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Abstract— This paper proposes a parallelizable algo-
rithm for linear-quadratic model predictive control (MPC)
problems with state and input constraints. The algorithm
itself is based on a parallel MPC scheme that has originally
been designed for systems with input constraints. In this
context, one contribution of this paper is the construction
of time-varying yet separable constraint margins ensuring
recursive feasibility and asymptotic stability of sub-optimal
parallel MPC in a general setting, which also includes state
constraints. Moreover, it is shown how to tradeoff online
run-time guarantees versus the conservatism that is intro-
duced by the tightened state constraints. The correspond-
ing performance of the proposed method as well as the cost
of the recursive feasibility guarantees is analyzed in the
context of controlling a large-scale mechatronic system.
This is illustrated by numerical experiments for a large-
scale control system with more than 100 states and 60
control inputs leading to run-times in the millisecond range.

Index Terms— Model Predictive Control, Parallel Com-
puting, Real-Time Control, Recursive Feasibility

I. INTRODUCTION

MODEL predictive control (MPC) [1] is a modern op-
timization based control technique. In many industrial

applications of MPC [2] linear models with quadratic costs are
used, such that the online optimization problems can be formu-
lated as quadratic programming (QP) problems. As state-of-
the-art centralized solvers, including active-set solvers [3] and
real-time interior point solvers [4], can solve moderately sized
QPs within the milli- to microsecond range, the run-time of
these solvers is hardly ever a problem for medium-scaled MPC
problems. For larger problems, however, one needs to use first
order methods, which can exploit the sparsity and structure of
the online QPs. Examples for such first order methods include
dual decomposition [5], ADMM [6], and ALADIN [7] with
constant Hessian approximations, which have all been further
adapted for solving distributed MPC problems [8]–[11]. In
practice, first order methods often need thousands of iterations
until a sufficient numerical accuracy is achieved. This can
be a problem for some large-scale applications. Moreover, if
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one is interested in providing stability guarantees, it is not
always clear how to trade off the run-time versus the numerical
accuracy of these solvers.

The present paper proposes a non-trivial extension of the
parallel MPC scheme from [12], which combines ideas from
both first order methods and Explicit MPC methods [13]. In
this context, it is important to understand first that Explicit
MPC can usually only be used for systems with a limited
number of constraints such that one can solve associated multi-
parametric QPs offline, by pre-computing piecewise affine
(PWA) solution maps [13]. These PWA maps are then eval-
uated online for real-time control [14]. However, the number
of critical regions of PWA solution maps of MPC problems
grows, in the worst case, exponentially with the number of
constraints [15]. This renders traditional Explicit MPC essen-
tially inapplicable to large-scale MPC. Nevertheless, if one
uses a parallel MPC scheme, one can solve the smaller-scale
distributed QPs by using methods from Explicit MPC [12].

Apart from the above literature on QP solvers for MPC,
much literature can be found on the stability and recursive
feasibility of distributed MPC controllers in the presence of
state constraints. For instance, in [16] a terminal set for
cooperative control is designed in order to track changing
set-points. In [17], a separable terminal cost combined with
time-varying local terminal sets is introduced. And, in [18],
an adaptive terminal region computation scheme is used to
reduce conservatism. Comprehensive reviews of the applica-
tion of invariant (or contractive) sets in the context of stability
guarantees for distributed MPC can be found in [19]–[21].

Outline: Section II reviews existing parallel MPC methods
for systems with input constraints [12]. The main theoretical
contribution of the current article is presented in Section III,
which discusses a general strategy for constructing separable
time-varying robustness margins for state-constrained linear
systems by using contractive ellipsoidal sets. Section IV
explains how these time-varying constraints can be featured
within the context of real-time parallel MPC while maintain-
ing both recursive feasibility as well as asymptotic closed-
loop stability of the associated sub-optimal MPC controller.
Section V presents a numerical case study for a large-scale
MPC problem with more than 100 system states.

Notation: We use the notation diag(v) to denote the di-
agonal matrix in Rn×n, whose diagonal elements are the
coefficients of a vector v ∈ Rn. The Minkowski sum and
Pontryagin difference of two given sets X,Y ⊆ Rn are



denoted by

X ⊕ Y def
= {x+ y | x ∈ X, y ∈ Y }

and X 	 Y def
= {z | {z} ⊕ Y ⊆ X} .

(1)

II. PARALLEL EXPLICIT MPC
This paper concerns the linear-quadratic MPC problem

JN (x̂)
def
= min

x,u
x>NPxN +

N−1∑
k=0

(
x>k Qxk + u>k Ruk

)

s.t.


∀k ∈ {0, . . . , N − 1},
xk+1 = Axk +Buk | λk,
x0 = x̂, (xk, uk) ∈ X× U ,

(2)

where A and B denote system matrices of appropriate dimen-
sion, Q, R, P positive definite tuning parameters, xk and uk
the states and controls, and λk the co-states of (2). Moreover,
x̂ ∈ Rnx denotes the initial measurement. Polyhedral state and
control constraints are given by

X = {x ∈ Rnx | Cx ≤ c} (3a)
and U = {u ∈ Rnu | Du ≤ d}, (3b)

where C and D are given matrices and c > 0, d > 0 are
associated bounds, such that the point (0, 0) ∈ X×U is strictly
feasible. The latter condition ensures that P can be found by
solving an algebraic Riccati equation [1], such that we have
JN (x̂) = J∞(x̂) for any sufficiently large prediction horizon
N and any initial state x̂.

Remark 1: The assumption that N is sufficiently large, such
that JN = J∞, is introduced for simplicity of presentation.
Alternatively, one can leave the terminal cost away and rely
on turnpike horizon bounds [22].

A. Parallel MPC with input constraints
This section reviews an existing parallel MPC scheme

from [12] for systems with input constraints but X = Rnx ,
where (2) is solved by starting with initial guesses

z = [z>0 , z
>
1 , . . . , z

>
N ]> and v = [v>0 , v

>
1 , . . . , v

>
N−1]>

for the state and control trajectories, as well as an initial
guess for the co-state λ = [λ>0 , λ

>
1 , . . . , λ

>
N−1]>. The method

proceeds by solving the optimization problems1

min
u0∈U

‖u0‖2R − λ>0 Bu0 + ‖u0 − v0‖2R , (4)

min
xk,uk∈U

‖xk‖2Q + ‖uk‖2R − λ>k Buk + (λk−1 −A>λk)>xk

+ ‖xk − zk‖2Q + ‖uk − vk‖2R , (5)

and min
xN

‖xN‖2P + λ>N−1xN + ‖xN − zN‖2P (6)

in parallel with k ∈ {1, . . . , N − 1} in (5). If (z, v, λ) is an
optimal solution of (2), the solutions xk and uk of (4), (5),

1Notice that (4), (5), and (6) are parametric QPs for which it is sometimes
possible to precompute explicit solution maps for online evaluation [23], [24].
In particular, if Q,R, P in (2) and D in (3b) are block-diagonal, each of the
decoupled QPs is itself separable and thus can be further parallelized.

and (6) are an optimal solution of (2). However, in general, our
initial guesses are not optimal. Therefore, the current iterates
for x and u might not even correspond to a feasible trajectory.
Consequently, we solve a consensus problem2 to update the
variables (z, v, λ)

min
z+,v+

N−1∑
k=0

∥∥∥∥∥
[
z+
k + zk − 2xk

v+
k + vk − 2uk

]∥∥∥∥∥
2

Σ

+ ‖z+
N + zN − 2xN‖2P

s.t.


∀k ∈ {0, . . . , N − 1},

z+
k+1 = Az+

k +Bv+
k | δk,

z+
0 = x̂

(7)

with Σ = diag(Q,R). The decoupled QPs (4), (5), and (6)
and the consensus QP (7) need to be solved repeatedly, in an
alternating way, as detailed in Algorithm 1.

Algorithm 1 Parallel MPC with input constraints.
Initialization: Guesses for the states, inputs, and co-states (z, v, λ).
Online:

1) For m = 1 : m:
a) Solve the decoupled QPs (4), (5), and (6) in parallel to

compute the optimal solution

x = [x1, . . . , xN ] and u = [u0, . . . , uN−1] .

b) Compute an optimal primal-dual solution (z+, v+) of
the consensus QP (7), and update

z ← z+, v ← v+, λ← λ+ δ .

2) Send u0 to the real plant.
3) Shift all variables and go to Step 1,

z ← [z1, . . . , zN , 0] , v ← [v1, . . . , vN−1, 0] ,

λ← [λ1, . . . , λN−1, 0] .

Because Step 1) of this algorithm implements a finite
number of iterations m at each MPC step, Step 3) sends only
an approximation, u0 ≈ u?0, of the optimal control input u?0
to the real plant. Therefore, there arises the question in which
sense Algorithm 1 yields a stable, let alone feasible controller.

B. Convergence rate estimates
In order to review the convergence properties of Algo-

rithm 1, we introduce the auxiliary function

Φ(z, v,λ)
def
=

N−1∑
k=0

(
z>k Qzk + v>k Rvk

)
+ z>NPzN

+
1

4

(
‖B>λ0‖2R−1 +

N−1∑
k=1

‖B>λk‖2R−1

)

+
1

4

(
N−1∑
k=1

‖λk−1 −A>λk‖2Q−1 + ‖λN−1‖2P−1

)
,

which corresponds to the sum of the objective function of (2)
and its weighted conjugate function—see [12, Sect. II.B] for

2The consensus QP (7) can be viewed as a parametric LQR problem, for
which a linear explicit solution map can be pre-computed [25].



details about the properties of this function. Notice that Φ is a
positive definite quadratic form that can be used to measure the
distance ∆ from the current iterate to the primal-dual solution
(x?, u?, λ?) of (2), given by

∆(z, v, λ)
def
= Φ(z − x?, v − u?, λ− λ?) . (8)

A proof of the following lemma follows by combining the
results from [12, Thm. 1 & Thm. 2].

Lemma 1: Let u0 denote the approximately optimal input
that is sent to the real process in Step 2 of Algorithm 1 after
running a finite number of iterations m. Moreover, let

x+
0

def
= Ax̂+Bu0 ,

denote the approximately optimal closed-loop state at the next
time instance and x?1 the optimal state that would be reached
if the optimal input u?0 would be send to the real plant. Then
there exists a constant κ < 1 such that

‖x+
0 − x?1‖ ≤ σ(1 + κ)κm+1∆(z, v, λ), (9)

for any constant σ > 0 that satisfies BTQB � σR, where
z, v, λ denotes the initialization of Algorithm 1.

III. CONTRACTIVE SETS AND FEASIBILITY

Throughout the following derivations, we assume that the
pair (A,B) is asymptotically stabilizable recalling that this is
the case if and only if one can find a linear feedback gain
K for which the spectral radius of the matrix A + BK is
strictly smaller than 1. If this assumption holds, there exists a
contractivity constant β ∈ R satisfying

ρ(A+BK) < β < 1, (10)

where ρ(·) denotes the spectral radius. The following sections
present various technical developments based on this assump-
tion on (A,B) that will later be needed in Section IV to
construct a recursively feasible parallel MPC controller.

A. Ellipsoidal contractive sets
This section reviews the standard definition of β-contractive

sets, which reads as follows.
Definition 1: A set Z ⊆ X is called β-contractive if

∀x ∈ Z, ∃u ∈ U, Ax+Bu ∈ βZ .
Notice that β-contractive sets exist whenever (10) holds. In
particular, a β-contractive ellipsoid of the form

Z = E(Z)
def
=
{
Z

1
2 v
∣∣∣ ‖v‖22 ≤ 1

}
,

with shape matrix Z can be found by solving the convex semi-
definite programming (SDP) problem

min
Z

tr(Z)

s.t.



(A+BK)Z(A+BK)> � β2Z,

r2I � Z,

Z = Z> � 0,

CZC> ≤ (1 + α)−2 · diag2(c)

DKZK>D> ≤ (1 + α)−2 · diag2(d)

(11)

for a given constant α ≥ βN and a given inner radius r > 0.
Proposition 1: Let X and U be given as in (3a) and (3b)

with c > 0 and d > 0, and let β satisfy (10). If the radius
r > 0 is sufficiently small, then (11) admits a minimizer Z
and E(Z) is a β-invariant set with inner radius r.
Proof. Lyapunov inequalities of the form SZS> � Z admit a
symmetric and positive definite solution if the eigenvalues of
S are all in the open unit disk. Because β satisfies (10),

S = β−1(A+BK)

has this property and the first semi-definite inequality in (11),
together with the condition Z = Z> has a positive definite so-
lution. These Lyapunov conditions are equivalent to enforcing
the ellipsoid E(Z) to be contractive [26], while the feasibility
constraints

(1 + α)E(Z) ⊆ X and (1 + α)KE(Z) ⊆ U

are equivalent to enforcing the last two inequalities in (11).
Since the Lyapunov contraction constraint is homogeneous in
Z while c > 0 and d > 0, we can find a small inner radius
r > 0 of E(Z) for which all inequalities in (11) are strictly
feasible. As the objective of (11) is bounded from below by
tr(Z) ≥ nxr2, the statement of the proposition follows. �

Remark 2: The trace of the matrix Z in the objective of (11)
could be replaced by other measures that attempt minimizing
the size of the ellipsoid E(Z). For instance, one could also
minimize the determinant or the maximum eigenvalue of Z.

B. Separable safety margins and terminal regions

Because Z = E(Z) is an ellipsoid, this set is not separable
and, consequently, may not be used directly as constraint or
terminal region, as this would be in conflict with our objective
to exploit the separable structure of (2). Nevertheless, an
important observation is that the polyhedra

Wk
def
= U	 (1− βk)KZ (12a)

and Yk
def
= X	 (1− βk)Z (12b)

admit explicit separable representations whenever X and U
are separable—despite the fact that Z is not separable. These
polyhedral sets are represented as Yk = {x | Cx ≤ ĉk } and
Wk = {u | Du ≤ d̂k }, where

ĉk
def
= c− (1− βk)


√
C1ZC>1

...√
CncZC

>
nc

 (13a)

and d̂k
def
= d− (1− βk)

 √D1KZK>D>1...√
Dnd

KZK>D>nd

 . (13b)

Thus, Yk is trivially separable whenever C is block-diagonal
and the same holds for Wk whenever D is block-diagonal. We
recall that Proposition 1 ensures that the sets Wk and Yk are
non-empty if Z is a feasible solution of (11).

In the following, we introduce the terminal region

T def
= αZ , (14)



where α ≥ βN is the constant used in (11). As this ter-
minal region is—in contrast to the sets Yk and Wk—not
separable, we will have to discuss later on how we actually
avoid implementing it. However, for the following theoretical
developments, it is convenient to temporarily introduce (14).
Because α is used to scale the last two inequalities in (11), T
is a feasible β-contractive set. It satisfies

(A+BK)T⊕βN (1−β)Z ⊆ (αβ+βN (1−β))Z ⊆ T, (15)

where the first inclusion follows from the fact that Z is
β-contractive, while the second follows by substituting the
inequality α ≥ βN . Moreover, since the factor (1 + α) has
been introduced in (11), T ⊆ YN holds by construction.

C. Admissible set

One of the core technical ideas of this paper is to introduce
a set of admissible state and control pairs, given by

A def
=

(x, u)

∣∣∣∣∣∣∣∣∣∣
∃y, w : ∀k ∈ {0, . . . , N − 1},
(y0, w0) = (x, u),

(yk, wk) ∈ Yk ×Wk

yk+1 = Ayk +Bwk, yN ∈ T

 , (16)

where the separable sets Yk and Wk are defined as in (12a)
and (12b), respectively. We recall, the set T, as defined in (14),
is not separable but introduced temporarily for the sake of
analyzing the set A in (16). The following lemma establishes
a robust recursive feasibility result that turns out to be of high
practical relevance for the construction of distributed MPC
controllers.

Lemma 2: If (x, u) is an element of the admissible set,
(x, u) ∈ A, then there exists for every x+ satisfying∥∥x+ − (Ax+Bu)

∥∥
2
≤ (1− β) r (17)

a control u+ such that (x+, u+) ∈ A.
Proof. Let the pair (y, w) satisfy the conditions in the above

definition of A for the pair (x, u) ∈ A. This implies

y1 = Ax+Bu ∈ Y1 = X	 (1− β)Z

and, consequently, if x+ satisfies (17), we must have x+ ∈ X,
since r is an inner radius of Z by construction. Thus, we define
the shifted initial value

y+
0

def
= x+ ∈ Y0 . (18)

Next, a feasible trajectory is generated via the closed-loop
recursion

y+
k+1 = yk+2 + (A+BK)(y+

k − yk+1), (19)

w+
k = uk+1 +K(y+

k − yk+1), (20)

for k ∈ {0, . . . , N − 1}, where we additionally define

yN+1
def
= (A+BK)yN and uN

def
= KyN , (21)

such that (19) and (20) are well-defined for all k, including
the special case k = N − 1. In order to check that (y+, w+)
satisfies the system dynamic, we briefly verify that

y+
k+1

(19),(21)
= Ayk+1 +Buk+1 + (A+BK)(y+

k − yk+1)

= Ay+
k +B(uk+1 +K(y+

k − yk+1))

(20)
= Ay+

k +Bw+
k . (22)

Next, we use an induction to show that

y+
k − yk+1 ∈ βk(1− β)Z (23)

holds for all k ∈ {0, 1, . . . , N}. For k = 0, this follows
from (18), since y+

0 = x+ and x+ − y1 ∈ (1 − β)Z, our
induction start. Next, if (23) holds for a given k ≤ N−1, (19)
yields

y+
k+1 − yk+2 ∈ (A+BK)

[
βk(1− β)Z

]
= βk+1(1− β)Z , (24)

since Z is β-contractive for the given linear control gain K
by construction. This is an induction step implying that (23)
holds for all k ∈ {0, 1, . . . , N}. Next, we use the inclusion3

yk+1 ∈ Yk+1 to show that

y+
k

(23)
∈ Yk+1 ⊕

[
βk(1− β)Z

]
=

[
X	 (1− βk+1)Z

]
⊕
[
βk(1− β)Z

]
= X	 (1− βk)Z = Yk, (25)

for all k ∈ {0, . . . , N − 1}. Similarly, for k = N , we have

y+
N

(23),(21)
∈ (A+BK)T⊕

[
βN (1− β)Z

] (15)
⊆ T .

Thus, in summary, we have y+
k ∈ Yk for all times indices

k ∈ {0, 1, . . . , N − 1}, y+
N ∈ T, as well as w+

k ∈Wk, where
the latter inclusion follows by an argument that is completely
analogous to (25). Thus, we have (y+, w+) ∈ A, which
completes the proof. �

IV. REAL-TIME PARALLEL MPC WITH RECURSIVE
FEASIBILITY GUARANTEES

In order to develop a recursively feasible variant of Algo-
rithm 1, which takes control and state constraints into account,
we introduce the auxiliary optimization problem

VN (x̂)
def
= min

x,u
x>NPxN +

N−1∑
k=0

x>k Qxk + u>k Ruk

s.t.


∀k ∈ {0, . . . , N − 1},
xk+1 = Axk +Buk | λk,
x0 = x̂,

xk+1 ∈ Yk+1, uk ∈Wk .

(26)

Problems (2) and (26) coincide except for the constraints,
which have been replaced in (26) by their tightened coun-
terparts, Yk ⊆ X and Wk ⊆ U. Consequently, (26) can be

3The inclusion yk+1 ∈ Yk+1 also holds for k = N − 1, as we have
yN ∈ T ⊆ YN due to our particular construction of T.



interpreted as a conservative approximation of (2), and we
have VN ≥ JN . If r is small, the associated loss of optimality
is, however, small, too. We point out that neither (2) nor (26)
implement terminal constraints, since VN (x̂) = V∞(x̂) as long
as P is chosen appropriately and VN (x̂) <∞.

A. Recursively feasible parallel MPC
The main idea of this paper is to solve (26) by a variant of

Algorithm 1. For this aim, we introduce the decoupled, and
separable, initial problem

min
u0

‖u0‖2R − λ>0 Bu0 + ‖u0 − v0‖2R (27a)

s.t. u0 ∈ U , Ax̂+Bu0 ∈ Y1 , (27b)

as well as the parametric decoupled QPs

min
xk,uk

‖xk‖2Q + ‖uk‖2R − λ>k Buk + (λk−1 −A>λk)>xk

+ ‖xk − zk‖2Q + ‖uk − vk‖2R (28a)

s.t. uk ∈Wk , Axk +Buk ∈ Yk+1 , (28b)

defined for all k ∈ {1, . . . , N − 1}. The correspond terminal
problem (6) remains unchanged. Finally, a recursively feasible
real-time iteration (RFRTI) variant of Algorithm 1 is obtained
by replacing Step 1a) with the following Step 1a’):
1a’) Solve the decoupled QPs (27), (28), and (6) and de-

note their optimal solutions by x = [x1, . . . , xN ] and
u = [u0, . . . , uN−1].

From an implementation point of view, this change is minor,
as we have merely introduced new (separable) inequality
constraints in (27) and (28), which can still be tackled by
explicit MPC solvers [23], [24]. The advantage of this change
is, however, significant as one can now tradeoff conservatism
of the constraint margins, controlled by the tuning parameter
r > 0, with the number m of iterations that are needed
to ensure recursive feasibility of the proposed sub-optimal
parallel real-time MPC scheme, as the following result holds.

Theorem 1: Let σ > 0 satisfy BTQB � σR, let the first
state measurement x̂ be such that VN (x̂) <∞, and let P and
N be chosen such that VN (x̂) = V∞(x̂). Then there exists
a constants κ < 1 such that (9) holds for the iterates of the
modified Algorithm 1, where Step 1a) is replaced by Step 1a’).
The iterates remain recursively feasible, if m satisfies

m ≥ logκ

(
1− β
1 + κ

· r

σ∆(z, v, λ)

)
− 1 , (29)

where β < 1 and r > 0 are defined as in Section III and z, v,
and λ denote the initialization of the algorithm.

Proof. Notice that Theorem 1 in [12] does not use any
particular assumption on constraints and, consequently, (9)
also holds for the iterates of the modified Algorithm 1 in
the presence of state constraints. Because VN (x̂) = V∞(x̂)
holds by construction, the terminal region from Lemma 2
does not have to be implemented and, consequently, Lemma 2
ensures that recursive feasibility holds whenever the inequality
‖x+

0 − x?1‖ < (1− β)r is satisfied by the iterates. Thus, due
to Lemma 1, if m satisfies

‖x+
0 − x?1‖ ≤ σ(1 + κ)κm+1∆(z, v, λ) ≤ (1− β)r .

recursive feasibility is guaranteed. The statement of the the-
orem follows by solving this inequality with respect to m.
�

Notice that the conditions for asymptotic stability from [12]
are unaffected by the state constraints. They are fully ap-
plicable to our modified version of Algorithm 1—with the
only difference being that we need Theorem 1 to guarantee
recursive feasibility in the presence of state constraints.

V. CASE STUDY

Let pi and vi denote the position and velocity of the i-th
cart in a spring-mass-damper chain with n carts in total. We
assume that the system recursion is given by

p+
i = pi + hvi

v+
i = vi +

h

m
(ks(pi−1 − 2pi + pi+1)− kdvi + ui)

for all i ∈ {1, . . . , n}, where the mass m = 1, spring constant
ks = 1, and damping constant kd = 1 are all set to 1.
Additionally we set p0 = 0 and pn+1 = pn modeling a scenario
in which the first cart is attached to a wall while the last
cart is free. Here, ui denotes the force at the i-th cart. The
discretization parameter is set to h = 0.1 while

X =
{
x ∈ R2n | ‖x‖∞ ≤ x

}
and U = {u ∈ Rn | ‖u‖∞ ≤ u}

model symmetric state- and control constraints, where we set
x = 5

2 and u = 1. Moreover, we set Q = I and R = I; P is
found by solving an associated algebraic Riccati equation. In
order to study the performance of the proposed algorithm we
consider a large-scale MPC problem for n = 60 carts (= 120
differential states and 60 control inputs) while the prediction
horizon is set to N = 100. The initial state measurement is
set to x0 = 2 · 1 ∈ R120. This leads to a non-trivial sparse
QP with 18120 optimization variables in total, which cannot
be solved up to high accuracy in less than 10s on standard
computers.

Next, let J?∞ denote the optimal infinite-horizon closed-
loop performance (infinite sum over the stage cost along
the closed-loop states and controls) of exact MPC, JRFRTI

∞
the measured infinite-horizon closed-loop performance of the
proposed RFRTI scheme, and JRTI

∞ the corresponding per-
formance of a heuristic real-time iteration without recursive
feasibility guarantee. Figure 1 shows the relative performance
of the proposed RFRTI controller versus its online run-time.
Here, we have implemented the proposed algorithm in the
form of a prototype Julia code: one inner-loop iteration of the
proposed algorithm takes approximately 1 ms; that is, the run-
time in milliseconds coincides with m. For instance, if we stop
each real-time loop after 25 ms, we obtain a controller that is
only 0.1% suboptimal compared to exact MPC, but a factor
400 faster, clearly showing the benefit of real-time MPC.

Moreover, a heuristic RTI iteration—without the time-
varying constraint margins—happens to generate a feasible
closed-loop trajectory, although we have no a-priori guarantee
for this. Figure 2 compares the relative loss of the RFRTI
iteration versus such a heuristic RTI iteration for different



Fig. 1. The relative loss of performance of RFRTI compared to exact
MPC versus the online run-time. Here, J?

∞ denotes the (constant)
optimal infinite horizon performance obtained by using exact MPC
with an online run-time of more than 10s and JRFRTI

∞ denotes the
corresponding performance of the proposed real-time controller with
recursive feasibility guarantees.

Fig. 2. The relative loss of performance, (JRFRTI
∞ − JRTI

∞ )/JRTI
∞ ,

where JRFRTI
∞ denotes the infinite horizon closed-loop cost of the

RTI controller with recursive feasibility guarantee and JRTI
∞ the infinite

horizon closed-loop cost of a heuristic RTI controller without recursive
feasibility guarantee, versus the run-time per-real time iteration.

online run-times. The relative loss of performance is below
0.1% in all cases. However, if one wishes to reach a very
small loss of performance (e.g. 10−6), this is only possible if
one can accept run-times in the second range.

VI. CONCLUSIONS AND OUTLOOK

This paper has presented a RFRTI scheme for model predic-
tive control that comes along with novel recursive feasibility
as well as online run-time guarantees (see Lemma 2 and
Theorem 1). A case study for a large-scale linear system with
120 states and a prediction horizon of N = 100 has illustrated
the promising performance of the proposed real-time controller
compared to exact MPC. Moreover, it is has been found
that enforcing recursive feasibility guarantees comes at a
negligible loss of performance. Future research will focus
on an open-source software implementation of the proposed
RFRTI control scheme.
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