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Mechanical intelligence for learning embodied
sensor-object relationships
Ahalya Prabhakar1✉ & Todd Murphey 2✉

Intelligence involves processing sensory experiences into representations useful for predic-

tion. Understanding sensory experiences and building these contextual representations

without prior knowledge of sensor models and environment is a challenging unsupervised

learning problem. Current machine learning methods process new sensory data using prior

knowledge defined by either domain knowledge or datasets. When datasets are not available,

data acquisition is needed, though automating exploration in support of learning is still an

unsolved problem. Here we develop a method that enables agents to efficiently collect data

for learning a predictive sensor model—without requiring domain knowledge, human input, or

previously existing data—using ergodicity to specify the data acquisition process. This

approach is based entirely on data-driven sensor characteristics rather than predefined

knowledge of the sensor model and its physical characteristics. We learn higher quality

models with lower energy expenditure during exploration for data acquisition compared to

competing approaches, including both random sampling and information maximization. In

addition to applications in autonomy, our approach provides a potential model of how animals

use their motor control to develop high quality models of their sensors (sight, sound, touch)

before having knowledge of their sensor capabilities or their surrounding environment.
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A defining characteristic of intelligence and learning is the
ability to process sensory experiences into concise repre-
sentations from which one can predict and anticipate

sensory experience at new states1–3. Humans recognize and
encode complex scenes and objects in memory with remarkable
accuracy, able to imagine them from different viewpoints or
places1–3. Recent efforts have focused on developing neural net-
works and models for learning concise representations from
sensory data4,5, but these approaches require that datasets for
learning already exist. The challenge of data acquisition in sup-
port of learning, when these datasets are not available, remains
unsolved. This lack of a theory explaining where data should
come from affects all data-driven science6 since the quality of
machine intelligence and resulting human behavior depends on
quality of data. Information-based search strategies have been
used for both modeling animal behavior7,8 and synthesizing
behavior9 for artificial systems. However, there are no principles
explaining how mechanical motion supports general models of
learning. This paper creates a general model of how agents use
motor capability to support learning when the data for learning
needs to be physically acquired—a typically necessary step that is
often not considered in the machine learning literature that uses
canned datasets acquired elsewhere. When training data acquired
for learning is dependent on exploratory strategies throughout the
environment, principles for motion control become a cornerstone
of principles for learning.

In this paper, we use the challenge of learning predictive sensor
models without predefined knowledge of the sensor or environ-
ment as a setting for deriving physics-constrained motion stra-
tegies for learning. Our method works well without modification
for both near-field and far-field sensor examples. We accomplish
this using a motor principle based on ergodicity—a physically
important property from statistical mechanics10 that relates
temporal behavior of trajectories to spatial distributions—with
respect to information-rich regions of a physical domain. This
approach results in dramatically higher quality learned models
with lower energy expenditure than approaches that rely on
randomized sampling of the environment, the dominant data
acquisition strategy in nearly all machine learning. Moreover, the
approach presented here outperforms entropy-based information
maximization in terms of learning performance (see Supplemen-
tary Information).

Our learning framework is based on autoencoders; these learn
an encoder-decoder framework that encodes input data into a
lower-dimensional latent representation from which signals are
decoded for prediction11. Conditional autoencoders learn a pre-
dictive model by learning a latent space conditioned on external
factors (e.g., agent pose). Specifically, we learn a sensory model of
the form (y0 ¼ f ðθe; θd; x0Þ)—where θe and θd parameterize an
encoder and decoder in an autoencoder that has a latent space z
determined from a seed observation at robot state x0—in order to
predict what the agent would experience at a new state x0. Active
data acquisition is specified by minimizing the distance from
ergodicity12 between the time-averaged statistics of an agent
along a trajectory and a target coverage spatial distribution (that
represents how information about the autoencoder is distributed
spatially). Ergodicity with respect to the entropy of variables in a
learning representation is a principle of motion, much like energy
minimization13,14 and entropy7.

Metrics on ergodicity for synthesizing motion for active
learning. Unsupervised learning for predictive sensory models
(e.g., scene prediction using data from sensors in self-driving
cars) relies on processing and learning from batches of data
received continuously and analyzed intermittently. This episodic

framework benefits from a data acquisition approach that is
simultaneously responsive to changes in the learning repre-
sentation (e.g., changes to a deep neural network) and persistent
in its data collection while waiting for those changes. Unlike other
prediction-based reward functions that focus on acquisition of
unusual measurements15, metrics on ergodicity—measures that
indicate how well a particular trajectory x(t) covers a specified
distribution ϕ(x)—enable the formulation of a controlled
response to the need for data that seeks out informative regions
based on the entropy of the learned model over the exploration
space, generating mechanical motion that actively aids intelligent
learning. Ergodic control—based on a metric on ergodicity—
enables synthesis of exploratory motions that adapt in response to
data collected and evolving information distributions.

Autoencoders provide an estimate of a latent space variable z,
explicitly dependent on a conditional variable x, based on a
sensor observation y. As learning progresses, the parameters of
the encoder and decoder networks—θe and θd, respectively—are
optimized to interpret input data to best predict sensory data,
such that it outputs both a prediction of the sensor observation y0

and its entropy Hy . As illustrated in Fig. 1, the state of a sensor is
the conditional variable in this framework; the learned repre-
sentation changes as the sensor state changes (e.g., pose of a
camera or pressure and location of a tactile sensor). Conditional
autoencoders are the representation of learning we focus on here,
but their key characteristic is that the learning representation is
explicitly conditioned on something over which an agent has
control; the arguments used here in the context of conditional
autoencoders would apply to other learning methodologies with
this same property.

Since the entropy estimate approximates how information in
the autoencoder depends on the state of the sensor, we maximize
the ergodicity of the sensor trajectory with respect to entropy of
the autoencoder model to dictate how the sensor moves in order

Fig. 1 Model learning approach. The learning approach consists of a
learning algorithm for creating generative sensory models from data and an
active exploration framework that collects data based on the conditional
entropy of the learned model. Conditional autoencoders are used to learn a
low-dimensional latent encoding of the high-dimensional sensor input.
Sensor output at novel states—the generative aspect of the model—is then
predicted using this low-dimensional encoding. We develop an active
exploration approach for data acquisition based on ergodic coverage of the
entropy of the latent space to improve model uncertainty. This framework
demonstrates a feasible approach for real-time, generalizable sensor model
learning without the need for predefined domain knowledge of the
environment or sensor structure.
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to acquire more information about the unknown or partially
known autoencoder. We assume that the conditional variable x is
a state of a controllable system dependent on an input u, and that
the dynamics _x ¼ f ðx; uÞ of the sensor are known (see Supple-
mentary Information). We numerically optimize u to be
maximally ergodic with respect to Hy , the entropy of the decoder
network by minimizing a metric on ergodicity, where in this case
ϕ(x) is Hy conditioned on x and the latent space representation z
derived from the current x, y (also discussed in the Supplementary
Information). We refer to this control as ergodic sampling.

Results
Near-field sensors (e.g., touch, electrosense) and far-field sensors
(e.g., vision, hearing) depend differently on actions taken by an
agent. In the case of vision, actions that support learning involve
getting a target within the field of view at a sufficient distance to
identify visual features, avoiding motion to avoid blur. In contrast,
touch requires proximity to a target and often requires motion
relative to the target; information content drops dramatically as soon
as a sensor is out of contact. The ergodic sampling method applies to
both near-field and far-field sensory learning without modification.
We demonstrate this using electrosense physics as a near-field
sensory model and vision as a far-field model.

First, we explore the benefits of ergodic sampling for learning
an electrosensory model. The electrosensory modality—com-
monly referred to as electrolocation—is used by a group of South
American weakly electric freshwater nocturnal fish that hunts in
darkly tinted waters where visibility is low. Understanding their
unique sensing modality and decision-making has been of
interest both for understanding biological behavior and for using
these sensor modalities in robotics16–18. Electrosense is a near-
field sensory modality that only produces electrical perturbations
in voltage observations when near the object16, highlighting the
importance of active data acquisition—like touch, model gen-
eration is impossible without movement. In the case of weakly
electric fish, electrosense measurements are distributed across the
surface of the fish body, yielding a sensor where each voltage
measurement can be thought of as a pixel in an image. However,
these sensory activity readings are proportional to the voltage
difference between inside and outside the skin at the sensor, so
the geometry of the pixels does not directly correspond to the
geometry of the environment, the way a camera’s pixels do.
Similar to a camera image, the signal space of the electrosensory
modality is high dimensional. We construct an electrosense
measurement model (described in the Supplementary Informa-
tion) of an underwater conductor in an environment with a
spherical object at an unknown location. In Fig. 2 we compare the
results of electrosensory model learning using ergodic sampling
and compare to random sampling as a benchmark—reflecting the
ideal sampling around the workspace without having to move
according to the laws of physics (see Supplementary Information
for details of numerical experiments).

Trajectories spend time close to the object, as seen in Fig. 2
(bottom). Without any prior knowledge of the sensor measure-
ment model or the object, this method automatically detects key
aspects of near-field sensing without those features being pre-
specified. The sensor model has a 441-dimensional sensor
observation y—which consist of voltage differentials evenly dis-
tributed in a 21 × 21 grid (covering the sensor coverage region
indicated in Fig. 2) over the center of the robot—and the robot
state x and encodes y into a 2-dimensional latent space repre-
sentation z conditioned on x. The latent space representation was
determined from a single seed observation (top right) with the
agent sufficiently near the object to register an electrical pertur-
bation—an observation sufficient for determining features of

perturbations but insufficient to otherwise describe the location of
the conductor (other details are provided in the Supplementary
Information).

The sensor model learned using the ergodicity-based dataset
results in a better reconstruction of the analysis-based measure-
ment model (right, second from top) than the sensor model
learned with randomly sampled data (right, second from bottom).
Moreover, the data acquisition technique spends time in locations
that cover regions of high information about voltage perturba-
tions (bottom), so that the resulting predicted sensor output
(bottom right) accurately captures the object’s location and
electrical signals experienced at a novel agent state.

We next consider the learning problem for high-dimensional
vision sensors in environments with complex, nonparameteriz-
able objects (e.g., objects with arbitrary shapes and visual tex-
tures) and multiple regions of interest (e.g., when there are
multiple objects present). We construct a vision-based model of a
three dimensional object for a 3-channel 75 × 75 pixel RGB
camera attached to a robot arm in a simulated Pybullet19 envir-
onment as shown in Fig. 3. The 75 × 75 × 3= 16,875-dimensional
sensor output uses a CNN-CVAE (from ref. 20 and described in
the Supplementary Information) for learning and encoding a 16-
dimensional latent space representation. The simulated environ-
ment consists of a tabletop with a rubber duck on it—an object
with complicated shapes and textures.

The random sampling generates samples over the entire
workspace, while the ergodic sampling controller spends more
time acquiring data near—but not on top of—the object in the
environment, where the highest-value information in the envir-
onment is distributed (Fig. 3 and Supplementary Movie 1).
Unlike the near-field electrosense example, where the robot
needed to be very close to the object to acquire informative data,
the ergodic sampling algorithm samples further away from the
object for vision modeling. Exploration is not guided by any
domain knowledge—the exploration behavior arises entirely
based on the entropy of the unknown sensory model during the
learning process and the maximally ergodic response with respect
to that entropy.

The learned vision model of the object predicts the resulting
camera image at every agent location within the domain, many of
which were not in the training dataset generated during the data
acquisition process. With ergodic sampling the learned model
generates a higher quality reconstruction of the object in the
camera image than the one generated from random sampling,
reflecting the object’s location accurately and capturing the
complex shape and lighting of the object in the RGB camera
model. Furthermore, the energy used to explore the environment
and acquire data is lower over time for ergodic sampling than
uniform random sampling, indicating that one can both improve
energetic efficiency while also improving learning by collecting
high-quality data.

Lastly, an example of modeling multiple objects using a
simulated black and white camera is treated in detail in the Sup-
plementary Information. There we see two important features of
ergodic sampling with respect to the entropy of the learned model
—that the exploratory trajectories inspect each object individu-
ally, without requiring a representation of the objects or their
number, and that the resulting predictive model is able to dis-
criminate between the objects based on the learning updates
when random sampling-based learning cannot. Moreover, we use
this example to illustrate the advantages of ergodic sampling over
entropy-based information maximization. In the case of infor-
mation maximization, the active learning strategy fixates on just
one object, whereas the ergodic sampling strategy collects infor-
mation about all the features about both objects, leading to
substantially lower testing loss.
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Discussion
The use of learning-for-control dominates much of modern
robotics and has its roots in reinforcement learning21. Here, we
develop a theory of control-for-learning, based on a principle of
maximal ergodicity with respect to entropy of a learning
algorithm.

Sensor-environment model learning often relies on domain
knowledge22–26 or is hand tailored to specific domains27–29.
Other unsupervised model learning approaches assume pre-
defined knowledge of sensor structure30 or assume large pre-
existing datasets4,5. Oftentimes these environments are simula-
tion-based—permitting sampling the state space without adher-
ing to the laws of physics or even continuity of the state in time—
so they do not examine the data acquisition process or optimi-
zation of the learning representation. Other work examines the
quality of sensor data, but does so independently from the
learning representation. For instance, Bayesian surprise in sen-
sory data is used to identify data needed to guide human
behavior31–33 and to generate classifiers and event detection in
sensors and robots34–36, but these techniques focused on

analyzing the value of existing data rather than guiding
exploration and data acquisition. Such methods do not aim to
provide approaches to actively acquire informative data in the
physical world subject to physical constraints. Even reinforce-
ment learning techniques treat data acquisition as an afterthought
(discussed in the Supplementary Information).

This work proposes a domain-independent framework that
integrates data acquisition and learning processes using ergodicity
—familiar to most as a measure from statistical mechanics. We
demonstrate that an ergodicity-based approach enables active
acquisition of informative sensor data to efficiently learn a sensor
model. The approach is amenable to high-dimensional sensor
outputs and complex learning models in a variety of scenes and
environments; here we demonstrate with both near-field and far-
field sensor types with different physical properties. The ergodic
sampling algorithm capable of exploring high-dimensional search
spaces in real-time was developed in ref. 37. Here, we further
developed it for exploring with respect to entropy of learning
models. Critically, we show how ergodicity with respect to the
state of the neural network can be used to actively acquire

Fig. 2 Electrosense model learning. We compare the predicted measurement of the learned electrosensory model to the physics-based electrosensory
model. The model is an approximation of the sensory system of a weakly electric fish (the black ghost knifefish16). Using a seed image, we show the
reconstruction of the physics-based measurement field estimate near the object interest, using a conditional autoencoder with active learning using
random sampling, and the proposed ergodic sampling strategy. The proposed approach explores the environment based on the evolution of the entropy of
the latent space over time (shown evolving over time along with the resulting trajectory shown in blue). Despite no a priori information about the object's
location (indicated with black markers) or measurement model, as time evolves the entropy of the latent space—representing where the information
affecting the model estimate is highest—converges near the object location and the ergodic sampling spends significantly more time exploring that region
without fixating on a particular state. As a result, the ergodic sampling approach results in a significantly better reconstruction of the predicted sensor
observation with much lower energy expenditure needed during exploration.
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informative data within an unsupervised learning framework,
enabling active data acquisition that evolves along with the
unsupervised model learning. The ergodic framework enables
exploration without requiring physics-based knowledge of a
sensor or the environment (but does assume ability to move the
sensor). This work provides a framework for all sensor-
environment learning that does not rely on physics-based mod-
els to learn and predict experiences, but rather uses experienced
observations along with the ability to move in an environment to
guide and inform model learning and future behavior.

Although this paper has focused on synthetic forms of
mechanical motion that approximate ergodicity as a principle for
learning, mechanical systems that are automatically ergodic as a
result of their statistical mechanical properties would learn
without needing this synthesis. This indicates how learning may
be a consequence of mechanical coverage combined with com-
puting updates, in some cases making learning as much a
mechanical property38 as an algorithmic property of a system.

Methods
In the following section, we describe the methods for learning a generative sensory
model with no a priori information, human input, or sensor domain knowledge. We
describe a Kullback–Leibler (KL)-ergodic measure, a sample-based approximation of
the ergodic metric, and an optimal controller to enable ergodic exploration that
extends to high-dimensional exploration spaces. Using this, we present an exploration
strategy for acquiring data from regions of high information for efficient learning.

Assumptions. Assume we have an agent with system dynamics that can be
modeled as

_xðtÞ ¼ f ðxðtÞ; uðtÞÞ ð1Þ

¼ gðxðtÞÞ þ hðxðtÞÞuðtÞ ð2Þ
where x 2 X � Rn is the state of the agent, u 2 U � Rm is a control vector, f(x, u)
is the (possibly nonlinear) transition model, which we split into gðxÞ � Rn ! Rn ,
the free (unactuated) dynamics, and hðxÞ : Rn ! Rn ´m , the input vector fields. It
has a sensor that outputs data y 2 Y � Ro , which here comes from simulated
sensors.

The agent explores a workspace X with no a priori knowledge of environmental
physical characteristics (e.g. objects in the environment or textures).

Model learning. We use a conditional variational autoencoder (CVAE) to construct
a generative sensor model of the sensing modality. We define the inputs to the
CVAE encoder as the sensor data y(t) and agent state x(t). We model both the

encoder and decoder as neural networks. The encoder network is a probability
distribution pθe ðzjy; xÞ parameterized by θe that compresses the high-dimensional
sensor measurement into a low-dimensional compressed latent space z. The decoder
network is a probability distribution pθd ðyjz; xÞ parameterized by θd that has as its
input zx—generated by sampling the normally-distributed latent space z such that
zx= zμ+ zσϵ, where ϵ ~Normal(0, 1) and the agent state x(t). The outputs from the
decoder are the expected sensor readings ~yðtÞ conditioned on the agent state x(t).

Electrosense. The electrosense network’s input is the 441-dimensional sensor output
y(t) and the 2-dimensional agent state x(t)= [px, py], where px, py are the positions in
space at time t. The encoder network compresses the input with a series of linear
transformation and ReLU layers into a 2-dimensional latent space z and its log-
variance log½Vðzjy; xÞ�. The decoder network takes in samples of the reparametrized z
latent space and the agent state x and generates a prediction of the 441-dimensional
measurement ~yn and a scalar value representing the log-variance log½Vðyjz; xÞ�
representing the uncertainty with a series of linear transformation and ReLU layers.

Vision. Intensity camera model: The camera model network’s input is a 1-channel
38x38 intensity image (1444-dimensional) sensor output y(t) and the 2-dimensional
agent state x(t)= [px, py]. The encoder network compresses the input with a series of
linear transformation and ReLU layers into a 16-dimensional latent space z and its
log-variance log½Vðzjy; xÞ�. The decoder network takes in samples of the repar-
ametrized z latent space and the agent state x and generates a prediction of the 1444-
dimensional image measurement ~yðtÞ and its scalar log-variance log½Vðyjz; xÞ� with a
series of linear transformation and ReLU layers.

RGB camera model: The CVAE for RGB camera model learning consists of a
combination of convolutional neural networks and a conditional autoencoder
networks (CNN-CVAE). For the encoder network, the 3-channel 75 × 75 image is
first an input into a convolutional neural network (CNN) consisting of 2d con-
volutional layers and max pooling layers to condense the image into a lower-
dimensional feature space. The flattened output of the CNN and the 2-dimensional
agent state x= [px, py] is then an input into a second neural network that com-
presses the input with a series of linear transformation and ReLU layers into a 16-
dimensional latent space z and its log-variance log½Vðzjy; xÞ�. The decoder network
consists of two different decoder networks, an image-decoder network and
variance-decoder network, that both take as input samples of the reparametrized z
latent space and the agent state x. The image-decoder network generates a pre-
diction of the image by first using a neural network with a series of linear trans-
formation and ReLU layers and then a deconvolutional neural network to generate
the 3-channel image prediction. The variance-decoder network takes in the sam-
ples of the reparametrized z latent space and the agent state x with a series of linear
transformation and ReLU layers generates a scalar value representing the log-
variance, or the uncertainty, of the predicted image.

Our objective is to develop a method that is general to any form of sensor model
learning that requires an agent to dynamically move to seek out measurements
through actions. In the next section, we describe a KL-ergodic measure and the
derived optimal controller (KL-E2) that specifies the active exploration task as an
area-coverage objective, developed in37,39.

Fig. 3 RGB camera model learning. We compare the predicted measurement generated from the learned 3-channel RGB camera model. Using a seed
image, we show the reconstruction of the visual camera field estimate near the object interest, using a CVAE with active learning using random sampling,
and the proposed ergodic sampling strategy. Despite no a priori information about the object's location or measurement model, as time evolves, ergodic
sampling spends significantly more time exploring the region around the object in the environment. However, unlike the near-field electrosensory model,
the camera characteristics generates exploration further away from the object, where the object appears in the periphery of the camera view, instead of
remaining directly over the object. The ergodic sampling approach (shown in blue) requires much lower energy expenditure compared to random sampling
(shown in green). Furthermore, the ergodic sampling approach results in a significantly better reconstruction of the predicted sensor observation, better
capturing the object's characteristics (i.e, shape, color) and the characteristics of the sensor-environment interactions (i.e., camera lighting). More detail
can be found in the Supplementary Information.
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Kullback–Leibler (KL)-ergodic measure. We define active exploration for infor-
mative data acquisition by generating actions that actively seek out informative data.
The expected informativeness of a measurement at a particular state is defined to be
the entropy of the learning model at that state. This is accomplished by specifying the
active data acquisition task using an area coverage objective where we minimize the
KL-divergence between the time average statistics of the agent along a trajectory and a
spatial distribution defining the current coverage requirement. As the exact time-
averaged statistics, as described in ref. 9, are a collection of delta functions para-
meterized by time, we define an approximation of the spatial statistics of the agent. To
do so, we approximate the delta function as a Gaussian distribution with covariance Σ,
converging to the delta function as ∥Σ∥→ 0. We define the approximation to the
spatial statistics of the agent as follows:

Definition 1 Given a search domain X v � Rnþm where v ≤ n+m, the Σ-
approximated time-averaged statistics of the agent, i.e., the time the agent spends in
regions of the search domain X v , is defined by

qðsjxðtÞÞ ¼ 1
Tr

Z tiþT

ti�tr

μðs k �xðtÞÞdt ð3Þ

¼ 1
Tr

Z tiþT

ti�tr

1
η
exp � 1

2
k sð � �xðtÞk2Σ�1

� �
dt ð4Þ

where s 2 X v � Rnþm is a point in the search domain X v , �xðtÞ is the component of
the agent’s state x(t) that intersects the search domain X v , Σ 2 Rv ´ v is a positive
definite matrix that specifies the width of the Gaussian, η is a normalization factor,
ti is the ith sampling time, and Tr= T+ tr is sum of the time horizon T and amount
of time tr the agent remembers xv(t) into the past.

Using this approximation, we are able to approximate the ergodic area-coverage
objective in9 using the following KL-divergence objective40:

DKLðp k qÞ ¼
Z

X v
pðsÞ ln pðsÞ

qðsÞ ds ð5Þ

¼
Z

X v
pðsÞ ln pðsÞds

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
does not depend on xðtÞ

�
Z

X v
pðsÞ ln qðsÞds

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
depends on xðtÞ

ð6Þ

¼ �
Z

X v
pðsÞ ln qðsÞds ð7Þ

¼ �
Z

X v
pðsÞ ln qðsÞds ð8Þ

¼ �EpðsÞ ln qðsÞ� �
; ð9Þ

where E is the expectation operator, q(s)= q(s∣x(t)), and p(s),
pðsÞ > 0;

R
X v pðsÞds ¼ 1, is a distribution that describes where in the search domain

an informative measurement is likely to be acquired. Note that we drop the first
term in the expanded KL-divergence because it does not depend on the trajectory
of the agent x(t).

We approximate the expectation operator using

DKLðp k qÞ ¼ �EpðsÞ ln qðsÞ ð10Þ

� � ∑
N

i¼1
pðsiÞ ln qðsiÞ ð11Þ

� � ∑
N

i¼1
pðsiÞ ln

Z tf

t0

exp � 1
2
k sð � �xðtÞk2Σ�1

� �
dt ð12Þ

where N is the number of samples in the search domain drawn from a uniform
distribution. With this formulation, we are able to obtain the benefits of indirectly
sampling from the spatial distribution p(s) without having to directly compute
derivatives to generate an optimal control signal. Furthermore, this sample-based
measure prevents the computation from scaling exponentially with the number of
exploration states.

KL-ergodic exploration (KL-E2). We now synthesize optimal control using the
derivative of the measure in Eq. (10) with respect to the duration time λ of control
μ*(t), or the mode insertion gradient, which calculates the sensitivity of the mea-
sure with respect to duration.

The first order sensitivity of (10) with respect to the control duration λ of the
applied control μ⋆(τ) is

∂J
∂λ

jt¼τ ¼ ρðτÞ>ðf 2 � f 1Þ ð13Þ

where f2= f(x(t), μ⋆(t)) and f1= g(x(t)) (or the unactuated dynamics), and ρðtÞ 2

Rn is the adjoint, or co-state variable is the solution to the differential equation:

_ρ ¼ � � η

Tr
∑
i

pðsiÞ
qðsiÞ

∂μ

∂x

� �� �
� ∂f

∂x

� �>
ρ: ð14Þ

Given the mode insertion gradient, we need to find the control μ⋆(t) that most
significantly decreases (13) by writing it as an unconstrained optimization problem:

J2 ¼
Z tiþT

ti

∂

∂λ
Jjt¼τ þ

1
2
k μ?ðtÞ

	k2R ð15Þ

where R 2 Rm´m is a positive definite matrix that penalizes the deviation from the
policy μ(x). The control vector that minimizes J2 is given by

μ?ðtÞ ¼ �R�1hðxðtÞÞ>ρðtÞ: ð16Þ
Supplementary Fig. 4 shows the results of the KL-E2 controller exploring a

target distribution. The controller generates a trajectory that ergodically explores
with respect to the target distribution (i.e., it explores proportionally with respect to
the target distribution). However, the Fourier-based ergodic metric, which scales
exponentially Oðn � jkjnÞ, where ∣k∣ is the maximum-integer Fourier term and n is
the dimensions of the exploration space. On the other hand, our proposed
approach scales linearly Oðjkj � nÞ, where ∣k∣ is the number of samples, making it
more computationally efficient for real-time, high-dimensional exploration. Given
this control formulation, all that is needed is to define a target spatial distribution
that specifies which measurements are more informative for estimating the
sensor model.

Importance measure for sensor model estimation. To generate a target coverage
distribution for the agent, we construct a measure that allows the agent to quantify
where in the search domain will be useful data to best improve its learning of the
sensor model. Here, we use the CVAE network to generate an estimate of data
importance over the search space.

Definition 2 The importance measure ν : X ´X v ! Rþ for a new state s in
the search domain when the agent is at its current state x is given by

νðs; xÞ ¼ exp Hðpθd ðyjzx ;sÞÞ

 �k ð17Þ

where H is the entropy of the decoder network pθd conditioned on a given robot
state s and the latent space representation zx generated from the robot’s current
state x and k is an effective temperature parameter for the distribution that
exponentially weighs regions of high importance.

As we assume a normal distribution, the entropy does not depend on the mean
of pϕ(y∣z, x)11. Since the CVAE converts the inputs into a statistical latent space, we
use the estimate of the decoder network entropy as a function of state to represent
model uncertainty over the workspace—generating an expected information
density. We use this expected information density distribution to specify ergodic
coverage, such that the robot prioritizes regions with the most informative data to
best improve the latent space representation.

Definition 3 The importance distribution ν 2 Rþ is defined as the entropy of
the normal distribution,

νðs; xÞ / exp
1
2
ln½σ2yðs; xÞ�

� �k

ð18Þ

where points s; x 2 X v and the robot’s current state is x.

Algorithm overview. We provide an outline of our KL-E2 method in Algorithm 1
for real-time active learning for sensor model estimation.

Algorithm 1. KL-Ergodic exploration (KL-E2) for variational autoencoders

1: initialize: local dynamics model f(x, u), initial condition x(t0), CVAE
network C, Learned parameters θ, ϕ of network C, importance distribution
p(s, x), number of CVAE optimizations jopt, batch size b.

2: for i= 0,…,∞ do
3: Calculate optimal control μ⋆(τ) for t 2 ti; ti þ T

� �
4: Calculate application time and duration τ, λ that minimizes ∂

∂λ J
5: Apply μ?ðτÞif t 2 τ; τ þ λ½ �elseapply μðxðtÞÞ to robot
6: Sample state x(ti) and measurement y(ti)
7: for j= 0,…, jopt do
8: Generate minibatchM by randomly sampling b data points from full set
9: Generate random noise ϵ ~ p(ϵ) for each data point in M
10: Compute loss Lθ,ϕ and its gradients ∇θ,ϕLθ,ϕ
11: Update θ and ϕ using SGD optimizer
12: end for
13: Generate latent space representation zx at current robot state xi
14: Update importance distribution p(s, x)
15: end for
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Data availability
The data for all experiments and figures in the paper are publicly available. A
downloadable version of the datasets used for the different sensory simulations in this
paper is archived and links for them can be found on the github reposity https://github.
com/apr600/mechanical-intelligence.

Code availability
Implementations of the active sensory learning algorithm with the different environment
examples are available at https://github.com/apr600/mechanical-intelligence. This
package also contains code reproducing the main results from the paper.
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