) based controller.
While it sacrifices the guarantee to reach the global goal
(by itself, i.e., without an additional path planner), it allows
representing more accurately the robot shape detail and the
non-holonomic constraints of the robot’s kinematics.

For collision control, we have proposed a compliance and
contact force controller through a sliding method using a
known sensing surface over the robot’s hull with a limited
contact reference force Fn. Ensuring that the robot reacts
to unexpected contacts (in this case, limited to the frontal
bumper) and advances with a sliding manoeuvre should the
underlying obstacle avoidance lead away from the contact
surface without colliding with other obstacles, as we pro-
posed in [13].

We modelled the robot dynamics as:Mξ̈ +Cξ̇ = τc + τe,
where ξ̇ ∈ R2 represents the robot’s Cartesian velocity as
a time invariant position dependent dynamical system. M ∈
R2×2 corresponds to the virtual mass of the robot, C ∈ R2×2

accounts for centrifugal and Coriolis terms, τc represents the
control forces and τe any external disturbances to be rejected.
We use a controller of the form:

τc = λtfu(ξ̇) + (Fn + Fc)n̂−Dξ̇ , (1)
where fu(ξ) represents the driving force generated by the
nominal DS from the obstacle avoidance input, applied
tangentially to the collision surface (λt) in case of contact.
Fn represents a chosen force limit bounded by safety and

acceptability, while Fc represents the estimated contact force
in the n̂ normal surface. D ∈ R2×2 represents a negative
defined damping effect used for controlled sliding during
contacts. We transform the velocity to the domain of the
robot by a first-order Taylor expansion, thus the control for
the desired velocity ξ̇d is,

ξ̇d+1 =
Ts

M

(
(Fn + Fc)n̂−Dξ̇d

)
+ t̂T ξ̇ut̂ , (2)

where a discretizing time constant (Ts) is set to the sampling
time of the control loop, and M is a virtual desired mass for
impact response.

The third and final layer is a low-level control that
guarantees closed-loop velocity control and state feedback
to the higher-level controllers.

A key component for crowd navigation is the localization
and tracking of the environment and crowd (Ξ). We have set
people tracking through a real-time pipeline of sensing fusion
of Lidar-based detection by DR-SPAAM [21] and RGBD de-
tection by YOLO [22]. Whereas robot state (ξ) was estimated
on optical flow principle from a stereo camera (Intel T265)
fused with IMU and odometry. The full controller repository
can be found in [23].

III. EVALUATION METHOD FOR CROWD NAVIGATION

A. Evaluation Metrics

Evaluation of performance in crowd navigation for mo-
bile robots should account for the robot’s performance in
achieving its task, as well as the compatibility with pedestrian
navigation response and safety-related metrics.

We integrate and present feasible metrics for crowd-robot
interaction from embedded sensing and perception pipelines.
Moreover, we make use of 3D point-cloud sensing for further
assessment of the robot’s navigation performance in the
crowd through 3D people detection [24], and tracking [25].
The following metrics were considered:

1) Path Efficiency: Relative time to goal: The relative
time to goal compares the time taken by the robot to reach
its goal when it is alone to the time it takes when driving
in the crowd as: Trtg = tfree /tc, where tfree is the free path
completion time, and tc is the robot crowd navigation time.
Thus a Trtg = 1 would be a free path or 100% efficient
navigation.

Relative Path length: The relative path length compares
the length of the path taken by the robot to reach its goal
with and without a crowd as: Lr = Lgoal/Lc, where Lgoal

is the shortest path to the goal, and Lc is the traveled path
with the crowd.

Relative Jerk: The relative jerk evaluates the smoothness
of the path taken by the robot to reach its goal (Jc )
normalized to a reference jerk (Jref ) taken during a manual
operation of the robot around the crowd as follows:

Jrp = Jc /Jref ,

J = (1/tf )

tf∑
t=0

∆t
√
Jv2 + Jθ2 ,

(3)
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where the computed jerk J takes Jv and Jθ from the linear
and angular jerk, respectively. ∆t corresponds to the sample
time window over the period 0 ∼ tf .

2) Controller performance: These tests aimed to estimate
the level and type of assistance provided by the reactive
controller towards avoiding obstacles. We adapted these
metrics from shared control (SC) studies [26], [27], [28].

Contribution: C is calculated as C = ||ur − uu||/||uu||,
over a finite number of discrete samples N. Where the ur is
the user command in the robot command space (linear and
angular speed), Ur is the output command of the robot. Both
normalized to the maximum linear and angular velocities. In
case of full autonomy with a high-level input controller, we
evaluated the contribution as C = ((||ur||)/(||uu||)) . Where
||x|| represents the L2-norm of x.

Fluency: as a measurement of the commands temporal
continuity given that the reactive navigation is intervening
with the main driving DS desired motion as:

F =
1

N

tN∑
t=t0

1−
∣∣ut

h − ut−1
h

∣∣ , (4)

where uh is the high-level input from the user.
Agreement: We defined in terms of the deviation of the

direction of the high-level commands from the direction of
the final control’s velocity, as follows:

θ(u) = tan−1
( v

w

)
,

ai = 1−
∣∣θ (ziu)⊖ θ

(
ui
SC

)∣∣ /π,
agreement =

N∑
i=0

ai ·∆ti/

N∑
i=0

∆ti,

(5)

where v and w are the linear and angular velocities u =
[v, w], ai is the normalised agreement at time step ti and ui

SC

is the final output of the robot. N is the number of samples
available in which data from the high-level command input
ziu coincide in time with ui

SC , and ∆ti is the duration of
the high-level input command ziu.

3) Pedestrian interaction metrics:: Crowd density: We
report the crowd density in terms of mean, standard deviation
and max density. However, the limited field of view of
the robot as it is embedded in the crowd hinders overall
measurements. Therefore, we reported on the density within
2.5, 5 and 10m around the robot (as shown in Fig. 5(c)),
which explains better the scenario.

Minimal distance: the minimal distance to the robot held
by any pedestrian.

Virtual Collisions: number of violations to the virtual
boundary set to the robot controller, as shown in Fig. 3.

Collisions: number of collisions in a scenario reported by
the experimenters and post-analysis of the recordings.

B. Experimental Setup

In this work, we present an evaluation of natural crowd
navigation through reactive control. We have used the robot
Qolo [16] - a person carrier mobile robot for lower-limb
impaired users - instrumented as shown in Fig. 3.

Lidars

RGBD

Compliant 
Bumper

F/T 
Sensor

Pressure 
sensing 
interface

RDS boudary

MDS boudary

Robot’s physical boundary

Fig. 3. Robot sensing implementation on Qolo [16]: obstacle perception
with 2 LIDARs (Velodyne VLP-16), RGBD sensors (Intel Realsense D435),
force sensing with one Rokubi 2.0 (Botasys). With the perception and
control implemented on two embedded computers Upboard Squared, and
one Nvidia Jetson Xavier AGX. On the right, the boundary representations
used around the actual robot

We present a comparative evaluation of two modes of
obstacle avoidance (MDS and RDS) driven by a linear DS
towards a set attractor (or goal some distance from the
starting point). And compare it to a baseline of shared-
control where a user guides the high-level interaction with
the crowd (effectively, deciding the direction of motion).
Such evaluation allows observing the compatibility of the
methods with the crowd, the high-level commands, and the
effectiveness of pure reactive navigation. Two navigation
scenarios were developed for different crowd densities:

1) Scenario 1: In this scenario, we performed crowd
navigation on a mixed-traffic street (Rue de Saint-Laurent,
Lausanne). The path was chosen at an intersection of 6 streets
(as shown in Fig. 4, top). We encountered flows from low to
mid-density with mixed crowd types: 2D flows and sparse
crowds with static pedestrians. The sparse crowds’ mean
density was between 0.05 ppsm to 0.15 ppsm (40 records
50 m round trips, with 33 successful trajectories) and a max
crowd density of 0.7 ppsm. The experiment was repeated
over multiple dates during a farmer’s market to elicit similar
crowds.

2) Scenario 2: In this scenario, we performed 1D flow
navigation during the Christmas market (Place de l’Europe,
Lausanne), as depicted in Fig. 4, bottom. Here, we found
denser mixed crowds formed by people lining up and flows
of pedestrians. In this case, we followed the same protocol
of traversing a set path whose starting and ending goals were
30 m apart.

All data were recorded on ROS standard data type (rosbag)
with the following information:

• Pedestrian motion information in the form of a set of
two sets of 3D point clouds around the robot, including
all surrounding people and obstacles in a range of up
to 50 m.

• Pedestrian’s motion data from a forward-looking RGBD
camera, with people, labelled and blurred.

• Output from 3 people detection layers and 1 integrated
people tracker.

• Force/Torque information gathered by the contact sen-
sors at the robot’s bumper.

© IEEE All rights reserved. IEEE-IROS-2022, Oct.23-27. Kyoto, Japan.
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Fig. 4. Experimental setup on two mixed traffic streets with a fixed starting
point and goal (attractor). Scenario 1, constitutes a mixed influx of 6 streets
during a farmer’s market with up to 0.7 ppsm. Scenario 2, is a closed
pedestrian street with crowd crowds up to 1 ppsm, and the corresponding
experiment was conducted during the Christmas market.

• Recordings of the navigation interface input given by
the user/driver of the robot.

• Motion data was gathered from the robot inertia sensors
and odometry sensors.

• Video recording of the scene from the robot’s perspec-
tive without personal identification recording.

• *Video recording of the participant-robot driving in a
scenario, with no personal identification.

All data captured have been released as an open-access
dataset [17], with rosbag files and post-processing data for
each of the following scenarios.

IV. RESULTS

Scenario 1 was successfully recorded 95 times for about
5.0 km in sets of 20 m round trips (with 3 interrupted trials).
A sample data is given in Fig.5 around low and mid crowd
densities. Scenario 2 was successfully recorded 15 times
with the highest densities close to 1 ppsm from on-board
measurements.

A. Controller Response in Crowds

The overall crowd density (as shown in Fig. 5(c)) mea-
sured from the onboard sensing fluctuates around 0.12 ppsm,
with peaks of up to 0.6 ppsm. Although it is worth noting
that the current measurements are limited to the proximity
sensors, therefore, it could be possible that higher densities
were not visible from the robot’s viewpoint. Out of success-
fully recorded 16 MDS trials, 28 RDS trials, and 48 SC
trials. We qualified all data of successfully reaching the goal
with a margin of 3 m around the goal (as depicted in Fig.
4). Moreover, we took compatible trials with no significant
difference in crowd density variance among tests (mean and
max). Resulting on a set of 16 MDS trials, 20 RDS trials,
and 16 SC trials for comparison.

In the interaction with the crowd, the minimal distance to
pedestrians (Table I) during the trials showed to be lower
in the case of the RDS controller, compared with MDS
(p < 0.05, F = 3.9), which is expected for the RDS
controller having a more tight definition of the robot’s shape.
Nonetheless, in shared control where the obstacle avoidance
is provided by RDS, there was a significantly higher minimal
distance (p < 0.05, F = 4.4) to surrounding pedestrians.
This suggests that the high-level input from a user would
prefer a higher proxemic distance to the pedestrians than the
reactive controllers provided (∼ 0.5m).

The path efficiency results show a relative time to the goal
similar among controllers, with relative times from 30% up to
60% the efficiency of a free path. No significant difference
was observed among the methods. This suggests that the
reactive navigation for obstacle avoidance does not hinder
performance when compared with SC where the user can
take lead over the direction of motion. The relative path
length was similar among all recordings of MDS (21.5 ±
5.9m), RDS (20.2 ± 6.2), and SC (27.1 ± 12.8 ), showing
no significant difference.

The relative jerk (Fig. 6(d)) showed significant difference
between MDS and RDS controllers (p < 0.1, F = 7.3), with
RDS being 5% lower. RDS and SC mode (p < 0.01, F =
41.8), with RDS being 6% lower. On the contrary, comparing
SC and MDS did not show a significant difference.

In turn, the fluency of the controllers (Fig. 6(c)) was
significantly different among all tested controllers (p < 0.01,
F = 28.4), however, only in SC tests was observed a notice-
able difference with a 2% drop in the fluency of the user-
robot commands. Overall, this high fluency demonstrates the
compatibility of the reactive controllers with the high-level
planner.

Analyzing the controller contribution and agreement we
observed that RDS control guides most of the linear velocity
components with an average 87% contribution, whereas the
MDS controller provided 60% of contribution (significantly
different at the level p < 0.01, F = 80.6) and agreement
on the 70%. The difference in the approach to avoiding
obstacles is clear, with RDS controlling the magnitude of
the velocity, whereas MDS executes higher control over the
angular component.

Compared with SC, the results (see, Fig. 6) show that
the obstacle avoidance contributed to 50%, with agreement
over 85%, which means that the user was in control of the
motion direction 50% of the time, and the obstacle avoidance
assisted mostly in the velocity magnitude over the tests.

1) Collisions:: As detailed in table I, we observed, across
all tests, seven collisions leading to contact with pedestrians.
All of which occurred at the frontal bumper of the robot. In 5
of the collisions, either the operator on-board the robot or the
external supervisor of the tests pressed the emergency stop,
therefore no post-collision control was recorded on those
occasions. In the remaining 2 contacts (contacts with the
RDS model) the contact was with a pedestrian’s shopping
trolley, and the contact was below impact threshold Fc =
45N , so that, there was not any perceived reaction from the

© IEEE All rights reserved. IEEE-IROS-2022, Oct.23-27. Kyoto, Japan.



t = 2 s t = 12 s t = 16 s t = 24 s t = 38 s

(a) Snapshot of the experiment where a user onboard the robot Qolo acts as safety operator while the robot drives in full autonomous mode to
navigate 20 m ahead in the mixed crowd flow with parts of the trajectory in low-density < 0.2ppsm (t = 2, 12, 38), and mid-density < 0.7ppsm
(t = 24).
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(b) Robot trajectory over one round trip to the goal location (further point to
the right). Detected pedestrians are over-imposed with labelled numbers and
corresponding colours at t=5, t=75, and t=118.6.
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Fig. 5. Experimental setup example of one of the 110 trials of point-to-point navigation running around crowds in the city of Lausanne (Switzerland)).
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(d) Relative Jerk.
Fig. 6. Controllers evaluation among the task on scenario 1 on crowds
between low-mid densities (up to 0.6 ppsm). All tests were compared by
a one-way ANOVA at the levels ∗ → p < 0.1, ∗∗ → p < 0.05, and
∗ ∗ ∗ → p < 0.01.

compliance controller, nor was collision perceived by the
pedestrian.

We documented each collision case and found the fol-
lowing possible causes for the controller behaviour. First,
limited acceleration on the robot that could not match the
pedestrian’s acceleration. Probable cause of one collision
with RDS test, and one with SC. Second, non-holonomic

TABLE I
CONTROLLER COMPARISON IN MID-DENSITY CROWDS

Metrics
Controller

MDS RDS Shared control

Avg. crowd density 0.12± 0.03 0.13± 0.03 0.12± 0.03
Max crowd density 0.45± 0.08 0.47± 0.12 0.51± 0.14
Min distance 1.19± 0.16 1.08± 0.18 1.20± 0.16
Time to goal 0.28± 0.09 0.32± 0.10 0.29± 0.07
Path length 1.41± 0.21 1.34± 0.20 1.52± 0.52
Jerk 0.13± 0.06 0.09± 0.03 0.15± 0.02
Contribution 0.58± 0.12 0.89± 0.09 0.49± 0.21
Avg. fluency 0.97± 0.02 0.99± 0.01 0.95± 0.02
Avg. agreement 0.71± 0.06 0.74± 0.04 0.89± 0.02
Virtual collision 3.50± 2.71 7.05± 7.92 4.25± 3.11
Actual collision 2/16 2/20 3/16

constraints in dense crowds limit reactivity, a probable cause
for one collision with MDS. Third, pedestrians being very
close to a surrounding obstacle generated false negatives in
pedestrian detection. Probable cause for two collisions with
SC and MDS tests.

Virtual collisions, defined as entering the virtual space
of the robot controller (as depicted in Fig. 3). We found
a slightly lower number of cases on the MDS controller
compared with RDS (p < 0.1, F = 2.9), with no significant
difference to SC. This result is expected given the larger size
of the robot representation used in MDS, which forces the
robot to be further away from pedestrians.

B. Crowd Density Influence on Controller Response

We took 48 samples from scenarios 1 and 2 of successful
crowd navigation within the set points using the shared con-
trol navigation. Subsequently, we cluster the data in 3 groups

© IEEE All rights reserved. IEEE-IROS-2022, Oct.23-27. Kyoto, Japan.
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(d) Relative time to goal.

Low Medium High
0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
on

tri
bu

tio
n

**

*

(e) Controller contribution.

Low Medium High
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Av
er

ag
e 

ag
re

em
en

t

**
***

(f) Controller agreement.
Fig. 7. Navigation evaluation among the task on scenarios 1 and 2
comparing reactive navigation performance by crowd density. The cluster
size was 15, 20, and 13 for low, medium and high density, respectively. All
tests were compared by a one-way ANOVA at the levels ∗ → p < 0.1,
∗∗ → p < 0.05, and ∗ ∗ ∗ → p < 0.01.

of low, medium and high densities considering average,
variance and max densities in 2.5m and 5m, resulting in the
metrics computed in table II. The metrics with a significant
difference among the density conditions are shown in Fig. 7.

The proximity of pedestrians clearly drops consistently
with the crowd density (p < 0.01, F = 53.3) as shown
in Fig. 7(c). Meanwhile, the average number of virtual
collisions increases significantly only to medium densities
(p < 0.01, F = 15.3). We observe, in sparse crowds a mean
of 2.9 virtual collisions per test, whereas an average of 12
collisions per test in dense crowds.

Nonetheless, it is worth noting that in high-density crowds
no actual collisions or contacts were recorded. Contrary to a
medium density where we recorded 3 contacts.

Comparing the path efficiency, we found a significant
difference (p < 0.01, F = 8.5) in the relative time to goal
with navigation on high density dropping 10% of the relative
time. In contrast, relative path length showed no significant
difference among the tested crowd environments. Hence,
we observe an expected behaviour compatible with human
crowds where the reactive controller operates by adjusting
its velocity to the crowd.

Fig. 7(e) shows the comparison of the controller contribu-

TABLE II
CROWD NAVIGATION COMPARISON IN DIFFERENT DENSITIES

Metrics
Crowd density

Low Medium High

Avg.Density (2.5m) 0.08± 0.02 0.18± 0.03 0.26± 0.04
Max.Density (2.5m) 0.37± 0.07 0.64± 0.06 0.78± 0.06
Avg.Density (5m) 0.09± 0.02 0.17± 0.02 0.19± 0.02
Min.Distance 1.44± 0.24 0.96± 0.13 0.85± 0.11
Time to goal 0.33± 0.09 0.30± 0.10 0.20± 0.10
Path length 1.46± 0.57 1.74± 1.28 2.89± 4.07
Jerk 0.14± 0.03 0.14± 0.03 0.15± 0.03
Contribution 0.51± 0.23 0.59± 0.14 0.69± 0.15
Avg. fluency 0.95± 0.02 0.96± 0.02 0.95± 0.01
Avg. agreement 0.82± 0.11 0.75± 0.08 0.72± 0.05
Virtual collision 2.93± 2.94 13.15± 19.28 12.08± 8.50

tion for the navigation. We observe no significant difference
between low-mid densities, with only high density showing
a significantly higher contribution (p < 0.05, F = 3.9)
with a mean of 69%. In the agreement metric with the user,
we observe significantly high values (82%) in low density
(p < 0.05, F = 5.8), which drops to 75% in medium
density, and 72% in high density. i.e., sparse low-density
crowd navigation required less reactive control assistance
whereas in the cases of mid- and high-density required
increased reactive control contribution although no decreased
agreement was registered. The user and the controller likely
agree on the direction due to the more restrictive available
space in the flow of dense crowds

V. SUMMARY AND CONCLUSIONS

In the current evaluation of a reactive controller for crowd
navigation, we have shown its feasible to navigate around
natural pedestrian crowds demonstrating the controller’s
compatibility with the behaviour of bystander pedestrians.
During all 110 trials in different crowd types: sparse, flows,
and mixed crowds, we did not report any incidents with
pedestrians, although, we recorded 7 contacts within safe
limits. On the contrary, any comments made by bystanders
were positive about the perceived utility of assistive naviga-
tion technology for mobility-impaired users.

The reactive navigation controllers showed to perform
similarly in trajectory efficiency and fluency during the
motions. The controllers differ in the way to avoid obstacles,
one mainly deviating through angular velocity (MDS) and
the other mostly by reducing speed (RDS). It is hence ex-
pected that they lead to measurable differences such as faster
displacement to the goal for MDS than RDS (confirmed
by results), larger jerkiness for MDS than RDS (confirmed
by data). One may have expected that MDS leads to more
collisions than RDS but this is not confirmed by the results.
However, the number of collisions were too few to conclude.

A significant difference found in the reactive controller
response was given by the type of crowd, where sparse
and mixed traffic crowds in the medium density showed to
be more difficult to navigate with a lower agreement with
the user at the same level of contribution. In contrast, flow
crowds made it easier for the controller to respond to a
somewhat uniform response of the surrounding pedestrians,
as validated with the equal agreement levels (see, Fig. 7).
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The proposed reactive controller focused on a single layer
of the robot response for crowd navigation which performs
efficiently compared with shared control, with no significant
difference in time to goal, minimal distance to pedestrians,
motion jerk, and path length. Further work should focus
on situational awareness of the complex mixed crowd en-
vironments, as required when interacting in complex envi-
ronments, e.g., on some occasions, the robot did not interact
appropriately with the environment. i.e., getting inside stores,
getting in the middle of people lining up, and entering shops
in the wrong direction. In comparison, shared control was
more natural, and most of the tests ran smoothly without
bystanders even noticing the robot.
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